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Preface

This book contains the proceedings of the 8th International Conference on Cryptology
and Information Security in Latin America, LATINCRYPT 2023. The conference was
held in Quito, Ecuador on October 3–6, 2023. This event was organized in cooperation
with the International Association for Cryptologic Research.

The 19 accepted papers collected in this volume and presented at the conferencewere
carefully selected by the Program Committee (PC), after a double-blind peer review
process, from 59 submissions by researchers from 27 different countries. The PC co-
chairswere supported in thismatter by aPCconsisting of 47 leading experts on all aspects
of cryptologic research. 24 external reviewers also provided invaluable input for the
selection of papers. Each submission received around 4 reviews from the committee, or
5 reviews for papers co-authoredbyaPCmember. Strong conflict of interest rules ensured
that papers were not handled by PC members with a close personal or professional
relationship with the authors. The two program chairs were not allowed to submit a
paper.

Alongside the presentations of the accepted papers, the program of LATINCRYPT
2023 featured three excellent invited talks. Furthermore, leading up to the conference,
the ASCrypto school in cryptography took place on the two previous days, and included
numerous expository talks on some of the topics covered in the technical program.
ASCrypto was chaired by Sofia Celi and Diego Aranha.

The conference proceedings volume contains the revised versions of the 19 papers
that were selected. The final revised versions of papers were not reviewed again and the
authors are responsible for their contents.

Many people contributed to the success of LATINCRYPT 2023. We would like to
thank the authors for submitting their research results to the conference. We are very
grateful to the PC members and external reviewers for contributing their knowledge and
expertise, and for the tremendous amount of work involved in reviewing papers and
contributing to the discussions. We are greatly indebted to Walter Fuertes, the General
Chair, for his efforts and overall organization. The same can be said of the Local Orga-
nizing Committee. We also thank the steering committee for their direction and advice
throughout the preparation of the conference, and Springer for handling the publication
of these conference proceedings. Special thanks go to Francisco Rodríguez-Henríquez
for his indefatigable guidance and support.

October 2023 Abdelrahaman Aly
Mehdi Tibouchi

The originally published version of the front matter was revised: The names of Sofia Celi and
Diego Aranha have been included under the preface.



Organization

General Chair

Walter Fuertes Universidad de las Fuerzas Armadas - ESPE,
Ecuador

Local Organizing Committee

Sonia Cardenas Universidad de las Fuerzas Armadas - ESPE,
Ecuador

Efraín. R. Fonseca C. Universidad de las Fuerzas Armadas - ESPE,
Ecuador

Tatiana Gualotuña Universidad de las Fuerzas Armadas - ESPE,
Ecuador

Jorge Edison Lascano Universidad de las Fuerzas Armadas - ESPE,
Ecuador

Mauricio Loachamín Universidad de las Fuerzas Armadas - ESPE,
Ecuador

Diego Marcillo Universidad de las Fuerzas Armadas - ESPE,
Ecuador

Geovanny Ninahualpa Universidad de las Fuerzas Armadas - ESPE,
Ecuador

Marcelo Rea Universidad de las Fuerzas Armadas - ESPE,
Ecuador

Freddy Tapia Universidad de las Fuerzas Armadas - ESPE,
Ecuador

Program Committee Chairs

Abdelrahaman Aly CRC-TII, UAE
Mehdi Tibouchi NTT Social Informatics Laboratories, Japan

Steering Committee

Michel Abdalla CNRS and DI/ENS, Université PSL, France
Diego Aranha Aarhus University, Denmark



viii Organization

Paulo Barreto University of Washington, Tacoma, USA
Ricardo Dahab Universidade Estadual de Campinas, Brazil
Alejandro Hevia Universidad de Chile, Chile
Kristin Lauter Meta, USA
Julio López Universidade Estadual de Campinas, Brazil
Daniel Panario Carleton University, Canada
Francisco Rodríguez-Henríquez CRC-TII, UAE
Nicolas Thériault Universidad de Santiago de Chile, Chile
Alfredo Viola Universidad de la República de Uruguay, Uruguay

Program Committee

Miguel Ambrona Nomadic Labs, France
Elena Andreeva TU Wien, Austria
Diego Aranha Aarhus University, Denmark
Ero Balsa Cornell Tech, USA
Gustavo Banegas Qualcomm, France
Paulo Barreto University of Washington, Tacoma, USA
Ward Beullens IBM Zurich, Switzerland
Charlotte Bonte Zama, France
Alejandro Cabrera-Alday Tampere University, Finland
Fabio Campos Radboud University, Netherlands
Sofía Celi Brave, USA
Céline Chevalier University Pantheon-Assas, France
Jesús-Javier Chi-Domínguez CRC-TII, UAE
Bernardo David University of Copenhagen, Denmark
Luca De Feo IBM Zurich, Switzerland
Daniel Escudero JP Morgan, USA
Maria Isabel González-Vasco Carlos III University of Madrid, Spain
Debayan Gupta Ashoka University, India
Minki Hhan Korean Institute of Advanced Studies, Korea
Elena Kirshanova CRC- TII, UAE
Nadim Kobeissi Nym Technologies, Switzerland
Hilder Vitor Lima Pereira imec-COSIC, KULeuven, Belgium
Patrick Longa Microsoft Research, USA
Julio López University of Campinas, Brazil
Eleftheria Makri University of Leiden, Netherlands
Victor Matteu CRC- TII, UAE
Svetla Nikova University of Bergen, Norway
Anca Nitulescu Protocol Labs, France



Organization ix

Miyako Ohkubo National Institute of Information and
Communication Studies, Japan

Elena Pagnin Chalmers University, Sweden
Daniel Panario University of Carleton, Canada
Octavio Pérez-Kempner NTT Social Informatics Laboratories, Japan
Peter Pessl Infineon Technologies, Germany
Carla Ràfols Universitat Pompeu Fabra, Spain
Joost Renes NXP Semiconductors, Netherlands
Peter Scholl Aarhus University, Denmark
Peter Schwabe Max Planck Institute for Security and Privacy,

Germany and Radboud University, Netherlands
Tjerand Silde NTNU, Norway
Chao Sun Kyoto University, Japan
Titouan Tanguy imec-COSIC, KU Leuven, Belgium
Nicolas Thériault Universidad de Chile, Chile
Javier Verbel CRC-TII, UAE
Frederick Vercauteren KU Leuven, Belgium
Alfredo Viola Universidad de la República de Uruguay, Uruguay
Fernando Virdia Independent Researcher, Argentina
Yang Yu Tsinghua University, China
Arantxa Zapico Ethereum Foundation, USA

Additional Reviewers

Gora Adj
Marc Beunardeau
Marco Calderini
Viola Campos
Wonseok Choi
Heewon Chung
Siemen Dhooghe
David Gerault
Akiko Inoue
Yan Ji
Nikolay Kaleyski
Changmin Lee

Semyon Novoselov
Ivan Oleynikov
Adrián Ranea
Magnus Ringerud
Yusuke Sakai
Mahdi Sedaghat
Koutarou Suzuki
Sharwan Kumar Tiwari
Nicola Tuveri
Senpeng Wang
Zachary Welch
Gustavo Zambonin



Contents

Symmetric-Key Cryptography

On the Algebraic Immunity of Weightwise Perfectly Balanced Functions . . . . . . 3
Agnese Gini and Pierrick Méaux

ACE-HoT: Accelerating an Extreme Amount of Symmetric Cipher
Evaluations for (High-order) Avalanche Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Emanuele Bellini, Juan Grados, Mohamed Rachidi, Nitin Satpute,
Joan Daemen, and Solane El Hirch

Multi-party Computation

On Fully-Secure Honest Majority MPC Without n2 Round Overhead . . . . . . . . . 47
Daniel Escudero and Serge Fehr

Privacy-Preserving Edit Distance Computation Using Secret-Sharing
Two-Party Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Hernán Vanegas, Daniel Cabarcas, and Diego F. Aranha

Broadcast-Optimal Two Round MPC with Asynchronous Peer-to-Peer
Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Ivan Damgård, Divya Ravi, Luisa Siniscalchi, and Sophia Yakoubov

Isogeny-Based Cryptography

Effective Pairings in Isogeny-Based Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . 109
Krijn Reijnders

Fast and Frobenius: Rational Isogeny Evaluation over Finite Fields . . . . . . . . . . . 129
Gustavo Banegas, Valerie Gilchrist, Anaëlle Le Dévéhat,
and Benjamin Smith

Towards a Quantum-Resistant Weak Verifiable Delay Function . . . . . . . . . . . . . . . 149
Thomas Decru, Luciano Maino, and Antonio Sanso



xii Contents

Discrete Logarithm Problem

Making the Identity-Based Diffie–Hellman Key Exchange Efficiently
Revocable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Kohei Nakagawa, Atsushi Fujioka, Akira Nagai, Junichi Tomida,
Keita Xagawa, and Kan Yasuda

On the Discrete Logarithm Problem in the Ideal Class Group
of Multiquadratic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

S. A. Novoselov

Cryptographic Protocols

Stronger Lower Bounds for Leakage-Resilient Secret Sharing . . . . . . . . . . . . . . . . 215
Charlotte Hoffmann and Mark Simkin

Folding Schemes with Selective Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Carla Ráfols and Alexandros Zacharakis

Composable Oblivious Pseudo-random Functions via Garbled Circuits . . . . . . . . 249
Sebastian Faller, Astrid Ottenhues, and Johannes Ottenhues

Real-World Cryptography

Quotable Signatures for Authenticating Shared Quotes . . . . . . . . . . . . . . . . . . . . . . 273
Joan Boyar, Simon Erfurth, Kim S. Larsen, and Ruben Niederhagen

Post-quantum Hybrid KEMTLS Performance in Simulated and Real
Network Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Alexandre Augusto Giron, João Pedro Adami do Nascimento,
Ricardo Custódio, Lucas Pandolfo Perin, and Víctor Mateu

Zero-Knowledge Proofs

Physical Zero-Knowledge Proofs for Five Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Suthee Ruangwises

Testudo: Linear Time Prover SNARKs with Constant Size Proofs
and Square Root Size Universal Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Matteo Campanelli, Nicolas Gailly, Rosario Gennaro,
Philipp Jovanovic, Mara Mihali, and Justin Thaler

Set (Non-)Membership NIZKs from Determinantal Accumulators . . . . . . . . . . . . 352
Helger Lipmaa and Roberto Parisella



Contents xiii

Benchmarking the Setup of Updatable Zk-SNARKs . . . . . . . . . . . . . . . . . . . . . . . . 375
Karim Baghery, Axel Mertens, and Mahdi Sedaghat

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397



Symmetric-Key Cryptography



On the Algebraic Immunity of Weightwise
Perfectly Balanced Functions

Agnese Gini(B) and Pierrick Méaux

University of Luxembourg, Esch-sur-Alzette, Luxembourg
{agnese.gini,pierrick.meaux}@uni.lu

Abstract. In this article we study the Algebraic Immunity (AI) of
Weightwise Perfectly Balanced (WPB) functions. After showing a lower
bound on the AI of two classes of WPB functions from the previous lit-
erature, we prove that the minimal AI of a WPB n-variables function
is constant, equal to 2 for n ≥ 4. Then, we compute the distribution of
the AI of WPB function in 4 variables, and estimate the one in 8 and
16 variables. For these values of n we observe that a large majority of
WPB functions have optimal AI, and that we could not obtain a WPB
function with AI 2 by sampling at random. Finally, we address the prob-
lem of constructing WPB functions with bounded algebraic immunity,
exploiting a construction from [12]. In particular, we present a method to
generate multiple WPB functions with minimal AI, and we prove that
the WPB functions with high nonlinearity exhibited in [12] also have
minimal AI. We conclude with a construction giving WPB functions
with lower bounded AI, and give as example a family with all elements
with AI at least n/2 − log(n) + 1.

Keywords: Boolean functions · algebraic immunity · weightwise
perfectly balanced functions · FLIP

1 Introduction

Among the different criteria of Boolean functions analyzed during the last years,
those targeting Boolean functions with restricted input sets have been increas-
ingly studied after the work of Carlet, Méaux, and Rotella [6]. The authors intro-
duced cryptographic criteria of Boolean functions with restricted input for the
cryptanalysis of FLIP stream cipher [22], whose specificity is that its filter func-
tion is evaluated on sets of Boolean vectors having constant Hamming weight.
Therefore, considering functions with good properties also when restricted is cru-
cial for investigating its security. Properties on sets of constant Hamming weight
arise also in other contexts, such as side channel attacks where it is common to
obtain information on the Hamming weight of inputs (e.g. [18,32]).

One property of main interest is the balancedness, as in most cryptographic
contexts using balanced functions prevents biased output distributions, it is
desirable for applications like FLIP to work with functions balanced when

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Aly and M. Tibouchi (Eds.): LATINCRYPT 2023, LNCS 14168, pp. 3–23, 2023.
https://doi.org/10.1007/978-3-031-44469-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44469-2_1&domain=pdf
http://orcid.org/0009-0001-9565-380X
http://orcid.org/0000-0001-5733-4341
https://doi.org/10.1007/978-3-031-44469-2_1


4 A. Gini and P. Méaux

restricted to the slices Ek,n = {x ∈ F
n
2 |wH(x) = k} of the Boolean hyper-

cube F
n
2 . In this context Carlet et al.[6] presented the concept of Weightwise

Perfectly Balanced (WPB) functions, f : Fn
2 → F2, such that |{x ∈ Ek,n | f(x) =

0}| = |{x ∈ Ek,n | f(x) = 1}| for each 1 ≤ k ≤ n − 1, f globally balanced, and
f(0n) = 0. These functions are at maximal distance from the set of symmetric
functions, deeply studied in the context of cryptography e.g.[1–3], analogously
to the bent functions (e.g.[24,30]) from the set of affine functions. Diverse meth-
ods for constructing WPB functions have been proposed since 2017 e.g.[10–
15,17,19,25–27,33–35,37]. The main cryptographic properties that have been
studied on WPB functions so far are the weightwise nonlinearity (i.e.nonlinearity
restricted on the slices) such as in [10,15,27], and more recently the (global) non-
linearity such as in [12,17]. Other relevant cryptographic properties on Boolean
functions have not been studied deeply on the set of WPB functions, such as the
algebraic immunity.

The concept of Algebraic Immunity (AI) appeared in [7] in the context of
algebraic attacks on stream ciphers. In the attack described by Courtois and
Meier, instead of focusing on the system of equations given by a filter function f
(a Boolean function in n variables), they consider a system of equations poten-
tially simpler to solve, obtained by the annihilators of f . They show that even if
f has a high degree (close to n), f or f +1 always admits an annihilator of degree
at most �(n+1)/2�, allowing the attacker to reduce the attack to solving an alge-
braic system of the annihilator’s degree. The notion of algebraic immunity has
been formalized later in [23], as AI(f) = ming �=0{deg(g) | fg = 0 or (f+1)g = 0}.
Due to its high impact on the security of stream ciphers, the algebraic immu-
nity has been thoroughly studied since 2003. For WPB functions the AI is only
known for a few constructions. The family exhibited by Tang and Liu [33], and
later the families from [26,27] are designed to have optimal AI. Then, all the
other results are experimental, computing the AI of WPB functions in 4, 8 or
16 variables such as in [11,25,35].

Hence, the goal of this article is to further study the algebraic immunity of
WPB functions. First we investigate the extreme values of the AI inside the class
of WPB functions, and the AI distribution in a small number of variables. Since
families with optimal AI have been exhibited, we focus on the minimal value
that can reach a WPB function, and show lower bounds for two former secondary
constructions (from [6] and [37]). Contrarily to the degree that is at least n/2, we
show that the minimal AI of a WPB function is constant, equal to 2 for n ≥ 4.
We compute the distribution of the AI of WPB functions in 4 variables, and
estimate the one in 8 and 16 variables, following the model established by [10]
for the weightwise nonlinearities. For these values of n we observe that a large
majority of WPB functions have optimal AI, and that we could not obtain an
WPB function with AI 2 by sampling at random. Then, we address the problem
of constructing WPB functions with bounded algebraic immunity. We use the
construction from [12] to build functions with upper bounded AI. In particular,
we present a method to generate multiple WPB functions with minimal AI, and
we prove that the WPB functions with high nonlinearity exhibited in [12] also
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have minimal AI. We finish with a construction giving WPB functions with lower
bounded AI, and give as example a family with all elements with AI at least
n/2 − log(n) + 1.

2 Preliminaries

For readability we use the notation + instead of ⊕ to denote the addition in F2

and
∑

instead of
⊕

. We denote by [a, b] the subset of all integers between a
and b: {a, a+1, . . . , b}. For a vector v ∈ F

n
2 we use wH(v) to denote its Hamming

weight wH(v) = |{i ∈ [1, n] | vi = 1}|. For two vectors v and w of Fn
2 we denote

dH(v, w) the Hamming distance between v and w, that is dH(v, w) = wH(v + w).

2.1 Boolean Functions and Weightwise Considerations

In this part we recall general concepts on Boolean functions and their weightwise
properties we use in this article. For a deeper introduction on Boolean functions
and their cryptographic parameters we refer to the survey of [4] and to [6] for
the weightwise properties, also called properties on the slices. For k ∈ [0, n]
we denote Ek,n the set {x ∈ F

n
2 |wH(x) = k} and call it slice of the Boolean

hypercube (of dimension n). Accordingly, the Boolean hypercube is partitioned
into n + 1 slices where the elements have the same Hamming weight.

Definition 1 (Boolean Function). A Boolean function f in n variables is a
function from F

n
2 to F2. The set of all Boolean functions in n variables is denoted

by Bn, and we denote by B∗
n the set without the null function.

To denote when a property or a definition is restricted to a slice we use
the subscript k. For example, for a n-variable Boolean function f we denote
its support supp(f) = {x ∈ F

n
2 | f(x) = 1} and we denote suppk(f) its support

restricted to a slice, that is supp(f) ∩ Ek,n.

Definition 2 (Balancedness). A Boolean function f ∈ Bn is called balanced
if |supp(f)| = 2n−1 = |supp(f + 1)|. For k ∈ [0, n] the function is said balanced
on the slice k if ||suppk(f)| − |suppk(f + 1)|| ≤ 1. In particular when |Ek,n| is
even |suppk(f)| = |suppk(f + 1)| = |Ek,n|/2.

Definition 3 (Weightwise (Almost) Perfectly Balanced Function
(WPB and WAPB)). Let m ∈ N

∗ and f be a Boolean function in n = 2m

variables. It will be called Weightwise Perfectly Balanced (WPB) if, for every
k ∈ [1, n − 1], f is balanced on the slice k, that is ∀k ∈ [1, n − 1], |suppk(f)| =(
n
k

)
/2, and f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1. The set of WPB functions in 2m

variables is denoted WPBm.
When n is not a power of 2, other weights k �∈ {0, n} give slices of odd cardinality,
in this case we call f ∈ Bn Weightwise Almost Perfectly Balanced (WAPB)
if |suppk(f)| = (|Ek,n| ± (|Ek,n| mod 2))/2. The set of WAPB functions in n
variables is denoted WAPBn.
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Definition 4 (Walsh transform and restricted Walsh transform). Let
f ∈ Bn be a Boolean function, its Walsh transform Wf at a ∈ F

n
2 is defined

as: Wf (a) :=
∑

x∈F
n
2
(−1)f(x)+a·x. Let f ∈ Bn, S ⊂ F

n
2 , its Walsh transform

restricted to S at a ∈ F
n
2 is defined as: Wf,S(a) :=

∑
x∈S(−1)f(x)+ax. For S =

Ek,n we denote Wf,Ek,n
(a) by Wf,k(a), and for a = 0n we denote Wf,k(a) by

Wf,k(0).

Definition 5 (Nonlinearity). The nonlinearity NL(f) of a Boolean function
f ∈ Bn, where n is a positive integer, is the minimum Hamming distance between
f and all the affine functions in Bn: NL(f) = ming, deg(g)≤1{dH(f, g)}, where
g(x) = a · x + ε, a ∈ F

n
2 , ε ∈ F2 (where · is an inner product in F

n
2 , any choice of

inner product will give the same value of NL(f)).

Definition 6 (Non Perfect Balancedness ([12] Definition 11)). Let m ∈
N

∗, n = 2m, and f an n-variable Boolean function, the non perfect balancedness
of f , denoted NPB(f) is defined as NPB(f) = ming∈WPBm

dH(f, g).

Property 1 (NPB and restricted Walsh transform ([12], Proposition 2)). Let
m ∈ N

∗, n = 2m, and f ∈ Bn, the following holds on its non perfect balancedness:

NPB(f) =
2 − Wf,0(0) + Wf,n(0)

2
+

n−1∑

k=1

|Wf,k(0)|
2

.

Definition 7 (Algebraic Normal Form (ANF) and degree). We call
Algebraic Normal Form of a Boolean function f its n-variable polynomial rep-
resentation over F2 (i.e. belonging to F2[x1, . . . , xn]/(x2

1 + x1, . . . , x
2
n + xn)):

f(x1, . . . , xn) =
∑

I⊆[1,n] aI

(∏
i∈I xi

)
where aI ∈ F2. The (algebraic) degree of

f deg(f) is either max
I⊆[1,n]

{|I| | aI = 1} if f is not null, or deg(f) = 0, otherwise.

Property 2 ([6], Proposition 4). If f is a WPB Boolean function of n variables,
then the ANF of f contains at least one monomial of degree n/2.

Definition 8 (Algebraic Immunity). The algebraic immunity of a Boolean
function f ∈ Bn is AI(f) = ming �=0{deg(g) | fg = 0 or (f + 1)g = 0}, where
deg(g) is the algebraic degree of g. The function g is called an annihilator of f
(or f + 1). Additionally, we denote AN(f) = ming �=0{deg(g) | fg = 0}.
Property 3. If g ∈ B∗

n is an annihilator of f and h another function such that
supp(h) ⊆ supp(g), then hf = 0.

2.2 Families of WPB Functions

In this section we recall families of WPB functions exhibited in former works,
they will be used as examples or building blocks.
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Definition 9 (CMR WAPB construction (adapted from [6], Proposi-
tion 5)). Let n ∈ N, n ≥ 2, the WAPB function fn is recursively defined by
f2(x1, x2) = x1 and for n ≥ 3:

fn(x1, . . . , xn) =

⎧
⎪⎨

⎪⎩

fn−1(x1, . . . , xn−1) if n odd,
fn−1(x1, . . . , xn−1) + xn−2 +

∏2d−1

i=1 xn−i if n = 2d; d > 1,

fn−1(x1, . . . , xn−1) + xn−2 +
∏2d

i=1 xn−i if n = p · 2d; p odd.

Re-indexing the variables the subfamily of WPB functions (when n is a power
of 2) can be written as f(x1, x2, . . . , x2m) =

∑m
a=1

∑2m−a

i=1

∏2a−1−1
j=0 xi+j2m−a+1 .

Definition 10 (TL WPB construction (adapted from [33], Construc-
tion 1)). Let m ∈ N

∗ and n = 2m ≥ 4 be an integer. A TL WPB Boolean
function g on n-variable is such that:

– g(0n) = 0 and h(1n) = 1.
– g(x, y) = 0 if wH(x) < wH(y), where x, y ∈ F

m−1
2 .

– g(x, y) = 1 if wH(x) > wH(y), where x, y ∈ F
m−1
2 .

– the cardinality of Ui = supp(g) ∩
{

(x, y) ∈ F
2m−1

2 × F
2m−1

2 : wH(x) =

wH(y) = i
}

is exactly
(
2m−1

j

)2
/2 for all 0 < j < 2m−1.

Remark 1. Despite Definition 10 may appear quite different respect the original
paper, it is equivalent when applying the constrains from the definitions we
consider. Namely, here we consider only the case where n is a power of two.
Referring to Construction 1 of [33], this implies that the coefficients c1, . . . , ck−1

must be zero. Moreover, in [33] g(0n) = 0 and g(1n) = 1 is not required for
weightwise perfectly balancedness, differently from Definition 3. This implies
that in this context we can only instantiate the construction with (−1, 0, .., 0, 1)
as input sequence, i.e.as in Definition 10.

Property 4 (TL WPB functions properties [33]). Let m ∈ N
∗ and n = 2m, a

n-variable TL function gn has optimal algebraic immunity AI(gn) = n
2 .

2.3 Symmetric Functions and Krawtchouk Polynomials

The n-variable Boolean symmetric functions are those that are constant on each
slice Ek,n for k ∈ [0, n]. This class has been thoroughly studied in the context of
cryptography, see e.g.[1–3,5,20,29,31]. The set of n-variable symmetric functions
is denoted SYMn, and |SYMn| = 2n+1. In this article we mainly consider two
families of symmetric functions, which are both bases of the symmetric functions’
vector space:

Definition 11 (Elementary symmetric functions). Let i ∈ [0, n], the ele-
mentary symmetric function of degree i in n variables, denoted σi,n, is the func-
tion which ANF contains all monomials of degree i and no monomials of other
degrees.
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Definition 12 (Slice indicator functions). Let k ∈ [0, n], the indicator func-
tion of the slice of weight k is defined as: ∀x ∈ F

n
2 , ϕk,n(x) = 1 if and only if

wH(x) = k.

Property 5 (Properties of elementary symmetric functions). Let n ∈ N
∗, d ∈

[0, n]:

– The function σd,n takes the value
(
k
d

)
mod 2 on the elements of Ek,n.

– The function σ2,n takes the value 1 only on the slices Ek,n such that k = 2
mod 4 or k = 3 mod 4.

– For n even the function σn/2,n has algebraic immunity n/2 (e.g.[1, Theorem
9]).

Property 6 [11, Proposition 4]. Let n ∈ N
∗, k ∈ [0, n] and f ∈ Bn, the follow-

ing holds on f + ϕk,n: ∀a ∈ F
n
2 ,∀i ∈ [0, n] \ {k},Wf+ϕk,n,i(a) = Wf,i(a), and

Wf+ϕk,n,k(a) = −Wf,i(a).

We give two results relatively to Krawtchouk polynomials we will use in the
article. We refer to e.g. [16] for more details on these polynomials and their
properties.

Definition 13 (Krawtchouk polynomials). The Krawtchouk polynomial of

degree k, with 0 ≤ k ≤ n is given by: Kk(�, n) =
k∑

j=0

(−1)j

(
�

j

)(
n − �

k − j

)

.

Property 7 (Krawtchouk polynomials relations). Let n ∈ N
∗ and k ∈ [0, n],

the following relations hold:

– Kk(�, n) =
∑

x∈Ek,n
(−1)a·x, where a ∈ F

n
2 and � = wH(a),

– [9, Proposition 5] For n even, k ∈ [0, n] Kk(n/2, n) = (−1)k/2
(
n/2
k/2

)
if k is

even, and null otherwise.

3 General Results on the Algebraic Immunity of WPB
Functions

In this section we give general results on the algebraic immunity of weightwise
perfectly balanced functions, and give constructions in Sect. 4. First, we discuss
the bounds on the algebraic immunity known from former constructions. Then,
we focus on lower bounds of the algebraic immunity. In Sect. 3.1 we show a lower
bound on the algebraic immunity of a secondary constructions of WPB functions,
that encompasses CMR WPB functions. The lower bound result is also extended
to the construction of WAPB functions from [37]. Then, in Sect. 3.2 we study
the minimal algebraic immunity a WPB function can take. Finally, in Sect. 3.3
we complete this general investigation by experimentally determining the AI of
WPB functions chosen at random in a small number of variables.
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The algebraic immunity of a WPB function can reach the optimal value (of
an n-variable Boolean function, i.e.n/2). It has been proven by Tang and Liu
in [33] where they gave the first construction of WPB functions with optimal
algebraic immunity (see Property 4). Since then the constructions presented
in [26,27] generalize this construction and also have optimal algebraic immunity.
No lower bound have been exhibited so far, only experimental results show that
not all WPB functions have optimal algebraic immunity. The algebraic immunity
of constructions (following the idea of modifying low degree functions slightly
weightwise unbalanced, as pioneered in [25]) in respectively 4, 8 and 16 variables
are provided in [14,34], reaching respectively an AI of 2, 3 and 3. In [11], the
algebraic immunity of secondary constructions is provided in 8 and 16 variables.
The secondary construction seeded with CMR functions result in functions of
AI 3 in 8 variables and between 4 and 6 in 16 variables (the AI of f8 itself is 3
and the one of f16 equals 4). The secondary construction seeded with Boolean
functions from [15] give WPB functions with AI 4 and 7 in 8 and 16 variables
respectively.

3.1 Lower Bound on the Algebraic Immunity of Secondary
Constructions

The experimental results inventoried above show that not all WPB functions
have optimal algebraic immunity, and in particular for the first values of n the
AI of CMR function grows logarithmically in n. In the following we show that
AI(f2m) is at least m. To do so we first specify a secondary construction, at
the same time a subfamily of the secondary construction presented in [6] and
encompassing CMR functions. The secondary constructions of WPB functions
from [6] is the following:

Definition 14 (Adapted from [6], Theorem 2). Let m ∈ N
∗, n = 2m, f , f ′

and g be n-variable WPB functions and g′ an arbitrary n-variable function. We
define the 2n WPB function h as: h(x, y) = f(x) +

∏n
i=1 xi + g(y) + (f(x) +

f ′(x))g′(y) where x, y ∈ F
n
2 .

We focus on the restriction where g′ is the null function, and iterate the
construction with WPB functions in a different number of variables.

Definition 15. Let m ∈ N
∗, n = 2m, f and g0 be two n-variable WPB func-

tions. Let t ∈ N and for i ∈ [1, t] gi be a 2m+i WPB function. We define the
2m+t+1 WPB function S(f, g0, . . . , gt) as:

S(f, g0, . . . , gt)(x, y(0), . . . , y(t)) = f(x)+g0(y(0))+
n∏

j=1

y
(0)
j +· · ·+gt(y(t))+

2m+t
∏

j=1

y
(t)
j ,

where x, y(0) ∈ F
n
2 , and for i ∈ [1, t] y(i) ∈ F

2m+i

2 .
Note that CMR function, f2m , is obtained in [6] from this construction, taking
f2 = x1 in 2 variables, f = f2 = g0 and iterating.
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Contrarily to the secondary construction of Definition 14, the one from Defi-
nition 15 can be written as a direct sum of functions (that is, a sum of functions
acting on different variables). We use this structure to give a lower bound on
the algebraic immunity of any function built as S(f, g0, . . . , gt), and an upper
bound for CMR functions. We first recall a result on the algebraic immunity of
direct sums from [21].

Property 8 (Adapted from [21], Lemma 6). Let t ∈ N
∗, and f1, . . . , ft be t

Boolean functions, if for r ∈ [1, t] there exists r different indexes i1, . . . , ir
of [1, t] such that ∀j ∈ [1, r], deg(fij

) ≥ j then AI(DS(f1, . . . , ft)) ≥ r, where
DS(f1, . . . , ft) denotes the direct sum of f1 to ft.

Proposition 1. Let m ∈ N
∗, n = 2m, f and g0 be two n-variable WPB func-

tions. Let t ∈ N and for i ∈ [1, t] gi be a 2m+i-variable WPB function, then
AI(S(f, g0, . . . , gt)) ≥ t + 2.

Proof. First, we remark that S(f, g0, . . . , gt) is the direct sum of t+2 functions,
f and g′

i = gi +
∏2m+i

j=0 y
(i)
j for i in [0, t]. f has degree at least 1 since it is a

WPB function, and for all i in [0, t] the function g′
i has degree 2m+i. The latter

comes from the fact that gi has degree at most 2m+i − 1 since it is WPB and
therefore balanced, and then the addition with the degree 2m+i monomial makes
g′

i a 2m+i-degree function. Then, for i ∈ [0, t] we have deg(g′
i) = 2m+i ≥ 2 + i, it

allows to apply Property 8 and to conclude AI(S(f, g0, . . . , gt)) ≥ t + 2.

We recall a result form [8] on the number of annihilators of f and f +1 when
f is a direct sum with a linear part.

Property 9 (Adapted from [8], Proposition 9). Let f ∈ Bn be the direct sum
of a linear function g in k > 0 variables and h in n − k variables then: ∀d ∈
[0, n], N0

d = N1
d , where Nε

d for ε ∈ {0, 1} denotes the number of (linearly)
independent annihilators of f + ε of degree at most d.

Proposition 2. Let m ∈ N
∗, and f2m be the 2m-variable CMR function (Defi-

nition 9), then AI(f2m) ≥ m, and for m > 3, AI(f2m) ≤ 2m−2

Proof. The bound AI(f2m) ≥ m is a consequence of Proposition 1. Since
AI(f2) = 1, AI(f4) = 2, and by construction for m > 2 we have f2m+1 =
S(f2, f2, f4, . . . , f2m) and AI(S(f2, f2, f4, . . . , f2m)) ≥ m + 1 by Proposition 1,
a direct induction gives AI(f2m) ≥ m.

The bound AI(f2m) ≤ 2m−2 comes from the upper bound on the algebraic
immunity of a direct sum, the AI of the direct sum cannot be greater than the
sum of the two AIs (e.g. [4], Section 9.1.4). We show the result by induction.
For m = 4 since AI(fm) = 4, AI(f2m) ≤ 2m−2 holds. Then for m + 1 > 4 we can
write f2m+1 as S(f2m , f2m) which is the direct sum of f2m and g = f2m +

∏2m

i=1 yi.
By hypothesis AI(f2m) ≤ 2m−2, and by construction g differs from f2m only in
the value 12m therefore an annihilator of f2m is also an annihilator of g since
f2m(12m) = 1 (since f is WPB). Since f2m can be written as the direct sum of
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the linear function f2 and a 2m − 2 variable function, from Property 9 for each
annihilator of f2m of degree d there is an annihilator of 1+f2m of the same degree,
it guarantees that AI(g) ≤ AI(f2m). Therefore, AI(f2m+1) ≤ 2 · AI(f2m) ≤ 2m−1.

With a similar approach we can bound the algebraic immunity of the sec-
ondary construction of WAPB functions from Zhu and Su [37].

Definition 16 (Adapted from [37], Theorem 2). Let t ∈ N
∗ and n1, . . . , nt

be different powers of 2, and for i ∈ [1, t], fi be a WPB function in ni vari-
ables. We call ZS construction the function f in

∑t
i=1 ni variables the direct

sum ZS(f1, . . . , ft) =
∑t

i=1 fi.

Proposition 3. Let t ∈ N
∗ and n1, . . . , nt be different powers of 2, and for

i ∈ [1, t], fi be a WPB function in ni variables. The function f = ZS(f1, . . . , ft)
is such that:

AI(f) ≥
{

t − 1 if ∃j, k ∈ [1, t] such that nj = 1 and nk = 2,
t otherwise,

and AI(f) ≤
⌈∑t

i=1 ni/2
⌉
.

Proof. The upper bound comes from the fact that any n-variable function has its
AI upper bounded by �n/2�. Relatively to the lower bound, since an n-variable
WPB function has algebraic degree at least n/2 (see Property 2), we can apply
Property 8 on the fi. When there are both an fj in 1 variable and an fk in
2 variables, we can only guarantee to find a chain of t − 1 indexes r1 to rt−1

such that deg(fri
) ≥ i since both fj and fk could have degree 1. Since, apart

from nj = 1 and nk = 2, the different powers of 2, ni, ensure that the condition
deg(fri

) ≥ i can be fulfilled, we obtain AI(f) ≥ t − 1. ��

3.2 Minimal Algebraic Immunity of WPB Functions

In the previous parts we showed that there exist WPB functions which algebraic
immunity cannot be higher than 2m−2 (Proposition 2), and we saw examples
close to log m or less for small values of m. In the following, we demonstrate
that for m ≥ 2 the minimal AI that a WPB function can reach is in fact a
constant.

We begin by defining the minimal degree of annihilator (non null) a 2m-
variable WPB function (or its complement) can have, and give an alternative
expression of this quantity.

Definition 17 (Minimal degree of annihilator reachable by a 2m-
variable WPB function). Let m ∈ N

∗ and ε ∈ {0, 1}, we denote dε
m the

quantity:
dε

m = min{AN(f + ε) | f ∈ WPBm}.

Lemma 1. Let m ∈ N
∗, n = 2m and g ∈ B∗

2m such that Wk,g(0) ≥ 0 ∀k ∈
[1, 2m − 1].
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1. If Wn,g(0) ≥ 0, then there exists f ∈ WPBm such that g is an annihilator of
f .

2. If W0,g(0) ≥ 0, then there exists f ∈ WPBm such that g is an annihilator of
1 + f .

Proof. Since Wk,g(0) ≥ 0 there are at least
(
n
k

)
/2 elements of Hamming weight

k not in the support of g for k ∈ [1, n − 1]. Therefore, we can build a function

h such that |suppk(h)| = (n
k)
2 and suppk(h) ⊇ suppk(g) for all k ∈ [1, n − 1]. We

have two cases:

a. Suppose Wn,g(0) ≥ 0. This implies that g(1n) = 0. Then, we can set h(1n) = 0
and h(0n) = 1, in order to get a function h ∈ B∗

2m such that supp(1 + h) ⊆
supp(1 + g) and (1 + h) ∈ WPBm.

b. Suppose W0,g(0) ≥ 0. This implies that g(0n) = 0. Then, that we can set
h(1n) = 1 and h(0n) = 0, in order to get supp(1 + h) ⊆ supp(1 + g) and
h ∈ WPBm.

To conclude it is sufficient to notice that 1 + g is an annihilator of g. Indeed,
Property 3 implies that g(h + 1) = 0, i.e.in both cases g is a non constant
annihilator of 1 + h. Therefore, 1. and 2. follow by setting f = 1 + h and f = h,
respectively.

Proposition 4 (Equivalent characterization of dε
m). Let m ∈ N

∗ and ε ∈
{0, 1}. It holds dε

m = min{deg(f), f ∈ B∗
2m | ∀k ∈ [1 − ε, 2m − ε],Wk,f (0) ≥ 0}.

Proof. We denote n = 2m. First we prove dε
m ≥ min{deg(f), f ∈ B∗

n | ∀k ∈
[1−ε, n−ε],Wk,f (0) ≥ 0}. We take f ∈ WPBm, and g an annihilator (not null)
of f of degree d0m. Since f is WPB, f has exactly |Ek,n|/2 elements of Hamming
weight k (for k ∈ [1, n − 1]) in its support and one in En,n, therefore g takes the
value 0 over all these elements. Consequently, ∀k ∈ [1, 2m]:

Wk,g(0) =
∑

x∈Ek,n

(−1)g(x) =
∑

x∈Ek,n
g(x)=0

1 −
∑

x∈Ek,n
g(x)=1

1 ≥
(
n
k

)

2
−

∑

x∈Ek,n
g(x)=1

1 ≥ 0.

Similarly, if we consider g an annihilator (not null) of 1+f of degree d1m. Since f
is WPB |suppk(f)| = |suppk(f +1)| for all k ∈ [1, 2m −1] and |supp0(1+f)| = 1,
we obtain that Wk,g(0) ≥ 0 for k ∈ [0, 2m − 1].

Then, we prove dε
m ≤ min{deg(f), f ∈ B∗

n | ∀k ∈ [1 − ε, n − ε],Wk,f (0) ≥
0}. We take g0, g1 two 2m-variable functions of minimum degree such that
Wk,gε

(0) ≥ 0 for all k ∈ [1− ε, n− ε]. From Lemma 1 we can build two functions
fε for ε ∈ {0, 1}, such that fε are WPB, and gε is a non null annihilator of fε +ε
by construction. This allows to conclude. ��

As a first remark, since the algebraic immunity of a function f is the minimum
between AN(f) and AN(f + 1) (Definition 8), we have that min

{
d0m, d1m

}
is

the minimal AI a WPB function can have. Then, since for any function f its
complement 1+f is an annihilator, for each WPB function it gives an annihilator
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of the same degree, therefore dε
m is upper bounded by the minimal degree of a

2m-variable WPB function, that is 2m−1 for m ≥ 1 (see Property 2). In the
following we show that dε

1 = 1, but dε
m > 1 for m > 1.

Lemma 2. Let m ∈ N
∗, n = 2m and ε ∈ {0, 1}, then dε

1 = 1 and for m > 1
dε

m > 1.

Proof. We start with the particular case m = 1. In this context, denoting x1

and x2 the 2 variables, there are only two WPB functions: f = x1 and g = x2.
They are respectively annihilated by the degree-1 function 1 + x1 and 1 + x2,
and not by the constant function equal to 1, which allows to conclude d01 = 1.
Furthermore, the two complementary functions of 2-variable WPB are 1 + x1

and 1+x2, similarly annihilated by a degree 1 function and not by the constant
function equal to one, so in this case d11 = 1. This implies that 1 is also the
minimum on the algebraic immunity.

For m > 1, we show that no affine function f can satisfy the characterisation
of dε

m from Proposition 4. If f is constant, f cannot be the null function by def-
inition of dε

m, and the constant function equal to one is such that Wk,f (0) < 0
for all k ∈ [1, n]. Then, any non constant affine function is balanced, therefore:
Wf (0) = 0 =

∑n
i=0 Wf,k(0). The condition in the definition of d0m form Propo-

sition 4 for k = n forces Wf,n(0) = 1 and therefore the restriction on the other
coefficients can be only satisfied if Wf,0(0) = −1, and for all k ∈ [1, n − 1],
Wf,k(0) = 0. This implies that f is balanced on all slices, and more precisely
that f + 1 is a weightwise perfectly balanced function. Similarly, if we consider
the condition in the definition of d1m form Proposition 4, we obtain that f should
be a weightwise perfectly balanced function. Since a WPB function has degree
at least 2m−1 by Property 2, both these cases are impossible. ��

We show that in fact d0m is constant in m, more precisely that for m ≥ 2
there are always 2m-variable WPB functions that are annihilated by quadratic
functions.

Proposition 5. Let m ∈ N, for all m ≥ 2, d0m = 2.

Proof. We denote n = 2m for readability. We show that there exist degree-2
functions g ∈ Bn such that ∀k ∈ [1, n], Wg,k(0) ≥ 0 or equivalently ∀k ∈ [1, n],
|suppk(g)| ≤ (

n
k

)
/2. More precisely we consider the functions with algebraic

normal form xixj + xixk where i, j, k ∈ [1, n] and i �= j �= k, without lost of
generality we take g = x1(x2 + x3). In the following we consider the size of the
support of g on each slice.

– If k ∈ [0, 1], g takes only the value 0 hence |suppk(g)| ≤ (
n
k

)
/2.

– For k = 2, g(x) = 1 only when x1 = x2 = 1 or x1 = x3 = 1, therefore
|supp2(g)| = 2 ≤ 2m−2(2m − 1) =

(
n
2

)
/2.

– For k ≥ 3, we split x ∈ F
n
2 as (y, z) where y ∈ F

3
2 and z ∈ F

n−3
2 , and

determine the number of elements such that g(x) = 1 based on the value of
y. The function g takes the value 1 only when x1(x2 + x3) = 1 that is when
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y = (1, 1, 0) or y = (1, 0, 1), thereafter for x ∈ Ek,n it corresponds to 2/3 of
the cases where wH(y) = 2 and none when wH(y) �= 2. It allows us to get the
cardinal of suppk(g):

|suppk(g)| = 2
(

n − 3
k − 2

)

.

Then, we have to compare this value to
(
n
k

)
/2:

2
(

n − 3
k − 2

)

≤
(
n
k

)

2
⇔

4
(

n − 3
k − 2

)

≤
(

n − 3
k − 3

)

+ 3
(

n − 3
k − 2

)

+ 3
(

n − 3
k − 1

)

+
(

n − 3
k

)

,

⇔
(

n − 3
k − 2

)

≤
(

n − 3
k − 3

)

+ 3
(

n − 3
k − 1

)

+
(

n − 3
k

)

.

Since n− 3 is odd the binomial coefficient
(
n−3
k−2

)
is lower than or equal to one

of the two binomial coefficients
(
n−3
k−1

)
and

(
n−3
k−3

)
, Therefore |suppk(g)| ≤ (

n
k

)
/2

that is Wk,g(0) ≥ 0.

It allows to conclude d0m ≤ 2 from Proposition 4, and since for m ≥ 2 d0m > 1
from Lemma 2, we obtain d0m = 2.

Theorem 1. Let m ∈ N, for all m ≥ 2, min {AI(f) : f ∈ WPBm} = 2.

Proof. From Lemma 2 and Proposition 5 we have min {AI(f) : f ∈ WPBm} =
min

{
d0m, d1m

}
= 2. ��

Corollary 1. If f ∈ WPB2, then AI(f) = 2.

Proof. For every n-variable Boolean function f we have that AI(f) ≤ �n/2� and
AI(f) ≥ 2 from Theorem 1. This implies AI(f) = 2 for all f ∈ WPB2. ��

Additionally, in Sect. 4.2 we give a construction to build WPB functions with
minimal algebraic immunity, and study its properties.

3.3 Algebraic Immunity Distribution

To conclude this section we perform an experimental investigation on the alge-
braic immunity distribution for WPB functions in a small number of variables,
following the same principle as in [10,12]. Exhausting WPB2, we found that
all the WPB function in 4 variables have algebraic immunity 2, it is indeed
coherent with Corollary 1. For m = 3, we extrapolated an approximation of the
algebraic immunity distribution from a sample of size larger than 223 . As shown
by Table 1, 8-variable WPB functions with non-optimal algebraic immunity are
rare. In fact, for 16 variables we were not able to collect a sample sufficiently
large to get at least a function with AI lower than 8.
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Table 1. Approximation of the algebraic immunity distribution in WPB3 via sampling
elements of WPB3 uniformly at random: p̃AI(x) = {f ∈ S : AI(f) = x} /|S| where S is
a sample of size larger than 223.

x 3 4

p̃AI(x)% 0.004 99.996

# 353 8427167

4 Constructions of WPB Functions with Bounded
Algebraic Immunity

In this section we exploit GM construction [12, Construction 1] in order to pro-
duce WPB functions with bounded algebraic immunity and prescribed nonlin-
earity. First, we focus on constructions with upper bounded AI in Sect. 4.1. More
specifically, in Sect. 4.2 we construct WPB functions reaching the lowest alge-
braic immunity, the lower bound from Theorem 1. We refer to these particular
functions with AI 2 as porcelain functions, since independently of their aesthetic,
we do not advise to use them when implementing a cipher. Then, we prove that
the WPB family of functions with almost optimal nonlinearity described in [12]
has also minimal algebraic immunity. Finally, in Sect. 4.4 we show how to build
WPB functions with lower bounded AI from GM construction. As an example
we give a family of WPB functions with AI at least 2m−1 − m + 1.

4.1 Construction with Upper Bounded AI

We describe here a method to construct WPB functions with upper bounded
algebraic immunity and prescribed nonlinearity. The main idea is to construct a
WPB function forcing a suitable function f of degree d to be an annihilator. We
observed that we can efficiently built WPB functions as in Lemma 1 by seeding
with certain functions the construction proposed by Gini and Méaux in [12]
recalled in Construction 1. Indeed, their algorithm produces a WPB function
from any Boolean function in 2m variables by modifying the support of the
input function on each slice to make it perfectly balanced, in such a manner
that can be compatible with our method.

We first summarize some useful properties of Construction 1 extending The-
orem 2 of [12]:

Proposition 6. Let m ∈ N, m ≥ 2 and n = 2m. Any function h given by
Construction 1 with input g is weightwise perfectly balanced. For k ∈ [1, n − 1]:

– If g ∈ B∗
n is such that Wk,g(0) ≤ 0. Then suppk(h) ⊆ suppk(g).

– If g ∈ B∗
n is such that Wk,g(0) ≥ 0. Then suppk(h) ⊇ suppk(g).

Additionally, NL(h) ≥ NPB(g) − NL(g).
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Construction 1. Construction 1 from [12]
Input: Let m ∈ N, m ≥ 2, n = 2m and g a n-variable function.
Output: h ∈ WPBm.
1: Initiate the support of h to supp(g).
2: If 0n ∈ supp(g) remove 0n from supp(h).
3: If 1n �∈ supp(g) add 1n to supp(h).
4: for k ← 1 to n − 1 do
5: Compute Ck,n = Wg,k(0)/2,
6: if Ck,n < 0 then
7: remove |Ck,n| elements from suppk(h),
8: else
9: if Ck,n > 0 then

10: add Ck,n new elements to suppk(h),
11: end if
12: end if
13: end for
14: return h

Proof. The first part (g is WPB) comes from Theorem 2 of [12]. Then, if for
k ∈ [1, n−1] Wk,g(0) ≤ 0, we get Ck,n ≤ 0 in Construction 1. Hence, from step 7
we have that suppk(h) ⊆ suppk(g). While, if Wk,g(0) ≥ 0, we get Ck,n ≥ 0. Hence,
from step 10 we have that suppk(h) ⊇ suppk(g). Finally, for the nonlinearity, if
a is an affine function, NL(g) ≤ dH(g, a) ≤ dH(g, h) + dH(h, a). This implies that
NL(h) ≥ NL(g) − NPB(g), since dH(g, h) = NPB(g) from Theorem 2 of [12]. ��

Thus, combining Proposition 6 with arguments similar to Lemma 1 we obtain
that seeding Construction 1 with suitable functions we can obtain WPB func-
tions with upper bounded algebraic immunity.

Theorem 2. Let m ∈ N, m ≥ 2 and n = 2m. Let function g ∈ B∗
n such that

Wk,g(0) ≥ 0 for all k ∈ [1, n]. Any function f given by Construction 1 seeded
with g + 1 has the following properties:

1. f ∈ WPBm,
2. AI(f) ≤ deg(g),
3. NL(f) ≥ NL(g) − NPB(g).

Proof. From Proposition 6 we have that f ∈ WPBm, NL(f) ≥ NL(g + 1) −
NPB(g + 1) = NL(f) ≥ NL(g) − NPB(g) and suppk(f) ⊆ suppk(1 + g) for all
k ∈ [1, n − 1]. Moreover, since Wn,g(0) ≥ 0, (1 + g)(1n) = 1. This implies that
supp(f) ⊆ supp(1 + g). Since (1 + g) is an annihilator of g, from Property 3 we
obtain that gf = 0. Namely, g is a non constant annihilator of f . Therefore,
AI(f) ≤ deg(g). ��
Theorem 3. Let m ∈ N, m ≥ 2 and n = 2m. Let function g ∈ B∗

n such that
Wk,g(0) ≥ 0 for all k ∈ [0, n−1]. Any function f given by Construction 1 seeded
with g has the following properties:
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1. f ∈ WPBm,
2. AI(f) ≤ deg(g),
3. NL(f) ≥ NL(g) − NPB(g).

Proof. From Proposition 6 we have that f ∈ WPBm, NL(f) ≥ NL(g) − NPB(g)
and suppk(f) ⊇ suppk(g) for all k ∈ [1, n − 1]. Moreover, since Wn,g(0) ≥ 0,
g(0n) = 0. This implies that supp(1 + f) ⊆ supp(1 + g). Since (1 + g) is an
annihilator of g, from Property 3 we obtain that g(1 + f) = 0. Namely, g is a
non constant annihilator of 1 + f . Therefore, AI(f) ≤ deg(g). ��

4.2 Porcelain WPB Functions

Using the characterization of d0m in Sect. 3.2 we proved that for any m ≥ 2
there exist WPB functions having algebraic immunity 2. Via Construction 1
we can explicitly construct many of them. We consider as primary material,
for producing porcelain WPB functions, any kaolin function κn = xi(xj + x�)
where i, j, � are distinct. In fact, in the proof of Proposition 5 we showed that
functions of this kind satisfy the hypotheses of Theorem 2. Thus, we have that
any function h given by Construction 1 seeded by κn has the following properties:
h is a WPB function and AI(h) ≤ 2, hence AI(h) = 2. Moreover, we remark that
kaolin functions are very peculiar, as their nonlinearity and their non perfect
balancedness coincide:

Proposition 7. Let m ∈ N, m ≥ 2 and n = 2m, let κn ∈ Bn denote a function
of the form xi(xj + x�) such that i �= j �= �. The following holds:

NPB(κn) = 2n−2, and NL(κn) = 2n−2.

Proof. We begin with the non perfect balancedness, using Property 1 we get:

NPB(κn) =
2 − Wκn,0(0) + Wκn,n(0)

2
+

n−1∑

k=1

|Wκn,k(0)|
2

.

Following the proof of Proposition 5 we get:

– Wκn,0(0) = 1 and Wκn,1(0) = n since |suppk(κn)| = 0 for k ∈ [0, 1],
– Wκn,2(0) =

(
n
2

) − 4 since |supp2(κn)| = 2 for k ∈ [0, 1],
– Wκn,k(0) =

(
n
k

) − 4
(
n−3
k−2

)
for k ∈ [3, n] since |suppk(κn)| = 2

(
n−3
k−2

)
.

Hence we obtain:

NPB(κn) =
2 − 1 + 1

2
+

1
2

(

n +
(

n

2

)

− 4 +
n−1∑

k=3

(
n

k

)

− 4
(

n − 3
k − 2

))

,

=
1
2

(
n∑

k=0

(
n

k

)

− 4
(

n − 3
k − 2

))

= 2n−1 − 2
n∑

k=0

(
n − 3
k − 2

)

,

= 2n−1 − 2n−2 = 2n−2.
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Then, we determine the nonlinearity of κn. First we give the nonlinearity of
κ3. Since the function κ3 has degree 2 it is not affine hence NL(κ3) > 0, its degree
is not maximal hence the nonlinearity cannot be odd, and since κ3 has weight 2 we
can conclude NL(κ3) = 2. Then, in n variables κn can be written as the direct sum
of κ3 and the null function in n−3 variables, using the formula of the nonlinearity
of direct sums (e.g. [4], Section 7.1.9.I.B), NL(κn) = NL(κ3) · 2n−3 +NL(0) · 23 −
2 · NL(0) · NL(κ3) = 2 · 2n−3 + 0 · 23 − 2 · 0 · 2 = 2n−2. ��

We compute now the number of porcelain WPB functions that can be gen-
erated by one kaolin function κn. Equation (9) from [12] gives the number of
WPB functions that can be produced by Construction 1 for a fixed seed g:

Fn(g) =
n−1∏

k=1

( 1
2

(
n
k

)
+ |Ck,n|

|Ck,n|
)

, (1)

where Ck,n = Wg,k(0n)/2. Notice that, although Corollary 1 of [12] is for a
specific input, the proof of the value of Fn holds in general. From the proof of
Proposition 7 the following holds: Ck,n = Wκn,k(0n)/2. Namely,

Fn(κn) =
(

n
n
2

)( (
n
2

) − 2
1
2

(
n
2

) − 2

) n−1∏

k=3

( (
n
k

) − 2
(
n−3
k−2

)

1
2

(
n
k

) − 2
(
n−3
k−2

)

)

For instance, F8(κ8) > 2152 and F16(κ16) > 244521.

4.3 WPB Functions from [12]

The authors of [12] apply their construction to produce a family of WPB func-
tions with high nonlinearity. The used seed function is gn = σ2,n + �n/2, where
�n/2 =

∑n/2
i=1 xi. We now prove that this function satisfies the hypotheses of

Theorem 3, which implies that all WPB functions from Construction 1 seeded
with gn have algebraic immunity 2 since the function gn has degree 2.

Proposition 8. Let m ∈ N, m ≥ 2 and n = 2m. ∀k ∈ [0, n − 1], Wk,gn
(0) ≥ 0.

Proof. First, we determine the values of Wgn,k(0). Since �n/2 is a linear function
of n/2 terms using Property 7 Item 1 we have:

W�n/2,k(0) =
∑

x∈Ek,n

(−1)x·(1n/2,0n/2) = Kk(n/2, n).

Then, using Property 7 Item 2 we obtain:

– For k = 0 mod 4, W�n/2,k(0) =
(
n/2
k/2

) ≥ 0;
– for k = 1 mod 4 and k = 3 mod 4, W�n/2,k(0) = 0,
– for k = 2 mod 4, W�n/2,k(0) = −(

n/2
k/2

) ≤ 0.
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Then, we can determine the sign of Wgn,k(0) using Property 6, since gn =
�n/2+σ2,n we get Wgn,k(0) = W�n/2,k(0) when σ2,n takes the value 0 on Ek,n and
Wgn,k(0) = −W�n/2,k(0) when σ2,n takes the value 1 on Ek,n. Using Property 5
Item 2, the sign changes only when k = 2 mod 4 or k = 3 mod 4. Therefore
we obtain:

– For k = 0 mod 4, Wgn,k(0) = W�n/2,k(0) =
(
n/2
k/2

) ≥ 0,
– for k = 1 mod 4, Wgn,k(0) = W�n/2,k(0) = 0,
– for k = 2 mod 4, Wgn,k(0) = −W�n/2,k(0) =

(
n/2
k/2

) ≥ 0,
– for k = 3 mod 4, Wgn,k(0) = −W�n/2,k(0) = 0.

It allows us to conclude ∀k ∈ [0, n − 1], Wk,gn
(0) ≥ 0. ��

4.4 Functions with Lower Bounded AI

We show how Construction 1 can be used to build WPB functions with lower
bounded algebraic immunity. First we recall a result from Mesnager and Tang:

Property 10 (Adapted from [28], Proposition 12). Let k, d ∈ N, let f ∈ Bn

such that AI(f) = k, and h ∈ Bn such that wH(h) < min(2n−k, 2d+1 − 1), then
|AI(f + h) − AI(f)| ≤ d.

This result shows that modifying few elements of the support has a limited
impact on the algebraic immunity of the function. It allows to derive the following
bound regarding Construction 1.

Theorem 4. Let m ∈ N
∗, m ≥ 2 and n = 2m. Let f ∈ Bn such that NPB(f) <

2n/2. Any (WPB) function g given by Construction 1 seeded with f has the
following property: AI(g) ≥ AI(f) − �log(NPB(f) + 1)�.
Proof. By construction g can be written as f + h where wH(h) = NPB(f). Since
wH(h) < 2n/2 we have wH(h) < 2n−AI(f) ≤ 2n/2, and taking d = �log(NPB(f) +
1)� we get NPB(f) < 2d+1 − 1. Therefore, we can apply Property 10, AI(g) ≥
AI(f) − �log(NPB(f) + 1)�. ��

Accordingly to the theorem, seeding Construction 1 with functions with high
algebraic immunity and low non perfect balancedness allows to get WPB func-
tions with relatively high AI. In the next proposition, we show how low degree
functions (hence functions with low AI) with low non perfect balancedness can
also be used to produce WPB functions with lower bounded AI.

Proposition 9. Let m ∈ N
∗, m ≥ 2 and n = 2m. Let f ∈ Bn such that

NPB(f) < 2n/2 and deg(f) < n/2. Any (WPB) function g given by Construc-
tion 1 seeded with f + σn/2,n has the following property: AI(g) ≥ n

2 − deg(f) −
�log(NPB(f) + 1)�.



20 A. Gini and P. Méaux

Proof. Since the non perfect balancedness is not changed by the addition of
a symmetric function null in 0 and 1n (see Property 6), NPB(f + σn/2,n) =
NPB(f) < 2n/2. It allows to use Theorem 4, giving AI(g) ≥ AI(f + σn/2,n) −
�log(NPB(f) + 1)�.

Then, we bound the algebraic immunity of f +σn/2,n. Since AI(σn/2,n) = n/2
(Property 5 Item 3) and since the algebraic immunity decreases by at most d
when adding a degree-d function (e.g.[4], Proposition 139), we obtain AI(f +
σn/2,n) ≥ n

2 − deg(f). ��
In particular, using Proposition 9 with low degree function with (known) low

NPB allows to build WPB functions with relatively high AI. We illustrate it
with the examples of truncated CMR functions, which weightwise support has
been recently studied in [36].

Property 11 (Adapted from [36], Theorem 1). Let m ∈ N
∗, m ≥ 2 and n = 2m.

Let d ∈ N
∗, d < m, and let fd,m ∈ Bn the function which ANF contains only

the terms of degree at most 2d−1 of the CMR function fn (Definition 9), the
following holds for 0 ≤ k ≤ n:

|suppk(fd,m)| =

{
1
2

(
n
k

)
if k �≡ 0 mod 2d,

1
2

(
n
k

) − (−1)k/2d

2

(
2m−d

k/2d

)
if k ≡ 0 mod 2d.

Proposition 10. Let m ∈ N
∗, m ≥ 2 and n = 2m. Let d ∈ N

∗, d < m, and
let fd,m ∈ Bn the function which ANF contains only the terms of degree at most
2d−1 of the CMR function fn (Definition 9), any (WPB) function g given by
Construction 1 seeded with fd,m + σn/2,n has the following property:

AI(g) ≥ n

2
− 2d−1 − m + d + 1.

Proof. First, we compute the NPB of fd,m. Using Property 1, we get:

NPB(fd,m) =
2 − Wfd,m,0(0) + Wfd,m,n(0)

2
+

n−1∑

k=1

|Wfd,m,k(0)|
2

.

Using Property 11 since Wf,k(0) = |Ek,n| − 2|suppk(f)| it gives:

NPB(fd,m) =
2 − 1 + 1

2
+

1
2

2m−d−1∑

t=1

(
2m−d

t

)

= 1 + 2m−d−1 − 1 = 2m−d−1.

Then, since 2m−d−1 < 2n/2, we can apply Proposition 9, which gives

AI(g) ≥ n

2
− deg(fd,m) − �log(NPB(fd,m) + 1)� = 2m−1 − 2d−1 − m + d + 1.

��
In particular for d = 1 (in this case f1,m corresponds to �n/2), it gives WPB
functions with algebraic immunity at least 2m−1 − m + 1.
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5 Conclusion and Open Questions

In this article we performed the first study on the algebraic immunity of WPB
function, the values it can take, and presented constructions reaching a low,
or high value. In Sect. 3 we focused on the maximal and minimal values the
AI can take inside this family, and the general distribution of this parameter.
We showed a lower bound on the AI of two secondary constructions, and then
proved the existence of WPB functions of AI only 2 for all m greater than 2.
The experimental study that we performed in 8 and 16 variables showed that
such functions are rare, whereas most WPB functions have optimal AI.

On the constructive side, in Sect. 4 we showed how GM Construction (Con-
struction 1) can be used to generate WPB functions with bounded AI. In a
first time we proved how to build WPB functions with lower bounded AI, one
main example being the porcelain functions, an entire family with AI 2. We also
demonstrated that the WPB functions with very high nonlinearity exhibited
in [12] have in fact minimal AI. In a second time we used the construction to
generate functions with upper bounded AI, together with an example of family
with AI at least 2m−1 − m + 1.

Different open questions arose from this study. First, since the GM construc-
tion allows to derive WPB functions with proven very high nonlinearity ( [12]),
but minimal AI or proven high AI when used with different seeds, it would be
interesting to determine if the results can be combined to find seeds generating
WPB functions with both proven high nonlinearity and AI. Then, we notice
that in both cases the seeds used rely on a symmetric function with optimal
nonlinearity in the first case and algebraic immunity in the second case. This
leads to question if investigating the properties of WPB functions up to addition
of symmetric functions could lead to WPB functions with good parameters for
all the cryptographic criteria. Finally, the experimental tests and former results
on WPB families show that WPB functions have high AI in general. It would
be interesting to see if this property propagates to the criterion of weightwise
algebraic immunity, AIk, measuring the resistance to algebraic attacks when the
Hamming weight is fixed.
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Abstract. In this work, we tackle the problem of estimating the secu-
rity of iterated symmetric ciphers in an efficient manner, with tests that
do not require a deep analysis of the internal structure of the cipher. This
is particularly useful during the design phase of these ciphers, especially
for quickly testing several combinations of possible parameters defining
several cipher design variants.

We consider a popular statistical test that allows us to determine the
probability of flipping each cipher output bit, given a small variation in
the input of the cipher. From these probabilities, one can compute three
measurable metrics related to the well-known full diffusion, avalanche
and strict avalanche criteria.

This highly parallelizable testing process scales linearly with the num-
ber of samples, i.e., cipher inputs, to be evaluated and the number of
design variants to be tested. But, the number of design variants might
grow exponentially with respect to some parameters.

The high cost of Central Processing Unit (CPU)s makes them a bad
candidate for this kind of parallelization. As a main contribution, we
propose a framework, ACE-HoT, to parallelize the testing process using
multi-Graphics Processing Units (GPUs). Our implementation does not
perform any intermediate CPU-GPU data transfers.

The diffusion and avalanche criteria can be seen as an application of
discrete first-order derivatives. As a secondary contribution, we general-
ize these criteria to their high-order version. Our generalization requires
an exponentially larger number of samples, in order to compute suffi-
ciently accurate probabilities. As a case study, we apply ACE-HoT on
most of the finalists of the National Institute of Standards and Technolo-
gies (NIST) lightweight standardization process, with a special focus on
the winner ASCON.
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1 Introduction

In this work, we describe how to perform a security assessment of encryption
and authentication algorithms by means of statistical tests. These tests require
a large amount of computations to be executed. We show how to perform these
tests on Graphics Processing Units.

1.1 Background and Motivation

The cryptographic community is constantly trying to design more secure and
better-performing ciphers. Several public selections took place to determine the
best cryptographic primitives for standardization. Some notable examples by
the American NIST are the Advanced Encryption Standard selection process
[24] started in 1997, the Secure Hash Algorithm of third generation (SHA-3)
competition [19] started in 2007, and the NIST lightweight cryptography stan-
dardization process [20] started in 2018 and terminated in 2023 with the selec-
tion of ASCON, a permutation-based hash and authenticated encryption cipher.
Other examples include the eSTREAM competition [21] for stream ciphers, and
the CAESAR competition [1] for Authenticated Encryption.

In order for these competitions to evaluate the candidates more fairly, it
is important to establish a common framework that allows evaluation of the
security of each primitive. One possible approach to establishing the quality of a
round function is to define a certain measurable property, observe its variation
across the rounds, and then compare it with the computational cost of the round
function itself (which depends on the platform).

Avalanche Tests. A common way of performing this assessment is by measur-
ing some statistical properties observed after evaluating the cipher under scrutiny
over samples with certain characteristics. This work focuses on a particular type
of statistical test, namely the avalanche tests and on their higher order version
introduced in this work. The main challenge in performing high-order avalanche
tests is the large number of samples that they require. For example, the most
costly high-order avalanche test we perform requires 249.29 ≈ 1014.83 cipher eval-
uations.

Parallel Computing. Graphics Processing Units (GPUs) can perform thou-
sands of computations in parallel depending on the availability of the number of
cores on the Streaming Multiprocessors (SMs) [10,12,17]. The computations are
distributed on GPUs when the CPU launches an application in the form of a ker-
nel. There are many challenges with regard to the multi-GPU implementation of
avalanche tests, especially when these tests have to be executed for an extremely
high number of variants of a cipher (during its design phase), or in their high-
order version. These challenges are categorized in terms of CPU-bottleneck dur-
ing iterative kernel calling, inter-block GPU synchronization, which is taken care
of by iterative kernel calling, inter-GPU communication during the processing of
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avalanche tests and memory-based implementation of avalanche tests for random
samples.

One of the ways to overcome the above challenges is to effectively parallelize
the computations on the GPUs using the Compute Unified Device Architecture
(CUDA) programming framework. Typically, CPU acts as a host and launches
a device kernel with a required number of computation blocks on the GPU. The
GPU schedules the computation blocks for the kernel on the SMs. Each SM can
handle one or more computation blocks. The GPU resource manager schedules
and allocates resources for each compute block. The blocks communicate and
synchronize via a device memory on the GPU. Threads in a block execute in
groups called warps and share a common memory in that block. Each warp uses
the resources of the SM based on its register memory requirements. The ratio
between the number of warps in process and the maximum number of warps
defines the occupancy of the GPU [4,14]. It is important to maintain a high
occupancy of the GPU to achieve maximum computing performance. In order to
efficiently utilize the hardware, it is essential to understand the computation and
communication resources. Based on the availability of the CPU-GPU resources,
the tasks from an application can be scheduled and allocated efficiently.

1.2 Our Contribution

In this work, we provide a framework, ACE-HoT, to perform avalanche tests
requiring an extremely high number of cipher evaluations exploiting GPUs. This
can be useful during the design phase of a cipher, when a very high number of
parameters have to be quickly evaluated against differential properties. We also
generalize avalanche tests to a high-order version. This generalization requires
a very large amount of cipher executions that can be easily handled by our
framework. As a case study, we provide a detailed analysis of our new test on
the winner of the NIST lightweight standardization process [20], namely the
ASCON permutation [6]. Due to space constraints, we provide a less detailed
analysis of the other finalists.

We refer to our new test as high order avalanche test. When the order d is
known, we say avalanche test of order d or d-order (or d-th order) avalanche
test. The contributions of the paper are presented below in more detail:

1. A framework to perform avalanche tests requiring an extremely high number
of cipher evaluations exploiting GPUs.

2. We introduce a new high-order avalanche test for the assessment of a sym-
metric cipher in the black box scenario, i.e. where no knowledge is assumed
of the internal structure of the cipher except its input/output bit size. From
a cryptographic point of view, the already known first-order test allows to
retrieve information about the applicability of certain attacks, such as impos-
sible differentials [2] and truncated differentials [15]. With our generalization,
we have information that might lead to the discovery of higher-order differ-
entials distinguishers [15,16].
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3. We provide an accelerated implementation of the avalanche tests of orders 1,
2, 3 and 4 for the ASCON permutation and show that the avalanche criteria
(defined under 3 different metrics) are met after 4 rounds with avalanche tests
of order 1 and 2 and after 5 rounds for order 3 and 4.

4. To the best of our knowledge, this is the first work towards multi-GPU accel-
eration for high-order avalanche tests to study the trend of avalanche metrics
with respect to the number of samples and rounds. The proposed imple-
mentation includes efficient utilization of hardware resources without any
intermediate CPU-GPU data transfers and no inter-GPU communications.

5. The 3rd order avalanche test requires 14 s (approx.) for 2,000 samples on
8xTITAN GPUs. The implementation on 4xA100 Ampere GPUs is generally
faster compared to the implementation on 8xTITAN GPUs. Notice that in
this case,

(
320
3

)
= 5, 410, 240 ≈ 222.36 differences need to be evaluated.

6. The 4th order avalanche test requires 49.55 s and 40.30 min for 2,000 and
100,000 samples respectively on 4xA100 Ampere GPUs. Notice that in this
case,

(
320
4

)
= 428, 761, 520 ≈ 228.67 differences need to be evaluated, which

corresponds to ≈ 246.29 5-round Ascon evaluations in the case of 100, 000
samples per difference. To highlight the potential of the framework, we note
that 247 5-round Ascon evaluations on a single core CPU are estimated to
last on average 113 days on an i9 Intel macOS laptop, which shows a sig-
nificant reduction in timing by using GPUs. Additionally, we verified all the
Ascon distinguishers presented by Raghvendra Rohit and Santanu Sarkar [22]
in minutes, while for them, it took weeks (especially for 7-round Ascon dis-
tinguisher).

7. We release our source code to the community for future research (GitHub:
Link Anonymous1).

1.3 Related Works

In this subsection, we give an insight into some of the works that have been
done previously. The notion of avalanche tests applied on ciphers was raised
from the ideas of completeness and avalanche effect first introduced by Kam
and Davida [11] and Feistel [8], respectively. A cipher is said complete (or that
it reached full diffusion) when each of its output bits depends on all of the
input bits. The avalanche effect of a cryptographic algorithm is observed when
an average of one half of the output bits change whenever a single input bit is
flipped. Webster and Tavares [26] explain how to build what are called perfect
4× 4 S-Boxes by using the strict avalanche criterion. Later, Joan Daemen, Seth
Hoffert, Gilles Van Assche and Ronny Van Keer [5] report in their paper on
the performance of the cipher Xoodoo with respect to these criteria. Avalanche
tests can be seen as a special case of statistical tests where the randomness of the
output of a cipher is examined. One of the most frequently used test batteries
is the NIST Statistical Test Suite [23]. In 2021, Kim and Yeom [13] propose
a GPU based parallel implementation of the most time-consuming part of the

1 We can provide the source code to the reviewers if requested.
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entropy estimation in these tests and demonstrate that their implementation is
about 3 to 25 times faster than that of the NIST package (measured on two
different hardware configurations, see reference for details). While in this work
we introduce the notion of high order avalanche test for a symmetric cipher, the
notion of high order Strict Avalanche Criterion has already been known for a
long time in the case of small Boolean functions [9].

1.4 Outline of this Work

The remainder of this paper is structured as follows. Section 2 and Sect. 3
describe high-order avalanche tests and criteria. Section 4 and Sect. 5 provide
framework for multi-GPU acceleration for high-order avalanche tests. Sections 6
to 8 explains the evaluation methodology and presents the detailed experimental
results and discussions. Finally, we conclude the paper in Sect. 9.

2 Avalanche Tests

We denote by GF (2) the binary field with 2 elements, and with GF (2)n the
n-dimensional vector space over GF (2). Block ciphers are functions with inverse
and they are iterated. That is, block ciphers apply an map repeatedly over a series
of rounds. In other words, given a set of r maps Fi : GF (2)n×GF (2)m → GF (2)n

with i = 0, . . . , r − 1, that takes as input a n bits block and a m bits subkey, an
iterated block cipher F is such that F = Fr−1 ◦ . . . ◦ F0.

Three tests to measure the avalanche properties of a symmetric iterated
block cipher are presented in [5]. These tests evaluate the cipher with respect to
three different criteria: the full diffusion, the avalanche, and the strict avalanche
criteria. The goal of these tests is to measure the quantitative diffusion power of
the round function. Note that the common behavior of an iterated cipher is not
to meet the criterion for the first rounds and then to meet it for all the remaining
ones.

2.1 The Avalanche Probability Vector

The tests are performed by computing the so-called Avalanche Probability Vec-
tor (APV) PΔF of a cryptographic primitive F for an input difference Δ. The
i-th component of the APV is the probability that bit i of the output of F
flips due to the input difference Δ, or, equivalently, the probability that bit i of
F (x) + F (x + Δ) equals 1. After M samples, the expected standard deviation
of the elements of PΔF is 1/

√
M . So for high precision, M must be chosen large

enough. In [5] experiments M = 250, 000 was used. In this work, we observe the
behavior of the tests for smaller values of M .
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2.2 Avalanche Criteria

The APV is used to derive 3 metrics, where pi = PΔF i
:

– Avalanche dependence: number of output bits that may flip, defined as
Dav(F,Δ) = b−∑

i δ(pi) , with δ(x) equal to 1 if x = 0 and 0 otherwise. The
full diffusion criterion is satisfied if Dav(F,Δ) = b for all Δ with Hamming
weight 1.

– Avalanche weight: expected Hamming weight of the output difference,
defined as Wav(F,Δ) =

∑
i pi . Given a certain threshold t, the avalanche

criterion is satisfied if b/2− t ≤ Wav(F,Δ) ≤ b/2+ t for all Δ with Hamming
weight 1.

– Avalanche entropy: uncertainty about whether output bits flip, defined as
an entropy:
Hav(F,Δ) =

∑
i(−pi log2(pi)−(1−pi) log2(1−pi)) . Given a certain threshold

t, the strict avalanche criterion (SAC) is satisfied if b−t ≤ Hav(F,Δ) ≤ b+t
for all input differences Δ with Hamming weight 1.

The three metrics have values in the range [0, . . . , b] and for a random trans-
formation F we have that for any input difference Δ then Dav(F,Δ) ≈ b,
Wav(F,Δ) ≈ b/2 and Hav(F,Δ) ≈ b. We actually report on the minimum value
over all first order input differences.

Algorithm 1. avalanche probability vector of order d

Require: a transformation F over GF (2)b, a vector space V of length b and dimension
d generated by a basis of 1-bit vectors (sometimes called unit vectors), and number
of samples M .

Ensure: p, the avalanche probability vector of order d.
1: Initialize a b-bit vector p of probabilities pi to all zeroes.
2: for M randomly generated states x do
3: Compute B =

∑
v∈V F (x + v)

4: for all state bit positions i do
5: pi = pi + Bi/M
6: end for
7: end for

3 High-Order Avalanche Tests

In [5], the metrics are computed for all Δ of Hamming weight 1, i.e. for all 1st

order input differences of the cipher. This is equivalent to say that the APV is
computed for the first order derivative of the n-bit vectorial Boolean function F
with respect to the points Δ of Hamming weight 1. Such derivative is defined as
DΔ(x) = F (x) + F (x + Δ), with x,Δ ∈ GF (2)b [3]. The same approach can be
easily extended to higher order derivatives of F with respect to a vector space
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V of length b and dimension d, i.e. DV(x) =
∑

v∈V F (x + v). Our technique
is somewhat similar to computing higher order derivatives [16], however, the
metrics which we evaluate in this work are completely different. For example,
a traditional d-order derivative is utilized in integral/cube attacks to check the
presence or absence of a superpoly and then later used for recovering key bits.
In our case, we use the d-order derivative to generalize the first-order avalanche
tests. In what follows, we first describe metrics of high-order avalanche tests and
then discuss their computational challenges.

3.1 High-Order Avalanche Probability Vector

More precisely, the avalanche probability vector PΔF of order d of a cryptographic
primitive F for a vector space V of length b and dimension d and generated by a
basis of single-bit vectors, is the vector whose i-th component is the probability
that bit i of the output of

∑
v∈V F (x + v) equals 1. The high-order APV can be

computed following Algorithm1.

3.2 High-Order Avalanche Criteria

The avalanche dependence, weight and entropy are then computed as for the
first order and the three criteria are defined as follows.

– The full diffusion criterion of order d is satisfied if Dav(F,V) = b for all
vector spaces V of length b and dimension d generated by a basis of single-bit
vectors.

– Given a certain threshold t, the avalanche criterion of order d is satisfied if
b/2–t ≤ Wav(F,V) ≤ b/2+t for all vector spaces V of length b and dimension
d.

– Given a certain threshold t, the strict avalanche criterion of order d is
satisfied if b − t ≤ Hav(F,V) ≤ b + t.

4 Parallelization Strategies and Multi-GPU
Implementation

In this section, we discuss two parallelization strategies that are well-known
in machine learning training, namely, data and model -level parallelization (see,
e.g., [7, Section 5.1, 5.2]). We also provide a discussion on how to select the
most appropriate strategy with reference to concrete use cases. In particular,
for ease of explanation (and because it was never done before), we focus our
description on the case of computing high-order avalanche probability vectors
and their corresponding criteria. We briefly discuss how the same technique can
be also applied in other use cases.
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4.1 Determining the Workload

Let us now focus on the case of computing high-order avalanche probability
vectors and their corresponding criteria.

Recall that b is the bit size of the cipher input and V is a vector space over
GF (2) of dimension d, length b and whose basis is made of d 1-bit vectors.
The number of samples needed for each vector space is indicated by M . Also,
recall from Sect. 3.2 that in order to compute the metrics avalanche dependence,
avalanche weight, and avalanche entropy, we need to compute first the APV for
a specific vector space V. Furthermore, to compute an APV, we need to compute
the sum B for every random sample (see Algorithm1). Finally, recall that once
we have the metrics, we can compute the full-diffusion, avalanche, and strict
avalanche criteria.

From the description above, note that our main workload comes from cipher
evaluations F (·) to compute B. Thus, to compute B for an APV of order d, we
need |V| cipher evaluations. In turn, to compute this APV, we need M random
samples. Thus, to compute the avalanche metrics for all vector spaces (i.e.,

(
b
d

)
) in

a d order derivative of a cipher, we need a total of
(

b
d

) · |V | ·M cipher evaluations.

4.2 Parallelization Techniques Overview

To parallelize the workload of the high-order avalanche test, we explore two
options: data-level and model-level parallelization. Essentially, these two tech-
niques differ in how a dataset is distributed to the processing units, or CUDA
threads in the case of GPUs. More in detail, in the high-order avalanche test,
the two techniques differ as follows:

– Data-level Parallelism: Each CUDA thread is assigned a b-bit random sample
x and it is responsible of computing B =

∑
v∈V F (x+v) for the single sample

x. In this scenario, the same vector space is used across multiple threads until
the right number of samples is exhausted.

– Model-level Parallelism: Each CUDA thread is assigned a vector space and
computes B =

∑
v∈V F (x + v) for all M samples x ∈ GF (2)b.

In data-level parallelism, the number of threads depends on the number of
samples needed to compute the avalanche criteria. On the other hand, in model-
level parallelism, the number of threads only depends on the number of vector
spaces.

4.3 Choosing the Parallelization Technique

Choosing which type of parallelism technique to adopt might not be trivial. In
particular, for the case of avalanche tests, it seems natural to distribute the sam-
ples over each thread. This might turn out to be a good solution for the case
of first-order avalanche tests, since the number of vector spaces (determined by
weight 1 differences) is very small, i.e., b. However, for higher dimensions, the
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number of vector spaces quickly outnumbers the number of samples, and model-
level parallelization becomes more useful. Another factor in deciding which tech-
nique to exploit is the number of physical cores available in the machine. For
example, in our experiments with high-order avalanche tests, we used two types
of GPUs: TITAN RTX, with a capability of 18432 CUDA cores, and A100-SXM4,
with a capability of 27648 CUDA cores per GPU). If the number of samples is
≈ 104, then not all cores will be used in both cases. Finally, distributing the
samples over the processing units, requires some communication cost among the
units, to compute the value B of the summation. This is not the case in model-
level parallelization, where the generation of the elements of the vector space V,
the computation of B, the APVs, and the metrics are all computed in the same
thread. Note that all these operations have a relatively low cost for a GPU.

For the case of high-order avalanche tests, and for all the reasons stated in the
paragraphs above, we decided to use model-level parallelism instead of data-level
parallelism.

4.4 Use Cases

Another important use case for applying model-level parallelization is when eval-
uating first-order avalanche tests for a high number of variants of a cipher. This
highly parallelizable testing process scales linearly with the number of sam-
ples, i.e., cipher inputs, to be evaluated and the number of design variants to
be tested. But, the number of design variants might grow exponentially with
respect to some parameters. For example, in ASCON, freeing the 10 rotation
offsets in the linear layer gives 635 · 625 ≈ 260 possible variants of the cipher.

One third use case for applying model-level parallelization is when evaluat-
ing first-order avalanche tests for input differences with Hamming weight greater
than one. This would be useful to have a preliminary understanding of the resis-
tance of the cipher against differential cryptanalysis with a low Hamming weight
initial difference. Notice that is very common for high probability differential
trails to start with low Hamming weight differences. Nevertheless, such a test
cannot replace automated differential trail search techniques, which, on the other
hand, require quite heavy computations and dedicated modeling of the cipher.

A fourth scenario where model-level parallelization is beneficial is in the
evaluation of high-order truncated differentials. Specifically, consider an APV
PΔF of order d for a cryptographic primitive F . Each entry ρ in PΔF represents
the probability of a d-order truncated differential, starting with the vectors used
to compute PΔF , and ending at the index indicated by ρ. We will leave the
implementation of this scenario as future work.

5 Implementation Challenges

In this section, we describe the main practical challenges in implementing model-
level parallelization in GPUs, and how we overcame them.
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5.1 Avoiding CPU Bottleneck

The logical number of threads might be different from the actual number of
CUDA cores. We already mentioned that when the number of threads is smaller
than the number of cores, there is a poor utilization of the GPU resources. On
the other hand, when the number of threads is greater than the number of cores,
then the threads are divided into batches and executed one batch at a time.
This iteration is concretized through an iterative call of the kernel from the
CPU. The CPU assigns workloads to the GPU through iterative calls, which is
time-consuming due to CPU-GPU communication. To optimize performance, we
used the so-called grid-stride loop technique to execute the iterative task solely
on the GPU without CPU intervention, enhancing performance [18].

In CUDA programming, a grid-stride loop is a common technique used to
efficiently parallelize certain operations on NVIDIA GPUs. It involves breaking
down a large data set or computational task into smaller chunks and assigning
each chunk to a different thread block. The threads within each block then
process elements of the data in a loop.

The term grid in CUDA refers to the collection of thread computational
blocks that are launched to execute a kernel function on the GPU. Stride in a
grid-stride loop refers to the distance between consecutive elements that each
thread processes. It allows multiple threads to work on non-contiguous elements
in memory simultaneously. By using a stride, threads can efficiently load and
process data, minimizing memory access conflicts and improving memory coa-
lescing. Here’s a brief overview of how a grid-stride loop is typically implemented:

– Determine the grid and block dimensions: The data or task is divided into a
grid of thread blocks. The grid and block dimensions are chosen based on the
problem’s requirements and the available GPU resources.

– Calculate the global thread index : Each thread is assigned a unique global
index that represents its position within the entire grid of thread blocks.

– Calculate the stride: Stride is often computed as the total number of threads
in the grid multiplied by the number of elements each thread should process.

– Perform the grid-stride loop: Each thread enters a loop and processes the
data or computation assigned to it based on its global thread index and the
calculated stride. The loop continues until all elements have been processed.

Grid-stride loop is particularly useful when the data or task involves irregular
memory access patterns or when the data set is too large for a single thread block
to handle. Grid-stride loops help achieve better performance by maximizing par-
allelism and minimizing memory access conflicts. In particular, we use grid-stride
loop in high-order test to efficiently compute B (see Algorithm 1), APVs, and
metrics for multiple vector spaces. Instead of assigning a single CUDA thread to
handle the computations associated with a single vector space, we map a thread
to a group of vector spaces in a stride way.
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5.2 Synchronization and Communication

In the context of parallel programming, synchronization refers to the coordina-
tion of parallel resources to avoid race conditions or to ensure the correct order
of operations, and communication refers to the transfer of data between parallel
resources. For example, moving data between different memory spaces, such as
transferring data from the host memory to the GPU memory or between dif-
ferent GPUs. In our implementation, we basically have the following parallel
resources, CUDA threads, CUDA blocks, GPUs, and CPUs.

As mentioned in Sect. 2, a cipher is considered to meet the criteria if the values
of each metric, namely avalanche dependence, avalanche weight, and avalanche
entropy, are b, b/2, and b, respectively, for all vector spaces V of dimension d
and length b. This means that the cipher meets the criteria if the minimum
values (worst-case scenario) for each metric are approximately b, b/2, and b,
respectively. Thus, besides the computations of the APVs and metrics (as stated
in Sect. 4.2), we compute the minimum value of each metric by using an atomic
operation. This minimum value is computed in each GPU and communicated to
the CPU to perform the final computation to obtain the criteria.

By utilizing model-level parallelism, communication among the parallel
resources can be significantly reduced. As mentioned in Sect. 4.2, we use model-
level parallelism to assign each thread a unique vector space and compute the
corresponding metrics independently. The only communication required is lim-
ited to 1) the initial transfer of avalanche test configurations from the CPU to
the GPU, and 2) the transmission of the minimum metric values from the GPUs
to the CPUs to compute the avalanche criteria.

Two methods can be used to achieve inter-block synchronization in the GPU:
atomic operations or transferring control to the CPU. In our approach, we use
the former method to compute the minimum value of each metric and check if
a cipher meets the criteria. We do not require inter-GPU synchronization since
we send the minimum value computed from each GPU to the CPU. However,
synchronization at the CPU is necessary to determine the resultant minimum
value after receiving the minimum values from corresponding GPU.

5.3 Distributing the Workload

Below we describe the tasks of high-order avalanche tests on the CPU. Specif-
ically, we describe the tasks to distribute the main workload. The proposed
implementation takes the following inputs: the cipher, the order d of the test
(e.g., 1st, 2nd, 3rd, and 4th order), the number of samples M , the number of
rounds of the cipher, and the number of GPUs. The number of computational
threads and blocks are evaluated dynamically at runtime, and the workload is
assigned to each GPU by considering that we need to distribute |V| · (

n
d

) · M
cipher evaluations among these resources.

A high-order avalanche test kernel is launched with the number of par-
allel threads and blocks on each GPU. To compute the number of parallel
threads and blocks, we use the CUDA API. Specifically, we use the function
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cudaOccupancyMaxPotentialBlockSize, which returns the grid and block size
that achieves maximum potential occupancy for a device function. In our case,
this device function is the kernel high-order test.

As previously mentioned, a cipher performs well with respect to the high-
order avalanche tests if the following scores are satisfied for each vector space:
the avalanche dependence must be ≈ b, the weight must be ≈ b/2, and the
entropy must be ≈ b. Otherwise, the respective criterion is not satisfied. CPU
evaluates the resultant worst-case values of the avalanche metrics received from
all the GPUs.

The device kernel executes the following steps:

1) it generates vectors v ∈ V,
2) generates a seed,
3) uses the seed to generate random samples for evaluating avalanche metrics,
4) the cipher is evaluated on the random samples and vectors v to compute, B,

the APV and the metrics,
5) the minimum values of avalanche metrics amongst threads on a GPU are

obtained using atomic operation in CUDA. These minimum values from each
GPU are communicated to the CPU.

Fig. 1. High-order Avalanche Test for ASCON on 4xA100 Ampere GPUs for 100,000
samples. The above metrics are computed from the vector space that gives the worst
values of the corresponding criterion.

6 Detailed Results in the ASCON Use Case

Due to the page limit and because it is the winner of the NIST lightweight
standardization process, we have decided to perform a detailed report on the
performance of ASCON with respect to each criterion and for each different
number of rounds. We will summarize the results of other primitives in the next
Sect. 7.
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Fig. 2. High-order Avalanche Test for ASCON 4 rounds on 4xA100 Ampere GPUs
Note: 4 th order test is not included for more than 100,000 samples due to linearly
increasing time dependency for evaluating all differences.

Specifically, this section presents a report for up to the 4th order and for dif-
ferent rounds. There are two aspects to analyze the results: 1) evaluate whether
ASCON performs well or not the tests along the rounds and 2) timings and
speedup of the experiments with respect to the number of rounds and the order
of the tests. We evaluated our approaches on the following platforms: 4xA100
GPUs and 8xTITAN GPUs. In Sect. 6.1, we present experiments we did for
aspect 1) and in Sect. 6.2, we present experiments we did for aspect 2). Also,
here, we make a comparison of our implementations with respect to the afore-
mentioned platforms (4xA100 GPUs and 8xTITAN).

6.1 High-Order Avalanche Tests on ASCON

We evaluate three avalanche metrics: avalanche dependence, weight, and entropy.
In order to perform well with respect to the criteria associated with these metrics,
ASCON must satisfy the following scores for their respective criterion:

1. avalanche dependence must be equal to 320
2. avalanche weight must be approximately2 160 and
3. avalanche entropy must be approximately 320.

We evaluate these tests for the variations in the number of rounds when the sam-
ple size is constant. Secondly, we assess the avalanche metrics for the variations
in the number of samples for a given number of rounds.

Avalanche Properties Versus the Number of Rounds. We evaluate three
avalanche tests with respect to the number of rounds and the sample sizes. We
show the results corresponding to 100,000 samples in Fig. 1. We observe the
following in terms of avalanche tests:

1. Full diffusion criterion: For all orders, 1st, 2nd, 3rd and 4th order, this
criterion needs 100 samples before saturation (when the values of the metric
increase with very slow rate). Regarding the numbers of rounds, 1st and 2nd

order need 4 rounds to meet the criterion, while 3rd and 4th order require five
rounds.

2 A certain threshold has to be fixed.
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Fig. 3. Performance Comparison of Avalanche Tests for ASCON - on 4xA100 and
8xTITAN RTX GPUs.

2. Avalanche criterion: Similar behaviour is observed here. For all orders, 800
samples are needed to reach 158 value and 2,000 samples to reach 159 value
and then saturates. Regarding the numbers of rounds, 1st and 2nd need four
rounds, and 3rd and 4th require five rounds.

3. Strict Avalanche criterion: Here again, for all orders, 400 samples are
enough to reach 319 value and then saturates. Similarly to both previous
cases, 1st and 2nd need four rounds, and 3rd and 4th require five rounds.

For each criterion, the 3rd and 4th order tests require at least 5 rounds to
reach it. An important point to note is that our framework can also spot the
state bits for which the criteria are not satisfied for 4-round Ascon.

Avalanche Metrics Versus the Number of Samples. In what follows, we
observe the evolution of the values of the metrics with respect to the number
of samples. We evaluate the three avalanche metrics for 4 rounds of Ascon with
different number of samples as it is shown in Fig. 23. We have not included 4th

order avalanche test for more than 100,000 samples (equivalent to ≈ 246.29 5-
rounds evaluations) due to linearly increasing time dependency. We observe from
Fig. 2 that the values of the criteria are almost similar whether using 103 or 105

samples. To be more specific, Fig. 6 shows how accurate the values of the criteria
are according to the chosen number of samples.

6.2 Time and Speedup of 4 x A100 w.r.t. 8xTITAN GPUs

We measure evaluation time on 4xA100 GPUs and 8xTITAN GPUs and observe
the following:

1. Execution time for the 3rd order avalanche test requires 14 s for 2,000 sam-
ples on 8xTITAN GPUs. However, the implementation on 4xA100 GPUs is
generally faster in comparison to the 8xTITAN GPUs as shown in Fig. 3. The

3 We recall that we report on the minimum value of each metric. This is why all
metrics are monotonically non-decreasing.
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number of multiprocessors per GPU is more in A100 (i.e. 108) in comparison
to the TITAN RTX (i.e. 72). Ampere A100 have more cores (6912) and higher
FLOPS (single and double) in comparison to the TITAN RTX (4608 cores).

2. Speedup The performance of 4xA100 GPUs is generally faster in compari-
son to the 8xTITAN GPUs as shown in Fig. 3. The range of speedup varies
depending upon the order of the tests.

6.3 Note on the Inverse of ASCON

We have seen that in the 1st order case, the 3 criteria are reached after 4 rounds
of ASCON. The inverse of ASCON reaches the 3 criteria even faster, as we can
see in Fig. 4. Each cell of this figure is green if the probability of flipping of the
underlying bit is close to 1

2 with a 0.01 bias due to a single input bit difference,
red otherwise. We can see that after the 2nd round, all cells are green, meaning
that at this round, the weight criterion is satisfied.

This behavior is common on ciphers with a linear layer whose inverse is more
dense than its forward operation. For instance, it is well known that one bit
difference in the input of the inverse of Ascon linear layer affects at least 31
output bits, while it affects only 3 output bit for the forward linear layer. In
most cases, the inverse of a linear layer is chosen to be complex and therefore
allows a better diffusion, which prevent successful backward extension of linear
or differential trails for example.

Fig. 4. Weight criterion for the inverse of ASCON. Input bit difference injected in
position 0.

7 Results for the Most Popular Ciphers

In this section, we decided to focus our attention on the permutations of the
finalists of the NIST lightweight standardization process, plus some of the most
famous block ciphers and cipher underlying permutations. More specifically, we
focused on the following primitives shown in Table 1:
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Table 1. Selected primitives for our analysis and their respective plaintext and key bit
sizes.

Primitives plaintext size key size rounds

Ascon-p 320 – 12

Xoodoo 384 – 12

Gift 128 128 40

Keccak-f[400] 400 – 20

Photon 256 – 12

Skinny 128 384 40

Speck 128 128 32

AES 128 128 10

Chacha 512 – 20

DES 64 64 16

Present 64 80 31

From our experiments, we observed that the selected primitives had a similar
behavior than Ascon, that is satisfying all the 3 criteria for the 3rd and 4th orders
one round after they get satisfied for the 1st and 2nd orders.

Due to the page limit, we could not display the comparison between all the
previous ciphers for each of the 3 criteria. We had to choose one and we believe
that the most important criterion is the strict avalanche criterion based on the
avalanche entropy. The comparison is shown in Fig. 5, where we display the
percentage of the number of rounds needed to reach the strict avalanche criterion
over the total number of rounds. We show this value for 1st, 2nd, 3rd, and 4th
orders. We notice that a more interesting comparison, rather than the number
of rounds, would take into account the number of gates in the implementation
on a specific platform. On the other hand, this metric is not easy to measure,
and we leave it for future work.

8 Discussion

In this paper, we propose and evaluate high-order avalanche tests on multi-
GPU platforms. We apply our new test to the selected candidate of the NIST
lightweight standardization process, namely the ASCON permutation, a round-
based cipher. We conclude the following in terms of avalanche metrics and exe-
cution time from the experimental analysis:

1. Full diffusion criterion needs 100 samples enough for full diffusion (see
Sect. 6.1).

2. Avalanche criterion needs 800 samples (see Sect. 6.1) to reach 158 (around
160) value and 2,000 samples to reach 159 (around 160) value and then sat-
urates (increases with very slow rate).
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Fig. 5. Avalanche entropy comparison: percentage of number of rounds needed to reach
the entropy criterion over the total number of rounds, for 1st, 2nd, 3rd, and 4th order.

3. Strict Avalanche criterion needs 400 samples (see Sect. 6.1) to reach 319
(around 320) value and then saturates.

4. Execution time for the 3rd order avalanche test requires 14 s for 2,000
samples on 8xTITAN GPUs.

5. Following analysis can be made in order to satisfy all avalanche metrics:
(a) 1st and 2nd order avalanche tests require at least 4 rounds to satisfy all

criteria.
(b) 3rd and 4th order avalanche tests require at least 5 rounds to satisfy all

criteria.
6. Generalization of the number of threads required for performing n-

th order tests in parallel: Our initial implementation requires memory for
seeds corresponding to each thread in order to generate the number of random
samples for each thread. The memory requirements increase with the increase
in the number of threads corresponding to each combination difference. The
memory dependency with respect to the number of computational threads is
detailed as follow: i-th order test requires at least

(
320
i

) · 48 KB memory and(
320
i

)
threads.

However, the above memory dependency has been successfully removed in
our memory-less implementation for high-order avalanche tests.

7. Statistical Analysis of the Results. We use a confidence level of 99% and
a population of 2320 input samples (for ASCON) as shown in Fig. 6. It can
be seen that already from samples = 100, for 1st order difference, 3 rounds is
outside the confidence interval. This cannot be observed only for 10 samples.
However, we will not worry too much as these are really very few samples.
The result can be interpreted as follows: given
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(a) a Confidence Level of 99%
(b) a Confidence Interval C (a positive integer). Note that C is a function of

the sample size, population size and the confidence level.
(c) an input difference D of 1st order,
then 99% of all possible plaintexts P will generate a pair (P, P + D) for
which the Avalanche Weight will fall inside the confidence interval of [160 −
C, 160 + C]. For example, for a sample size of 20,000, we have C = 0.91216.
We see that at round 4, the avalanche weight is always inside the interval
[160 − 0.91216, 160 + 0.91216], so we can consider the test passed at round 4
as shown in Fig. 7.

8. Scalability: The model level implementation supports scalability in terms
of (the large) number of vector spaces computed per GPU. As the number
of GPUs increases, the total number of vector spaces computed per GPU
decreases and hence decreasing the total evaluation time. It will provide flex-
ibility to process high-order avalanche tests (where order ≥ 4) in lesser time.
Our implementation performs reasonably well for up to 4-th order tests. Of
course, adding or removing CUDA cores would improve or diminish the per-
formances in a trivial way. The main challenge, which for now remains an
open problem, is to perform 5-th order tests. If one would want to implement
the same tests over CPUs, the main issue he would face is the cost of purchas-
ing several cores. For comparison, we used around 100,000 CUDA cores. The
CPUs are efficient when the total number of vector spaces to be processed is
reasonable. The CPUs are limited by the number of cores and the number
of operations drastically increases when the order of tests increases. CPUs
under-performs already for 3-th order avalanche tests.

Fig. 6. Confidence Interval for the
Sample Sizes for Confidence Level 99%
on population 2320

Fig. 7. Analysis of Confidence Inter-
vals for Various Sample Sizes on 1st

order Avalanche Tests

9 Conclusion

In this paper, we propose and evaluate high-order avalanche tests on multi-GPU
platforms through our ACE-HoT framework. This framework is general and can
be easily adapted to test other block ciphers and permutations on several GPU
models.
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We provided a detailed analysis of the permutation of the ASCON cipher
and a comparison of how different ciphers perform under this test. We showed
that for some ciphers (e.g. ASCON) the avalanche criteria are reached at a later
round when considering higher orders than 1.

The main challenge of this test was the huge number of cipher evaluations
that need to be performed, especially for order 4 tests. We leave for future work
to optimize the code and reach even higher orders and to study how the newly
found biases could be exploited as a base to mount new or improve existing
attacks.

Another open challenge for future work is to explore the use of this generic
framework for other applications of cryptanalysis like the work that has been
done for the first collision of full SHA-1 [25].
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Abstract. Fully secure multiparty computation (or guaranteed output
delivery) among n parties can be achieved with perfect security if the
number of corruptions t is less than n/3, or with statistical security with
the help of a broadcast channel if t < n/2. In the case of t < n/3, it
is known that it is possible to achieve linear communication complexity,
but at a cost of having a round count of Ω(depth(C) + n) in the worst
case. The number of rounds can be reduced to O(depth(C)) by either
increasing communication, or assuming some correlated randomness (a
setting also known as the preprocesing model). For t < n/2 it is also
known that linear communication complexity is achievable, but at the
cost of Ω(depth(C)+n2) rounds, due to the use of a technique called dis-
pute control. However, in contrast to the t < n/3 setting, it is not known
how to reduce this round count for t < n/2 to O(depth(C)), neither
allowing for larger communication, or by using correlated randomness.

In this work we make progress in this direction by taking the second
route above: we present a fully secure protocol for t < n/2 in the pre-
processing model, that achieves linear communication complexity, and
whose round complexity is only O(depth(C)), without the additive n2

term that appears from the use of dispute control. While on the t < n/3
such result requires circuits of width Ω(n), in our case circuits must be
of width Ω(n2), leaving it as an interesting future problem to reduce
this gap. Our O(depth(C)) round count is achieved by avoiding the use
of dispute control entirely, relying on a different tool for guaranteeing
output. In the t < n/3 setting when correlated randomness is available,
this is done by using error correction to reconstruct secret-shared values,
but in the t < n/2 case the equivalent is robust secret-sharing, which
guarantees the reconstruction of a secret in spite of errors. However, we
note that a direct use of such tool would lead to quadratic communica-
tion, stemming from the fact that each party needs to authenticate their
share towards each other party. At the crux of our techniques lies a novel
method for reconstructing a batch of robustly secret-shared values while
involving only a linear amount of communication per secret, which may
also be of independent interest.
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A. Aly and M. Tibouchi (Eds.): LATINCRYPT 2023, LNCS 14168, pp. 47–66, 2023.
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1 Introduction

Secure multiparty computation (MPC) is a set of techniques that enable a set
of parties P1, . . . , Pn, each Pi having a private input xi, to securely compute
a function z = f(x1, . . . , xn) while only involving communication among each
other, in such a way that they learn the output z, and not even an adversary
corrupting a subset of t parties can learn any information about the inputs xi

from non-corrupted/honest parties, besides from what is inherently leaked by
the result z.

Multiple MPC protocols exist depending on different factors like the power
of the adversary, or the level of security required. A first important distinc-
tion is whether the adversary is passive, meaning that the behavior of corrupt
parties is not affected (i.e. they follow the protocol specification), or whether
he is active, meaning that the corrupt parties can deviate arbitrarily from the
protocol execution. In this work we only consider active security, so from now
on we assume the adversary under consideration is malicious, or active. Also,
security can be computational, meaning that it is based on the hardness of
some computational problem, or it can be information-theoretic, which means
that security holds even against computationally unbounded adversaries. In the
information-theoretic case there is a further distinction between perfect and sta-
tistical security, where the latter allows for a negligible error probability while
the former achieves zero error probability.

Different techniques are used—and different results can be obtained—
conditioning on the amount of parties t that the adversary is assumed to corrupt.
If t < n/3 then we can achieve very efficient MPC with perfect security and with
guaranteed output delivery (also abbreviated G.O.D., which means that the hon-
est parties are guaranteed to receive the correct output z in spite of arbitrary
adversarial behavior) [BTH08], and if t < n/2 then we can achieve the same
but with statistical security, assuming a broadcast channel, which can be shown
to be necessary [GSZ20]. Finally, if we do not assume any bound on t, then
we must rely on computational assumptions, and the G.O.D. property (or even
fairness, where the honest parties get the output if the adversary gets it) cannot
be obtained in general. The focus of this work is the setting t < n/2, also known
as honest majority. Furthermore, we assume the maximal case n = 2t + 1. From
now on, whenever we refer to the setting t < n/2, we mean statistical security
with an assumed broadcast channel, while for t < n/3 we mean perfect security
without broadcast. In both cases we require full security, or G.O.D.

Several works have studied MPC in the honest majority setting. As we have
mentioned, it is known that in this case G.O.D. with statistical security is attain-
able, with the help of a broadcast channel. Furthermore, this can be done while
maintaining a total communication complexity of O(n|C|), where |C| is the size
of the circuit to be computed (measured in the number of multiplication gates)
[GSZ20]. This means that the total communication scales linearly with the num-
ber of parties, or put differently, the communication per party (i.e. after dividing
by n) is constant in n. This is crucial for scalability, since this ensures each party
does not communicate more as more parties join. Unfortunately, there is a major
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drawback of these works: the round complexity is given by Ω(depth(C) + n2).
In contrast, weaker notions such as security with abort in the honest majority
setting allow for a round complexity of O(depth(C)), without any dependency in
n. This is good for cases where the underlying communication has high latency,
and the number of parties is large enough so that n2 extra rounds become too
much of an overhead.

Dispute Control. To understand where this additive term of n2 originates
from, it is worth discussing at a high level the core ideas involved in existing
G.O.D. constructions like [GSZ20,BSFO12,BTH06]. In short, these works oper-
ate by letting the parties compute the circuit in a gate-by-gate fashion, where the
parties maintain the invariant that for each wire they hold secret-shares of the
underlying value. Multiplication gates require interaction, and a malicious party
may cause an error by misbehaving. To ensure that the computation can recover
from this failure, a technique called dispute control, introduced in [BTH06], is
used. With this method, upon detecting a failure, the parties execute a “local-
ization” protocol whose purpose is to identify a pair of parties {Pi, Pj} where
at least one is guaranteed to be corrupt (we say that Pi and Pj are dispute
with each other). At this point, the computation is attempted once again, but
this time some machinery is put on top so that it is ensured that either (1) the
computation succeeds, or (2) a new dispute is identified, that is, the same pair
{Pi, Pj} will not fall in a dispute again.

The techniques used for securely computing multiplication gates require lin-
ear communication complexity O(n) per gate, with interaction at each layer
of the circuit, so in particular if there are no failures, the total communi-
cation is O(n|C|) distributed across O(depth(C)) rounds. Unfortunately, an
active adversary can cause all new attempts to fail, generating the maximal
number of disputes, which is Ω(n2). This would lead to a communication of
n2 · Ω(n|C|) = Ω(n3|C|) and n2 · Ω(depth(C)) rounds, but fortunately this can
be addressed by partitioning the circuit into segments and verifying the correct-
ness of each of them, instead of checking the whole circuit. This way, at most n2

segments are repeated, and by choosing segments of size |C|/n2 we see that the
overall communication remains O(n|C|). In terms of round count, letting d be the
depth of each segment, the number of rounds is O(depth(C)) from the optimistic
case, plus Ω(n2d) from the possible n2 segments that are repeated in the worse
case. Hence, the round complexity in the worst case becomes Ω(depth(C) + n2).
We note that this is particularly prohibitive when n is moderately large, with
the overhead being more and more noticeable for not so large values of depth(C)
(in particular when depth(C) = o(n2)).

On the < n/3 Setting. We recall that honest majority protocols that
achieve weaker notions such as security with abort achieve a round complex-
ity of O(depth(C)). Currently, it is not known whether G.O.D. protocols with
O(depth(C)) + o(n2) rounds exist, which shows that, in the honest majority
case, there is an efficiency gap between security with abort and guaranteed out-
put delivery. In contrast, the landscape turns out to be different for the t < n/3
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case. There it is also possible to achieve linear communication complexity by
making use of a tool called player elimination. This is similar to dispute control
(and in fact, player elimination predates dispute control), with the difference that
when a pair {Pi, Pj} with at least one corrupt party is identified, both of these
parties can be removed from the computation, before a reattempt.1 This way, a
segment is repeated at most O(n) times (since for every iteration there is one
less corrupt party), so by taking segments of size |C|/n, linear communication
is achieved with a round count of Ω(depth(C) + n) in the worst case.

In stark contrast with the honest majority case, for t < n/3 it is actually
possible to remove the overhead in n in the round complexity to obtain a protocol
with O(depth(C)) rounds, and this can be done in two different ways:

1. Pay more in terms of communication, leading to works such as [AAPP22,
AAY21] that have superlinear communication.2

2. Maintain linear communication, but assume correlated randomness, or in
other words, consider a protocol in the preprocessing model.

The second approach above is based on the observation that, in player-
elimination-based protocols such as [BTH08], the adversary can only cause the
repetition of a segment in a preprocessing phase in which some correlated ran-
domness is established. Once this is completed, the online phase is guaranteed
to provide output “in one go”, without the need of repeating any segment (or
splitting the remaining of the computation into segments, for that matter). We
emphasize again that it is not known how to achieve O(depth(C)) round count for
the honest majority case, not even giving up on linear communication complex-
ity, or even assuming correlated randomness. Hence, this motivates the following
question:

Can we design fully secure honest majority MPC protocols with statistical
security that require O(depth(C)) rounds to securely compute a circuit C,
either by having superlinear communication or assuming correlated ran-
domness?

1.1 Our Contribution

As previously mentioned, for the t < n/3 setting with perfect security, such
result is only known to be achievable by either allowing for superlinear commu-
nication complexity, or having linear communication but assuming correlated
randomness. In this work we take the second route in the question above, and
1 This is not possible in the case of n = 2t+1 since one out of the t+1 honest parties

may end up being removed, and the t remaining honest parties cannot “keep the
state” of the computation (since otherwise the set of t corrupt parties should be able
to also determine such state).

2 In fact, the very recent work of [AAPP23] shows how to obtain expected O(depth(C))
rounds while still achieving linear communication complexity, for certain class of
circuits. We do not discuss this work further since our interest is on deterministic
O(depth(C)) rounds.
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we present a statistically and fully secure MPC protocol for honest majority, that
has a round complexity O(depth(C)) that is independent of n, and has linear
communication complexity. One drawback of our protocol is that the claimed
linear communication holds for circuits of width Ω(n2), while in the t < n/3
case this width requirement is a factor of n smaller. We leave it as interesting
future work to further extend our techniques to tolerate circuits of width Ω(n),
hence narrowing down the gap between results for t < n/2 and t < n/3.

In more detail, we present an MPC protocol to securely compute a circuit
|C| over a finite field F, that has the following features:

– The protocol is set in the preprocessing model where the parties have access
to some correlated randomness;

– The communication complexity is O(n|C| + n3depth(C)), which is linear if
depth(C) = O(|C|/n2), that is, each layer should contain Ω(n2) multiplication
gates.

– The round complexity is O(depth(C)).

Our result is achieved by introducing novel ideas that remove the need
of using dispute control techniques, in the preprocessing model. Qualitatively
speaking, our approach offers several advantages with respect to protocols based
on dispute control: the protocol proceeds in a gate-by-gate fashion (batching
multiplication gates in the same layer), and handling each gate is guaranteed
to be completed “in one go”, without the need of checking its correctness or
repeating its computation. Furthermore, our protocol is also arguably simpler
than dispute-control-based protocols, as it does not need to localize and handle
disputes, repeat segments, or incur in any of the related complexities of using
dispute control. In fact, one important advantage of our protocol we only require
a broadcast channel for the input phase, while the rest of the computation can
happen over point to point channels; in contrast, dispute-control-based protocols
like [BTH06] require a broadcast channel throughout the whole computation.

At the heart of our techniques lies a new and non-trivial technique for recon-
structing a batch of n2 values that are secret-shared in a robust manner, while
involving a communication complexity of O(n3), which ultimately leads to a com-
munication of O(n) per reconstructed value. This may find several other appli-
cations in contexts where robust secret-sharing is used, like secure distributed
storage.

1.2 Related Work

We already discussed some related work above, but here we present a more thor-
ough discussion on relevant literature. In [HMP00], which is set in the t < n/3
setting, the idea of splitting the circuit into segments, together with the tool of
player elimination, were introduced. This work makes use of verifiable secret-
sharing and re-sharing á la [BOGW88,GRR98] in order to securely compute a
given arithmetic circuit. This was later improved in [BTH08] by making use of
multiplication triples, which, on top of achieving linear communication complex-
ity, pushes the use of player elimination to the offline phase thanks to the use
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of error-correction techniques for the online phase. Any work that uses player
elimination introduces an additive overhead of Ω(n) in terms of the number of
rounds, stemming from the need of re-running each segment every time a new
semi-corrupt pair (a pair of parties where at least one of them is guaranteed
to be corrupt) is identified. If one wishes to avoid this overhead, works such
as [AAPP22,AAY21] achieve a round count of O(depth(C)), albeit with super-
linear communication complexity. Substantial progress towards improving this
trade-off was made in [AAPP23], where a perfectly secure protocol for t < n/3
with linear communication complexity (for certain class of circuits) and expected
O(depth(C)) rounds was given.

In [BTH06] the dispute control framework, which is inspired by the player
elimination framework, is introduced for the setting of t < n/2. This time,
instead of removing an identified semi-corrupt pair, a mechanism is set in place so
that these parties can keep participating in the protocol, and subsequent cheating
leads to a new semi-corrupt pair being identified. To enable the identification of
semi-corrupt pairs whenever cheating takes place, the secret-sharing structure
must be enhanced by letting the parties hold shares of their shares, along with
extra additional information in the form of tags under a message authentication
code (MAC). Similarly to the player elimination technique, the use of dispute
control introduces an additive overhead in terms of the number of rounds, this
time of n2, which corresponds to the maximum number of disputes that can
occur.

The protocol in [BTH06] achieves a communication complexity of O(|C|n2κ)
(ignoring non-dominant terms and broadcast calls), where κ is the statistical
security parameter. This was later improved in [BSFO12] to O(|C|(n + κ)).3

Concrete constants (plus certain quadratic term that is affected by the depth of
the circuit) are further improved in [GSZ20]. We remark, however, that these two
works still make use of the core ideas introduced in [BTH06] regarding dispute
control, splitting the circuit into segments and repeating each of these in case of
cheating. As a result, they suffer from a n2 overhead in terms of the number of
rounds. This also holds for the work of [BGIN20], which is based on replicated
secret-sharing.

Another important work is [IKP+16], where a transformation that takes a
semi-honest honest majority protocol together with a fully-secure protocol with
a potentially smaller threshold, and produces a fully-secure honest majority pro-
tocol, is presented. This achieved by adapting the IPS compiler [IKP+16] from
the computational to the information-theoretic setting. However, their approach
once again makes use of similar ideas as player elimination and dispute control,
and hence they incur in an additive overhead of poly(n) in terms of the number
of rounds.4

3 Here we count the number of field elements, although the only constructions known
in the literature require a field whose size grows linearly with the number of parties.

4 Interestingly, here the overhead if n instead of n2, since the authors do not use
dispute control but instead a technique that is closer to player elimination.
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1.3 Overview of Our Techniques

For aiding in terms of readability, we provide a high level overview of our tech-
niques.

A Protocol for t < n/3 in the Preprocessing Model. In order to motivate
our protocol, we begin by presenting a G.O.D. protocol (with perfect security)
in the t < n/3 setting, that achieves linear communication complexity and only
requires O(depth(C)) number of rounds. This is a simplified version of the pro-
tocol from [BTH08]. First, we introduce some notation: we consider a finite field
F, and use �x�d to denote Shamir secret-sharing with degree d. At a high level,
the protocol proceeds as the majority of secret-sharing-based protocols: the par-
ties start with degree-t sharings of the inputs of the computation, and then
they proceed in a gate-by-gate fashion by computing shares of the result of each
gate, until shares of the output are obtained, which can then be reconstructed.
Addition gates are processed locally with the help of the linearity properties
of Shamir secret-sharing. For multiplication gates, the parties make use of the
preprocessing model in the following way: given �x�t and �y�t to be multiplied,
and given correlated randomness of the form (�a�t, �b�t, �a · b�t), where a, b ∈ F

are uniformly random, (1) the parties compute locally �d�t = �x�t − �a�t and
�e�t = �y�t − �b�t, (2) they reconstruct these values to obtain d and e, and (3)
the parties compute locally �xy�t = e�a�t + d�b�t + �ab�t + de.

The protocol is private given that a (and b) entirely hides x (and y) when
reconstructing d (and e). Communication-wise, the complexity depends on how
d and e are reconstructed. One way of doing this is letting each party announce
their share of �d�t (and �e�t) to each other party, who then reconstruct d (and
e) from the received shares. A crucial property of Shamir secret-sharing with
degree t is that, if t < n/3, then the t potentially incorrect shares provided by the
corrupt parties can be error-corrected, and the receiving parties are guaranteed
to be able to reconstruct the right underlying secret. In particular, every gate is
guaranteed to succeed, so no repetitions are required and hence the number of
rounds is O(depth(C)).

Getting Linear Communication Complexity. The approach sketched above, how-
ever, suffers from one major issue: since each party sends a share to every other
party, communication is Ω(n2). We are interested in linear communication, so a
different approach is required. A common idea to achieve linearity when recon-
structing secret-shared values is to use a “relay”: all parties send their shares to
a chosen party, say P1, who reconstructs and forwards the result to the other
parties. Unfortunately nothing prevents a corrupt P1 from forwarding an incor-
rect value of their choice to the other parties. To handle this, a clever solution is
given in [DN07], which consists of using multiple relays in such a way that, intu-
itively, there is always at least one honest relay who is guaranteed to reconstruct
the right secret. However, special care is needed to really reduce communication
to linear.

To do this reconstruction efficiently—while also guaranteeing successful
reconstruction—the trick is to batch a collection of t + 1 values to be
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reconstructed �s0�t, . . . , �st�t, define the polynomial f(Z) =
∑t

�=0 s� ·Z�, compute
(locally) �f(j)�t for j ∈ [n], and reconstruct each f(j) towards each party Pj ,
who then relays this reconstructed value to the other parties. The main obser-
vation is that the parties can again apply error correction to (f(1), . . . , f(n)) in
order to recover the polynomial f(Z) =

∑t
�=0 s� ·Z�, from which they can recover

the secrets s0, s1, . . . , st. Notice that communication is still quadratic in n, but
crucially, t + 1 values have been reconstructed. Hence, if t + 1 = Θ(n) (e.g. if
n = 3t + 1), then this is O(n2/(t + 1)) = O(n) communication per secret, as
desired. One can interpret (f(1), . . . , f(n)) as “Shamir sharings”, except that we
are not interested in the zero point f(0), but rather in the polynomial f(Z) itself.

A First Ω(n2|C|) Protocol for Honest Majority. With the ideas for
G.O.D. with t < n/3 in the preprocessing model, we are ready to tackle the
t < n/2 case. We begin by presenting a construction that achieves quadratic
communication, and then discuss how we improve this initial protocol to achieve
linear communication complexity. First, we follow a similar template as the pro-
tocol above: the parties start with Shamir sharings �·�t of each input, proceed
in a gate-by-gate manner, handling addition gates locally and multiplication
gates using triples (�a�t, �b�t, �ab�t), and finally reconstruct the output. Recall
that, with this paradigm, a major bottleneck is the reconstruction of a secret-
shared value �s�t, which in the t < n/3 setting is done while exploiting the
error-correcting properties of Shamir secret-sharing. Unfortunately, for t < n/2,
degree-t Shamir sharings do not satisfy error correction, and instead they only
satisfy error detection, which ensures that either the correct secret is recon-
structed by the receiver, or possibly no secret is reconstructed at all. At this
point, one can obtain a protocol with abort, but it is not clear how to leverage
this for G.O.D., besides making use of dispute control techniques to identify
disputes and re-run some computation, which we want to avoid in order to only
use O(depth(C)) rounds.

Our first observation towards solving this issue is that, even though in the
honest majority setting it is not possible to perform error correction, there is
a related notion that provides a similar functionality, and this is robust secret-
sharing. In a robust secret-sharing scheme there is a share algorithm that enables
the distribution of a secret into multiple shares, and there is a rec(onstruction)
algorithm that, on input n shares among which t of them are potentially mali-
ciously modified, outputs the correct underlying secret, with overwhelming prob-
ability. There are multiple robust secret-sharing constructions in the literature
(cf. [BPRW16,FY19]). Normally, these schemes operate by letting each party
obtain Shamir shares of the secret s, together with some authentication tags
that enable each share owner to prove to the intended receiver that the share
they send is correct. To check correctness of the received shares and tags, each
party also receives some keys. Let us abstract this notion and denote by 〈x〉
when a value x is robustly secret-shared. It is common that these constructions
satisfy some notion of linearity, meaning that the parties can locally compute
〈x + y〉 from 〈x〉 and 〈y〉. We will make use of this in what follows.
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We can use 〈·〉 as a building block instead of plain Shamir �·�t in the template
above to obtain an honest majority G.O.D. protocol, where the preprocessing
produces correlations of the form (〈a〉, 〈b〉, 〈ab〉). In its basic form, reconstruction
would be done by letting the parties use the rec procedure towards every other
party, which enables each party to successfully reconstruct each value needed for
handling multiplication gates.5 However, this basic protocol is insufficient for our
goals here, simply due to the reason that the resulting communication complexity
is Ω(n2|C|). This stems from the fact that, whenever a shared value must be
learned by all parties (which again, happens for every single multiplication gate),
each single party must send their share and tags to each other single party.

Reducing to O(n|C|) for t < n/2. Our core contribution consists of improv-
ing the approach from above, that achieves G.O.D. in the preprocessing model
using quadratic communication via robust secret-sharing, to linear communica-
tion. Ω(n2) communication stems from the need of reconstructing a robustly-
shared value towards all parties. Recall that a similar issue was faced when we
sketched the protocol for t < n/3, and in page 53 we discussed a solution to this
problem originating in the ideas from [DN07]. Hence, our first approach is to
try and adapt this idea from the secret-sharing scheme used there, namely plain
Shamir secret-sharing �·�, to the robust scheme 〈·〉 used here. Such adaptation
would look like this: to reconstruct t+1 robustly-shared values 〈s0〉, . . . , 〈st〉, (1)
the parties define the polynomial f(Z) =

∑t
�=0 s� · Z�, (2) they compute 〈f(j)〉

for j ∈ [n] (which can be done using the homomorphic properties of 〈·〉), (3)
they reconstruct each f(j) towards each party Pj , who successfully reconstructs
this f(j) using the robustness properties of 〈·〉. At this point, Pj is supposed to
send f(j) to the other parties, who then recover f(Z) from these received values.
However, here we face a fundamental issue: while this works in the t < n/3
case due to error correction, in our t < n/2 case the polynomial f(Z) cannot
necessarily be recovered from the values (f(1), . . . , f(n))! This is precisely why
robust secret-sharing was introduced: in order to guarantee reconstruction.

Our idea is to ensure that the parties are able to get not only “Shamir shares
of f(X)”, as above, but actual “robust shares of f(X)”. In a bit more detail,
our approach is to ensure the parties can obtain authentication information on
the “Shamir shares” (f(1), . . . , f(n)), which guarantees that each receiver can
successfully filter out incorrect f(i)’s, and hence reconstruct the polynomial f(Z),
and with it the secrets s0, . . . , st. An important problem here, however, is that
we would need to devise a way to enable each Pj to obtain tags on f(j), one for
each receiver Pk. We now discuss at an intuitive level how this is addressed in
our work.

Providing Pj with Authentication Information. Recall that Pj holds f(j),
which is a “Shamir share” of the polynomial f(Z), and Pj sends f(j) to every
other recipient Pk. We are missing a method by which Pk can check the correct-
ness of this f(j). To this end, imagine that (f(1), . . . , f(n)) were robust sharings

5 We note that this is the approach taken in, for example, Bedoza [BDOZ11], which
is set in the dishonest majority setting t < n.
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of f(Z), that is, in addition to the share f(j), each party Pj also holds a set of
authentication tags (τ1j , . . . , τnj) on f(j). To reconstruct, Pj provides Pk with
f(j) and τkj , and Pk uses τk to verify the correctness of f(j). Now, in our set-
ting f(j) is not a “sharing” per se, as it is not the result of a dealer distributing
robust shares, or linear combinations of these. Instead, Pj obtained f(j) via a
robust reconstruction of 〈f(j)〉.

Our idea is to enhance the robust secret-sharing scheme to allow for “nested”
reconstruction: we let the parties also hold shares of (〈τ1j〉, . . . , 〈τnj〉), which can
be reconstructed towards Pj so that this party can obtain the tags (τ1j , . . . , τnj)
on f(j), and hence prove correctness of f(j) to each other party Pk. The problem
with this approach is that communication grows to n3, given that each party
must reconstruct n values towards each other party.

To alleviate this issue, consider a larger number of shares to be reconstructed,
say n groups of t+1 sharings each (hence, there are O(n2) total shared values). If
we first apply the idea above to each of the n groups, we obtain a communication
of n4, or n4/n2 = n2 per reconstruction. However, here we make the crucial
observation that, among these n4 messages, the amount related to transmitting
shares not related to authentication is n3. Indeed, if authentication was not an
issue, for each group, each Pj would receive one share from each other party Pi,
and each Pj would send one share to each Pk, leading to n2 elements, which
is n3 when the number of groups is factored in. As a result, the n4 overhead
is only coming from the transmission of authentication-related information. In
the notation of the sketch above, this is originating from the reconstruction of
the authentication tags (〈τ1j〉, . . . , 〈τnj〉) towards Pj (one for each group), whose
sole purpose is to enable Pj to prove the correctness of f(j) towards Pk.

To achieve linear communication complexity, we note that all authentication
information can be compressed across the n groups using random linear combi-
nations, or in other words, the parties can distribute the authentication data of
the n groups at the same cost of one single group. This results in n3 communi-
cation in total for the n2 reconstructions, or n3/n2 = n per reconstruction, as
desired. One must be careful when developing this idea in detail. First, a corrupt
party can easily overcome a check that uses random linear combinations if he/she
knows the random coefficients before adding the errors. To address this, in con-
trast to vanilla robust secret-sharing where each party can send their Shamir
share at the same time as the authentication information, we require each party
to “commit” to their errors by first sending their Shamir shares before sampling
the random coefficients, and only then they distribute the associated authentica-
tion data. However, this new approach introduces another complication, which
is that the random linear combination used to convince each Pj of the recon-
struction of f(j) cannot be the same as the one Pj will use to convince each Pk

of the correctness of f(j). To this end, after Pj has sent f(j) to each Pk, new
random coefficients are sampled, and the parties robustly reconstruct towards
Pj the necessary authentication data (using these coefficients) to convince Pk of
the correctness of f(j).
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This high level idea is materialized in detail in Sect. 3, where we show how
to efficiently and robustly reconstruct secret-shared values. The robust secret-
sharing scheme we use is introduced in Sect. 2.

1.4 Notation

We let F be a finite field with |F| > poly(n) · 2κ, where κ is the statistical
security parameter. We use [k] to denote the set {1, . . . , k}. F≤d[X] denotes the
vector space of polynomials over F of degree at most d, on the variable X. For
security definitions in MPC we refer the reader to standard references such as
[CDN15].

2 Robust Secret-Sharing

The main tool we make use of in our work is that of robust secret-sharing, which
enables the properties of error correction, a secret to be distributed into multiple
shares. Concretely, we introduce the following construction.

Definition 1. We define the sharing 〈x〉 for a secret x ∈ F to consist of

– a random sharing polynomial F0(X) ∈ F≤t[X] subject F0(0) = x,

– random randomizer polynomials F1(X), . . . , Ft(X) ∈ F≤t[X]

– random key polynomials A0(Y), . . . , At(Y) ∈ F≤t[Y], and

– the checking polynomial C(X, Y) ∈ F≤t,≤t[X, Y] given by

C(X, Y) = F0(X) · A0(Y) + F1(X) · A1(Y) + · · · + Ft(X) · At(Y) . (1)

Every party Pi is given F0(i), F1(i), . . . , Ft(i) and A0(i), A1(i), . . . , At(i) as well
as the (coefficients of the) polynomial C(X, i).

With the definition above, we note that the v iew of party Pi is given by

viewi(〈x〉) =
(
A0(i), A1(i), . . . , At(i), F0(i), F1(i), . . . , Ft(i), C(X, i)

)
;

similarly, viewA(〈x〉) denotes the joint view of a set A of parties. For multiple
secrets, their sharings are defined as above, but with the same key polynomials
A0(Y), . . . , At(Y) yet random and independent sharing and randomizer polynomi-
als. In other words, the key polynomials A0(Y), . . . , At(Y) are sampled uniformly
at random once and for all, and the sharing and randomizer polynomials are
sampled freshly for each x uniformly at random subject to the given constraint,
i.e., F0(0) = x.

To have simpler notation and more concise expressions, we introduce
the polynomial vectors F (X) =

(
F0(X), . . . , Ft(X)

) ∈ F≤t[X]t+1 and A(X) =(
A0(Y), . . . , At(Y)

) ∈ F≤t[Y]t+1, which allows us to re-write (1) very compactly
as

C(X, Y) = F (X) · A(Y) . (2)
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A sharing 〈x〉 is then a random triple
(
A(Y),F (X), C(X, Y)

)
subject to F0(0) = x

and (2), and the view of Pi (and similar for a set of parties) becomes viewi(〈x〉) =(
A(i),F (i), C(X, i)

)
.

It follows immediately from (2) and the fact that A(Y) is reused for different
sharings, that linear functions can be computed on shared values by obvious local
computations. We will use the notation 〈x + y〉 ← 〈x〉 + 〈y〉 for local additions,
and similarly for more general affine combinations.

Lemma 1 below ensures that a sharing 〈x〉 of a secret x leaks no information
on x to any t parties, except with negligible probability.

Lemma 1. For any set A of t (or fewer) parties, and for a random key polyno-
mial vector A(Y), the following holds except with probability 1/|F| over the choice
of A(Y): The distribution of viewA(〈x〉) conditioned on A(Y) does not depend on
the value of x.

Proof. Without loss of generality, we may assume A = {P1, . . . , Pt}. We consider
an arbitrary but fixed choice of A(Y), and we show the claimed independence to
hold unless the (t × t)-matrix with entries Ai(j) for i, j ∈ [t] is singular, which
happens with probability 1/|F| for a random A(Y).

Let K0(X) ∈ F≤t[X] be the (unique) polynomial with K0(0) = 1 yet K0(1) =
· · · = K0(t) = 0. Also, let K1(X), . . . , Kt(X) be such that also here K�(1) = · · · =
K�(t) = 0 for � ∈ [t], but now K1(0) · A1(j) + · · · + Kt(0) · At(j) = −A0(j) for
j ∈ [t]. This exists due to the assumption on A(Y). The above conditions ensure
that K1(X)·A1(j)+· · ·+Kt(X)·At(j) = −K0(X)·A0(j) , and thus K(X)·A(j) = 0,
for j ∈ [t]. Then, for any δ ∈ F, the pair consisting of F ′(X) := F (X) + δ · K(X)
and C ′(X, Y) := F ′(X) · A(Y), together with A(Y), forms a sharing 〈x′〉 for the
secret x′ = x + δ, for which the parties P1, . . . , Pt have the same view; namely
F ′(i) := F (i) and C ′(X, i) =

(
F (X)+δ·K(X)

)·A(i) = F (X)·A(i) = C(X, i) for all
i ∈ [t]. Furthermore, the above mapping from

(
F (X), C(X, Y)

)
to

(
F ′(X), C ′(X, Y)

)

is bijective, which proves the claim of the statement. �

Recall that Pi’s share vector si = F (i) satisfies si · A(j) = C(i, j), and so
any incorrect share vector s′

i �= si satisfies s′
i · A(j) = C(i, j) if and only if

(si − s′
i) · A(j) = 0 , which happens with probability 1/|F| only when A(j) is

random. Thus, Lemma 2 below implies that the set A of corrupt parties will find
an incorrect share vector that will be accepted by honest Pj with probability
1/|F| only, even if they get to see the entire sharing polynomial vector F (X).
Hence, any honest Pj can filter out all incorrect share vectors s′

i �= si, allowing
him to reconstruct the polynomial vector F (X), and thus F (0) and the actual
secret x = F0(0).

Lemma 2. For any set A of t (or fewer) parties, for any j �∈ A, and for any
x ∈ F, the key vector A(j) is uniformly random and independent of the pair(
viewA(〈x〉),F (X)

)
.

Proof. Again, we may assume A = {P1, . . . , Pt}. Let K(Y) ∈ F≤t[Y] be such that
K(1) = · · · = K(t) = 0 and K(j) = 1. Then, for any vector δ ∈ F

t+1 the triple
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consisting of A′(Y) = A(Y) + K(Y) · δ, F (X) and C ′(X, Y) = F (X) · A′(Y) forms
a sharing 〈x〉 of x for which the parties P1, . . . , Pt have the same view, but now
with Pj having key vector A′(j) = A(j) + δ. Furthermore, the above mapping
from

(
A(Y),F (X), C(X, Y)

)
to

(
A′(Y),F (X), C ′(X, Y)

)
is bijective, which proves

the claim of the statement. �

From the above, we see that a secret-shared value 〈x〉 can be reconstructed
towards a given receiver Pj , in such a way that Pj is guaranteed to obtain the
correct secret. More precisely, each party Pi sends their share vector si = F (i) to
the receiver Pj , who checks that si ·A(j) = C(i, j) for every i ∈ [n]. There are at
least t+1 honest shares si that will pass the check, and due to Lemma 2 above,
any incorrect share will fail the check with overwhelming probability. Hence, Pj

will have sufficient correct shares to reconstruct the right secret: from the ≥ t+1
shares si = (F0(i), . . . , Ft(i)) that pass the check, Pj uses the corresponding
F0(i)’s to reconstruct the secret x = F0(0). We call this procedure πQuadRec(〈x〉).

3 Efficient Reconstruction

It is possible to securely evaluate any arithmetic circuit over F with using our
robust secret-sharing solution and multiplication triples (〈a〉, 〈b〉, 〈ab〉) from the
preprocessing model: to add two robustly shared values the parties use the lin-
earity properties of 〈·〉, and to multiply they make use of the multiplication
triples by first opening d ← 〈x〉 − 〈a〉 and e ← 〈y〉 − 〈b〉, and then computing
locally 〈xy〉 ← e〈a〉 + d〈b〉 + 〈ab〉 + de. Reconstruction is guaranteed to result in
the correct d and e, which ensures correctness, which is also the same property
that guarantees the final output can be reconstructed correctly.

Since our goal is to achieve linear communication, we must design a way of
reconstructing a series of shared values robustly and with linear communication
per secret, which is precisely what we discuss in this section. Jumping ahead,
our protocol will reconstruct n2 secrets with O(n3) communication per secret,
which means O(n) per secret amortized. In the MPC protocol sketched above6

each multiplication gate requires two reconstructions, and all reconstructions
corresponding to multiplication gates in a single layer can be batched together.
This means we need n2/2 = O(n2) multiplication gates per layer (in average) to
get the linear communication benefits from our reconstruction procedure, which
is where the circuit width requirements of our results come from.

3.1 Towards Efficient Reconstruction

The naive approach of reconstructing a shared value by every party sending
their share to every other party has quadratic complexity even when ignoring
additional information, like tags etc., that are needed to filter out incorrect
shares. In other words, just communicating the actual Shamir shares produces
6 Even though this approach is quite standard in the literature, we provide a formal

description and a security proof in the full version.
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a too large overhead. For passive security, one can reconstruct a Shamir-shared
value by sending the shares to a single party, who reconstructs and acts as a
relay by sending the result to the other parties. In the actively secure setting,
the work of [DN07] introduces a technique to achieve linear communication when
reconstructing a batch of Shamir-shared values, essentially by using a different
honest party to reconstruct each different value. However, for guaranteed output
delivery this trick requires error correction, which is possible when t < n/3, but
does not work in the t < n/2 regime, where only error detection is possible.

Here, we show how to reconcile the trick from [DN07] with the sharing 〈x〉
introduced above so that the (amortized) communication of the actual Shamir
shares si = F0(i) becomes linear. However, the resulting reconstruction approach
will still involve quadratic communication, but crucially, the super-linear over-
head will be “only” due to the tags, i.e., the remaining coordinates of F (i). We
address this in Sect. 3.2, where we show how this quadratic communication can
be taken care of. This is done, in essence, by batching together sufficiently many
openings and using a single set of tags to verify a random linear combination.

Consider t+1 sharings 〈x(0)〉, . . . , 〈x(t)〉 that need to be reconstructed. They
are given by t+1 triples

(
A(Y),F (�)(X), C(�)(X, Y)

)
with the same A(Y) and with

C(�)(X, Y) = F (�)(X) · A(Y). Inspired by the basic idea from [DN07], we consider
F (X, Z) =

∑t
�=0 Z

� · F (�)(X) and C(X, Y, Z) =
∑t

�=0 Z
� · C(�)(X, Y) which satisfy

C(X, Y, Z) = F (X, Z) · A(Y). The reconstruction then proceeds as follows:

1. Each Pi sends F (i, j) =
∑

� j�F (�)(i) to Pj .
2. Each Pj checks that C(i, j, j) = F (i, j) ·A(j) for i ∈ [n], and Pj reconstructs

F (0, j) from the values that pass the check.
3. Each Pj sends to each Pk the vector F (0, j).
4. Each Pk checks that C(0, k, j) = F (0, j) · A(k) for each j ∈ [n], and then

Pk reconstructs F (0, Z) from the values F (0, j) that pass the check. From
F (0, Z) one can then read out F (0)(0), . . . ,F (t)(0) and thus x(0), . . . , x(t).

The key idea in our protocol above is the following. When Pj receives the vec-
tors F (1, j), . . . ,F (n, j) in step 1, Pj can filter out incorrect shares and hence
reconstruct F (0, j), so in particular Pj obtains the “secret” F0(0, j), which is
relayed to each other party Pk. However, the main observation is that Pj also
obtained as a “byproduct” the other points (F1(0, j), . . . , Ft(0, j)), and it turns
out these can be used for Pj to convince each receiver Pk of the correctness
of F0(0, j). In a bit more detail, we make the crucial observation that F (X, j)
are the share vectors corresponding to the sharing

(
A(Y),F (X, j), C(X, Y, j)

)
. So,

from the discussion before Lemma 2, an honest Pj will indeed be able to recover
F (0, j). Similarly the F (0, j)’s sent to Pk in step 3. are the share vectors corre-
sponding to the sharing

(
A(Y),F (0, Z), C(0, Y, Z)

)
, allowing each Pk to recover

F (0, Z).

3.2 Batched Verification

Unfortunately, the above reconstruction still has quadratic amortized complex-
ity. This originates in the fact that, in the first (and third) step, each party sends



On Fully-Secure Honest Majority MPC Without n2 Round Overhead 61

a length-(t + 1) vector to each other party. However, the crucial observation is
that if we do not count the information that is “only” sent for checking purposes,
e.g., if in step 1. we only count the first coordinate F0(i, j) of F (i, j), then we
actually have linear amortized complexity.

Due to this observation, we can get the aspired amortized linear complexity
by doing the verification in batches, that is, compressing the checking informa-
tion of a number of reconstructions without increasing the associated commu-
nication costs. Concretely, we consider the reconstruction of n groups of t + 1
secrets each: 〈x(m,0)〉, . . . , 〈x(m,t)〉 for m ∈ {0, . . . , n − 1}. Intuitively, our pro-
tocol with linear communication complexity is obtained by running, for each
m ∈ {0, . . . , n − 1}, the solution from the previous section, but ignoring the
checking information. That is, step 1. from the previous section is modified by
letting each Pi compute F (m)(i, Z) =

∑t
�=0 Z

�F (m,�)(i), but Pi only sends the
first coordinate F

(m)
0 (i, j) to Pj . For each other coordinate h ∈ [t], Pi sends a

compressed version Fh(i, j) =
∑n−1

m=0 ξmF
(m)
h (i, j), where ξ ∈ F is a fresh uni-

formly random value known by all parties.7This can still be used by Pj to filter
out incorrect shares and hence reconstruct F

(m)
0 (0, j) for m ∈ {0, . . . , n − 1}.

Then, Pj relays these values to each other party Pk.
The challenge now is that, to interpolate F

(m)
0 (0, Z) and hence learn the recon-

structed secrets, Pk requires certain checking information to verify the validity
of the values F

(m)
0 (0, j) sent by Pj . In step 3. from Sect. 3.1, such information

corresponds to (F (m)
1 (0, j), . . . , F (m)

t (0, j)), but Pj does not have the means to
send this to Pk as Pj only received (F1(0, j), . . . , Ft(0, j)), which is a compressed
version of these values (and moreover, even if Pj had this data, sending it to
each Pk would be too costly). The solution once again is to apply compression.
A first thought would be to let Pj send (F1(0, j), . . . , Ft(0, j)) to Pk, who can use
these values to check the correctness of F

(0)
0 (0, j), . . . , F (n−1)

0 (0, j) by verifying
the correctness F0(0, j) =

∑n−1
m=0 ξmF

(m)
0 (0, j) instead. However, this does not

work since Pj already knows ξ before sending each F
(m)
0 , so Pj can correct any

error present in these terms.
The solution here is to sample a new fresh random challenge ω, after Pj

has “committed” to the values F
(m)
0 by sending them to each Pk, and use the

compressed check as above but with this new term for the linear combination.
The problem now is that, for h ∈ [t], Pj holds Fh(0, j) =

∑n−1
m=0 ξmF

(m)
h (0, j),

but not the necessary F ′
h(0, j) =

∑n−1
m=0 ωmF

(m)
h (0, j) to convince each receiver

Pk. To address this we simply let the parties run the “checking part” of the
first part of the protocol above but using the challenge ω instead of ξ. More
precisely, each Pi sends F ′

h(i, j) =
∑n−1

m=0 ωmF
(m)
h (0, j) to Pj , who uses this

values to interpolate F ′
h(0, j), which Pj sends to Pk. The details of this protocol

are provided below.

7 This is done by reconstructing, using the procedure πQuadRec from Sect. 3.1, a pre-
shared random 〈ξ〉 provided by the preprocessing functionality.
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πLinRec: Reconstruction with linear communication

Input: (t + 1) · n secrets (〈x(m,�)〉), for � ∈ {0, . . . , t} and m ∈
{0, . . . , n − 1}, each given by polynomials (A(Y),F (m,�)(X), C(m,�)(X, Y)).
Output: Each party Pk learns all (x(m,�))m,�.
Preprocessing: A functionality FPrep that distributes sharings 〈r〉,
where r ∈ F is uniformly random and unknown to the adversary.

For each j ∈ [n], each Pk obtains {F
(m)
0 (0, j)}n−1

m=0:

1. For m ∈ {0, . . . , n − 1}, each Pi computes F (m)(i, Z) =
∑t

�=0 Z
�F (m,�)(i), and Pi sends F

(m)
0 (i, j) to each Pj .

2. The parties call FPrep to obtain 〈ξ〉, where ξ ∈ F is uniformly random
and unknown to any party, and the parties execute the procedure
πQuadRec(〈ξ〉), so that all parties learn ξ.

3. For � ∈ {0, . . . , t} and h ∈ [t], each Pi computes Fh(i, Z) =
∑n−1

m=0 ξmF
(m)
h (i, Z), and sends to each Pj the vector

(F1(i, j), . . . , Ft(i, j)).
4. Each Pj computes, for i ∈ [n], F0(i, j) =

∑n−1
m=0 ξmF

(m)
0 (i, j), and

upon receiving (F1(i, j), . . . , Ft(i, j)) from Pi, Pj checks that

F (i, j) · A(j) =
n−1∑

m=0

t∑

�=0

ξmj� · C(m,�)(i, j).

5. Let I ⊆ [n] be the set of indexes i’s for which the check above did not
fail. Pj interpolates F (X, j) from (F (i, j))i∈I .

6. Each Pj sends {F
(m)
0 (0, j)}n−1

m=0 to each Pk

Each Pj receives checking information:

7. The parties call FPrep to obtain 〈ω〉, where ω ∈ F is uniformly random
and unknown to any party, and the parties execute the procedure
πQuadRec(〈ω〉), so that all parties learn ω.

8. Each Pi computes F ′
h(i, Z) =

∑n−1
m=0 ωmF

(m)
h (i, Z) for h ∈ [t]. Then Pi

sends (F ′
1(i, j), . . . , F

′
t (i, j)) to each Pj .

9. Each Pj computes, for i ∈ [n], F ′
0(i, j) =

∑n−1
m=0 ωmF

(m)
0 (i, j), and

upon receiving (F ′
1(i, j), . . . , F

′
t (i, j)) from Pi, Pj checks that

F ′(i, j) · A(j) =
n−1∑

m=0

t∑

�=0

ωmj� · C(m,�)(i, j).

10. Let I ⊆ [n] be the set of indexes i’s for which the check above did not
fail. Pj interpolates F ′(X, j) from (F ′(i, j))i∈I .
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Each Pj sends checking information to each Pk, who then reconstruct:

11. Each Pj sends (F ′
1(0, j), . . . , F ′

t (0, j)) to each Pk.
12. Upon receiving these values, each Pk computes F ′

0(0, j) =
∑n−1

m=0 ωm ·
F (m)(0, j) and checks that

F ′(0, j) · A(j) =
n−1∑

m=0

t∑

�=0

ωmj� · C(m,�)(0, j),

for each j ∈ [n]
13. Let J ⊆ [n] be the set of indexes j’s for which the check above did

not fail. For each m ∈ {0, . . . , n − 1}, Pk interpolates F
(m)
0 (0, Z) =

∑t
�=0 x(m,�)Z� from (F (m)

0 (0, j))j∈J , and outputs (x(m,�))m,�.

Theorem 1. After executing procedure πLinRec on input
(〈x(m,�)〉)�∈{0,...,t},m∈{0,...,n−1}, each party Pk outputs the correct secrets x(m,�),
except with probability 3t(n + 1)/|F|. Moreover, the protocol requires linear com-
munication complexity and makes use of a constant number of rounds.

Proof. The claim on the number of rounds is verified by inspection. It is also
easy to check that the total communication is Θ(n3), and when we divide by
the (t + 1)n = Θ(n2) elements being reconstructed, we obtain an amortized
communication of Θ(n) per secret, as required.

Now, we prove the correctness and security of the protocol. To this end, we
begin with the following claim.

Claim. In step 5, each Pj interpolates the correct F (X, j), except with probability
t(n + 1)/|F|.
Proof (of claim). Let us consider a malicious party Pi who sends incorrect
{F

(m)
0 (i, j) + ε

(m)
0 }n−1

m=0, and (F1(i, j) + ε1, . . . , Ft(i, j) + εt), to Pj . Assume that
at least one ε

(m)
0 is not zero. The check that Pj performs is

t∑

h=0

(Fh(i, j) + εh) · Ah(j) =
n−1∑

m=0

t∑

�=0

ξmj� · C(m,�)(i, j),

where ε0 =
∑n−1

m=0 ξmε
(m)
0 . Notice that the distribution of {ε

(m)
0 }n−1

m=0 is inde-
pendent of ξ since Pi sent {F

(m)
0 (i, j) + ε

(m)
0 }n−1

m=0 to Pj before the value ξ was
opened. Hence, since at least one ε

(m)
0 is not zero, Schwartz-Zippel lemma implies

that ε0 is also not zero except with probability at most (n − 1)/|F|.
It can be checked that the right hand side is equal to

∑t
h=0 Fh(i, j) ·Ah(j), so

in particular the check passes if and only if
∑t

h=0 εh ·Ah(j) = 0. From the above,
except with probability at most |F|−1, the vector ε is not zero. Furthermore, from



64 D. Escudero and S. Fehr

Lemma 2 we have that, except with probability |F|−1, the vector A(j) looks
uniformly random to the adversary. Hence, we see that except with probability
(n − 1)/|F| + 1/|F| = n/|F|, the adversary passes the check if and only if a dot
product between a random vector and a non-zero vector results in zero. This can
happen only with probability 1/|F|. Hence, except with probability 1−(n+1)/|F|,
the shares received by Pi are rejected.

From the above we see that the probability that Pj accepts an incorrect share
is at most (n + 1)/|F|. Since there are at most t malicious parties, we have that
the probability that there is at least one incorrect share accepted by Pj is at
most t(n+1)/|F|. Since the check for every honest party passes, and there are at
least t+1 honest parties, Pj successfully reconstructs the correct F (X, j), except
with the probability above. This completes the proof of the claim.

With the claim at hand, we see that with overwhelming probability, every
honest party Pj sends the correct F

(m)
0 (0, j) to each Pk in step 6. In a completely

similar way as the proof of the claim above, we can prove the following:

Claim. In step 10, each Pj interpolates the correct F ′(X, j), except with proba-
bility t(n + 1)/|F|.
Proof (of claim). We proceed in the same way as in the claim above, but replac-
ing ξ by ω, and (F1(i, j)+ ε1, . . . , Ft(i, j)+ εt) by (F ′

1(i, j)+ δ1, . . . , F
′
t (i, j)+ δt),

where δh are the possible errors introduced by Pi in step 8. The same proof
works given that, as before, the error ε

(m)
0 on F

(m)
0 is chosen by the adversary

before sampling ω. We do not write down the rest of the details.

This claim shows then that, with overwhelming probability, each honest Pj will
send to each Pk the correct (F ′

1(0, j), . . . , F ′
t (0, j)) in Step 11, so in particular Pk

receives at least t + 1 correct shares. This turns out to be enough for an honest
Pk to interpolate F

(m)
0 (0, Z) correctly since, as the following claim illustrates, Pk

can filter out incorrect shares with overwhelming probability.

Claim. In step 13, Pk interpolates the correct F
(m)
0 (0, Z), except with probability

at most t(n + 1)/|F|.
Proof (of claim). The proof is similar to that of the previous two Lemmas 1
and 2. Consider a malicious Pj who sends {F

(m)
0 (0, j) + δ

(m)
0 }n−1

m=0 to Pk in
step 6, and also (F ′

1(0, j) + δ1, . . . , F
′
t (0, j) + δt) in step 11. The check that Pk

carries out is then

t∑

h=0

(F ′
h(0, j) + δh) · Ah(j) =

n−1∑

m=0

t∑

�=0

ωmj� · C(m,�)(0, j),

where δ0 =
∑n−1

m=0 ωmδ
(m)
0 . The right-hand side equals

∑t
h=0 F ′

h(0, j) · Ah(j),
so the check passes if and only if

∑t
h=0 δh · Ah(j) = 0. Here, we proceed as

with the proofs of the previous claims, noticing that {δ
(m)
0 }n−1

m=0 is chosen by
the adversary before seeing the challenge ω, so δ0 �= 0 with probability at least
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1 − (n − 1)/|F|. Following similar steps as the previous proofs, we obtain that
Pk accepts an incorrect share with probability at most (n + 1)/|F|. Hence, the
probability that Pk reconstructs an incorrect F

(m)
0 (0, Z) is at most t(n + 1)/|F|,

as stated in the claim.

Putting together what we have seen above, we obtain that, except with prob-
ability 3t(n+1)/|F|, each Pk reconstructs the correct secrets. Thus, the theorem
is proven. �
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Abstract. The edit distance is a metric widely used in genomics to mea-
sure the similarity of two DNA chains. Motivated by privacy concerns, we
propose a 2PC protocol to compute the edit distance while preserving the
privacy of the inputs. Since the edit distance algorithm can be expressed
as a mixed-circuit computation, our approach uses protocols based on
secret-sharing schemes like Tinier and SPDZ2k ; and also daBits to per-
form domain conversion and edaBits to perform arithmetic comparisons.
We modify the Wagner-Fischer edit distance algorithm, aiming at reduc-
ing the number of rounds of the protocol, and achieve a flexible protocol
with a trade-off between rounds and multiplications. We implement our
proposal in the MP-SPDZ framework, and our experiments show that it
reduces the execution time respectively by 81% and 54% for passive and
active security with respect to a baseline implementation in a LAN. The
experiments also show that our protocol reduces traffic by two orders of
magnitude compared to a BMR-MASCOT implementation.

Keywords: edit distance · secure MPC · secret-sharing schemes

1 Introduction

Given an alphabet of symbols Σ, the edit distance between two strings in Σ∗ is
the minimum cost of a sequence of editing operations (insertions, deletions, or
substitutions) to transform one string into the other [28]. Intuitively, the smaller
the edit distance between two strings, the more similar they are. Algorithms to
compute the edit distance have been studied for many years and the most popular
are based on dynamic programming, such as the Wagner-Fischer algorithm [29].
Such algorithms are useful in genomics, where the similarity between two gene
sequences is used in disease diagnosis and treatment [32]. On a typical scenario,
millions of reads from a subject’s DNA are compared to a reference for alignment,
with read lengths ranging from a few hundred to a few million bases [23].

Despite the benefits of computing similarities in genomic data, there are risks
that come from revealing such information. One of the main risks is called re-
identification, where a subject can be identified from its genomic data [21]. There

The author was partially supported by the CyTeD program grant 522RT0131.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Aly and M. Tibouchi (Eds.): LATINCRYPT 2023, LNCS 14168, pp. 67–86, 2023.
https://doi.org/10.1007/978-3-031-44469-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44469-2_4&domain=pdf
https://doi.org/10.1007/978-3-031-44469-2_4


68 H. Vanegas et al.

are other concerns like ancestry identification, where an individual can identify
their ancestors from genomic data; and the so-called attribute disclosure attacks
via DNA, where an attacker can detect a sensible attribute about someone from
their DNA sample and a database of attribute-related samples [13].

These concerns motivate the application of privacy-preserving computation
in the following scenario: Alice and Bob are connected via a secure communica-
tion channel and each has a DNA chain represented as a list of nucleotides. They
want to compute the edit distance of both chains, but without revealing their
chain to each other. We will accomplish this task by evaluating the Wagner-
Fischer (WF) algorithm without revealing the inputs. The WF algorithm is a
dynamic programming solution to find the edit distance d(A,B) between two
chains A = (a1, . . . , an) and B = (b1, . . . , bm). The core of the algorithm is to
compute a matrix D for which the recursion holds (for 1 ≤ i ≤ n and 1 ≤ j ≤ m):

D(i, j) = min

⎧
⎨

⎩

D(i − 1, j) + 1,
D(i, j − 1) + 1,
D(i − 1, j − 1) + t(i, j)

, with t(i, j) def=

{
1 if ai �= bj

0 otherwise
.

In this algorithm, two operations have high relevance for security: (i) the
computation of t requires a secure equality test between a pair of symbols in the
chains; (ii) the computation of the minimum requires secure comparison between
integers, which in turn needs the extraction of their most significant bit.

These challenges can be solved using various cryptographic techniques. Par-
ticularly, we will focus on secure multi-party computation (MPC). In an MPC
protocol, a set of parties, each one holding part of the input of a function, want
to compute such function while preserving the privacy of the inputs. To achieve
their goal, the parties exchange messages and perform local computations. In
the end, the parties may obtain the correct result, and the messages exchanged
between them are guaranteed not to reveal any information about their inputs.

Most previous works in secure computation of edit distance employ garbled
circuits as the MPC protocol because of their good performance in bit-wise
operations [12,18,31]. Another class of MPC protocol based on secret-sharing
schemes (SSS) is efficient for arithmetic operations [14], but it was rarely used
for this problem [26]. Since recent advances in protocols based on SSS allow
efficient transformation between an arithmetic and a binary domain [1,11,14,25],
and since the WF algorithm has significant mixed computation, designing an
efficient MPC solution based on secret-sharing should be possible.

Related Work. Most current and past research in secure computation of edit
distance are based on homomorphic encryption (HE) and garbled circuits (GC)
(see surveys at [12] and [22]). In the case of HE, Zheng et al. [32] propose an
architecture where the data owners outsource the computation of edit distance.
They ensure privacy by using a modified version of the Paillier cryptosystem [5],
but their protocol allows one of the parties to know the DNA chain of the other
party and compute the edit distance between blocks in the clear to improve
performance. For dynamic programming approaches, Rane and Sun [24] compute
the minimum between three elements using HE. Cheon et al. [7] take the idea
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further and compute the minimum of a list of numbers to reduce circuit depth.
However, they do not prove correctness and optimality of all their techniques, and
focus on same-length strings. We extend their strategy to solve both problems.

Another technique actively used to compute edit distance is GC, and proto-
cols derived from Yao’s GC are widely used to implement dynamic programming
approaches [12]. Jha et al. [18] is among the first works, and they use one cir-
cuit for each basic operation in the algorithm: increment, minimum, and equality
test. Further theoretical and practical work in [12,31] improves security, memory
usage, communication complexity, and specialized hardware to increase paral-
lelism. More recently, Zhu and Huang [33] use GC to compute the edit distance
in both active and passive threat models, and claim to outperform the best pre-
vious GC-based protocols. As in our work, they consider the secure computation
of the WF algorithm and exploit the structure of the minimization problem to
find better bounds to improve performance, but they do not report performance
measurements in the actively secure setting. Other works consider an approxi-
mation version of the edit distance problem to improve performance [3].

Compared to HE and GC, protocols based on secret-sharing techniques are
less common for edit distance. Rane and Sun [24] use additive secret-sharing
alongside HE, but they do not rely on secret-sharing to perform the operations.
EPISODE by Schneider et al. [26] is the closest to our techniques. They use
ideas from [2] to compute an approximation of the edit distance using the ABY
framework [11]. ABY allows designing protocols using mixed-circuit computation
against passive adversaries, so they can compute parts of their protocol in binary
or arithmetic domains, moving secrets from one domain to another. There are
significant differences between this and our work: (i) they only consider security
against passive adversaries, while we also explore active adversaries; (ii) they
improve performance by approximating the edit distance, while we focus on the
exact problem; (iii) they consider a different security setup, aligning multiple
sequences to a publicly known reference genome.

Contributions. We propose a 2PC protocol to compute the edit distance pri-
vately. More parties are possible, but the scenario naturally suggests two parties.
We apply recently developed MPC protocols based on secret-sharing schemes
such as SPDZ2k [9] and Tinier [15], and protocols such as daBits [25] and edaBits
[14]. To the best of our knowledge, we are the first to propose a solution to secure
edit distance using these techniques. We divide the WF algorithm into two parts:
the preamble in charge of computing the matrix t, and the arithmetic section to
compute the matrix D. We optimize each part separately.

For the computation of t, we encode the nucleotides using a binary represen-
tation, and we propose a protocol to compute the equality test between a pair
of nucleotides through bit-wise operations using Tinier. Once we compute t, we
obtain binary shares of each possible value of the function, and we use daBits to
transform such binary shares into arithmetic shares for the arithmetic section.

For the arithmetic part, we generalize the ideas presented by Cheon et al. [7]
in two directions. First, we expand the recursions from the WF algorithm to
compute D not as the minimum of three numbers, but of a longer list of num-
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bers. This allows us to divide D into sub-boxes, such that it takes fewer rounds
to compute them. However, this strategy also increases the number of multipli-
cations and comparisons in the protocol, raising a trade-off between execution
time and communication. This trade-off is studied both theoretically and empir-
ically. For comparison, Cheon et al. consider a sub-box that matches the size of
D and focus only on equal-length chains. We generalize their work for sub-boxes
of arbitrary size, which works for DNA chains with different lengths.

As part of this generalization, we propose an algorithm to automatically
generate the equations to compute each sub-box. This algorithm arises from
representing the recursions of the WF algorithm as a graph. Using this represen-
tation, we prove both the correctness and the optimality of the generation. We
must point out that Cheon et al. use a different graphical method to compute
their own equations, for which they do not prove correctness or optimality.

We perform experimental evaluations of our method using the MP-SPDZ
framework, and analyze the performance trade-off as the size of the sub-box
increases. We show that our algorithm has a significant reduction in the execu-
tion time in a LAN compared to a naive implementation of the WF algorithm.
Additionally, we find that our protocol is competitive with the techniques cur-
rently used to solve the edit distance problem, like Yao’s garbled circuits, and
outperforms techniques like HE and BMR [4]. Moreover, we empirically show
that protocols in Z2k are best-suited for our implementation and we give sup-
porting arguments. Our complete source code can be found in a GitHub reposi-
tory1.

Organization. Section 2 covers a formal definition of edit distance, the WF algo-
rithm, a background on MPC and other building blocks. In Sect. 3, we compute
edit distance using MPC protocols based on secret-sharing and perform com-
plexity analysis. In Sect. 4, we show an algorithm based on graph theory to
obtain the minimal number of terms as parameters of the minimum function
to compute edit distance correctly. Finally, in Sect. 5, we present a performance
evaluation of our solution and compare it with the current state-of-the-art.

2 Preliminaries

2.1 The Edit Distance Problem

The edit distance is the minimum-weight series of operations that transforms
one string into the other. Formally, let A

def= (a1, . . . , an) be a string over an
alphabet Σ. We define the possible editing operations on A:

1. delete the i-th position to obtain (a1, . . . , ai−1, ai+1, . . . , an).
2. insert b ∈ Σ at position (i + 1) to obtain (a1, . . . , ai, b, ai+1, . . . , an).
3. change position i to b ∈ Σ to obtain (a1, . . . , ai−1, b, ai+1, . . . , an).

1 https://github.com/hdvanegasm/sec-edit-distance.

https://github.com/hdvanegasm/sec-edit-distance
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Given A,B ∈ Σ∗, the edit distance problem consists in finding the sequence of
editing operations to transform A into B that minimizes the sum of the costs of
the operations. We assume that each editing operation costs 1, and we are only
interested in computing the minimum cost, and not in the operations.

To solve this problem, Wagner and Fischer propose a dynamic programming
algorithm [29]. Let A

def= (a1, . . . , an) and B
def= (b1, . . . , bm) be two strings in

Σ∗. For i ∈ [n] the set {1, 2, . . . , n}, denote the sub-string A(i) def= (a1, a2, . . . , ai)
and the edit distance between A(i) and B(j) by D(i, j)2. The goal is thus to find
D(n,m). Wagner and Fischer propose Algorithm 1 and prove its correctness.

Algorithm 1 Edit distance algorithm
Input: two chains A = (a1, · · · , an) and B = (b1, · · · , bm).
Output: an integer value with the edit distance between the chains A and B.

1: Let t be an n × m matrix with indexes starting from one.
2: for (i, j) ∈ [n] × [m] do
3: if ai �= bj then t(i, j) = 1
4: else t(i, j) = 0

5: Let D be an (n + 1) × (m + 1) zero-initialized matrix, indexes starting from zero.
6: for i = 0 to n do D(i, 0) = i

7: for j = 0 to m do D(0, j) = j

8: for i = 1 to n do
9: for j = 1 to m do

10:
D(i, j) = min

⎧
⎨

⎩

D(i − 1, j) + 1,
D(i, j − 1) + 1,
D(i − 1, j − 1) + t(i, j)

(1)

11: return D(n, m)

2.2 Multi-party Computation and Secret-Sharing Schemes

In a secure multi-party computation (MPC) protocol, parties P1, . . . , Pn jointly
compute the value of f(x1, . . . , xn), where f is a fixed publicly known function
and Pi holds the value xi. During the computation, parties exchange messages
and perform local computations such that there is no leakage of information
about the parties’ inputs, except for the function output.

The security of an MPC protocol can be stated and proven using techniques
like universal composability (UC) [6]. One assumes the existence of an adversary
that corrupts a subset of parties. An adversary can be passive or active. In the
former, it tries to learn information from the exchanged messages but it does not
deviate from the protocol specification. In the latter, the adversary can deviate
from the protocol to obtain information about the parties’ inputs or to prevent
the honest parties from learning the correct output of the function.
2 We will occasionally replace the parentheses with a subscript for the matrices D and

t. That is, D(i, j) will be written as Di,j and t(i, j) as ti,j .
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A particular type of MPC protocols are those based on SSS, where a secret
s is split into n parts, called shares, such that any subset of at most t shares
reveal no information about s, but s can be completely reconstructed from any
set of at least t+1 shares [8]. If s is secret-shared among the parties using shares
s(1), . . . , s(n), where Pi holds s(i), we denote this by �s�

def=
(
s(1), . . . , s(n)

)
.

Even though our edit distance solution can be instantiated in various ways3,
we concretely consider two particular SSS-based MPC protocols: SPDZ2k [9]
with algebraic domain Z2k , and Tinier [15] with algebraic domain Z2. To make
clear the domain of computation in which the shares live, we distinguish shares
of SPDZ2k from those of Tinier by respectively denoting them as �s�2k and �s�2.
Both secret-sharing schemes are linear, meaning that additions and multiplica-
tions by public constants can be done without communication. However, the
product of secret values is more involved, requiring communication among the
parties and calls to subprotocols (like Open to reveal values to other parties).
For security against active adversaries, both protocols use information-theoretic
MACs to authenticate secret-shared values.

To securely compute a function f using a protocol based on an SSS, the func-
tion is considered as an arithmetic circuit. Initially, the parties distribute shares
of their inputs. Then, using the protocols mentioned above, the parties evaluate
the circuit so that each party holds a secret-shared value of the intermediate
steps. At the end, the parties reconstruct the final result of the computation.

2.3 Domain Conversions and Comparisons

In our protocol for the edit distance, we need to compute two main operations
securely: domain conversion and integer comparisons. These two operations can
be done efficiently using daBits and edaBits. In the domain conversion, the goal
is to convert binary Tinier shares �x�2 into arithmetic SPDZ2k shares �x�2k ,
where x ∈ {0, 1}. For that case, we use a daBit, which is a tuple (�r�2, �r�2k),
where r ∈ Z2 is chosen at random. In [25], they propose a protocol to generate
daBits that is secure against malicious adversaries, which is improved later in [1].
We can perform a domain conversion using techniques presented in [10] which
can be adapted to the case where daBits are generated in a pre-processing phase.

To compute integer comparisons efficiently, we use edaBits. An edaBit is
a tuple of m binary secret-shared random bits (�rm−1�2, . . . , �r0�2) along with
shares �r�2k , such that r =

∑m−1
i=0 ri·2i. In [14], a protocol is proposed to generate

edaBits that is secure against active adversaries. Also, a protocol is presented
to compare integers using edaBits by expressing comparisons in terms of the
extraction of the most significant bit of their binary representation.

It is worth mentioning that although SPDZ2k and Tinier are different proto-
cols, they are compatible to compute domain conversions and comparisons using
daBits and edaBits. This is because the protocols used to generate such random
material model the MPC protocols as an arithmetic black box. Also, the proto-
cols to generate daBits and edaBits are independent of the methods used by the
MPC protocols based on secret-sharing schemes to authenticate shared values.
3 Any MPC protocol that implements an FedaBits functionality as described in [14].
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3 A Privacy-Preserving Solution Using Secret Sharing

In this section, we present an efficient strategy to compute the edit distance
using an SSS-based MPC protocol. Although the strategy works for any protocol
based on linear secret-sharing schemes, we will aim at schemes whose computa-
tion domain is Z2k . We build our protocol upon MPC schemes that implement
an FedaBits functionality, thus, its security follows from the security of the under-
lying scheme. We divide the task into two distinctive parts of the Algorithm 1,
the preamble (lines 1–4), and the arithmetic part (lines 5–10).

The preamble of Algorithm 1 computes matrix t by comparing every pair
of nucleotides. We propose to compare nucleotides in an efficient way using
a binary domain. We will encode the nucleotides of a DNA chain using two
elements of Z2 as A �→ 00, C �→ 01, G �→ 10, and T �→ 11. We denote the
sharing of the nucleotide N = 〈b0, b1〉 ∈ Z

2
2 as �N�2

def= 〈�b0�2, �b1�2〉. We extend

the XOR operations to nucleotides N = 〈b0, b1〉 and N ′ = 〈b′
0, b

′
1〉 by N ⊕ N ′ def=

〈b0⊕b′
0, b1⊕b′

1〉, and extend it to shares in a natural way. Notice that N = N ′ iff
N ⊕ N ′ = 0. To determine if a nucleotide is zero, we use the logical OR among
its components. Denoting by S(N) def= b0 ∨ b1 = (b0 + b1 + b0b1) mod 2, we have
that N = N ′ iff S(N ⊕N ′) = 0. Hence, denoting by N

?= N ′ a bit that indicates
whether N = N ′ or not, we can obtain a Boolean share of the assertion as

�
N

?= N ′
�

2
= 1 − [(�b0�2 + �b′

0�2) + (�b1�2 + �b′
1�2)

+ (�b0�2 + �b′
0�2) (�b1�2 + �b′

1�2)].

Using this approach, we can compute the matrix t using mn multiplications
in Z2. In total, we need to transmit 4nm bits through invocations of the Open
protocol. Since the computation of each entry of t is independent of all other
entries, we can compute them in parallel and the computation of the matrix only
costs one round. Once the matrix t is computed, each entry is a binary share, so
we will have to transform it to an arithmetic share for the next part.

3.1 Arithmetic Part

After computing the matrix t, we use daBits to transform its entries into arith-
metic shares. For the arithmetic part, we thus assume that the parties hold
shares �t(i, j)�2k for each index (i, j). Also, following Algorithm 1, D(i, 0) = i,
for all i ∈ [n], and D(0, j) = j, for all j ∈ [m]. Our goal is to compute shares of
the bottom-right corner of the matrix D, namely, �D(n,m)�2k .

It is possible to compute the entries of D using well-known protocols to
compute comparisons between two signed integers (c.f [10]). The problem of
this approach is the sequential dependency between the positions of the matrix.
This dependency prevents us from parallelizing the process, which increases the
number of rounds. To overcome this limitation we compute only some selected
entries of the matrix. Our approach builds upon the ideas in [7] to compute the
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edit distance using homomorphic encryption. We generalize their idea, fixing
some issues, and we apply it to secret-sharing based protocols.

Let A and B be two DNA chains with lengths n and m, respectively. The
matrix D will then have n + 1 rows and m + 1 columns. Applying Eq. (1) from
Algorithm 1 recursively for D(i − 1, j), D(i, j − 1), and D(i − 1, j − 1), and
removing identical formulas, we obtain that D(i, j) is equal to the minimum of

D(i − 2, j) + 2, D(i − 2, j − 1) + t(i − 1, j) + 1,
D(i − 2, j − 1) + 3, D(i − 1, j − 2) + 3,
D(i − 2, j − 2) + t(i − 1, j − 1) + 2, D(i, j − 2) + 2,
D(i − 1, j − 2) + t(i, j − 1) + 1, D(i − 2, j − 1) + t(i, j) + 1,
D(i − 1, j − 2) + t(i, j) + 1, D(i − 2, j − 2) + t(i, j) + t(i − 1, j − 1).

We can then remove some redundant formulas, which can be proven to be greater
or equal to some other formula in the set. After systematically removing all of
them, we obtain that D(i, j) is equal to the minimum of the following list:

D(i − 2, j) + 2, D(i − 2, j − 1) + t(i − 1, j) + 1,
D(i − 2, j − 1) + t(i, j) + 1, D(i − 2, j − 2) + t(i − 1, j − 1) + t(i, j),
D(i, j − 2) + 2, D(i − 1, j − 2) + t(i, j − 1) + 1,
D(i − 1, j − 2) + t(i, j) + 1.

We will explain this process further in Sect. 4. Notice that by systematically
substituting occurrences of D(i − 1, j − 1), we completely removed it from the
equation. We can repeat recursively to write D(i, j) in terms of formulas that
include the value of positions of the matrix that lie on the border of a rectangle
inside the matrix which bottom right corner is D(i, j). More specifically and
following the notation of [7, Section 4.3], define the (τ +1)-box for D(i, j) as the
set comprised of the union of the following sets, with τ a positive integer:

T def= {Di−τ,j−τ ,Di−τ,j−τ+1, . . . , Di−τ,j} , B def= {Di,j−τ ,Di,j−τ+1, . . . , Di,j} ,

L def= {Di−τ,j−τ ,Di−τ+1,j−τ , . . . , Di,j−τ} , R def= {Di−τ,j ,Di−τ+1,j , . . . , Di,j} .

With these definitions, not just D(i, j) but all the elements in B ∪ R can be
written as the minimum of formulas that depend on positions in T ∪L. Figure 1a
shows the positions in the (τ + 1)-box, with the sets T , R, B and L highlighted.

Continuing with the example for τ = 2 and using the new notation for the
borders of the box, we can compute positions D(i − 1, j) and D(i, j − 1) as for
D(i, j) using the following equations in terms of the positions in T ∪ L:

D(i − 1, j) = min

⎧
⎪⎪⎨

⎪⎪⎩

D(i − 2, j) + 1
D(i − 2, j − 1) + t(i − 1, j)
D(i − 2, j − 2) + t(i − 1, j − 1) + 1
D(i − 1, j − 2) + 2

, (2)

D(i, j − 1) = min

⎧
⎪⎪⎨

⎪⎪⎩

D(i, j − 2) + 1
D(i − 1, j − 2) + t(i, j − 1)
D(i − 2, j − 2) + t(i − 1, j − 1) + 1
D(i − 2, j − 1) + 2

. (3)
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Fig. 1. Positions in a (τ + 1)-box relative to D(i, j) and its use to divide the edit
distance matrix into boxes.

In [7], the authors use only one (τ + 1)-box, with τ = n, to compute the edit
distance of two chains of the same length. Going beyond the ideas in [7] we leave
τ as a hyperparameter that can be specified by the user allowing a trade-off
between the number of rounds and the data sent during the secure computa-
tion. Figure 1b shows an example of the complete matrix D divided into boxes.
The green position corresponds to D(0, 0) and the blue position corresponds to
D(n,m). The light red positions are the positions that are needed to compute
the position D(n,m), and the dark red positions are the most expensive position
to compute inside each (τ + 1)-box. Our approach also allow us to compute the
edit distance between two DNA chains that do not have the same length.

To compute each minimum, we use the protocol Minq proposed in [10,27]. It
computes the minimum of a list of q numbers in O(log2 q) ·(cr +2) rounds, where
cr is the number of rounds of a comparison. It requires q − 1 comparisons and
2q−2 multiplications. As an example, for τ = 2, we can compute securely a share
of the position D(i, j) by executing Min7 with the following list of arguments:

�D(i − 2, j)�2k + 2, �D(i − 2, j − 1)�2k + �t(i − 1, j)�2k + 1

�D(i − 2, j − 1)�2k + �t(i, j)�2k + 1, �D(i − 2, j − 2)�2k + �t(i − 1, j − 1)�2k + �t(i, j)�2k
�D(i, j − 2)�2k + 2, �D(i − 1, j − 2)�2k + �t(i, j − 1)�2k + 1

�D(i − 1, j − 2)� + �t(i, j)�2k + 1

The shares �D(i − 1, j)�2k and �D(i, j − 1)�2k can be written similarly fol-
lowing the Eqs. (2) and (3), and using the protocol Min4.

Our method traverses left-to-right and top-to-down the (τ + 1)-boxes, com-
puting, for each box, the positions in B ∪ R from the positions in T ∪ L. At the
end of the protocol, the parties will hold shares �D(n,m)�2k , which is the share
of the edit distance. They can then reveal it using the Open protocol.

We analyze the complexity of the arithmetic part of the protocol, assuming
the stated complexity of the Minq functionality [27, Section 13.1.1]. In Sect. 4, we
will present a method to calculate the formulas in each minimum computation
and we will prove that the number of formulas in the minimum computation
is bounded by O(τ · 23τ ). Assuming that τ divides both m and n, we need to
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compute nm/τ2 boxes. Given that we need to compute 2τ − 1 positions in each
(τ + 1)-box, we are required to compute nm

τ2 · (2τ − 1) positions from D in total.
Note that all the positions in B∪R within one box can be computed in parallel

since there is no dependency between them. This makes the term 2τ−1 disappear
from the round count. For two DNA chains of lengths n and m, we compute the
edit distance in O

(
nm
τ2 · (3τ + log2 τ) · (cr + 2)

)
rounds, O

(
nm
τ2 · (τ2 · 23τ − τ)

)

comparisons, and O
(

nm
τ2 · (τ2 · 23τ+1 − 2τ)

)
multiplications.

In comparison with a straightforward implementation of the arithmetic part,
we find that our method reduces the number of rounds by a factor of τ . However,
the higher the τ , the higher the number of multiplications and comparisons,
which increases the data sent in the protocol execution. This is a trade-off that
should be considered according to the specific protocol and the network speed.

4 Automatic Generation of Formulas for Edit Distance

In this section, we present an algorithm to produce a correct and minimal set of
formulas necessary to compute any positions in B∪R of the (τ +1)-box in terms
of the positions in the sets T ∪ L. For example, with τ = 2, applying Eq. (1)
recursively without removing any formula inside the minimum, we obtain the
equation in Sect. 3.1, which contains the formulas

D(i − 2, j − 1) + t(i − 1, j) + 1 and D(i − 2, j − 1) + 3.

Since t(i − 1, j) ∈ {0, 1}, for any D(i − 2, j − 1) and t(i − 1, j), it holds that

D(i − 2, j − 1) + t(i − 1, j) + 1 ≤ D(i − 2, j − 1) + 3.

Hence, we can remove D(i−2, j−1)+3 from the set of formulas without changing
the overall result of the minimum function.

We use a directed labeled graph with colored edges to represent the direct
dependencies among the entries of the matrix D as shown in Fig. 2a. The vertices
are the entries of the matrix and each edge represents the dependency given by
Eq. (1), labeled by the term to add in the formula. We color an edge black if
the label is 1, and red otherwise. We will refer to the graph G constructed in
this way for a (τ + 1)-box as the dependency graph. A similar abstraction was
considered by Ukkonen in [28, Section 2] without colors.

The formulas inside a minimum to compute one entry of B ∪ R in terms of
one in T ∪ L correspond to paths in the dependency graph.

Definition 1. Let V ∈ B ∪ R, W ∈ T ∪ L and P a path from W to V . The
formula induced by P , is fP

def
= W +a, where a is the sum of all the labels of the

edges in the path P . Each formula fP will be called an unrolled formula from W
to V and the set of all such formulas will be called the set of unrolled formulas
from W to V .
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Fig. 2. Graphs used in the automatic generation of formulas.

We can compute the position V ∈ B ∪ R in the matrix D as

V = min{fP | P is a path from W to V in G, ∀W ∈ T ∪ L},

which gives an equivalent representation of the unrolled formulas.
We now define the quantities that are key for removing redundant formulas.

Definition 2. Let P and Q be two paths in the dependency graph G. We define
rP,Q as the number of red edges in P that are not in Q. Also, we define bP as
the number of black edges in the path P .

The following proposition states a criterion for removing redundant formulas.

Proposition 1. Let U ∈ T ∪ L, W ∈ B ∪ R, let PU,W be the set of all paths
form U to W in a dependency graph G, and let P be any path in PU,W . We can
remove the formula induced by P from the set of unrolled formulas from U to
W without changing the overall value of the minimum, if rQ,P + bQ ≤ bP , for
some Q ∈ PU,W \ {P}.

Proof. Let P ∈ PU,W be any path, and suppose there exists some Q ∈ PU,W \{P}
such that rQ,P + bQ ≤ bP . We can write the formula induced by P as

fP
def= DU +

∑

i

ti +
rP,Q∑

i=1

t
(P )
i + bP .

The terms denoted by ti are the red labels shared by both P and Q, and the
terms denoted by t

(P )
i are the red labels that are in P but not in Q. Similarly,

denoting by t
(Q)
i the terms that are in Q but not in P , we can write the formula

induced by Q, and it follows that:
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fQ
def= DU +

∑

i

ti +
rQ,P∑

i=1

t
(Q)
i + bQ ≤ DU +

∑

i

ti + rQ,P + bQ

≤ DU +
∑

i

ti +
rP,Q∑

i=1

t
(P )
i + rQ,P + bQ

≤ DU +
∑

i

ti +
rP,Q∑

i=1

t
(P )
i + bP = fP .

Hence, we can remove the formula induced by P without changing the overall
value of the minimum over the set of unrolled formulas.

Using Proposition 1, we can formulate an algorithm to produce a subset of
the set of unrolled formulas for W ∈ B ∪ R without changing the result of the
minimum. The details of the algorithm are presented in Algorithm 2.

Algorithm 2 Optimal set of paths
Input: a dependency graph G, two endpoints U ∈ T ∪ L and W ∈ B ∪ R.
Output: a reduced set of paths S such that the minimum over all the formulas induced
by paths in S is equal to the minimum over all the formulas induced by paths in PU,W .

1: Generate the set PU,W .
2: S ← ∅.
3: for P ∈ PU,W do
4: r ← True
5: for Q ∈ PU,W \ {P} do
6: if rQ,P + bQ ≤ bP then
7: r ← False
8: break
9: if r = True then Append P to S

10: return S

To generate the expression to compute D(i′, j′) ∈ B ∪ R in a (τ + 1)-box, we
run the algorithm several times, with D(i′, j′) fixed as the end point and for each
of the vertices in T ∪L as end points, and then we take the union of the resulting
formulas as argument of the minimum function. Note that when we change the
starting point of the paths, the induced formulas are not comparable, because
they depend on different entries of the matrix D that can take any value.

We prove that Algorithm2 is optimal with respect to the following definition.

Definition 3. (Optimality). Let U,W ∈ V (G). A set S ⊆ PU,W is optimal if,
for all P ∈ S, there exists an assignment of the red variables (ti,j) such that, for
all Q ∈ S \ {P}, it holds that fP < fQ.
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Proposition 2. (Optimality of Algorithm 2). Let U,W ∈ V (G) be such that
U ∈ T ∪ L and W ∈ B ∪ R. Algorithm 2 returns an optimal set of paths S ⊆
PU,W (in the sense of Definition 3) such that the minimum over all the formulas
induced by paths in S is the same as the minimum over all the formulas in the
set of unrolled formulas from U to W .

Proof. From Proposition 1, we know that the algorithm returns a set of paths
whose induced formulas does not change the result of the minimum function. It
remains to show that this set is optimal4.

Let S ⊆ PU,W be the set of paths returned by Algorithm 2. Let P ∈ S be an
arbitrary path. We can write fP as

fP = DU +
∑

i

t
(P )
i + bP , (4)

where t
(P )
i are the labels of the red edges in P . Let us consider the following

assignment of the red variables (tk) ∈ {0, 1}∗ for the dependency graph G: if the
edge labeled as tk is in the path P , set tk = 0, and otherwise set tk = 1. Given
this assignment, it holds that

fP = DU +
∑

i

t
(P )
i + bP = DU + bP . (5)

Now, let Q ∈ S \ {P}. We can similarly expand fQ with ti being the labels of
the red edges that are in both P and Q, and t

(Q)
i the labels of the red edges that

are in Q but not in P . It follows that

fQ = DU +
∑

i

ti +
rQ,P∑

i=1

t
(Q)
i + bQ = DU + rQ,P + bQ > DU + bP = fP . (6)

The last inequality follows since both P and Q are paths returned by the algo-
rithm, when the paths P and Q were selected in the iterations, the path P
was not removed. Therefore, it holds that rQ,P + bQ > bP . This shows that the
algorithm is optimal in the sense of Definition 3. ��

To compute an upper bound for the number of formulas generated by our
approach, we consider the graph presented in Fig. 2b. This graph is similar to
the dependency graph in a (τ + 1)-box, but it has some additional edges. The
number of all paths from the top-left corner to the bottom-right corner of this
graph is given by the Delanoy number [30, Definition 1.2.8]:

D(l, s) =
min{l,s}∑

i=0

(
l

i

)(
s

i

)

· 2i. (7)

4 We will not consider here the case |PU,W | = 1, since Algorithm 2 returns the only
path in PU,W , which is trivial. Henceforth, we will consider only |PU,W | > 1. The
case PU,W = ∅ is also not considered due to the definition of optimality.
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This is an upper bound on the number of paths from the top-left corner to the
bottom-right corner of the dependency graph because the dependency graph is
a subgraph of the graph in Fig. 2b. Since the number of paths is maximum for
bottom-right corner of the box, it follows that an upper bound for the number
of formulas inside the minimum function to compute D(i, j) in a (τ + 1)-box is

τ∑

k=1

[D(τ, τ − k) + D(τ − k, τ)] + D(τ, τ). (8)

Furthermore, it can be proven that

τ∑

k=1

[D(τ, τ − k) + D(τ − k, τ)] + D(τ, τ) = O(τ · 23τ ). (9)

5 Experiments

We now evaluate the performance of our private edit-distance solution. All the
experiments were implemented in the MP-SPDZ framework [19] and were exe-
cuted on a single AWS EC2 instance of type c6a.4xlarge5, which has an AMD
EPYC 7R13 Processor with 16 virtual cores and 32 GB of RAM. Some of the
experiments were run without network limitation, so the communication speed
is close to running the processes in the same machine. In order to measure the
impact of the network, we simulate a local area network (LAN) architecture with
1.6 GBps of bandwidth and 0.3 milliseconds of latency, using the tc6 command
from the Linux operating system. For all of our experiments, we consider a bit-
length of 16, which allows 16-bit integer computations. We select such number of
bits because the edit distance between two chains of length n is upper-bounded
by n. Hence, 16 bits is the least number of bits multiple of 8 that allows us to rep-
resent the integer numbers needed for the computation. Additional results can
be found in the full version of the paper available on the IACR ePrint Archive.

We also compared the performance of the computation of the preamble in a
binary domain with respect to a traditional implementation using an arithmetic
domain. For two DNA chains of length 1,000, using Semi2k for passive security,
it reduces the data sent by approximately 18.68%, and using SPDZ2k for active
security, it reduces the data sent by approximately 18.48%. These are percentages
of the total data sent of the whole algorithm, including the arithmetic part.

We compared the performance of our solution on a field-domain protocol
and a ring-domain protocol. For the ring-domain, we use SPDZ2k which has
active security, and Semi2k as its corresponding passive secure version. For the
field-domain, we use MASCOT [20] to guarantee active security and Semi as its
corresponding passive secure version. As an example, on a 1020 long DNA-chain
Semi2k sends 85% less data than Semi and SPDZ2k sends 86% less data than

5 https://aws.amazon.com/ec2/instance-types/c6a/.
6 https://man7.org/linux/man-pages/man8/tc.8.html.

https://aws.amazon.com/ec2/instance-types/c6a/
https://man7.org/linux/man-pages/man8/tc.8.html
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MASCOT.7 This improvement is explained by the advantages of Z2k protocols
to perform operations like truncations and reductions modulo 2k.

5.1 The Effect of the Box Size, τ

As we saw in Sect. 3.1, the size of the (τ + 1)-box affects the number of rounds,
multiplications, and comparisons. We evaluate this trade-off by measuring data
sent and the execution time of the protocol. We tested for DNA chains of length
1,020, on the passively secure protocol Semi2k and on the actively secure one
SPDZ2k . We execute each protocol for τ ∈ {1, 2, 3, 4, 5}. We report performance
of the whole protocol (including pre-processing) and of the online phase alone.

Table 1 and Fig. 3a present the results. Since MPC protocols are sensitive
to the network speed, we repeated the box size experiments simulating a LAN
network as discussed at the beginning of this section. Table 2 shows the results
of the LAN experiments and Fig. 3b the corresponding graphical representation.

Table 1. Effect of changing τ on our solution without any network limitations.

Security τ Preprocessing+online Online phase only

Data [MB] Time [s] Data [MB] Time [s]

Passive (Semi2k) 1 1,214.0 389.5 54.4 338.0

2 1,794.3 186.1 60.7 144.2

3 2,641.2 113.3 78.9 97.2

4 4,207.0 154.6 106.7 90.4

5 7,110.3 172.0 167.6 83.6

Active (SPDZ2k) 1 166,629 3,114.9 695.5 821.4

2 241,689 3,407.9 348.8 391.3

3 350,062 4,474.0 309.9 285.5

4 551,783 6,366.6 389.3 275.8

5 924,881 9,665.0 546.4 269.7

The results confirm the analysis in Sect. 3. The number of rounds decreases
as an inverse linear function of τ , while the number of multiplications increases
exponentially as a function of τ . The execution time is thus the sum of two
functions of τ , an inverse linear induced by the number of rounds, and an expo-
nential induced by the number of multiplications. The specific constants depend
on the protocol and on the network, and they affect differently the offline and
the online phase. For example, for the actively secure protocol, if we consider
the offline phase (Fig. 3a), the exponential term dominates the execution time,
suggesting no benefit for increasing τ . However, looking only at the online phase
(Fig. 3a), as τ increases, the execution time decreases and eventually seems to

7 All these experiments use daBits and edaBits and box-size τ = 3.
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Fig. 3. Effect of the box size τ .

Table 2. Effect of τ on our solution on a LAN.

Security τ Preprocessing+online Online phase only

Data [MB] Time [s] Data[MB] Time[s]

Passive (Semi2k) 1 1,214.0 9,941.0 54.4 9,923.5

2 1,794.3 3,891.9 60.7 3,837.8

3 2,641.2 2,429.5 78.9 2,342.2

4 4,207.0 2,155.8 106.7 2,008.3

5 7,110.3 1,813.7 167.6 1,552.7

Active (SPDZ2k) 1 166,629 22,552.1 695.5 18,298.5

2 241,689 11,925.8 348.8 7,044.2

3 350,062 10,300.2 309.9 4,300.1

4 551,783 12,474.0 389.3 3,689.2

5 924,881 16,482.1 546.4 2,864.7

flatten. The effect of the rounds in the total time is even more acute for the
passively secure protocol (Fig. 3a), where the execution time first decreases and
then increases with an optimal value on τ = 3. This is because multiplications
are relatively cheap for such protocol, yet we expect the graph to eventually
increase because the effect of the exponential part induced by the number of
multiplications dominates asymptotically. The positive effect of increasing τ is
also enhanced on a slower network, as shown on the simulated LAN results in
Fig. 3b.

Considering both the online and offline phases together, selecting the best
value of τ for the passive and active security setting in the LAN configuration
respectively reduces the execution time by 81% and 54% in comparison with a
baseline implementation using τ = 1.
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5.2 Comparison Between Garbled Circuits and Secret-Sharing

We compare the performance of our implementation using garbled circuits and
using protocols based on secret-sharing schemes with Z2k domain. Due to the
constraints of the AWS EC2 instance, we use DNA chains of length 210 for this
experiment. As previously, we use a bit-length of 16 and we consider both a
network with no limitations and a simulated LAN. We set τ = 1 for garbled
circuits and τ = 3 for the protocols based on secret-sharing schemes, because
garbled circuits have better performance when τ = 1, as observed in a prelim-
inary exploration. As τ increases, the number of formulas inside the minimum
function grows exponentially and the number of addition gates increases too,
which is specially costly for GC-based protocols.

Table 3 presents the results of the experiment. Notice that the secret-sharing
based protocols perform better than the GC protocols regarding the data sent.
In particular, they send approximately 67–99% less data than the GC protocols.
This is due to the high number of arithmetic operations of the algorithm, which
implies a high number of gates to garble and send through the network.

For passively secure protocols, the higher data sent of the GC protocols is
compensated by their constant-round communication. This can be observed in
the similar execution time without network limitations, and even more acutely
in the faster execution on LAN.

Table 3. Performance of our solution using GC and SSS-based protocols.

Network Security Protocol Time [s] Data sent [MB]

No limit Passive Yao’s GC 2.6 345.8

Semi2k 4.9 113.1

Active BMR-MASCOT 5,968.6 2.09 × 106

SPDZ2k 140.1 14,893.8

LAN Passive Yao’s GC 2.7 345.8

Semi2k 103.0 113.1

Active BMR-MASCOT 9, 034.0 2.09 × 106

SPDZ2k 368.5 14,893.8

For actively secure protocols, GC is one order of magnitude slower than the
protocols based on secret-sharing schemes, and the former sends two orders of
magnitude more data than the latter. This can be explained by the edit dis-
tance algorithm and by the mechanism to provide active security in BMR8. The
edit distance algorithm has a heavy arithmetic component and many additions
that require AND gates. In the case of BMR, the underlying MPC protocol to
8 Although there are other alternatives for actively secure GC protocols, we choose

BMR because it is the only available GC-based protocol for malicious adversaries in
MP-SDPZ. This allows us to make comparisons in the same “ground”.
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compute the offline phase is MASCOT [20], which uses MACs to ensure secu-
rity against malicious adversaries. So, garbling an AND gate needs to compute
multiplications with the assistance of MASCOT which requires the generation
of multiplication triples and puts an additional overhead. This overhead does
not appear in protocols based on secret-sharing schemes because additions do
not need communication.

5.3 Comparison with Protocols Based on Homomorphic Encryption

We compare the results of our experiments with a relevant homomorphic encryp-
tion (HE) solution. In [7], Cheon et al. consider experiments with DNA chains of
length 8 at 80 bits of security. According to the results in Table 6 in that paper,
their method spends 27.54 s on key generation and 16.45 s on encryption on an
Intel Xeon i7 2.3 GHz, 192 GB. In their report, they state that it takes 27.5 s to
obtain the edit distance using the Halevi-Shoup library (HElib) [17] along with
the techniques presented in [16]. In our case, considering both the pre-processing
and the online phase on a LAN, using τ = 2, we can compute the edit distance
of two chains of length 8 in 0.3 s using Semi2k protocol for passive security and
in 5.92 s using the SPDZ2k protocol for active security. Furthermore, Cheon et
al. estimate that their method for DNA chains of length 100 with a security
parameter of 62 bits, computes the edit distance in 1 day and 5 h. Our method
computes the edit distance of two chains of length 100 in 96.69 s on a LAN using
the SPDZ2k protocol. In terms of security, a 62 bits for HE is insufficient for the
current recommended security levels in cryptography.

6 Conclusion

We presented an MPC approach based on secret sharing to securely compute
the edit distance via the Wagner-Fischer algorithm. Our method leverages the
equations in the algorithm to compute selected positions of the edit distance
matrix as minimum of several integers. This modification reduces the number of
rounds but increases the number of multiplications and comparisons, inducing a
performance trade-off. Using graph theory, we develop an algorithm to automat-
ically generate all the equations needed to compute the required positions in the
matrix. We prove that the algorithm returns correct and optimal equations. Our
solution is competitive with GC-based solutions on a passive security model, and
much faster if active security is required, demonstrating the effectiveness of the
secret-sharing approach for bit-wise computations.

We identify two research problems for future work. The first is to find an
optimal box size, given environment parameters such as bandwidth, latency,
chain lengths, and local computational power. The second is to generalize the
graph theory techniques from Sect. 4 to other dynamic programming problems.
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Abstract. In this paper we continue the study of two-round broadcast-
optimal MPC, where broadcast is used in one of the two rounds, but not in
both. We consider the realistic scenario where the round that does not use
broadcast isasynchronous. Since a first asynchronous round (even when fol-
lowed by a round of broadcast) does not admit any secure computation, we
introduce a new notion of asynchrony which we call (td, tm)-asynchrony. In
this new notion of asynchrony, an adversary can delay or drop up to td of
a given party’s incoming messages; we refer to td as the deafness threshold.
Similarly, the adversary can delay or drop up to tm of a given party’s outgo-
ing messages; we refer to tm as the muteness threshold.

We determine which notions of secure two-round computation are
achievable when the first round is (td, tm)-asynchronous, and the sec-
ond round is over broadcast. Similarly, we determine which notions of
secure two-round computation are achievable when the first round is over
broadcast, and the second round is (fully) asynchronous. We consider the
cases where a PKI is available, when only a CRS is available but private
communication in the first round is possible, and the case when only a
CRS is available and no private communication is possible before the
parties have had a chance to exchange public keys.

1 Introduction

Round complexity is an important metric of the efficiency of a secure compu-
tation (MPC) protocol. When MPC is run over a high latency network, each
round of communication can take a long time. Two rounds has been shown to be
optimal; one round of communication is clearly not enough for secure computa-
tion, since it leaves the protocol vulnerable to residual function attacks, where
the adversary can recompute the function with the same honest party inputs
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and different corrupt party inputs simply by preparing different messages on the
corrupt parties’ behalf.

However, optimal round complexity is only the first step towards efficient
use of resources. Broadcast, which, in practice, requires either multiple rounds
of peer-to-peer communication or special channels (which use, e.g., physical
assumptions or blockchains), is itself an expensive resource. Most known two-
round MPC protocols either use broadcast in both rounds [7,13,14], or only
achieve the weakest security guarantee (selective abort) [3]. Cohen et al. [9],
Damg̊ard et al. [10] and Damg̊ard et al. [11] explore the tradeoffs between the
security of two-round MPC protocols and their use of broadcast (where broadcast
can be used in the first round only, in the second round only, in both rounds, or
in neither round). Cohen et al. focus on the dishonest majority setting; Damg̊ard
et al. [10] focus on the honest majority setting; and Damg̊ard et al. [11] addition-
ally remove the use of PKI and private peer-to-peer channels in the first round
from the previous works. All three of these papers gave tight characterizations
of the security guarantees that can be achieved in the different settings.

1.1 Our Contributions

In this paper, we focus on the realistic setting where the rounds that do not
use broadcast are also not fully synchronous. Since fully asynchronous MPC has
been studied in the literature extensively [5,6,15], we limit ourselves to the case
where at least one of the two rounds uses a synchronous broadcast channel.

Asynchrony in the First Round. If the first round is fully asynchronous, the
adversary can prevent a party from communicating anything to any of the hon-
est parties in the first round; since correctness demands that the protocol pro-
duce an output even in the event of adversarial message scheduling, this means
that either that party’s input cannot influence the output (this is known as input
deprivation), or that the protocol is vulnerable to residual function attacks (since
the adversary can, like in one-round protocols, recompute the second-round mes-
sages on behalf of a corrupt party who no-one heard from in the first round).

So, we introduce a new flavor of asynchrony, where the adversary is only able
to delay up to a certain threshold of messages to and from any one party. We
call it (td, tm)-asynchrony. In (td, tm)-asynchrony, at most tm of any party’s mes-
sages can be arbitrarily delayed or dropped, where tm is the muteness threshold.
Similarly, at most td of the messages to a given party can be arbitrarily delayed
or dropped, where td is the deafness threshold. We allow the adversary to be
rushing i.e. determine which messages to delay or drop based on the messages
she sees during the round. By setting tm, we ensure that each party communi-
cates to sufficiently many parties in the first round, enabling us to sidestep the
problem of input deprivation.
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This new notion of asynchrony is a contribution in and of itself. It is incompa-
rable to the standard notion of asynchrony, where the adversary can arbitrarily
delay—but not drop—any number of the messages1.

We now summarize our findings about two-round MPC where the first round
is (td, tm)-asynchronous (over peer-to-peer channels), and the second round uses
synchronous broadcast. Let n be the number of participants, and t be the cor-
ruption threshold. We show that, if a PKI is available, no such secure two-round
MPC is possible if n ≤ t + tm. When t + tm < n ≤ 2t + tm, the best achievable
guarantee is unanimous abort, where honest parties either all learn the output, or
abort. When 2t+tm < n, identifiable abort—where in the event of an abort, hon-
est parties agree on the identity of a corrupt party—is additionally achievable.
(Stronger guarantees have already been ruled out if broadcast is not available in
the first round, as long as t > 1 [10].) Our constructions that rely on a PKI use
one-or-nothing secret sharing [10] (which is a flavor of secret sharing that allows
a dealer to share a vector of secrets, among which at most one secret would be
reconstructed).

If a PKI is not available, but parties are able to send one another private
messages in the first round, as before no such secure two-round MPC is possible
if n ≤ t + tm. Additionally, nothing is achievable if n ≤ t + 2td and n ≤ t + 2tm.
However, the rest of the time, unanimous abort is possible. Identifiable abort is
unachievable if n ≤ 3t + tm; we show that it is achievable if 3t + tm < n and
min(td, tm) ≤ t, but we leave what happens without that last requirement as an
open problem.

If neither a PKI nor private channels are available in the first round, we show
that no such secure two-round MPC is possible if n ≤ t + td + tm. However, the
rest of the time, unanimous abort is achievable. As before, identifiable abort is
unachievable if n ≤ 3t + tm; we show that it is achievable if 3t + tm < n and
3t + td < n, but we leave what happens without that last requirement as an
open problem.

We give several constructions that do not rely on a PKI. For somewhat looser
bounds, we show constructions that rely on standard assumptions by generalizing
the one-or-nothing secret sharing with intermediaries introduced by Damg̊ard et
al. [11]. We provide also new constructions with the tightest bounds of t, td

and tm that rely on differing-inputs obfuscation to demonstrate feasibility, or,
rather, the infeasibility of a negative result. (The obfuscation-based constructions
that achieve identifiable abort are additionally limited to a constant number of
parties.)

Asynchrony in the Second Round. If the first round uses fully synchronous broad-
cast, security is possible even if the second round is asynchronous in the classical
1 Our notion is also incomparable to the notion of send/receive-omission corruptions

of [20] which considers an adversary who can send-corrupt some parties whose (any
number of) sent messages may be dropped and/or receive-corrupt some parties that
may not receive (any of the) messages sent to them. This is different from our
notion where a bounded number of outgoing and incoming messages for each party
is blocked.
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sense; that is, the adversary can arbitrarily delay (but not drop) any number of
the second-round messages. In this setting, we show that if a PKI is available, no
secure MPC is possible if n ≤ 2t. However, the strongest guarantee—guaranteed
output delivery—is achievable otherwise, as shown by a simple observation by
Rambaud and Urban [19].

If a PKI is not available, but parties are able to send one another private
messages in the first round, selective abort is achievable as long as 2t < n. No
stronger guarantee is achievable, by the lower bounds of Patra and Ravi [18] and
Damg̊ard et al. [11].

If neither a PKI nor private channels are available in the first round, we show
that no secure MPC is possible for any corruption threshold t ≥ 1.

1.2 Terminology

We characterize our protocols in terms of (a) the kinds of communication chan-
nels used in each round, (b) the security guarantees they achieve, (c) the setup
they require, and (d) the corruption threshold t they support. We will use short-
hand for all of these classifications to make our discussions less cumbersome.

Communication Structure. We consider different kinds of channels:

Broadcast Channels (BC), where each broadcast message recipient has
the guarantee that all other recipients received the same message.
Peer to Peer Channels (P2P), where recipients have no guarantee of con-
sistency.

When a PKI is available, or when the parties have already had a chance to
exchange encryption keys, private communication is possible over both BC and
P2P channels. However, when this is not the case (that is, when a PKI is not
available, and this is the first round), it makes sense to break these up into the
following:

Public Peer to Peer Channels (PubP2P), where recipients don’t have
the guarantee that all others see the same message (nor do they have a
guarantee of privacy).
Private Peer to Peer Channels (PrivP2P), where recipients don’t have
the guarantee that all others see the same message, but parties can commu-
nicate messages privately.
Public Broadcast Channels (PubBC), where a party can either broad-
cast a message or communicate it over public peer to peer channels. (Note
that using a broadcast channel is strictly stronger than using a public peer to
peer channel; the only reason to choose to use a public peer to peer channel
instead of a broadcast channel is efficiency.)
Broadcast with Private Channels (PrivBC), where a party can either
broadcast a message or communicate it privately.
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We use a concatenation of two channel names to denote the communication
structure of a protocol. As an example, PrivP2P-BC denotes a protocol whose
first round is over private peer to peer channels, and whose second round is over
broadcast. (Private messages are also possible in the second round, since the
parties can exchange public keys in the first round.)

Security Guarantees. An MPC protocol can achieve one of five notions of secu-
rity. These are described below, from weakest to strongest (with the exception
that fairness and identifiable abort are incomparable).

Selective Abort (SA): Every honest party either obtains the output, or
aborts.
Unanimous Abort (UA): Either all honest parties obtain the output, or
they all (unanimously) abort.
Identifiable Abort (IA): Either all honest parties obtain the output, or
they all (unanimously) abort identifying one corrupt party.
Fairness (FAIR): Either all parties obtain the output, or none of them do.
(An adversary should not be able to learn the output if the honest parties
do not.)
Guaranteed Output Delivery (GOD): All honest parties will learn the
computation output no matter what the adversary does.

Setup. We consider two kinds of setup: either only a common reference string
(CRS), where parties have access to a common string generated in a trusted
way, or both a CRS and a (trusted) PKI, where parties additionally know one
another’s public keys before the protocol starts.

1.3 Technical Overview

We consider protocols with and without a PKI. With a PKI, we consider the
P2P-BC and BC-P2P settings; without a PKI, we consider the PrivP2P-BC,
PubP2P-BC, PrivBC-P2P and PubBC-P2P settings. We explore what security
guarantees are achievable when the P2P and PrivP2P rounds are asynchronous.

Asynchrony in the First Round. As we explained earlier, in the P2P-BC
and PrivP2P-BC settings, no security guarantee is achievable when the adver-
sary can schedule the first-round messages arbitrarily. However, if we make some
restrictions on the message scheduling, some notions of security become achiev-
able for some thresholds. To this end, we introduce (td, tm)-asynchrony, where
the adversary can drop or delay only td incoming messages for each party, and
tm outgoing messages for each party.

Prior works [8,10] show that even in the synchronous setting (with td = tm =
0) and given a PKI, no P2P-BC or PrivP2P-BC protocol can achieve fairness or
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Fig. 1. Partial Asynchrony Feasibility and Impossibility Results in the P2P-BC setting,
with a PKI and CRS

Fig. 2. Partial Asynchrony Feasibility and Impossibility Results with a CRS. (Some of
our results appear in full version [12].)

GOD2. Figures 1 and 2 describe our findings about the feasibility of SA, UA and
IA when a PKI is available, when a PKI is not available but private channels
in the first round are, and when neither a PKI nor private channels in the first
round are available.

Lower Bounds. Most of our negative results follow a common blueprint. We
start by showing (in Theorem 1) that if there is a group of parties A whose
second-round messages do not depend on messages from a disjoint group B,
2 The impossibility holds for more general settings such as when t > 1 or n ≤ 3t.

However, it is possible to achieve GOD for the special case when t = 1 and n ≥ 4
[16,17] (even in the P2P-P2P synchronous setting with no CRS or PKI). We leave
open the question of weakening the synchrony assumptions for these special cases.
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and if the adversary has all the information she needs in order to recompute
the first and second round messages of B and other messages that depend on
messages from B (while keeping the messages—and thus inputs—of A fixed),
then the adversary is able to execute a residual function attack by recomputing
the function with different inputs on behalf of B. We then show how adversarial
network scheduling and corruption strategies can lead to such groups in various
settings. Specifically, we use this strategy to show that:

1. In the P2P-BC, PKI setting, no secure computation is achievable if tm ≥
n − t, td ≥ 1 (Theorem 2);

2. In the P2P-BC, PKI setting, no secure computation with identifiable abort is
achievable if tm ≥ n − 2t, td ≥ 1 (Theorem 3);

3. In the PrivP2P-BC, CRS setting, no secure computation is achievable if n ≤
t + 2td, n ≤ t + 2tm (Theorem 4);

4. In the PubP2P-BC, CRS setting, no secure computation is achievable if n ≤
t + td + tm (Theorem 6).

The PrivP2P-BC, IA, CRS, n ≤ 3t + tm setting is the only one for which
we use a different blueprint. This proof follows the proof of Damg̊ard et al. [11],
which shows that in the fully synchronous PrivP2P-BC, IA, CRS, n ≤ 3t, IA
cannot be achieved. They do this by showing how t corrupt parties can get away
with sending first round messages computed on different inputs to two disjoint
sets of honest parties; they show that the protocol must yield output on both
inputs, since the honest parties may not be able to identify a cheater. We show
that the presence of an additional tm parties, all of who may not have heard
a given first round message due to network scheduling, does not help matters.
This shows that in this setting, IA cannot be achieved (Theorem 5).

Upper Bounds. Our upper bounds in the presence of a PKI follow the blueprint of
the constructions of Cohen et al. [9], Damg̊ard et al. [10] and Damg̊ard et al. [11].
Damg̊ard et al. introduce one-or-nothing secret sharing; for our constructions
with PKI, we simply tweak the reconstruction thresholds of one-or-nothing secret
sharing to account for the adversary’s ability to drop tm of each party’s outgoing
messages.

When a PKI is not available, we show protocols using variant of one-or-
nothing secret sharing defined by Damg̊ard et al. [11], which is called one-or-
nothing secret sharing with intermediaries. Here we adjust the privacy as well
as reconstruction thresholds to adapt them to the (td, tm)-asynchronous setting.
Unfortunately, these constructions without PKI are not tight with respect to our
lower bounds. This led us to bring our study forward and investigate if it was
possible to obtain tighter lower bounds or alternatively, design matching upper
bounds that are based on stronger assumptions (as this would give evidence that
proving a tighter lower bound is not possible).

Towards this, we provide completely new constructions based on differing-
inputs obfuscation (diO) [1,4]. These constructions rely on a CRS in the form of
an obfuscated program the code of which hides a secret decryption key. In the
first round, each party encrypts her input to the corresponding public encryption
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key, generates a signing - verification key pair, signs her ciphertext, and sends the
ciphertext, verification key and signature to all of her peers. In the second round,
the parties echo everything they heard in the first round over the broadcast
channel; these echos then serve as input to the obfuscated program. The program
checks that the echos are consistent enough before decrypting the ciphertexts
and evaluating the function. If the echos are not consistent enough, it aborts; to
achieve identifiable abort it is possible to use the conflict graph that it derives
from the echos to identify a cheater. One difficulty is that we must make sure
that the adversary cannot copy and reuse an honest party’s ciphertext (with a
fresh verification key). We do this by introducing a new primitive which we call
puncturable public key encryption. Here, the sender uses her own public key as
an input to the encryption algorithm, so that the resulting ciphertext is bound
to the sender. The receiver’s public key can be punctured at one or more senders’
public keys, so that ciphertexts produced by those senders no longer carry any
information about the messages used.

Of course, diO is wildly impractical, and as mentioned previously, our results
which use diO should be seen as feasibility results (or rather, as evidence of the
infeasibility of proving a tighter lower bound).

Asynchrony in the Second Round. For BC-P2P protocols, the classical
notion of asynchrony in the second round does not preclude secure computation,
so we stick to that. We summarize our findings about asynchronous BC-P2P
protocols in Table 1. The details of these results appear in the full version [12].

In this setting, we show that for n ≤ 2t, a BC-P2P protocol cannot even
achieve selective abort, even if a PKI is available3. This follows from the fact
that parties can’t wait for more than n − t ≤ t second-round messages before
computing output, since the remaining ≤ t parties may be corrupt and may not
have sent messages. So, parties must be able to compute output even if they only
received second-round messages from corrupt parties; this allows the adversary
to recompute the output based on different corrupt parties’ inputs, in what is
an effective residual function attack.

For 2t < n, given a PKI, a BC-P2P protocol can achieve the strongest notion
of security—GOD. This follows from an observation in [19] that shows that the
BC-P2P construction of Damg̊ard et al. [10] works even if the second round is
asynchronous.

Without a PKI, a PrivBC-P2P protocol can achieve selective abort as long as
2t < n, which is the best guarantee we can hope for (see footnote 2). (Nothing is
possible in the PubBC-P2P setting). For our SA construction, we rely on certain
properties of synchronous schemes to extend them to this setting. We show that
any synchronous protocol that is PrivBC-P2P SA CRS 2t < n could be also
executed with an asynchronous second round as long as it is easy to determine
whether second-round messages are “valid”, the inputs can be extracted from
first-round messages, and n − t valid second-round messages are sufficient to
3 It already followed from the work of Cohen et al. that unanimous abort is unachiev-

able in this setting.
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Table 1. Feasibility and impossibility of partially-asynchronous BC-P2P MPC with
different guarantees. The first-round broadcast and peer-to-peer communication is syn-
chronous and second round communication is asynchronous. Existing impossibility
results in the BC-P2P setting where the second round is synchronous extend to the
BC-P2P setting where the second round is asynchronous. Arrows indicate implication:
the possibility of a stronger security guarantee implies the possibility of weaker ones in
the same setting, and the impossibility of a weaker guarantee implies the impossibility
of stronger ones in the same setting. (Our results appear in the full version [12].)

recover the output. We then adapt the construction of Ananth et al. [2], using
commitments and NIZKs, to provide an instantiation of the starting PrivBC-
P2P synchronous protocol.

1.4 Organization

We use the standard ideal/real world paradigm, the formal definitions of which
are in the full version. In Sect. 2, we describe our lower and upper bounds for
the setting when the first round is over (td, tm)-asynchronous channels. Our
obfuscation-based constructions in the (td, tm)-asynchronous setting and the
results for the setting when the second round is asynchronous appear in the
full version [12].

2 P2P-BC

In this section, we assume that the first round of communication occurs over peer-
to-peer channels with (td, tm)-asynchrony (and the peer-to-peer and broadcast
communication in the second round is fully synchronous). We determine the
feasibility of various notions of security, in three settings: (1) when a PKI is
available, (2) when no PKI is available, but a CRS and private peer-to-peer
channels are, and (3) when no PKI or private channels are available in the first
round, but a CRS is. Our results are summarized in Figs. 1 and 2.

2.1 Lower Bounds

Before describing our lower bounds, we present a theorem that is useful for
our lower bound arguments. In this theorem, we identify what type of protocol
design makes it vulnerable to a residual attack by the adversary i.e. allows the
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adversary to obtain the output on multiple inputs of her choice, while keeping
the inputs of a subset of honest parties fixed.

Theorem 1. Consider an n-party two-round protocol Π. Let E be the event that
the parties can be assigned to three sets A, B and C with the following properties:

1. A contains a subset of honest parties.
2. C contains the set of corrupt parties, where 1 ≤ |C| ≤ t.
3. |A|, |B| ≥ 1, and A is disjoint from B ∪ C (but B and C are not necessarily

disjoint).
4. The second-round messages of parties in A do not depend on the first-round

messages of parties in B.
5. The adversary (controlling the parties in C) has access to the communication

from A to B as well as private information that parties in B receive from the
setup (if any).

6. The adversary obtains the output (computed on honest parties’ inputs).

If Π allows the above event E to occur with non-negligible probability, then
there exists functions f such that Π can not securely compute f .

Proof. We use the function fmot. Let the input of Pn be a pair of strings xn =
(z0, z1), where z0, z1 ∈ {0, 1}λ, and let the input of every other party Pi (i ∈
{1, . . . , n − 1}) be a single bit xi ∈ {0, 1}. fmot allows everyone to learn zc

where c = ⊕n−1
i=1 xi. Towards a contradiction, we assume that the two-round

secure protocol Π computes fmot securely. Suppose that event E (described in
the theorem) occurs during an execution of Π and results in the adversary
obtaining the output (computed on honest parties’ inputs).

We observe that, since the second-round messages of parties in A do not
depend on the first round messages of parties in B, these are independent of
the inputs of parties in B. This makes Π susceptible to the following residual
attack: the adversary can use different choices of inputs on behalf of the parties
in B and recompute their first and second round messages, while keeping the
messages of parties in A fixed. The adversary also keeps the first-round messages
of parties in C \ B fixed and recomputes their second-round messages (based on
the recomputed first-round messages of B).

Note that recomputing messages on behalf of parties in B (based on chosen
inputs) requires (a) the private information (if any) that parties in B receive
from the setup, and (b) the first-round messages that parties in B received
from parties in A and C. Since the adversary has access to all of this (based
on the assumptions and the fact that the adversary controls C), it is possible
for the adversary to recompute messages on behalf of parties in B (using chosen
inputs). It is now easy to see that this will allow the adversary to obtain multiple
evaluations of the function, for different choices of inputs of parties in B while
the inputs of other parties remain fixed. This contradicts the security of Π. More
concretely, suppose Pn ∈ A. Then, this “residual attack” breaches the privacy
property of the protocol, as it allows the adversary to learn both input strings
of an honest Pn (which is not allowed in an ideal realization of fmot).
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Corollary 1. Assume a setup with PKI or correlated randomness and the exis-
tence of a protocol Π where properties (1), (2), (3), (4) and (6) of E described
in Theorem 1 are satisfied with non-negligible probability. If B ⊆ C holds, then
there exists functions f such that Π cannot securely compute f .

Proof. We observe that when B ⊆ C, property (5) of Theorem 1 automatically
holds – as the adversary controlling the parties in B has access to their private
information received as a part of the setup and incoming messages. Hence, the
corollary holds.

Corollary 2. Assume a setup with CRS, a network with private peer-to-peer
channels and the existence of a protocol Π where properties (1), (2), (3), (4)
and (6) of E described in Theorem 1 are satisfied with non-negligible probability.
If there is no communication from parties in A to parties in B, then there exist
functions f such that Π cannot securely compute f .

Proof. It is easy to see that if there is no communication from parties in A to B
and the setup is public, then property (5) of Theorem 1 is satisfied by default.
Hence, the corollary holds.

Corollary 3. Assume a setup with CRS, a network with public peer-to-peer
channels and the existence of a protocol Π where properties (1), (2), (3), (4)
and (6) of E described in Theorem 1 are satisfied with non-negligible probability.
Then, there exist functions f such that Π cannot securely compute f .

Proof. Property (5) of Theorem 1 must also hold since the setup is public and
the public peer-to-peer channels enable the adversary to learn the incoming
messages of parties in B. Hence, the corollary holds.

With PKI. In this section, we assume the availability of a PKI. We adopt the
same proof approach in each of our negative results in this section: we describe
an adversarial strategy and message scheduling that results in the occurrence of
the event E described in Corollary 1. We then invoke the impossibility result of
Corollary 1 to complete the proof.

Theorem 2 (P2P-BC, SA, PKI, tm ≥ n − t, td ≥ 1). There exist functions
f such that no n-party two-round protocol can compute f with selective abort if
tm ≥ n − t and td ≥ 1; where the first round communication is over peer-to-peer
channels with (td, tm)-asynchrony and the second round communication is over
synchronous broadcast and peer-to-peer channels.

Proof. We use the function fmot described in Theorem 1. Towards a contradic-
tion, we assume a protocol Π computing fmot with selective abort exists, whose
first round communication is over peer-to-peer channels with (td, tm)-asynchrony
and second round communication is over synchronous broadcast and peer-to-peer
channels.

Consider a scenario where the adversary passively corrupts the parties in a set
C (where |C| = t) and A denotes the set of honest parties. Since the first round is
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over peer-to-peer channels with (td, tm)-asynchrony, the adversary can schedule
the first round messages of a party in C, say Pi, such that they are received by
only corrupt parties. Such a scheduling is allowed, since the messages of Pi are
delivered to parties in C where |C| = t ≥ n − tm parties, and each honest party
hears from n − 1 ≥ n − td parties. The correctness of Π (which must hold as
everyone including the passively controlled parties behaved honestly) dictates
that this execution must result in output computation. However, since none of
the parties in A received the first round messages of Pi, it is easy to see that
their second-round messages are independent of Pi’s first round message. Setting
B = {Pi} ⊆ C, it is easy to check that each of the conditions of Corollary 1
hold. It now directly follows from Corollary 1 that Π cannot securely compute
fmot, completing the proof.

Theorem 3 (P2P-BC, IA, PKI, tm ≥ n−2t, td ≥ 1). There exist functions
f such that no n-party two-round protocol can compute f with identifiable abort
if tm ≥ n − 2t and td ≥ 1; where the first round communication is over peer-to-
peer channels with (td, tm)-asynchrony and the second round communication is
over synchronous broadcast and peer-to-peer channels.

Proof. We use the function fmot described in Theorem 1. Towards a contradic-
tion, we assume a protocol Π computing fmot with identifiable abort exists, whose
first round communication is over peer-to-peer channels with (td, tm)-asynchrony
and second round communication is over synchronous broadcast and peer-to-peer
channels. Consider a partition of the set of parties into three disjoint sets S0, S1
and S2, where |S0| = tm, |S1| = t and |S2| ≤ t. The adversary schedules the
first round messages of a party in S1, say Pi, such that they are not received
by parties in set S0. Such a scheduling is allowed, since the messages of Pi are
delivered to everyone except the tm parties in S0 and each party hears from at
least n − 1 ≥ n − td parties. We now consider two scenarios:

Scenario 1: Adversary controls the party Pi in S1 who behaves as per pro-
tocol specifications except the following:

– In the first round, Pi does not send first-round messages to honest parties
in S2.

– In the second round, Pi pretends as if she did not receive first-round
messages from parties in S2. In other words, Pi sends second-round mes-
sages based on protocol specifications when Pi did not receive first-round
messages from parties in S2.

Scenario 2: Adversary controls the parties in S2 (where |S2| ≤ t) who behave
as follows:

– In the first round, parties in S2 behave honestly, except that they do not
send their first-round message to Pi.

– In the second round, parties in S2 pretend as if they did not receive the
first-round message from Pi.

The honest parties in S0 cannot distinguish between the above two scenarios,
since in both scenarios Pi and parties in S2 claim that they have not received
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first-round messages from each other. Since the honest parties in S0 do not know
whom to blame (Pi or the parties in S2, where |S2| ≤ t), it must be the case
that both the above scenarios result in output computation (i.e. does not result
in an abort).

Consider an execution of Π where the adversary controls the parties in S1
who behave honestly except a single party Pi ∈ S1 who behaves as per Scenario
1. Since none of the honest parties in S0 ∪ S2 received the first round messages
of Pi, it is easy to see that their messages are independent of Pi’s input. Based
on the above argument, this scenario must result in output computation. This
output must also be learnt by the adversary since its view subsumes the view of
an honest Pi in Scenario 2 (who learns the output).

Setting A = S0 ∪ S2 as the set of honest parties, B = {Pi} and C = S1
(where B ⊆ C), one can check that each of the conditions of Corollary 1 holds.
It now directly follows from Corollary 1 that Π cannot securely compute fmot,
completing the proof.

Without PKI, with Private Channels. In this section, we present two neg-
ative results for the setting when PKI is not available but the peer-to-peer chan-
nels are private. For the first negative result, just like in the previous section, we
adopt the approach of describing an adversarial strategy and message scheduling
that results in the occurrence of the event E described in Corollary 2. We then
invoke the impossibility result of Corollary 2 to complete the proof. The second
negative result shows impossibility of identifiable abort when n ≤ 3t + tm. This
proof is a slight modification of the proof of Damg̊ard et al. [11], which shows
the impossibility of identifiable abort in the synchronous P2P-BC setting when
n ≤ 3t.

Theorem 4 (PrivP2P-BC, SA, CRS, n ≤ t+2td, n ≤ t+2tm). There exist
functions f such that no n-party two-round protocol can compute f with selective
abort if n ≤ t + 2td and n ≤ t + 2tm; where the first round communication is
over private peer-to-peer channels with (td, tm)-asynchrony and the second round
communication is over synchronous broadcast and peer-to-peer channels.

Proof. We use the same function fmot used in the proof of Theorem 1. Towards a
contradiction, we assume a PrivP2P-BC, SA, CRS protocol Π with n ≤ t + 2td

and n ≤ t + 2tm securely computing fmot exists, whose first-round communi-
cation is over peer-to-peer channels with (td, tm)-asynchrony and second-round
communication is over synchronous broadcast and peer-to-peer channels.

Consider a partition of the parties into three disjoint sets A, B and C, where
|A| = n−t

2 , |B| = n−t
2 , and |C| = t, respectively. Consider an execution of Π

where the adversary passively corrupts the t parties in C and schedules the
messages in the first round so that no messages from B are delivered to A,
and vice versa. Such a scheduling is permitted based on the assumption that
tm ≥ n−t

2 and td ≥ n−t
2 .

The correctness of Π (which must hold as everyone including the passively
controlled parties behaved honestly) dictates that this execution must result in
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output computation. However, we note that second-round messages of parties
in A do not depend on the first-round messages of parties in B (as parties in A
did not receive any first-round messages from parties in B). Furthermore, since
there is no first-round communication from parties in A to parties in B as well,
we observe that all the conditions of Corollary 2 are satisfied. It now directly
follows from Corollary 2 that Π cannot securely compute fmot, completing the
proof.

Theorem 5 (PrivP2P-BC, IA, CRS, n ≤ 3t+tm, td ≥ 1). There exist func-
tions f such that no n-party two-round protocol can compute f with identifiable
abort if n ≤ 3t + tm; where the first round communication is over private peer-
to-peer channels with (td, tm)-asynchrony and the second round communication
is over synchronous broadcast and peer-to-peer channels.

We prove Theorem 5 in the full version [12], which is a slight modification
of the proof of Damg̊ard et al. [11], (that shows the impossibility of identifiable
abort in the synchronous P2P-BC setting when n ≤ 3t).

Without PKI, Without Private Channels. In this section, we assume that
the first-round peer-to-peer channels are public. We show that selective abort is
impossible to achieve when n ≤ t + td + tm. This proof follows the approach of
the previous results, where we describe an adversarial strategy and scheduling
that reduces the argument to Corollary 3.

Theorem 6 (PubP2P-BC, SA, CRS, n ≤ t+td+tm). There exist functions
f such that no n-party two-round protocol can compute f with selective abort if
n ≤ t + td + tm; where the first round communication is over public peer-to-peer
channels with (td, tm)-asynchrony and the second round communication is over
synchronous broadcast and peer-to-peer channels.

Proof. We use the same function fmot used in the proof of Theorem 1. Towards a
contradiction, we assume a PubP2P-BC, SA, CRS protocol Π with n ≤ t+td+tm

securely computing fmot exists, whose first-round communication is over public
peer-to-peer channels with (td, tm)-asynchrony and second-round communication
is over synchronous broadcast and peer-to-peer channels.

Consider a partition of the parties into three disjoint sets A, B and C, where
|A| = tm, |B| = td, and |C| = t, respectively. Consider an execution of Π where
the adversary passively corrupts the t parties in C and schedules the messages
in the first round so that no messages from B are delivered to A.

The correctness of Π (which must hold as everyone including the passively
controlled parties behaved honestly) dictates that this execution must result in
output computation. Note that the second-round messages of parties in A do
not depend on the first-round messages of parties in B (as parties in A did
not receive any first-round messages from parties in B). It is now easy to see
that all the conditions of Corollary 3 are satisfied. It now directly follows from
Corollary 3 that Π cannot securely compute fmot, completing the proof.
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2.2 Upper Bounds

With PKI. In this section, we present two upper bounds for the setting where
a PKI is available, the first-round communication is over peer-to-peer chan-
nels with (td, tm)-asynchrony, and the second-round communication is over syn-
chronous peer-to-peer and broadcast channels.

An important tool in our constructions is one-or-nothing secret sharing, intro-
duced in Damg̊ard et al. [10], which we describe briefly below.

One-or-Nothing Secret Sharing (1or0). One-or-nothing secret sharing is a special
kind of secret sharing that allows a dealer to share a vector of secrets. As the
name suggests, at most one among these secrets is eventually reconstructed.
Once the shares are distributed, each receiver votes on the index of the value to
reconstruct by producing a “ballot”. If the receiver is unsure which index to vote
for, she can publish a special equivocation ballot instead. Damg̊ard et al. define
a non-interactive variant of such a secret sharing, which supports parties being
able to vote even if they have not received the shares. Informally, the properties
required from a one-or-nothing secret sharing scheme are as follows.

δ-Correctness. This property requires that if at least δ parties produce
their ballot using the same index v (and the rest produce their ballot with
⊥ i.e. the special equivocation ballot), then the secret at index v is recon-
structed.
Privacy. If no honest party produced their ballot using v, then the adversary
learns nothing about the secret at index v.
Contradiction-privacy. If two different honest parties produce their bal-
lots using different votes (i.e. vote for different indices), then the adversary
learns nothing at all.

While the definition in Damg̊ard et al. defined correctness with respect to
δ = n − t, we consider a more general version of the same to adapt it to our
setting with (td, tm)-asynchrony. Their work presents a construction of a non-
interactive one-or-nothing secret sharing scheme with (n − t)-correctness when
n > 2t. We observe that, more generally, the same construction (with a minor
tweak) serves as a non-interactive one-or-nothing secret sharing scheme with δ-
correctness when δ > t holds. We defer the formal details of this construction to
the full version [12].

Looking ahead, in our upper bounds, we use a non-interactive one-or-nothing
secret sharing scheme with (1) (n − t − tm)-correctness when n > 2t + tm, and
(2) (n − tm)-correctness when n > t + tm.
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Protocol Overview of P2P-BC, ID, PKI, 2t < n [10]. Since both our upper
bounds are constructed by slight modifications to the fully synchronous P2P-
BC, ID, PKI, 2t < n construction of Damg̊ard et al., we give an overview of
their construction below (we refer to [10] for the formal description). Their work
presents a compiler that transforms a fully synchronous BC-BC, ID, PKI pro-
tocol Πbc to a fully synchronous P2P-BC, ID, PKI, 2t < n protocol Πp2pbc.
The following steps are executed in Πp2pbc: In the first round over synchronous
peer-to-peer channels, the parties send their first-round message of Πbc along
with a signature to each of their peers. In the second round (over broadcast),
the parties do the following:

1. Compute and broadcast a garbling of their next-message function (that has
hardcoded input and randomness of a party, takes as input the first-round
messages of Πbc from all parties and computes the second-round message of
the party according to Πbc);

2. Use the non-interactive 1or0 scheme with (n − t)-correctness to share all the
input labels for their garbled circuit;

3. Based on the first-round messages received, “vote”4 for which labels to recon-
struct corresponding to everyone’s garbled circuit (vote for ⊥ in case no or
invalid first-round message was received);

4. Compute a zero-knowledge proof to prove correctness of the actions taken in
the second round; and

5. Echo all the first-round messages of Πbc with the corresponding signatures
received from the other parties in the first round.

During output computation, parties first verify the zero-knowledge proofs and
signatures and catch the relevant party in case anyone’s proof fails or there exist
distinct first-round messages with valid signatures from the same party. They
then proceed to reconstruct the appropriate labels of the garbled circuits of all
parties. A party Pi is blamed if the reconstruction of the label corresponding to
her first-round message fails. If all the labels are reconstructed successfully, the
parties proceed to evaluating the garbled circuits and obtain the second round
messages of Πbc for all parties; which is subsequently used to obtain the output.

Intuitively, the protocol achieves identifiable abort when n > 2t. This is
because, to avoid being caught, a corrupt party needs to send her first-round
message with a valid signature to at least one honest party (otherwise n − t > t
parties would claim to have a conflict with her and she would be implicated).
Further, she cannot afford to send different first-round messages to different hon-
est parties with valid signatures (otherwise the contradictory signatures would
implicate her). Contradiction privacy of one-or-nothing secret sharing ensures
that in such a case the adversary does not learn any of the labels. Next, the
zero-knowledge proof in the second round ensures that every corrupt party gar-
bles and shares its garbled circuit labels correctly. Lastly, if no party is caught,

4 Note that the one-or-nothing secret sharing is non-interactive; thereby “share” and
“vote” can be executed in the same round.
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it must hold each party’s first-round message is echoed by at least (n − t) par-
ties who would vote accordingly. The (n− t)-correctness of one-or-nothing secret
sharing ensures that in such a case, exactly one label from each label pair is
reconstructed, which enables the underlying protocol Πbc to be carried out.

Adapting to (td, tm) asynchrony. We note that when the first-round communica-
tion is over peer-to-peer channels with (td, tm)-asynchrony, we can implicate a
party as being a cheater only if her message is echoed by fewer than n−t−tm par-
ties (this ensures that an honest party whose first round message may be dropped
to tm honest parties and t corrupt parties may pretend to have not received her
first-round message sent over peer-to-peer channels is not implicated). Therefore,
to ensure that reconstruction is successful when no one is identified, we require a
one-or-nothing secret sharing with (n − t − tm)-correctness instead, for our con-
struction with IA. For our construction with UA, we require (n−tm)-correctness
to ensure output computation when everyone behaves honestly (because in such
a case, an honest party’s message may be echoed by only (n − tm) parties). We
state the formal theorems below and defer their proofs to the full version [12].

Theorem 7. (P2P-BC, IA, PKI, 2t + tm < n). Let f be an efficiently com-
putable n-party function and let 2t + tm < n. Let Πbc be a BC-BC, ID, PKI
protocol that securely computes f with the additional constraint that the straight-
line simulator can extract inputs from corrupt parties’ first-round messages.
Assume the existence of a secure garbling scheme, digital signature scheme,
non-interactive one-or-nothing secret sharing scheme [10], non-interactive key
agreement scheme and non-interactive zero-knowledge proof system. Then, there
exists a P2P-BC, ID, PKI protocol that securely computes f over two rounds,
the first of which is over peer-to-peer channels with (td, tm)-asynchrony, and the
second of which is over a synchronous broadcast and peer-to-peer channel.

Theorem 8. (P2P-BC, UA, PKI, t + tm < n). Let f be an efficiently com-
putable n-party function and let t + tm < n. Let Πbc be a BC-BC, UA, PKI pro-
tocol that securely computes f with the additional constraint that the straight-line
simulator can extract inputs from corrupt parties’ first-round messages. Assume
the existence of a secure garbling scheme, non-interactive one-or-nothing secret
sharing scheme [10], non-interactive key agreement scheme and non-interactive
zero-knowledge proof system. Then, there exists a P2P-BC, UA, PKI protocol
that securely computes f over two rounds, the first of which is over peer-to-peer
channels with (td, tm)-asynchrony, and the second of which is over synchronous
broadcast and peer-to-peer channels.

Without PKI, Without Private Channels, from One-or-Nothing
Secret Sharing with Intermediaries. In this section, we present two con-
structions for the CRS setting where the first-round communication is over public
peer-to-peer channels with (td, tm)-asynchrony and the second round communi-
cation is over synchronous peer-to-peer and broadcast channels. In contrast to
the obfuscation-based constructions in the full version [12], these can be built
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from standard assumptions and for any polynomial number of parties. However,
the bounds on t, td and tm they achieve are looser.

An important tool in our constructions is one-or-nothing secret sharing with
intermediaries, introduced in Damg̊ard et al. [11], which we describe briefly
below. (It is somewhat different from one-or-nothing secret sharing, which we
used in our upper bounds with PKI; we’ll elaborate on the differences below.)
One-or-Nothing Secret Sharing (1or0wi). Similar to the one-or-nothing secret
sharing scheme with PKI (1or0) described in Sect. 2.2, 1or0wi is a kind of secret
sharing that allows a dealer to share a vector of secrets, among which at most
one is eventually reconstructed. Each share recipient is allowed to ‘vote’ for the
index she wishes to reconstruct or abstain from voting. When a PKI is absent,
it becomes more difficult to establish verifiable/reliable communication from the
dealer to an intended share recipient. To address this concern, 1or0wi relies
on a set of intermediaries to enable this share transfer. We recall (informally)
the properties required from a one-or-nothing secret sharing with intermediaries
scheme below.

ε-privacy: Informally, this property requires that when fewer than ε honest
parties produce their ballot using the same index v, then the adversary learns
nothing about the secret at index v.
α-identifiability: Informally, this property requires that when at least α
parties produce their ballot using the same v, either the secret at index v is
reconstructed or a corrupt party is identified.
β-correctness: Informally, this property requires that when all algorithms
are executed honestly, if at least β parties produce their ballot using the same
v, the secret at index v is reconstructed.
While the definition in Damg̊ard et al. [11] defined privacy with respect to

ε = n−2t and identifiability with respect to α = n−t, we consider a more general
version of the same to adapt it to our setting with (td, tm)-asynchrony. Further-
more, Damg̊ard et al. does not consider correctness explicitly, as β-correctness
is implied by β-identifiability (since it corresponds to the case when there are no
cheaters). However, we consider the correctness property since it is useful in one
of our constructions where identifiability is not required. At a very high-level,
for our IA upper bound, we first show how the construction of 1or0wi in [11]
can be modified to achieve (n − tm − t)-identifiability and (n − 2t − tm)-privacy
when n > 3t + tm + td and n > 3t + 2tm. Next, we observe that plugging in
this (malicious secure) 1or0wi with modified parameters of privacy and iden-
tifiability in the compiler of [11] yields P2P-BC IA upper bounds tolerating
(td, tm)-asynchrony in the first round for certain range of thresholds. Similarly,
for our UA upper bound, we first show how the construction of 1or0wi in [11]
can be modified to achieve (n − tm)-correctness and (n − t − tm)-privacy when
n > t + tm + td and n > t + 2tm. Next, we observe that plugging in this (mali-
cious secure) 1or0wi with modified parameters of privacy and correctness in the
compiler of [11] yields P2P-BC UA upper bounds tolerating (td, tm)-asynchrony
in the first round for certain range of thresholds. We elaborate on these results
in the full version [12].
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Abstract. Pairings are useful tools in isogeny-based cryptography and
have been used in SIDH/SIKE and other protocols. As a general tech-
nique, pairings can be used to move problems about points on curves
to elements in finite fields. However, until now, their applicability was
limited to curves over fields with primes of a specific shape and pair-
ings seemed too costly for the type of primes that are nowadays often
used in isogeny-based cryptography. We remove this roadblock by opti-
mizing pairings for highly-composite degrees such as those encountered
in CSIDH and SQISign. This makes the general technique viable again:
We apply our low-cost pairing to problems of general interest, such as
supersingularity verification and finding full-torsion points, and show
that we can outperform current methods, in some cases up to four times
faster than the state-of-the-art. Furthermore, we analyze how pairings
can be used to improve deterministic and dummy-free CSIDH. Finally,
we provide a constant-time implementation (in Rust) that shows the
practicality of these algorithms.

1 Introduction

In the event that quantum computers break current cryptography, post-quantum
cryptography will provide the primitives required for digital security. Isogeny-
based cryptography is a field with promising quantum-secure schemes, offering
small public keys in key exchange (CSIDH [9]), and small signatures (SQISign
[17]). The main drawback of isogeny-based cryptography is speed, as it requires
heavy mathematical machinery in comparison to other areas of post-quantum
cryptography. In particular, to ensure security against real-world side-channel
analysis, the requirements for constant-time and leakage-free implementations
cause a significant slowdown. Trends in current research in isogenies are, there-
fore, looking at new ideas to improve constant-time performance [1,2,6,10–
12,21,30,31,33], and analyzing side-channel threats [3,7,8,25].
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graphic Research Centre of the Technology Innovation Institute, Abu Dhabi, UAE.
In particular, the author thanks Francisco Rodŕıguez-Henŕıquez and Michael Scott for
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Surprisingly, although pairings were initially considered in SIDH and SIKE
to improve the cost of key compression [14,15], they have received little attention
for optimizing CSIDH or later isogeny-based protocols. There are clear obstruc-
tions that heavily affect the performance of pairings: we have no control over
the Hamming weight of p for the base fields (in CSIDH or SQISign), we are
likely to compute pairings of highly-composite degree, and many optimizations
in the pairing-based literature require different curve models than the ones we
consider in isogeny-based cryptography. Nevertheless, the field of pairing-based
cryptography is rich in ideas and altogether many small improvements can make
pairings efficient even for unpractical curves. As a general technique, we can use
pairings to analyze certain properties of points on elliptic curves by a pairing
evaluation as elements of finite fields. In this way, a single pairing can be used to
solve a curve-theoretical problem with only field arithmetic, which is much more
efficient. Hence, even a relatively expensive pairing computation can become
cost-effective if the resulting problem is much faster to solve “in the field” than
“on the curve”.

Our Contributions. Our main contribution is combining an optimized pairing
with highly-efficient arithmetic in μr ⊆ F

∗
p2 to solve isogeny problems faster. To

achieve this, we first optimize the pairing and then apply this low-cost pairing
to move specific problems from curves to finite fields. Specifically,

1. we optimize pairings on supersingular curves: in Miller’s Algorithm, we first
reduce the cost of subroutines Dbl and Add and then reduce the total number
of subroutines using non-adjacent forms and windowing techniques.

2. we analyze the asymptotic and concrete cost of single and multi-pairings, in
particular for supersingular curves over p512 (the prime used in CSIDH-512).

3. we apply these low-cost pairings to develop alternative algorithms for super-
singularity verification, verifying full-torsion points, and finding full-torsion
points, using highly-efficient arithmetic available for pairing evaluations.

4. we discuss the natural role these algorithms have when designing ‘real-world’
isogeny-based protocols, in particular, CSIDH-variants that are deterministic
and secure against side-channel attacks.

5. we provide a full implementation of most of these algorithms in Rust, following
the “constant-time” paradigm, that shows such algorithms can immediately
be used in practice to speed up deterministic variants of CSIDH.
Our implementation is available at:

https://github.com/Krijn-math/EPIC

Related Work. This work can partly be viewed as a natural follow-up to [6,
10,11], works that analyze CSIDH as a real-world protocol, that is, removing
randomness and dummy operations. Independent work by Lin, Wang, Xu, and
Zhao [26] applies pairings to improve the performance of SQISign [17]. This
shows the potential of pairings in isogeny-based cryptography and we believe
this work can contribute to improving performance even further.

https://github.com/Krijn-math/EPIC
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2 Preliminaries

Notation. Throughout, p denotes a large prime used with the base field Fp, and
quadratic extension Fp2 , realized as Fp(i) with i2 = −1. Both � and �i denote
a small odd prime that divides p + 1. A (supersingular) elliptic curve EA is
assumed to be in Montgomery form

EA : y2 = x3 + Ax2 + x, A ∈ Fp,

although our work also applies to other curve forms (most notably Edwards). μr

denotes the set of r-th roots in F
∗
p2 . In particular, μp+1 can be seen as F

∗
p2/F∗

p,
the elements in Fp2 of norm 1, and μr for r | p + 1 is a subgroup of μp+1.

Finite field operations are denoted as M for multiplications, S for squarings,
and A for additions. Inversions (I) and exponentiation (E) are expressed in M,
S and A as far as possible. We use a cost model of 1S = 0.8M and 1A = 0.01M
to compare performance in terms of finite field multiplications.

2.1 Isogeny-Based Cryptography

This work deals with specific problems in isogeny-based cryptography. We assume
a basic familiarity with elliptic curve arithmetic, e.g. Montgomery ladders and
addition chains. A great introduction is given by Costello and Smith [16].

The Prime p. We specifically look at supersingular elliptic curves over Fp,
where p = h · ∏n

i=1 �i − 1, with h is a suitable cofactor and the �i are small odd
primes. We refer to these �i as Elkies primes [9]. We denote the set of Elkies
primes as Lχ

1 and write �χ =
∏

�i∈Lχ
�i. Hence, log p = log h + log �χ. If h is

large, the difference in bit-size between �χ and p + 1 can be significant, and this
can impact performance whenever an algorithm takes either log �χ or log p steps.
For p512, h is only 4 and so we do not differentiate between the two.

Torsion Points. Let E be a supersingular elliptic curve over Fp, then E has
p + 1 rational points. Such points P ∈ E(Fp) therefore have order N | p + 1.
When �i | N , we say P has �i-torsion. When P is of order p + 1, we say P is
a full-torsion point. The twist of E over Fp is denoted by Et, and Et is also
supersingular. Rational points of Et can also be seen as Fp2 -points in E[p + 1]
of the form (x, iy) for x, y ∈ Fp. Using x-only arithmetic, we can do arithmetic
on both E(Fp) and Et(Fp) using only these rational x-coordinates.

CSIDH. We briefly revisit CSIDH [9] to show where full-torsion points appear,
and refer to [9,31,33] for more details. CSIDH applies the class group action of
Cl(O) on supersingular elliptic curves EA over Fp whose rational endomorphism
ring Endp(EA) ∼= O to create a non-interactive key exchange. Given a starting

1 pronounced “ell-kie”.
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curve E0, Alice’s private key is an ideal class [a] ∈ Cl(O) and her public key
is EA := a ∗ E0, and equivalent for Bob with [b] and EB := b ∗ E0. Both can
derive the shared secret EAB := a ∗ EB = b ∗ EA, given only the other’s public
key. In reality, we cannot sample random ideal classes [a] ∈ Cl(O). Instead, we
generate a as a product of small ideals li = (�i, π − 1) and l−1

i = (�i, π + 1) (the
decomposition of (�i) into prime ideals), e.g., a :=

∏
lei
i , where the ei are secret.

Evaluating a∗E is done by the factorization of a into li, where each l±1
i can be

evaluated using Vélu’s formulas [41] if we have a point P ∈ ker(π±1)∩E[�i]. This
requirement comes down to P being a rational point of order �i, with πP = P ,
hence P ∈ E(Fp) and l+1

i ∗ E is evaluated as E → E/〈P 〉, or πP = −P , hence
P lives on the twist Et and l−1

i ∗ E is evaluated as Et → Et/〈P 〉.
By sampling random points P ∈ E(Fp) and Q ∈ Et(Fp) of order �i, we can

use the right scalar multiple of either P or Q to compute the action of li resp.
l−1
i whenever �i divides Ord(P ) resp. Ord(Q). The original points P and Q can
then be pulled through the isogeny and used again as a new set of points on the
co-domain [9,31,33]. By repeating this procedure and sampling new points P,Q
when necessary, we compute the full action of a ∗ E. As P and Q are sampled
randomly, they have probability �i−1

�i
that �i divides their order.

Deterministic CSIDH. The probabilistic nature of the evaluation of a ∗ E,
stemming from the random sampling of points P,Q, causes several issues, as
randomness makes constant-time implementations difficult [1,6,11], leaks secret
information through physical attacks [3], and requires a good source of entropy,
which can be expensive or difficult on certain devices.

One way to avoid this random nature of a ∗ E is to ensure that both P and
Q are full-torsion points, e.g., we have Ord(P ) = Ord(Q) = p+1. For a point P
that is not a full-torsion point, we say P misses some torsion �i and we denote
the missing torsion for P by Miss(P ). Note that Miss(P ) · Ord(P ) = p + 1. By
restricting coefficients ei to {−1,+1}, CSIDH implementations avoid randomness
and dummy operations [6,10,11].

2.2 Building Blocks in Isogeny-Based Cryptography

We list several general routines in isogeny-based cryptography that will be ana-
lyzed in more detail in later sections. These routines are posed as general prob-
lems, with their role in CSIDH specified afterward.

1. Finding the order of a point: Given P ∈ E(Fp), find the order Ord(P ).
2. Verifying supersingularity: Given A ∈ Fp, verify EA is supersingular.
3. Verifying full-torsion points: Given two points P ∈ E(Fp), Q ∈ Et(Fp) verify

P and Q are full-torsion points.
4. Finding full-torsion points: Given a curve EA, find two full-torsion points

P ∈ E(Fp) and Q ∈ Et(Fp).

It is easy to see that these problems are related. For example, verifying super-
singularity is usually done by verifying that EA has order p+1, by showing that
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there is a Fp-rational point of order N ≥ 4
√

p. This implies N | #EA(Fp) and
hence we must have #E(Fp) = p+1 as p+1 is the only possible remaining value
in the Hasse interval.

All variants of CSIDH use a supersingularity verification in order to ensure
a public key EA is valid. dCSIDH [6] includes full-torsion points (P,Q) in the
public key to speed up the shared-secret computation. This requires finding full-
torsion points in key generation and, given the public key, verifying such points
(P,Q) are full-torsion before deriving the shared secret.

2.3 Pairing-Based Cryptography

One of the goals in pairing-based cryptography is to minimize the cost of com-
puting a Weil or Tate pairing. We assume a basic familiarity with pairings up to
the level of Costello’s tutorial [13]. Other great resources are Galbraith [19] and
Scott [36]. We focus only on the reduced Tate pairing, as it is more efficient for
our purposes. We build on top of the fundamental works [4,5,32,42].

The Reduced Tate Pairing. In this work, we are specifically focused on the
reduced Tate pairing of degree r for supersingular elliptic curves with embedding
degree k = 2, which can be seen as a bilinear pairing

er : E[r] × E(Fp2)/rE(Fp2) → F
∗
p2/(F∗

p2)r.

In the reduced Tate pairing, the result ζ = er(P,Q) is raised to the power
k = (p2 − 1)/r, which ensures ζk is an r-th root of unity in μr. In this work,
we want to evaluate the Tate pairing on points P ∈ E(Fp) and Q ∈ Et(Fp) of
order r. For supersingular curves over Fp and r | p + 1, such points generate all
of E[r]. From the point of view of pairings, E(Fp) is the base-field subgroup and
Et(Fp) is the trace-zero subgroup of E[p+1]. Using the bilinear properties of the
Tate pairing, we can compute er(P,Q) from its restriction to E(Fp) × Et(Fp).

Computing the Tate Pairing. There are multiple ways to compute the Tate
pairing [27,28,32,39]. Most implementations evaluate er in three steps.

1. compute the Miller function frP , satisfying div(frP ) = r(P ) − r(O),
2. evaluate frP on an appropriate divisor DQ,
3. raise frP (DQ) to the appropriate power, p2−1

r , i.e., er(P,Q) = frP (DQ)p−1.

In practice, frP is a function in x and y of degree r, where r is cryptograph-
ically large, and therefore infeasible to store or evaluate. Miller’s solution is a
bitwise computation and direct evaluation of frP on DQ to compute frP (DQ)
in log(r) steps. By the work of Barreto, Kim, Lynn, and Scott [4, Theorem 1],
we are in the fortunate situation that we can choose DQ = Q. The Hamming
weight of r is a large factor in the cost of computing frP (Q) as a single step in
Miller’s loop takes close to twice the computational cost if the bit is 1. For our
purposes, r = p+1 or r = �χ, and thus we have little control over the Hamming
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weight of r. The last step is also known as the final exponentiation. Algorithm 1
describes Miller’s Algorithm before applying any optimizations, where lT,T and
lT,P denote the required line functions (see [13, § 5.3]). We refer to the specific
subroutines in Line 3 as Dbl and Line 5 as Add.

Algorithm 1. Miller’s Algorithm
Input: P ∈ E(Fp), Q ∈ Et(Fp), r of embedding degree k = 2, with r =

∑t
i=0 ti · 2i

Output: The reduced Tate pairing er(P, Q) ∈ μr

1: T ← P , f ← 1
2: for i from t − 1 to 0 do
3: T ← 2T , f ← f2 · lT,T (Q) // Dbl
4: if ti = 1 then
5: T ← T + P , f ← f · lT,P (Q) // Add

6: return fp−1

More generally, the value f is updated according to the formula

f(n+m)P = fnP · fmP · l

v
(1)

where l and v are the lines that arise in the addition of nP and mP .
Miller’s Algorithm uses n = m to double T = nP , or m = 1 to add T = nP
and P .

2.4 Field Arithmetic

The result of the reduced Tate pairing is a value ζ ∈ μr ⊆ F
∗
p2 of norm 1, as

it is an r-th root of unity. We require two useful algorithms from finite field
arithmetic: Lucas exponentiation and Gauss’s Algorithm to find primitive roots.

Gauss’s Algorithm. An algorithm attributed to Gauss [29, p. 38] to find
primitive roots of a certain order in a finite field is given in the full version,
specialized to the case of finding a generator α for a finite field Fq. It assumes a
subroutine Ord computing the order of any element in the finite field.

Gauss’s Algorithm is easy to implement and finds generators quickly. The
main cost is computing the orders. We can adapt Gauss’s Algorithm to elliptic
curves to find generators for E(Fp), simply by replacing the rôles of α, β by
rational points P, P ′ until P reaches Ord(P ) = p + 1. Intuitively, one could say
we “add” the torsion that P is missing using the right multiple of P ′.

Lucas Exponentiation. Lucas exponentiation provides fast exponentiation for
ζ ∈ Fq2 of norm 1. They are used in cryptography since 1996 [22] and specifically
applied to pairings by Scott and Barreto [37]. We follow their notation.
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Let ζ = a+ bi ∈ Fp2 be an element of norm 1, i.e. a2 + b2 = 1, then ζk can be
efficiently computed using only a ∈ Fp for every k ∈ N using Lucas sequences,
based on simple laddering algorithms. We denote these sequences by Vk(a) and
Uk(a) but often drop a for clarity. The central observation is

ζk = (a + bi)k = Vk(2a)/2 + Uk(2a) · bi, for ζ ∈ μp+1,

where

V0 = 2, V1 = a, Vk+1 = a · Vk − Vk−1,

U0 = 0, U1 = 1, Uk+1 = a · Uk − Uk−1.

Given Vk, we can compute Uk by (a · Vk − 2 · Vk−1)/(a2 − 4). An algorithmic
description is given in [37, App. A]. For this work, we only require the value of
Vk(2a). As such, exponentiation of norm-1 elements is much more efficient than
general exponentiation in F

∗
p2 : the former requires 1S+1M per bit of k, whereas

the latter requires roughly 2S+ 5
2M per bit of k, assuming the Hamming weight

of k is log(k)/2. In our cost model, this is an almost 60% improvement. We
denote the cost of exponentiation per bit for norm-1 elements by CLucas.

This arithmetic speed-up is key to the applications in this work: as the
required pairings have evaluations of norm 1, we can apply Lucas exponentiation
to the results to get very fast arithmetic. In comparison to x-only arithmetic on
the curve, we are between five and six times faster per bit. Hence, if the cost of
the pairing is low enough, the difference in cost between curve arithmetic and
Lucas exponentiation is so large that it makes up for the cost of the pairing.

3 Optimizing Pairings for Composite Order

In this section, we apply several techniques to decrease the cost of
Miller’s Algorithm, specifically for pairings of degree r | p + 1, and points
P ∈ E(Fp), Q ∈ Et(Fp), with E supersingular and p = h · �χ − 1. This is
a different scenario than pairing-based literature usually considers: we have no
control over the Hamming weight of p+1, and we compute pairings of composite
degree.

We first give an abstract view and then start optimizing Miller’s Algorithm.
In Sect. 3.2, we decrease the cost per subroutine Dbl/Add with known optimiza-
tions that fit our scenario perfectly. In Sect. 3.3, we decrease the number of
subroutines Dbl/Add using non-adjacent forms and (sliding) window techniques,
inspired by finite field exponentiation and elliptic curves scalar multiplication.

3.1 An Abstract View on Pairings

Silverman [38], views the reduced Tate pairing as a threefold composition

E[r] → Hom(E[r], μr) → F
∗
p2/F

∗,r
p2

z �→z(p2−1)/r

−−−−−−−−→ μr(Fp2) (2)



116 K. Reijnders

similar to the one described in Sect. 2.3. Namely, for r = p + 1, we can reduce
the first map to E(Fp) → Hom(Et(Fp), μr) to get

Ψ : E(Fp) → Hom(Et(Fp), μr), P �→ er(P,−),

which can be made concrete as the Miller function P �→ frP . By composing
with its evaluation on Q, we get frP (Q) = er(P,Q) (unreduced). To frP (Q), we
apply the final exponentiation z �→ z(p

2−1)/r. In the case of r = p + 1, we thus
get the reduced Tate pairing ep+1(P,Q) as ζ = f(p+1)P (Q)p−1.

From this point of view, identifying full-torsion points P ∈ E(Fp) is equiva-
lent to finding points P that map to isomorphisms frP ∈ Hom(Et(Fp), μr). We
make this precise in the following lemma.

Lemma 1. Let E be a supersingular curve over Fp. Let P ∈ E(Fp) and r = p+1.
Then frP as a function Et(Fp) → μr has kernel

ker frP = {Q ∈ Et(Fp) | Ord(P ) divides Miss(Q)}.

Hence, | ker frP | = Miss(P ). Thus, if P generates E(Fp), the kernel is trivial.

Proof. See full version.

Note that, given a full-torsion point P ∈ E(Fp), we can thus identify full-
torsion points Q ∈ Et(Fp) as points where er(P,Q) is a primitive root in μr. In
light of Lemma 1, we can try to tackle the routines sketched in Sect. 2.2 using
properties of frP , frP (Q) and ζ = frP (Q)p−1. For example, we can find ker frP

by evaluating frp on multiple points Qi, and finding the orders of the resulting
elements ζi. In the language of pairing-based cryptography, we compute multiple
pairings er(P,Qi) for the same point P . Hence, we need to minimize the cost of
several evaluations of the Tate pairing for fixed P but different points Qi.

3.2 Reducing the Cost per Subroutine of Miller’s Loop

We now optimize the cost per Dbl and Add in Miller’s Algorithm. We assume
that P ∈ E(Fp) is given by Fp-coordinates xP , yP ∈ Fp, and Q ∈ Et(Fp) can be
given by Fp-coordinates xQ, yQ ∈ Fp (we implicitly think of Q as (xQ, i · yQ)).

Some of these techniques were used before in SIDH and SIKE [14,15], in a
different situation: in SIDH and SIKE, these pairings were specifically applied
for p = 2e2 · 3e3 − 1, whereas we assume p = h · �χ − 1. Thus, we have much more
different �i | p + 1 to work with, and we cannot apply most of their techniques.

Representations. For T , we use projective coordinates to avoid costly inver-
sions when doubling T , adding P and computing �T,T and �T,P . For Q, as we
only evaluate Q in �T,T and �T,P , we leave Q affine. f = a + bi is an Fp2 -value
represented projectively as (a : b : c), with a, b, c ∈ Fp and c as the denominator.
Although x-only pairings exist [20], they seem unfit for this specific scenario.
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The Final Exponentiation. As established before, after computing frP (Q) ∈
Fp2 we perform a final exponentiation by p−1. This is beneficial for two reasons:

1.) Raising to the power p is precisely applying Frobenius π : z �→ zp in Fp2 ,
and so π : a + bi �→ a − bi. Hence we can compute z �→ zp−1 as z �→ π(z)

z .
The Frobenius part is ‘free’ in terms of computational cost. In Fp2 , z �→ z−1 is
simply (a + bi)−1 = (a−bi)

a2+b2 . Hence, the Fp-inversion of a2 + b2 is the dominating
cost of the final exponentiation. In constant-time, this costs about log p multipli-
cations. When a and b are public, we use faster non-constant-time inversions. In
comparison to prime pairings, this final exponentiation is surprisingly efficient.

2.) Raising z to the power p−1 for Fp2 -values gives the same as α ·z for α ∈ F
∗
p,

as (α · z)p−1 = αp−1 · zp−1 = zp−1. Hence, when we compute frP (Q) ∈ Fp2 ,
we can ignore or multiply by Fp-values [4], named ”denominator elimination”
in pairing literature. That is, we ignore the denominator c in the representation
(a : b : c) of f in the Miller loop, and similarly in evaluating lT,T (Q) and lT,P (Q),
saving several Fp-operations in Dbl/Add

Reusing Intermediate Values. In Dbl, computing T ← 2T shares many val-
ues with the computation of lT,T and in Add computing T ← T +P shares values
with lT,P . Reusing such values saves again several Fp-operations in Dbl/Add.

Improved Doubling Formulas. As shown in [16, §4.1], the subroutine Dbl
in Miller’s Algorithm is more efficient when using a projective representation of
T ∈ E(Fp) as (X2,XZ,Z2, Y Z), although this requires a slight adjustment of
the formulas used in Add. Overall, this reduces the cost for Dbl to 5S+15M and
the cost for Add becomes 4S + 20M, for an average of 7S + 25M per bit.

3.3 Reducing the Number of Subroutines in the Miller Loop

Next to reducing the cost for a single Dbl/Add, we apply techniques to reduce
the total number of Adds. Usually in pairing-based cryptography, we do so by
using primes p of low Hamming weight. Here we do not have this freedom, thus
we resort to techniques inspired by exponentiation in finite fields.

Non-adjacent Form. With no control over the Hamming weight of p + 1,
we assume half of the bits are 1. However, in Miller’s Algorithm, it is as easy
to add T ← T + P as it is to subtract T ← T − P (which we denote Sub),
with the only difference being a negation of yP . Hence, we use non-adjacent
forms (NAFs [34]) to reduce the number of Add/Subs. A NAF representation
of p + 1 as

∑n
i=0 ti · 2i, ti ∈ {−1, 0, 1}, reduces the Hamming weight from

log(p)/2 to log(p)/3, and thus decrease the number of expensive Add/Subs in
Miller’s Algorithm by log(p)/6. We get an average cost of 6 1

3S+ 212
3M per bit,

a saving of about 10%.
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Algorithm 2 gives a high-level overview of the Miller loop with the improve-
ments so far, for general p. Note that, as the output ζ ∈ Fp2 will have norm 1,
we only require the real part of ζ. See the full version for the specific algorithms
Dbl, Add and Sub, which are implemented in bignafmiller.rs.

Algorithm 2. Miller’s algorithm, using NAFs
Input: xP , yp, xQ, yQ ∈ Fp, p + 1 =

∑t
i=0 ti · 2i

Output: The real part of er(P, Q) ∈ μp+1

1: T = (X2, XZ, Z2, Y Z) ← (x2
P , xP , 1, yP )

2: f ← (1, 0)
3: for i from t − 1 to 0 do
4: (T, f) ← Dbl(T, f, xQ, yQ)
5: if ti = 1 then
6: (T, f) ← Add(T, f, xP , yP , xQ, yQ)

7: if ti = −1 then
8: (T, f) ← Sub(T, f, xP , yP , xQ, yQ)

9: a ← f [0], b ← f [1]

10: return a2−b2

a2+b2
// The final exponentiation

For Specific Primes. For specific primes p, such as p512, we can improve on
the NAF representation by using windowing techniques [23,24]. This allows us
to decrease even further the times we need to perform Add or Sub, at the cost
of a precomputation of several values.

In short, windowing techniques allow us to not only add or subtract P but
also multiples of P during the loop. To do so, we are required to precompute
several values, namely iP,−iP, fiP and f−iP . We need the multiples ±iP to
perform T ← T ± iP , and the line values fiP to set f ← f · f±iP · �T,iP (Q)
in Add/Sub. We first precompute the required iP in projective form, and we
keep track of fiP . We use Montgomery’s trick to return the points iP in affine
form at the cost of a single inversion and some multiplications. Using affine form
decreases the cost of T ← T ± iP during Add/Sub.

We note that iP gives −iP for free, simply by negating yiP . Furthermore,
from fiP = a+bi we can obtain f−iP as f−1

iP = a−bi
a2+b2 . However, as a2+b2 ∈ F

∗
p, we

can ignore these (thanks to the final exponentiation) and simply set f−iP = a−bi.
Altogether, these sliding-window techniques reduce the number of Add/Subs
from log(p)/3 down to about log(p)/(w + 1). See bigwindowmiller.rs for the
implementation of this algorithm.

For the prime p512, we found the optimum at a window size w = 5. This
requires a precomputation of {P, 3P, . . . , 21P}. Beyond w = 5, the cost of addi-
tional computation does not outweigh the decrease in Add/Subs. Altogether this
gives another saving of close to 10% for this prime.
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3.4 Multiple Pairing Evaluations

The previous sections attempt to optimize a single pairing er(P,Q). However, in
many scenarios, including the ones in Sect. 4, it is beneficial to optimize the cost
of multiple pairings, in particular multiple pairings er(P,Q1), . . . er(P,Qk) for
the same point P . This is known as the “one more pairing” problem in pairing
literature. We quickly sketch two methods to do so. Firstly, assuming the set
{Q1, . . . , Qk} is known in advance and we minimize the overall cost of these k
pairings. Secondly, assuming we want to compute additional pairings er(P,Qk+1)
after having already computed er(P,Q1), . . . , er(P,Qk).

Evaluating a Fixed Set Q1, Q2, . . . , Qk . Optimizing k pairings er(P,Qi) for
an already known set Q1, . . . , Qk is easy: only f depends on Qi, hence we can
easily adapt Algorithm 2 for an array of points [Q1, . . . , Qk] to keep track of a
value f (i) per Qi, and we return an array ζ(1), . . . , ζ(k). All evaluations share
(per bit) the computations of T , lT,T and lT,P . Our additional cost per extra
point Qi thus comes down to the evaluations lT,T (Qi), lT,P (Qi) and updating
f (i). In total, this is 7M per Dbl, and 5M per Add/Sub, plus 2S+ I to compute
ζ(i) given f (i) (the final exponentiation) per point Qi. See bigmultimiller.rs
for the implementation of this algorithm.

Evaluating Additional Points Q1, Q2, . . . It is more difficult when we want
to compute er(P,Q′) after the computation of er(P,Q). I.e., in some applica-
tions we compute er(P,Q) first, and, based on this evaluation, compute another
er(P,Q′). In practice, this seems to require another full pairing computation.

Scott [35] observed that one can achieve a time/memory trade-off, by dividing
Miller’s Algorithm into three distinct subalgorithms: one to compute frP , one
to evaluate frP (Qi) per Qi and one for the final exponentiation. Paradoxically,
this brings us back to the original three-step process from Sect. 2.3, where we
argued that the degree of frP is too large to store frP in full. However, Scott
notes, frP (Q) can be computed from the set of all line functions lT,T and lT,P

and Q. Up to Fp-invariance, all such line functions l can be written as

l(x, y) = λx · x + λy · y + λ0, λi ∈ Fp,

and we get a line function per Dbl, Add, and Sub. Thus, at a memory cost of

(log(p) + 1/3 log(p))
︸ ︷︷ ︸

#subroutines

· 3 · log(p)
︸ ︷︷ ︸
bits per l

= 4 · log(p)2

(the factor 1/3 can be decreased using windowing) we can store a representation
of frP as an array of line functions. Hence, we can split up Algorithm2 into three
subroutines Construct, Evaluate, and Exponentiate, which coincide precisely with
the decomposition of the Tate pairing given in Eq. (2). We refer to the compo-
sition of these subalgorithms as Scott-Miller’s algorithm. See the full version for
an algorithmic description.
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3.5 Summary of Costs

We summarize Sect. 3 in terms of Fp-operations for pairings of degree r = p + 1.

General primes.Miller’s Algorithm has log p steps and each step performs 1
Dbl. Using the techniques from Sect. 3.3 decreases the number of Add/Subs2:

1. each Dbl costs 15M + 5S + 7A, we always perform log p Dbls
2. each Add or Sub costs 20M + 4S + 9A,

(a) in a näıve approach, we perform 1
2 log p Adds and Subs

(b) using NAFs, we perform 1
3 log p Adds and Subs

(c) using windowing, we perform 1
w+1 log p Adds and Subs

For CSIDH-512. For p512, Table 1 gives the number of Fp-operations to com-
pute a pairing, and shows the effectiveness of the optimizations: a reduction of
40% compared to unoptimized pairings.

Table 1. Concrete cost of the Miller loop for p512 for a pairing of degree r = p + 1.
‘Total’ gives the number of Fp-operations, with cost model 1S=0.8M and 1A=0.01M.

M S A Total

Original Miller’s Algorithm 28498 2621 39207 30987

Optimized step (Sect. 3.2) 12740 3569 12230 15717

Using NAFs (Algorithm 2) 11152 3254 11125 13866

Using windows (w = 5) 9963 2960 10592 12436

Additional pairing 4410 2 5704 4468

For an additional pairing, if the points are known beforehand, we require only
slightly more memory cost for each additional pairing. If we need to compute a
multipairing for variable points, this takes 4 · log(p)2 bits of memory to store the
representation of frP , using Scott-Miller’s algorithm (Sect. 3.4).

Remark 1. In Table 1, we consider the cost for a pairing of degree r = p + 1. An
alternative for primes p = h · �χ − 1 with large cofactor h is to consider pairings
of degree r = �χ on E[�χ]. In many applications, such as [6], this contains all the
necessary torsion information needed. The loop, then, has log �χ = log p − log h
steps. The cost of such a pairing can be deduced from the given estimates.

4 Applications of Pairings to Isogeny Problems

In this section, we apply the optimized pairing from Sect. 3 to the isogeny prob-
lems described in Sect. 2.1. The core design idea is clear: the pairing is now
cheap enough to move isogeny problems from curves to finite fields, where we
have highly efficient Lucas exponentiation.

2 These techniques are inspired by finite field exponentiation and scalar multiplication,
and have been analyzed previously for pairing-based cryptography [23,24].
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4.1 Verification of Full-Torsion Points

We start with the following problem: Given P ∈ E(Fp) and Q ∈ Et(Fp), verify
both points have full-torsion, for a supersingular curve E over Fp

3.

Current Methods. Current methods to verify full-torsion points compute
[p+1

�i
]P �= O to conclude p has �i-torsion for every �i | p + 1 and hence is a

full-torsion point. In a näıve way, this can be done per �i for the cost of a scalar
multiplication of size log p, using either Montgomery ladders or differential addi-
tion chains, at a total complexity of O(n log p). Concretely, this comes down to
a cost of Ccurve · n log p where Ccurve is the cost of curve arithmetic per bit.

Using product trees this drops down to O(log n log p), taking O(log n) space.
Product-tree-based order verification is the method used [6] to verify a given
basis (P,Q). For both P and Q, this comes down to 2 · Ccurve · log n log p opera-
tions.

Torsion Bases. We can improve on the previous verification matter by two
easy observations. Firstly, whenever a pair of points P ∈ E(Fp) and Q ∈ Et(Fp)
generates all of E[p + 1] ⊆ E(Fp2), the pair (P,Q) is a torsion basis for the
(p+1)-torsion. As proposed in SIDH/SIKE [14,15], we can verify such a torsion
basis using the result that ζ = ep+1(P,Q) ∈ μp+1 must be a (p + 1)-th primitive
root in Fp2 . Secondly, this situation is ideal for our pairing: P has both rational
coordinates, and Q has rational x and purely imaginary y-coordinate. As noted
before, ζ is an element of norm 1 in Fp2 , which allows us to apply fast Lucas
exponentiation to compute ζk. The following lemma is our key building block.

Lemma 2. Let P ∈ E(Fp) and Q ∈ Et(Fp). Let ζ = ep+1(P,Q) ∈ μp+1. Then

ζ
p+1
�i �= 1 ⇔ [

p + 1
�i

]P �= O and [
p + 1

�i
]Q �= O.

Proof. This is a direct application of Lemma 1. ��
Hence, instead of verifying that both P and Q have �i-torsion, we verify

that the powers ζ
p+1
�i do not vanish. Furthermore, as ζ and its powers have

norm 1, we simply verify that Re(ζk) �= 1 which implies ζk �= 1. In terms of
Lucas sequences, this is equal to Vk(2a) �= 2 for ζ = a + bi. Per bit, Lucas
exponentiation is much more efficient than curve arithmetic, which allows us
to compute every ζ

p+1
�i (again using product trees) very efficiently at a similar

complexity O(log n log p), and a concrete cost of 1 · CLucas · log n log p4.
This approach is given in Algorithm3. Order uses a product-tree approach to

compute the order of ζ using Lucas exponentiation. See bigpairingfo.rs for
an implementation of Algorithm 3.
3 We treat finding full-torsion points in Sect. 4.3.
4 To compute using Lucas exponentiation we use a constant-time laddering approach.

Interesting future work would be to use (differential) addition chains to reduce costs.
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Algorithm 3. Verification of torsion basis
Input: P ∈ E(Fp), Q ∈ Et(Fp)
Output: True or False
1: ζ ← Re(ep+1(P, Q)), m ← Order(ζ)
2: if m = p + 1 then return True, else return False

Further Improvements. As stated before, working in μp+1 has the added
benefit that we work in same subgroup of Fp2 , independent of the curve EA.
This can be used to speed up the cost of torsion basis verification even more, at
the cost of log p additional bits next to the pair (P,Q), as follows.

The scalars Λ := Z
∗
p+1 of invertible elements in Zp+1 act faithfully and free

on both the group of full-torsion points of EA, as well as on exact primitive roots
in μp+1 ⊆ Fp2 . This means that we can write any full-torsion point T relative
to another full-torsion point T ′ as T = [λ]T ′ with λ ∈ Λ. Similarly for primitive
roots, this implies we can pick a system parameter ζ0 as the “standard” primitive
root, and can find λ ∈ Λ such that for ζ = ep+1(P,Q) we get ζ = ζλ

0 .
By including λ next to (P,Q), we do not have to verify the complete order of

ζ. Instead, we simply verify that λ ∈ Λ, compute ζ = ep+1(P,Q) and verify that
ζ = ζλ

0 which implies that ζ is an exact (p + 1)-th root of unity. Compared to
the algorithm sketched before this means that instead of O(log n log p) to verify
the order of ζ, we use a single Lucas exponentiation O(log p) to verify ζ.

Remark 2. The addition of the discrete log λ such that ζ = ep+1(P,Q) = ζλ
0

might be unnecessary depending on the specific application. Namely, for a pair
(P,Q), we get another pair (P, λ−1Q) that is a torsion basis, with

ep+1(P, λ−1Q) = ep+1(P,Q)λ−1
= ζλ−1

= ζ0.

As ζ0 is a public parameter, verification requires no extra λ. However, the choice
of P and Q might have been performed carefully, e.g. to make sure both have
small x-coordinates to reduce communication cost. It thus depends per applica-
tion if a modified torsion basis (P, λ−1Q) reduces communication cost.

Remark 3. The above algorithm not only verifies that P and Q are full-torsion
points, but includes the supersingularity verification of EA, as it shows EA has
points of order p + 1. This can be useful for applications, e.g. those in [6].

4.2 Pairing-Based Supersingularity Verification

Supersingularity verification asks us to verify that EA is a supersingular curve. A
sound analysis of the performance of different algorithms was made by Banegas,
Gilchrist, and Smith [2]. They examine (a.) a product-tree based approach to
find a point of order N ≥ 4

√
p, (b.) Sutherland’s algorithm [40] based on isogeny

volcanoes, and (c.) Doliskani’s test [18] based on division polynomials. They
conclude that Doliskani’s test is best for Montgomery models over Fp, as it
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requires only a single scalar multiplication over Fp2 of length log p followed by
log p squarings in Fp2 . The algorithms we propose resemble the product-tree
approach, but move the computation of the orders of points from the curve to
the field. There are two ways to apply the pairing approach here:

Aproach 1. Sample random points P ∈ E(Fp) and Q ∈ Et(Fp), compute
ζ = er(P,Q) for r = p + 1, and compute Ord(ζ) using a product-tree up until
we have verified Ord(ζ) ≥ 4

√
p.

Aproach 2. Divide Lχ into two lists L1 and L2 such that �(1) :=
∏

�i∈L1
�i

is slightly larger than 4
√

p. Sample again two random points P ∈ E(Fp) and
Q ∈ Et(Fp), and multiply both by p+1

�(1)
= h · �(2) so that P,Q ∈ E[�(1)]. Then,

compute the pairing of degree r = �(1) and verify that ζ ∈ μr has Ord(ζ) ≥ 4
√

p.
Approach 1 is essentially Algorithm 3, where we cut off the computation of

Ord(ζ) early whenever we have enough torsion. Approach 2 uses the fact that
we do not have to work in all of μp+1 to verify supersingularity. This reduces
the number of steps in the Miller loop by half, 1

2 log p compared to log p, but
requires two Montgomery ladders of log(p)/2 bits to kill the �(2)-torsion of P
and Q. Note that we must take L1 a few bits larger than 4

√
p to ensure with

high probability that random points P,Q have enough torsion to verify or falsify
supersingularity. In practice, the fastest approach is highly dependent on the
prime p and the number of factors �i, as well as the size of the cofactor 2k.
Approach 2 is summarized in Algorithm 4. See the folder supersingularity for
the implementations of these algorithms.

Algorithm 4. Verification of supersingularity
Input: A ∈ Fp, where p = h · �(1) · �(2) − 1
Output: True or False

1: (P, Q)
$←−− E(Fp) × Et(Fp)

2: P ← [4 · �(2)]P , Q ← [h · �(2)]Q
3: ζ ← Re(e�(1)(P, Q)), m ← Order(ζ)
4: If m ≥ 4

√
p then return True, else repeat

Remark 4. Line 4 of Algorithm 4 computes the order of ζ using product-trees
to verify (a) ζ ′ := ζ

p+1
�i �= 1 and (b) ζ ′�i = 1. At any time, if (a) holds but not

(b), the curve is ordinary. As in [9, Alg. 1], we then return False.

Remark 5. Note that in an approach where torsion points (P,Q) are given,
together with a discrete log λ, so that ep+1(P,Q) = ζλ

0 , or even the variant
where (P, λ−1Q) is given as in Remark 2, the cost of supersingularity verifi-
cation is essentially that of a single pairing computation, or that of a pairing
computation together with a Lucas exponentiation of length log λ ≈ log p. For
CSIDH-512, this beats Doliskani’s test as we will see in Sect. 4.4
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4.3 Finding Full-Torsion Points

Finding full-torsion points is more tricky. Current implementations [6,11] sim-
ply sample random points and compute their order until they find a full-torsion
point. The curve-equivalent of Gauss’s Algorithm already improves this app-
roach, yet still requires a lot of curve arithmetic. We apply pairings again to
improve performance. We specifically need Scott-Miller’s algorithm (Sect. 3.4)
to compute a variable number of pairings for a given P .

Abstract Point-of-View. From the abstract point of view, sketched in
Sect. 3.1, we want to identify a full-torsion point P as an isomorphism frP :
Et(Fp) → μr, using Lemma 1. Scott-Miller’s algorithm allows us to compute a
representation of frP and to evaluate frP efficiently on points Q ∈ Et(Fp).

Starting from random points P1 ∈ E(Fp) and Q1 ∈ Et(Fp), we compute
ζ1 := frP1(P1, Q1)p−1 and Ord(ζ1). The missing torsion m1 = Miss(ζ1) is then
equal to lcm(Miss(P ),Miss(Q))). If m1 = 1, then we know both P1 and Q1 are
full-torsion points. If m1 �= 1, we continue with a second point Q2. Compute
ζ2 and m2 = Miss(ζ2). Let d = gcd(m1,m2). If d = 1, that is, m1 and m2 are
co-prime, then P1 is a full-torsion point, and we can apply Gauss’s Algorithm
to compute a full-order point Q, given Q1 and Q2.

For d > 1, it is most likely that d = | ker frP1 | = Miss(P1), or, if unlucky,
both Q1 and Q2 miss d-torsion. The probability that both Q1 and Q2 miss d-
torsion is 1

d2 . Hence, if d is small, this is unlikely but possible. If d is a large
prime, we are almost certain P1 misses d-torsion. In the former case, we sample
a third point Q3 and repeat the same procedure. In the latter case, we use Q1

and Q2 to compute a full-torsion Q. Using Q, we compute frQ and apply the
same procedure to points Pi to create a full-torsion point P (reusing P1).

Distinguishing between these cases is highly dependent on the value of d,
which in turn depends on Lχ and p. We leave these case-dependent details to
the reader. See bigfastfinding.rs for the implementation of this algorithm.

Remark 6. One can improve on randomly sampling P1 and Q1, as we can sample
points directly in E \ [2]E [14] by ensuring the x-coordinates are not quadratic
residues in Fp. Similar techniques from p-descent might also apply for �i > 2.

4.4 Concrete Cost for CSIDH-512

We have implemented and evaluated the performance of the algorithms in Sect. 4
for p512, the prime used in CSIDH-512. Table 2 shows the performance in Fp-
operations, compared to well-known or state-of-the-art algorithms.

Verifying Torsion Points. We find that Algorithm 3 specifically for p512
takes about 19293 operations, with 12426 operations taken up by the pairing,
hence order verification of ζ using Lucas exponentiation requires only 6867 oper-
ations, closely matching the predicted cost CLucas ·log n·log p. In comparison, the
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Table 2. Concrete cost of the algorithms in this section using the prime in CSIDH-512.
‘Total’ gives the number of Fp-operations, with cost model 1S=0.8M and 1A=0.01M.

Source M S A Total

Product-tree torsion verif [6] 51318 29388 73396 75562

Pairing-based torsion verif Algorithm 3 13693 6838 18424 19293

Pairing-based (given λ) Sect. 4.1 10472 3471 11616 13364

CSIDH-Supersingularity verif [9] 13324 7628 19052 19617

Doliskani’s test [2,18] 13789 2 30642 14097

Approach 1 (pairing-based) Sect. 4.2 11081 4112 12914 14500

Approach 2 (pairing-based) Algorithm 4 9589 5801 10434 14334

currently-used method [6] to verify full-torsion points requires 75562 operations,
hence we achieve a speed-up of 75%, due to the difference in cost per bit between
Ccurve and CLucas. If we include a system parameter ζ0 and a discrete log λ, our
cost drops down to 13364 operations, increasing the speedup from 75% to 82%.

Supersingularity Verification. We find that Doliskani’s test is still slightly
faster, but our algorithms come within 2% of performance. Saving a single M or
S in Dbl or Add would push Algorithm 4 below Doliskani’s test for p512. When
we include λ, as mentioned above, we outperform Doliskani’s test by 6%.

Finding Torsion Points. Although the cost of this algorithm depends highly
on divisors �i of p + 1, heuristics for p512 show that we usually only require 2
points P1, P2 ∈ E(Fp) and two points Q1, Q2 ∈ Et(Fp), together with pairing
computations er(P1, Q1) and eR(P1, Q2) to find full-torsion points P and Q. We
leave out concrete performance numbers, as this varies too much per case.

5 Applications of Pairing-Based Algorithms

The pairing-based algorithms from Sect. 4 are of independent interest, but also
find natural applications in (deterministic) variants of CSIDH.

Applying Pairing-Based Algorithms. In all versions of CSIDH, supersingu-
larity verification is required on public keys. We estimate that, depending on the
shape and size of the prime p, either Doliskani’s test or one of the pairing-based
algorithms (Sect. 4.2) is optimal.

For deterministic variants of CSIDH [6,11], including (an Elligator seed for)
a torsion basis of EA in the public key is only natural, and this is exactly what
is proposed for the dCSIDH variant of [6]. This requires verification of such a
torsion basis. For this verification, Algorithm 3 clearly outperforms curve-based
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approaches. Furthermore, the verification of such a torsion basis also verifies the
supersingularity of EA, which would otherwise have cost an additional O(log p)
operations, using either Doliskani’s test or one of our pairing-based algorithms.

Including torsion-point information in the public key also requires a party to
find such a torsion basis in key generation. The pairing-based approach described
in Sect. 4.3 heuristically beats current approaches based on random sampling.

Constant-Time Versions. Both Algorithms 3 and 4 are easy to imple-
ment in constant-time, given constant-time curve and field arithmetic. However,
constant-time verification is usually not required, as both EA and (P,Q) should
be public.

For a constant-time approach to finding full-torsion points, a major roadblock
is finding a constant-time version of Gauss’s Algorithm. This is both mathemati-
cally interesting as well as cryptographically useful, but seems to require a better
understanding of the distribution of the x-coordinates of full-torsion points for
curves, or the (p + 1)-th primitive roots for fields.

Beyond Current Implementations. Current deterministic variants of
CSIDH [6,10,11] are limited to exponents ei ∈ {−1, 0,+1}. Going beyond such
exponents requires sampling new points during the class group action evaluation
on an intermediate curve E′. To not leak any information on E′ in a determin-
istic implementation, therefore, requires a constant-time torsion-basis algorithm
as sketched above. This would allow approaches with ei ≥ 1 for multiple small
�i to reduce the number of �i-isogenies for large �i, which is deemed favorable in
constant-time probabilistic approaches [1,12,30].

For ordinary CSIDH and CTIDH, using full-torsion points in every round
would have the further improvement that the number of rounds is constant,
and we have no trial-and-error approaches in the group action computation,
providing a stronger defence against certain side-channel attacks [3]. In particular
for CTIDH, we can use full-torsion points to remove the “coin flip” that decides
if a batch is performed. This improves performance and design properties. We
leave a full analysis for future work.

A final remark should be made about the use of theta functions to compute
pairings [27,28]. Such an approach might yield speed-ups in comparison to the
methods used in this work and the use of theta functions could provide a more
general framework for higher dimensional isogeny-based cryptography.
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SQALE of CSIDH. J. Cryptogr. Eng. 12(3), 349–368 (2022)
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Abstract. Consider the problem of efficiently evaluating isogenies φ :
E → E/H of elliptic curves over a finite field Fq, where the kernel H =
〈G〉 is a cyclic group of odd (prime) order: given E , G, and a point (or
several points) P on E , we want to compute φ(P ). This problem is at
the heart of efficient implementations of group-action- and isogeny-based
post-quantum cryptosystems such as CSIDH. Algorithms based on Vélu’s
formulæ give an efficient solution when the kernel generator G is defined
over Fq, but for general isogenies G is only defined over some extension
Fqk , even though 〈G〉 as a whole (and thus φ) is defined over the base
field Fq; and the performance of Vélu-style algorithms degrades rapidly
as k grows. In this article we revisit isogeny evaluation with a special
focus on the case where 1 ≤ k ≤ 12. We improve Vélu-style evaluation
for many cases where k = 1 using special addition chains, and combine
this with the action of Galois to give greater improvements when k > 1.

1 Introduction

Faced with the rising threat of quantum computing, demand for quantum-secure,
or post-quantum, cryptographic protocols is increasing. Isogenies have emerged
as a useful candidate for post-quantum cryptography thanks to their generally
small key sizes, and the possibility of implementing post-quantum group actions
which offer many simple post-quantum analogues of classical discrete-log-based
algorithms (see e.g. [26]).

A major drawback of isogeny-based cryptosystems is their relatively slow
performance compared with many other post-quantum systems. In this paper,
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we improve evaluation times for isogenies of many prime degrees � > 3 given a
generator of the kernel; these computations are the fundamental building blocks
of most isogeny-based cryptosystems. Specifically, we propose simple alternative
differential addition chains to enumerate points of (subsets of) the kernel more
efficiently. This speeds up many �-isogeny computations over the base field by a
factor depending on �, and also permits a full additional factor-of-k speedup for
�-isogenies over Fq whose kernel generators are defined over an extension Fqk .

Our techniques have constructive and destructive applications. First, accel-
erating basic isogeny computations can speed up isogeny-based cryptosystems.
The methods in Sect. 4 apply for many � > 3, so they would naturally improve
the performance of commutative isogeny-based schemes such as CSIDH [5], and
CSI-FiSh [4] and its derivatives (such as [12] and [14]), which require computing
many �-isogenies for various primes �. They may also improve the performance of
other schemes like SQISign [16], which computes many �-isogenies in its signing
process. (We discuss applications further in Sect. 6.)

In Sect. 5 we focus on rational isogenies with irrational kernels; our meth-
ods there could further accelerate the improvements of [13] for Couveignes–
Rostovtsev–Stolbunov key exchange (CRS) and related protocols of Stol-
bunov [11,24,27,28]. This is a small step forward on the road to making CRS a
practical “ordinary” fallback for CSIDH in the event of new attacks making spe-
cific use of the full supersingular isogeny graph (continuing the approach of [6],
for example).

Our results also have applications in cryptanalysis: the best classical and
quantum attacks on commutative isogeny-based schemes involve computing mas-
sive numbers of group actions, each comprised of a large number of �-isogenies
(see e.g. [3] and [8]). Any algorithm that reduces the number of basic operations
per �-isogeny will improve the effectiveness of these attacks.

Proof-of-concept implementations of our algorithms in SageMath are avail-
able at https://github.com/vgilchri/k-velu. The scripts include operation-
counting code to verify the counts claimed in this article.

Disclaimer. In this paper, we quantify potential speedups by counting finite
field operations. Real-world speed increases depend on many additional vari-
ables including parameter sizes; the application context; implementation choices;
specificities of the runtime platform (including architecture, vectorization, and
hardware acceleration); and the availability of optimized low-level arithmetic.

2 Background

We work over (extensions of) the base field Fq, where q is a power of a prime
p > 3. The symbol � always denotes a prime �= p. In our applications, 3 < � � p.

Elliptic Curves. For simplicity, elliptic curves are supposed to be in a general
Weierstrass form E : y2 = f(x). Our algorithms focus on Montgomery models

E : By2 = x(x2 + Ax + 1) where B(A2 − 4) �= 0 .

https://github.com/vgilchri/k-velu
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but our results extend easily to other models such as twisted Edwards and short
Weierstrass models. The multiplication-by-m map is denoted by [m]. The q-
power Frobenius endomorphism is π : (x, y) �→ (xq, yq).

Field Operations. While the curve E will always be defined over Fq, we will often
work with points defined over Fqk for k ≥ 1. We write M, S, and a for the cost
of multiplication, squaring, and adding (respectively) in Fqk . We write C for
the cost of multiplying an element of Fqk by an element of Fq (typically a curve
constant, or an evaluation-point coordinate). Note that C ≈ (1/k)M (when k
is not too large). Later, we will write F for the cost of evaluating the Frobenius
map on Fqk ; see §5.1 for discussion on this.
x-only Arithmetic. Montgomery models are designed to optimize x-only arith-
metic (see [20] and [10]). The xADD operation is

xADD : (x(P ), x(Q), x(P − Q)) �−→ x(P + Q) ;

it can be computed at a cost of 4M + 2S + 6a using the formulæ{
X+ = Z− [(XP − ZP )(XQ + ZQ) + (XP + ZP )(XQ − ZQ)]2 ,

Z+ = X− [(XP − ZP )(XQ + ZQ) − (XP + ZP )(XQ − ZQ)]2
(1)

where (XP : ZP ), (XQ : ZQ), (X+ : Z+), and (X− : Z−) are the x-coordinates
x(P ), x(Q), x(P + Q), and x(P − Q), respectively (so x(P ) = XP

ZP
, and so on).

The xDBL operation is

xDBL : x(P ) �−→ x([2]P ) ;

it can be computed at a cost of 2M + 2S + C + 4a using the formulæ{
X[2]P = (XP + ZP )2(XP − ZP )2 ,

Z[2]P = (4XP ZP )((XP − ZP )2 + ((A + 2)/4)(4XP ZP )) .
(2)

Isogenies. Let E1, E2 be elliptic curves over a finite field Fq. An isogeny φ :
E1 → E2 is a non-constant morphism mapping the identity point of E1 to the
identity point of E2. Such a morphism is automatically a homomorphism. For
more details see [25, Chapter 3, Sect. 4]. The kernel of φ is a finite subgroup of
E1, and vice versa: every finite subgroup G of E1 determines a separable quotient
isogeny E1 → E1/G. The kernel polynomial of φ is

D(X) :=
∏
P∈S

(X − x(P ))

where S ⊂ G is any subset satisfying

S ∩ −S = ∅ and S ∪ −S = G \ {0} . (3)

Every separable isogeny φ : E1 → E2 defined over Fq can be represented by a
rational map in the form

φ : (x, y) �−→ (
φx(x), φy(x, y)

)
(4)
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with

φx(x) =
N(x)
D(x)2

and φy(x, y) = c · y
dφx

dx
(x) (5)

where D is the kernel polynomial of φ, N is a polynomial derived from D, and
c is a normalizing constant in Fq.

Vélu’s Formulæ. Given a curve E and a finite subgroup G ⊂ E , Vélu [29] gives
explicit formulæ for the rational functions that define a separable isogeny φ : E →
E ′ := E/G with kernel G, as well as the resulting codomain curve E ′. Although
the quotient curve E ′ and the isogeny φ are defined up to isomorphism, Vélu’s
formulæ construct the unique normalized isogeny (i.e. with c = 1 in (5)). See
Kohel’s thesis [18, Sect. 2.4] for a modern treatment of Vélu’s results.

3 Evaluating Isogenies

Let E be an elliptic curve over Fq, and let 〈G〉 be a subgroup of prime order �
(where � is not equal to the field characteristic p). We suppose 〈G〉 is defined
over Fq; then, the quotient isogeny φ : E → E/〈G〉 is also defined over Fq.

When we say 〈G〉 is defined over Fq, this means 〈G〉 is Galois stable: that is,
π(〈G〉) = 〈G〉 (where π is the q-power Frobenius endomorphism). We will mostly
be concerned with algorithms taking x(G) as an input, so it is worth noting that

x(G) ∈ Fqk′ where k′ :=

{
k if k is odd ,

k/2 if k is even .

The set of projective x-coordinates of the nonzero kernel points is

XG :=
{
(XP : ZP ) = x(P ) : P ∈ 〈G〉 \ {0}} ⊂ P

1(Fqk′ ) ;

each XP /ZP corresponds to a root of the kernel polynomial D(X), and vice
versa. If #〈G〉 is an odd prime �, then #XG = (� − 1)/2.

3.1 The Isogeny Evaluation Problem

We want to evaluate the isogeny φ : E → E/〈G〉. More precisely, we want efficient
solutions to the problem of Definition 1:

Definition 1 (Isogeny Evaluation). Given an elliptic curve E over Fq, a list
of points (P1, . . . , Pn) in E(Fq), and a finite subgroup G of E corresponding to
the separable isogeny φ : E → E/G, compute (φ(P1), . . . , φ(Pn)).

In most cryptographic applications n is relatively small, especially compared
to �. We do not assume the codomain curve E/G is known; if required, an equa-
tion for E/G can be interpolated through the image of well-chosen evaluation
points.

For each separable isogeny φ of degree d defined over Fq, there exists a
sequence of primes (�1, . . . , �n) and a sequence of isogenies (φ1, . . . , φn), all
defined over Fq, such that φn ◦ · · · ◦ φ1 and
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– φi = [�i] (the non-cyclic case) or
– φi has cyclic kernel of order �i.

The kernel of φ1 is ker φ ∩ E [�1], and so on. The maps [�i] can be computed
in O(log �i) Fq-operations, so we reduce quickly to the case where φ has prime
degree �, assuming the factorization of d is known (as it is in our applications).

In general, the isogeny evaluation problem can be reduced to evaluating the
map α �→ D(α), where D is the kernel polynomial and α is in Fq or some
Fq-algebra (see e.g. [2, §4]). The polynomial D need not be explicitly computed.

3.2 The Costello-Hisil Algorithm

The Costello-Hisil algorithm [9], generalized in [23], is the state-of-the-art for
evaluating isogenies of Montgomery models. This algorithm is a variation of
Vélu’s formulæ working entirely on the level of x-coordinates, using the fact
that for an �-isogeny φ with kernel 〈G〉, the rational map on x-coordinates is

φx(x) = x·
(

(�−1)/2∏
i=1

(x · x([i]G) − 1
x − x([i]G)

))2

. (6)

Moving to projective coordinates (U : V ) such that x = U/V and using the
fact that XG = {(x([i]G) : 1) : 1 ≤ i ≤ (� − 1)/2}, Eq. (6) becomes

φx

(
(U : V )

)
= (U ′ : V ′) ,

{
U ′ = U

[∏
(XQ:ZQ)∈XG

(UXQ − V ZQ)
]2

,

V ′ = V
[ ∏

(XQ:ZQ)∈XG
(UZQ − V XQ)

]2
.

(7)

Algorithm 1 (from [9]) and Algorithm 2 (our space-efficient variant) compute
φx at a series of input points using an efficient evaluation of the expressions in (7).
For the moment, we assume that we have subroutines

– KernelPoints (see Sect. 4): given (XG : ZG), returns XG as a list.
– KernelRange (see Sect. 4): a generator coroutine which, given (XG : ZG),

constructs and yields the elements of XG to the caller one by one.
– CrissCross [9, Algorithm 1]: takes (α, β, γ, δ) in F

4
qk and returns (αδ +

βγ, αδ − βγ) in F
2
qk at a cost of 2M + 2a.

4 Accelerating Vélu: Faster Iteration over the Kernel

Let E/Fq be an elliptic curve, and let G be a point of prime order � in E . For
simplicity, in this section we will assume that G is defined over Fq, but all of
the results here apply when G is defined over an extension Fqk : in that case
M, S, and a represent operations in the extension field Fqk , while C represents
multiplication of an element of Fqk by a curve constant of the subfield Fq (which
is roughly k times cheaper than M). We return to the case where k > 1 in Sect. 5.
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Algorithm 1: Combines Algorithms 3 and 4 from [9] to evaluate an
�-isogeny of Montgomery models at a list of input points. The total cost
is 2n�M + 2nS + ((n + 1)(� + 1) − 2)a, plus the cost of KernelPoints.
Input: The x-coordinate (XG : ZG) of a generator G of the kernel of an

�-isogeny φ, and a list of evaluation points ((Ui : Vi) : 1 ≤ i ≤ n)
Output: The list of images ((U ′

i : V ′
i ) = φx((Ui : Vi)) : 1 ≤ i ≤ n)

1 ((X1, Z1), . . . , (X(l−1)/2, Z(l−1)/2)) ← KernelPoints((XG : ZG)) // See

Sect. 4

2 for 1 ≤ i ≤ (� − 1)/2 do

3 (X̂i, Ẑi) ← (Xi + Zi, Xi − Zi) // 2a

4 for i = 1 to n do

5 (Ûi, V̂i) ← (Ui + Vi, Ui − Vi) // 2a

6 (U ′
i , V

′
i ) ← (1, 1)

7 for j = 1 to (� − 1)/2 do

8 (t0, t1) ← CrissCross(X̂j , Ẑj , Ûi, V̂i) // 2M + 2a

9 (U ′
i , V

′
i ) ← (t0 · U ′

i , t1 · V ′
i ) // 2M

10 (U ′
i , V

′
i ) ← (Ui · (U ′

i)
2, Vi · (V ′

i )2) // 2M + 2S

11 return ((U ′
1, V

′
1 ), . . . , (U ′

n, V ′
n))

Algorithm 2: A generator-based version of Algorithm 1, with much
lower space requirements when � � n. The total cost is 2n�M + 2nS +
(2n + (� − 1)(n + 1))a, plus the cost of a full run of KernelRange.
Input: The x-coordinate (XG : ZG) of a generator G of the kernel of an

�-isogeny φ, and a list of evaluation points ((Ui : Vi) : 1 ≤ i ≤ n)
Output: The list of images ((U ′

i : V ′
i ) = φx((Ui : Vi)) : 1 ≤ i ≤ n)

1 for 1 ≤ i ≤ n do

2 (Ûi, V̂i) ← (Ui + Vi, Ui − Vi) // 2a

3 (U ′
i , V

′
i ) ← (1, 1)

4 for (X : Z) in KernelRange((XG : ZG)) do // See Sect. 4

5 (X̂, Ẑ) ← (X + Z, X − Z) // 2a

6 for 1 ≤ i ≤ n do

7 (t0, t1) ← CrissCross(X̂, Ẑ, Ûi, V̂i) // 2M + 2a

8 (U ′
i , V

′
i ) ← (t0 · U ′

i , t1 · V ′
i ) // 2M

9 for 1 ≤ i ≤ n do
10 (U ′

i , V
′

i ) ← (Ui · (U ′
i)

2, Vi · (V ′
i )2) // 2M + 2S

11 return ((U ′
1, V

′
1 ), . . . , (U ′

n, V ′
n))

4.1 Kernel Point Enumeration and Differential Addition Chains

We now turn to the problem of enumerating the set XG. This process, which
we call kernel point enumeration, could involve constructing the entire set (as in
KernelPoints) or constructing its elements one by one (for KernelRange).
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For � = 2 and 3, there is nothing to be done because XG = {(XG : ZG)}; so
from now on we consider the case � > 3.

We allow ourselves two curve operations for kernel point enumeration: xADD
and xDBL. In Sect. 5, where G is assumed to be defined over a nontrivial extension
of the base field, we will also allow the Frobenius endomorphism.

Every algorithm constructing a sequence of elements of XG using a series of
xADD and xDBL instructions corresponds to a modular differential addition chain.

Definition 2. A Modular Differential Addition Chain (MDAC) for a
set S ⊂ Z/�Z is a sequence of integers (c0, c1, c2, . . . , cn) such that

1. every element of S is represented by some ci (mod �),
2. c0 = 0 and c1 = 1, and
3. for each 1 < i ≤ n there exist 0 ≤ j(i), k(i), d(i) < i such that ci ≡ cj(i)+ck(i)

(mod �) and cj(i) − ck(i) ≡ cd(i) (mod �).

Algorithms to enumerate XG using xADD and xDBL correspond to MDACs
(c0, . . . , cn) for {1, . . . , (� − 1)/2}: the algorithm starts with x([c0]G) = x(0) =
(1 : 0) and x([c1]G) = x(G) = (XG : ZG), then computes each x([ci]G) using

x([ci]G) =

{
xADD(x([cj(i)]G), x([ck(i)]G), x([cd(i)]G)) if d(i) �= 0 ,

xDBL([cj(i)]G) if d(i) = 0 .

4.2 Additive Kernel Point Enumeration

The classic approach is to compute XG using repeated xADDs. Algorithm 3 is
Costello and Hisil’s KernelPoints [9, Algorithm 2], corresponding to the MDAC
(0, 1, 2, 3, . . . , (� − 1)/2) computed by repeatedly adding 1 (except for 2 which is
computed by doubling 1). The simplicity of this MDAC means that Algorithm 3
converts to a KernelRange with a small internal state: to generate the next
(Xi+1 : Zi+1), we only need the values of (Xi : Zi), (Xi−1 : Zi−1), and (X1 : Z1).

4.3 Replacing xADDs with xDBLs

Comparing x-only operations on Montgomery curves, replacing an xADD with
an xDBL trades 2M and 2a for 1C. We would therefore like to replace as many
xADDs as possible in our kernel enumeration with xDBLs.

As a first attempt, we can replace Line 4 of Algorithm 3 with

(Xi : Zi) ←
{
xDBL((Xi/2 : Zi/2)) if i is even,

xADD
(
(Xi−1 : Zi−1), (XG : ZG), (Xi−2, Zi−2)

)
if i is odd.

But applying this trick systematically requires storing many more intermediate
values, reducing the efficiency of KernelRange. It also only replaces half of the
xADDs with xDBLs, and it turns out that we can generally do much better.
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Algorithm 3: Basic kernel point enumeration by repeated addition.
Uses exactly 1 xDBL and (� − 5)/2 xADD operations (for prime � > 3).
Input: The x-coordinate (XG : ZG) = x(G) of a point G of order � in E(Fq)
Output: XG as a list

1 (X1 : Z1) ← (XG : ZG)
2 (X2 : Z2) ← xDBL

(
(XG : ZG)

)

3 for i = 3 to (� − 1)/2 do // Invariant: (Xi : Zi) = x([i]G)
4 (Xi : Zi) ← xADD

(
(Xi−1 : Zi−1), (XG : ZG), (Xi−2, Zi−2)

)

5 return
(
(X1 : Z1), . . . , (X(�−1)/2 : Z(�−1)/2)

)

4.4 Multiplicative Kernel Point Enumeration

We can do better for a large class of � by considering the quotient

M� :=
(
Z/�Z)×/〈±1〉 .

(note: M� is a quotient of the multiplicative group.) For convenience, we write

m� := #M� = (� − 1)/2 .

We can now reframe the problem of enumerating XG as the problem of enu-
merating a complete set of representatives for M�. The MDAC of Algorithm 3
computes the set of representatives {1, 2, . . . ,m�}, but for the purposes of enu-
merating XG, any set of representatives will do. Example 1 is particularly useful.

Example 1. Suppose 2 generates M�. This is the case if 2 is a primitive element
modulo �—that is, if 2 has order (�−1) modulo �—but also if 2 has order (�−1)/2
modulo � and � ≡ 3 (mod 4). In this case

M� = {2i mod � : 0 ≤ i < m�} ,

so (0, 1, 2, 4, 8, . . . , 2m�) is an MDAC for M� using only doubling, and no differ-
ential additions. The corresponding KernelPoints replaces all of the xADDs in
Algorithm 3 with cheaper xDBLs, trading (�−5)M+(�−5)a for (�−5)/2 C. The
corresponding KernelRange is particularly simple: each element depends only
on its predecessor, so the state consists of a single (Xi : Zi).

How often does this trick apply? The quantitative form of Artin’s primitive
root conjecture (see [30]) says that M� = 〈2〉 for a little over half of all �.
Experimentally, 5609420 of the first 107 odd primes � satisfy M� = 〈2〉.

One might generalize Example 1 to other generators of M�: for example, if
M� = 〈3〉, then we could find an MDAC for {3i mod � : 0 ≤ i < (� − 1)/2}. But
this is counterproductive: x-only tripling is slower than differential addition.
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4.5 Stepping Through Cosets

What can we do when M� �= 〈2〉? A productive generalization is to let

A� := 〈2〉 ⊆ M� and a� := #A� ,

and to try to compute a convenient decomposition of M� into cosets of A�. Within
each coset, we can compute elements using repeated xDBLs as in Example 1; then,
it remains to step from one coset into another using differential additions.

This can be done in a particularly simple way for the primes � such that

M� = 〈2, 3〉 , so M� =
m�/a�−1⊔

i=0

3iA� . (∗)

We can move from the i-th to the (i+1)-th coset using the elementary relations{
c · 2j+1 + c · 2j = 3c · 2j

c · 2j+1 − c · 2j = c · 2j
for all integers c and j ≥ 0. (8)

In particular, having enumerated 3iA� by repeated doubling, we can compute
an element of 3i+1A� by applying a differential addition to any two consecutive
elements of 3iA� (and the difference is the first of them). Algorithm 4 minimizes
storage overhead by using the last two elements of the previous coset to generate
the first element of the next one. The KernelRange of Algorithm 4 therefore has
an internal state of only two x-coordinates—so not only is it faster than the
KernelRange of Algorithm 3, but it also has a smaller memory footprint.

Algorithm 4: Kernel enumeration for � > 3 satisfying (∗). Cost: (1 −
1/a�) · m� xDBLs and m�/a� − 1 xADDs.
Input: Projective x-coordinate (XG : ZG) of the generator G of a cyclic

subgroup of order � in E(Fq), where � satisfies (∗).
Output: XG as a list

1 (a, b) ← (a�, m�/a�)

2 for i = 0 to b − 1 do // Invariant: (Xai+j : Zai+j) = x([3i2i(a−2)+(j−1)]G)
3 if i = 0 then
4 (X1 : Z1) ← (XG : ZG)
5 else // Compute new coset representative

6 (Xai+1 : Zai+1) ← xADD
(
(Xai : Zai), (Xai−1 : Zai−1), (Xai−1 : Zai−1)

)

7 for j = 2 to a do // Exhaust coset by doubling

8 (Xai+j : Zai+j) ← xDBL
(
(Xai+j−1 : Zai+j−1)

)

9 return
(
(X1 : Z1), . . . , (X(�−1)/2 : Z(�−1)/2)

)

Algorithm 4 performs better the closer a� is to m�. In the best case, when
A� = M�, it uses m� − 1 xDBLs and no xADDs at all. The worst case is when the
order of 2 in M� is as small as possible: that is, � = 2k − 1. In this case a� = k,
and compared with Algorithm 3 we still reduce the xADDs by a factor of k.
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4.6 The Remaining Primes

While 1878 of the 2261 odd primes � ≤ 20000 satisfy (∗), there are still 383
primes that do not. We can, to some extent, adapt Algorithm 4 to handle these
primes, but on a case-by-case basis and with somewhat less satisfactory results.

For example, the CSIDH-512 parameter set specifies 74 isogeny-degree primes

� = 3, 5, 7, 11, 13, . . . , 367, 373, and 587 .

All but seven of these � satisfy (∗): the exceptions are � = 73, 97, 193, 241, 313,
and 337. Table 1 lists a candidate decomposition of M� for each of these �. In
each case, we need to produce an element of either 5A� or 7A�. This can certainly
be done using previously-computed elements, but this requires a larger internal
state and a more complicated execution pattern, depending on �.

Table 1. Primes � in the CSIDH-512 parameter set that do not satisfy (∗).

Prime � a� [M� : 〈2, 3〉] Coset decomposition of M� Notes

73 9 2 M73 = A73 � 3A73 � 5A73 � 5 · 3A73

97 24 2 M97 = A97 � 5A97 3 is in A97

193 48 2 M193 = A193 � 5A193 3 is in A193

241 12 2 M241 =
( ⊔4

i=0 3iA241

) � ( ⊔4
i=0 7 · 3iA241

)

307 51 3 M307 = A307 � 5A307 � 7A307 3 is in A313

313 78 2 M313 = A313 � 5A313 3 is in A193

337 21 2 M337 =
( ⊔3

i=0 3iA337

) � ( ⊔3
i=0 5 · 3iA337

)

Example 2. Consider � = 97. Now 3 ≡ 219 (mod 97), so 3 is in A97, and in fact
M97 = A97 � 5A97. To adapt Algorithm 4 to this case, we can still enumerate
A97 using repeated doubling. Then, we must construct an element of 5A97 from
elements of A97, using a differential addition like 5·2i = 2i+2+2i (difference 3·2i)
or 5 ·2i = 2i+1+3 ·2i (difference 2i). Each involves near powers of 2 (modulo 97),
but also 3 · 2i ≡ 2i+19 (mod 97), which must be stored while enumerating A97.
This gives an algorithm using one xADD and 48 xDBLs, just like Algorithm 4, but
with a slightly larger state and a more complicated execution pattern specific to
� = 97. Alternatively, after enumerating A97, we could redundantly recompute
3 = 1 + 2 (difference 1) to get 5 as 1 + 4 (difference 3) or 2 + 3 (difference 1).

Ultimately, there does not seem to be a “one size fits all” generalization of
Algorithm 4 for enumerating XG without a more complicated state or redundant
recomputations. We can get reasonable results for many � not satisfying (∗) by
finding a good MDAC for M�/〈2, 3〉 and then using Algorithm 4 to exhaust the
coset containing each representative but the savings are generally not optimal.
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4.7 (In)Compatibility with Vélusqrt

It is natural to ask whether these techniques can be used to further accelerate
the Vélusqrt algorithm [2], which evaluates isogenies of large prime degree � in
Õ(

√
�) time (with O(

√
�) space). Vélusqrt never explicitly computes all of XG.

Instead, it relies on the existence of a decomposition

S := {1, 3, 5, . . . , � − 2} = (I + J) � (I − J) � K (9)

where I, J , and K are sets of integers of size O(
√

�) such that the maps (i, j) →
i + j and (i, j) → i − j are injective with disjoint images. In [2], these sets are

I := {2b(2i + 1) : 0 ≤ i < b′} (“giant steps”),
J := {2j + 1 : 0 ≤ j < b} (“baby steps”),
K := {4bb′ + 1, . . . , � − 4, � − 2} (“the rest”),

where b := �√� − 1/2� and b′ := �(� − 1)/4b�.
The key thing to note here is that this decomposition is essentially additive,

and the elements of I, J , and K are in arithmetic progression. Algorithm 4, how-
ever, is essentially multiplicative: it works with subsets in geometric progression.
We cannot exclude the existence of subsets I, J , and K of size O(

√
�) satisfy-

ing (9) and which are amenable to enumeration by a variant of Algorithm 4 for
some �, but it seems difficult to construct nontrivial and useful examples.

5 Irrational Kernel Points: Exploiting Frobenius

Now suppose G is defined over a nontrivial extension Fqk of Fq, but 〈G〉 is
defined over the subfield Fq: that is, it is Galois-stable. In particular, the q-power
Frobenius endomorphism π of E , which maps points in E(Fqk) to their conjugates
under Gal(Fqk/Fq), maps 〈G〉 into 〈G〉, and hence restricts to an endomorphism
of 〈G〉. But since the endomorphisms of 〈G〉 are Z/�Z, and Frobenius has no
kernel (so π is not 0 on 〈G〉), it must act as multiplication by an eigenvalue
λ �= 0 on 〈G〉. The precise value of λ is not important here, but we will use the
fact that λ has order k in (Z/�Z)× and order k′ in (Z/�Z)×/〈±1〉.

Now let

F� := 〈λ〉 ⊆ M� and cF := [M� : F�] = m�/k′ .

Let R0 be a set of representatives for M�/F�; set S0 := {[r]G : r ∈ R0}, and note

#S0 = (� − 1)/k′ .

5.1 The Cost of Frobenius

We want to use the Galois action to replace many M and S with a few F. For
this to be worthwhile, F must be cheap: and it is, even if this is not obvious
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given the definition of the Frobenius map on Fqk as q-th powering. Indeed, we
do not compute Frobenius by powering. Instead, we use the fact that Frobenius
is Fq-linear, acting as a k×k matrix (with entries in Fq) on the coefficient vectors
of elements in Fqk . The form of this matrix, and the cost of applying it, depends
on the basis of Fqk/Fq. For example:

1. If k = 2 and Fq2 = Fq(
√

Δ), then Frobenius simply negates
√

Δ and the
matrix is diag(1,−1), so F ≈ 0.

2. If Fqk/Fq is represented with a normal basis, then the matrix represents a
cyclic permutation, and again F ≈ 0.

Even in the worst case where the basis of Fqk/Fq has no special Galois structure,
F is just the cost of multiplying a k-vector by a k ×k matrix over Fq: that is, k2

multiplications and k2−k additions. This is close to the cost of one “schoolbook”
Fqk -multiplication; so when k ≤ 12, we have F ≈ M.

5.2 Galois Orbits

Each point P ∈ E(Fqk) is contained in a Galois orbit containing all the conjugates
of P . The kernel subgroup 〈G〉 breaks up (as a set) into Galois orbits: if we write

OP := {P, π(P ), . . . , πk−1(P )} for P ∈ E(Fqk) ,

then

〈G〉 = {0} �
{⊔

P∈S0
OP if k is even,( ⊔

P∈S0
OP

) � ( ⊔
P∈S0

O−P

)
if k is odd.

(10)

To get a picture of where we are going, recall from §3 that in general, isogeny
evaluation can be reduced to evaluations of the kernel polynomial

D(X) :=
∏
P∈S

(X − x(P )) ,

where S ⊂ 〈G〉 is any subset such that S ∩−S = ∅ and S ∪−S = 〈G〉 \ {0}. The
decomposition of (10) can be seen in the factorization of D(X) over Fqk :

D(X) =
∏
P∈S

(X − x(P )) =
∏

P∈S0

k′−1∏
i=0

(X − x(πi(P ))) =
∏

P∈S0

k′−1∏
i=0

(X − x(P )qi

) ,

and the factors corresponding to each P in S0 are the irreducible factors of D
over Fq. Transposing the order of the products, if we let

D0(X) :=
∏

P∈S0

(X − x(P ))

then for α in the base field Fq, we can compute D(α) using

D(α) = Norm(D0(α)) for all α ∈ Fq
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where

Norm(x) :=
k′−1∏
i=0

xqi

= x(x(· · · (x(x)q)q · · · )q)q ,

which can be computed for the cost of (k−1)F+(k−1)M (some multiplications
can be saved with more storage, but for small k this may not be worthwhile).

Similarly, we can rewrite the rational map φx from (6) as

φx(x) = x ·
[ ∏

P∈S

(x · x(P ) − 1
x − x(P )

)]2
= x ·

[ ∏
P∈S0

k′−1∏
i=0

(x · x(P )qi − 1
x − x(P )qi

)]2
.

Evaluating φx at α in Fq, rearranging the products gives

φx(α) = α ·
[ ∏

P∈S0

k′−1∏
i=0

(α · x(P )qi − 1
α − x(P )qi

)]2
= α · Norm(φx(α))2 ,

where

φx(X) :=
∏

P∈S0

X · x(P ) − 1
X − x(P )

.

Projectively, from (7) we get φx : (U : V ) �→ (U ′ : V ′) where{
U ′ = U · [ ∏k′−1

i=0

∏
P∈S0

(UXqi

P − Zqi

P V )
]2

,

V ′ = V · [ ∏k′−1
i=0

∏
P∈S0

(UZqi

P − Xqi

P V )
]2

,

so if we set

F (U, V ) :=
∏

P∈S0

(U · XP − ZP · V ) and G(U, V ) :=
∏

P∈S0

(U · ZP − XP · V ) ,

then for α and β in Fq we get

φx((α : β)) = (α′ : β′) :=
(
α · Norm(F (α, β))2 : β · Norm(G(α, β))2

)
.

5.3 Enumerating Representatives for the Galois Orbits

We now need to enumerate a set S0 of representatives for the Galois orbits
modulo ±1 or, equivalently, a set of representatives R0 for the cosets of F�

in M�. Given an MDAC driving enumeration of the coset representatives, there
are obvious adaptations of Algorithms 1 and 2 to this extension field case. Rather
than iterating over all of the kernel x-coordinates, we just iterate over a subset
representing the cosets of F�, and then compose with the norm.

Concretely, in Algorithm 2, we should

1. Replace KernelRange in Line 4 with a generator driven by an efficient MDAC
for M�/F�;

2. Replace Line 10 with (U ′
i , V

′
i ) ← (Ui · Norm(U ′

i)
2, Vi · Norm(V ′

i )2).
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First, we can consider Algorithm 3: that is, enumerating M�/F� by repeated
addition. Unfortunately, we do not have a nice bound on the length of this
MDAC: the coset representatives may not be conveniently distributed over M�,
so we could end up computing a lot of redundant points.

Example 3. Consider the “naive” S0 comprised of the minimal elements (up to
negation) in each Galois orbit. We computed the percentage of primes 3 ≤ � <
104 where an optimal MDAC (without redundant values) exists for this S0:

k 1 2 3 4 5 6 7 8 9 10 11 12

% 100 100 100 100 84 86 76 67 60 56 45 42

For an example of what can go wrong, take (�, k) = (89, 11). In this case, we get
R0 = {1, 3, 5, 13}; the shortest MDAC is (0, 1, 2, 3, 5, 8, 13), which enumerates
the kernel using one xDBL operation and six xADD operations, but requires the
computation of two intermediate points not used in the final result.

But when we say that the coset representatives are not conveniently dis-
tributed over M�, we mean convenient with respect to addition. If we look at
M� multiplicatively, then the path to efficient MDACs is clearer.

If M� = 〈2, λ〉 then we can take R0 = {2i : 0 ≤ i < cF }, which brings us to
the 2-powering MDAC of Example 1—except that we stop after cF − 1 xDBLs.
We thus reduce the number of xDBLs by a factor of ≈ k′, at the expense of two
norm computations. This MDAC actually applies to more primes � here than
in Sect. 4, because we no longer need 2 to generate all of M�; we have λ to help.
(In fact, the suitability of this MDAC depends not only on �, but also on k.)

We can go further if we assume

M� = 〈2, 3, λ〉 . (∗∗)

To simplify notation, we define

a�,k := [〈2, λ〉 : F�] , b�,k := [〈2, 3, λ〉 : 〈2, λ〉] = cF /a�,k .

Algorithm 5 is a truncated version of Algorithm 4 for computing S0 instead of
XG when (∗∗) holds. Algorithm 6 uses Algorithm 5 to evaluate an �-isogeny over
Fq with kernel 〈G〉 at n points of E(Fq), where x(G) is in Fqk′ with k′ > 1.

Table 2 compares the total costs of Algorithms 6 and 5 with Algorithms 1
and 3. In both algorithms, we can take advantage of the fact that many of the
multiplications have one operand in the smaller field Fq: notably, the multipli-
cations involving coordinates of the evaluation points. In the context of isogeny-
based cryptography (where curve constants look like random elements of Fq),
this means that in Algorithm 1, we can replace the 2M + 2a in Line 8 and
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the 2M + 2S in Line 10 with 2C + 2a and 2C + 2S, respectively. Table 3 gives
examples of the resulting costs for various (�, k) with a single evaluation point.

Algorithm 5: Compute S0 when (∗∗) holds. Cost: b�,k − 1 xADDs and
(cF − b�,k) xDBLs, or (2cF + 2b�,k + 4)M + (2cF − 2)S + (cF − b�,k)C +
(4cF + 4b�,k − 6)a
Input: Projective x-coordinate (XG : ZG) of the generator G of a cyclic

subgroup of order � in E(Fqk ), where � satisfies M� = 〈2, 3, λ〉.
Output: S0 as a list

1 Function SZeroPoints((XG : ZG))
2 (a, b) ← (a�,k, b�,k)

3 for i = 0 to b − 1 do // Invariant: xai+j = x([3i2i(a−2)+(j−1)]G)
4 if i = 0 then
5 x1 ← (XG : ZG)
6 else // Compute new coset representative

7 xai+1 ← xADD(xai, xai−1, xai−1)

8 for j = 2 to a do // Exhaust coset by doubling

9 xai+j ← xDBL(xai+j−1)

10 return (x1, . . . , xcF )

Algorithm 6: Isogeny evaluation using SZeroPoints and Frobenius.
Cost: 2(cF +k −1)nM+2nS+2(cF +1)nC+2cF (n+1)a+2(k −1)nF
plus the cost of SZeroPoints.
Input: The x-coordinate (XG : ZG) of a generator G of the kernel of an

�-isogeny φ, and a list of evaluation points ((Ui : Vi) : 1 ≤ i ≤ n)
Output: The list of images ((U ′

i : V ′
i ) = φx((Ui : Vi)) : 1 ≤ i ≤ n)

1 ((X1, Z1), . . . , (XcF , ZcF )) ← SZeroPoints((XG : ZG)) // Algorithm 5

2 for 1 ≤ i ≤ cF do

3 (X̂i, Ẑi) ← (Xi + Zi, Xi − Zi) // 2a

4 for i = 1 to n do

5 (Ûi, V̂i) ← (Ui + Vi, Ui − Vi) // 2a

6 (U ′
i , V

′
i ) ← (1, 1)

7 for j = 1 to cF do

8 (t0, t1) ← CrissCross(X̂j, Ẑj, Ûi, V̂i)) // 2C + 2a

9 (U ′
i , V

′
i ) ← (t0 · U ′

i , t1 · V ′
i ) // 2M

10 (U ′
i , V

′
i ) ← (Norm(U ′

i), Norm(V
′

i )) // 2(k′ − 1)M + 2(k′ − 1)F
11 (U ′

i , V
′

i ) ← (Ui · (U ′
i)

2, Vi · (V ′
i )2) // 2C + 2S

12 return ((U ′
1, V

′
1), . . . , (U ′

n, V ′
n))
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Table 2. �-isogeny evaluation comparison for kernels 〈G〉 defined over Fq but with
x(G) ∈ Fqk′ . Here, C denotes multiplications of elements of Fqk′ by elements of Fq.

Costello–Hisil (Algorithms 1 and 3) This work (Algorithm 6)

M (� − 1)n + 2� − 8 2(cF + k′ − 1)n + 2cF + 2b�,k + 4

S 2n + � − 3 2n + 2cF − 2

C (� + 1)n + 1 2(cF + 1)n + cF − b�,k

a (n + 1)(� + 1) + 3� + 17 2cF (n + 1) + 4cF + 4b�,k − 6

F 0 2(k′ − 1)n

Table 3. Examples of costs for evaluating an �-isogeny at a single point over Fq, with
x(G) ∈ Fqk′ , using Costello–Hisil (Algorithm 1 with 3, in white) and Algorithm 6 (in
gray). For these k, it is reasonable to use the approximation F ≈ M (see Sect. 5.1).

� = 13 � = 19 � = 23

k′ M S C a F k′ M S C a F k′ M S C a F

any 30 12 15 54 0 any 48 18 21 84 0 any 60 22 25 104 0

1 22 12 19 46 0 1 34 18 28 70 0 1 42 22 34 86 0

3 10 4 7 14 4 3 14 6 10 22 4 11 22 2 4 6 20

9 18 2 4 6 16

6 Applications to Key Exchange

Our algorithms could be applied in any cryptosystem involving isogenies of prime
degree � > 3. We focus on key exchanges like CSIDH [5] here, but similar remarks
apply for other schemes such as SQISign [16,17], SeaSign [15], and CSI-FiSh [4].

6.1 CSIDH and Constant-Time Considerations

CSIDH is a post-quantum non-interactive key exchange based on the action of
the class group of the imaginary quadratic order Z[

√−p] on the set of supersin-
gular elliptic curves E/Fp with EndFp

(E) ∼= Z[
√−p]. The action is computed via

compositions of �i-isogenies for a range of small primes (�1, . . . , �m).
CSIDH works over prime fields Fp, so the methods of Sect. 5 do not apply;

but Algorithm 4 may speed up implementations at least for the �i satisfying (∗).
(We saw in Sect. 4.6 that 67 of the 74 primes �i in the CSIDH-512 parameter set
met (∗)).

The true speedup depends on two factors. The first is the number of eval-
uation points. Costello and Hisil evaluate at a 2-torsion point other than (0, 0)
in order to interpolate the image curve. The constant-time CSIDH of [19] eval-
uates at one more point (from which subsequent kernels are derived)—that is,
n = 2; [21] uses n = 3; [7] discusses n > 3. For large n, the cost of Algorithm 1
overwhelms kernel enumeration, but our results may still make a simple and
interesting improvement when n is relatively small.
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Table 4. Costello–Hisil (Algorithms 1 and 3, in white) vs. Algorithm 6 (in gray) for
the CRS parameters with k > 1 proposed in [13]. We omit (�, k) = (1321, 5), since in
this case M� �= 〈2, 3, λ〉. Here M, S, a, and F refer to operations on elements of Fqk′ ,
while C denotes multiplications of elements of Fqk′ by elements of Fq.

k � a�,k b�,k M S C a F

3 19 3 1 18n + 30 2n + 16 20n + 1 20n + 64 0

10n + 4 2n + 4 8n + 2 8n + 14 4n

661 110 1 660n + 1314 2n + 658 662n + 1 662n + 2632 0

224n + 218 2n + 218 222n + 109 222n + 656 4n

4 1013 23 11 1012n + 2018 2n + 1010 1014n + 1 1014n + 4040 0

48n + 524 2n + 504 48n + 242 48n + 1074 2n

1181 59 5 1180n + 2354 2n + 1178 1182n + 1 1182n + 4712 0

120n + 596 2n + 588 120n + 290 120n + 1302 2n

5 31 1 3 30n + 54 2n + 28 32n + 1 32n + 112 0

10n + 8 2n + 4 4n 4n + 14 8n

61 6 1 60n + 114 2n + 58 62n + 1 62n + 232 0

20n + 10 2n + 10 14n + 5 14n + 32 8n

7 29 2 1 28n + 50 2n + 26 30n + 1 30n + 104 0

16n + 2 2n + 2 6n + 1 6n + 8 12n

71 5 1 70n + 134 2n + 68 72n + 1 72n + 272 0

22n + 8 2n + 8 12n + 4 12n + 26 12n

547 39 1 546n + 1086 2n + 544 548n + 1 548n + 2176 0

90n + 76 2n + 76 80n + 38 80n + 230 12n

8 881 55 2 880n + 1754 2n + 878 882n + 1 882n + 3512 0

116n + 220 2n + 218 112n + 108 112n + 548 6n

9 37 2 1 36n + 66 2n + 34 38n + 1 38n + 136 0

20n + 2 2n + 2 6n + 1 6n + 8 16n

1693 94 1 1692n + 3378 2n + 1690 1694n + 1 1694n + 6760 0

204n + 186 2n + 186 190n + 93 190n + 560 16n

The second factor is the organisation of primes into batches for constant-
time CSIDH implementations. CTIDH [1] hides the degree � using the so-called
matryoshka property: �i-isogeny evaluation is a sub-computation of �j-isogeny
computation whenever �i < �j using Algorithms 1 and 3. Organising primes into
similar-sized batches, we can add dummy operations to disguise smaller-degree
isogenies as isogenies of the largest degree in their batch.

Our Algorithm 4 has a limited matryoshka property: �i-isogenies are sub-
computations of �j-isogenies if a�i

≤ a�k
and m�i

/a�i
≤ m�j

/a�,j . For constant-
time implementations, it would make more sense to make all primes in a batch
satisfying (∗) a sub-computation of an algorithm using the maximum a� and
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maximum m�/a� over � in the batch. Redistributing batches is a delicate matter
with an important impact on efficiency; therefore, while our work improves the
running time for a fixed �, its impact on batched computations remains uncertain,
and ultimately depends on specific parameter choices.

6.2 CRS Key Exchange

The historical predecessors of CSIDH, due to Couveignes [11] and Rostovtsev
and Stolbunov [24,27,28], are collectively known as CRS. Here the class group of
an quadratic imaginary order O acts on an isogeny (sub)class of elliptic curves
E with End(E) ∼= O. CRS performance was greatly improved in [13] using Vélu-
style isogeny evaluation, but this requires finding ordinary isogeny classes over
Fp with rational �i-torsion points over Fqki with ki as small as possible for as
many �i as possible.

One such isogeny class over a 512-bit prime field is proposed in [13, Sect. 4].
The curves �-isogenies with kernel generators over Fp for � = 3, 5, 7, 11, 13, 17,
103, 523, and 821, and over Fpk for � = 19, 29, 31, 37, 61, 71, 547, 661, 881, 1013,
1181, 1321, and 1693. These “irrational” � are an interesting basis of comparison
for our algorithms: Table 4 shows that there are substantial savings to be had.

References

1. Banegas, G., et al.: CTIDH: faster constant-time CSIDH. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2021(4), 351–387 (2021)

2. Bernstein, D.J., De Feo, L., Leroux, A., Smith, B.: Faster computation of isogenies
of large prime degree. In: Galbraith, S.D. (ed.) Proceedings of the Fourteenth Algo-
rithmic Number Theory Symposium, pp. 39–55. Mathematics Sciences Publishers
(2020). https://eprint.iacr.org/2020/341

3. Bernstein, D.J., Lange, T., Martindale, C., Panny, L.: Quantum circuits for the
CSIDH: optimizing quantum evaluation of isogenies. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 409–441. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17656-3 15

4. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 9

5. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin and Galbraith [22], pp. 395–
427 (2018)

6. Castryck, W., Panny, L., Vercauteren, F.: Rational isogenies from irrational endo-
morphisms. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol.
12106, pp. 523–548. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45724-2 18
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Abstract. In this paper, we present a new quantum-resistant weak
Verifiable Delay Function based on a purely algebraic construction. Its
delay depends on computing a large-degree isogeny between elliptic
curves, whereas its verification relies on the computation of isogenies
between products of two elliptic curves. One of its major advantages is
its expected fast verification time. However, it is important to note that
the practical implementation of our theoretical framework poses signif-
icant challenges. We examine the strengths and weaknesses of our con-
struction, analyze its security and provide a proof-of-concept implemen-
tation. (Author list in alphabetical order; see https://www.ams.org//
profession/leaders/CultureStatement04.pdf.)

Keywords: Verifiable Delay Function · Post-Quantum · Isogeny ·
Abelian Surface · Elliptic Curve Product

1 Introduction

A Verifiable Delay Function (VDF) is a cryptographic primitive designed to take
a prescribed amount of time t to compute, regardless of the parallel computing
power available, while still being easy to verify once the computation is com-
plete. VDFs are used in various applications, such as random number generation
and blockchain consensus algorithms, where a delay is needed to ensure that cer-
tain operations cannot be performed too quickly. The seminal paper on VDFs,
“Verifiable Delay Functions”, was published in 2018 by Boneh, Bonneau, Bünz
and Fisch [10]. In the paper, the authors introduce the concept of a VDF and
describe its potential uses in various applications including auction protocols,
proof-of-work systems, and secure multiparty computation. The first efficient
VDFs were the ones proposed by Pietrzak [42] and Wesolowski [50]; both VDFs
are based on exponentiation in a group of unknown order. We refer to [9] for a
survey about these VDFs. Driven by the open problem of finding a VDF that is
also quantum resistant, De Feo, Masson, Petit and Sanso [25] employed chains
of supersingular isogenies as “sequential slow” functions in order to build their
VDF. However, given the usage of bilinear pairing, this isogeny-based VDF is not
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quantum resistant but only provides some quantum annoyance. Proving knowl-
edge of isogenies has a rich history of research (see for instance [7,20]), but none
of the techniques seem to allow for a natural instantiation of a VDF.

Boneh, Bonneau, Bünz and Fisch [10], and independently Döttling, Garg,
Malavolta, and Vasudevan [28] proposed the usage of SNARGs for constructing
a VDF. In [17], Chavez-Saab, Rodŕıguez-Henŕıquez and Tibouchi describe an
isogeny-based VDF that is quantum resistant based on the SNARG approach.
Also, in [47], Tan, Sharma, Li, Szalachowski and Zhou report a VDF built over
a sequential variant of the zero-knowledge proof system ZKBoo [33].

Our Contribution. In this paper, we present a quantum-resistant weak VDF,
which is a VDF where a certain amount of parallelism is needed to give an
advantage to the evaluator [10, Definition 5]. Our construction is based upon
both isogenies between supersingular elliptic curves and Kani’s criterion [34].
Kani’s criterion determines whether isogenies originating from elliptic products
have split codomain. In our case, this criterion is leveraged in a constructive
manner, in contrast to previous attacks [14,37,43] against the Supersingular
Isogeny Diffie-Hellman key exchange protocol (SIDH) [24] and its instantiation
SIKE [2]. While there have been other attempts to build quantum-resistant
VDFs [17,47], to the best of our knowledge, this is the first instance where a
quantum-resistant VDF has been constructed without relying on SNARG.

Our VDF is inherently noninteractive and does not have the limitation
present in [25], where the time required for setting up public parameters is
similar to the time required for evaluating the function.

However, our VDF faces two challenges: its weakness and the need of curves
with unknown endomorphism ring as input. In our case, being weak means that
Eval will require O(t) parallelism to run in parallel time t.

Sampling random supersingular elliptic curves over finite fields of crypto-
graphic size without giving information about the endomorphism ring is nec-
essary to ensure the security of the elliptic curve used in the Eval operation.
Currently, finding a way to do this without relying on a trusted authority is
an open problem in supersingular isogeny-based cryptography [11,40]. In [4],
Basso, Codogni, Connolly, De Feo, Fouotsa, Lido, Morrison, Panny, Patranabis
and Wesolowski suggest methods for creating such curves defined over a finite
field Fp2 through a trusted setup. Nevertheless, engaging in a trusted setup
for every single input is not a practical solution for us. Trusted setups often
involve complex procedures and require the involvement of multiple parties or
authorities, making them cumbersome to execute on a regular basis. In sum-
mary, the weakness of the VDF is a drawback, while the requirement for curves
with unknown endomorphism rings as input is a significant obstacle.

Technical Preview. Let E0/Fp be a supersingular elliptic curve and � an odd
prime, such that there are two horizontal �-isogenies ψ : E0 → E1 and ψ′ :
E0 → E′

1. If the �-torsion of E0 is only defined over Fp�−1 , then computing
these isogenies is expensive, even with parallelization, and they will determine
the delay of our weak VDF. On the other hand, one can rapidly verify this
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computation in dimension two by asking for the evaluation of ψ and ψ′ on
E0[N ] for certain smooth N > � (e.g. N is some power of two). By choosing �
and N appropriately, the gap between evaluation and verification is exponential.

Outline. This paper is organized as follows. In Sect. 2, we give a mathematical
foundation for understanding the concepts employed in the manuscript, as well
as the definition of a weak VDF. Section 3, the main focus of the paper, provides
a detailed description of our weak VDF. Section 4 to Sect. 6 present thorough
analysis of correctness, soundness and sequentiality. Finally, we draw conclusions
in Sect. 7.

Notation. We will call a prime � a safe prime if k = �−1
2 is also an (odd) prime.

The prime k is then necessarily a Sophie-Germain prime. The Legendre symbol(
a
b

)
is used to denote whether a is a quadratic residue modulo b or not. Two

prime-field elements a, b ∈ Fp will be compared as a <Z b if their canonical lifts
a, b ∈ Z ∩ [0, p − 1] satisfy a < b, and analogously for >Z. For a point P on
an elliptic curve E, we will denote its x-coordinate (respectively y-coordinate)
by x(P ) (respectively y(P )). We will use the term “taking t time to compute”
when referring to the evaluation of a polynomial-sized arithmetic circuit with a
maximum depth of t, specifying the breadth of the circuit when needed.

2 Preliminaries

In this section, we will discuss some properties related to isogenies and weak
VDFs. In general, we will assume the characteristic of the field we work over to
be a prime p > 3, although certain results generalize beyond this restriction.

2.1 Elliptic Curves and Their Representation

Elliptic curves are smooth projective algebraic curves of genus one with a fixed
given point O. Any such curve can be written in long Weierstraß form and then
O is the (only) point at infinity. Often, the curve is given as an affine equation
without explicit mention of O; e.g. the Montgomery form of an elliptic curve EA

is given by
EA/K : y2 = x3 + Ax2 + x,

where K is the field we work over and A is an element of this field. An elliptic
curve comes equipped with a natural group law and the point at infinity OE is
the neutral element of this group. The K-rational points of E (which include
OE) are denoted by E(K).

In isogeny-based cryptographic settings, elliptic curves are typically only con-
sidered up to isomorphism. Two elliptic curves are isomorphic over K if and only
if they have the same j-invariant j ∈ K. The j-invariant of an elliptic curve E
in Montgomery form is denoted by j(EA) and given by

j(EA) =
(A2 − 3)3

A2 − 4
.
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Given a j-invariant j �= 1728, we will define the Weierstraß form

E(j) : y2 + xy = x3 − 36
j − 1728

x − 1
j − 1728

as the canonical representation of E in the isomorphism class of E. The canon-
ical representation isomorphism ιj : E → E(j) is easy to compute for any
elliptic curve E. An elliptic curve is in canonical form if E = E(j(E)). Other
forms of elliptic curves than E(j) are often preferred for computational purposes.
For instance, the Montgomery form EA allows efficient x-only arithmetic in the
group by means of the Montgomery ladder [6]. From the expression j(EA) above
though, it is clear that for any given j-invariant there may be up to six distinct
Montgomery coefficients A. Additionally, one cannot represent every j-invariant
as an elliptic curve in Montgomery form without using field extensions, hence
the Montgomery coefficient is less useful from a representational point of view.
For more information about elliptic curves in general, the book by Silverman is
a staple reference [44].

2.2 Isogenies

An isogeny φ : E → E′ between elliptic curves is a surjective morphism with
finite kernel. In this paper, we will restrict ourselves mostly to separable isoge-
nies. Assuming kernel points are considered over the algebraic closure, it holds
that deg φ = #ker φ for all separable isogenies. An example of an isogeny is the
multiplication-by-n map, given by [n] : E → E, P �→ [n]P . This isogeny is of
degree n2 and its kernel is denoted by E[n]. An endomorphism is a homomor-
phism from an elliptic curve to itself. The endomorphism ring EndK(E) of an
elliptic curve is the ring of all endomorphisms of E defined over the field K.

There are two options for the group structure of E[p], namely E[p] ∼= {0}
or E[p] ∼= Z/pZ. In the former case, the elliptic curves are called supersingular,
whereas in the latter case, they are called ordinary. We will restrict ourselves to
supersingular elliptic curves and isogenies between them, since it is significantly
easier to generate supersingular elliptic curves with certain given orders. For
instance, a supersingular elliptic curve has order p + 1 over Fp.

For a supersingular elliptic curve E/Fp, either EndFp
(E) equals Z[

√−p] or
Z[(1 +

√−p)/2]. In the former case, the elliptic curve E is said to be on the
floor, whereas in the latter case, the elliptic curve is said to be on the surface.
An isogeny φ : E → E′ is said to be horizontal in this context if EndFp

(E) =
EndFp

(E′) (i.e. E and E′ need to either be both on the floor, or both on the
surface). We will make use of the following theorem, where two isogenies are
considered distinct if they have different kernel.

Theorem 1. Let p > 3 be a prime such that p ≡ 3 mod 4, and � an odd prime
such that

(−p
�

)
= 1. If E/Fp is a supersingular elliptic curve, then there are

exactly two distinct Fp-rational horizontal isogenies of degree � with E as domain.

Proof. This is part of [26, Theorem 2.7]. �
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In CSIDH [16], they choose p such that #E(Fp) = p+1 has many small odd
prime factors �i. For each �i, the two horizontal �i-isogenies are then not only Fp-
rational, but they are cyclic with kernel generators in Fp and Fp2 . With a good
choice of representation, both isogenies can be computed from the x-coordinate
of their respective kernel generator using arithmetic over Fp only. Generically,
however, these two Fp-rational horizontal isogenies have kernel generators in
E(Fpe), for some e ≤ � − 1.

In our protocol, we will post-compose Fp-rational horizontal isogenies with
an isomorphism onto the canonical form of the image curve. Technically, the
resulting isogenies are not Fp-rational anymore because of this isomorphism.
However, since we work with curves of unknown endomorphism ring, we can
discard the case where the j-invariant of the starting curve is either 0 or 1728.
As a result, the two horizontal isogenies are still distinct [1, Lemma 3.11]. For
more general background regarding isogenies in a cryptographic setting, we refer
the reader to the notes by De Feo [23].

2.3 Isogenies Between Abelian Surfaces

Abelian surfaces are abelian varieties of dimension two, which can be seen as
a generalization of (necessarily one-dimensional) elliptic curves. In the context
of isogeny-based cryptography, it is necessary to equip them with a principal
polarization (abbreviated as p.p. from now on). We will not elaborate on the
notion of polarizations, but refer the interested reader to [45, Section 2.2] for
more details.

All p.p. abelian surfaces (up to K-isomorphism) are either products of two
elliptic curves or Jacobians of genus-2 curves. Arithmetic on a product of ellip-
tic curves (E1, E2) is simply arithmetic on the two curves componentwise;
e.g. for (P1, P2) ∈ (E1, E2) we can compute the multiplication-by-n map as
([n]P1, [n]P2) ∈ (E1, E2). A genus-2 curve C is a smooth projective algebraic
curve of genus two. Over a field of positive odd characteristic p, such a curve
can be given by an affine equation of the form C : y2 = F (x), where F (x) is
a degree-six polynomial, together with two points at infinity (which may only
exist over a quadratic field extension). From the points on this curve, one can
also construct a group called the Jacobian of the genus-2 curve. Remark that
to construct all K-rational elements of this Jacobian, one needs to consider all
K ′-rational points on C for a quadratic extension K ′ ⊇ K. For an explicit con-
struction of this group law, see for example [19].

Just as in the case of elliptic curves, isogenies between p.p. abelian surfaces
are surjective morphisms with finite kernel. In order to ensure that the isogeny
is compatible with the chosen polarizations of the domain and codomain, this
finite kernel will have to satisfy certain conditions. A sufficient condition is that
the kernel of the isogeny has to be maximal isotropic with regards to the Weil
pairing. For instance, if Ψ : A → A′ is an isogeny between p.p. abelian surfaces
with kernel isomorphic to Z/3 ⊕ Z/3, then for any two elements D1,D2 in kerΨ
it must hold that e3(D1,D2) = 1. A group satisfying these conditions is called
a (3, 3)-subgroup and the associated isogeny a (3, 3)-isogeny.
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A theorem by Kani proves under which specific conditions an isogeny Φ with
domain E1 × E2 has a codomain which is again a product of elliptic curves.
These conditions connect E1 and E2 by means of another (one-dimensional)
isogeny. This criterion underlies Theorem 2 formulated in Sect. 4, which we use
to prove correctness of our protocol. If F1×F2 is the codomain of Φ, then we say
that Φ has product codomain passing through Fi. For an introductory framework
with regards to higher-dimensional isogenies in a cryptographic setting, see for
example [15].

2.4 Weak VDFs

For the sake of being self-contained, we briefly recall the notion of weak VDF
introduced by Boneh, Bonneau, Bünz and Fisch [10]. The main difference
between a VDF and a weak VDF lies in the parallelization capabilities given
to evaluators: in a weak VDF, an evaluator needs arithmetic circuits of breadth
O(poly(t)) to achieve the best strategy, where t indicates the delay expected.

Definition 1. A weak VDF V = (Setup,Eval,Verify) consists of a triple of algo-
rithms as follows:

– (ek, vk) ← Setup(λ, t) : is a randomized algorithm that takes a security param-
eter λ and a delay parameter t as input, and outputs an evaluation key ek
and a verification key vk. The input (λ, t) also defines a domain X and a
codomain Z. Also, Setup should run in O(poly(λ)).

– (z ∈ Z, π) ← Eval(ek, x ← X ) : on input the evaluation key ek and x ∈ X ,
returns z ∈ Z and a proof π. This algorithm must run in time t on an
arithmetic circuit of breadth O(poly(t, λ)).

– {True,False} ← Verify(vk, x, z, π) : checks whether the output z corresponds
to the input x. This algorithm must run in O(poly(log t, λ)) time.

Furthermore, V must satisfy the following properties:

– Correctness: A weak VDF is correct if, for all parameters λ, t, an honest
evaluation of Eval always passes the check made by Verify.

– Soundness: A weak VDF is sound if the probability of marking a wrong
evaluation as correct is negligible in the security parameter λ.

– Sequentiality: To define sequentiality, we need to introduce the following
game applied to the adversary A = (A0,A1):

(ek, vk) ← Setup(λ, t)
L ← A0(ek, vk)
x ←$ X

zA ←$ A1(L, ek, vk, x)

The adversary A wins the game if zA = z, where (z, π) = Eval(ek, x). Given
σ(t) and p(t), the weak VDF V is (p, σ)−sequential if no pair of randomized
algorithms A0, which runs in time O(poly(λ, t)), and A1, which runs in time
strictly less than σ(t) on an arithmetic circuit of breadth p(t), can win the
security game above with probability greater than negl(λ).
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3 The VDF

In this section, we give a high-level description of our weak VDF. Once the eval-
uation key ek and verification key vk have been sampled, the input space consists
of E��p, the set of all j-invariants corresponding to supersingular elliptic curves
over Fp whose Fp2 -endomorphism ring is unknown. Currently, finding a way to
sample such curves at random is an open problem in supersingular isogeny-based
cryptography [11,40]. We define Gen2b to be a deterministic algorithm that, on
input a supersingular elliptic curve and a positive integer b, outputs a basis of
the 2b-torsion.

We recall that λ is a security parameter, t is a delay parameter, z is the
output and π is the proof of the output.

(ek, vk) ← Setup(λ, t) :
1. Sample a random safe prime � ∼ t and define k = (� − 1)/2.
2. Let b > λ such that 2b = c2� + d2 for some coprime positive integers

c, d ∈ N.
3. Construct a random λ log3(t)/2-bit prime p such that

(a) p ≡ −1 mod 2bcd;
(b) p ≡ 1 mod k and 2

p−1
k �≡ 1 mod p.

(c) the order of −p in F
∗
� equals k;

(d)
(−p

�

)
= 1;

4. ek = (p, b, �), vk = (p, b, �, c, d).

(z, π) ← Eval(j ←$ E��p, ek) :
(1) E0 ← E(j), P0, Q0 ← Gen2b(E0, b).
(2) Compute the two (distinct) horizontal �-isogenies ψ : E0 → E1/Fp and

ψ′ : E0 → E′
1/Fp, where E1 and E′

1 are in canonical form, as well as
P1 = ψ(P0), Q1 = ψ(Q0), P ′

1 = ψ′(P0) and Q′
1 = ψ′(Q0).

(3) If j(E1) >Z j(E′
1), then swap (E1, P1, Q1) ↔ (E′

1, P
′
1, Q

′
1).

(4) z ← x(P1) || x(Q1) || x(P ′
1) || x(Q′

1).
(5) π ← j(E1) || j(E′

1) || y(P1) || y(Q1) || y(P ′
1) || y(Q′

1).

{True,False} ← Verify(j, z, π, vk) :
(1) E0 ← E(j), P0, Q0 ← Gen2b(E0, b).
(2) Verify that j(E1) <Z j(E′

1).
1

(3) E1 ← E(j(E1)), E′
1 ← E(j(E′

1)).
(4) Verify that P1, Q1 ∈ E1(Fp2), and P ′

1, Q
′
1 ∈ E′

1(Fp2).
5. Verify that the subgroups 〈([d]P1, [c�]P0), ([d]Q1, [c�]Q0)〉 ⊂ E1 × E0

and 〈([d]P ′
1, [c�]P0), ([d]Q′

1, [c�]Q0)〉 ⊂ E′
1 × E0 define two kernels of

(2b, 2b)-isogenies Φ and Φ′, respectively, having product codomain passing
through E0.

1 Checking if j(E1) is smaller than j(E′
1) implicitly verifies that j(E1), j(E

′
1) ∈ Fp.
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(5) Verify that, for all S ∈ E1[c], the projections of Φ(S, 0) and Φ′(S, 0) onto
E0 are equal to the identity.

(6) Verify that, for all S ∈ E0[d], the projections of Φ(0, S) and Φ′(0, S) onto
E0 are equal to the identity.

For now, we will assume that the evaluation of an �-isogeny in this setting is
expensive, even with access to a large amount of parallel processors. We will
elaborate on this in Sect. 6 when discussing sequentiality but will explain the
choices in the protocol first.

Remark 1. Remark that ek, vk, z, π can be noticeably compressed in bitsize; e.g.
the y-coordinates of P1, Q1, P

′
1 and Q′

1 can be compressed to four bits in the clas-
sical way.2 For the clarity of exposition, we elect to omit these details involving
bandwidth requirements.

3.1 The Conditions in Setup

The condition
(−p

�

)
= 1 ensures that there exist two horizontal �-isogenies, see

Theorem 1. The condition −p having order k in F
∗
� implies that the minimal

field extension over which an �-torsion point is defined is Fpk . Indeed, if E0 is a
supersingular elliptic curve defined over Fp, then #E0(Fpk) = pk + 1. Since −p
has order k in F

∗
� , we have that � | (pk + 1). The field Fpk is the minimal field

extension since it is an extension of prime degree of Fp and � � (p + 1). Finally,
the form of p implies that all 2b-, c- and d-torsion is Fp2 -rational, which will
allow fast verification.

The conditions k | p − 1 and 2
p−1

k �≡ 1 mod p are needed to ensure that
the polynomial xk + 2 is irreducible over Fp[x]. Since 2

p−1
k �≡ 1 mod p, 2 does

not admit a k-th root over Fp, which in turn proves that xk + 2 is irreducible
over Fp[x]. The polynomial xk + 2 is then used to define the field Fpk , i.e.
Fpk = Fp[x]/(xk + 2). This condition is technically not needed but ensures that
we do not need to waste time searching for irreducible polynomials to define Fpk .

3.2 The Size of p

The computation of the horizontal �-isogenies correspond to the action of l =
(�, πk − 1) and l̄ = (�, πk + 1) in the class group Cl(O) of the Fp-endomorphism
ring O of E0. We will focus on l, the other case is completely analogously.
Assuming access to a sufficiently large quantum computer, the relation lattice
for a given set of generators - say l, l1, . . . , ld−1 - of Cl(O) can be computed. This
means that an adversary could try to simplify the computation of the �-isogeny
by means of finding an equivalent element l = le1

1 ·. . .·led−1
d−1 when seen as elements

in Cl(O). Each li in this product corresponds to a prime-degree isogeny, such
that ideally the ei are as small as possible. This is exactly how the CSI-FiSh
signature scheme is made efficient [8].
2 Given that they serve as part of kernel generators for verifying a two-dimensional

isogeny, they can actually be compressed to a combined two bits.
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To combat this, we can choose p to be large enough, such that any of the
known lattice reduction algorithms takes time at least 2λ to find a short vector
of L1-norm less than t. This implies that no reasonable lattice reduction can
find an equivalent smooth-norm ideal corresponding to less than t sequential
isogenies.

Following the argument of Panny [41], the standard lattice reduction algo-
rithm which gives a trade-off between time spent reducing the lattice and the
quality (read: norm) of the output vector is the BKZ algorithm. Assuming p is
a μ-bit prime, our lattice has dimension d and covolume 2μ/2, since the class
group has order O(

√
p). If we are looking for vectors bounded in L1-norm by

t = 2τ , we can deduce that the optimal trade-off happens for dimension d ≈ μ/τ .
The total runtime of the BKZ algorithm is then 2O(2μ/τ2) ≈ 22μ/τ2

. Assuming
BKZ is fully parallelizable, with access to arithmetic circuits of breadth t = 2τ ,
it runs in time 22μ/τ3

. To ensure that this is still more than 2λ, we must have
that 2μ/τ3 ≥ λ, or μ ≥ λ log(t)3/2.

Remark that this approach would lead a dishonest evaluator only to the
codomain curve E1, but this can be extended to also compute the images of P0

and Q0 as follows.
Write R0 = P0 + Q0, such that 〈R0〉 is a cyclic group defining a descending

2b-isogeny to a curve E′/Fp2 . This curve is oriented by an order O′ of conductor
2b inside End(E0); in particular its group action is compatible with the one
at the surface. The class group relations can be obtained as well, and hence
le1
1 · . . . · led−1

d−1 ∩O′ can be rewritten as an equivalent ideal of smooth norm, say m.
The image curve mE′ is then equivalent to E1/〈R1〉, with R1 the image of R0

under the isogeny ψ defined by l.
Furthermore, E1[2b] contains two distinguished cyclic subgroups correspond-

ing to the two eigenvalues of Frobenius. This means that on the level of sub-
groups, we can distinguish 〈ψ(P0)〉 and 〈ψ(Q0)〉 easily. Adding our cyclic sub-
group 〈ψ(R0)〉 as third piece of information, one can use the Weil-pairing and
some linear algebra as in [31] to recover the exact images of P0 and Q0.

Remark 2. The aforementioned derivation of the size of p is extremely conserva-
tive. Not only does it assume full parallelizability of BKZ with no overhead, but
it also assumes a dishonest evaluator can compute �i-isogenies in time O(1) for
d distinct primes �i. In practice this will also come with a huge overhead, since
our parameters are not set up such that both the �i and the field extension over
which the �i-torsion is defined are simultaneously small.

3.3 Curves with Unknown Endomorphism Ring

If the endomorphism ring of the curve E given as input is known, there exists a
polynomial-time algorithm that allows one to compute �-isogenies without using
the arithmetic on extension fields [37]: an attacker could extend (�, πk ± 1) to a
fractional ideal I± in the maximal order End(E0). Then, computing an isogeny
associated with I± has complexity O(poly(log p + C)), where C is the bit-size
of the representation of End(E0) [36, Propositon 5].
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To avoid this, it is needed to employ elliptic curves where the endomorphism
ring remains unknown. Currently, one strategy is to depend on a “trusted party”
to generate a random curve and then eliminate any sensitive information con-
nected to it. Another option is to consider a distributed trusted-setup ceremony,
as described in [4], which outlines a procedure for obtaining supersingular elliptic
curves with an unknown endomorphism ring.

However, having a trusted setup for every single input is not a practical
solution in this context. Indeed performing a trusted setup for each input would
introduce significant overhead in terms of time, resources, and complexity. Addi-
tionally, frequent trusted setups can become prohibitively expensive, especially
in scenarios where a large number of inputs need to be processed. Given these
challenges, it becomes crucial to explore alternative methods that do not rely on
a trusted setup as in [11,40].

3.4 The Role of the Security Parameter

The condition on b is needed to avoid that an attacker having access to the
�-modular polynomial Φ�(X,Y ) can break sequentiality with probability greater
than negl(λ). The classical modular polynomial Φ�(X,Y ) ∈ Z[X,Y ] is a polyno-
mial which vanishes on the j-invariants of every pair of elliptic curves which are
�-isogenous. The polynomial can be precomputed and stored in space O(� log p)
since it is a symmetric polynomial with bidegree � + 1. For any given j(E),
the univariate polynomial Φ�(X, j(E)) can be computed in parallel by using the
Chinese remainder theorem, see for example [46].

The polynomial Φ�(X, j(E)) splits into linear factors over Fp2 , and the Fp-
rational roots correspond to the Fp-rational �-isogenous curves. However, having
the j-invariants of the two curves is not enough to pass Verify. Starting from
E0/Fp, once an �-isogenous elliptic curve E1/Fp has been computed via the
evaluation of roots in classical modular polynomials, an attacker has to guess the
image of the 2b-torsion under the Fp-rational isogeny. For instance, the attacker
could proceed in the following way.

Let 〈P0, Q0〉 = E0[2b] be a basis of eigenvectors for the p-Frobenious endo-
morphism π. Since the eigenspaces are preserved by horizontal isogenies ψ,
we know 〈ψ(P0)〉 and 〈ψ(Q0)〉. Since e2b(ψ(P0), ψ(Q0)) = e2b(P0, Q0)deg ψ,
each guess of ψ(P0) corresponds to a unique guess of ψ(Q0). That is, given
a P1 ∈ 〈ψ(P0)〉 and Q1 ∈ 〈ψ(Q0)〉, for each sp ∈ [0, 2b − 1], an attacker will
compute sQ ∈ [0, 2b − 1] such that e2b(P1, Q1)sP sQ = e2b(P0, Q0)deg ψ. Then, for
each ([sP ]P1, [sQ]Q1), he can check that it is the correct image of the (P0, Q0)
under ψ running Verify. Since b > λ, the probability of guessing the right image
is negligible in λ. We highlight that even if (P0, Q0) is not the basis provided
as input, an attacker can perform computations with a basis of eigenvectors
and then reconstruct the image of the provided basis via a discrete logarithm
computation in Z/2b

Z, which is extremely efficient.

Remark 3. We stress that it is not clear exactly how well the parallelization
of [46] performs in practice compared to the work we let our evaluator do. It may
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thus seem overly cautious to assume that an attacker has early access to j(E1).
However, from pushing points through an isogeny, one can easily reconstruct
the codomain curve as well (see for example [5]), which makes the evaluation of
points a problem that is at least as hard as finding the codomain curve. Since
the image points are needed to make use of Kani’s criterion anyway, we thus
see no argument to not put j(E1) as part of the proof, since other algorithms
to compute it may be faster by a small constant factor. Additionally, Elkies
algorithm to reconstruct the �-isogeny from just j(E0) and j(E1) involves a
recurrence relation of length O(�2) (see [29]), which will be outperformed by our
approach outlined in Sect. 6.

4 Correctness

The correctness of the scheme depends on the following result.

Theorem 2. Let ϕN1 : E0 → E1 and ϕN2 : E0 → E2 be two isogenies of coprime
degrees deg(ϕN1) = N1 and deg(ϕN2) = N2, and let 〈P,Q〉 be a basis of E0[N1+
N2]. Then, the subgroup

〈([N2]ϕN1(P ), [N1]ϕN2(P )), ([N2]ϕN1(Q), [N1]ϕN2(Q))〉 ⊂ E1 × E2,

is the kernel of an (N1 + N2, N1 + N2)-polarized isogeny Φ having product
codomain endowed with the product polarization. Moreover, the isogeny Φ has
matrix form (

ϕ̂N1 −ϕ̂N2

fN2 f̂N1

)
,

where the fNi
’s are Ni-isogenies such that ϕN2 ◦ ϕ̂N1 = fN1 ◦ fN2 .

Proof. This result is a consequence of Kani’s criterion [34]. We refer to [37,
Theorem 1] for a description of how the result is derived from [34]. �

In Verify, one has to check that the subgroups 〈([d]P1, [c�]P0), ([d]Q1, [c�]Q0)〉
and 〈([d]P ′

1, [c�]P0), ([d]Q′
1, [c�]Q0)〉 define two kernels of (2b, 2b)-isogenies having

product codomains passing through E0 and that the projections onto E1 and
E′

1 contain the scalar multiplication [c]. Since the two checks are independent,
let us focus uniquely on K := 〈([d]P1, [c�]P0), ([d]Q1, [c�]Q0)〉.

Recall that P1 = ψ(P0), Q1 = ψ(Q0), where ψ : E0 → E1 is a horizontal
�-isogeny. Applying Theorem 2 with ϕN1 = [c] ◦ ψ and ϕN2 = [d], we have that
the (2b, 2b)-isogeny Φ having kernel K has matrix form

(
[c] ◦ ψ̂ −[d]

[d] [c] ◦ ψ

)
: E1 × E0 → E0 × E1.

The isogeny Φ clearly passes through E0. Moreover, it is easy to check that,
for all S ∈ E1[c], Φ(S, 0) = (0, [d]S), which means that the projection onto
E1 contains the scalar multiplication [c]. Similarly, for S ∈ E0[d], Φ(0, S) =
(0, [c]ψ(S)). Evaluating a (2b, 2b)-isogeny from a given kernel can be done in
O(b log b) Fp-operations using the optimal strategies described in [2].
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5 Soundness

In this section, we prove soundness assuming that d2 > �, where d and � are as
in the verification key vk in Sect. 3. In practice, the condition d2 > � is trivially
satisfied.

Theorem 3. Let d2 > �. The weak VDF described in Sect. 3 is sound.

Proof. Let ek, vk be the evaluation and verification keys, respectively, obtained
via Setup(λ, t) on input some parameters λ and t. Given j ∈ E��p, let (z, π)
be any data such that Verify(j, z, π, vk) = True. We will prove that z has been
honestly generated with overwhelming probability.

In what follows, we abide to notation used in Sect. 3. The first four lines in
Verify ensure that any adversary cannot swap the points on E1 and E′

1 around
and produce other valid outputs. Also, note that Verify performs two independent
checks on the triples (E1, P1, Q1) and (E′

1, P
′
1, Q

′
1). Hence, we will uniquely focus

on the triple (E1, P1, Q1); the other triple is analogous. Observe that the ker-
nel 〈([d]P1, [c�]P0), ([d]Q1, [c�]Q0)〉 defines a (2b, 2b)-polarized isogeny Φ having
product codomain E0×F (up to polarized isomorphisms), for some supersingular
elliptic curve F . In particular, we can write Φ in its matrix form

(
α1,1 α1,2

α2,1 α2,2

)
: E1 × E0 → E0 × F,

where the αi,j are isogenies making the matrix meaningful.
Since Φ◦Φ̂ = [2b], deg(α1,1)+deg(α1,2) = 2b. Additionally, α1,1 = [c]◦μ1 and

α1,2 = [d] ◦ μ2, which implies c2 deg(μ1) + d2 deg(μ2) = 2b. Since c2� + d2 = 2b,
we have deg(μ1) = � (mod d2). As a consequence of d2 > �, we have that
deg(μ1) = � and deg(μ2) = 1, that is α1,1 = [c] ◦ μ1 and α1,2 = [d] up to
isomorphism.

In particular, the isogeny μ̂1 : E0 → E1 is an �-isogeny between supersingular
elliptic curves defined over Fp. The codomains of nonhorizontal �-isogenies are
defined over Fp2 \ Fp with overwhelming probability. To be more precise, the
amount of supersingular elliptic curves over Fp is O(

√
p), while the number

of those over Fp2 is O(p). Therefore, the probability of E1 being defined over
Fp when μ̂1 does not correspond to a horizontal isogeny is O(1/

√
p), which is

negligible in λ. �

6 Sequentiality

The sequentiality of the weak VDF relies on the following assumption.

Assumption 1. Let � be a prime and p a λ log(�)3/2-bit prime, where λ is a
security parameter. Let E0/Fp be a supersingular elliptic curve with unknown
endomorphism ring such that the minimal extension for an �-torsion point of
E0 to be defined over is Fpk , where k = (� − 1)/2 is a prime. Then, the best
technique to evaluate a horizontal �-isogeny with domain E0 requires O(� log �)
Fp-operations, even with access to a quantum computer and arithmetic circuits
of breadth O(poly(�)).
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Accurately defining wall-clock time in formal terms is a difficult task. For
a thorough formal definition of a computational model of real-world time, we
refer to [50, Section 3.1]. In what follows, we will argue why Assumption 1 is
meaningful providing a strategy that achieves that asymptotic complexity – con-
cretely, we will prove that our weak VDF is (O(poly(�)),O(� log �))−sequential.
Throughout this section, we will assume (time) complexity to be the number of
arithmetic operations in Fp, unless stated otherwise.

First note that there are many ways to compute an isogeny in this setting.
In Subsect. 3.2, we argued that this cannot be done efficiently by means of an
equivalent smooth-norm ideal in the class group due to the size of p. Given that
we work with a supersingular elliptic curve with unknown endomorphism ring, we
can also not use a maximal order in End(E0) as discussed in Subsect. 3.3. Using
classical modular polynomials is an option, but regardless of their efficiency, they
only provide the codomain curve and do not allow us to evaluate the isogeny on
points (see Subsect. 3.4).

To the best of our knowledge, all other known ways of evaluating such iso-
genies require using its kernel polynomial in some way. This polynomial can be
constructed from an �-torsion kernel generator by means of Vélu-style formu-
lae, or it can be found as a factor from the �-division polynomial. The latter
is a degree-(�2 − 1)/2 polynomial which over Fp[x] factors into two irreducible
polynomials of degree (� − 1)/2 and (� − 1)/2 irreducible polynomials of degree
� − 1. These two factors of degree (� − 1)/2 correspond exactly to the kernel
polynomials of the horizontal isogenies, so the correct factors are easy to dis-
tinguish. Note that the �-division polynomial is of degree O(�2) however, such
that it is infeasible to try to factor this in time O(� log �). For a more elaborate
argumentation of this statement, we refer to Appendix A. We will now discuss
how to compute this kernel polynomial from a kernel generator, starting with
the Fast Fourier Transform (FFT) for arithmetic in Fpk .

6.1 The Parallel FFT

Elements in Fpk in our setting can be represented as polynomials modulo an
irreducible polynomial of degree k = O(�). Hence, multiplying two elements in
Fpk is equivalent to multiplying two polynomials of degree k − 1 over Fp. The
naive algorithm to multiply such polynomials requires O(�2) Fp-operations. How-
ever, it is possible to lower it down to O(� log �) via the Fast Fourier transform
(FFT) [18]. It is worth mentioning that this asymptotic complexity is theoretical
and could be difficult to reach in practical applications. In what follows, we will
uniquely discuss the best theoretical complexity ignoring engineering challenges.
For the sake of designing a VDF, we are only interested in the best case scenario
for our delay. In practice, given our choice of k, FFT may perform slightly worse.

One of the main advantages of FFT algorithms is that they can be paral-
lelized. For instance, in [22], Cui-xiang, Guo-qiang and Ming-he describe a par-
allel FFT algorithm. Assuming one has access to arithmetic circuits of breadth
m, this algorithm has complexity O((�/m) log �) with a communication cost of
O(log m). In particular, for � = m, the complexity becomes O(log �) and the
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communication cost becomes O(log �). FFT can also be used for multiplying
two elements in Fp, but this speed-up is only asymptotic. In practice, even for p
thousands of bits, the FFT does not outperform plain Montgomery multiplica-
tion. We refer the reader to [18] for further background on FFT.

Other algorithms for multiplying polynomials exist, such as the Toom-Cook
multiplication [21,48]. To the best of our knowledge, none of these can be par-
allelized faster than the FFT. While addition of two polynomials can be done
componentwise on all the coefficients with enough separate processors, we do
not see how this can happen for multiplication.

6.2 Computing a Point of Order �

An �-torsion point is generated by sampling a random point and multiplying
it by its cofactor; i.e. for each P ∈ E0(Fpk) and c = #E(Fpk)/� we have that
[c]P ∈ E0[�]. In practice, we can restrict ourselves to computing x([c]P ) since
x-only arithmetic can be used to compute isogenies (see for instance [16]). This
may require an isomorphism from E0/Fp to a curve in Montgomery form, but
this comes at negligible cost. Writing c as

∑k−1
i=0 aip

i, we can use the following
strategy to obtain [c]P .

First, for all i ∈ {0, . . . , k−1}, we compute and store [ai]P . This can be done
in parallel in O(log p) Fpk -operations, which corresponds to O((�/m) log p log �)
Fp-operations using arithmetic circuits of breadth m for each of the arithmetic
circuits of breadth k = O(�) we are using to compute the [ai]P ’s. This implies
we should use arithmetic circuits of breadth mk just for this step.

We observe that

[c]P = [a0]P + [p]([a1]P + [p]([a2]P + . . . + [p]([ak−2]P + [p][ak−1]P ))).

Since E is supersingular, π2 = [−p]. Hence, to compute [p]Q for any Q ∈ E,
we need to apply the p-Frobenius twice. Each Frobenius costs O(�) Fp-operations,
which can be reduced to O(1) Fp-multiplications using arithmetic circuits of
breadth k. Summing two points P1, P2 ∈ E(Fpk) requires O(1) Fpk -operations,
which amounts to O(log �) Fp-operations using parallel FFT with arithmetic
circuits of breadth k. Therefore, each sum of the form [ai−1]P + [p][ai]Q can be
done in O(log �) Fp-operations using parallel FFT.

To compute [c]P , we need to perform O(�) operations of the form [ai−1]P +
[p][ai]Q, which amounts to O(� log �) Fp-operations. Therefore, having arithmetic
circuits of breadth mk, the asymptotic cost of computing a point of order � is

O(max{� log �, (�/m) log p log �})

Fp-operations. Therefore, taking m ≈ log p, computing a point of order � takes
O(� log �) Fp-operations with arithmetic circuits of breadth 2k log p.

Remark 4. Note that in our weak VDF protocol one needs to sample two �-
torsion points corresponding to two horizontal �-isogenies; one is on the curve
itself and one is on the twist. In protocols such as CSIDH, this is typically done
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by using x-only arithmetic as described here, followed by a square check for the
y-coordinate to see on which curve the point is. Given that a square check is
much more expensive over Fpk than over Fp for large k, one can instead opt to
use the Elligator point sampling method (see for example [3,38]). Indeed, as our
protocol does not need to differentiate between the �-torsion point on the curve
and the one on the twist, we can simply compute both simultaneously.

6.3 Computing the Kernel Polynomial

There are several ways of constructing the kernel polynomial given a kernel
generator. For instance, in [5], they provide an asymptotic speed-up over the
classical Vélu formulae by a square-root factor. In [30], a new algorithm to
compute the kernel polynomials from irrational points is also provided. While
these works may be of interest, they all assume the knowledge of the x-coordinate
of an �-torsion point, which we argued has already complexity O(� log �). So it
suffices for us to provide a way of computing the kernel polynomial in this time
complexity.

Let P ∈ E(Fp�−1) be a point of order � such that x(P ) ∈ Fpk . Our goal is
to compute the isogeny having kernel 〈P 〉 only utilising the x-coordinate of P .
We will show a strategy to do so having arithmetic circuits of breadth O(�). To
obtain the set P := {x([s]P ) | s = 1, . . . , k}, using arithmetic circuits of breadth
k = (� − 1)/2, each of the arithmetic circuits of breadth k will compute one of
the elements in P at the same time. The most demanding task is to compute
x([k]P ), which requires O(log �) Fpk -operations. Equivalently, O(�/m′(log �)2)
Fp-operations employing parallel FFT with arithmetic circuits of breadth m′. As
a result, computing P takes O(� log �) Fp-operations using arithmetic circuits of
breadth m′k.

The kernel polynomial is given precisely by

P (x) =
∏

xi∈P
(x − xi).

This product can be computed pairwise in a (binary) tree of height log(k), where
each step requires some multiplications over Fpk . More precisely, using arithmetic
circuits of breadth m′, we can use parallel FFT such that it takes O((�/m′) log �)
Fp-operations. The computation of P (x) will thus take O((�/m′)(log �)2) Fp-
operations. Taking arithmetic circuits of breadth m′ = �log ��, we then have that
computing this kernel polynomial requires at most O(� log �) Fp-operations. From
this degree-k kernel polynomial P (x) ∈ Fp[x], one can evaluate the corresponding
isogeny in time O(�) with well-known formulae such as those in [35].

7 Conclusion

In this paper, we have introduced a novel weak Verifiable Delay Function (VDF)
that is resistant to quantum attacks. Our construction is based on isogenies,
which are mappings between elliptic curves, and leverages the strengths of
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elliptic curves and elliptic products to enable efficient verification of slow one-
dimensional isogenies. The slowness of these isogenies arises from the fact that
their kernel generators are defined over large extension fields. This feature con-
tributes to their resistance against quantum attacks. Our weak VDF incorporates
two horizontal delay-generating isogenies, and their computation is verified in
dimension two through the reconstruction of these isogenies.

We implemented the weak VDF described in Sect. 3 in SageMath. The source
code is freely available at https://github.com/pq-vdf-isogeny/pq-vdf-isogeny.
The purpose of this implementation is to demonstrate the correctness of the
algorithm. It is important to note that this implementation should be considered
as a proof-of-concept (the size of p in the default parameters is 256 bits and does
not meet the security requirements), and there is room for optimizing several
subroutines. Notably, the parallel algorithms outlined in Subsects. 6.3 and 6.2
have not been included in the provided source code.

Additionally, to enhance performance, lower-level languages such as C and
leveraging platform-specific instructions such as AVX could be utilized. By
adopting these techniques, it is possible to significantly reduce the running
time of the implementation. Ideally, when evaluating isogeny-based delay func-
tions, the utilization of specialized hardware or Field-Programmable Gate Arrays
(FPGAs) would be beneficial.

Throughout the paper, we have identified and discussed several open prob-
lems in this area. One such problem is the requirement for curves with an
unknown endomorphism ring as input without the ability to rely on a trusted
setup. This issue has been a persistent challenge in various isogeny-based proto-
cols and continues to be an active area of research.
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A Factoring the �-Division Polynomial

The �-division polynomial in our setting is a degree-(�2 − 1)/2 polynomial in
Fp[x]. The fastest way to construct this polynomial is by a recurrence relation-
ship taking O(�2 log �) multiplications. Remark that the �-division polynomial
can be precomputed from a specific form of elliptic curves (e.g. based on a Mont-
gomery coefficient A). Both the degree of the �-division polynomial as well as

https://github.com/pq-vdf-isogeny/pq-vdf-isogeny
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the degree of A in this precomputation are O(�2). Hence, using arithmetic cir-
cuits of breadth m = O(�4), one can evaluate the expression in A by means of
square-and-multiply in time O(log �).

The �-division polynomial factors in �+1 factors of degree (�−1)/2 in Fp2 [x],
where each factor determines a kernel polynomial of an �-isogeny. In [49], von
zur Gathen and Panario survey some algorithms to factor polynomials over finite
field. Even though in our case we could use the more efficient equal-degree fac-
torization algorithms, their complexity is not competitive with the strategy we
described in Sect. 6. However, it is worth noting that this survey does not consider
parallel versions of these algorithms. In [32], Gathen describes a parallel version
of the Cantor-Zassenhaus’s algorithm [13]. Adapting the complexity in [32, The-
orem 4.1] to our setting, factoring the �-division over Fp2 requires O(log2 � log p)
Fp-operations utilising arithmetic circuits of breadth O(poly(�2)).

Despite being polynomial in �2, and in turn allowed by the definition of weak
VDF, the exponent of poly(�2) is likely to be huge. For instance, one of the
steps of Cantor-Zassenhaus parallel algorithm relies on the computation of the
quotient and reminder of two polynomials. As explained in [12, Remark 2], this
step itself reaches complexity O(log2 n) when O(n3.5) parallel processors are
employed, where n is the degree of the two polynomials.3 This essential step is
required for poly(n) parallel steps, further increasing the breadth of arithmetic
circuits required by Cantor-Zassenhaus parallel algorithm. A brief discussion on
the exponent of the polynomial describing the breadth of arithmetic circuits
required by this algorithm is contained in [39], where the authors estimate the
exponent to be 13. Thus, one would need arithmetic circuits of breadth O(�26) to
apply this algorithm in our case. For instance, if the delay parameter t provided
as input in Setup is as small as 25, one already needs arithmetic circuits of
breadth ∼ 2130, which is an unrealistic requirement. On top of this analysis,
we shall also mention that the algorithm is theoretical and does not take into
account communication costs. A real-world implementation of this algorithm
would be a major breakthrough on its own.

Finally, to the best of our knowledge, no known quantum algorithm can
help us factor polynomials over finite fields faster. Doliskani gives a quantum
algorithm that can factor a degree-n polynomial over Fq in O(n1+o(1) log2+o(1) q)
bit operations [27]. In our case however, this reduces to O(�2+o(1) log2+o(1) p) for
factoring the �-division polynomial, and hence provides no speed-up.
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Abstract. We propose an efficient identity-based authenticated-key
exchange (IB-AKE) protocol that is equipped with scalable key revoca-
tion. Our protocol builds upon the most efficient identity-based Diffie–
Hellman key exchange (without revocation mechanisms) presented by
Fiore and Gennaro at CT-RSA 2010, which can be constructed from
pairing-free groups. The key revocation is essential for IB-AKE protocols
in long-term practical operation. Our key revocation mechanism allows
the key exchange protocol to remain comparable to the original Fiore–
Gennaro identity-based key exchange, unlike other revocable schemes
that require major (inefficient) modifications to their original IB-AKE
protocols. Moreover, our revocation mechanism is scalable, in the sense
that its computational cost is logarithmic, rather than linear, to the num-
ber of users. We provide a security proof in the identity-based extended
Canetti–Krawczyk security model that is further extended in order to
incorporate key revocation. The security of our scheme reduces to the
well-established strong Diffie–Hellman assumption. For this proof, we
devise a multi-forking lemma, an extended version of the general forking
lemma.

Keywords: Identity-based authenticated-key exchange · Revocable ·
Elliptic-curve cryptography · Pairing-free · Protocol implementations ·
ARM Cortex-M MCU · General forking lemma · Random oracle model

1 Introduction

Secretly and reliably establishing a session key is the initial and vital step of
secure communication between parties. This step can be realized by a crypto-
graphic algorithm called an authenticated-key exchange (AKE) protocol. The
security of session keys established by an AKE protocol is based on that of
static secret keys, each of which must be ensured by each corresponding party
prior to beginning their sessions.
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There are two different systems for ensuring static secret keys. Widespread
are public-key infrastructures (PKIs), where each party generates a pair of a
public key and a private (i.e., static secret) key and requests a certificate author-
ity (CA) to issue a digital certificate that guarantees the identity of the party
together with the public key. On the other hand, relatively new (though the idea
has been around for approximately four decades [41]) is identity-based cryptog-
raphy. Here, the private key generator (PKG) who has the master secret key
issues static secret keys corresponding to the identifiers (e.g., device serial num-
bers) of its clients (i.e., parties) and distributes each key to the corresponding
client. The clients, having their static secret keys, can communicate with each
other using a common identity-based cryptographic algorithm. In reality, several
identity-based cryptosystems have been already standardized [10,15,23,39] and
put into practical use [14,48,53].

Today, identity-based cryptography has attracted attention again with the
spread of the Internet of things (IoT) [44,49]. There are a couple of reasons.
One is that a client can initiate its cryptographic algorithm to communicate
with another client by just specifying its identifier: there is no need to verify
public keys as in PKI. This feature fits a number of IoT scenarios where the
identifiers are given systematically [1]. Another is that the certificateless feature
reduces communication costs. Smaller data traffic is suitable for wireless sensor
networks (WSNs), which have limited bandwidths and are widely adopted by
IoT systems [30,33].

In either case of PKI-based or identity-based cryptography, it is crucial to
equip the system with a key revocation mechanism if we want to operate the
system for an extended period of time. In the case of PKI-based cryptography,
basically, a digital certificate is valid until its expiration date, written in a field
of the certificate. In order to revoke certificates before their expiration, a CA
issues a certificate revocation list or provides service via the Online Certificate
Status Protocol . In the case of identity-based cryptography, the basic idea of
revocation is that the PKG issues key update information and distributes it to
the (still-valid) clients. Then only those clients that remain valid can update
their secret keys, whereas revoked clients would not, even if they have somehow
received the update information.

It is desirable that such updating by the PKG is efficient. Note that it can
be costly when the number of clients becomes large. For example, if the PKG
is to generate key update information for each valid client [9], then the compu-
tational cost would increase linearly with the number of clients. Clearly, such a
mechanism would not be scalable. Hence many of the revocable identity-based
cryptographic algorithms are equipped with much more efficient (i.e., scalable)
mechanisms [8,37,43].

A significant challenge to the above setting is the computational overhead.
Most of the identity-based cryptographic (AKE or encryption) algorithms rely on
the use of pairings whose computation is one order of magnitude more expensive
than a scalar multiplication [24,35]. Such a high computational cost is not accept-
able to resource-restricted IoT devices. Moreover, the use of pairings involves a
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dedicated (i.e., pairing-friendly) elliptic curve whose size is nearly twice that of
an ordinary one when the security levels are the same (e.g., the 461-bit Barreto–
Lynn–Scott curve or the 462-bit Barreto–Naehrig curve vs. a 256-bit ordinary
curve for 128-bit security) [5]. This incurs extra communication overhead, coun-
teracting the certificateless effect of identity-based cryptography.

Fortunately, for AKE (rather than encryption), there exists an exceptionally
efficient protocol: the identity-based authenticated-key exchange (IB-AKE) pre-
sented by Fiore and Gennaro (FG IB-AKE) [19]. The FG IB-AKE is based on the
Diffie–Hellman (DH) key exchange and does not require pairings. The protocol
is secure in the random oracle model (ROM) under the well-established strong
DH assumption. There have been some variants proposed [11,36,45,46,57], and
they all essentially rely on the FG IB-AKE.

The main theme of this paper is to make this outstanding IB-AKE protocol
revocable, in a scalable manner, but the task in hand is challenging. As far as
we know, there are two lines of works to date that study IB-AKE with revoca-
tion: Okano et al. showed how to generically construct revocable (hierarchical)
IB-AKE satisfying the above requirements from CCA-secure revocable (hierar-
chical) identity-based encryption [37], and Tsai et al. considers IB-AKE scheme
with non-scalable revocation (the computational cost of the key update is lin-
ear in the total number of parties) [50,51,55,56]. Hence, the techniques used in
these works seem not to fit our purpose of equipping the FG IB-AKE protocol
with a scalable revocation mechanism. Furthermore, the security requirement
for revocable identity-based authenticated-key exchange is much different from
that for revocable identity-based encryption (RIBE) (cf. Sect. 1.2), and thus we
need rather different techniques from those developed in RIBE.

1.1 Our Contribution

Our main contribution is that we construct an efficient revocable identity-based
authenticated-key exchange (RIB-AKE) protocol with scalability. Our protocol
is based on the FG IB-AKE [19] and can be constructed from pairing-free groups.
To the best of our knowledge, our RIB-AKE protocol is the first one without
pairings and is estimated to be over 50 times faster than any other existing
RIB-AKE protocols depending on the curves [37,50,51,55,56]. Furthermore, our
protocol is easy to deploy as it does not use pairings and works with standard
elliptic curve libraries, such as the OpenSSL library or the Mbed TLS library.
For security, we adopt the rid-eCK model, which is a non-hierarchical version of
the rhid-eCK model [37] and based on one of the strongest models for IB-AKE,
namely, the identity-based eCK model [26]. The rid-eCK model incorporates a
wide range of security notions such as forward secrecy, ephemeral secret key
leak resistance, and current secret key exposure resistance (CSKER). Finally,
we prove that our RIB-AKE protocol is rid-eCK secure under the strong Diffie–
Hellman assumption in the ROM.
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1.2 Related Works

There are many studies on how to construct revocable identity-based encryption
(RIBE) schemes, unlike RIB-AKE protocols, and we referred to these studies
to construct RIB-AKE protocols. Therefore, we briefly recall RIBE here. The
first RIBE scheme was proposed by Boneh and Franklin [9] (BF RIBE). The
BF RIBE naively achieved the key revocation system by sending key update
information to all non-revoked parties. However, the BF RIBE has a problem
in which the computational time for key updates increases linearly with the
number of parties. From the perspective of large-scale operation, the key update
time should be in logarithmic order in the number of parties. When a revocation
mechanism satisfies this requirement, it is said to be scalable.

The first scalable RIBE scheme was proposed by Boldyreva, Goyal, and
Kumar [8]. They achieved scalability by using a binary tree, where each party is
assigned to a leaf, and an algorithm called KUNode. KUNode outputs the high-
est nodes, none of whose descendants are revoked. This approach is similar to the
Subset Cover framework which was used for broadcast encryption [4]. Since then,
many scalable RIBE schemes using KUNode have been proposed [25,32,58].

Seo and Emura proposed the decryption key exposure resistance (DKER)
and showed that these RIBE schemes are not secure enough because they do
not have DKER which the BF RIBE has. Therefore, in their same paper, they
also proposed a scalable RIBE scheme with DKER. Since then, a lot of RIBE
schemes with DKER have been proposed [17,27,31,34,47,52,54].

1.3 Technical Overview

Fiore–Gennaro IB-AKE: We first briefly recall the notion of IB-AKE. In an IB-
AKE system, the PKG first generates a master public key (MPK) and a master
secret key (MSK) to start the system. On the request of static secret key (SSK)
generation from a party with identity ID , the PKG generates one for ID using
the MSK and gives it to the party. A pair of parties holding their SSKs can
run a key exchange protocol based on their identities to securely share a session
key. In the protocol, each party sends a message called an ephemeral public key
(EPK) to the partner, and the randomness used to generate the EPK is called
an ephemeral secret key (ESK).

Our starting point is the FG IB-AKE [19]. Roughly speaking, this IB-AKE
mixes the Diffie–Hellman key exchange with Schnorr signatures [42]. The MPK
and MSK of FG IB-AKE are the verification and signing keys of the Schnorr
signature scheme, respectively. That is, the MSK is a random Zq element x and
the corresponding MPK is gx. A static secret key for a party ID is a Schnorr
signature for the message ID , namely, (gr, s = r + xH(gr ‖ ID)). In the key
exchange protocol, each party chooses a random exponent w as an ESK and
sends (gr, gw) to the partner as an EPK. When two parties engage in the key
exchange protocol, one has (s, w) as (SSK, ESK), and the other has (s′, w′), both
parties can compute Z1 = g(w+s)(w′+s′) and Z2 = gww′

after exchanging EPKs.
Then, they use these terms to derive a session key SK = H ′(Z1, Z2) where H ′

is a key derivation function modeled as a random oracle.
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Making the FG IB-AKE id-eCK-secure: Cheng and Ma [13] pointed out the FG
IB-AKE is insecure against an attack compromising an ephemeral secret key:
roughly speaking, if the adversary knows an ephemeral secret key of a party A,
then it can impersonate any honest party and share a correct session key with
the party A. Thus, the original FG IB-AKE does not achieve id-eCK security.
Ni et al. [36] proposed two variants of the FG IB-AKE by doubling the static
secret key, in which the static secret key consists of two Schnorr signatures, and
show that both protocols are id-eCK secure.

To make the scheme id-eCK secure more efficiently, we solve the issue in a
different manner: we introduce an additional term Z3 = gss′

computed from the
parties’ SSK, and make a session key involve the additional term. This technique
is inspired by the id-eCK secure IB-AKE protocol by Fujioka et al. [20]. Intu-
itively, amid the security proof in the id-eCK model there exists a case where
the reduction algorithm can extract only Z = guv+ss′

from the queries to the
random oracle H ′ where guv is the answer of the strong DH problem. Adding Z3

to the session key derivation allows the reduction algorithm to extract Z3 and
compute guv = Z/Z3.

Revocable IB-AKE: As well as RIBE, RIB-AKE [37] allows the PKG to revoke
parties. More precisely, the PKG maintains a revocation list, which contains
revoked parties, and key-update information. Each party uses a current secret key
(CSK) instead of a static secret key to run the RIB-AKE protocol. A legitimate
party computes its CSK from its SSK and the key update information published
by the PKG in the current time period. However, the revoked parties in the
revocation list cannot compute their CSK for the current time period from their
SSK and the key update information.

Recap of Previous Revocable IBEs: In order to construct efficient RIB-AKE
protocols, we employ the subset cover framework using KUNode [4,25,32,47,58]
following previous constructions of RIBE (for KUNode, see Sect. 3.1). In this
framework, we can publicly compute a set PID for any party ID and a set Q for
any set of revoked parties such that: 1) the sizes of PID and Q are logarithmic
in the total number of parties; 2) PID and Q have exactly one shared element
(denoted by θ) if party ID is not revoked; and 3) PID and Q are disjoint if party
ID is revoked.

Most previous RIBE schemes based on pairings and the KUNode framework
basically use the following blueprint. Informally, the static secret key ssk ID for
ID and the key update information kuT for time period T can be written as

ssk ID = (gri , gα+E(ID,ri)+F (i))i∈PID
, kuT = (gti , gE′(T,ti)−F (i))i∈Q

where g is a generator of pairing groups, α is the MSK, ri, ti are random
exponents, E,E′ are IBE encodings, and F is a pseudorandom function. For
now considering E,E′ as the encoding of Boneh-Boyen IBE [3] suffices where
E(ID , ri) = ri(IDu + h). In the CSK generation, only non-revoked parties can
compute csk ID,T = (grθ , gtθ , gα+E(ID,rθ)+E′(T,tθ)) (recall that θ is the intersec-
tion of PID and Q). The point is that csk ID,T works as a secret key of IBE for
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identity (ID , T ) and can be used to decrypt a ciphertext for identity (ID , T ),
which represents one for identity ID in the time period T .

However, if csk ID,T is revealed, the adversary can compute ssk ID since kuT

is public in the above construction. This is called the CSK exposure attack. To
prevent the attack, previous RIBE schemes re-randomize csk ID,T in the CSK
generation and outputs csk ′

ID,T = (gr′
, gt′

, gα+E(ID,r′)+E′(T,t′)) where r′, t′ are
fresh random exponents. Such re-randomization is possible via linear operations
given the MPK.

Our Design: A naive idea to make FG IB-AKE revocable is to apply the above
template to it. However, it quickly turns out that a CSK in the candidate FG
IB-AKE with revocation using the above idea is not re-randomizable: we would
have

csk ID,T = (grθ , gtθ , rθ + tθ + x(H(grθ ||ID) + H(gtθ ||T )))

by the adaptation of the above template, but how to compute the third element
that is consistent with the re-randomized first and second elements is unclear.
The problem lies in the fact that to re-randomize rθ, tθ we need to also change
the inputs to the hash function H to compute the third element.

To circumvent this problem, we devise a completely different approach from
RIBE. In our scheme, a SSK for party ID is the same as the FG IB-AKE, namely,
ssk ID = (gr, s = r + xH(gr||ID)). The key update information kuT for time
period T consists of a set of Schnorr signatures (gri , si = ri +xH(gri ||(i, T )))i∈Q

for the elements in Q and T . In the CSK generation, party ID takes (ssk ID , kuT ),
choose a random exponent r̂, and computes

csk ID,T = (gr, grθ , gr̂, ŝ = r̂ + (s + sθ)H(gr̂||(ID , T ))) (1)

which can be seen a variant of the Schnorr signature for (ID , T ) with the signing
key being s + sθ. Observe that ssk ID cannot be efficiently computed from kuT

and csk ID,T , and thus our scheme is CSK exposure resilient.
The key exchange protocol almost remains the same. That is, each party

sends (gr, grθ , gr̂, gw) to the partner and computes a shared session key as
SK = H ′(g(w+ŝ)(w′+ŝ′), gww′

, gŝŝ′
) where symbols with a prime denote the cor-

responding values owned by the partner.

Security Proof: The security proof of our scheme basically follows that of FG IB-
AKE, but we need a major modification at some points. As well as the security
proof of Schnorr signatures, that of FG IB-AKE scheme uses the forking lemma
in a similar manner. In our case, however, CSKs that are used for key exchange
protocols are the variant of Schnorr signatures described in Eq. (1). Roughly
speaking, the reason that we need the major modification in the security proof
of our RIB-AKE is basically the same as the reason that we cannot prove the
security of the variant using the standard forking lemma. For simplicity, we
consider the security proofs of Schnorr signatures and the variant in what follows.

In Schnorr signatures, recall that the forking lemma allows the reduction
algorithm to compute two signatures s = r + xh and s′ = r + xh′ and obtain
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x = s−s′
h−h′ as the answer to the discrete log problem of gx where h, h′ are inde-

pendently sampled hash values of (gr,m). In the case of the variant, however,
the corresponding part s is computed as

s = r3 + (r1 + r2 + x(h1 + h2))h3

where x is the signing key and h1, h2, h3 are hash values involving r1, r2, r3,
respectively. A naive application of the forking lemma only allows the reduction
algorithm to compute s = r3 + (r1 + r2 + x(h1 + h2))h3 and s′ = r′

3 + (r1 + r′
2 +

x(h′
1 + h2))h3 such that h1 �= h′

1, r2 �= r′
2, r3 �= r′

3. Hence, it cannot extract x
from s and s′. The problem here is that the r2 and r3 can change if the reply
of the random oracle is changed from h1 to h′

1. Changing the hash value h3 also
does not work: even if r1, r2, r3 do not change, the reduction algorithm obtains
s = r3 + (r1 + r2 + x(h1 + h2))h3 and s′ = r3 + (r1 + r2 + x(h1 + h2))h′

3, from
which it cannot extract x.

To solve these problems, we devise an extended version of the general forking
lemma [7] called the multi-forking lemma. This lemma has two major differences
over the general forking lemma. First, it shows that r1, r2, r3 do not change with
a large enough probability when the reduction algorithm changes the last hash
value hi ∈ {h1, h2, h3} queried by the adversary. Second, we change the format
of input and output of the forking algorithm to allow the lemma to be used
repeatedly. Armed with the new lemma, the forking algorithm can extract x as
follows. If hi �= h3, it can easily obtain x = s−s′

(hi−h′
i)h3

by using the lemma once.

Otherwise, it first obtains σ = s−s′
h3−h′

3
= r1 + r2 + x(h1 + h2). Then, a meta

forking algorithm can extract x = σ−σ′
hj−h′

j
by using the new lemma again on the

second hash value hj ∈ {h1, h2}.

2 Definition of RIB-AKE

In this section, we show the definition of RIB-AKE protocol.
We first briefly overview the definition. In RIB-AKE, the PKG first outputs

a master public/secret key pair with a security parameter and the number of
parties as input and then releases the master public key to all parties. Next, the
PKG uses the master secret key and each party’s ID to generate static secret
keys associated with the ID and then distributes each key to each party via a
secure channel. In addition, the PKG updates the revocation list, generates the
key update information, and broadcasts them to all parties via a public channel
at regular intervals. Each party can generate their current secret key, valid only
in that period, from their static secret key and the key update information given
by the PKG only when they are not revoked.

In order to share a session key between two parties, the initiator generates
an ephemeral public/secret key pair and sends the ephemeral public key to the
responder, who is the other party. The responder also generates an ephemeral
public/secret key pair and sends its ephemeral public key to the initiator. Both
parties can generate a session key from the master public key of the PKG, their
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own current secret key and ephemeral secret key, the ephemeral public key of
the other party, both IDs, and the time counter. Note that the static secret key
and the key update information are not used to generate the session key but are
only used to create the current secret key.

2.1 Syntax of RIB-AKE

The RIB-AKE protocol Π consists of the following seven probabilistic
polynomial-time (PPT) algorithms:

– ParGen(1λ, N) → (MSK ,MPK ,RL, T ): Parameter generation algorithm to
be executed only once by the PKG. With the security parameter λ and the
maximum number of parties N as input, it outputs the master secret key
MSK , the master public key MPK , the initial revocation list RL, and the
time counter T . The master public key is distributed to all parties via a
public channel. The master secret key MSK is the secret information of the
PKG. The revocation list RL is not secret information but only used by the
PKG, so it does not necessarily have to be distributed. Assume RL = ∅ and
T = 0 as the initial state. (We assume to include MPK in the input of all
algorithms below.)

– SSKGen(MSK , ID) → ssk ID : Static secret key generation algorithm per-
formed by the PKG only once for each party. It takes the master secret key
MSK and the party’s ID as input and outputs the static secret key ssk ID

corresponding to ID . Each static secret key is distributed to each party via a
secret channel.

– Revoke(rl): Algorithm for updating the revocation list executed by the PKG
at certain intervals. It receives the list of newly revoked user’s IDs rl . Then, it
updates RL ← RL ∪ rl . In addition, it increments the time counter T ← T +1.

– KeyUp(MSK , T,RL) → kuT : Algorithm for generating key update informa-
tion executed by the PKG after Revoke. It takes the master secret key MSK ,
the time counter T , and the revocation list RL as input and outputs the key
update information kuT . The key update information with the time counter
(kuT , T ) is distributed to all parties via a public channel.

– CSKGen(ID , T, ssk ID , kuT ) → csk ID,T : The current secret key generation
algorithm executed by each party after receiving (kuT , T ). It takes ID , the
time counter T , the static secret key ssk ID , and the key update information
kuT as input and outputs the current secret key csk ID,T or ⊥. The ⊥ means
that the ID has been revoked.

– EKGen(IDA, IDB , T, cskA,T ) → (eskA, epkA): Ephemeral key generation
algorithm executed by each party for each session. It takes as input the iden-
tifier IDA of executor UA, the identifier IDB of communication partner UB ,
the time counter T , and the current secret key cskA,T of executor UA. It
outputs the ephemeral secret/public key pair (eskA, epkA) of executor UA for
the session. The ephemeral public key epkA is distributed to communication
partner UB via a public channel.
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– SKGen(IDA, IDB , T, cskA,T , eskA, epkB) → SK : Session key generation
algorithm executed by each party for each session. It takes as input the identi-
fier IDA of executor UA, the identifier IDB of communication partner UB , the
time counter T , the current secret key cskA,T of executor UA, the ephemeral
secret key eskA of executor UA, and the ephemeral public key epkB of com-
munication partner UB . It outputs the session key SK .

We show the overall behavior of the RIB-AKE protocol in Table 1.

Table 1. Behavior of the RIB-AKE protocol

Parameter Setting

PKG’s computation.

(MSK ,MPK ,RL, T ) ← ParGen(1λ, N)

PKG’s secret key: MSK , PKG’s public key: MPK , Revocation list: RL, Time counter: T

Distribute MPK to all users.

Static Secret Key Distribution

PKG’s computation for UA. PKG’s computation for UB .

sskA ← SSKGen(MSK , IDA) sskB ← SSKGen(MSK , IDB)

Send sskA to UA via a secret channel. Send sskB to UB via a secret channel.

Update Information Distribution

PKG’s computation at certain intervals.

Update RL by Revoke(RL), kuT ← KeyUp(MSK , T,RL)

Distribute (kuT , T ) to all users.

Current Secret Key Generation

UA’s computation UB ’s computation

when UA receives kuT . when UB receives kuT .

cskA,T ← CSKGen(IDA, T, sskA, kuT ) cskB,T ← CSKGen(IDB , T, sskB , kuT )

Current secret key of UA: cskA,T Current secret key of UB : cskB,T

Session Key Generation

UA’s computation UB ’s computation

when UA makes a session with UB . when UB makes a session with UA.

(eskA, epkA) ← EKGen(IDA, IDB , T, cskA,T ) (eskB , epkB) ← EKGen(IDB , IDA, T, cskB,T )

Ephemeral secret key of UA: eskA Ephemeral secret key of UB : eskB

Ephemeral public key of UA: epkA Ephemeral public key of UB : epkB

Send epkA to UB via a public channel. Send epkB to UA via a public channel.

UA’s computation UB ’s computation

when UA receives epkB . when UB receives epkA.

SK ← SKGen(IDA, IDB , T, cskA,T , eskA, epkB) SK ← SKGen(IDB , IDA, T, cskB,T , eskB , epkA)

Session key shared by UA and UB : SK
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3 Our Construction

In this section, we show our construction of the RIB-AKE protocol.

3.1 Sub-algorithms for Our Construction

Here, we show two sub-algorithms used in our protocol. First, we review the
KUNode algorithm [8]. The notation in the algorithm is summarized as follows:

BT : A binary tree with leaves associated with every ID including IDs not
assigned to a specific party. For example, if we use IPv4 addresses as IDs, the
number of leaves will be N = 232.

RL : List of leaves associated with the ID of the revoked party.
root : Root of the binary tree BT .
Path(ID) : Set of nodes on the path from the leaf associated with the ID to

root .
xleft , xright : Left child and right child of node x.

We show the pseudo-code and example output of KUNode in Fig. 1. This algo-
rithm outputs the set of the maximal nodes whose descendants cover all non-
revoked ID and do not contain any revoked ID . It is known that the size of the
output and the computational cost are both logarithmic in the number of leaves,
and this makes our protocol scalable. Note that the binary tree BT is fixed even
when some parties are newly assigned or revoked.

Fig. 1. The pseudo-code of KUNode (a) and an example output of KUNode for
eight parties (b). Parties with the identifier 001 and 100 are revoked and the bold
nodes are the outputs.

Secondly, let GenG be a PPT algorithm that takes 1λ as input, randomly
selects a prime, q, of size λ, a cyclic group, G, of order q, and a generator, g, of
G, and outputs (G, q, g).
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3.2 Our Construction of RIB-AKE

Now, we show our construction of RIB-AKE. Our protocol consists of the PPT
algorithm shown below. Note that we use the same notations defined in Sect. 2.1
as the same meaning. The executor and execution timing of each algorithm are
also described in Sect. 2.1.

– ParGen(1λ, N) → (MSK ,MPK ,RL, T ):
1. Generate (G, q, g) ← GenG(1λ).
2. Take x ∈U Zq and set X = gx.
3. Let BT be a binary tree with N number of leaves.
4. Take two hash functions H1 : {0, 1}∗ × G → Zq and H2 : {0, 1}∗ × G

3 →
{0, 1}λ.

5. Output MSK = x, MPK = (G, q, g,X,BT ,H1,H2), RL = ∅, and T = 0.
– SSKGen(MSK , ID) → ssk ID :

1. Take rID ∈U Zq and set RID = grID .
2. Set sID = rID + x · H1(ID , RID).
3. Output ssk ID = (sID , RID). (Note that gsID = RID · XH1(ID,RID ) holds.)

– Revoke(rl): The input rl is the list of IDs of the newly revoked parties. Just
update RL ← RL ∪ rl and increment time T ← T + 1.

– KeyUp(MSK , T,RL) → kuT :
1. For each θ ∈ KUNode(BT ,RL),

calculate (sT‖θ, RT‖θ) ← SSKGen(MSK , T ‖ θ).
2. Output kuT = {(θ, sT‖θ, RT‖θ)}θ∈KUNode(BT ,RL).

(Note that gsT ‖θ = RT‖θ · XH1(T‖θ,RT ‖θ) holds.)
– CSKGen(ID , T, ssk ID , kuT ) → csk ID,T :

1. Take θ ∈ KUNode(BT ,RL) ∩ Path(ID). If it does not exist, output ⊥.
2. Parse ssk ID = (sID , RID).
3. Take rID,T ∈U Zq and set RID,T = grID,T .
4. Set sID,T = rID,T + (sID + sT‖θ) · H1(ID ‖ T,RID,T ).
5. Output csk ID,T = (sID,T , RID , RT‖θ, RID,T , θ).

(Note that gsID,T = RID,T · Y H1(ID‖T,RID,T ) holds for Y := gsID+sT ‖θ .)
– EKGen(−,−,−, csk ID,T ) → (esk ID , epk ID): (IDs and T can be given as

input, but not used anyway in this algorithm.)
1. Parse csk ID,T = (sID,T , RID , RT‖θ, RID,T , θ).
2. Take wID ∈U Zq and set WID = gwID .
3. Output esk ID = wID and epk ID = (WID , RID , RT‖θ, RID,T , θ).

– SKGen(IDA, IDB , T, cskA,T , eskA, epkB) → SK :
1. Parse cskA,T = (sA,T , RA, RT‖θA

, RA,T , θA), eskA = wA, and epkB =
(WB , RB , RT‖θB

, RB,T , θB).
2. If θB is not prefix of IDB , then abort.
3. Let Y = RB · XH1(IDB ,RB) · RT‖θB

· XH1(T‖θB ,RT ‖θB
).

4. Let Z1 =
(
WB · RB,T · Y H1(IDB‖T,RB,T )

)sA,T +wA .
5. Let Z2 = WwA

B .
6. Let Z3 =

(
RB,T · Y H1(IDB‖T,RB,T )

)sA,T

7. Let m = (IDA ‖ IDB ‖ T ‖ epkA ‖ epkB).
8. Output SK = H2(m,Z1, Z2, Z3).

Table 2 shows how UA and UB shares SK by using EKGen and SKGen.



182 K. Nakagawa et al.

Table 2. Behavior of our RIB-AKE protocol

Parameter and Update Information

MPK = (G, q, g, X,BT , H1, H2), RL, T , kuT = {(θ, sT‖θ, RT‖θ)}θ∈KUNode(BT ,RL)

Static Secret Key

UA: IDA, sskA = (sA, RA) UB : IDB , sskB = (sB , RB)

Current Secret Key Generation

{θA} := KUNode(BT ,RL) ∩ Path(IDA) {θB} := KUNode(BT ,RL) ∩ Path(IDB)

rA,T ∈U Zq rB,T ∈U Zq

RA,T := grA,T RB,T := grB,T

sA,T := rA,T + (sA + sT‖θA
)H1(IDA ‖ T, RA,T ) sB,T := rB,T + (sB + sT‖θB

)H1(IDB ‖ T, RB,T )

cskA,T := (sA,T , RA, RT‖θA
, RA,T , θA) cskB,T := (sB,T , RB , RT‖θB

, RB,T , θB)

Ephemeral Key Generation

eskA := wA ∈U Zq eskB := wB ∈U Zq

WA := gwA WB := gwB

epkA := (WA, RA, RT‖θA
, RA,T , θA) epkB := (WB , RB , RT‖θB

, RB,T , θB)

Session Key Generation

YB := RB · XH1(IDB ,RB) · RT‖θB
· XH1(T‖θB ,RT ‖θB

) YA := RA · XH1(IDA,RA) · RT‖θA
· XH1(T‖θA,RT ‖θA

)

ZA,1 :=
(
WB · RB,T · Y

H1(IDB‖T,RB,T )

B

)sA,T +wA

ZB,1 :=
(
WA · RA,T · Y

H1(IDA‖T,RA,T )

A

)sB,T +wB

ZA,2 := W wA
B ZB,2 := W wB

A

ZA,3 :=
(
RB,T · Y

H1(IDB‖T,RB,T )

B

)sA,T

ZB,3 :=
(
RA,T · Y

H1(IDA‖T,RA,T )

A

)sB,T

SKA := H2(m, ZA,1, ZA,2, ZA,3) SKA := H2(m, ZB,1, ZB,2, ZB,3)

3.3 Correctness

Definition 1 (Correctness). If both no-revoked parties UA and UB run the
protocol honestly, their session key SKA and SKB are equal.

Here, we prove the correctness of our protocol. We consider the session
between UA and UB . See the transcript in Table 2. Let YB, ZA,1, ZA,2, ZA,3,SKA

(resp. YA, ZB,1, ZB,2, ZB,3,SKB) be the values Y,Z1, Z2, Z3,SK computed by
UA (resp. UB) through SKGen, respectively. Let the current secret key cskA,T =
(sA,T , RA, RT‖θA

, RA,T , θA) and eskA = wA be UA’s current and ephemeral
secret key. UB’s current and ephemeral secret keys are denoted in the same
way. By the definition of our protocol, we have

YB = RB · XH1(IDB ,RB) · RT‖θB
· XH1(T‖θB ,RT ‖θB

) = gsB+sT ‖θB

and RB,T ·Y H1(IDB‖T,RB,T )
B = gsB,T . (See the definition of CSKGen.) Thus, UA

obtains

ZA,1 =
(
WB · RB,T · Y

H1(IDB‖T,RB,T )
B

)sA,T +wA

= (gwB · gsB,T )sA,T +wA = g(sA,T +wA)(sB,T +wB),

ZA,2 = WwA

B = (gwB )wA = gwAwB ,

ZA,3 =
(
RB,T · Y

H1(IDB‖T,RB,T )
B

)sA,T

= (gsB,T )sA,T = gsA,T sB,T .
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Since the values obtained by UB are the replacement of A and B above, we
have ZA,i = ZB,i for i ∈ {1, 2, 3}. Therefore, SKA = H2(m,ZA,1, ZA,2, ZA,3) =
H2(m,ZB,1, ZB,2, ZB,3) = SKB holds and our protocol is correct.

3.4 Efficiency

In this subsection, we show that our protocol is the most efficient among (R)IB-
AKE protocols with the (r)id-eCK secure, indicating that our protocol is prac-
tical. In other words, our proposed protocol can use the revocation function
without performance degradation.

First, we theoretically evaluate the computational costs of (R)IB-AKE proto-
cols. In order to be a fair comparison, we selected efficient protocols [19,36,37,49]
from among protocols that can be the (r)id-eCK secure. Since Okano et al.’s
construction [37] is a general one of RHIB-AKE, we made comparisons using
instantiation by these protocols [12,16,18]. Instantiation by other protocols is
possible, but it is not expected to drastically improve performance.

We also use the symbols P , Si, and ET to explain the computational cost of
paring, scalar multiplication in Gi, and exponentiation over GT in each scheme,
respectively. For simplicity, only these expensive operations are counted. More-
over, we define d = log2 N , and k = r log2

(
N
r

)
, where N is the number of all

parties, and r is the number of revoked parties.
While our protocol, Fiore et al.’s and Ni et al.’s protocol can be constructed

with general elliptic curves, Okano et al., Tomida et al., and others’ protocols
are pairing-based protocols and thus require the use of pairing-friendly curves.

Table 3 shows the computational cost of (R)IB-AKE protocols. Our protocol
is the most efficient among protocols with the (r)id-eCK secure because the FG
IB-AKE [19] is id-CK secure not id-eCK secure. Note that the cost of KeyUp
is O(k) = O(log N) for a fixed r (or a small enough r). Therefore, our protocol
is scalable.

Table 3. Computational cost of RIB-AKE and IB-AKE protocols

Function RIB-AKE IB-AKE

Ours Okano et al. [37] Fiore et al. [19] Ni et al. [36] Tomida et al. [49]

SSKGen S 3S1 S 2S S2

KeyUp kS 3(k + r + 1)S1 – – –

CSKGen S 3(k + 1)S1 – – –

EKGen S (12d + 19)S1 S S 2S1

SKGen 5S 12P + 4S1 + (2d + 3)ET 3S 6S 3S1 + P

Next, we measure the performance of each operation in Table 3 to show the
practicality of not using pairing and describe the results in Table 4. We used
the Apache Milagro Crypto Library (AMCL) [2] for this measurement, which
supports Edwards, NIST, and BLS curves. The AMCL library is an open-source
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library provided by the Apache project and is available for download. To select
the 128-bit security parameters, we chose Curve25519 (Ed25519) and NIST P-
256 (SECP256) for elliptic curves. For pairing friendly curves, we chose the BLS
curve with embedding degree 12, a characteristic of 461 bits, called BLS12 461
in [40]. We summarize our environment for the experiments in Table 5. Table 4
contains the number of average clock cycles (kCycles) of 100 iterations.

Pairing is not only a very heavy operation but also requires the use of libraries
that support pairing operations. This has made RIB-AKE and IB-AKE difficult
to achieve real-world applications, but our scheme has the advantage of not using
pairing, and thus contributes greatly to the realization of practical applications.
Unlike the pairing-friendly curve, the Edwards curve and the NIST curve are
implemented in many popular cryptographic libraries, such as the MbedTLS
library, and thus our protocol can be easily implemented. Our protocol makes
it possible to apply revocation and authentication functions to microcontrollers
with small CPU resources, such as sensor devices.

Table 4. Experimental results

Curve Operation kCycles (msec)

Ed25519 S 4925 (44)

SECP256 16088 (146)

BLS12 461 S1 25735 (233)

S2 67906 (617)

P 134242 (1220)

ET 48887 (444)

Table 5. Execution Environment

Item Value

CPU Cortex-M33

Clock 110 MHz

RAM 256 KB

Development Board STM32L552ZE

Instruction Cache On

Compiler IAR C Compiler

4 Security Model of RIB-AKE

In this section, we define the security model of RIB-AKE. This security model
is a non-hierarchical version of rhid-eCK model [37] and is based on Huang–
Cao’s ID-based eCK (id-eCK) model [26]. The differences of our model from the
id-eCK model are as follows:

– When the adversary specifies the session, he also specifies not only the ID
but also the time T .

– The adversary can query to the oracle that returns a current session key
of use ID for the time T (CSKRev), which captures each party’s current
secret key exposure. It can also query to the oracle that returns a key update
information for time T (KeyUp), which captures the broadcast of the key
update information, and the oracle that updates the revoke list (Revoke),
which captures the revocation list’s system-wide update.

– We modify the definition of freshness based on the additional queries above.
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Our security model guarantees that “as long as the current secret key for the
target ID and time T pair is not exposed, the target session key is secure even
if other current secret keys and the ephemeral secret keys are exposed,” and
that “even if the static secret key for the target ID is exposed, the session key
is secure if the ID is revoked at the target time T .”

4.1 Session

An invocation of a protocol is called a session. A session is activated via an incom-
ing message of the forms (Π, I, T, IDA, IDB) or (Π,R, T, IDA, IDB), where Π is
the protocol identifier, I and R are role identifiers, T is the time period, and IDA

and IDB are user identifiers. When IDA is activated with (Π, I, T, IDA, IDB),
we call IDA an initiator. When IDA is activated with (Π,R, T, IDA, IDB), we
call IDA a responder.

On activation, an initiator (resp. responder) IDA returns epkA. Receiving an
incoming message (Π, I, T, IDA, IDB , epkB) (resp. (Π,R, T, IDA, IDB , epkB))
from the responder (resp. initiator) IDB , IDA computes the session key SK .

If IDA is the initiator, the session identifier sid is (Π, I, T, IDA, IDB , epkA) or
(Π, I, T, IDA, IDB , epkA, epkB). If IDA is the responder, the session is identified
by sid = (Π,R, T, IDA, IDB , epkA) or (Π,R, T, IDA, IDB , epkB , epkA). It is
said that IDA is the owner of the session sid when the fourth component of sid
is IDA. Also, IDB is said to be a peer of session sid when the fifth component
of sid is IDB . A session is completed when the session key has been computed
in that session.

A matching session of sid = (Π, I, T, IDA, IDB , epkA, epkB) is a session with
(Π,R, T, IDB , IDA, epkA, epkB), and vice versa.

4.2 Adversary

The adversary A is modeled as a PPT Turing machine that controls all commu-
nication between the parties, including session activation. Let Tcu and RLTcu

be
the time counter and the revoke list maintained by the challenger, respectively.
We model the adversary’s capability by the following queries.

– ParGen(1λ, N): The adversary requests the PKG to generate the parameter
and obtains the master public key MPK .

– SSKRev(ID): The adversary obtains the static secret key ssk ID .
– KeyUp(T ): If T ≤ Tcu , then the adversary obtains the key update informa-

tion kuT , else obtains ⊥.
– CSKRev(ID , T ): If T ≤ Tcu , then the adversary obtains the current secret

key csk ID,T , else obtains ⊥.
– ESKRev(sid): The adversary obtains the ephemeral key esk of the session

owner.
– SKRev(sid): The adversary obtains the session key if the session is com-

pleted.
– MSKRev(): The adversary obtains the master secret key MSK .
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– EstablishUser(U, ID): The query allows the adversary to join the party as
the user U with the identity ID and obtain the static secret key ssk ID . If this
query establishes a party, then we call the party dishonest. If not, we call the
party honest.

– Send(message): message is given in the form (Π, I, Tcu , IDA, IDB), (Π,R,
Tcu , IDA, IDB), (Π, I, Tcu , IDA, IDB , epkB), or (Π,R, Tcu , IDA, IDB , epkB).
The adversary obtains the response from the party according to the protocol
specification.

– Revoke(RL): If RLTcu
�⊂ RL, return ⊥. Otherwise, Tcu is incremented as

Tcu ← Tcu + 1, update the revoke list as RLTcu
← RL, and return Tcu .

4.3 Freshness

Here, we give the definition of freshness, which is similar to that of the rhid-eCK
security model [37].

Definition 2. Let sid∗ = (Π, I, T ∗, IDA, IDB , epkA, epkB) or (Π,R, T ∗, IDA,
IDB, epkB , epkA) be a completed session between the honest party UA with the
identifier IDA and the honest party UB with the identifier IDB. When there
exists a matching session of sid∗, we denote it as sid∗. We say that sid∗ is fresh
if none of the following conditions are satisfied.

1. The adversary A issues SKRev(sid∗), or SKRev(sid∗) if sid∗ exists.
2. sid∗ exists and adversary A makes either of the following queries:

– ESKRev(sid∗) and SSKRev(IDA) with IDA �∈ RLT ∗ .
– ESKRev(sid∗) and SSKRev(IDB) for the identity IDB with IDB �∈

RLT ∗ .
– ESKRev(sid∗) and CSKRev(IDA, T ∗).
– ESKRev(sid∗) and CSKRev(IDB , T ∗).

3. sid∗ does not exist and adversary A makes either of the following queries:
– ESKRev(sid∗) and SSKRev(IDA) for the identity IDA with IDA �∈

RLT ∗ .
– SSKRev(IDB) for the identity IDB with IDB �∈ RLT ∗ .
– ESKRev(sid∗) and CSKRev(IDA, T ∗).
– CSKRev(IDB , T ∗).

Note that case 3 is essentially the same as ESKRev(sid∗) being executed,
since there is no matching session and the adversary A is free to create esk for
sid∗. Also note that if adversary A issues MSKRev(), we regard A as having
issue CSKRev(IDA, T ∗) and CSKRev(IDB , T ∗).

4.4 Security Experiment

We consider the following security game. First, the adversary A receives a RIB-
AKE protocol Π, a master public key MPK , and a set of honest parties. The
adversary A then arbitrarily executes the query described in Sect. 4.2 multiple
times. Along the way, A executes the following query only once.
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– Test(sid∗): The session sid∗ must be fresh. Randomly select a bit b ∈ {0, 1}
and return the session key for sid∗ if b = 0, or a randomly generated key if
b = 1.

The game continues until the adversary A outputs a guess b′. The adversary
wins the game when the test session sid∗ is fresh and the adversary’s guess is
correct, i.e., b′ = b. We define the adversary’s advantage as AdvRIB-AKE

Π (A) :=
|2Pr(A wins) − 1|. Then, we define the security of RIB-AKE as follows.

Definition 3 (rid-eCK security model). An RIB-AKE protocol Π is said to
be secure in the rid-eCK model if the advantage AdvRIB-AKE

Π (A) defined above
is negligible for any adversary A.

5 Security Analysis for Our Protocol

This section proves that our proposed protocol is rid-eCK secure under the
Strong Diffie–Hellman (SDH) assumption in the random oracle model (ROM).
It is worth to note here that we do not consider the reflection attack in this
paper as the security against it is expected to rely on the square version of the
assumption. The detailed discussion will be shown in the full version.

First, we prepare the prior knowledge necessary for the security analysis.

Definition 4 (SDH assumption). Generate (G, q, g) ← GenG(1λ), choose
u, v ∈U Zq, and let U := gu and V := gv. Now, we consider the oracle DDH(·, ·)
that on input V ′,W ′ ∈ G, return 1 if W ′ = (V ′)u and 0 otherwise. For any PPT
algorithm ADDH(·,·) that can access this oracle DDH(·, ·) in polynomial time,
we say that the Strong Diffie–Hellman (SDH) assumption holds if the following
probability is negligible: Pr

(ADDH(·,·)(G, q, g, U, V ) = guv
)
.

Multi-Forking Lemma. In our security proof, we use a new lemma, named
multi-forking lemma, that is our remake of the general forking lemma stated by
Bellare and Neven [7]. B in our lemma outputs a set of indexes J , while that in
the general forking lemma outputs an index.

Lemma 1 (Multi-Forking Lemma). Fix integers n, Q ≥ 1, set H with |H| ≥
2, and set Λn := {(j1, . . . , jn) ∈ Z

n : 1 ≤ j1 < · · · < jn ≤ Q}. Let B be
a randomized algorithm that on inputs inp, h1, . . . , hQ, returns a pair (J, σ),
where J = (j1, . . . , jn) ∈ Z

n and σ is referred as side output. Let R be a set of
random tapes for the randomized algorithm B. Let

accB(inp) := Pr (J ∈ Λn | h1, . . . , hQ ← H; (J, σ) ← B(inp, h1, . . . , hQ))

be the acceptance probability of B.
The forking algorithm, FB, associated to B is the randomized algorithm that

takes in input inp and proceeds as follows:

– Algorithm FB(inp, h1, . . . , hQ):
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1. Choose random tape φ ∈U R for B.
2. Let (J, σ) ← B(inp, h1, . . . , hQ;φ).
3. If J �∈ Λn, return (0,⊥).
4. Choose h′

1, . . . , h
′
Q ∈U H.

5. Let (J ′, σ′) ← B(inp, h1, . . . , hjn−1, h
′
jn

, . . . , h′
Q;φ).

6. If J = J ′ and hjn
�= h′

jn
, return (J, τ),

where τ is side output calculated from (J, σ, σ′, h1, . . . , hQ, h′
1, . . . , h

′
Q).

7. Else return (0,⊥).

Let fork(inp) := Pr (J ∈ Λn | h1, . . . , hQ ∈U H; (J, τ) ← FB(inp, h1 . . . , hQ)).
Then the following inequality holds:

fork(inp) ≥ accB(inp) ·
(
accB(inp)/

(
Q
n

) − 1/|H|
)

.

The essential difference from the general forking lemma is that the algorithm
B and FB output multiple integers with side output. Note that the general forking
lemma corresponds to the n = 1 case of our lemma since |Λ1| = Q. The proof
for this lemma is given in the auxiliary materials.

By using this lemma, we proved the following theorem which claims the
security of our protocol.

Theorem 1. Our RIB-AKE protocol is rid-eCK secure in the random oracle
model under the SDH assumption.

The proof for this theorem is given in the full version.
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Abstract. In this work we show that the discrete logarithm problem in
the ideal class group of the multiquadratic field K = Q(

√
d1, . . . ,

√
dn)

of degree m = 2n can be solved in classical time e
˜O(max(log m,

√
log D))

using an adaptation of Pohlig-Hellman approach, where D = d1 · . . . · dn.
This complexity is for the case when the factorization of the target ideal
norm is not given. Thanks to our implementation, we provide numer-
ical examples of discrete logarithm computation in real and imaginary
number fields.

Keywords: multiquadratic field · ideal class group · norm relation ·
discrete logarithm problem · complexity

1 Introduction

A multiquadratic field is a number field defined as

K = Q(
√

d1, . . . ,
√

dn),

where di ∈ Z for i = 1, . . . , n are square-free and nonzero. In the case when
all di > 0 the field K is called real, otherwise it is called imaginary. Ideal class
group ClK of K is a factor group of fractional ideals of K modulo principal ideals.
The ideal class group is a finite Abelian group. In general it is a non-cyclic group.

The discrete logarithm problem (DLP) in the ideal class group of K is
defined as follows. Given a target ideal I and the generators of the ideal class
group g1, . . . , gk, find integers �1, . . . , �k such that [I] = [g�1

1 · . . . · g�k

k ]. The
brackets [] here denote the representative of an ideal I in the class group ClK .

Multiquadratic fields are remarkable from the algorithmic perspective: some
problems that are known to be hard in general, turn out to have efficient classical
algorithms in case of multiquadratics. Examples include the result of Bauch et

The research was funded by the Russian Science Foundation (project No. 22-41-04411,
https://rscf.ru/en/project/22-41-04411/).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Aly and M. Tibouchi (Eds.): LATINCRYPT 2023, LNCS 14168, pp. 192–211, 2023.
https://doi.org/10.1007/978-3-031-44469-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44469-2_10&domain=pdf
https://rscf.ru/en/project/22-41-04411/
https://doi.org/10.1007/978-3-031-44469-2_10


On the Discrete Logarithm Problem in the Ideal Class Group 193

al. in [2] showing an efficient algorithm for the approximate shortest vector
problem in principal ideals of multiquadratic fields (alongside with an algorithm
for computing the unit group), as well as the work of Biasse-van Vredendaal [7]
on computing the class group of multiquadratic number fields. In general number
fields however, these tasks are not known to have efficient classical algorithms
(in quantum setting there are polynomial time algorithms [6], and there are also
efficient algorithms for special number fields [5,17,18]).

With this work we continue this line of work by showing how, a generally
hard problem such as the discrete logarithm problem, has an efficient solution in
multiquadratic fields. The main motivation of looking at this task is to extend
the result of Bauch et al. from [2] to non-principal ideals and, therefore, being
able to find short vectors in non-principal ideals efficiently. There is an extensive
line of work [3,12,13] that considers the problem of finding a short element in
non-principal ideals, and there the first step is to solve the discrete logarithm
problem.

Prior Work. Thanks to the work Biasse-van Vredendaal [7], we can assume
that we know the group structure of the class group ClK of a multiquadratic
field K, and hence, we can define the DLP properly. Now let us consider the
state-of-the-art in DLP computations in K.

Generic algorithms for solving the discrete logarithm problem are certainly
applicable to the class group of multiquadratics. In particular, Pohlig-Hellam-
Teske algorithm [24] solves this task in time subexponential in the discriminant of
K and the size of the largest subgroup of ClK . The discrete logarithm problem in
quadratic fields was considered in [8,26]. There it was proved that the complexity
of solving DLP is LΔK

(1/2). For the fields that admit norm relations there is a
general algorithm for the discrete logarithm computation [4, §5.1] based on the
saturation techniques that can be applied also to multiquadratic fields, but this
work does not present a complexity analysis of the algorithm (with exception of
cyclotomic fields).

We should also mention here that the discrete logarithm problem in ClK
becomes “easy”, when we know the factorization of the target ideal I over the
so-called factor base. In more details, let S = {pi}i=1,...,d be a set of prime ideals

generating ClK . If we know the factorization I =
d∏

i=1

pei
i of the target ideal I

over the factor base S, then the discrete logarithm problem is reduced to the
task of computing the class group (we give more details in Sect. 3).

In this work, we consider the general case, when we do not have the factor-
ization of the target ideal over a factor base and we cannot just use class group
computation algorithm [7].

Our Contributions

1. Inspired by the techniques from [2,7] on using norm relations, we show that
the discrete logarithm problem in the ideal class group can be reduced to the
corresponding problem in its quadratic subfields. As a result the complexity of
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computing the discrete logarithm is reduced from e
˜O(

√
log ΔK) = e

˜O(
√

m log D)

ideal class group operations to e
˜O(max(log m,

√
log D)) field operations where D =

d1 · . . . · dn is the largest discriminant of the quadratic subfield of K. The
main differences with the general algorithm from [4] for the fields admitting
norm relations are the usage of Pohlig-Hellman approach in combination with
saturation techniques and providing a complete complexity analysis of the
algorithm.

2. One of the computational task we are facing during the discrete logarithm
computations is computing square roots in the class group ClK . To this end,
we provide an algorithm for square root computation, which again can be
viewed as a variation of Pohlig-Hellman method [21].

3. We implemented our algorithms for discrete logarithm computation in class
groups of both imaginary and real multiquadratic fields and provide examples
of computations.

Our Techniques. A particular structure of the Galois group of a multiquadratic
field K gives an efficient way of solving norm relations. This in turn allows
to reduce some computational tasks from K to its subfields and then lift the
solutions back to K. Notably, both works [2] resp. [7] use norm relations to
lift the solutions of the unit group resp. class group from the subfields of K to
the field K itself. In our work we exploit the norm relations too, but now we
extend this approach to non-principal ideals and to the solution of the discrete
logarithm problem with Pohlig-Hellman approach.

Another important ingredient of our algorithm is square root computations
in the class group ClK . We show how to reduce the problem from ClK to cyclic
subgroups of ClK , and then using Pohlig-Hellman method for the latter task.

Organization of the Paper. In Sect. 2 we give all necessary notations. Section 3
contains preliminaries with definitions of general routines used for the class group
computation and for solving DLP. In Sect. 4 we describe algorithms for compu-

tation of square roots of non-principal ideals of the form I = h
d∏

i=1

pei
i for h ∈ K.

These algorithms are essential parts of the discrete logarithm computations.
Section 5 contains the main part of the work where an algorithm for solving
DLP is described. In Sect. 6 we describe our implementation of the algorithm
and provide examples of computations.

2 Notation

We use the following notations.

– K = Q(
√

d1, . . . ,
√

dn) is a n-quadratic field where all di are pairwise coprime
and square-free, OK is its ring of integers. It is known [2, Th. 2.1] that a
basis of K (as a Q-vector space) consist of 2n complex numbers

∏
j∈J

√
dj

for all J ⊆ {1, . . . , n}. So the degree of K is 2n;
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– τ is the complex conjugation;
– ClK := IK /PrincK – class group of K, i.e. the factor group of fractional

ideals IK of K modulo principal ideals of OK ;
– hK is the order of ClK ;
– [I] is the class of the ideal I in the ideal class group ClK ;
– GK := Gal(K/Q) is the absolute Galois group of K;
– Kσ is a fixed field of an automorphism σ ∈ GK ;
– ΔK is the discriminant of K;
– LN (α) := LN (α, c) = e(log N)α(log log N)1−α(c+o(1));
– vp(I) is the valuation of ideal I at a prime ideal p;
– N(I), N(a) is the absolute norm of an ideal I or a ∈ K;
– maxv,max M are the maximums of absolute values of entries in vector v or

a matrix M .

3 Background on Class Group and Discrete Logarithm
Computation in Number Fields

3.1 Ideal Class Group Computation

In this section we recall known methods to find the generators of the class
group ClK . Assume that we have a factor base S = {p1, . . . , pd} – a set of
all prime ideals of OK that generate the class group ClK . For this purpose we
can take all prime ideals of norm ≤ 12 log2 ΔK , see [1]. In practice this general
bound is very pessimistic and a better heuristic bound can be computed “ad-hoc”
using Grenié-Molteni algorithm [15] under the Generalized Rieman Hypothesis
(GRH). For our purpose of discrete logarithm computation we can take even a
smaller bound, but in this case our algorithm can sometimes fail and we may
have to run it several times, since we may end up working in a subgroup of the
class group.

Let us recall a method of obtaining the generators gi’s of ClK . For the given

factor base S = {p1, . . . , pd}, we call (α, e) ∈ K ×Z
d a relation if αOK =

d∏

i=1

pei
i .

One relation is computed by taking a random element α ∈ K such that it splits
over the factor base S. After collecting enough relations we form a matrix of
relations A whose rows are vectors e. The Smith Normal Form A = UBV of this
matrix gives us the group structure of ClK and its generators. In particular, we
have B = diag(b1, . . . , bk) and the ideal class group ClK is the following product
of cyclic groups

ClK � Cb1 × . . . × Cbk
� 〈g1〉 × . . . × 〈gk〉 ,

where gi =
d∏

j=1

p
v′

i,j

j for V −1 = (v′
i,j). In addition, we have pi =

k∏

j=1

g
vi,j

j . More-

over, let {(αi, ei) | i = 1, . . . , r} be a full set of relations. Then we have

gbi
i = βiOK =

r∏

j=1

α
ui,j

j OK , (1)
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where U = (ui,j).
It is well known that the general process of computing the ideal class group

takes subexponential time [8, §3] in ΔK – the discriminant of the field K. How-
ever, as it was shown by Biasse and van Vredendaal [7], for multiquadratic
fields the problem can be efficiently reduced to finding such relations in certain
quadratic subfields of K, which is a much simpler task, and then lifting them
to K. It results in an algorithm of complexity subexponential in D = d1 · . . . ·dn –
the largest discriminant of quadratic subfields, which is always smaller than ΔK .

3.2 Discrete Logarithm Problem in the Ideal Class Group
of Number Fields

The discrete logarithm problem (DLP) for an input ideal I and the generators
of the class group g1, . . . , gk consists of finding integers �1, . . . , �k such that

[I] = [g�1
1 · . . . · g�k

k ].

The complexity of solving the discrete logarithm problem in the ideal class
group depends on the given ideal I and its representation. In this section we
consider two cases: when the given ideal I is smooth relative to a factor-base S,
and a general case, when I is not S-smooth. The DLP in the former case can
be solved by a straightforward application of linear algebra to the relations
described in Sect. 3.1. For the latter case we describe here a general method for
solving DLP due to Buchmann-Düllmann [8]. It will be used later for quadratic
subfields of multiquadratic fields.

S-Smooth Ideal Case. Let A = UBV be a matrix of class group relations
(as in Sect. 3.1) in its Smith Normal Form. If the target ideal I factors over the

factor base S (it is S-smooth), i.e. I =
d∏

i=1

pei
i , then the solution of the discrete

logarithm problem can be found in the following way. Using the equality pi =
k∏

j=1

g
vi,j

j , we can express the target ideal as

I =
d∏

i=1

pei
i =

d∏

i=1

k∏

j=1

g
vi,jei

j . (2)

From this we can compute the desired values of �j as �j =
d∑

i=1

vi,jei. Note that

the ideal I is S-smooth only if its norm factors into the product of primes p such
that p | pOK for p ∈ S. In this case the values ei can be computed efficiently
as ei = vpi

(I) using [11, Alg. 4.8.17]. The computation of vpi
(I) requires the

knowledge of a basis of OK . For arbitrary number fields an efficient algorithm
for computing such basis is not known. However, for multiquadratic fields there
is an efficient algorithm [10].
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If we know the factorization N(I) = qx1
1 · . . . · qxr

r of the absolute norm N(I)
of the input ideal I, then we can add all prime ideals qi | qiOK to the factor
base S and then run a class group computation algorithm. This process gives us
a matrix of relations that include qi’s and we can apply Eq. (2) to our ideal

I =
r∏

i=1

q
vqi

(I)

i

to obtain a solution to DLP.

Arbitrary Ideal Case (Algorithm 1). In the case when we do not know the
factorization of N(I) or the primes in the factorization are too big to run a class
group computation algorithm, we can reduce the discrete logarithm problem
to the S-smooth case by finding an S-smooth ideal J such that [I · J ] = [1].
Then [I] = [J−1] and we can apply Eq. (2) to J−1 to solve the discrete logarithm
problem.

Finding such an ideal J can be achieved by selecting random J , computing
the product I · J , and applying the LLL-reduction [16] to the matrix of HNF-
representation (see [11, §4.7.1]) of this product. The reduced ideal I ·J belongs to
the same class as I · J , but has smaller coefficients in the matrix representation.

We select random ideals J (see steps 1–2 of Algorithm 1) until we obtain a
S-smooth reduced ideal that gives us a solution to DLP. The described method
for finding S-smooth representation of ideal I is due to Buchmann-Düllmann [8].
The complete version of this method is presented in Algorithm 1. For complete-
ness, we give the analysis of this algorithm.

Algorithm 1: GenCLDL(I, S). Finding a S-smooth representation of the
ideal in the ideal class group of a number field.
Input: An ideal I of a number field K, a set S = {p1, . . . , pd} of prime

ideals of K s.t. p1 | (p1), . . . , pd | (pd) for some prime numbers
p1, . . . , pd and S generates the class group ClK .

Output: an ideal hJ−1 represented by a pair (h,a) ∈ K × Z
d such

that I · J = I ·
d∏

i=1

pai
i = hOK .

1 Choose random a ∈ [0, . . . , ΔK − 1]d;

2 I ′ = LLL(I ·
d∏

i=1

pai
i );

3 if N(I ′) = pe1
1 · . . . · ped

d for (e1, . . . , ed) ∈ Z
d then

4 bi = vpi
(I ′) for i = 1, . . . , d;

5 J =
d∏

i=1

pai−bi
i ;

6 return PrincipalGenerator(I · J) · J−1

7 else
8 Go to Step 1.
9 end
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Proposition 1. The complexity of the finding a S-smooth representation of an
ideal I of a number field K of fixed degree in the ideal class [I] using Algorithm 1
is heuristically LΔK

(1/2) ideal multiplications and reductions.

Proof. For quadratic fields the proof is in [8, §3]. It is widely assumed that it
is also valid for any number fields, but we did not find such a proof. So, for
completeness we include a proof here. Assume heuristically that the norm of
the reduced ideal product in Step 2 is bounded by |ΔK | and it is uniformly dis-
tributed among the integers of such size. The probability that a number bounded
by |ΔK | is LΔK

(1/2)-smooth is equal to 1/LΔK
(1/2) according to results of

Canfield, Erdös, Pomerance [9] (we use the formulation from [11, Th. 10.2.1]).
Therefore we expect to obtain a smooth representation after LΔK

(1/2) trials.
Assuming we use fast multiplication algorithms, each trial requires d · log ΔK

plus 1 (for the multiplication by I in Step 2 of Algorithm 1) multiplications of ide-
als with LLL-reduction [11, Alg. 6.5.5] after each multiplication. The complexity
of LLL-reduction of ideal product is bounded by Õ(poly(deg K · log N(I) ·ΔK))
field operations. To generate the class group it is enough to take all prime ideals
with norms ≤ 12 ln2 ΔK (Bach bound [1]). Then d = O(log log ΔK) and each
trial requires poly(log ΔK) ideal multiplications and reductions. The resulting
complexity of Algorithm 1 is LΔK

(1/2). �

In subsequent sections we describe a more efficient algorithm for multi-
quadratic fields that reduces the discrete logarithm problem to the correspond-
ing problem in certain quadratic subfields and apply Algorithm 1 only to these
quadratic subfields. For lifting solutions from quadratic subfields back to the base
field we will need to perform square root computation of non-principal ideal. In
the next section we develop efficient tools for this task.

4 Square Root Computation for Decomposed Ideals

Assume that we have an ideal I of the multiquadratic field K given in HNF and
we want to find a decomposition of this ideal over a factor base S, i.e. to find
h ∈ K and a vector e such that I = h

∏
i pi

ei for pi ∈ S. In the following we will
see that the norm relation gives us such a decomposition for the ideal I2. This
is achieved by joining solutions of the problem from specially selected subfields
of K. In this section we describe a method for restoring decomposition of I from
the decomposition of I2. Our method reduces the problem to the computation
of square roots in cyclic subgroups of class group and can be viewed as a varia-
tion of Pohlig-Hellman approach. Combining square roots from cyclic subgroups
produces exponential (in the degree of the field) number of square roots. So, we
use also a saturation technique for efficient selection of a suitable square root.

4.1 Square Root Computation in Cyclic Groups

Since we reduce the discrete logarithm problem to the cyclic subgroups of class
group, we consider first the square root computation problem in such subgroups.
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In general the problem of computing square roots in Abelian groups is known to
be hard [22]. For example, taking square roots in the group Z

×
N is equivalent to

the factorization of the number N . However, extracting square roots in a cyclic
group can be done efficiently whenever we know a generator of the group.

For a cyclic group 〈g〉 of odd order b, the computation of square root reduces
to raising the input element of the group to the power of b+1

2 . For the cyclic
group of even order, the problem reduces to the discrete logarithm computation
in a power-of-2 order subgroup. The discrete logarithm problem in a group of
power-of-2 order can be solved using the Pohlig-Hellman method [21]. In the
following we denote by DLOGg(h) the computation of the discrete logarithm in
the cyclic group 〈g〉 for the element h ∈ 〈g〉.

The procedure for computing square roots in cyclic group is standard, we
give it in Algorithm 2. For elementary explanation of this algorithm and more
details on taking square roots in cyclic groups we refer to [22]. The algorithm
returns FAIL when the square root does not exist. This can occur only for cyclic
groups of even order, since in such groups half of the elements are squares and
half are non-squares, while in the cyclic groups of odd order every element is a
square. Note that if the exponent e of the input element h = ge is given explicitly,
the algorithm does not require operations in the group 〈g〉. In our context of class
group computations it is very important, since such operations are slow.

Algorithm 2: CycSqrt(g, e). Square root computation in a cyclic subgroup
of class group CLK .
Input: An ideal g that generates a cyclic subgroup of class group,

b = # 〈g〉, and an exponent e for an element ge ∈ 〈g〉.
Output: A pair (a, b) of ideals s.t. [(ab)2] = [b2] = [ge] or FAIL if there

are no square roots.
1 if b is odd then
2 return (g0, ge( b+1

2 ))
3 end
4 Find r, s such that b = 2r · t where t is odd;
5 Compute � = DLOGgt(gt·e), a discrete logarithm in the group of order 2r;
6 if � mod 2 	= 0 then
7 return FAIL
8 end
9 return (g

tb
2 , ge( t+1

2 )− t�
2 ).

A pair (a, b) of ideals returned by the algorithm represents two square
roots (in the class group ClK) of input element ge, namely ab and b. In the
following such representation allows us to efficiently store the set of square roots
in the product of cyclic groups (when we compute a square root in the product
of k cyclic groups, these representation allows us to store k elements instead
of 2k).
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Proposition 2. Assume that g is represented as an ideal product
d∏

i=1

pfi

i , where

S = {p1, . . . , pd} is a set of primes that generates the class group. Then the
computation of square root(s) of ge in the order b cyclic subgroup 〈g〉 of the class
group CLK using Algorithm 2 requires O(log b) operations in Z/bZ. Moreover,
these square roots are also represented as ideal products.

Proof. In the case of odd b the complexity is O(1) operations in Z/bZ, if the
exponent e is given. In the even case we have to solve the discrete logarithm
problem in a cyclic group of power-of-2 order group of size 2O(log b) in the worst
case (i.e., t = 1 in the notations of Step 4 on Algorithm 2). This can be done [19,
Fact 3.66] in time O(log b). �

4.2 Saturation Technique

The saturation technique described in [2, §4] and [7, §4C] allows us, for a given
set T = {a1, . . . , am} ⊂ K and an element h ∈ K, to find efficiently the set of
exponent vectors e such that h · ae1

1 · . . . · aem
m is a square. The technique uses

quadratic characters defined in the following way. Let D1, . . . ,Dk be a set of
random prime ideals of residue degree 1 that do not belong to the factor base
and let Qi = N(Di) for i = 1, . . . , k. Let

φDi
: Z[x1, . . . , xn]/(x2 − d1, . . . , x

2 − dn) � Z[
√

d1, . . . ,
√

dn] → FQi
,

be a map defined by the substitution xj �→ sj where sj is a square root of dj

modulo Qi for j = 1, . . . , n. Then the map

χDi
: x �→

(
φDi

(x)
Qi

)

is a quadratic character from K to {0, 1,−1}. If it occurs that χDi
is zero on

the one of elements h, a1, . . . , am, then choose another Di. The key idea used for
recognizing the squares in the field K is the fact that for a square x ∈ (K×)2

we have χDi
(x) = 1, and for a non-square we expect that for at least one

character χDi
holds χDi

(x) = −1. To detect squares with error probability 1/2t

it is enough (heuristic from [2, §4.2]) to take k = m +
√

t characters. Now, we
can define a group homomorphism

X : x �→ log−1 χDi
(x)

from K to F2. Since we expect that for non squares at least one of the characters
will return −1, all squares lie in the kernel of this map with high probability
depending on the number of characters. So, we can recognize a square now via
solving the matrix equation

X(h) = eA

for A = (X(ai)).
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In more precise form the procedure is described in Algorithm 3.

Algorithm 3: FindSquare(h, a1, . . . , am). Finding a square in the multi-
quadratic field.
Input: An element h ∈ K, a subset {a1, . . . , am} of a multiquadratic

field K = Q(
√

d1, . . . ,
√

dn).
Output: A vector e ∈ {0, 1}m such that h · ae1 · . . . · aem is a square in K

or FAIL if it does not exist.
1 Define enough characters χDi

and the map X;

2 Compute matrix A =

⎛

⎝
X(a1)

. . .
X(am)

⎞

⎠;

3 Compute v = X(h);
4 Solve matrix equation v = e · A (mod 2);
5 return e or FAIL if there are no solutions.

If we take a1, . . . , am to be generators of the unit group of OK and h as
a generator of some a principal ideal, we obtain IdealSqrt procedure from [2,
Alg. 6.1] for computing a square root of a principal ideal. The following propo-
sition analyses Algorithm 3.

Proposition 3. Given elements h, a1, . . . , am from a multiquadratic field K
Algorithm 3 finds a binary vector e such that h · ae1

1 · . . . · aem
m is a square

in Õ(max(m3,m2B deg K)) bit operations with probability of error ≤ 1/2
√

m.
Here, B is a bound for bit sizes of coefficients of h, a1, . . . , am.

Proof. According to the heuristic from [2, §4.2], taking r random characters
allows us to detect squares among the elements a1, . . . , am with success prob-
ability at least 1 − 2r−m. To have error probability ≤ 1/2

√
m, we have to

take r = m +
√

m characters. Defining each character takes time Õ(deg K).
Then Step 1 in the algorithm takes time Õ(m · deg K). Evaluation of each char-
acter takes time Õ(B · deg K) [2, §4.1]. In total we have to evaluate m +

√
m

characters for each element from the set {h, a1, . . . , am}. Thus, Steps 2, 3 take
time Õ(B · m2 · deg K). Step 4 can be done using Gaussian elimination (mod 2)
and this takes time Õ(m3). Combining the complexities of all steps gives us now
total complexity of Õ(max(m3,m2B deg K)) of Algorithm 3. �

4.3 Square Root of Decomposed Ideal by Reducing to Cyclic
Groups

Having now a procedure to compute square roots in a cyclic group and the
saturation technique, we are able to define an algorithm for the square root

extraction of a given decomposed ideal I = α
d∏

i=1

pei
i = αJ for α ∈ K. Recall

that S = {p, . . . , pd} is a set of prime ideals generating the class group ClK =
〈g1〉 × . . . × 〈gk〉. Every ideal of the number field K can be decomposed to the
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above form for some α ∈ K and exponent vector e. Since the ideal J is S-
smooth, we can write it in terms of the class group generators g1, . . . , gk using
the equality

pi =
k∏

j=1

g
vi,j

j ,

where vi,j are coefficients of the matrix V from the Smith normal form A =
U ·B ·V of a matrix of class group relations A. We consider the matrices A,U, V
as the precomputed data available as the result of class group computation.

After computing the above representation of J in terms of g1, . . . , gk, the
square roots of [J ] can be found by extracting square roots in cyclic groups 〈g1〉,
. . ., 〈gk〉. Extracting square roots in a cyclic group can be done efficiently using
Algorithm 2 whenever we know the generator of the group 〈gi〉 and the corre-
sponding power of J in gi (see Sect. 4.1 for details). Each such a square root
extraction in a cyclic group gives us one (if the order of the cyclic group is
odd) or two (if the order of the cyclic group is even) square root(s). After tak-
ing all possible combinations of these square roots we have 2s square roots
of [J ] where s is a number of cyclic groups of even order. In the worst case
we have s = log2 hK = O(log ΔK) and working with such amount of roots
will lead us to an exponential algorithm. To avoid this, we use the saturation
technique described in [2, §4.1,§4.2] for efficient selection of a suitable square
root. Recall that Algorithm 2 for square root computation in cyclic group 〈gi〉
returns a pair ai, bi of S-smooth ideals such that [ai] is of order 2 if bi is even
and order 1 if bi is odd. So, we have two square roots [aibi] and [bi] which
coincide when the cyclic group has odd order. After computing all square roots

in cyclic groups we have that a square root of [J ] is of the form [
k∏

i=1

axi
i bi] for

some x1, . . . , xk ∈ {0, 1}. This means that ideal J/
k∏

i=1

(axi
i bi)2 is principal. Enu-

merating all of x1, . . . , xk ∈ {0, 1} will give us all square roots of [J ]. Our goal
is to find such a binary vector x that

αJ/

k∏

i=1

(axi
i bi)2 = α′2OK

for some α′ ∈ K. If we find such a vector x, we have

I = αJ = α′2(
k∏

i=1

axi
i bi)2

and so the square root of the ideal I is equal to α′ k∏

i=1

axi
i bi. It remains to

describe a way to find such a binary vector x. Since a2i is principal (recall

that [ai] is of order 2), the ideal J/
k∏

i=1

b2i is also principal. Let αiOK = a2i



On the Discrete Logarithm Problem in the Ideal Class Group 203

and βOK = J/
k∏

i=1

b2i . Since ideals J, a1, . . . , ak, b1, . . . , bk are all S-smooth, we

can compute α1, . . . , αk, β efficiently by solving matrix equation with the rela-
tions matrix A. This computation requires in addition that we have the genera-
tors for relations (S-units) in the class group (stored in compact representation of
field elements) from class group computation. Since ideals are defined up to units
we also use generators of unit group (mod torsion) O×

K \ μ � 〈u1, . . . , ur〉. For
multiquadratic fields the unit group generators can be found efficiently using [2].
Now using the saturation technique (FindSquare procedure from Sect. 4.2) we

can find a binary vector x such that h = (α · β)/(
k∏

i=1

αxi
i

r∏

i=1

u
xi+k

i ) is a square.

Thus, we have
√

I =
√

h

k∏

j=1

a
xj

j bj .

The complete procedure for square root extraction for a decomposed ideal is
presented in Algorithm 4.

Algorithm 4: IdealSqrt(I, S). Computation of square root for a decom-
posed ideal of a number field K.
Input:

– An ideal I = α
d∏

i=1

pei
i given by a vector e = (e1, . . . , ed) and α ∈ K,

– S = {p1, . . . , pd} is a set of prime ideals generating the class group ClK ,
– ClK = 〈g1〉 × . . . × 〈gk〉, a matrix A of class group relations in SNF.

Output: Ideal J = α′ d∏

i=1

pfi

i s.t. J2 = I or FAIL.

1 Compute g s.t.
d∏

i=1

pei
i =

k∏

i=1

ggi

i using Eq. (2);

2 Compute ideals (ai, bi) = CycSqrt(ggi

i , bi) for bi = # 〈gi〉 and
all i = 1, . . . , k or return FAIL if any of square roots does not exist;

3 Compute β ∈ K, s.t. βOK =
d∏

i=1

pei
i /

k∏

j=1

b2j ;

4 Compute αi ∈ K, s.t. αiOK = a2i ;
5 Compute the generators of the unit group u1, . . . , ur using [2];
6 x = FindSquare(α · β, α1, . . . , αk, u1, . . . , ur) ;

7 Return
√

αβ
k
∏

i=1
α

xi
i

r
∏

i=1
u

xi+k
i

k∏

j=1

a
xj

j bj ;

The algorithm can be applied to any number field with exception
of FindSquare procedure which requires an adaptation from multiquadratic fields
to the general case. We prove (classical) polynomial time complexity only for
multiquadratic fields. The proof presented in the following proposition.
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Proposition 4. If a square root of a given ideal I = α
d∏

i=1

pei
i of a multiquadratic

number field K exists, then Algorithm 4 computes it in

Õ(poly(log max e,Size(α), log ΔK))

bit operations. The algorithm fails only when a square root does not exist.
Here, max e is the maximum of absolute values of coefficients in e and Size(α)
is the bit size of α.

Proof. We assume that all number field arithmetic is performed in compact rep-
resentation, i.e. a field element γ is represented as γ =

∏

i

γi
vi where γ1, γ2, . . .

are small field elements of polynomial size. This allows us to work with field ele-
ments of exponential size using polynomial time arithmetic. For details we refer
to [7, §4C]. When dealing with multiplication or division of ideals, we assume

that all ideals are given in the form
d∏

i=1

pvi
i , i.e. they are represented by a vec-

tor v ∈ Z
d, and all operations are performed using vectors of exponents only.

We do not evaluate such ideal products explicitly. As input we have precom-
puted a matrix of relations A in SNF with transformation matrices U, V such
that UAV = B = diag(b1, . . . , bk). The coefficients of A are in e

˜O(log deg K·√log D)

if we have computed the class group with the algorithm from [7]. Since the algo-
rithm returns a basis of S-units, the matrix A has O(d) rows and columns. Due
to Bach’s bound [1] we have d = O(log log ΔK). Since #ClK = O(

√
ΔK), we

have also k = O(log ΔK) and the maximal size of k is achieved when the class
group is a direct product of cyclic groups of order 2. The transformation matri-
ces U, V for SNF of A can be computed using the algorithm from [23, Ch. 8].
In this case we have [23, Lemma 8.9] that max V < d · b2k = Õ(ΔK). So, the bit
sizes of elements in V are polynomial in the log ΔK .

Given a matrix A of relations in ClK in SNF and an ideal I, we can compute

each exponent gi in J =
k∏

i=1

ggi

i for i = 1, . . . , k using Eq. (2) in 2d operations

modulo bi. Then the complexity of Step 1 is O(dk) = O(log ΔK log log ΔK)

operations in Z/bZ, where b = max(b1, . . . , bk). Since, gj =
d∑

i=1

vi,j · ei we

have gj = Õ(max e · ΔK).
Using Proposition 2, we compute k square roots in cyclic groups 〈gi〉 in time

O(k log b) = O(log ΔK log log ΔK). Thus, Step 2 requires O(log ΔK log log ΔK)
operations in Z/bZ in total. If a square root does not exist, it does not exist in
one of the cyclic groups 〈gi〉. In this case the algorithm returns FAIL.

In the following we will need estimates for the sizes of exponents in S-smooth
ideals returned by CycSqrt procedure. At the end of the Step 2 we have ai =

g
a′

i
i , bi = g

b′
i

i , where a′
i = Õ(ΔK) and b′

i = Õ(max e·Δ2
K). We have gi =

d∏

j=1

pj
v′

i,j

where elements v′
i,j are such that V −1 = (v′

i,j). For the matrix V −1 we have a
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bound [23, Lemma 8.9]:

max V −1 = d2d+1(max A)2d = e
˜O(log2(deg K)·√log D),

since d = log log ΔK = log(deg K · log D). Then

vpj
(ai) = Õ(ΔK) · e

˜O(log2(deg K)·√log D)

and
vpj

(bi) = Õ(max e · Δ2
K) · e

˜O(log2(deg K)·√log D).

Steps 3 and 4 can be performed by solving matrix equations of the

form xA = v, where v = {ej − 2
k∑

i=1

vpj
(bi)}j=1,...,d when we compute β

and v = {2vpj
(ai)}j=1,...,d when we compute αi. After solving the matrix

equation we obtain a vector x and we compute β (and α1, α2, . . . with dif-
ferent x) as

∏

i

si
xi , where si’s are S-units that corresponds to the rows of

the relations matrix A. We assume that S-units are precomputed during class
group computation and they are stored in a compact representation (all this
data can be computed with algorithm from [7]). Solving matrix equation takes
time Õ(d3 log(max A + maxv)) bit operations [14]. The coefficients of A are
in e

˜O(log deg K·√log D), the value of maxv is in Õ(max e·Δ2
K)·e ˜O(log2(deg K)·√log D)

for β and it belongs to Õ(ΔK) · e
˜O(log2(deg K)·√log D) for each αi.

Therefore, solving the matrix equations takes time
Õ(max(log max e, log ΔK)). To simplify the expressions we used the fact [7,
Lemma 2.2] that log ΔK = O(deg K · log D). After solving the matrix equa-
tion we obtain [14, p.138] a vector x of size

max(max A,maxv)d · dd/2.

Then for β we have maxx = Õ(max e · Δ2
K) · e

˜O(log3(deg K)·√log D) and for
αi we have maxx = Õ(ΔK) · e

˜O(log3(deg K)·√log D). Thus the computation
of β, α1, α2, . . . in compact representation takes time Õ(poly(log max e, log ΔK)).

Generators of the unit group at Step 5 can be computed [2] for multiquadratic
fields in polynomial time in deg K. FindSquare procedure takes time

Õ(max((r + k)3, (r + k)2B deg K)) = Õ(poly(Size(α), log ΔK ,deg K))

due to Proposition 3. The square root computation at the final step can be
performed in polynomial time [2], [7, §4C] in the degree of the field and the size
of the input element. �

5 Discrete Logarithm Computation in the Ideal Class
Group of Multiquadratic Fields

In this section we present an algorithm for computing the discrete logarithm
in the class group for an ideal I in multiquadratic fields. We assume that the



206 S. A. Novoselov

factorization of the norm of I is not known. Otherwise we can solve the discrete
logarithm problem by appending primes from this factorization to the factor base
and running the ideal class group computation algorithm (see details in Sect. 3.2).

The ideal class group of a multiquadratic field K can be computed using the
algorithm of Biasse-van Vredendaal [7]. The idea of this algorithm is to compute
relations in the quadratic subfields of K using Algorithm 1 and lift them back
to the field K by solving the following equation that is called “norm relation”.
Let σ, τ, στ be three different non-trivial automorphisms from GK . Then for
every α ∈ K we have

α2 =
NK/Kσ

(α) · NK/Kτ
(α)

σ(NK/Kστ
(α))

. (3)

This equation holds due to the fact that all automorphisms in multiquadratic
fields have order 2 (see the proof of [2, Lemma 5.1] or [7, Lemma 4.2]). The key
procedure which makes the multiquadratic class group computation algorithm
efficient and allows us to lift relations (α2, 2e) to (α, e), is a square root com-
putation for principal ideals that was proposed in [2]. However, this algorithm
does not work with non-principal ideals. We will use our Algorithm 4 for that
purpose.

Let us describe now our algorithm for the discrete logarithm computation
in the ideal class group of multiquadratic fields based on the reduction of the
problem to subfields. Let I be an ideal of K and our goal is to find �1, . . . , �k

such that [I] = [g�1
1 · . . . · g�k

k ] for the class group generators g1, . . . , gk computed
using Biasse-van Vredendaal algorithm. Since all automorphisms have order 2,
Eq. (3) can also be extended to arbitrary ideals as

NK/Kσ
(I) · NK/Kτ

(I)
σ(NK/Kστ

(I))
=

I · σ(I) · I · τ(I)
σ(στ(I) · I)

= I2. (4)

Having this equation we can now solve the discrete logarithm problem for the
ideal I2 as follows. Recall that we have S = {p1, . . . , pd} – a generator set of ClK .

1. Compute relative norms Iγ = NK/Kγ
(I) for each γ ∈ {σ, τ, στ}.

2. In each subfield Kγ , find Sγ-smooth ideals Jγ such that Iγ · Jγ = hγOKγ
for

some hγ ∈ Kγ . Here, Sγ = {pi ∩ Kγ | i = 1, . . . , d}.
3. Compute the ideal J = Jσ·Jτ

σ(Jστ )
and its lift to the field K by lifting the prime

ideals in the factorization of Jγ . Note that the resulting ideal J is S-smooth
as the result of the lift. From the Eq. (4) we have I2 J = hOK for h = hσhτ

σ(hστ )
,

since [NK/Kγ
(I)] = [Iγ ] = [J−1

γ ]. Thus, we have obtained [I2] = [J−1] for the
S-smooth ideal J−1.

Now we have a solution to the discrete logarithm problem for the ideal I2

obtained by solving the problem in the subfields of K. To find a solution for
the ideal I we have to extract a square root of [J−1] for the S-smooth ideal J .
Such square root always exists due to the equality [I2] = [J−1]. It can be com-
puted efficiently using Algorithm 4.
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We have now all necessary components to describe the complete algo-
rithm for the discrete logarithm computation in class groups of multiquadratic
fields. We recursively apply the method above to the computation of Jγ for
each γ ∈ {σ, τ, στ} until we reach a quadratic subfield where we use Algorithm 1
to solve the discrete logarithm problem. After that we lift the solution back to the
base field K step-by-step by combining information from subfields to obtain at
first a solution for I2 and then the solution for I by the square root computation.
The complete procedure is presented in Algorithm 5. The procedure Lift() does
the lift from the subfield Kγ to the field K for a Sγ-smooth ideal Jγ using pre-
computed trees (from class group computation) describing prime ideals splitting
over the subfields of K. All these steps are summarized in Algorithm 5.

Algorithm 5: mqCLDL(I, S). Discrete logarithm computation in the ideal
class group of the multiquadratic field.
Input: An ideal I of multiquadratic field K = Q[

√
d1, . . . ,

√
dn], a set

S = {p1, . . . , pd} of prime ideals of K s.t. p1 | (p1), . . . , pd | (pd) for some
prime numbers p1, . . . , pd.

Output: an ideal J̃ = h · J−1 of K represented by a pair (h, α) ∈ K × Z
d such

that J =
d∏

i=1

p
αi
i and I · J = hOK .

1 if [K : Q] = 2 then
2 return GenCLDL(I, S).
3 end
4 Select distinct σ, τ, στ ∈ GK of order 2;
5 Iσ = NK/Kσ (I), Iτ = NK/Kτ (I), Iστ = NK/Kστ (I) ;

6 J̃σ = mqCLDL(Iσ, Sσ) for Sσ = {p ∩ Kσ | p ∈ S};

7 J̃τ = mqCLDL(Iτ , Sτ ) for Sτ = {p ∩ Kτ | p ∈ S};

8 J̃στ = mqCLDL(Iστ , Sστ ) for Sστ = {p ∩ Kστ | p ∈ S};

9 J̃ = Lift(J̃σ) · Lift(J̃τ )/ Lift(σ(J̃τσ)) = h · ∏

i

p
−αi
i ;

10 return IdealSqrt(J̃ , S).

Theorem 1. Let K = Q(
√

d1, . . . ,
√

dn) be a multiquadratic field of degree m =
2n, let I be an ideal of OK , D = d1 · . . . · dn, and S = {p1, . . . , pd} be a set of
prime ideals generating the ideal class group ClK . Then computing the ideal J =∏

i p
αi
i such that I · J = hOK for some h ∈ K requires e

˜O(max(log m,
√
log D)) field

operations.

Proof. To prove the theorem we need to prove the correctness of Algorithm 5
and perform its complexity analysis.

Correctness. After computing the relative norms of ideals in Step 5, we call
the algorithm recursively up until we reach quadratic fields, where we solve the
problem using Algorithm 1. To lift solutions back to the field K, we join the
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results from three subfields of K fixed by the selected automorphisms σ, τ , στ .
To do so we use Eq. (4):

NK/Kσ
(I) · NK/Kτ

(I)
σ(NK/Kστ

(I))
= I2.

Note that in the formula above we omitted lifts of norms from subfields to the
field K. For γ ∈ {σ, τ, στ}, we have Iγ = hγ · J−1

γ for some hγ ∈ Kγ . Then from
the norm relation we obtain:

hσhτ

σ(hστ )
· σ(Jστ )
Jσ · Jτ

= I2

and
hσhτ

σ(hστ )
OK = I2 · Jσ · Jτ

σ(Jστ )
.

Since J−1 and I2 belong to the same ideal class, the square root of J−1 always
exists if the factor base S generates the class group. The algorithm IdealSqrt
(Algorithm 4) returns an ideal I ′ such that I ′2 = J̃ = I2. Due to uniqueness of
ideal factorization in number fields this implies I ′ = I.

Complexity. Class group can be computed using Biasse-van Vredendaal algo-
rithm [7, Prop. 5.1] in time polylog(ΔK) · e

˜O(
√
log D). For the factor base S we

can take as in [1] all prime ideals p such that

N(p) ≤ 12 ln2 ΔK = O(m2 ln2 D).

In the following by polynomial time we mean polylog(ΔK) = O(polylog(m ·D)).
Step 2. Finding S-smooth representation of an ideal in a quadratic field

takes time e
˜O(

√
log D) according to [8, §3]. Moreover, we have to repeat this step

for every quadratic subfield we encounter during the algorithm. The number of
quadratic subfields encountered by the algorithm is m. So, we have to repeat
this step m times and in total we have e

˜O(max(log m,
√
log D)) field operations.

Step 5. Relative norms computation can be done using standard techniques
in polynomial time. To simplify norm computation we can use the representation
of ideals in K due to [2, §6.1] admitting fast relative norms for subfields.

Step 9. Lifting operation for the ideals J̃σ, J̃τ , J̃στ can be done in polynomial
time using precomputed (during the class group computation) trees. These trees
describe splitting of prime ideals over subfields that are encountered during the
recursive algorithm. The trees contain for each prime ideal P ∈ Sγ of OKγ

a

vector x = (x1, . . . , xd) such that POK =
d∏

i=1

pxi
i . This information allows us to

efficiently lift products of prime ideals from the subfield Kγ to the base field K.
Step 10. IdealSqrt procedure performed with Algorithm 4 takes polynomial

time according to Proposition 4.
In total, we have to repeat Steps 1–10 for mO(1) subfields of K. Therefore,

the overall complexity is e
˜O(max(log m,

√
log D)). �
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6 Implementation

6.1 Class Group Computation

The algorithm of Biasse-van Vredendaal and its implementation [7] is given for
real multiquadratic fields. In [20] the implementation was adopted to imaginary
multiquadratic fields with optimizations for both cases. For class group compu-
tations we used the code from [20].

6.2 Discrete Logarithm Computation

In this section we give the results of computational experiments to check
correctness of the algorithm. We implemented1 Algorithm 5 in Sage [25] on
top of Biasse-van Vredendaal implementation and its adaptation to imaginary
fields [20].

The timings (in seconds) of computations are presented in Table 1. They are
given for the mutliquadratic fields K = Q(

√
d1, . . . ,

√
dn) such that d1, . . . , dn

are first primes with di ≡ 1 mod 4. In our experiments we took random ideals
in the representation of [2] that admit fast relative norms. The results of the
computations were checked by testing the equality vpi

(I) = vpi
(h · ∏

i p
−αi
i )

where h, α1, α2, . . . are the output of Algorithm 5. The timings are given for
discrete logarithm computations only and they do not include the time for class
group computation that we assume as precomputed (this data can be found in [7]
for real fields and in [20] for imaginary fields). For comparison we included in
Table 1 the timings for Sage’s builtin method ideal class log(proof = False).

The experiments were done on one core of Intel Core i7-8700 clocked at 3.20
GHz on computer with 64 GB RAM. Precomputation of the class group and
computation of SNF for the relation matrix were done on core of Intel Xeon
Silver 4201R clocked at 2.40 GHz on the machine with 629 GB RAM.

Table 1. Discrete logarithm computation for multiquadratic fields.

[K : Q] Field Algorithm 5 Sage ClK

16 real 325 0.19 C2
4

32 real 1607 64 C2 × C4 × C4
8

64 real 4743 - C9
2 × C3

4 × C8 × C4
16 × C48 × C240

16 imag. 159 0.41 C8 × C48

32 imag. 1487 26 C2 × C3
4 × C24 × C2

48 × C3360

64 imag. 3941 - C2
2 × C9

4 × C3
8 × C16 × C48 × C2

96 × C2
192 × C2

6720 × C927360

* Timings are given in seconds.

As we can see for fields of degrees 16 and 32 our algorithm works much slower
than builtin methods of Sage. However, for big degrees Sage’s methods do not
terminate, while our implementation successfully computed discrete logarithms.
1 Source code is available here: https://github.com/novoselov-sa/mqCLDL.

https://github.com/novoselov-sa/mqCLDL
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Abstract. Threshold secret sharing allows a dealer to split a secret s
into n shares, such that any t shares allow for reconstructing s, but
no t − 1 shares reveal any information about s. Leakage-resilient secret
sharing requires that the secret remains hidden, even when an adver-
sary additionally obtains a limited amount of leakage from every share.
Benhamouda et al. (CRYPTO’18) proved that Shamir’s secret sharing
scheme is one bit leakage-resilient for reconstruction threshold t ≥ 0.85n
and conjectured that the same holds for t = c · n for any constant
0 ≤ c ≤ 1. Nielsen and Simkin (EUROCRYPT’20) showed that this
is the best one can hope for by proving that Shamir’s scheme is not
secure against one-bit leakage when t = c · n/ log(n).

In this work, we strengthen the lower bound of Nielsen and Simkin.
We consider noisy leakage-resilience, where a random subset of leak-
ages is replaced by uniformly random noise. We prove a lower bound
for Shamir’s secret sharing, similar to that of Nielsen and Simkin, which
holds even when a constant fraction of leakages is replaced by random
noise. To this end, we first prove a lower bound on the share size of any
noisy-leakage-resilient sharing scheme. We then use this lower bound to
show that there exist universal constants c1, c2, such that for sufficiently
large n it holds that Shamir’s secret sharing scheme is not noisy-leakage-
resilient for t ≤ c1 · n/ log(n), even when a c2 fraction of leakages are
replaced by random noise.

Keywords: Threshold secret sharing · Noisy leakage-resilience · Lower
bounds · Shamir’s secret sharing scheme

1 Introduction

Threshold secret sharing was introduced by Shamir [Sha79] and Blakley [Bla79]
and allows a dealer to split a secret s into shares sh1, . . . , shn, such that any t
shares allow for reconstructing s, but no t − 1 shares reveal anything about s
at all in the information-theoretic sense. Since its introduction, this primitive
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in general, and Shamir’s secret sharing scheme in particular, has found count-
less applications in various fields of cryptography. Naturally, it is important to
understand the precise security it provides.

The security definitions for regular threshold secret sharing schemes and
variants like robust [RB89] or verifiable secret sharing [CGMA85] all assume
that some shares are fully known and some shares are fully hidden from the
adversary. As it turns out, these all-or-nothing type of security models do not
always precisely reflect the security we want in practice. Real-world implementa-
tions of cryptographic primitives are susceptible to different types of side-channel
attacks, which may give the adversary limited access to secrets that should ide-
ally be fully hidden from her. Cryptographic primitives have, for example, been
successfully attacked through leakages obtained via timing [Koc96] and power
consumption [KJJ99] side-channels.

Motivated by the emergence of such side-channel attacks, the security defi-
nitions of secret sharing have been strengthened to account for additional leak-
ages from the shares that were previously assumed to be fully hidden. Such
schemes require that the secret that is shared remains hidden, when the adver-
sary not only receives t−1 shares, but additionally obtains some limited amount
of leakage from all other shares. Leakage-resilient secret sharing schemes have
received significant interest and many constructions have been proposed over the
past few years [DP07,BGK14,GK18b,GK18a,ADN+19,KMS19,SV19,CKOS21,
CKOS22]. Realistically, however, it seems unlikely that Shamir’s secret sharing
scheme will be replaced by a leakage-resilient alternative any time soon. Shamir’s
scheme is a cornerstone of many cryptographic constructions and has been imple-
mented and deployed as part of many different projects. Replacing a scheme
that is so deeply embedded into so many different projects, seems like a insur-
mountable challenge. For this reason, it is crucially important to understand the
leakage-resilience of Shamir’s secret sharing scheme itself.

Benhamouda et al. [BDIR18] studied this question in a setting, where the
adversary submits arbitrary leakage functions Leak1, . . . ,Leakn and obtains
leakages Leaki(shi) for i ∈ [n]. The only restriction imposed on the leakage
functions is that they are having a bounded output length. The authors show
that Shamir’s scheme provides some leakage-resilience, when t ≥ 0.85n and
they conjecture that Shamir’s scheme is leakage-resilient against one bit leakages
for any t = c · n, where 0 ≤ c ≤ 1 is a constant. Subsequently, Nielsen and
Simkin [NS20] showed that Shamir’s scheme is not secure against one bit leakages
when t = c · n/ log(n), thereby showing that their conjecture is the best one can
hope for.

1.1 Our Contribution

The works of Benhamouda et al. [BDIR18] and Nielsen and Simkin [NS20]
assume that the adversary is able to obtain the precise outputs of its leak-
age functions. In practice, however, side-channel attacks are inherently noisy
and there are practical techniques that can amplify this noise [CCD00,CK09,
MOP07,CJRR99] to counter potential side-channel attacks. One might hope
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that it is possible to circumvent the lower bound of Nielsen and Simkin by con-
sidering a weaker, but more realistic noisy leakage model, where some random
subset of the leakages is replaced by uniformly random noise.

In this work we show that this is not the case. We prove a lower bound similar
to that of Nielsen and Simkin for Shamir’s secret sharing scheme, which holds
even when a constant fraction of leakages is replaced by random noise. To this
end, we first prove a lower bound on the share size of any noisy-leakage-resilient
secret sharing scheme. We then use this lower bound to obtain the following
theorem:

Theorem 1 (Informal). There exist universal constants1 c1, c2, such that for
sufficiently large n, it holds that (c1 · n/ log(n))-out-of-n Shamir secret sharing
is not leakage-resilient against one bit leakage, even when a c2 fraction of the
leakage function outputs are replaced by random noise.

We note that the constants c1 and c2 in our lower bound are not too relevant.
The main takeaway of our result is that the reconstruction threshold t must be
as large as a function of the number of shares n, i.e. it must hold that t ∈
Ω(n/ log(n)), even if we relax the notion of leakage-resilience that we aim for
considerably.

To prove this lower bound, we construct a generic adversary A that can use
the noisy leakage to recover the secret shared value, whenever the shares are
too small in size. The main idea of this attack is similar to the one in the proof
of [NS20, Theorem 2]. We apply a separate uniformly random leakage function
to each share. Given the noisy leakage vector, our adversary A iterates over all
possible secret values and all possible secret sharings thereof.2 Whenever there
is a vector of shares that would produce a leakage vector that is consistent
enough with the obtained noisy leakage vector, the adversary remembers the
corresponding secret value in an initially empty set S. Finally, the adversary
hopes that S contains exactly one element in which case she returns that element
as her guess for what was the actual secret shared value.

In contrast to the previous lower bound of Nielsen and Simkin, our adversary
needs to account for the noise in the leakage vector and thus it needs to add
values s to S, even if there was no secret sharing of s that produced a fully
consistent vector of leakages. Relaxing the conditions under which values s are
added to S needs to be done carefully, since we would like to ensure that we do
not add too many elements to the S. In a nutshell, our lower bound shows that
the noisy leakage vector and any other leakage vector belonging to the incorrect
secret, will differ in many positions. Making this intuition formal and arguing
that our adversary is successful with a sufficiently high probability requires a
careful analysis, which is the main contribution of this work.

1 Concretely, we show the statement for c1 < 1/3 and c2 = 1/64, but a more careful
analysis can allow for better constants, if desired.

2 We are only concerned with information-theoretic security in which case the adver-
sary is unbounded.
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1.2 Other Related Works

The work by Guruswami and Wootters [GW16] demonstrated that some linear
secret sharing schemes, such as Shamir’s scheme over certain fields, allow for
very communication efficient reconstruction of the secret. More precisely, they
show that Shamir’s scheme over fields of characteristic two, allows for recovering
a multi-bit secret from only one bit of leakage from each share.

Inspired by these results, Benhamouda et al. [BDIR18] investigate to what
extend natural secret sharing schemes offer leakage-resilience. They prove that
Shamir’s secret sharing scheme is leakage-resilient against one bit leakages, when
the reconstruction thresholds is at least 0.92 times the number of parties. This
constant was then improved to 0.8675 [MPSW21], then to 0.85 [BDIR21] and
later to 0.78 [MNPCW22].

The currently best known constant is 0.69, which was recently proven by
Klein and Komargodski [KK23]. The authors additionally show that whenever
the leakage functions are guaranteed to be balanced, i.e. approximately half of
the domain gives output 1 and the other half gives output −1, then the constant
can be reduced to 0.58. Similarly, whenever the leakage functions are guaranteed
to be sufficiently unbalanced, then Shamir’s scheme is leakage resilient as long as
the reconstruction threshold is at least 0.01 times the number of parties. This
result is the first one that breaks the barrier of 0.5, which was known to be
inherent in the proof techniques used in the previous works.

Maji et al. [MNP+21] consider much weaker physical-bit leakages, which only
allows for a fixed number of bits to be leaked from the binary representation of
each secret share. They prove that Shamir’s secret sharing scheme with random
evaluation points is physical-bit leakage resilient if the order of the field is suffi-
ciently large. Adams et al. [AMN+21] consider noisy physical-bit leakage, where
each physical-bit leakage is replaced by noise with some fixed probability. They
prove a lower bound for the reconstruction threshold of log(λ)/ log log(λ) for
Shamir’s secret sharing scheme, when the size of the field is 2λ and the evalua-
tion points can be chosen adversarially. In [MNPC+22] Maji et al. improve their
lower bound to log(λ). This bound is interesting in the setting where the size of
the field is much larger than the number of parties. In the setting we consider, we
have λ ≈ log(n), in which case their lower says that the reconstruction threshold
needs to be larger than log log(n).

In another work, Maji et al. [MNP+22] consider global leakage functions with
bounded output length that can compute arbitrary functions over all shares
simultaneously. Generally, this would allow the leakage functions to just recon-
struct the secret, which is an attack that cannot be prevented. For this reason, the
authors artificially restrict their leakage functions to not depend on some of the
random choices made by the secret sharing scheme. For the case of Shamir secret
sharing with random evaluation points, the authors show that one obtains some
leakage-resilience properties, if the leakage functions are not allowed to depend
on the evaluation points.
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2 Preliminaries

Notation. We write [n] to denote the set {1, . . . , n}. For a set X, we write
x ← X to denote the process of sampling a uniformly random element x from
the set X. For a vector v = (v1, . . . , vn) and a vector w = (w1, . . . , wt) ∈ [n]t,
we define vw := (vw1 , . . . , vwt

). We will sometimes abuse notation and write vw,
where w is a set, rather than a vector. In this case the elements can be ordered
arbitrarily in the vector. We denote by Noise(v, �, p) the algorithm that takes
vector v = (v1, . . . , vn) ∈

(
{0, 1}�

)n, � ∈ N, and 0 ≤ p ≤ 1 as input and returns
a new vector (ṽ1, . . . , ṽn), where for i ∈ [n] each ṽi = vi with probability 1 − p
and ṽi ← {0, 1}� with probability p. That means that Noise(v, �, 1) returns a
uniformly random vector and Noise(v, �, 0) returns v.

2.1 Leakage-Resilient Secret Sharing

We define threshold secret sharing schemes similarly to how it was done by
Nielsen and Simkin [NS20]. The full reconstruction parameter t̂ defines how
many shares are needed to reconstruct all shares of a particular secret sharing.
Intuitively, t̂ corresponds to a crude measure of how much entropy the vector of
shares contains.

Definition 1 (Threshold Secret Sharing Scheme). A t-out-of-n threshold
secret sharing scheme is a pair (Share,Rec) of efficient algorithms. The ran-
domized sharing algorithm Share : {0, 1}k → ({0, 1}p)n takes a k-bit secret as
input and returns a vector of n secret shares, each p-bits long. The determinis-
tic reconstruction algorithm Rec : ({0, 1}p)t → {0, 1}k takes t of the shares as
input and returns a k-bit string. We require a secret sharing scheme to satisfy
the following properties:

Perfect Correctness: For t, n ∈ N with t ≤ n, any T ⊆ [n] with |T | = t and
any x ∈ {0, 1}k, it holds that

Pr[Rec(Share(x)T ) = x] = 1,

where the probability is taken over the random coins of Share.
Full Reconstruction: (Share,Rec) has t̂-full-reconstruction, if for any x, the

vector Share(x) can be computed from any subvector Share(x)T with |T | ≥ t̂.

We assume for simplicity that all shares are of the same size p but the proof
of our lower bound can easily be adapted to schemes with shares of different
sizes.

Definition 2 (LeakageFunctions).Let (Share,Rec) with Share : {0, 1}k →
×n

i=1{0, 1}p be a secret sharing scheme and for i ∈ [n], let Leaki : {0, 1}p →
{0, 1}�. We call Leak = (Leak1, . . . ,Leakn) an �-leakage function for (Share,
Rec). We define Leak(sh1, . . . , shn) := (Leak1(sh1), . . . ,Leakn(shn)).
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We now define the privacy notion, which is a direct extension of the (noise-
less) weak one-way local leakage resilience notion of Nielsen and Simkin [NS20,
Definition 5], for which we will prove our lower bounds. The adversary A obtains
a noisy leakage vector and it knows the probability η with which each leakage
is replaced by noise. She does, however, not know which leakage outputs are
replaced by random noise. Our privacy notion requires that A is not able to
learn the secret with probability greater than 1/2.

Definition 3 (Weak One-Way Noisy Local Leakage-Resilience). We
say a secret sharing scheme (Share,Rec) is (�, η)-weakly one-way noisy local
leakage-resilient ((�, η) − WOW-NLLR), if for any �-leakage function Leak and
any adversary A, it holds that

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x ← {0, 1}k

(sh1, . . . , shn) ← Share(x)
(Leak1, . . . ,Leakn) ← A(n)

(b̃1, . . . , b̃n) ← Leak(sh1, . . . , shn)

(b1, . . . , bn) ← Noise((b̃1, . . . , b̃n), �, η)
x′ ← A(b1, . . . , bn)

: x′ = x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ 1
2
,

where the probability is taken over the random coins of Share, Noise and A.

We note that this is a very weak privacy notion. We only require a form of
one-wayness that prevents the adversary from fully recovering the secret shared
value and we only require the adversary to be successful with a probability less
than 1/2. Notably, this notion is even weaker than a standard indistinguishability
type of notion. Since we are proving a lower bound, working with a weaker privacy
notion only strengthens our lower bounds.

3 Lower Bound

In this section we prove our lower bound on the share size of any threshold secret
sharing scheme that satisfies (�, η) − WOW-NLLR.

Theorem 2. Let S = (Share,Rec) be a t-out-of-n secret sharing scheme with
t̂-full-reconstruction and shares consisting of p bits each. Let � ≥ 1 and let 0 <
η ≤ (n − t)/4n. If S is (�, η) − WOW-NLLR, then

p ≥ �(n − t)
t̂

− 4nη(� + log(1/η)) + 1
t̂

.

Remark 1. We note that the theorem requires η ≤ (n − t)/4n. In principle, our
lower bound could be tightened to only require, for instance, η ≤ (n− t)/1.1n by
replacing a single Markov inequality in the proofs with a stronger tail bound. We
opted for clarity instead of optimizing the constants in our exposition. Next, we
note that η ≤ (n−t)/n is a sensible restriction. If η > (n−t)/n would hold, then
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with high probability n − t + 1 leakages would be replaced by random noise. In
this case, our adversary could not hope to recover the secret, even if the leakage
functions would leak the full shares.

Remark 2. It can be interesting to compare our lower bound to the one of Nielsen
and Simkin [NS20]. Their work shows that any secret sharing scheme that sat-
isfies (�, 0) − WOW-NLLR, needs to satisfy

p ≥ �(n − t)
t̂

.

As η approaches 0, our work effectively proves the same lower bound.

Proof (of Theorem 2). Towards proving the theorem statement, we provide a
generic attacker that successfully wins the (�, η) − WOW-NLLR game against any
secret sharing scheme that does not satisfy the constraints on the share size p
that are stated in the theorem statement. This adversary works as follows. It picks
Leak = (Leak1, . . . ,Leakn) by picking eachLeaki : {0, 1}p → {0, 1}� for i ∈ [n]
uniformly and independently at random. The challenger picks a uniformly ran-
dom secret s and computes (sh1, . . . , shn) ← Share(s). Adversary A submits the
�-leakage function Leak to the challenger, who responds with (b1, . . . , bn), where
each bi is eitherLeaki(shi) with probability 1−η or a uniformly random value from
{0, 1}� with probability η. Let N be the number of components that were replaced
by uniformly random noise values by the challenger and let S = ∅. The adversary
now iterates over all possible secrets s′ and random coins r′ to compute

(sh′
1, . . . , sh

′
n) ← Share(s′; r′)

and
(b′

1, . . . , b
′
n) ← Leak(sh′

1, . . . , sh
′
n).

If |{i ∈ [n] | b′
i = bi}| ≥ n(1 − 4η) for some r′, then add s′ to S. Finally, once

A iterated over all possible secret sharings, if |S| = 1, then it outputs that one
element in S and in any other case it returns ⊥.

Let us now analyze the success probability of A. We observe that if the
challenger replaced at most 4nη coordinates by uniformly random noise, i.e. if
N ≤ 4nη, then s ∈ S. Since in expectation N is equal to nη, it holds by Markov’s
inequality that

Pr[s ∈ S] = Pr[s ∈ S | N ≤ 4nη] · Pr[N ≤ 4nη]
+ Pr[s ∈ S | N > 4nη] · Pr[N > 4nη]
= Pr[N ≤ 4nη] + Pr[s ∈ S | N > 4nη] · Pr[N > 4nη]
≥ Pr[N ≤ 4nη] ≥ 3/4.
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Our adversary is successful, if and only if s is the only element in S. Let Es′ be
the event that s′ ∈ S. Then

Pr [S = {s}] = Pr

⎡

⎣

⎛

⎝
∧

s′ �=s

¬Es′

⎞

⎠ ∧ Es

⎤

⎦ ≥Pr

⎡

⎣

⎛

⎝
∧

s′ �=s

¬Es′

⎞

⎠ ∧ N ≤ 4nη

⎤

⎦

≥Pr

⎡

⎣

⎛

⎝
∧

s′ �=s

¬Es′

⎞

⎠ | N ≤ 4nη

⎤

⎦ · 3/4

=

⎛

⎝1 − Pr

⎡

⎣
∨

s′ �=s

Es′ | N ≤ 4nη

⎤

⎦

⎞

⎠ · 3/4.

To prove the theorem statement, we need to show that the adversary’s attack
is successful with a sufficiently high probability, i.e. we need to show that
Pr [S = {s}] ≥ 1/2 and thus by the above it suffices to show that

Pr

⎡

⎣
∨

s′ �=s

Es′ | N ≤ 4nη

⎤

⎦ ≤ 1/3.

By the union bound3 we have that

Pr

⎡

⎣
∨

s′ �=s

Es′ | N ≤ 4nη

⎤

⎦ ≤
∑

s′ �=s

Pr [Es′ | N ≤ 4nη] .

Let us now fix an arbitrary s′ �= s, fix random coins r′, and let
(sh′

1, . . . , sh
′
n) ← Share(s′; r′). Let Es′,r′ be the event that the adversary

includes s′ into S based on the leakage from (sh′
1, . . . , sh

′
n), i.e. the event that

|{i ∈ [n] | b′
i = bi}| ≥ n(1 − 4η), where b′

i ← Leaki(sh′
i). Let us bound the prob-

ability of Es′,r′ conditioned on N ≤ 4nη. From the perfect correctness of the
secret sharing scheme and since s �= s′, we know that there exists a set of indices
I ⊆ [n] with |I| ≥ n − t + 1, such that for all i ∈ I, it holds that shi �= sh′

i. For
each i ∈ I, there are two cases. Either the leakage bi is the real leakage or it is
a uniformly random element from {0, 1}�. In either case, it holds that bi = b′

i

with probability 2−�, since the corresponding shares are different and the leakage
function Leaki is chosen uniformly random and independently of its inputs.

Let T be the set of subsets of I of size n−t+1−4nη. Note that n−t+1−4nη >
0, since η ≤ (n − t)/4n by assumption. For T ∈ T , let Es′,r′,T be the event that
the noisy leakage vector (b1, . . . , bn) and the noiseless vector (b′

1, . . . , b
′
n) agree

on all coordinates in T . Note that by the union bound

Pr [Es′,r′ | N ≤ 4nη] ≤
∑

T∈T
Pr [Es′,r′,T | N ≤ 4nη] .

3 The union bound also holds for conditional probabilities, meaning that Pr[A ∨ B |
C] = Pr[(A∨B)∧C]/Pr[C] ≤ (Pr[A∧C]+Pr[B∧C])/Pr[C] = Pr[A | C]+Pr[B | C].



Stronger Lower Bounds for Leakage-Resilient Secret Sharing 223

To see this, observe that even if (sh1, . . . , shn) and (sh′
1, . . . , sh

′
n) agree on t − 1

coordinates, then there must still exist at least n − t + 1 − 4nη distinct indices
i ∈ I for which it holds that bi = b′

i to satisfy the condition |{j ∈ [n] | b′
j = bj}| ≥

n(1 − 4η). It is easy to see that

Pr [Es′,r′,T | N ≤ 4nη] ≤ 2−(n−t+1−4nη)�

and thus, it holds that

Pr [Es′,r′ | N ≤ 4nη] ≤|T | · 2−(n−t+1−4nη)�

=
(

n − t + 1
n − t + 1 − 4nη

)
· 2−(n−t+1−4nη)�

=
(

n − t + 1
4nη

)
· 2−(n−t+1−4nη)�

≤
(

e(n − t + 1)
4nη

)4nη

· 2−(n−t+1−4nη)�

≤
(

n − t + 1
nη

)4nη

· 2−(n−t+1−4nη)�

≤
(

1
η

)4nη

· 2−(n−t+1−4nη)�

At this point, recall that each share is p-bits long and that t̂ is the full
reconstruction threshold, i.e. that any t̂ shares are enough to uniquely determine
all remaining shares of a specific secret sharing. Thus there are at most 2pt̂

different secret sharings in total and therefore

∑

s′ �=s

Pr [Es′ | N ≤ 4nη] ≤
(

1
η

)4nη

· 2pt̂−(n−t+1−4nη)�.

As discussed before, the adversary we constructed is successful, if

(
1
η

)4nη

· 2pt̂−(n−t+1−4nη)� ≤ 1/3

⇐⇒ log(1/η)4nη + pt̂ − (n − t + 1 − 4nη)� ≤ − log 3

⇐⇒ pt̂ ≤ (n − t + 1 − 4nη)� − log(1/η)4nη − log 3

⇐⇒ pt̂ ≤ (n − t + 1)� − log 3 − 4nη(� + log(1/η)).

From here it follows that

p ≥ (n − t)� − 1 − 4nη(� + log(1/η))
t̂

must hold, if the secret sharing scheme wants to prevent the attack described
above. �
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The bound in Theorem 2 can be a little unwieldy and for this reason we
also provide a slightly weaker, but simpler to state lower bound in the following
corollary.

Corollary 3. Let t ≤ n/2. Let S = (Share,Rec) be a t-out-of-n secret sharing
scheme with t̂-full-reconstruction and shares consisting of p bits each. Let � ≥ 1
and let 0 < η ≤ 1/64. If S is (�, η) − WOW-NLLR, then

p ≥ �(n − 2t)
2t̂

− 1.

Proof. For Theorem 2 to be applicable, it must hold that 0 < η ≤ (n − t)/4n,
which is always satisfied, when 0 ≤ η ≤ 1/64, since t ≤ n/2. Furthermore, it
holds that

4nη(� + log(1/η)) + 1
t̂

≤ n�

16t̂
+

4nη log(1/η)
t̂

+ 1

≤ n�

16t̂
+

3n

8t̂
+ 1 ≤ 7n�

16t̂
+ 1 ≤ n�

2t̂
+ 1

From Theorem 2, we know that it must hold that

p ≥ �(n − t)
t̂

− 4nη(� + log(1/η)) + 1
t̂

.

Thus it must at least hold that

p ≥ �(n − t)
t̂

− n�

2t̂
− 1

⇐⇒ p ≥ �(n − 2t)
2t̂

− 1.

�

4 Leakage-Resilience of Shamir’s Secret Sharing

In this section we apply our result to Shamir’s secret sharing scheme.

4.1 Shamir’s Secret Sharing Scheme

In t-out-of-n Shamir secret sharing [Sha79], the secrets are elements of a field
Fq for some prime q, which is chosen as the smallest prime larger than n. To
distribute a secret s, the dealer picks a uniformly random polynomial f of degree
t − 1 from Fq[X] and defines shi = f(i) for i ∈ [n]. Reconstruction of the secret
from a subset of t shares is performed via polynomial interpolation, as any
polynomial of degree t − 1 is uniquely defined by t evaluation points.
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4.2 Noisy Leakage-Resilience

Benhamouda et al. [BDIR18] conjecture that Shamir’s scheme is leakage-resilient
against one-bit leakage for any t = c · n, where 0 ≤ c ≤ 1 is a constant. Nielsen
and Simkin [NS20] showed that this is the best one can hope for by proving
that the scheme is not secure against one-bit leakage when t = cn/ log(n). In
Theorem 4 we show that this lower bound holds even if a constant fraction of
leakages is replaced by noise.

Theorem 4. There exist universal constants c1, c2, such that for sufficiently
large n, it holds that (c1 ·n/ log(n))-out-of-n Shamir secret sharing is not (1, c2)−
WOW-NLLR.

Remark 3. We note again that the precise values of the constants c1 and c2 are
not too important. As we will see below, setting them to c1 < 1/3 and c2 = 1/64
suffices. There are multiple ways in which one could optimize these values. As
already noted in Remark 1, one could use a tighter tail bound in the proof
of Theorem 4. Another way could be to strengthen the notion of WOW-NLLR,
i.e. slightly weaken the lower bound, to require the adversary to win with some
probability smaller than half. These changes would, however, not change the
main takeaway of our result, which is that Shamir secret sharing can not be
leakage-resilient, unless t ∈ Ω(n/ log(n)).

Proof. Let c1 < 1/3 be arbitrary but fixed and let c2 = 1/64. By Corollary 3,
we know that

p ≥ n − 2t

2t̂
− 1

has to hold for the secret sharing scheme to be (1, c2) − WOW-NLLR. We note
that the full reconstruction threshold t̂ = t for Shamir secret sharing, since
any t shares allow interpolating any other share. Now plugging in the concrete
parameters, we get that

p ≥ n − 2c1n/ log(n)
2c1n/ log(n)

− 1

⇐⇒ p ≥ log(n)
2c1

− 2

⇐⇒ p ≥ 3 log(n)
2

− 2

has to hold.
Let q be the first prime larger than n and note that p = log(q). By the

Bertrand-Chebyshev Theorem, we know that n < q ≤ 2n and thus it must hold
that

log(2n) ≥ 3 log(n)
2

− 2

⇐⇒ 4 ≥ 3 log(n) − 2 log(2n)

⇐⇒ 4 ≥ log
(

n3

4n2

)
,

which is clearly not true once n is large enough. �



226 C. Hoffmann and M. Simkin

Conclusion. In this work, we strengthened the lower bounds on the share size of
leakage-resilient secret sharing schemes of Nielsen and Simkin [NS20] by showing
that similar bounds hold, even if we considerably weaken the security notion we
aim for. We show that Shamir secret sharing is not noisy leakage-resilient, if
t ≤ c1 · n/ log(n), where c1 and c2 are constants, where t is the reconstruction
threshold and n is the number of shares. We leave the reader with an interesting
open question. Our lower bound crucially relies on an adversary running in
exponential time in n. A natural question to consider is whether one can either
improve the running time of the adversary to make the attacks more practical
or whether one can prove a form of computational leakage-resilience for Shamir
secret sharing under an appropriate computational assumption.
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Carla Ráfols1(B) and Alexandros Zacharakis2

1 Pompeu Fabra University, Barcelona, Spain
carla.rafols@upf.edu

2 Toposware Inc., Tokyo, Japan

alexandros.zacharakis@toposware.com

Abstract. In settings such as delegation of computation where a prover is
doing computation as a service for many verifiers, it is important to amor-
tize the prover’s costs without increasing those of the verifier. We introduce
folding schemes with selective verification. Such a scheme allows a prover to
aggregate m NP statements xi ∈ L in a single statement x ∈ L. Knowl-
edge of a witness for x implies knowledge of witnesses for all m statements.
Furthermore, each statement can be individually verified by asserting the
validity of the aggregated statement and an individual proof πi with size
sublinear in the number of aggregated statements. In particular, verification
of statement xi does not require reading (or even knowing) all the state-
ments aggregated.Wedemonstrate natural folding schemes for various lan-
guages: inner product relations, vector and polynomial commitment open-
ings and relaxed R1CS of NOVA. All these constructions incur a minimal
overhead for the prover, comparable to simply reading the statements.

Keywords: Folding · Aggregation · Delegation of computation ·
SNARKs · Vector commitments · Verifiable databases

1 Introduction

Succinct non-interactive arguments of knowledge (SNARKs) have been proven
an invaluable tool in the last decade, both in theoretical as well as practical
terms. Such constructions allow a prover to convince a verifier that some NP
relation is satisfied in a way such that communication and (in some cases) verifi-
cation time are sublinear in the size of the NP witness. They can also be adapted
to satisfy the zero-knowledge property, guaranteeing that no information about
the NP witness leaks through the proof.

While the first real-world application of SNARKs [2] aimed at preserving the
privacy of the prover, the potential of this primitive for improving scalability in
many applications is increasingly recognized, for example, roll-up architectures or
the Filecoin network. In these applications, where the size of the computations
is really large, the efficiency of the prover is the main bottleneck. Therefore,
improving prover’s efficiency is an active area of research, trying to reduce prover
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overhead [5,6,23] or memory requirements [8] or building hardware accelerators
for the provers, to name a few approaches.

Despite the many improvements achieved and those that will come after the
considerable research effort we have seen in reducing this cost, SNARK proofs
remain expensive for the prover. Also, it is natural to envisage a scenario where
these proofs are outsourced to some powerful entity, in the spirit of secure del-
egation of computation [17], where an untrusted prover performs computations
as a service to several “muggles”, or computationally weak verifiers. In this sce-
nario, the prover is providing a service to many verifiers and has their data (i.e.,
there are no privacy requirements). The efficiency of the prover is essential in
this scenario, as it will seriously hinder scalability. Also, the prover’s cost directly
affects the service’s cost. On the other hand, using some batching or recursive
proof composition in this setting seems unsatisfactory, as each verifier does not
necessarily want to know all the other statements that are being verified and
incur the additional costs that this represents.

1.1 Our Contributions

This work aims to mitigate the necessity of considerable computational resources
for the prover in applications where he provides services to many clients. Instead
of improving SNARK constructions’ efficiency, we take a different approach:
we amortize the proving cost across multiple proofs of independent and unre-
lated statements. When having to make M computations of different statements,
instead of producing M separate SNARK proofs for each, the prover “collapses”
all these statements into a single statement in a verifiable way and only produces
a proof for the latter using a SNARK. This is a novel application of folding
schemes [20], introduced initially to improve recursive proof composition. The
guarantee we get is that if the proof for the aggregated statement verifies, then
all statements are correct.

Additionally, since the ultimate goal is to prove unrelated statements, possi-
bly coming from different parties, we augment aggregation with a local property
we call selective verification. This property captures that a small proof πi - which,
notably, is sublinear in the number of aggregated statements- is evidence that a
statement xi was included in the construction of the final aggregated statement
and, thus, a proof for the latter along with πi stands as a proof for the validity of
xi. Note that it is not necessary to even know the statements used in aggregation
to assert the validity of xi.

A crucial requirement for efficiency is that aggregation of M statements is
more efficient than producing M SNARK proofs. We demonstrate this in the full
version [22] of this paper by considering natural aggregation schemes for various
relations through simple public coin protocols and the Fiat-Shamir transform.
Specifically, we consider (1) inner product relations of committed values, (2)
vector commitment openings, (3) knowledge of openings of polynomial commit-
ments at the same point, and (4) the relaxed R1CS relation of NOVA [20]. Our
construction is generic enough and applies in any folding scheme, for example
the recent constructions [19,21].
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All the constructions are highly efficient for the prover, who, during fold-
ing does work comparable to reading the statements/witnesses (modulo a linear
number of hash function computations needed to derive the non-interactive chal-
lenge of the Fiat-Shamir transform). Verification incurs a small overhead since
now the verifier also needs to check, apart from the SNARK proof, that the
statement in question is indeed “contained” in the aggregated statement. This
is dominated by log M hash function computations where M is the number of
aggregated statements. This seems a reasonable compromise since the verifier
also benefits from the reduced service costs.

Nevertheless, there are several other advantages in the construction for the
verifier. First, the same techniques used for folding can be used “locally” by
the verifier to aggregate many statements into a single statement xi, which will
then be aggregated with independent queries from other verifiers. Therefore,
the additional cost of each verifier can be amortized when the verifier makes
multiple queries. Second, since all verifiers need to assert the validity of the
same folded statement, one could explore the possibility of distributing this task,
incentivizing a few randomly chosen verifiers to check the aggregated statement.
As long as one is honest, a cheating prover will be identified. If a verifier does
not validate the proof himself, it can still query it in the future to the prover
(along with other statements of interest that it locally aggregates) instead of
simply relying on other parties. Thus, the verification cost can be fine-tuned on
large-scale systems without compromising security.

Our techniques are pretty general. In particular, (1) we show a generic way to
augment every non-interactive 2-folding scheme to a non-interactive M -scheme
using combinatorial techniques, (2) show that this construction achieves selective
verification, and (3) we do not rely on some specific SNARK construction.

1.2 Applications

As we have discussed, selective verification can improve efficiency on applica-
tions with a single server serving multiple clients in a trustless way. It allows
us to amortize the server’s costs across multiple queries from clients while only
incurring a small overhead for the clients. We discuss two applications in more
detail.

Delegation of Computation as a Service. For delegation of computation in a
trustless setting, one would normally resort to a SNARK, especially in cases
where interaction is prohibitive. We discuss how to use folding schemes to miti-
gate the problem of the prover’s costs.

We will consider two cases: (1) each party needs to perform arbitrary com-
putations, and (2) all parties are interested in doing the same computation on
different inputs. Especially in the latter case, we can significantly reduce the
costs of the prover through folding schemes with selective verification.

For case (1), many SNARKs are constructed by separately considering some
information-theoretic part and a cryptographic primitive. Two main approaches
are known: (i) using interactive oracle proofs [1] and vector commitments [14]
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and (ii) using algebraic [15] or polynomial [13] holographic proofs and polyno-
mial commitments [18]. In the former, the prover and verifier, after interacting,
reduce the validity of the claim to the opening of some vector commitments at
a few random indices. In contrast, in the latter, the statement’s truth reduces
to opening some polynomial commitments at random values. Interaction can be
removed through the Fiat-Shamir transform.

In either case, we can use the folding constructions of the previous section to
amortize the cost of the latter step: inner product arguments for the former and
polynomial commitment for the latter1. Specifically, with each computational
query, the prover computes all the commitments that are part of the SNARK, but
it refrains for the time from computing the opening of (the vector or polynomial)
commitment. After multiple interactions with different verifiers, it folds all the
(vector or polynomial) commitments to a single one and opens the latter at some
random indices or points, respectively. The randomness is derived by hashing
the folded statement. Each verifier can now assert the folding proof as well as
some evidence sent by the server asserting the inclusion of her statement. To be
concrete, for example in Plonk [16], the prover will compute until round 3 for each
different statement. Then, it will wait to open the polynomial commitments until
it has the transcripts of many other protocols until round 3. Using a technique
presented by Turel et al. in [25], the prover will then create a Merkle tree of
hashes of the transcript, to derive an opening point that is a hash of all involved
transcripts. Then, the prover will send all the openings that each verifier needs to
verify its statement (including an opening of the linearization polynomial r(X)),
together with a proof that all the commitments corresponding to these openings
have been folded into a single commitment value, and a proof of correct opening
of this commitment2.

In case (2), where all parties are interested in performing the same compu-
tation on different inputs, one could use the NOVA approach. Specifically, the
computation is encoded as a relaxed R1CS statement, and the various instances
of this statement are aggregated using the NOVA folding scheme compiled to
support selective verification. As we discussed, a folding of this type of state-
ments is very efficient. This is in contrast to the previous case since the SNARK
information theoretic part (which needs to be executed for each query to the
proving server) is, in fact, costly for the prover. Considering the case of a single

1 In fact, both inner product arguments and polynomial commitment folding can be
used for either approach but the presentation becomes more natural by using one
approach for each.

2 We note that it is also possible to use a different strategy if one changes the state-
ment about the polynomial commitments slightly: the prover can fold statements of
the form “I know a polynomial that is a valid opening of a commitment” and fold
such statements for each verifier resulting in a claim about a single polynomial com-
mitment. Then, it can prove this statement at a single point which will be the same
for all verifiers. The point is derived by hashing the final folded statement. During
folding, the transcript of the first protocol rounds is included in the hashing part of
the folding. Thus, each verifier can check that its transcript indeed contributed in
the sampling of the FS challenge point.
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computation allows us to completely remove the need for this part and directly
fold statements, which is not much costlier than simply reading the statements.

Verifiable Databases. In a verifiable database, a client outsources the storage of a
database to a server in a trustless way. Specifically, the client only holds a small
digest of the database and can query/modify the database in a verifiable way
through communication with the prover. Such a construction can be built using
vector commitments. The database is encoded as a vector, and the client only
needs to hold the (constant size) commitment to the database. A query to the
database can be answered verifiably by asking the server to open the commitment
to the desired locations. Furthermore, if the underlying commitment scheme is
homomorphic (for example, the Pedersen commitment), updating the database is
efficient since one just needs to homomorphically update the digest by removing
the old values and adding the new ones.

Consider the case where a server outsources storage to various clients. Naively
implementing this would require that it sends an (expensive to produce) proof
of opening for every query of every client to its database. Using a folding scheme
with selective verification (for example, the inner product language construction)
can naturally minimize this cost.

In particular, each query to the server is answered without any verifiabil-
ity guarantee; the clients simply get their responses and perform their updates
acting in good faith. However, periodically, the server folds all the claims from
all the clients using the folding scheme and publishes a single statement and
individualized proofs for each client to convince them about the validity of all
statements of one period. Due to the efficiency of the folding scheme, the amor-
tized cost for this is much less than proving each claim individually.

An interesting feature of the described mechanism is that it can be used for
any algebraic commitment (i.e., any Pedersen type) commitment in particular,
it can be used in DLOG groups without pairings. In this setting, to open a
vector to many positions, the cost of the verifier is linear in the size of the com-
mitment. Our solution allows amortizing the prover cost in this setting without
much overhead to the verifier, which is critical in this setting where individual
verification is already quite expensive.

1.3 Related Work

The techniques in this work are inspired by a recent line of work on proof com-
position techniques, namely [4,9,11,12]. In general, these techniques consider
the notion of proof aggregation, namely, how to derive a single proof π that
asserts the validity of two or more proofs. The motivation for this line of work is
twofold. First, amortizing the cost of the (inefficient) verification of folding tech-
nique based constructions [7,10] and second, to construct proof carrying data [3]
and incrementally verifiable computation [24].

Our work differs in that (1) the main goal is to amortize the proving cost
and (2) we consider the notion of aggregating unrelated statements, that is,
one should assert the validity of statement without even knowing the other
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statements considered during aggregation. NOVA [20] is closer to our work in
that it directly considers aggregating statements instead of proofs, in an attempt
to minimize the proving cost.

Perhaps closest to our work is [25]. There, they use a tree like structure
similar to ours in order to derive the same Fiat-Shamir challenge across multiple
parallel executions of an inner product argument protocol [10] with different
parties. In particular, the protocol transcripts are committed in a Merkle tree so
that each party can assert that its transcript was considered in the production of
the challenge. We consider statement aggregation instead of executing multiple
proofs in parallel which is conceptually different and more efficient.

2 Definitions

In this section, we recall the definition of folding schemes for NP relations intro-
duced in NOVA [20]. On a high level, given an NP language L and the corre-
sponding NP relation R, a folding scheme allows a prover and a verifier to reduce
the validity of 2 or more statements of the form xi ∈ L to a single one x ∈ L.
The resulting statement is of the same form, so it can be further aggregated. A
prover knowing witnesses wi s.t. (xi, wi) ∈ R for all the statements also obtains
a witness w for the folded statement x.

A folding scheme takes to the extreme proof composition techniques used to
construct PCD [3] and IVC [24]. The core idea of these techniques is to incre-
mentally prove statements that assert that (1) a computation step is performed
correctly and (2) there exists a proof that asserts that the input of the compu-
tation in this step is correct. Using generic constructions, however, is extremely
inefficient.

To alleviate this, a recent line of work [4,9,11,12] follows a different approach:
they defer an expensive part of proof verification of the proof mentioned above
and aggregate it with deferred parts from other steps. At any point, the verifier
can perform this expensive part and assert that all computation steps are correct.
Notably, the aggregation part is cheap, and the deferred part does not grow
with the number of computational steps proven. Therefore, the expensive part
is performed once for an arbitrarily large number of steps.

NOVA takes this approach to the extreme in the following sense: it defers
the verification of the statement itself. More concretely, the statement asserting
the correctness of the first i − 1 steps is encoded as a statement X ∈ L for some
language and the correctness of the i-th step as x ∈ L for the same language.
The two statements are then “folded” to a new one X∗ ∈ L, and the truth of
the folded statement implies the truth of both statements. Since all statements
are of the same form, the process can be repeated for an arbitrary number of
steps, and it is enough to prove the final statement to assert the correctness of
all steps.

Assuming the existence of such a mechanism to fold statements, one can
then encode in a circuit the verification process of this folding and construct an
IVC scheme. Importantly, the folding verification is cheap, achieving very low
recursion overheads.
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In our work, we consider using similar techniques, albeit for a different goal:
aggregating statements to reduce the amortized proving cost of proving many
different statements. Instead of encoding the folding verification as a circuit and
building IVC, we directly use the folding scheme to allow a prover to prove the
validity of a bunch of M different statements using only a single proof by means
of aggregation. Additionally, we present a mechanism, selective verification, that
allows a verifier to assert the correctness of one of the M statements efficiently:
it does not need to know neither all the M aggregated statements nor the entire
proof of aggregation (which grows linearly in M). It simply needs the proof of
the final statement and a proof that is sublinear in M .

Taking into account that producing proofs is a computationally intense task,
this allows much better amortized proving time with little overhead for verifica-
tion. Indeed, [20] introduces a folding scheme construction that captures all NP
computations and allows very fast statement aggregation.

2.1 Folding Schemes

We next present the formal definition of a folding scheme. The notion is essen-
tially the same as presented in [20] with two modifications: we only consider
a non-interactive definition, namely the prover simply presents a proof of cor-
rect folding to the verifier, and we consider a definition that allows aggregating
M statements instead of 2 as it is discussed in NOVA. Looking ahead, our
concrete instantiations will be folding schemes for 2 statements that are then
bootstrapped to folding schemes of M statements using a generic bootstrapping
compiler.

The formalization of a folding scheme is quite natural. Given a number of
instance/witness pairs (xi, wi) that satisfy some NP relation, there exists a fold-
ing algorithm that outputs a new instance/witness pair (x,w) that also satisfies
the NP relation, along with some evidence π that the new instance x is indeed a
”folded” statement derived from the statements xi. One can think of the folded
statement as encoding all statements of interest. The properties required are:

1. completeness, stating that if we aggregate instance-witness pairs (xi, wi) sat-
isfying the NP relation, then (1) folding results in an instance-witness pair
also satisfying the relation and (2) the folding proof is accepted;

2. knowledge soundness, stating that if after correct aggregation the proving
party knows a witness for the resulting statement, then it should also know
witnesses for all statements (xi, wi) that were considered during aggregation.

Definition 1 (Folding scheme). Let λ ∈ N be a security parameter and
Lpp be an NP language parametrized by some parameters pp(λ) depending on
λ and Rpp the corresponding relation. Finally, let M = poly(λ). An M -folding
scheme FS for the language family L = {Lpp}pp∈{0,1}∗ is a tuple of an algorithms
FS = (Fold,FoldVrfy) such that for all pp = pp(λ) and m ≤ M

– (x,w, π) ← Fold (pp, x1, w1, . . . , xm, wm): takes as input the parameters pp,
and m instance-witness pairs (xi, wi) ∈ Lpp and outputs a new instance-
witness pair (x,w) ∈ Rpp and a proof of correct folding π,
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– 0/1 ← FoldVrfy (pp, x1, . . . , xm, x, π): takes as input the parameters pp, m
instances xi, an aggregated statement x and a proof of correct folding π and
outputs a bit indicating whether folding was done correctly or not,

that satisfies the following properties:

1. Completeness: for all m ≤ M , all pp = pp(λ) and all (even computationally
unbounded) algorithms A,

Pr

⎡
⎢⎢⎣

(x1, w1), . . . , (xm, wm) ← A(pp)
{q1, . . . , qm} ⊆ Rpp ∧ q1 = (x1, w1), . . . , qm = (xm, wm)
((x,w) �∈ Rpp ∨ b = 0) (x,w, π) ← Fold (pp,q)

b ← FoldVrfy (pp,x, x, π)

⎤
⎥⎥⎦ ≤ negl(λ)

2. Knowledge soundness: for all m ≤ M and all pp = pp(λ) there exists a
PPT extractor E such that for all PPT algorithms A

Pr

⎡
⎣

(x,w) ∈ Rpp ∧ (x, x, w, π) ← A(pp)
b = 1 ∧ w ← EA(pp)

∃1 ≤ i ≤ m s.t. (xi, wi) �∈ Rpp b ← FoldVrfy (pp,x, x, π)

⎤
⎦ ≤ negl(λ)

In Sect. 4 we present 2-folding schemes for various relations: inner product
relations of committed values, vector and polynomial commitment openings and
the relaxed R1CS relation of [20]. We derive the constructions by means of
public coin protocols that we compile to a non-interactive variant through the
Fiat-Shamir heuristic.

Remark 1. We emphasize that after folding the statements, the corresponding
witnesses are not needed. In particular, the witnesses are only used to construct
the witness for the final folded statement and then they can be safely deleted.
Indeed, to assert the validity of all statements, it is enough to (1) present the
proof of correct folding and (2) convince about the validity of the folded state-
ment. The latter can be done using only the folded statement/witness pair, for
example with a SNARK. Put it differently, while the folded statements “encodes”
all the aggregated statements by means of a folding proof, it is also -in some
sense- independent of them after the folding has taken place.

2.2 Folding Schemes with Selective Verification

As we discuss in the introduction, the main goal of this work to allow to reduce
the resources used in “as a service” scenarios: a prover needs to serve multiple
verifiers in a trustless way. A characteristic example is a prover that verifiably
outsources its computational resources to verifiers who need to perform arbitrary
computations.
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We emphasize that this is a different goal from NOVA [20] and related works,
which aim to achieve proof composition and construct IVC schemes. In our case,
there are natural additional properties one would want to achieve. Perhaps the
most natural is to allow verifying single statements that are “encoded” in the
folded statements without the need to know or even care about the validity of
the rest of the statements. Let us elaborate on this.

Consider the case where a prover wants to serve m statements for m dif-
ferent parties. Simple folding is indeed a means to that goal: the prover needs
to convince for the validity of a single statement to convince all verifiers about
the validity of all m statements. Nevertheless, it is still inefficient in terms of
verification. The inefficiency stems from the fact that in order to verify correct
folding, all the statements need to be considered as part of the proof of correct
aggregation.

While this is natural in cases where a single verifier is interested in many
statements, it can be prohibitive in scenarios where multiple verifiers are inter-
ested in the validity of different statements: first, the verifiers need to know
each others’ queries to the prover to assert validity of the folded statement, and
second, the verification cost scales linearly with the total number of statements
considered.

In this section, we mitigate this issue by considering a stronger notion of
folding schemes that allows to assert that a single statement was considered
during aggregation of multiple statements -and hence knowledge of a witness of
the latter implies knowledge of the witness of the former, without the need to
know all the statements involved. Importantly, verification of inclusion of a single
statement to the folded statement is sublinear in the total number of statements
involved. We call this stronger notion folding with selective verification.

We require (and later achieve) a strong version of this notion: one can derive
a proof of inclusion of a single statement to a folded statement only by knowing
the aggregated statements and the proof of correct folding. In particular, creation
of such a proof does not require any witness information on the statements
and can be performed by parties different than the prover. Looking ahead, our
bootstrapping construction achieves this property by simply handing parts of the
folding proof corresponding to each statement, each being sublinear (logarithmic)
in the total size of the folding proof.

We next define the stronger notion of a folding scheme that supports selective
verification.

Definition 2 (Folding scheme with selective verification). Let λ ∈ N

be a security parameter and Lpp be an NP language parametrized by some
parameters pp(λ) depending on λ and Rpp the corresponding relation. Finally,
let M = poly(λ) and let FS = (Fold,FoldVrfy) be an M -folding scheme for
L = {Lpp}pp∈{0,1}∗ . FS has selective verification if there exists a pair of algo-
rithms (SelPrv,SelVrfy) such that for all m ≤ M ,

– (π1, . . . , πm) ← SelPrv(pp, x1, . . . , xm, x, π): takes as input the parameters pp,
m instances x1, . . . , xm, a folded instance x and a folding proof π and outputs
m proofs π1, . . . , πm,
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– 0/1 ← SelVrfy(pp, x, i, xi, πi): takes as input the parameters pp, a folded state-
ment x, a position i ∈ {1, . . . , m}, a statement xi and a proof πi and outputs
a bit indicating if xi was aggregated (among other statements) to x,

that satisfies the following properties:

1. Selective completeness: for all m ≤ M , all pp = pp(λ) and all (even
computationally unbounded) algorithms A,

Pr

⎡
⎢⎢⎢⎢⎣

{q1, . . . , qm} ⊆ Rpp ∧
x1, w1, . . . , xm, wm ← A(pp)

∃i ∈ {1, . . . ,m} :
q1 = (x1, w1), . . . , qm = (xm, wm)

bi = 0
(x,w, π) ← Fold (pp,q)

(π1, . . . , πm) ← SelPrv(pp,x, x, π)
bi ← SelVrfy(pp, x, i, xi, πi)

⎤
⎥⎥⎥⎥⎦

≤ negl(λ)

2. Selective knowledge soundness: for all m ≤ M = poly(λ) and all pp =
pp(λ) there exists a PPT extractor E such that for all PPT algorithms A

Pr
[

SelVrfy(pp, x, i, xi, πi) = 1 ∧ (i, xi, πi, x, w) ← A(pp)
(x,w) ∈ Rpp ∧ (xi, wi) �∈ Rpp wi ← EA(pp)

]
≤ negl(λ)

3. Efficiency: |πi| = o(m · |x|), namely, the proof size should be asymptotically
smaller than the total size of folded statements.

The definition captures that if (1) the prover knows a valid witness w for
the folded statement x and (2) the i-th proof verifies, then it should be the case
that the prover knows witness wi such that (xi, wi) ∈ Rpp. Note that from the
perspective of a party asserting the validity of xi, it is not necessary to know
the other statements considered in the construction of x. Furthermore, the other
statements need not be honestly generated; even if the adversary samples them,
knowledge of the witness of the i-th statement is still guaranteed.

The efficiency condition rules out trivial constructions. Without it, one could
set the proof of statement i to be simply the set of all aggregated statements
along with a proof of correct folding. The verifier would then simply need to
check that one of the statements corresponds to the one that is of interest to her.
The interesting part of the definition is to achieve the same goal with sublinear
communication.

Finally, note that we do not require the extractor to be able to extract all
m statements that would “explain” the folded statement x; rather, we ask that
given a witness for the folded statement and a valid proof, we can extract a
witness only for the i-th statement. This is exactly what one would want for
selective verification since ultimately, this is a local property : we want to ensure
that some statement is correct without caring how we end up with the folded
statement; the latter is simply a means to verify correctness of the statement of
interest.
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3 Bootstrapping Construction for Folding Schemes

In this section, we show how to bootstrap any 2-folding scheme to an M -folding
scheme for any polynomial M . Additionally, the bootstrapped construction sat-
isfies the stronger notion of selective verifiability. Thus, to construct a selectively
verifiable folding scheme, it is enough to construct a simple 2-folding scheme –
which as we shall see is a relatively simple task using Σ-protocol techniques–
and simply applying the bootstrapping compiler.

The crucial observation to bootstrapping is that statement aggregation is
by definition “incremental”. The fact that the folded statement is of the same
form as the folded ones directly implies that we can further fold the former
with a new statement. A simple argument shows the final statement “encodes”
all three statements and a single proof for it along with the two folding proofs
is convincing for the validity of all. The process can be repeated an arbitrary
amount of times.

To achieve the additional property of selective verifiability we only rely on
combinatorial properties: instead of incrementally aggregating statements, we
arrange them in a statement tree. Thus, the fact that a single statement is
“encoded” in the final folded statement only depends on a small amount of
statements: the ones that consist the path from the leaf (statement we want
a proof for) to the root (folded statement). Thus, the corresponding proof is
sublinear in the number of statements, consisting of the folding proofs for the
statements in this path.

We next present the bootstrapping construction and then we show that it
also achieves the stronger notion of selective verifiability.

3.1 Construction

Our construction allows to derive an M -folding scheme from any 2-folding
scheme3.

Roughly, to aggregate M = 2k (w.l.o.g.) statements, we create a statement
aggregation tree as follows. We build a tree by putting the statements on the
leaves of the tree and we fold each pair of them resulting in 2k−1 statements
of the same form. Then we proceed recursively until we are left with a single
statement.

To prove that the folded statement encodes all the statements, we give a
proof π consisting of all the 2-folding proofs we made along the way to derive
the root of the tree.

It is easy to see that the construction satisfies knowledge soundness. Consider
the final 2-folding proving that the root is the folded statement of its two children.
Given a valid witness for the folded statement and a proof of correct aggregation,

3 The bootstrapping construction can in fact bootstrap any m-folding scheme for
m ≥ 2. We only present the m = 2 case for ease of presentation. All constructions in
this work are derived from 2-folding schemes but one could in fact consider m > 2
to improve concrete efficiency.
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Fig. 1. Demonstration of the process of deriving the folding tree. We assume we fold
2k statements (the leaves of the tree). We index with the position of the node in the

tree in binary and we use superscript for the level of the node in the tree. A node x
(l)
b

is computed as the (non-interactive) folding of x
(l−1)
b0 and x

(l−1)
b1 using the underlying

scheme FS. The aggregation proof consists of all the folding proof performed.

we can extract witnesses for its two children –guaranteed by the knowledge
soundness of the base 2-folding scheme.

We emphasize that our construction is incremental as well: the final statement
–having the same form as the folded statement– can be furthered aggregated if
needed.

We give a pictorial representation of the construction in Fig. 1 and present
the bootstrapping construction in Fig. 2. Next we show that the resulting con-
struction is an M -folding scheme for any polynomial size m.

Theorem 1. Let FS be a 2-folding scheme for a language family L with cor-
responding relations R. Then, for any constant constant k ∈ N, construction
BootstrapFS of Fig. 2 is a 2k-folding scheme for the same language family.

Proof. Completeness follows directly by straightforward calculations and the
completeness of BootstrapFS. We next show that BootstrapFS satisfies knowledge
soundness.

Let m = 2k, x1, . . . , xm be statements and w a witness for the folded state-
ment x output by an adversary A. We construct an extractor E that extracts
the witnesses w1, . . . , wm given a witness for the folded statement w and a valid
folding proof π, that uses as a black box the extractor E ′ for FS guaranteed to
exist by knowledge soundness of FS.

Consider the binary tree defined by the honest BootstrapFS.FoldVrfy algo-
rithm: the leaves are defined in the first level by the statements, that is, we label
each leaf with (x(k)

1 ,⊥), (x(k)
2 ,⊥), . . . , (x(k)

m ,⊥) where x
(k)
j = xj and for each pair
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Fig. 2. Bootstrapping construction BootstrapFS for deriving an m-folding scheme from
a 2-folding scheme FS. We assume (w.l.o.g.) that the number of initial statements is
2k.

of statements folded, we define a parent node connected to each of them labeled
by the folded statement and the proof of correct folding. Note that verification
passes, if

1. for any node labeled (x(i−1)
j , π

(i−1)
j ) with child nodes (x(i)

2j−1, ·), (x(i)
2j , ·) veri-

fication passes, namely, FS.FoldVrfy(pp, x(i)
2j−1, x

(i)
2j , x

(i−1)
j , π

(i−1)
j ) = 1

2. the root node is labeled with (x, ·)
We next show that for all such adversaries A, there exists a family of extractors
E i
j for 0 ≤ i ≤ k − 1, 1 ≤ j ≤ 2i such that given as input a derived tree for

some statements x1, . . . , xm, E(i)
j extracts valid witnesses w

(i+1)
2j−1 , w

(i+1)
2j for the

statements x
(i+1)
2j−1 , x

(i+1)
2j that are the children nodes of x

(i)
j in the derived tree.

The construction is recursive. We denote E(∗) the trivial extractor that given the
witness for the root node (output by the adversary A), it simply outputs it.

Base Case: E(0)
1 runs E(∗) to get the witness w

(0)
1 for the root. It then queries

the derived tree and constructs the adversary A(0)
1 that outputs x

(1)
1 , x

(1)
2 , folded

statement-witness pair x
(0)
1 , w

(0)
1 and proof π

(0)
1 which is part of the label of the

root node. Finally, it invokes E ′ with access to A(0)
1 to derive witnesses w

(1)
1 , w

(1)
2

for the statements x
(1)
1 , x

(1)
2 .
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Recursive Case: Now, let i ≥ 1 and consider any j with 1 ≤ j ≤ 2i. We
construct an extractor E(i)

j assuming the existence of an extractor for a level

closer to the root node. Let (x(i−1)
p(j) , ·) denote the label of the parent node of

the node labeled with (x(i)
j , π

(i)
j ) and let (x(i+1)

2j−1 , ·), (x(i+1)
2j , ·) be the labels of the

children of x
(i)
j . Now, we construct A(i)

j that has hardcoded the binary tree and
works as follows:

– It invokes the extractor E(i−1)
p(j) corresponding to statement x

(i−1)
p(j) to get a

witness w
(i)
j for x

(i)
j (and all its siblings which it ignores).

– It then constructs an adversary A(i)
j that outputs x

(i+1)
2j−1 , x

(i+1)
2j , the folded

statement-witness pair x
(i)
j , w

(i)
j and the proof of correct folding π

(i)
j contained

in the node label.
– Finally, it invokes the extractor E ′ of FS with access to A(i)

j and gets witnesses

w
(i+1)
2j−1 , w

(i+1)
2j .

– It outputs witnesses w
(i+1)
2j−1 , w

(i+1)
2j .

We are now ready to construct the extractor E . E queries A to get statements
x1, . . . , xm, a folded statement-witness pair (x(0)

1 , w
(0)
1 ) and a proof of correct

folding π. It then uses the proof and the statements to construct the tree, queries
the extractors E(k−1)

1 , . . . , E(k−1)
m/2 -each of which outputs 2 witnesses for 2 leaf

nodes- and concatenates their outputs.
Let’s now consider the running time and the probability of success of the

extractor E .
For the running time, let t(λ) be the running time of E ′ and denote ti(λ)

the running time of an extractor on level i (note that all these extractors are
identical). By construction, we have that ti(λ) = ti−1(λ) + t(λ) and t0(λ) =
|w|, namely the time to output the folded witness w. This recurrence relation
corresponds to ti(λ) = i · t(λ) + |w|. Finally, the running time of the extractor E
is

tE(λ, k) = tBootstrapFS(λ, k) + 2k−1tk−1(λ) =

= tBootstrapFS(λ, k) + 2k−1(k − 1) · t(λ) + |w|
where tBootstrapFS(k) is the time of BootstrapFS.FoldVrfy algorithm for folding
m = 2k statements (equivalently the time needed to construct the statement
tree). This corresponds to a quasilinear overhead m log m for the time of the
extractor E , which is polynomial for any number of polynomial statements.

We next show that the advantage of E is polynomially related to that of
E ′. We denote with p′ the probability that extractor E ′ succeeds in outputting
the witnesses in FS conditioned on A outputting a valid witness for the folded
statement and a verifying proof, namely,

p′ = Pr

⎡
⎢⎢⎣

(x1, x2, x, w, π) ← A(pp)

{(x1, w1), (x2, w2)} ⊆ Rpp
(w1, w2) ← E ′A(pp)

FoldVrfy (pp, x1, x2, x, π) = 1
(x,w) ∈ Rpp

⎤
⎥⎥⎦
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Claim. Consider any adversary A against BootstrapFS and the folding tree
derived by its output. Fix i, j such that 0 ≤ i ≤ k − 1 and 1 ≤ j ≤ 2i and
consider the tree node (x(i)

j , π
(i)
j ) and let (x(i+1)

2j−1 , ·), (x(i+1)
2j , ·) be its children.

Let Wi be the event that the extractor E(i)
j outputs a valid witness for all the

children nodes of x
(i)
j , that is

Wi =

{{
(x

(i+1)
2j−1 , w

(i+1)
2j−1 ), (x

(i+1)
2j , w

(i+1)
2j )

}
⊆ Rpp

(x1, . . . , xm, x, w, π) ← A(pp)

(w
(i+1)
2j−1 , w

(i+1)
2j ) ← E(i) A

j (pp)

}

Then Pr[Wi] ≥ p′ Pr[Wi−1].

Proof. We have Pr[Wi] ≥ Pr[Wi | Wi−1] Pr[Wi−1]. Now, the probability of Wi

conditioned on Wi−1 is the probability that an extractor on the i-th level suc-
ceeds conditioned on the probability that the extractor on level i − 1 succeeds.
If the extractor of the parent node succeeds, then its output contains a valid
statement/witness x

(i)
j , w

(i)
j and therefore A(i)

j outputs a valid folded witness by
construction. Thus, the probability of this event is exactly p′. �

Solving the recurrence relation gives that Pr[Wk−1] ≥ p′k−2 Pr[W1]. Now, Pr[W1]
is the probability that the extractor associated with the root node outputs
valid witnesses assuming that A outputs a valid witness for the (final) folded
statement. This means that, conditioned on A outputting a valid witness,
Pr[Wk−1] ≥ p′k−1.

Finally, consider the probability that E succeeds conditioned on A outputting
a valid witness. This events happens if all extractors in level k − 1 succeed. So,
the probability that E fails is bounded by m

2 (1 − p′k−1) = 2k−1(1 − p′k−1).
Noting that 1 − p′k−1 = (1 − p′)(p′k−2 + · · · + 1) ≤ (1 − p′)(k − 1) we get
for any adversaries A,A′ against knowledge soundness of BootstrapFS and FS
respectively, AdvA(λ, k) ≤ (k − 1)2k−1AdvA′(λ) �

Remark 2. As noted in Remark 1, after performing a folding and computing
a witness for the folded statement, there is no need to store the witnesses for
the initial statements any more. We note that this is the case for the compiled
construction as well. In particular, in applications where the statements to be
aggregated are “streamed” the prover can be implemented to perform the folding
by storing only three witness at any time. This can drastically reduce the memory
requirements for aggregation.

Remark 3. NOVA and similar related work inherently rely on heuristic argu-
ments for security. In particular, to construct IVC schemes, it is inherent in the
techniques used in these works that one needs to encode the folding/proof aggre-
gation in a circuit and prove statements about it. Since aggregation relies on the
random oracle, one needs to instantiate it using a hash function and prove state-
ments about it. Thus, we need to make the heuristic argument that the proving
system is secure even when treating the RO in a non-black box way. In contrast,
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Fig. 3. Demonstration of the process of deriving the folding tree. We assume we fold
2k statements (the leaves of the tree). We index with the position of the node in the

tree in binary and we use superscript for the level of the node in the tree. A node x
(l)
b

is computed as the (non-interactive) folding of x
(l−1)
b0 and x

(l−1)
b1 using the underlying

scheme FS. Bold edges denote the path the verification follows and rectangles the
statements the prover presents to the verifier of statement i.

our application does not involve encoding the folding argument in a circuit and
proving statements about it. Therefore, our construction is provably secure in
the random oracle model.

3.2 Selective Verifiability of the Bootstrapped Construction

Our bootstrapping construction also satisfies the stronger notion of selective
verifiability without further modifications. This follows by the tree structure
employed: proving inclusion of a single statement needs only to consider the
foldings occurring from the root node (final statement) to the leaf correspond-
ing to the statement in consideration. This is similar to how tree-based vector
commitment schemes (e.g. Merkle trees) work.

A crucial observation is that if we have a statement of the form x1 ∈ L and
we are presented with a different statement x2 ∈ L, after folding these to a
third statement x ∈ L, knowledge of a witness for the latter ensures knowledge
for both statements (in particular the first which is of interest to us) even if the
second is selected adversarially. This means that from the perspective of a verifier
interested in a specific statement, it is not important what other statements are
considered or how they are sampled as long as they correctly end up to the
claimed aggregated statement.

We first demonstrate how a statement “inclusion” proof works in Fig. 3. Next,
we formally present the algorithms that lead to selective verifiability of the boot-
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strapped construction in Fig. 4. The resulting protocol achieves selective verifi-
ability with proof size |πi| = O(|x| · k) when folding m = 2k statements. This
means we can aggregate polynomially many statements while each statement
can be verified with a proof that is logarithmic in the number of statements.

An important observation, as far as efficiency is concerned, is that the proofs
themselves are folded statements with their corresponding proofs, and thus yield
little overhead to produce/verify –assuming the underlying folding scheme is con-
cretely efficient. Essentially, the prover has to perform O(2k) number of foldings
and simply save the intermediate results in the process to be able to present as
evidence later. As we will see in the next section, folding itself can be extremely
efficient for many languages of interest. In some cases, the overhead induced
by folding for the prover is comparable to the time needed to simply read the
statements. This can lead to significant improvements compared to -for example-
producing a SNARK proof for each statement.

We next show that the bootstrapped construction equipped with the addi-
tional algorithms presented in Fig. 4 achieves the stronger notion of selective
verifiability. The proof is essentially identical to that of Theorem 1; the only
difference is that we simply focus on a small part of the implicit tree which we
construct using the elements contained in the proof for a single statement. We
refer the reader to the full version [22] for the proof.

Theorem 2. Let FS be a 2-aggregation scheme for a language family L with
corresponding relations R Then, for any constant k construction BootstrapFS of
Fig. 2 satisfies selective verification through the algorithms of Fig. 4

4 Folding Schemes from Interactive Public Coin
Protocols

In the full version [22] we present folding schemes for various relations to demon-
strate (1) the prover efficiency as far as folding is concerned, and (2) their sim-
plicity. We present four constructions:

1. a folding scheme for the language of inner product relations of committed
values under algebraic commitments,

2. a folding scheme for the language of openings of algebraic vector commit-
ments,

3. a folding scheme for the language of openings of polynomial commitments at
the same point.

We also recall the 2-folding scheme construction of NOVA [20] that allows to
fold arbitrary (variants of) R1CS relations that capture general computation.

All the constructions are derived through simple public coin protocols. Thus,
they can be compiled to non-interactive folding schemes through the Fiat-Shamir
transform. Selective verification can then be achieved by means of the bootstrap-
ping construction of Fig. 2 and 4. In all constructions we assume a base folding
scheme for folding m = 2 statements.



246 C. Ráfols and A. Zacharakis

Fig. 4. The SelPrv, SelVrfy that make construction BootstrapFS achieve selective ver-
ification. We again assume (w.l.o.g.) that the number of initial statements is m = 2k

for some fixed constant k.

We emphasize that the folding overhead for all constructions is low. The
prover is dominated by field operations and the verifier by group operations
(constant for each 2-folding). Both need to also perform hash computations
in the non-interactive version of the protocols. Nevertheless, since we do not
need to encode the folding as a circuit and prove statements about it –as is
done by previous works– we can instantiate the construction with any hash
function instead of “SNARK friendly” ones. Thus, the overhead for hashing is
insignificant.
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Abstract. Oblivious Pseudo-Random Functions (OPRFs) are a central
tool for building modern protocols for authentication and distributed
computation. For example, OPRFs enable simple login protocols that do
not reveal the password to the provider, which helps to mitigate known
shortcomings of password-based authentication such as password reuse or
mix-up. Reliable treatment of passwords becomes more and more impor-
tant as we login to a multitude of services with different passwords in
our daily life.

To ensure the security and privacy of such services in the long term,
modern protocols should always consider the possibility of attackers with
quantum computers. Therefore, recent research has focused on construct-
ing post-quantum-secure OPRFs. Unfortunately, existing constructions
either lack efficiency, or they are based on complex and relatively new
cryptographic assumptions, some of which have lately been disproved.

In this paper, we revisit the security and the efficiency of the well-
known “OPRFs via Garbled Circuits” approach. Such an OPRF is pre-
sumably post-quantum-secure and built from well-understood primitives,
namely symmetric cryptography and oblivious transfer. We investigate
security in the strong Universal Composability model, which guarantees
security even when multiple instances are executed in parallel and in con-
junction with arbitrary other protocols, which is a realistic scenario in
today’s internet. At the same time, it is faster than other current post-
quantum-secure OPRFs. Our implementation and benchmarks demon-
strate that our proposed OPRF is currently among the best choices if
the privacy of the data has to be guaranteed for a long time.

Keywords: Oblivious Pseudo-Random Function · Garbled Circuits ·
Post-Quantum Cryptography · Universal Composability

1 Introduction

An Oblivious Pseudo-Random Function (OPRF) is a two-party protocol for
obliviously evaluating a Pseudo-Random Function (PRF), which is a function
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that outputs a pseudorandom value. One party (the server) holds the key k and
the other party (the user) has the input p. The goal is that the user does not learn
anything about the server’s key k while the server does neither learn anything
about the user’s input nor the output. This interaction is shown in Fig. 1.

Fig. 1. Sketch of the Oblivious Pseudo-Random Function (OPRF) functionality.

OPRFs lie at the heart of many privacy-preserving protocols. To illustrate the
importance of secure OPRF protocols we elaborate on some examples: Private set
intersection [34] for instance allows two users to find out which contacts they both
have in common, without revealing the full list of their contacts to each other
or a service provider. The OPRF allows one party to hide its input while still
computing some fingerprints of its elements for the other party. PrivacyPass [23]
allows users to bypass subsequent Captchas (after solving the first one), while
preventing tracking of the users. In this use-case, the OPRF is used for letting
a user retrieve unlinkable tokens after solving a Captcha. OPAQUE [33] enables
password-based authentication while hiding the password from the server, which
alleviates many of the known problems of passwords. In OPAQUE, the OPRF is
used to turn a low entropy password into a high entropy secret while completely
hiding the password from the server. At the time of writing, OPAQUE is in the
process of being standardized by the IETF1. One can see that all these protocols
crucially rely on an OPRF as a cryptographic building block.

The above-mentioned protocols are designed to run in today’s Internet, where
many protocols run concurrently and are used as building blocks for other proto-
cols. In these complex environments, attackers may be able to gain information
by maliciously relaying messages from different sessions, or by otherwise mak-
ing different protocol executions interfere. One of the most common approaches
to construct composable protocols that keep their security guarantees in these
complex situations was proposed in [16], called universal composability. Subse-
quently, this concept has also been applied to formalize and construct composable
OPRFs [31–33]. Formally proving the security of an OPRF protocol in a model
that guarantees composability is an important aspect of ensuring the security of
a protocol in reality.

The security of most existing OPRF constructions is based on concrete hard-
ness assumptions. A disadvantage of this is that any concrete assumption may be
broken, which would then break the corresponding OPRF. On the other hand, if
1 https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-09.html.

https://www.ietf.org/archive/id/draft-irtf-cfrg-opaque-09.html
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a protocol relies on more general assumptions such as secure symmetric encryp-
tion, one can easily switch from one symmetric encryption scheme to another in
case new attacks render the former one insecure. This makes generic, versatile
OPRFs an important goal.

OPRFs were intensively studied in the literature and by now, classical, i.e.,
Discrete Logarithm (DLog) based protocols are amazingly efficient and enjoy
a rich set of additional properties. Nonetheless, it still remains a challenge to
construct similarly efficient and versatile OPRFs in the presence of adversaries
with quantum computers. In their vision paper, Kampanakis et al. [35] identify
the research on post-quantum (pq) OPRFs as a highly relevant research area for
post-quantum migration, in particular because of the importance of OPRFs for
pq anonymous authentication protocols. In this work, we focus on presumably
pq-secure protocols, i.e., protocols that can be instantiated from pq-assumptions.
This does not necessarily mean that the security proof considers quantum attack-
ers.

When OPRFs are used in practice efficiency is a major concern. Therefore,
it is important that OPRF proposals are accompanied by an implementation to
analyze their efficiency and compare them to related results. A too slow OPRF
in PrivacyPass [23] or OPAQUE [33] can significantly disturb user experience
during web-browsing or authentication. Thus, improving the efficiency of pq
OPRFs is a decisive objective, as the current (presumably) pq-secure OPRFs
still do not match the classical constructions in terms of efficiency.

All together these motivations raise the following question:

Can we obtain an efficient, composable, and presumably post-quantum secure
oblivious pseudo-random function constructed from generic techniques?

We answer this question in the affirmative. We show how to adapt an OPRF
protocol from [40] based on Yao’s garbled circuits such that this adapted version
can be proven to be secure in the universal composability model of [16]. Because
both garbled circuits and oblivious transfer can be instantiated from pq-secure
primitives, our protocol is presumably pq-secure. We demonstrate its concrete
efficiency via detailed benchmarks of our implementations.

1.1 Contribution

Our work on answering the above question is based on different areas, wherefore
our contribution is threefold. We give a brief technical overview for each part. It
can be summarized as follows:

1. We use the Multi-Party Computation (MPC) technique of Garbled Circuits
to construct an OPRF protocol and prove its security in the Universal Com-
posability (UC) framework against malicious users and semi-honest servers.

2. We implemented two versions of our protocol and compare it to other state-
of-the-art protocols in extensive performance tests.

3. We compare two different approaches from the literature of defining OPRF
security in the UC framework and show that one of them is strictly stronger
and that it cannot be achieved by a large class of protocols.
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(1) Construction and Proof of OPRFs via Garbled Circuits. By now multiple pre-
sumably post-quantum OPRF protocols have been proposed [1,2,11,12,28,29].
Some are based on new cryptographic assumptions and some have been broken.
Therefore, an OPRF protocol that relies on generic and well studied building
blocks is very desirable. The idea of using generic MPC techniques such as Gar-
bled Circuits (GCs) to construct OPRFs has first been described in [40]. As
we will argue, the protocol described in [40] does not satisfy the strong OPRF
security definition of [32,33]. Our first contribution is that we show how a mod-
ification of the protocol from [40] can be proven secure in the model of [32,33]
assuming semi-honest corruption of the server and malicious users. GCs have
been optimized intensively [7,37,44], such that they have become efficient for
computing functions that have a small representation as a boolean circuit. Fur-
thermore, [13] shows that GCs can be proven secure against quantum attackers
in a certain model [10], if instantiated with appropriate building blocks. As
Oblivious Transfer (OT) and symmetric primitives can be instantiated in many
different ways, the security of GCs does not depend just on a single hardness
assumption—that might or might not be broken in the future. Because of these
advantages of GCs, we followed an idea from [40] to construct OPRFs via GCs
that can be sketched as follows: If a server and a user participate in a secure two-
party computation, where the jointly evaluated circuit is a PRF, the resulting
protocol is an OPRF. However, this construction does not yet achieve compos-
ability which is one of our main goals. To get security in the UC framework, we
additionally introduce two hash functions, wich will be modeled as Random Ora-
cles (ROs), following a general idea from [33]. The ROs are crucial for the security
proof in the UC framework. We prove security assuming semi-honest servers and
malicious users. We will elaborate further on this in Sect. 3.2. Because we prove
security in the UC framework, the protocol can be securely used—even in parallel
or concurrently—with itself or with other protocols.

(2) Implementation and Benchmarks of our OPRF Protocol. We implemented our
protocol twice to compare its performance to the current state-of-the-art proto-
col, 2HashDH, by [31–33], the lattice-based protocol by [2], and the isogeny-based
protocol by [29]. The first implementation is in a C++ framework, called EMP-
Toolkit2, which offers most known optimizations for GCs. We also implemented
the protocol with PQ-MPC3. This framework builds upon EMP-Toolkit and
implements a garbling scheme that was proven secure by [13] in a model that
considers powerful quantum adversaries [10]. We chose the Advanced Encryp-
tion Standard (AES) as the concrete instantiation of the PRF. We compared
our implementations to an implementation of 2HashDH [33] building upon
OPENSSL4 and to a simplified implementation of the lattice-based protocol
of [2]. We assess the efficiency of the implementations in terms of running time
and network traffic. We performed our experiments on a conventional consumer
laptop and measured the running time over the local network interface as well
2 https://github.com/emp-toolkit/emp-tool.
3 https://github.com/encryptogroup/PQ-MPC.
4 https://www.openssl.org/.

https://github.com/emp-toolkit/emp-tool
https://github.com/encryptogroup/PQ-MPC
https://www.openssl.org/
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as over a simulated Wide Area Network (WAN). The experiments show that our
protocol is much faster than the lattice-based construction of [2] and the isogeny-
based protocols of [29]. Further, the experiments show that 2HashDH by [31–33]
is still about 50 times faster than our construction and requires less than 100 B
of communication. However, with a running time of about 22 ms and traffic of
about 250 kB our protocol is still in a reasonable efficiency range. Considering
the benchmark results, we see GC-based OPRFs as promising candidates for
practically efficient OPRFs that are secure in the presence of adversaries with
quantum computers.

(3) Comparison of Different OPRF Functionalities. In the literature on compos-
able OPRFs, one can find two different approaches defining OPRFs in the UC
framework. We compare a definition from [31–33] and an approach from [14]. We
are the first to show that the first one is strictly stronger. This justifies our use
of the stronger definition from [31–33] throughout this paper. We show that the
plain protocol from [40] does not satisfy the stronger definition from [31–33] and
we further show that it is impossible to prove a huge class of protocols secure
under the stronger definition from [31–33] in the Non-Programmable Random
Oracle Model (NPROM). The impossibility justifies our approach to achieving
UC-security for the OPRF from [40] and it rules out the UC-security of a variety
of constructions, including [12, Sec. 8] and [29].

1.2 Related Work

Started by [27], there is an ongoing research-line on OPRF protocols in which
most protocols are based on the DLog or the integer factorization problem. This
renders them vulnerable to potential quantum attacks. However, recent works
focused on OPRFs based on presumably pq-secure assumptions. The first lattice-
based construction was proposed by [2]. However, prohibitively large parameters
must be chosen and expensive lattice-based zero-knowledge proofs are used. Addi-
tionally, the security analysis does not consider composition as our analysis does.
A more efficient lattice-based OPRF was proposed in [1]. It uses FHE to evaluate
the Dark Matter weak PRF proposed by [11]. Boneh at al. [11] also proposed
an OPRF using the same weak PRF but instead of FHE they used MPC with
preprocessing. This line of work was continued by Dinur et al. [24] who use secret-
sharing-based MPC to evaluate a PRF that also builds on the modulus-switching
idea from [11]. All those works have in common that they rely on the relatively
new Dark Matter weak PRF. Although it is a very promising weak PRF candi-
date that currently receives a lot of attention from the research community, it is
arguably not as thoroughly understood as well-established symmetric primitives
like AES. Further, none of these works considers security in the UC framework
which is crucial to applications like OPAQUE [33]. Two isogeny-based construc-
tions were proposed by [12]. The authors estimate 424 kB of communication for
the other protocol. However, it is not clear if the chosen parameters are sufficient
or if bigger parameters are necessary to achieve a secure protocol, see [4,18,19].
Also there is no UC proof for this OPRF. A second isogeny-based OPRF is pro-
posed in the same work [12]. However, the construction was broken by [5], even



254 S. Faller et al.

before the underlying SIDH assumption was recently broken by [18]. Further,
there is ongoing work on how to fix the shortcomings of the broken construc-
tion [4,29]. Another approach is to combine the PRF based on the Decisional
Shifted Legendre Symbol Problem (DSLS) [22], which is presumably pq-secure,
with a protocol allowing secure function evaluation over Fp for p > 2. The con-
struction is proposed in [42] but no proof of security is given. A second drawback
is that the pseudo-randomness of the Legendre symbol with hidden shift is not
a standard assumption. There has been some work on the cryptanalysis of the
assumption [9]. But one might be more confident in generic assumptions, e.g.
OT or the existence of PRFs—like we use in our construction—because they are
well-studied and there are several concrete instantiations.

To the best of our knowledge, the authors of [40] were the first proposing
an OPRF construction from generic building blocks. They suggest realizing an
OPRF by using GCs to evaluate the circuit of a PRF. The privacy requirement
for the OPRF is satisfied as the GC protocol guarantees the privacy of inputs.
A formal proof of security is not given in [40]. However, the work refers to the
general proof for garbled circuit security in the presence of active adversaries
of [38]. However, this proof analyzes very costly cut-and-choose techniques that
make the garbling scheme rather impractical. The simulation-based proof uses
the framework of [15] that even considers a weak form of composition. Note
that the provided guarantees are not as strong as in the UC definition from [33].
In [36] a different approach is chosen. The authors use efficient OT extensions,
introduced in [30], to instantiate something close to an OPRF protocol. The
defined security notion is called batched related-key OPRF (BaRK-OPRF). This
notion is related to usual OPRFs but it is not equivalent. BaRK-OPRF has the
drawback that each PRF value is computed under a different key. While this
limitation is not problematic for their use case of private set-intersection, it is not
clear how to instantiate e.g. asymmetric Password Authenticated Key Exchange
(aPAKE) [33], Password-Protected Secret Sharing (PPSS) [32], or distributed
Single Sign On (SSO) [6] with BaRK-OPRF as these protocols require that the
PRF is evaluated under the same key. The security is analyzed in a stand-alone
simulation-based model, assuming server and client to be semi-honest, while
our protocol only assumes semi-honest servers but allows malicious clients. A
similarity between our protocols is that both rely only on the security of OT
and symmetric cryptography. We summarized the above discussion in Table 1.
For a more thorough discussion of OPRFs, we refer to [17].

2 Preliminaries

Pseudo-Random Functions. A Pseudo-Random Function (PRF) is a function
that produces “random looking” output values. More precisely, the function is
indexed by a key k and takes inputs x. If the key is chosen uniformly at ran-
dom, the output Fk(x) is indistinguishable from a random value. The security is
defined via a Probabilistic Polynomial Time (PPT) distinguisher D that either
gets oracle access to Fk(·) for randomly chosen k ∈ {0, 1}m or to a truly random
function RF. The goal of D is to tell those situations apart.
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Table 1. Overview of related protocols. We write (�) if we have not implemented the
protocol in this work but an implementation will likely be efficient. We write � (OT)
if a protocol is presumably pq-secure, as long as a pq-secure OT is used. We write M
if the protocol is secure against malicious adversaries and SH if it is secure against
semi-honest adversaries.

Protocol UC Secure (presum.) pq Secure Pract. Efficient Adv. Model Assumption

Our work � � (OT) � SH OT, symm. crypto

2HashDH [33] � × � M om-DH

Plain Garbled Cir-
cuits [40]

× � (OT) � SH OT, symm. crypto

BaRK-OPRF [36] × � (OT) � SH OT, symm. crypto

Lattice-based [2] × � × M RLWE, 1D-SIS

TFHE-based [1] × � × SH Dark-Matter wPRF

NR Isogeny-based
[12]

× � (�) SH CSIDH

OPUS [29] × � × SH CSIDH,CSI-FiSh

Legendre-based
[22,28]

× � ? ? DSLS

MPC w. prepro-
cessing [11,24]

× � (�) SH Dark-Matter wPRF

Definition 1 (PRF & PRP). Let F : {0, 1}m × {0, 1}n → {0, 1}l be a function
family such that there is a polynomial-time algorithm that takes k ∈ {0, 1}m

and p ∈ {0, 1}n and outputs Fk(p) ∈ {0, 1}l. Let p0 := Pr ∗DFk( · )(1n) = 1 and
p1 := Pr[DRF( · )(1n) = 1], where the probabilities are taken over random choices
of k ∈ {0, 1}m and RF ∈ {f : {0, 1}n → {0, 1}l}. We say F is a pseudo-random
function if the advantage AdvPRFF (D, n) := |p0 − p1| is negligible for every PPT
distinguisher D. If Fk is indistinguishable from a random permutation RF

$← Sn

then we say F is a pseudo-random permutation.

Oblivious Pseudo-random Functions. A conventional PRF must be evaluated by
a single party, which knows k as well as p. An OPRF for a certain PRF consists of
two parties that interact to jointly compute an output of the PRF. One party—
the server—holds the key k of the PRF and the other party—the user—holds
the input value p. In the end, the user learns the output value y = Fk(p), but
nothing about the key k. The server obtains no additional information from the
interaction. In particular, it learns nothing about the user’s input p.

The ROM and NPROM for UC. A random oracle H : A → B maps elements
from a set A to elements of a set B. If H receives an input query x ∈ A for the
first time, it outputs a uniformly random drawn value y ∈ B and stores the tuple
〈x, y〉. If H receives the query x again, it outputs y. To not clutter notation too
much, we will notate the random oracle in our work like a “conventional hash
function” instead of an ideal functionality.

In [39], the NPROM is defined as a variant of the UC framework of [16]. In
contrast to the original UC framework, each machine—including the environment
machine—gets access to an oracle O. The oracle is a random oracle in the sense
that it answers queries of the form x ∈ {0, 1}∗ with a uniformly random y ∈
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{0, 1}l, where l ∈ N is fixed, and it records the tuple 〈x, y〉. If x is queried again,
O answers again with y. The difference to a normal random oracle described
before is that O is not a hybrid functionality. In particular, a simulator in the UC
experiment has no way of influencing the output of O. More precisely, we write
MO to denote that a machine M gets an oracle input tape, where M can write
queries to x and an oracle output tape, where M receives the answers from O. We
say a protocol π UC-emulates a protocol φ in the NPROM if EXECπO,AO,EO

c≈
EXECφO,SO,EO .

Oblivious Transfer. In its simplest form, OT [41] allows a sender to transfer one
of two messages to a receiver (1-out-of-2 OT). The receiver can choose which
message it wants. The security guarantee for the receiver is that the sender does
not learn anything about the choice of the receiver. The security guarantee for
the sender is that the receiver does not learn anything about the message that
was not chosen. Looking ahead, OT allows the evaluator of a Garbled Circuit
(GC) to get the wire labels for their input, without leaking the input to the GC
creator.

Garbled Circuits. Garbled circuits are a technique for secure two-party computa-
tion, which allows two parties to jointly evaluate any boolean circuit in a secure
way. GCs ensure that the input of each party remains hidden from the other
party. The original construction offers only security against a semi-honest gar-
bler. The garbler could for example garble a different circuit, even one that leaks
information about the evaluator’s input. Several works improved the efficiency
of GCs, most notably the techniques called free-xor [37] and half-gates [44]. The
authors of [8] defined an abstraction of the above-described technique.

Definition 2 (Garbling Scheme [8, Sec. 3.1]). A garbling scheme is a tuple of a
probabilistic garble algorithm Gb and deterministic algorithms En for encoding,
De for decoding, Ev for garbled evaluation, and ev for “plain” evaluation, i.e.,
G = (Gb,En,De,Ev, ev). Let f ∈ {0, 1}∗ be a description of the function that shall
be garbled. The function ev(f, ·) : {0, 1}n → {0, 1}m denotes the actual function,
we want to garble, where n ∈ N and m ∈ N must be efficiently computable from
f . On input f and a security parameter n ∈ N, the algorithm Gb returns a triple
of strings (F, e, d) ← Gb(1n, f). String e describes an encoding function, En(e, ·),
that maps an initial input x ∈ {0, 1}n to a garbled input X = En(e, x). String
F describes a garbled function, Ev(F, ·), that maps each garbled input X to an
encoded output Z = Ev(F,X). String d describes a decoding function, De(d, ·),
that maps an encoded output Z to a final output z = De(d, Z).

When we talk about the encoded input (sometimes we say labels) generated
by Gb, we will write X[0] (or X[1], rsp.) to denote that the label is an encoding
of 0 (or 1, rsp.). When b ∈ {0, 1}n we will write X[b] to denote the concatenation
of the encodings of all bits in b.

We require a garbling scheme to have privacy as defined in [8]. Intuitively,
privacy means that anything that can be learned from the garbled circuit F , the
input labels X, and the decoding information d, can also be learned from the
output value y and the public circuit f alone. In particular, no efficient adversary
can “break” the scheme to get the input value of one of the parties.
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3 Construction

In this section we present a protocol that UC-realizes FOPRF—the ideal OPRF
functionality—under static malicious corruptions of users and static semi-honest
corruptions of servers.

Adversarial Model. We formulate the assumptions about our adversaries: We
will implement an OPRF with garbled circuits. As “textbook versions” of gar-
bled circuits offer only security against a passive, i.e., semi-honest garbler, we
will restrict our construction to these adversaries. This means that a corrupted
garbler (in our case the server) follows the protocol honestly but tries to learn
additional information from its view of the protocol execution. In Sect. 3.2 we
discuss more reasons why evaluating a PRF with MPC is not sufficient to realize
FOPRF in the presence of a malicious server. However, we do allow malicious cor-
ruption of the evaluator (the user). Further, we assume static corruption. This
means the adversary can only corrupt parties at the start of the protocol. If a
party is corrupted, we assume that the adversary learns the party’s input, the
content of the party’s random tape, and all messages received by the party. The
adversary can send messages in the name of a corrupted party.

Security Notion. We will not use the same formulation of the ideal OPRF func-
tionality F∗

OPRF from [33], but rather a slightly simplified version described in
Fig. 2. Note that FOPRF does not capture the adaptive compromise of the server,
as we only assume static corruption of servers. For the sake of simplicity, we also
omit the prefixes used in F∗

OPRF.

3.1 The Main Construction

Let m,n ∈ Ω(n) and F : {0, 1}m × {0, 1}n → {0, 1}n be a Pseudo-Random
Permutation (PRP). In our implementation in Sect. 4, we instantiate the PRP
with AES. We will garble the circuit C that describes F to construct our OPRF.

The user runs with p ∈ {0, 1}∗ as input. This input is hashed to an n bit
value, so we can use it as input to C. Our construction involves two hash functions
H1 : {0, 1}∗ → {0, 1}n and H2 : {0, 1}∗ × {0, 1}m → {0, 1}l, where l ∈ Ω(n). We
will model these hash functions as random oracles. The server takes no input.
Initially, for each session, it chooses a key k ∈ {0, 1}m uniformly at random. The
PRF, that is computed by the OPRF protocol is Fk(p) := H2(p, Ck(H1(p))).

In our description of the protocol depicted in Fig. 3, the server garbles the
circuit and the user evaluates the circuit. The user starts the execution of the
protocol by hashing its input p. The obtained value x = H1(p) will be used
as the user’s input to the circuit. The user then requests a garbled circuit by
sending (Garble, sid, ssid) to the server. The server proceeds by generating the
garbled circuit. In particular, it encodes its key as input for the circuit. It sends
the garbled circuit, the input labels of the key, and the decoding information to
the user. The user and the server perform n parallel 1-out-of-2-OTs to equip the
user with the wire labels for its input x = H1(p). Next, the user can evaluate
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Fig. 2. The ideal functionality FOPRF like in [33].

the garbled circuit on the encoded inputs X and K and receives an output label
Y . This label can be decoded to obtain the output value of the circuit y. Finally,
the user hashes its input and the output of the circuit again to obtain the output
ρ = H2(p, y). We describe the OPRF more precisely in Fig. 4.

Theorem 1. Let the garbling scheme G = (Gb,En,De,Ev, ev) have privacy. Let
C denote the boolean circuit of a PRP. Then GC-OPRF UC-realizes FOPRF in
the FOT,FAUTH, FRO-hybrid model.

Proof Sketch: The general strategy of the proof is as follows: First consider the
case where both parties are honest. The simulator chooses a uniformly random
key k and runs the protocol like the real server would. The simulator does not
get the user’s input. But as it plays the role of FOT it can report messages to
the environment as if the user had given input to FOT. The simulator requests
user output from FOPRF. We must argue why FOPRF provides this output, i.e.,
why the counter is not exceeded. As both parties are honest, this is ensured by
the simulator receiving a SndrCmplt message for the honest server. The OPRF
output comes from FOPRF and thus is a random value. The environment E can
only distinguish it from the real output if it queries H2(p, Ck(H1(p)). We use
the PRP property of C to argue that without any information about k, E sends
this query with negligible probability. Next we consider the case where the user
is maliciously corrupted. In contrast to the first case, E obtains the labels K of
the key. Thus, E can query H2 on p and De(d,Ev(F,X[H1(p)]‖K)). Hence, the
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Fig. 3. Overview of GC-OPRF.

simulator must program H2 accordingly on that input. To that end, Sim uses the
RcvCmplt interface. However, that means the counter is decreased. We argue
that E can only query De(d,Ev(F,X[H1(p)]‖K)) if it received a garbling (F,K, d)
and labels X[H1(p)] before. Sim produces this garbling if the counter was
increased once. By the privacy of the garbling scheme, E gets only enough infor-
mation to query H2 on one such critical point for every garbling with labels that
it obtains. Finally we consider the case where the server is passively corrupted. In
this case, E learns the key kŜ of the server and can thus query H2(p, CkŜ

(H1(p))).
The simulator must detect these queries and use its OfflineEval interface
to receive an output value ρ to program H2(p, CkŜ

(H1(p))) := ρ. It is crucial
that OfflineEval does not change FOPRF’s counter. Sim knows the key kŜ, as
we assume passive corruption of the server, i.e., the server does not maliciously
choose some other key. Note that we used H1 as a non-programmable but observ-
able RO and H2 as a programmable RO. We present the complete proof in the
full version of this paper [26].

3.2 Some Remarks on the Construction

In the following, we give some remarks on the construction and explain the
decisions on the protocol design.

Who Garbles? We believe that the above-described approach could easily be
adapted to feature switched roles of garbler and evaluator. More precisely, we
believe that it is also possible to construct a similar OPRF protocol where the
user garbles the circuit and the server evaluates the circuit. However, we decided
to let the server garble the circuit because our construction only is secure against
a semi-honest garbler. If the protocol would be implemented in a real-world
scenario, it is a more realistic assumption that a server behaves in a semi-honest
way than to assume that a user behaves that way. A server might be maintained
by a company that would fear economic damage if malicious behavior of their
servers is uncovered, while arbitrary users on the internet are likely to behave
maliciously. Nonetheless, we are aware that malicious security is more desirable.
However, techniques from the literature to achieve this are expensive in terms
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Fig. 4. The GC-OPRF construction in the FOT,FRO,FAUTH-hybrid model.

of running time and network traffic [38,43]. If actively secure garbled circuits
would be used, it might even be beneficial to switch roles. Then the user has to
“invest” computation time on the creation of a garbled circuit, which decreases
the threat of Denial of Service (DOS) attacks on the server. Note that actively
secure garbling is still not enough to make our construction UC-realize FOPRF

in the presence of malicious servers, as we will detail below.

On the Need for Authenticated Channels. In the proof of security, we assume
authenticated channels. This is necessary, as otherwise, we could not rely on
the semi-honest nature of messages sent to the simulator. Assuming that the
server behaves semi-honest, does not explicitly include the adversary. Thus, the
adversary could still replace the honestly generated circuit from the server with
a malformed circuit. To avoid this problem, we assume authenticated channels,
which prevent the adversary from replacing or injecting messages.

One could argue that the need for authenticated channels renders our con-
struction impractical for many settings. For instance, if the OPRF is used for
password-based authentication, one might not necessarily accept to already have
an authenticated channel. But in fact, authenticated channels are already estab-
lished in many practical scenarios! Typically, a user would connect to a server
over a Transport Layer Security (TLS) channel, and thus, at least the server
is authenticated via digital certificates. We expect the security of our construc-
tion to hold even if only the server is authenticated. This does guarantee that
the garbled circuit was generated by the party with which the user intends to
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communicate. Applications that build on top of TLS can thus make use of our
OPRF protocol.

On Security Against Semi-honest Servers. Because our construction only pro-
vides security against semi-honest servers, let us discuss the implications of this
in various use cases. When our OPRF protocol is used for secure password-
based authentication as in OPAQUE, then a malicious server could learn the
user’s password. Note, however, that the main problem in practice is usually not
that the service provider itself (e.g. email provider) is actively malicious, but
rather that the server gets hacked and the data stolen. Multiple big tech com-
panies5 did log cleartext passwords. So if we trust the service provider not to
be actively malicious, then our OPRF can be used to protect against such prob-
lems as inadvertent logging of cleartext passwords. Also, note that our protocol
is secure against malicious users and, thus, one user cannot impersonate another
user in an authentication setting like OPAQUE. In Privacy Pass6 a malicious
server may be able to learn the user-chosen token, which would allow them to
track the user. This is probably an unacceptable risk for dissident Tor users, but
for many others, it may be an acceptable risk. In Private Set Intersection (PSI)
a malicious OPRF sender could learn all set elements of the other party, which
clearly violates the security goals. The practical impact of this again depends on
the trust relation between the two parties. If the OPRF sender is a somewhat
trusted service provider then semi-honest security may be sufficient. Of course,
it is better to choose a maliciously secure OPRF, if an efficient pq secure proto-
col is available, even though the semi-honest version provides sufficient security
guarantees in many settings.

Challenges Towards Full Malicious Security. We like to highlight that for secur-
ing our construction against malicious servers it is likely necessary to employ
actively secure garbled circuits (e.g. using cut-and-choose [38] or authenticated
garbling [43]) but it is not sufficient, as the definition of FOPRF has very strict
security requirements. It guarantees that the output is uniformly random even
if the server is malicious, in particular, the server cannot force the output to be
a specific value. For some protocols such as [33] this guarantee is necessary to
prevent a Man-in-the-Middle attacker from impersonating an honest server. The
first reason why evaluating a PRF with MPC is not enough to realize FOPRF in
the presence of a malicious server is that a PRF F can have weak keys (such as
a key k, where F(k, x) = 0, regardless of x). The function F can still be a secure
PRF because the definition of a PRF only requires the output to look random
if the key was chosen uniformly at random. However, the malicious server is
not bound to choose the key randomly, but can deliberately choose a weak key,
thereby violating the security guarantees of FOPRF. The second reason is more

5 https://www.zdnet.com/article/twitter-says-bug-exposed-passwords-in-plaintext,
https://about.fb.com/news/2019/03/keeping-passwords-secure.

6 Privacy Pass requires a verifiable OPRF. One can follow the idea of [2] to achieve
this using garbled circuits. We leave a proof of security of that to future work.

https://www.zdnet.com/article/twitter-says-bug-exposed-passwords-in-plaintext
https://about.fb.com/news/2019/03/keeping-passwords-secure
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specific to the proof and the simulator. When the PRF key is the same in two
sessions, then the same inputs must yield the same outputs. In the ideal world,
the simulator determines a table via the RcvCmplt message, from which FOPRF

chooses the output value. To choose the correct table, the simulator has to be
able to determine a value that uniquely identifies the key that the server used.
In [32] this is achieved by letting the simulator include a DLOG trapdoor in the
simulated messages of the honest user to the malicious server. In our case, as
well as in other general MPC protocols, it is unclear how this unique identifier
can be derived. The first reason shows that one would need to make stronger
assumptions about the PRF to use it to build a maliciously secure OPRF. The
second reason is an obstacle to the proof that may be solvable but would need
new insights. Using covert security, which lies in between semi-honest and mali-
cious security, also does not help, because a server choosing a different PRF key
cannot be caught and, thus, has no incentive to be honest.

4 Comparison of Concrete Efficiency

Aswewere interested intheconcreteefficiencyofGCbasedOPRFs,weimplemented
the protocol from Sect. 3 in two versions and compared it to other OPRF proto-
cols. We used AES-128 and AES-256 as instantiations for the circuit C. For the first
implementation, we leveraged a C++ framework, called EMP-Toolkit7. Because
the available OT implementations from the EMP-Toolkit (and PQ-MPC) do not
provide UC-security we opted for the most efficient OT protocol available in that
library.Weemployed theChou-OrlandiOT [20] protocol.Note that this is not aUC-
secure OT protocol, as explained in the full-version of their paper [21]. It is also not
post-quantum (PQ) secure as it relies on the GapDH assumption. If one wants to
instantiate the OT using a protocol that is UC secure and plausible pq secure, one
can use e.g. the OT proposed in [25]. The protocol from [25] is UC secure and can
be instantiated under Learning Parity With Noise (LPN) in the CRS model. The
protocol only requires twomessages.Alternatively, onecanemploy theprotocolpro-
posed in [3]. It can also be instantiated under LPN and is secure in the Random
Oracle Model (ROM). However, it is a four-message protocol, which might result
in worse performance than [25]. We leave it to future work to implement a pq and
UCsecureOTprotocol.Wealso used the pq-secure adaptation of theEMP-Toolkit,
calledPQ-MPC8. The security of this instantiation of garbled circuits against quan-
tum adversaries is proven in [13] in the Quantum-accessible Random Oracle Model
(QROM) [10]. Our resulting OPRF implementation is presumably secure against
quantum adversaries. As we are garbling a 128-bit-key AES circuit, we reach the
same level of quantum security as defined in the NIST post-quantum competition
as Security Strength Category 17. Further, we implemented a version of the state-
of-the-artOPRFprotocol, 2HashDH, by [31–33]. Finally,we also compared the two
former protocols to the lattice-basedprotocols of [2] and the isogeny-basedprotocol
from [29]. We used the implementations that were provided by the respective works
7 https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/call-for-proposals-final-dec-2016.pdf.

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
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and run themon ourmachine.Themain goalwas to compare the concrete efficiency
of different OPRFs on the same hardware. All source code described below can be
found in the repository https://github.com/SebastianFaller/Composable-OPRF-
via-Garbled-Circuits8.We also tried to run the provided implementation of [1]. But
one OPRF evaluation did not finish within several hours on a normal laptop and
thereforewedidnotbenchmarktheprotocolextensively.This isnotsurprisingasthe
benchmarks of [1] were performed on a server with 96 cores and over 700GB RAM.

Benchmarks. We tested the implementations on a machine with an 11th Gen
Intel R©CoreTM i7-1165G7 @ 2.80GHz × 8 CPU. We made measurements on the
local network interface, as well as a simulated WAN with limited bandwidth of
50Mbit and a delay of 100ms. We used the Linux tool tc for the latter. The
WAN measurement simulates the situation where the server and user operate
on machines in different countries or even continents. We measured the running
time in milliseconds that each implementation needs from the invocation of a
single OPRF session until the user calculated the output. The server used the
same PRF key for all executions. We also measured the amount of data that the
protocols exchange over the network, meaning data sent from the user to the
server and vice-versa. We summarized the results in Table 2.

Table 2. Overview of the benchmark results. The protocol from [2] is a simplified
version that does not include any Zero-Knowledge (ZK) proofs. The column UC marks
if the implementation with their concrete building blocks is UC secure. Similarly, the
column PQ indicates the same for plausible PQ security.

Protocol Avg. Runtime
(Local) [ms]

Avg. Runtime
(WAN) [ms]

Network
Traffic [kB]

UC PQ

Our work (AES-128,
EMP-Tool)

19.92 ± 0.77 268.19 ± 19.42 232.71 × ×

Our work (AES-256,
EMP-Tool)

26.53 ± 0.99 282.48 ± 26.04 299.78 × ×

Our work (AES-128, PQ-
MPC)

47.12 ± 3.22 1696.91 ± 53.62 4746.13 × �

Our work (AES-256, PQ-
MPC)

72.63 ± 4.51 2074.42 ± 22.98 6787.48 × �

2HashDH [33] 0.36 ± 0.13 201.88 ± 0.21 0.07 � ×
Lattice VOPRF [2] 88512.92 ±

2079.35
95418.25 ± 989.30 513.25 ± 0.17 × �

OPUS [29] 11218.45 ± 61.98 35285.26 ± 36.50 24.70 × �

Running Time. We measured an average running time of 19.92ms and 26.53ms
for our GC-OPRF implementation with EMP-Toolkit for AES-128 and AES-256,
respectively. We measured an average running time of 47.12ms and 72.63ms for
our GC-OPRF implementation with PQ-MPC for AES-128 and AES256, respec-
tively. The performance of the PQ-MPC version of the protocol is still reasonable,
as it is about twice as high as the running time for the classical circuit. The dif-
ference is a bit higher in the simulated WAN. This is most likely due to the

8 The benchmark results refer to the version of commit ece1921.

https://github.com/SebastianFaller/Composable-OPRF-via-Garbled-Circuits
https://github.com/SebastianFaller/Composable-OPRF-via-Garbled-Circuits
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bandwidth limitation, as the PQ-MPC version sends about 20 times as much
data over the network as the EMP-Toolkit version.

Comparing with the other protocols in Table 2, we can see that our protocol
is orders of magnitude more efficient than the competing pq-secure protocols.
However, the elliptic curve protocol 2HashDH [33] is still more efficient than
our protocol. Note that the comparison to [2] has to be taken with a grain of
salt. On the one hand, their implementation omits all ZK proofs, which are
necessary to make the protocol secure. These proofs would make the protocol
even more impractical. On the other hand, the implementation was done with
SageMath , while the implementations of our work, [33] and [29] were written
in C++ and C, respectively. Further, the OPRF protocol from [2] is verifiable,
which means that a server cannot arbitrarily choose new keys for each query.
The other implementations do not have this property.

NetworkTraffic. OurEMP-Toolkit implementationwithAES-128sends232.71 kB
of data over the network, while the PQ-MPC version of our construction with AES-
128sends4.746MB.ThishugedifferencecomesfromthefactthatPQ-MPCusesapq
secureOTprotocolbasedonFHEanddoesnotuseoptimizationsforgarbledcircuits,
as e.g. free-xor [37] or half-gates [44]. While the Chou-Orlandi OT from the EMP-
Toolkit implementation is based on GapDH, and thus, is certainly not pq secure,
it is still plausible that all implemented garbled-circuit-optimizations from EMP-
Toolkit are pq secure, as they do not involve DLog- or RSA-type assumptions. Also,
note that the network trafficof all implementations except of [2] are constant values,
while there are slight variations in the measurement for the protocol of [2]. This is
because the transmitted value in the protocol is a random element in a cyclotomic
ring. SageMath seems to automatically compress those elements if possible which
leads to a varying size.

5 On the Ideal OPRF Functionality

In this section, we discuss two different UC-definitions of OPRFs and their rela-
tion. We show that the definition that we use is strictly stronger than the alter-
native formulation. It is important to note that security in the UC framework
is always defined relative to an ideal functionality. Broadly speaking, a protocol
UC-realizes a functionality if every attack that is possible against the real pro-
tocol is also possible against the ideal functionality. Thus, the security of the
protocol highly depends on the definition of the ideal functionality.

5.1 Existing OPRF Functionalities

There exist several descriptions of ideal OPRF functionalities in the literature
[14,31–33]. What most of them have in common is that the ideal functionality
internally holds a truly random table of outputs from which the functionality
delivers outputs to the user, when a protocol execution takes place. This ensures



OPRFs via Garbled Circuits 265

Fig. 5. Comparison between the ideal functionality FOPRF inspired by [33] and the
one inspired by [14]. Text in boxes is as in FOPRF, text in grey is inspired by [14].
Normal text is shared between both functionalities.

pseudo-randomness, as the output of the real-world protocol must be computa-
tionally indistinguishable from those random values. However, we are aware of
one OPRF functionality that works differently. In [14] an ideal functionality is
proposed that internally chooses a PRF key and delivers output values from one
specific PRF to the user. We depict the differences in Fig. 5. We will denote the
first functionality that chooses the output values randomly by FOPRF and the sec-
ond functionality that is parameterized by a PRF F : {0, 1}m ×{0, 1}n → {0, 1}l

as FF
OPRF. As a first step, we will show that the two definitions are indeed not

equal in the sense that FOPRF UC-realizes FF
OPRF but not vice-versa. We will

also argue on a high level why a protocol using the weaker functionality FF
OPRF

cannot e.g. control the number of password guesses after a server is compromised.
This shows that password-based protocols such as aPAKE or PPSS must rely
on the stronger functionality FOPRF. As a next step, we argue that a natural
class of protocols cannot UC-realize FOPRF in the NPROM from [39]. Finally, we
argue that the garbled circuit-based OPRF proposed by [40] does not UC-realize
FOPRF. This suggests the need to introduce a random oracle to our construction
Sect. 3.1 and to program it in our proof of security.
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5.2 Relation Between FOPRF and FF
OPRF

First, we establish that FOPRF is stronger than FF
OPRF. Second, we show that

FOPRF can not be realized in the NPROM by a natural class of protocols. Lastly,
we show that computing a PRF with garbled circuits alone cannot realize FOPRF.
This gives a theoretical foundation for our proposed changes from Sect. 3, as we
added a programmable random oracle to the construction from [40] to achieve
the strong security notion of FOPRF. We defer the complete proofs to the full
version of this paper [26] and give only an intuition for each claim.

Claim 1. FOPRF UC-emulates FF
OPRF.

Proof Sketch. The simulator just forwards all messages between E and the func-
tionality. On corruption of the server, the simulator gets the key from FF

OPRF,
which makes answering OfflineEval queries trivial.

Claim 2. FF
OPRF does not UC-emulate FOPRF.

Proof Sketch. The second claim can be shown by contradiction. Assume there is a
simulator. An environment can query arbitrarily many PRF values. If E corrupts
the server after sufficiently many PRF queries, a simulator can find a key that
matches all previously produced PRF outputs only with negligible probability.
Thus, there cannot be such a simulator.

Note that we make use of FF
OPRF’s (Compromise, sid,S) interface that allows

an adversary to get the key of the underlying PRF. Once the adversary has this
key it can evaluate the PRF as often as it likes. Typically in password-based pro-
tocols, a user and a server execute the OPRF with the user’s password as input.
Now, if an adversary gets unlimited PRF evaluations it can mount offline dictio-
nary attacks against the password. This is also possible when using FOPRF but
the difference is that FOPRF outputs one PRF-output per (OfflineEval, sid, p)
message. Therefore, a protocol that uses FOPRF as hybrid functionality can keep
track of all password-guessing attempts of the adversary. The same is not possi-
ble with FF

OPRF, as the adversary can guess “locally” after it received the key.
Next, we formalize a natural class of protocols that cannot realize FOPRF.

Definition 3. We say a protocol has reproducible output if the following holds:
In an execution with a passive, (i.e., semi-honest) adversary A, every user U
outputs—with overwhelming probability—the same output y when executing
the protocol π on input p with a server S with fixed state k. In other words,
the output of a protocol execution depends only on the user’s input and on the
server’s internal state (and not e.g. on the user’s internal state).

One can think of the server’s state as the key of the server. But we cannot assume
how this state may look for arbitrary protocol.

Claim 3. Let π be a protocol that does not use any additional hybrid function-
ality and that has reproducible output. Then π does not UC-realize FOPRF in the
NPROM.
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Proof Sketch. The environment can execute a protocol run between a server and
a user internally without the simulator being able to detect this. Then E can
instruct two actual parties, i.e., parties that are not just internally run by E , to
let them execute the protocol. As the protocol π has reproducible output the
output of the internal execution will be the same as the output of the external
execution in the real-world experiment. By the definition of FOPRF the output of
the user in the external execution will be drawn uniformly random in the ideal-
world experiment. Therefore, both outputs will not match with high probability.

We can use a very similar argument to prove a statement about the protocol
proposed in [40]. We assume that the employed garbling scheme is correct and
has privacy. Because it makes no difference to our argument, we can even assume
that the employed garbling scheme from [40] uses a programmable random oracle.

Claim 4. Executing garbled circuits to jointly compute a PRF F between a user
and a server is not sufficient to UC-realize FOPRF in the NPROM.

Claim 3 and Claim 4 justify our method to achieve a UC-secure protocol
from the protocol of [40]. Loosely speaking, they say that without exploiting the
programmability of a random oracle, one cannot realize the strong OPRF notion
of [33] that is used e.g. in OPAQUE or the PPSS scheme [32]. To overcome this,
we added two random oracles and carefully programmed them in the UC-proof.

6 Conclusion

In this work, we investigated the security of a garbled-circuit-based OPRF in the
UC-framework [16]. To realize an ideal OPRF functionality in the style of [31–
33], we augmented the construction of [40] with two hash functions, of which the
second was modeled as a programmable random oracle. The resulting protocol
is secure assuming static passive corruptions of servers and malicious users. We
implemented two prototypes of our protocol—one using the optimized garbling
scheme from EMP-Toolkit and one using the post-quantum garbling scheme
from PQ-MPC. Although both implementations use building blocks that are
not proven to be UC secure, to the best of our knowledge, our implementa-
tion is the only presumably pq secure implementation that can be made UC
secure by plugging in UC secure building blocks. We also implemented the state-
of-the-art OPRF protocol 2HashDH by [31–33]. We compared the implementa-
tions to a simplified implementation of the lattice-based OPRF by [2] and the
isogeny-based protocol from [29]. The experiments showed that our construc-
tion is significantly faster than the lattice-based and isogeny-based protocol. We
also found that our construction is not as efficient as the DLog-based 2HashDH
protocol. Nonetheless, the efficiency is still in a reasonable range with a run-
ning time of around 22ms and around 250 kB network traffic. This indicates,
that garbled-circuit-based OPRF protocols are very promising candidates for pq
secure OPRFs. Finally, we investigated the theoretical differences between defi-
nitions of OPRFs in the UC framework. We compared the ideal functionalities
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in the style of [31–33] and a functionality in the style of [14] and showed that
the functionality from [31–33] is strictly stronger. We show that a natural class
of protocols cannot realize this strong functionality in the NPROM. We further
show that the OPRF protocol from [40], cannot realize the strong functionality.
The last two claims justify our approach of augmenting the protocol from [40]
by a random oracle and programming it in the security proof.
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Abstract. Quotable signature schemes are digital signature schemes
with the additional property that from the signature for a message, any
party can extract signatures for (allowable) quotes from the message,
without knowing the secret key or interacting with the signer of the
original message. Crucially, the extracted signatures are still signed with
the original secret key. We define a notion of security for quotable signa-
ture schemes and construct a concrete example of a quotable signature
scheme, using Merkle trees and classical digital signature schemes. The
scheme is shown to be secure, with respect to the aforementioned notion
of security. Additionally, we prove bounds on the complexity of the con-
structed scheme. Finally, concrete use cases of quotable signatures are
considered, using them to combat misinformation by bolstering authen-
tic content on social media. We consider both how quotable signatures
can be used, and why using them could help mitigate the effects of fake
news.

Keywords: quotable signatures · digital signatures · Merkle trees ·
authenticity · fake news

1 Introduction

Digital signature schemes are a classical and widely used tool in modern cryptog-
raphy (the canonical reference is [11], and [6] contains some current standards).
A somewhat newer concept is quotable signature schemes [18], which are digital
signature schemes with the additional property that signatures are quotable in
the following sense. The Signer of a message m generates a quotable signature s
for m using a private key sk. Given a message m and the quotable signature s, a
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Quoter (any third party) can extract a second quotable signature s′ for a quote
q from m without knowing sk or interacting with the original Signer. A quote
can be any “allowable subsequence” of m. We write q � m to indicate that q is
a quote from m. This quotable signature s′ is still signed with the private key
sk of the Signer and hence authenticates the original Signer as the author of
the quote. These signatures for quotes have the same required properties with
respect to verification and security as a standard digital signature, in addition
to allowing one to derive where content has been removed, relative to the quote.
A signature for a quote is again a quotable signature with respect to sub-quotes
of the quote, and neither authenticating a quote nor sub-quoting require access
to the original message.

Quotable signatures can be used to mitigate the effects of fake news and
disinformation. These are not new problems, and it is becoming increasingly
apparent that they are posing a threat for democracy and for society. There is not
one single reason for this, but one reason among many is a fundamental change in
how news is consumed: a transition is happening, where explicit news products
such as printed newspapers and evening news programs are still consumed, but
are increasingly giving way for shorter formats and snippets of news on social
media platforms [25]. However, people tend to be unable to recall from which
news brand a story originated when they were exposed to it on social media [17].
This is problematic since the news media’s image is an important heuristic when
people evaluate the quality of a news story [34]. In addition, according to the
Reuters Institute Digital News Report 2022 [26], across markets, 54% of those
surveyed say they worry about identifying the difference between what is real
and fake on the Internet when it comes to news, but people who say they mainly
use social media as a source of news are more worried (61%).

In recent years, a common approach to fighting back against fake news has
been flagging (potentially) fake news, using either manual or automatic detection
systems. While this might be a natural approach, research has shown repeat-
edly that flagging problematic content tends to have the opposite result, i.e., it
increases the negative effects of fake news [13,21,29]. This indicates that flag-
ging problematic content is not sufficient and alternative approaches need to be
developed.

We present a method that complements flagging problematic content with
the goal of mitigating the effect of fake news. Our idea builds on the observation
that which news media published a news article is an important heuristic people
use to evaluate the quality of the article [34]. However, since people get their
news increasingly via social media, it is becoming more likely that they are
not aware of who published the news they are consuming. To address this, we
propose using quotable signatures to allow people on social media to find out and
be certain of where the text they are reading originates from, and to verify that
any modifications to the text were all allowed. Specifically for news, the proposed
idea is that a news media publishing an article also publishes a quotable signature
for the article signed with their private key. When someone shares a quote from
the article, they then also include the signature for the quote that is derived from
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the initial signature (without access to the private key), which we emphasize is
signed with the same key. Finally, when one reads the quote, the signature can
be checked, and it can be verified from where the quote originates.

The idea of mitigating the effects of fake news and misinformation, by using
digital signatures to verify the source of media content, is one that has been
addressed by others. One example is C2PA [9], which involves many companies,
including Adobe, the BBC, Microsoft, and Twitter. C2PA focuses on providing
a history of a published item, i.e., which device was used to capture it, how it has
been edited and by whom, etc. Thus, quotable signatures could be of interest to
their approach.

Another issue involving fake news is that news articles are perceived as more
credible if they contain attributed quotes [32]. This is misused by fake news to
appear more credible by providing attributions for their content [2,12,19,27,30],
but can in turn be used to automatically detect fake news by considering the
existence and quality of attributions [1,24,33] (among other things). Quotable
signatures, in contrast, could be used to sign quotes to make a strong and veri-
fiable connection between the original source and the quote. On the other hand,
fake news would generally not be able to link their quotes to reputable sources,
thereby providing another heuristic helping users to distinguish between authen-
tic and fake content.

Without major changes to the system, it could be extended to further use
cases such as signing Facebook and Twitter posts, official governmental rules and
regulations, scientific publications, etc. For all of these instances, an important
feature of our system that we have not used explicitly so far is that signing also
binds the Signer, meaning that the signing party cannot later deny having signed
the signed document.

We provide an overview over related work in Sect. 2. In Sect. 3, we give a more
thorough introduction to and definition of quotable signatures, and we show how
we can realize quotable signatures using Merkle trees [22,23]. We define a notion
of security for quotable signature schemes, and prove that the notion is satisfied
by our construction. Additionally, we prove a number of bounds on the size
and computational costs of quotable signatures obtained using Merkle trees. We
revisit the application of quotable signatures to counter fake news in more detail
in Sect. 4 and we conclude the paper with an outlook to future work in Sect. 5.
In the full version of this paper we also describe concrete algorithms for our
construction of quotable signatures from Merkle trees.

2 Related Work

Quotable signatures have been introduced in [18], which suggests constructing
quotable signatures using Merkle trees and provides a rudimentary complexity
analysis. The authors also suggest using quotable signatures to mitigate the
effects of fake news. Compared to [18], we define a security model, and prove
that our construction is secure in this security model. Additionally, we also
provide proofs of our claims about the cost of using Merkle trees for quotable
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signatures, and provide more in-depth considerations for why one could expect
this to be a good approach.

A concept closely related to quotable signature schemes is redactable signa-
ture schemes (RSSs). Simultaneously introduced in [31] (as Content Extraction
Signatures) and [16], RSSs essentially allow an untrusted redactor to remove
(“redact”) parts of a signed message, without invalidating the signature. Often
this requires modifying the signature, but crucially, it is still signed with the
original key, despite the redactor not having access to the private key. Thus,
quotable signatures share many similarities with RSSs; if one considers a quo-
tation as a redaction of all parts of a text except for the quote, they are con-
ceptually identical. Where quotable signatures and RSSs differ is in the security
they must provide. Both signature schemes require a similar notion of unforge-
ability, but an RSS must also guarantee that the redacted parts remain private.
A standard formulation is that an outsider not holding any private keys should
“not be able to derive any information about redacted parts of a message”,
and even stronger requirements, such as transparency or unlinkability, are not
uncommon [7]. Quotable signatures have no such privacy requirements, allowing
quotable signatures to be faster. In fact, it is worth noting that there are scenarios
where RSSs’ notion of privacy would be directly harmful to a quotable signa-
ture. For instance, RSS would specifically make it impossible to tell if a quote
is contiguous or not, something that we consider essential for a quotable signa-
ture scheme. To see the value of dropping the privacy requirement, we observe
that some RSSs with O(n) performance may have O(n) expensive public key
cryptography operations [8,28], whereas quotable signatures can be obtained
with O(n) (cheap) symmetric cryptographic operations (hashing), and only one
expensive public key operation. There are approaches obtaining RSSs using only
one expensive operation, but they either require many more cheap operations
than quotable signatures do, or they result in considerably larger signatures, for
example [14]. Early examples of RSSs had a weaker notion of privacy, but still
stronger than what we require. They require only hiding of the redacted ele-
ments, not their location and number. Examples can be found in [16,31]. Their
approaches are similar to ours, also using Merkle trees, but we provide rigorous
proofs of the claimed performance, and our lack of privacy requirements allows
our scheme to be both more efficient and conceptually simpler. One consider-
ation that is very relevant for quotable signatures, is how a quote (redaction)
being contiguous will affect the complexity results. In a different setting [10]
considers this question for Merkle trees, but provides no rigorous proof.

Considering the motivating example again, approaches to mitigate the impact
of fake news, using either digital signatures or directly rating the source of the
content, have been proposed and tried before. One approach, serving as inspira-
tion for our approach, is [3]. They use digital signatures to verify the authenticity
of images and other forms of multimedia. One drawback of their implementation
is that it requires the media to be bit-for-bit identical to the version that was
signed. Hence, the image can for instance not be compressed or resized, and thus
their solution is not compatible with many platforms, e.g., Facebook compresses
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uploaded images, and many news websites resize images for different screen sizes.
An example of directly rating the source of content, and flagging trustworthy
sources, can be found in “NewsGuard Ratings” (NG), which provides a rating
of trustworthiness for news sources. NG adds a flag that indicates if a news
source is generally trustworthy (green) or not (red) to websites and outgoing
links on websites. This approach has not been widely successful. For example,
the study in [4] shows that NG’s labels have “limited average effects on news
diet quality and fail to reduce misperceptions”. While this is somewhat related
to our approach, there are two major differences. (1) NG only flags content that
directly links to the source of the content with a URL. In contrast, our digital
signature can be attached to any text quote. Hence, NG only adds additional
information when it is already straightforward to figure out from where the con-
tent originates. Our approach also provides this information where there might
otherwise be no clear context. (2) NG focuses on providing a rating for how
trustworthy a news source is. This approach is similar to the typical approach
of telling people when something might be problematic, which tends to have the
opposite result. In contrast, we focus solely on providing and authenticating the
source of a quote.

Summing up, the contributions of this paper is as follows. (1) We rigorously
define the notion of security that quotable signature schemes must satisfy. (2)
We rigorously prove the security of and analyze the complexity of, a quotable
signature scheme constructed using Merkle trees. (3) This provides a scheme
for quotable signatures that is more efficient than using an RSS for the same
purpose.

3 Quotable Signatures

To construct a quotable signature scheme, we follow the approach suggested
in [18] and use a combination of a classical digital signature scheme [11] and
Merkle trees [22,23].

Before getting into the construction, we summarize the setting of quotable
signatures. In Sect. 3.1, we define the security notion that quotable signature
schemes should satisfy. Then, in Sect. 3.2, we introduce Merkle trees, in Sect. 3.3
we construct a quotable signature scheme and show it is secure, and finally we
analyze the complexity of the scheme in Sect. 3.4.

General Setting for Quotable Signatures. A quotable signature scheme consists of
four efficient algorithms, QS = (KeyGen, Sign, Quo, Ver). These four algorithms
are essentially the standard three algorithms from a classical digital signature
scheme for key generation, signing, and verification, with the added quoting
algorithm Quo. To quote from a message, Quo allows extracting a valid signature
for the quote from the signature of the message in such a way that it is still signed
with the public key used to sign the original message. Additionally, it should be
possible to derive from the signature of a quote where tokens from the original
message have been removed relative to the quote.
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Fig. 1. The general setting for a quotable signature.

We refer to the involved parties as the Signer, the Quoter, and the Verifier.
We use λ to denote the security parameter. To summarize:

– (sk, pk) ← KeyGen(1λ) takes as input the security parameter 1λ. It outputs a
public key pair. This is typically done by the Signer once, offline as part of
the initial setup.

– s ← Sigsk(m) takes as input a secret key sk and a message m. It outputs a
quotable signature for m. This is done by the Signer.

– s′ ← Quo(m, q, s) takes as input a message m, a quote q from m, and a
quotable signature s for m. It outputs a quotable signature s′ for q, that is
still signed with the secret key used to generate s. Verifying s′ does not require
knowing m. Note that m and s could have been obtained via an earlier quote
operation. This is done by the Quoter.

– �/⊥ ← Verpk(q, s′) takes as input a public key pk, a quote (message) q, and
a signature s′ for q. It outputs � if s′ is a valid signature for q with respect
to pk, and ⊥ otherwise. This is done by the Verifier.

Figure 1 illustrates the typical interactions between the parties.

3.1 Security Model

Taking inspiration from the RSS notion of unforgeability, we define the security
notion of quotable signatures schemes in Definition 1. At its core, this is the
standard notion of unforgeability for digital signature schemes, with the addi-
tional requirement that the adversary’s chosen message cannot be a quote from
any of the messages that the adversary sent to the signing oracle.

Definition 1 (Unforgeability). Let QS = (KeyGen,Sign,Quo,Ver) be a quot-
able signature scheme. We say that QS is existentially unforgeable, if for every
probabilistic polynomial time adversary A, the probability of the following exper-
iment returning 1 is negligible:

(pk, sk) ← KeyGen(1λ)

(m∗, s∗) ← ASignsk(·)(pk)

// denote the queries that A make to the signing oracle by m1, m2, . . . , mQ.

if (Verpk(m
∗, s∗) = �) ∧ (∀k ∈ {1, 2, . . . , Q} : m∗ �� mk)

return 1
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3.2 Merkle Trees

A Merkle tree (also known as a hash tree) allows one to efficiently and securely
verify that one or more tokens are contained in a longer sequence of tokens,
without having to store the entire sequence [22,23]. Examples of this could be
words forming a sentence, sentences forming an article, or data blocks making
up a file.

Since our scheme will rely on hash functions, we assume that the tokens are
binary strings. Equivalently, one could assume an implicitly used, well defined
injective mapping from the token space to the space of binary strings. For data
blocks, the identity mapping suffices and for words one such mapping could be
the mapping of words to their UTF-8 representations.

The structure of a Merkle tree for a sequence of tokens is a binary tree,
where each leaf corresponds to a token from the sequence, with the leftmost leaf
corresponding to the first token, its sibling corresponding to the second token,
and so on. Each leaf is labeled with the hash of its token and each internal node
is labeled with the hash of the concatenation of the labels of its children. Hence,
the i’th internal node on the j’th level will be labeled as

uj,i = H(uj+1,2i ‖ uj+1,2i+1).

This way, one can show that any specific token is in the sequence by pro-
viding the “missing” hashes needed to calculate the hashes on the path from
the leaf corresponding to the token to the root of the tree. Following established
terminology, we call this the verification path for the token.1

Figure 2 shows the Merkle tree for a sequence of words forming the sentence
“The quick brown fox jumps over the dog”. The verification path for the word
“jumps” consisting of nodes u3,5, u2,3, and u1,0 is highlighted in red. Similarly,
one can obtain the verification path for a subsequence of more than just one
token. In Fig. 2, we also indicate the verification path for the contiguous subse-
quence “the quick” in blue. Note that the size of the verification path depends
not only on how many tokens are chosen, but also on where in the sequence they
are placed. In Sect. 3.4, we analyze how large the verification path can become,
i.e., how many nodes need to be provided in the signature in the worst case.

In these examples, we have chosen a sequence of tokens where the length of
the sequence, i.e., the number of tokens, is a power of two. If the sequence length
is not a power of two, we require that the tree is heap-shaped, i.e., all levels are
filled, except for possibly the lowest level, which is filled from the left up to some
point, after which the lowest level is empty.

Remark 1. Observe that from the structure of the Merkle tree, one can see where
in the sequence the quoted tokens are placed, and if they are sequential or
discontinuous.

1 This use of “path” is slightly counter intuitive, since it refers to the hashes needed to
calculate the hashes on the path from the leaf to the root, and hence not the nodes
on this path but their siblings.
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Fig. 2. An example of a Merkle tree where the tokens are words and the sequence
is a sentence. The verification path for the token “jumps” is highlighted in red
(u1,0, u2,3, u3,5), and the verification path for the subsequence “The quick” is high-
lighted in blue (u1,1, u2,1). (Color figure online)

3.3 A Quotable Signature Scheme

Using a Merkle tree, we can now devise a scheme by which the Quoter can con-
vince the Verifier that some quote is contained in a larger text, if the Verifier is
already in possession of the root hash. The Quoter simply shares the verification
path together with the quote, and the Verifier verifies that this indeed leads to
the original root hash. In order to turn this into a quotable signature scheme, we
include a classical digital signature for the root hash, signed by the Signer, with
the verification path. Thus, letting DS = (KeyGenDS, SignDS, VerDS) be a classi-
cal digital signature scheme, our quotable signature scheme can be described as
follows:

– KeyGen: Identical to KeyGenDS.
– Sign: Find the root hash of the Merkle tree and sign it with SignDS.
– Quo: Find the verification path of the quote. Together with the signature of

the root hash, this forms the signature for the quote.
– Find the root hash of the Merkle tree using the quote and its verification

path. Use VerDS to verify the authenticity of the root hash.

Proof of Security. We will show that the construction of the previous section
is secure with respect to the notion of security introduced in Definition 1, when
instantiated with a secure hash function and a secure classical signature scheme.
Before doing so, we observe that currently, our scheme is trivially vulnerable
to a forgery attack, as follows. An adversary obtains a quotable signature for a
message from a signing oracle and then simply replaces the last two tokens on
the lowest level with a single token, which is the concatenation of the tokens’
hashes. For example, using this attack on the message used in Fig. 2, would give
the message “The quick brown fox jumps over H(the)‖H(dog)”. However, there
is an easy fix to this vulnerability. Noting that the problem is that an adversary
can claim that an internal node is a leaf, we can prevent this by applying domain
separation in the form of adding one value to the leaves before hashing, and
another value to the internal nodes before hashing. Taking inspiration from RFC
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6962 [20], the Merkle trees are modified by prepending 00 to the leaves before
hashing and 01 to the internal nodes before hashing. From now on, we implicitly
assume that this is done.

We can now argue that the construction is secure.

Theorem 1. Under the assumption that

– H comes from a family of cryptographic hash functions,
– DS = (KeyGenDS, SignDS, VerDS) is an existentially unforgeable classical sig-

nature scheme,

QS = (KeyGen,Sign,Quo,Ver) constructed as described above, is an existentially
unforgeable quotable signature scheme.

We have to show that no probabilistic polynomial time adversary can win
the unforgeability experiment in Definition 1 with non-negligible probability.

Proof. Assume that A is a probabilistic polynomial time adversary against the
unforgeability of QS. We show that the probability of A being successful is
negligible. Let (m∗, s∗) be the output of A, where s∗ = (SigDS

sk (u∗
0,0), {u∗

i,j}), i.e.,
the classical digital signature of the root hash and a (possibly empty) verification
path.

Consider first the case where the root hash u∗
0,0 of m∗ (found using {u∗

i,j})
is different from the root hashes of the queries A made to the signing oracle.
In this case, (u∗

0,0,Sig
DS
sk (u∗

0,0)) is a forgery against DS, and since DS is assumed
to be existentially unforgeable, this can only happen with negligible probability.
Denote this probability as εDS.

If this is not the case, there must be an mk, such that the root hash of mk

is u0,0 = u∗
0,0, but m∗ �� mk. Denote by T ∗ the tree for m∗ (constructed using

the verification path, if one is included) and by T the tree for mk.
Consider first the case where all leaves, corresponding to tokens, in T ∗ are

at a location in the tree, where there is also a leaf, corresponding to a token, in
T . Since m∗ �� mk there must be tokens a∗, a such that a∗ ∈ m∗ and a ∈ mk

are at the same positions in their respective trees, and a∗ �= a. Observe that if
H(00‖a∗) = H(00‖a), we have found a collision to H. If H(00‖a∗) �= H(00‖a),
let the nodes on the path between the leaf corresponding to a∗ and the root of T ∗

be denoted by u∗
i,ji

, u∗
i−1,ji−1

, . . . , u∗
1,j1

, u∗
o,o and the nodes on the path between

the leaf corresponding to a and the root of T by ui,ji
, ui−1,ji−1 , . . . , u1,j1 , uo,o.

Since u∗
i,ji

�= ui,ji
and u∗

o,o = uo,o, there exists a 0 ≤ � < j such that u∗
�,j�

= u�,j�

and u∗
�+1,j�+1

�= u�,j�+1 . Thus, u∗
�+1,j�+1

and u�,j�+1 (together with their siblings
and 01) form a collision.

Consider now the case where there is a leaf, corresponding to a token, in T ∗

that is not at a location in the tree, where there is a leaf, corresponding to a
token, in T . In this case there must be nodes u∗

i,j ∈ T ∗ and ui,j ∈ T at the
same position in their respective trees such that one of them is internal and the
other corresponds to a token. If u∗

i,j and ui,j do not have the same label, we
can apply the method from the precious paragraph to find a collision. If they
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Table 1. Theoretical bounds on the performance of our version of a quotable signature.
For the Quoter, we consider both if we allow quoting arbitrary tokens from the sequence,
and when we require that the quoted tokens must be consecutive.

Computation Time Signature Size

The Signer 2n − 1 hashes and
1 classical signature

1 classical signature

The Quoter

Arbitrary 2n − 1 hashes 1 classical signature, at most
t(	logn
 − 	log t
 − 1)
+ 2�log t� hashes

Consecutive 2n − 1 hashes 1 classical signature, at most
2	logn
 − 2 hashes

The Verifier 1 classical verification
and up to 2n − 1 hashes

–

have the same label, we must have two nodes ui+1,2j , ui+1,2j+1 in T or T ∗, and
a token a in m∗ or mk such that H(01 ‖ ui,j ‖ ui,j+1) = H(00 ‖ a), and we have
found a collision.

We observe that in all cases, we have found a collision for H. Since H is
assumed to be secure, and hence collision resistant, this can happen only negli-
gible probability. Denote this probability as εH .

Hence, A’s advantage of at most εDS + εH is negligible.

3.4 Performance

Table 1 shows the cost of our quotable signature scheme for each of the three
parties. This is measured in terms of computation due to the number of required
hash operations and classical signature operations as well as in terms of the
size of the generated signature due to the required hash values and classical
signatures, presumably the dominant operations. In all cases, we assume that
the message m has length n, i.e., m consists of n tokens. For the Quoter and the
Verifier, we additionally assume that the quote has length t ≤ n.

To put the results into context, running the command openssl speed on a
modern laptop shows that it is capable of computing hundreds of thousands or
even millions of hashes every second (depending on the size of the data being
hashed and the hash algorithm being used). Additionally, a classical digital sig-
nature only takes a fraction of a second create or verify. Thus, it is nearly instan-
taneous to generate/quote/verify a quotable signature, even for sequences and
quotes that are thousands of tokens long.

The cost for the Signer, the Quoter, and the Verifier is derived as follows.

The Signer. To generate the Merkle tree, the Signer needs to compute 2n − 1
hashes. To create the quotable digital signature for m, she creates a classical
digital signature for the root hash. This classical digital signature is the Signer’s
signature for her message m.
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The Quoter. The Quoter also has to generate the entire Merkle tree, from
which he can extract the verification path for the quote he wishes to make.
However, the size of the verification path (and hence the signature for the quote)
depends on the size of the quote, and where in the text the quote is located. The
most simple case is when just one token is quoted, in which case the size of the
verification path is at most 
log n�, which, together with the classical signature
for the root hash, forms the signature for the quote. Similarly, as shown in the
following, the worst case can be obtained by quoting every second token, in
which case the Quoter would need

⌈
n
2

⌉
hashes on the verification path.2

In Proposition 1 we quantify the worst-case size of the verification path (and
hence the signature) for the quote in terms of message and quote lengths. In
Proposition 2, we consider the special case where we require that the quote be
contiguous.

Proposition 1. For a message m of size n tokens and a quote of size t tokens,
the worst-case size of the verification path of the quote is at most

t(
log n� − 
log t� − 1) + 2�log t�.

Proof. In Lemma 2, we consider the case where n is a power of two. In this case,
we identify a worst-case set of t leaves of the Merkle tree on n tokens. In Lemma
3, we establish that it is sufficient to consider n a power of two.

To argue about the size of the signature, we consider what we call the forest of
independent trees for a quote. To find the forest of independent trees for a quote,
we do the following. For each token in the quote, consider the path between the
node corresponding to that quote and the root (the root-token path). Define
the independent tree corresponding to that token to be the subtree rooted in the
highest node on the root-token path, which is not on the root-token path for
any other token in the quote. The forest of independent trees for the quote is
now the collection of the independent trees of all the tokens in the quote. In
Fig. 3, we consider a message of size n = 8 and a quote of size t = 3, quoting
the first, third, and fifth token. The red line indicates a separation between the
independent trees and the nodes that are on multiple root-token paths. The
forest of independent trees consists of the trees rooted in u2,0, u2,1, and u1,1.

Lemma 1. If n is a power of two, the heights of the trees in the independent
forest for a quote that maximizes the size of the signature can differ by at most
1.

Proof. Assume towards a contradiction that Q is a quote that maximizes the
size of the signature for Q such that the difference between the heights of the
smallest and largest trees in the forest of independent trees for Q is at least 2.
Let A be the root of a tree of minimal height in the forest of independent trees,
and let B be its sibling. Note that B is also the root of a tree in the forest

2 Of course, algorithms can be adapted to include the entire text instead in such (rare)
cases where that might require less space.
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Fig. 3. A Merkle tree for a sequence of size n = 8 and a quote of size t = 3. (Color
figure online)

Fig. 4. Note that there might be trees rooted at A,B,D1, D2, D3, and D4, which we
have omitted drawing, but by our assumption, the trees rooted at D1, D2, D3, and D4

must be at least as high as the ones rooted at A and B. (Color figure online)

of independent trees (otherwise the tree rooted at A would not be of minimal
height). Additionally, let C be the root of a tree of maximal height in the forest
of independent trees. We illustrate this in Fig. 4.

Observe that we can now create a quote Q′ requiring more hashes than Q,
by changing Q in the following ways:

– Instead of quoting one token from the tree rooted at A and one token from
the tree rooted at B, Q′ quotes only one token from the tree rooted at P .

– Instead of quoting just one token from the tree rooted at C, Q′ quotes one
token from the tree rooted at L and one token from the tree rooted at R.

It is clear that Q and Q′ quote equally many tokens and that the forest of
independent trees for Q′ is only changed from the forest for Q in the trees that
involves A,B, and C. The new situation is illustrated in Fig. 5.

If each of the trees rooted at A and B contributed with k hashes to Q, then
the tree rooted at C contributed with k′ + 2 hashes, where k′ ≥ k. In total,
A,B, and C contributed 2k + k′ + 2 hashes. However, in Q′ we see that the tree
rooted at P contributes k + 1 hashes, and each of the trees rooted at L and R
contributes k′ + 1 hashes, for a total of k + 2k′ + 3 hashes. But since k′ ≥ k, we
have that k+2k′ +3 ≥ 2k+k′ +3 > 2k+k′ +2, contradicting that Q maximizes
the size of the signature.

Lemma 2. When n is a power of two, we can assume that the quote generating
the largest signature has the properties that
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Fig. 5. Note that there might be trees rooted at A,B,D1, D2, D3, and D4, which we
have omitted drawing, but by our assumption, the trees rooted at D1, D2, D3, and D4

must be at least as high as the ones rooted at A and B. (Color figure online)

1. the heights of the trees in the independent forest for the quote differ by at
most 1,

2. for each tree in the forest of independent trees, the left-most leaf corresponds
to the token that is quoted, and

3. the trees in the forest of independent trees are arranged with the smallest trees
first.

Proof. Claim 2.1 follows immediately from Lemma 1. Further, Claim 2.2 follows
from observing that we can bring any tree to this form simply by swapping the
children of some of the nodes on the path to the leaf corresponding to a quoted
token (hereby changing which token is quoted, but not how many are quoted),
and that these swaps do not affect the size of the signature. Finally, Claim 2.3
follows from observing that if two nodes are on the same level of the Merkle tree,
and the labels of both are known, then we can “swap” the subtrees that they
are roots of without affecting the size of the signature. By “swapping”, we mean
that if the i’th leaf in the first node’s subtree corresponds to a quote before the
swap, then the i’th leaf in the second node’s subtree corresponds to a quote after
the swap, and so on. To see that this does not affect the size of the quote, note
that outside of the two subtrees, nothing has changed; the hash of both nodes is
still known. Additionally, from the first subtree we now get as many hashes as
we got from the second subtree before the swap, and vice versa.

Lemma 2 implies that for any n a power of two and t ≤ n, we need only
consider one choice of which tokens are quoted. For example, Fig. 3 shows the
only quote of size t = 3 in a tree of size n = 8 that we need to consider.

Lemma 3. For any message m of length n and quote Q of length t, there is a
quote Q′ of length t from a message m′ of length 2�log n� such that the signature
for Q′ is no smaller than the signature for Q.

Proof. For fixed m and Q, we create m′ by adding tokens to m until |m′| =
2�log n�. We now create Q′ from Q by going over each quote q in Q.

1. If the leaf corresponding to q in the Merkle tree for m is on the deepest level,
we quote the same token in m′.
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2. If the leaf corresponding to q in the Merkle tree for m is not on the deepest
level, there is an internal node in the Merkle tree for m′ at the location of the
leaf in m. We quote the token corresponding to its left child, which is a leaf.

Clearly, the tokens in Q′ from case 1 contribute with the same number of hashes
to the signature for Q′ as the corresponding ones did to the signature for Q,
and the tokens from case 2 contribute with exactly one more hash. Hence, the
signature for Q′ is at least as large as the signature for Q.

We are now ready to derive the claim in Proposition 1. For any message m
and quote Q we can assume that |m| = n is a power of two, i.e., n = 2�log n�

(otherwise Lemma 3 allows us to instead consider an m′ that is a power of two),
and that Q has size |Q| = t and exactly the structure described in Lemma 2.

There are t trees in the forest of independent trees for the quote, and all
the way up to (but not including) their roots, each of these trees provides one
hash per level. The roots of the trees in the forest are on the deepest level with
less than t nodes and the first level with more than t nodes (if t is a power of
two, all roots are instead on the level with exactly t nodes). Hence, all levels
that are at depth more than 
log t� contributes with 1 hash per tree, for a total
of t(
log n� − 
log t�) hashes. Additionally, we need to count how many hashes
we get from the level at depth 
log t�. On this level, every node is either a root
of an independent tree or a child of a root of an independent tree. In the first
case, the hash of the node is calculable from information from lower levels. In
the second case, for every pair of siblings, one of the nodes’ hash is calculable
from information from lower levels (the one on a root-token path for a token
corresponding to a quoted token) and the other nodes’ hash must be provided
by the signature. Since there are 2�log t� nodes on this level, and t independent
trees, the signature must provide 2�log t� − t hashes on this level.

In total, this shows that an upper bound on the number of hashes provided
by the signature for a quote of t tokens from an n tokens sequence is

t(
log n� − 
log t�) + 2�log t� − t

=t(
log n� − 
log t� − 1) + 2�log t�,

which finishes the proof of Proposition 1.

Corollary 1. For a message of size n tokens and any quote, the worst-case size
of the verification path of the quote is

⌈
n
2

⌉
.

Another easy corollary to the proof of Proposition 1—and Lemma 3 in
particular—we can bound the error when n is not a power of two (when n
is a power of two, the bound is, of course, exact).

Corollary 2. When n is not a power of two, the bound of Proposition 1 over-
counts by at most t hashes.

Proof. At each level of the Merkle tree, the signature needs to provide at most
one hash for each quoted token. In the construction used in the proof of Propo-
sition 1 when n is not a power of two, no levels are added to the Merkle tree,
and hence the signature becomes no more than t hashes larger.
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Proposition 2. For a message of size n > 2 tokens and a contiguous quote of
t tokens, the worst-case size of the verification path of the quote is 2
log n� − 2
hashes.

Proof. We prove this proposition by induction on the height of the Merkle tree.
As the base case, we consider trees of height 2. Either picking just one token

or picking one token among the first two tokens and one token among the last
one or two tokens, gives a verification path of worst-case size 2 · 2 − 2 = 2.

Assume now that in a tree of height k, the largest possible size of the verifica-
tion path for a contiguous quote is 2k−2. As our inductive step, we show that if
the height of the Merkle tree of a message is k + 1, then the largest possible size
of the verification path for a contiguous quote from the message is 2(k + 1) − 2.
For any contiguous quote Q, we consider two cases: (1) Q is either contained in
the first 2k tokens or contains none of the first 2k tokens, and (2) Q contains
both the 2k’th and the (2k + 1)’st token.

Case 1: If Q corresponds to leaves that are completely contained in one of the
subtrees of the root, it follows from the induction hypothesis that the verification
path consists of at most 2k − 2 hashes from that subtree. The verification path
contains only one additional hash, that of the root of the other subtree. Thus,
the total number of hashes is at most 2k − 2 + 1 < 2(k + 1) − 2.

Case 2: We make a few observations. Considering a level of the Merkle tree from
left to right, the nodes with hashes that the Verifier calculates are consecutive.
In Fig. 6, we have illustrated this by highlighting in green all the nodes with
labels that the Verifier calculates.

Additionally, observe that for any level of depth j ≥ 2, the only nodes of
depth j − 1 with a label that the Verifier has to calculate and that, at the same
time, (potentially) has a child outside the consecutive sequence of nodes that
the Verifier calculated the labels for at depth j, are the parents of the leftmost
and rightmost nodes in that consecutive sequence at depth j. All the nodes that
might be characterized like this are on the two paths of black arrows in Fig. 6.
Hence, it follows that on each level, the verification path needs to provide at most
2 hashes. Clearly, the root’s label will not need to be provided by the verification
path, and the root’s children will also not need to have their labels provided since
the quote contains a token from each child’s subtree. Finally, observing that there
are a total of k +2 levels in a tree of height k +1, allows us to conclude that the
verification path needs to provide at most 2 · (k + 2 − 2) = 2 · (k + 1) − 2 hashes,
completing the case and the proof.

The Verifier. The Verifier has to verify one classical digital signature and to
reconstruct the Merkle tree using the quote together with the verification path.
Once again, the cost of this depends on where in the message the quote is located,
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Fig. 6. Merkle tree with a contiguous quote divided between the left- and right subtree.
The labels of all the nodes in the green area are calculated from the labels of their
children and do not need to be part of the signature. (Color figure online)

with the number of hashes generally going towards 2n−1 as the quote gets closer
to being the full message. For example, if all but one token has been quoted, the
Verifier needs to compute 2n − 2 hashes, and if only one token has been quoted,
the Verifier only needs to compute 
log n� + 1 hashes.

4 Quotable Signatures and Fake News

In the introduction, we argued that the current approach to mitigating the effects
of fake news, focusing on flagging problematic content, is not sufficient. As men-
tioned, one supplementary approach could be to bolster authentic content by
authenticating the source of quotes, for example on social media, and the lit-
erature gives reason to believe this could have an impact. This approach could
be implemented using a quotable signature scheme. Here, the message that is
the original source of a quote would be an article and the creator or distributor
of the article (a news agency, for instance) would act as the Signer, the one
sharing the quote as the Quoter, and the one verifying the quote as the Verifier.
For this approach to be effective, it would need to be widely adopted, both by
news media and by users sharing and reading quotes from articles. We make the
following observations on these problems.

Regarding the news media, there is wide interest in supporting initiatives
to combat fake news, see for example [9]. Additionally, from our discussions
with a news media company,3 it is apparent that the current workflow employed
by modern media companies is already highly automated, and it appears that
it should be quite simple to integrate a process by which, when an article is
published (or updated), it is automatically signed with the media company’s
public key. Regarding user adoption, there is the challenge of getting a sufficiently
large proportion of users using the tool, but one would also have to teach users
what a quote being authenticated means, i.e., that the source and integrity of

3 Specifically, we talked with the editor in charge of the platforms and the editor in
charge of the digital editorial office at a large media company that produces multiple
newspapers for different regional areas, in both paper and digital versions.
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the quote has been assessed, but not its truthfulness or the quality of its source,
for example.

If news media and social media integrate this approach into their websites,
our methods can be employed without any explicit user awareness. With such an
integration, when a user copies a quote from a signed article, a signature for the
quote is automatically generated, and an element including both quote and text
is put into the clipboard, together with the plain text quote (in practise, this
would be a text/html element and a text/plain element). When the user then
pastes the quote, a website supporting signatures will use the clipboard element
with a signature [35]. One challenge with this approach is that the verification
is now performed by the websites, rather than a browser extension, for example.
Thus, the user has to trust the website to perform the authentication correctly.

An essential choice is how to divide text into tokens, since any subsequence
of the tokens is an allowable quote. Natural choices could be by word, sentence,
or paragraph. As a more involved choice, one could also define the tokens at a
per-token basis, and simply mark the tokens in the HTML code. A variation of
this would be to have a default setting, but to allow the Signer to decide how to
split the article into tokens when signing. As a variant, one could also consider
using content extraction policies, as in [31], so the Signer can specify which
subsequences of tokens are allowable quotes. A media company might want to
disallow quotes of noncontiguous segments, for example, or disallow including
only parts of a sentence containing a negative, such as “not”, “neither”, or
“never”. Such restrictions could be handled efficiently using regular expressions.

We are implementing a prototype,4 separated into two parts: a library that
can be used by media companies to sign their articles and a browser extension
that allows users to quote with signatures and to verify signatures for quotes.
The library contains implementations of the proposed methods that each media
companies can integrate into their publishing workflow. The browser extension
modifies websites such that text (both full articles and quotes) with verified
signatures is shown to be signed, and allows the user to make quotes from the
signed text that include a signature for the quote. The browser extension also
allows the user to get more information from the signature for a quote, e.g., who
signed it, when it was signed, an indication of where text was removed, and a
link to the original article.

One could further extend the system with different labels, depending on
the quality of the source of a quote. For example, many countries have press
councils enforcing press ethics, which includes providing correct information,
e.g., by researching sufficiently and publishing errata when needed. Hence, it
may make sense to mark quotes from articles written by news media certified as
following press ethics and rulings of a national press council. One could even go
so far as to authenticate only signatures signed by such sources.

To make a difference in the future, media companies and users on social
media need to adopt these quotable signatures. To have the best effect, social

4 To be made available at https://serfurth.dk/research/archive/.

https://serfurth.dk/research/archive/
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media platforms should directly support quotable signatures and the required
extension should be natively integrated into browsers.

5 Future Work

With this paper, we have extended the theory on quotable signatures and pre-
sented an application of quotable signatures as a supplementary approach to
mitigating the effect of fake news.

Further work on quotable signatures could include using methods similar
to the ones employed in [15] and [5] to remove the requirement that the used
hash function be collision-resistant, and thereby remedy a vulnerability against
multi-target attacks against hash functions. Additionally, variants of quotable
signatures optimized for different types of media should be developed and com-
pared. Our current variant is in some sense optimized for cases where one will
often wish to quote something contiguous in one dimension, such as text. If,
instead, the goal is to crop an image, one would end up with a “quote” that is
contiguous in two dimensions. We have not yet explored how to handle this case
effectively. Finally, as discussed in Sect. 4, different policies for dividing text into
tokens could be studied.

A natural next step towards using quotable signatures to combat misinforma-
tion would be to verify the effectiveness of the proposed method experimentally.
In particular, the effects of using quotable signatures for verifying news shared
on social media and elsewhere need to be investigated. A suggestion for a first
study could be to investigate if the use of quotable signatures improves partici-
pants’ ability to recall from which news brand a story originated, which was an
issue identified in [17]. Additional studies along the lines of [4], investigating the
effects on the quality of the news diet of participants, would also be of interest.
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13. Drummond, C., Siegrist, M., Árvai, J.: Limited effects of exposure to fake news
about climate change. Environ. Res. Commun. 2(8) (2020). Article 081003

14. Hirose, S., Kuwakado, H.: Redactable signature scheme for tree-structured data
based on Merkle tree. In: Conference on Security and Cryptography - SECRYPT
2013, pp. 313–320. IEEE (2013)

15. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based
signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC
2016. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49384-7 15

16. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45760-7 17

17. Kalogeropoulos, A., Fletcher, R., Nielsen, R.K.: News brand attribution in dis-
tributed environments: do people know where they get their news? New Media
Soc. 21(3), 583–601 (2018)

18. Kreutzer, M., Niederhagen, R., Shrishak, K., Simo Fhom, H.: Quotable signatures
using merkle trees. In: INFORMATIK 2019. Lecture Notes in Informatik, vol. P-
294, pp. 473–477 (2019)

19. Kristensen, N.R.: Schmeichel om fabrikeret, mavesur udtalelse: “Det er noget
sludder” (2023). https://www.tjekdet.dk/faktatjek/schmeichel-om-fabrikeret-
mavesur-udtalelse-det-er-noget-sludder

20. Laurie, B., Langley, A., Käsper, E.: Certificate transparency. RFC 6962, 1–27
(2013)

21. Lewandowsky, S., Ecker, U.K.H., Seifert, C.M., Schwarz, N., Cook, J.: Misinfor-
mation and its correction: continued influence and successful debiasing. Psychol.
Sci. Public Interest 13(3), 106–131 (2012)

22. Merkle, R.C.: Protocols for public key cryptosystems. In: IEEE Symposium on
Security and Privacy 1980, pp. 122–134. IEEE Computer Society (1980)

23. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

24. Molina, M.D., Sundar, S.S., Le, T., Lee, D.: “Fake news” is not simply false infor-
mation: a concept explication and taxonomy of online content. Am. Behav. Sci.
65(2), 180–212 (2021)

https://doi.org/10.1007/978-3-642-13708-2_6
https://c2pa.org/
https://c2pa.org/
https://g1.globo.com/fato-ou-fake/eleicoes/noticia/2022/10/06/e-fake-que-g1-publicou-reportagem-afirmando-que-lula-disse-que-se-eleito-ira-revogar-o-pix.ghtml
https://g1.globo.com/fato-ou-fake/eleicoes/noticia/2022/10/06/e-fake-que-g1-publicou-reportagem-afirmando-que-lula-disse-que-se-eleito-ira-revogar-o-pix.ghtml
https://g1.globo.com/fato-ou-fake/eleicoes/noticia/2022/10/06/e-fake-que-g1-publicou-reportagem-afirmando-que-lula-disse-que-se-eleito-ira-revogar-o-pix.ghtml
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.1007/3-540-45760-7_17
https://www.tjekdet.dk/faktatjek/schmeichel-om-fabrikeret-mavesur-udtalelse-det-er-noget-sludder
https://www.tjekdet.dk/faktatjek/schmeichel-om-fabrikeret-mavesur-udtalelse-det-er-noget-sludder
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21


292 J. Boyar et al.

25. Newman, N., Fletcher, R., Kalogeropoulos, A., Nielsen, R.K.: Reuters institute
digital news report 2019. Technical report, Reuters Institute for the Study of Jour-
nalism (2019)

26. Newman, N. Fletcher, R., Robertson, C.T., Eddy, K., Nielsen, R.K.: Reuters
institute digital news report 2022 (2022). https://reutersinstitute.politics.ox.ac.
uk/sites/default/files/2022-06/DigitalNews-Report2022.pdf

27. Reuters Fact Check. Fact Check-Screenshot of BBC News report on Rus-
sia is fake (2023). https://www.reuters.com/article/factcheck-bbc-screenshotfalse-
idUSL2N2VL1D4
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Abstract. Integrating Post-Quantum Cryptography (PQC) in network
protocols presents a significant challenge. The efficiency of the Trans-
port Layer Security (TLS) protocol can be significantly impacted by
adopting larger PQC public keys and signatures. In this context, the
KEMTLS approach has emerged as a promising solution, leveraging PQC
Key Encapsulation Mechanisms (KEMs) with smaller sizes to replace
handshakes and signatures. Besides efficiency, security and reliability
are also at risk when adopting new cryptographic primitives. Hybrid
PQC methodologies minimize these risks by adding classical crypto-
graphic schemes into the post-quantum protocols. This work introduces
the incorporation of hybrid PQC into the KEMTLS and KEMTLS-PDK
protocols, integrating elliptic curve-based KEMs. We perform a compre-
hensive benchmarking analysis across diverse network conditions, KEM
types, and security parameters to evaluate the effectiveness of hybrid
models. Moreover, we conduct a comparative assessment between our
hybrid KEMTLS and a hybrid PQTLS variant, which uses handshake sig-
natures. Our results demonstrate that the performance penalty incurred
by hybrid KEMTLS, compared to PQC-only KEMTLS, remains negligi-
ble within specific security thresholds. Overall, our findings highlight the
advantages of adopting hybrid protocols, outweighing the marginal per-
formance trade-offs observed at higher security parameters. These results
underscore the practical feasibility of employing hybrid PQC protocols,
enhancing network security in an interconnected environment.

Keywords: Hybrid Post-Quantum Cryptography · KEMTLS ·
Network Security

1 Introduction

Network protocols such as TLS 1.3 rely on Public-Key Cryptography (PKC)
to provide secure communications. However, most of the PKC schemes in use
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today are known to be insecure against attackers with access to a Cryptograph-
ically Relevant Quantum Computer (CRQC) [16] due to Shor’s algorithm [25].
Standardization entities worldwide have initiated movements towards new PKC
algorithms based on mathematical problems that are assumed to be hard to
solve even for quantum computers. This field is known as Post-Quantum Cryp-
tography (PQC). One of the driving motivations is to be prepared early enough
to transition all the PKC algorithms before a CRQC becomes a real threat.

One of the most relevant applications of PKC in our current communications is
within cryptographic protocols such as TLS. Recent research suggests that replac-
ing and transitioning TLS to PQC is challenging due to the associated high cost,
mainly caused by the increased size of the cryptographic artifacts [19,31]. In antic-
ipation of the required transition to quantum-safe primitives, researchers have
begun evaluating PQC in various scenarios and network protocols. Several alter-
natives have been proposed for TLS, one of which is PQTLS [18,26], which replaces
the current PKC primitives with PQC components. PQTLS utilizes two PQC com-
ponents: a Key Encapsulation Mechanism (KEM) for establishing symmetric keys
between peers and Digital Signatures (DS) for end-entity authentication. Cur-
rently, TLS performs key agreement using Diffie-Hellman key exchange, which has
different properties than KEMs. Consequently, PQTLS introduces modifications
to the original TLS besides just replacing the primitives.

Another approach for adopting PQC in TLS, aimed at improving protocol
performance, is called KEMTLS [23]. KEMTLS employs KEMs for end-entity
authentication since encapsulations are usually smaller than PQC signatures.
KEMTLS has been evaluated with different PQC algorithms and compared
with existing alternatives such as RSA and ECDSA. One variant of KEMTLS
is KEMTLS-PDK, which involves pre-distributed public keys. KEMTLS-PDK
targets scenarios where the client already possesses the server’s long-term KEM
public key, enabling the client to perform protocol operations in advance and
reduce the time required for a complete handshake.

In this paper, we refer to schemes that derive their security from both classical
and post-quantum cryptographic primitives as PQC hybrids. For instance, in the
context of Key Exchange (KEX), one can combine the output of classical and
post-quantum algorithms by concatenating them, followed by a key-derivation
method that generates the desired symmetric keys for communication. Therefore,
both outputs contribute to the derivation process [23,28].

PQC schemes have received less scrutiny compared to classical ones, espe-
cially considering the lack of real-world deployment of these primitives. PQC
hybrid modes are recommended for adoption because they maintain the existing
confidence in the security of traditional cryptography while preventing store-
now-decrypt-later attacks by future CRQCs. Thus, PQC hybrids can be used
until confidence in PQC is fully established. The Open Quantum Safe project
(OQS) [20] recommends PQC hybrids, and NIST acknowledges hybrid modes
using the concatenation-prior-derivation approach as compliant with their stan-
dards [1]. Standard drafts for using PQC hybrids in TLS have started to emerge,
such as the proposal for “Hybrid key exchange in TLS 1.3” [27].

PQTLS has been evaluated by several authors [11,18,26] using the “Hybrid
Penalty” metric, which measures the additional costs of using the hybrid mode
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compared to the PQC-only approach. Although the penalty of using the hybrid
mode depends on several factors, it can be minor for the selected algorithms.
However, the hybrid mode of KEMTLS has not yet been analyzed. It is cru-
cial to evaluate KEMTLS with hybrids since they are the expected method for
migrating real-world applications to PQC. Therefore, this paper aims to fill this
gap. Our main contributions are described below.

– A design and implementation of Hybrid KEMTLS, incorporating classical
cryptography into all of NIST’s Round 3 finalist KEM schemes.

– An extensive evaluation of our approach for Hybrid KEMTLS, considering
simulated networks and geographically-distant servers.

– A comparison of hybrids between KEMTLS, KEMTLS-PDK, and PQTLS
under the same network conditions and security levels.

This paper is structured as follows. Section 2 provides the necessary back-
ground on KEMTLS and its variants. Section 3 presents our design for Hybrid
KEMTLS. All configurations and evaluation metrics are described in Sect. 4.
Section 5 presents the results of the experiments, and Sect. 6 concludes the study.

2 Background

2.1 Transport Layer Security

Transport Layer Security (TLS) is a network protocol that provides a confiden-
tial and authenticated communication channel. TLS is widely used for securing
Internet connections and finds applications in microservice architectures [30],
VPN connections [23], and is recommended for standardization in SDN and 5G
networks [32].

An Authenticated Key Exchange (AKE) occurs in every TLS 1.3 full hand-
shake, which is typically the initial interaction between a client and a server. The
handshake protocol [22] begins with an ephemeral Key Exchange (KEX), where
secret data is shared between the peers. Each peer derives secrets into a set of
traffic keys, which are used for protecting the communication using symmetric
cryptography. During the handshake, the TLS server authenticates itself to the
TLS client using an x509 digital certificate or a Pre-Shared Key. Optionally, the
server may request client authentication, referred to as mutual authentication.

A TLS 1.3 handshake is designed to complete within one Round-Trip-Time
(RTT). However, there is a 0-RTT mode for resumptions, and when the client
authenticates, it adds another RTT to the protocol. The first handshake mes-
sage (ClientHello) includes a random nonce, protocol versions, a list of sup-
ported symmetric cipher/HKDF hash pairs by the client, and other relevant
information. The key share consists of an ephemeral public key for the KEX.
While optional, at least a keyshare or a Pre-Shared Key (PSK) message must
be sent. The server responds with its corresponding information (ServerHello
message), which may include additional optional messages such as Certificate
and CertificateVerify. These two messages are part of the TLS authentica-
tion process using digital signatures. Alternatively, server authentication through
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PSK is possible, such as in a session resumption, where the server does not send
the certificate. The authentication process concludes with the Finished message,
where an HMAC is computed from the transcript of the handshake context. All
the necessary keys for encryption in TLS 1.3 are derived based on the HKDF
function [14].

2.2 Post-quantum Cryptography

One of the primary concerns in TLS is that the cryptographic computations in
TLS 1.3 AKE are not resistant to attacks from quantum computers. Cryptog-
raphy based on the Integer Factorization Problem (IFP), Discrete Logarithm
Problem (DLP), and Elliptic Curve Discrete Logarithm Problem (ECDLP) are
all vulnerable to Shor’s algorithm [25]. Although practical quantum comput-
ers do not yet exist, the threat of quantum adversaries capturing TLS packets
for future decryption is a cause for concern. To address this issue, researchers
have begun studying and developing Post-Quantum Cryptography (PQC) and
its integration into TLS and other protocols [9,18,26]. PQC includes schemes
based on mathematical problems for which there is no known efficient solution
by both classical and quantum computers [3].

Public-key cryptography is often employed for KEX and peer authentication
in network protocols. To protect network communications from quantum adver-
saries, PQC schemes must be incorporated. Post-Quantum Key Encapsulation
Mechanisms (KEMs) and Digital Signatures are required, or at least one PQC
KEM [23]. However, one of the main challenges in selecting PQC schemes is their
increased size compared to classical schemes [28]. Table 1 allows for a compar-
ison of sizes between some PQC and classical algorithms used for KEX (for a
comparison of PQC signature sizes, please refer to [31]). The sizes vary for each
NIST security level, with each level indicating that the scheme is as difficult to
break (using exhaustive key search) as symmetric AES-128 (level one), AES-192
(level three), and AES-256 (level five) [15]. In this work, we adopt a naming
convention where the algorithm name is followed by a number corresponding to
the security level (e.g., “KyberL5” refers to the Kyber1024 parameter).

Currently, the most notorious PQC standardization effort is being conducted
by the US National Institute of Standards and Technology (NIST) [17]. The PQC
proposals submitted to the process can be classified in the following groups [3]:
lattice-based cryptography, which uses linear algebra constructions; code-based
cryptography, which uses error-correcting codes; multivariate-based cryptography,
using systems of multivariate equations; isogeny-based cryptography, based on
Supersingular elliptic curve isogenies; and hash-based cryptography, using cryp-
tographic hash functions.

The third round of the NIST process identified four finalists for Key Encapsu-
lation Mechanisms (KEMs): Classic McEliece, Kyber, Saber, and NTRU. Addi-
tionally, three finalists were selected for digital signatures: Dilithium, Falcon,
and Rainbow. Subsequently, the fourth round of the process determined the
algorithms to be standardized. The chosen algorithms include Kyber, based on
lattice-based cryptography, for KEM; and for signatures Dilithium (primary
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Table 1. Classical and PQC schemes comparison

Algorithm Name Parameter Set Name Public Key size (bytes) Claimed NIST Security Level Quantum-safe?

NIST P256 secp256r1 (L1) 64 1 ✗

NIST P384 secp384r1 (L3) 96 3 ✗

NIST P521 secp521r1 (L5) 132 5 ✗

Kyber Kyber512 (KyberL1) 800 1 ✓

Kyber768 (KyberL3) 1184 3 ✓

Kyber1024 (KyberL5) 1568 5 ✓

Saber LightSaber (Saber L1) 672 1 ✓

Saber (Saber L3) 992 3 ✓

FireSaber (Saber L5) 1312 5 ✓

NTRU NTRU-HPS-2048-509 (NTRU L1) 699 1 ✓

NTRU-HPS-2048-677 (NTRU L3) 930 3 ✓

NTRU-HPS-4096-821 (NTRU L5) 1230 5 ✓

choice), also based on lattice-based cryptography; Falcon, based on lattice-based
cryptography; and Sphincs+, based on hash functions.

Numerous international agencies are closely following the NIST process, and
a fourth round is currently underway, where additional algorithms will undergo
scrutiny. The KEMs selected for the fourth round are BIKE, Classic McEliece,
HQC, and SIKE [29]. However, it should be noted that both Rainbow and SIKE
are now broken [4,6]. Furthermore, NIST has issued a call for new digital sig-
nature schemes, with a particular interest in those with small signature sizes
compared to other PQC schemes.

2.3 Hybrid PQC

As mentioned above, the process of standardization of post-quantum schemes
has not finished yet. The current round considers schemes such as SIKE which
has been recently broken efficiently with a classical computer. The situation is a
bit contradictory, on one side the community is pushing for a transition to PQC
as soon as possible to prevent store-now-decrypt-later attacks. On the other side,
the schemes have been recently proposed and, even though their security prob-
lems are usually existing mathematical problems, the reality is that the research
community lacked a proper motivation to perform thorough cryptanalysis on
problems that previously had limited real world application.

In this specific situation, a solution that mitigates classical and the quan-
tum threats is to use both classical and post-quantum cryptography together.
Proposals following this line are called hybrids and they are designed with the
idea of relying on both security problems so that if one problem is easily solved,
the other maintains the whole primitive secure. One important consideration
regarding the Hybrid PQC design is the cryptographic combiner in use [5]. The
combiner is responsible for keeping security if one of the combined schemes is
not secure anymore. This security property comes with a performance drawback
because both primitives need to be computed, and the size of the communica-
tions is now the sum of both signatures, ciphertexts, and public keys in some
cases. As a consequence, Hybrid PQC is not meant to be a final solution, but a
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low risk intermediate step. Once the confidence in PQC is fully established it is
recommended to abandon the classical cryptographic primitives.

As mentioned before, one of the challenges of adopting PQC for TLS is that
the most prominent PQC algorithms substantially increase the size of cryp-
tographic objects, consequently increasing the protocol’s communication sizes.
Some PQC algorithms cannot be deployed in the TLS protocol “as-is”, a change
in the protocol might required to fit the algorithm. Moreover, network control
mechanisms on the Internet, such as the TCP Congestion Control, can impose a
performance slowdown when message sizes surpass a pre-determined threshold.
Due to the use of PQC, all these issues are inherited by the Hybrid schemes too.

Literature shows a few examples of PQTLS evaluated with hybrid modes
[18,26], but KEMTLS has not yet been evaluated with hybrids. For a practical
adoption, hybrid designs accompanied by their performance and security analysis
are essential. Understanding the penalties when transitioning to hybrid modes
contributes to the PQC adoption.

2.4 KEMTLS

KEMTLS is a post-quantum size-optimized alternative for TLS, as described
in the paper by Schwabe, Stebila, and Wiggers [23]. It utilizes post-quantum
key encapsulation mechanisms (KEMs) which generally have smaller sizes com-
pared to post-quantum digital signatures. The design of KEMTLS involves the
use of an ephemeral KEM for key exchange and another KEM for long-term
usage. This approach replaces the digital signature found in a standard TLS
1.3 handshake with KEMs. To further enhance KEMTLS, the authors intro-
duced KEMTLS-PDK [24], which is a variant of KEMTLS that incorporates
pre-distributed keys. This makes it suitable for scenarios where the client pos-
sesses the server’s long-term public key prior to communication. By performing
key encapsulation against the server’s long-term public key in the initial round
of messages, the client can improve performance.

The KEMTLS protocol consists of three phases: ephemeral key exchange
using KEMs, implicitly authenticated key exchange using KEMs, and confir-
mation/explicit authentication. During the second phase, when the server is
implicitly authenticated, the client has the option to send application data after
just one round. However, the handshake is fully completed in two rounds, only
after the third phase when the server is explicitly authenticated. On the other
hand, KEMTLS-PDK improves on this by achieving explicit authentication of
the server after just one round. This earlier authentication of the server in the
protocol flow ensures that the handshake is fully completed simultaneously with
the client’s ability to send application data. The one-round-trip time (1-RTT) of
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KEMTLS-PDK makes it more competitive with standard TLS in terms of the
time required to complete a full handshake.

Celi et al. [7] provided an evaluation of KEMTLS, KEMTLS-PDK, and
PQTLS using a fork of the Go Standard Library. In their implementation, the
server’s certificate contains a delegated credential that uses a post-quantum sig-
nature algorithm for PQTLS or a post-quantum KEM algorithm for KEMTLS
and KEMTLS-PDK. This approach decouples the handshake authentication
algorithm from the authentication algorithms used in the certificate chain,
enhancing the cryptographic agility principle in the protocol’s design. The results
of their study demonstrate the promise of KEMTLS, but an investigation of the
impact of a hybrid post-quantum design has not yet been proposed for KEMTLS.

3 Hybrid KEMTLS Proposed Design

Our proposal incorporates classical cryptography computations to create a
hybrid protocol while preserving the original KEMTLS properties, such as offline
deniability and a smaller trusted codebase. The design of Hybrid KEMTLS is
depicted in Fig. 1, which focuses on a handshake configuration involving server-
only authentication. For the mutual authentication design, please refer to the
full version of the paper [12]). The cryptographic computations performed by
the client and server are described on their respective sides. The modifications
made to the original KEMTLS are highlighted using square dotted boxes. It is
important to note that while signatures are not utilized in the handshake pro-
cess, signature algorithms are still required in the certificate chain to establish
a root of trust.

The Hybrid KEMTLS protocol operates similarly to KEMTLS, but now each
cryptographic operation has a corresponding classic counterpart, as indicated by
the square dotted boxes. The first step in the protocol, in terms of cryptographic
operations, is generating key pairs for both the PQC and classic ephemeral
KEMs. The resulting public keys pke and pkec are concatenated and transmit-
ted to the server via the key share extension in the ClientHello TLS message.
Upon receiving these keys, the server performs encapsulation for each one, gen-
erating the ephemeral shared secrets Ke (post-quantum) and Kec (classic), as
well as the ciphertexts cte (post-quantum) and ctec (classic). Subsequently, both
ciphertexts are sent back to the client through the key share extension of the
ServerHello message. During the same exchange, the EncryptedExtensions
and Certificate messages are also sent. The Certificate message contains
an X.509 Certificate consisting of two concatenated static KEM public keys
(classic and PQC).

Upon receiving the server’s reply messages, the client decapsulates both the
post-quantum ciphertext and the classic ciphertext, obtaining the same two
ephemeral shared secrets as the server: Ke and Ks. Then, the client performs
encapsulation against the server’s static KEM public keys, resulting in the static
shared secrets Ks and Ksc, as well as the ciphertexts cts and ctsc. These val-
ues are concatenated and sent to the server through the ClientKEMCipher text
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Fig. 1. Proposed Hybrid KEMTLS Handshake (Server-only authentication)

message in KEMTLS, along with the Finished message. The server then decap-
sulates the received ciphertexts, obtaining the same static shared secrets Ks and
Ksc as the client. After that, the server can send the Finished message back to
the client, thereby completing the Hybrid KEMTLS Handshake.

The proposed Key Schedule for Hybrid KEMTLS follows the KEMTLS Key
Schedule, which is inspired by the TLS 1.3 Key Schedule [22]. The TLS 1.3 Key
Schedule is based on a series of calls to HKDF extract-and-expand functions.
HKDF-Extract takes Input Keying Material (IKM) and a Salt, generating an
output secret. On the other hand, the HKDF-Expand function takes a secret, a
label, and a transcript hash, as described in RFC 8446 [22] - Section 4.4.1. The
output secret from HKDF-Extract serves as the input secret for HKDF-Expand,
which generates a protocol traffic secret that is then derived into a TLS 1.3
traffic key, following RFC 8446 [22] Section 7.3.

KEMTLS slightly modifies this Key Schedule by partially removing TLS
1.3’s Early Secret stage and adding a new stage between TLS 1.3’s Handshake
Secret (HS) and Master Secret. This additional stage produces the Authenticated
Handshake Secret (AHS). In KEMTLS, the HS is obtained through an HKDF-
Extract operation using the ephemeral KEM shared secret, while the AHS is
derived from the static KEM shared secret. Thus, both types of shared secrets
contribute to generating the application traffic keys.
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In this work, our Hybrid KEMTLS Key Schedule follows the same structure
as the KEMTLS Key Schedule, with the only difference being the data used as
Input Keying Material for the Handshake Secret and Authenticated Handshake
Secret. Additionally, we employ a cryptographic combiner that maintains secu-
rity even if one of the KEMs is compromised. First, the IKM used to generate
the Handshake Secret is the concatenation of the shared secrets Ke and Kec.
The second IKM is used to derive the Authenticated Handshake Secret, also
achieved by concatenating the shared secrets Ks and Ksc. It should be noted
that both concatenations are further combined using HKDF calls. In this man-
ner, we incorporate the dualPRF combiner, proposed by Bindel et al. [5], into
our hybrid design. The main distinction is that we combine shared secrets from
both the ephemeral (Ke, Kec) and static (Ks, Ksc) components.

Regarding the concatenation (prior to KDF), we justify this choice based
on the NIST standards for key derivation that allow such a construction [1].
Besides, modeling our combiner with dualPRF [5] ensures the security properties
required for hybrid KEMs. Since all shared secrets are used, if a hybrid mode
is selected, each K contributes to the generation of the traffic keys, requiring
both parties (i.e., client and server) to support all the algorithms of the selected
hybrid mode. However, this should not be a significant issue since we add one
algorithm (pre-quantum) cryptography to KEMTLS, which is commonly used
nowadays. As KEMTLS, our design allows us to select the same algorithm for
KEX and authentication, which can simplify the negotiation procedure of the
protocol.

The KEMTLS protocol is based on two KEM key pairs: one ephemeral
and one static. To “hybridize” it, we introduced classic KEM key pairs to the
protocol. We instantiated Hybrid KEMTLS with the following classic KEMs:
KEM P256 HKDF SHA256, which utilizes the P256 curve and the HKDF SHA-256;
KEM P384 HKDF SHA384, and KEM P521 HKDF SHA512 which use the curves P384
and P521, and HKDFs SHA-384 and SHA-512 respectively. All the classical KEMs
we employ are obtained from the CIRCL library [8].

In the following lines we will refer to the hybrid proposals as KyberL1 H.,
SaberL1 H., and NTRUL1 H. to denote the instantiation of a KEMTLS hybrid
using Kyber, Saber, or NTRU with NIST security level 1, paired with the cor-
responding classic KEM, in this case KEM P256 HKDF SHA256. Moreover, we also
target NIST security levels 3 and 5. All the instances are listed in Table 2.

3.1 Inherited Security Analysis

Our proposal preserves the cryptographic primitives and the message flows from
the original KEMTLS scheme [23]. For the specific case of hybrid modes, the
security is based on two parts, the protocol covered in [23], and the cryptographic
combiner [5,10]. In our case, we rely on the following assumptions: PRF and
Dual-PRF [2], which corresponds to the assumptions present in Bindel’s et al.
dualPRF combiner [5]. The security properties of the construction have already
been demonstrated for dualPRF for our specific instantiation.
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3.2 Modelling Cost of the Instantiations

Depending on the algorithms selected for instantiating Hybrid KEMTLS, an
associated cost will be added to the protocol in terms of size. The algorithm
parameters define the sizes, and then we can model an estimate of the impact
in the protocol. In our design, the protocol cost Csize can be defined as:

Csize = KEXsize + Authsize + Certificatessize + Metadatasize,

where KEXsize refers to the size of the protocol’s Key Exchange messages, includ-
ing ClientHello and ServerHello; Authsize is the size of KEMTLS server-only
or mutual authentication ciphertexts; Certificatessize is the sum of sizes of
the server certificate plus Intermediate CA certificate; and Metadatasize is the
sum of other protocol-related data sizes. If mutual authentication is required,
two additional messages must be considered: Server KEM Ciphertext and the
client’s Certificate. Section 4 describes additional certificate chain configura-
tions used in this work.

Table 2 shows the protocol-level cost of hybrid KEMTLS instances in terms
of size (in bytes). It considers cryptographic object sizes and additional protocol
data (e.g., ECDHE group numbers) compared to a baseline TLS 1.3 configu-
ration. The last two columns show the total size for Server-only authentica-
tion (the letter ‘S’) and Mutual authentication (the letter ‘M’). We omitted
the metadata column, but it adds approximately 320 bytes to Csize, or 540 for
mutual authentication. We kept X509 metadata inside the Certificates column.
Mutual authentication shows similar result but adds 540 as metadata value,
and it approximately doubles the columns ‘Auth’ and ‘Certificates’. Using this
table, one can see the cost of using the Hybrid KEMTLS instance we proposed.
Besides, it allows estimating impact in networks. For example, all P521 instances
are close to (default) TCP congestion window size (cwnd), measured by the num-
ber of segments. Typically, the Maximum Segment Size (MSS) is close to MTU
size (e.g., 1460, 1500 bytes), and the cwnd defaults to 10 MSS. Due to the TCP
congestion control, hybrids with greater size will incur additional round-trips.

Table 2. Expected cost (bytes) of hybrid KEMTLS instances

Hybrid Instance Security Level KEX Auth Certificates Csize

S M

P256 (Baseline) 1 484 74 839 1715 2847

P256 Kyber512 (KyberL1 H.) 1 2052 833 7807 11012 19872

P384 Kyber768 (KyberL3 H.) 3 2820 1185 10708 15033 27141

P521 Kyber1024 (KyberL5 H.) 5 3756 1701 14475 20252 36650

P256 LightSaber (SaberL1 H.) 1 1892 801 7679 10692 19390

P384 Saber (SaberL3 H.) 3 2628 1185 10514 14647 26564

P521 FireSaber (SaberL5 H.) 5 3404 1605 14220 19549 35595

P256 NTRU HPS 2048 509 (NTRU L1 H.) 1 1882 764 7707 10673 19363

P384 NTRU HPS 2048 677 (NTRU L3 H.) 3 2408 1027 10454 14209 25909

P521 NTRU HPS 4096 821 (NTRU L5 H.) 5 3080 1363 14138 18901 34623
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We also model computational cost our hybrid KEMTLS design. The focus of
this model is on the cost of cryptographic computations since they are only mod-
ified part in our proposal. In this case, we can define the client’s computational
cost when using hybrid KEMTLS as Cclientops:

Cclientops = HKeyGentime + HDecapstime + HEncapstime + 2 ∗ HVerifytime,

where HKeyGentime and HDecapstime are KEM operations and HEncapstime and
2 ∗ HVerifytime are authentication operations (with long-term keys). Although
a KEM is used, two signatures must be verified to complete the authentica-
tion (server and Intermediate CA certificates), for each algorithm (PQC and
Classical). For the server-side, the cost Cserverops has the main difference: it
does not have HVerifytime involved, nor signing operation, only: HEncapstime

for KEX, HDecapstime for authentication. Lastly, the ‘H’ letter represents the
hybrid mode, requiring two operations: one for the PQC and the other for the
classical algorithm. Note, however, that are other costs when using the hybrid
protocol in practice (e.g., network latency time).

4 Evaluation Methodology

We conducted our experiments using two environments: geographical-distant
servers and simulated network experiments. For the first experiment, we utilized
two Google N2 VMs, each configured with an Intel(R) Xeon(R) 2.80 GHz CPU
and 8 GiB RAM. These VMs were located in different geographical regions:
europe-central2-a (Warsaw, Poland) and southamerica-east1-a (São Paulo,
Brazil), resulting in an average latency of 108 ms.

In the simulated experiment, we employed NetEm [13] with two parameters:
latencies (2 ms, 10 ms, 100 ms, 300 ms) and packet loss probabilities (1%, 2%,
3%, 5%). The simulations were executed on an Intel i5-8250U 1.60GHz machine
with turbo boost technology disabled. In both experiments, we evaluated 1000
handshakes, one at a time.

Unlike the TLS 1.3 handshake, the KEMTLS protocol requires an additional
round-trip to authenticate the server and complete the handshake. While com-
paring the two protocols, it’s important to note that the handshake completion
time occurs when a peer receives a Finished message. Therefore, the Finished
message concludes the handshake at different points in the two protocols. Due
to the added round-trip, the KEMTLS handshake completion time is longer
than that of PQTLS. However, from a practical perspective, the client can send
application data at the exact moment the handshake completes in both proto-
cols. It’s worth mentioning that the client is typically the party that initiates
communication, such as with an HTTPS request.

Our tests are based on the NIST Round 3 Finalists in terms of algorithm
selection for the experiments. We evaluated scenarios using Kyber, Saber, and
NTRU variants in the three security levels, always in hybrid mode with NIST
curves. In KEMTLS, we utilize a KEM-based ECDH and a PQC KEM to com-
pose our hybrid scheme. A similar configuration is used in PQTLS, but for
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authentication, we employ Falcon and Dilithium, also in hybrid mode. Both
protocols use a fixed certificate chain, which is hybrid and contains only one
hybrid algorithm, chosen to be Dilithium. This choice of a fixed certificate chain
allows for a comparison between KEMTLS and PQTLS at the protocol level in
terms of handshake operations. Other options could include a classical certifi-
cate chain, mixed-chains [19], or PQC-only chains. However, our work focuses on
the transition with Hybrid PQC. Furthermore, RFC 8446 allows peers to avoid
sending Root CAs certificates, minimizing the impact of PQC adoption. Hence,
the Certificate message in the protocol includes two certificates: the server
(or client) certificate and the Intermediate CA certificate.

We use the same NIST security level for all algorithms involved in the hand-
shake protocol. This means that the KEX, authentication, and certificate chain
are all set at the same security level. Consequently, we anticipate better per-
formance for the minimum security level and the most significant performance
impact for the maximum (NIST) security level. By employing this approach, the
experiments provide indicators for both the minimum and maximum scenarios.

For our experiments, we adapted an implementation from Celi et al. [7] in
Golang. We “hybridized” their KEMTLS and PQTLS implementation using
NIST curves p256, p384, or p521, depending on the security level of each algo-
rithm version. Additionally, we developed a new testbed to support different
PQC algorithms and ensure the reproducibility of our experiments. To integrate
all algorithms in KEMTLS, we utilized the liboqs-go wrapper [21] from the OQS
project. Our implementation is publicly available1.

In the context of hybrid adoption and aiming for a fair comparison, our
evaluation considers the following metrics: Handshake Completion Time, which
measures the time from the start of the protocol at the client until it receives the
Finished message; Time-to-Send-App-Data, which indicates the required time
for the client to send application data to the server; and the Hybrid Penalty,
calculated as H − P , where H is the measured time in a hybrid instantiation
and P is the PQC-only time. This metric quantifies the performance impact of
the hybrid approach. In the full version of the paper, we also present additional
load test metrics, including HTTPS/TLS request successes and failures, as well
as server-side memory load.

5 Hybrid KEMTLS Evaluation

5.1 Hybrid Penalty in Geographical-Distant Servers

This experiment evaluates Hybrid KEMTLS (and KEMTLS-PDK) using geo-
graphically separated peers, considering handshake completion times. Figures 2
and 3 present the box plots for the KEMTLS and KEMTLS-PDK timings,
considering server-only authentication. Figure 4 corresponds to the instantia-
tions using security level 5. Note that we present results focusing on the Kyber
1 https://github.com/AAGiron/hybrid-kemtls-tests.

https://github.com/AAGiron/hybrid-kemtls-tests
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Fig. 2. KEMTLS and Hybrid KEMTLS (L1-L3)

Fig. 3. KEMTLS-PDK and Hybrid KEMTLS-PDK (L1-L3)

Fig. 4. KEMTLS, KEMTLS-PDK and Hybrids (L5)

instance. We observed similar results for NTRU and Saber, which are accessible
in the full version of the paper [12].
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In the geographical-distant scenario, we do not control network variations
or load variations that might occur in the Google VMs. On the other hand,
such a test environment better reflects a realistic scenario. In this scenario, we
observed different results regarding the hybrid penalties (i.e., the cost of adopting
our hybrid). The box plots for security level 1 show overlapping timings, which
means that the penalties are minor, regardless of the tested algorithms. However,
increasing the security level, the boxes no longer overlap, increasing the penalty.
As seen in Fig. 4, with level 5, the hybrid penalties are much more significant
than the other levels caused by the classical algorithm.

Due to design differences, KEMTLS-PDK obtained better timings because of
its reduced number of RTTs. The RTT conceals most cryptographic operation
timings in such a geographical-distant connection. When analyzing the hybrid
penalties, KEMTLS and KEMTLS-PDK have similar results. These results favor
hybrid versions but not much at higher security levels. Please refer to the sup-
plementary material for results when using mutual authentication, where the
penalties have similar behavior, corroborating these findings.

5.2 Hybrid Penalty in Simulated Environment

Unlike the geographical-distant experiment, the simulated environment allows
controlling the effect of parameter variations such as network latency. Table 3
highlights the hybrid penalties in KEMTLS using the average handshake time
(HS) as the metric and increasing the simulated latency. The network latency
plays a significant role in the handshake completion time. By configuring 1 ms of
link latency, the client and the server will be delayed by 2 ms, and since KEMTLS
requires two round trips to complete the handshake, it doubles this number,
reaching 4 ms. The same behavior happens in KEMTLS mutual authentication,
requiring three instead of two round trips. However, in practice, KEMTLS allows
the client to send application data before handshake completion, removing one
(additional) round trip and its performance impact.

Table 3 shows that the hybrid penalty is negligible at lower security levels
and significant at level 5. For instance, the largest penalty in security level 1
is 1.0 ms (e.g., KyberL1 H.), for security level 3 is 8.3 ms from KyberL3 H.,
and for security level 5 is 133 ms from KyberL5 H. The latency variation did
not impact the hybrid penalty significantly since they are more affected when
changing to different security levels. Similar behavior was observed in NTRU
and Saber (available in the full version [12]).

We also simulated different packet loss probabilities looking for hybrid penal-
ties. Table 4 shows the results of using the time-to-send-app-data metric for
PQC-Only and hybrid versions of KEMTLS, focusing again on Kyber. We do
not use handshake completion time here because it would double the actual
packet loss employed (due to the additional RTT). When analyzing columns
from Table 4, we observed significant changes in the penalties in medians. When
reaching 5% loss probabilities, some connections can slow down significantly,
which can be seen at the 95% percentile. This slowdown happens because with
increasing size the likelihood of losing packets increases. However, this increase
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Table 3. Average Handshake time (HS, in ms) for PQC-Only and Hybrid KEMTLS
under different simulated latencies (‘L’ means security level and ‘H’ if in hybrid mode).

Algorithm and Security Level Latency: 1 ms Latency: 5 ms Latency: 50 ms Latency: 150 ms

HS Time Penalty St. Dev. HS Time Penalty St. Dev. HS Time Penalty St. Dev. HS Time Penalty St. Dev.

KyberL1 6.0 – 0.4 22.3 – 0.3 202.8 – 0.2 602.9 – 0.2

KyberL1 H 7.0 1.0 0.4 23.2 0.9 0.3 203.6 0.9 0.3 603.7 0.8 0.4

KyberL3 38.5 – 0.8 54.8 – 0.8 236.3 – 1.0 636.6 – 1.0

KyberL3 H 46.8 8.3 0.9 62.9 8.1 2.3 243.2 6.9 1.2 643.9 7.3 1.6

KyberL5 63.0 – 0.8 78.4 – 0.8 261.1 – 6.0 659.9 – 1.0

KyberL5 H 194.6 131.6 2.4 211.4 133.0 3.7 393.0 132.0 4.5 791.6 131.7 3.2

Table 4. Time-to-send-app-data (in ms) considering different packet loss probabilities.

Algorithm and Security Level Packet Loss: 1% Packet Loss: 2% Packet Loss: 3% Packet Loss: 5%

Median 95% percentile Median 95% percentile Median 95% percentile Median 95% percentile

KyberL1 1.6 2.9 1.6 3.3 1.6 207.5 1.7 208.3

KyberL1 H 2.3 3.4 2.3 7.9 2.3 207.3 2.4 209.4

KyberL3 34.0 36.1 34.3 39.2 34.8 239.6 34.9 242.0

KyberL3 H 39.9 42.1 39.8 43.4 40.3 246.1 40.7 247.2

KyberL5 58.4 60.9 58.5 63.6 57.6 263.1 58.9 266.3

KyberL5 H 162.6 166.8 162.0 167.2 161.0 359.2 162.1 368.0

happens with PQC-only and hybrids, with a larger increase in security level 5
(for example, KyberL5 H. differs near 100 ms to PQC-only, for all packet loss
probabilities). Overall, using level 1 hybrid instantiations, we do not anticipate
a large penalty if a wireless connection experiences packet loss.

5.3 Hybrid KEMTLS Compared to Hybrid PQTLS

This section analyzes the performance of different hybrids (H. KEMTLS and H.
PQTLS). We selected the time-to-send-app-data metric, measured in the client,
since it is the first to send application data in practice. For applications depen-
dent on the handshake completion time, one can compare hybrid PQTLS timings
with the KEMTLS timings provided in Figs. 2 and 4. In such a case, KEMTLS
additional round-trip imposes a delay which is often worse than PQTLS timings.

Figures 5 and 6 compare hybrids using the time-to-send-app-data metric and
each NIST security level. At level 1, the hybrid’s boxes overlap, meaning similar
timings. The main difference is that hybrid PQTLS has a dual-signature oper-
ation for the handshake transcript data. Hybrid KEMTLS replaces it with two
KEM encapsulations (using a classical and a PQC algorithm).

The hybrid approaches achieved similar performance at security level 1. At
security level 3, however, we observed an interesting result when comparing
them. The hybrid KEMTLS is significantly faster than PQTLS in the time-to-
send-app-data metric. Hybrid PQTLS sizes, usually larger than KEMTLS sizes,
can easily surpass network thresholds such as TCP Maximum Segment Size. For
example, considering the TCP window standard size (10 MSS), if we compare
hybrids Csize: KEMTLS using KyberL3 H. has 15033 bytes, and it is 16.57%
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Fig. 5. Hybrids Comparison (L1-L3)

Fig. 6. Hybrids Comparison (L5)

smaller than hybrid PQTLS using KyberL3 and DilithiumL3, both in hybrid
mode (18019 bytes). This difference incurs an additional round-trip at the TCP
level. If we increase MSS size, the performance can be equated, but such a
change can affect network performance negatively, as discussed by Sikeridis et
al. [26]. We could not test Falcon in security level 3 (no parameter set available).
Lastly, level 5 instantiations also exhibit a performance difference that favors
the deployment of hybrid KEMTLS rather than PQTLS.

5.4 Summarizing Results

Figure 7 provides a summary of the experiments conducted in this work, includ-
ing the load testing metrics (discussed in detail in the full version). The figure
presents an aggregation of average handshake time, average time-to-send-app-
data (from the simulated environment), handshake sizes, number of successful
requests, and peak memory usage by the server, all considering hybrid imple-
mentations at security level 1. Initially, we compared hybrid to PQC-only imple-
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mentations, but now all the data is normalized to the baseline configuration,
which utilizes classical cryptography.

Fig. 7. Summary of performance of hybrids at level 1

The main finding for security level 1, as depicted in Fig. 7, is that the per-
formance penalties incurred by the hybrid approach (when compared to the
baseline) are small. The handshake sizes increased by approximately 7x in our
hybrid implementation at level 1, and the average handshake time nearly dou-
bled due to the additional round-trip time (introduced by KEMTLS’ original
design). However, there is no significant penalty observed for the time-to-send-
application-data at this level. Nevertheless, as we increased the security param-
eters, we observed a change in behavior. The penalties started to grow when
comparing hybrids to PQC-only alternatives, which was observed both in simu-
lated and geographically-distant scenario.

In terms of the number of requests, it may not be evident in the scale of
Fig. 7, but the maximum number of successful requests decreased by 3% and
6% for hybrids (PQTLS and KEMTLS, respectively, at level 1). In absolute
terms, this decrease ranged between 2485 and 5604 requests, which could be
significant depending on the application transitioning to hybrids. Finally, the
memory requirements increased by approximately 64 MB (for KEMTLS) and
43 MB (for PQTLS) when using hybrid alternatives, which is not significant in
current server configurations.

6 Conclusions

Hybrid modes represent an initial step towards the transition to post-quantum
cryptography. This study is the first to explore hybrids using the KEMTLS and
KEMTLS-PDK approaches. While KEMTLS offers the advantage of smaller TLS
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configurations, the inclusion of hybrids in KEMTLS ensures a more secure tran-
sition by incorporating classical algorithms. Classical algorithms have undergone
extensive security analysis over time compared to PQC algorithms.

Overall, the performance penalties associated with the addition of classical
algorithms in the KEMTLS design are minimal, particularly when considering
instantiations with lower security parameters. This holds true for both simu-
lated and geographically-distant connections. Hence, hybrids are well-suited for
KEMTLS (including its PDK variant) as they provide the confidence of classical
algorithms with small performance penalties. Our evaluation covers algorithms
from the NIST PQC standardization process. Notably, the average timings of
Kyber, Saber, and NTRU in KEMTLS, as well as Dilithium and Falcon in
PQTLS, are closely matched, making it difficult to identify the optimal algo-
rithm configuration for hybrid instantiations. This was expected given that all
these algorithms are lattice-based among the NIST’s Round 3 finalists, including
the chosen candidate Kyber.

We also compared different hybrid approaches using various metrics, specifi-
cally hybrid modes for KEMTLS and PQTLS. At security level 3, the importance
of byte conservation becomes evident as hybrid KEMTLS outperformed hybrid
PQTLS. The former was better suited for fitting within the TCP congestion win-
dow. Additionally, a load test was conducted on a hybrid HTTPS web server,
where it was observed that hybrid PQTLS performs better than hybrid KEMTLS
as the number of client threads increases. However, both hybrids show drawbacks
in performance compared to classical cryptography configuration. This load test
experiment allowed us to assess the impact on the server when providing HTTP
content while adopting hybrid PQC.

In conclusion, there are additional scenarios that warrant exploration when
considering PQC adoption in TLS. We leave for future work the investigation of
hybrid KEMTLS applied in contexts involving Internet of Things (IoT) and 5G
networks, where energy consumption may serve as a critical evaluation metric.
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Abstract. Five Cells is a logic puzzle consisting of a rectangular grid,
with some cells containing a number. The player has to partition the grid
into pentominoes such that the number in each cell must be equal to the
number of edges of that cell that are borders of pentominoes. In this
paper, we propose two physical zero-knowledge proof protocols for Five
Cells using a deck of playing cards, which allow a prover to physically
show that he/she knows a solution of the puzzle without revealing it.
In the optimization of our first protocol, we also develop a technique to
reduce the number of required cards from quadratic to linear in the num-
ber of cells, which can be used in other zero-knowledge proof protocols
related to graph coloring as well.
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1 Introduction

Five Cells is a logic puzzle developed by Nikoli, a Japanese company that pub-
lished many popular puzzles including Sudoku, Kakuro, and Numberlink. A Five
Cells puzzle consists of a rectangular grid, with some cells containing a number.
The objective of the puzzle is to partition the grid into pentominoes called blocks.
The number in each cell must be equal to the number of edges of that cell that
are borders of pentominoes (including the outer boundary of the grid) [14]. See
Fig. 1.

Determining whether a given Five Cells puzzle has a solution has been proved
to be NP-complete [9].

1.1 Zero-Knowledge Proof

We are interested in constructing a zero-knowledge proof (ZKP) for Five Cells,
which allows a prover P to convince a verifier V that P knows a solution of the
puzzle without revealing any information about it. Formally, a ZKP is an inter-
active protocol between P and V , where both of them are given a computational
problem x, but only P knows its solution w. A ZKP has to satisfy the following
three properties.
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Fig. 1. An example of a Five Cells puzzle (left) and its solution (right)

1. Completeness: If P knows w, then V accepts with high probability. (Here,
we consider the perfect completeness property where V always accepts.)

2. Soundness: If P does not know w, then V rejects with high probability.
(Here, we consider the perfect soundness property where V always rejects.)

3. Zero-knowledge: V obtains no information about w, i.e. there exists a prob-
abilistic polynomial time algorithm S (called a simulator) that does not know
w but has an access to V , and the outputs of S follow the same probability
distribution as the ones of the real protocol.

The concept of a ZKP was introduced by Goldwasser et al. [7] in 1989. In the
past decade, many researchers have been focusing on constructing physical ZKPs
using portable objects such as a deck of cards and envelopes. These protocols
have benefits that they require only objects easily found in everyday life and
do not require computers. They also allow external observers to verify that the
prover truthfully executes the protocol (which is a challenging task for digital
protocols). Moreover, these protocols have didactic values and can be used to
teach the concept of a ZKP to non-experts.

1.2 Related Work

Physical card-based ZKP protocols for many logic puzzles have been developed in
the recent years, including Sudoku [8,23,29], Nonogram [4,20], Akari [1], Takuzu
[1,12], Kakuro [1,13], KenKen [1], Makaro [2,28], Norinori [5], Slitherlink [11],
Juosan [12], Numberlink [25], Suguru [15], Ripple Effect [26], Nurikabe [16],
Hitori [16], Bridges [27], Masyu [11], Heyawake [16], Shikaku [24], Usowan [18],
Nurimisaki [17], ABC End View [6,22], Ball sort puzzle [21], and Goishi Hiroi
[22].

1.3 Our Contribution

In this paper, we propose two physical ZKP protocols for Five Cells with perfect
completeness and soundness using a deck of cards.
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Most of the paper will cover our first protocol, which combines many existing
protocols to construct each block on the grid in a straightforward way. The most
important part is the optimization of the protocol. We develop a color shifting
protocol, which enables P to gradually color a graph while maintaining that no
two adjacent vertices have the same color without revealing any information
about the coloring. This technique reduces the number of required cards in the
protocol from quadratic to linear in the number of cells, and it can also be used
in other ZKP protocols related to graph coloring.

In Appendix A, we describe our second protocol, which takes a completely
different approach from the first one. It uses a newly developed printing protocol
to directly put each block on the grid. The number of required cards in the
second protocol is also linear in the number of cells, but is asymptotically lower
than that of the first one.

2 Verifying Connected Area

First, P needs to convince V that each block is a pentomino, i.e. consists of
exactly five cells connected to each other horizontally or vertically. The following
tools and subprotocols are necessary for this phase.

2.1 Cards

Each card used in our protocol has a non-negative integer on the front side. All
cards have indistinguishable back sides denoted by ? .

For 1 ≤ y ≤ q, define Eq(y) to be a sequence of q cards, all of them being 0
s except the y-th leftmost card being a 1 , e.g. E4(2) is 0 1 0 0 . Also, define
Eq(0) to be a sequence of q 0 s, e.g. E4(0) is 0 0 0 0 . We may sometimes
stack the cards in Eq(y) into a single stack.

2.2 Pile-Shifting Shuffle

A pile-shifting shuffle [30] shifts the columns of a matrix of cards by a uniformly
random cyclic shift (see Fig. 2). It can be implemented in real world by putting
the cards in each column into an envelope and then applying several Hindu cuts
(taking some envelopes from the bottom and putting them on the top) to the
pile of envelopes [32].

Note that each card in the matrix may be replaced by a stack of cards, as
long as each stack in the same row has the same number of cards.

2.3 Chosen Pile Cut Protocol

Suppose there is a sequence of q face-down stacks A = (a1, a2, ..., aq), where each
stack has the same number of cards. A chosen pile cut protocol [10] allows P to
select a desired stack ai (to use in other protocols) without revealing the index
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Fig. 2. A pile-shifting shuffle on a 4 × 5 matrix

Fig. 3. A 3 × n matrix M constructed in Step 1 of the chosen pile cut protocol

i to V . The protocol also reverts the sequence A back to its original state after
P finishes using ai.

In the chosen pile cut protocol, P performs the following steps.

1. Construct the following 3 × q matrix M (see Fig. 3).
(a) In Row 1, publicly place the sequence A.
(b) In Row 2, secretly place a face-down sequence Eq(i).
(c) In Row 3, publicly place a sequence Eq(1).

2. Turn over all face-up cards and apply the pile-shifting shuffle to M .
3. Turn over all cards in Row 2. Locate the position of the only 1 . A stack in

Row 1 directly above this 1 will be the desired stack ai.
4. After finishing using ai, place ai back in M at the same position.
5. Turn over all face-up cards and apply the pile-shifting shuffle to M again.
6. Turn over all cards in Row 3. Locate the position of the only 1 . Shift the

columns of M cyclically such that this 1 moves to Column 1. The sequence
A is now reverted back to its original state.

2.4 Sea Formation Protocol

A sea formation protocol [16] allows P to convince V that an area in an m × n
grid consists of t cells that are connected to each other horizontally or vertically,
without revealing any other information about the area. A technique similar to
the one in this protocol will be implicitly used in our main protocol.

The idea of this protocol is that P first colors all cells with color 1. Then,
for each of the t cells in the given area, P will change its color from color 1 to
color 2 one cell at a time, each time selecting a cell adjacent to some cell selected
earlier.
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A cell with color c is represented by a sequence Ek(c) for a fixed k ≥ 2. First,
P publicly places an Ek(1) on every cell in the grid. To handle edge cases where
the selected cell is on the grid boundary, P also publicly appends a row and a
column of “dummy stacks” Ek(0)s to the bottom and to the right of the grid.
Then, turn all cards face-down. We now have an (m + 1) × (n + 1) matrix of
stacks (see Fig. 4).

Fig. 4. The way P appends dummy stacks to a 3 × 4 grid

If we arrange all (m + 1)(n + 1) stacks in the matrix into a single sequence
A = (a1, a2, ..., a(m+1)(n+1)), starting at the top-left corner and going from left
to right in Row 1, then from left to right in Row 2, and so on, we can locate
exactly where the four neighbors of any given stack are. Namely, the stacks
on the neighbor to the left, right, top, and bottom of a cell containing ai are
ai−1, ai+1, ai−n−1, and ai+n+1, respectively. Hence, P can apply the chosen pile
cut protocol to select a desired neighbor without revealing which one (since the
chosen pile cut protocol preserves the cyclic order of the input sequence).

In the sea formation protocol to verify an area of size t, P performs the
following steps.

1. Apply the chosen pile cut protocol (for (m + 1)(n + 1) stacks) to select a
desired Ek(1).

2. Reveal the selected stack that it is an Ek(1) (otherwise V rejects) and replace
it with an Ek(2).

3. Perform the following steps for t − 1 iterations.
(a) Apply the chosen pile cut protocol (for (m + 1)(n + 1) stacks) to select a

desired Ek(2).
(b) Reveal the selected stack that it is an Ek(2) (otherwise V rejects).
(c) Pick the four neighbors of the selected stack and apply the chosen pile

cut protocol (for four stacks) to select a desired neighbor.
(d) Reveal the selected neighbor that it is an Ek(1) (otherwise V rejects) and

replace it with an Ek(2).

Observe that in each iteration, the “sea” of cells with color 2 expands by one
cell, while all cells with color 2 remain connected to each other horizontally or
vertically. Therefore, after t − 1 iterations, V is convinced that there is an area
of t cells with color 2 in the grid that are connected to each other.
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3 Verifying Border Condition

Also, P needs to convince V that the number in each cell is equal to the number
of edges of that cell that are borders of blocks. Note that this condition means
if a cell contains a number x, then exactly 4 − x of its four neighbors (including
the “dummy neighbors” outside the grid) must be in the same block as that cell.
The following tools and subprotocols are necessary for this phase.

3.1 Enhanced Matrix

Starting from a p × q matrix of cards, publicly place cards 1 , 2 , ..., q
from left to right on top of Row 1; this new row is called Row 0. Then, place
cards 2 , 3 , ..., p from top to bottom (starting at Row 2) to the left of Column
1; this new column is called Column 0. This modified matrix is called a p × q
enhanced matrix (see Fig. 5).

Fig. 5. A 4 × 5 enhanced matrix

3.2 Double-Scramble Shuffle

To perform a double-scramble shuffle [25] on a p × q enhanced matrix, first turn
all cards face-down. Then, rearrange Columns 1, 2, ..., q (including Row 0) by
a uniformly random permutation (which can be implemented in real world by
putting the cards in each column into an envelope and scrambling all envelopes
together). After that, leave Row 1 as it is and rearrange Rows 2, 3, ..., p (including
Column 0) by a uniformly random permutation unknown to all parties.

3.3 Rearrangement Protocol

A rearrangement protocol [25] reverts an enhanced matrix back to its original
state. To perform the rearrangement protocol on a p × q enhanced matrix, first
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apply the double-scramble shuffle to the matrix. Then, turn over all cards in
Row 0 and rearrange the columns such that each card with number i will be
in Column i. Analogously, turn over all cards in Column 0 and rearrange Rows
2, 3, ..., p accordingly.

3.4 Neighbor Counting Protocol

Suppose there are p sequences Eq(y1), Eq(y2), ..., Eq(yp) of cards, with 1 ≤ y1 ≤ q
and 0 ≤ yi ≤ q for each i = 2, 3, ..., p. A neighbor counting protocol [25] allows
P to show to V the number of indices i ≥ 2 such that yi = y1 without revealing
any other information about the sequences.

In the neighbor counting protocol, P performs the following steps.

1. Construct a p × q matrix with each Row i (i = 1, 2, ..., p) consisting of the
sequence Eq(yi).

2. Place cards in Row 0 and Column 0 to make the matrix become a p × q
enhanced matrix M .

3. Apply the double-scramble shuffle to M .
4. Turn over all cards in Row 1. Locate the position of the only 1 . Suppose it

is at Column j.
5. Turn over all cards in Column j (except Row 0). Count the number of 1 s

besides the one in Row 1. This is the number of indices as desired.
6. Turn over all face-up cards and apply the rearrangement protocol to M .

4 Putting Together

Let b = mn/5 be the number of blocks in the Five Cells grid. Let B2, B3, ..., Bb+1

be the blocks in the grid.1 The idea of our protocol is that P initially colors all
cells with color 1. Then, for each i = 2, 3, ..., b+1, P will apply the sea formation
protocol to change the color of each cell in Bi from color 1 to color i.

After that, for each cell with a number x written on it, P will apply the
neighbor counting protocol to verify that exactly 4 − x of its neighbors have the
same color as that cell.

The formal steps of our protocols are as follows.
Initially, P publicly places an Eb+1(1) on every cell in the grid. P also publicly

appends a row and a column of dummy stacks Ek(0)s to the bottom and to the
right of the grid. Then, P turns all card face-down. We now have an (m + 1) ×
(n + 1) matrix of stacks.

In the first phase (to verify the connected area), for each i = 2, 3, ..., b + 1, P
performs the following steps.

1. Apply the chosen pile cut protocol (for (m + 1)(n + 1) stacks) to select a
desired Eb+1(1) in block Bi.

1 We intentionally start the indices at 2 so that our protocol will be more intuitive.
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2. Reveal the selected stack that it is an Eb+1(1) (otherwise V rejects) and
replace it with an Eb+1(i).

3. Perform the following steps for four iterations.
(a) Apply the chosen pile cut protocol (for (m + 1)(n + 1) stacks) to select a

desired Eb+1(i) in block Bi.
(b) Reveal the selected stack that it is an Eb+1(i) (otherwise V rejects).
(c) Pick the four neighbors of the selected stack and apply the chosen pile

cut protocol (for four stacks) to select a desired neighbor in block Bi.
(d) Reveal the selected neighbor that it is an Eb+1(1) (otherwise V rejects)

and replace it with an Eb+1(i).

Now V is convinced that the grid is partitioned into b disjoint blocks, each
consisting of exactly five cells.

In the second phase (to verify the border condition), for each cell with a
number x written on it, P performs the following steps.

1. Pick a sequence of cards on that cell. Call this sequence Eb+1(y1).
2. Pick the four neighbors of that cell (including dummy neighbors if that cell

is on the grid boundary). Call these sequences Eb+1(y2), Eb+1(y3), Eb+1(y4),
and Eb+1(y5).

3. Apply the neighbor counting protocol on the sequences Eb+1(y1),
Eb+1(y2), ..., Eb+1(y5) to show that the number of indices i ≥ 2 such that
yi = y1 is 4 − x (otherwise V rejects).

Now V is convinced that each number satisfies the border condition of the
puzzle. If both verification phases pass, then V accepts.

Our protocol uses (b+3)(m+1)(n+1)+b+13 = Θ(bmn) = Θ(m2n2) cards.

5 Optimization

Our protocol in Sect. 4 requires Θ(m2n2) cards, which is quadratic in the number
of cells, making it impractical to implement in real world. Therefore, we will
modify our protocol to reduce the number of required cards to linear in the
number of cells.

The key idea is that P does not need to color the blocks with as many as
b colors. If we view each block as a vertex and two vertices have en edge if
the corresponding blocks touch each other horizontally or vertically, then the
resulting graph is a planar graph. Using an appropriate algorithm such as the
ones in [3,31], P can color this graph with five colors in linear time such that no
two adjacent vertices have the same color.2 Note that this coloring is known to
only P but not V (as V must not know the structure of the graph).

An extra step to add is that, during the sea formation protocol, when coloring
a block Bi with color c, P has to show that none of the cells in Bi is adjacent

2 Although there is a polynomial time algorithm to 4-color any planar graph [19], the
algorithm is very complicated and runs in quadratic time, making it impractical.
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to a cell in another block with the same color c. To accommodate this, let the
five colors used in P ’s 5-coloring be colors 3, 4, 5, 6, and 7. When coloring a
block Bi, P first changes color of each cell in Bi from color 1 to color 2, and at
the same time applies the neighbor counting protocol to show that none of its
neighbor has color c. After all cells in Bi become color 2, P applies the chosen
pile cut protocol five times, each time changing color of a cell with color 2 to
color c. Note that a cell with color j is represented by a sequence E7(j).

However, this modified protocol has a major problem: it is not zero-
knowledge. Since P reveals the color of each block, V will know the number
of blocks having each color and thus will gain some information about the struc-
ture of the graph. For example, if P colors the blocks with only three colors,
then V will gain information that the graph is 3-colorable.

We can prevent this by making the colors dynamic in a cyclic order: 7 →
6 → 5 → 4 → 3 → 7. Before P starts coloring each new block, the colors of all
blocks will be shifted by a random cyclic shift known only to P . By doing this,
V will gain no information about the number of blocks with each color, while
the property that adjacent blocks must have different colors is still preserved.

We introduce the following subprotocol to shift the colors cyclically.

5.1 Color Shifting Protocol

A color shifting protocol shifts the colors of all cells in a cyclic order 7 → 6 →
5 → 4 → 3 → 7 by r steps for a uniformly random r ∈ {0, 1, 2, 3, 4} known only
to P . For instance, if r = 1, then all cells with color 7 will become color 6, all
cells with color 6 will become color 5, and so on.

In the color shifting protocol, P performs the following steps.

1. Secretly choose a uniformly random integer r ∈ {0, 1, 2, 3, 4}.
2. Construct the following 5 × (m + 1)(n + 1) + 1 matrix M .

(a) In Row 1, secretly place a sequence E5(r + 1).
(b) In each Row i (i = 2, 3, ..., (m + 1)(n + 1) + 1), publicly place a sequence

consisting of five rightmost cards taken from from a sequence on each cell
in the Five Cells grid.

3. Apply the pile-shifting shuffle to M .
4. Turn over all cards in Row 1. Locate the position of the only 1 . Shift the

columns of M cyclically such that this 1 moves to Column 1.
5. Place cards in Row 2, 3, ..., (m + 1)(n + 1) + 1 back to their corresponding

cells.

Note that this protocol shifts the color of each cell by r steps if it has color
3, 4, 5, 6, or 7; on the other hand, if a cell has color 0, 1, or 2, its color will not
change.

5.2 Optimized Protocol

The formal steps of the optimized protocol are as follows.
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Initially, P publicly places an E7(1) on every cell in the grid. P also publicly
appends a row and a column of dummy stacks E7(0)s to the bottom and to the
right of the grid. Then, P turns all card face-down. We now have an (m + 1) ×
(n + 1) matrix of stacks.

In the first phase, for i = 2, 3, ..., b + 1, P performs the following steps.

1. Apply the color shifting protocol and announce that P will color a block Bi

with color c ∈ {3, 4, 5, 6, 7}.
2. Apply the chosen pile cut protocol (for (m + 1)(n + 1) stacks) to select a

desired E7(1) in block Bi.
3. Reveal the selected stack that it is an E7(1) (otherwise V rejects) and replace

it with an E7(2).
4. Pick the four neighbors of the cell in Step 3 (including dummy neighbors if

that cell is on the grid boundary). Apply the neighbor counting protocol on
a sequence E7(c) and the four selected sequences to show that none of these
four sequences is E7(c) (otherwise V rejects).

5. Perform the following steps for four iterations.
(a) Apply the chosen pile cut protocol (for (m + 1)(n + 1) stacks) to select a

desired E7(2) in block Bi.
(b) Reveal the selected stack that it is an E7(2) (otherwise V rejects).
(c) Pick the four neighbors of the selected stack and apply the chosen pile

cut protocol (for four stacks) to select a desired neighbor in block Bi.
(d) Reveal the selected neighbor that it is an E7(1) (otherwise V rejects) and

replace it with an E7(2).
(e) Pick the four neighbors of the cell in Step 5(d) (including dummy neigh-

bors if that cell is on the grid boundary). Apply the neighbor counting
protocol on a sequence E7(c) and the four selected sequences to show that
none of these four sequences is E7(c) (otherwise V rejects).

6. Perform the following steps for five iterations.
(a) Apply the chosen pile cut protocol (for (m + 1)(n + 1) stacks) to select a

desired E7(2) in block Bi.
(b) Reveal the selected stack that it is an E7(2) (otherwise V rejects) and

replace it with an E7(c).

Note that in Steps 2 to 5, P changes the color of all cells in Bi from color 1
to color 2, while also verifying that none of them is adjacent to a cell with color
c. Then, in Step 6, P changes the color of all cells in Bi from color 2 to color c.

In the second phase, the optimized protocol works exactly the same way as in
the original protocol in Sect. 4 (except the size of the matrix). If both verification
phases pass, then V accepts.

The optimized protocol uses 9(m + 1)(n + 1) + 26 = Θ(mn) cards, which is
linear in the number of cells.

6 Proof of Correctness and Security

We will prove the perfect completeness, perfect soundness, and zero-knowledge
properties of the optimized protocol.
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Lemma 1 (Perfect Completeness). If P knows a solution of the Five Cells
puzzle, then V always accepts.

Proof. Suppose P knows a solution of the puzzle. In P ’s solution, P picks a
5-coloring of the blocks such that adjacent blocks always have different colors.

Consider the first phase for each block Bi. After applying the color shifting
protocol, suppose that the color of Bi according to P ’s 5-coloring becomes color
c. Since the color shifting protocol only shifts the colors in a cyclic order 7 →
6 → 5 → 4 → 3 → 7, the property that adjacent blocks must have different
colors is still preserved. Therefore, none of the cell in Bi is adjacent to a cell
with color c, so the first phase will pass.

Now consider the second phase for each cell α with color c and with a number
x. Since P ’s solution is correct, exactly x edges of α are borders of blocks,
meaning that exactly x of α’s neighbors are in adjacent blocks (or are dummy
cells) and thus cannot have color c. Therefore, exactly 4−x of α’s neighbors are
in the same block and thus have color c, so the second phase will pass.

Hence, we can conclude that V always accepts. �

Lemma 2 (Perfect Soundness). If P does not know a solution of the Five
Cells puzzle, then V always rejects.

Proof. We will prove the contrapositive of this statement. Suppose that V
accepts, meaning that the coloring phase passes for every iteration, and the
verification of the border condition passes for every numbered cell.

Consider each iteration of the first phase. In Steps 2 to 5, P selects five cells
with color 1 that are connected horizontally or vertically, and changes them to
color 2. P also shows that none of these cells is adjacent to a cell with color c.
After that, in Step 6, P selects five cells with color 2 and changes them to color
c. As the cells that have been colored in previous iterations must have color 3,
4, 5, 6, or 7, and the cells that have not been colored must have color 1, the only
cells with color 2 are the exact five cells P selected in this iteration. Therefore,
at the end of this iteration, a new block of five connected cells with color c that
is not adjacent to any other block with color c is formed.

After b iterations, the grid is now partitioned into b blocks, each consisting of
five cells. Since the color shifting protocol only shifts the colors in a cyclic order
7 → 6 → 5 → 4 → 3 → 7, the property that adjacent blocks must have different
colors is still preserved.

Now consider the second phase for each cell α with color c and with a number
x. Since the verification passes, exactly 4 − x of α’s neighbors must have color
c. However, cells in adjacent blocks (or dummy cells) cannot have color c, which
means these 4 − x cells must be in the same block as α. Therefore, exactly x
edges of α are borders of blocks. Since the verification passes for every numbered
cell, the border condition must hold for every numbered cell.

Hence, we can conclude that P knows a correct solution of the puzzle. �

Lemma 3 (Zero-Knowledge). During the verification, V obtains no infor-
mation about P ’s solution.
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Proof. We will prove that the interaction between P and V can be simulated by
a simulator S that does not know P ’s solution.

First, we will prove the zero-knowledge property of the three subprotocols
used in our main protocol: the chosen pile cut protocol in Sect. 2.3, the neighbor
counting protocol in Sect. 3.4, and the color shifting protocol in Sect. 5.1. In
these subprotocols, it is sufficient to show that all distributions of cards that are
turned face-up can be simulated by S.

– In Steps 3 and 6 of the chosen pile cut protocol, the 1 has an equal probability
to be at any of the q columns (due to the pile-shifting shuffles), so these two
steps can be simulated by S.

– In Step 4 of the neighbor counting protocol, the 1 has an equal probability
to be at any of the q columns (due to the double-scramble shuffle), so this
step can be simulated by S.

– In Step 5 of the neighbor counting protocol, suppose there are t 1 s besides
the one in Row 1 (t is public information). The order of Rows 2, 3, ..., p is
uniformly distributed among all possible permutations (due to the double-
scramble shuffle). Hence, all t 1 s have an equal probability to be at any of
the

(
p−1
t

)
combinations of rows, so this step can be simulated by S.

– In Step 4 of the color shifting protocol, the 1 has an equal probability to
be at any of the five columns (as r is uniformly selected from {0, 1, 2, 3, 4} at
random), so this step can be simulated by S.

Now consider our main (optimized) protocol.

– In Step 1, 5(e) and 6(b), the information V receives solely depends on
the value of c. However, c has an equal probability to be any element of
{3, 4, 5, 6, 7} (due to the color shifting protocol), so this step can be simu-
lated by S.

– In Steps 3, 5(b), 5(d), and 6(b), there is only one deterministic pattern of the
cards that are turned face-up, so these steps can be simulated by S.

Hence, we can conclude that V obtains no information about P ’s solution.
�

7 Future Work

We constructed a card-based ZKP protocol for Five Cells, and also developed an
optimization technique to reduce the number of required cards in our protocol
from quadratic to linear in the number of cells.

Some existing card-based ZKP protocols for other logic puzzles, such as the
one for Numberlink [25], require the number of cards quadratic in the number
of cells. These protocols have a common theme that it involves partitioning a
grid into several parts (where the number of parts can be linear in the number
of cells) and coloring each part with a color different from each other. Therefore,
the number of cards on each cell is also linear in the number of cells (due to the
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encoding rule in Sect. 2.1), resulting in the total number of cards quadratic. A
future work is to apply our optimization technique to reduce the total number
of cards in these protocols from quadratic to linear.

A Alternative ZKP Protocol for Five Cells

For the sake of completeness, we also provide an alternative ZKP protocol for
Five Cells. This protocol takes a completely different approach from our first
protocol. It is based on the fact that there are only Θ(1) different types of pen-
tomino. Namely, there are 63 of them.3 Furthermore, inside each pentomino, a
number in each cell according to the border condition of Five Cells is fixed, which
is exactly the number of edges of that cell that are borders of the pentomino.

In this protocol, P first creates 63 templates, one for each type of pentomino.
A template consists of a 5 × 5 matrix of card. In each template, a cell inside the
pentomino is represented by a card with a number equal to the number of edges
of that cell that are borders of the pentomino, while a cell outside the pentomino
is represented by a 5 (see Fig. 6).

Fig. 6. Templates of the X-shaped pentomino and the P-shaped pentomino

The idea of this protocol is that P initially places a 5 on each cell in the
Five Cells grid. Then, P applies the following printing protocol to “print” each
pentomino from a template onto the grid one by one for b times.

3 A pentomino obtained by rotating or reflecting another pentomino is considered a
different one.
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A.1 Printing Protocol

Suppose we have a template of a pentomino, and another 5 × 5 matrix of cards
from the Five Cells grid. A printing protocol verifies that an area from the grid
corresponding to the pentomino is initially empty, then prints the numbers inside
the pentomino from the template onto that area.

In the printing protocol, P performs the following steps.

1. Place each card from the template on top of each corresponding card from
the grid, creating 25 stacks of two cards.

2. Perform the following steps for five iterations.
(a) Apply the chosen pile cut protocol (for 25 stacks) to select a desired stack.
(b) Reveal the bottom card of the stack that it is a 5 (otherwise V rejects).
(c) Swap the top card and bottom card of that stack.

3. Remove the top cards of all stacks and reveal that they are all 5 s (otherwise
V rejects).

A.2 Main Protocol

The formal steps of the protocol are as follows.
Initially, P publicly places a 5 on every cell in the grid. To handle edge

cases, P also publicly appends four rows and four columns of “dummy cards” 6
s to the bottom and to the right of the grid. Then, P turns all card face-down.
We now have an (m + 4) × (n + 4) matrix of cards.

In addition, P prepares 63 templates of all 63 types of pentomino and lets V
verify that the templates are correct (otherwise V rejects).

For i = 2, 3, ..., b + 1, P performs the following steps.

1. Apply the chosen pile cut protocol (for (m+4)(n+4) stacks) to select a 5×5
area containing block Bi. (To be precise, P actually selects just the top-left
corner cell of the area, and the rest will follow as the chosen pile cut protocol
preserves the cyclic order).

2. Apply the chosen pile cut protocol (for 63 stacks) to select a template of a
pentomino with the same type as block Bi. Apply the printing protocol on
the selected template and the selected area to print numbers onto block Bi.

3. Reconstruct a template that has been used and replenish the pile of templates
with it. Let V verify again that all 63 templates are correct (otherwise V
rejects). Note that V does not know which template has been used.

Finally, P reveals all cards on the cells that contain a number (in the original
Five Cell puzzle). V verifies that the numbers on the cards match the numbers
on the cells (otherwise V rejects). If all verification steps pass, then V accepts.

While this protocol also uses Θ(mn) cards, the number of required cards
is only 4mn + Θ(m + n), which is asymptotically better than that of our first
protocol.

Acknowledgement. The author would like to thank the anonymous reviewers who
kindly suggested the idea of the alternative protocol in Appendix A.
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Abstract. We present Testudo, a new FFT-less SNARK with a near
linear-time prover, constant-time verifier, constant-size proofs and a
square-root-size universal setup. Testudo is based on a variant of Spar-
tan [28]–and hence does not require FFTs–as well as a new, fast multi-
variate polynomial commitment scheme (PCS) with a square-root-sized
trusted setup that is derived from PST [25] and IPPs [9]. To achieve
constant-size SNARK proofs in Testudo we then combine our PCS open-
ings proofs recursively with a Groth16 SNARK. We also evaluate Testudo
and its building blocks: to compute a PCS opening proof for a polynomial
of size 225, our new scheme opening procedure achieves a 110x speed-up
compared to PST and 3x compared to Gemini [6], since opening computa-
tions are heavily parallelizable and operate on smaller polynomials. Fur-
thermore, a Testudo proof for a witness of size 230(≈1GB) requires a setup
of size only 215 (≈tens of kilobytes). Finally, we show that a Testudo vari-
ant for proving data-parallel computations is almost 10x faster at verifying
210 Poseidon-based Merkle tree opening proofs than the regular version.

1 Introduction

Succinct Non-Interactive Arguments of Knowledge (SNARKs) have been a pro-
lific area of research in the last decade: a SNARK allows a prover to prove to
a verifier that a certain (non-deterministic) computation F has been performed
correctly, or more specifically that there exists a witness w such that y = F (x,w)
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where x is a public input. The crucial property of SNARKs is that the size of
the proof and the verification time should be short, i.e., sublinear in the size of
the computation F and of the witness w. Otherwise a simple proof would be to
send w and have the verifier recompute F (x,w). Additionally, SNARKs can be
zero-knowledge, i.e., they do not reveal any information about w.

SNARKs are evaluated according to various performance metrics where the
three most important ones are (1) the time it takes the prover to generate a
proof, (2) the size of the proof, and (3) the time it takes the verifier to validate a
proof. There are various design trade-offs that can be explored to optimize those
metrics and an essential distinguishing factor that impacts performance are the
preprocessing phases of SNARK systems.

On the one end of the spectrum, there is, for example, the Groth16
SNARK [18] which produces proofs consisting of only 3 group elements and
which has a verification that is independent of the complexity of F , only requir-
ing the evaluation of a few pairings. This makes Groth16 essentially optimal in
terms of proof size and verifier time but it comes at the expense of a super-
linear overhead in prover time and a function-specific trusted setup, the latter
of which is a serious drawback in practice. On the other end are (transparent)
SNARKs that do not require a trusted setup [5,8,32] at all but they tend to
have larger proofs and verifier times, e.g., at least logarithmic in the size of the
witness. Finally, there are (universal) SNARKS which offer a compromise, as
they permit smaller proofs in comparison to transparent systems at the cost of a
single setup that is universal enabling them to prove any circuit up to a certain
size [19]. However, these schemes are still suboptimal as they have slower provers
than Groth16 [12], which becomes particularly evident for large circuits [34],
and they do not have constant size proofs or verification times. Finally, all of
the schemes with a trusted setup produce a linear-size common reference string
(CRS) which is particularly problematic for large circuits (again), as the CRS
has to be downloaded, stored, and moved into RAM at proving time. For exam-
ple, Filecoin [21] uses Groth16 for circuits of size ≈230 but producing a trusted
setup for this size was practically infeasible. As a workaround, provers work with
(sub-)circuits of size ≈227 and generate ≈10 proofs per (large) circuit.

In summary, all of these observations led us to the following research question:

Can we design a SNARK with a small universal trusted setup, constant
size proofs and verification time, and a fast prover?1

1.1 Contributions

In this section we present our main contributions together with an informal
overview of the techniques used to achieve them.

Testudo: Near-Linear Time Prover with Succinct Verification. To achieve
this goal, we start our design from Spartan [28] a sumcheck-based argument
requiring only field arithmetic (e.g. much faster that its point counterpart) and

1 To maximize backward compatibility to already deployed systems, we require that
our SNARK system works with R1CS-based circuits.
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a single multilinear polynomial opening. The original Spartan is a transparent
scheme which relies only on discrete based log curves and transparent polyno-
mial commitment schemes, giving substantially larger proof sizes and verification
times (≈√

N). To improve on those, the main idea is to have a Groth16 prover
verifying the Spartan proof. Below we describe the technical challenges of this
approach, but one important thing to note here is that in order to obtain a
ZK-SNARK it is sufficient to run the (much simpler and more efficient) non-
ZK version of Spartan since the outer Groth16 proof will hide any information
possibly leaked by the non-ZK inner Spartan proof.

Embedding the verification of a Spartan-based SNARK in a Groth16 circuit
presents various implementation challenges. The sumcheck component of the
proof operates only on field elements and requires the use of a hash function to
make it non-interactive via Fiat Shamir. Field operations can be natively encoded
in R1CS constraints and we adapted our codebase to use Poseidon, a SNARK
friendly hash function, having the advantage of a more efficient representation in
a circuit. However, things get more complicated for writing the R1CS constraints
for the verification of the polynomial commitment opening, since it requires point
arithmetic which, if naively encoded in the circuit, would massively increase the
number of constraints by multiple orders of magnitude. This issue would be
amplified by the relative large size of Spartan’s original commitment’s proof size
and verification – O(

√
N) – which can potentially be reduced if we leverage using

a different PCS with a trusted setup.
Why the name Testudo? Testudo was a type of battle formation that

ancient Rome adopted, where its soldiers operated “under the hood” of their
shields. Testudo, the proof scheme, is similar: a Spartan prover working under
the hood of Groth16.

Testudo-Comm: New Multivariate Polynomial Commitment Scheme. To
reduce the size of the PCS opening, we devise a new polynomial commitment
scheme based on PST [25] and inner pairing product [9] that avoids the use of
FFTs. Testudo, as Spartan, considers circuits of size N = 2n where the polyno-
mial representation of the circuit has n variables, n is logarithmic and so N will
be linear in the size of the circuit. The high level idea is to express the coefficients
of the witness multivariate polynomial from Spartan as a square matrix of size√

N ×√
N . To commit to this polynomial, the prover commits to each row of the

matrix using PST, leading to a vector �A of size
√

N . Then the prover commits
to �A using the MIPP commitment in [9] (e.g., a pairing product between com-
mitments and random base) to create the final commitment T - a single group
element. To open, the prover carefully performs PST and MIPP opening on

√
N

sized polynomials with many operations in parallel. Both the MIPP and PST
part operate on

√
N sized polynomials.

Since the 2 opening operations can be done in parallel we obtain a consider-
able speedup in practice (about 2 orders of magnitude faster) than PST, even
though it requires heavier operations like log N pairings to create the combined
commitment. Moreover, when comparing with Gemini [6], we estimate our open-
ing procedure to be 3x faster for large N such as 225, where [6] is likely faster
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for small sizes, with the additional cost that it requires to perform FFTs for
practical deployment.

Usage of 2-Chain Curves for Efficient Verification. To enable verifying
group operations in a circuit, we use the standard approach of running Spartan
over a 2-chain curve (such as BLS12-377) where group elements can be encoded
as field elements in a companion curve over which the Groth16 prover is then
implemented. For backwards compatibility reason, we also explored the possi-
bility to run Testudo on curves without a companion curve (such as BLS12-381,
which is currently used by Filecoin proofs).

Aggregation. Additionally, we show how Testudo proofs can be aggregated.
Since the outer layer is a Groth16 proof, we can use standard aggregation tools
such as SnarkPack [16] to aggregate several Groth16 proofs together. Another
option is to aggregate proofs at the inner level and then run a single Groth16
proof on top of the aggregated inner proofs.

Note that an interesting point of this design is that the Groth16 prover can be
outsourced to more powerful machines or a “prover-as-a-service” infrastructure.
Indeed, if the “Spartan” prover ran the sumcheck and the commitment opening,
then resulting proof already hides the witness thanks to the zero knowledge
property of Spartan. As a consequence, more powerful machine can aggregate
many of these “semi” proofs inside one Groth16 proof, without ever seeing the
witness, similar to how Snarkpack works. This settings has practical implications
in terms of deployment that we believe are worth exploring.

Analysis and Experimental Results. As explained in the body of the paper,
our SNARK avoids the use of FFT altogether and obtains a nearly linear-time
prover2. In practice, we show that:

– Our polynomial commitment scheme has a commitment time comparable to
PST while producing opening proofs at two order of magnitude faster (at the
cost of larger proof sizes).

– Our experimental results show that for data parallel circuits, we can estimate
Testudo to run more than ≈5x to ≈10x faster than the fastest Groth16 imple-
mentation (i.e., Bellperson [4]), depending on the size of the small subcircuit.
For example, if the sub-circuit is of size 215, as an upper bound to a circuit
verifying a Poseidon based Merkle Tree opening proofs with 32 layers, then
Testudo can verify 210 such proofs ≈9.7x faster than the Groth16 equivalent.

1.2 Related Work

The literature on SNARKs is very large and we refer the reader to Thaler’s
monograph [30] for a comprehensive survey. In this section we focus on a few
works that are relevant to Testudo.
2 Our prover runs N multi-exponentiations of size N , which is roughly O(N λ

log N
)

group operations with λ > log N for security reason.
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We were inspired to use a 1-level recursion with Groth16 verifying a faster
inner SNARK by the work of Belling et al. [3] where the verification of a GKR
proof [17] for hash computations is outsourced to a Groth16 prover. Concurrently
to our efforts, a similar approach was also taken in the ZKBridge paper [31],
where the verification of a Virgo [32] proof is outsourced to a Groth16 prover.
Because Virgo is also GKR-based, the underlying SNARK in either case is known
to be efficient for large “parallel” computations. We believe we are the first to
apply this approach to a general purpose SNARK like Spartan.

When it comes to universal trusted setup proofs, many systems today do
not use R1CS but rather “custom gates” (sometimes also called Plonkish arith-
metization), and apply SNARKs such as Plonk [15] (or alternatives such as
Hyperplonk [11]) to the resulting constraint systems. The use of “custom gates”
makes a comparison to pure R1CS-based schemes not immediate. We are still
working on achieving meaningful comparisons but we estimate that Testudo is
competitive with approaches that do use custom gates. We point out that many
applications (including our main motivating one – Filecoin proofs) are already
encoded as R1CS systems, and therefore it is very useful to have an efficient
SNARK with universal trusted setup that can be used off-the-shelves.

Our new PCS Testudo-Comm leverages ideas from [16] and [9] to reduce the
size of the trusted setup for the KZG univariate polynomial commitment [20]
to square-root size from linear. We adapted them to achieve the same reduction
for the PST commitment. We note that, as far as we know, we are the first to
implement these techniques. We also point out that the reduction of the trusted
setup size comes at the expense of larger opening proofs: however in our case
that drawback is “absorbed” by the outer Groth16 proof, which compresses the
final proof down to constant.

The work in [6] presents a generic transformation to turn a univariate poly-
nomial commitment into a multilinear one. In Sect. 4 we discuss why we believe
using Testudo-Comm is a better choice for us.

2 Preliminaries

We assume the reader is familiar with the definitions of R1CS, Polynomial Com-
mitment Schemes and SNARKs.

2.1 Notation

We assume we have cyclic groups G1,G2,GT of order q generated by g and
equipped with a bilinear pairing e : G1 ×G2 → GT . We denote by p(x1, . . . , xn)
a multilinear polynomial with n variables. For s1, . . . , sn ∈ Zq we write �s =
(s1, . . . , sn) ∈ Z

n
q . Let i ∈ {0, 1}n, we can denote i = (i1 . . . in) as ij ∈ {0, 1}. We

denote the value
∏

j s
ij
j by �s i
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2.2 Cryptographic Assumptions

The security of our constructions holds in the Generic Group Model (GGM) [29].
In Sect. 4 and Sect. 5 we rely on the security of the underlying building to claim
that of our protocols. The security of these building blocks can be argued from
assumptions implied by the GGM. In more detail: • for PST we require the
(μ + 1)δ-Strong Diffie-Hellman and the (δ, μ)-Extended Power Knowledge of
Exponent assumption (see [33] and discussion in [10, E.1]). • for MIPP we require
a variant of the (q,m)-Auxiliary Structured Single Group Pairing (see [9]).

2.3 PST Polynomial Commitments

We refer the reader to Sect. 2.1 for the notation we use in this section. In Fig. 1 we
describe the PST polynomial commitment modified to work over the Lagrange
basis [25].

Fig. 1. The PST commitment scheme in the Lagrange basis.

Note that if n = log N where N is the size of the R1CS, then the trusted
setup is linear in the size of the circuit, and that verification of the opening
requires O(n) (i.e., logarithmic in the size of the circuit) work.
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Fig. 2. The Sumcheck Protocol

2.4 Sumcheck

Let p(x1 . . . , xn) be a multilinear3 polynomial in n variables defined over a field
F. Consider the value a =

∑
i∈{0,1}n p(i), i.e., the sum of the value of p on all

the vertices of the Boolean hypercube. This computation takes N = 2n time and
the sumcheck protocol [22] described in Fig. 2, is a way for a Prover to convince
a Verifier that a is correct in O(n) time, plus a single query to the polynomial p
on a random point in F

n.

2.5 Spartan Overview

In this section we review Spartan [28], a transparent SNARK for R1CS. For
space reasons, ours is a very high level review and the reader is referred to [28]
for details.

Recall that a R1CS instance (F, A,B,C, x,N,m) is satisfiable if there exists
a witness w ∈ F

N−|x|−1 such that

(A · z) ◦ (B · z) = (C · z)

where z = (x, 1, w), · is the matrix-vector product, and ◦ is the Hadamard
(entry-wise) product.

The first step in Spartan is to encode the matrices A,B,C and the vector z
via their multilinear polynomial extensions. Let n = log N . For the matrix A con-
sider the unique multilinear polynomial in 2n variable Ã(t1, . . . , tn, u1, . . . , un)
such that Ã(i1, . . . , in, j1, . . . , jn) = A(i, j) where (i1, . . . , in) is the binary
expansion of i and (j1, . . . , jn) is the binary expansion of j. The polynomi-
als B̃, C̃ are defined similarly, as well as the polynomial Z̃(u1, . . . , un) where
Z(i1, . . . , in) = z(i).

3 We only care about multilinear polynomials for Testudo but the sumcheck protocol
can be run on any multivariate polynomial.
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The satisfiability condition is then equivalent to the following polynomial
F (t1, . . . , tn) being zero on all the points of the Boolean hypercube

F (�t) =

⎛

⎝
∑

�u∈{0,1}n

Ã(�t, �u)Z̃(�u)

⎞

⎠ ·
⎛

⎝
∑

�u∈{0,1}n

B̃(�t, �u)Z̃(�u)

⎞

⎠ −
∑

�u∈{0,1}n

C̃(�t, �u)Z̃(�u)

Consider now the multilinear extension4 of F (·), that is the polynomial
Q(�s) =

∑
�t∈{0,1}n F (�t)eq(�t, �s) where eq(�t, �s) =

∏n
i=1 siti + (1 − si)(1 − ti) is

the multilinear polynomial which is equal to 1 if and only if �t = �s and otherwise
is equal to 0.

Since F (�t) is zero on the Boolean hypercube, Q(�s) is then identical to the
zero polynomial by Schwartz-Zippel lemma. This condition can be verified by
testing Q(�s) on a random point. Spartan is a way to check this evaluation in
an efficient way. More precisely, to verify the satisfiability of the original R1CS
Spartan performs the following steps:

1. Proves that Q(�r) = 0 for a random point �r ∈ F
n. Note that due to the

definition of Q(·) this can be done via a sumcheck protocol.
2. The above sumcheck protocol reduces to proving that σ = F (�ρ) for a random

�ρ ∈ F
n. Due to the definition of F this reduces to proving the value of three

summations
∑

�u∈{0,1}n Ã(�ρ, �u)Z̃(�u),
∑

�u∈{0,1}n B̃(�t, �u)Z̃(�u), and
∑

�u∈{0,1}n C̃(�t, �u)Z̃(�u). Each one of them can also be proven via a sumcheck,
and in Spartan these 3 sumchecks are aggregated into a single one.

3. Finally the above sumchecks reduce to proving the values of the multilinear
extensions on random points, i.e., the values of Ã(�rx, �ry), B̃(�rx, �ry), C̃(�rx, �ry),
and Z̃(�ry).

The final point is achieved via the use of polynomial commitments. The prover
commits to the polynomials Ã, B̃, C̃ (these are called computation commit-
ments since they encode the computation), and Z̃ (witness commitment, since
it encodes the witness).

A major contribution of Spartan is to show how to efficiently commit to
Ã, B̃, C̃ to leverage their sparseness (recall that in R1CS matrices have N2 entries
but only m are non-zero). This requires a non-trivial use of memory checking
techniques, and introduces a substantial overhead which can be avoided in prac-
tice for uniform circuits where the Verifier can evaluate Ã, B̃, C̃ on their own.

Spartan’s focus was to obtain a transparent SNARK, and therefore it uses a
multidimensional Pedersen’s commitment together with an inner product proof
to implement the polynomial commitment. Because we are already using a
trusted setup for the Groth16 layer, we changed the polynomial commitment
to a different one which also has a trusted setup.

4 Such a polynomial of degree at most 1 in each variable always exists for any function
f mapping {0, 1} → F [30].
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3 A Generalized MIPP Protocol

In order to obtain a multilinear PCS with O(
√

N) trusted setup, in this section
we show how to adapt ideas from Section 6 of [9] which were applied to the KZG
univariate PCS. We generalize it to work with multivariate polynomials and the
PST commitment.

Changes from Original MIPP. The protocol in this section has two changes
when compared to the one in [9](we are referring specifically to MIPPk). First,
we generalize MIPP to work on multivariate rather than univariate polynomials.
Second, we show that the techniques also work when the polynomial is repre-
sented in the Lagrangian basis.

The Generalized MIPP Protocol: Given a vector �A = [A1, . . . , AM ] of group
elements in G1, the IPP commitment to �A with a CRS �h = [h1, . . . , hM ] of group
elements in G2 is

T = CM( �A,�h) =
M∏

i=1

e(Ai, hi).

Let m = log M . In our case, hi = hχi(�t) for i ∈ {0, 1}m, where �t = [t1, . . . , tm]
is a random secret vector of field elements and h is a generator of G2.

Our generalized MIPP protocol allows a prover to prove that given a public
vector of field elements �b = [b1, . . . , bm], we have that

U = 〈 �A, �y〉 = �A �y =
M∏

i=1

Ayi

i ,

where the vector �y is defined as �y = [y1, . . . , yM ] with yi = χi(�b) for i ∈ {0, 1}m,
where χi(X) is the ith Lagrange polynomial defined as

χi(X1, . . . , Xm) =
∏

j:ij=1

Xj ·
∏

j:ij=0

(1 − Xj).

This proof has size and verification time O(m), which means that the verifier
needs only to read the vector �b and not construct the entire vector �y, which is
only implicitly defined.

The protocol is described in Fig. 3.
Note that there will be m levels of recursion. Also note that the Verifier

cannot compute the vectors �A′, �y′, �h′ since they are too big. Only the prover will
compute those and provide the final value at the end of the recursion to the
Verifier. We show later how the Verifier can check that they are correct. The
Verifier can compute T ′, U ′.

Properties of the Construction. We make the following claims about the
construction above which are easily proven by induction.

Claim: T ′ = CM( �A′, �h′)
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Fig. 3. Generalized MIPP Protocol.

Claim: U ′ = 〈 �A′, �y′〉
Claim: The Verifier will work only in O(m) = O(log M) time
How can the verifier compute the vectors �y′, �h′ without reading them? The

trick is that they are “structured”. It is easy to see by induction that at the
end of the recursion the value ŷ (the collapsed version of �y′ at the end of the
recursion) is equal to (1 − b1 + x−1

1 b1), . . . , (1 − bm + x−1
m bm) which the verifier

can compute in O(m) time on their own.
Similarly the value ĥ (the collapsed version of �h′ at the end of the recursion)

can be seen to be equal to ĥ = h
∏

i(1−ti+x−1
i ti).

Note that ĥ is a PST commitment of a multilinear polynomial in m variables.
The Verifier does not compute it itself (it would be too expensive) but receives
it at the end of the recursion from the Prover. To check that it is correct, the
verifier computes the polynomial in a random point and it asks the prover to
open this PST commitment. The verification time of this construction is O(m).

4 Testudo-Comm: Our PCS with Square Root Trusted
Setup

Now we show how to reduce the size of the PST trusted setup to O(
√

N) using
the generalized MIPP in Sect. 3. See Fig. 4.

Theorem 1. Testudo-Comm (Fig. 4) is secure in the GGM.

Efficiency. Our commitment scheme improves in proving time trading against
proof size and verification time. The key observation for proving efficiency is that,
even though prover has to do more expensive operations (pairings, Gt multiplica-
tions etc.), it does them on a

√
N sized polynomial, which makes a large difference

in practice for large N . For example, in Gemini [6], for 225, it takes at least 36 s to
create an opening proof [23] while we evaluate it takes only 11 s using Testudo’s
commitment (see Sect. 7.1). However, on smaller N , the Gemini transformation is
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Fig. 4. Testudo-Comm

likely to outperform Testudo’s commitment because of the time required to per-
form the pairings and Gt commutations in our case.

We summarize the efficiency properties of the prover in Table 1 assuming a
circuit of size N = 2n and security parameter λ. We then compare the efficiency
for the verifier in Table 2.

– PST: To open, the prover computes for each of the n rounds, a polynomial divi-
sion of size 2n−1 leading to a O(2n−1)-sized polynomial division complexity.
While this operates on field elements, we found out that this division, because
it doesn’t use FFTs, is actually a bottleneck on large sizes (such as 225).

– Gemini: To open, the prover computes for each of the n rounds, 1 KZG
openings of size 2n−i and 2 of size 2n−i−1, leading to a complexity of
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Table 1. Comparison of Prover Efficiency

Scheme Setup Size Committing Opening

Testudo O(
√
N),G1, O(

√
N)G1, 6

√
NG1,

O(
√
N)G2 O(

√
N) pairings, O(

√
N)G2,

O(
√
N)Gt 4

√
N pairings,

4
√
NGt

PST O(N)G1 O(N)G1 2NG1

O(N) poly division

Gemini O(N)G1 O(N)G1 4NG1

Table 2. Comparison of Verifier Efficiency

Scheme Proof Size Verification Time

Testudo ≈ log(N)/2(Gt + G1 + G2) ≈ log(N)/2(Gt + G1 + G2)

PST O(log N)G2 O(log N)

Gemini 3nG2 8npairings, 3nG2, 3nG1

O(2N +N +N) = O(4N)G1 scalar multiplications. For verification, it there-
fore requires performing O(8n) pairings (or 4n pairing checks).

– Testudo: To open, the prover must compute:
• A PST commitment to the q(X) polynomial, so O(

√
N)G1

• A MIPP opening proof, consisting of n rounds where prover computes (a)
O(2

√
N/2i)G1 scalar multiplication to compute the reduced vectors, and

(b) O(2
√

N/2i)Gt and pairings operations to compute the commitment
to each reduced vectors. This leads to O(4

√
N)G1 and O(4

√
N)Gt +

pairings.
• Two PST opening proofs, each of size O(

√
N), one on G1 and one on G2

Remark 1 (Distributed trusted setup). Our construction requires a trusted setup
for the polynomial commitment of a specific form. It needs to encode in particular
a secret tuple of points and their (multivariate) monomial evaluation. We can
obtain an MPC for such a setup by straightforwardly adapting the techniques
from [7]. We will detail these techniques in the full version of the paper.

Remark 2 (Proof Size). The proof size for our commitment scheme are 8x bigger
at 225 than PST. To reduce the size, we can compress the Gt elements on the
torus as in [24]. This could potentially reduce by half the proof size, bringing
it to the same order of magnitude as a PST opening proof. Note however, that
proof sizes do not matter much in the Testudo SNARK as they are verified by
another Groth16 proof on top.

5 Testudo: Our Construction

At this point we recap the general structure of Testudo. Let A,B,C be the input
R1CS of size N .
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Trusted Setup. We assume that a trusted party (or a distributed multiparty
computation protocol, aka ceremony) generates the trusted setup for Testudo-
Comm (which is of size

√
N) and the Groth16 trusted setup for an R1CS corre-

sponding to the verification algorithm of the Spartan sumchecks and the Testudo-
Comm opening proofs (this R1CS has size O(log N). This trusted setup is inde-
pendent of A,B,C and therefore universal.

Computation Commitments. As in Spartan, in a preprocessing stage, the
prover encodes A,B,C as sparse polynomials Ã, B̃, C̃ and commits to them
via polynomial commitments (computational commitments). We note that for
uniform circuits (e.g., data-parallel, with many sub-circuits repeating in regu-
lar patterns), this step is not necessary or much reduced in complexity, since
the verifier can efficiently compute Ã, B̃, C̃ on their own or is only required to
compute the computational commitment for the subcircuit.

Witness Commitments. In the online phase, the prover computes w̃, a mul-
tilinear extension of the witness w and commits to it using Testudo-Comm. Note
that the polynomials are of size O(N) here, corresponding to the number of
R1CS constraints.

Prover. The Testudo prover:

– Executes the Spartan prover to prove the satisfiability of A,B,C (see
Sect. 2.5), with the only difference that it uses Testudo-Comm as the under-
lying polynomial commitment.

– Produces the appropriate openings of the Testudo-Comm PCS.
– Produces and outputs a Groth16 proof that it knows the above modified
Spartan proof.

Verifier. The verifier checks the output Groth16 proof and accept/rejects
accordingly.

Theorem 2. Assuming that Testudo-Comm is an extractable PCS, and Groth16
is a SNARK, then Testudo is a SNARK.

Informally the proof follows from the fact that if Groth16 is a SNARK we
can extract a “modified Spartan” proof – modified to use Testudo-Comm ass
the underlying PCS. But if Testudo-Comm is extractable, then we know that we
can extract the witness (Spartan is a SNARK as long as the underlying PCS is
extractable).

As with all recursive SNARKs we have to heuristically assume that we can
instantiate the random oracle in Spartan to a very specific hash function (in
our case Poseidon) and not lose security. This is because the code of the hash
function has to be embedded in the outer Groth16 proof.
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6 Practical Considerations

Choice of Curves. The original version of Spartan (the starting point for the
Testudo) uses a custom version of curve25519-dalek, which provides an efficient
implementation of a prime-order Ristretto group [26], an abstraction that facil-
itates implementations of prime-order groups with strong security guarantees.
However, as this elliptic curve does not support pairings, composing the original
Spartan with Groth16 is not possible and, thus, we had to find a pairing-friendly
alternative. We opted for BLS12-377 combined with BW6-761 because they rep-
resent the most efficient pair that further supports 2-chaining of pairing-equipped
elliptic curves [1,13,14] which is required for our design. See appendix in the full
version for more details.

Testudo for Data-Parallel Computation. We can make Testudo particu-
larly efficient for data-parallel computation. Consider a relation R∗ composed
of several repetitions of the same relation R(�x(1), �w(1)) ∧ · · · ∧ R(�x(K), �w(K))(
�x(1), . . . , �x(K)

)
We are able to amortize the proving costs related to the wiring

of the circuit whenever the circuit is of this form.
In the Spartan lingo the building block for proving the wiring of the circuit

refers to a computation commitment. A computation commitment is a polyno-
mial commitment opening to polynomials encoding the structure of the circuit.
If we apply Testudo naively to such a relation we would need to open a compu-
tation commitment of size roughly K|w|. Instead, we modify our building blocks
appropriately to leverage the structure of the circuit and we require computa-
tion commitments whose opening grows only linearly in the size of the small
subrelation R. We expand on this construction in the full version.

6.1 Parallelization and Aggregation of Testudo Proofs

We observe that this framework enables aggregation of proofs at different levels,
each with their pros and cons, but all being compatible with each other, result-
ing in a system that can scale to large instances in practice because it enables
parallelization of the proof generation.

Aggregation at Spartan Level: Assume a prover is running different sum-
checks + PCS openings in parallel using different witnesses, on different
machines (otherwise, the prover should use the data parallel version that requires
the whole witness to be present). In this setting, aggregating the verification
of the sumcheck can be done either via (a) aggregating the different Groth16
sumcheck-verifier proofs together using Snarkpack-like constructions, or (b) hav-
ing one Groth16 proof that verifies multiple instances of the sumcheck. Aggre-
gation for the polynomial commitment scheme could be done by the prover (a)
at the beginning, by committing to a random linear combination of the different
multilinear extensions of the witnesses and (b) by opening at a random point this
combined polynomial. This would require communication between the machines
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to aggregate the polynomials together; given it’s a single round of communica-
tion, we believe it can still be a useful for a practical deployement inside a cluster
of machines.

Aggregation at the Groth16 Level: Instead of verifying a single sumcheck
instance Groth16 proof and a single PCS opening proof, the outer proof can
verify multiple of those. We need further work to estimate the complexity of
the final outer circuit but our current estimation (4M constraints for the outer
circuit) seem to indicate that it is possible to verify in the order of 5–10 proofs
together in a reasonable timeframe, depending on the application.

Note that this aggregation does not require knowledge of the witness and
therefore can be done by more expensive prover machines.

Aggregation on Top: Because Testudo’s final proof is a Groth16 proof, one
can use Snarkpack to efficiently pack thousands of such proofs together. Similar
to previous category, this aggregation level does not require knowledge of the
witness and therefore can be done by more expensive prover machines.

7 Implementation and Evaluation

7.1 Implementation

We have a working Testudo implementation5 that features the sumcheck verifier
proof and our Testudo commitment scheme. We based our work on the Spar-
tan [28] codebase, which has been adapted to use the Arkworks [2] framework
to enable support for any pairing based curves. We also have started an effort
on parallelizing the Spartan codebase, although there are still many low hang-
ing fruits to optimize for. On top of this, we implemented a wrapper around a
BLS12-381 library that supports GPU operations and released it open source on
Github (we do not provide a link in order to keep anonymity of submission).

7.2 Testudo Commitment

We first evaluate our new multivariate commitment scheme compared to the
standard PST algorithm. This has been run over a c5a.12xlarge AWS instance,
i.e., 48 cores with 96 threads. We note that the structure of the commitment
allows for heavy use of parallelism, which we exploited in our implementation.

Figure 5 shows that the Testudo commitment maintains the performance of
the PST commitment and, for large circuit instances, it is 2 orders of magni-
tude faster for opening by significantly reducing the size of the MSM required.
Indeed, it operates on

√
N size MSM. However, verification is slower, due to

the logarithmic number of pairings required to verify the inner pairing prod-
uct argument proof. There are still many low-hanging fruits in the codebase to
speed up verification such as batching the pairing operations in MIPP and PST.
5 The current version of the repository is available at https://github.com/

cryptonetlab/testudo.

https://github.com/cryptonetlab/testudo
https://github.com/cryptonetlab/testudo
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Moreover, we continue to avoid the use of FFT due to the usage of multilinear
polynomials

Verification Speed: As mentioned above, there are many low hanging fruits for
optimizing the codebase. For example, to speed up verification, one can bundle
the MIPP and the PST part together (e.g. run the pairings check all at once).
Currently both MIPP and PST codebase are quite separate.

Proof Size: The Testudo Commitment brings an increase to the proof size in
comparison to the simple PST by a factor of 3 but we ensure this is not an issue
for the communication cost through recursion. Using the BLS12-377, we are able
to efficiently verify commitment openings inside a Groth16 circuit as outlined in
Sect. 6.1.

7.3 Testudo Groth16 Constraints

In this section, we estimate the number of R1CS constraints necessary to verify
the core of Testudo (the sumchecks, the PCS opening and the computation
commitment). Figure 6 shows the number of constraints for each parts according
to the user circuit size (e.g. the circuit that the user writes on Testudo). In this
estimation, we:

– Use Testudo Commitment as the multilinear PCS scheme for the computation
commitment part of Spartan. In the original design, it uses Hyrax.

– Thanks to the previous point, we can now do a random linear combination
of all the polynomials the prover must perform and having the prover only
compute a single Testudo Commitment opening proof

– We verify the core Spartan sumchecks (steps 2 and 3 in Sect. 2.5) and the
grand product sumchecks ([27, bottom of pg. 27]) from the computation
commitment inside the same Groth16 verifier that checks the sumcheck in
the satisfiability proof. This is possible since both are operating on the same
fields.

– Note that we need to verify a PST opening both on G1 and G2 during the
Testudo commitment (for the PST part and for the MIPP part respectively).

The biggest contributor of the R1CS constraints number is the MIPP part,
because it requires to compute log(N) Gt operations (exponentiation is almost
40k in the library we used). We expect this number to drastically go down by
roughly 30–50% with optimizations on Gt computations, such as using the torus
arithmetic version and endomorphisms optimizations [24].

7.4 Testudo on Data-Parallel Circuits

We have the necessary building blocks to estimate accurately the proving time
of data-parallel circuits (even though the implementation does not yet offer that
feature). Specifically, to estimate the time of proving for uniform circuits, we
need to add the time for
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Fig. 5. Comparison between the Testudo and PST commitment schemes. While the
time to compute a commitment is similar for Testudo and PST, see (a), we can see
in (b) that Testudo outperforms PST when opening a commitment for large circuit
sizes by almost two orders of magnitude. On the other hand, graph (c) shows that PST
is faster than Testudo by a factor of 2x which, however, can likely be addressed as
there are various straightforward ways to further optimize the Testudo code. Finally,
graph (d) shows that Testudo opening proofs are about one order of magnitude larger
than PST proofs, which, however, will not have any practical impact on the overall
sizes of Testudo SNARK proofs, as the opening proof will be ultimately verified by a
constant-size Groth16 proof.

– The first sumcheck on the full R1CS matrix (SC1)
– The second sumcheck on the small subcircuit (SC2)
– The Testudo commitment (TC) times on the full witness size - commitment

and opening combined
– The computation commitment time on the small subcircuit (CC)

We have benchmarked these data for two different subcircuit of size (a) 215

and (b) 220. The subcircuit corresponds roughly to the size of a Merkle Tree proof
verification circuit for 32 layers using either (a) Poseidon for 215 or (b) SHA256
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Fig. 6. Constraints for Groth16 verifier of Testudo Proof

Fig. 7. Individual cost of data parallel version of Testudo

Fig. 8. Cost of the data parallel version of Testudo vs Groth16

for 220 as the hash function. We’re estimating the proving time to repeat these
circuits to achieve overall a circuit of 225 constraints: subcircuit (a) is repeated
1024 times (i.e. verify 1024 Merkle Tree proofs), and subcircuit (b) is repeated 32
times. For these parameters, we show that our data parallel Testudo version can
be 9.7x faster for (a) and 4.3x faster for (b) than their Groth16 equivalent.
The improvement is expected to be even larger as the gap of constraints between
the subcircuit and the bigger circuit grows. As further work, we will compare
these improvement to SNARKs based on plonkish arithmetization, although we
are not aware of such speedups for other proof systems at this time (Figs. 7 and
8).
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Abstract. We construct a falsifiable set (non-)membership NIZK
Π∗ that is considerably more efficient than known falsifiable set
(non-)membership NIZKs. It also has a universal CRS. Π∗ is based on
the novel concept of determinantal accumulators. Determinantal primi-
tives have a similar relation to recent pairing-based (non-succinct) NIZKs
of Couteau and Hartmann (Crypto 2020) and Couteau et al. (CLPØ,
Asiacrypt 2021) that structure-preserving primitives have to the Groth-
Sahai NIZK. We also extend CLPØ by proposing efficient (non-succinct)
set non-membership arguments for a large class of languages.

Keywords: Commit-and-prove · non-interactive zero-knowledge · set
(non-)membership argument · universal accumulator

1 Introduction

In a set (non-)membership NIZK, the prover aims to convince the verifier that an
encrypted element χ belongs (does not belong) to a public set S. Fully succinct
(constant size and constant-time verifiable) set (non-)membership NIZKs have
many applications. Classical applications include anonymous credentials (one
has to prove that one has a valid credit card), governmental safelist (to pre-
vent money laundering), and e-voting (one has to prove that one is an eligible
voter). A non-membership NIZK can be used to prove that a key is not block-
listed. Set membership NIZKs are instrumental in ring signatures. Recently, set
(non-)membership NIZKs have gained popularity in cryptocurrencies. For exam-
ple, in Zcash, to validate a transaction that intends to spend a coin χ requires
one to check that χ is in the set UTXO (unspent transaction outputs).

When χ is public, one can use an efficient (universal) accumulator [5,7]. A
universal accumulator [11,12,15,18] can be reframed as a set (non-)membership
non-zk non-interactive argument system. Accumulator’s completeness and
collision-resistance (see Sect. 2) correspond directly to the completeness and
soundness of the set (non-)membership argument system but with public input.
To construct a set (non-)membership NIZK, one only needs to add a zero-
knowledge (ZK) compiler to the accumulator. Unfortunately, the ZK compiler is
quite complicated in existing constructions, resulting in set (non-)membership
NIZKs that are either not falsifiable or not sufficiently efficient.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Aly and M. Tibouchi (Eds.): LATINCRYPT 2023, LNCS 14168, pp. 352–374, 2023.
https://doi.org/10.1007/978-3-031-44469-2_18
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While the random oracle model, other idealized models (like the algebraic
group model), and non-falsifiable knowledge assumptions have been used suc-
cessfully in many practical schemes, they have also drawn severe criticism. See
the full version [20] for a longer discussion. Because of this, there has been an
enormous focus in the literature on constructing efficient non-falsifiable NIZKs.
The most famous such NIZK is GS (Groth-Sahai, [17]) which has been used since
then in many different applications, including (non-)membership NIZKs.

On the other hand, there is less of a qualitative distinction between differ-
ent falsifiable assumptions—as long as such assumptions have reasonably tight
security reductions in the AGM. All previous “falsifiable” accumulators are based
on relatively strong falsifiable q-type assumptions. Hence, we aim to construct
maximally efficient (non-)membership NIZKs under (possibly novel) falsifiable
computational assumptions. There are many non-falsifiable or random-oracle-
based set (non-)membership NIZKs; we do not compete with them, and thus we
omit almost any discussion.

Related Work. Many set membership NIZKs use either signature schemes or
accumulators. In a signature-based set membership NIZKs, the CRS includes
signatures of all set elements. The prover proves it knows an (encrypted) sig-
nature on the (encrypted) χ. Such NIZKs have several undesirable properties.
First, their CRS is non-universal1 (i.e., it depends on the set). A universal CRS is
important in practice since it allows one to rely on a single CRS to construct set
(non-)membership NIZKs for different sets. Second, assuming that |S| is poly-
nomial (and the complement of S has exponential size), it seems to explicitly
disallow the construction of set non-membership arguments.

We will concentrate on accumulator-based constructions since they do not
have these two problems. Recall briefly that a (CRS-model) universal accumula-
tor enables one, given a CRS crs, to construct a succinct (non-hiding) commit-
ment CS of the set S, such that one can efficiently verify whether χ ∈ S, given
crs, CS , χ, and a succinct accumulator argument ψ of (non-)membership.

In a typical accumulator-based set membership NIZK, the CRS contains set-
independent elements that are sufficient to compute the accumulator arguments
of (non-)membership. (This depends on the underlying accumulator, but impor-
tantly, the Nguyen accumulator [21] allows for that.) Thus, their CRS is univer-
sal. Since there is no need to add all accumulator arguments to the CRS, one
can hope to construct efficient accumulator-based set non-membership NIZKs.

Next, we will summarize the published falsifiable set-membership NIZKs. In
all cases S ⊂ Zp and hence χ ∈ Zp. Since the cited papers did not write down all
efficiency numbers, our efficiency comparison (see Table 1) is not 100% precise.

Belenkiy et al. (BCKL, [6]) construct a set-membership NIZK by first build-
ing a P-signature scheme [6]. They prove that a commitment opens to an element
whose signature the prover knows, using a Groth-Sahai NIZK [17]. Daza et al.
(DGPRS-GS, [16]) use the more efficient weak Boneh-Boyen (WBB) signature
1 We follow the literature by using “universal” both in universal accumulators (have a

non-membership argument) and universal CRS (does not depend on the language).
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scheme instead of the P-signature scheme. Since the WBB signature scheme is
not F -unforgeable [6,16] modifies it slightly. Using signature schemes means that
the CRS of BCKL and DGPRS-GS is non-universal. Daza et al. [16] also propose
a succinct set membership QA-NIZK (DGPRS-QA). However, their verifier’s
computation is Oλ(|S|); thus, it is unsuitable for our applications. In particu-
lar, all solutions in Table 1 have verifier’s computation Oλ(1). Hence, we omit
DGPRS-QA in the comparison.

Acar and Nguyen (AN, [3]) replace the signature scheme with the Nguyen
accumulator [21] and then use Groth-Sahai to prove that the prover knows an
accumulator argument. Due to the use of an accumulator, the AN NIZK has a
universal CRS; they also propose a set non-membership argument.

BCKL, AN, and DGPRS-GS rely on new (though falsifiable) q-type secu-
rity assumptions. The intuition is that the underlying signature schemes and
accumulators are proven to be only secure when the adversary returns χ as an
integer. In these NIZKs, χ is essentially encrypted, and the soundness reduction
can only recover a group version (say2, [χ]1) of χ. BCKL, AN, and DGPRS-GS
all modified underlying primitives to stay secure against adversaries that out-
put [χ]1. In each construction, this resulted in a new but falsifiable assumption.
Moreover, such a modification often introduces a noticeable loss of efficiency. We
describe all assumptions in the full version [20] for completeness.

Another drawback of the signature-based solutions is that it is unclear how
to define a universal argument that efficiently allows for non-membership proofs.
From the above solutions, only [3] (that does not rely on signatures) proposes a
set non-membership NIZK.

According to [6], BCKL’s prover executes 34 multi-scalar-multiplications ([6]
does not give separately the number of scalar-multiplications in G1 and G2) and
the verifer 68 pairings. Neither AN [3] nor Daza et al. [16] give any efficiency
numbers. The corresponding entries (marked with an asterisk) in Table 1 are
based on our estimations.

Most prior falsifiable set membership NIZKs are based on the Groth-Sahai
NIZK [17]. Recently, Couteau and Hartmann (CH, [13]) proposed a methodology
to transform a specific class of Σ-protocols to NIZKs. Intuitively, starting with a
Σ-protocol with transcript (a, e, z), CH puts [e]2 to the CRS and then modifies
the computation of z and the verifier’s algorithm to work on [e]2 instead of e.
The resulting NIZKs have a CRS consisting of a single group element.

Couteau et al. (CLPØ [14]) significantly extended the CH methodology.
They constructed efficient commit-and-prove NIZKs for many languages, includ-
ing (Boolean and arithmetic) Circuit-SAT. Importantly, [14] constructed effi-
cient NIZKs for languages that can be described by small algebraic branch-
ing programs. The CLPØ NIZK is secure under a new but natural assumption
CED (Computational Extended Determinant). Depending on the parameters,
CED can be either falsifiable or non-falsifiable. For many natural problems like
Boolean Circuit-SAT and set membership for poly-sized sets, CED is falsifiable.

2 We use the standard additive bracket notation for pairing-based setting. For example,
[χ]1 = χ[1]1, where [1]1 is a generator of G1.
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Table 1. Comparison of known fully succinct falsifiable set (non-)membership argu-
ments for univariate sets of size |S| ≤ q. Here, gι denotes the bit-length of an element
of Gι, mι denotes the cost of a scalar multiplication in Gι, m denotes the cost of a
scalar multiplication in either G1 or G2, and p denotes the costs of a pairing. The num-
bers with ∗ are based on our estimation when the original paper did not give enough
data. We give online computation, i.e., assuming precomputation. We only mention
non-standard assumptions; this excludes say SXDH.

Paper Belenkiy et al. [6] Acar-Nguyen [3] Daza et al. [16] This work (Fig. 7)

Building blocks

Primitive P-signature Nguyen acc. WBB signature determinantal acc

NIZK Groth-Sahai Groth-Sahai Groth-Sahai CLPØ

Assumptions TDH, HSDH EDSH GSDH DETACM, DETACNM

Structural properties

Universal CRS? ✗ ✓ ✗ ✓

Updatable CRS? ✗ ✗ ✗ ✓

Non-membership? ✗ ✓ ✗ ✓

Membership argument efficiency

|crs| (2q + 1)g1 + (q + 1)g2 (q + 5)g1 + 4g2* 5g1 + (q + 5)g2* (q + 1)g1 + 4g2

|π| 18g1 + 16g2 8g1 + 10g2* 10g1 + 8g2* 6g1 + 3g2

P computation 34m 16m1 + 16m2* 17m1 + 18m2* 8m1 + 6m2

V computation 68p 30p* 30p* 4p

Non-membership argument efficiency

|crs| ✗ (q + 5)g1 + 4g2* ✗ (q + 1)g1 + 4g2

|π| ✗ 11g1 + 16g2* ✗ 10g1 + 5g2

P computation ✗ 26m1 + 28m2* ✗ 14m1 + 10m2

V computation ✗ 46p* ✗ 5p

[13,14] compare their work to the Groth-Sahai NIZK, showing that in several
important use cases, their (falsifiable) NIZKs are more efficient than the Groth-
Sahai NIZK. In particular, an important difference between Groth-Sahai and
CH/CLPØ is that in the latter, all secret values are only encrypted in G1.
Because of this, the encrypted witness is often three times shorter in CLPØ
than in Groth-Sahai; see [13,14] for examples.

Our first main question is whether one can construct CLPØ-based set
(non-)membership NIZKs that are more efficient than the known falsifiable
NIZKs [3,6,16]. Moreover, Groth-Sahai-based NIZKs use specialized primitives
(structure-preserving signatures [2]) that are designed to allow for efficient
Groth-Sahai NIZKs. Our second main question is whether one can define a sim-
ilar class of primitives that allow for efficient CLPØ NIZKs.

Our Contributions. Since a universal accumulator is a non-zk (non-
)membership non-interactive argument system, one can construct efficient set
(non-)membership NIZKs by creating an efficient universal accumulator and
then using an efficient ZK compiler to build a NIZK. Our approach is to make
the latter part (ZK compiler) as efficient as possible without sacrificing the for-
mer part (accumulator) too much.
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Fig. 1. Our general blueprint for constructing efficient falsifiable NIZKs.

Differently from the previous work, we will ZK-compile the accumulator to a
CLPØ NIZK. We define a determinantal accumulator as a universal accumulator
with a structure that supports efficient ZK compilation to CLPØ. Determinan-
tal accumulators are related to but different from structure-preserving signa-
tures [2] that support efficient Groth-Sahai NIZKs. After that, we construct
AC∗, an updatable determinantal accumulator with efficient (non-)membership
arguments. For this, we follow CLPØ’s technique of using algebraic branching
programs. Based on AC∗, we then construct Π∗, a commit-and-prove, updatable
set (non-)membership NIZK with a universal CRS.

We emphasize that this results in a clear, modular framework for construct-
ing efficient falsifiable NIZKs: first, construct an efficient algebraic branching
program for the task at hand. Second, construct a determinantal accumulator
(or, in general, a non-zk non-interactive argument system). Third, use the effi-
cient CLPØ-inspired ZK compiler to achieve zero knowledge. See Fig. 1 for a
high-level diagram of the new approach.

We develop a general efficient technique that allows one to construct non-
membership NIZKs for a large class of languages where CLPØ only supported
membership NIZKs. We use this technique for AC∗ and Π∗, but it potentially
has many more applications. We show that CLPØ, in general, is amenable to a
batching technique that allows decreasing the verifier’s computation significantly.

The pairing-based setting is ubiquitous in contemporary public-key cryp-
tography. Any advancement in concrete efficiency in simple problems like set-
membership proofs is challenging. Our work demonstrates that the CH/CLPØ
framework gives concretely better results than the seminal Groth-Sahai frame-
work in this case. Importantly, this is the only known falsifiable framework that
improves on the Groth-Sahai. Because of that, we argue that it is important to
study different aspects of the CH/CLPØ framework.

Finally, in Sect. 7, we discuss using CLPØ to handle group elements.

Efficiency. In Table 1, we provide an efficiency comparison with some previously
proposed set (non-)membership NIZKs. In the common case when G2 elements
are twice longer than G1, the communication of Π∗ is ≈ 42% of the communi-
cation of [3]. Most impressively, the verifier has to execute 7 . . . 10 times fewer
pairings than in [3]. As a related contribution, we show that CLPØ is (extremely)
batching-friendly. Such an efficiency improvement over the best-known Groth-
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Sahai-based solution is quite remarkable. In the case of prover’s computation,
we have taken the standard approach and assumed that the accumulator argu-
ment ([q]1 in our case) is precomputed. This always makes sense if S is small
(then all accumulator arguments can be precomputed), but it is also common in
case S can be large. For example, in an anonymous credential system, one only
needs to compute the accumulator argument for its own credential. Moreover,
all signature-based solutions have precomputation built-in since the signatures
are in the CRS. We hence assume precomputation in all cases.

Notably, AC∗ and Π∗ have an updatable CRS. That is, it is possible to update
the CRS sequentially so that the soundness relies only on the honesty of at least
one of the updaters (or the original CRS creator). This partially eliminates the
undesirable need to trust the CRS creator. None of the previous falsifiable set
membership NIZKs (see Table 1) is updatable: this is caused by the use of (non-
updatable) signature schemes and Groth-Sahai NIZK. See [11,19] for work on
“transparent” accumulators that do not need a trusted CRS at all. We leave
it as another open problem to construct a transparent, efficient, falsifiable set
(non-)membership NIZK.

One can build more efficient set-membership arguments using (non-
falsifiable) zk-SNARKs, but the most efficient zk-SNARKs are not updatable.
While Π∗’s efficiency is comparable to that of most efficient updatable and uni-
versal zk-SNARKs, the latter are only known to be secure in the ROM.

Due to the lack of space, we postpone additional preliminaries, all proofs and
many details to the final version [20].

2 Preliminaries

An algebraic branching program (ABP) over a finite field Fp is defined by a
directed acyclic graph (V,E), two special vertices s, t ∈ V , and a labeling func-
tion φ. It computes a function F : Fν

p → Fp. Here, φ assigns to each edge in E a
fixed affine function in input variables, and F (X) is the sum over all s− t paths
(that is, paths from s to t) of the product of all the values along the path.

Ishai and Kushilevitz related ABPs to matrix determinants. Given an ABP
abp = (V,E, s, t, φ) computing F : Fν

p → Fp, we can efficiently (and determinis-
tically) compute a function IKF (χ) mapping an input χ ∈ F

ν
p to a matrix from

F
�×�
p , where � = |V | − 1, such that: (1) det IKF (χ) = F (χ), (2) each entry of

IKF (χ) is an affine map in a single variable χi, (3) IKF (χ) contains only −1’s in
the upper 1-diagonal (the diagonal above the main diagonal) and 0’s above the
upper 1-diagonal.

IKF is obtained by transposing the matrix you get by removing the column
corresponding to s and the row corresponding to t in the matrix adj(X)−I. Here,
adj(X) is the adjacency matrix for abp with adj(X)ij = x iff φ(i → j) = x and
adj(X)ij = 0 if there is no edge i → j. For example, assuming F (X) = X2 − X,
one can define an ABP with adj(X) =

(
0 X 0
0 0 X−1
0 0 0

)
and IKF (X) =

(
X −1
0 X−1

)
.

A bilinear group generator Pgen(1λ) returns p = (p,G1,G2,GT , ê, [1]1, [1]2),
where G1, G2, and GT are three additive cyclic (thus, abelian) groups of prime
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order p, Pι = [1]ι is a generator of Gι for ι ∈ {1, 2, T} with PT = [1]T :=
ê([1]1, [1]2), and ê : G1 × G2 → GT is a non-degenerate efficiently computable
bilinear pairing. We require the bilinear pairing to be Type-3; that is, we assume
that there is no efficient isomorphism between G1 and G2. We use the standard
additive “bracket” notation, writing [a]ι to denote aPι = a[1]ι for ι ∈ {1, 2, T}.
We denote ê([a]1, [b]2) by [a]1 • [b]2. Thus, [a]1 • [b]2 = [ab]T . We freely use the
bracket notation together with matrix notation; for example, if AB = C then
[A]1 • [B]2 = [C]T . We also define [A]2 • [B]1 := ([B]�1 • [A]�2 )

� = [AB]T .
We write A ≈λ B if the distributions A and B are computationally indistin-

guishable. Let �, k ∈ N, with � ≥ k, be small constants. In the case of asymmetric
pairings, usually k = 1. Let p be a large prime. A PPT-sampleable distribution
D�,k is a matrix distribution if it samples matrices A ∈ Z

�×k
p of full rank k. L1 is

the matrix distribution over matrices ( 1
a ), where a ←$Zp.

The XDH assumption in Gι holds relative to Pgen if for every PPT A,

Pr
[

b′ = b
p ← Pgen(1λ);σ, τ, ζ ←$Zp; b ←$ {0, 1};
b′ ← A([1, σ, τ, στ + bζ]ι)

]
≈λ 0 .

Let �, k ∈ N, and Dk be a matrix distribution. The Dk-(� − 1)-CED assump-
tion [14] holds in Gι relative to Pgen, if for all PPT A,

Pr

⎡
⎣

δ ∈ Z
(�−1)×k
p ∧ γ ∈ Z

�×k
p ∧

C ∈ Z
�×�
p ∧ (γ‖C)

(
D
δ

)
= 0∧

rk(C) = �

p ← Pgen(1λ), [D]ι ←$ Dk,
([γ,C]3−ι, [δ]ι) ← A(p, [D]ι)

⎤
⎦ ≈λ 0 .

CED may or may not be falsifiable, see [14] for a discussion.
Following [13,14], we will be only concerned with the case k = 1 and Dk = L1.

Then, (γ‖C)
(

D
δ

)
= 0 iff, after changing the sign of γ, C ( e

δ ) = γ.
In Elgamal, the public key is pk = [1‖sk]1, and Encpk(χ; �) ← (�[1]1‖χ[1]1 +

�[sk]1), where � ←$Zp. We denote the encryption of [χ]1 by Encpk([χ]1; �) =
(�[1]1‖[χ]1 + �[sk]1). To decrypt, one computes [χ]1 = Decsk([l]1) ← −sk[c1]1 +
[c2]1; the result [χ]1 of the decryption is a group element and not an integer.
Note that pk = Encpk(0; 1) and [0‖χ]1 = Encpk(χ; 0). As always, we denote
Encpk([a]1;�) := (Encpk([ai]1; �i))i. Elgamal is IND-CPA secure under the XDH
assumption.

2.1 Universal NIZK Arguments

Let {Dp}p be a family of distributions, s.t. each lp ∈ Dp defines a language Llp.
A universal NIZK Π for {Dp}p consists of six probabilistic algorithms:

Pgen(1λ): generates public parameters p that fix a distribution Dp.
Kgen(p, q): generates a CRS crs and a trapdoor td. Here, q is a public size

parameter (an upper bound of |S| in our case); we assume q is implicitly in
the CRS. We omit q if the CRS does not depend on it. We assume that any
group parameters are implicitly included in the CRS. We denote the sequence
“p ← Pgen(1λ); (crs, td) ← Kgen(p, q)” by (p, crs, td) ← Kgen(1λ, q).
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Com(crs, lp): Given a CRS crs and a language description lp ∈ Dp, outputs a
specialized CRS crslp. We assume that crslp implicitly contains lp. Com is
a deterministic algorithm that can be run by both the prover and the verifier.
(Com is also known as CRS specialization algorithm, indexer, or derive.)

P(crslp,x,w): Given a specialized CRS crslp and a statement x with witness
w, outputs an argument π for x ∈ Llp.

V(crslp,x, π): Given a specialized CRS crslp, a statement, and an argument,
either accepts or rejects the argument.

Sim(crslp, td,x): Given a specialized CRS crslp, a trapdoor td, and a statement
x, outputs a simulated argument for x ∈ Llp.

The CRS does not depend on the language distribution or language parameters.
However, Com (applied on public arguments) allows one to derive a specialized
CRS such that the verifier’s operation is efficient given crslp.

Π for {Dp}p is perfectly complete, if

Pr

⎡
⎣V(crslp,x, π) = 1

(p, crs, td) ←$Kcrs(1λ); lp ∈ Supp(Dp);
crslp ← Com(crs, lp);
(x,w) ∈ Rlp;π ←$P(crslp,x,w)

⎤
⎦ = 1 .

Π for {Dp}p is computationally sound, if for every efficient A,

Pr
[
V(crslp,x, π) = 1∧
x /∈ Llp

(p, crs, td) ←$Kcrs(1λ); lp ∈ Supp(Dp);
crslp ← Com(crs, lp); (x, π) ← A(crs, lp)

]
≈ 0 .

Π for {Dp}p is perfectly zero-knowledge, if for all λ, all (p, crs, td) ∈
Supp(Kcrs(1λ)), all lp ∈ Supp(Dp) and all (x,w) ∈ Rlp, the distributions
P(crslp,x,w) and Sim(crslp, td,x) are identical.

Let D be some finite domain; next, D = Zp. Let pk be an Elgamal public
key and S be a set of size S ∈ D≤q for fixed q = poly(λ). Let lp = (pk,S). In
the case of NIZKs for set membership and non-membership, we are interested
in the following complementary (commit-and-prove) languages:

Lsm
lp = { [ctχ]1 ∃χ, �χ such that Encpk([χ]1; �χ) = [ctχ]1 ∧ χ ∈ S } ,

L̄sm
lp = { [ctχ]1 ∃χ, �χ such that Encpk([χ]1; �χ) = [ctχ]1 ∧ χ /∈ S } .

Benaloh and de Mare defined accumulators in [7]. Universal accumulators [11,
12,18] allow non-membership arguments.

We define accumulators in the CRS model only. Thus, universal accumu-
lators are set (non-)membership NIZKs in the case the input χ is public.
That is, for lp = S, a universal (CRS-model) accumulator is a (non-zk) set
(non-)membership non-interactive argument system for the complementary lan-
guages Lacc

lp = S and L̄acc
lp = D \ S. The computation commitment algorithm

Com corresponds to the accumulator’s commitment algorithm that inputs a set
S and outputs its short commitment. A CRS-model accumulator can have a
trapdoor. However, since χ is public (and no zero-knowledge is required) then
the trapdoor is not used.
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Fig. 2. Nguyen’s universal accumulator ACCNguyen.

As all argument systems, a universal accumulator must satisfy completeness
and soundness properties. Because of the historical reasons, the latter is usually
known as collision-resistance.

A universal accumulator ACC must be perfectly complete: for (crs, td) ∈
Kgen(1λ), χ ∈ D, and S ∈ D≤q, V(crs,Com(crs,S), χ,P(crs,S, χ)) outputs
Member if χ ∈ S and NotMember if χ /∈ S.

Definition 1. Let ACC be a universal accumulator. ACC is collision-resistant [5]
if for all q = poly(λ) and PPT adversaries A,

Pr

⎡
⎢⎣

S ∈ D≤q ∧(
(χ /∈ S ∧ v = Member)∨

(χ ∈ S ∧ v = NotMember)

) p ← Pgen(1λ); (crs, td) ← Kgen(p, q);
(S, χ, ψ) ← A(crs);
v ← V(crs,Com(crs, S), χ, ψ)

⎤
⎥⎦ ≈λ 0 .

Nguyen [21] proposed a pairing-based CRS-model accumulator with D = Zp.
Damgård and Triandopoulos [15] and Au et al. [4] showed independently how to
make it universal by adding a non-membership argument.

In Fig. 2, we depict the resulting CRS-model universal accumulator, assuming
that S ∈ D≤q. Here, and in what follows, ZS(Σ) :=

∏
s∈S(Σ−s) is the vanishing

polynomial of S.

2.2 CLPØ NIZK

Since we build on CLPØ [14], we will give a lengthier description of their results.
Fix p ← Pgen(1λ) and define Dp := {lp = (pk, F )}, where (1) pk is a randomly
chosen Elgamal public key for encrypting in G1, and (2) F is a polynomial. The
simplest version of CLPØ is a set membership NIZK for the set being defined
as the set Z(F ) of zeros of the fixed polynomial F .

More precisely, let S = Z(F ) := {x : F (X) = 0} for a polynomial F . Fix
p ← Pgen(1λ). For a fixed Elgamal public key pk, let lp := (pk, F ). (Implicitly,
lp also contains p.) Let [ctχ]1 := Encpk([χ]1;�) = (Encpk([χi]1; �i))i. Define

Llp = {[ctχ]1 : ∃χ such that Decsk([ctχ]1) = [χ]1 ∧ χ ∈ Z(F )} . (1)
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Fig. 3. The commit-and-prove CLPØ NIZK Πclpø for Lpk,F .

Hence, Llp is a commit-and-prove language. For example, if F (X) = X2 − X,
then Lpk,F corresponds to the language of all Elgamal encryptions of Boolean
values under the fixed public key pk.

Let F (X) ∈ Zp[X] be a ν-variate polynomial. Let � ≥ 1 be an integer.
A matrix C(X) = (Cij(X)) ∈ Zp[X]�×� is a quasideterminantal represen-
tation (QDR, [14]) of F , if the following requirements hold. Here, C(X) =
(h(X)‖T (X)), where h(X) is a column vector.

Affine map: C(X) =
∑ν

k=1 P kXk + Q, where P k,Q ∈ Z
�×�
p .

F -rank: detC(X) = F (X).
First column dependence: For any χ ∈ Z(F ), h(χ) ∈ colspace(T (χ)). That

is, h(χ) = T (χ)w for some w.

The quasideterminantal complexity qdc(F ) of F is the smallest QDR size of F .
(Clearly, qdc(F ) ≥ deg(F ).) We always assume that the polynomial F in lp
satisfies qdc(F ) = poly(λ), that is, there exists a poly(λ)-size QDR C(X) of F .
[14] showed that such QDRs exist for many F -s.

In Fig. 3, we depict the commit-and-prove updatable universal CLPØ NIZK
Πclpø. Intuitively, the verifier checks that [ eδ ]2 • [C(ctχ)]1 = [I�]2 • [ctγ ]1 +
[z]2 • pk, where [C(ctχ)]1 :=

∑ν
k=1 P k · [ctχk

]1 +Q · Encpk(1; 0) encrypts C(χ).
Couteau et al. [14] did not use the terminology of commit-and-prove, universal,
and updatable NIZKs. Still, Πclpø satisfies these properties.

CLPØ is perfectly complete and perfectly zero-knowledge. It is computation-
ally (adaptive) sound under the L1-(� − 1)-CED assumption in G2 relative to
Pgen. See [14].

Couteau et al. [14] constructed a QDR IKF (X) for any polynomial F that can
be efficiently computed by an algebraic branching program (ABP). As proven
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Fig. 4. ABP abp for the F̄ (X , Xν+1) = F (X)Xν+1 − 1 and the matrix IKF̄ (X , Xν+1).

in [14], if abp = (V,E, s, t, φ) is an ABP that computes a ν-variate polynomial
F (X), then IKF (X) is a QDR of F with � = |V | − 1. In particular, qdc(F ) ≤
|V | − 1. This results in NIZKs for Lpk,F whenever F has a small ABP.

Optimized Verifier. As an independent contribution, we observe that the ver-
ifier can be batched by sampling η ←$F and then batching together all pairings
with the same G2 argument. It is evident from Fig. 3 that in this case, the verifier
needs to perform pairings (at most) with e, each coefficient of δ, [1]2, and each
coefficient of z. Moreover, pairings with different zi can also be batched together
since they will have related G1 elements. This results in at most � + 2 pairings.
On the other hand, a non-batched verifier may have to execute Θ(�2) pairings.

3 General Non-membership NIZK Argument System

For a set F of polynomials, let Z(F) be the set of common zeros of all Fi ∈
F . Next, we construct efficient (commit-and-prove, updatable, universal) non-
membership NIZKs for S = Z(F), given that for each Fi ∈ F , there exists a
small ABP that computes Fi. The modifications are at the level of ABP and
thus do not depend on the details of Πclpø. Since non-membership NIZKs have
their own applications [4,8–10], the current section has independent importance.

Assume F = {F}, where F (X) : F
ν
p �→ Fp is a polynomial that can be

computed by a small ABP abp = (V,E, s, t, φ). We construct a new ABP abp as
follows (see Fig. 4): we add to abp a new target vertex t̄ and two edges, s → t̄ and
t → t̄. We naturally extend φ to a new labeling function φ̄, such that φ̄(s → t̄) =
−1 and φ̄(t → t̄) = Xν+1, where Xν+1 is a new indeterminate. Let F̄ (X,Xν+1) :
F

ν+1
p �→ Fp, with F̄ (X,Xν+1) = F (X)Xν+1−1, be the polynomial computed by

abp. Clearly, if F (χ) = 0 for a concrete input assignment χ, then F̄ (χ, χν+1) =
−1 = 0 for all values of χν+1. On the other hand, if F (χ) = 0, then there exists
χν+1 = F (χ)−1, such that F̄ (χ, χν+1) = 0.

Thus, to obtain a non-membership NIZK for the algebraic set S = Z(F ), it
suffices to construct a membership NIZK for the algebraic set S̄ = Z(F̄ ). For
this, one can use Πclpø from Fig. 4 for the QDR IKF̄ . The resulting NIZK is
again secure under a CED assumption. Moreover, if the NIZK for F relies on a
falsifiable version of CED, then so does the NIZK for F̄ .

To show that χ = 0, we can run Πclpø with the QDR C̄(X,S) :=
(

X −1
−1 S

)
where in the honest case, S = 1/X. One can easily extend it to the proof that two
plaintexts χ1 and χ2 are unequal, by using the QDR C̄(X1,X2,S) :=

(
X1−X2 −1

−1 S

)
,

where in the honest case, S = 1/(X1 − X2).
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The argument length of the resulting NIZKs (including encryption of s but
not of χ or χi) is 6g1+3g2. They are based on a less standard and non-falsifiable
assumption (CED instead of SXDH) but are significantly more efficient than
Groth-Sahai-based constructions of [9,10]. In particular, the communication of
the NIZK of plaintext inequality of [9] consists of 15 elements of G1, 4 elements
of G2, and 2 elements of Zp. (The more efficient construction [8] works in the
random oracle model.)

Finally, consider the task of proving that an encrypted integer χ is non-
Boolean. In this case, one can define the QDR C{0,1}(X,S) :=

( X −1 0
0 X−1 −1

−1 0 S

)
.

Let F = {F1, . . . , Fν} for ν > 1. To obtain a set non-membership NIZK for
S = Z(F), we first construct an ABP that computes each F̄i (see the previous
subsubsection). Then, we construct an ABP that computes a polynomial F̄ (X),
s.t. F̄ (χ) = 0 iff F̄i(χ) = 0 for some i. Define F̄ (X) =

∏
F̄i(X), and define its

ABP as the concatenation of the ABPs for individual polynomials F̄i:
s ◦ ◦ ◦ tABP for F̄1(X) ABP for F̄2(X)

. . .
ABP for F̄n(X)

We then use Πclpø for the QDR IKF̄ from Fig. 4. The resulting NIZK is secure
under the CED assumption.

4 Determinantal Accumulators

Clearly, universal accumulator is a non-zk set (non-)membership non-interactive
argument system that possesses both membership and non-membership argu-
ments. It makes sense to construct a set (non-)membership NIZK by constructing
an accumulator and then adding a zero-knowledge layer to obtain privacy.

Both steps of the described blueprint can be expensive per se. We are inter-
ested in constructing a CLPØ-style set (non-)membership NIZK where the sec-
ond step is as simple as possible. To achieve this, we first reinterpret Πclpø.
We then use the obtained understanding to define and construct determinantal
accumulators that allow for a lightweight zero-knowledge layer. For the latter, a
determinantal accumulator must have a specific structure consistent with Πclpø’s
design.

Recall that in Πclpø [14], one rewrites the condition χ ∈ S as the condition
Fi(χ) = 0 for a set of polynomials {Fi}.3 After that, one constructs QDRs Ci(X)
for each Fi, such that detCi(X) = Fi(X). This step can be seen as linearization:
while Fi can be a high-degree polynomial, each entry of Ci is an affine map.
As typical in group-based cryptography, it is easier to solve linearized tasks.
After that, [14] proposes a technique of constructing QDRs (i.e., linearization
algorithm) by using algebraic branching programs.

Given the QDRs, Πclpø’s prover P aims to convince the verifier V that each
detCi(χ) is zero. Crucially, V has access only to encrypted [χ]1 but not to

3 In our new primitives, the set consists of only one polyomial. However, the framework
is valid in the more general case.



364 H. Lipmaa and R. Parisella

χ or even [χ]1. Since each entry of Ci is affine and the cryptosystem is addi-
tively homomorphic, V can compute an encryption of [Ci(χ)]1 given an encryp-
tion of [χ]1. Knowing sk, the soundness reduction decrypts ciphertexts, obtains
[Ci(χ)]1, and uses it to break CED. To preserve privacy, the verifier cannot
know [Ci(χ)]1 and thus also not detCi(χ).

In a non-zk CLPØ-style non-interactive argument system, we proceed as in
CLPØ, except that we do not encrypt any of the values. In particular, simi-
larly to the soundness reduction in Πclpø, V has access to [χ]1 and thus also to
[Ci(χ)]1. To be compatible with CLPØ, the verifier is not however given access
to detCi(χ) or even χ as integers. Given this, we must take additional care to
ensure the accumulator’s security.

4.1 Determinant Verification

The verifier needs to check efficiently that the determinant of a given matrix
Ci(χ) is zero. The main problem is that since the verifier sees [Ci(χ)]1 but not
Ci(χ), the verifier’s task is intractable. Next, we outline a straightforward but
non-satisfactory solution to this problem together with three modifications.

First, without any additional hints given to the verifier, we have an accu-
mulator with inefficient verification, where the verifier computes the discrete
logarithm of [Ci(χ)]1 to obtain Ci(χ). This might be fine in the NIZK since the
NIZK verifier does not have to perform the accumulator verification; instead,
the NIZK verifier checks (efficiently) the NIZK argument showing that the accu-
mulator verifier accepts. However, since also the soundness reduction does not
get any hints about Ci(χ), it will not be able to verify whether this results in a
non-falsifiable NIZK, as explained in [13,14].

Second, following [1], we can allow the prover to output as hints all partial
multiplications needed in the Leibniz formula for the determinant. In that case,
one can obtain a PPT verifiable accumulator and thus a NIZK based on falsi-
fiable assumptions. However, while PPT, it is concretely very expensive: if the
dimension of the matrix is large, the hint is potentially huge [1].

Moreover, since in the NIZK, one has to encrypt the matrix elements in both
groups, and use the less efficient DLIN encryption, see [14].

Third, we can use the undergraduate linear-algebraic fact that detC = 0 iff
there exists a non-zero vector x such that Cx = 0. We can utilize this fact by
outputting [x]2 as a hint to the verifier/soundness reduction. However, [x]2 can
reveal secret information and thus must be hidden. We do not want to encrypt
[x]2: since [x]2 is given in G2, this means that one again needs to use DLIN.

Fourth, we rely on CED. Recall that CED states that detC = 0 iff one
can compute vectors γ and δ such that C ( e

δ ) = γ, where e ←$Zp. (The first
coordinate of x = ( e

δ ) is non-zero w.p. 1 − 1/p since C is a QDR.) For the
security of CED, γ must not depend on e. Here, as in [13,14], δ is masked by
uniformly random addend �δ and γ is needed to balance �δ . Thus, the prover
gives ([γ]1, [δ]2) as a hint to the verifier/soundness reduction. In the NIZK, [γ]1
is encrypted but [δ]2 (that looks uniformly random after adding �δ ) is not.
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While the resulting accumulator is less efficient than Nguyen’s, the new NIZK
(see Sect. 6) is very efficient since it reuses the hints ([γ]1, [δ]2).

The reasoning from Sect. 4.1 shows that one can construct an efficient accu-
mulator (and NIZK) even if χ is only given to the verifier in G1. This moti-
vates the new definition of determinantal accumulators. The relation between
determinantal accumulators and CLPØ is similar to that between structure-
preserving signatures and Groth-Sahai. For comparison purposes only, in the
final version [20], we will define structure-preserving signature schemes [2].

Our definition of determinantal accumulators is very close in spirit. For clar-
ity, we highlight the differences between “structure preserving” and “determinan-
tal” primitives. Other differences are caused by having an accumulator instead
of a signature scheme.

Definition 2 (Determinantal accumulator). An accumulator is determi-
nantal relative to bilinear group generator Pgen if (a) the common parameters
p and the CRS consist of group description generated by Pgen, some constants,
and some source group elements in G1 and G2, (b) the verification algorithm V
consists only of evaluating membership in G1 and G2 and relations described
by checking that Ci(χ) = 0, where each Ci(X) is a QDR, (c) the CRS crs,
messages χ, commitments CS , and membership arguments ψ solely consist
of group elements in G1 and G2, (d) messages χ are given to the verifier as
elements of G1, (e) the set of G2 elements in ψ is independent of χ.

Items d and e help creating efficient NIZKs, where one only has to encrypt
elements of G1. We assume that all determinantal accumulators use the fourth
method from Sect. 4.1. Since in that case, the only G2 element in ψ is δ and the
latter is chosen uniformly from G2 in [14], Item e follows automatically.

Clearly, this approach is not restricted to accumulators.
Determinantal primitives are quite different from SPPs. First, compared to

SPPs, we restrict the inputs to be from a single source group. While this is a
restriction, it potentially boosts efficiency: since all inputs have to be encrypted
in one source group, one can use Elgamal instead of less efficient DLIN or Groth-
Sahai commitments. Because G2 elements are often twice longer than G1 ele-
ments, this can make the statement of the NIZK (commitment to χ) three times
shorter.

Second, the verifier is not restricted to quadratic equations: the QDRs Ci can
be polynomially large. In the new non-membership accumulator, the determinant
of the used Ci is a cubic polynomial. This means that some of the known lower-
bounds for SPPs (e.g., [2]) might not apply.

Third, and crucially, determinantal accumulators are (efficient) CLPØ-
style non-zk non-interactive argument systems. On the other hand, structure-
preserving signatures are independent primitives with the property that one can
construct (efficient) Groth-Sahai NIZKs for tasks like signature possession. It is
not known how to construct structure-preserving accumulators.
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5 The New Determinantal Accumulator AC∗

In the new set (non-)membership NIZK, χ is Elgamal-encrypted. In the sound-
ness reduction, the reduction decrypts it to obtain [χ]1 but does not obtain
χ. Because of that, the collision-resistance property must hold against adver-
saries who return [χ]1 but not χ. Definition 3 is inspired by the definition of F -
unforgeable signature schemes, [6], where F is an efficiently computable one-way
bijection. Since F is a bijection, χ ∈ S iff F (χ) ∈ F (S) iff ∃s ∈ S.F (χ) = F (s).

Fig. 5. Above: ABP for FΣ(X,Q) and the QDR CΣ(X,Q). Below: ABP for F̄Σ(X,Q, S)
and the QDR C̄Σ(X,Q, S).

Definition 3. Let D be a domain and F be an efficiently computable (one-
way) bijection. A universal accumulator ACC is F -collision resistant if for any
q = poly(λ) and PPT adversaries A, Advf−cr

Pgen,F,ACC,A(λ) :=

Pr

⎡
⎢⎢⎣

S ∈ D≤q ∧(
(χ /∈ S ∧ v = Member)∨

(χ ∈ S ∧ v = NotMember)

) p ← Pgen(1λ);
(crs, σ) ← Kgen(p, q);
(S, F (χ) , ψ) ← A(crs);
v ← V(crs,Com(crs, S), F (χ) , ψ)

⎤
⎥⎥⎦ ≈λ 0 .

In what follows, F = [·]1.
In Fig. 6, we propose a new F -collision-resistant determinantal (CRS-model,

universal) accumulator AC∗. Next, we give the intuition behind its construction.
The first task constructing AC∗ is to fix suitable verification equation that defines
a polynomial F (X), such that the verifier accepts iff F (χ) = 0. Given F , we use
an ABP to define a QDR C(X) for F .

In the membership argument, we start with the verification equation of
ACCNguyen which defines the bivariate polynomial FΣ(X,Q) := (Σ−X)Q−ZS(Σ).
Here, say, Q is the indeterminate corresponding to q ∈ ψ (see Fig. 2. Clearly, the
membership argument verifier of ACCNguyen accepts iff [Fσ(χ, q)]1 = [0]1.

In the non-membership argument, we need to prove that FΣ(X,Q) = 0.
We use the method of Sect. 3 by defining the polynomial F̃Σ(X,Q,S) :=
((Σ − X)Q − ZS(Σ)) S − 1.

We index F and F̃ with Σ instead of giving Σ as a formal argument. We
do it because Σ (a trapdoor indeterminate, with various powers like [σi]1 being
present in the CRS) has a different semantics compared to indeterminates X,
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Q, and S that correspond to the argument elements. In particular, [σi]1 do not
have to stay hidden in the set (non-)membership NIZK. Crucially, this allows to
think of FΣ and F̃Σ as low-degree polynomials with coefficients from R = Zp[Σ].

Since FΣ and F̃Σ have degrees ≤ 2 and ≤ 3, they have respectively 2× 2 and
3×3 QDRs CΣ(X,Q) and C̄Σ(X,Q,S). We construct these QDRs from algebraic
branching programs for FΣ and F̄Σ. See Fig. 5 for the description of the result-
ing ABP and QDR for FΣ and F̄Σ. The membership (resp., non-membership)
argument verifier needs to check that detC(χ, q) = 0 (resp., det C̄(χ, q, s) = 0).

Since we construct a determinantal accumulator, in the membership argu-
ment, we check detC(χ, q) = 0 by using the hints [γ]1 and [δ]2. The verifier
checks that [C(χ)]1 • [ eδ ]2 = [γ]1 • [1]2, which can be rewritten as checking

([σ]1 − [χ]1) • [e]2 − [1]1 • [δ]2 = [γ1]1 • [1]2 ,

−[ZS(σ)]1 • [e]2 + [q]1 • [δ]2 = [γ2]1 • [1]2 .
(2)

Here, [χ]1 is the input, ([q,γ]1, [δ]2) are parts of the (non-)membership argument,
and [σ,ZS(σ)]1 can be computed from crs.

Unfortunately, this is not sufficient. Maliciously chosen χ = χ(Σ), q = q(Σ),
and δ = δ(Σ) can depend non-trivially on σ. Intuitively, Eq. (2) guarantees that
ZS(Σ) = (Σ − χ(Σ))q(Σ) and thus (Σ − χ(Σ)) | ZS(Σ). If χ is an integer, we get
ZS(χ) = 0. However, if χ depends on σ, then ZS(χ) = 0 does not follow. E.g., to
break the membership argument, the adversary can fix any δ1, δ2 ∈ Zp and set
[χ]1 ← [σ]1 − δ2[1]1, [δ]2 ← δ1[1]2 + δ2[e]2, [q]1 ← [ZS(σ)]1/δ2, [γ1]1 ← −[δ1]1,
[γ2]1 ← δ1/δ2 · [ZS(σ)]1. This results in Eq. (2) holding and thus breaks the
F -collision-resistance of the version of AC∗ that only uses Eq. (2) as verification
equations. Breaking F -collision-resistance of ACCNguyen is even more trivial.4

To counteract this problem, we must guarantee that χ does not depend on σ.
We do this by introducing an additional trapdoor τ . We then slightly modify Eq.
(2), making the checks explicitly dependent on τ . The resulting modified checks
result in b1 and b2 in the final construction of AC∗ in Fig. 6.

Since now crs depends on τ , the adversary can make its outputs depend on
τ ; this opens a new cheating avenue. Hence, our use of τ is non-trivial, especially
since we achieve F -collision-resistance without hampering the efficiency of AC∗.
We explicitly multiply each term of type [α]1 • [β]2 in b1 and b2 by τ , except
the terms [q]1 • [δ]2 and [γ]1 • [1]2. In the AGM security proof of the underlying
assumption, we get that values like χ, which are multiplied by τ , are in the span
of 1 (that is, integers). However, q must be a polynomial (it depends on σ), that
is, in the span of {σiτ}; thus we do not multiply [q]1 • [δ]2 by τ . The same holds
for γ2. Finally, it is not essential whether γ1 depends on σ or not; not multiplying
it by τ simplifies the AGM proof slightly since then we do not need to add [τ ]2
to the CRS. Nevertheless, the AGM proof is very delicate.

Note that the verification equations (b1 = b2 = true) are mathematically
(but not computationally) equivalent to checking that C ′(χ, q) ( e

δ ) = γ, where
4 In the collision-resistance proof of ACCNguyen, χ and r are given as integers and thus

do not depend on σ. Such a problem did also not exist in [13,14] since there the
CRS only contained a single element [e]2 and thus did not depend on σ.
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C ′(X,Q) :=
(

(Σ−X)T −T
−ZS(Σ)T Q

)
. Here, detC ′(X,Q) = ((Σ − X)Q − ZS(Σ)T)T. That

is, we really use the QDR framework of [14]. The description of V in Fig. 6 just
spells out how to do this verification in PPT.

Fig. 6. The new [·]1-collision-resistant determinantal universal accumulator AC∗.

The non-membership argument verifier checks that [C̄(χ)]1•[ eδ ]2 = [γ]1•[1]2
(where now δ ∈ Z

2
p and γ ∈ Z

3
p; see Fig. 5), which can be rewritten as checking

([σ]1 − [χ]1) • [e]2 − [1]1 • [δ1]2 = [γ1]1 • [1]2 ,

−[ZS(σ)]1 • [e]2 + [q]1 • [δ1]2 − [1]1 • [δ2]2 = [γ2]1 • [1]2 ,

−[1]1 • [e]2 + [s]1 • [δ2]2 = [γ3]1 • [1]2 .

(3)

As in the case of the membership argument, we need to modify the first two
equations by using τ . However, since we require s to be an integer, we do not
have to modify the third verification equation.

The verification equations (that is, b̄1 = b̄2 = b̄3 = true, see Fig. 6)
are equivalent to checking that C̄

′(χ, q, s) ( e
δ ) = γ, where C̄

′(X,Q,S) :=(
(Σ−X)T −T 0

−ZS(Σ)T Q −T
−1 0 S

)
, with det C̄

′(X,Q) = ((Σ − χ)Q − ZS(Σ)T) sT − T2.

We depict AC∗ in Fig. 6. As explained before, the membership verifier checks
(on pairings) that C ′(χ, q)·( e

δ ) = γ, and the non-membership verifier checks that
C̄

′(χ, q, s) · ( e
δ ) = γ. Figure 6 does it in PPT. A batched membership verifier has
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to execute four pairings, while a batched non-membership verifier has to execute
five pairings. For example, the membership verifier samples a random η ←$F,
and then checks whether ([στ ]1−η[CS ]1)•[e]2−[χ]1•[τe]2+(η[q]1−[τ ]1)•[δ]2 =?

([γ1]1 + η[γ2]1) • [1]2.

Lemma 1. AC∗ is perfectly complete.

On Semantics of Non-membership. Recall that AC∗ must be F -collision-
resistant. Since the CRS contains trapdoor-dependent elements, one must make
it precise how to define non-membership. As a motivating example, if S = {0, 1},
then [χ]1 ← [σ]1 satisfies χ ∈ S iff σ ∈ {0, 1}. The AGM security proof handles
σ as an indeterminate, and thus it cannot decide whether σ (or, more generally,
some known affine map of σ) belongs to S. To avoid such artefacts, we con-
structed AC∗ so that the verifier returns Error when the prover makes [χ]1 to
depend on [σ]1 (see the proof of Theorems 1 and 2). While we do not do it here,
it allows one to define the extractability of the accumulator naturally; from the
proof of Theorems 1 and 2, it is easy to see that AC∗ is extractable.

F-Collision-Resistance. We define two tautological assumptions q-DETACM and
q-DETACNM that essentially state that AC∗ is F -collision-resistant. Then, we
prove in AGM that DETACM and DETACNM reduce to PDL.

The most efficient structure-preserving signatures are proven to be secure
in the AGM (or in the generic group model), though the assumption of their
security by itself is a falsifiable assumption. We can similarly prove the security
of AC∗ in AGM. However, the collision-resistance of an accumulator is a much
simpler (in particular, it is non-interactive) assumption than the unforgeability of
a signature scheme and thus the tautological assumption looks less intimidating.

Definition 4. Let A be a PPT adversary. Let q = poly(λ). q-DETACM holds
relative to Pgen, if for every PPT A,

Pr

⎡
⎢⎢⎢⎣

S ∈ D≤q ∧
χ /∈ S ∧
C ′(χ, q) ( e

δ ) = γ

p ← Pgen(1λ);σ, τ, e ←$Zp;
crs ← (p, [1, (σiτ)qi=0]1, [1, e, σe, τe]2);
(S, [χ, q,γ]1, [δ]2) ← A(crs);
C ′(χ, q) ←

(
(σ−χ)τ −τ

−ZS(σ)τ q

)

⎤
⎥⎥⎥⎦ ≈λ 0 .

q-DETACNM holds relative to Pgen, if for every PPT A,

Pr

⎡
⎢⎢⎢⎢⎣

S ∈ D≤q ∧
χ ∈ S ∧
C̄

′(χ, q, s) ( e
δ ) = γ

p ← Pgen(1λ);σ, τ, e ←$Zp;
crs ← (p, [1, (σiτ)qi=0]1, [1, e, σe, τe]2);
(S, [χ, q, s,γ]1, [δ]2) ← A(crs);

C̄
′(χ, q, s) ←

(
(σ−χ)τ −τ 0

−ZS(σ)τ q −τ
−1 0 s

)

⎤
⎥⎥⎥⎥⎦

≈λ 0 .

Compared to CED, DETACM and DETACNM do not rely on the (possi-
bly, inefficiently verifiable) condition that C(χ) has a full rank. Thus, impor-
tantly, DETACM and DETACNM are efficiently verifiable and thus falsifiable.
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For example, as explained above, the verification C̄
′(χ, q, s) ( e

δ ) = γ is equiva-
lent to checking that b̄1, b̄2, and b̄3 hold. Thus, it can be checked efficiently and
publicly.

Lemma 2 is trivial since DETACM and DETACNM are tautological assump-
tions for the F -collision-resistance of AC∗.

The complicated step (see Theorem 1) is establishing that DETACM and
DETACNM are secure in the AGM.

Lemma 2. Let F = [·]1 and q = poly(λ). AC∗ is F -collision-resistant under
q-DETACM and q-DETACNM.

Theorem 1. If (q + 1, 2)-PDL holds, then q-DETACM is secure in the AGM.

Theorem 2. If (q+1, 2)-PDL holds, then q-DETACNM is secure in the AGM.

6 New Set (Non-)Membership NIZK

Next, we use AC∗ to construct a succinct set (non-)membership NIZK Π∗. First,
Π∗’s CRS is equal to AC∗’s CRS. Second, the NIZK prover proves that AC∗’s
honest verifier accepts the encrypted χ and the encrypted accumulator argument
ψ = AC∗.P(crs,S, χ). That is, the prover encrypts χ and ψ, and then proves
that the verification equation is satisfied.

Following the described blueprint, we construct the new set (non-
)membership NIZK Π∗ (see Fig. 7). Π∗ handles both Lsm

lp (set membership
arguments, mem = Member) and Llp (set non-membership arguments, mem =
NotMember). The prover of Π∗ implements the prover of AC∗ but it also addi-
tionally encrypts all G1. To make the verification on ciphertexts possible, the
prover outputs additional randomizer hints [z]2. The verifier performs AC∗ ver-
ification on ciphertexts (this relies on the homomorphic properties of Elgamal),
taking [z]2 into account. Π∗ also defines the simulator algorithm.

Alternatively, Π∗ is a version of Πclpø for the concrete choice of the QDRs
(and different CRS). To see the connection between Fig. 7 and Fig. 3, note that
C ′(X,Q) = Q+P 1X+P 2Q, where Q =

(
ΣT −1

−ZS(Σ)T 0

)
, P 1 =

( −T 0
0 0

)
, P 2 =

( 0 0
0 1 ) . For example, starting with Fig. 3, [z]2 =

∑ν
k=1 �kP k [ eδ ]2 − �γ [1]2 =

�χ

( −τ 0
0 0

)
[ eδ ]2 + �q ( 0 0

0 1 ) [
e
δ ]2 − �γ [1]2 = �χ

[ −τe
0

]
2
+ �q [ 0δ ]2 − �γ [1]2 =( −�χ[τe]2

�q[δ]2

)
− �γ [1]2. One can represent C̄

′(X,Q,R) similarly.
Clearly, Π∗ is commit-and-prove, updatable, and universal.

Theorem 3. The set membership argument Π∗ in Fig. 7 is perfectly complete.
Assuming Elgamal is IND-CPA secure, it is computationally zero-knowledge.

Theorem 4. Let � = 2 and k = 1. Let Dk be the distribution of [ 1e ]2 for e ←$Zp.
Let q = poly(λ) be an upper bound on |S|. The set membership NIZK Π∗ in Fig. 7
is sound, assuming AC∗ is [·]1-collision-resistant.
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Fig. 7. The new set (non-)membership NIZK Π∗.

Efficiency. Π∗’s CRS length is q + 1 elements of G1 and 4 elements of G2.
The set membership argument length is 6g1 + 3g2, which comes close to the
Πclpø argument length 4g1 + 3g2 for the simple OR language (this corresponds
to � = 2). The difference comes from the fact that here we also encrypt AC∗’s
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argument ψ. On the other hand, the set non-membership argument length is ten
elements of G1 and five elements of G2.

The prover’s computation can be divided into precomputation and online
computation. P precomputes f(X) (Θ(|S|) field operations) and [q]1 (|S| scalar
multiplications in G1). In online computation, (1) the membership prover com-
putes 8 scalar multiplications in G1 and 6 in G2 (2m1 + 2m2 to compute AC∗.ψ
and 6m1+4m2 in the rest of Π∗), and (2) the non-membership prover computes
14 scalar multiplications in G1 and 10 in G2 (4m1 + 4m2 to compute AC∗.ψ
and 10m1 + 6m2 in the rest of Π∗). (The online computation includes the com-
putation of [ctq]1 and other ciphertexts.) The batched membership (resp., non-
membership) verifier’s computation is dominated by five (resp., six) pairings.
Pairings with [e]2 can be precomputed. (This is replaced with some GT expo-
nentiations, so the benefit depends on the implementation.) Online, the verify
has to compute four and five pairings, respectively. See the full version [20] for
the batched verifier. We refer to Table 1 for an efficiency comparison. In the full
version [20], we compare our construction to the most efficient random-oracle
based solution.

7 On Handling Group Elements with CLPØ

The CLPØ NIZK [14] works assuming the prover knows all the DR elements as
integers. This seems to exclude applications where one needs to prove statements
about group elements. In Π∗, we overcome this issue by making the following
observation. Consider the case of a single DR C(X) = (h(X)‖T (X)), where
h(X) is a column vector. Then, for CLPØ to work, it suffices that the prover (1)
knows [C(χ)]1, and (2) can compute [δ]2; for this, it suffices to compute [we]2,
where w is such that h(X) = T (X)w (this follows from CLPØ’s construction).

In the case of Π∗, (1) means that the prover must be able to compute
[q,ZS(σ), s]1 (and thus χ, but not σ, must be available as an integer, and one
must include to the CRS information needed to recompute [ZS(σ)]1), and (2)
means that [σe, e]2 must be given as part of the CRS. We leave the grand gen-
eralization of this observation for future work.
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Abstract. Subversion-resistant zk-SNARKs allow the provers to ver-
ify the Structured Reference String (SRS), via an SRS Verification (SV)
algorithm and bypass the need for a Trusted Third Party (TTP). Pairing-
based zk-SNARKs with updatable and universal SRS are an extension of
subversion-resistant ones which additionally allow the verifiers to update
the SRS, via an SRS Updating (SU) algorithm, and similarly bypass
the need for a TTP. In this paper, we examine the setup of these zk-
SNARKs by benchmarking the efficiency of the SV and SU algorithms
within the Arkworks library. The benchmarking covers a range of updat-
able zk-SNARKs, including Sonic, Plonk, Marlin, Lunar, and Basilisk.
Our analysis reveals that relying solely on the standard Algebraic Group
Model (AGM) may not be sufficient in practice, and we may need a model
with weaker assumptions. Specifically, we find that while Marlin is secure
in the AGM, additional elements need to be added to its SRS to for-
mally prove certain security properties in the updatable CRS model. We
demonstrate that the SV algorithms become inefficient for mid-sized cir-
cuits with over 20,000 multiplication gates and 100 updates. To address
this, we introduce Batched SV algorithms (BSV) that leverage standard
batching techniques and offer significantly improved performance. As a
tool, we propose an efficient verification approach that allows the parties
to identify a malicious SRS updater with logarithmic verification in the
number of updates. In the case of Basilisk, for a circuit with 220 multi-
plication gates, a 1000-time updated SRS can be verified in less than 30
s, a malicious updater can be identified in less than 4 min (improvable
by pre-computation), and each update takes less than 6 min.

Keywords: Updatable SRS Model · AGM with Hashing · Subversion
ZK

1 Introduction

Let R be an NP relation which defines the language L of all statements, x,
for which there exists a witness, w, s.t. (x,w) ∈ R. A Non-Interactive Zero-
Knowledge (NIZK) argument [12,25] for R allows an untrusted prover P, know-
ing w, to non-interactively convince a sceptical verifier V about the truth of a
statement x, without leaking extra information about the witness w. Due to a
wide range of applications, there has been a growing interest in recent years
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to develop NIZK proof systems, particularly those allowing for succinct proofs
and efficient verifications, so-called zk-SNARKs (zero-knowledge Succinct Non-
interactive Arguments of Knowledge) [26,35].

A zk-SNARK is expected to satisfy Zero-Knowledge (ZK) and Knowledge
Soundness (KS). ZK ensures that V learns nothing beyond the truth of state-
ment, x, from the proof. KS ensures that no malicious P can convince honest V
of a false statement, unless he knows the witness. To achieve ZK and KS at the
same time, zk-SNARKs rely on a Structured Reference String (SRS), which is
supposed to be sampled by a Trusted Third Party (TTP), using the SRS gener-
ation algorithm SG [12]. Therefore, in the SRS model a zk-SNARK consists of
three algorithms (SG,P,V). In practice, finding a mutually TTP for executing
the SG algorithm to generate the SRS can be challenging.

Mitigating the Trust on the Setup of zk-SNARKs. To relax the imposed trust
on the setup of zk-SNARK, a line of research distributes the SG algorithm and
constructed Multi-Party Computation (MPC) protocols to sample the SRS [11,
13,30]. In such protocols, both P and V need to trust only 1 out of i > 1
participants.

In a different research direction, in 2016, Bellare et al. [9] built the first
NIZK argument that can achieve ZK, even if its SRS was subverted, so-called
Subversion ZK (Sub-ZK). In a Sub-ZK NIZK argument, the prover does not
need to trust the SRS generator, instead, it needs to run an algorithm, so-
called SRS Verification (SV), and verify the validity of SRS before using it.
The SV algorithm uses some pairing equations to verify the well-formedness of
SRS elements. Two subsequent works of [2,19] presented subversion-resistant zk-
SNARKs that similarly come with an SV algorithm and can achieve Sub-ZK. In
a Sub-ZK SNARK, consisting of four algorithms (SG,SV,P,V), the provers can
verify the validity of SRS, by one-time executing the SV algorithm, and then
bypass the need for a TTP. On the other side, the verifiers either need a TTP to
generate the SRS, or they need to run an MPC protocol (e.g. [11,13]) to sample
the SRS elements, which will relax the level of trust to 1 out of i (participants).

As an extension to the MPC approach and subversion-resistant zk-SNARKs,
in 2018, Groth et al. [27] proposed a new model, so-called updatable SRS model,
which allows the verifiers to also bypass the trust on a TTP. To this end, a
V needs to update the SRS one time, using an SRS Updating (SU) algorithm,
and also verify the validity of previous updates and the final SRS, using the
SV algorithm. Roughly speaking, in a zk-SNARK with updatable SRS, which
consists of five algorithms (SG,SU,SV,P,V), to bypass the trust on a third party,
a P needs to run the SV algorithm, and a V needs to run both SU and SV. In
this model, the SRS is universal and can be used for various circuits within a
bounded size. Then, Groth et al. [27] built the first zk-SNARK with universal
and updatable SRS, but comes with O(n2) SRS size, where n is the number of
multiplication gates in the circuit. In practice, this results in a huge SRS size,
and impractical SU and SV algorithms.

Recently, there has been an impressive progress on designing Random Oracle-
based zk-SNARKs with linear-size updatable SRS, shorter proofs, and more
efficient provers and verifiers. Some of the known schemes that consecutively
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improve the initial scheme of [27] and the subsequent works are called, Sonic [33],
Plonk [22], Marlin [15], Lunar [14], Basilisk [36], and Counting Vampires [32]. In
the full version [7], we compare their efficiency in terms of computational costs of
(SG,P,V) and the SRS size. Currently, Counting Vampires [32] has the shortest
proofs, i.e., two group elements less than Basilisk, but its SRS is 17× larger
than the SRS of Basilisk, and this can result in a considerably slower setup
phase. The SU and SV algorithms are two essential algorithms for achieving
Sub-ZK and Updatable Knowledge Soundness (Upd-KS, KS in the updatable
SRS model) and the employment of updatable zk-SNARKs. In order to achieve
Sub-ZK and Upd-KS in the updatable SRS model, the underlying SRS must
be publicly verifiable and trapdoor extractable [2,9,19,27]. Meaning that, the
consistency of SRS elements should be publicly verifiable, and one should be
able to extract the SRS trapdoors from the setup phase (e.g., by relying on
a knowledge assumption). The initial scheme [27], and some follow-up generic
constructions [3,6,8] come with SU and SV algorithms, under Bilinear Diffie-
Hellman Knowledge of Exponent (BDH-KE) assumption. But their SV algorithm
is identical for both P and V, which in case of verifying an i-time updated SRS,
it brings O(i) pairing operations as an overload for the P. In [32], authors have
proposed an SV algorithm to achieve Sub-ZK in their construction. However,
their SV algorithm can only be used by P (to achieve Sub-ZK), and it does not
consider the verification of an i-time updated SRS, needed by V.

Our Contributions. The main objective of the current paper is to examine
the efficiency of the setup phase in updatable zk-SNARKs, and evaluate their
empirical performance, particularly in large-scale applications.

To this end, we first present a pair of (SU,SV) algorithms for each
of the updatable zk-SNARKs including: Sonic [33], Plonk [22], Marlin [15],
LunarLite [14] and Basilisk [36]. Similar to the earlier works [2,9,19,27], the pro-
posed algorithms use pairing products and are tailored to each specific updatable
zk-SNARK. As all the aformentioned zk-SNARKs can be instantiated in various
ways, we focus on the pairing-based version of them with the shortest proof,
which is commonly used for comparison in the literature. During the construc-
tion of the SU and SV algorithms, we noticed that relying only on the standard
Algebraic Group Model (AGM) may not be enough in practice. In some cases,
we may require a model with weaker assumptions, such as the AGM with hash-
ing [31]. In fact, there might be a case that a zk-SNARK with monomial SRS is
proven to achieve ZK and KS in the AGM model, but their SRS needs to be mod-
ified to achieve Sub-ZK and U-KS. The reason is that, to achieve Sub-ZK and
Upd-KS the SRS needs to be publicly verifiable and trapdoor extractable [2,27].
In the rest, we show that the SRS of Marlin [15] is not trapdoor extractable as it
is, but it can be made trapdoor extractable under the BDH-KE assumption, by
adding a single group element to its SRS.

In the rest, we show that using the presented SU and SV algorithms, Sonic,
Plonk, LunarLite and Basilisk also can achieve trapdoor extractability, under a
subverted/maliciously updated SRS. Since all of them already are proven that
satisfy ZK and KS, this implies that they also satisfy Sub-ZK and Upd-KS.
Similar to the earlier works [2,9,15,19], our SV algorithms use pairing product
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Fig. 1. Setup in the updatable zk-SNARKs: SG, SU, and SV by P or V.

equations to verify the SRS. But, differently our SV algorithms get an additional
input, denoted by party, which allows us to determine whether a P or V runs the
algorithm. Due to achieving Sub-ZK and Upd-KS in the updatable zk-SNARKs,
P only needs to verify the final (srsi,Πi), while V additionally needs to verify
the intermediate proofs {Πj}i−1

j=0. Figure 1 depicts a graphical representation of
the setup phase in the pairing-based updatable zk-SNARKs, and highlights the
parts that need to be verified by P or V. By running an SV algorithm, P needs
to compute O(n) pairings, where n is the number of multiplication gates in the
circuit, and V requires to compute at least O(n + i) pairings, where i is the
number of updates done on the SRS. In practice, even for mid-size circuits (e.g.
n ≥ 104) with 100 updates, the SV algorithms can be very slow.

Next, we use the standard batching techniques [10] and propose a batched
version of the SV algorithms, so-called BSV, for each of the studied updatable zk-
SNARKs. Using the BSV algorithms, to verify an i-time updated SRS, P needs
O(n) exponentiations (with short exponents) and constant number of pairings,
which is independent of the number of updates. A V needs to compute O(n+ i)
exponentiations (with short exponents) and O(i) pairings. Table 1, compares the
efficiency of our proposed SU, SV and BSV algorithms for both P and V.

The schemes built in the updatable SRS model [27] can achieve security only
with abort, if the parties do not verify the updated SRS after each update.
Namely, by verifying the final SRS srsi and the intermediate proofs {Πj}i

j=0 [27]
the parties will abort the final SRS srsi and would not be able to identify a mali-
cious SRS generator/updater. To identify a malicious SRS generator/updater, if

Table 1. An efficiency comparison of our proposed SU, SV and BSV algorithms. SVP:
SV run by P, BSVV: BSV run by V, El: Exponentiations in Gl, •: Pairing, m: #total
(multiplication and addition) gates, n: #multiplication gates, k: #matrix elements with
non-zero values describing the circuit, i: # SRS updates

SG/SU SVP SVV BSVP BSVV

Scheme E1 E2 • • E1 E2 • E1 E2 •
Sonic 4n 4n 12n 12n + 10i 8n 4n 7 8n + 8i 6n + 2i 4i + 14

Marlin k log k 2k + 12 2k + 9i + 12 2k log k 4 2k + 5i 2i + log k 2i + 9

Plonk 3m 2 6m 6m + 4i 6m — 2 6m + 3i i i + 3

LunarLite n n 3n 3n + 4i + 2 2n n 3 2n + 3i n + i i + 3

Basilisk n 2 2n 2n + 4i 2n — 2 2n + 3i i i + 3
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the parties (or a third party) verify each updated SRS {srsj}i
j=0 (instead of only

srsi), then the verification of whole setup phase will be impractical. To deal with
that, we introduce an efficient verification approach for identifying the malicious
updater. For an i-time updated SRS, it allows the parties to identify the (first)
malicious SRS updater with log i times running the BSV (or SV) algorithm. We
discuss different optimizations that can speed up the proposed recursive SRS
verification considerably, at the cost of some pre-computations and storage.

Finally, we present a comprehensive benchmark on the efficiency of our pro-
posed SU, SV and BSV algorithms in the Arkworks library , which is written
in Rust and currently is one of the most popular libraries programming zk-
SNARKs. Full details of the benchmarking are reported in Sect. 4. In summary,
for a particular circuit, by comparing the performance of BSV and SV algo-
rithms, we observed that BSV can achieve up to 110–150 × better efficiency. In
the case of Basilisk which has the most efficient setup phase, for a circuit with
n = 220 multiplication gates, a 1000-time updated SRS can be verified in less
than 30 s. In the case that the verification of final SRS fails, using our proposed
recursive verification approach, a malicious SRS updater can be identified in less
than 4min (or in less than 1min by some pre-computations), and each party
equipped with a multi-core CPU can update the SRS in less than 6min. Our
BSVP algorithms are considerably faster than BSVV ones, in case of a short SRS
(e.g. n ≤ 30K) and a large number of updates (e.g. i ≥ 200).

Related Works. To mitigate the trust in the setup phase of zk-SNARKs, there
are two key research directions. Either, by using an MPC protocol to sample the
SRS [1,11,13,30] or by directly constructing subversion-resistant [2,4,9,19] and
updatable zk-SNARKs [3,6,8,27,33]. Our work is focused on the latter approach.

A bottleneck with the initial MPC protocols [11], is that the number of
parties has to be known in advance. Bowe et al. [13] presented an MPC protocol
for Groth16 [26] setup, which has two phases. The first phase is known as “Powers
of Tau”, which can be used to sample a universal SRS for all circuits up to a
given size. In the second phase, given the universal SRS generated in the previous
phase, parties generate a circuit-dependent SRS. In the Powers of Tau protocol,
a coordinator is used to manage messages between the participants, however the
output of the protocol is verifiable. Compared with the case one uses the Powers
of Tau protocol [13], 1) our proposed algorithms do not need a random beacon,
2) our SV and BSV algorithms are constructed in the updatable SRS model
which allows one to verify an i-time updated SRS considerably more efficient
than i-time running their SRS verification algorithm. For verifying even one-
time updated SRS, our proposed BSV algorithms can be more than 100× faster
than their verification algorithm, 3) our SV and BSV algorithms for the provers
and verifiers are different, which allows the provers to verify a large-time updated
SRS more efficient than verifiers. 4) our protocols can achieve identifiable security
more efficiently (using a new recursive SRS verification approach).

In [30], Kohlweiss et al. presented a more efficient version of the Powers
of Tau [13]. Their ceremony protocol [30] uses an RO-based proof system, and
comes with a BSV algorithm. Similar to previous SG,SU,SV and BSV algorithms,
our algorithms do not use a random beacon or a random oracle. Similar to the



380 K. Baghery et al.

earlier works on subversion-resistant or updatable NIZK arguments [2–4,6,8,19,
27],we rely on particular knowledge assumptions. In comparison with the case
that one uses the protocol proposed in [30], 1) our proposed algorithms (i.e.,
SG,SU,SV, and BSV) do not rely on RO, 2) we have different SV (and BSV)
algorithms for the provers and verifiers, which allow the provers to verify an
updated SRS more efficient than the verifiers, 3) our constructions can achieve
identifiable security.

In another related research direction, some studies have defined subversion-
resistant and updatable commitments [5,17,23], and have proposed SV and SU
algorithms for their studied (knowledge, vector, and polynomial) commitment
schemes. Our proposed SV algorithm for Sonic can be considered as an extension
of the one proposed in [5], which checks some extra terms and also allows the
verifiers to verify an i-time updated SRS. Our SV algorithm for the verifiers
in Basilisk is similar to the one proposed in [23], but our SV algorithm for the
provers is more efficient. We also propose a batched version of SV algorithms
that make them considerably more efficient in practice.

2 Preliminaries

Throughout, we suppose the security parameter of the scheme and its unary
representation to be denoted by λ and 1λ, respectively. We use x←$X to denote
x sampled uniformly according to the distribution X.

We use additive and the bracket notation, i.e., in group Gζ , [a]ζ = a [1]ζ ,
where [1]ζ is the generator of Gζ for ζ ∈ {1, 2, T}. A bilinear group generator
BGgen(1λ) returns (p,G1,G2,GT , ê, [1]1 , [1]2), where p (a large prime) is the
order of cyclic abelian groups G1, G2, and GT . Finally, ê : G1 × G2 → GT

is an efficient non-degenerate bilinear pairing, s.t. ê([a]1 , [b]2) = [ab]T . Denote
[a]1 • [b]2 = ê([a]1 , [b]2).

2.1 Updatable, Universal and Subversion-Resistant Zk-SNARKs

We adopt the definition of subversion-resistant and updatable zk-SNARKs
from [2,27]. Let R be a relation generator, such that R(1λ) returns a polynomial-
time decidable binary relation R = {(x,w)}, where x is the statement and w
is the witness. We assume one can deduce λ from the description of R. Let
L = {x : ∃w | (x,w) ∈ R} be an NP-language including all the statements which
there exist corresponding witnesses in relation R. A NIZK argument ΨNIZK in
the updatable SRS model for R consists of the following PPT algorithms:

– (srs0,Π0) ← SG(R): Given R, the SRS generator SG first deduces the upper
bound N on the relation size. Next, sample the trapdoor ts and then use it to
generate srs0 along with Π0 as a proof of its well-formedness. Finally, return
(srs0,Π0) as the output.

– (srsi,Πi) ← SU(srsi−1, {Πj}i−1
j=0): Given (srsi−1, {Πj}i−1

j=0), an SRS updater
SU returns the pair of (srsi,Πi), where srsi is the updated SRS and Πi is a
proof for correct updating.
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– (⊥/1) ← SV(srsi, {Πj}i
j=0, party): Given a potentially updated srsi, {Πj}i

j=0,
SV, and party ∈ {P,V}, return either ⊥ (if srsi is incorrectly formed or
updated) or 1 (if srsi is correctly formed or updated).

– (π/⊥) ← P(R, srsi, x,w): Given the tuple of (R, srsi, x,w), such that (x,w) ∈
R, P output an argument π. Otherwise, it returns ⊥.

– (0/1) ← V(R, srsi, x, π): Given (R, srsi, x, π), V verify the proof π and return
either 0 (reject) or 1 (accept).

In the standard SRS model, a zk-SNARK for R has a tuple of algorithms
(SG,P,V) (and SG does not return the Π0), while subversion-resistant construc-
tions [2,9] additionally have an SV algorithm which is used to verify the well-
formedness of the SRS elements to achieve Sub-ZK [9]. But as listed above, in the
updatable SRS model, a NIZK argument additionally has an SU algorithm that
allows the parties (more precisely, the verifiers) to update the SRS and add their
own private shares to the SRS generation. Note that in the latest case, the algo-
rithm SG does not necessarily need R, and it only deduces security parameter
1λ and the upper bound N from it. We highlight that, in comparison with pre-
vious definitions [27], our SV algorithm gets an additional input party ∈ {P,V}.
We later show that this allows us to build a more efficient SV algorithm for
the prover. It is worth mentioning that in the updatable SRS model, there also
exists a publicly computable deterministic algorithm Derive which given (R, srsi)
outputs a specialized SRS for relation R. The output elements of Derive all are
in the span of the universal SRS, but they allow to build more efficient proof
generation and verification algorithms.

In the subversion-resistant and updatable SRS model, a zk-SNARK is
expected to satisfy updatable completeness, Subversion-Zero-Knowledge (Sub-
ZK) and Updatable Knowledge Soundness (Upd-KS), of which their definitions
are given in the full version of paper [7].

2.2 Assumptions

Definition 1 (Bilinear Diffie-Hellman Knowledge of Exponent (BDH-
KE) Assumption [2]). We say BGgen is BDH-KE secure for relation set R if
for any λ, R ∈ im(R(1λ)), and PPT adversary A, there exists a PPT extractor
ExtA, such that, the following probability is negl(λ),

Pr

[
(p,G1,G2,GT , ê, [1]1 , [1]2) ← BGgen(1λ), r ←$RND(A),
([α1]1 , [α2]2 ‖ a) ← (A‖ExtA)(R, r) : [α1]1 • [1]2 = [1]1 • [α2]2 ∧ a �= α1

]
.

The BDH-KE assumption [2] is an asymmetric-pairing version of the original
knowledge assumption [16]. We refer to the full version of paper [7] for some
preliminaries on polynomial commitments that are used in the rest of paper.

3 SU and SV Algorithms for Updatable Zk-SNARKs

In this section, we present a pair of SRS updating and SRS verification algorithms
for each of the studied updatable zk-SNARKs, Sonic [33], Plonk [22], Marlin [15],
LunarLite [14] and Basilisk [36].
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The General Strategy. Our proposed SV and SU algorithms use pairing checks for
SRS verification and the SRS elements are updated in a round-robin multiplica-
tive manner. In comparison with the earlier works, we have a subtle change in
the construction of SV algorithms, which allows the provers to verify an updated
SRS more efficiently, especially in case of small circuits with a large number
of updates. Recall that, a pairing-based zk-SNARK satisfies Sub-ZK if it can
achieve ZK, even if its SRS is subverted (i.e., is generated by the adversary). In
Sub-ZK zk-SNARKs [2,4,9,19], this is formalized and achieved by building an
SV algorithm that verifies the well-formedness and trapdoor extractability of the
SRS. The former guarantees that the whole SRS elements are consistent with
each other, and the latter ensures that the (simulation) trapdoors of SRS can be
extracted from an SRS subverter. Given the simulation trapdoors of SRS, the
proofs are simulated as in the standard ZK. On the other side, a universal zk-
SNARK is updatable [27] if its SRS can be sequentially updated by the parties,
such that Upd-KS holds if at least one of the updates with SU or the initial SRS
generation with SG is done honestly. To ensure that SRS generation/updating
is done correctly, parties should return a knowledge assumption-based proof
Π when running SG or SU algorithms. This proof is also known as the well-
formedness proof of the SRS. In the presented SV algorithms, we use the fact
that to achieve Sub-ZK, a P only needs to verify the final SRS. Without loss of
generality, one can assume that the initial SRS generation and all the follow-up
updates are done with a single adversary who can control all the updaters who
run SU and the initial party who runs SG. However, to achieve Upd-KS without
a TTP, a V needs to one-time run the SU and update the SRS, and also verify
the final SRS and the correctness of all intermediate proofs, generated by all the
updaters (See Fig. 1).

Next, in each subsection, we present an overview of a particular updatable
zk-SNARK, and then describe its SRS Generation (SG) algorithm. Different from
the original papers, in the description of SG algorithms, we also determine what
constitutes a well-formedness proof that can be used to extract individual shares
from the SRS generator/updaters, and more importantly, can be used to verify
the final SRS. The well-formedness proof is shown with Π which consists of two
sets of elements (ΠAgg,Π Ind), where ΠAgg can be interpreted as the aggregated
elements necessary for verifying the well-formedness of final SRS, and Π Ind can
be interpreted as an individual proof for the correctness of updating using the
secret shares, e.g. x̄. The latter, also enables extracting the individual shares
from a malicious SRS generator/updater in the proof of Upd-KS. Finally, we
present SU and SV algorithms.

3.1 SU and SV Algorithms for Sonic

Sonic and its SG Algorithm. The first proposed updatable zk-SNARK, presented
by Groth et al. [27], came with explicit SU and SV algorithms, but its SRS
size scales quadratically in the number of multiplication gates in the circuit
that encodes the relation, which made the algorithms very slow. In a follow-up
work, Maller et al. [33] proposed Sonic as the first updatable zk-SNARK with
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linear size SRS. The authors mostly focused on achieving a linear size SRS and
more efficient P and V algorithms, and omitted the descriptions of SU and SV
algorithms (and even SG which should determine the well-formedness proof) and
mentioned that they can built as in [27]. For further details, we refer to the main
paper [33]. We describe the SG algorithm of Sonic in Fig. 2.

SU and SV Algorithms and Their Efficiency. Figure 3 describes the SU and SV
algorithms for Sonic. As briefly mentioned before, the SRS update is done in a
multiplicative manner, such that the updater multiplies a proper power of its
secret shares x̄i and āi to the SRS elements. Similar to the SG algorithm, we
also determine the elements of the well-formedness proof separately. Note that
[a]T is omitted from updating, as due to the fact that [a]T := [1]1 • [a]2, it can
finally be computed from the other SRS elements. The pairing checks inside SV
chase two main goals. First, they check if all the individual proofs generated by
the SRS generator and by all the follow-up SRS updaters are correct. If so, then
it uses the elements of Πi and verifies the final SRS, srsi.

Efficiency. As it can be seen in Figs. 2 and 3, given the SU algorithm, similar to
the SG algorithm, to update the SRS of size n in Sonic, one needs to compute
4n + 2 exponentiations in G1 and 4n + 2 exponentiations in G2. Using the SV
algorithm described in Fig. 3, to verify an i-time updated SRS, i ≥ 1, a prover
needs to compute 12n − 1 pairing operations (importantly, independent of the
number of updates), while a verifier needs to compute 12n + 10i + 4 pairings.

Security Proofs. In [33, Theorem 6.1, 6.2], authors proved that assuming the
ability to extract a trapdoor for the subverted/updated SRS (without proving it),
Sonic satisfies Sub-ZK and KS. The following lemmas prove that using the SG,SU
and SV algorithms (given in Figs. 2 and 3), under the BDH-KE assumption, one
can extract the simulation trapdoors from a subverted/updated SRS.

Lemma 1 (Trapdoor Extraction from a Subverted SRS). Given the
algorithm in Figs. 2 and 3, suppose that there exists a PPT adversary A that
outputs a (srsi, Πi) such that SV(srsi,Πi,P) = 1 with non-negligible probability.
Then, by the BDH-KE assumption (given in Definition 1) there exists a PPT
extractor ExtA given the random tape of A as input, outputs (xi, ai) such that
running SG with (xi, ai) results in (srsi,Πi).

Fig. 2. SG algorithm for SONIC.
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Fig. 3. SU and SV algorithms for SONIC.

Proof. The proof is given in the full version of paper [7]. �
The following lemma shows that SRS trapdoors can be extracted from an

updated SRS. To this end, we first recall a corollary from [24].

Corollary 1. In the updatable SRS model, single adversarial updates imply full
updatable security [24, Lemma 6].

Lemma 2 (Trapdoor Extraction from an Updated SRS). Given the
algorithm in Figs. 2 and 3, suppose that there exists a PPT A such that given
(srs0, π0) ← SG(R), A returns an updated SRS (srs1, π1), where SV(srs1,Π1,V) =
1 with a non-negligible probability. Then, the BDH-KE assumption implies that
there exists a PPT extractor ExtA that, given the randomness of A as input,
outputs (x̄1, ā1) that are used to update srs0 and generate (srs1,Π1).

Proof. The proof is given in the full version of paper [7]. �
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3.2 SU and SV Algorithms for Marlin

Marlin. As a follow-up work to Sonic and a concurrent work to Plonk, Chiesa
et al. proposed Marlin [15], which is comparable to Plonk in performance and
outperforms Sonic. Compared to Sonic, Marlin reduces P’s computational cost
by a factor of 10× and improves V’s time by a factor of 4× without compromis-
ing the constant-size property of proofs. To this end, the authors first propose an
information-theoretic model called Algebraic Holographic Proof (AHP), which is
an interactive protocol between algebraic P and V. The verifier performs a small
number of queries on an encoding of the circuit instead of receiving the entire cir-
cuit description. At the end, the verifier makes a number of queries to the proofs
provided by the prover and then performs low-degree tests to be convinced about
the validity of proof and the encoding of the circuit. Then, they proposed a trans-
formation that uses PCs with Fiat-Shamir transformation [18] and compiles any
public coin AHP for sparse Rank 1 Constraint System (R1CS) instances into a pre-
processing zk-SNARKwithuniversal andupdatable SRS.TobuildMarlin, authors
first proposed two PC schemes, which one is proven to be secure under a concrete
knowledge assumption, and the other one is built in the Algebraic Group Model
(AGM) [15, Appendix B]. The scheme built in the AGM model achieves a better
efficiency and requires a single group element to commit to a polynomial (instead
of two in the initial construction). Marlin is a zk-SNARK which is obtained by
instantiating their transformation by the AGM-based PC scheme. Both their PC
schemes are proven to be secure (complete, hiding, extractable, as defined in the
full version of paper [7]) under a trusted setup [15, Lemmas B.5-B.15], and later,
the AGM-based one is used to obtain updatable zk-SNARK Marlin.

Achieving Sub-ZK and Upd-KS in Marlin. Marlin uses a universal SRS and
assuming that the simulation trapdoors are provided to the ZK simulator, it is
proven to achieve ZK and KS in the AGM. In [15, Remark 7.1], authors argue
that their constructions have updatable SRS because of using monomial terms
in the SRS, and thus fall within the framework of [27]. The SRS of Marlin,
which is equivalent to the SRS of their AGM-based PC scheme, consists of
srs := (

([
xk

]
1
,
[
γxk

]
1

)n

k=0
, [1]2 , [x]2) group elements. This SRS is shown to be

sufficient for their PC scheme. Note that a standard PC scheme, is constructed
under a trusted setup, and there is no guarantee that it will remain secure under a
subverted SRS or a maliciously updated SRS. Therefore, once we use the SRS of a
PC scheme (with a trusted setup) to build a Sub-ZK zk-SNARK with updatable
SRS, we need to ensure that the SRS of resulting zk-SNARK is well-formed and
trapdoor-extractable [24]. Since Marlin is proven to satisfy KS under the above
SRS srs, therefore, to prove that it also achieves Upd-KS, we need to show that
the SRS trapdoors can be extracted from a subverted or a (maliciously) updated
SRS. However, one may notice that in practice an adversary, capable of hashing
to an elliptic curve, can produce the SRS ([x]1 , [γx]1 , [1]2 , [x]2) without knowing
γ. For instance, it can sample a group element from G1, without knowing its
exponent, and then use a known x to compute ([x]1 , [γx]1 , [1]2 , [x]2) for an
unknown γ. A malicious SRS updater can perform a similar attack.
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One may argue that Marlin (and some follow-up schemes) is proven in the
original AGM [20], which adversaries are purely algebraic and do not have the
capability to create random group elements without knowing their discrete loga-
rithms. This argument is valid, but the problem still exists in practice and such
constructions may not achieve Sub-ZK be default, as an adversary can use elliptic
curve hashing [28] to sample random group elements without knowing the expo-
nents. To deal with such concerns, earlier Sub-ZK SNARKs [2,31] used and are
proven in more realistic models, namely the Generic Group Model (GGM) with
hashing [2] and the AGM with hashing [31]. The “with hashing” parts mean that
the adversary is allowed to sample random group elements without knowing the
exponents, say using the elliptic curve hashing [28]. Considering the discussed
issue, one can see that to achieve Sub-ZK/Upd-KS in updatable zk-SANRKs,
including Marlin, a more realistic option is to prove them in the more realistic
variant of AGM, namely AGM with hashing [31], and also explicitly construct
the extraction algorithms requited in the games of Sub-ZK/Upd-KS. It is worth
to mention that, by chance, the SRS of Kate et al.’s polynomial commitment
scheme [29] is well-formed and without further modification, its SRS can achieve
trapdoor extractability under BDH-KE assumption. This is the reason that the
updatable zk-SNARKs that directly use Kate et al.’s PC scheme [29], e.g., Lunar
or Basilisk, do not face with the mentioned issue. In the rest, we focus on con-
structing a concrete extraction algorithm which is necessary to prove the Sub-ZK
and Upd-KS of Marlin. As we argued above, γ cannot be extracted from the orig-
inal SRS of Marlin, and we need to slightly modify its SRS to achieve trapdoor
extractability and prove Sub-ZK and Upd-KS.

Marlin with a Trapdoor Extractable SRS. To deal with the discussed issue, the
solution is to force the adversary to add a proof of knowledge of γ to the SRS,
such that the simulator would be able to extract γ from a maliciously gener-
ated SRS. In earlier works [2,9,24], this is simply achieved by forcing the SRS
generator to return γ in two different groups. Then, relying on the BDH-KE
assumption one can extract γ from a maliciously generated SRS. Consequently,
we slightly modify the SRS of Marlin and add a single group element [γx]2 to it.
Then, we show that in the modified version, the SRS trapdoors can be extracted
from a subverted/updated SRS, which would allow to prove Sub-ZK/Upd-KS.

Fig. 4. Slightly modified SG algorithm of Marlin. The term [x0γ0]2 is added to SRS
and proof to make the SRS well-formed and achieve trapdoor extractability.
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Fig. 5. SV and SU algorithms for Marlin with the slightly modified SRS.

We describe the modified SG algorithm of Marlin in Fig. 4, and the new added
element is shown with gray background.

SU and SV Algorithms and Their Efficiency. In Fig. 5, we describe our con-
structed SU and SV algorithms for Marlin with the modified SRS. As the other
cases, the SRS update is multiplicative, and at the end, the updater also gives a
well-formedness proof which includes the new element [x̄iγ̄i]2 . The new element
allows one to verify the well-formedness of the final SRS as well as the validity
of intermediate proofs. The SV algorithm verifies if {Πj}i

j=0 are valid and the
final SRS, srsi, is well-formed.

Using the SU algorithm in Fig. 5, similar to the SG algorithm (in Fig. 4), to
update the SRS of size n in Marlin, one needs to compute 2 exponentiations
in G2 and 2n + 1 exponentiations in G1. Using the SV algorithm described in
Fig. 5, to verify an i-time updated SRS, i ≥ 1, a prover needs to compute 4n+2
pairing operations, while a verifier needs to compute 4n + 2 + 9i + 4 pairings.

Security Proofs. Relying on the fact that the underlying PC scheme is secure,
Marlin, is proven to achieve ZK and KS in the AGM model [15, Theorem 8.1, 8.3
and 8.4]. Our evaluations show that our minimal modification to their PC scheme
does not compromise the security of the original scheme (see the full version of
paper [7] for further details). Moreover, in the rest, we show that using the pre-
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sented SG,SU and SV algorithms (given in Figs. 4 and 5), under the BDH-KE
assumption (as in [31]), it is also possible to extract the simulation trapdoors from
a subverted/updated SRS and achieve Sub-ZK and Upd-KS in the AGM.

Lemma 3 (Trapdoor Extraction from a Subverted SRS). Given the
algorithms in Figs. 4 and 5, suppose that there exists a PPT adversary A that
outputs (srsi, Πi) such that SV(srsi,Πi,P) = 1 with a non-negligible probability.
Then, by the BDH-KE assumption (given in Definition 1) there exists a PPT
extractor ExtA that, given the random tape of A as input, outputs (xi, γi) such
that running SG with (xi, γi) results in (srsi,Πi).

Proof. The proof is analogue to the proof of Lemma 1. �
Lemma 4 (Trapdoor Extraction from an Updated SRS). Given the
algorithms in Figs. 4 and 5, suppose that there exists a PPT A such that given
(srs0,Π0) ← SG(R), A returns an updated SRS (srs1,Π1) s.t. SV(srs1,Π1,V) =
1, with a non-negligible probability. Then, the BDH-KE assumption implies that
there exists a PPT extractor ExtA that, given the randomness of A as input,
outputs (x̄1, γ̄1) that are used to update srs0 and generate (srs1,Π1).

Proof. The proof is analogue to the proof of Lemma 2. �
The SU and SV algorithms for Plonk [22], LunarLite [14] and Basilisk [36],

are built similar to the previous two cases and are described in the full version
of paper [7].

3.3 Batched SRS Verification Algorithms

By now, we presented an SU and SV algorithms for Sonic, Marlin, Plonk,
LunarLite and Basilisk, that allow the parties to update/verify the SRS and
bypass the need for a TTP. However, when running an SV algorithm, the prover
needs to compute at least O(n) pairing operations, where n denotes the number
of multiplication gates in the circuit. On the other hand, the verifier needs to
compute O(n + i) pairings, where i represents the number of updates done on
the SRS. Consequently, even for circuits of moderate size (e.g., n ≥ 104) with
a considerable number of updates (e.g., i = 100), the efficiency of these algo-
rithms can be severely impacted. In Sect. 4, we will provide concrete numerical
examples to further illustrate this inefficiency.

To make them practical, we use batching techniques from [10] and construct a
Batched version of the SV algorithms,BSV in short, which allow the provers to ver-
ify the SRS by O(n) exponentiations (mostly, short-exponent) and constant pair-
ings, and the verifiers by O(n + i) exponentiations (mostly, short-exponent) and
O(i) pairings. To build the BSV algorithms, we use a corollary of the Schwartz-
Zippel lemma stating that if

∑s−1
i=1 tiXi + Xs = 0 is a polynomial in Zq[ti] with

coefficients X1, . . . , Xs, ti ←r {1, . . . , 2κ} for i < s, then Xi = 0 for each i, with
probability 1− 1/2κ. Namely, if

∑s−1
i=1 ti([ai]1 • [bi]2) =

∑s−1
i=1 ti [c]T for uniformly

random ti, then w.h.p., [ai]1 • [bi]2 = [c]T for each individual i = 1, 2, · · · , s − 1.
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In Sect. 4, we show that the BSV algorithms can be considerably faster than SV
algorithms (at the soundness error rate 2−80, where 80 is a statistical security
parameter) and even faster at the soundness error rate 2−40. The detailed descrip-
tion of BSV algorithms is given in the full version of paper [7].

4 Performance Analysis and Identifiable Security

4.1 Implementation Results

Next, we evaluate the efficiency of the presented algorithms using a prototype
implementation in Arkworks library1, which is a Rust library for developing and
programming with zk-SNARKs. We have made the source code of our bench-
marks publicly available to the research community for reproducibility and fur-
ther experimentation 2. For benchmarking Sonic, Plonk, LunarLite, and Basilisk
we use the algorithms constructed in Sect. 3 and Sect. 3.3. But in case of Marlin,
we use a variant of it, which is implemented in Arkworks3. The original paper
does not explain this variant, which uses a different PC scheme to reduce proof
size, which is a variant of the scheme proposed in [21]. We built the associated
(SG,SU,SV,BSV) algorithms for that version in the full version of paper [7].

Our empirical analysis are done with the elliptic curves BLS12-381 that is esti-
mated to achieve between 117 and 120 bits security [34]. All experiments are done
on a desktop machine with Ubuntu 20.4.2 LTS, an Intel Core i9-9900 processor at
base frequency 3.1GHz, and 128 GB of memory. All algorithms first are executed
in the single-thread mode, while later we show that they all can be parallelized and
executed in the multi-thread mode. We also report the benchmarks for Basilisk in
the multi-thread mode, with 16 threads. For the benchmarks, we report the run-
ning times of all the proposed algorithms, for an arithmetic circuit with different
circuit sizes, and by circuit size we mean sum of the multiplication and the addi-
tion gates. For Plonk, whose constraint system encodes both multiplication and
addition gates, we set the number of addition gates 2× the number of multiplica-
tion gates. This choice was based on the evaluation done in the original paper [22].
Motivated by the blockchains and large-scale applications, we also report the SRS
verification/updating times for a big number of users and large circuits. All times
are expressed in seconds or minutes. In the execution of the BSV algorithms, we
first sample some vectors ti of random numbers from the range [1 .. 280], the time
of sampling randomnesses are not included in the run times of BSV algorithm, as
they can be pre-computed. Based on earlier results, one can re-use the same ran-
domness for different verification equations, and zk-SNARKs.

The graphs in Fig. 6 summarize our implementation results based on differ-
ent criteria for all our studied zk-SNARKs. In the rest, we go through them
sequentially and explain the key points. The plot A compares the run times of
SG and SU in the single-thread mode, for all the studied zk-SNARKs. Naturally,

1 Available on https://github.com/arkworks-rs.
2 Our open-source implementations can be accessed on the Git page at https://github.

com/Baghery/BMS23.
3 Available on https://github.com/arkworks-rs/marlin.

https://github.com/arkworks-rs
https://github.com/Baghery/BMS23
https://github.com/Baghery/BMS23
https://github.com/arkworks-rs/marlin
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Fig. 6. A) SG or SU, B) SVV for a fixed i = 5, C) BSVV for a fixed i = 5, D) BSVV for a
fixed circuit size (n = 10K, m = 30K), E) Comparison of Basilisk’s BSVP and BSVV for
a fixed n = 10K, F) Basilisk’s SG/SU with multi-threading, G) Basilisk’s BSVV with
multi-threading, H) Basilisk’s BSVV with n = 106, and different security parameters in
batching, I) Identifying a malicious SRS updater with recursive verification in Basilisk.

the shorter SRS, the faster SG and SU algorithms. The plot B presents the run
times of SV algorithm executed by V, for a 5-time updated SRS and various
circuit sizes. As it can be seen, standard SV algorithms can be very slow for
even small circuits, e.g. circuits of sizes < 50K (this is why we are not giving its
timings for n > 50K). In this case, since the size of SRS (n = 50K), is consider-
ably larger than the number of updates (i = 5), then the run times of SVP and
SVV are almost the same, therefore SVP is omitted from the plot.

The plot C illustrates the efficiency of BSV algorithm run by V, for i = 5
(5-time updated SRS) and different circuit sizes. One can see that they are
considerably faster than standard SV algorithms, and in some cases they are
very efficient even for large circuits. e.g. circuits of sizes > 1M . Similar to the
last plot, in this setting again the run times of SVP and SVV are very close. In
plot D, we set the circuit size fixed (n = 10K multiplication gates, m = 30K
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total gates) and plot the run times of BSVV algorithms for different number
of updates. Similar to the previous plots, we observe that the setup phase of
Basilisk can be considerably faster than other schemes. Therefore, in the rest
of benchmarks, we mainly used Basilisk’s algorithms. In plot E, we compare
the run times of Basilisk’s BSV algorithm executed by the prover (BSVP) and
verifier (BSVV), for a circuit with n = 1K or 10K multiplication gates, and
different numbers of updates. As it can be seen, for the cases that a small circuit
is updated many times, BSVP can be significantly faster, independent of the
number of updates. The plot shows that BSVP for n = 10K, is as efficient as
BSVV for n = 1K and i ≈ 300.

By now all evaluations are done in the single-thread mode. In the rest, in
both plots F and G, we execute the algorithms of Basilisk in the multi-thread
mode and re-evaluate the efficiency of SU (or SG) and BSVV, for various circuits
and different number of updates. We observed that, the SRS of Basilisk for
a particular circuit with 2M multiplication gates, can be generated/updated
in about 11min, and verified in less than 1min. As mentioned before, within
the BSV algorithms, the randomness vector ti are sampled from [1 .. 280] which
assures that the batching causes security gap not bigger than 2−80. This is a
conservative approach. In plot H, we compare the run times of BSVV for Basilisk
in the case that the coordinates of ti were chosen from [1 .. 240]. This makes the
SRS verification even faster, but at the cost of a bigger error rate, i.e., 2−40.

4.2 Identifiable Security in the Updatable SRS Model

In the updatable SRS model [27], the initial SRS generator and the follow-up
SRS updaters attach a proof to each updated SRS, and the parties do not store
every updated SRS but only update proofs. At the end, each party runs the
SV (or BSV) algorithm once to verify the validity of proofs in a chain and then
uses the final proof to check the well-formedness of the final SRS (see Fig. 1).
We also observed that after the final update on SRS, it is sufficient that all
the participants in the SRS generation/updating phases run the SV (or BSV)
algorithm only once. In the rest, this case is referred to as the optimistic case
or optimistic verification. As we observed in Fig. 6, in this case the setup phase
of updatable zk-SNARKs can be significantly fast, and can easily be scaled
for a large number of users (e.g. thousands of parties), without the need for a
third party. However, then the parties would only abort a maliciously updated
SRS at the end, without identifying a malicious party. This can lead to repeat
the SRS generation and updates all over again. Note that, the SV (and BSV)
algorithm verifies the proofs Π0 till Πi, and the final SRS srsi. If a malicious
SRS generator/updater generates a valid proof but an invalid SRS, it cannot
be detected by just verifying the proofs. To deal with this concern, a naive
solution is to verify the SRS after each update (by either all the participants or
a TTP) and identify the malicious party. In practice, the above approach would
be impractical for large scale applications.
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Fig. 7. Recursive execution of BSV to identify a malicious SRS updater.

Identifying a Malicious Updater with Logarithmic Verification. Next, we describe
an efficient approach to identify a malicious party in the updatable SRS model.
To this end, the parties need to store all the transcripts, as in current ceremonies,
and then recursively run the BSV (or SV) algorithm for one SRS and a smaller
set of proofs. More precisely, parties would run the BSV (or SV) algorithm of the
target zk-SANRK, with a single SRS and i

21 , i
22 , · · · , i

2log i proofs, respectively.
Note that with this approach, only �log i�+1 of SRSs are verified (e.g., boldface
SRSs srs15, srs7, srs11, srs9, srs10 in Fig. 7), instead of i. As in practice, the circuit
size is considerably higher than the number of SRS updates, e.g. 222 vs. 100
in current ceremonies, therefore the run time of SV (and BSV) is dominated
by the size of SRS, rather than the number of updates. Due to this fact, in
practice, the proposed verification approach can be considerably faster than the
naive solution. Figure 7, presents an example of such recursive execution of BSV
algorithms for i = 15. We also evaluate the performance of this approach with
a sample implementation. The plot I in Fig. 6, illustrates the required time to
identify a malicious updater in Basilisk’s setup for different number of updates
with the SRS of a circuit with n = 50K multiplication gates. As it can be seen,
for 2000-time updated SRS of length 50K, the first malicious updater can be
identified in less than 20 s. In similar settings, where n >> i, the identification
time would be independent of the precise position of the malicious updater, and
it will take an approximate run time of log i times that of a single BSV.

As an optimization, one may notice that once a verifier runs the BSV algo-
rithm on the final SRS, e.g. BSV(16)

0 in the mentioned example, we already com-
pute the batched form of the proof elements required in all the follow-up steps
of the recursive search, as e.g.

∑15
i=0 ti [xi]1 =

∑7
i=0 ti [xi]1 +

∑15
i=8 ti [xi]1 =∑3

i=0 ti [xi]1 +
∑7

i=4 ti [xi]1 +
∑11

i=8 ti [xi]1 +
∑15

i=12 ti [xi]1. By storing a proper
set of batched proofs, one can speed up the follow-up executions of BSV. This
optimization is more effective in cases that the circuit size is small but the SRS is
updated many times. As another optimization, one can precompute the batched
version of the checks on some intermediate SRSs, e.g. srs11, srs7, srs3, and speed-
up the run times of BSV algorithms in the follow-up steps. Note that our BSV
and SV algorithms, by default verifies all the proofs for j = 0 till the final SRS
srsi, i.e. j = i. In the recursive execution, we need to run the BSV (or SV) algo-
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rithm for a particular set of SRSs and proofs. In those cases, one can feed proper
starting and finishing indexes to the BSV (or SV) algorithms. For instance, to
check the SRS srs11 and the set of proofs {Π8,Π9,Π10,Π11} one needs to run
the algorithms for j = 8 till j = 11, which will verify a batched variant of
(Π8,Π9,Π10,Π11) and the final SRS srs11.

In practice, if the values of i and n will be huge, it might happen that the
setup phase would take a long time, especially if a malicious update occurs
during the earlier updates. To minimize the run time, as well as to gain the
benefits of the optimistic verification, an effective solution would be to verify the
updated SRS after a particular number of updates, i.e. one would need to verify
the updated SRS every k updates, where 1 < k < i. Basically, the idea is rather
than verifying every update (the slowest case), or all i updates once (the fastest
case), the parties will verify the SRS after each k updates. If the verification of
srsk was successful, then the parties will continue with updating the SRS. If not,
they would use the recursive search approach (given in Fig. 7) to find the first
malicious updater and then will continue the SRS update from there (without
the malicious updater).

Since the entire described procedure is accountable, in practice one can mini-
mize the risk of a malicious SRS update significantly by enforcing a high penalty
for a malicious SRS updater.

5 Conclusion

In this study, we examined the setup phase of updatable zk-SNARKs. We con-
structed the necessary algorithms, namely (SG,SU,SV), for the setup phase
of various updatable zk-SANRKs, including Sonic, Plonk, Marlin, Lunar, and
Basilisk. To make SV algorithms practical, we also presented a batched version
of them, called BSV. We constructed the algorithms for the most efficient version
of each zk-SNARK, in terms of proof size. However, the proposed algorithm can
be adapted to their different versions. Our results show that in a few cases, to
achieve better efficiency in the setup phase, one option would be to use a version
of the studied schemes, with a shorter SRS but slightly larger proofs and slower
provers. For instance, Lunar [14] has a version, so-called LunarLite2x, which has
the same SRS as Basilisk, therefore can be as efficient as Basilisk in the setup
phase, but in cost of slightly longer proofs and slower prover. In another exam-
ple, we observed that Counting Vampires [32] has only two fewer group elements
than Basilisk in the proof, but its SRS size is 17× larger and such an SRS can
result in a prolonged setup.

Meanwhile, we observed that to achieve Sub-ZK/Upd-KS in updatable zk-
SANRKs, a more realistic model for security proofs could be the AGM with
hashing [31], rather than the original AGM [20].

Moreover, we showed that pairing-based updatable zk-SNARKs, or other
primitives constructed in the updatable SRS model, by default achieve security
with abort, and the parties cannot identify a malicious SRS generator/updater.
A naive solution to deal with this concern is verifying the SRS after each update
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(either by the parties or a third party), but it can be impractical in a large-scale
application. To make it practical, we proposed an efficient recursive verifica-
tion approach, that allows the parties to identify a malicious SRS updater by
a logarithmic number of SRS verification (instead of linear) in the number of
updates. We believe our proposed approach to achieve identifiable security, can
also be used in the MPC SRS generation protocols [30], as well as in other cryp-
tographic primitives (like commitments, signatures, encryptions) constructed in
the updatable SRS model [3,6,8,17,23].

Finally, our empirical analysis showed that the algorithms are practical for
large-scale applications, and among the current updatable zk-SNARKs, Basilisk
(and the Lunarlite2x variant of Lunar) can have the fastest setup phase. Count-
ing Vampires, Sonic and Plonk can have a very slow setup phase, which is mainly
because of having a very long SRS or using a specific constraint system (i.e.,
Plonk) that encodes both addition and multiplication gates.
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