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1 Introduction 

The development of technological processes in the modern world follows the path 
of reducing the environmental impact, using renewable sources of energy and raw 
materials while simultaneously obtaining products of the required quality [1–4]. 

Based on the results of the annual UN conferences on climate change [5], further 
commitments are planned to reduce greenhouse gas emissions globally [6, 7]. This 
requires a significant modernization of production to ensure the environmental 
sustainability of the industrial development of the metallurgy [8–10]. 

In the next five years, a significant proportion of the world’s existing integrated 
steel plants will reach the 60-year age limit and be decommissioned. In addition, it 
is expected that in 2040–2060 blast furnaces (BF) with a total production of about 
200 million tons per year will be decommissioned before reaching final depreciation. 
There will probably be no need to build new blast furnaces. 

Ensuring the sustainable development of metallurgy, particularly in light of future 
restrictions on CO2 emissions, requires the modernization of the industry with the 
introduction of innovative technologies and the improvement of the existing ones 
[11–14]. 

Coke production technology greatly impacts the natural environment due to using 
fossil coal. The primary consumer of coke is blast furnace production, the technology 
of which imposes specific requirements on the quality of the coke [15–17]. To meet 
the high requirements, which are constantly increasing, it is necessary to use raw

A. Koveria (B) 
Department of Chemistry, Dnipro University of Technology, Dnipro, Ukraine 
e-mail: koverya.A.S@nmu.one 

L. Kieush · P. Saik · V. Lozynskyi 
Department of Mining Engineering and Education, Dnipro University of Technology, Dnipro, 
Ukraine 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
S. Boichenko et al. (eds.), Modern Technologies in Energy and Transport, Studies 
in Systems, Decision and Control 510, https://doi.org/10.1007/978-3-031-44351-0_15 

287

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44351-0_15&domain=pdf
http://orcid.org/0000-0001-7840-1873
http://orcid.org/0000-0003-3956-202X
http://orcid.org/0000-0001-7758-1083
http://orcid.org/0000-0002-9657-0635
mailto:koverya.A.S@nmu.one
https://doi.org/10.1007/978-3-031-44351-0_15


288 A. Koveria et al.

materials with suitable initial characteristics (according to proximate analysis, coking 
ability, and coarseness) to produce coke. 

Along with the blast furnace industry, which uses up to about 70% of the coke 
produced, several other industries use coke and have related requirements. For 
example, for ferroalloy production, using more reactive coke with a grain size of 
10–25 mm is desirable. For the sintering of ores, coke fines (<10 mm) are needed, 
along with high reactivity. In foundry production, coke should be coarse and low-
reactive [15]. Non-blast furnace consumers need coke for high-temperature reac-
tions. The function of carbon materials in these processes is to provide the necessary 
temperature for reactions and carbon transfer for carbonization. 

As an alternative to fossil fuels, renewable energy sources from organic raw mate-
rials are increasingly used [17–23]. The most important of them is the vegetable raw 
material formed in photosynthesis. Biomass is the product of converting solar energy 
into chemical energy. Plant biomass is a valuable renewable chemical raw material 
from which unique compounds and fossil fuel substitute products can be obtained. 

It is known that charcoal was widely used in the production of cast iron until the 
middle of the twentieth century [24]. Charcoal is used as the main fuel and reducing 
agent in small blast furnaces in Brazil [25–27]. However, charcoal is mainly used in 
the blast furnace process for injection into the BF via the tuyeres [25, 28–31], as well 
as the carbon iron ore composite [32] and steel recarburazer [33]. At the same time, 
Brazil is one of the leading countries in using charcoal for steel production [34]. 

The advantages of using charcoal in the BF process, as opposed to coal coke, 
are low ash, sulfur, and high porosity. As an injecting component, charcoal has high 
reactivity and low mechanical strength. However, the use of charcoal for feeding 
into BF is ineffective precisely because of these features of mechanical and chemical 
properties. 

At the current state of industry development, biomass is important as a renewable 
source of raw materials that do not increase the amount of CO2 in the atmosphere. 
Biomass, as a substitute for fossil fuels, is actively used to produce biofuels [35–39], 
in the energy [38, 40–42], obtaining nanomaterials [43–47], bioplastics [48–51], as 
an effective adsorbent [52–55], as well as fertilizer [56–58]. 

Over the past couple of decades, the issue of using biomass and its products in 
the metallurgical process, namely in the BF process [59–63], sintering ores [64– 
71], electrical arc furnace (EAF) to enable carburizing and slag foaming [72, 73], 
submerged arc furnace (SAF) [74–76], reduction of iron [77–79] has been actively 
studied. At the same time, the amount of replacing the use of reducing raw materials 
instead of the conventional one depends on the type of process and the properties of 
biomaterials. Studies demonstrate that it is possible to increase the share of biomass 
use and its efficiency through the use of biocoke [80–83]. 

Co-pyrolysis of biomass and coal can be considered as one of the possible ways 
of controlling the thermochemical conversion of coal and the formation of molecular 
structure and physical and chemical properties of the solid residues. However, for the 
effective use of biomass as a fuel and raw material for chemical products, it should 
be considered that biomass from different sources has different properties [84].
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Studies on the effect of biomass additives on the caking process and coke prop-
erties show that a minor proportion of some biomaterials (up to 3 wt.%) in the 
mixture does not significantly affect the caking of coals [85, 86]. When studying 
the behavior of the removal of volatile matters from mixtures of biomass and coal, 
some authors found that no interaction occurs, and the yield of pyrolysis products 
is associated only with the amount of biomass and coal in the blend [87–90]. Other 
authors have observed interactions between coal and biomass in co-combustion [91] 
and co-pyrolysis of biomass and brown coal [92]. 

When studying the issue of using biomass for co-processing with coal, it is neces-
sary to have a clear, theoretically substantiated, confirmed-by-practice understanding 
of the processes of thermal destruction of the mixture with the formation of a solid 
residue and chemical products (tar, gas). Analysis of publications on the co-pyrolysis 
of coal and biomass [93, 94] highlights the main patterns of ongoing processes, 
depending on the temperature stage of processing (Table 1). At the same time, 
lignocellulosic biomass is considered a natural polymer consisting of hemicellu-
lose, cellulose, and lignin, the thermal destruction of which has its characteristics 
[95].

Thus, the relevance of the use of biomass in metallurgy, as well as a small number 
of studies on the production and analysis of biocokes, formed the main aim of the 
chapter is to establish the effect of biomass additives on the yield and quality of 
biocokes. Co-pyrolysis of coal blend and various types of biomass was carried 
out via a laboratory shaft furnace with different portions of biomass additives (up 
to 45 wt.%) and their forms (pellets and chips). The supplementary aim considered 
in this chapter is to analyze the influence of the type of biomass, its quantity, and 
form on the technical and physical–mechanical properties of biocokes and quality 
analysis of biocoke for compliance with the requirements of metallurgical processes. 

2 Materials and Methods 

Materials 

Table 2 shows the characteristics of the coals that were used to prepare the coal blend. 
Coals are characterized by high sulfur content, typical for Ukrainian caking coals. It 
should be noted that the thickness of the blend’s plastic layer (y, mm) was 12 mm, 
which is 2 mm less than conventional coal blends used for industrial coking. The 
indicators of the proximate analysis of coals were determined according to ASTM 
D3172-13 [96] and plastometric values according to [97–99].

Indicators of reflectance of vitrinite, vitrinite reflectogram, and petrographic 
composition of the coal used in the research are given in Table 3. The indicators 
were determined according to [100–102].

The average vitrinite reflectance (Ro) is 1.01%, while the values corresponding 
to industrial charges with good coking characteristics are 1.1–1.2% [97].
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Table 1 Main processes that occur during the pyrolysis of biomass and hard coal 

Temperature range, oC Component Description Main processes 

up to 105 °C Hemicellulose Moisture removal. The 
duration of the stage is 
determined by the 
moisture content and the 
weight of the charge 

Dehydration. Evaporation 
of water occurs in a 
narrow range of about 100 
°C 
This stage determines the 
subsequent course of the 
pyrolysis process in terms 
of the temperature field 
formation of the charge 

Cellulose 

Lignin 

Hard Coal 

105–270 oC Hemicellulose Drying and start of 
decomposition at 
temperatures of about 200 
°C 

Removal of adsorbed 
moisture 
Formed mainly CO, CO2, 
and acetic acid 

Cellulose Drying and 
decomposition start early, 
even at 240 °C 

Lignin Drying and minor 
decomposition start early, 
even at 260 °C 

Hard Coal Removal of colloidal 
moisture and occluded 
gases (CO2, CO). Drying 

Removal of adsorbed 
moisture 
Pre-plastic state 

270–350 °C Hemicellulose Active decomposition Isolation of combustible 
gases CO, H2, CH4, CO2, 
acetic acid, methanol, 
acetone, etc., and tar 

Cellulose 

Lignin Beginning of active 
decomposition 

Hard Coal Softening of coal with the 
beginning of the 
formation of coal plastic 
layer 

Pre-plastic state 

350–420 °C Hemicellulose Completion of 
decomposition 

The release of 
combustible gases CO, 
H2, and  CH4, along with 
CO2, acetic acid, 
methanol, acetone, etc., 
and tar 

Cellulose 

Lignin Active decomposition 

Hard Coal Plastic state The main process of 
pyrolysis. Active physical 
and chemical processes 
with the participation of 
coal plastic layer and the 
release of volatiles 

420–500 °C Hemicellulose – Formation of charcoal 

Cellulose –

(continued)
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Table 1 (continued)

Temperature range, oC Component Description Main processes

Lignin Completion of active 
decomposition 

Hard Coal End of the plastic state Beginning of 
resolidification after the 
plastic layer formation 
stage. Intensive formation 
of volatile substances and 
tar 

500–550 °C Hemicellulose – Formation of charcoal 
Completion of 
carbonization of charcoal 

Cellulose – 

Lignin Further decomposition 

Hard Coal Semi-coke formation and 
its further decomposition. 
The transformation of 
semi-coke into 
medium-temperature 
coke occurs above 700 
°C, and after 950 °C, the 
formation of 
high-temperature coke 

Accompanied by 
shrinkage processes and 
the release of volatile 
matter, mainly hydrogen, 
and hydrocarbons

Table 2 Characteristics of coals and blend 

Coal type Amount 
within the 
blend, % 

Proximate analysis, % Plastometric indicators, 
mm 

Wa Ad Vdaf Sd t y x 

Coal A 30 1.5 11.3 37.6 1.92 12 32 

Coal B 30 1.6 7.6 34.1 2.38 18 10 

Coal C 30 1.7 9.5 22.3 1.67 16 11 

Coal D 10 2.0 6.8 17.6 1.51 <6 20 

Blend 100 1.6 9.2 30.0 1.37 12 21

As is known, coals’ size strongly influences their thermal processing processes 
[103–105]. To exclude the influence of coal particles of different distributions on 
the quality of coke, a stable granulometric composition of coal of various types was 
taken, which was maintained during the preparation of coal blends. Firstly, coal of 
a specific granulometric composition was prepared, and afterward, it was mixed to 
the particle size distribution according to Table 4.

Wood, sunflower husks, and straw were used as biomass additives in the form of 
pellets with a diameter of 8 mm and a length of 4 to 12 mm. Additionally, for compar-
ison, when coking the blend, wood chips were used as an additive. The biomass 
additives’ properties are summarised in Table 5.
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Table 4 Particles size distribution of coals 

Coal type Content of sizes, % 

10–6 mm 6–3 mm 3–1.5 mm 1.5–0.5 mm <0.5 mm 

Coal A 4 10 31 30 25 

Coal B 4 22 30 24 20 

Coal C 3 17 24 33 23 

Coal D 2 8 27 32 31 

Blend 3.5 15.5 28.2 29.3 23.5

Table 5 Characteristics of additive properties, wt.% 

Type of additive Moisture (Wt 
r) Volatile matters (Vr) Total sulfur content (St d) Ash (Ar) 

Wood 9.4 81.3 0.01 1.0 

Sunflower husks 9.6 75.7 0.01 2.6 

Straw 4.7 75.0 0.01 5.4 

Methods 

Laboratory Coking 

Coking was carried out in a laboratory shaft furnace [80] at 800 °C. The load was 
1 kg, and after being charged in a retort, it was placed into a heated furnace. After 
finishing coking, the retort with the obtained coke was taken out and left to cool to 
room temperature. The coking time was 80 min. 

Yield of Coke 

After naturally cooling to room temperature, the obtained cokes were subjected to 
the analysis of the yield, %. The yield was calculated using Eq. 1. 

Y ield  = B × 100 / A, % (1)  

where A is the initial mass of the blend, g; B is the mass of coke/biocoke after 
coking, g.
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Particle Size Distribution of Coke 

Further, the resulting cokes were sieved into sizes > 40, 40–25, 25–10, and < 10 mm 
according to ASTM D293/D293M-18 [106]. 

Structural Strength 

To determine the structural strength, coke and biocoke samples of 6–3 mm were 
prepared. Then samples were charged into two special steel cylinders according to 
[107]. Likewise, five steel balls were placed in the cylinders. These two cylinders 
were set through screws in the cross-to-cross position in brackets, which were put 
on a shaft rotating with 0.417 s–1 (25 rpm). During the tests, the cylinders performed 
1000 revolutions, after which the contents of each cylinder were poured separately 
on a sieve with a mesh of 3 mm and 1 mm. Coke or biocokes were sieved to separate 
into 3–1 mm and 1–0 mm fractions. The yield of more than 1 mm from the initial 
weight in percent characterizes the structural strength. 

Abrasive Hardness 

The abrasive hardness was determined by the abrasion of an aluminium plate against 
coke or biocoke powder and the evaluation of its mass loss. 4–5 g of samples of 
less than 0.5 mm in size was filled on an aluminum plate. A stamp was placed on 
top of the samples of coke or biocoke, which were loaded so that a pressure of 
0.25 MPa was obtained. During the rotation of the rotor (500 rev.), the samples 
abraded the aluminum plate. The weight loss of the aluminium plate during the test 
run (in milligrams) was taken as the value of the abrasive hardness. Five tests were 
conducted for each sample. 

Electrical Resistivity 

The electrical resistivity measurement was carried out according to [108]. The 
method aims to determine the electrical resistivity of the particles with a size < 
2 mm placed in the cylinder between two stainless steel plungers under a pressure of 
3 MPa. The resistivity measured using a four-point mode is advantageous because 
it allows measuring resistivity close to the actual resistivity of the sample [109].
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3 Results and Discussions 

The characteristics of biocokes obtained from coking are summarized in Table 6. 
The yield of laboratory biocokes decreases with an increase in biomass additive, 
which has a higher yield of volatile matter than coal. The ash content of biocokes 
decreases due to the lower content of mineral components in the biomass. There is 
also a decrease in sulfur content since biomass additives practically do not add it to 
the mixture.

The yield of volatile matters of biocokes is determined by the level of readiness 
and varies from 0.8 wt.% to 2.5 wt.%. However, there is a tendency that with an 
increase in the proportion of biomass addition, the yield of volatile matters of the 
obtained biocokes increases. 

The effect of biomass additives on the physical and mechanical properties of 
biocokes is more significant. The amount of 1 wt.% and 3 wt.% pellets of three 
types of biomass, as well as 5 wt.% wood pellets do not cause a deterioration in the 
particles size distribution of biocokes compared to the reference coke. At the same 
time, the use of wood chips has a more noticeable effect on the size of biocokes in 
the direction of a decrease in large sizes (>25 mm) and an increase in small ones 
(<10 mm). In general, with an increase in the proportion of the additive, there is a 
trend towards a decrease in the yield of large sizes and a corresponding increase in 
small ones. 

Adding up to 3 wt.% of sunflower husks and straw pellets has a positive effect on 
structural strength. The additives of wood pellets and wood chips reduce the structural 
strength. At the same time, the negative effect of using chips is more pronounced 
than for pellets (Fig. 1). Similar dependences are observed when studying the impact 
of biomass additives on the abrasive hardness of the obtained biocokes (Fig. 2).

Thus, the addition of sunflower husk pellets up to 5 wt.% and straw up to 3 wt.% 
led to an increase in abrasive hardness, as well as the use of wood chips up to 3 wt.%. 
At the same time, adding 3 wt.% chips significantly increases the abrasive hardness 
index, although adding wood pellets decreases this index. This can be because fine 
coke (<0.5 mm) is used to study abrasive hardness. Therefore the value of the index 
depends to a greater extent on the degree of biocoke readiness, the number of charcoal 
particles in the sample, and their distribution. 

Electrical resistivity as an indicator that characterizes the structural features of 
carbon materials shows an improvement in the structural ordering of biocokes when 
using sunflower husk additives up to 3 wt.% compared to the reference one. The 
use of other additives leads to a decrease in the quality of biocokes in this indicator 
(Fig. 3). With an increase in the number of additives, electrical resistivity increases, 
although not linearly.

Therefore, the addition of sunflower husk up to 3 wt.% leads to an improvement 
in the physical and mechanical properties of biocokes, which can be explained by 
the presence of a certain amount of oily substances [110, 111], which during thermal 
destruction, positively affect the process of formation and properties of biocoke. 
Straw pellet additives up to 3 wt.% positively affect structural strength and abrasive
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Fig. 1 Effect of addition of 
biomass on structural 
strength of biocokes 
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Fig. 2 Effect of addition of 
biomass on the abrasive 
hardness of biocokes
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hardness, but electrical resistivity increases when using this type of additive. The use 
of wood additives shows a tendency to reduce the physical and mechanical properties 
of biocokes. At the same time, the use of pellets has a less negative effect on the 
structural features of biocokes (structural strength, electrical resistivity) than the 
addition of chips. 

A study of the effect of adding a high proportion of wood pellets on the quality of 
biocokes demonstrates notable dependencies. Thus, the yield of biocokes decreases 
non-linearly and increases the yield from the expected one. The physical and mechan-
ical properties of biocoke obtained with additives of 15 and 30 wt.% remain accept-
able for non-BF productions. At the same time, inclusions of charcoal in the form 
of pellets are clearly observed, which, with an increase in the amount, are better 
separated from the bulk of the solid residue of coal pyrolysis.
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Fig. 3 Effect of addition of 
biomass on electrical 
resistivity of biocokes
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Therefore, the results of earlier studies are confirmed [80, 83], which shows the 
local effect of wood pellet additives on the change in the properties of the resulting 
biocoke. 

Analysis of the obtained results shows that biomass additives affect the process and 
quality of biocoke production. The effect of influence is determined by qualitative 
and quantitative factors, namely the type, form, and proportion of the additive in 
a mixture with coal. The mechanism of the influence of biomass additives can be 
explained by the scheme of the co-pyrolysis of coals and biomass, which is presented 
in Fig. 4. 

Fig. 4 Scheme of the mechanism of co-pyrolysis of coal and biomass: Vb—vapor of water from 
biomass; Sb—solid biomass; VMb—volatile matter from raw and pyrolyzed biomass; Vhc—water 
vapor from hard coal; Vog—occluded gas from hard coal; Shc—solid hard coal; VMhc—volatile 
matter from hard coal; PMhc—plastic layer from hard coal
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The scheme shows the course of the process of co-pyrolysis of biomass and coal, 
namely drying and subsequent parallel and sequential processes of dehydration and 
condensation with the formation of liquid and solid products and depolymerization 
processes with the formation of volatile and tarry liquid substances, in the case of 
biomass pyrolysis; as well as dehydration processes followed by sequential-parallel 
polycondensation reactions with the formation of metastable phases in the case of 
coal pyrolysis. 

Consequently, there is a transition from the solid state to the solid, a systematic 
but limited at each stage, decrease in the mass of the solid, a change in the yield 
of volatile matters, and the appearance, growth, and disappearance of the plastic 
layer of coal. The pyrolysis process is non-isothermal and continuous, forming and 
destroying new compounds. As can be seen from the scheme, during the co-pyrolysis 
of biomass and coal, different phases interact. 

Biomass, namely cellulose and hemicellulose, begins to decompose before coal; 
thus, the volatile decomposition products formed in the charge further process the 
coal. Considering the predominantly oxygen-containing composition of volatile 
biomass, their effect on coal is oxidative, which ultimately reduces the caking ability 
of coals [82, 112–115]. 

The treatment of biomass with volatile pyrolysis products should affect the 
kinetics of the yield of steam-gas products of coal. In turn, with increasing temper-
ature, higher molecular weight volatile products of coal act on solid biomass 
degradation products, processing charcoal. 

In the coal pyrolysis process, all phases interact with each other, and each is 
involved in polycondensation. As a result, new metastable products are synthesized, 
namely liquid, solid and gaseous, forming phases of the next stage. Evidence of this 
should be the formation of various amounts of vapor–gas, liquid, and solid products. 
The most active changes occur within the temperature range of 250–500 °C when 
biomass decomposes and the coal plastic layer is formed. 

It is also important to consider that under higher temperatures and industrial 
conditions, thermal degradation of biomass pyrolysis tar and light products of primary 
coal tar will take place. The yield level of various products is determined by the depth 
of transformations that coal and biomass undergo at the stages of pyrolysis. Therefore, 
it is necessary to distinguish between conclusions on the co-pyrolysis of biomass and 
coal, obtained based on pyrolysis under laboratory conditions, and industrial-scale 
ones. 

Additionally, essential to note that during pyrolysis, the destruction-synthesis 
processes are limited by the rate of thermochemical transformations of the coal 
substance and not by heat transfer inside the coal particle. 

Thus, the addition of biomass actively affects the process of thermal destruction of 
the charge and, subsequently, the qualitative indicators of the solid residue: proximate 
analysis, physical–mechanical and physical–chemical properties. Accordingly, using 
biomass additives makes it possible to obtain biocoke of different qualities for various 
production processes.
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4 Conclusions 

Studies on the production of biocoke under laboratory conditions and its study 
showed that the addition of biomass in the form of wood pellets, wood chips, pellets 
from sunflower husks, and pellets from straw into coal blend leads to a change in 
the properties of coke: yield, particles size distribution, structural strength, abrasive 
hardness, and electrical resistivity. 

The use of up to 3 wt.% biomass pellet additives and 5 wt.% wood pellets do 
not lead to a deterioration in the granulometric composition of biocokes. At the 
same time, the output of large sizes (>25 mm) and small sizes (< 10 mm) changes 
noticeably when using the addition of wood chips and with more than 5 wt.% pellet 
additions. 

Regarding structural strength, abrasive hardness, and electrical resistivity, 
biocokes obtained with the addition of sunflower husks have better characteristics. 
This can be explained by the presence of a residual amount of oily substances, which 
improve the caking of coal particles. The addition of sunflower husks generally carries 
fewer oxygen-containing groups, negatively affecting the co-pyrolysis process with 
coal. 

Straw pellet additions up to 3 wt.% also do not adversely affect the particle’s size 
distribution and structural strength, with a noticeable improvement in abrasive hard-
ness. However, the electrical resistivity of biocokes obtained with the participation 
of straw increases. 

The addition of wood leads to a decrease in the physical and mechanical properties 
of biocokes. However, the deterioration of properties is not linear, which is more 
clearly seen when studying the effect of increased wood pellet addition. At the same 
time, using chips compared to pellets has an even more negative impact. Therefore, 
the effect of the pellets is local in nature on the change in the properties of the 
resulting biocoke, and the effect of the chips can be considered volumetric due to the 
uniform distribution of the chips in the charge volume. 

Using biocoke as a metallurgical fuel and reducing agent can improve the tech-
nical and economic performance of non-blast furnace industries by using carbon 
material with more suitable physical, mechanical, and physicochemical properties 
than conventional coke. In addition, using biomass additives is an environmentally 
friendly approach to obtaining carbon fuels. The advantages of using biomass as a 
component of coal blends in the coking process are the utilization of biomass; use 
of renewable raw materials, instead of fossil fuels, in particular, deficient coking 
coal; obtaining a new product, namely biocoke, the properties of which meet the 
modern requirements of consumers; reducing the negative impact on the environ-
mental situation in the region and the world. The cost of biocoke may be lower than 
that of obtaining the corresponding grades of conventional coke. Therefore, using 
biomass additives to produce coke will solve complex problems in industrial regions 
and enterprises of ferrous metallurgy, agriculture, the chemical industry, and many 
others that process biomass.
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