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Abstract. This study introduces an integrated approach that merges
the design of structure and control to study the deployment strategies
for tensegrity structures, particularly in the context of space antennas.
First, we establish a nonlinear shape control law for clustered tenseg-
rity structures, the solution turns out to solve a constraint linear algebra
equation. Leveraging the symmetric nature of the antenna structure, we
designate active actuators for the top and bottom cables of the space
antenna while considering the remaining cables as passive. To further
reduce the number of actuators required, we employ various clustering
strategies for the active actuating cables. Results show that the deploy-
ment from the initial state to the predetermined targets is successfully
guided by the proposed control law through clustering active cables using
different actuation strategies. It is significant to note, however, that the
energy cost escalates as more cables are clustered into the deployable
antenna structures. In the context of space applications, this scenario
emphasizes structure design and control are not independent problems.
These insights also offer extensive relevance and can be extrapolated to
different deployable tensegrity structures and robotic systems.

Keywords: Space Antenna · Deployable Structure · Tensegrity
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1 Introduction

In light of the substantial expenses associated with launching and the constrained
size of rocket tanks, the aerospace industry is continuously pursuing lightweight
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and deployable alternatives [2]. Recently, the European Space Agency (ESA)
commissioned a study to explore breakthrough architectural concepts that offer
superior reliability for the deployment of large systems. According to a pre-
vious study [7], the application of the new tensegrity-type architectural con-
cept to large space antenna reflectors has shown that it achieves reliability
by significantly reducing the number of articulated joints when compared to
non-tensegrity architectures. Ganga et al. analyzed the overall feasibility of the
deployable system, as well as its design, stiffness, deployment repeatability, and
geometric precision by experiments [7]. However, the optimal deployment strat-
egy in terms of structure design and control is still an open question.

Tensegrity structures offer a plethora of cables, which can provide a wide
range of options for actuators [4,6]. However, the availability of numerous cables
can pose challenges in their practical application [5], such as increased costs for
actuators, difficulties in their placement, complicated control, and higher energy
requirements. To address this issue, it is necessary to select only a subset of cables
as actuators while ensuring that the desired control performance is achieved.

Skelton et al. proposed a systematic design method for sensors and actuators
in structural control to minimize the cost of instrumentation [11]. Chen et al. pre-
sented the energy-efficient cable-actuation strategy for tensegrity structures [1].
Feng et al. compared the control energy and optimal dynamic performance of
clustered tensegrity structures with different actuator placements for clustered
cables and struts [12]. Ma et al. presented the dynamics and control law to
clustered tensegrity structures [9]. However, most of the research on actuator
selection has been conducted on linear systems, whereas tensegrity is a non-
linear system. Limited studies have been conducted on finding energy-efficient
control laws with an optimal number of actuators.

This paper presents an energy-effective method for achieving nonlinear shape
control in tensegrity structures. The subsequent sections are organized as follows:
Sect. 2 introduces the design of deployable tensegrity space antennas. Section 3
outlines the shape control equation for tensegrity structures, derived from non-
linear dynamics formulations, utilizing cable forces as variables with imposed
constraints. We also provide solutions to the shape control equation, along with
clustering actuation strategies and minimal control energy considerations. In
Sect. 4, numerical examples are presented to demonstrate the accuracy and effi-
ciency of the control law and optimal clustering strategy. Finally, Sect. 5 sum-
marizes the study’s conclusions.

2 Design of Deployable Tensegrity Space Antennas

2.1 The Tensegrity Antenna Topology

Definition 1 (The Tensegrity Antenna). Figure. 1 illustrates the structural
topology of the deployable tensegrity antenna. The complexity q of the structure is
defined by the number of X units in the structure. Figure 2 displays the structure
with varying complexities.
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Fig. 1. A tensegrity ring: (a) top, (b) front, and (c) axonometric views with structure
complexity of q = 12. The thick black lines are bars, and the thin red lines are cables.

Fig. 2. The tensegrity antenna with different complexities: (a) q = 3, (b) q = 6, (c)
q = 9, (d) q = 12, (e) q = 36, and (f) q = 72.

By shrinking the top and bottom cables simultaneously, we can have a deploy-
able antenna. The structure deployment configurations are shown in Fig. 3.

3 Nonlinear Shape Control Law

3.1 Nonlinear Equations of Motion of Full-Order Model

Definition 2 (Nodal Coordinates). The nodal coordinate vector n ∈ R
3nn

and matrix N ∈ R
3×nn in a tensegrity system are:

n =
[
nT

1 nT
2 · · · nT

nn

]T
, (1)

where ni =
[
xi yi zi

]T ∈ R
3 is the x-, y-, and z-coordinates of the ith (i =

1, 2, · · · , nn) node, and nn is the total number of nodes.
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Fig. 3. Deployed, transient, and folded configurations: (a) top view, (b) front view,
and (c) axonometric view. The diameters of the circles depicted in the views are 12 m,
9 m, 6 m, and 3 m, arranged from the outermost to the innermost circle. The initial
state is represented by the 12 m diameter circle, with black and red lines denoting the
bars and cables, respectively. The transient states are illustrated by the 9 m and 6 m
diameter circles, where dotted grey and magenta lines are used to depict the bars and
cables, respectively. Finally, the target state is portrayed by the 3 m diameter circle,
with grey and magenta lines representing the bars and cables, respectively.

Definition 3 (Connectivity Matrices). The connectivity matrices Cs and
Cb describe the overall pattern of connections between the cables and bars in a
tensegrity system, respectively. The total connectivity matrix C is obtained by
concatenating Cs and Cb and has dimensions R

ne×nn , where ne = ns+nb is the
total number of structural elements. Each row of C corresponds to an element
m = 1, 2, · · · , ne and is represented by the vector Cm. The i-th entry of Cm

indicates the connection between the two nodes associated with the element m.
Specifically, the i-th entry of Cm is defined as follows:

Cmi =

⎧
⎪⎨

⎪⎩

−1, i = j

1, i = k

0, otherwise
, (2)

where j = 1, 2, · · · , nn and k = 1, 2, · · · , nn.

Theorem 1 (Tensegrity Nonlinear Dynamics). The tensegrity dynamics
with constraints is given by:

ET
a (Mn̈ + Dṅ + Kn) = ET

a (fex − g) , (3)
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where

M =
1
6
(|C|T m̂|C| + �|C|T m̂|C|�) ⊗ I3, (4)

K = (CT x̂C) ⊗ I3, (5)

g =
g

2
(|C|Tm) ⊗ [

0 0 1
]T

, (6)

where M ∈ R
3nn×3nn , D ∈ R

3nn×3nn , and K ∈ R
3nn×3nn are mass, damping,

and stiffness matrices, •̂ operator converts the vector into a diagonal matrix, |V |
gets the absolute value of each element of the matrix V , and �V � sets all the
off-diagonal elements of a square matrix to zero. x ∈ R

ne is the force density
(force per unit length) vector of structure members, fex ∈ R

3nn is external forces
on the structure nodes, and g is gravity vector (g is the gravity constant, e.g.,
g = 9.81m/s2 for earth gravity). Ea ∈ R

3nn×na (na are the number of free
nodes) is an orthonormal matrix to extract free nodes na from nodal vector n,
which satisfies Ea(:, i) = I3n (:, ai) ∈ R

3nn×na and na = ET
a n. The value ai in

vector a =
[
a1 a2 · · · ana

]T ∈ R
na are the indices of the free nodes in the nodal

coordinate vector n. Similarly, vector b =
[
b1 b2 · · · bnb

]T ∈ R
nb are the indices

of constrained entries in the nodal coordinate vector n. Eb(:, i) = I3n (:, bi) ∈
R

3nn×nb is an orthonormal matrix to abstract constrained nodes nb from nodal
vector n and nb = ET

b n, The sum of the number of free and fixed nodes is the
total number of nodes, and we have na + nb = 3nn.

Proof. Theorem 1 can be derived using the Lagrangian method, and the details
are given in [10] and software package [8].

We also provide the statics equations since this part will be used in the later
control equations.

Corollary 1 (Tensegrity Statics). The tensegrity statics with constraints
has three equivalent forms:

ET
a Kn = ET

a A1cxc = ET
a A2ctc = ET

a (fex − g), (7)

where

A1c = A2cl̂c =
(
CT ⊗ I3

)
b.d.(H)l̂−1ST l̂c. (8)

Proof. By neglecting the time derivatives in Theorem 1, we can have ET
a Kn =

ET
a (fex − g). From Eq. (5), one can get Kn = A1cxc = A2ctc.

3.2 Shape Control Law

Definition 4 (Shape Objectives). The error between the current position of
the structure to the control target is defined as:

e = nc − n̄c, (9)
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where nc is the nodes of interest to control, n̄c is the morphing objective. Since
the nodal coordinate of interest nc is extracted from the free nodal coordinate
na, we have nc = ET

c na, where Ec is the index matrix.

Definition 5 (Active and Passive Members). The active and passive cables
are defined as the structure members who actively and passively change their
length, satisfying ns = ns,act + ns,pas, where ns,act and ns,pas are the number of
active and passive cables, respectively. The force vectors of the active and passive
members can be written as follows:

tcact
= ET

acttc, tcpas
= ET

pastc, (10)

where Eact and Epas are index matrices to separate all the structure members.
Since

[
Eact Epas

]
is an orthogonal matrix, we have the following equation:

tc =
[
ET

act

ET
pas

]−1 [
tcact

tcpas

]
=

[
Eact Epas

]
[
tcact

tcpas

]
. (11)

Theorem 2 (Nonlinear Shape Control). The nonlinear shape control of the
tensegrity structure is equivalent to solving the following linear algebra equation:

μ − Γpastcpas
= Γacttcact

, (12)

where μ, Γact, and Γpas are:

μ = ET
c M−1

aa ET
a (fex − g − MEbn̈b − Dṅ)

− ¨̄nc + ψ(ET
c ṅa − ˙̄nc) + φ(ET

c na − n̄c), (13)

Γact = ET
c M−1

aa ET
a A2cEact, (14)

Γpas = ET
c M−1

aa ET
a A2cEpas. (15)

Proof. When the nodes of interest reach their targets, the error vector e and its
time derivatives should all go to zero. This goal can be expressed as follows [3]:

ë + ψė + φe = 0, (16)

where ψ and φ are tune matrices that can adjust the time response of the
morphing process. Since Ec is given constants, the time derivatives of the error
vector in Eq. (9) are:

ė = ṅc − ˙̄nc, ë = n̈c − ¨̄nc. (17)

Substitute Eqs. (3) and (9) into Eq. (16), we have:

ET
c M−1

aa ET
a (fex − g − MEbn̈b − Dṅ − Kn)

− ¨̄nc + ψ(ET
c ṅa − ˙̄nc) + φ(ET

c na − n̄c) = 0. (18)

Substitute Eqs. (8) and (11) into Eq. (18), one can have a linear algebra Eqs.
(12)–(15).
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3.3 Solving for Control Variable

The only unknown variable in Eq. (12) is tcact
. In most cases, people use cables

to control the tensegrity structure, so let us use cable as the control variable
as an example. Since cables cannot take compression, and if they do, we should
substitute the force to zero, we must add the constraint to this unknown variable
tcact

≥ 0. Moreover, the cables should never exceed their yield strength, which
can be calculated by the σsAc. Thus, the problem of solving Eq. (12) becomes
a linear algebra problem with inequality constraints.

Theorem 3 (Shape Control Solution). The solution to Theorem 3.2 is as
the following:

⎧
⎨

⎩

Solve
tcact

Γacttcact
= μ − Γpastcpas

s.t. 0 ≤ tcact
≤ σsAc

. (19)

The resolution of Theorem 3 relies on the characteristics of Γact. One favor-
able feature of tensegrity structures is that they contain an abundant num-
ber of cables, resulting in Γact being a matrix with a complete column rank,
thereby making at least one solution typically exist. It is worth mentioning
that an analytical solution could exist, such as finding solutions from the pos-
itive span space in the first equation. However, for different structures, a solu-
tion cannot always be guaranteed, but a least square one is always possible,
min
tcact

||μ−Γpastcpas
−Γacttcact

||2. We should point out that the least square solu-

tion can be arbitrarily bad. Thus, one has to be careful in choosing the target
points, control speed, and materials.

3.4 Deployment Strategy Design

In an effort to optimize both the manufacturing process and deployment strat-
egy, we have thoroughly taken advantage of the symmetrical properties of the
structure. Specifically, we choose passive cables for the side cables and active
cables for the top and bottom cables.

Definition 6 (Clustering Actuation Strategy). The structure clustering
strategy is shown in Fig. 4, where we use the complexity of q = 12 as an example
to illustrate the idea.

Definition 7 (The Energy Cost). The total control energy of the system can
be computed as follows:

E =
k∑

i=1

ΔlTcact,itcact,i, (20)

where Δlcact,i represents the change in length of the active members at the ith
step, tcact,i denotes the member force in the active members at the ith step, and
k is the total time steps of the active actuation process.
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Fig. 4. The clustering strategies involve individual passive cables represented by red
cables, as well as active cables found in the top and bottom cables. Within these top
and bottom cables, six clustering strategies are employed: (a) non-clustered cables, (b)
clustering of every two adjacent cables, (c) clustering of every three adjacent cables,
(d) clustering of every four adjacent cables, (e) clustering of every six adjacent cables,
and (f) clustering of all twelve adjacent cables.

4 Numerical Results

To demonstrate the proposed method, we choose the antenna complexity to be
q = 12, as shown in Figs. 1 and 3. The diameter of the ring is 12 m, and the height
of ring H is 2.6 m. The end module’s height is 2.5m. The damping coefficient is
0.1. The time step is 0.0001 s, and the total simulation time is 20 s. The target
node positions are computed from the static deployment process by adjusting
the inner ring diameter to be 3 m. The material properties are given in Table 1.
In this study, we examine the six cases as shown in Fig. 4. We use the same
setups for all six cases except for the clustering strategies. We choose the same
control gains for the six cases.

Table 1. Material properties of the structure members.

Properties Bars Passive Cables Active Cables

Material Steel Aluminum UHMWPE

Diameter 16 mm 4 mm 10 mm

Density 7,7870 kg/m3 2,700 kg/m3 970 kg/m3

Young’s Modulus 206 Gpa 60 Gpa 120 Gpa

Yield Strength 300 Mpa 110 Mpa 2.7 Gpa
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Fig. 5. Left: The performance of control measured by the errors between the current
position and the control targets of all the inner nodes of the structure. No significant
difference was found between the six clustering strategies in Fig. 4. Right: The control
energy cost for the six clustering strategies (a)-(f) in Fig. 4.

As evident from Fig. 5 (left), the control performance, measured by the errors
between the current position and control targets, is roughly zero at the final sim-
ulation time for all six clustering strategies. This implies that the control law is
effective in guiding the structure toward the final targets. However, as we cluster
more cables, the energy cost is higher. For example, as shown in Fig. 5 (Right),
the energy cost at the final state for the listed six cases are 5.3887×106 J, 5.9111
×106 J, 6.4374×106 J, 6.9644×106 J, 8.0223×106 J, and 1.1183×107 J. That is,
by clustering cables, one can use fewer actuators in the antenna structure, but
the energy cost is higher. One can note that in case (f), where all twelve nearby
cables are clustered, the energy consumption is 2.0752 times that of case (a),
which involves non-clustered cables. However, this setup results in the saving of
11 actuators.

It is worth noting that energy resources in space applications, such as those
derived from solar panels, are fairly restricted. Consequently, in such instances,
there must be a careful equilibrium between energy consumption and the number
of actuators used. This scenario underlines that, in the context of space applica-
tions, the design of the structure and its control are intertwined and should not
be considered separate issues.

5 Conclusions

This paper presents an integrated approach that combines structure and control
design to study the deployment strategy for tensegrity deployable structures,
with a focus on space antennas. We derive a nonlinear shape control law for
clustered tensegrity structures by solving a constraint linear algebra equation.
The top and bottom cables are selected as active, while the remaining cables are
passive. By clustering the active cables using different actuation strategies, the
proposed control law effectively drives the structure from its initial configuration



856 M. Chen et al.

to the desired targets. However, it is important to consider that the energy
cost increases as more cables are clustered in deployable antenna structures.
These findings have broad applicability and can be extended to other types of
deployable tensegrity structures and robots.
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