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Abstract. The classical funicularity concept for shell structures has been
extended defining the Relaxed Funicularity (R-Funicularity). A parameter called
generalized eccentricity has been used for this purpose, following that a shell is
R-Funicular when the generalized eccentricity doesn’t exceed an admissibility
limit. A shells’ shape optimization process aiming at finding R-Funicular analyti-
cal shells is here modified at the geometry definition level by describing the shells’
shape with spline surfaces and using the position of the control polygon vertices
as optimization variables. An isogeometric (IG) refinement is applied in order to
improve the local control of the shape in the optimization process. An advantage
of this approach is that, since it introduces new vertices in the control polygon,
the number of optimization variables becomes tunable. Namely, starting with the
lowest number used to generate the initial geometry, the additional vertices can
possibly be entered as new variables whenever a more accurate local control of
the surface is needed. We present significant numerical examples.

Keywords: Shape optimization · NURBS · Generalized eccentricity ·
R-Funicularity · Isogeometric refinement

1 Introduction

Funicular shells are shaped to bear loads without introducing bending. They exploit the
entire cross section, minimizing the material waste. For these reasons, funicular shells
are an example of efficiency and many design approaches have been developed in order
to find the “right” shape in accordance with the applied load [1].

Nevertheless, when bending stiffness is not negligible and/or the boundary condi-
tions are not properly assigned, a funicular behaviour is not possible and bending arises.
Accounting for this occurrence, the actual funicular behaviour of shells can be quan-
tified by means of a method based on Relaxed Funicularity (R-Funicularity) [2]; the
parameter used to quantify the funicularity is the generalized eccentricity. The amount
of bendingmoments exploited by a shell to resist loads can be reduced bymeans of shape
optimization, i.e. an inverse problem properly formulated to minimize an objective func-
tion somehow measuring the shell’s bending moments. The minimization is pursued by
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updating some shell geometric features, i.e. variables, admitted to vary within a range.
The goal of bending moments reduction is usually approached by minimizing the strain
energy [3–5]; other objectives of shape optimization can be, for example, the mini-
mization of the weight, the stress levelling [3, 4] or the minimization of displacements
[6].

In [7], a shape optimization process aimed to find R-Funicular shells by minimizing
the generalized eccentricity extrema has been developed. Geometry and mechanical
behaviour of shells are strictly linked, thus the description of the first strongly influences
the solution quality and the computational cost. Often, see for example [5, 6], when
an R-Funicular shell is sought, the shape is described by means of analytical functions
[7–9].

In thiswork, the geometry definition shown in [8] ismodified by introducingB-spline
basis functions and associated control points [10] to describe the shell mid-surface.
Compared to existing works in which this approach was used (e.g., [5, 11]), here an
isogeometric (IG) refinement is applied in order to improve the local control of the shape
in the optimization process. An advantage of this approach is that, since it introduces new
vertices in the control polygon, the number of optimization variables becomes tunable.
This feature is exploited by performing a shape optimization where, starting with the
lowest number of control points used to generate the initial geometry, additional vertices
can be entered as new variables whenever a more accurate local control of the surface
is needed. A similar approach has been employed in [12], where, in order to expand the
feasible design space, a refinement of the initial geometry has been performed.

After a brief description of the concepts of R-Funicularity and generalized eccen-
tricity e(α), we discuss the optimization strategy with a major focus on the geometry
description. Two effective numerical examples are then proposed and the conclusions
are drawn.

2 Generalized Eccentricity and R-Funicularity

The generalized eccentricity measure and its use to define the R-Funicularity concept
are briefly introduced in this section. For a complete discussion, please refer to [2].

Let us consider a point P belonging to the surface S, endowed with its orthonormal
basis a1, a2, a3, and a generic direction of the tangent plane represented by the unit
vector u = (cosθ, sinθ) (Fig. 1).

The local tensors N and M, respectively associated with the membrane forces and
the bending moments, can be evaluated in each point P:

N =
(
N11 N12

N12 N22

)
, M =

(
M11 M12

M12 M22

)
(1a,b)

Then,N (θ)= uTNu andM (θ) = uTMu are, respectively, the generalizedmembrane
force acting along u and the generalized bending moment acting in the plane (u, a3).
Using the multiple-angle and the power-reduction trigonometric formulae and setting
α = 2θ , it has been possible to write the following explicit form for Eq.N (θ) andM (θ):

N (α) = N + N̂ cosα + N12sinα

M (α) = M + M̂ cosα + M12sinα
(2)
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Fig. 1. Local orthonormal basis on P belonging to the surface S.

whereN = N11+N22
2 ,N

∧

= N11−N22
2 ,M = M11+M22

2 ,M
∧

= M11−M22
2 . Then, the generalized

eccentricity is defined as the ratio:

e(α) = M (α)

N (α)
(3)

Equation 2 is the equation of a parametric curve in the plane (N ,M ) ∈ R
2, that is

an ellipse when α ∈ [0, 2π ], called ellipse of eccentricity or Relaxed Funicularity (RF)
ellipse (Fig. 2).

It is well known that a surface structure is funicular, for a given load, if (4) is verified.

M (α) = 0 ∀α (4)

The actual behaviour exhibited by shells with non negligible thickness shows that the
nullity of bending internal forces is an ideal that never verifies. The aim of R-Funicularity
is to define a criteria to consider a structure funicular in a relaxed manner even if Eq. 4
is not respected, when e(α) belongs to an admissible range set as [−λh, λh], where h
is the thickness of the surface and λ ∈ [

0, 1/2
]
an admissibility coefficient that depends

on the applications.
In the light of above, the Relaxed Funicularity (RF) is defined as follow: “a shell

is R-Funicular if, e(α) ∈ [−λh, λh] ∀α ∈ [0, 2π ], for each point of the surface”. In
practice the problem of the R-Funicularity is that of verifying:

[min(e(α)),max(e(α))] ⊂ [−λh, λh] (5)

For completeness, we show the graphical representation of e(α) in the (N ,M ) plane.
More details about its use are given in [2].

Considered the definitions below, the generalized eccentricity is the Rayleigh quo-

tient: e(θ) = uTMu
uTNu

, and themaximum andminimum eccentricities (emax, emin) are found
by solving the associated eigenvalue problem:

(M − eN)u = 0 (6)

The solution of (6), discussed in [2], depends on the algebraic conditioning of M
and N and gives the local extrema emax and emin shown in Eq. (17) of [2].
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The global extrema of the eccentricities can be finally evaluated as follows:

min(e(α)),max(e(α)) =
{−∞,+∞ if det(N ) < 0
emin, emax if det(N ) ≥ 0

(7)

The angles ϕmax = atan(emax) and ϕmin = atan(emin) in Fig. 2 have been used to
define the functional to be minimized with the aim of improving the shells’ mechanical
behaviour.

Fig. 2. RF ellipse, eccentricity extrema and limits emax and emin, elim and −elim, respectively
equal to the slope of the upper and lower blue and red lines; eccentricity angles ϕmax , ϕmin

3 Shells’ Shape Optimization for R-Funicularity

The main goal of the shells’ shape optimization process proposed in [7] is to obtain
a shape for the shell to be R-Funicular and is pursued by minimizing the generalized
eccentricity extrema emax and emin all over the shell. Here the procedure is modified
at the geometry definition level. Aiming at a wider design freedom, the shape is now
described with B-spline surfaces and an IG refinement is applied to obtain a major local
control of the shape; a MATLAB Toolbox [13] has been employed for this purpose.

3.1 Modelling of Geometry and Isogeometric Refinement

The shell geometry has been modelled by means of a non-rational B-splines surface,
obtained by fixing a bidirectional net of control points Pi,j, two knots vectors U =
{0, . . . , 0, up+1, . . . , ur−p−1, 1, . . . , 1} andV = {0, . . . , 0, vq+1, . . . , vr−q−1, 1, . . . , 1}
and the products of the two univariate B-spline functions of degree p and q, Ni,p(u) and
Nj,q(v):

S(u, v) =
n∑

i=0

m∑
j=0

Ni,p(u)Nj,q(v)Pi,j (8)

The vectors U and V contain, respectively, r + 1 and s + 1 knots, being:

r = n + p + 1

s = m + q + 1
(9a,b)
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The surface resulting from (8) is then manipulated by performing the isogeometric
h-refinement that consists in the well-known algorithm of knots insertion. This type of
refinement has multiple uses, among which: evaluating points and derivatives on curves
and surfaces, subdividing curves and surfaces, adding control points in order to increase
flexibility in shape control [10].

In order to understand the effect of knot insertion, let us consider aB-spline curveC =∑n
i=0 Ni,p(u)Pi defined onU = {u0, . . . , um}, whose vector space is VU . If we insert u ∈[

uk , uk+1) into U we obtain the new vector U = {u0 = u0, . . . , uk = uk , . . . , uk+1 =
u, uk+2 = uk+1, . . . , um+1 = um}, whose vector space VU has dimension dim

(VU

) =
dim(VU ) + 1 and, since VU ⊂ VU, it is possible to represent C on U:

C(u) =
n+1∑
i=0

Ni,p(u)Qi (10)

where Qi are the new control points that can be obtained by exploiting the following
equality:

n∑
i=0

Ni,p(u)Pi =
n+1∑
i=0

Ni,p(u)Qi (11)

and the property according to which in a given knot span
[
uj, uj+1

)
, at most p + 1 Ni,p

are nonzero.
Omitting the intermediate mathematical steps, that can be found in [10] together

with an exhaustive treatment of the topic, the new control points (Fig. 3) are:

Qi = αiPi + (1 − αi)Pi−1 (12)

where

αi =

⎧⎪⎨
⎪⎩

1
u−ui

ui+p−ui

0

i ≤ k − p
k − p + 1 ≤ i ≤ k

i ≥ k + 1

and k is an index that locates the inserted knots in the vector U.
In this specific case, basis functions of degree 2 have been employed. Initially, a

net of 3 × 5 control points and the following knots vectors U = {000111} and V =
{0001/32/3111} have been considered. U and V contain, respectively 6 and 8 knots,
accordingly to the Eqs. (9a,b). The resulting shape and the control net are depicted in
Fig. 4.

The positions of the 9 inner control points (Fig. 5) have been updated in the opti-
mization process by varying 4 different coefficients, each multiplying the z-coordinates
of the points marked with the same colour in Fig. 5; the black ones are maintained fixed.
Thus, each control point admitted to vary is defined as Pi ≡ (xi, yi, zici), where ci are
the optimization variables. The variables of the starting shape, denoted as coi are equal
to 1.
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Fig. 3. Effect of knots insertion into a quadratic curve. Blue, solid line: control polygon before
knot insertion; green, dashed line: control polygon after inserting u = 0.1 and u = 0.7 into
U = {0000.20.40.60.8111}.

Fig. 4. Starting shape and control net

Fig. 5. Plane view of the initial control net. Black dots: control points maintained fixed in the
optimization process; Coloured dots: control points updated in the optimization process.

The two knot vectors U1 = {1/32/3} and V1 = {1/61/25/6} have been inserted,
respectively into U and V, obtaining the new control net shown in Fig. 6.

Also in this case, the positions of the 30 inner control points (Fig. 7) have been
updated in the optimization process by varying 9 different coefficients, each multiplying
the z-coordinates of the points marked with the same colour in Fig. 7; the black ones are
maintained fixed. The coordinates of the control points are defined analogously to the
previous case.
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Fig. 6. Starting shape and new control net

Fig. 7. Plane view of the refined control net. Black dots: control points maintained fixed in the
optimization process; Coloured dots: control points updated in the optimization process.

3.2 Optimization Strategy

The shape optimization process is illustrated in Fig. 8. Firstly, a few general definitions
should be provided: shell material, eccentricity limits and boundary conditions. The
initial geometry is the B-spline surface described in Sect. 3.1 and shown in Fig. 4,
properly discretized to build a Finite Element (FE) model. In the following step a linear
static analysis of the structure subject to the self-weight load and an in plan uniform
vertical load of 5 kN/m2 is performed and the internal moments and forces are stored
for each i-th area element of the model. The minimum and maximum eccentricities of
each i-th element are computed by using bending moments normalized with respect to
the shell thickness and collected in the vectors e0,min, e0,max respectively. In addition,
the eigenvalues λ1,i and λ2,i of the tensor Ni (Eq. 1a) are evaluated and used to check
if the ellipse of eccentricity of the i-th element crosses the M axis, that is λ1,i and
λ2,i have different signs. Then, the values of eccentricity extrema emin,i = 10000 and

emax,i = 10000 are imposed to the i areas with discordant eigenvalues. The eccentricities
vectors that result from these computations, emin, emax, are used to evaluate the objective
function to be minimized. If convergence is reached the process stops, otherwise the
shape is updated by moving the position of the control points P or Q and the procedure
is repeated until convergence.

Defining ϕM ,i = max(
∣∣ϕmax,i

∣∣, ∣∣ϕmin,i
∣∣), where i = 1, . . . ,N , being N the number

of shell elements in the FE model, the objective function is defined as the root mean
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square of ϕM ,i:

fobj =
√∑

iϕ
2
M ,i

N
(13)

In Table 1, the optimization settings are summarized.

Fig. 8. Overview of the shape optimization process

4 Results and Conclusions

The shape optimization results are expressed in terms of shape variation and eccentricity
distribution. As shown in Fig. 9, left, the starting shell is mostly non R-Funicular, being
the eccentricity extrema larger than eadm and the value of the objective function fobj =
1.28. The image in the centre of Fig. 9 shows the results obtained by means of the first
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Table 1. Optimization settings

Parameter Value/Description

Material and
thickness

Concrete: w = 25 kN/m3; E = 3 × 107 kN/m2 -−h = 0.1m

Admissible
eccentricity

eadm = hλ with λ = 1/6 or eadm = λ when bending moments normalized with
respect to h are used (middle third rule)

Starting
shape

Non-rational B-spline surface. Control points multipliers:coi = 1

Mesh
Boundary
conditions
Shell
formulation Quadrangular mesh;

pinned x edges;
shell-thin element formulation

Objective
function fobj =

√∑
iϕ

2
M ,i

N

Software MATLAB (scripts for evaluation of eccentricities, optimization, shape update)
SAP2000 (FE solver)

Optimization
algorithm

Sequential quadratic programming (SQP): find local minimum of constrained
nonlinear multivariable function

Variables
constraints

0.01 ≤ ci ≤ 2

shape optimization, where only 4 variables were updated to modify the control net and,
consequently, the shell’s shape. The optimization variables, starting from co1 = co2 =
co3 = co4 = 1, turn c1 = 0.1, c2 = 0.16, c3 = 0.24, c4 = 0.12 after optimization.
A notable improvement of the shell funicular behaviour has been obtained, especially
in the central areas of the shell, also proved by the objective function that reaches the
value fobj = 0.42. The right image (Fig. 9) shows the results obtained by performing
the shape optimization after knots insertion. Also in this case, the starting variables have
been fixed to 1, the parameters after shape optimization are:

c1 = 0.59, c2 = 0.53c3 = 0.39c4 = 0.57, c5 = 0.49, c6 = 0.33, c7 = 0.91, c8 =
0.76, c9 = 0.47. It can be observed that the increased local control and thus the major
number of optimization parameters obtained by knot insertion allowed to obtain a shell
mostly R-Funicular. The objective function, starting from 1.28, reduces to 0.32.

According to R-Funicularity, a good shell has been obtained in both examples. Nev-
ertheless, by comparing the shapes and the eccentricity distribution, it can be stated that
enriching the initial geometry description by means of IG refinement allowed for a bet-
ter shape adjustment, also confirmed by the initial and the final fobj in the two proposed
cases. The objective function, in fact, providing the root mean square of the eccentricity
angles (Fig. 2), gives a summary measure of how much the shell behaviour differs from



20 G. R. Argento et al.

the R-Funicular one, which is immediately evident by comparing the values assumed
by fobj before and after the optimization with atan(eadm) = 0.165.

In the light of above, we believe that this approach could be useful when the accuracy
of the shape local control should be modulated according to design and computational
demands. Further studies about this approach could be devoted to observing the objective
function trend as the number of optimization variables increase, in order to state whether
if there is a threshold number overwhich the function no longer decreases.Also, attention
should be paid to the numerical issues that could emergewhen a large number of variables
are considered.

Fig. 9. Shapes and eccentricity distribution. The colorbar represents the values of the eM ,i =
max(

∣∣emax,i∣∣, ∣∣emin,i∣∣) that increases going from green to blue, the latter meaning that the eccen-
tricity falls out of the cross section. The shell is R-Funicular in the light green areas. Left: before
optimization, fobj = 1.28; centre: after optimization with 4 variables, fobj = 0.42; right: after
optimization with 9 variables, fobj = 0.32.
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