
Shlomi Dolev
Baruch Schieber (Eds.)

LN
CS

 1
43

10

25th International Symposium, SSS 2023
Jersey City, NJ, USA, October 2–4, 2023
Proceedings

Stabilization, Safety,
and Security
of Distributed Systems

Lecture Notes in Computer Science 14310
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Shlomi Dolev · Baruch Schieber
Editors

Stabilization, Safety,
and Security
of Distributed Systems
25th International Symposium, SSS 2023
Jersey City, NJ, USA, October 2–4, 2023
Proceedings

Editors
Shlomi Dolev
Ben-Gurion University of the Negev
Be’er Sheva, Israel

Baruch Schieber
New Jersey Institute of Technology
Newark, NJ, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-44273-5 ISBN 978-3-031-44274-2 (eBook)
https://doi.org/10.1007/978-3-031-44274-2

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0001-5418-6670
https://doi.org/10.1007/978-3-031-44274-2

Preface

The papers in this volume were presented at the 25th International Symposium on Sta-
bilization, Safety, and Security of Distributed Systems (SSS), held on October 2–4, 2023,
at NJIT, the Institute for Future Technologies in Jersey City, New Jersey.

SSS is an international forum for researchers and practitioners in the design and
development of distributed systems with a focus on systems that are able to provide
guarantees on their structure, performance, and/or security in the face of an adverse
operational environment.

SSS started as a workshop dedicated to self-stabilizing systems, and the first two
editionswere held in 1989 and 1995, inAustin (USA) andLasVegas (USA), respectively.
From then, the workshop was held biennially until 2005 when it became an annual event.
It broadened its scope and attracted researchers from other communities. In 2006, the
name of the conference was changed to the International Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS).

This year the Program Committee was organized into five tracks, reflecting major
trends related to the conference: (i) Track A. Self-Stabilizing Systems: Theory and Prac-
tice, (ii) Track B. Distributed and Concurrent Computing: Foundations, Fault-Tolerance
and Scalability, (iii)Track C. Cryptogrophy and Security, (iv)TrackD.Dynamic,Mobile
and Nature-Inspired Computing Mobile Agents, and (v) Distributed Databases.

We received 78 submissions. Each submission was double-blind review by at least
three program committee members with the help of external reviewers. Out of the 78
submitted papers, 4 were (reviewed) invited papers, and 32 papers were selected as
regular papers. The proceedings also included 8 brief announcements. Selected papers
from the symposium will be published in a special issue of the journal Theoretical
Computer Science (TCS).

This year, we were very fortunate to have three distinguished keynote speakers:
Maurice Herlihy, Alfred Spector, and Moti Yung. We were happy to award the best
student paper award to Orestis Alpos and Christian Cachin for their paper “Do Not Trust
in Numbers: Practical Distributed Cryptography with General Trust.”

We are grateful to the Program Committee and the External Reviewers for their
valuable and insightful comments.We also thank themembers of the SteeringCommittee
for their invaluable advice. Last but not least, on behalf of the Program Committee, we
thank all the authors who submitted their work to SSS 2023.

October 2023 Shlomi Dolev
Baruch Schieber

Organization

General Chairs

Shlomi Dolev Ben-Gurion University of the Negev, Israel
Baruch Schieber New Jersey Institute of Technology, USA

Publicity Chairs

Nisha Panwar Augusta University, USA
Volker Turau University of Hamburg, Germany

Organization Chairs

Elke David Ben-Gurion University of the Negev, Israel
Selenny Fabre New Jersey Institute of Technology, USA
Rosemary Franklin Ben-Gurion University of the Negev, Israel

Steering Committee

Anish Arora Ohio State University, USA
Shlomi Dolev Ben-Gurion University of the Negev, Israel
Sandeep Kulkarni Michigan State University, USA
Toshimitsu Masuzawa Osaka University, Japan
Franck Petit Sorbonne Université, France
Sébastien Tixeuil (Chair) Sorbonne Université, France
Elad Michael Schiller Chalmers University of Technology, Sweden

Advisory Committee

Sukumar Ghosh University of Iowa, USA
Mohamed Gouda University of Texas at Austin, USA
Ted Herman University of Iowa, USA

viii Organization

In Memory Of

Ajoy Kumar Datta
Edsger W. Dijkstra

Program Committee

Track A. Self-Stabilizing Systems: Theory and Practice

Lelia Blin (Co-chair) Sorbonne Université - LIP6, France
Yuichi Sudo (Co-chair) Hosei University, Japan
Janna Burman LISN, Université Paris-Saclay, France
Ho-Lin Chen National Taiwan University, Taiwan
Swan Dubois Sorbonne Université, France
Anaïs Durand Université Clermont Auvergne, France
Ryota Eguchi Nara Institute of Science and Technology, Japan
Yuval Emek Technion Institute of Technology, Israel
Chryssis Georgiou University of Cyprus, Cyprus
Sayaka Kamei Hiroshima University, Japan
Alexey Gotsman IMDEA Software Institute, Spain
Yonghwan Kim Nagoya Institute of Technology, Japan
Mikhail Nesterenko Kent State University, USA
Mor Perry Academic College of Tel Aviv-Yaffo, Israel
Tomasz Jurdziński University of Wroclaw, Poland
Sayaka Kamei Hiroshima University, Japan
Dariusz Kowalski Augusta University, USA
Anissa Lamani Université de Strasbourg, France
Othon Michail University of Liverpool, UK
Alessia Milani Aix-Marseille Université/LIS CNRS UMR 7020,

France
Miguel Mosteiro Pace University, USA
Mikhail Nesterenko Kent State University, USA
Nicolas Nicolaou University of Cyprus, Cyprus
Franck Petit LiP6 CNRS-INRIA UPMC Sorbonne Université,

France
Giuseppe Prencipe Università di Pisa, Italy
Sergio Rajsbaum Universidad Nacional Autónoma de México,

Mexico
Ivan Rapaport DIM and CMM (UMI 2807 CNRS), Universidad

de Chile, Chile
Christopher Thraves Universidad de Concepción, Chile

Organization ix

Lewis Tseng Boston College, USA
Sara Tucci-Piergiovanni Sapienza University of Rome, Italy
Volker Turau Hamburg University of Technology, Germany
Giovanni Viglietta JAIST, Japan
Prudence Wong University of Liverpool, UK
Yukiko Yamauchi Kyushu University, Japan

Track B. Distributed and Concurrent Computing: Foundations, Fault-Tolerance
and Scalability

Michel Raynal (Co-chair) IRISA, France
Achour Mostefaoui (Co-chair) Nantes Université, France
Sergio Arevalo-Viñuales Polytechnic University of Madrid, Spain
Quentin Bramas ICUBE, Université de Strasbourg, France
Armando Castaneda UNAM, Mexico
Hugues Fauconnier IRIF Université Paris-Diderot, France
Carole Delporte-Gallet University Paris Diderot, France
Vincent Gramoli University of Sydney and Redbelly Network,

Australia
Raimundo Macêdo LASID/DCC/UFBA, Brazil
Fernando Pedone Università della Svizzera Italiana, Italy
Paolo Romano Lisbon University and INESC-ID, Portugal
Gadi Taubenfeld Interdisciplinary Center Herzliya, Israel
Corentin Travers LIS, Université d’Aix-Marseille, France
Lewis Tseng Boston College, USA
Garg Vijay UT Austin, USA
Jennifer Welch Texas A&M University, USA

Track C. Cryptography and Security

Chandrasekaran Pandurangan
(Co-chair)

Indian Institute of Technology Madras, India

Reza Curtmola (Co-chair) NJIT, USA
Moti Yung (Co-chair) Columbia University and Google, USA
Yinzhi Cao Johns Hopkins University, USA
Ashish Choudhury IIIT Bangalore, India
Jonathan Katz GMU, USA
Anish Mathuria DA-IICT, India
Sourav Mukhopadhyay Indian Institute of Technology, Kharagpur, India
Dhiman Saha Indian Institute of Technology Bhilai, India
Somitra Sanadhya IIT Jodhpur, India
Qiang Tang University of Sydney, Australia

x Organization

Aishwarya Thiruvengadam IIT Madras, India
Susanne Wetzel Stevens Institute of Technology, USA

Track D. Dynamic, Mobile and Nature-Inspired Computing Mobile Agents

Paola Flocchini (Co-chair) University of Ottawa, Canada
Nicola Santoro (Co-chair) Carleton University, Canada
Subhash Bhagat IIT Jodhpur, India
Joshua Daymude Arizona State University, USA
Stéphane Devismes MIS Lab, UR 4290, France
Giuseppe Di Luna Sapienza University of Rome, Italy
Anissa Lamani University of Strasbourg, France
Euripides Markou University of Thessaly, Greece
Toshimitsu Masuzawa Osaka University, Japan
Krishnendu Mukhopadhyaya Indian Statistical Institute, India
Alfredo Navarra University of Perugia, Italy
Giuseppe Prencipe University of Pisa, Italy
Gokarna Sharma Kent State University, USA
Koichi Wada Hosei University, Japan

Track E. Distributed Databases

Sharad Mehrotra (Co-chair) University of California at Irvine, USA
Shantanu Sharma (Co-chair) New Jersey Institute of Technology, USA
Engin Arslan University of Nevada, Reno, USA
Johes Bater Tufts University, USA
Senjuti Basu Roy New Jersey Institute of Technology, USA
Dong Deng Rutgers University, USA
Sara Foresti Università degli Studi di Milano, Italy
Himanshu Gupta IBM India, India
Peeyush Gupta Couchbase, USA
Suyash Gupta University of California, Berkeley, USA
Rihan Hai TU Delft, The Netherlands
Vagelis Hristidis University of California, Riverside, USA
Thomas Hütter University of Salzburg, Austria
Raghav Kaushik Microsoft Research, USA
Avinash Kumar Google, USA
Sujaya Maiyya University of Waterloo, Canada
Keshav Murthy Couchbase, USA
Vincent Oria New Jersey Institute of Technology, USA
Sarvesh Pandey Banaras Hindu University, India
Nisha Panwar Augusta University, USA

Organization xi

Primal Pappachan Pennsylvania State University, USA
Stefano Paraboschi Università di Bergamo, Italy
Romila Pradhan Purdue University, USA
Uday Kiran Rage University of Aizu, Japan
Indrajit Ray Colorado State University, USA
Indrakshi Ray Colorado State University, USA
Mohammad Sadoghi University of California, Davis, USA
Pierangela Samarati Università degli Studi di Milano, Italy
Hiteshi Sharma Microsoft, USA
Lidan Shou Zhejiang University, China
Roee Shraga Northeastern University, USA
Tarique Siddiqui Microsoft Research, USA
Rekha Singhal TCS, India
Dimitrios Theodoratos New Jersey Institute of Technology, USA
Roberto Yus University of Maryland, Baltimore County, USA

External Reviewers

Ananya Appan SAP Labs, India
Kaustav Bose Flatiron Construction, USA
Abhinav Chakraborty Indian Statistical Institute, India
Anirudh Chandramouli Bar-Ilan University, Israel
Serafino Cicerone University of L’Aquila, Italy
Alain Cournier Université de Picardie Jules Verne, France
Shantanu Das Laboratoire d’Informatique et Systèmes, France
Alessia Di Fonso University of L’Aquila, Italy
Gabriele Di Stefano University of L’Aquila, Italy
Mitch Jacovetty Kent State University, USA
Yoshiaki Katayama Osaka University, Japan
Yonghwan Kim Nagoya Institute of Technology, Japan
Ajay Kshemkalyani University of Illinois at Chicago, USA
Manish Kumar Bar-Ilan University, Israel
Kaushik Mondal Indian Institute of Technology, Bombay, India
Shyam Murthy IIIT Bangalore, India
Debasish Pattanayak Université du Québec en Outaouais, Canada
Sachit Rao IIIT Bangalore, India
Robert Streit University of Texas at Austin, USA

xii Organization

Sponsors

In cooperation with

Contents

Exploring Worst Cases of Self-stabilizing Algorithms Using Simulations 1
Erwan Jahier, Karine Altisen, and Stéphane Devismes

Model Checking of Distributed Algorithms Using Synchronous Programs 18
Erwan Jahier, Karine Altisen, Stéphane Devismes,
and Gabriel B. Sant’Anna

The Fence Complexity of Persistent Sets . 36
Gaetano Coccimiglio, Trevor Brown, and Srivatsan Ravi

Brief Announcement: Understanding Self-stabilizing Node-Capacitated
Overlay Networks Through Simulation . 52

Winfred Afeaneku, Andrew Berns, Weston Kuchenberg, Sara Leisinger,
and Cedric Liu

Brief Announcement: Byzantine-Tolerant Detection of Causality
in Synchronous Systems . 57

Anshuman Misra and Ajay D. Kshemkalyani

Invited Paper: Time Is Not a Healer, but It Sure Makes Hindsight 20:20 62
Eli Gafni and Giuliano Losa

Adding Pull to Push Sum for Approximate Data Aggregation 75
Saptadi Nugroho, Alexander Weinmann, and Christian Schindelhauer

Exploring Trade-Offs in Partial Snapshot Implementations 90
Nikolaos D. Kallimanis, Eleni Kanellou, Charidimos Kiosterakis,
and Vasiliki Liagkou

Brief Announcement: Non-blocking Dynamic Unbounded Graphs
with Wait-Free Snapshot . 106

Gaurav Bhardwaj, Sathya Peri, and Pratik Shetty

Byzantine Fault-Tolerant Causal Order Satisfying Strong Safety 111
Anshuman Misra and Ajay D. Kshemkalyani

Improved Paths to Stability for the Stable Marriage Problem 126
Vijay K. Garg and Changyong Hu

xiv Contents

Lattice Linearity of Multiplication and Modulo . 141
Arya Tanmay Gupta and Sandeep S. Kulkarni

The Fagnano Triangle Patrolling Problem (Extended Abstract) 157
Konstantinos Georgiou, Somnath Kundu, and Paweł Prałat

Invited Paper: Monotonicity and Opportunistically-Batched Actions
in Derecho . 172

Ken Birman, Sagar Jha, Mae Milano, Lorenzo Rosa, Weijia Song,
and Edward Tremel

Robust Overlays Meet Blockchains: On Handling High Churn
and Catastrophic Failures . 191

Vijeth Aradhya, Seth Gilbert, and Aquinas Hobor

Disconnected Agreement in Networks Prone to Link Failures 207
Bogdan S. Chlebus, Dariusz R. Kowalski, Jan Olkowski,
and Jędrzej Olkowski

Where Are the Constants? New Insights on the Role of Round Constant
Addition in the SymSum Distinguisher . 223

Sahiba Suryawanshi and Dhiman Saha

Invited Paper: Detection of False Data Injection Attacks in Power Systems
Using a Secured-Sensors and Graph-Based Method . 240

Gal Morgenstern, Lital Dabush, Jip Kim, James Anderson,
Gil Zussman, and Tirza Routtenberg

KerberSSIze Us: Providing Sovereignty to the People . 259
Ronald Petrlic and Christof Lange

Hierarchical Identity-Based Inner Product Functional Encryption
for Unbounded Hierarchical Depth . 274

Anushree Belel, Ratna Dutta, and Sourav Mukhopadhyay

Brief Announcement: Efficient Probabilistic Approximations for Sign
and Compare . 289

Devharsh Trivedi

Meeting Times of Non-atomic Random Walks . 297
Ryota Eguchi, Fukuhito Ooshita, Michiko Inoue, and Sébastien Tixeuil

Minimum Algorithm Sizes for Self-stabilizing Gathering and Related
Problems of Autonomous Mobile Robots (Extended Abstract) 312

Yuichi Asahiro and Masafumi Yamashita

Contents xv

Separation of Unconscious Colored Robots . 328
Hirokazu Seike and Yukiko Yamauchi

Forbidden Patterns in Temporal Graphs Resulting from Encounters
in a Corridor . 344

Michel Habib, Minh-Hang Nguyen, Mikaël Rabie, and Laurent Viennot

Uniform k-Circle Formation by Fat Robots . 359
Bibhuti Das and Krishnendu Mukhopadhyaya

Brief Announcement: Rendezvous on a Known Dynamic Point in a Finite
Unoriented Grid . 374

Pritam Goswami, Avisek Sharma, Satakshi Ghosh, and Buddhadeb Sau

Brief Announcement: Crash-Tolerant Exploration by Energy Sharing
Mobile Agents . 380

Quentin Bramas, Toshimitsu Masuzawa, and Sébastien Tixeuil

Time-Optimal Geodesic Mutual Visibility of Robots on Grids Within
Minimum Area . 385

Serafino Cicerone, Alessia Di Fonso, Gabriele Di Stefano,
and Alfredo Navarra

Privacy in Population Protocols with Probabilistic Scheduling 400
Talley Amir and James Aspnes

Dispersion of Mobile Robots in Spite of Faults . 414
Debasish Pattanayak, Gokarna Sharma, and Partha Sarathi Mandal

Brief Announcement: Asynchronous Gathering of Finite Memory Robots
on a Circle Under Limited Visibility . 430

Satakshi Ghosh, Avisek Sharma, Pritam Goswami, and Buddhadeb Sau

Wait-Free Updates and Range Search Using Uruv . 435
Gaurav Bhardwaj, Bapi Chatterjee, Abhay Jain, and Sathya Peri

Stand-Up Indulgent Gathering on Lines . 451
Quentin Bramas, Sayaka Kamei, Anissa Lamani, and Sébastien Tixeuil

Offline Constrained Backward Time Travel Planning . 466
Quentin Bramas, Jean-Romain Luttringer, and Sébastien Tixeuil

Machine Learning-Based Phishing Detection Using URL Features:
A Comprehensive Review . 481

Asif Uz Zaman Asif, Hossein Shirazi, and Indrakshi Ray

xvi Contents

Workflow Resilience for Mission Critical Systems . 498
Mahmoud Abdelgawad, Indrakshi Ray, and Tomas Vasquez

Invited Paper: How Do Humans Succeed in Tasks Like Proving Fermat’s
Theorem or Predicting the Higgs Boson? . 513

Leonid A. Levin

Self-stabilizing Byzantine-Tolerant Recycling . 518
Chryssis Georgiou, Michel Raynal, and Elad M. Schiller

DoNot Trust in Numbers: Practical Distributed Cryptography with General
Trust . 536

Orestis Alpos and Christian Cachin

Synergistic Knowledge . 552
Christian Cachin, David Lehnherr, and Thomas Studer

Post-quantum Secure Stateful Deterministic Wallet from Code-Based
Signature Featuring Uniquely Rerandomized Keys . 568

Pratima Jana and Ratna Dutta

Square Attacks on Reduced-Round FEA-1 and FEA-2 . 583
Amit Kumar Chauhan, Abhishek Kumar, and Somitra Kumar Sanadhya

Asynchronous Silent Programmable Matter: Line Formation 598
Alfredo Navarra and Francesco Piselli

Author Index . 613

Exploring Worst Cases of Self-stabilizing
Algorithms Using Simulations

Erwan Jahier1(B), Karine Altisen1, and Stéphane Devismes2

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, Grenoble, France
erwan.jahier@univ-grenoble-alpes.fr

2 Université de Picardie Jules Verne, MIS, Amiens, France

Abstract. Self-stabilization qualifies the ability of a distributed system
to recover after transient failures. sasa is a simulator of self-stabilizing
algorithms written in the atomic-state model, the most commonly used
model in the self-stabilizing area.

A simulator is, in particular, useful to study the time complexity of
algorithms. For example, one can experimentally check whether existing
theoretical bounds are correct or tight. Simulations are also useful to get
insights when no bound is known.

In this paper, we use sasa to investigate the worst cases of various
well-known self-stabilization algorithms. We apply classical optimization
methods (such as local search, branch and bound, Tabu list) on the two
sources of non-determinism: the choice of initial configuration and the
scheduling of process activations (daemon). We propose a methodology
based on heuristics and an open-source tool to find tighter worst-case
lower bounds.

1 Introduction

Usually, simulator engines are employed to test and find flaws early in the design
process. Another popular usage of simulators is the empirical evaluation of
average-case time complexity via simulation campaigns [3,6,9]. In this paper,
we propose to investigate how to build worst-case executions of self-stabilizing
algorithms using a simulator engine. For that purpose, we will apply classical
optimization methods and heuristics on the two sources of non-determinism: the
choice of the initial configuration and the scheduling of process activations. To
that goal, we consider sasa [9], an open-source and versatile simulator dedi-
cated to self-stabilizing algorithms written in the atomic-state model, the most
commonly used model in self-stabilization. In this model, in one atomic step, a
process can read its state and that of its neighbors, perform some local compu-
tations, and update its state accordingly. Local algorithms are defined as set of
rules of the form 〈Guard〉 → 〈Statement〉. The guard is a Boolean predicate on
the states of the process and its neighbors. The statement is a list of assignments

This work has been partially funded by the ANR project SkyData (ANR-22-CE25-
0008-01).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 1–17, 2023.
https://doi.org/10.1007/978-3-031-44274-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_1&domain=pdf
https://doi.org/10.1007/978-3-031-44274-2_1

2 E. Jahier et al.

on all or a part of the process’ variables. A process is said to be enabled if the
guard of at least one of its rules evaluates to true. Executions proceed in atomic
steps in which at least one enabled process moves, i.e., executes an enabled rule.

Self-stabilization [15] qualifies the ability of a distributed system to recover
within finite time after transient faults. Starting from an arbitrary configura-
tion, a self-stabilizing algorithm makes the system eventually reach a so-called
legitimate configuration from which every possible execution suffix satisfies the
intended specification. Self-stabilizing algorithms are mainly compared accord-
ing to their stabilization time, i.e., the maximum time, starting from an arbitrary
configuration, before reaching a legitimate configuration. The stabilization time
of algorithms written in the atomic-state model is commonly evaluated in terms
of rounds, which measure the execution time according to the speed of the slow-
est processes. Another crucial issue is the number of moves which captures the
number of local state updates. By definition, the stabilization time in moves
exhibits the amount of computations an algorithm needs to recover a correct
behavior. Hence, the move complexity is rather a measure of work than a mea-
sure of time: minimizing the number of state modifications allows the algorithm
to use less communication operations and communication bandwidth [16].

In the atomic-state model, the asynchrony of the system is materialized by
the notion of daemon. This latter is an adversary that decides which enabled
processes move at each step. The most general daemon is the distributed unfair
one. It only imposes the progress in the execution, i.e., while there are enabled
processes, at least one moves during the next step. Algorithms stabilizing under
such an assumption are highly desirable because they work under any daemon
assumption. Finally, since it does not impose fairness among process activations,
the stabilization time of every self-stabilizing algorithm working under the dis-
tributed unfair daemon is necessarily finite in terms of moves.1

There are many self-stabilizing algorithms proven under the distributed
unfair daemon [6,11,13,19]. However, analyses of the stabilization time in moves
remain rather unusual and this is sometime an important issue. Indeed, several
self-stabilizing algorithms working under a distributed unfair daemon have been
shown to have an exponential stabilization time in moves in the worst case [6]
for silent self-stabilizing leader election algorithms given in [11,13,14] for the
BFS spanning tree construction of Huang and Chen [22], and [20] for the silent
self-stabilizing algorithm they proposed in [19].

Methods and Contributions. Exhibiting worst-case executions in terms of
stabilization time in moves is usually a difficult task since the executions of
numerous interconnected processes involve many possible interleavings in exe-
cutions. The combinatorics induced by such distributed executions is sometime
hard to capture in order to prove a relevant lower bound. Hence, we propose here
to use the simulator engine sasa to give some insights about worst-case scenar-
ios. By judiciously exploring the transition system, we can expect to quickly find
bad scenarios that can be generalized afterwards to obtain tighter bounds.
1 The (classical) weakly fair daemon, for example, does not provide such a guarantee.

Exploring Worst Cases of Self-stabilizing Algorithms Using Simulations 3

We consider here self-stabilizing algorithms working under the unfair daemon.
Hence, the subgraph of the transition system induced by the set of illegitimate
configurations is a directed acyclic graph (DAG). This subgraph can be huge and
also dense since from a given configuration we may have up to 2n − 1 possible
directed edges, where n is the number of nodes. Note that worst-case scenarios
in moves are frequently central [5,6]: at each step, exactly one process moves.
Therefore, and because it limits the number of possible steps from a configuration
to at most n, we focus in the experiments on central schedulers – even if the
methods presented in the article actually work for other unfair daemons.

Even with this restriction, the space to explore remains huge. Since worst
cases depend on the initial configuration and the scheduling of moves, we propose
exploration heuristics targeting these two sources of non-determinism. The goal
is to get some insights on algorithms upper bounds, or to assess how tight known
upper bounds are.

One of the proposed heuristics relies on so-called potential functions. A poten-
tial function is a classical technique used to prove convergence (and stabiliza-
tion) of algorithms: it provides an evaluation of any configuration and decreases
along all paths made of illegitimate configurations. We use them to guide the
state space exploration, and to use classical optimization techniques (branch and
bound). Note that potential functions usually give a rough upper bound on the
stabilization time. Again, our approach allows to refine such a bound.

We also propose heuristics based on local search to speed-up the finding
of worst-case initial configurations. All those heuristics are implemented into
the open-source simulator sasa, and conclusive experiments on well-known self-
stabilization algorithms are performed.

Related Work. sasa [9] is an open-source and versatile simulator dedicated
to self-stabilizing algorithms written in the atomic-state model. All important
concepts used in the model are available in sasa: simulations can be run and
evaluated in moves, atomic steps, and rounds. Classical daemons are available:
central, locally central, distributed, and synchronous daemons. Every level of
anonymity can be considered, from fully anonymous to (partially or fully) iden-
tified. Finally, distributed algorithms can be either uniform (all nodes execute
the same local algorithm) or non-uniform. sasa can be used to perform batch
simulations which can use test oracles to check expected properties. For exam-
ple, one can check that the stabilization time in rounds is upper bounded by
a given function. The distribution provides several facilities to achieve batch-
mode simulation campaigns. Simulations can also be run interactively, step by
step (forward or backward), for debugging purposes.

Only a few other simulators dedicated to self-stabilization in locally shared
memory models, such as the atomic-state model, have been proposed. None of
them offers features to deal with worst-case scenarios. Flatebo and Datta [18]
propose a simulator of the atomic-state model to evaluate leader election, mutual
exclusion, and �-exclusion algorithms on restricted topologies, mainly rings. This
simulator has limited facilities including classical daemons and evaluation of sta-

4 E. Jahier et al.

bilization time in moves only. It is not available anymore. Müllner et al. [24]
present a simulator of the register model, a computational model which is close
to the atomic-state model. This simulator does not allow to evaluate stabiliza-
tion time. Actually, it focuses on three fault tolerance measures initially devoted
to masking fault-tolerant systems (namely, reliability, instantaneous availability,
and limiting availability [25]) to evaluate them on self-stabilizing systems. These
measures are still uncommon today in analyses of self-stabilizing algorithms.
The simulator proposed by Har-Tal [21] allows to run self-stabilizing algorithms
in the register model on small networks (around 10 nodes). It proposes a small
amount of facilities, i.e., the execution scheduling is either synchronous, or con-
trolled step by step by the user. Only the legitimacy of the current configuration
can be tested. It provides neither batch mode, nor debugging tools. Evcimen et
al. describe in [17] a simulation engine for self-stabilizing algorithms in message
passing. Their simulator uses heavy mechanisms to implement this model, such
as queue of events, threads, and fault injection. In the Evcimen et al.’s simula-
tor, the execution scheduler can be only fully asynchronous. Being corner cases,
central and synchronous executions are very useful to find bugs or to exhibit a
worst-case scenario.

Several other studies deal with the empirical evaluation of self-stabilizing
algorithms [1–3]. However, these studies focus on the average-case time com-
plexity. Note that sasa has been also used to tackle average-case stabilization
times through simulation campaigns [9].

2 Exploring Daemons

For a given topology T and an initial configuration cinit, the stabilization time
in moves of an algorithm A depends on the choices made by the daemon at each
step. Finding a worst-case stabilization time requires to explore all the illegiti-
mate configurations of the transition system. Hence, we define R(A, T, cinit) as
the transition system where all legitimate configurations are collapsed into one
node, as illustrated in Fig. 1. As the size of R(A, T, cinit) grows exponentially,
we need exploration heuristics. The goal of those heuristics is to build a schedul-
ing of actions and thus to implement a daemon. We call exhaustive daemon the
algorithm that builds a central daemon by exploring R(A, T, cinit) until finding
a longest path; we also use random daemons which, at each configuration, pick
the next move uniformly at random.

Greedy Daemons. In self-stabilization, a potential function φ maps configu-
rations to the set of natural integers and satisfies the following two properties:
(1) if φ(c) is minimum, then c is legitimate; (2) φ is decreasing over illegitimate
configurations, i.e., for every execution c0, . . . ci, ci+1, . . ., for every i ≥ 0, if ci

is illegitimate, then φ(ci) > φ(ci+1). Exhibiting such a function is a classical
technique to prove the self-stabilization of an algorithm. The idea here is to use
potential functions during simulations, and define greedy daemons that always
choose configurations that maximize φ. As shown by the experiments we perform

Exploring Worst Cases of Self-stabilizing Algorithms Using Simulations 5

below, for most algorithms, greedy daemons find longer paths in R(A, T, cinit)
than random ones – but not necessarily the longest.

Cutting Exploration Branches. Using a greedy daemon is of course a heuris-
tic that can miss the longest path. To find it, we need to backtrack (branch) in
the exploration of R(A, T, cinit). A first simple optimization is the following:
(1) perform a greedy traversal of R(A, T, cinit) to get a lower bound on the
maximum number of moves to stabilization; (2) then, during the remaining of
the exploration, all configurations which depth (i.e., the distance to cinit) plus
its potential is less than or equal to the known lower bound will never lead
to a longer path: the corresponding branches can then be cut (bound) without
missing the worst-case. This can reduce a lot the number of steps necessary to
explore exhaustively R(A, T, cinit); see experiments below.

Perfect Potential Functions. Given an algorithm, a topology and an initial
configuration, we say that the potential function is perfect if the corresponding
greedy traversal finds in n moves a legitimate configuration when the potential
of the initial configuration is n (i.e., if it decreases by one at each move). In such
cases, which are easy to detect during simulations, it is useless to continue the
search as no better (longer) path can be found.

Tabu List. A classical optimization used to explore graphs is to maintain a
(tabu) list of visited nodes in order to avoid to revisit the same node twice. A
classical heuristic to prevent this list to grow too much is to keep only the more
recently visited nodes. When a configuration α in the tabu list is reached, the
length of the path associated to α just need to be updated. This often reduces
drastically the exploration time measured in terms of number of visited edges of
R(A, T, cinit).

Promising Daemons. Consider Fig. 1; according to the values of φ, a greedy
daemon would choose the path cinit −c5−c6−Cs. In order to search for a better
solution, one could backtrack to the last choice point (c5), which amounts to
perform a depth-first traversal of R(A, T, cinit).

As R(A, T, cinit) can be huge, exploring it exhaustively can be very long,
and the use of a timeout is necessary in practice. In this context, it is better
to explore the most promising configurations first. The next configurations that
would be explored by a depth-first traversal would be c7 or c8; but they do not
look promising, as their potential is 2 – which means that at most two more
moves would be needed to reach the set of legitimate configurations Cs, and will
not lead to big improvements.

By taking into account the depth d in R(A, T, cinit) and the potential φ, we
can choose to backtrack to a more promising configuration. In order to have a
choice criterion, we can remark that so far (once the greedy daemon found a path
of length 3), each move consumed 18/3 = 6 of the initial potential; we denote

6 E. Jahier et al.

Fig. 1. Selected nodes in the graph R(A, T, cinit) (Color figure online)

by sφ this quantity. By choosing the configuration which maximizes the promise
computed by d+φ/sφ, we can hope to do better than a simple depth-first-search
and find better solutions first. We now detail the behavior of this heuristic on
the R(A, T, cinit) of Fig. 1.

1. At the beginning, from cinit, we need to consider configurations that all have
the same depth (c1, c2, c3, c4, c5); the one with the highest promise is therefore
the one with the highest potential, c5.

2. c7 and c8 are thus added to the set of configurations to be considered (c6 has
already been visited during the initial greedy traversal), but their promises
(2 + 2/6 = 2.33) are lower than the promise of c2 (1 + 14/6 = 3.34).

3. c2 is therefore selected, which adds c9, c10, c11 in the configurations set to be
explored.

4. c11 has a promise of 2+11/6 = 3.83, and is thus preferred over c4, which has
a promise of 1 + 13/6 = 3.17.

5. Then c14 (3 + 9/6 = 4.5) and c15 (4 + 4/6 = 4.67) are selected, a new path of
length 5 is found and sφ is updated.

At this stage, all configurations for which the sum of the depth and the
potential is smaller or equal than 5 can be cut (cf. red crosses in Fig. 1).

This algorithm is an heuristic in the sense that it sometimes finds the worst-
case faster, but the exploration remains exhaustive as only branches that cannot
lead to a worst-case are cut. Another exploration heuristics would have been to
select configurations according to the sum of their depth and their potential. But
using such a heuristic would delay the discovering of new longest paths (in step 4

Exploring Worst Cases of Self-stabilizing Algorithms Using Simulations 7

above, c4 would have been chosen over c11), which in turn would prevent to cut
branches. More generally, favoring depth over breadth allows to find longer paths
sooner, which allows to cut more branches sooner and speed up the exhaustive
exploration – which make this idea interesting even without using timeouts.

When No Potential Function is Available. Finding a potential function
can be challenging for some algorithms. But note that any function that is able
to approximate accurately enough the distance between a configuration and
the set of legitimate configurations could be used to guide the exploration of
R(A, T, cinit) with the heuristics described above. The result of an exhaustive
exploration using such a pseudo-potential function should be interpreted with
care using the optimization described so far since the actual best solution can
be missed.

Benchmark Algorithms. Those ideas have been implemented in sasa. We
propose to experiment them on the following set of algorithms:

1. token is the first token ring algorithm proposed by Dijkstra [15]. It stabilizes
to a legitimate configuration from which a unique token circulates in the ring.
We use the potential function given in [5].

2. coloringis a vertex coloring algorithm [7]. The potential function, proposed
in [7], counts the number of conflicting nodes.

3. te-a5sf consists of the two last layers of the algorithm given in Chapter 7 of
[7] to illustrate some algorithm composition. It consists of a bottom-up com-
putation followed by a top-down computation of the rooted tree. Its potential
function is inspired from the general method proposed in [8].

4. k-clust computes sub-graphs (clusters) of radius at most k [12] in rooted
trees. Its potential function is made of the sum of enabled node levels in the
tree, as described in [4].

5. st-algo1 computes a spanning tree (the first of the 2 algorithms proposed in
[23]). Its potential function, also given in [23], consists of counting the number
of correctly directed edges.

6. unison is a clock synchronization algorithm that stabilizes to a configura-
tion from which clocks of neighboring nodes differ from at most one [10]. To
the best of our knowledge, no potential function has been ever proposed for
this algorithm. We use instead a pseudo-potential function that consists of
counting the number of nodes that are not synchronized.

8 E. Jahier et al.

Fig. 2. Comparing exhaustive exploration
strategies on te-a5sf/rtree5.

Simulations are performed on
different topologies: directed rings
(noted diring), random rooted
trees (rtree), Erdős-Rényi ran-
dom graphs (er), lines, grids and
stars; in the sequel, the size of
those graphs (in number of nodes)
is noted aside the graph name.
For example, diring5 denotes a
directed ring with 5 nodes.

Finding Longest Paths First.
The motivation for defining promis-
ing daemons is to find the longest
paths as soon as possible during
the exploration. In order to assess
our design choices, we have con-
ducted an experiment where, dur-
ing a simulation of the te-a5sf
algorithm on a rooted tree of size
5 under the promising daemon, we
store the number of edges explored in R(A, T, cinit) each time a new longest path
is found. Figure 2 shows the result of this experiment together with the result
obtained with a Depth-First Search (DFS) and a Breadth-First Search (BFS)
exploration using the same parameters. One can see on Fig. 2 that indeed, on
this particular example at least, the promising heuristic is better than a DFS
exploration: the longest paths are discovered sooner, which allows to cut more
branches and leads to less explored edges (less than 12 millions versus more than
55 millions for DFS and 120 millions for BFS) to perform the exhaustive explo-
ration. Notice that it is just an heuristic, that sometimes gives better result, and
sometimes doesn’t.

Measuring the Effect of Branch Cuts and Tabu Lists. We ran the promis-
ing heuristic (values are similar with a Depth-First Search) with and without
the optimizations of branch-cuts and tabu list.

Table 1 contains the results of the following experiments. We chose small
enough topologies to get a result in a reasonable amount of time when com-
puting without optimization (we use random rooted trees for unison, as for
k-clust and te-a5sf). For a given algorithm and once the topology is fixed, an
experiment consists of picking an initial configuration uniformly at random and
running a simulation on it with four different sets of options. Column 2 contains
the number of edges explored during the simulation using a promising daemon
with no optimization at all. Column 3 contains the gain factor compared to the
values of Column 2 using the branch-cuts and the tabu list optimizations. Col-
umn 4 (resp. 5) contains the same gain factor but using only the branch-cuts

Exploring Worst Cases of Self-stabilizing Algorithms Using Simulations 9

(resp. the tabu list) optimization. Each number in this table is the average of x
experiments that were performed with different initial configurations picked at
random. It is given (at the right-hand-side of the ± symbol) with the bounds
of the corresponding confidence interval at 95% (1.96 × σ/

√
x, where σ is the

standard deviation). In order to get a tight enough interval, experiments were
repeated from x = 200 to x = 100 000 times.

Table 1. Measuring the effect of branch-cuts and tabu list.

algo/topology no optimization
edges number

cut + tabu
gain factor

cut
gain factor

tabu
gain factor

token/diring5 1 400 ± 100 11 ± 0.7 11 ± 0.7 6 ± 0.3

token/diring6 4 · 106 ± 2 · 106 8 500 ± 4 000 4 700 ± 3 000 2 200 ± 800

k-clust/rtree5 380 ± 30 5.4 ± 0.3 2.9 ± 0.1 4 ± 0.2

k-clust/rtree6 2 900 ± 70 18 ± 0.4 5.6 ± 0.2 12 ± 0.2

k-clust/rtree7 2 · 104 ± 2 · 103 58 ± 5 7 ± 0.8 39 ± 3

k-clust/rtree8 7 · 105 ± 8 · 104 850 ± 90 59 ± 20 400 ± 30

te-a5sf/rtree3 2 800 ± 7 12 ± 0.02 3 ± 0 10 ± 0.01

te-a5sf/rtree4 6 · 106 ± 6 · 104 2 000 ± 10 6.2 ± 0.05 1 800 ± 10

unison/rtree3 12 ± 0.1 1.2 ± 0 1.2 ± 0 1.1 ± 0

unison/rtree4 3 900 ± 100 76 ± 2 73 ± 2 13 ± 0.3

unison/rtree5 4 · 107 ± 1 · 107 3 · 105 ± 2 · 105 3 · 105 ± 2 · 105 1 · 104 ± 7 · 103

Table 1 shows that, on those algorithms and topologies, the optimization gain
factor grows exponentially with the topology size. It also shows that the two
optimizations are complementary in the sense that their effects are cumulative.

Note that we do not show any result for coloring nor st-algo1 since their
potential functions are perfect which makes promising exploration useless.

Daemons Comparison. Given an algorithm and a topology with a particular
initial configuration, the simplest way to search for the longest path is to per-
form several simulations using a random daemon. In order to assess the idea of
using more elaborated methods based on a potential function and use greedy
or promising daemons, we ran another set of simulations. Note that, as for the
random daemon, we have performed several runs of the greedy one since it also
has a random behavior with sasa: indeed, when several choices lead to the same
potential, one is chosen uniformly at random. On the contrary, the promising
daemon only needs to be run once.

The results obtained with those three kinds of daemons are provided in
Table 2. This table is obtained, for each algorithm and topology, by repeating
1 000 times the following experiment:

10 E. Jahier et al.

1. choose an initial configuration I;
2. run once the promising daemon on I and report the resulting move number

in column 2;
3. run n1 (resp. n2) times the algorithm on I with a greedy (resp. random)

daemon and report the maximum move number in column 3 (resp. column
4). The numbers of simulations n1 and n2 are chosen in such a way that the
same amount of CPU time budget is used for the three daemons.

Table 2 the shows average values for those 1 000 experiments, as well as the
corresponding 95% confidence interval bounds. The last column indicates the
total wall-clock simulation time.

Table 2. The longest path obtained with different daemons.

algo/topology Promising Greedy Random time

coloring/er11 4.6 ± 0.1 4.6 ± 0.1 4.2 ± 0.08 28 m

st-algo1/er20 24 ± 0.4 24 ± 0.4 23 ± 0.4 1 h

k-clust/rtree14 24 ± 0.3 22 ± 0.3 18 ± 0.2 3 h

token/diring12 69 ± 0.8 66 ± 0.8 28 ± 0.4 47 m

te-a5sf/rtree5 32 ± 0.07 30 ± 0.05 22 ± 0.1 1 h

The potential functions of coloring and st-algo1 being perfect, the result is
the same for greedy and promising daemons. Moreover, they do not significantly
improve the result of the random daemon.

For token, k-clust, and te-a5sf, greedy daemons give better results than
random ones, but fail to find the best solution given by the promising daemon.

The case of unison and its pseudo-potential function requires a special atten-
tion. Indeed, as previously noticed, the promising daemon with the branch-cut
optimization is not exhaustive. This is why the results of the experimentation
of this algorithm is in a different table (Table 3), which has an extra column
(Column 2) that contains the result of the promising daemon run without this
optimization. We can observe that the promising daemon finds much better
solutions than the greedy daemon, provided that the cut optimization is inhib-
ited. The greedy daemon is itself much better than the random daemon on most
topologies. Note that the greedy daemon sometimes does better than the promis-
ing daemon (e.g., on grid16), which seems counter-intuitive as the promising
daemon starts its exploration by a greedy search. This can be explained since
greedy daemons have randomness, and in Column 4, each experiment consists
of several (n1) simulations.

Exploring Worst Cases of Self-stabilizing Algorithms Using Simulations 11

Table 3. The longest path obtained with different daemons for unison.

algo/topology Promising no cut Promising Greedy Random time

unison/ring10 42 ± 2 27 ± 0.3 26 ± 0.2 18 ± 0.4 19 m

unison/er11 83 ± 4 35 ± 0.6 39 ± 0.6 22 ± 0.5 6 h

unison/grid16 59 ± 1 37 ± 0.5 40 ± 0.3 29 ± 0.4 29 h

unison/chain10 75 ± 2 36 ± 0.4 37 ± 0.4 19 ± 0.3 3 h

unison/rtree10 55 ± 3 27 ± 0.6 24 ± 0.7 19 ± 0.4 7 h

unison/star8 23 ± 0.6 15 ± 0.3 16 ± 0.4 14 ± 0.2 4 h

3 Exploring Initial Configurations

For a given topology, the stabilization time is also impacted by the choice of the
initial configuration. Here again, simulations can help to experimentally figure
out the worst case, and check whether the known bounds are tight.

3.1 Assessing Initial Configurations

Given an initial configuration I, a way to evaluate its ability to lead to worst case
stabilization time is to exhaustively explore R(A, T, cI) and seek for the longest
path. Of course this is costly2, in particular if we want to do that on a large
number of configurations. Using a greedy or a random daemon to approximate
this configuration evaluation would be cheaper, but how could we know if a good
configuration, that leads to a long path, for a random or a greedy daemon, is also

Fig. 3. Comparing configuration evaluation methods by running simulations of token
on a directed ring of size 12.

2 Even using the optimizations of Sect. 2.

12 E. Jahier et al.

a good configuration w.r.t. an exhaustive exploration? In other words, are the
results of those different evaluations methods correlated? In order to get some
insights on this question, we study this hypothesis experimentally, by running
simulations using those three different daemons, and looking at the resulting
stabilization time.

Figure 3 shows the result of such an experiment on the token algorithm over
a directed ring of size 12. Each of the 1 000 points in both graphics is computed
by running a simulation from a different random configuration; its abscissa cor-
responds to the stabilization time (in moves) obtained using a greedy (left) and
a random (right) daemon; its ordinate corresponds to the stabilization time
obtained using a promising (and thus exhaustive) daemon. One can notice that
on this set of simulations, the worst case obtained by the greedy daemon (right-
most point of the left-hand-side graphics) is also the worst case for the exhaustive
daemon (topmost point), whereas it is not the case for the worst case of the ran-
dom daemon (cf. the rightmost point of the right-hand-side graphics). In order
to synthesize this analysis numerically, we propose the following experiment.
Given an algorithm A and a topology T :

– choose n initial configurations of the system at random;
– for each configuration j, measure (by simulations) the stabilization time Rj ,

Gj , and Ej using respectively a random, a greedy and an exhaustive daemon;
– let jr, jg, je be the index of the maximum of the sets {Rj}j , {Gj}j , and {Ej}j

respectively; compute τ(R,E) = Ejr/Eje and τ(G,E) = Ejg/Eje to estimate
the loss ratio that one gets by approximating the exhaustive daemon based
evaluation of a configuration by a random and a greedy daemon.

Table 4. Measuring the correlation between worst cases obtained with various daemons

algo/topology τ(G, E) τ(R, E)

te-a5sf/rtree5 0.91 0.91

k-clust/rtree10 1.00 0.73

token/diring12 1.00 0.62

unison/er20 0.85 0.53

unison/ring20 1.00 0.57

unison/rtree20 0.99 0.47

Table 4 shows the result of such an experiment performed with 10 000 random
initial configurations. We did not use the coloring nor the st-algo1, as greedy
and exhaustive (with perfect φ) daemons produce the same results. One can
observe that the worst cases obtained with exhaustive daemon-based evaluation
and the greedy daemon-based one are indeed very well correlated. It is therefore

Exploring Worst Cases of Self-stabilizing Algorithms Using Simulations 13

interesting to approximate exhaustive daemons with greedy ones during the
search of worst-case initial configuration.

When no potential function is available, using random daemons may be a
stopgap, even if the correlation between random and exhaustive daemons is
weaker. The exhaustive exploration of the daemons state space can then always
be done, but without the branch-cut optimization. Smaller topologies should
thus be considered.

3.2 Local Search

We can define a notion of distance between two configurations, for instance by
counting the number of node states that differ (Hamming distance), and by which
amount they differ (using a user-defined function). One practical question to find
efficiently worst-case configurations is then the following: do close configurations
lead to similar stabilization time in moves? If the answer is yes, it means that it
should be interesting to perform a so-called local search, which consists of:

1. choosing a configuration I;
2. choosing a configuration I ′ that is close to I;
3. evaluating I by running a simulation (using, e.g., a greedy daemon);
4. continuing in step 1 with the configuration I ′ if it leads to a higher stabiliza-

tion time than I, and with I otherwise.

It is difficult to answer to such a question in the general case, as the answer
might differ on the algorithm or on the topology. Once again, simulations can
be useful to get insights.

sasa implements the local search described above. The sasa API requires the
user to define a distance between two states, so that sasa can compute the con-
figuration neighborhood. In order to take advantage of multi-core architectures,
sasa tries several neighbors at each step, and puts them into a priority queue.
The number of elements that are tried at each step depends on the number of
cores that are used. The priority in the queue is computed by launching a sim-
ulation from the corresponding initial configuration (and any daemon available
in sasa can be used).

An Experiment to Compare Global and Local Search. In order to assess
the idea of using local search to speed up the discovery of worst-case initial
configurations, we ran another experiment on a set of algorithms and topologies.
For each experiment, we use 10 000 initial configurations. Each experiment has
been repeated between 100 and 1 000 times, in order to obtain 95% confidence
intervals (at the right-hand-side of the ± sign) that are small enough.

The result of those experiments is provided in Table 5. The second column
contains moves numbers obtained by taking the maximum number of moves
(the bigger, the better) among the ones obtained by running a greedy daemon
on 10 000 random initial configurations. The values between square brackets cor-
respond to the simulation indices j ∈ [1, 10 000] where the worst cases occur, in

14 E. Jahier et al.

Table 5. Comparing global and local searches of the initial configuration: number of
moves [simulation index]

algo/topology global local

coloring/er20 17 ± 0.1 [3 200 ± 500] 17 ± 0.2 [1 100 ± 100]

token/diring12 130 ± 0.6 [4 400 ± 300] 140 ± 1 [3 800 ± 300]

k-clust/rtree10 25 ± 0.2 [3 700 ± 600] 26 ± 0.1 [1 900 ± 400]

st-algo1/er20 44 ± 0.3 [4 200 ± 500] 60 ± 0.03 [1 600 ± 100]

te-a5sf/rtree5 31 ± 0 [100 ± 20] 31 ± 0.02 [330 ± 100]

unison/er20 99 ± 0.6 [4 800 ± 200] 150 ± 3 [3 800 ± 200]

average (the smaller, the better). The third column contains the same informa-
tion as the second one, except that configurations are chosen via a local search,
as described above.

Fig. 4. One of the simulations performed for generating Table 5: token/diring12.

For token/diring12, st-algo1/er20, and unison/er20, we can observe in
Table 5 that the local search is better, as we obtain better worst cases using less
initial configurations. For coloring/er20 and k-clust/rtree10, the resulting
worst cases are similar, but they are obtained quicker. For te-a5sf/rtree5 on
the other hand, the global search is slightly better.

Figure 4 details those results on one of the (thousands of) experiments
that were run to compute the values in Table 5 in the particular case of
token/diring12. The more we try initial configurations (in abscissa) the longer
path we find (in ordinate). On this figure, we can see the local search approach
winning on both counts: higher worst cases that are found using less initial
configurations.

Exploring Worst Cases of Self-stabilizing Algorithms Using Simulations 15

4 Conclusion

In this paper, we present a methodology based on heuristics and an open-source
tool [9] to find or refine worst-case stabilization times of self-stabilizing algo-
rithms implemented in the atomic-state model using simulations.

We show how potential functions, designed for proving algorithm termina-
tion, can also be used to improve simulation worst cases, using greedy or exhaus-
tive explorations of daemon behaviors. We propose a heuristic to speed up the
exhaustive exploration and to potentially find the best solution early in the
exploration process, which is a desirable property when timeouts are used. We
experimentally show several results of practical interests.

– When a potential function is available, it can significantly speed up the search
of the worst case.

– When no potential function is available, the use of a pseudo-potential function
can still enhance the worst-case search.

– Local search can speed up the search for worst-case initial configurations.
– The worst cases obtained by greedy daemons are correlated (on the algorithms

and topologies we tried) to the ones of (more costly) exhaustive daemons.
This means that we can use greedy daemons to search for worst-case initial
configurations, and then use an exhaustive daemon only on the resulting
configuration.

– The same result can be observed, to a lesser extent, for random daemons.
This is interesting as it allows to apply this idea on algorithms that have no
known potential (nor pseudo-potential) function.

Future Work. On the algorithms and topologies we have considered, local
searches are always better than global (i.e., fully random) searches, except for
the te-a5sf/rtree4, where the same worst case is found, but a little bit faster.
Cases were global searches give better results certainly exist, if the local search
starts in a configuration that is far from the ones that produce the worst cases.
In such a case, it is easy to combine both heuristics, and to start the local
search with the best result found by the global one. Another classical heuristic
to combine local and global search would be to perform simulated-annealing.

References

1. Adamek, J., Farina, G., Nesterenko, M., Tixeuil, S.: Evaluating and optimizing
stabilizing dining philosophers. J. Parallel Distrib. Comput. 109, 63–74 (2017)

2. Adamek, J., Nesterenko, M., Tixeuil, S.: Evaluating practical tolerance properties
of stabilizing programs through simulation: the case of propagation of information
with feedback. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol. 7596, pp.
126–132. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33536-
5 13

https://doi.org/10.1007/978-3-642-33536-5_13
https://doi.org/10.1007/978-3-642-33536-5_13

16 E. Jahier et al.

3. Aflaki, S., Bonakdarpour, B., Tixeuil, S.: Automated analysis of impact of schedul-
ing on performance of self-stabilizing protocols. In: Pelc, A., Schwarzmann, A.A.
(eds.) SSS 2015. LNCS, vol. 9212, pp. 156–170. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21741-3 11

4. Altisen, K., Corbineau, P., Devismes, S.: A framework for certified self-
stabilization. Log. Methods Comput. Sci. 13(4) (2017)

5. Altisen, K., Corbineau, P., Devismes, S.: Certification of an exact worst-case self-
stabilization time. Theor. Comput. Sci. 941, 262–277 (2023)

6. Altisen, K., Cournier, A., Devismes, S., Durand, A., Petit, F.: Self-stabilizing leader
election in polynomial steps. Inf. Comput. 254(Part 3), 330–366 (2017)

7. Altisen, K., Devismes, S., Dubois, S., Petit, F.: Introduction to Distributed Self-
Stabilizing Algorithms, Volume 8 of Synthesis Lectures on Distributed Computing
Theory (2019)

8. Altisen, K., Devismes, S., Durand, A.: Acyclic strategy for silent self-stabilization
in spanning forests. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol.
11201, pp. 186–202. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03232-6 13

9. Altisen, K., Devismes, S., Jahier, E.: SASA: a SimulAtor of self-stabilizing algo-
rithms. Comput. J. 66(4), 796–814 (2022)

10. Couvreur, J.-M., Francez, N., Gouda, M.G.: Asynchronous unison (extended
abstract). In: ICDCS 1992 (1992)

11. Datta, A.K., Larmore, L.L., Vemula, P.: An o(n)-time self-stabilizing leader election
algorithm. J. Parallel Distrib. Comput. 71(11), 1532–1544 (2011)

12. Datta, A.K., Devismes, S., Heurtefeux, K., Larmore, L.L., Rivierre, Y.: Competi-
tive self-stabilizing k-clustering. Theor. Comput. Sci. 626, 110–133 (2016)

13. Datta, A.K., Larmore, L.L., Vemula, P.: Self-stabilizing leader election in optimal
space under an arbitrary scheduler. Theor. Comput. Sci. 412(40), 5541–5561 (2011)

14. Devismes, S., Johnen, C.: Silent self-stabilizing BFS tree algorithms revisited. J.
Parallel Distrib. Comput. 97, 11–23 (2016)

15. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

16. Dolev, S., Gouda, M.G., Schneider, M.: Memory requirements for silent sta-
bilization. Acta Informatica 36(6), 447–462 (1999). https://doi.org/10.1007/
s002360050180

17. Evcimen, H.T., Arapoglu, O., Dagdeviren, O.: SELFSIM: a discrete-event sim-
ulator for distributed self-stabilizing algorithms. In: International Conference on
Artificial Intelligence and Data Processing (2018)

18. Flatebo, M., Datta, A.K.: Simulation of self-stabilizing algorithms in distributed
systems. In: Annual Simulation Symposium (1992)

19. Christian, G., Nicolas, H., David, I., Colette, J.: Disconnected components detec-
tion and rooted shortest-path tree maintenance in networks. In: Felber, P., Garg,
V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 120–134. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11764-5 9

20. Glacet, C., Hanusse, N., Ilcinkas, D., Johnen, C.: Disconnected components detec-
tion and rooted shortest-path tree maintenance in networks. J. Parallel Distrib.
Comput. 132, 299–309 (2019)

21. Har-Tal, O.: A simulator for self-stabilizing distributed algorithms (2000). https://
www.cs.bgu.ac.il/∼projects/projects/odedha/html/

22. Huang, S.-T., Chen, N.-S.: A self-stabilizing algorithm for constructing breadth-
first trees. Inf. Process. Lett. 41(2), 109–117 (1992)

https://doi.org/10.1007/978-3-319-21741-3_11
https://doi.org/10.1007/978-3-319-21741-3_11
https://doi.org/10.1007/978-3-030-03232-6_13
https://doi.org/10.1007/978-3-030-03232-6_13
https://doi.org/10.1007/s002360050180
https://doi.org/10.1007/s002360050180
https://doi.org/10.1007/978-3-319-11764-5_9
https://doi.org/10.1007/978-3-319-11764-5_9
https://www.cs.bgu.ac.il/~projects/projects/odedha/html/
https://www.cs.bgu.ac.il/~projects/projects/odedha/html/

Exploring Worst Cases of Self-stabilizing Algorithms Using Simulations 17

23. Kosowski, A., Kuszner, �L: A self-stabilizing algorithm for finding a spanning tree
in a polynomial number of moves. In: Wyrzykowski, R., Dongarra, J., Meyer, N.,
Waśniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911, pp. 75–82. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11752578 10

24. Müllner, N., Dhama, A., Theel, O.E.: Derivation of fault tolerance measures of self-
stabilizing algorithms by simulation. In: Annual Simulation Symposium (2008)

25. Trivedi, K.S.: Probability and Statistics with Reliability, Queuing and Computer
Science Applications, 2nd edn. Wiley, Hoboken (2002)

https://doi.org/10.1007/11752578_10

Model Checking of Distributed Algorithms
Using Synchronous Programs

Erwan Jahier1(B), Karine Altisen1, Stéphane Devismes2,
and Gabriel B. Sant’Anna3

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, Grenoble, France
erwan.jahier@univ-grenoble-alpes.fr

2 Université de Picardie Jules Verne, MIS, Amiens, France
3 BRy Tecnologia, Florianópolis, Brazil

Abstract. The development of trustworthy self-stabilizing algorithms
requires the verification of some key properties with respect to the formal
specification of the expected system executions. The atomic-state model
(ASM) is the most commonly used computational model to reason on
self-stabilizing algorithms. In this work, we propose methods and tools
to automatically verify the self-stabilization of distributed algorithms
defined in that model. To that goal, we exploit the similarities between
the ASM and computational models issued from the synchronous pro-
gramming area to reuse their associated verification tools, and in partic-
ular their model checkers. This allows the automatic verification of all
safety (and bounded liveness) properties of any algorithm, regardless of
any assumptions on network topologies and execution scheduling.

1 Introduction

Designing a distributed algorithm, checking its validity, and analyzing its per-
formance is often difficult. Indeed, locality of information and asynchrony of
communications imply numerous possible interleavings in executions of such
algorithms. This is even more exacerbated in the context of fault-tolerant dis-
tributed computing, where failures, occurring at unpredictable times, have a
drastic impact on the system behavior. Yet, in this research area, correctness and
complexity analyses are usually made by pencil-and-paper proofs. As progress is
made in distributed fault-tolerant computing, systems become more complex and
require stronger correctness properties As a consequence, the combinatorics in
the proofs establishing functional and complexity properties of these distributed
systems constantly increases and requires ever more subtle arguments. In this
context, computer-aided tools such as simulators, proof assistants, and model
checkers are appropriate, and sometimes even mandatory, to help the design of
a solution and to increase the confidence in its soundness.

Simulation tools [3,4] are interesting to test and find flaws early in the design
process. However, simulators only partially cover the set of possible executions

This work has been partially funded by the ANR project SkyData (ANR-22-CE25-
0008-01).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 18–35, 2023.
https://doi.org/10.1007/978-3-031-44274-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_2&domain=pdf
https://doi.org/10.1007/978-3-031-44274-2_2

Model Checking of Distributed Algorithms Using Synchronous Programs 19

and so are not suited to formally establish properties. In contrast, proof assis-
tants [24] offer strong formal guarantees. However, they are semi-automatic in
the sense that the user must write the proof in a formal language specific to the
software, which then mechanically checks it. Usually, proof assistants require a
considerable amount of effort since they often necessitate a full reengineering
of the initial pencil-and-paper proof. Finally, and contrary to the two previous
methods, model checking [9] allows a complete and fully automatic verification
of the soundness of a distributed system for a given topology.

We consider model checking for self-stabilization, a versatile lightweight fault-
tolerant paradigm [2,11]. A self-stabilizing algorithm makes the system eventu-
ally reach a so-called legitimate configuration from which every possible exe-
cution satisfies the intended specification, regardless of its configuration – the
initial one, or any configuration resulting from a finite number of transient faults.
Our goal is to automatically verify the self-stabilization of distributed algorithms
written in the atomic-state model (ASM), the most commonly used model in the
area. To that end, we exploit the similarities between the ASM and computa-
tional models issued from formal methods based on synchronous programming
languages [15], such as lustre [16], to reuse their associated verification tools, in
particular model checkers such as kind2 [5]. This allows the automatic verifica-
tion of all safety (and bounded liveness) properties of any algorithm, regardless
the assumptions made on network topologies and the asynchrony of the execu-
tion model (daemons).

Contribution. We propose a language-based framework, named salut, to ver-
ify the self-stabilization of distributed algorithms written in ASM. In particular,
we implement a translation from the network topology to a lustre program,
this latter calling upon an API designed to encode the algorithm. The veri-
fication then comes down to a state-space exploration problem performed by
the model checker kind2 [5]. Our proposal is modular and flexible thanks to
a clear separation between the description of algorithms, daemons (which are
also programmable), topologies, and properties to check. As a result, our frame-
work is versatile and induces more simplicity by maximizing the code reuse. For
example, using classical daemons (e.g., synchronous, distributed, central) and
standard network topologies (e.g., rings, trees, random graphs) provided in the
framework, the user just has to encode the algorithm and the properties to verify.

We demonstrate the versatility and scalability of our method by verifying
many different self-stabilizing algorithms of the literature, solving both static
and dynamic tasks in various contexts in terms of topologies and daemons.
In particular, we include the common benchmarks (namely, Dijkstra’s K-state
algorithm [11], Ghosh’s mutual exclusion [14], Hoepman’s ring-orientation [18])
studied by the state-of-the-art, yet ad hoc, approaches [6,7,26] for comparison
purposes. Our results show that the versatility of our solution does not come at
the price of sacrificing too much efficiency in terms of scalability and verification
time.

Related Work. Pioneer works on verification of distributed self-stabilizing
algorithm have been led by Lakhnech and Siegel [23,25]. They propose formal

20 E. Jahier et al.

frameworks to open the possibility of computer-aided-verification machinery.
However, these two preliminary works do not propose any toolbox to apply and
validate their approach.

In 2001, Tsuchiya et al. [26] proposed to use the symbolic model checker
NuSMV [8]. They validate their approach by verifying several self-stabilizing
algorithms defined in ASM under the central and distributed daemon assump-
tions. These case studies are representative since they cover various settings in
terms of topologies and problem specifications. Yet, their approach is not generic
since it mixes in the same user-written SMV file the description of the algorithm,
the expected property, and the topology.

In 2006, Whittlesey-Harris and Nesterenko [27] modeled in SPIN [19] a spe-
cific yet practical self-stabilizing application, namely the fluids and combustion
facility of the international space station, to automatically verify it. A few exper-
imental results are given, but no analysis or comparison with [26] is given.

Chen et al. [6] focus on the bottlenecks, in particular related to fairness
issues, involved by the verification of self-stabilizing algorithms. They also use
the NuSMV [8] model checker. Chen and Kulkarni [7] use SMT solvers to ver-
ify stabilizing algorithms [12]. They apply bounded model-checking techniques
to determine whether a given algorithm is stabilizing. They highlight trade-offs
between verification with SMT solvers and the previously mentioned works on
symbolic model checking [6,26]. Approaches in [6,7] are limited in terms of ver-
satility and code reuse since, by construction, the verification is restricted to the
central daemon, and again the whole system modeling is ad hoc and stored in
to a single user-written file.

sasa [3] is an open-source tool dedicated to the simulation of self-stabilizing
algorithms in the ASM. It provides all features needed to test, debug and eval-
uate self-stabilizing algorithms (such as an interactive debugger with graphical
support, predefined daemons and custom test oracles). The sasa simulation facil-
ities can actually be used with salut. The main difference is that algorithms
should be written in ocaml rather than in lustre – which is more convenient
as lustre is a more constrained language (it targets critical systems) and has
a less rich programming environment. On the other hand, with sasa, one can
only perform simulations.

Roadmap. The rest of the paper is organized as follows. Sections 2 and 3 respec-
tively present the ASM and a theoretical model that grounds the synchronous
programming paradigm. Section 4 proposes a general way of embedding the ASM
into a synchronous programming model. Section 5 shows how to take advantage
of this embedding to formulate ASM algorithm verification problems. Section 6
describes a possible implementation of this general framework using the lustre
language and Sect. 7 explains how to use the lustre toolbox to perform auto-
matic verifications in practice. Section 8 presents some experimentation results.
We make concluding remarks in Sect. 9.

Model Checking of Distributed Algorithms Using Synchronous Programs 21

2 The Atomic-State Model

Fig. 1. The Dijkstra’s K-state algorithm for
n-size rooted unidirectional rings [11].

A distributed system is a finite set
of processes, each equipped with a
local algorithm working on a finite
set of local variables. Processes can
communicate with other processes
through communication links that
define the network topology. In the
ASM model [11], communications
are abstracted away as follows: each
process can read its variables and
those of its neighbors or predeces-
sors (depending on whether or not communication links are bidirectional) and
can only write to its own variables. The local algorithm of a process is given
as a collection of guarded actions of the following form: 〈label〉::〈guard〉 ↪→
〈statement〉. The label is only used to identify the action. The guard is a Boolean
predicate involving variables the process can read. The statement describes mod-
ifications of the process variables. An action is enabled if its guard evaluates to
true. A process can execute an action (its statement) only if the action is enabled.
By extension, a process is said to be enabled when at least one of its action is
enabled. An example of distributed algorithm is given in Fig. 1.

The semantics of a distributed system in the ASM is defined as follows. A
configuration consists of the set of values of all process states, the state of each
process being defined by the values its variables. An execution is a sequence of
configurations, two consecutive configurations being linked by a step. The sys-
tem atomically steps into a different configuration when at least one process
is enabled. In this case, a non-empty set of enabled nodes is activated by an
adversary, called daemon, which models the asynchronism of the system. Each
activated process executes the statement of one of its enabled actions, producing
the next configuration of the execution. Many assumptions can be made on such
a daemon. Daemons are usually defined as the conjunction of their spreading and
fairness properties [2]. In this paper, we consider four classical spreading prop-
erties: central, locally central, synchronous, and distributed. A central daemon
activates only one process per step. A locally central daemon never activates
two neighbors simultaneously. At each step, the synchronous daemon activates
all enabled processes. A distributed daemon activates at least one process, maybe
more, at each step. Every daemon we deal with in this paper is considered to
be unfair, meaning that it might never select an enabled process unless it is the
only remaining one.

22 E. Jahier et al.

p5 v=3p0 v=4

p4
Tp

v=3

p3
Tp

v=4
p2

Tp

v=5

p1
Tp

v=1

Fig. 2. Unidirectional ring of six
processes rooted at p0.

Figure 2 displays an example of distributed
system where the algorithm of Fig. 1 runs. This
algorithm is executed on a rooted unidirec-
tional ring. By rooted, we mean that all pro-
cesses except one, the root (here, p0), executes
the same local algorithm. In the figure, each
enabled process, given in color, is decorated by
the enabled action label (top-right). In the cur-
rent configuration, processes from p1 to p4 are
enabled because their v -variable is different from
that of their predecessor; see Action Tp. The root
process, p0, is disabled since its v -variable is dif-

ferent from that of its predecessor; see Action Troot. So, the daemon has to chose
any non-empty subset of {p1, p2, p3, p4} to be activated. In the present case,
each activated process will copy its predecessor value during the step; see Action
Tp.

A distributed system is meant to execute under a set of assumptions, which
are in particular related by the topology (in the above example, a rooted unidi-
rectional ring) and the daemon (in the above example, the distributed daemon)
and to achieve a given specification (in the above example, the token circu-
lation). Under a given set of assumptions, a distributed system is said to be
self-stabilizing w.r.t. a specification if it reaches a set of configurations, called
the legitimate configurations, satisfying the following three properties: Correct-
ness: every execution satisfying the assumptions and starting from a legitimate
configuration satisfies the specification; Closure: every execution satisfying the
assumptions and starting from a legitimate configuration only contains legiti-
mate configurations; Convergence: every execution satisfying the assumptions
eventually reaches a legitimate configuration.

3 The Synchronous Programming Model

We now briefly present the main concepts grounding the synchronous program-
ming paradigm [15] that are used in the sequel. At top level, a synchronous
program can be activated periodically (time-triggered) or sporadically (event-
triggered). A program execution is therefore made of a sequence of steps. To
perform such a step, the environment has to provide inputs. The step itself con-
sists in (1) computing outputs, as a function of the inputs and the internal state
of the program, and (2) updating the program internal state.

The specific feature of synchronous programs is the way internal components
interact when composed: one step of the whole composition consists of a “simul-
taneous” step of all the components, which communicate atomically with each
other. Moreover, programs have a formal deterministic semantics: this enables
to validate the program using testing and formal verification.

Model Checking of Distributed Algorithms Using Synchronous Programs 23

Fig. 3. General scheme of a synchronous node
(a) and synchronous composition (b).

Fig. 4. Delay (a) and if-then-else
(b) synchronous nodes.

Following the presentation in [15], a synchronous node1 is a straightforward
generalization of synchronous circuits (Mealy machines) that work with arbitrary
datatypes: such a machine has a memory (a state) and a combinational part,
and that computes the output and the next state as a function of the current
input and the current state. The general dataflow scheme of a synchronous node
is depicted in Fig. 3a: it has a vector of inputs, i, and a vector of outputs, o; its
internal state variable is denoted by s. A step of the node is defined by a function
made of two parts, f = (fo, fs): fo (resp. fs) computes the output (resp. the
next state, s′) from the current input and the current state:

o = fo(i, s) s′ = fs(i, s)

The behavior of the node is the following: it starts in some initial state s0. In a
given state s, it deterministically reacts to an input valuation i by returning the
output o = fo(i, s) and by updating its state by s′ = fs(i, s) for the next reaction.
Those nodes can be composed, by plugging one’s outputs to the other’s inputs,
as long as those wires do not introduce any combinational loop. The general
scheme of the (synchronous) composition between two nodes is shown in Fig. 3b,
where the step is computed by

o1 = fo(i1, o2, s1) o2 = go(i2, o1, s2) s′
1 = fs(i1, o2, s1) s′

2 = gs(i2, o1, s2)

and either the result of fo(i1, o2, s1) should not depend on o2 or the result of
go(i2, o1, s2) should not depend on o1.

We now introduce two simple synchronous nodes that are used in the sequel.
The first one is a single delay node, noted δ (Fig. 4a): it receives an input i of
some generic type τ and returns its input delayed by one step; it has a state
variable s of type τ . A step of δ is computed by:

fδ
o (i, s) = s fδ

s (i, s) = i

1 Here, what we name a (ASM) process is also often called a node in the literature;
we have chosen to call it a process to avoid confusion with synchronous nodes.

24 E. Jahier et al.

The second node (see Fig. 4b) is a stateless if-then-else operator: it returns
its second input when its first input is true, and its third input otherwise:

f ite
o (c, t, e) = if c then t else e f ite

s (c, t, e) = _

Since this node is stateless, f ite
s (c, t, e) returns nothing.

4 From ASM Processes to Synchronous Nodes

The ASM and synchronous programming models have a lot in common, in par-
ticular with respect to the atomicity of steps: all nodes of the program (resp. all
processes of the network) react at the same logical instant, using the same global
configuration; moreover, at the end of a global step, all nodes (resp. processes)
outputs are broadcasted away instantaneously to define the new configuration.
Another important similarity is the way the non-determinism is handled. As a
synchronous program is deterministic, non-determinism is handled by adding
external inputs – often called oracles in the programming language commu-
nity. On the other hand, in the ASM, non-determinism due to asynchronism
is modeled by daemons. For those reasons, using synchronous programs (and
their associate toolboxes) is very natural to simulate and formally verify ASM
algorithms.

Fig. 5. Formalizing an ASM process as a syn-
chronous node.

We now explain how to encode
ASM processes into synchronous
nodes. In a network of n processes,
each process is mapped to a syn-
chronous node. This node contains
two inner nodes encoding the ASM
guarded actions of the process (see
Fig. 5): (1) enable, whose inputs are
the states the process can read (the
predecessors in the graph); this node
has a single output, a Boolean array,
which elements are true if and only if
the corresponding processes guards are enabled; (2) step, with the same inputs
as enable, and that outputs a new state (as computed by the statement of the
enabled action); this state is used as the new value of the corresponding process
state if the daemon chooses to activate the process; the previous value is used
otherwise.

The communication links in the network topology are translated into data
wires in the synchronous model. For each process, the state output wire of its
node instance is plugged onto some other node instances, corresponding to its
neighbors, as defined by the network topology – see the left-most node in Fig. 6.

Model Checking of Distributed Algorithms Using Synchronous Programs 25

5 ASM Algorithms Verification via Synchronous
Observers

Once we have a formal model (made of synchronous nodes) of the process local
algorithms and the network, it is possible to automatically verify some prop-
erties using so-called synchronous observers [17]: the desired properties can be
expressed by the means of another synchronous node that observes the behav-
ior of the outputs and returns a Boolean that states whether configurations
sequences are correct.

Fig. 6. Verifying a property using syn-
chronous observers.

Classically, the assumptions of
the environment of the system under
verification is also formalized by a
synchronous observer; here, those
assumptions are handled by the
daemon, which decides which pro-
cesses should be activated among
the enabled ones. Therefore, the
assumption observer is named dae-
mon; it has 2 × n input wires: n
activate wires and n enable wires,
one each per process; it outputs a
Boolean whose value states whether the assumption made on the daemon (e.g.,
synchronous, distributed, central) is satisfied. Those classical daemon assump-
tions, encoded as synchronous nodes, are provided as a library [1].

The verification of a given property then consists in checking that the syn-
chronous composition of the synchronous nodes encoding the processes topology,
the daemon observer, and the property observer never causes the latter to return
false while the daemon observer has always returned true; this boils down to a
state-space exploration problem. The composition is illustrated in Fig. 6, where
a property is checked against ASM algorithms running on the network of Fig. 2.
For the sake of clarity, we have omitted some wires: the processes output wires
from left-to-right holding the state values are plugged into the configuration
wire of the property node; the processes output wires from left-to-right holding
the enables values are plugged into the enables wire of the daemon node; the
processes input wires from up-to-down holding the activation values, that are
also used as inputs for the daemon observer, are plugged into the corresponding
processes.

In order to prove the closure property of the self-stabilization definition
(Sect. 2), which states that an algorithm never steps from a legitimate to an
illegitimate configuration, one can use the observer of Fig. 7. It checks that if the
previous configuration (computed by the δ node) was legitimate, then so is the
current one.

26 E. Jahier et al.

Fig. 7. The closure property Observer.

Similarly to the closure property, one
can formalize classical convergence theo-
rems, such as, “if K ≥ n and the daemon
is distributed, then the stabilization time
of the algorithm of Fig. 1 is at most 2n−3
rounds”2 (Theorem 6.37 of [2]). For some
ASM algorithms, called silent, the legiti-
mate configurations are the terminal ones,
where no process is enabled. But for other algorithms, such as the one presented
in Sect. 2, a definition of legitimacy needs to be provided.

Using synchronous observers, one can just specify safety properties, which
state that nothing bad will happen. Liveness properties, such as “the algorithm
will eventually converge”, cannot be expressed. But stronger (and equally inter-
esting) properties such as “the algorithm will converge in at most f(n) steps”
can. Moreover, observers can be executed and used during simulations to imple-
ment test oracles [21]: this allows to test the whole model at first hand, before
verification.

6 SALUT: Self-stabilizing Algorithms in LUsTre

In this section, we describe salut, a framework that implements the ideas pre-
sented so far. In order to implement such a framework, one has to (i) chose a
format to describe the network, (ii) chose a language to implement synchronous
nodes, (iii) propose an API for that language to define enable and step func-
tions, and (iv) implement a translator from the format chosen in (i) to the
language chosen in (ii).

Network Description. We have chosen to base the network description on
dot [13]: the rationale for choosing dot was that many visualization tools and
graph editors support the dot format and many bridges from one and to another
graph syntax exist. dot graphs are defined as sets of nodes and edges. Graphs,
nodes, and edges can have attributes specified by name-value pairs, so that we can
take advantage of dot attributes to (1) associate nodes with their algorithms,
(2) optionally associate nodes with their initial states, and (3) associate graphs
with parameters.

lustre, a Language to Implement Synchronous Nodes. lustre is a
dataflow synchronous programming language designed for the development and
verification of critical reactive systems [16]. It combines the synchronous model
– where the system reacts instantaneously to a flow of input events at a precise
discrete time scale – with the dataflow paradigm – which is based on block
diagrams, where blocks are parallel operators concurrently computing their own
output and possibly maintaining some states. Choosing lustre to implement the
2 A round is a time unit that captures the execution time according to the speed of

the slowest processes; see [2] for a formal definition.

Model Checking of Distributed Algorithms Using Synchronous Programs 27

synchronous nodes of Sect. 3 is natural as they were designed to model lustre
programs in the first place [17]. Moreover, two lustre model checkers are freely
available to perform formal verifications (cf. Sect. 7).

A lustre API to Define ASM Algorithms. The lustre API for salut
follows the formalization of Sect. 4. For each algorithm, one needs to define the
process state datatype. Then, for each local algorithm, one needs to define a
lustre version of the enable and step nodes – the 2 left-most inner nodes of
Fig. 5.

For Dijkstra’s algorithm of Fig. 1, the state of each process is an integer and
there is one action for the root process and one action for non-root processes:

type state = int;
const actions_number = 1;

The root_enable and root_step are implemented in Listing 1 and 2 for
the root process. Their interfaces (Lines 1–2) are the same for all nodes and all
algorithms.

1 function root_enable <<const d: int>>(st:state; ngbrs:neigh^d)
2 returns (enabled: bool^actions_number);
3 let
4 enabled = [st = state (ngbrs[0])];
5 tel ;

Listing 1. The Lustre enable for the root process

Enable nodes take as inputs the state of the process (of type state) and an
array containing the states the process has access to – namely, the ones of its
neighbors. Such states are provided as an array of size d, where d is the degree
of the process. As in lustre, array sizes should be compile-time constants, the
d parameter is provided as a static parameter (within «»). Type neigh con-
tains information about every process neighbors, in particular its state, accessed
using the state getter (see Line 4 of Listing 1). Enable nodes return an array of
Booleans of size actions_number, stating for each action whether it is enabled
or not.

The K-state algorithm of the root process is enabled when the process state
value is equal to that of its predecessor (Line 4 of Listing 1), as stated in the
guard of the root action in Fig. 1. In lustre, stateless nodes are declared as
function (Line 1 of Listing 1 and 2) and square brackets ([index]) gives access
to the content of the array at a particular index.

1 function root_step <<const d: int>>(st: state; ngbrs: neigh^d; a:action)
2 returns (new: state);
3 let
4 new = (st + 1) mod k;
5 tel;

Listing 2. The Lustre step node for the root process

Step nodes have the same input parameters as enable ones, plus the active
action label (see a in Listing 2, Line 1). It returns the new value of the process
state (Line 2). The node body (Line 4) is a direct encoding of the statement of

28 E. Jahier et al.

the root action given in Fig. 1. The predefined node mod computes the modulo
operation. For this algorithm, there is only one possible action, so the argument
a is not used.

The enable and step nodes are similarly implemented for the non-root pro-
cesses (see [20] for the complete implementation).

The salut Translator. All the nodes required to describe the ASM algo-
rithms are then generated automatically from the network topology using a dot
to lustre translator. The two nodes, enable and step, are the only lustre
programs that need to be provided. salut generates from the dot file a node,
called topology (the leftmost node in Fig. 6). In particular, salut takes care of
wiring the enable and the step node instances to the right processed and the
right values of the degree d parameter, that can vary from one node instance to
another.

7 Automatic Formal Verification

We have seen that properties on ASM algorithms can be proven using syn-
chronous observers (cf. Fig. 6). By defining such observers in lustre, we can
perform the verification of these properties automatically using existing verifi-
cation tools for lustre such as kind2 [5]. Technically, to use such a tool, one
just needs to point out a node Boolean variable. Then, the tool will try to prove
that the designated variable is always true for all possible sequences of the node
inputs, by performing a symbolic state space exploration. Hence, one just needs
to encode the desired properties into a Boolean, as done in the verify node
given in Listing 3. This section is devoted to the explanation of this listing.

1 const n = card; -- processes number extracted from the dot file
2 const worst_case = n*(n-1) + (n-4)*(n+1) div 2 + 1; -- in steps
3
4 node verify(active: bool ^1^n; init_config: state^n)
5 returns (ok: bool);
6 var
7 config: state^n;
8 enabled: bool ^1^n; -- 1 since the algorithm has only 1 rule per process
9 enabled1: bool^n; -- enabled projection

10 legitimate , round: bool;
11 closure , converge_cost , converge_wc: bool;
12 steps , cost , round_nb: int;
13 let
14 config , enabled , round , round_nb = topology(active , init_config);
15 assert(true -> daemon_is_central<<1,n>>(active , pre enabled));
16 enabled1 = map<<nary_or<<1>>,n>> (enabled); -- projection
17 legitimate = nary_xor<<n>>(enabled1);
18 closure = true -> (pre(legitimate) => legitimate);
19 cost = cost(enabled , config);
20 converge_cost = (true -> legitimate or pre(cost)>cost);
21 steps = 0 -> (pre(steps) + 1); -- 0, 1, 2, ...
22 converge_wc = (steps >= worst_case) => legitimate;
23 ok = closure and converge_cost and converge_wc;
24 tel;

Listing 3. lustre formalization of some properties of the K-state algorithm.

Model Checking of Distributed Algorithms Using Synchronous Programs 29

This node is a particular instance of Fig. 6. The information related to process
enabling (enabled variable in Listing 3) and activation (active) are contained
into 2-dimensional Boolean arrays. The first dimension is used to deal with
algorithms that are made of several guarded actions (here only one is used).
The second dimension is used to deal with topologies that have more than one
process.

According to the current configuration and an array of Booleans active
indicating which processes have been activated by the daemon, the topology
node computes a new configuration config, which is an integer array of size n,
and a matrix of Booleans enabled of size 1 × n to indicate which processes are
enabled (Line 14). The topology node also outputs elements relative to round
computation, which are not used here. At the first step, the current configuration
returned by Node topology is the initial one, i.e., its argument init_config;
for all other steps, the configuration is computed by topology from the previous
configuration (which is stored as an internal memory in topology, cf. Fig. 5) and
the process activations. At every step, the set of enabled processes is computed
according to the configuration. The verification tools will try to prove that, e.g.,
ok is always true for all possible values of its inputs, namely for every initial
configuration, and all process activation scheduling.

Daemon Assumptions. As already mentioned, in order to fully encode the
ASM algorithms, we need to express assumptions about the daemon; In lustre,
this can be done through the assert directive (Line 15). Here, a central daemon
is used (the node daemon_is_central not shown here): it checks that, at each
step, only enabled nodes can be activated, and that exactly one can be activated.
Note that such a property is not checked at the first instant (true->...3) since
pre(enabled), which returns the previous value of enabled, is undefined at that
instant.

Closure. The node verify should also define the properties involved in the defi-
nition of self-stabilization; see Sect. 2. The first expressed property is the closure:
once the system has reached a legitimate configuration, it remains in legitimate
configurations forever. The definition of a legitimate configuration is done with
the variable legitimate in Line 17, which checks that exactly one process is
enabled using a XOR operator (n.b., nary_xor is a node that returns true if
and only if exactly one element of its input Boolean array is true). Then, the
definition of closure is given in Line 18 and is a direct implementation of Fig. 7.
Again, this property is not checked at the first instant when pre(legitimate)
is undefined.

3 The -> infix binary operator returns the value of its left-hand-side argument at
the first instant, and the one of its right-hand-side argument for all the remaining
instants.

30 E. Jahier et al.

Convergence. We now focus on the convergence part. For algorithms with an
available potential function, that quantifies how far a configuration is from the
set of legitimate configurations, we can check whether this function is decreasing;
see the Boolean convergence_cost and Lines 19–20 (the cost node is not shown
here). The existence of a decreasing function guarantees the convergence. Note
that once a legitimate configuration is reached, the potential function does not
necessarily decrease anymore. This is the kind of subtleties that a verification
tool can spot (and have actually spotted) easily.

Alternatively, we can take advantage of known upper bounds for the conver-
gence time, being tight or not. In our case, we use Theorem 6.30 of [2] (Line
2). Then, we can check this bound, and so the convergence, by stating that
once the upper bound is reached, the configuration should be legitimate; see the
variable steps that counts the number of steps elapsed since the beginning of
the execution and the Boolean convergence_wc that checks the property (Lines
21–22).

8 Experimentations

One of the key advantages of our approach is that topologies, daemons, algo-
rithms, and properties to check are described separately, contrary to the related
work [6,7,26] where they are mixed into a single user-written SMV [8] or
Yices [12] file. More precisely:

1. salut automatically translates into lustre any topology described in the
dot language (for which many graph generators exist).

2. Classical daemons, i.e., synchronous, distributed, central, and locally central,
are generically modeled in lustre so that they can be used for any number of
nodes and actions (using 2-dimension arrays). Other daemons can be modeled
similarly.

3. To model-check an algorithm, one thus just need to model its guarded actions,
using the API described in Sect. 6. Actually, we have done it for several differ-
ent algorithms: the Dijkstra’s K-state algorithm [11] whose lustre encoding
is made of 37 lines of code (loc), the Ghosh’s mutual exclusion [14] (50 loc), a
Bread-First Search spanning tree construction [2] (80 loc), a synchronous uni-
son [2] (40 loc); a k-clustering (with k = 2) algorithm [10] (130 loc), a vertex-
coloring algorithm [2] (30 loc), and the Hoepman’s ring orientation [18] (110
loc).

4. For all those algorithms, we have encoded the closure property and a con-
vergence property based on a known upper bound. We also have encoded a
convergence property based on a potential function, when available.

Once an algorithm and the properties to verify are written in lustre,4 we can
model-check them using any daemon and any topology. Of course, not all combi-
nations make sense, e.g., the Dijkstra’s K-state algorithm only works on rooted

4 The lustre code of those examples is given in the salut git repository [1].

Model Checking of Distributed Algorithms Using Synchronous Programs 31

unidirectional rings and the synchronous unison only works under a synchronous
daemon. Still, a lot of combinations are possible. Table 1 presents results for a
small subset of them.

Table 1. The maximum topology size that can be handled within an hour.

Algorithm lustre prog size
for WC-conv
(φ-conv) in loc

Topology Daemon Max topo size for
WC-conv (φ-conv)
in processes nb

K-state 7 (86) rooted unidirectional ring synchronous 48 (15)
central 6 (8)
distributed 6 (8)

Ghosh 8 “ring-like” central 18
distributed 16

Coloring 6 (8) ring central 10 (55)
random 11 (26)

Sync unison 6 random synchronous 40
ring 17

BFS sp. tree 7 tree distributed 8

k-clustering 30 (20) rooted tree distributed 9 (10)

Hoepman 6 odd-size ring central 7

Table 1 summarizes experiments made with the kind2 [5] model checker5 to
prove some properties against the corresponding algorithm encoding. Columns 1,
3, and 4 respectively contain the algorithm name, the topology,6 and the daemon
used for the experiment. Column 2 contains the number of lines of lustre code
used to encode the worst-case-based convergence property, apart from the main
node declarations (and in parentheses the number of lines to encode the potential
function property, when available). Column 5 contains the maximal number of
processes for which we get a (positive) result in less than 1 h7 (and ditto for the
potential-based convergence in parentheses).

The topology sizes we can handle are quite small, but large enough to spot
faults in algorithms, expected properties, or their lustre encoding. Potential
functions, when available, sometimes allow to check bigger topologies; indeed,
we are able to check in less than one hour a ring of 55 processes using the
potential function of the coloring algorithm, whereas using the worst-case-based
convergence, we are only able to check the algorithm convergence on rings of
5 We use kind2 v1.9.0 with the following command line option: --smt_solver
Bitwuzla --enable BMC --enable IND --timeout 3600 and uint8 for represent-
ing integers, except for K-state/synchronous where uint16 is necessary (indeed, for
n > 13, WC > 256).

6 Random graphs were generated using the Erdős-Rényi model.
7 We used a multi-core server, where each core is made of Intel(R) Xeon(R) Gold 6330

CPU @ 2.00GHz. Note that kind2 is able to use several cores in parallel.

32 E. Jahier et al.

Table 2. Measuring the time to prove the convergence of the K-state algorithm.

topology size Yices (SMT)
encoding of [7]

salut+kind2
(SMT)

“salut”+NuSMV
(BDD)

NuSMV (BDD)
encoding of [6]

NuSMV (BDD)
encoding of [26]

5 200 (from [7]) 6 0 0 0

6 – 190 0 0 0

7 – 2 0 1

8 10 3 4

9 60 80 10

10 600 20 20

11 – 650 40

12 2800 180

13 – 2500

size 10. The closure property is much cheaper to model-check. For instance, in
less than an hour, we are able to check the Dijkstra’s K-state algorithm on a
unidirectional rooted ring made of 45 processes.

Performance Comparison. Table 2 reports the time (in seconds) necessary
to check the convergence of the K-state algorithm under a central daemon, using
different topology sizes, different solvers, and different problem encodings. We
note “-” when the timeout of one hour is reached. All experiments were conducted
on the same computer, except for the second column. Indeed, the exact encoding
was not provided in the article, so we simply report the number from Table 3
of [7]. Column 3 shows the result of the proposed framework. Column 4 of Table 2
shows the result of a NuSMV program that was not automatically generated by
salut, but that mimics the corresponding generated Lustre code (discussed
below). Columns 5 and 6 show the result of a direct encoding of the problem in
NuSMV as described in [26] and [6], respectively.

On this algorithm (and on the Ghosh’s algorithm), the encoding performed
using the BDD-based solver NuSMV give better performances. Therefore, this
allows to handle topologies with a little bit more nodes. However:

– it seems unlikely that a problem occurring on topologies of size 10 can never
occur on ones of size 6;

– nothing guarantees that it would be the case for all algorithms; and
– the BDD-encoding is limited to finite domains.

Moreover, using our proposal to target (for example) NuSMV should be not
too difficult. Indeed, once completely expanded (using the -ec of the Lustre
V6 compiler), the Lustre program provided to kind2 is actually very close to a
NuSMV program. In order to try that idea out, we wrote a NuSMV program
that mimics the Lustre code coming from the Dijkstra’s K-state (and measured
its performance in Column 4 of Table 2).

As far as SMT-based verification is concerned, the proposed framework used
with the kind2 model checker (which delegates the solving part to external SMT

Model Checking of Distributed Algorithms Using Synchronous Programs 33

solvers) does not seem to pay the price of genericity, as we get performances
that have the same order of magnitude. Indeed, for the K-state and the Ghosh
algorithms convergence under a central daemon, and using a timeout of one hour
as we did in Table 1, Chen et al. [7] report to model-check topologies of size 5
and 14, respectively. We are able to handle slightly bigger topologies (6 and 18,
respectively). But the difference is not significant and our numbers were obtained
using a more recent computer.

9 Conclusion

This work presents an open-source framework that takes advantage of syn-
chronous languages and model-checking tools to formally verify self-stabilizing
algorithms. The encoding of the topology is automatically generated. Generic
daemons are provided and cover the most commonly used cases (synchronous,
distributed, central, and locally central). One just needs to formalize (in Lustre)
the ASM actions and the properties to verify.8 The article and its companion
open-source repository contain many algorithm encoding examples, as well as
examples of checkable properties including stabilization time upper bounds that
can be expressed using steps, moves, or rounds.

It is worth noting that salut has been developed as a natural extension
of sasa [3], an open-source simulator dedicated to self-stabilizing algorithms
defined in the ASM. The integration of verification tools in the sasa suite is
interesting from a technical and methodological point of view as it offers a unified
interface for both simulating and verifying algorithms. In future works, it would
be interesting to complete this suite with bridges to proof assistants to obtain,
in the spirit of TLA+ [22], an exhaustive toolbox for computed-aided validation
of self-stabilizing algorithms.

References

1. The SASA source code repository. https://gricad-gitlab.univ-grenoble-alpes.fr/
verimag/synchrone/sasa

2. Altisen, K., Devismes, S., Dubois, S., Petit, F.: Introduction to Distributed Self-
Stabilizing Algorithms. Synthesis Lectures on Distributed Computing Theory, vol.
8 (2019)

3. Altisen, K., Devismes, S., Jahier, E.: SASA: a simulator of self-stabilizing algo-
rithms. Comput. J. 66(4), 796–814 (2023)

4. Casteigts, A.: Jbotsim: a tool for fast prototyping of distributed algorithms in
dynamic networks. In: SIMUtools, pp. 290–292 (2015)

5. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The Kind 2 model checker.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 510–517.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_29

8 During a 4-weeks internship, a first-year student has been able to learn lustre, the
salut framework, and encode and verify 3 of the 7 algorithms presented in this
article.

https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/synchrone/sasa
https://gricad-gitlab.univ-grenoble-alpes.fr/verimag/synchrone/sasa
https://doi.org/10.1007/978-3-319-41540-6_29

34 E. Jahier et al.

6. Chen, J., Abujarad, F., Kulkarni, S.S.: Towards scalable model checking of self-
stabilizing programs. J. Parallel Distrib. Comput. 73(4), 400–410 (2013)

7. Chen, J., Kulkarni, S.: SMT-based model checking for stabilizing programs’. In:
Frey, D., Raynal, M., Sarkar, S., Shyamasundar, R.K., Sinha, P. (eds.) ICDCN
2013. LNCS, vol. 7730, pp. 393–407. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-35668-1_27

8. Cimatti, A., et al.: NuSMV 2: an opensource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_29

9. Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification
and debugging. Commun. ACM 52(11), 74–84 (2009)

10. Datta, A.K., Devismes, S., Heurtefeux, K., Larmore, L.L., Rivierre, Y.: Competi-
tive self-stabilizing k-clustering. Theor. Comput. Sci. 626, 110–133 (2016)

11. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM (1974)

12. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9_49

13. Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. Softw. Pract. Exper. 30(11), 1203–1233 (2000)

14. Ghosh, S.: Binary self-stabilization in distributed systems. IPL 40(3), 153–159
(1991)

15. Halbwachs, N., Baghdadi, S.: Synchronous modelling of asynchronous systems. In:
Sangiovanni-Vincentelli, A., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491, pp.
240–251. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45828-X_18

16. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language LUSTRE. Proc. IEEE 79(9), 1305–1320 (1991)

17. Halbwachs, N., Lagnier, F., Raymond, P.: Synchronous observers and the verifi-
cation of reactive systems. In: Nivat, M., Rattray, C., Rus, T., Scollo, G. (eds.)
AMAST 1993, pp. 83–96. Springer, London (1994). https://doi.org/10.1007/978-
1-4471-3227-1_8

18. Hoepman, J.-H.: Uniform deterministic self-stabilizing ring-orientation on odd-
length rings. In: Tel, G., Vitányi, P. (eds.) WDAG 1994. LNCS, vol. 857, pp.
265–279. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0020439

19. Holzmann, G.J., Peled, D.: An improvement in formal verification. In: Hogrefe, D.,
Leue, S. (eds.) Formal Description Techniques VII. IAICT, pp. 197–211. Springer,
Boston (1995). https://doi.org/10.1007/978-0-387-34878-0_13

20. Jahier, E.: Verimag Tools Tutorials: Tutorials related to SASA. https://www-
verimag.imag.fr/vtt/tags/sasa/

21. Jahier, E., Djoko-Djoko, S., Maiza, C., Lafont, E.: Environment-model based test-
ing of control systems: case studies. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 636–650. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54862-8_55

22. Kuppe, M.A., Lamport, L., Ricketts, D.: The TLA+ toolbox. In: F-IDE@FM
(2019)

23. Lakhnech, Y., Siegel, M.: Deductive verification of stabilizing systems. In: WSS
(1997)

24. Paulson, L.C.: Natural deduction as higher-order resolution. J. Log. Prog. 3, 237–
258 (1986)

https://doi.org/10.1007/978-3-642-35668-1_27
https://doi.org/10.1007/978-3-642-35668-1_27
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/3-540-45828-X_18
https://doi.org/10.1007/978-1-4471-3227-1_8
https://doi.org/10.1007/978-1-4471-3227-1_8
https://doi.org/10.1007/BFb0020439
https://doi.org/10.1007/978-0-387-34878-0_13
https://www-verimag.imag.fr/vtt/tags/sasa/
https://www-verimag.imag.fr/vtt/tags/sasa/
https://doi.org/10.1007/978-3-642-54862-8_55
https://doi.org/10.1007/978-3-642-54862-8_55

Model Checking of Distributed Algorithms Using Synchronous Programs 35

25. Siegel, M.: Formal verification of stabilizing systems. In: Ravn, A.P., Rischel, H.
(eds.) FTRTFT 1998. LNCS, vol. 1486, pp. 158–172. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055345

26. Tsuchiya, T., Nagano, S., Paidi, R.B., Kikuno, T.: Symbolic model checking for
self-stabilizing algorithms. IEEE TPDS 12(1), 81–95 (2001)

27. Whittlesey-Harris, R.S., Nesterenko, M.: Fault-tolerance verification of the fluids
and combustion facility of the international space station. In: ICDCS, p. 5 (2006)

https://doi.org/10.1007/BFb0055345

The Fence Complexity of Persistent Sets

Gaetano Coccimiglio1(B), Trevor Brown1(B), and Srivatsan Ravi2(B)

1 University of Waterloo, Waterloo, ON N2L 3G1, Canada
{gccoccim,trevor.brown}@uwaterloo.ca

2 University of Southern California, Los Angeles, CA 90007, USA
srivatsr@usc.edu

Abstract. We study the psync complexity of concurrent sets in the
non-volatile shared memory model. Flush instructions are used in non-
volatile memory to force shared state to be written back to non-volatile
memory and must typically be accompanied by the use of expensive
fence instructions to enforce ordering among such flushes. Collectively
we refer to a flush and a fence as a psync. The safety property of strict
linearizability forces crashed operations to take effect before the crash
or not take effect at all; the weaker property of durable linearizability
enforces this requirement only for operations that have completed prior
to the crash event. We consider lock-free implementations of list-based
sets and prove two lower bounds. We prove that for any durable lin-
earizable lock-free set there must exist an execution where some process
must perform at least one redundant psync as part of an update oper-
ation. We introduce an extension to strict linearizability specialized for
persistent sets that we call strict limited effect (SLE) linearizability. SLE
linearizability explicitly ensures that operations do not take effect after a
crash which better reflects the original intentions of strict linearizability.
We show that it is impossible to implement SLE linearizable lock-free
sets in which read-only (or search) operations do not flush or fence. We
undertake an empirical study of persistent sets that examines various
algorithmic design techniques and the impact of flush instructions in
practice. We present concurrent set algorithms that provide matching
upper bounds and rigorously evaluate them against existing persistent
sets to expose the impact of algorithmic design and safety properties on
psync complexity in practice as well as the cost of recovering the data
structure following a system crash.

Keywords: Strict linearizability · Durable linearizability · Lower
bounds · Persistent sets · Non-volatile memory

1 Introduction

Byte-addressable Non-Volatile Memory (NVM) is now commercially available,
thus accelerating the need for efficient persistent concurrent data structure algo-
rithms. We consider a model in which systems can experience full system crashes.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 36–51, 2023.
https://doi.org/10.1007/978-3-031-44274-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_3&domain=pdf
https://doi.org/10.1007/978-3-031-44274-2_3

The Fence Complexity of Persistent Sets 37

When a crash occurs the contents of volatile memory are lost but the contents
of NVM remain persistent. Following a crash a recovery procedure is used to
bring the data structure back to a consistent state using the contents of NVM.
In order to force shared state to be written back to NVM the programmer is
sometimes required to explicitly flush shared objects to NVM by using explicit
flush and persistence fence primitives, the combination of which is referred to
as a psync [21]. While concurrent sets have been extensively studied for volatile
shared memory [14], they are still relatively nascent in non-volatile shared mem-
ory. This paper presents a detailed study of the psync complexity of concurrent
sets in theory and practice.

Algorithmic Design Choices for Persistent Sets. The recent trend is to
persist less data structure state to minimize the cost of writing to NVM. For
example, the Link-Free and SOFT [21] persistent list-based sets do not persist
any pointers in the data structure. Instead they persist the keys along with
some other metadata used after a crash to determine if the key is in the data
structure. This requires at most a single psync for update operations; however,
not persisting the structure results in a more complicated recovery procedure.

A manuscript by Israelevitz and nine other authors presented a seminal in
depth study of the performance characteristics of real NVM hardware [16]. Their
results may have played a role in motivating the trend to persist as little as
possible and reduce the number of fences. In particular, they found (Fig. 8 of [16])
that the latency to write 256 bytes and then perform a psync is at least 3.5x the
latency to write 256 bytes and perform a flush but no persistence fence. Moreover,
they found that NVM’s write bandwidth could be a severe bottleneck, as a
write-only benchmark (Fig. 9 of [16]) showed that NVM write bandwidth scaled
negatively as the number of threads increased past four, and was approximately
9x lower than volatile write bandwidth with 24 threads. A similar study of real
NVM hardware was presented by Peng et al. [17].

While these results are compelling, it is unclear whether these latencies and
bandwidth limitations are a problem for concurrent sets in practice. As it turns
out, the push for persistence-free operations and synchronization mechanisms
that minimize the amount of data persisted, and/or the number of psyncs, has
many consequences, and the balance may favour incurring increased psyncs in
some cases.

Contributions. Concurrent data structures in volatile shared memory typically
satisfy the linearizability safety property, NVM data structures must consider the
state of the persistent object following a full system crash. The safety property
of durable-linearizability satisfies linearizability and following a crash, requires
that the object state reflect a consistent operation subhistory that includes oper-
ations that had a response before the crash [15]. (i) We prove that for any
durable-linearizable lock-free set there must exist an execution in which some
process must perform at least one redundant psync as part of an update oper-
ation (Sect. 2). Informally, a redundant psync is one that does not change the
contents of NVM. Our result is orthogonal to the lower bound of Cohen et al.
who showed that the minimum number of psyncs per update for a durable-

38 G. Coccimiglio et al.

linearizable lock-free object is one [7]. However, Cohen et al. did not consider
redundant psyncs. We show that redundant psyncs cannot be completely avoided
in all concurrent executions: there exists an execution where n processes are con-
currently performing update operations and n−1 processes perform a redundant
psync. (ii) Our first result also applies to SLE linearizability, which we define
to serve as a natural extension of the safety property of strict linearizability
specifically for persistent sets. Originally defined by Aguilera and Frølund [1],
strict linearizability forces crashed operations to be linearized before the crash
or not at all. Strict linearizability was not originally defined for models in which
the system can recover following a crash. To better capture the intentions of
strict linearizability in the context of persistent concurrent sets, we introduce
SLE linearizability to realize the intuition of Aguilera and Frølund for persistent
concurrent sets. SLE linearizability is defined to explicitly enforce limited effect
for persistent sets.

(iii) We prove that it is impossible to implement SLE linearizable lock-free
sets in which read-only operations neither flush nor execute persistence fences,
but it is possible to implement strict linearizable and durable linearizable lock-
free sets with persistence-free reads (Sect. 2). (iv) We study the empirical costs
of persistence fences in practice. To do this, we present matching upper bounds
to our lower bound contributions (i) and (ii). Specifically, we describe a new
technique for implementing persistent concurrent sets with persistence-free read-
only operations called the extended link-and-persist technique and we utilize
this technique to implement several persistent sets (Sect. 3). (v) We evaluate
our upper bound implementations against existing persistent sets in a systemic
empirical study of persistent sets. This study exposes the impact of algorithmic
design and safety properties on persistence fence complexity in practice and the
cost of recovering the data structure following a crash (Sect. 4).

The relationship between performance, psync complexity, recovery complex-
ity and the correctness condition is subtle, even for seemingly simple data types
like sorted sets. In this paper, we delve into the details of algorithmic design
choices in persistent data structures to begin to characterize their impact.

2 Lower Bounds

Persistency Model and Safety Properties. We assume a full system crash-
recovery model (all processes crash together). When a crash occurs all processes
are returned to their initial states. After a crash a recovery procedure is invoked,
and only after that can new operations begin.

Modifications to base objects first take effect in the volatile shared memory.
Such modifications become persistent only once they are flushed to NVM. Base
objects in volatile memory are flushed asynchronously by the processor (without
the programmer’s knowledge) to NVM arbitrarily. We refer to this as a back-
ground flush. We consider background flushes to be atomic. The programmer can
also explicitly flush base objects to NVM by invoking flush primitives, typically
accompanied by persistence fence primitives. An explicit flush is a primitive on

The Fence Complexity of Persistent Sets 39

a base object and is non-blocking, i.e., it may return before the base object has
been written to persistent memory. An explicit flush by process p is guaranteed
to have taken effect only after a subsequent persistence fence by p. An explicit
flush combined with a persistence fence is referred to as a psync. We assume
that psync events happen independently of RMW events and that psyncs do
not change the configuration of volatile shared memory (other than updating
the program counter). Note that on Intel platforms a RMW implies a fence,
however, a RMW does not imply a flush before that fence, and therefore does
not imply a psync.

In this paper, we consider the set type: an object of the set type stores a
set of integer values, initially empty, and exports three operations: insert(v),
remove(v), contains(v) where v ∈ Z. A history is a sequence of invocations
and responses of operations on the set implementation. We say a history is
well-formed if no process invokes a new operation before the previous operation
returns. Histories H and H ′ are equivalent if for every process pi, H|i = H ′|i.

A history H is durable linearizable, if it is well-formed and if ops(H) is
linearizable where ops(H) is the subhistory of H containing no crash events [15].

Aguilera and Frølund defined strict linearizability for a model in which indi-
vidual processes can crash and did not allow for recovery [1]. Berryhill et al.
adapted strict linearizability for a model that allows for recovery following a
system crash [2]. A history H is strict linearizable with respect to an object type
τ if there exists a sequential history S equivalent to a strict completion of H,
such that (1) →Hc⊆→S and (2) S is consistent with the sequential specifica-
tion of τ . A strict completion of H is obtained from H by inserting matching
responses for a subset of pending operations after the operation’s invocation and
before the next crash event (if any), and finally removing any remaining pending
operations and crash events.

Psync Complexity. It is likely that an implementation of persistent object will
have many similarities to a volatile object of the same abstract data type. For
this reason, when comparing implementations of persistent objects we are mostly
interested in the overhead required to maintain a consistent state in persistent
memory. Specifically, we consider psync complexity.

Programmers write data to persistent memory through the use of psyncs. A
psync is an expensive operation. Cohen et al. [7] prove that update operations
in a durable linearizable lock-free algorithm must perform at least one psync.
In some implementations of persistent objects, reads also must perform psyncs.
There is a clear focus in existing literature on minimizing the number of psyncs
per data structure operation [9,11,21]. These factors suggest that psync com-
plexity is a useful metric for comparing implementations of persistent objects.

Lower Bounds for Persistent Sets. We now present the two main lower
bounds in this paper, but the full proofs are only provided in the full version of
the paper [5] due to space constraints.

Impossibility of Persistence-Free Read-Only Searches. The key goal of
the original work of Aguilera and Frølund [1] was to enforce limited effect by

40 G. Coccimiglio et al.

requiring operations to take effect before the crash or not at all. Limited effect
requires that an operation takes effect within a limited amount of time after it
is invoked. The point at which an operation takes effect is typically referred to
as its linearization point and we say that the operation linearizes at that point.
Rephrasing the intuition, when crashes can occur, limited effect requires that
operations that were pending at the time of a crash linearize prior to the crash
or not at all.

Strict linearizability is defined in terms of histories, which abstract away the
real-time order of events. As a result, strict linearizability does not allow one
to argue anything about the ordering of linearization points of operations that
were pending at the time of a crash relative to the crash event. Thus, strict
linearizability cannot and does not prevent operations from taking effect during
the recovery procedure or even after the recovery procedure (which can occur
for example in implementations that utilize linearization helping [4]). Strict lin-
earizability only requires that at the time of a crash, pending operations appear
to take effect prior to the crash. Although we are not aware of a formal proof
of this, we conjecture in the full system crash-recovery model, durable lineariz-
able objects are strict linearizable for some suitable definition of the recovery
procedure. This is because we can always have the recovery procedure clean-up
the state of the object returning it to a state such that the resulting history of
any possible extension will satisfy strict linearizability. We note this conjecture
as further motivation towards re-examining the way in which the definition of
strict linearizability has been adapted for the full system crash-recovery model.

To this end, we define the concept of a key write to capture the intentions
of Aguilera and Frølund in the context of sets by defining Strict limited effect
(SLE) linearizability for sets as follows: a history satisfies SLE linearizability iff
the history satisfies strict linearizability and for all operations with a key write,
if the operation is pending at the time of a crash, the key write of the operation
must occur before the crash event. In the strict completion of a history this is
equivalent to requiring that the key write is always between the invocation and
response of the operation. This is because the order of key writes relative to a
crash event is fixed which means if the write occurs after the crash event then
a strict completion of the history could insert a response for the operation only
prior to the key write (at the crash) and this response cannot be reordered after
the key write.

We show that it is impossible to implement a SLE linearizable lock-free set
for which read-only searches do not perform any explicit flushes or persistence
fences.

Theorem 1. There exists no SLE linearizable lock-free set with persistence-free
read-only searches.

Redundant Psync Lower Bound for Durable Linearizable Sets. After
modifying a base object only a single psync is required to ensure that it is writ-
ten to persistent memory. Performing multiple psyncs on the same base object
is therefore unnecessary and wasteful. We refer to these unnecessary psyncs as

The Fence Complexity of Persistent Sets 41

redundant psyncs. We show that for any durably linearizable lock-free set there
must exist an execution in which n concurrent processes are invoking n concur-
rent update operations and n-1 processes each perform at least one redundant
psync. At first glance one may think that this result is implied by the lower
bound of Cohen et al. [7]. Cohen et al. show that for any lock-free durable
linearizable object, there exists an execution wherein every update operation
performs at least one persistence fence. Cohen et al. make no claims regarding
redundant psyncs. Our result demonstrates that durable linearizable lock-free
objects cannot completely avoid redundant psyncs.

Theorem 2. In an n-process system, for every durable linearizable lock-free set
implementation I, there exists an execution of I wherein n processes are con-
currently performing update operations and n-1 processes perform a redundant
psync.

3 Upper Bounds

Briding the Gap Between Theory and Practice. The lower bounds pre-
sented in the previous section offer insights into the theoretical limits of per-
sistent sets for both durable linearizability and SLE linearizability. While these
lower bounds demonstrate a clear separation between durable and SLE lineariz-
ability, it is unclear whether or not we can observe any meaningful separation
in practice. In order to answer this question we would like to compare durable
and SLE linearizable variants of the same persistent set implementation. To this
end, we extended the Link-and-Persist technique [9] to allow for persistence-free
searches and use our extension to implement several persistent linked-list. We
also add persistence helping to SOFT [21]. We explain both in detail next.

Notable Persistent Set Implementations. We briefly describe above men-
tioned existing implementations of persistent sets. We only focus on hand-crafted
implementations since they generally perform better in practice compared to
transforms or universal constructions [11,12].

David et al. describe a technique for implementing durable linearizable link-
based data structures called the Link-and-Persist technique [9]. Using the Link-
and-Persist technique, whenever a link in the data structure is updated, a single
bit mark is applied to the link which denotes that it has not been written to
persistent memory. The mark is removed after the link is written to persistent
memory. We refer to this mark as the persistence bit. This technique was also
presented by Wang et al. in the same year [19]. Wei et al. presented a more
general technique which does not steal bits from data structure links [20].

The Link-Free algorithm of Zuriel et al. does not persist data structure
links [21]. Instead, the Link-Free algorithm persists metadata added to every
node.

Zuriel et al. designed a different algorithm called SOFT (Sets with an Optimal
Flushing Technique) offering persistence-free searches. The SOFT algorithm does
not persist data structure links and instead persists metadata added to each

42 G. Coccimiglio et al.

node. The major difference between the Link-Free algorithm and SOFT is that
SOFT uses two different representations for every key in the data structure where
only one representation is explicitly flushed to persistent memory.

Recovery Complexity. After a crash, a recovery procedure is invoked to return
the objects in persistent memory back to a consistent state. Prior work has
utilized a sequential recovery procedure [8,9,12,21]. A sequential recovery pro-
cedure is not required for correctness but it motivates the desire for efficient
recovery procedures. No new data structure operations can be invoked until the
recovery procedure has completed. Ideally we would like to minimize this period
of downtime represented by the execution of recovery procedure. For the upper
bounds in the this section, we use the asymptotic time complexity of the recovery
procedure as another metric for comparing durable linearizable algorithms.

Extended Link-and-Persist. We choose to extend the Link-and-Persist tech-
nique of David et al. because it is quite simple and it represents the state
of the art for hand-crafted algorithms that persist the links of a data struc-
ture. Moreover, unlike the algorithms in [21], the Link-and-Persist technique
can be used to implement persistent sets without compromising recovery com-
plexity. We build on the Link-and-Persist technique by extending it to allow for
persistence-free searches and improved practical performance. Cohen et al. noted
that persistence-free searches rely on the ability to linearize successful update
operations at some point after the CPE of the operation [7]. In our case, this
means that searches must be able to determine if the pointer is not persistent
because of an Insert operation or a Remove operation. This is not possible with
the original Link-and-Persist technique. We address this with two changes.

First, we require that a successful update operation, πu, is linearized after its
Critical Persistence Event (or CPE). Intuitively, the CPE represents the point
after which the update will be recovered if a crash occurs. Specifically, if a volatile
data structure would linearize πu at the success of a RMW on a pointer v then we
require that πu is linearized at the success of the RMW that sets the persistence
bit in v. If a search traverses a pointer, v, marked as not persistent the search
can always be linearized prior to the concurrent update which modified v.

Secondly, since successful updates are linearized after their CPE, if the
response of search operation depends on data that is linked into the data struc-
ture by a pointer marked as not persistent then the search must be able to access
the last persistent value of that pointer. To achieve this, we add a pointer field
to every node which we call the old field. A node will have both an old field
and a pointer to its successor (next pointer) which effectively doubles the size of
every data structure link. The old field will point to the last persistent value of
the successor pointer while the successor pointer is marked as not persistent. In
practice, the old field must be initialized to null then updated to a non-null
value when the corresponding successor pointer is modified to a new value that
needs to be persisted. Note that modifications like flagging or marking do not
always need to be persisted; this depends on the whether or not the update can
complete while the flagged or marked pointers are still reachable via a traversal
from the root of the data structure. The easiest way to correctly update the old

The Fence Complexity of Persistent Sets 43

field is to update the successor pointer and the old field atomically using a hard-
ware implementation of double-wide compare-and-swap (DWCAS) namely the
cmpxchg16b instruction on Intel. Alternatively, a regular single-word compare-
and-swap (SWCAS) can be used but this requires adding extra volatile memory
synchronization to ensure correctness. For some data structures such as linked-
lists using only SWCAS might also require adding an extra psync to updates. To
allow searches to distinguish between pointers that are marked as not persistent
because of a remove versus those that are not persistent because of an insert
we require that the old field is always updated to a non-null value whenever a
remove operation unlinks a node. Insert operations that modify the data struc-
ture must flag either the old field or the corresponding successor to indicate that
the pointer marked as not persistent was last updated by an insert. When using
SWCAS to update the old field this flag must be on the successor pointer.

With our extension if the response of a search operation depends on data
linked into the data structure via a pointer marked as not persistent it can be
linearized prior to the concurrent update operation that modified the pointer
and it can use the information in the old field to determine the correct response
which does not require performing any psyncs. If the search finds that the update
was an insert it simply returns false. If the update was a remove but the search
was able to find the value that it was looking for then it can return true since
that key will be in persistent memory. If the update was a remove but the search
was not able to find the value that it was looking for then it can check the if
the node pointed to by the old field contains the value. As with the original,
our extension still requires that an operation π will ensure that the CPE of any
other operation which π depends on has occurred. π must also ensure that its
own CPE has occurred before it returns. Another requirement which was not
explicitly stated by David et al. is that operations must ensure that any data
that a data structure link can point to is written to persistent memory before
the link is updated to point to that data.

Our extension can be used to implement several link-based sets including
trees and hash tables. Data structures implemented using our extension provide
durable linearizability, however the use of persistence-free searches is optional. If
the data structure does not utilize persistence-free searches then it would provide
SLE linearizability (requiring only a change in the correctness proof).

Augmenting LF and SOFT. SOFT represents the state of the art for
hand-crafted algorithms that do not persist the links of a data structure. The
SOFT algorithm provides durable linearizability. For comparison, we added per-
sistence helping for all operations of a persistent linked-list implemented using
SOFT (thereby removing persistence-free searches) to achieve a SLE linearizable
variant. We refer to this variant as SOFT-SLE. We also modified the implemen-
tation of the Link-Free algorithm. While the original Link-Free algorithm does
not explicitly persist data structure links, it still allocates the links from persis-
tent memory. We can achieve better performance by allocating the links from
volatile memory. To emphasize the difference we refer to this as LF-V2.

44 G. Coccimiglio et al.

3.1 Our Persistent List Implementations

In order to compare our extension to existing work we provide several imple-
mentations of persistent linked-lists which utilize our extended-link-and-persist
approach. We choose to implement and study linked lists because they generally
do not require complicated volatile synchronization.

1 def PersistenceFreeContains(key) :
2 p = head , pNext = p.next , curr = UnmarkPtr(pNext)
3 while true :
4 if curr.key ≤ key : break
5 p = curr , pNext = p.next
6 curr = UnmarkPtr(pNext)
7 hasKey = curr.key==key
8 if IsDurable(ptNext) : return hasKey
9 old1 = p.old , pNext2 = p.next , old2 = p.old

10 pDiff = pNext �=pNext2 , oldDiff = old1 �=old2
11 if pDiff or oldDiff or old1==null : return hasKey
12 if IsIFlagged(old1) : return false
13 if hasKey : return true
14 return UnmarkPtr(old1).key==key

Algorithm 1. Pseudocode for the persistence-free contains function of our Physical-
Delete (PD) list. The volatile synchronization is based on the list of Fomitchev and
Ruppert.

We refer to our implementations as PD (Physical-Delete), PD-S (SWCAS
implementation of PD), LD (Logical-Delete) and LD-S (SWCAS implementa-
tion of LD). The names refer to the synchronization approach and primitive.
Our implementations use two different methods for achieving synchronization in
volatile memory. Specifically we use one based on the Harris list [13] and another
based on the work of Fomitchev and Ruppert [10]. The former takes a lazy app-
roach to deletion that relies on marking for logical deletion and helping. As a
result, marked pointers must be written to persistent memory which requires
an extra psync. The latter does not take a lazy approach to deletions but still
relies on helping and requires extra volatile memory synchronization through
the use of marking and flagging. Fortunately, we do not need to persist marked
or flagged pointers with this approach. Figure 1 shows an example of an update
operation in the PD list implementation. We also implement separate variants
using 2 different synchronization primitives, DWCAS and SWCAS. Table 1 sum-
marizes some of the details of these approaches. We assume that the size of the
key and value fields allow a single node to fit on one cache line meaning a flush
on any field of the node guarantees that all fields are written to persistent mem-
ory. The assumption that the data we want to persist fits on a single cache line
is common. David et al., Zuriel et al. and several others have relied on similar
assumptions [8,9,18,21]. It is possible that our persistent list could be modified
to allow for the case where nodes do not fit onto a single cache line by adopting
a strategy similar to [6].

The Fence Complexity of Persistent Sets 45

Fig. 1. Steps to execute an insert(7) operation in our PD list implementation. Blue
pointers indicate non-durable pointers (with persistence bits set to 0). i) Initially we
have three nodes. The node containing 5 has a pending delete flag (Dflagged) and the
node containing 12 is marked for deletion. We traverse to find a key ≥7. ii) Help finish
the pending Remove via DWCAS to unlink marked node and set old pointer. iii) Flush
and set persistence bit via DWCAS (clearing old pointer). iv) Via DWCAS insert 7
and set old pointer. The old pointer is flagged to indicate a pending insert. v) Flush
and set persistence bit via DWCAS.

Search Variants. As part of our persistent list, we implement 4 variants of
the contains operation: persist all, asynchronous persist all, persist last and
persistence free. We focus on the latter two since the others are naive approaches
that perform many redundant psyncs.

Persist Last (PL). If the pointer into the terminal node of the traversal is
marked as not persistent then write it to persistent memory and set its persis-
tence bit via a CAS. This variant is the most similar to the searches in the linked
list implemented using the original Link-and-Persist technique.

Persistence Free (PF). If the pointer into the terminal node of the traversal
performed by the search is marked as not persistent then use the information
in the old field of the node’s predecessor to determine the correct return value
without performing any persistence events. Since we do not need to set the
durability bit of any link, this variant does not perform any writes and never
performs a psync. Algorithm 1 shows the pseudocode for the persistence-free
search of the PD list. For simplicity we abbreviate some of the bitwise operations
with named functions. Specifically, UnmarkPtr which removes any marks or
flags, IsDurable which checks if the pointer is marked as persistent and IsIflagged
which checks if the pointer was flagged by an insert.

Theorem 3. The PD, PD-S, LD, and LD-S lists are durable linearizable and
lock-free.

We prove Theorem 3 in the full version of the paper. We can also show
that our list implementations are durable linearizable by considering a volatile
abstract set (the keys in the list that are reachable in volatile memory) and a
persistent abstract set (the keys in the list that are reachable in persistent mem-
ory). By identifying, for each operation, the points at which these sets change,
we can show that updates change the volatile abstract set prior to changing the
persistent abstract set and that each update changes the volatile abstract set

46 G. Coccimiglio et al.

exactly once. It follows that the list is always consistent with some persistent
abstract set.

If we never invoke a persistence-free contains operation then we can prove
that the implementations are SLE linearizable and lock-free. Doing so simply
requires that we change our arguments regarding when we linearize update oper-
ations such that the linearization point is not after the CPE. Note that of the set
implementations that we discuss, those that have persistence-free searches are
examples of implementations which are strict linearizable but not SLE lineariz-
able. These implementations require that the recovery procedure or operations
invoked after a crash take steps which effectively linearize operations. This is
because following a crash, one cannot tell the difference between an operation
that has progressed far enough to allow some future operation to help linearize
it and an operation that was already linearized.

Table 1. Our Novel Persistent List Details.

Name Synch. Approach Synch. Primitive Min Psyncs Per Insert/Remove

PD Fomitchev DWCAS 1 1
PD-S Fomitchev SWCAS 2 1
LD Harris DWCAS 1 2
LD-S Harris SWCAS 2 2

4 Evaluation

We present an experimental analysis of our persistent list compared to existing
persistent lists on various workloads. We test our variants of the contains oper-
ation separately meaning no run includes more than one of the variants.1 To
distinguish between our implementations of the contains operation we prefix
the names of our persistent list algorithms with the abbreviation of a contains
variant (for example PFLD refers to one of our persistent lists which utilized only
Persistence-Free searches and the Logical-Deletion algorithm). Due to space con-
straints we only present the best performing implementations of our persistent
list. We test the performance of these lists in terms of throughput (operations
per second). We also examine the psync behaviour of these algorithms. Specif-
ically, we track the number of psyncs that are performed by searches and the
number of psyncs that are performed by update operations.

All of the experiments were run on a machine with 48 cores across 2 Intel
Xeon Gold 5220R 2.20GHz processors which provides 96 available threads (2
threads per core and 24 cores per socket). The system has a 36608K L3 cache,
1024K L2 cache, 64K L1 cache and 1.5TB of NVRAM. The NVRAM modules

1 Source code: https://gitlab.com/Coccimiglio/setbench.

https://gitlab.com/Coccimiglio/setbench

The Fence Complexity of Persistent Sets 47

installed on the system are Intel Optane DCPMMs. We utilize the same bench-
mark as [3] for conducting the empirical tests. Keys are accessed according to a
uniform distribution. We prefill the lists to 50% capacity before collecting mea-
surements. Each test consisted of ten iterations where each individual test ran
for ten seconds. The graphs show the average of all iterations. Libvmmalloc was
the persistent memory allocator used for all algorithms.

Throughput. Figure 2 shows the throughput of our best persistent list variants
compared to the existing algorithms. Since the DWCAS implementation of our
list out performed the SWCAS implementation we compare only our DWCAS
implementations. SOFT performs best when there is high contention in read
dominant workloads and consistently best for non-read dominant workloads.

Lesson Learned: Persisting more information in update operations is gener-
ally more costly but persistence free searches do not seem to provide major
performance improvements.

Fig. 2. Persistent list throughput. X-axis: number of concurrent threads. Y-axis: oper-
ations/second. K is the list size.

Psync Behaviour. The recent trend to persist less data structure state has
influenced implementations of persistent objects focused on minimizing the
amount of psyncs required per operation. We know that SLE linearizable algo-
rithms cannot have persistence-free searches. From [7] we also know that update
operations require at least 1 psync. Of the persistent lists that we consider, the
persistent lists from [21] are unique in that the maximum number of psyncs per
update operation is bounded. To better understand the cost incurred by psyncs,
we track the number of psyncs performed by read-only operations (searches) and
the number of psyncs performed by update operations. Note that for updates
this includes unsuccessful updates which might not need to perform a psync.
Figure 3 shows the average number of psyncs per search and the average number
of psyncs per update operation. We observe that searches rarely perform a psync
in any of the algorithms that do not have persistence-free searches. On average,
update operations do not perform more than the minimum number of required
psyncs.

48 G. Coccimiglio et al.

Lesson Learned: Algorithmic techniques such as persistence bits for reducing
the number of psyncs are highly effective. On average, there are very few redun-
dant psyncs in practice.

Recovery. It is not practical to force real system crashes in order to test the
recovery procedure of any algorithm. It is possible that one could simulate a
system crash by running the recovery procedure as a standalone algorithm on
an artificially created memory configuration. This is problematic because the
recovery procedure of a durable linearizable algorithm is often tightly coupled
to some specific memory allocator (this is true of the existing algorithms that
we consider). This makes a fair experimental analysis of the recovery procedure
difficult. It is easier to describe the worst case scenario for recovering the data
structure for each of the algorithms. To be specific, we describe the worst case
persistent memory layout produced by the algorithm noting how this relates to
the performance of the recovery procedure.

The Link-Free list does not persist data structure links. As a result, there is no
way to efficiently discover all valid nodes meaning the recovery procedure might
need require traversing all of the memory. The allocator utilized by Zuriel et al.
partitions memory into chunks. We can construct a worse case memory layout
for the recovery procedure as follows: Suppose that we completely fill persistent
memory by inserting keys into the list. Now remove nodes such that each chunk
of memory contains only one node at an unknown offset from the start of the
chunk. To discover all of the valid nodes the recovery procedure must traverse
the entire memory space. The SOFT list also does not persist data structure
links. The requirements of the recovery procedure for SOFT list is the same
as the Link-Free list. We can construct the worst case memory layout for the
recovery procedure in the same way as we did for the Link-Free list yielding the
same asymptotic time complexity. The Link-and-Persist list can utilize an empty
recovery procedure. The actual recovery procedure for the list implemented by
the authors of [9] does extra work related to memory reclamation.

We utilize DWCAS and asynchronous flush instructions to achieve a mini-
mum of one psync per insert operation. There are some subtleties with this
implementation that result in a recovery complexity which is O(N +n) for a list
containing N nodes and a maximum of n concurrent processes. Implementations
that use SWCAS (or DWCAS allowing for a minimum of two psyncs per insert)
can utilize an empty recovery procedure.

Lesson Learned: If structure is persisted, recovery can be highly efficient.
Without any persisted structure, recovery must traverse large regions (or even
all) of shared memory.

SLE Linearizable vs. Durable Linearizable Sets. We have seen that there
exists a theoretical separation between SLE linearizable and durable lineariz-
able objects. For persistent lists we observe that this separation does not lead
to significant performance differences in practice. 4 of the algorithms (Fig. 2)
are SLE linearizable. Specifically, our PLPD list, the L&P list, LF list, and
SOFT-SLE. The SOFT list and our PFPD list which both use persistence-free

The Fence Complexity of Persistent Sets 49

Fig. 3. Psync Behaviour. X-axis: number of concurrent threads. (a), (b) Y-axis: average
psyncs/search, (c), (d) Y-axis: average psyncs/update. List size is 50.

searches are durable linearizable. The high cost of a psync and the impossibility
of persistence-free searches in a SLE linearizable lock-free algorithm would sug-
gest that the SLE linearizable algorithms that we test should perform noticeably
worse. In practice, it is true that for most of the tested workloads, the algorithms
that have persistence-free searches perform best (primarily SOFT). However, for
many workloads, performance of SLE linearizable algorithms are comparable to
the durable linearizable algorithms. In fact, for some workloads, the SLE lin-
earizable lists perform better than the durable linearizable alternatives.

Lesson Learned: SLE linearizable algorithms can be fast in practice, despite
theoretical tradeoffs.

5 Discussion

We prove that update operations in durable linearizable lock-free sets will per-
form at least one redundant psync. We motivate the importance of ensuring
limited effect for sets and defined strict limited effect (SLE) linearizability for
sets. We prove that SLE linearizable lock-free sets cannot have persistence-free
reads. We implement several persistent lists and evaluate them rigorously. Our
experiments demonstrate that SLE linearizable lock-free sets can achieve com-
parable or better performance to durable linearizable lock-free sets despite the
theoretical separation. For the algorithms and techniques that we examined, sup-
porting persistence-free reads is what separates the durable linearizable sets from
the SLE linearizable. However, the SLE linearizable sets rarely perform a psync
during a read. For those researchers that value ensuring limited effect for sets but
are unsure about the performance implications, we recommend beginning with
SLE linearizable implementations since a SLE linearizable implementation may
not have much overhead and it may be sufficient for the application. Our work
also exposes that psync complexity is not a good predictor of performance in
practice, thus motivating need for better metrics to compare persistent objects.

In this work we focused specifically on sets because we wanted to understand
the psync complexity of a relatively simple data structure like sets. We think that
there is clear potential to generalize our theoretical results to other object types
or classes of object types and perform similar empirical analysis of persistent
algorithms for those objects, thus bridging the gap between theory and practice.

50 G. Coccimiglio et al.

Acknowledgements. This work was supported by: the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) Collaborative Research and Devel-
opment grant: CRDPJ 539431-19, the Canada Foundation for Innovation John R.
Evans Leaders Fund with equal support from the Ontario Research Fund CFI Lead-
ers Opportunity Fund: 38512, NSERC Discovery Launch Supplement: DGECR-2019-
00048, NSERC Discovery Program grant: RGPIN-2019-04227, and the University of
Waterloo.

References

1. Aguilera, M.K., Frolund, S.: Strict linearizability and the power of aborting. Tech-
nical report, HP Laboratories Palo Alto (2003)

2. Berryhill, R., Golab, W.M., Tripunitara, M.: Robust shared objects for non-volatile
main memory. In: 19th International Conference on Principles of Distributed Sys-
tems, OPODIS 2015, Rennes, France, 14–17 December 2015, pp. 20:1–20:17 (2015)

3. Brown, T., Prokopec, A., Alistarh, D.: Non-blocking interpolation search trees
with doubly-logarithmic running time. In: Proceedings of the 25th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, pp. 276–
291 (2020)

4. Censor-Hillel, K., Petrank, E., Timnat, S.: Help! In: Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San
Sebastián, Spain, 21–23 July 2015, pp. 241–250 (2015)

5. Coccimiglio, G., Brown, T., Ravi, S.: The fence complexity of persistent sets
(2023). https://mc.uwaterloo.ca/pubs/fence_complexity/fullpaper.pdf. Full ver-
sion of this paper

6. Cohen, N., Friedman, M., Larus, J.R.: Efficient logging in non-volatile memory
by exploiting coherency protocols. Proc. ACM Program. Lang. 1(OOPSLA), 1–24
(2017)

7. Cohen, N., Guerraoui, R., Zablotchi, I.: The inherent cost of remembering consis-
tently. In: Proceedings of the 30th on Symposium on Parallelism in Algorithms
and Architectures, pp. 259–269 (2018)

8. Correia, A., Felber, P., Ramalhete, P.: Persistent memory and the rise of universal
constructions. In: Proceedings of the Fifteenth European Conference on Computer
Systems, pp. 1–15 (2020)

9. David, T., Dragojevic, A., Guerraoui, R., Zablotchi, I.: Log-free concurrent data
structures. In: 2018 USENIX Annual Technical Conference (USENIX ATC 2018),
pp. 373–386 (2018)

10. Fomitchev, M., Ruppert, E.: Lock-free linked lists and skip lists. In: Proceedings
of the Twenty-Third Annual ACM Symposium on Principles of Distributed Com-
puting, pp. 50–59 (2004)

11. Friedman, M., Ben-David, N., Wei, Y., Blelloch, G.E., Petrank, E.: NVTraverse: in
NVRAM data structures, the destination is more important than the journey. In:
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 377–392 (2020)

12. Friedman, M., Petrank, E., Ramalhete, P.: Mirror: making lock-free data structures
persistent. In: Proceedings of the 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, pp. 1218–1232 (2021)

13. Harris, T.L.: A pragmatic implementation of non-blocking linked-lists. In: Welch,
J. (ed.) DISC 2001. LNCS, vol. 2180, pp. 300–314. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45414-4_21

https://mc.uwaterloo.ca/pubs/fence_complexity/fullpaper.pdf
https://doi.org/10.1007/3-540-45414-4_21

The Fence Complexity of Persistent Sets 51

14. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann (2008)

15. Izraelevitz, J., Mendes, H., Scott, M.L.: Linearizability of persistent memory
objects under a full-system-crash failure model. In: Gavoille, C., Ilcinkas, D. (eds.)
DISC 2016. LNCS, vol. 9888, pp. 313–327. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53426-7_23

16. Izraelevitz, J., et al.: Basic performance measurements of the Intel Optane DC
persistent memory module. arXiv preprint arXiv:1903.05714 (2019)

17. Peng, I.B., Gokhale, M.B., Green, E.W.: System evaluation of the Intel Optane
byte-addressable NVM. In: Proceedings of the International Symposium on Mem-
ory Systems, pp. 304–315 (2019)

18. Ramalhete, P., Correia, A., Felber, P.: Efficient algorithms for persistent transac-
tional memory. In: Proceedings of the 26th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, pp. 1–15 (2021)

19. Wang, T., Levandoski, J., Larson, P.A.: Easy lock-free indexing in non-volatile
memory. In: 2018 IEEE 34th International Conference on Data Engineering
(ICDE), pp. 461–472. IEEE (2018)

20. Wei, Y., Ben-David, N., Friedman, M., Blelloch, G.E., Petrank, E.: Flit: a library
for simple and efficient persistent algorithms. arXiv preprint arXiv:2108.04202
(2021)

21. Zuriel, Y., Friedman, M., Sheffi, G., Cohen, N., Petrank, E.: Efficient lock-free
durable sets. Proc. ACM Program. Lang. 3(OOPSLA), 1–26 (2019)

https://doi.org/10.1007/978-3-662-53426-7_23
https://doi.org/10.1007/978-3-662-53426-7_23
http://arxiv.org/abs/1903.05714
http://arxiv.org/abs/2108.04202

Brief Announcement: Understanding
Self-stabilizing Node-Capacitated Overlay

Networks Through Simulation

Winfred Afeaneku1, Andrew Berns1(B), Weston Kuchenberg1, Sara Leisinger1,
and Cedric Liu2

1 Department of Computer Science, University of Northern Iowa,
Cedar Falls, IA, USA

andrew.berns@uni.edu
2 Cedar Falls High School, Cedar Falls, IA, USA

Abstract. Overlay networks, where connections are made over logical
links composed of zero or more physical links, are a popular paradigm
in modern distributed computing. The use of logical links allows the
creation of a variety of network topologies with desirable properties
such as low degree and low diameter, regardless of the (usually) fixed
physical topology. Many of these overlay networks operate in unfriendly
environments where transient faults are commonplace. Self-stabilizing
overlay networks present one way to manage these faults. In particu-
lar, self-stabilizing overlay networks can guarantee that the desired net-
work topology is created when starting from any weakly-connected initial
state.

To date, work on self-stabilizing overlay networks has assumed the
network has either unbounded bandwidth, or that the bandwidth con-
straints are placed on the communication links themselves. In practice,
however, the bandwidth constraints are actually capacities on the nodes:
adding and deleting logical links does not change the fixed physical links
being used. In this work, we describe the node-capacitated model for self-
stabilizing overlay networks. To better understand this new model, we
created a simulation and ran it numerous times while adjusting various
parameters. We discuss this simulation and several experiments. Finally,
we propose future directions for self-stabilizing node-capacitated overlay
networks.

Keywords: topological stabilization · self-stabilizing overlay
networks · node-capacitated model

1 Introduction

Overlay networks, where connections are made over logical links composed of
zero or more physical links, are a firmly entrenched paradigm in modern comput-

This project is funded in part by the Louis Stokes Alliance for Minority Participation
(LSAMP).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 52–56, 2023.
https://doi.org/10.1007/978-3-031-44274-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_4&domain=pdf
https://doi.org/10.1007/978-3-031-44274-2_4

Brief Announcement 53

ing. From data centers with hundreds of servers to Internet-embedded applica-
tions of millions of nodes around the globe, overlay networks provide a means to
manage the complexity of physical networks, allowing engineers to build logical
topologies with desirable properties like low degree and low diameter, regardless
of the limitations of the actual physical network.

Many of these overlay networks are deployed in fault-prone environments
where transient faults are likely to perturb the system away from a legal config-
uration. Self-stabilizing overlay networks are one proposed mechanism for dealing
with these fault-prone environments, promising to restore the overlay network
to a legal configuration after any transient fault.

One limitation of existing work on self-stabilizing overlay networks, however,
has been the unrealistic treatment of communication bandwidth. Existing work
assumes either unlimited bandwidth on each edge, or limits bandwidth per over-
lay edge. In reality, each logical link of the overlay network is likely using the
same physical links for a particular node. Adding additional logical links, then,
does not increase the bandwidth as the physical network is unchanged. A more
appropriate model would be to limit the size and number of messages a node
can send and receive, called a node-capacitated model. In this brief announce-
ment, we present the start of our work using simulations to understand the
node-capacitated model for self-stabilizing overlay networks.

2 The Node-Capacitated Overlay Network Model

We model our distributed system as a graph G = (V,E), with node set V
representing the set of nodes (|V | = n), and undirected edge set E representing
communication links between these nodes. We assume a synchronous message
passing model where computation proceeds in rounds. In every round, each node
will (i) receive messages sent to it in the previous round, (ii) perform local
computation and (potentially) update its state, and (iii) send messages to its
neighbors.

In the overlay network model, communication links are logical links that can
be modified by program actions. This means the network topology can change
as nodes add and delete edges. We will limit edge creation to the “introduction”
process mentioned in Feldmann, Scheideler, and Schmid [1]. In this process, a
node u may ask a neighboring node v to add the edge (v, w) if the edges (u, v)
and (u,w) exist. The goal is for program actions to add and delete edges until a
legal configuration is reached. A legal configuration (or target topology) is defined
by a predicate over all nodes’ state (which includes edges in the overlay network
model). For this work, the legal configuration is a completely-connected network,
a topology we call Clique.

In the node-capacitated overlay network model, each node has a capacity
for sending and receiving messages. This capacity limits both the number and
size of messages sent and received by a node. In this capacitated model, a node
u may send only a fixed number of messages in each round, regardless of how
many logical links the node has. While a node capacity can be any fixed value,

54 W. Afeaneku et al.

a common choice is to allow every node to send and receive O(log(n)) messages
of size O(log(n)) in every round, for a total of O(log2(n)) bits per round.

The goal for our self-stabilizing algorithms is for them to reach a legal config-
uration after any transient fault, a process which can be modeled by assuming an
arbitrary initial state eventually reaches a legal configuration (and remains legal
thereafter). We assume the graph starts in a weakly-connected configuration and,
for simplicity, a node’s neighborhood only contains links to valid and responding
nodes. Each node executes program actions to update their local state, which
includes edges. After some time, the system will reach a legal configuration and
remain in a legal configuration thereafter. We call the time required to reach a
legal configuration the convergence time, which we measure in rounds.

As a final comment regarding the model, note that we do not require our
algorithms to be silent – that is, we do not require the state of the system to
remain fixed once a legal configuration is reached. In the node-capacitated model
with a target topology of Clique, it is impossible for a node to know the state
of all of its neighbors at once, meaning a node must in some way be constantly
communicating with its neighbors.

3 Simulation

Our simulator works by creating a random graph, running an algorithm to build
Clique, and detecting termination.

Graph Creation. The simulation begins by creating a graph of a specified
number of nodes n. It then repeatedly adds n edges between pairs of randomly-
selected nodes, checking to see if the network is connected after each set of n
edges are added. Once the graph is connected, the simulation moves on to the
execution phase.

Algorithm Execution. Once the graph is connected, the simulation begins
executing the algorithm round by round. In a round, each node executes the
following steps:

1. At the beginning of a round, the node randomly selects a number of messages
that were received in the previous round to be delivered. These messages each
“introduce” the node to another node in the network: the receiving node adds
an edge to the node specified in the message (provided an edge does not
already exist).

2. After processing the messages, the node then creates new messages and sends
them to the appropriate nodes. These messages are created by randomly
selecting two distinct neighbors v and w and “introducing” v and w, thus
creating the edge (v, w) (provided the message is not dropped from being
over capacity and that the edge (v, w) does not already exist).

Brief Announcement 55

3. The simulation then checks to see if a legal topology has been created. For
our target topology (Clique), this check is as simple as checking to see if
all nodes have n neighbors (including an edge to one’s self). If the target
topology has not been built, the simulation continues with the next round.

Termination. As discussed above, after every simulated round, we check the
current graph to see if a legal configuration is reached. Once the legal configu-
ration is detected, the simulation terminates while outputting to standard out
the number of nodes in the simulation, the node capacities, the node message
sending limit, the number of rounds required to reach a legal configuration, the
total number of messages sent, and the total number of messages received.

4 Results and Discussion

Using our simulator, we ran a series of experiments to see how changes to network
parameters affected performance. We found, for instance, that the convergence
time was linear in the number of nodes. We describe two other interesting exper-
iments and their results below.

4.1 Convergence Time vs. Node Capacity

For our second experiment, we tested the role node capacity has on convergence
time. For this, we fixed the network size n at 1500 and varied the node capacity
(and message sending limit) from 5 to 1500. The results are given in Fig. 1.

Fig. 1. Convergence Time vs. Node Capacity.

56 W. Afeaneku et al.

4.2 Convergence Time vs. Message Sending Limit

Give there seemed to be very few messages lost during our algorithm’s execution,
we thought it would be interesting to also examine the relationship between the
message sending limit and the convergence time. Perhaps the messages were not
getting lost but convergence was taking extraordinarily long. To check this, we
fixed the network size n at 1500 and the node capacity at 111 (again approx-
imately log2(n)) and varied the message sending limit from 5 to 110 (again
covering from log(n) to log2(n)). The results of our experiment are plotted in
Fig. 2.

Fig. 2. Convergence Time vs. Message Sending Limit.

5 Conclusion

In this paper we have introduced a new node-capacitated model for self-
stabilizing overlay networks and also described the results of several experiments
we ran using a simulation we created. Our future work hopes to complete the
simulator, including adding support for other target topologies, and using it to
learn more about the node-capacitated overlay network model.

References

1. Feldmann, M., Scheideler, C., Schmid, S.: Survey on algorithms for self-stabilizing
overlay networks. ACM Comput. Surv. 53(4), 1–24 (2020). https://doi.org/10.1145/
3397190

https://doi.org/10.1145/3397190
https://doi.org/10.1145/3397190

Brief Announcement: Byzantine-Tolerant
Detection of Causality in Synchronous

Systems

Anshuman Misra and Ajay D. Kshemkalyani(B)

University of Illinois at Chicago, Chicago, IL 60607, USA
{amisra7,ajay}@uic.edu

Abstract. It was recently proved that the causality or the happens
before relation between events in an asynchronous distributed system
cannot be detected in the presence of Byzantine processes [Misra and
Kshemkalyani, NCA 2022]. This result holds for the multicast, unicast,
and broadcast modes of communication. This prompts us to examine
whether the causality detection problem can be solved in synchronous
systems in the presence of Byzantine processes. We answer this in the
affirmative by outlining two approaches. The first approach uses Repli-
cated State Machines (RSM) and vector clocks. Another approach is
based on a transformation from Byzantine failures to crash failures for
synchronous systems.

Keywords: Byzantine fault-tolerance · Happens before · Causality ·
Synchronous system · Message Passing

1 Introduction

The “happens before” or the causality relation, denoted →, between events in a
distributed system was defined by Lamport [6]. Given two events e and e′, the
causality detection problem asks to determine whether e → e′.

There is a rich literature on solutions for solving the causality detection prob-
lem between events. See [4,5,9,15,17] for an overview of some approaches such
as tracking causality graphs, scalar clocks, vector clocks [3,8], and variants of
logical clocks such as hierarchical clocks, plausible clocks, dotted version vectors,
Bloom clocks, interval tree clocks and resettable encoded vector clocks. Some of
these variants track causality accurately while others introduce approximations
as trade-offs to save on the space and/or time and/or message overheads. Schwarz
and Mattern [17] stated that the quest for the holy grail of the ideal causality
tracking mechanism is on. This literature above assumed that processes are cor-
rect (non-faulty). The causality detection problem for a system with Byzantine
processes was recently introduced and studied in [11].

A related problem is the causal ordering of messages. Under the Byzantine
failure model, causal ordering has recently been studied in [10,12,13].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 57–61, 2023.
https://doi.org/10.1007/978-3-031-44274-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_5&domain=pdf
http://orcid.org/0000-0003-2451-7306
https://doi.org/10.1007/978-3-031-44274-2_5

58 A. Misra and A. D. Kshemkalyani

Contributions. It was recently proved that the problem of detecting causality
between a pair of events cannot be solved in an asynchronous system in the pres-
ence of Byzantine processes, irrespective of whether the communication is via
unicasts, multicasts, or broadcasts [11]. In the multicast mode of communication,
each send event sends a message to a group consisting of a subset of the set of
processes in the system. Different send events can send to different subsets of pro-
cesses. Communicating by unicasts and communicating by broadcasts are special
cases of multicasting. It was shown in [11] that in asynchronous systems with
even a single Byzantine process, the unicast and multicast modes of communica-
tion are susceptible to false positives and false negatives, whereas the broadcast
mode of communication is susceptible to false negatives but no false positives.
A false positive means that e �→ e′ whereas e → e′ is perceived/detected. A
false negative means than e → e′ whereas e �→ e′ is perceived/detected. The
impossibility result for asynchronous systems prompts us to examine whether
the causality detection problem can be solved in synchronous systems in the
presence of Byzantine processes. We answer in the affirmative for unicasts, mul-
ticasts, and broadcasts by outlining two approaches in this brief announcement.
The results are summarized in Table 1.

Table 1. Solvability of causality detection between events under different communi-
cation modes in Byzantine-prone asynchronous and synchronous systems. FP is false
positive, FN is false negative. FP/FN means no false positive/no false negative is
possible.

Mode of
communication

Detecting “happens before”
in asynchronous systems

Detecting “happens before”
in synchronous systems

Multicasts Impossible [11] Possible

FP, FN FP , FN

Unicasts Impossible [11] Possible

FP, FN FP , FN

Broadcasts Impossible [11] Possible

FP , FN FP , FN

2 System Model

The distributed system is modelled as an undirected complete graph G = (P,C).
Here P is the set of processes communicating in the distributed system. Let
|P | = n. C is the set of (logical) FIFO communication links over which processes
communicate by message passing. The processes may be Byzantine [7,14]. The
distributed system is assumed to be synchronous [2].

Let exi , where x ≥ 1, denote the x-th event executed by process pi. An event
may be an internal event, a message send event, or a message receive event. Let

Byzantine-Tolerant Detection of Causality in Synchronous Systems 59

the state of pi after exi be denoted sxi , where x ≥ 1, and let s0i be the initial state.
The execution at pi is the sequence of alternating events and resulting states, as
〈s0i , e1i , s1i , e2i , s2i . . .〉. The sequence of events 〈e1i , e2i , . . .〉 is called the execution
history at pi and denoted Ei. Let E =

⋃
i{Ei} and let T (E) denote the set of all

events in (the set of sequences) E. The happens before [6] relation, denoted →, is
an irreflexive, asymmetric, and transitive partial order defined over events in a
distributed execution that is used to define causality. The causal past of an event
e is denoted as CP (e) and defined as the set of events {e′ ∈ T (E) | e′ → e}.

3 Problem Formulation and a Brief Overview of Solutions

The problem formulation is analogous to that in [11]. An algorithm to solve the
causality detection problem collects the execution history of each process in the
system and derives causal relations from it. Ei is the actual execution history at
pi. For any causality detection algorithm, let Fi be the execution history at pi
as perceived and collected by the algorithm and let F =

⋃
i{Fi}. F thus denotes

the execution history of the system as perceived and collected by the algorithm.
Analogous to T (E), let T (F) denote the set of all events in F . Analogous to the
definition of → on T (E) [6], the happens before relation can be defined on T (F)
instead of on T (E).

Let e1 → e2|E and e1 → e2|F be the evaluation (1 or 0) of e1 → e2 using
E and F , respectively. Byzantine processes may corrupt the collection of F to
make it different from E. We assume that a correct process pi needs to detect
whether exh → e∗

i holds and e∗
i is an event in T (E). If exh �∈ T (E) then exh → e∗

i |E
evaluates to false. If exh �∈ T (F) (or e∗

i �∈ T (F)) then exh → e∗
i |F evaluates to false.

We assume an oracle that is used for determining correctness of the causality
detection algorithm; this oracle has access to E which can be any execution
history such that T (E) ⊇ CP (e∗

i).
Byzantine processes may collude as follows.

1. To delete exh from Fh or in general, record F as any alteration of E such that
exh → e∗

i |F = 0, while exh → e∗
i |E = 1, or

2. To add a fake event exh in Fh or in general, record F as any alteration of E
such that exh → e∗

i |F = 1, while exh → e∗
i |E = 0.

Without loss of generality, we have that exh ∈ T (E)∪T (F). Note that exh belongs
to T (F) \ T (E) when it is a fake event in F .

Definition 1. The causality detection problem CD(E,F, e∗
i) for any event e∗

i ∈
T (E) at a correct process pi is to devise an algorithm to collect the execution
history E as F at pi such that valid(F) = 1, where

valid(F) =
{

1 if ∀exh, exh → e∗
i |E = exh → e∗

i |F
0 otherwise

When 1 is returned, the algorithm output matches the actual (God’s) truth
and solves CD correctly. Thus, returning 1 indicates that the problem has been
solved correctly by the algorithm using F . 0 is returned if either

60 A. Misra and A. D. Kshemkalyani

– ∃exh such that exh → e∗
i |E = 1 ∧ exh → e∗

i |F = 0 (denoting a false negative), or
– ∃exh such that exh → e∗

i |E = 0 ∧ exh → e∗
i |F = 1 (denoting a false positive).

In our first solution, we use the Replicated State Machine (RSM) app-
roach [16] and vector clocks in the algorithm for causality detection. We can
show that F at a correct process can be made to exactly match E, hence there
is no possibility of a false positive or of a false negative. The RSM approach
works only in synchronous systems. In a system with n application processes,
the RSM-based solution uses 3t + 1 process replicas per application process,
where t is the maximum number of Byzantine processes that can be tolerated
in a RSM. Thus, there can be at most nt Byzantine processes among a total
of (3t + 1)n processes partitioned into n RSMs of 3t + 1 processes each, with
each RSM having up to t Byzantine processes. By using (3t+ 1)n processes and
the RSM approach to represent n application processes, the malicious effects of
Byzantine process behaviors are neutralized.

Another approach is as follows. A generic transformation from Byzantine
failures to crash failures for synchronous systems can be applied [1], this requires
t < n/3. The possibility of correct Byzantine-tolerant causality detection would
be implied by the possibility of correct crash-tolerant causality detection.

References

1. Bazzi, R.A., Neiger, G.: Simplifying fault-tolerance: providing the abstraction of
crash failures. J. ACM 48(3), 499–554 (2001). https://doi.org/10.1145/382780.
382784

2. Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Consensus in the presence of partial
synchrony. J. ACM 35(2), 288–323 (1988). https://doi.org/10.1145/42282.42283

3. Fidge, C.J.: Logical time in distributed computing systems. IEEE Comput. 24(8),
28–33 (1991). https://doi.org/10.1109/2.84874

4. Kshemkalyani, A.D.: The power of logical clock abstractions. Distrib. Comput.
17(2), 131–150 (2004). https://doi.org/10.1007/s00446-003-0105-9

5. Kshemkalyani, A.D., Shen, M., Voleti, B.: Prime clock: encoded vector clock to
characterize causality in distributed systems. J. Parallel Distrib. Comput. 140,
37–51 (2020). https://doi.org/10.1016/j.jpdc.2020.02.008

6. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

7. Lamport, L., Shostak, R.E., Pease, M.C.: The Byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

8. Mattern, F.: Virtual time and global states of distributed systems. In: Parallel and
Distributed Algorithms, pp. 215–226. North-Holland (1988)

9. Misra, A., Kshemkalyani, A.D.: The bloom clock for causality testing. In: Goswami,
D., Hoang, T.A. (eds.) ICDCIT 2021. LNCS, vol. 12582, pp. 3–23. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-65621-8 1

10. Misra, A., Kshemkalyani, A.D.: Causal ordering in the presence of Byzantine pro-
cesses. In: 28th IEEE International Conference on Parallel and Distributed Systems
(ICPADS), pp. 130–138. IEEE (2022). https://doi.org/10.1109/ICPADS56603.
2022.00025

https://doi.org/10.1145/382780.382784
https://doi.org/10.1145/382780.382784
https://doi.org/10.1145/42282.42283
https://doi.org/10.1109/2.84874
https://doi.org/10.1007/s00446-003-0105-9
https://doi.org/10.1016/j.jpdc.2020.02.008
https://doi.org/10.1007/978-3-030-65621-8_1
https://doi.org/10.1109/ICPADS56603.2022.00025
https://doi.org/10.1109/ICPADS56603.2022.00025

Byzantine-Tolerant Detection of Causality in Synchronous Systems 61

11. Misra, A., Kshemkalyani, A.D.: Detecting causality in the presence of Byzantine
processes: there is no holy grail. In: 21st IEEE International Symposium on Net-
work Computing and Applications (NCA), pp. 73–80 (2022). https://doi.org/10.
1109/NCA57778.2022.10013644

12. Misra, A., Kshemkalyani, A.D.: Solvability of Byzantine fault-tolerant causal order-
ing problems. In: Koulali, M.A., Mezini, M. (eds.) NETYS 2022. LNCS, vol. 13464,
pp. 87–103. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17436-0 7

13. Misra, A., Kshemkalyani, A.D.: Byzantine fault-tolerant causal ordering. In: 24th
International Conference on Distributed Computing and Networking (ICDCN),
pp. 100–109. ACM (2023). https://doi.org/10.1145/3571306.3571395

14. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228–234 (1980). https://doi.org/10.1145/322186.322188

15. Pozzetti, T., Kshemkalyani, A.D.: Resettable encoded vector clock for causality
analysis with an application to dynamic race detection. IEEE Trans. Parallel Dis-
trib. Syst. 32(4), 772–785 (2021). https://doi.org/10.1109/TPDS.2020.3032293

16. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: a tutorial. ACM Comput. Surv. 22(4), 299–319 (1990)

17. Schwarz, R., Mattern, F.: Detecting causal relationships in distributed computa-
tions: in search of the holy grail. Distrib. Comput. 7(3), 149–174 (1994)

https://doi.org/10.1109/NCA57778.2022.10013644
https://doi.org/10.1109/NCA57778.2022.10013644
https://doi.org/10.1007/978-3-031-17436-0_7
https://doi.org/10.1145/3571306.3571395
https://doi.org/10.1145/322186.322188
https://doi.org/10.1109/TPDS.2020.3032293

Invited Paper: Time Is Not a Healer,
but It Sure Makes Hindsight 20:20

Eli Gafni1 and Giuliano Losa2(B)

1 University of California, Los Angeles, USA
eli@ucla.edu

2 Stellar Development Foundation, San Francisco, USA

giuliano@stellar.org

Abstract. In the 1980s, three related impossibility results emerged in
the field of distributed computing. First, Fischer, Lynch, and Paterson
demonstrated that deterministic consensus is unattainable in an asyn-
chronous message-passing system when a single process may crash-stop.
Subsequently, Loui and Abu-Amara showed the infeasibility of achieving
consensus in asynchronous shared-memory systems, given the possibility
of one crash-stop failure. Lastly, Santoro and Widmayer established the
impossibility of consensus in synchronous message-passing systems with
a single process per round experiencing send-omission faults.

In this paper, we revisit these seminal results. First, we observe that
all these systems are equivalent in the sense of implementing each other.
Then, we prove the impossibility of consensus in the synchronous system
of Santoro and Widmayer, which is the easiest to reason about. Taking
inspiration from Volzer’s proof pearl and from the Borowski-Gafni sim-
ulation, we obtain a remarkably simple proof.

We believe that a contemporary pedagogical approach to teaching
these results should first address the equivalence of the systems before
proving the consensus impossibility within the system where the result
is most evident.

1 Introduction

In their famous 1983 paper, Fischer, Lynch, and Paterson [10] (hereafter referred
to as FLP) established that deterministic consensus is unattainable in an asyn-
chronous message-passing system where one process may fail by stopping. As a
foundational result in distributed computing and one of the most cited works in
the field, it is crucial to teach this concept in an accessible manner that high-
lights the core reason for the impossibility. However, we believe that the original
FLP proof is too technical for this purpose and that its low-level system details
can obscure the essence of the proof.

In our quest to simplify the FLP proof, we revisit the subsequent extensions
and improvements of the FLP result, including Loui and Abu-Amara’s asyn-
chronous shared-memory proof [14] and Santoro and Widmayer’s impossibility

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 62–74, 2023.
https://doi.org/10.1007/978-3-031-44274-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_6&domain=pdf
http://orcid.org/0000-0003-2341-7928
https://doi.org/10.1007/978-3-031-44274-2_6

Time Is Not a Healer, but It Sure Makes Hindsight 20:20 63

proof for synchronous systems with one process failing to send some of its mes-
sages per round [18]. The latter paper was titled “Time is not a healer,” which
inspired our own title.

While the impossibility of consensus was demonstrated in all of these systems,
the proofs did not rely on reductions, but instead rehashed FLP’s valency-based
argument. This should have suggested that there are reductions between those
models. In this work, we use elementary simulation algorithms to show that the
aforementioned systems can indeed implement each other, and thus it suffices to
prove consensus impossible in just one of them.

We then reconsider the impossibility proof in the system that is the easiest to
reason about: the synchronous system of Santoro and Widmayer. In this system,
we present a new and remarkably simple proof of the impossibility of consensus,
which we believe is of great pedagogical value.

Unlike Santoro and Widmayer, we avoid using a valency argument inspired
by FLP. Instead, we draw ideas from the Borowski-Gafni [6] simulation of a
1-resilient system using two wait-free processes and from Volzer’s [21] brilliant
impossibility proof. Volzer’s idea, which he used to simplify FLP in the original
FLP model, is to compare runs with one missing process with fault-free runs.

Next, we give an overview of the technical contributions of the paper.

1.1 Four Equivalent Models

The paper considers four models:

– The FLP model. This is the original asynchronous message-passing model
of FLP, in which at most one process may crash-stop.

– The 1-resilient shared-memory model. This is an asynchronous shared-
memory system in which at most one process may crash-stop.

– The 1-resilient fail-to-receive model (abbreviated fail-to-receive). This
is a synchronous, round-by-round message-passing system in which processes
never crash, but every round, each process might fail to receive one of the
messages sent to it.

– The 1-resilient fail-to-send model (abbreviated fail-to-send). This is
a synchronous, round-by-round message-passing system in which processes
never crash, but every round one process might fail to send some of its mes-
sages. This model was originally presented by Santoro and Widmayer [18].

Assuming we have n > 2 processes1, all the models above solve the same
colorless tasks2. To show this, we proceed in three steps, each showing that two
models simulate each other in the sense of Attiya and Welch [3, Chapter 7]. We
write A ≤ B when B simulates A (and therefore B is stronger than A), and
A ≡ B when A and B simulate each other. The three steps are the following.

1 n > 2 is required for the ABD shared-memory simulation algorithm and by the
get-core algorithm.

2 See Sect. 2.1 for a discussion of colorless tasks.

64 E. Gafni and . Losa

1. FLP ≡ 1-resilient shared memory is a well-known result. We can simulate the
FLP model in 1-resilient shared memory by implementing message-passing
communication using shared-memory buffers that act as mailboxes. In the
other direction, we can use the ABD [2] shared-memory simulation algorithm
to simulate single-writer single-reader registers and then apply standard reg-
ister transformation to obtain multi-reader multi-writer registers [3, Chapter
10]. A rigorous treatment of the equivalence between asynchronous message
passing and shared memory appears in Lynch’s book [15, Chapter 17].

2. FLP ≡ fail-to-receive. fail-to-receive ≤ FLP follows from a simple synchro-
nizer algorithm that is folklore in the field (each process has a current round
and waits to receive messages sent in the current round from n − 2 other
processes before moving to the next round). In the other direction, we need
to guarantee that the messages of all processes except one are eventually
delivered; to do so, we simply require processes to keep resending all their
messages forever and to do a little bookkeeping do avoid wrongly delivering
a message twice.

3. fail-to-receive ≡ fail-to-send. fail-to-receive ≤ fail-to-send is trivial3. In the
other direction, we present in Sect. 3.1 a simulation based on the get-core
algorithm of Gafni [3, Chapter 14]. Although the simulation relies entirely on
this known algorithm, this is a new result.

1.2 The New Impossibility Proof

Having shown that all four models above are equivalent, we show the impos-
sibility of deterministic consensus in the model in which it is the easiest: the
synchronous model of Santoro and Widmayer.

Inspired by Volzer [21], we restrict our attention to fault-free runs and runs
in which one process remains silent. This allows us to inductively construct an
infinite execution in which, every round r, making a decision depends on one
process pr: if pr remains silent, then the decision is br, but if no messages are
dropped, then the decision is br �= br. Both the initial and inductive steps of the
construction follow from a straightforward application of the one-dimensional
case of Sperner’s lemma.

The proof is also constructive in the sense of Constable [8]: it suggests a
sequential procedure that, given a straw-man consensus algorithm, computes an
infinite nondeciding execution.

2 The Models

We consider a set P of n deterministic processes. Each process has a local state
consisting of a read-only input register, an internal state, and a write-once output
register. A configuration of the system is a function that maps each process to
its local state. Initially, each input register contains an input value taken from a
3 This is an instance of the following first-order logic tautology: ∃y.∀x.P (x, y) →

∀x.∃y.P (x, y).

Time Is Not a Healer, but It Sure Makes Hindsight 20:20 65

set of inputs that is specific to the task being solved (e.g. 0 or 1 for consensus),
each process is in its initial internal state, and each process has an empty output
register.

The four models differ in how execution proceeds from an initial state.
Regardless of the model, when a process writes v to its output register, we
say that it outputs v. Moreover, we assume that a process never communicates
with itself (e.g. a process does not send a message to itself).

The FLP Model. In the FLP model, processes communicate by message pass-
ing, and each process takes atomic steps that consist in a) optionally receiving a
message, b) updating its local state, and optionally, if it has not done so before,
its output register, and c) sending any number of messages.

Processes are asynchronous, meaning that they take steps in an arbitrary
order and there is no bound on the number of steps that a process can take
while another takes no steps. However, the FLP model guarantees that every
process takes infinitely many steps and that every message sent is eventually
received, except that at most one process may at any point fail-stop, after which
it permanently stops taking steps.

The 1-Resilient Shared-Memory Model. In the 1-resilient shared-memory
model, processes are asynchronous and communicate by atomically reading or
writing multi-writer multi-reader shared-memory registers, and at most one pro-
cess may fail-stop.

The 1-Resilient Fail-to-Send Model. In the 1-resilient fail-to-send model,
processes also communicate by message passing, but execution proceeds in an
infinite sequence of synchronous, communication-closed rounds. Each round,
every process first broadcasts a unique message. Once every process has broad-
cast its message, each process receives all messages broadcast in the current
round, in a fixed order, except that an adversary picks a unique process p and a
set of processes P which do not receive the message broadcast by p. Finally, at
the end of the round, each process updates its internal state and optionally, if it
has not done so before, its output register, both as a function of its current local
state and of the set of messages received in the current round before entering
the next round. No process ever fails.

We write c
p,P−−→ c′ to indicate that, starting from configuration c at the

beginning of a round, the adversary chooses the process p and drops the messages
that p sends to the members of the set of processes P , and the round ends in
configuration c′. Note that in c

p,P−−→ c′, it is irrelevant whether p ∈ P , since a
process does not send a message to itself. Also note that, because the order in
which messages are received is fixed, c′ is a function of c, p, and P .

With this notation, an execution is an infinite sequence of the form

c1
p1,P1−−−→ c2

p2,P2−−−→ c3
p3,P3−−−→ . . .

66 E. Gafni and . Losa

where, in c1, each process has input 0 or 1, is in the initial internal state, and
has an empty output register, and for every i, pi ∈ P and Pi ⊆ P. An example
appears in Fig. 1.

Fig. 1. An execution in the 1-resilient fail-to-send model. Each round, the messages of
the process selected by the adversary are highlighted with a darker tone.

The 1-Resilient Fail-to-Receive Model. The 1-resilient fail-to-receive model
is like the 1-resilient fail-to-send model, except that the specification of the adver-
sary is different: each round, for every process p, the adversary may drop one of
the messages addressed to p. So, contrary to the 1-resilient fail-to-send model,
it is possible that different processes miss a message from a different process.

2.1 Simulations and Colorless Tasks

In Sect. 3, we show using simulation algorithms that the four models above all
solve the same colorless tasks. We now informally define these notions.

Informally, a model A simulates a model B, noted B ≤ A, when the commu-
nication primitives of model B, including the constraints placed on them, can be
implemented using the communication primitives of model A. This corresponds
to the notion of simulation defined by Attiya and Welch in their book [3, Chapter
7]. When models A and B both simulate each other, we write A ≡ B.

We define a colorless task as a relation Δ between the sets of inputs that the
processes may receive and the set of outputs that they may produce. Note that we
care only about sets of inputs or outputs, and not about which process received
which input or produced which output. This is what makes a task colorless.

We say that an algorithm in a model solves a colorless tasks when, in every
execution:

1. Every process that does not fail produces an output, and
2. If I is the set of inputs received by the processes and O is the set of outputs

produced, then (I,O) ∈ Δ.

Time Is Not a Healer, but It Sure Makes Hindsight 20:20 67

For a more precise and rigorous treatment of tasks and colorless tasks, see Herlihy
et al. [12, Chapter 4].

Note that, when solving a colorless task, a process can safely adopt the output
of another process. This is important, e.g., to solve a colorless task T in the 1-
resilient fail-to-receive model by simulating an algorithm that solves T in the
FLP model: Because one process may not output in the FLP model (whereas all
processes have to output in the 1-resilient fail-to-receive model), one process may
need to adopt the output of another. For a colorless task, this is not a problem.

Informally, we have the following lemma:

Lemma 1. For every two models A and B out of the four models of this section,
if B ≤ A then A solves all the colorless tasks that B solves.

We now define the consensus problem as a colorless task, independently of
the model.

Definition 1. In the consensus problem, each process receives 0 or 1 as input
and the outputs of the processes must satisfy the following properties:

Agreement No two processes output different values.
Validity If all processes receive the same input b, then no process outputs

b′ �= b.

3 Model Equivalences

In this section, we show that the four models described in Sect. 2 all solve the
same colorless tasks using simulations. We do not cover the two simulations
between the 1-resilient shared-memory model and the FLP model, as this is
done brilliantly by Lynch in her book [15, Chapter 17].

3.1 Fail-to-send ≡ fail-to-receive

fail-to-send ≤ fail-to-receive. The 1-resilient fail-to-send model is trivially a
special case of the 1-resilient fail-to-receive model: one process p failing to send
some of its messages is the same as some processes failing to receive from p.
Thus, we have fail-to-send ≤ fail-to-receive.
fail-to-receive ≤ fail-to-send. In other direction, it is a-priori not obvious
whether we can take a system in which each process may fail to receive from a
different other process and simulate a system in which all processes may fail to
receive from the same process. Surprisingly, if we have n > 2 processes, we can
simulate the 1-resilient fail-to-send model in the 1-resilient fail-to-receive model.

We simulate each round of the 1-resilient fail-to-send model using an instance
of the get-core algorithm of Gafni [3, Chapter 14], which takes 3 rounds of the
1-resilient fail-to-receive model which we call phases.

68 E. Gafni and . Losa

Each process p starts the first phase with a message that it wants to simulate
the sending of and, at the end of the third round, it determines a set of messages
to simulate the delivery of. To obtain a correct simulation, we must ensure that,
each simulated round r, all processes receive all simulated messages sent in the
round except for some messages of a unique process.

To simulate one round of the 1-resilient fail-to-send model, each process p
does the following.

– In phase 1, p broadcasts its simulated message; then p waits until it receives
n − 2 messages before entering phase 2.

– In phase 2, p broadcasts a message containing the set of simulated messages
it received in the first phase and then waits until it receives n − 2 sets of
simulated messages before entering phase 3.

– In phase 3, p broadcasts a message containing the union of all the sets of
simulated messages it received in phase 2 and waits until it receives n−2 sets
of simulated messages. Finally, p simulates receiving the union of all the sets
of simulated messages it received in phase 3.

Lemma 2. When n > 2, each simulated round, there is a set S of n−1 processes
such that every process simulates receiving the messages of all members of S.

Proof. Consider a simulated round. First, we show that there is a process pl
such that at least n − 2 processes (different from pl) hear from pl in phase 2.
Suppose towards a contradiction that, for every process p, there are no more
than n − 3 processes that hear from p in phase 2. Then, the total number of
messages received in phase 2 is at most n(n − 3). However, in the 1-resilient
fail-to-receive model, each process receives at least n − 2 messages (since every
process fails to receive at most one message), so at least n(n − 2) messages are
received by the end of phase 2. Since n(n − 2) > n(n − 3) for n > 2, this is a
contradiction.

Next, consider the set S of at least n − 2 processes different from pl that pl
hears from in phase 1. Since pl broadcasts the set of simulated messages received
from S, by the above we see that at least n−1 processes (the members of S and
pl) have received all the simulated messages of the members of S by the end of
phase 2. Thus, since n− 1 ≥ 2 and the adversary can only prevent each process
from receiving one message, all processes receive the simulated messages of the
members of S in phase 3. 	

By Lemma 2, in each simulated round, all processes receive all messages sent
in the round except for some messages of a unique process. Thus, the simulation
algorithm faithfully simulates the 1-resilient fail-to-send model.

3.2 FLP ≡ fail-to-receive

fail-to-receive ≤ FLP. We simulate the 1-resilient fail-to-receive model in the
FLP model using a simple synchronizer algorithm. Each process maintains a

Time Is Not a Healer, but It Sure Makes Hindsight 20:20 69

current round, initialized to 1, a simulated state, initially its initial state in the
simulated model, and a buffer of messages, initially empty.

Each process p obeys the following rules.

– When p is in round r and it receives a round-r′ message, p discards the
message if r′ < r and otherwise buffers the message.

– When process p enters a round r, it broadcasts its round-r simulated message
to all.

– When p is in round r and has n−2 round-r simulated messages in its buffer, it
simulates receiving all those message and then increments its round number.

It is easy to see that this algorithm faithfully simulates n−1 processes execut-
ing in the 1-resilient fail-to-receive model (but not all n processes). One process
may not be faithfully simulated if it fails because, by definition, no process fails
in the 1-resilient fail-to-receive model. However, this does not matter because,
in the FLP model, a failed processed does not have to output.
FLP ≤ fail-to-receive. The only difficulty in simulating the FLP model in the
1-resilient fail-to-receive model is that we have to ensure that every message
sent in the simulated algorithm is eventually delivered, except for at most one
process, despite the fact that messages can be lost in the 1-resilient fail-to-receive
model.

To overcome this problem, it suffices that each process re-sends all its sim-
ulated messages forever. To ensure that messages that are sent multiple times
in the simulated algorithm can be told apart from messages that are simply re-
sent by the simulation algorithm, each process simply uses a strictly monotonic
counter whose value is attached to simulated messages.

4 Impossibility of Consensus in the Fail-To-Send Model

In this section, we show that consensus is impossible in the 1-resilient fail-to-
send model. To keep the proof constructive, we consider the pseudo-consensus
problem, which is solvable, and we show that every pseudo-consensus algorithm
has an infinite execution in which no process outputs. Since solving consensus
implies solving pseudo-consensus, this shows that consensus is impossible.

The proof hinges on the notion of p-silent execution, which is just an execu-
tion in which the adversary drops every message of p.

Definition 2 (p-silent and 1-silent execution). We say that an execution e

is p-silent, for a process p, when e is of the form c1
p,P−−→ c2

p,P−−→ c3
p,P−−→ We

say that an execution is 1-silent when it is p-silent for some p.

Definition 3 (Pseudo-consensus). The pseudo-consensus problem relaxes
the termination condition of the consensus problem by requiring outputs only
in failure-free executions and 1-silent executions.

70 E. Gafni and . Losa

Note that pseudo-consensus is solvable, e.g. using a variant of the phase-king
algorithm [4]. We now consider a pseudo-consensus algorithm.

Throughout the section, we say that a process decides b in an execution when
it outputs b, and, when a process decides b in an execution, we also say that the
execution decides b.

Definition 4 (p-dependent configuration). A configuration c is p-dependent
when the decision in the failure-free execution from c is different from the decision
in the p-silent execution from c.

Lemma 3. If c is a p-dependent configuration, then no process has decided in c.

Proof. Suppose by contradiction that a process has decided on a value v in
c. Since c is p-dependent, there are two executions, starting from c, that decide
differently. Thus, one of these executions decides a value v′ �= v. This contradicts
the agreement property of pseudo-consensus. 	

Definition 5 (Sequence of adjacent configurations). We say that a
sequence of configurations c0, . . . , cm is a sequence of adjacent configurations
when, for each i ∈ 1..m, the configurations ci−1 and ci differ only in the local
state of a single process noted pi.

We are now ready to state and prove our main lemma:

Lemma 4. Consider a sequence of adjacent configurations c0, . . . , cm. Suppose
that the failure-free decision from c0 is different from the failure-free decision
from cm. Then there exists k ∈ 0..m and a process p such that ck is p-dependent.

Proof. Suppose, without loss of generality, that the failure-free decision from c0
is 0 while the failure-free decision from cm is 1. Then, there must be j ∈ 1..m
such that the failure-free decision from cj−1 is 0 and the failure-free decision
from cj is 1 (this is the one-dimensional Sperner lemma).

We now have two cases. First, suppose that the pj-silent decision from cj
is 0. Then, because the failure-free decision from cj is 1, we conclude that cj is
p-dependent.

Second, suppose that the pj-silent decision from cj is 1. Note that, because
cj−1 and cj only differ in the local state of pj , if pj remains silent, then the
decision is the same regardless of whether we start from cj−1 or cj . Thus, the
pj-silent decision from cj−1 is also 1. We conclude that cj−1 is pj-dependent. 	

We now prove by induction that we can build an infinite execution consisting
entirely of p-dependent configurations.

Lemma 5. There exists a p-dependent initial configuration for some process p.

Proof. Order the processes in an arbitrary sequence p1, . . . , pn. Consider the
sequence of initial configurations c0, . . . , cn where, for each configuration ci and
each process pj , pj has input 0 if and only if j ≥ i. Note that the sequence

Time Is Not a Healer, but It Sure Makes Hindsight 20:20 71

c0, . . . , cn is a sequence of adjacent configurations: for each i ∈ 1..n, configura-
tions ci−1 and ci differ only in the input of the process i. Moreover, by the validity
property of consensus, the failure-free decision from c0 is 0 and the failure-free
decision from c1 is 1. Thus, by Lemma 4, there exists a process p and k ∈ 0..n
such that ck is p-dependent. 	

Lemma 6. Suppose that the configuration c is p-dependent. Then there exists a
process q, a set of processes P , and a configuration c′ such that c

p,P−−→ c′ and c′

is q-dependent.

Proof. Without loss of generality, assume that the p-silent decision from c is 0.
Consider the configuration c′ such that c

p,P−−→ c′ (i.e. no process receives p’s
message in the transition from c to c′). There are two cases. First, suppose that
the failure-free decision from c′ is 1. Note that the p-silent decision from c′ must
be 0 because c′ is the next configuration after c is the p-silent execution from c.
Thus, c′ is by definition p-dependent, and we are done with this case.

Second, suppose that the failure-free decision from c′ is 0. Now order the pro-
cesses in P \ {p} in a sequence p1, . . . , pn−1. Consider the sequence of configura-

tions c1, . . . , cn such that c
p,P−−→ c1 (so c1 = c′), c

p,P\{p1}−−−−−−→ c2, c
p,P\{p1,p2}−−−−−−−−→ c3,

etc. until c
p,∅−−→ cn. In other words, no process receives the message from p in the

transition from c to c1; only p1 receives p’s message in the transition from c to
c2; only p1 and p2 receive p’s message in the transition from c to c3; etc. and all
processes receive p’s message in the transition from c to cn. Figure 2 illustrates
the situation when there are 3 processors.

Note that, for each i ∈ 1..n − 1, configurations ci and ci+1 only differ in
pi not having or having received p’s message; thus, the sequence c1, . . . , cn is a
sequence of adjacent configurations. Moreover, because c1 = c′, the failure-free
decision from c1 is 0. Additionally, because c is p-dependent and the p-silent
decision from c is 0, the failure-free decision from cn is 1. Thus, we can apply
Lemma 4, and we conclude that there exists a process q and i ∈ 1..n such that
ci is q-dependent. 	

Theorem 1. Every pseudo-consensus algorithm has an infinite non-deciding
execution.

Proof. Using Lemmas 5 and 6, we inductively construct an infinite execution in
which each configuration is p-dependent for some process p. By Lemma 3, every
p-dependent configuration is undecided, and thus no process ever decides. 	

Note that Lemma 6 would fail, and thus the whole proof would fail if, each
round, the adversary were constrained to not remove all the messages of the
selected process. This is because we would not be able to construct a sequence of
adjacent configurations long enough to go from c1 to cn (we would be missing one
configuration to reach cn from c1). In fact, as Santoro and Widmayer remark [18],
if the adversary can only remove n − 2 messages, a protocol proposed in earlier
work of theirs solves consensus [19].

72 E. Gafni and . Losa

Fig. 2. Situation in the second case of the proof of Lemma 6, where P = {p1, p2, p3}
(so n = 3) and c is p2-dependent. There must exist q ∈ P such that one of the
configurations c1, c2, or c3 is q-dependent.

5 Related Work

In 1983, Fischer, Lynch, and Paterson [9,10] first proved the impossibility of solv-
ing consensus deterministically in an asynchronous system in which one process
may fail-stop. Following the FLP result, a number of other works proved similar
impossibility results (for deterministic processes) in other models or improved
some aspects of the FLP proof.

In 1987, Loui and Abu-Amara [14] showed that consensus is impossible in
shared memory when one process may stop (also proved independently by Her-
lihy in 1991 [11]).

Santoro and Widmayer followed suit in 1989 with the paper “Time is not
a healer” [18], showing, among other results, that, with message-passing com-
munication, even synchrony does not help if, each round, one process may fail
to send some of its messages [18, Theorem 4.1]. The proof of Santoro and Wid-
mayer follows a valency-based argument inspired by the FLP proof. As we show
in Sect. 3, this result is equivalent to the FLP result and could have been obtained
by reduction.

In a pedagogical note, Raynal and Roy [16] observe that an asynchronous
system with f crash failures and restricted to communication-closed rounds in
which each process waits for n − f processes before moving to the next round
is equivalent, for task solvability, to the model of Santoro and Widmayer when,
each round, each process fails to receive from f processes.

Inspired by Chandy and Misra [7], Taubenfeld [20] presents a proof of the
FLP impossibility in an axiomatic model of sequences of events that avoids giving
operational meaning to the events. This results in a more general and shorter
proof.

In their textbook, Attiya and Welch [3] prove the FLP result by reduction to
shared memory. They first prove that consensus is impossible for two processes
and then use a variant of the BG simulation [6] to generalize to any number of

Time Is Not a Healer, but It Sure Makes Hindsight 20:20 73

processes. Lynch [15] also takes the shared memory route but proves the shared-
memory impossibility using a bi-valency argument.

Volzer’s proof pearl [21] gives an elegant, direct proof of the FLP impossibil-
ity in the asynchronous message-passing model. The main insight is to compare
fault-free runs with runs in which one process does not participate. Reading
Volzer’s paper (in admiration) is the inspiration for the present paper. Bisp-
ing et al. [5] present a mechanically-checked formalization of Volzer’s proof in
Isabelle/HOL.

The latest development on the FLP proof, before the present work, is due
to Constable [8]. Constable presents an impossibility proof in the FLP model
that closely follows the FLP proof but that is constructive, meaning that we
can extract from this proof an algorithm that, given an effectively non-blocking
consensus procedure (in Constable’s terminology), computes an infinite non-
deciding execution. The proof of the present paper is also constructive in the
same sense.

Finally, the idea of Santoro and Widmayer [18] to consider computability
questions in a synchronous setting with message-omission faults inspired the
development of the general message-adversary model of Afek and Gafni [1]; they
present a message adversary equivalent to wait-free shared memory and use it
to obtain a simple proof of the asynchronous computability theorem [6,13,17].

References

1. Afek, A., Gafni, E.: A simple characterization of asynchronous computations.
Theor. Comput. Sci. 561Part B, 88–95 (2015). ISSN 0304–3975. https://doi.
org/10.1016/j.tcs.2014.07.022. http://www.sciencedirect.com/science/article/pii/
S0304397514005659

2. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing
systems. J. ACM (JACM) 42(1), 124–142 (1995). ISSN 0004–5411. https://doi.
org/10.1145/200836.200869

3. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and
Advanced Topics, vol. 19. Wiley, Hoboken (2004)

4. Berman, P., Garay, J.A., Perry, K.J.: Towards optimal distributed consensus. In:
FOCS, vol. 89, pp. 410–415 (1989)

5. Bisping, B., et al.: Mechanical verification of a constructive proof for FLP. In:
Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 107–122. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-43144-4 7

6. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asyn-
chronous computations. In Proceedings of the Twenty-Fifth Annual ACM Sym-
posium on Theory of Computing, STOC 1993, pp. 91–100 (1993). ACM. ISBN
978-0-89791-591-5. https://doi.org/10.1145/167088.167119

7. Chandy, M., Misra, J.: On the nonexistence of robust commit protocols (1985)
8. Constable, R.: Effectively nonblocking consensus procedures can execute forever-a

constructive version of FLP (2011)
9. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus

with one faulty process. 32(2), 374–382 (1985). ISSN 0004–5411. https://doi.org/
10.1145/3149.214121

https://doi.org/10.1016/j.tcs.2014.07.022
https://doi.org/10.1016/j.tcs.2014.07.022
http://www.sciencedirect.com/science/article/pii/S0304397514005659
http://www.sciencedirect.com/science/article/pii/S0304397514005659
https://doi.org/10.1145/200836.200869
https://doi.org/10.1145/200836.200869
https://doi.org/10.1007/978-3-319-43144-4_7
https://doi.org/10.1145/167088.167119
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121

74 E. Gafni and . Losa

10. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. In: Proceedings of the 2nd ACM SIGACT-SIGMOD Sym-
posium on Principles of Database Systems, PODS 1983, pp. 1–7 (1985). Associa-
tion for Computing Machinery, ISBN 978-0-89791-097-2. https://doi.org/10.1145/
588058.588060

11. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),
124–149 (1991). ISSN 0164–0925. https://doi.org/10.1145/114005.102808

12. Herlihy, M., Kozlov, D., Rajsbaum, S.: Distributed Computing Through Combina-
torial Topology. Morgan Kaufmann, Burlington (2013). ISBN 978-0-12-404578-1

13. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
J. ACM (JACM) 46(6), 858–923 (1999)

14. Loui, M.C., Abu-Amara, H.H.: Memory requirements for agreement among unre-
liable asynchronous processes. Adv. Comput. Res. 4(163), 31 (1987)

15. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)
16. Raynal, M., Roy, M.: A note on a simple equivalence between round-based syn-

chronous and asynchronous models. In: 11th Pacific Rim International Symposium
on Dependable Computing (PRDC 2005), p. 4 (2005). https://doi.org/10.1109/
PRDC.2005.10

17. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: the
topology of public knowledge. 29(5):1449–1483 (2000). ISSN 0097–5397.
https://doi.org/10.1137/S0097539796307698. https://epubs.siam.org/doi/abs/10.
1137/S0097539796307698

18. Santoro, N., Widmayer, P.: Time is not a healer. In: Monien, B., Cori, R. (eds.)
STACS 1989. LNCS, vol. 349, pp. 304–313. Springer, Heidelberg (1989). https://
doi.org/10.1007/BFb0028994

19. Santoro, N., Widmayer, P.: Distributed function evaluation in the presence of trans-
mission faults. In: Asano, T., Ibaraki, T., Imai, H., Nishizeki, T. (eds.) SIGAL
1990. LNCS, vol. 450, pp. 358–367. Springer, Heidelberg (1990). https://doi.org/
10.1007/3-540-52921-7 85

20. Taubenfeld, G.: On the nonexistence of resilient consensus protocols. Inf. Process.
Lett. 37(5), 285–289 (1991)

21. Völzer, H.: A constructive proof for FLP. 92(2), 83–87. http://www.sciencedirect.
com/science/article/pii/S0020019004001887

https://doi.org/10.1145/588058.588060
https://doi.org/10.1145/588058.588060
https://doi.org/10.1145/114005.102808
https://doi.org/10.1109/PRDC.2005.10
https://doi.org/10.1109/PRDC.2005.10
https://doi.org/10.1137/S0097539796307698
https://epubs.siam.org/doi/abs/10.1137/S0097539796307698
https://epubs.siam.org/doi/abs/10.1137/S0097539796307698
https://doi.org/10.1007/BFb0028994
https://doi.org/10.1007/BFb0028994
https://doi.org/10.1007/3-540-52921-7_85
https://doi.org/10.1007/3-540-52921-7_85
http://www.sciencedirect.com/science/article/pii/S0020019004001887
http://www.sciencedirect.com/science/article/pii/S0020019004001887

Adding Pull to Push Sum
for Approximate Data Aggregation

Saptadi Nugroho(B) , Alexander Weinmann , and Christian Schindelhauer

Albert-Ludwigs-Universität Freiburg, 79110 Freiburg im Breisgau, Germany

snugroho@informatik.uni-freiburg.de

Abstract. Kempe, Dobra, and Gehrke (2003) proposed the simple Push
Sum protocol for averaging the value of nodes in a network: In every
round, each node chooses a random neighbor node uniformly at random
and sends half of its sum and weight to the chosen node. The Push Sum
has the mass conservation property. It converges to the correct answer
exponentially, which can be seen from the potential function that drops
at least half in every round in expectation.

We evaluate the Push-Pull Sum protocol to distribute the data and
calculate the mean value of all nodes. The Push-Pull Sum protocol com-
plements the Push Sum protocol with the Pull Sum protocol. In the Pull
Sum protocol, every caller node sends the pull request to the chosen node
uniformly at random and itself. The node which gets the pull request will
send its sum and weight divided by the number of pull requests to the
caller nodes and itself.

In the Push-Pull Sum protocol, every node sends half its sum and half
its weight to itself and its neighbor, chosen uniformly at random in each
round. The callee node that receives the message from its neighbors will
reply to the caller nodes and itself with half of its sum and weight divided
by the number of nodes that send the message to the callee node. The
Push-Pull Sum protocol and the Pull Sum protocol have mass conserva-
tion properties. We observed that the potential function decreases faster
using the Push-Pull Sum protocol instead of the Push Sum protocol.

Keywords: Distributed algorithm · Communication protocol ·
Random call model · Approximation · Data aggregation

1 Introduction

The randomized rumor spreading in large-scale peer-to-peer sensor networks
has been studied in past decades. Sensor nodes connected to a communication
graph Gt can exchange data to compute the aggregation function for solving
problems cooperatively [1]. The aggregation functions could be classified into
algebraic (average, variance), distributive (count, sum, max, min), and holistic
(median) [2]. The aggregation algorithm is categorized into structured, unstruc-
tured, and hybrid from the communication perspective [5,17]. In structured

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 75–89, 2023.
https://doi.org/10.1007/978-3-031-44274-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_7&domain=pdf
http://orcid.org/0000-0001-6364-7133
http://orcid.org/0009-0004-3769-2386
http://orcid.org/0000-0002-8320-8581
https://doi.org/10.1007/978-3-031-44274-2_7

76 S. Nugroho et al.

communications, such as tree-based communication structures, the operation
of aggregation algorithms will be affected by the network topology and rout-
ing scheme. In unstructured communication, such as rumor-based communica-
tion, aggregation algorithms can run independently from the structured network
topology. The hybrid combines the use of structured and unstructured commu-
nications.

In randomized rumor spreading, every node chooses its neighbor randomly
in each round for exchanging information [3,4]. Information that flows from
one node to another can be differentiated between pull and push transmissions.
The rumor is pushed when the caller node sends the rumor to the called node,
while the rumor is pulled if the caller node receives the rumor from the called
node [4,15]. Kempe et al. [4] developed the Push Sum protocol for averaging the
value of nodes in a network. The Push Sum protocol converges to the correct
aggregate of the ground truth because it has the mass conservation property.
The Push-Pull strategy is a combination of the Push strategy and the Pull
strategy [14]. The Push-Pull strategy disseminates the rumor faster than the
Push strategy and the Pull Strategy [11].

Contribution. In this paper, we propose a data aggregation protocol that
estimates the mean value using the Push-Pull Sum communication protocol. In
the Push-Pull Sum protocol, every node sends the pair

(
st

2 , wt

2

)
to the chosen

node and itself. After the node receives |R| requests from its neighbor, it sends
the pair

(st
2

|R| ,
wt
2

|R|
)

to itself and to the nodes that sent the request. The data
sent to the node will be used as inputs for calculating an aggregation function.
The Push-Pull Sum protocol converges to the correct aggregate of the ground
truth. Regarding the time complexity, the Push-Pull Sum protocol has a lower
Mean Squared Error (MSE) than the Push Sum protocol. Information sent in
both directions between communication nodes using Push-Pull Sum protocol
can significantly reduce the number of rounds.

2 Related Work

In the rumor-based communication model, the called node is selected uniformly
and independently at random by the caller node. A push call occurs when the
called node is randomly chosen to receive a data value x from the caller node.
On the other hand, a pull call occurs when the called node sends a data value x
to the caller node after receiving a request from the caller node [3,18].

The Push-Sum protocol is rumor-based communication. In each round, the
caller node divides the weight in half wt

2 and the sum in half st

2 . Then the caller
node chooses a called node at random to send the pair (st

2 , wt

2) to the called
node and itself for estimating the average favg = st

wt
[4].

The mass conservation that is not maintained in the communication proto-
cols will cause the values to converge to the same value but not to the correct
aggregate of the ground truth [4,16]. We assume no mass loss during the commu-
nication process. The Push-Sum protocol and the Pull-Sum protocol maintain
the mass conservation property at all rounds.

Adding Pull to Push Sum for Approximate Data Aggregation 77

In the Pull-Sum algorithm [12], the called node counts the number of requests
|R| received from the caller nodes in each round. Each weight wt and the sum
st are divided by the number of requests |R| received. Then, the called node
sends the pair (st

|R| ,
wt

|R|) to the caller nodes and itself to estimate the average
favg = st

wt
[1].

In the restricted model of pull protocol, each called node responds to only
one pull request chosen from many pull requests of the caller nodes and sends
the data value x to the selected node in each round [6].

Frieze and Grimmet [10,13] proved that the number of rounds required to
disseminate the rumor to n nodes is σr = log2 n + loge n + o(log n). Boris Pit-
tel [10] showed a stronger result and proved that σr = log2 n + loge n + O(1) is
the number of rounds until all nodes have received the rumor.

3 Model

We consider n nodes connected by a static fully connected graph Gt = (V,Et ⊆
V ×V). In each round, every node sends messages to a random neighbor chosen
independently with uniform probability. The nodes initially know the ground
truth of the network size. Time is partitioned into synchronized rounds, where
in each round, every node exchanges sum s and weight w to approximate the
aggregation function f .

4 Algorithms

The Push-Pull Sum protocol inspired by the Push Sum protocol [4] and the Pull
Sum protocol [1] converges to the true mean because it has a mass conservation
property. Each node has a weight wi,t and a sum si,t. Initially, the weight wi,0

is equal to 1 and the sum si,0 is equal to data input value xi ∈ R
+
0 . The sum of

all weights
∑

i wi,t at any round t is always equal to n [4], which is the number
of nodes in the network.

Fig. 1. Depiction of Push-Pull Sum Protocol.

78 S. Nugroho et al.

Algorithm 1. Push-Pull Sum Protocol
procedure RequestData

Choose a random neighbor node v
Send

(su,t

2
,
wu,t

2

)
to the chosen node v and the node u itself

end procedure
procedure ResponseData

Ru,t ← Set of the nodes calling u at a round t
for all i ∈ Ru,t do

Reply to i with

(
su,t
2

|Ru,t| ,
wu,t

2
|Ru,t|

)

end for
end procedure
procedure Aggregate

Mu,t ← {(sm, wm)} messages sent to u at a round t − 1
su,t ← ∑

m∈Mu,t
sm, wu,t ← ∑

m∈Mu,t
wm

favg ← su,t

wu,t

end procedure

In every round of the communication process using the Push-Pull Sum proto-
col, each node will exchange information with other nodes in the network. Every
node calls the Aggregate procedure at the beginning of every round t except
the first round. Every node knows all messages sent to itself Mu,t ← {(sm, wm)}
at round t − 1. The nodes calculate the sum st ← ∑

m∈Mu,t
sm and the weight

wt ← ∑
m∈Mu,t

wm for computing the approximate value of the mean favg = st

wt
.

After executing the Aggregate procedure, each node runs the Request-
Data procedure. The caller node u selects a neighbor node v randomly. No
caller node chooses itself. The caller node u sends a pair

(su,t

2 ,
wu,t

2

)
to a chosen

neighbor node v and the node u itself.
At the end of every round t, every node calls the ResponseData procedure.

Each node counts the number of incoming calls |Ru,t| from nodes which request

information. The node u replies with
(su,t

2
|Ru,t| ,

wu,t
2

|Ru,t|
)

to all caller nodes that have
sent the message.

Figure 1 shows the message sent and received by the nodes in the network.
The Push calls are depicted by the solid arrows. The Pull calls are described by
the dashed arrows. The nodes i, l1, and l2 call the node j. The nodes k1 and
k2 call the node i. The node i and the node j also call themselves. The node h
called by node j. The Push call and the Pull call of node h are not shown. The
node h calls itself. The self calls of nodes k1, k2, l1, and l2 are not shown.

We analyze and measure the convergence speed of the Push-Pull Sum pro-
tocol and Pull Sum protocol using the contribution vector component vi,j,t and
the potential function [4] defined as:

Φt =
∑

i,j

(
vi,j,t − wi,t

n

)2

(1)

Adding Pull to Push Sum for Approximate Data Aggregation 79

The potential function that drops to a lower value than the previous value implies
good convergence and smaller errors. The proof of convergence using the poten-
tial function Φt in the Pull-Sum algorithm and the Push-Pull-Sum algorithm
follows a similar structure as in the Push-Sum protocol [4].

The vi,j,t component of the contribution vector stores the fractional value of
node j’s contribution at a round t. The length of the contribution vector is equal
to the size of the network n. Initially, the value of the vi,j,0 component is equal
to 1 for i = j and 0 for all i �= j [4]. The sum of all node j’s contributions at all
nodes i

∑
i vi,j,t is equal to 1 at any round t [4].

Theorem 1. Under the Push-Pull Sum protocol, the expected potential Φt

decreases exponentially. The conditional expectation of Φt+1 for the Push-Pull
Sum protocol is E [Φt+1|Φt = φ] =

(
2e−1
4e − 1

4n

)
φ.

Proof. Consider the values of contribution vector component and the weights
received by the node i at time t. The node k chooses the node f(k) = i as the
target call for sending a message. The node i also sends half of its contribution
vector component value and weight to a chosen neighbor l and itself. Let mi and
ml denote the number of nodes choosing node i and node l, respectively. The
node i receives the replied message from the node l. The contribution vector
component and the weight of the node i at round t + 1 are

vi,t+1 =
1
2vi,j,t

mi
+

1
2vl,j,t

ml
+

∑

k:f(k)=i

1
2
vk,j,t (2)

wi,t+1 =
1
2wi,t

mi
+

1
2wl,t

ml
+

∑

k:f(k)=i

1
2
wk,t (3)

The potential function of the next round Φt+1 is defined as

Φt+1 =
∑

i,j

⎛

⎝vi,j − wi

n

2mi
+

vl,j − wl

n

2ml
+

∑

k:f(k)=i

vk,j − wk

n

2

⎞

⎠

2

(4)

Φt+1 =
∑

i,j

(
vi,j − wi

n

2mi

)2

+
∑

i,j

(
vl,j − wl

n

2ml

)2

+
∑

i,j

⎛

⎝1
2

∑

k:f(k)=i

(
vk,j − wk

n

)
⎞

⎠

2

+
∑

i,j

(
1

2miml

(
vi,j − wi

n

) (
vl,j − wl

n

))

+
∑

i,j

⎛

⎝ 1
2mi

(
vi,j − wi

n

) ∑

k:f(k)=i

(
vk,j − wk

n

)
⎞

⎠

+
∑

i,j

⎛

⎝ 1
2ml

(
vl,j − wl

n

) ∑

k:f(k)=i

(
vk,j − wk

n

)
⎞

⎠ (5)

80 S. Nugroho et al.

In accordance with the mass conservation property, the sum of all node j’s
contribution at all nodes i

∑
i vi,j,t is equal to 1. The sum of all weights

∑
i wi,t

is always equal to n at any round t [4], so the term
∑

i

(
vi,j,t − wi,t

n

)
is equal to

zero. We apply mass conservation to the potential function and resolve the term
∑

i,j

(
1
2

∑
k:f(k)=i

(
vk,j − wk

n

))2

, then we get:

Φt+1 =
∑

i,j

1
4m2

i

(
vi,j − wi

n

)2

+
∑

i,j,l

1
4m2

l

(
vl,j − wl

n

)2

+
1
4

∑

i,j

∑

k:f(k)=i

(
vk,j − wk

n

)2

+
1
4

∑

i,j

∑

k �=k′:
f(k)=f(k′)=i

(
vk,j − wk

n

)(
vk′,j − wk′

n

)
(6)

We let Φt+1 consists of the terms Φa,t+1, Φb,t+1, Φc,t+1, and Φd,t+1 which
will be analysed separately. The terms can now be written as follows:

Φa,t+1 =
∑

i,j

1
4m2

i

(
vi,j − wi

n

)2

(7)

Φb,t+1 =
∑

i,j,l

1
4m2

l

(
vl,j − wl

n

)2

(8)

Φc,t+1 =
1
4

∑

i,j

∑

k:f(k)=i

(
vk,j − wk

n

)2

(9)

Φd,t+1 =
1
4

∑

i,j

∑

k �=k′:f(k)=f(k′)=i

(
vk,j − wk

n

) (
vk′,j − wk′

n

)
(10)

The expectation of Φa,t+1 is represented as

E [Φa,t+1|Φt = φ] =
∑

i,j

(
vi,j − wi

n

)2

1
4

∞∑

x=0

1
(x + 1)2

P [X = x]P [f(i) = i] (11)

For a large n, we can use the Poisson distribution with λ = 1.

E [Φa,t+1|Φt = φ] = φ
1
4

∞∑

x=0

e−1

(x + 1)(x + 1)!
(12)

Abramowitz and Stegun [8] wrote the series expansions of exponential inte-
gral with z > 0 as follows:

Ei (z) = γ + ln(z) +
∞∑

x=1

zx

xx!
(13)

Adding Pull to Push Sum for Approximate Data Aggregation 81

γ is Euler’s constant [8]. Applying the series expansions of exponential inte-
gral for the expectation of Φa,t+1 and z = 1 one gets:

E [Φa,t+1|Φt = φ] = φ
e−1

4
(Ei(1) − γ) (14)

The expectation of Φb,t+1 is defined as

E [Φb,t+1|Φt = φ] =
∑

i,j,l

(
vl,j − wl

n

)2

1
4

∞∑

x=0

1
(x + 2)2

P [X = x]P [f(l) = i] (15)

For a large n, we can use the Poisson distribution with λ = 1.

E [Φb,t+1|Φt = φ] = φ
1
4

∞∑

x=0

e−1

(x + 2)(x + 2)x!
(16)

Applying the series expansions of exponential integral for the expectation of
Φb,t+1 one gets:

E [Φb,t+1|Φt = φ] = φ
e−1

4
(−Ei(1) − 1 + e + γ) (17)

The expectation of Φc,t+1 is further defined as

E [Φc,t+1|Φ = φ] =
1
4
φ (18)

The expectation of Φd,t+1 is therefore

E [Φd,t+1|Φt = φ] =
1
4

⎛

⎝
∑

i,j,k

(
vi,j − wi

n

) (
vk,j − wk

n

)

−
∑

j,k

(
vk,j − wk

n

)2

⎞

⎠P [f(k) = f(k′)] (19)

E [Φd,t+1|Φt = φ] = − 1
4n

∑

j,k

(
vk,j − wk

n

)2

(20)

E [Φd,t+1|Φt = φ] = − 1
4n

φ (21)

82 S. Nugroho et al.

The expectation of the potential function of the next round Φt+1 is defined
as

E [Φt+1|Φ = φ] = E [Φ(a)t+1|Φt = φ] + E [Φ(b)t+1|Φt = φ]
+ E [Φ(c)t+1|Φt = φ] + E [Φ(d)t+1|Φt = φ] (22)

E [Φt+1|Φ = φ] =
1
4e

(e − 1)φ +
1
4
φ − 1

4n
φ (23)

E [Φt+1|Φ = φ] =
(

2e − 1
4e

− 1
4n

)
φ (24)

Theorem 2. Under the Pull Sum protocol, the conditional expectation of Φt+1

is E [Φt+1|Φt = φ] = e−1
e φ.

Proof. Define f(i) = k as the node k that is called by i in round t. Assume we
know all vi,j and the random choices f of all nodes at time t. Let mi and mk be
the number of pull calls received by node i and node k at time t, respectively.
Then we can write the potential of the next round t + 1 as:

Φt+1 =
∑

i,j

(
1

mi

(
vi,j − wi

n

)
+

1
mk

(
vk,j − wk

n

))2

(25)

Φt+1 =
1

m2
i

∑

i,j

(
vi,j − wi

n

)2

+
1

m2
k

∑

i,j

(
vk,j − wk

n

)2

+
2

mimk

∑

i,j,k

(
vi,j − wi

n

)(
vk,j − wk

n

)
(26)

We apply mass conservation to the potential function then we get:

Φt+1 =
1

m2
i

∑

i,j

(
vi,j − wi

n

)2

+
1

m2
k

∑

i,j

(
vk,j − wk

n

)2

(27)

The number of pull calls mi at node i is at least one because every node calls
itself. The number of calls mk at node k is at least two calls because it has a self
call and also receives a call from node i. Let mi = ci +1 and mk = ck +2, with ci

and ck being approximated by Poisson random variables. Taking the expectation
of Φt+1 for Pull Sum protocol we get:

E [Φt+1|Φt = φ] =
∑

i,j

∞∑

x=0

1
(x + 1)2

(
vi,j − wi

n

)2

P [ci = x]

+
∑

i,j,k

∞∑

x=0

1
(x + 2)2

(
vk,j − wk

n

)2

P [ck = x ∧ f(i) = k] (28)

Adding Pull to Push Sum for Approximate Data Aggregation 83

For large n: ci, ck, and f(i) can be considered independent and approximated
by Poisson random variables with λ = 1.

E [Φt+1|Φt = φ] =
∑

i,j

(
vi,j − wi

n

)2 ∞∑

x=0

1
(x + 1) (x + 1)!

1
e

+
∑

i,j,k

(
vk,j − wk

n

)2 ∞∑

x=0

1
(x + 2) (x + 2)

1
ex!

1
n

(29)

=
1
e

∑

i,j

(
vi,j − wi

n

)2 ∞∑

x=1

1
xx!

+
1
e

∑

i,j,k

(
vk,j − wk

n

)2 1
n

∞∑

x=1

1
(x + 1) (x + 1)!

(30)

Applying the series expansions of exponential integral for the expectation of
Φt+1 for Pull Sum protocol we get:

E [Φt+1|Φt = φ] =
e − 1

e
φ (31)

The conditional expectation of Φt+1 at round t + 1 for Push Sum [4,9] is

E [Φt+1|Φt = φ] =
(

1
2

− 1
4n

)
φ (32)

5 Experiments and Analysis

Every node calculates the approximate mean value of all data inputs using the
data samples retrieved from the other nodes during the communication process.
The input data values of nodes used for the experiments are sampled indepen-
dently at random from the uniform distribution between 0 and 100. We per-
formed the simulation processes of communication protocols using PeerSim [7].
Every round, the observer calculates the Mean Squared Error (MSE) [1] between
the ground truth average of all nodes’ data inputs and the average value of each
node. The MSE is computed by measuring the average squared error between
the estimated node’s mean value favg and the network’s mean ground truth
fgt. The favg is computed during the aggregation process using communication
protocols. The fgt is calculated by the observer.

MSE =
∑n

i=1 (fgt − favg)
2

n
(33)

Figure 2 shows the comparison of simulation results and the conditional
expectation for the Push-Pull Sum protocol, the Pull Sum protocol, and the
Push Sum protocol for network size 104 regarding the MSE and the time com-
plexity defined by the number of rounds. This comparison of the communication

84 S. Nugroho et al.

protocol experiment is run 50 simulations to increase statistical significance. The
Push-Pull Sum protocol has a lower MSE than that of the Push Sum protocol
and the Pull Sum protocol in terms of rounds, while the Pull Sum protocol has
a higher MSE than that of the Push Sum protocol.

Fig. 2. Comparison of the communication protocol algorithms regarding the MSE and
the round. Inputs are uniformly distributed and the number of nodes n is 104.

Figure 3 shows the comparison of simulation results and the conditional
expectation for the Push-Pull Sum protocol, the Pull Sum protocol, and the
Push Sum protocol for network size 104 regarding the MSE and the message
complexity defined by the cumulative messages sent by nodes. The Push-Pull
Sum protocol needs to send more messages than the Push Sum protocol to get
a lower MSE, even though the number of rounds used by the Push-Pull Sum
protocol is less. The dots in Fig. 3 depict the number of rounds. Overall, the
MSE decreases as the number of rounds and the cumulative number of messages
sent by nodes increase. The message complexity and the time complexity of the
Push-Pull Sum and Push Sum protocols have a trade-off regarding the MSE.

The simulation results are very close to the conditional expectation of Φt+1

results for the Push-Pull Sum protocol, the Pull Sum protocol, and the Push Sum
protocol. The Push Sum, the Pull Sum, and the Push-Pull Sum communication
protocols converge to the correct answer, which can be seen from the expected
potential that decreases in every round. The Push-Pull Sum protocol converges
faster than the Push Sum protocol and Pull Sum protocol to the ground truth.
The proof will appear in the full version.

Adding Pull to Push Sum for Approximate Data Aggregation 85

Fig. 3. Comparison of the communication protocol algorithms regarding the MSE and
the cumulative message sent. Inputs are uniformly distributed and the number of nodes
n is 104. The number of rounds is 30.

We observed the weight using communication protocols. The weight will influ-
ence the result of the estimated mean value calculated by the node. We let the
node u is the only one informed node with the weight w = 1 at the beginning of
the round, and all uninformed nodes, except the node u, have the weight w = 0.
The informed nodes disseminate the information to the other nodes using the
Push Sum protocol, Pull Sum protocol, and Push-Pull Sum protocol in rounds.
In this case, the sum of all weights

∑
i wi,t at any round t is always equal to 1.

The smallest weight in Proposition 1 could be analyzed.

Proposition 1. Let w′
t be the smallest weight of any informed nodes at any

round t. Then the smallest weight of informed nodes is not equal to 0 at any
round.

Proof. We let define the uninformed node with weight that is equal to 0 (wt = 0).
By induction, if the node gets information from other nodes, then the informed
node will have the positive weight (wt > 0). In the Push Sum protocol, Pull Sum
protocol, and Push-Pull Sum protocol, there is no operation to change the weight
from positive value to zero value during the dissemination process of weight. ��

Based on the theorem by Boris Pittel [10], with constant probability, the
random number of rounds until everybody receives the rumor is σr = log2 n +
loge n + O(1).

In the Push Sum protocol, the caller node divides the weight in half wt

2 and
sends it to the chosen neighbor and itself in each round t. Suppose the node v is
the only one with the weight w = 0 at round σr. The node v gets the smallest

86 S. Nugroho et al.

Fig. 4. Mean, maximum, minimum, and the smallest weight of nodes in the network.

weight at round σr from the node u which has not received the message from one
of its neighbors, but the node u sent half weight wt

2 to its neighbors (unlikely, but
possible). All nodes have received the rumor after σr steps. In every round, the
node v sends half weight wt

2 to its neighbors, but the node v has the possibility of
not getting the message from its neighbors until σr steps later. At round 2σr, the
node v has the smallest weight that will be sent to another node that already has
a certain weight. The decrease in weight in each round follows the conditional
expectation of Φt+1 for the Push Sum protocol [4,9]. The smallest weight of the
analytical bound of the Push Sum protocol with χ ≥ 1 and c ≥ 2 at any round,
with constant probability, is

w′
tPushSum

≥
(

1
2

− 1
4n

)c(log2 n+loge n+χ)

(34)

In the Pull Sum protocol, the caller node u will receive the weight wvt

|R|v
from the chosen node v and the weight wut

|R|u from itself. |R| is the number of

Adding Pull to Push Sum for Approximate Data Aggregation 87

requests received by a node. The node’s weight could potentially be quite small
because it receives many call requests or has yet to receive any rumors from its
selected neighbors for a while (unlikely, but possible). The decrease in weight in
each round follows the conditional expectation of Φt+1 for Pull Sum protocol in
Theorem 2. The smallest weight of the analytical bound of the Pull Sum protocol
with χ ≥ 1 and c ≥ 2 at any round, with constant probability, is

w′
tPullSum

≥
(

e − 1
e

)c(log2 n+loge n+χ)

(35)

In the Push-Pull Sum protocol, the caller node u will receive the weight
wk

2 from nodes which choose node u, the weight
wvt
2

|R|v from the chosen node v

and the weight
wut
2

|R|u from itself at round t. The weight of node could be quite
small because it has yet to receive any rumors from its chosen neighbors for a
while (unlikely, but possible). The decrease in weight in each round follows the
conditional expectation of Φt+1 for the Push-Pull Sum protocol in Theorem 1.
The smallest weight of the analytical bound of the Push-Pull Sum protocol with
χ ≥ 1 and c ≥ 1 at any round, with constant probability, is

w′
tPushPullSum

≥
(

2e − 1
4e

− 1
4n

)c(log2 n+loge n+χ)

(36)

Figure 4 shows the informed node’s minimum weight, maximum weight, and
average weight of the informed nodes using the Pull Sum protocol, the Push-Pull
Sum protocol, and the Push Sum protocol with different network sizes at different
rounds. The communication protocols have the property of mass conservation.
The smallest weight of the analytical bound in Fig. 4 refers to the analytical
bound for the Push Sum protocol, the Pull Sum protocol, and the Push-Pull
Sum protocol that are derived in Eq. 34, Eq. 35, and Eq. 36, respectively. The
minimum weight in Fig. 4 refers to the smallest non-zero weight of the nodes
that have received information in a round. We depict the analytical bound of the
smallest weight in each round to show that the minimum weight will not exceed
the theoretical smallest weight of the analytical bound value. In disseminating
the message, the smallest weight of informed nodes at any round will not equal
to zero because nodes will get the positive weight from other informed nodes.
There is no operation to set the weight to zero value using the communication
protocols. The uninformed node will get the message after the number of stages
σr = log2 n + loge n + O(1) with constant probability based on the theorem by
Boris Pittel [10].

6 Conclusion

Push-Pull Sum protocol converges to the ground truth result because of the mass
conservation property. The Push-Pull Sum protocol complements the Push Sum
protocol with the Pull Sum protocol. Based on the conditional expectation, the

88 S. Nugroho et al.

Push-Pull Sum protocol outperforms the Push Sum protocol and the Pull Sum
protocol in terms of time complexity. Overall, the MSE decreases as the number
of rounds and the cumulative number of messages sent by nodes increase. The
message complexity and the time complexity of the Push-Pull Sum and the Push
Sum protocols have a trade-off between the number of rounds and the number
of messages regarding the MSE.

References

1. Nugroho, S., Weinmann, A., Schindelhauer, C.: Trade off between accuracy and
message complexity for approximate data aggregation. In: 18th International Con-
ference on Distributed Computing in Sensor Systems, DCOSS 2022, pp. 61–64,
Marina del Rey, Los Angeles, CA, USA, 30 May 2022–01 June (2022). https://doi.
org/10.1109/DCOSS54816.2022.00021

2. Kuhn, F., Locher, T., Wattenhofer, R.: Tight bounds for distributed selection. In:
Proceedings of the Nineteenth Annual ACM Symposium on Parallel Algorithms
and Architectures, SPAA 2007, pp. 145–153. Association for Computing Machinery,
New York, NY, USA (2007). https://doi.org/10.1145/1248377.1248401

3. Karp, R., Schindelhauer, C., Shenker, S., Vocking, B.: Randomized rumor spread-
ing. In: Proceedings 41st Annual Symposium on Foundations of Computer Science,
pp. 565–574, Redondo Beach, CA, USA (2000). https://doi.org/10.1109/SFCS.
2000.892324

4. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate infor-
mation. In: Proceedings 44th Annual IEEE Symposium on Foundations of Com-
puter Science, pp. 482–491, Cambridge, MA, USA (2003). https://doi.org/10.1109/
SFCS.2003.1238221

5. Jesus, P., Baquero, C., Almeida, P.S.: A survey of distributed data aggregation
algorithms. IEEE Commun. Surv. Tutorials J. 17(1), 381–404 (2015). https://doi.
org/10.1109/COMST.2014.2354398

6. Daum, S., Kuhn, F., Maus, Y.: Rumor spreading with bounded in-degree. Theor.
Comput. Sci. J. 810, 43–57 (2020). https://doi.org/10.1016/j.tcs.2018.05.041

7. Montresor, A., Jelasity, M.: PeerSim: a scalable P2P simulator. In: Proceedings of
the IEEE Ninth International Conference on Peer-to-Peer Computing, pp. 99–100.
Seattle, WA, USA (2009). https://doi.org/10.1109/P2P.2009.5284506

8. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formu-
las, Graphs, and Mathematical Tables. Dover, New York (1964)

9. Kempe, D.: Structure and dynamics of information in networks (2021). http://
david-kempe.com/teaching/structure-dynamics.pdf. Accessed 17 Oct 2022

10. Pittel, B.: On spreading a rumor. SIAM J. Appl. Math. 47(1), 213–223 (1987).
https://www.jstor.org/stable/2101696

11. Chierichetti, F., Lattanzi, S., Panconesi, A.: Rumor spreading in social networks.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. LNCS, vol. 5556, pp. 375–386. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02930-1 31

12. Weinmann, A.: Simulation, evaluation, and analysis of data aggregation methods
under different random call models suitable for time series data. Master thesis.
University of Freiburg Faculty of Engineering Department of Computer Science
Chair of Computer Networks and Telematics, Freiburg, Germany (2022)

https://doi.org/10.1109/DCOSS54816.2022.00021
https://doi.org/10.1109/DCOSS54816.2022.00021
https://doi.org/10.1145/1248377.1248401
https://doi.org/10.1109/SFCS.2000.892324
https://doi.org/10.1109/SFCS.2000.892324
https://doi.org/10.1109/SFCS.2003.1238221
https://doi.org/10.1109/SFCS.2003.1238221
https://doi.org/10.1109/COMST.2014.2354398
https://doi.org/10.1109/COMST.2014.2354398
https://doi.org/10.1016/j.tcs.2018.05.041
https://doi.org/10.1109/P2P.2009.5284506
http://david-kempe.com/teaching/structure-dynamics.pdf
http://david-kempe.com/teaching/structure-dynamics.pdf
https://www.jstor.org/stable/2101696
https://doi.org/10.1007/978-3-642-02930-1_31

Adding Pull to Push Sum for Approximate Data Aggregation 89

13. Frieze, A.M., Grimmett, G.R.: The shortest-path problem for graphs with random
arc-lengths. Discr. Appl. Math. 10(1), 57–77 (1985). https://doi.org/10.1016/0166-
218X(85)90059-9

14. Chierichetti, F., Giakkoupis, G., Lattanzi, S., Panconesi, A.: Rumor spreading and
conductance. J. Assoc. Comput. Mach. 65(4), 1–21 (2018). Article No.: 17. https://
doi.org/10.1145/3173043

15. Daknama, R., Panagiotou, K., Reisser, S.: Robustness of randomized rumour
spreading. Comb. Probab. Comput. 30(1), 37–78 (2021). https://doi.org/10.1017/
S0963548320000310

16. Casas, M., Gansterer, W.N., Wimmer, E.: Resilient gossip-inspired all-reduce algo-
rithms for high-performance computing: potential, limitations, and open questions.
Int. J. High Perform. Comput. Appl. 33(2), 366–383 (2019). https://doi.org/10.
1177/1094342018762531

17. Mahlmann, P.: Peer-to-peer networks based on random graphs. Dissertation (PhD).
Fakultät für Elektrotechnik, Informatik und Mathematik, Universität Paderborn,
Verlagsschriftenreihe des Heinz Nixdorf Instituts, Paderborn, Band 283, Paderborn
(2010)

18. Schindelhauer, C.: Communication network problems (2002). http://archive.cone.
informatik.uni-freiburg.de/pubs/Habil.pdf. Accessed 17 Oct 2022

https://doi.org/10.1016/0166-218X(85)90059-9
https://doi.org/10.1016/0166-218X(85)90059-9
https://doi.org/10.1145/3173043
https://doi.org/10.1145/3173043
https://doi.org/10.1017/S0963548320000310
https://doi.org/10.1017/S0963548320000310
https://doi.org/10.1177/1094342018762531
https://doi.org/10.1177/1094342018762531
http://archive.cone.informatik.uni-freiburg.de/pubs/Habil.pdf
http://archive.cone.informatik.uni-freiburg.de/pubs/Habil.pdf

Exploring Trade-Offs in Partial Snapshot
Implementations

Nikolaos D. Kallimanis1(B), Eleni Kanellou2, Charidimos Kiosterakis4,
and Vasiliki Liagkou3

1 ISI/Athena RC & University of Ioannina, Arta, Greece
nkallima@isi.gr

2 ICS-FORTH, Heraklion, Greece
kanellou@ics.forth.gr

3 University of Ioannina, Arta, Greece
liagkou@uoi.gr

4 Department of Computer Science, University of Crete, Rethymnon, Greece

xarkio@gmail.com

Abstract. A snapshot object is a concurrent object that consists of m
components, each storing a value from a given set. Processes can read-
/modify the state of the object by performing Update and Scan opera-
tions. An Update operation gives processes the ability to change the value
of a component, while a Scan operation returns a “consistent” view of all
the components. In single-scanner snapshot objects, at most one Scan is
performed at any given time (whilst supporting many concurrent Update
operations). Multi-scanner snapshot objects support multiple concurrent
Scan operations at any given time.

In this paper, we propose the λ-scanner snapshot, a variation of the
snapshot object, which supports any fixed amount of 0 < λ ≤ n different
Scan operations being active at any given time. Whenever λ is equal to
the number of processes n in the system, the λ-scanner object implements
a multi-scanner object, while in case that λ is equal to 1, the λ-scanner
object implements a single-scanner object. We present λ−Snap, a wait-
free λ-scanner snapshot implementation that has a step complexity of
O(λ) for Update operations and O(λm) for Scan operations. For ease of
understanding, we first provide 1 − Snap, a simple single-scanner ver-
sion of λ − Snap. The Update in 1 − Snap has a step complexity of
O(1), while the Scan has a step complexity of O(m). This implementa-
tion uses O(m) LL/SC registers. The space complexity of λ − Snap is
O(λm). λ−Snap provides a trade-off between the step/space complexity
and the maximum number of Scan operations that the system can afford
to be active on any given point in time. The low space complexity that
our implementations provide makes them more appealing in real system
applications. Moreover, we provide partial λ − Snap, a slightly modified
version of λ − Snap, which supports dynamic partial scan operations.
This object supports modified Scan operations that can obtain a part of
the snapshot object avoiding to read the whole set of components.

Keywords: Snapshots · concurrent objects · wait-free · dynamic
snapshots

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 90–105, 2023.
https://doi.org/10.1007/978-3-031-44274-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_8&domain=pdf
https://doi.org/10.1007/978-3-031-44274-2_8

Exploring Trade-Offs in Partial Snapshot Implementations 91

1 Introduction

At the heart of exploiting the potential that multi-core CPUs provide, are
concurrent data structures, since they are essential building blocks of concur-
rent algorithms. The design of concurrent data structures, such as lists [25],
queues [18,23], stacks [6,23], and even trees [8,12] is a thoroughly explored topic.
Compared to sequential data structures, the concurrent ones can simultaneously
be accessed and/or modified by more than one process. Ideally, we would like to
have the best concurrent implementation, in terms of space and step complexity,
of any given data structure. However, this cannot always be the case since the
design of those data structures is a complex task.

In this work, we present a snapshot object, a concurrent object that consists
of components which can be read and modified by any process. Such objects
are used in numerous applications in order to provide a coherent “view” of the
memory of a system. They are also used to design and validate various concurrent
algorithms such as the construction of concurrent timestamps [14], approximate
agreement [5], etc., and the ideas at their core can be further developed in
order to implement more complex data structures [2]. Applications of snapshots
also appear in sensor networks where snapshot implementations can provide a
consistent view of the state of the various sensors of the network. Under certain
circumstances, snapshots can even be used to simulate concurrent graphs, as
seen e.g. in [20]. The graph data structure is widely used for the representation
of transport networks [1], video-game design [9], automated design of digital
circuits [19], making the study of snapshot objects pertinent even to these areas.

In order to be fault-tolerant against process failure, a concurrent object has
to have strong progress guarantees, such as wait-freedom, which ensures that
an operation invoked by any process that does not fail, returns a result after
it executes a finite number of steps. We provide two wait-free algorithms, an
algorithm for a single-scanner snapshot object, i.e. a snapshot object where
only one process is allowed to read the values of the components, although any
process may modify the values of components; and an algorithm for a λ-scanner
snapshot object, where up to λ predefined processes may read the components
of the object, while any process may change the value of any component. Note
that λ should be lower than or equal to n, i.e. the number of processes in the
system. In case λ is equal to n, we obtain a general multi-scanner snapshot
object. Our implementation allows us to study trade-offs, since the increase of
the value of λ leads to a linear increase of the space and step complexity. Our
Scan operations can be modified to obtain partial snapshot implementations (see
Sects. 3.1 and 4.1), that obtain the values of just a subset of the components.

λ−Snap has a low space complexity of O(λm), where m is the number of the
components of the snapshot object. This does not come with major compromises
in terms of step complexity, since the step complexity of an Update operation
is O(λ), while that of a Scan operation is O(λm). As is common practice from
many state-of-the-art implementations [13,24], we use registers of unbounded
size, although the only unbounded value they store is a sequence number.

92 N. D. Kallimanis et al.

1.1 Related Work

Most of current multi-scanner snapshot implementations that use registers of
relatively small size either have step complexity that is linear to the number
of processes n [4,15] or the space complexity is linear to n [3,15–17,20]. An
exception is the multi-scanner snapshot implementation presented by Fatourou
and Kallimanis in [11], with O(m) step complexity for Scan operations and O(1)
step complexity for Update operations. In contrast to λ − Snap, this snapshot
implementation requires unrealistically large registers that contain a vector of
m values as well as a sequence number, and does not support partial snapshots.

Similarly, the implementation by Bashari and Woelfel [7] nominally has a
step complexity of O(1) for Scan operations and a step complexity of O(log m)
for Update operations. However, Scan operations do not return anything, and in
order for a process to obtain the value of a particular component in the consistent
view captured by a Scan, it has to use Observe, an auxiliary operation with
complexity O(log m), thus resulting in a step complexity of O(m log m) to obtain
the values of all m components of the snapshot. While the combination of Scan
and Observe allow for a partial snapshot, Bashari and Woelfel’s implementation
allows for a single writer, contrary to ours which is multi-writer.

The step complexity of λ − Snap is O(λm) for Scan and O(λ) for Update,
while it uses O(λm) LL/SC registers. In cases where λ is a relatively small
constant, the number of registers can be reduced almost to O(m), while the step
complexity of Scan is almost linear to m and the step complexity of Update is
almost constant. Compared to current single-scanner snapshot implementations
(e.g. [10,11,13,17,22,24]), λ−Snap allows for more than one Scan operation at
each point of time by slightly worsening the step complexity. In the worst case
where λ equals n, λ−Snap uses a smaller amount of registers than [4,16,17,24].
To the best of our knowledge, λ − Snap provides the first trade-off between the
number of active scanners and the step/space complexity.

Riany et al. have presented in [24] an implementation of snapshot objects
that uses O(n2) registers and achieves O(n) and O(1) step complexity for Scan
and Update operations respectively. Attiya, Herlihy & Rachman present in [4] a
snapshot object that has O(n log2 n) step complexity for both Scan and Update
operations, while it uses dynamic Test&Set registers.

Kallimanis and Kanellou [20] present a wait-free implementation of a graph
object, which can be slightly modified to simulate a snapshot object with partial
Scan operations. Update and Scan operations have step complexity of O(k),
where k is the number of active processes in a given execution. While the space
complexity of O(n + m) is low, the registers used are of unbounded size, since
they have to be able to contain O(n) integer values.

Imbs and Raynal [15] provide two implementations of a partial snapshot
object. The first uses simpler registers than the second one, but it has a higher
space complexity. Thus, we concentrate on the second implementation that
achieves a step complexity of O(nr) for Scan and O(rin) for Update, where
ri is a value relative to the helping mechanism provided by Update operations.
This implementation uses O(n) Read/Write (RW) and LL/SC registers and

Exploring Trade-Offs in Partial Snapshot Implementations 93

provides a new helping mechanism by implementing the “write first, help later”
technique. Attiya, Guerraoui and Ruppert [3] provide a partial snapshot algo-
rithm that uses O(m+n) CAS registers. The step complexity for Update is O(r2)
and for Scan is O(C

2

Sr2max), where CS is the number of active Scan operations,
whose execution interval overlaps with the execution interval of S, and rmax

is the maximum number of components that any Scan operation may read in
any given execution. A summary of the above comparisons that follow a similar
model as λ − Snap is presented in Table 1.

Table 1. Known multi-scanner snapshot implementations.

Implementation Partial Regs type Regs number Scan Update

λ-Snap LL/SC & RW O(λm) O(λm) O(λ)

partial λ-Snap LL/SC & RW O(λm) O(λr) O(λ)

Attiya, et. al. [4] dynamic Test&Set unbounded O(n log2 n) O(n log2 n)

Fatourou & Kallimanis [11] CAS & RW O(m) O(m) O(1)

Jayanti [17] CAS or LL/SC & RW O(mn2) O(m) O(1)

Jayanti [16] CAS or LL/SC & RW O(mn2) O(m) O(m)

Riany et al. [24] CAS or LL/SC & Fetch&Inc & RW O(n2) O(n) (1)

Kallimanis & Kanellou [20] CAS or LL/SC & RW O(n + m) O(k) O(k)

D. Imbs & M. Raynal [15] LL/SC & RW O(n) O(nr) O(rin)

Attiya, Guerraoui & Ruppert [3] CAS & RW O(n + m) O(r2) O((CS)2r2max)

We now compare λ −Snap and 1−Snap snapshot with other single-scanner
algorithms and present a summary of their basic characteristics in Table 2.

In [11,13], Fatourou and Kallimanis present T − Opt, a single-scanner snap-
shot implementation with O(1) step complexity for Update and O(m) for Scan.
Through trivial modifications to T − Opt, a partial snapshot implementation
with O(r) step complexity for Scan and O(1) for Update could be derived. In
contrast to 1−Snap, T −Opt uses an unbounded number of registers. Moreover,
RT and RT − Opt presented in [11,13] do not support partial Scan operations.

In [17], Jayanti presents a single-scanner snapshot algorithm with O(1) step
complexity for Update and O(m) for Scan, while it uses O(m) LL/SC & RW
registers. The algorithm of [17] could be easily modified to support partial Scan
operations without having any negative impact on step and space complexity.
Therefore, 1 − Snap and λ − Snap (for λ = 1) match the step complexity
of implementations presented in [11,13,17], which is O(m) for Scan and O(1)
for Update. Notice that the single-scanner implementations of [11,13] use RW
registers, while 1−Snap and λ−Snap use LL/SC registers. The partial versions
of 1−Snap and λ−Snap (for λ = 1) have step complexity of Scan that is reduced
to O(r), where r is the amount of components the Scan operation wants to read.

Kirousis et al. [22] present a single-scanner snapshot that uses an unbounded
number of registers and has unbounded time complexity for Scan. A regis-
ter recycling technique is applied, resulting in a snapshot implementation with
O(mn) step complexity for Scan and O(1) for Update. Riany et al. [24] present
a single-scanner implementation which is a simplified variant of the algorithm

94 N. D. Kallimanis et al.

presented in [22] and achieves O(1) step complexity for Update and O(n) for
Scan. Through trivial modifications, a partial snapshot implementation could
be derived. However, this implementation is a single-updater snapshot object,
since it does not allow more than one processes to update the same compo-
nent at each point of time. In [10,13], Fatourou and Kallimanis provide the
Checkmarking algorithm that achieves O(m2) step complexity for both Scan
and Update, while using O(m) RW registers. It does however not support partial
Scan operations.

Table 2. Known single-scanner snapshot implementations.

Implementation Partial Regs type Regs number Scan Update

1 − Snap LL/SC & SW RW O(m) O(m) O(1)

1 − Snap (partial) LL/SC & SW RW O(m) O(r) O(1)

Checkmarking [10,13] RW m + 1 O(m2) O(m2)

T − Opt [11,13](modified) RW Unbounded O(m) O(1)

RT [11,13] RW O(mn) O(n) O(1)

RT − Opt [11,13] RW O(mn) O(m) O(1)

Kirousis et al. [22] RW O(mn) O(mn) O(1)

Riany et al. [24] RW n + 1 O(n) O(1)

Jayanti [17] LL/SC & RW O(m) O(m) O(1)

2 Model

We consider a system consisting of n uniquely distinguishable processes modeled
as sequential state machines, where processes may fail by crashing. The processes
are asynchronous and communicate through shared base objects. A base object
stores a value and provides a set of primitives, through which the object’s value
can be accessed and/or modified. A Read − Write register R (RWregister), is
a shared object that stores a value from a set and that supports the primitives:
(i) Write (R, v) that writes the value v in R, and returns true, and (ii) Read(R)
that returns the value stored in R. An LL/SC register R is a shared object that
stores a value from a set and supports the primitives: (i) LL(R) which returns
the value of R, and (ii) SC(R, v) which can be executed by a process p only
after the execution of an LL(R) by the same process. An SC(R, v) writes the
value v in R only if the state of R hasn’t changed since p executed the last
LL(R), in which case the operation returns true; it returns false otherwise. An
LL/SC − Write register R is a shared object that stores a value from a set.
It supports the same primitives as an LL/SC register as well as the primitive
Write(R, v) that writes the value v in R, and returns true.

A shared object is a data structure that can be accessed and/or modified
by processes in the system through a set of operations that it provides. An

Exploring Trade-Offs in Partial Snapshot Implementations 95

implementation of a shared object uses base objects to store the state of the
shared object and provides algorithms that use base objects to implement each
operation of the shared object. An operation consists of an invocation by some
process and terminates by returning a response to the process that invoked it.

Each process also has an internal state. A configuration C of the system is a
vector that contains the state of each of the n processes and the value of each of
the base objects at some point in time. In an initial configuration, the processes
are in an initial state and the base objects hold an initial value. We denote an
initial configuration by C0. A step taken by a process consists either of a primitive
to some base object or the response to that primitive. Operation invocations and
responses are also considered steps. Each step is executed atomically.

An execution a is a (possibly infinite) sequence Co, e1, C1, e2, C2 . . . , that
alternates between configurations and steps, starting from an initial configu-
ration Co, where each Ck, k > 0, results from applying step ek to configura-
tion Ck−1. If C is a configuration that is present in a we write C ∈ a. An
execution interval of a given execution a is a subsequence of a which starts with
some configuration Ck and ends with some configuration Cl (where 0 ≤ k < l).
An execution interval of an operation op is an execution interval with its first
configuration being the one right after the step where op was invoked and last
being the one right after the step where op responded. Given an execution a,
we say that a configuration Ck precedes Cl if k < l. Similarly, step ek precedes
step el if k < l. A configuration Ck precedes the step el in a, if k < l. On the
other hand, step el precedes Ck in a if l ≤ k. Furthermore, op precedes op′ if
the step where op responds precedes the step where op′ is invoked. Given two
execution intervals I, I ′ of a, we say that I precedes I ′ if any configuration C
contained in I precedes any configuration C ′ contained in I ′. An operation op is
called concurrent with an operation op′ in a if there is at least one configura-
tion C ∈ a, such that both op and op′ are active in C. An execution a is called
sequential if in any given C ∈ a there is at most one active op. An execution a
that is not sequential is called concurrent. Executions a and a′ are equivalent if
they contain the same operations and only those operations are invoked in both
of them by the same process, which in turn have the same responses in a and a′.

An execution a is linearizable if it is possible to assign a linearization point,
inside the execution interval of each operation op in a, so that the response of op
in a is the same as its response would be in the equivalent sequential execution
that would result from performing the operations in a sequentially, following
the order of their linearization points. An implementation of a shared object is
linearizable if all executions it produces are linearizable. An implementation IM
of a shared object O is wait − free if any operation op, of a process that does
not crash in a, responds after a finite amount of steps. The maximum number
of those steps is called step complexity of op.

A snapshot S is a shared object that consists of m components, each taking
values from a set, that provides the following two primitives: (i) Scan() which
returns a vector of size m, containing the values of m components of the object,
and (ii) Update(i, v) which writes the non ⊥ value v on the i − th component of

96 N. D. Kallimanis et al.

the object. A partial snapshot S is a shared object that consists of m distinct
components denoted by co, c1, . . . , cm−1, each taking values from a set, that
provides the following two primitives: (i) PartialScan(A) which, given a set A
that contains integer values ranging from 0 to m − 1, returns for each i ∈ A the
value of the component ci, and (ii) Update(i, v) which writes the non ⊥ value
v on ci. A snapshot implementation is single − scanner if in any execution a
produced by the implementation there is no C ∈ a in which there are more than
one active Scan operations, and it is λ − scanner if there is no C ∈ a in which
there are more than λ active Scan operations.

3 1-Snap

In this section, we present the 1−Snap snapshot object (see Listings 1.1-1.2). In
1−Snap, only a single, predefined process is allowed to invoke Scan operations,
while any processes can invoke Update operations on any component. We provide
1 − Snap just for presentation purposes, since it is simpler than λ − Snap.

We start by presenting the high-level ideas of the implementation. 1 − Snap
uses a shared integer seq for providing sequence numbers to operations with an
initial value of 0. Given that only Scan operations write the seq register (line 10
and since in any configuration there is only one active Scan, the seq register
can safely be RW . Each Scan operation increases the value of seq by one and
uses this value as its sequence number (line 32). Each Update operation gets a
sequence number by reading the value of seq (line 47). These sequence numbers
give us the ability to order the operations of an execution, e.g., any operation
op that is applied with a smaller sequence number than the sequence number of
some other operation op′ is considered to be applied before op′. Thus, an Update
operation that is applied with a sequence number less than that written by some
Scan ’precedes’ this specific Scan, while an Update that has an equal or greater
sequence number follows the this Scan. Thus, the increase of seq by a Scan
specifies which Update operations will be visible and which will not.

1 − Snap employs the pre values and values shared vectors consisting of m
registers each. The i-th register of the values array stores the current value of the
i-th component. For helping Scan operations to return a consistent view, the i-th
register of pre values array preserves a previous value of the component and not
the current one. Notably, maintaining an older value other than the current one
for each component simplifies design of the snapshot object and the assignment
of linearization points. Specifically, Update operations with a sequence number
less than the sequence number of a Scan are safely linearized before the Scan
and their value is preserved in pre values and returned by the Scan (even if
there are Update operations that have obliterate the contents of value and have
a sequence number that is equal or greater than that of the Scan). Moreover,
Update operations with a sequence number greater ore equal to the sequence
number of a Scan are linearized after the Scan operation. A similar technique
is employed in the snapshot implementations presented in [11]. However, the
implementations of [11] use Read/Write registers instead of LL/SC and serious
effort was put on recycling the Read/Write registers.

Exploring Trade-Offs in Partial Snapshot Implementations 97

Listing 1.1. Data Structures of 1-Snap.

1 struct va l u e s t r u c t {
2 va l value ;
3 int seq ;
4 va l proposed va lue ;
5 } ;
6 struct p r e v a l u e s t r u c t {
7 va l value ;
8 int seq ;
9 } ;

10 shared int seq ;
11 shared ValueStruct va lues [0 . .m−1]=[<⊥ ,⊥ ,⊥ > , . . . , <⊥ ,⊥ ,⊥ >] ;
12 shared PreValueStruct p r e va lu e s [0 . .m−1]=[<⊥ ,⊥ > , . . . , <⊥ ,⊥ >] ;
13 p r i va t e int view [0 . .m−1]=[⊥ ,⊥ , . . . , ⊥ ,⊥] ;

We now briefly describe Update operations. Each of the components has a
state that alternates between propose state and apply update state, while the
initial state of any component is apply update. The role of the propose state is to
allow Update operations to propose a new value for a component (lines 17-21).
In the propose state, more than two processes may try to propose a new value for
a specific component. In this case, only one of the Update operations (i.e., the
winner) will be proposed successfully and the remaining Update operations will
be considered to have been obliterated by the winner Update. In the apply update
state, Update operations try to preserve the current value of the component to
the pre value register, and save the proposed value of the component (written by
the winner updater) to the appropriate values register. The code that handles
the apply update state is provided by the ApplyUpdate (see Listing 1.2). Notably,
the ApplyUpdate function is also executed by Scan operations in each of the
component for helping any pending Update operations to finish their execution.
Whenever an Update starts its execution, the state of a component could be
either apply update or propose. In case that the state is in apply update, the
Update should first help any other process to finish its execution and after that
it will change the component’s state to propose. For this reason the code for
alternating the state of the component between propose and apply update states
is executed twice (line 16).

We now turn our attention to Scan operations. As a first step, a Scan opera-
tion increases the value of seq by one and uses this value as its sequence number
(line 32). Afterwards, for each component of the snapshot object (lines 33-41),
Scan performs the following: Afterwards, for each component i, a Scan operation
does the following steps:

1. It helps any pending Update on the component to finish it’s execution by
calling ApplyUpdate (line 34),

2. it reads the values[i] and pre values[i] registers (lines 35, 36),
3. in case the sequence number read in values[i] is less than the sequence number

of the Scan, the value read on values[i] should be returned; this value is
written by an Update that is old enough and it should be safely linearized
before the increment of seq by the Scan,

98 N. D. Kallimanis et al.

Listing 1.2. Update and Scan implementations of 1-Snap.
14 void Update (int j , va l va lue){
15 ValueStruct up value , cu r va lue ;
16 for (int i =0; i <2; i++){
17 cur va lue=LL(va lues [j]) ;
18 up value=cur va lue ;
19 up value . proposed va lue=value ;
20 i f (cu r va lue . proposed va lue==⊥){
21 i f (SC(va lues [j] , up value)){
22 ApplyUpdate (j) ;
23 break ;
24 }
25 }
26 ApplyUpdate (j) ;
27 }
28 }

29 po in t e r Scan () {
30 ValueStruct v1 ;
31 PreVa lue s t ruct v2 ;
32 seq=seq+1;
33 for (int j =0; j<m; j++){
34 ApplyUpdate (j) ; // Help any other running Update
35 v1=va lues [j] ;
36 v2=pre va lu e s [j] ;
37 i f (v1 . seq<seq)
38 view [j]=v1 . value ;
39 else
40 view [j]=v2 . value ;
41 }
42 return view [0 . .m−1] ;
43 }

44 void ApplyUpdate (int j) {
45 ValueStruct cu r va lue ;
46 LL(va lues [j]) ;
47 cu r s eq=seq ;
48 for (t=0; t <2; t++) {
49 LL(p r e va lu e s [j]) ;
50 cur va lue=va lues [j] ;
51 i f (cu r va lue . seq<seq)
52 SC(p r e va lu e s [j] ,< cu r va lue . seq , cu r va lue . value >) ;
53 }
54 i f (cu r va lue . proposed va lue !=⊥)
55 SC(va lues [j] ,< cu r va lue . proposed value , cur seq , ⊥>) ;
56 }

4. otherwise the value read in pre values[i] is returned, since the value[i] is
written by an Update that should be linearized after the increment of seq.

Finally, Scan returns its copy of the snapshot object (line 42).
The correctness proof of 1 − Snap is provided in [21]. Listings 1.1-1.2 imply

that 1 − Snap uses O(m) registers.

Theorem 1. 1−Snap is a wait-free linearizable concurrent single-scanner snap-
shot implementation that uses O(m) registers, and it provides O(1) step com-
plexity to Update operations and O(m) to Scan operations.

Exploring Trade-Offs in Partial Snapshot Implementations 99

Listing 1.3. Partial version of 1-Snap.

1 void Part ia lScan (A){
2 seq=seq+1;
3 for each j in A{
4 ApplyUpdate (j) ;
5 Read (j) ;
6 }
7 }

8 va l Read (j){
9 ValueStruct v1 ;

10 PreVa lue s t ruct v2 ;
11 v1=va lues [j] ;
12 v2=pre va lu e s [j] ;
13 i f (v1 . seq<seq) view [j]=v1 .

value ;
14 else view [j]=v2 . value ;
15 return view [j] ;
16 }

3.1 A Partial Version of 1-Snap

The 1 − snap snapshot implementation can be trivially modified in order to
implement a partial snapshot object (see Listing 1.3). In order to do that, a new
function Read is introduced. This function is invoked by PartialScan operations
in order to read the values of the components indicated by A, which a subset of
the components of the snapshot object. For each component cj that is contained
in A, the PartialScan operation tries to help an Update operation that wants
to update the value of cj by invoking the ApplyUpdate. Afterwards, it reads the
value of cj by invoking the Read function.

4 λ-Snap

We now present the λ − Snap snapshot object (see Listings 1.4-1.6). In λ −
Snap, only a predefined set of 1 ≤ λ ≤ n processes are allowed to invoke Scan
operations, while all processes can perform Update operations on any component.

We start by presenting the high-level ideas of the implementation. Similarly
to 1−Snap, each Scan and Update operation gets a sequence number by reading
the shared register seq. However, in λ − Snap seq is a shared LL/SC register
(line 14), which takes integer values and only Scan operations are able to increase
its value by one (lines 36-47). The reason is that in contrast to 1 − Snap, Scan
operations in λ−Snap get sequence numbers in a more complex way (lines 36-47)
that resembles a consensus protocol. Notably, more than one Scan operations
may get the same sequence number. However, for all Scan operations that get
the same sequence number, the following hold: (1) their execution intervals are
overlapping, (2) the increment of the seq register using LL/SC instructions
takes place inside the execution interval of all of them, and (3) all these Scan
operations are eventually linearized at the same point of the increment of reg-
ister seq (see [21] for the correctness of λ − Snap). We remark that assigning
the same sequence number to overlapping Scan operations greatly simplifies the
algorithm’s design and correctness proof (i.e., assignment os linerization points).
Similarly to 1 − Snap, an Update operation U that has been applied with a
sequence number greater or equal to the sequence number of some Scan S oper-
ation, is not visible to S. Since U is not visible to S, U is linearized after S.

100 N. D. Kallimanis et al.

Similarly to 1 − Snap, λ − Snap employs the pre values and values shared
vectors consisting of m registers each (see Listing 1.4). In the i-th register of
the values array, the current value of the i-th component is stored. To help
Scan operations return a consistent view, the pre values array stores previous
values of the components. However, in λ − Snap, the pre values array is 2D
(i.e., λ × m) since it has to preserve at most λ older values per component (i.e.,
one per scanning process). Moreover, each process Sp that is able to execute
Scan operations, owns the i-th register of s table array (line 17) that stores the
sequence number gotten by Sp and the write enable bit. The write enable bit
indicates if Sp wants or not to increase seq and gives the ability to running
scanners to help each other while getting sequence numbers.

As a first step, Sp tries to increase the value of seq by executing the consensus-
like protocol of lines 36-47 and gets a sequence number. Recall that more than
one Scan operations may get the same sequence number. Afterwards, for each
component i, Sp does the following steps:

1. It helps any pending Update on the component to finish it’s execution by
calling ApplyUpdate,

2. it reads the values[i] and pre values[p][i] registers,
3. in case the sequence number read in values[i] is less than the sequence number

of sp, the value read on values[i] should be returned; this value is written by
an Update that is old enough and it should be safely linearized before the
increment of seq by Sp,

4. otherwise the value read in pre values[p][i] is returned, since the value[i] is
written by an Update that should be linearized after the increment of seq.

Finally, Sp returns its copy of the snapshot object (line 57).
In general, Update operations in λ−Snap operate similar to those of 1−Snap.

The main differentiation is that the pre values array is 2D (i.e., λ × m) since it
has to preserve λ older values at most (one per scanning process). Specifically,
whenever an Update updates the i-th component, it performs the following:

Listing 1.4. Data structures of λ-Snap.
1 struct ValueStruct {
2 va l value ;

3 va l proposed va lue ;

4 int seq ;

5 } ;

6 struct PreValueStruct {
7 va l value ;

8 int seq ;

9 } ;

10 struct ScanStruct {
11 int seq ;

12 boolean wr i t e enab l e ;

13 } ;

14 shared int seq ;

15 shared ValueStruct va lues [0 . .m−1]=[<⊥ ,⊥ ,⊥ > , . . . , <⊥ ,⊥ ,⊥ >] ;

16 shared PreValueStruct p r e va lu e s [0 . . λ −1] [0 . .m−1]=[<⊥ ,⊥ > , . . . , <⊥ ,⊥ >] ;

17 shared ScanStruct s t a b l e [0 . . λ−1]=[<⊥,0>,<⊥ ,0 > , . . . , <⊥ ,0 >] ;

18 p r i va t e int view [0 . .m−1]=[⊥ ,⊥ , . . . , ⊥ ,⊥] ;

Exploring Trade-Offs in Partial Snapshot Implementations 101

Listing 1.5. Scan and Update implementation of λ-Snap.
19 void Update (int j , va l va lue){
20 ValueStruct up value , cu r va lue ;

21 for (i =0; i <2; i++){
22 cur va lue=LL(va lues [j]) ;

23 up value=cur va lue ;

24 up value . proposed va lue=value ;

25 i f (cu r va lue . proposed va lue==⊥){
26 i f (SC(va lues [j] , up value)){
27 ApplyUpdate (j) ;

28 break ;

29 }
30 }
31 ApplyUpdate (j) ;

32 }
33 }

34 po in t e r Scan () { // Executed by p r o c e s s Sp wi th i d p

35 s t a b l e [p]=<1, seq >;

36 for (i =0; i <3; i++){
37 cur s eq=LL(seq) ;

38 for (j =0; j<λ ; j++){
39 c u r s t a b l e=LL(s t a b l e [j]) ;

40 i f (c u r s t a b l e . seq<seq+2 && cu r s t a b l e . w r i t e enab l e==1){
41 c u r s t a b l e . w r i t e enab l e =0;

42 c u r s t a b l e . seq=seq+2;

43 SC(s t a b l e [j] , c u r s t a b l e) ;

44 }
45 }
46 SC(seq , cu r s eq+1) ;

47 }
48 for (j =0; j<m; j++){
49 ApplyUpdate (j) ;

50 v1=va lues [j] ;

51 v2=pre va lu e s [p] [j] ;

52 i f (v1 . seq<s t a b l e [p] . seq)

53 view [j]=v1 . value ;

54 else

55 view [j]=v2 . value ;

56 }
57 return view [0 . .m−1] ;

58 }

1. it reads the current value of the component on register values[i] (line 62),
2. it gets a sequence number by reading seq (line 63),
3. for each scanner Sp, it stores the in pre values[p][i] the current value of the

i-th component if the sequence number of Sp (stored in s table[p]) is greater
or equal to that stored in values[i] (lines 64-74), and

4. it tries to update component value with an SC instruction.

4.1 A Partial Version of λSnap

We now present a slightly modified version of λ − Snap (see Listing 1.7) that
implements a partial snapshot object. The data structures used in this version
remain the same as in λ − Snap (Listing 1.4). Furthermore, the pseudocode of
Update and ApplyUpdate function remain the same as shown in Listings 1.5
and 1.6. A new function, Read, is introduced (Listing 1.7), which is invoked by
PartialScan operations in order to read the values of the snapshot object.

102 N. D. Kallimanis et al.

Listing 1.6. ApplyUpdate function of λ-Snap.
59 void ApplyUpdate (int j) {
60 ValueStruct cu r va lue ;
61 PreValueStruct cur pre va lue , p roposed pre va lue ;
62 cur va lue=LL(va lues [j]) ;
63 cu r s eq=seq ;
64 for (i =0; i<λ ; i++) {
65 for (t=0; t <2; t++) {
66 cu r p r e va lu e=LL(p r e va lu e s [i] [j]) ;
67 cur va lue=va lues [j] ;
68 i f (cu r va lue . seq<s t a b l e [j] . seq){
69 proposed pre va lue . seq=cur va lue . seq ;
70 proposed pre va lue . va lue=cur va lue . va lue ;
71 SC(p r e va lu e s [i] [j] , p roposed pre va lue) ;
72 }
73 }
74 }
75 i f (cu r va lue . proposed va lue !=⊥) {
76 cur va lue . va lue=cur va lue . proposed va lue ;
77 cur va lue . seq=cur s eq ;
78 cur va lue . proposed va lue=⊥ ;
79 SC(va lues [j] , cu r va lue) ;
80 }
81 }

Listing 1.7. Update and Scan implementations for the partial version of λ-Snap.
1 po in t e r Part ia lScan (s e t A) {
2 s t a b l e [p id]={1 , seq } ;

3 for (i =0; i <3; i++) {
4 cur s eq=LL(seq) ;

5 for (j =0; j<λ ; j++) {
6 c u r s t a b l e=LL(s t a b l e [j]) ;

7 i f (c u r s t a b l e . seq<seq+2 && cu r s t a b l e . w r i t e enab l e==1) {
8 c u r s t a b l e . w r i t e enab l e =0;

9 c u r s t a b l e . seq=seq+2;

10 SC(s t a b l e [j] , c u r s t a b l e) ;

11 }
12 }
13 SC(seq , cu r s eq+1) ;

14 }
15 for each j in A {
16 ApplyUpdate (j) ;

17 Read(j) ;

18 }
19 }

20 va l Read(int j){
21 ValueStruct v1=va lues [j] ;

22 PreValueStruct v2=pre va lu e s [j] ;

23 i f (v1 . seq<seq) view [j]=v1 . value ;

24 else view [j]=v2 . value ;

25 return view [j] ;

26 }

The only modification in this version of λ − Snap is that the PartialScan
operations do not read all the components of the snapshot, they only read the
components of set A. For each component j contained in A (the set of compo-
nents that a Scan wants to read), the PartialScan operation tries to help Update
operations on the j-th component by invoking ApplyUpdate (lines 15−18). Then,
it reads the value of the j-th component by invoking the Read function.

Exploring Trade-Offs in Partial Snapshot Implementations 103

Both partial λ−Snap and non-partial λ−Snap have the same step complexity
of Update operations, and the same space complexity. However, partial λ−Snap
provides a step complexity of O(λr) for Scan operations, where r is the number
of components that the PartialScan operation reads.

The correctness proof of λ − Snap is provided in [21]. Listings 1.4-1.6 imply
that λ−Snap uses 1+m+λm+λ LL/SC write registers. Thus, it follows that
its space complexity is O(λm).

Theorem 2. λ−Snap is a wait-free linearizable concurrent λ-scanner snapshot
implementation that uses O(λm) registers, and it provides O(λ) step complexity
to Update operations and O(λm) to Scan operations.

5 Discussion

This work proposes the λ−Snap snapshot object and its implementations. If λ is
equal to 1, then λ − Snap snapshot simulates a single-scanner snapshot object,
while if λ is equal to the maximum number of processes, then it simulates a
multi-scanner snapshot object. To the best of our knowledge, there is no known
solution that supports a preset amount of Scan operation that run concurrently.

1 − Snap solves the single-scanner flavor of snapshot problem. Although, we
only allow one process with a certain id to invoke Scan operations, this is a
restriction that can be easily lifted. The system can support invocations of Scan
operations by any process, although only one process can be active in any given
configuration. In this case, our algorithm would be correct only in executions
that at most one Scan is active in any given configuration of the execution.

A λ − Snap snapshot can efficiently applied in systems where only a pre-
set amount of processes want to execute Scan operations. Especially in systems
that the amount of processes that may want to invoke a Scan operation is small
enough, our algorithm has almost the same performance as a single-scanner snap-
shot object. For example, in a sensor network, where many sensors are commu-
nicating with a small amount of monitor devices. In this case, sensors essentially
perform Update operations while monitor devices invoke Scan operations.

Acknowledgments. This work is funded by the project “Immersive Virtual, Aug-
mented and Mixed Reality Center of Epirus” (MIS 5047221) implemented under the
Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the
Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF
2014-2020) and co-financed by Greece and the European Union (European Regional
Development Fund). We further thankfully acknowledge the support of the European
Commission and the Greek General Secretariat for Research and Innovation under the
EuroHPC Research and Innovation Programme through project EUROCC2 (Grant
Agreement No 101101903).

References

1. Añez, J., De La Barra, T., Pérez, B.: Dual graph representation of transport net-
works. Transp. Res. Part B: Methodological 30(3), 209–216 (1996)

104 N. D. Kallimanis et al.

2. Aspnes, J., Herlihy, M.: Wait-free data structures in the asynchronous pram model.
In: Proceedings of the Second Annual ACM Symposium on Parallel Algorithms and
Architectures, pp. 340–349. SPAA 1990, ACM, New York, NY, USA (1990)

3. Attiya, H., Guerraoui, R., Ruppert, E.: Partial snapshot objects. In: Proceedings of
the Twentieth Annual Symposium on Parallelism in Algorithms and Architectures,
pp. 336–343. SPAA 2008, ACM, New York, NY, USA (2008)

4. Attiya, H., Herlihy, M., Rachman, O.: Atomic snapshots using lattice agreement.
Distrib. Comput. 8(3), 121–132 (1995)

5. Attiya, H., Lynch, N., Shavit, N.: Are wait-free algorithms fast? J. ACM 41(4),
725–763 (1994)

6. Bar-Nissan, G., Hendler, D., Suissa, A.: A dynamic elimination-combining stack
algorithm. CoRR abs/1106.6304 (2011). http://arxiv.org/abs/1106.6304

7. Bashari, B., Woelfel, P.: An efficient adaptive partial snapshot implementation. In:
Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing,
pp. 545–555. PODC 2021, ACM, New York, NY, USA (2021)

8. Brown, T., Ellen, F., Ruppert, E.: A general technique for non-blocking trees. In:
Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pp. 329–342. PPoPP 2014, ACM, New York, NY, USA
(2014)

9. Bulitko, V., Björnsson, Y., Sturtevant, N.R., Lawrence, R.: Real-time heuristic
search fo Pathfinding in Video Games. In: González-Calero, P., Gómez-Mart́ın, M.
(eds.) Artificial Intelligence for Computer Games, pp. 1–30. Springer, New York
(2011). https://doi.org/10.1007/978-1-4419-8188-2 1

10. Fatourou, P., Kallimanis, N.D.: Single-scanner multi-writer snapshot implementa-
tions are fast! In: Proceedings of the Twenty-fifth Annual ACM Symposium on
Principles of Distributed Computing, pp. 228–237 (2006)

11. Fatourou, P., Kallimanis, N.D.: Time-optimal, space-efficient single-scanner snap-
shots & multi-scanner snapshots using CAS. In: Proceedings of the Twenty-Sixth
Annual ACM Symposium on Principles of Distributed Computing, pp. 33–42.
PODC 2007, ACM, New York, NY, USA (2007)

12. Fatourou, P., Kallimanis, N.D.: Highly-efficient wait-free synchronization. Theor.
Comput. Sys. 55(3), 475–520 (2014)

13. Fatourou, P., Kallimanis, N.D.: Lower and upper bounds for single-scanner snap-
shot implementations. Distrib. Comput. 30(4), 231–260 (2017)

14. Gawlick, R., Lynch, N., Shavit, N.: Concurrent timestamping made simple. In:
Dolev, D., Galil, Z., Rodeh, M. (eds.) Theor. Comput. Syst., pp. 171–183. Springer,
Berlin Heidelberg, Berlin, Heidelberg (1992)

15. Imbs, D., Raynal, M.: Help when needed, but no more: efficient read/write partial
snapshot. J. Parallel Distrib. Comput. 72(1), 1–12 (2012)

16. Jayanti, P.: F-arrays: implementation and applications. In: Proceedings of the
Twenty-First Annual Symposium on Principles of Distributed Computing, pp.
270–279. PODC 2002, ACM, New York, NY, USA (2002)

17. Jayanti, P.: An optimal multi-writer snapshot algorithm. In: Proceedings of the
Thirty-Seventh Annual ACM Symposium on Theory of Computing, pp. 723–732.
STOC 2005, ACM, New York, NY, USA (2005)

18. Jayanti, P., Petrovic, S.: Logarithmic-time single deleter, multiple inserter wait-free
queues and stacks. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821,
pp. 408–419. Springer, Heidelberg (2005). https://doi.org/10.1007/11590156 33

19. Johannes, F.M.: Partitioning of VLSI circuits and systems. In: Proceedings of the
33rd Annual Design Automation Conference, pp. 83–87. DAC 1996, ACM, New
York, NY, USA (1996)

http://arxiv.org/abs/1106.6304
https://doi.org/10.1007/978-1-4419-8188-2_1
https://doi.org/10.1007/11590156_33

Exploring Trade-Offs in Partial Snapshot Implementations 105

20. Kallimanis, N.D., Kanellou, E.: Wait-free concurrent graph objects with dynamic
traversals. In: 19th International Conference on Principles of Distributed Systems
(OPODIS 2015). Leibniz International Proceedings in Informatics (LIPIcs), vol.
46, pp. 1–17. Dagstuhl, Germany (2016)

21. Kallimanis, N.D., Kanellou, E., Kiosterakis, C.: Efficient partial snapshot imple-
mentations (2020)

22. Kirousis, L.M., Spirakis, P., Tsigas, P.: Reading many variables in one atomic oper-
ation: solutions with linear or sublinear complexity. IEEE Trans. Parallel Distrib.
Syst. 5(7), 688–696 (1994)

23. Kogan, A., Petrank, E.: Wait-free queues with multiple enqueuers and dequeuers.
ACM SIGPLAN Not. 46, 223–234 (2011)

24. Riany, Y., Shavit, N., Touitou, D.: Towards a practical snapshot algorithm. The-
oret. Comput. Sci. 269(1), 163–201 (2001)

25. Timnat, S., Braginsky, A., Kogan, A., Petrank, E.: Wait-free linked-lists. In: Bal-
doni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 330–
344. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35476-2 23

https://doi.org/10.1007/978-3-642-35476-2_23

Brief Announcement: Non-blocking
Dynamic Unbounded Graphs

with Wait-Free Snapshot

Gaurav Bhardwaj(B), Sathya Peri, and Pratik Shetty

Indian Institute of Technology, Hyderabad, India
{CS19RESCH11003,ai21mtech12005}@iith.ac.in, sathya p@cse.iith.ac.in

Abstract. In this paper, we have implemented a dynamic unbounded
concurrent graph which can perform the add, delete or lookup operations
on vertices and edges concurrently and are linearizable. In addition to
these operations, we also have a wait-free graph snapshot method. To
the best of our knowledge, we are the first to develop a wait-free graph
snapshot algorithm.

Keywords: Graphs · Snapshot · Lock-Free · Wait-Free

1 Introduction

Graph data structure have several real-life applications such as blockchains,
maps, machine learning applications, biological networks, social networks, etc. A
paired entity relation in a graph displays the relationship and structure between
the objects. Social networks, for instance, use graphs to depict user relation-
ships, which aids in making suggestions, spotting trends, and forecasting user
behaviour. Over other data structures like linked lists, hash tables, trees, etc.,
graphs have a significant advantage in terms of application domains, making
graph problem solving a major area of research.

Due to these practical applications, there has been a lot of interest on con-
current graph implementations [1,2,5]. Most of these implementations support
two kinds of operations: (a) graph-point methods, which are adding/removing/
looking-up vertices/edges on the graph. These operations can be considered as
operating on one (or two) vertex points of interest. (b) graph-set method(s),
which involves taking a partial or complete snapshot of the graph. graph-set
operation consider and collect several vertices. We use the term graph-set and
snapshot interchangeably.

It has been observed that constructing (partial) snapshots of a dynamic,
concurrent graph efficiently is an important problem which can be used for var-
ious graph analytics operations as shown by [1]. Among the various concurrent
graph structures proposed in the literature, none support wait-free1 snapshot
construction for unbounded graphs.
1 A progress condition in which every thread invoking a method will complete in finite
number of steps [4].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 106–110, 2023.
https://doi.org/10.1007/978-3-031-44274-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_9&domain=pdf
https://doi.org/10.1007/978-3-031-44274-2_9

Non-blocking Dynamic Unbounded Graphs with Wait-Free Snapshot 107

1.1 Our Contribution

This paper addresses this shortcoming by developing a concurrent graph struc-
ture that supports wait-free snapshot construction while the graph-point meth-
ods are lock-free. To illustrate the usefulness of the snapshot constructed, we use
it to compute analytics operations Betweenness Centrality (BC) and Diameter
(Dia).

Our solution is an extension of Chatterjee et al.’s [2] concurrent framework
for unbounded graphs. We extend their graph-point methods for constructing
a wait-free snapshot of the graph, which is based on the snapshot algorithm of
Petrank and Timnat [6] developed for iterators.

2 Preliminaries and ADT

We created a concurrent lock-free graph data structure that maintains the ver-
tices and edges in an adjacency list format inspired by Chatterjee et al’s [2]
implementation. The adjacency lists are maintained as lock-free linked lists.

In addition to the graph-point methods of [2], our implementation supports
the following graph-set methods:

1. Snapshot: Given a graph G, returns a consistent state of the graph.
2. Diameter: Given a graph G, returns the shortest path with respect to the

total number of edges traversed for two farthest nodes from all pair of vertices
u, v ∈ V .

3. Betweenness Centrality: Given a graph G, returns a vertex which lies most
frequently in the shortest path of all pair of vertices u, v ∈ V .

2.1 The Abstract Data Type (ADT)

We define an ADT A to be the collection of operations: A = AddVer-
tex, RemoveVertex, ContainsVertex, AddEdge, RemoveEdge, Con-
tainsEdge, Snap, BetweenCentrality, Diameter.

1. AddVertex (v): adds a vertex v to V (V ← V ∪ v) if v /∈ V and returns
VERTEXADDED. If v ∈ V then returns VERTEX ALREADY PRESENT.

2. RemoveVertex (v): removes a vertex v from V if v ∈ V and returns
VERTEXREMOVED. If v /∈ V then returns VERTEX NOT PRESENT.

3. ContainsVertex (v): returns VERTEX PRESENT if v ∈ V otherwise returns
VERTEX NOT PRESENT.

4. AddEdge (u,v): returns VERTEX NOT PRESENT if u /∈ V ∨ v /∈ V . If edge
e(u, v) ∈ E, it returns EDGE PRESENT otherwise, it adds an edge e(u, v) to E
(E ← E ∪ e(u.v)) and returns EDGE ADDED.

5. RemoveEdge (u,v): returns VERTEX NOT PRESENT if u /∈ V ∨ v /∈ V . If edge
e(u, v) /∈ E, it returns EDGE NOT PRESENT; otherwise, it removes the edge
e(u, v) from E (E ← E − e(u, v)) and returns EDGE REMOVED.

6. ContainsEdge (u,v): returns VERTEX NOT PRESENT if u /∈ V ∨v /∈ V . If edge
e(u, v) /∈ E, it returns EDGENOTPRESENT otherwise, it returns EDGE PRESENT.

108 G. Bhardwaj et al.

7. Snap: returns the previously described consistent snapshot of the graph.
8. BetweenCentrality: returns the Between Centrality of Graph G as

described above.
9. Diameter: returns Diameter of graph G as mentioned above.

3 Design and Algorithm

We utilised the same graph structure of adjacency lists with lock-free linked
lists as Chatterjee et al. [2] employed. We have separated the operations into
two categories for clarity: a) graph-point operation and b) graph-set operation.
Graph-point operations are comparable to those implemented by Chatterjee et
al. [2], with modest adjustments to allow for more advanced wait-free graph ana-
lytics procedures. Graph-set operation necessitates a consistent snapshot of the
graph, which is inspired by Timnak and Shavit’s [7] iterative wait-free snapshot
approach.

3.1 Graph Point Operations

We used the lock-free linked list [3] structure for defining the graph’s nodes
and edges. Vertices are linked lists, and each vertex is connected to the edge
linked list. We modified the graph-point operation compared to the version of
Chatterjee et al. [2] because we forward the value to the concurrent ongoing
snapshot operation for each graph-point operation. When a point operation reads
or updates a vertex or an edge, the value is forwarded to the concurrent snapshot
operation for the consistent snapshot.

3.2 Graph Snapshot Operation

Timnak inspires our graph snapshot and Shavit’s [7] iterator snapshot algorithm.
We used the same forwarding principle, where we forward the value as reports
to the snapshot operation if some concurrent snapshot operation occurs. The
snapshot procedure initially gathers all the graph elements by traversing all
its components. Meanwhile, all concurrent graph-point operations transfer the
values of the element they act on to the snapshot method. After gathering all the
data, items from the graph are added or removed based on the reports obtained
during that period to generate a consistent picture.

4 Experiments and Results

Platform Configuration: We conducted our experiments on a system with
Intel(R) Xeon(R) Gold 6230R CPU packing 52 cores with a clock speed of
2.10 GHz. There are two logical threads for each core, each core with a pri-
vate 32 KB L1 and 1024 KB L2 cache. The 36608KB L3 cache is shared across
the cores. The system has 376 GB of RAM and 1 TB of hard disk. It runs on a
64-bit Linux operating system.

Non-blocking Dynamic Unbounded Graphs with Wait-Free Snapshot 109

Fig. 1. Performance of our implementation compared to its counterparts. x-axis: Num-
ber of threads. y-axis: Average Time taken in microseconds.(a) Read Heavy workload
with snapshot, (b) Read Heavy workload with Diameter, (c) Read Heavy workload
with Betweenness Centrality, (d) Update Heavy with snapshot, (e) Update Heavy with
Diameter, (f) Update Heavy with Betweenness Centrality.

Experimental Setup: All implementations are in C++ without garbage collec-
tion. We used Posix threads for multi-threaded implementation. We initially
populated the graph with uniformly distributed synthetic data of 10K nodes
and 20K edges for the experiments. In all our experiments, we have consid-
ered all the point operations AddVertex, RemoveVertex, ContainsVer-
tex, AddEdge, RemoveEdge, ContainsEdge from ADT and one of the
graph analytics operations from Snap, BetweenCentrality and Diameter.
The evaluation metric used is the average time taken to complete each operation.
We measure the average time w.r.t increasing spawned threads.

Workload Distribution : The distribution is over the following ordered set
of Operations (AddVertex, RemoveVertex, ContainsEdge, AddEdge,
RemoveEdge, ContainsEdge, and Critical Operation(Snap/ Diameter/
BetweenCentrality).

1. Read Heavy Workload : 3%, 2%, 45%, 3%, 2%, 45% , 2%
2. Update Heavy Workload: 12%, 13%, 25%, 13%, 12%, 25% , 2%

110 G. Bhardwaj et al.

Algorithms : We compare our wait-free Snap/ Diameter/ BetweenCentral-
ity approaches to the obstruction-free implementation of the same operations
using Chatterjee et al. [2], and Chatterjee et al. [1]. We have named them
Obst-Free and PANIGRAHAM, respectively, and our approach as WF.

Performance for various Graph Analytics Operation In Fig. 1, we compare the
average time of the algorithms under the two different workloads mentioned
above. Initially, with Snap, and then we replace the Snap operation with Diam-
eter and BetweenCentrality. In the case of Snap, our algorithm outper-
forms all its counterparts by up to two orders of magnitude because if a new
thread is required to execute Snap, it assists the current Snap if it is there
and collaboratively finds the Snap. Thus we see that the average time remains
the same even with increasing active threads as more threads will be involved
in creating a snapshot. On the other hand, in the obstruction-free algorithm,
each thread creates its own independent Snapshot. Each thread performs the
Diameter and BetweenCentrality independently using the snapshot in all
three algorithms. Hence we see the Average time increasing with threads.

References

1. Chatterjee, B., Peri, S., Sa, M., Manogna, K.: Non-blocking dynamic unbounded
graphs with worst-case amortized bounds. In: International Conference on Principles
of Distributed Systems (2021)

2. Chatterjee, B., Peri, S., Sa, M., Singhal, N.: A simple and practical concurrent non-
blocking unbounded graph with linearizable reachability queries. In: ICDCN 2019,
Bangalore, India, 04–07 January 2019, pp. 168–177 (2019)

3. Harris, T.L.: A pragmatic implementation of non-blocking linked-lists. In: Welch,
J. (ed.) DISC 2001. LNCS, vol. 2180, pp. 300–314. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45414-4 21

4. Herlihy, M., Shavit, N.: On the nature of progress. In: OPODIS, pp. 313–328 (2011)
5. Kallimanis, N.D., Kanellou, E.: Wait-free concurrent graph objects with dynamic

traversals. In: OPODIS, pp. 1–27 (2015)
6. Petrank, E., Timnat, S.: Lock-free data-structure iterators. In: Afek, Y. (ed.) DISC

2013. LNCS, vol. 8205, pp. 224–238. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-41527-2 16

7. Timnat, S., Braginsky, A., Kogan, A., Petrank, E.: Wait-free linked-lists. In:
OPODIS, pp. 330–344 (2012)

https://doi.org/10.1007/3-540-45414-4_21
https://doi.org/10.1007/978-3-642-41527-2_16
https://doi.org/10.1007/978-3-642-41527-2_16

Byzantine Fault-Tolerant Causal Order
Satisfying Strong Safety

Anshuman Misra and Ajay D. Kshemkalyani(B)

University of Illinois at Chicago, Chicago, IL 60607, USA
{amisra7,ajay}@uic.edu

Abstract. Causal ordering is an important building block for dis-
tributed software systems. It was recently proved that it is impossible
to provide causal ordering – liveness and strong safety – using a deter-
ministic non-cryptographic algorithm in the presence of even a single
Byzantine process in an asynchronous system for unicast, multicast, and
broadcast modes of communication. Strong safety is critical for real-time
distributed collaborative software such as multiplayer gaming and social
media networks. In this paper, we solve the causal ordering problem
under the strong safety condition in the presence of Byzantine processes
by relaxing the problem specification in two ways. First, we propose a
deterministic algorithm for causal ordering of unicasts in a synchronous
system that also uses threshold cryptography. Second, we propose a
(probabilistic) algorithm based on randomization for causal ordering of
multicasts in an asynchronous system that also uses threshold cryptogra-
phy. These algorithms complement the previous impossibility result for
the asynchronous system.

Keywords: Causal Order · Message Passing · Byzantine
Fault-Tolerance · Distributed Systems · Multicast

1 Introduction

Many distributed applications rely on causal ordering of messages for correct
semantics [2,14,15]. Algorithms for providing causal ordering have been pro-
posed over nearly the last four decades. Causal ordering requires that liveness
(each message sent by a correct process to another correct process is eventually
delivered) and strong safety (if the send event for message m1 happens before
the send event for message m2 and both messages are sent to the same correct
process(es), no correct process delivers m2 before m1) are satisfied.

It was recently proved that it is impossible to provide causal ordering –
liveness and strong safety – (using a deterministic algorithm) in the presence of
even a single Byzantine process in an asynchronous system for unicast, multicast,
and broadcast modes of communication in a system model that does not allow
cryptography [21,22]. In light of this result, algorithms for Byzantine-tolerant
causal ordering under the synchronous system model that satisfy liveness and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 111–125, 2023.
https://doi.org/10.1007/978-3-031-44274-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_10&domain=pdf
http://orcid.org/0000-0003-2451-7306
https://doi.org/10.1007/978-3-031-44274-2_10

112 A. Misra et al.

a weaker notion of safety, namely weak safety, wherein there is path from the
send event of m1 to the send event of m2 passing through only correct processes,
were proposed [19,21]. These algorithms were for unicast, multicast, as well as
broadcast modes of communication. For the broadcast mode of communication,
a Byzantine-tolerant causal ordering algorithm for asynchronous systems was
proposed in [1] – this satisfies liveness and weak safety but no strong safety
as shown in [21]. Previously, a probabilistic algorithm based on atomic (total
order) broadcast and cryptography for secure causal atomic broadcast (liveness
and strong safety) in an asynchronous system was proposed [5]. This logic used
acknowledgements and effectively processed the atomic broadcasts serially. More
recently for the client-server configuration, two protocols for crash failures and
a third for Byzantine failure of clients based on cryptography were proposed for
secure causal atomic broadcast [9]. The third made assumptions on latency of
messages, and hence works only in a synchronous system.

Main Contributions: The impossibility result given in [22] showed a reduc-
tion from consensus to causal ordering, and the FLP impossibility result for
consensus [11] implied the impossibility of causal ordering using a determin-
istic algorithm in an asynchronous system. Solving consensus is equivalent to
or mutually reducible to solving the atomic broadcast problem [24], and both
are impossible using deterministic algorithms in an asynchronous system. In this
paper, we overcome the impossibility result of [21,22] mentioned above. We solve
the causal ordering problem in the presence of Byzantine processes by relaxing
the system assumptions in two ways.
1. First, we weaken the asynchrony assumption and propose an algorithm to

solve the causal ordering problem under the strong safety condition for uni-
casts in a synchronous system that also uses threshold cryptography.

2. Second, we propose an algorithm based on atomic broadcast in an asyn-
chronous system having Byzantine processes; the algorithm also uses thresh-
old cryptography. Solving consensus is equivalent to or mutually reducible to
solving the atomic broadcast problem [6,18], and both are impossible using
deterministic algorithms in an asynchronous system. However, atomic broad-
casts, i.e., total order broadcasts, can be solved (in the presence of Byzan-
tine processes) only using probabilistic algorithms in an asynchronous sys-
tem [5,7,12,16]. Our second algorithm for causal ordering uses a source-order
preserving total order broadcast primitive as a lower layer interface. It uses
threshold cryptography similar to the way it is used in [5] for secure causal
atomic broadcast but does not use acknowledgements and is not constrained
to process the atomic broadcasts serially, thus there is no concurrency inhi-
bition. Our algorithm is presented for the multicast mode of communication
and we show how it can be modified to unicast and broadcast modes which
are special cases of multicast mode.

Our algorithms complement the previous impossibility result for the asyn-
chronous system. The main contribution of this paper is to develop efficient
causal ordering algorithms that provide strong safety in the presence of Byzan-
tine processes. These algorithms bypass the impossibility result proved in [21,22],

Byzantine Fault-Tolerant Causal Order Satisfying Strong Safety 113

which states that it is impossible to provide Byzantine-tolerant strong safety in
the absence of cryptographic protocols. This is a critical result from the perspec-
tive of real-world distributed applications because weak safety cannot guarantee
correct functioning of applications. For example, in a multiplayer online gaming
scenario utilizing a weak safety protocol for causal ordering, Byzantine play-
ers can order their events ahead of correct players’ events despite having causal
dependencies on the correct players’ events leading to unfair advantages in game-
play. However, by using a strong safety causal ordering algorithm, the gaming
application can ensure fair gameplay. Similar situations can arise in social media
networks (message ordering presented to users in a single message thread), col-
laborative group editing of documents (updates to documents need to ensure
causality across updates regardless of whether the update comes from a cor-
rect/Byzantine user) among other distributed applications.

Outline: Section 2 gives the system model. Section 3 reviews some basic
cryptography used in our algorithms. Section 4 reviews the specifications of
Byzantine-tolerant reliable multicast/broadcast and Byzantine-tolerant atomic
broadcast. Section 5 gives the algorithm for Byzantine-tolerant causal order of
unicasts in a synchronous system. Section 6 gives the algorithm for Byzantine-
tolerant causal order of multicasts in an asynchronous system. Section 7 con-
cludes.

2 System Model

This paper deals with a distributed system having Byzantine processes which
are processes that can misbehave [17,23]. A correct process behaves exactly as
specified by the algorithm whereas a Byzantine process may exhibit arbitrary
behaviour including crashing at any point during the execution. A Byzantine
process cannot impersonate another process or spawn new processes.

The distributed system is modelled as an undirected graph G = (P,H).
Here P is the set of processes communicating asynchronously in the distributed
system. Let n be |P |. H is the set of FIFO logical communication links over
which processes communicate by message passing. G is a complete graph.

The system is first assumed to be synchronous, i.e., there is a known fixed
upper bound δ on the message latency, and a known fixed upper bound ψ on the
relative speeds of processors [10]. We provide a deterministic causal ordering uni-
cast algorithm for this system model. Next, we assume an asynchronous system,
i.e., there is no upper bound δ on the message latency, nor any upper bound ψ
on the relative speeds of processors [10]. We provide a non-deterministic causal
ordering multicast algorithm for this system model.

Definition 1. The happens before relation → on messages consists of the fol-
lowing rules:

1. The set of messages delivered from any pi ∈ P by a process is totally ordered
by →.

2. If pi sent or delivered message m before sending message m′, then m → m′.

114 A. Misra et al.

3. If m → m′ and m′ → m′′, then m → m′′.

Let R denote the set of messages in the execution.

Definition 2. The causal past of message m is denoted as CP (m) and defined
as the set of messages in R that causally precede message m under →.

The correctness of Byzantine causal order unicast/multicast/broadcast is
specified on (R,→) for strong safety.

Definition 3. A causal ordering algorithm for unicast/multicast/broadcast mes-
sages must ensure the following:

1. Strong Safety: ∀m′ ∈ CP (m) such that m′ and m are sent to the same
(correct) process(es), no correct process delivers m before m′.

2. Liveness: Each message sent by a correct process to another correct process
will be eventually delivered.

3 Some Cryptographic Basics

We utilize non-interactive threshold cryptography as a means to guarantee strong
safety [25]. Threshold cryptography consists of an initialization function to gener-
ate keys, message encryption, sharing decrypted shares of the message and finally
combining the decrypted shares to obtain the original message from ciphertext.
The following functions are used in a threshold cryptographic scheme:

Definition 4. The dealer executes the generate() function to obtain the public
key PK, Verification key V K and the private keys SK1, SK2, ... , SKn.

The dealer shares private key SKi with each process pi while PK and V K
are publicly available.

Definition 5. When process pi wants to send a message m to pj, it executes
E(PK,m,L) to obtain Cm. Here Cm is the ciphertext corresponding to m, E is
the encryption algorithm and L is a label to identify m. pi then broadcasts Cm

to the system of processes.

Definition 6. When process pl receives ciphertext Cm, it executes D(SKl, Cm)
to obtain σm

l where D is the decryption share generation algorithm and σm
l is

pl’s decryption share for message m.

When process pj receives a cipher message Cm intended for it, it has to wait
for k decryption shares to arrive from the system to obtain m. The value of k
depends on the security properties of the system. It derives the message from
the ciphertext as follows:

Definition 7. When process pj wants to generate the original message m from
ciphertext Cm, it executes C(V K,Cm, S) where S is a set of k decryption shares
for m and C is the combining algorithm for the k decryption shares that gives m.

Byzantine Fault-Tolerant Causal Order Satisfying Strong Safety 115

The following function V is used to verify the authenticity of a decryption
share:

Definition 8. When a decryption share σ is received for message m, the Share
Verification Algorithm is used to ascertain whether σ is authentic:
V (V K,Cm, σ) = 1 if σ is authentic, V (V K,Cm, σ) = 0 if σ is not authentic.

4 Reliable Broadcast and Atomic (Total Order)
Broadcast Properties

The multicast algorithm for asynchronous systems that we propose assumes
access to a BA_broadcast primitive that provides Byzantine-tolerant total order
and delivers a broadcast message via BA_deliver.

Definition 9. Byzantine-tolerant atomic (total order) broadcast provides the
following guarantees [7,8,12,13,16,24]:

1. (BAB-Validity:) If a correct process BA_delivers a message m from sender-
(m), then sender(m) must have BA_broadcast m.

2. (BAB-Termination-1:) If a correct process BA_broadcasts a message m, then
it eventually BA_delivers m.

3. (BAB-Agreement or BAB-Termination-2:) If a correct process BA_delivers a
message m from a possibly faulty process, then all correct processes eventually
BA_deliver m.

4. (BAB-Integrity:) For any message m, every correct process BA_delivers m at
most once.

5. (BAB-Total-Order:) If correct processes pi and pj both BA_deliver messages
m and m′, then pi BA_delivers m before m′ if and only if pj BA_delivers m
before m′.

This total order primitive also provides source-FIFO order [13], i.e., if a
process BA_broadcasts m before m′, then m is BA_delivered before m′ at all
correct processes. As it is impossible to provide Byzantine-tolerant total order
using a deterministic algorithm in an asynchronous system due to its equivalence
to consensus [5,24], we use a probabilistic algorithm such as in [5,7,12,16].

Byzantine Reliable Broadcast (BRB) [3,4] is invoked via BR_broadcast and
delivered via BR_deliver. It is defined similar to Definition 9 minus BAB-Total-
Order.

We propose a causal order multicast algorithm for asynchronous systems. In
a multicast, a message is sent to a subset of processes forming a process group.
Different multicast send events can send to different process groups. Byzantine-
tolerant causal multicast is invoked as BC_multicast(m,G), where G is the mul-
ticast group, and delivers a message through BC_deliver(m). Based on the relia-
bility properties proposed in the literature for Byzantine Reliable Broadcast [3,4]
and Byzantine Causal Broadcast [1], we define Byzantine Causal Multicast as
follows.

116 A. Misra et al.

Definition 10. Byzantine Causal Multicast satisfies the following properties:

1. (BCM-Validity:) If a correct process pi BC_delivers message m from send-
er(m) to group G, then sender(m) must have BC_multicast m to G and
pi ∈ G.

2. (BCM-Termination-1:) If a correct process BC_multicasts a message m to G,
then some correct process in G eventually BC_delivers m.

3. (BCM-Agreement or BCM-Termination-2:) If a correct process in G
BC_delivers a message m from a possibly faulty process, then all correct pro-
cesses in G will eventually deliver m.

4. (BCM-Integrity:) For any message m, every correct process in G BC_delivers
m at most once.

5. (BCM-Causal-Order:) If m → m′, m is sent to G, m′ is sent to G′, then no
correct process in G ∩ G′ BC_delivers m′ before m.

BCM-Causal-Order is the Strong Safety property of Definition 3 whereas
BCM-Termination-1 and BCM-Agreement imply the liveness property of Defi-
nition 3.

Definition 11. A Byzantine-tolerant causal multicast algorithm must sat-
isfy BCM-Validity, BCM-Termination-1, BCM-Agreement, BCM-Integrity, and
BCM-Causal-Order.

5 Causal Order Unicast in a Synchronous System

In Algorithm 1 we present a causal ordering algorithm guaranteeing strong safety
and liveness in the presence of t Byzantine processes for synchronous systems.
Algorithm 1 is inherently asynchronous, because it does not assume the expensive
and binding notion of rounds. Algorithm 1 requires that key generation and
distribution has been accomplished by a trusted dealer prior to start of execution.
Therefore, all processes have access to global PK (public key), V K (verification
key) and have a local SKi (secret key). Algorithm 1 assumes that the network
provides an upper bound δ on the message transmission time. Algorithm 1 has
to prevent Byzantine processes from implementing the following actions:

1. Reading the contents of an incoming message prior to delivering it and sending
an outgoing message based on the contents of the undelivered message with
the intention of causing a strong safety violation.

2. Sending a message to a correct process with the intention of preventing further
messages getting delivered at that process, causing a liveness attack.

When pi wants to unicast a message m to pj , it encrypts m with PK and
broadcasts the ciphertext Cm along with pj ’s id (j) and a globally unique message
id idm to the system. pj requires (t+1) unique decryption shares from processes
in the system to obtain m from Cm. Upon receiving a ciphertext Cm, all processes
compute their respective decryption shares σm

x . Upon receiving Cm, pj inserts
Cm into its FIFO delivery queue and broadcasts a request for decryption shares.

Byzantine Fault-Tolerant Causal Order Satisfying Strong Safety 117

If the required number of decryption shares do not arrive within (3δ + 1) time
units, pj will delete Cm from its delivery queue preventing liveness attacks by
Byzantine processes. This will be formally proved in Theorem 1.

When a process pk receives pj ’s request for its decryption share for m, it
first checks to make sure that pj is indeed the recipient of m. If that is the
case, pk waits for (δ + 1) time units and sends σm

k to pj . Once pj receives the
required number of decryption shares, it decrypts Cm and replaces it with m in
its delivery queue. When Cm is both decrypted and m is at the head of the queue,
it gets delivered when the application is ready to process the next message. The
intuitive reasoning for preservation of strong safety by Algorithm 1 is as follows:
Since correct processes wait for (δ+1) time units before sending their decryption
shares, a Byzantine process pk can read a message m at least (δ + 1) time units
after receiving Cm. Hence, any message m′ such that m → m′ that pk sends to
process pl will arrive at pl at least 1 time unit after any m′′ sent to pl, where
m′′ → m → m′. Hence m′ will be after m′′ in the delivery queue at pl. This
is formally proved in Theorem 2. Algorithm 1 can tolerate upto t Byzantine
failures, where the total number of processes, n > 2t.

Each message m has a globally unique identifier idm assigned by the sender.
In the Algorithm 1 pseudo-code, technically Cm, σm

i , S should be Cidm
, σidm

i ,
Sidm

respectively; however to simplify the presentation, we use the first version
while keeping in mind that the data structure is to be associated with a particular
idm.

Theorem 1. All messages sent by a correct process to another correct process
via unicast following Algorithm 1 will eventually be delivered even in the presence
of Byzantine processes.

Proof. Consider message m sent by pi to pj . pi executes broadcast(Cm, j, idm)
at line 3, ensuring that all processes receive Cm and compute their respective
decryption shares at line 5. Once pj receives Cm, it pushes Cm into a FIFO
queue, starts a timer of (3δ + 1) time units at lines 6–8. pj then broadcasts a
request for decryption shares to all processes at line 9. The maximum latency
for an individual response to this request is the sum of (i) the maximum of the
maximum time it takes for the request sent at line 9 to arrive (δ) at a receiver
and the maximum time it takes for the broadcast of line 3 to reach the receiver
(δ), (ii) the waiting time at the receiver of this request (δ + 1), and (iii) the
maximum latency of the response to pj (δ). Therefore, pj will receive decryption
share σm

x from each correct process px within max(δ, δ) + (δ + 1) + δ = (3δ + 1)
time units. Since there are at least (t + 1) correct processes, pj is guaranteed
to receive the required (t + 1) decryption shares in line 16 before message m
times out (lines 20–22). Therefore, Cm is guaranteed to be decrypted and m is
guaranteed to be present in Q (lines 16–19).

A ciphertext Cm′ present ahead of m in Q at pj is one of the following:

1. Cm′ was sent by a Byzantine process pl. In this case, the required number of
decryption shares for Cm′ in lines 16–20 may not arrive within (3δ + 1) time

118 A. Misra et al.

Algorithm 1: Secure Causal Unicast in a Synchronous System
Data: Each process has access to PK (global public key) and V K (global

verification key) as well as a local secret key SKi. Each process
maintains a FIFO queue Q for incoming application messages.

1 when pi needs to send application message m to pj :
2 Cm = E(PK, m, idm)
3 broadcast(Cm, j, idm)

4 when 〈Cm, recipient, idm〉 arrives at pi:
5 σm

i = D(SKi, Cm)
6 if recipient = i then
7 Q.push(Cm)
8 start timer set to 3δ + 1 for message m
9 broadcast(request, idm) to ∀px

10 when pi receives 〈request, idm〉 from pj

11 if Cm has not arrived at pi then
12 wait for min(δ time units, arrival of Cm) in a non-blocking manner

13 if Cm has arrived ∧ pj is the recipient of message m then
14 wait for (δ + 1) time units in a non-blocking manner
15 send(σm

i) to pj

16 when pi receives (t + 1) valid 〈σm
x 〉 messages:

17 Store (t + 1) decryption shares in set S
18 m = C(V K, Cm, S)
19 replace Cm in Q with m

20 when any Cm times out in Q:
21 if less than (t+1) valid decryption shares corresponding to m have arrived then
22 Q.delete(Cm)

23 when the application is ready to process a message at pi:
24 if Q.head() is decrypted then
25 m = Q.pop()
26 deliver m

units since starting the timer for Cm′ . In this case Cm′ will be deleted from
the queue in lines 20–22, thus ensuring progress.

2. Cm′ was sent by a correct process pk. Therefore, within (3δ + 1) time units
since its insertion in Q at pj , Cm′ will be decrypted and m′ will be present in
Q ready to be delivered as pk and correct processes will follow the protocol.

Combining points 1 and 2, m is guaranteed to reach the head of Q and eventually
be delivered in lines 23–26. ��
Corollary 1. Algorithm 1 guarantees liveness.

Byzantine Fault-Tolerant Causal Order Satisfying Strong Safety 119

Theorem 2. If m1 → m2 and both messages are sent to the same correct des-
tination process, then Algorithm 1 guarantees that m2 is not delivered before
m1.

Proof. Consider messages m1 and m2 sent to a correct process pk where m1 →
m2. In order for pk to ensure causal delivery of m1 with respect to m2 (lines
23–26), Cm1 must be enqueued in Q before Cm2 in lines 4–9. One of the following
scenarios must hold:

1. The same process pi sent both m1 and m2. Due to FIFO channels, Cm1 will
arrive before Cm2 at pk and as a result, get enqueued in Q before Cm2 .

2. pi sent m1 and pj sent m2. As m1 → m2, there must be at least one message
hop along the message chain from the sending of m1 to the sending of m2. Let
the last message along this message chain, which was delivered to pj , be m∗.
A lower bound on the duration between the sending of m1 and the sending of
m2 is (δ + 1). This is because Cm∗ must have resided in the Q at pj at least
for (δ+1) time units, the duration that pj ’s request is delayed by the correct
processes before they send pj their decryption shares for Cm∗ , before Cm∗ is
decrypted and delivered to pj .
As m2 is sent at least (δ + 1) time units after m1 is sent to the common
destination pk, even if Cm1 takes the full δ time units to reach pk and Cm2

takes 0 time units to reach pk, Cm1 will be queued ahead of Cm2 in Q at pk.

As Cm1 is enqueued ahead of Cm2 in Q at pk, causal delivery of m1 with respect
to m2 is guaranteed. ��
Corollary 2. Algorithm 1 guarantees strong safety.

Corollary 3. Algorithm 1 satisfies Definition 3 for causal order unicasting.

Note that the broadcasts in lines 3 and 9 can be replaced by a multicast to a
group of size k as long as the upper bound on the number of Byzantine processes
in the group satisfies k ≥ 2t + 1.

Algorithm 1 for unicasts can be adapted for multicast to groups, each group
being identified by Gidm

, with straightforward modifications (such as replac-
ing j by Gidm

in line 3 and replacing “recipient = i” by “i ∈ Gidm
” in line

6). This adaptation guarantees liveness and strong safety but does not provide
the reliability properties (BCM-Validity, BCM-Termination-1, BCM-Agreement,
BCM-Integrity). To satisfy these, one could replace the regular broadcast in line
3 by a Byzantine Reliable Broadcast primitive BR_broadcast. However, two mes-
sages sent by a process via BR_broadcast are not guaranteed to be delivered in
the order they were sent (thus even FIFO order is not guaranteed) [20] or in
a total order. Hence, we need to use a different approach for providing reliable
causal multicast. A different approach that invokes FIFO-total order broadcast
via BA_broadcast, for asynchronous systems in given in Sect. 6. This algorithm
in Sect. 6 is a probabilistic algorithm because its BA_broadcast cannot be imple-
mented in an asynchronous system deterministically.

120 A. Misra et al.

6 Causal Order Multicast for an Asynchronous System

In Algorithm 2 we present a causal ordering algorithm guaranteeing strong
safety and liveness in the presence of Byzantine processes for asynchronous sys-
tems. Algorithm 2 is a non-deterministic algorithm, complementing the result
in [21,22]. Similar to Algorithm 1, Algorithm 2 requires that key generation and
distribution has been accomplished by a trusted dealer prior to start of execution.
Therefore, all processes have access to global PK (public key), V K (verification
key) and have a local SKi (secret key). In addition to this, all multicast groups
share a unique symmetric key for encryption and decryption of messages intended
for them. Algorithm 2 double encrypts each message, first with the group key
(KG) and then with the system key (PK) and invokes a source-order preserv-
ing atomic broadcast on the resulting ciphertext. Upon receiving the ciphertext,
all processes compute their respective decryption shares and the recipients of
the multicast message enqueue the ciphertext in their respective FIFO delivery
queues and broadcast a request to the system for decryption shares. Upon receiv-
ing the required number of valid and unique decryption shares, the ciphertext
is decrypted to obtain the ciphertext encrypted with the group key. When this
ciphertext reaches the head of the delivery queue it is decrypted with the group
key to obtain the original message and delivered to the application. The number
of Byzantine failures that Algorithm 2 can tolerate is dependent on the tolerance
of the atomic broadcast primitive used. The requirement for atomic broadcast
is typically n > 3t.

Each message m has a globally unique identifier idm assigned by the sender.
In the Algorithm 2 pseudo-code, technically Cm, C ′

m, σm
i , S should be Cidm

,C ′
idm

,
σidm
i , Sidm

respectively; however to simplify the presentation, we use the first
version while keeping in mind that the data structure is to be associated with a
particular idm.

Lemma 1. (Process Order:) If a process BA_broadcasts m1 before it BA_-
broadcasts m2, i.e., m1 → m2, and if some correct process is BA_delivered m1

and m2, then all correct processes are BA_delivered m1 before m2.

Proof. Follows from the source-FIFO ordering property of BA_broadcast. ��
Lemma 2. (Message Order:) If a (correct or Byzantine) process BA_broad-
casts message m2 after it BA_delivers, decrypts, and dequeues m1, i.e., m1 →
m2, then no correct process BA_delivers m2 before it BA_delivers m1.

Proof. When a process px BA_delivers, decrypts, and dequeues m1, it must
have received a decryption share σm1

x from at least one correct process pc which
implies that at least one correct process pc must have already BA_delivered m1.
By BAB-Agreement, all correct processes BA_deliver m1. The correct process pc
will necessarily never have BA_delivered m2 before it has BA_delivered m1. From
the BAB-Agreement property, if m2 is BA_delivered to any correct process, it
will necessarily be BA_delivered to all correct processes including pc. At pc, m2

will be BA_delivered after m1. Therefore by the BAB-Total-Ordering property,
m2 will be BA_delivered after m1 at all correct processes. ��

Byzantine Fault-Tolerant Causal Order Satisfying Strong Safety 121

Algorithm 2: Asynchronous Secure Causal Multicast
Data: Each process has access to PK (global public key) and V K (global

verification key) as well as a local secret key SKi. Each process
maintains a FIFO queue Q for incoming application messages. All
processes in a multicast group G locally store the group key KG.

1 when pi has to send m to Gidm via BC_multicast(m, Gidm):

2 C
′
m = Enc(KGidm

, m)

3 Cm = E(PK, C
′
m, idm)

4 BA_broadcast(Cm, Gidm , idm)

5 when 〈Cm, Gidm , idm〉 arrives at pi via BA_deliver():
6 σm

i = D(SKi, Cm)
7 if pi ∈ Gidm then
8 Q.push(Cm)
9 broadcast(request, idm) to ∀px

10 when pi receives 〈request, idm〉 from pj :
11 while Cm has not arrived at pi do
12 wait in a non-blocking manner

13 if pj ∈ Gidm then
14 send(σm

i) to pj

15 when pi receives (t + 1) valid 〈σm
x 〉 messages:

16 Store (t + 1) decryption shares in set S

17 C
′
m = C(V K, Cm, S)

18 replace Cm in Q with C
′
m

19 when the application is ready to process a message at pi:
20 if Q.head() has been decrypted using decryption shares then
21 C

′
m = Q.pop()

22 m = Dec(KGidm
, C

′
m) using group key KGidm

23 BC_deliver(m)

Theorem 3. Algorithm 2 guarantees BCM-Validity, BCM-Termination-1,
BCM-Agreement, BCM-Integrity and BCM-Causal-Order in the presence of
Byzantine processes.

Proof. 1. (BCM-Validity:) An incoming message m at a correct process pi sent
to group Gidm

is enqueued, double-decrypted, dequeued and BC_delivered
only if (i) pi belongs to Gidm

, and (ii) the (double-encrypted) message was
BA_delivered. This follows from the pseudo-code. As m was BA_delivered,
by BAB-Validity, it must also have been BA_broadcast by sender(m) with
parameter Gidm

. Therefore, a message m can be BC_delivered at pi only if it
is BC_multicasted in lines 1–4 by sender(m) to Gidm

via BA_broadcast after
double-encryption and pi ∈ Gidm

.

122 A. Misra et al.

2. (BCM-Termination-1:) Consider message m BC_multicast by a correct pro-
cess pi to group Gidm

. pi executes BA_broadcast(Cm, Gidm
, idm) at line 4,

ensuring via its properties of BAB-Termination-1 and BAB-Agreement that
all correct processes receive Cm via BA_deliver and compute their respective
decryption shares at lines 5–6. Once pj ∈ Gidm

receives Cm via BA_deliver,
it pushes Cm into a FIFO queue at lines 5–9. pj then broadcasts a request for
decryption shares to all processes at line 9. pj will receive decryption share
σm
x from each correct process px eventually, once px has also BA_delivered

Cm and computed its decryption share. Since there are (2t + 1) correct pro-
cesses, pj is guaranteed to receive the required (t + 1) decryption shares in
line 15. Therefore, Cm is guaranteed to be decrypted and C ′

m is guaranteed
to be present in Q (lines 15–18). The encryption of m using the group key
KGidm

in line 2 and its corresponding decryption in line 22 ensures that only
members of group Gidm

can access the content of C ′
m.

A ciphertext Cm′ present ahead of C ′
m in Q at pj may have been sent

via BA_broadcast by a Byzantine process or by a correct process. Irrespec-
tive of this, as Cm′ has been BA_delivered to (correct) process pj , by the
BAB-Agreement property of BA_broadcast it (Cm′) would also have been
BA_delivered to all at least 2t+1 correct processes px which would compute
their decryption share σm′

x in line 6 and reply to pj ’s request broadcast in line
9 with the decryption share σm′

x in line 14. Thus pj is guaranteed to get (t+1)
decryption shares and decrypt Cm′ to C ′

m′ which can then get popped from
Q after its double-decryption using its group key KGid

m′ . This allows C ′
m to

be at head(Q) and get processed when popped (lines 19 to 23). Therefore,
any message enqueued in the delivery queue will eventually reach the head of
the queue. This means m is guaranteed to reach the head of Q and eventually
be BC_delivered in lines 19–23 ensuring BCM-Termination-1.

3. (BCM-Agreement:) If a correct process pi ∈ Gidm
BC_delivers a message m,

it means that Cm was BA_delivered in lines 5–9. By the BAB-Agreement
property of BA_broadcast, this means that all correct processes in the sys-
tem BA_deliver Cm, compute their respective decryption shares and push
Cm in their respective delivery queues if they are part of Gidm

. Therefore,
if there exists another correct process pj ∈ Gidm

, it will receive Cm via
BA_delivery and insert Cm in its delivery queue. From the reasoning for BCM-
Termination-1 given in the above item, we know that any message enqueued
in the delivery queue eventually reaches the head of the queue. Therefore,
Cm will eventually reach the head of the queue. Additionally, between lines
10–18, pj will receive (t+1) decryption shares required to decrypt Cm in the
queue since there are (2t + 1) correct processes in the system. Therefore, m
is guaranteed to be BC_delivered at pi and any correct pj in Gidm

in lines
19–23, thereby guaranteeing BCM-Agreement.

4. (BCM-Integrity:) By the BAB-Integrity property of BA_broadcast a message
is BA_delivered at most once at a correct process. Therefore any incoming
message will be enqueued (lines 5–9) and dequeued from the delivery queue

Byzantine Fault-Tolerant Causal Order Satisfying Strong Safety 123

(lines 19–23) at most once at a correct process. Hence, any given message m
will be BC_delivered at most once at a correct process.

5. (BCM-Causal-Order:) Consider multicast messages m and m′ sent by px
and py to groups containing a correct process pk, where m → m′. Then
there must exist a message chain 〈m0,m1,m2, . . . mz−1,mz = m′〉 such
that (i) m0 was sent (via BA_broadcast) by pi0 = px after it sent m
(via BA_broadcast), (ii) ma−1 for a ∈ [1, z] was BA_delivered, decrypted,
and dequeued (BC_delivered) by pia before pia sent ma (by executing
BA_broadcast), and (iii) piz = py.
Let pk BA_deliver m and m′. Further, all correct processes BA_deliver ma−1

and ma, for a ∈ [1, z]. By Lemma 1 (Process Order), m → m0 and all cor-
rect processes will BA_deliver m0 after m. By Lemma 2 (Message Order),
mb−1 → mb, for b ∈ [1, z], hence all correct processes will BA_deliver mb−1

before mb. Hence by transitivity, it follows that all correct processes will
BA_deliver m before mz = m′. As pk is a common member of multicast
groups addressed by m and m′, it will enqueue m, i.e., Cm, before m′, i.e.,
Cm′ in Q. This ensures that m will be dequeued and delivered before m′, thus
satisfying BCM-Causal-Order.

��
Corollary 4. Algorithm 2 guarantees Byzantine-tolerant causal order multicast
as per Definition 11.

Since Algorithm 2 guarantees BCM-Termination-1 and BCM-Agreement, it
implicitly guarantees liveness. Algorithm 2 explicitly guarantees Strong Safety
because it guarantees BCM-Causal-Order.

Corollary 5. Algorithm 2 satisfies Definition 3 for causal order multicasting.

6.1 Adaptations to Special Cases

Asynchronous System, Unicast: The encryption in line 2 and corresponding
decryption in line 22 are done using the symmetric key Kij when pi is sending to
pj . In line 4, the second parameter of BA_broadcast is j and in line 5, the second
parameter of the delivered message is recipient. Line 7 tests if pi = recipient.
Line 13 tests if pj is the recipient of message m.

Asynchronous System, Broadcast: Lines 2 and 22 can be deleted as the
group contains all processes and there is no need to encrypt with the group key.

Synchronous System; Multicast, Unicast, and Broadcast: Algorithm 2
directly applies to a multicast in a synchronous system. The difference is that the
BA_broadcast which is necessarily a probabilistic algorithm in the asynchronous
system now becomes a deterministic algorithm. The special cases of unicast and
broadcast in an asynchronous system likewise work in a synchronous system with
the probabilistic BA_broadcast now becoming a deterministic BA_broadcast.
Due to the high message complexity and latency of this version of unicast in a
synchronous system, Algorithm 1 is more efficient for unicast.

124 A. Misra et al.

7 Discussion

We conjecture that it is impossible to provide strong safety in Byzantine-
tolerant causal order for multicasts, (unicasts, or broadcasts) in synchronous
systems without using cryptographic techniques, complementing the impossi-
bility result [21,22] for asynchronous systems. This is because in isolation, a
Byzantine process is free to delete true dependencies of its messages on mes-
sages that it sends out. By using cryptographic techniques, this advantage is
nullified by making the Byzantine process dependent on correct processes to
decipher and read incoming messages. This makes sure that a Byzantine process
cannot falsify/delete causal dependencies because it no longer operates in isola-
tion and requires cooperation of one or more correct processes in reading and
sending messages.

In this paper, we have extended previous work that provided weak safety
of causal order unicasts/multicasts to now provide strong safety with the use
of threshold encryption for both synchronous and asynchronous systems. The
causal ordering algorithm for asynchronous systems is non-deterministic, while
the algorithm for synchronous systems is deterministic. The synchronous algo-
rithm for unicasts (Algorithm 1) has a low cost with message complexity
O(n) point-to-point messages per application message, but assumes assistance
from the network in terms of an upper bound on message latency. The asyn-
chronous algorithm for multicasts (Algorithm 2) has a higher message cost of
at least O(n2) (depending on the implementation of the BA_broadcast primi-
tive [7,12,16]) plus O(n · |G|) point-to-point messages per multicast to group G,
but does not assume any support from the network. Depending on the applica-
tion requirements and constraints, either of the two algorithms can be used for
causal ordering.

References

1. Auvolat, A., Frey, D., Raynal, M., Taïani, F.: Byzantine-tolerant causal broadcast.
Theoret. Comput. Sci. 885, 55–68 (2021)

2. Birman, K.P., Joseph, T.A.: Reliable communication in the presence of failures.
ACM Trans. Comput. Syst. (TOCS) 5(1), 47–76 (1987)

3. Bracha, G.: Asynchronous byzantine agreement protocols. Inf. Comput. 75(2),
130–143 (1987)

4. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J. ACM
(JACM) 32(4), 824–840 (1985)

5. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous
broadcast protocols. IACR Cryptol. ePrint Arch, p. 6 (2001)

6. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. (JACM) 43(2), 225–267 (1996)

7. Correia, M., Neves, N.F., Veríssimo, P.: From consensus to atomic broadcast: time-
free byzantine-resistant protocols without signatures. Comput. J. 49(1), 82–96
(2006)

8. Défago, X., Schiper, A., Urbán, P.: Total order broadcast and multicast algorithms:
taxonomy and survey. ACM Comput. Surv. 36(4), 372–421 (2004)

Byzantine Fault-Tolerant Causal Order Satisfying Strong Safety 125

9. Duan, S., Reiter, M.K., Zhang, H.: Secure causal atomic broadcast, revisited. In:
2017 47th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 61–72. IEEE (2017)

10. Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Consensus in the presence of partial
synchrony. J. ACM 35(2), 288–323 (1988)

11. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

12. Gągol, A., Leśniak, D., Straszak, D., Świętek, M.: Aleph: efficient atomic broadcast
in asynchronous networks with byzantine nodes. In: Proceedings of the 1st ACM
Conference on Advances in Financial Technologies, pp. 214–228 (2019)

13. Hadzilacos, V., Toueg, S.: A modular approach to fault-tolerant broadcasts and
related problems. Technical report 94–1425, p. 83. Cornell University (1994)

14. Kshemkalyani, A.D., Singhal, M.: Necessary and sufficient conditions on informa-
tion for causal message ordering and their optimal implementation. Distributed
Comput. 11(2), 91–111 (1998)

15. Kshemkalyani, A.D., Singhal, M.: Distributed Computing: Principles, Algorithms,
and Systems. Cambridge University Press, Cambridge (2011)

16. Kursawe, K., Shoup, V.: Optimistic asynchronous atomic broadcast. In: Caires,
L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005.
LNCS, vol. 3580, pp. 204–215. Springer, Heidelberg (2005). https://doi.org/10.
1007/11523468_17

17. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

18. Milosevic, Z., Hutle, M., Schiper, A.: On the reduction of atomic broadcast to
consensus with byzantine faults. In: 2011 IEEE 30th International Symposium on
Reliable Distributed Systems, pp. 235–244. IEEE (2011)

19. Misra, A., Kshemkalyani, A.D.: Causal ordering in the presence of byzantine pro-
cesses. In: 28th IEEE International Conference on Parallel and Distributed Sys-
tems, ICPADS, pp. 130–138. IEEE (2022)

20. Misra, A., Kshemkalyani, A.D.: Causal ordering properties of byzantine reliable
broadcast primitives. In: Colajanni, M., Ferretti, L., Pardal, M.L., Avresky, D.R.
(eds.) 21st IEEE International Symposium on Network Computing and Applica-
tions, NCA 2022, pp. 115–122. IEEE (2022)

21. Misra, A., Kshemkalyani, A.D.: Solvability of byzantine fault-tolerant causal order-
ing problems. In: Koulali, M., Mezini, M. (eds.) NETYS 2022. LNCS, vol. 13464,
pp. 87–103. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17436-0_7

22. Misra, A., Kshemkalyani, A.D.: Byzantine fault-tolerant causal ordering. In: 24th
International Conference on Distributed Computing and Networking, ICDCN 2023,
Kharagpur, India, January 4–7, 2023, pp. 100–109. ACM (2023)

23. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228–234 (1980)

24. Raynal, M.: Fault-Tolerant Message-Passing Distributed Systems: An Algorithmic
Approach. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94141-7

25. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. J. Cryptol. 15(2), 75–96 (2002)

https://doi.org/10.1007/11523468_17
https://doi.org/10.1007/11523468_17
https://doi.org/10.1007/978-3-031-17436-0_7
https://doi.org/10.1007/978-3-319-94141-7

Improved Paths to Stability
for the Stable Marriage Problem

Vijay K. Garg(B) and Changyong Hu

The University of Texas at Austin, Austin, USA
{garg,colinhu9}@ece.utexas.edu

Abstract. The stable marriage problem has wide applications in dis-
tributed computing such as the placement of virtual machines in a dis-
tributed system. The stable marriage problem requires one to find a
marriage with no blocking pair. Given a matching that is not stable,
Roth and Vande Vate have shown that there exists a sequence of match-
ings that leads to a stable matching in which each successive matching is
obtained by satisfying a blocking pair. The sequence produced by Roth
and Vande Vate’s algorithm is of length O(n3) where n is the number of
men (and women). In this paper, we present an algorithm that achieves
stability in a sequence of matchings of length O(n2). We also give an
efficient algorithm to find the stable matching closest to the given initial
matching under an appropriate distance function between matchings.

Keywords: Stable Matching · Nearest Stable Matching

1 Introduction

The Stable Matching Problem [4] has wide applications in distributed computing
such as the placement of virtual machines in a distributed system [9] or the
placement of files in a distributed system. It has applications in many other
numerous fields such as economics and resource allocation with multiple books
and survey articles [3,6–8,10]. In the standard version of the problem, there are
n men and n women each with their totally ordered preference list. The goal is
to find a matching between men and women such that there is no blocking pair,
i.e., there is no pair of a woman and a man such that they are not married to
each other but prefer each other over their partners. The standard Gale-Shapley
(GS) algorithm produces such a matching starting from an empty matching
with the deferred acceptance proposal algorithm that takes O(n2) proposals.
The algorithm produces the man-optimal stable matching.

In many applications, it is useful to consider the initial state of the system
as an arbitrary assignment of men to women and then to find a path to a stable
matching. For example, suppose that we consider a system in which there are
more women than men and suppose that every man is matched to a unique

Supported by NSF CNS-1812349, CNS-1563544, and the Cullen Trust for Higher Edu-
cation Endowed Professorship.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 126–140, 2023.
https://doi.org/10.1007/978-3-031-44274-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_11&domain=pdf
http://orcid.org/0000-0002-5797-4389
http://orcid.org/0000-0003-4074-0313
https://doi.org/10.1007/978-3-031-44274-2_11

Improved Paths to Stability for the Stable Marriage Problem 127

woman such that there is no blocking pair. Now, if a new man or a woman
joins the system, it is more natural to start with the initial state as the existing
assignment rather than the empty matching. In particular, if there is some cost
associated with breaking up an existing couple, then we may be interested in
the paths to stability that are of short lengths. Hence, this generalization allows
one to consider incremental stable matching algorithms.

As another example, suppose that we have a stable matching. In a dynamic
preference mechanism, a woman may change her list of preferences. The existing
matching may not be stable under new preferences of the woman. Again, it is
more natural to start with the existing matching and then to find a path to a
stable matching under new preferences. Thus, the generalization allows one to
consider a dynamic stable matching algorithm in which preferences of a man
or a woman may change and the goal is to find a stable matching under new
preferences.

Given a matching, a natural method to make progress towards a stable match-
ing is as follows. The man and the woman in the blocking pair are married and
their spouses are divorced. By marrying these divorcees, we get another match-
ing. The reader is referred to the book [3] for a detailed discussion of algorithms
that go from a matching to a stable matching. Knuth [8] showed that starting
from any matching and iteratively satisfying a blocking pair may lead to a cycle.
Abeledo and Rothblum [1] have shown that a cycle exists even if one chooses the
best blocking pair to satisfy at each step. A pair (p, q′) is the best blocking pair
for p if for any other blocking pair (p, q) in M , p prefers q′ to q. Indeed, it has
been shown by Tamura [13] and independently by Tan and Su [14], that there
are matchings for which it is not possible to reach a stable marriage by marrying
off divorcees. However, if the divorcees are allowed to remain single, then one can
achieve stability. The Roth and Vande Vate (RVV) mechanism [11] is the most well
known method to determine a path to stability. Their algorithm introduces agents
(men or women) incrementally and let them iteratively reach a stable matching.
Given any matching M0, the RVV mechanism produces a sequence of matchings
M0,M1, . . . ,Mt such that Mt is stable matching and for each k (1 ≤ k ≤ t), Mk

is obtained from Mk−1 by satisfying a blocking pair. The value of t is at most 2n3

(assuming that the number of acceptable pairs is n2).
In this paper, we analyze the path to stability from the perspective of traver-

sal in the proposal vector lattice. Any man-saturating matching corresponds to a
unique proposal vector but when the matching is incomplete there may be multi-
ple proposal vectors corresponding to it. Working with proposal vectors instead
of matching allows us to generate shorter sequences to a stable matching. In
particular, we show that given any proposal vector G0, there exists a sequence
of proposal vectors G0, G1, . . . , Gt such that Gt corresponds to a stable match-
ing and for each k (1 ≤ k ≤ t), Gk is obtained from Gk−1 by either increasing
the choice number for one man (thereby worsening his match) or decreasing the
choice number for one man (thereby improving his match). The value of t is at
most 2m2 where m is the number of men. Our result can also be phrased in
terms of matching as follows. Given any matching M0, there exists a sequence

128 V. K. Garg and C. Hu

of matching M0,M1, . . . ,Mt such that Mt corresponds to a stable matching and
for each k (1 ≤ k ≤ t), Mk is obtained from Mk−1 by either (1) marrying a
man whose current partner is in a blocking pair (or, if he is single) to another
woman who is agreeable to his proposal, or (2) by marrying a woman to her best
blocking pair partner. The value of t is at most 2m2 where m is the number of
men. Thus, this sequence is shorter than the RVV sequence by a factor of m.

We propose four algorithms in this paper for achieving stability (see Fig. 1).
The first algorithm α is a generalization of the GS algorithm to find the man-
optimal marriage. The GS algorithm starts with the matching that results when
all men propose to their top choice. It then determines the man-optimal stable
marriage in O(n2) moves. What if instead of the top choices, men propose to any
arbitrary vector of women? In such a scenario, a woman cannot accept the first
proposal she receives (as in the GS algorithm), because that may result in an
unstable matching. Algorithm α gives the rules for advancing from an arbitrary
proposal vector to end up in a stable marriage (whenever possible). Given any
initial matching M0, algorithm α produces a sequence of matchings ending in a
stable marriage Mt such that the matching only improves from the perspective
of women and gets only worse from the perspective of men. This sequence is
of length O(n2). Since there may not exist any stable matching that is based
only on improving from the women’s perspective, algorithm α may return null
in these cases (for example, when the initial matching M0 assigns some man
a partner who is ranked lower than in the man-pessimal matching). The set
of stable matchings can be viewed as a sublattice of the lattice of all proposal
vectors and the algorithm α can be viewed as upward traversal in this lattice
from any arbitrary proposal vector to a proposal vector that corresponds to a
stable matching.

One of the goals of the paper is to find a matching that is not too far from
the original matching (or the initial proposal vector). Given any proposal vector
I, the regret of a man is defined as the rank the woman he is assigned in I,
i.e., if a man is assigned his kth top choice in I then his regret is k. Given two
proposal vectors I and M , we define the distance between I and M , dist(I,M)
as the sum of differences of regrets for all men in I and M , i.e. the L1 distance
between two vectors, dist(I,M) = ‖I − M‖1. Algorithm α guarantees that the
stable matching Mt computed has the least distance of all stable matchings that
are better than I from the women’s perspective.

The second algorithm β does the downward traversal in the proposal lattice
in search of a stable marriage. Algorithm β also takes an arbitrary proposal vec-
tor I as the starting point and results in a stable marriage whenever possible.
It improves the matching from the perspective of men. When men and women
are equal then such a traversal can be accomplished by switching the roles of
men and women. However, in this paper we assume that the number of men m
may be much smaller than the number of women w. All our algorithms have
time complexity of O(m2 + w). Switching the roles of men and women is not
feasible without increasing the complexity of our algorithms. Algorithm β guar-
antees that the stable matching Mt computed has the least distance of all stable
matchings that are better than I from the men’s perspective.

Improved Paths to Stability for the Stable Marriage Problem 129

The third algorithm γ combines a downward traversal with an upward traver-
sal to guarantee that irrespective of the initial matching I, there always exists
a sequence of matchings that results in a stable matching. This sequence con-
sists of two subsequences each of length O(m2) giving us the path to stability of
length O(m2), thereby improving on the RVV mechanism. Intuitively, the RVV
algorithm may traverse the lattice in the upward direction or downwards direc-
tion multiple times. In contrast, our algorithm γ traverses the proposal lattice
once in the downward direction and then in the upward direction ending in a
stable matching. It generates a sequence of proposal vectors that results in a
stable matching with O(m2 + w) time complexity.

Our last algorithm δ finds the closest stable matching to the given initial
proposal vector. Algorithm δ is based on a linear programming formulation of
the stable marriage problem by Rothblum [12]. By appropriately defining the
objective function to minimize the distance from the initial proposal vector, we
get a polynomial time algorithm to find the closest stable marriage.

Our algorithms are also useful in the context of arriving at more egalitarian
matchings than we get using the Gale-Shapley algorithm. If there are m men,
instead of starting with the proposal vector (1, 1, . . . , 1), we may start with the
proposal vector (m/2,m/2, . . . ,m/2) to find a stable vector close to the center of
the proposal lattice. Alternatively, we can also start with various proposal vectors
chosen at random and obtain multiple stable matchings. Once we have multiple
stable matchings, we can use Teo and Sethuraman’s median stable matching
theorem [15] to return the median stable matching.

We note here that the path to a stable matching from an unstable matching
can be of different types. Given any blocking pair, the RVV algorithm is based
on a better response dynamics. Under these dynamics, any blocking pair (p, q) for
a matching M is chosen and they are matched. The partners of p and q in M , if
any, are unmatched. An alternative approach based on best response dynamics is
explored in [2]. Here, one side, say the set of women, is considered active and the
other side is considered passive. An active agent of a blocking pair (p, q) in M
plays the best response if p is matched to q′ such that (p, q′) is the best blocking
pair for p. In other words, if there is any other blocking pair (p, q) in M , then p
prefers q′ to q. The paper [2] gives an example of a two sided market with three
men and women in which best response dynamics can cycle. They also propose an
algorithm to generate a sequence of 2mw best responses from any matching M
that leads to a stable matching. Their algorithm has some similarities with our
algorithm in that it also consists of two phases. In the first phase, only matched
women can make best response moves whereas in the second phase all women
can play the best response. However, a crucial difference from our algorithm is
that we are interested in finding a matching that is close to the original match-
ing (where the distance is defined based on the proposal lattice). The algorithm
in [2] does not concern itself with the issue of the distance between matchings.
In particular, under the best response dynamics, their algorithm has the ten-
dency to get to the woman-optimal marriage irrespective of the initial matching.
In contrast, our algorithms provide guarantees on the matching returned. For

130 V. K. Garg and C. Hu

example, Algorithm α returns the proposal vector that has the least distance
from I, the initial proposal vector of all the proposal vectors that are bigger
than I.

The missing proofs in this paper are available in [5]

Fig. 1. A proposal lattice with various traversals. Algorithm GS always starts from
the bottom of the lattice and finds the man-optimal vector. Algorithm α starts from
any vector I and finds the smallest stable vector which is greater than or equal to I (if
any exists). Algorithm β finds the largest stable vector which is less than or equal to
I. Algorithm γ always converges to a stable vector. Algorithm δ finds a stable vector
that is closest in Manhattan metric.

2 Proposal Vector Lattice

We consider stable marriage instances with m men numbered 1, 2, . . . ,m and w
women numbered 1, 2, . . . w. We assume that the number of women w is at least
m; otherwise, the roles of men and women can be switched. The variables mpref
and wpref specify the men preferences and the women preferences, respectively.
Thus, mpref [i][k] = j iff woman j is the kth preference for man i. Figure 2 shows
an instance of the stable matching problem.

We use the notion of a proposal vector for our algorithms. A (man) proposal
vector, G, is of dimension m, the number of men. We view any vector G as
follows: (G[i] = k) if man i has proposed to his kth preference, i.e. the woman

Improved Paths to Stability for the Stable Marriage Problem 131

given by mpref [i][k]. If mpref [i][k] equals j, then G[i] equals k corresponds to
man i proposing to woman j. For convenience, let ρ(G, i) denote the woman
mpref [i][G[i]]. The vector (1, 1, . . . , 1) corresponds the proposal vector in which
every man has proposed to his top choice. Similarly, (w,w, . . . , w) corresponds to
the vector in which every man has proposed to his last choice. Our algorithms can
also handle the case when the lists are incomplete, i.e., a man prefers staying
alone to being matched to some women. However, for simplicity, we assume
complete lists. It is clear that the set of all proposal vectors forms a distributive
lattice under the natural less than order in which the meet and join are given by
the component-wise minimum and the component-wise maximum, respectively.
This lattice has wm elements.

Given any proposal vector, G, there is a unique matching defined as follows:
man i and ρ(G, i) are matched in G if the proposal by man i is the best for that
woman in G. A man p is unmatched in G if his proposal is not the best proposal
for that woman in G. A woman q is unmatched in G if she does not receive any
proposal in G; otherwise, she is matched with the best proposal for her in G.

A proposal vector G represents a man-saturating matching iff no woman
receives more than one proposal in G. Formally, G is a man-saturating matching
if ∀i, j : i �= j : ρ(G, i) �= ρ(G, j). When the number of men equals the number
women, a man-saturating matching is a perfect matching (all men and women
are matched). When the number of men is less than the number of women, then
G is a man-saturating matching if every man is matched (but some women are
unmatched). We say that a matching M1 (or a marriage) is less than another
matching M2 if the proposal vector for M1 is less than that of M2. Thus, the
man-optimal marriage is the least stable matching in the proposal lattice and
woman-optimal marriage is the greatest stable matching.

A proposal vector G may have one or more blocking pairs. A pair of man
and woman (p, q) is a blocking pair in G iff ρ(G, p) is not q, man p prefers q
to ρ(G, p), and woman q prefers p to any proposal she receives in G. Observe
that this definition works even when woman q is unmatched, i.e. she has not
received any proposals in G. In this case, woman q prefers p to staying alone,
and p prefers q to ρ(G, p).

A proposal vector G is a stable marriage (or a stable proposal vector) iff it
is a man-saturating matching and there are no blocking pairs in G. The usual
stable matching problem is to determine such a proposal vector given mpref
and wpref . The problem that we consider in this paper includes an additional
input: the initial proposal vector, I. The goal is to traverse the proposal lattice
starting from I to find a stable proposal vector G. In this paper, we use two
different mechanisms—upward traversal and downward traversal—to reach a
stable matching proposal vector.

Algorithm α uses upward traversal. Suppose that q is matched with p′ in
G and is part of the blocking pair (p, q). Instead of satisfying the blocking pair
(p, q), we move p′ to his next choice in his preference list. This move makes the
proposal vector better from the women’s perspective and worse from the men’s
perspective. By continuing in this manner if some man makes a proposal to q

132 V. K. Garg and C. Hu

who is even better than p, the blocking pair (p, q) gets eliminated. If no man
better than p ever makes a proposal to q, then there is no proposal vector bigger
than G that corresponds to a stable matching.

Fig. 2. Stable Matching Problem with men preference list (mpref) and women pref-
erence list (wpref).

Algorithm β uses downward traversal in the proposal lattice. Let G be a
proposal vector that is not stable. Of all the blocking pairs that q is part of, we
choose the best blocking pair from q’s perspective. Let (p, q) be such a blocking
pair. We construct a proposal vector G′ that moves man p to woman q by
changing the proposal of man p from his current proposal to that for woman q
and keeping all other proposals as before.

Since Algorithm α traverses the lattice upwards, any sequence of proposal
vector it generates can be of length at most m2. Similarly, Algorithm β also
generates a sequence of length at most m2. Algorithm γ combines one downward
traversal and one upward traversal to go from any proposal vector to a stable
matching proposal vector in a sequence of length at most O(m2).

We now describe Algorithms α, β and γ in detail.

3 Algorithm α

Given any initial proposal vector I, Algorithm α, finds a stable matching G such
that I ≤ G whenever there exists such a stable matching. The initial proposal
vector is arbitrary instead of the top choice for each man. This generalizes the
GS algorithm which starts with I = (1, 1, . . . , 1). Observe that the GS algorithm
does not work when the starting proposal vector is arbitrary. The GS algorithm
requires men to make proposals and women to accept the best proposals they
have received so far. If the starting proposal vector is a man-saturating matching
but not stable, then each woman gets a unique proposal. All women would accept
the only proposal received, but the resulting marriage would not be stable.

This instability may arise due to two reasons. First, it may arise when the
number of women exceeds the number of men. If we start with the top choices of
all men, then the GS algorithm would still return a man-optimal stable match-
ing with the excess women unmatched. However, if we start from an arbitrary
proposal vector, we can end up with all women getting unique proposals but
there may exist an unmatched woman who is preferred by some man over his
current match.

Improved Paths to Stability for the Stable Marriage Problem 133

To tackle this problem, we first do a simple check on the initial proposal
vector as given by the following Lemma. Let numw(I) be the total number of
unique women that have been proposed in all vectors that are less than or equal
to I, i.e., numw(I) = #{j ∈ [w] : ∃G ≤ I,∃i, ρ(G, i) = j}.

Lemma 1. Let I be the initial proposal vector for any stable marriage instance
with m men. There is no stable marriage for any proposal vector G ≥ I whenever
numw(I) > m.

Proof. Consider any proposal vector G ≥ I. Since the total number of men is
m, there is at least one woman q who has been proposed to in a vector less than
G and who does not have any proposal in G. Suppose that proposal was made
by man p. Then, man p prefers q to ρ(G, p) and q prefers p to staying alone. 	

Hence, in our algorithm we only consider I such that the total number of
women proposed until I (in all vectors less than or equal to I) is at most m.

Instability may arise even when the number of men and women are equal.
In Fig. 2, this situation would arise if we started with I = (2, 2, 2). The initial
proposal vector may be a perfect matching but not stable. A woman q may
receive a unique proposal from a man p but she prefers p′ who has made his
proposal to q′ even though p′ prefers q to q′. Such a scenario cannot happen
when men propose starting from the top choice and in the decreasing order as in
the GS algorithm. However, now the starting vector is arbitrary and a blocking
pair may exist in the man-saturating matching.

To address this problem, we define the notion of a forbidden man in a proposal
vector.

Definition 1 (forbidden). A man i is forbidden in G if either he is unmatched
in G or matched to a woman in G who is part of a blocking pair. Formally, the
predicate forbidden(G, i) holds if there exists another man j such that either (1)
both i and j have proposed to the same woman in G and that woman prefers j,
or (2) (j, ρ(G, i)) is a blocking pair in G.

We first show that

Lemma 2. Let G be any proposal vector such that numw(G) ≤ m. There exists
a man i such that forbidden(G, i) iff G is not a stable marriage.

Algorithm α shown in Fig. 3 exploits the forbidden(G, i) function to search
for the stable marriage in the proposal lattice. The basic idea is that if a man i is
forbidden in the current proposal vector G, then he must go down his preference
list until he finds a woman who is either unmatched or prefers him to her current
match. The while loop at line (1) iterates until none of the men are forbidden
in G. If the while loop terminates then G is a stable marriage on account of
Lemma 2. At line (2), man i advances on his preference list until his proposal is
the most preferred proposal to the woman among all proposals that are made to
her in any proposal vector less than or equal to G. If there is no such proposal,

134 V. K. Garg and C. Hu

Fig. 3. Algorithm α that returns the least stable vector greater than or equal to the
given proposal vector I.

then there does not exist any G ≥ I such that G is stable and in line (3), the
algorithm returns null. Otherwise, the man makes that proposal at line (4).

For example, consider the initial proposal vector G = (2, 2, 2) in Fig. 2. In
this proposal vector, we have the matching {(m1, w2), (m2, w3), (m3, w1)}. While
this is a man-saturating matching, it is not stable because it has blocking pairs.
Consider the blocking pair (m2, w2) (because, m2 prefers w2 to w3 and w2 prefers
m2 to m1). In an upward traversal, we advance the partner of the woman w2

in the blocking pair, m1, to his next choice. The next choice for m1 is w3. This
results in w3 rejecting m2 and therefore m2 moves to his next choice w1. This
proposal, in turn, results in w1 rejecting m3. Next, m3 makes a proposal to w2

and now (m2, w2) is not a blocking pair. The new proposal vector (3, 3, 3) which
corresponds to the matching {(m1, w3), (m2, w1), (m3, w2)} is a stable matching
with all women getting their top choices.

There are two main differences between the GS algorithm and Algorithm α.
The first difference is the simple check on the number of women that have been
proposed until G. We require numw(G) ≤ m. Clearly, if the number of women is
equal to the number of men, then numw(G) can never exceed m and this check
can be dropped.

The second difference is in the definition of forbidden(G, i). In the stan-
dard GS algorithm, a man advances on his preference list only when he is
unmatched, i.e., the woman he has proposed to is either matched with someone
more preferable or receives a proposal from a more preferable man. Whenever
the GS algorithm reaches a man-saturating matching, it is a stable matching.
For any arbitrary I (for example, a man-saturating matching that is not stable),
it is important to take blocking pairs in consideration as part of the forbidden
predicate. This difference can be summarized as follows.

– GS Algorithm: A man proposes to the next woman on his preference list if he
is currently unmatched.

Improved Paths to Stability for the Stable Marriage Problem 135

– Algorithm α: A man i proposes to the next woman on his preference list if
he is currently unmatched or matched with a woman q who is in a blocking
pair.

Observe that if all men propose starting from their top choices, then the rule
for Algorithm α becomes identical to that for the GS Algorithm.

To prove the correctness of the algorithm α, the following Lemma is crucial.

Lemma 3. If forbidden(G, i) holds, then there is no proposal vector H such
that (H ≥ G) and (G[i] = H[i]) and H is a stable marriage.

A consequence of Lemma 3 is that if forbidden(G, i) holds, then it is safe
to advance man i to the next choice without any danger of missing a proposal
vector that is a stable marriage. We can now show the correctness of Algorithm
α.

Theorem 1. Algorithm α returns the least stable proposal vector G ≥ I in the
proposal lattice whenever it exists. If there is no stable proposal vector greater
than or equal to I, then the algorithm returns null.

The following Corollary states that the stable marriage returned by Algo-
rithm α has the least distance of all stable marriages greater than I.

Corollary 1. Given any proposal vector I, Algorithm α returns the stable mar-
riage greater than or equal to I with the least distance from I.

Proof. Suppose that Algorithm α returns G and G′ is any other stable marriage
such that I ≤ G′. From Theorem 1, we get that I ≤ G ≤ G′. It follows that the
distance between I and G is less than or equal to the distance between I and
G′. 	

As another application of Algorithm α consider a scenario where we have a
stable marriage and a new man joins the system (we can assume that initially
the number of women were more than the number of men). Instead of running
the GS from scratch, algorithm α can start from the existing proposal vector
for existing men and the median choice for the new entrant. If the existing
matching had certain desirable properties (e.g. fairness), then the new stable
matching found would be close to the existing matching.

4 Algorithm β: Downward Traversal

We now give the dual of Algorithm α that does the downward traversal in the
proposal vector lattice and returns the greatest stable marriage less than or
equal to I. In the standard literature, one does not consider the dual of the GS
algorithm to find the woman-optimal stable marriage. Just by switching roles
of men and women from the man-optimal GS, we get the woman-optimal GS
algorithm. We cannot employ this strategy because we had assumed that the

136 V. K. Garg and C. Hu

Fig. 4. Algorithm β: An Algorithm that returns the woman-optimal marriage less than
or equal to the given proposal vector I.

number of men is less than or equal to the number of women. Switching men
and women violates this assumption.

In addition, the downward traversal of the proposal lattice gives different
insights into the algorithm for finding a stable matching even when the number
of men equals the number of women.

We first give a necessary condition for a stable marriage to exist that is less
than or equal to I.

Lemma 4. If numw(I) (the number of unique women who have proposals in
any vector less than or equal to I) is less than m, then there cannot be any
stable proposal vector less than or equal to I.

Proof. The claim follows because any proposal vector less than or equal to I
cannot be a man-saturating matching if the number of unique women is less
than m. 	

If numw(I) ≥ m, there may or may not be a proposal vector that corresponds
to a stable marriage depending upon the women’s preferences.

While traversing the proposal lattice in the downward direction, we use the
predicate rForbidden(G, p) (short for reverse-Forbidden) which uses the notion
of best blocking pair.

Definition 2 (Best blocking pair). A blocking pair (p, q) is the best blocking
pair in G for q if for all blocking pairs (p′, q) in G, the woman q prefers p to p′.

Definition 3 (Forbidden). A man p is rForbidden in G if there exists a
woman q such that (p, q) is the best blocking pair in G for q.

We first show that

Lemma 5. Let G be any proposal vector such that numw(G) ≥ m. There exists
a man i such that rForbidden(G, i) iff G is not a stable marriage.

Improved Paths to Stability for the Stable Marriage Problem 137

Proof. First suppose that there exists i such that rForbidden(G, i). Then, there
exists a woman q such that man i and woman q form a blocking pair for G.
Hence G is not a stable marriage.

Conversely, assume that G is not a stable marriage. If G is not a man-
saturating matching, then there exists at least one woman q who has not received
any proposal in G but has received it earlier because num(W) ≥ m. Of all
such proposals to q let the most favorable proposal be from man i. Then,
rForbidden(G, i) holds. If G is a man-saturating matching, but not stable, then
there exists at least one blocking pair. Therefore, there exists at least one best
blocking pair. 	

Analogous to upward traversal using forbidden predicate, we get that

Lemma 6. Assume numw(G) ≥ m. If rForbidden(G, i) holds, then there is no
stable proposal vector H such that (H ≤ G) and (G[i] = H[i]).

Figure 4 shows a high-level description of a downward traversal of the pro-
posal lattice. At line (1), we ensure that G[i] is at most m because due to
Lemma 1, we know that there cannot be any stable marriage in which any com-
ponent exceeds m. At line (2), we first ensure that G is at least equal to L, the
proposal vector corresponding to the man-optimal stable marriage. Otherwise,
there cannot be a stable marriage vector less than or equal to G. At line (3) we
pick i such that rForbidden(G, i) holds. This means that there exists a woman
q such that (i, q) is a best blocking pair. At line (4), we satisfy the pair (i, q) by
decreasing G[i] until ρ(G, i) = q. This step corresponds to a downward traver-
sal in the proposal lattice. At line (6), when we exit from the while loop, we
know that G must be a stable marriage on account of Lemma 5. This algorithm
ensures that the match for any man can only improve.

For example of Algorithm β, consider the initial proposal vector G = (2, 2, 2).
The pair (m2, w2) is blocking. Of all the blocking pairs in G for w2, m2 is best.
Even though w2 prefers m3 to m2, the pair (m3, w2) is not blocking because m3

is at his choice 2 in G and w2 corresponds to his third choice. Since m2 is the best
blocking pair for w2, we make m2 propose to w2. Hence, the new proposal vector
is (2, 1, 2). In this proposal vector, w3 is unmatched and (m3, w3) is the best
blocking pair for w3. The new proposal vector is (2, 1, 1). Now, w1 is unmatched
and her best blocking pair is (m1, w1). When m1 proposes to w1, we get the
stable marriage proposal vector (1, 1, 1). This corresponds to the man-optimal
stable marriage.

5 Algorithm γ: Path to Stability

We now present an algorithm that gives a path from any proposal vector to a
stable marriage vector. Note that depending on the initial proposal vector, both
Algorithms α and β may return null. For example, when the number of men is
equal to the number of women and the initial vector is greater than or incompara-
ble to the woman-optimal vector, then the algorithm α will return null. Similarly,

138 V. K. Garg and C. Hu

Fig. 5. Algorithm γ with O(m2 + w) complexity.

if the initial vector is less than or incomparable to the man-optimal vector, then
the algorithm β returns null. If the initial vector is incomparable to both the
man-optimal and the woman-optimal proposal vectors, then both algorithms α
and β will return null. In the RVV setting, we need to combine a downwards
traversal with an upwards traversal to go from an arbitrary proposal vector to a
stable matching. There are two choices for combining these traversals—a down-
ward traversal followed by an upwards traversal, or vice-versa. We will use the
former approach. The RVV algorithm introduces men and women incrementally
and does multiple upward and downward traversals.

The Algorithm γ is shown in Fig. 5. Given any arbitrary initial vector I, we
first do a downward traversal to get to a proposal vector that is less than or equal
to U , the largest possible stable marriage. If the initial vector is at most U , then
this step is not necessary. U can be computed using Algorithm β by using a
downward traversal starting from the vector [m,m, . . . , m]. Our goal is to find
blocking pairs in G such that by satisfying them we get to a proposal vector
G ≤ U . In contrast to algorithms in literature, we pick blocking pairs to satisfy
carefully. Specifically, during the downward traversal, we satisfy only those men
whose component in the proposal vector is beyond U . To find a sequence from I
to G such that G ≤ U , we first compute a vector K as max(U,G). We now invoke
a downward traversal on K using rForbidden function of algorithm β. Since
Algorithm β returns the greatest stable marriage less than the initial proposal
vector (in our case K), it finds as blocking pair only those men i such that
K[i] > U [i]. By definition of rForbidden any j such that K[j] equals U [j] can
not satisfy rForbidden(K, j) because U is a stable marriage.

Lemma 7. Let K = max(G,U). Then, for any i, rForbidden(K, i) implies
rForbidden(G, i).

Proof. Suppose i is not rForbidden in G. This means that there exists a stable
marriage H less than or equal to G such that H[i] = G[i]. Since G is less than or

Improved Paths to Stability for the Stable Marriage Problem 139

equal to K, we get that H is a stable marriage less than or equal to K. However,
this implies that i is not rForbidden in K. 	

Since i is rForbidden in G it is safe to decrement G[i] in search for a stable
marriage. By repeating this process, we generate a sequence of proposal vectors
that makes G less than or equal to U . Note that consecutive proposal vectors
generated in this phase differ in the proposals by at most one man. The down-
ward traversal step can be viewed as invocation of Algorithm β on K such that
whenever K is updated, G is updated as well. This downward traversal can be
done in O(m2 + w) time. At the end of this step G ≤ U , and we can start the
second phase of the algorithm.

In the second phase, we do an upward traversal in which women improve
their match. We use the function α to find the least stable marriage that is
greater than or equal to G. In this phase, we satisfy blocking pairs by improving
the match of women. Since the input to algorithm α is less than or equal to U ,
we are guaranteed to get a stable marriage at the end.

Hence, we have the following result.

Theorem 2. Given any initial proposal vector I, there exists a sequence of pro-
posal vectors G0, G1, . . . , Gt such that G0 is equal to I, Gt corresponds to a stable
matching and for each k (1 ≤ k ≤ t), Gk is obtained from Gk−1 by either increas-
ing the choice number for one man (thereby worsening his match) or decreasing
the choice number for one man (thereby improving his match). The value of t is
at most 2m2 where m is the number of men.

This sequence can be obtained using algorithm γ that takes O(m2 + w)
computation time given all the data structures (preference lists and rankings)
in memory.

Fig. 6. Algorithm γ that generates a sequence of matchings.

Since the RVV Algorithm generates a sequence of matchings instead of pro-
posal vectors, we show how to generate a sequence of matchings explicitly instead

140 V. K. Garg and C. Hu

of proposal vectors in Fig. 6. The downward traversal is performed by using the
best blocking pairs in K. The matching is generated from the proposal vector G
as defined in Sect. 2. Observe that these matchings may not be men-saturating
and therefore some men and women may be unmatched. The upward traversal
is performed by matching those men who are either unmatched or matched to a
woman in a blocking pair. Clearly, the length of the sequence of these matchings
is at most O(m2).

References

1. Abeledo, H., Rothblum, U.G.: Paths to marriage stability. Discrete Appl. Math.
63(1), 1–12 (1995)

2. Ackermann, H., Goldberg, P.W., Mirrokni, V.S., Röglin, H., Vöcking, B.: Uncoor-
dinated two-sided matching markets. SIAM J. Comput. 40(1), 92–106 (2011)

3. David, M.: Algorithmics of Matching Under Preferences, vol. 2. World Scientific,
Singapore (2013)

4. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Monthly 69(1), 9–15 (1962)

5. Garg, V.K., Hu, C. :Improved paths to stability for the stable marriage problem.
arXiv (2023)

6. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algo-
rithms. MIT press, Cambridge (1989)

7. Iwama, K., Miyazaki, S.: A survey of the stable marriage problem and its vari-
ants. In: International Conference on Informatics Education and Research for
Knowledge-Circulating Society, 2008. ICKS 2008, pp. 131–136. IEEE (2008)

8. Knuth, D.E.: Stable Marriage and its Relation to Other Combinatorial Problems:
An Introduction to the Mathematical Analysis of Algorithms, vol. 10. American
Mathematical Soc. (1997)

9. Maggs, B.M., Sitaraman, R.K.: Algorithmic nuggets in content delivery. ACM
SIGCOMM Comput. Commun. Rev. 45(3), 52–66 (2015)

10. Roth, A.E., Sotomayor, M.: Two-Sided Matching. Handbook of Game Theory with
Economic Applications 1, 485–541 (1992)

11. Roth, A.E., Vate, J.H.V.: Random paths to stability in two-sided matching. Econo-
metrica: J. Econometric Soc. 58, 1475–1480 (1990)

12. Rothblum, U.G.: Characterization of stable matchings as extreme points of a poly-
tope. Math. Program. 54(1–3), 57–67 (1992)

13. Tamura, A.: Transformation from arbitrary matchings to stable matchings. J.
Comb. Theory, Ser. A 62(2), 310–323 (1993)

14. Tan, J.J., Su, W.C.: On the divorce digraph of the stable marriage problem. Proc.
Natl Sci. Coun. Repub. China 19, 342–354 (1995)

15. Teo, C.-P., Sethuraman, J.: The geometry of fractional stable matchings and its
applications. Math. Oper. Res. 23(4), 874–891 (1998)

Lattice Linearity of Multiplication
and Modulo

Arya Tanmay Gupta(B) and Sandeep S. Kulkarni(B)

Computer Science and Engineering, Michigan State University, East Lansing, USA
{atgupta,sandeep}@msu.edu

Abstract. In this paper, we study the lattice linearity of multiplica-
tion and modulo operations. We demonstrate that these operations are
lattice linear and the parallel processing algorithms that we study for
both these operations are able to exploit the lattice linearity of their
respective problems. This implies that these algorithms can be imple-
mented in asynchronous environments, where the nodes are allowed to
read old information from each other. These algorithms also exhibit snap-
stabilizing properties, i.e., starting from an arbitrary state, the sequence
of state transitions made by the system strictly follows its specification.

Keywords: lattice linear · modulo · multiplication · self-stabilization ·
asynchrony

1 Introduction

Development of parallel processing algorithms to solve problems is increasingly
gaining interest. This is because computing machines are manufactured with
multiprocessor chips as we face a bound on the rate of architectural development
of individual microprocessors. Such algorithms, in general, require synchroniza-
tion among their processing nodes. Without such synchronization, the nodes
perform executions based on inconsistent values possibly resulting in substantial
delay or potentially incorrect computation.

In this context, lattice theory has provided with very useful concepts. In lat-
tice linear systems, a partial order is induced in the state space, which allows
the nodes to perform executions asynchronously. Lattice linearity was utilized in
modelling the problems (where there exists a predicate, naturally describing the
problem, under which the global states form a lattice, called lattice linear prob-
lems) [5] and in developing algorithms (called lattice linear algorithms) which
impose a lattice structure in problems (which are not lattice linear) [7,8]. Thus,
the algorithms that traverse such a state transition system can allow the nodes
to perform executions asynchronously while preserving correctness.

Lattice linearity allows inducing single or multiple lattices among the global
states. If self-stabilization is required, then for every induced lattice, its supre-
mum must be an optimal state. This way, it can be ensured that the system can
traverse to an optimal state from an arbitrary state. We introduced eventually
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 141–156, 2023.
https://doi.org/10.1007/978-3-031-44274-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_12&domain=pdf
https://doi.org/10.1007/978-3-031-44274-2_12

142 A. T. Gupta and S. S. Kulkarni

lattice linear algorithms [7] and fully lattice linear algorithms [8] for non-lattice
linear problems (we discuss more on this in Sect. 2 for the sake of completeness,
but non-lattice linear problems are not the focus of this paper). These algorithms
are self-stabilizing.

Many lattice linear problems do not allow self-stabilization [4–6]. While devel-
oping new algorithms for lattice linear and non-lattice linear problems is very
interesting, it is also worthwhile to study if algorithms already present in the
literature exploit lattice linearity of problems or if lattice linearity is present in
existing algorithms. For example, lattice linearity was found to be exploited by
Johnson’s algorithm for shortest paths in graphs [5] and by Gale’s top trading
cycle algorithm for housing market [6].

In this paper, we study parallel implementations of two fundamental opera-
tions in mathematics: multiplication and modulo. We study algorithms for n×m
and n mod m where n and m are large integers represented as binary strings.

The applications of integer multiplication include the computation of power,
matrix products which has applications in a plethora of fields including artificial
intelligence and game theory, the sum of fractions and coprime base. Modu-
lar arithmetic has applications in theoretical mathematics, where it is heavily
used in number theory and various topics (groups, rings, fields, knots, etc.) in
abstract algebra. Modular arithmetic also has applications in applied mathemat-
ics, where it is used in computer algebra, cryptography, chemistry and the visual
and musical arts. In many of these applications, the value of the divisor is fixed.

A crucial observation is that these operations are lattice linear. Also, the
algorithms that we study in this paper are capable of computing the correct
answer even if the nodes are initialized in an arbitrary state. These properties
are present in these operations as opposed to many other lattice linear problems
where the lattice structure does not allow self-stabilization.

1.1 Contributions of the Paper

– We study the lattice linearity of modulo and multiplication operations. We
demonstrate that these problems satisfy the constraints of lattice linear prob-
lems [5]. This implies that some of the algorithms for them are capable of
benefiting from the property of lattice linearity.

– We also show that these algorithms exhibit properties that are similar to snap-
stabilizing algorithms [1], i.e., starting from an arbitrary state, the sequence
of state transitions made by the system strictly follows its specification, i.e.,
initializing in an arbitrary state, the nodes immediately start obtaining the
values as expected with each action they execute.

1.2 Organization of the Paper

In Sect. 2, we describe the definitions and notations that we use in this paper.
In Sect. 3, we discuss the related work. We study lattice linearity of the multi-
plication operation in Sect. 4. Then, in Sect. 5, we study the lattice linearity of
the modulo operation. Finally, we conclude in Sect. 6.

Lattice Linearity of Multiplication and Modulo 143

2 Preliminaries

This paper focuses on multiplication and modulo operations, where the operands
are n and m. In the computation n × m or n mod m, n and m are the values
of these numbers respectively, and |n| and |m| are the length of the bitstrings
required to represent n and m respectively. If n is a bitstring, then n[i] is the
ith bit of n (indices start from 1). For a bitstring n, n[1], for example, is the
most significant bit of n and n[|n|] is the least significant bit of n. n[i : j] is the
bitstring from ith to jth bit of n. For simplicity, we stipulate that n and m are of
lengths in some power of 2. Since size of n and m may be substantially different,
we provide complexity results that are of the form O(f(n,m)) in all cases.

We use the following string operations: (1) append(a, b), appends b to the
end of a in O(1) time, (2) rshift(a, k), deletes rightmost k bits of a in O(k)
time, and (3) lshift(a, k), appends k zeros to the right of a in O(k) time.

2.1 Modeling Distributed Programs

n × m or n mod m are typically thought of as arithmetic operations. However,
when n and m are large, we view them as algorithms. In this paper, we view
them as parallel/distributed algorithms where the nodes collectively perform
computations to converge to the final output. Next, we provide the relevant
definitions of a parallel/distributed program that we utilize in this paper.

The parallel/distributed program consists of nodes where each node is asso-
ciated with a set of variables. A global state, say s, is obtained by assigning each
variable of each node a value from its respective domain. s is represented as a
vector, where s[i] itself is a vector of the variables of node i. S denotes the state
space, which is the set of all global states that a given system can obtain.

Each node is associated with actions. Each action at node i checks the values
of other nodes and updates its own variables. An action is of the form g −→ ac,
where g is the guard (a Boolean predicate involving variables of i and other
nodes) and ac is an instruction that updates the variables of i. We assume all
actions to be executed atomically.

An algorithm A is self-stabilizing for the subset So of S where S is the set of all
global states, iff (1) convergence. starting from an arbitrary state, any sequence
of computations of A reaches a state in So, and (2) closure. any computation of A
starting from So always stays in So. We assume So to be the set of optimal states:
the system is deemed converged once it reaches a state in So. An algorithm is
snap-stabilizing iff starting from an arbitrary state, it makes the system follow
a sequence of state transitions as per the specification of that system.

2.2 Execution Without Synchronization

Typically, we view the computation of an algorithm as a sequence of global states
〈s0, s1, · · · 〉, where st+1, t ≥ 0, is obtained by executing some action by one or
more nodes in st. For the sake of discussion, assume that only node i executes
in state st. The computation prefix uptil st is 〈s0, s1, · · · , st〉. The state that

144 A. T. Gupta and S. S. Kulkarni

the system traverses to after st is st+1. Under proper synchronization, i would
evaluate its guards on the current local states of its neighbours in st.

To understand the execution in asynchrony, let x(s) be the value of some
variable x in state s. If i executes in asynchrony, then it views the global state
that it is in to be s′, where x(s′) ∈ {x(s0), x(s1), · · · , x(st)}. In this case, st+1

is evaluated as follows. If all guards in i evaluate to false, then the system will
continue to remain in state st, i.e., st+1 = st. If a guard g evaluates to true
then i will execute its corresponding action ac. Here, we have the following
observations: (1) st+1[i] is the state that i obtains after executing an action in
s′, and (2) ∀j �= i, st+1[j] = st[j].

The model described above allows nodes to read old values of other nodes
arbitrarily. In this paper, however, we require that the values of variables of
other nodes are read/received in the order in which they were updated/sent.

2.3 Embedding a <-Lattice in Global States

Let s denote a global state, and let s[i] denote the state of node i in s. First, we
define a total order <l; all local states of a node i are totally ordered under <l.
Using <l, we define a partial order <g among global states as follows:

We say that s <g s′ iff (∀i : s[i] = s′[i] ∨ s[i] <l s′[i]) ∧ (∃i : s[i] <l s′[i]).
Also, s = s′ iff ∀i s[i] = s′[i]. For brevity, we use < to denote <l and <g: <
corresponds to <l while comparing local states, and < corresponds to <g while
comparing global states. We also use the symbol ‘>’ which is such that s > s′

iff s′ < s. Similarly, we use symbols ‘≤’ and ‘≥’; e.g., s ≤ s′ iff s = s′ ∨ s < s′.
We call the lattice, formed from such partial order, a <-lattice.

Definition 1. <-lattice . Given a total relation <l that orders the states visited
by i (for each i) the <-lattice corresponding to <l is defined by the following
partial order: s < s′ iff (∀i s[i] ≤l s′[i]) ∧ (∃i s[i] <l s′[i]).

A <-lattice constraints how global states can transition among one another:
state s can transition to state s′ iff s < s′. In the <-lattice discussed above,
we can define the meet and join of two states in the standard way: the meet
(respectively, join), of two states s1 and s2 is a state s3 where ∀i, s3[i] is equal to
min(s1[i], s2[i]) (respectively, max(s1[i], s2[i])), where min(x, y) = min(y, x) = x
iff (x <l y ∨ x = y), and max(x, y) = max(y, x) = y iff (y >l x ∨ y = x). For s1
and s2, their meet (respectively, join) has a path to (respectively, is reachable
from) both s1 and s2.

By varying <l that identifies a total order among the states of a node, one can
obtain different lattices. A <-lattice, embedded in the state space, is useful for
permitting the algorithm to execute asynchronously. Under proper constraints
on the structure of <-lattice, convergence can be ensured.

2.4 Lattice Linear Problems

Next, we discuss lattice linear problems, i.e., the problems where the problem
statement creates the lattice structure automatically. Such problems can be rep-
resented by a predicate that induces a lattice among the states in S.

Lattice Linearity of Multiplication and Modulo 145

In lattice linear problems, a problem P can be represented by a predicate
P such that for any node i, if it is violating P in some state s, then it must
change its state. Otherwise, the system will not satisfy P. Let P(s) be true
iff state s satisfies P. A node violating P in s is called an impedensable node
(an impediment to progress if does not execute, indispensable to execute for
progress). Formally,

Definition 2. [5] Impedensable node. Impedensable(i, s,P) ≡ ¬P(s) ∧
(∀s′ > s : s′[i] = s[i] =⇒ ¬P(s′)).

Definition 2 implies that if a node i is impedensable in state s, then in any
state s′ such that s′ > s, if the state of i remains the same, then the algorithm
will not converge. Thus P induces a total order among the local states visited
by a node, for all nodes. Consequently, the discrete structure that gets induced
among the global states is a <-lattice, as described in Definition 1. Thus, any
<-lattice among the global states is induced by a predicate P that satisfies
Definition 2.

There can be multiple arbitrary lattices that can be induced among the global
states. A system cannot guarantee convergence while traversing an arbitrary lat-
tice. To resolve this, we design the predicate P such that it fulfils some properties,
and guarantees reachability to an optimal state. P is used by the nodes to deter-
mine if they are impedensable, using Definition 2. Thus, P induces a <l relation
among the local states, and as a result, a <-lattice among the global states. We
say that P is lattice linear with respect to that <-lattice. Consequently, in any
suboptimal global state, there will be at least one impedensable node. Formally,

Definition 3. [5] Lattice Linear Predicate. P is a lattice linear predicate
with respect to a <-lattice induced among the global states iff ∀s ∈ S : ¬P(s) ⇒
∃i : Impedensable(i, s,P).

Now we complete the definition of lattice linear problems. In a lattice linear
problem P , given any suboptimal global state, we can identify all and the only
nodes which cannot retain their state. In this paper, we observe that the algo-
rithms that we study exploit this nature of their respective problems. P is thus
designed conserving this nature of the subject problem P .

Definition 4. Lattice linear problems. A problem P is lattice linear iff there
exists a predicate P and a <-lattice such that

– P is deemed solved iff the system reaches a state where P is true, and
– P is lattice linear with respect to the <-lattice induced in S, i.e., ∀s : ¬P(s) ⇒

∃i : Impedensable(i, s,P).
– ∀s : (∃i : Impedensable(i, s,P) ⇒ (∀s′ : P(s′) ⇒ s′[i] �= s[i])).

Remark: Certain problems are non-lattice linear problems. In such problems,
there are instances in which the impedensable nodes cannot be distinctly deter-
mined, i.e., in those instances ∃s : ¬P(s) ⇒ (∃s′ : ∀i : P(s′) ∧ s[i] = s′[i]).

146 A. T. Gupta and S. S. Kulkarni

Minimal dominating set (MDS) and several other graph theoretic problems are
examples of such problems. (This can be illustrated through a simple instance
of a 2 node connected network with nodes A and B, initially both in the dom-
inating set. Here, MDS can be obtained without removing A. Thus, A is not
impedensable. The same applies to B.) For such problems, <-lattices are induced
algorithmically as an impedensable node cannot be distinctly determined nat-
urally. Eventually lattice linear algorithms (introduced in [7]) and fully lattice
linear algorithms (introduced in [8]) were developed for many such problems.

Problems such as stable marriage, job scheduling and market clearing price,
as studied in [5], are lattice linear problems. In this paper, we study lattice
structures that can be induced in multiplication and modulo: we show that
multiplication and modulo are lattice linear problems. All the lattice structures
that we study in this paper allow self-stabilization: the supremum of the lattice
induced in the state space is the optimal state.

Definition 5. Self-stabilizing lattice linear predicate. Continuing from
Definition 4, P is a self-stabilizing lattice linear predicate if and only if the supre-
mum of the lattice that P induces is an optimal state, i.e., P(supremum(S)) =
true.

Note that P can also be true in states other than the supremum of the <-lattice.

Remark: A <-lattice, induced under P, allows asynchrony because if a node,
reading old values, reads the current state as s, then for the current state s′,
s < s′. So ¬P(s) ⇒ ¬P(s′) because Impedensable(i, s,P) and s[i] = s′[i].

3 Related Work

Lattice Linear Problems: The notion of representing problems through a
predicate under which the states form a lattice was introduced in [5]. We call
the problems for which such a representation is possible lattice linear problems.
Lattice linear problems are studied in [4–6], where the authors have studied
lattice linearity in, respectively, housing market problem and several dynamic
programming problems. Many of these problems are not self-stabilizing.

Snap-Stabilization: The notion of snap-stabilization was introduced in [1].
The algorithms that we study in this paper make the system follow a sequence
of states that are deterministically predictable because of the underlying lattice
structure in the state space. Thus, they exhibit snap-stabilization. In general,
self-stabilizing algorithms where lattice linearity is utilized are snap stabilizing.

Modulo: In [12], the authors have presented parallel processing algorithms for
inverse, discrete roots, or a large power modulo a number that has only small
prime factors. A hardware circuit implementation for mod is presented in [2].

In this paper, we present several parallel processing algorithms which are self-
stabilizing. Some require critical preprocessing, and some do not. The general
algorithm for modulo (Algorithm 2) utilizes the power of (sequential or parallel)
modulo and multiplication operations on smaller operands.

Lattice Linearity of Multiplication and Modulo 147

Multiplication: In [3], the authors presented three parallel implementations of
the Karatsuba algorithm for long integer multiplication on a distributed memory
architecture. Two of the implementations have time complexity of O(n) on nlg 3

processors. The third algorithm has complexity O(n lg n) on n processors.
In this paper, we study lattice linearity of parallelized Karatsuba algorithm.

4 Parallelized Karatsuba’s Multiplication Operation

In this section, we study the lattice linearity of this algorithm that was presented
in [3]. First we discuss the idea behind the sequential Karatsuba’s algorithm, and
then we elaborate on its lattice linearity.

4.1 Key Idea of the Sequential Karatsuba’s Algorithm [10]

The input is a pair of bitstrings n and m. This algorithm is recursive in nature.
As the base case, if the length of n and m equals 1 then, the multiplication result
is trivial. When the length is greater than 1, we let m = ab and n = cd, where
a and b are half the length of m, and c and d are half the length of n. Here, ab,
for example, represents concatenation of a and b, which equals m.

Let z = 2|b|. n × m can be computed as ac × z2 + (ad + bc) × z + bd. ad + bc
can be computed as (a + b) × (c + d) − ac − bd. Thus, to compute m × n, it
suffices to compute 3 multiplications a × c, b × d and (a + b) × (c + d). Hence,
we can eliminate one of the multiplications. In the following section, we analyse
the lattice linearity of the parallelization of this algorithm as described in [3].

4.2 The CM Parallelization [3] for Karatsuba’s Algorithm

The Karatsuba multiplication algorithm involves dividing the input string into
substrings and use them to evaluate the multiplication recursively. In the parallel
version of this algorithm, the recursive call is replaced by utilizing another chil-
dren nodes to treat those substrings. We elaborate more on this in the following
paragraphs. Consequently, this algorithm induces a tree among the comput-
ing nodes. Every non-leaf node has three children. This algorithm works in two
phases, top-down and bottom-up. This algorithm uses four variables to represent
the state of each node i: n.i, m.i, ans.i and shift.i respectively.

In the sequential Karatsuba’s algorithm, both of the input strings n and m
are divided into two substrings each and the algorithm then runs recursively
on three different input pairs computed from those excerpt bitstrings. In the
parallel version, those recursive calls are replaced by activating three children
nodes [3]. As a result of such parallelization, if there is no carry-forwarding due
to addition, we require lg |n| levels, for which a total of |n|lg 3 nodes are required.
However, if there is carry-forwarding due to additions, then we require 2 lg |n|
levels, for which a total of |n|2 lg 3 nodes are required.

In the top-down phase, if |m.i| > 1 or |n.i| > 1, then i writes (1) a and c to
its left child, node 3i − 1 (m.(3i − 1) = a.i and n.(3i − 1) = c.i), (2) b and d to

148 A. T. Gupta and S. S. Kulkarni

its middle child, node 3i (m.(3i) = b.i and n.(3i) = d.i), and (3) a + b and c + d
to its right child, node 3i + 1 (m.(3i + 1) = a.i + b.i and n.(3i + 1) = c.i + d.i).
If |m.i| = |n.i| = 1, i.e., in the base case, the bottom-up phase begins and node
i sets ans.i = m.i × n.i that can be computed trivially since |m.i| = |n.i| = 1.

In the bottom-up phase, node i sets ans.i = ans.(3i − 1) × z2 + (ans.(3i +
1) − (ans.(3i − 1) + ans.(3i)) × z + ans.(3i). Notice that multiplication by z
and z2 corresponds to bit shifts and does not need an actual multiplication.
Consequently, the product of m × n for node i is computed by this algorithm.

With some book-keeping (storing the place values of most significant bits of
a+ b and c+d), a node i only needs to write the rightmost |m.i|

2 and |n.i|
2 bits to

its children. Thus, we can safely assume that when a node writes m and n to any
of its children, then m and n of that child are of equal length and are of length
in some power of 2. (If we do not do the book-keeping, the required number of
nodes increases, this number is upper bounded by |n|2 lg 3 as the number of levels
is upper bounded by 2 lg |n|; this observation was not made in [3].) However, we
do not show the same in the algorithm for brevity. Thus this algorithm would
require 2 lg |n| levels, i.e., |n|2 lg 3 nodes.

Computation of shift.i : This algorithm utilizes shift to compute z. A node
i updates shift.i by doubling the value of shift from its children. A node i
evaluates that it is impedensable because of an incorrect value of shift.i by
evaluating the following macro.

Impedensable-Multiplication-Karatsuba-Shift(i) ≡⎧
⎪⎨

⎪⎩

|m.i| = 1 ∧ |n.i| = 1 ∧ shift.i �= 0 OR

shift.(3i) = shift.(3i − 1) = 0 ≤ shift.(3i + 1) ∧ shift.i �= 1 OR

0 < shift.(3i) = shift.(3i − 1) ≤ shift.(3i + 1) ∧ shift.i �= shift.(3i) ∗ 2.

Computation of m.i and n.i : To ensure that the data flows down correctly,
we declare a node i to be impedensable as follows.

Impedensable-Multiplication-Karatsuba-TopDown(i) ≡
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i = 1 ∧ (m.i �= m ∨ n.i �= n) OR

((|m.i| > 1 ∧ |n.i| > 1)∧
(m.(3i − 1) �= m.i

[
1 : |m.i|

2

]
OR

n.(3i − 1) �= n.i
[
1 : |n.i|

2

]
OR

m.(3i) �= m.i
[

|m.i|
2 + 1 : |m.i|

]
OR

n.(3i) �= n.i
[

|n.i|
2 + 1 : |n.i|

]
OR

m.(3i + 1) �= m.i
[
1 : |m.i|

2

]
+ m.i

[
|m.i|
2 + 1 : |m.i|

]
OR

n.(3i + 1) �= n.i
[
1 : |n.i|

2

]
+ n.i

[
|n.i|
2 + 1 : |n.i|

]
)).

Lattice Linearity of Multiplication and Modulo 149

Computation of ans.i : To determine if a node i has stored ans.i incorrectly,
it evaluates to be impedensable as follows.

Impedensable-Multiplication-Karatsuba-BottomUp(i) ≡
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|m.i| = 1 ∧ |n.i| = 1 ∧ ans.i �= m.i × n.i OR

|m.i| > 1 ∧ |n.i| > 1 ∧ (ans.i �= lshift(ans.(3i − 1), shift.i)
+lshift(ans.(3i + 1) − ans.(3i − 1) − ans.(3i), shift.(3i))
+ans.(3i + 1))

Thus, Algorithm 1 is described as follows:

Algorithm 1. Parallel processing version of Karatsuba’s algorithm.

Rules for node i.

Impedensable-Multiplication-Karatsuba-Shift(i) −→
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

shift.i = 0 if |m.i| = 1 ∧ |n.i| = 1 ∧ shift.i �= 0.
shift.i = 1 if shift.(3i) = shift.(3i − 1) = 0

≤ shift.(3i + 1) ∧ shift.i �= 1
shift.i = shift.(3i) × 2 otherwise

Impedensable-Multiplication-Karatsuba-TopDown(i) −→
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m.i = m,n.i = n if i = 1 ∧ (m.i �= m ∨ n.i �= n).

m.(3i − 1) = m.i
[
1 : |m.i|

2

]
if m.(3i − 1) �= m.i

[
1 : |m.i|

2

]
.

n.(3i − 1) = n.i
[
1 : |n.i|

2

]
if n.(3i − 1) �= n.i

[
1 : |n.i|

2

]
.

m.(3i) = m.i
[

|m.i|
2 + 1 : |m.i|

]
if m.(3i) �= m.i

[
|m.i|
2 + 1 : |m.i|

]
.

n.(3i) = n.i
[

|n.i|
2 + 1 : |n.i|

]
if n.(3i) �= n.i

[
|n.i|
2 + 1 : |n.i|

]
.

m.(3i + 1) = m.i
[
1 : |m.i|

2

]

+m.i
[

|m.i|
2 + 1 : |m.i|

]
if m.(3i + 1) �= m.i

[
1 : |m.i|

2

]
.

+m.i
[

|m.i|
2 + 1 : |m.i|

]
.

n.(3i + 1) = n.i
[
1 : |n.i|

2

]

+n.i
[

|n.i|
2 + 1 : |n.i|

]
otherwise

Impedensable-Multiplication-Karatsuba-BottomUp(i) −→
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ans.i = m.i × n.i if |m.i| = 1 ∧ |n.i| = 1
ans.i = lshift(ans.(3i − 1), shift.i)+

lshift(ans.(3i + 1) − ans.(3i − 1)
−ans.(3i), shift.(3i)) + ans.(3i + 1)) otherwise.

150 A. T. Gupta and S. S. Kulkarni

Algorithm 1 converges in O(|n|) time [3], and its work complexity is O(nlg 3),
which is the time complexity of the sequential Karatsuba’s algorithm [3].

Example 1. Figure 1 evaluates 100 × 100 following Algorithm 1. ��

Fig. 1. Demonstration of multiplication of 100 and 100 in base 2: (a) top down (b)
bottom up.

4.3 Lattice Linearity

Theorem 1. Given the input bitstrings n and m, the predicate

∀i¬(Impedensable-Multiplication-Karatsuba-Shift(i)∨
Impedensable-Multiplication-Karatsuba-TopDown(i)∨
Impedensable-Multiplication-Karatsuba-BottomUp(i))

is lattice linear on |n|2 lg 3 computing nodes.

Proof. For the global state to be optimal, in this problem, we require node 1
to store the correct multiplication result in ans.1. To achieve this, each node i
must have the correct value of n.i and m.i, and their children must store correct
values of n, m and i according to their n.i and m.i values. This in turn requires
all nodes to store the correct shift.i values.

Lattice Linearity of Multiplication and Modulo 151

Let us assume for contradiction that node 1 does not have the correct value
of ans.1 = n × m. This implies that (1) node 1 does not have an updated value
in n.1 or m.1, or (2) node 1 has a non-updated value of ans.1, (3) node 1 has
not written the updated values to n.2 & m.2 or n.3 & m.3 or n.4 & m.4, (4)
node 1 has a non-updated value in shift.1, or (5) nodes 2, 3 or 4 have incorrect
values in their respective n, m, ans or shift variables. In cases (1),...,(4), node
1 is impedensable.

Recursively, this can be extended to any node i. Let node i has stored an
incorrect value in ans.i or shift.i. Let i > 1. Then (1) node i has a non-updated
value in shift.i, ans.i, n.i or m.i, or (2) (if m.i > 1 or n.i > 1) node i has not
written updated values to n.(3i−1) & m.(3i−1) or n.(3i) & m.(3i) or n.(3i+1)
& m.(3i + 1), in which case node i is impedensable. In both these cases, node i
is impedensable. It is also possible that at least one of the children of node i has
incorrect values in its respective n, m, ans or shift variables. From these cases,
we have that given a global state s, where s = 〈〈n.1, m.1, ans.1〉, 〈n.2, m.2,
ans.2〉, ..., 〈n.(|n|2 lg 3), m.(|n|2 lg 3), ans.(|n|2 lg 3)〉〉, if s is impedensable, there
is at least one node which is impedensable. This shows that if the global state
is impedensable, then there exists some node i which is impedensable.

Next, we show that if some node is impedensable, then node 1 will not store
the correct answer. Node 1 is impedensable if it has not read the correct value
m.1 and n.1. Additionally, ∀i : i ∈ [1 : n2 lg 3] node i is impedensable if (1) it has
non-updated values in ans.i or shift.i, (2) i has not written the correct values
to ans.(3i − 1) or ans.(3i) or ans.(3i + 1). This implies that the parent of i will
also store incorrect value in its ans or shift variable. Recursively, we have that
node 1 stores an incorrect value in ans.1. Thus, the global state is impedensable.

��
Corollary 1. Algorithm 1 computes multiplication of two numbers with n2 lg 3

nodes without synchronization.

In Algorithm 1, we allow nodes to change values of other nodes, where parents
update their children, which is generally not allowed in a distributed system. It
can be transformed such that all nodes update themselves only, and will stay
lattice linear, as follows. Nodes will copy n and m from their parents and update
their own n and m values. With this change, the definition of Impedensable-

Multiplication-Karatsuba-TopDown(i) will change accordingly.

5 Parallel Processing Modulo Operation

In this section, we present a parallel processing algorithm to compute n mod m
using 4×|n|/|m|−1 computing nodes. It induces a binary tree among the nodes
based on their ids; there are 2 × |n|/|m| nodes in the lowest level (level 1).

This algorithm starts from the leaves where all leaves compute, contiguously,
a substring of n of length |m|/2 under modulo m. In the induced binary tree,
the computed modulo result by sibling nodes at level � is sent to the parent.
Consecutively, those parents at level � + 1, contiguously, store a larger substring

152 A. T. Gupta and S. S. Kulkarni

of n (double the bits as their children cover) under modulo m. We elaborate this
procedure in this subsection. This algorithm uses three variables to represent
the state of each node i: shift.i, pow.i and ans.i.

Computation of shift.i : The variable shift stores the required power of 2. At
any node at level 1, shift is 0. At level 2, the value of shift at any node is |m|/2.
At any higher level, the value of shilft is twice the value of shift of its children.
Impedensable-Log-Modulo-Shift, in this context, is defined below.

Impedensable-Log-Modulo-Shift(i) ≡⎧
⎪⎨

⎪⎩

shift.i �= 0 if i ≥ 2 × |n|/|m|
shift.i �= |m|/2 if shift.(2i) = shift.(2i + 1) = 0
shift.i �= 2 × shift.(2i) if shift.(2i) = shift.(2i + 1) ≥ |m|

Computation of pow.i : The goal of this computation is to set pow.i to be
2shift.i mod m, whenever level.i ≥ 2. This can be implemented using the fol-
lowing definition for Impedensable-Log-Modulo-Pow.

Impedensable-Log-Modulo-Pow(i) ≡
⎧
⎪⎨

⎪⎩

pow.i �= 1 if shift.i = 0
pow.i �= 2

|m|
2 if shift.i = |m|/2

pow.i �= (pow.(2i))2 mod m otherwise

By definition, pow.i is less than m. Also, computation of pow requires mul-
tiplication of two numbers that are bounded by |m|. Hence, this calculation can
benefit from parallelization of Algorithm 1. However, as we will see later, the
complexity of this algorithm (for modulo) is dominated by the modulo opera-
tion happening in individual nodes which is O(|m|2), we can use the sequential
version of Karatsuba’s algorithm for multiplication as well, without affecting the
order of the time complexity of this algorithm.

Computation of ans.i : We split n into strings of size |m|
2 , the number repre-

senting this substring is less than m. At the lowest level (level 1), ans.i is set to
the corresponding substring. At higher levels, ans.i is set to (pow.i × ans.(2i) +
ans.(2i+1)) mod m. This computation also involves multiplication of two num-
bers whose size is upper bounded by |m|. An impedensable node i from a non-
updated ans.i can be evaluated using Impedensable-Log-Modulo-Ans(i).

Impedensable-Log-Modulo-Ans(i) ≡
⎧
⎨

⎩

ans.i �= n[(i − 2 × |n|
|m|) × |m|

2
+ 1 : (i − 2 × |n|

|m| + 1) × |m|
2

] if shift.i = 0

ans.i �= Mod(Sum(Mul(ans.(2i), pow.i), ans.(2i + 1)),m) otherwise

We describe the algorithm as Algorithm 2.

Algorithm 2. Modulo computation by inducing a tree among the nodes.

Lattice Linearity of Multiplication and Modulo 153

Rules for node i.

Impedensable-Log-Modulo-Shift(i) −→
⎧
⎪⎪⎨

⎪⎪⎩

shift.i = 0 if i ≥ 2 × |n|/|m|
shift.i =

|m|
2

if shift.(2i) = shift.(2i+ 1) = 0

shift.i = 2 × shift.(2i) if shift.(2i) = shift.(2i+ 1) ≥ |m|
Impedensable-Log-Modulo-Pow(i) −→
⎧
⎪⎨

⎪⎩

pow.i = 1 if shift.i = 0

pow.i = 2
|m|
2 if shift.i = |m|/2

pow.i = Mod(Mul(pow.i, pow.i),m) otherwise

Impedensable-Log-Modulo-Ans(i) −→
⎧
⎨

⎩

ans.i = n[(i − 2 × |n|
|m|) × |m|

2
+ 1 : (i − 2 × |n|

|m| + 1) × |m|
2

] if shift.i = 0

ans.i = Mod(Sum(Mul(ans.(2i), pow.i), ans.(2i+ 1)),m) otherwise

Example 2. Figure 2 shows the computation of 11011 mod 11 as performed by
Algorithm 2. ��

Fig. 2. Processing 11011 mod 11 following Algorithm 2.

5.1 Lattice Linearity

Theorem 2. Given the input bitstrings n and m, the predicate

∀i¬(Impedensable-Log-Modulo-Shift(i)∨
Impedensable-Log-Modulo-Pow(i)∨
Impedensable-Log-Modulo-Ans(i))

is lattice linear on 4|n|/|m| − 1 computing nodes.

154 A. T. Gupta and S. S. Kulkarni

Since the proof of this theorem is similar to the proof of Theorem 1, we
provide this proof in the technical report of this paper [9].

Corollary 2. Algorithm 2 computes multiplication of two numbers with 4 ×
|n|/|m| nodes without synchronization.

5.2 Time Complexity Analysis

Algorithm 2 is a general algorithm that uses the Mod(Mul(· · ·)) and Mod(
Sum(· · ·)). For some given x, y and z values, Mod(Mul(x, y),z) (resp., Mod

(Sum(x, y),z)) involves first the multiplication (resp., addition) of two input val-
ues x and y and then evaluating the resulting value under modulo z. These
functions can be implemented in different ways. Choices for these implementa-
tions affect the time complexity. We consider two approaches for this as follows.

Modulo via Long Division. First, we consider the standard approach for
computing Mod(Mul(· · ·)) and Mod(Sum(· · ·)). Observe that in Algorithm 2,
if we compute Mod(Mul(x, y)) then x, y < m. Hence, we can use Karatsuba’s
parallelized algorithm from Sect. 4 where the input numbers are less than m.
Using the analysis from Sect. 4, we have that each multiplication operation has
a time complexity of O(|n|).

Subsequently, to compute the mod operation, we need to compute xy mod m
where xy is upto 2|m| digits long. Using the standard approach of long division,
we will need |m| iterations where in each iteration, we need to do a subtraction
operation with numbers that |m| digits long. Hence, the complexity of this app-
roach is O(|m|2) per modulo operation. Since this complexity is higher than the
cost of multiplication, the overall time complexity is O(|m|2 × lg(|n|/|m|)).

Modulo by Constructing Transition Tables. The above approach uses
m and n as inputs. Next, we consider the case where m is hardcoded. The pre-
processing required in this method makes it impractical. However, we present this
method to show lower bounds on the complexity of the modulo operation when
m is hardcoded, and to show that there is a potential to reduce the complexity.

This approach is motivated by algorithms such as RSA [11] where the value
of n changes based on the message to be encrypted/decrypted, but the value of
m is fixed once the keys are determined. Thus, some pre-processing can poten-
tially improve the performance of the modulo operation; we observe that cer-
tain optimizations are possible. While the time and space complexities required
for preprocessing in this algorithm are high, thereby making it impractical, it
demonstrates a gap between the lower and upper bound in the complexity.

If m is fixed, we can create a table δsum of size m × m where an entry at
location (i, j) represents i+ j mod m in O(m2) time. Using δsum, we can create
another transition table δmul of size m × m where an entry at location (i, j)
represents i × j mod m in O(m2) time. Using δmul, the time complexity of a
Mod(Mul(· · ·)) operation becomes O(1). Hence, the overall complexity of the
modulo operation becomes O(lg(|n|/|m|)).

Lattice Linearity of Multiplication and Modulo 155

6 Conclusion

Multiplication and modulo operations are among the fundamental mathemat-
ical operations. Fast parallel processing algorithms for such operations reduce
the execution time of the applications which they are employed in. In this paper,
we showed that these problems are lattice linear. In this context, we studied an
algorithm by Cesari and Maeder [3] which is a parallelization of Karatsuba’s
algorithm for multiplication. We showed how to correctly implement this algo-
rithm using |n|lg 3 nodes. In addition, we studied a parallel processing algorithm
for the modulo operation.

The presence of lattice linearity in problems and algorithms allows nodes to
execute asynchronously. This is specifically valuable in parallel algorithms where
synchronization can be removed as is. These algorithms are snap-stabilizing,
which means that even if the initial states of the nodes are arbitrary, the state
transitions of the system strictly follow its specification. These are also self-
stabilizing, i.e., the supremum states in the lattices induced under the respective
predicates are the respective optimal states.

Utilizing these algorithms, a virtual machine, e.g., Java or Python, can utilize
the available GPU power to compute the multiplication and modulo operations
on big-number inputs. In this case, a synchronization primitive also does not need
to be deployed. Thus a plethora of applications will benefit from the observations
presented in this paper.

References

1. Bui, A., Datta, A.K., Petit, F., Villain, V.: State-optimal snap-stabilizing PIF in
tree networks. In: Proceedings 19th IEEE International Conference on Distributed
Computing Systems, pp. 78–85 (1999)

2. Butler, J.T., Sasao, T.: Fast hardware computation of X mod Z. In: 2011 IEEE
International Symposium on Parallel and Distributed Processing Workshops and
Phd Forum, pp. 294–297 (2011)

3. Cesari, G., Maeder, R.: Performance analysis of the parallel karatsuba multipli-
cation algorithm for distributed memory architectures. J. Symb. Comput. 21(4),
467–473 (1996)

4. Garg, V.: A lattice linear predicate parallel algorithm for the dynamic program-
ming problems. In: 23rd International Conference on Distributed Computing and
Networking, ICDCN 2022, New York, NY, USA, pp. 72–76. Association for Com-
puting Machinery (2022)

5. Garg, V.K.: Predicate detection to solve combinatorial optimization problems. In:
Scheideler, C., Spear, M. (eds.) SPAA 2020: 32nd ACM Symposium on Parallelism
in Algorithms and Architectures, Virtual Event, USA, 15–17 July 2020, pp. 235–
245. ACM (2020)

6. Garg, V.K.: A lattice linear predicate parallel algorithm for the housing market
problem. In: Johnen, C., Schiller, E.M., Schmid, S. (eds.) SSS 2021. LNCS, vol.
13046, pp. 108–122. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
91081-5 8

https://doi.org/10.1007/978-3-030-91081-5_8
https://doi.org/10.1007/978-3-030-91081-5_8

156 A. T. Gupta and S. S. Kulkarni

7. Gupta, A.T., Kulkarni, S.S.: Extending lattice linearity for self-stabilizing algo-
rithms. In: Johnen, C., Schiller, E.M., Schmid, S. (eds.) SSS 2021. LNCS, vol.
13046, pp. 365–379. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
91081-5 24

8. Gupta, A.T., Kulkarni, S.S.: Brief announcement: fully lattice linear algorithms.
In: Devismes, S., Petit, F., Altisen, K., Di Luna, G.A., Fernandez Anta, A. (eds.)
SSS 2022. LNCS, vol. 13751, pp. 341–345. Springer, Heidelberg (2022). https://
doi.org/10.1007/978-3-031-21017-4 24

9. Gupta, A.T., Kulkarni, S.S.: Lattice linearity of multiplication and modulo.
CoRR/2302.07207 (2023)

10. Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by automatic
computers. In: Doklady Akademii Nauk SSSR, vol. 14, no. 145, pp. 293–294 (1962)

11. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

12. Zeugmann, T.: Highly parallel computations modulo a number having only small
prime factors. Inf. Comput. 96(1), 95–114 (1992)

https://doi.org/10.1007/978-3-030-91081-5_24
https://doi.org/10.1007/978-3-030-91081-5_24
https://doi.org/10.1007/978-3-031-21017-4_24
https://doi.org/10.1007/978-3-031-21017-4_24

The Fagnano Triangle Patrolling Problem
(Extended Abstract)

Konstantinos Georgiou1(B), Somnath Kundu2, and Paweł Prałat1

1 Department of Mathematics, Toronto Metropolitan University, Toronto, ON, Canada
{konstantinos,pralat}@torontomu.ca

2 Department of Computer Science, Toronto Metropolitan University, Toronto, ON, Canada
somnath.kundu@torontomu.ca

Abstract. We investigate a combinatorial optimization problem that involves
patrolling the edges of an acute triangle using a unit-speed agent. The goal is
to minimize the maximum (1-gap) idle time of any edge, which is defined as
the time gap between consecutive visits to that edge. This problem has roots in
a centuries-old optimization problem posed by Fagnano in 1775, who sought to
determine the inscribed triangle of an acute triangle with the minimum perimeter.
It is well-known that the orthic triangle, giving rise to a periodic and cyclic tra-
jectory obeying the laws of geometric optics, is the optimal solution to Fagnano’s
problem. Such trajectories are known as Fagnano orbits, or more generally as
billiard trajectories. We demonstrate that the orthic triangle is also an optimal
solution to the patrolling problem.

Our main contributions pertain to new connections between billiard trajecto-
ries and optimal patrolling schedules in combinatorial optimization. In particular,
as an artifact of our arguments, we introduce a novel 2-gap patrolling problem
that seeks to minimize the visitation time of objects every three visits. We prove
that there exist infinitely many well-structured billiard-type optimal trajectories
for this problem, including the orthic trajectory, which has the special property of
minimizing the visitation time gap between any two consecutively visited edges.
Complementary to that, we also examine the cost of dynamic, sub-optimal tra-
jectories to the 1-gap patrolling optimization problem. These trajectories result
from a greedy algorithm and can be implemented by a computationally primitive
mobile agent.

Keywords: Patrolling · Triangle · Fagnano Orbits · Billiard Trajectories

1 Introduction

Patrolling refers to the perpetual monitoring, protection, and supervision of a domain or
its perimeter using mobile agents. In a typical patrolling problem involving one mobile
agent, the agent must move through a given domain in order to monitor or check spe-
cific locations or objects. The objective is to find a trajectory that satisfies certain con-
straints and/or that addresses quantitative objectives, such as minimizing the total dis-
tance traveled or maximizing the frequency of visits to certain areas. The purpose of

The full version of this paper appears on arXiv [20].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 157–171, 2023.
https://doi.org/10.1007/978-3-031-44274-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_13&domain=pdf
https://doi.org/10.1007/978-3-031-44274-2_13

158 K. Georgiou et al.

patrolling could be to detect any intrusion attempts, monitor for possible faults or to
identify and rescue individuals or objects in a disaster environment, and for this rea-
son, such problems arise in a variety of real-world applications, such as security patrol
routes, autonomous robot navigation, and wildlife monitoring. Overall the subject of
patrolling has seen a growing number of applications in Computer Science, including
Infrastructure Security, Computer Games, perpetual domain-surveying, and monitoring
in 1D and 2D geometric domains.

In addition to its practical applications, patrolling has emerged (not as a combi-
natorial optimization problem) in the context of theoretical physics. In particular, the
problem of finding periodic trajectories in billiard systems has been a topic of interest
for many years. A billiard system is a model of a particle or a waveform moving inside
a domain (typically polygonal, but also elliptical, convex, or even non-convex region)
and reflecting off its boundaries according to the laws of elastic collision. The problem
of finding periodic trajectories in a billiard system is equivalent to finding a closed path
in the domain that satisfies certain geometric conditions.

One important example of a periodic trajectory in billiard systems is the so-called
Fagnano orbit on acute triangles, a periodic, closed (and piece-wise linear) curve that
visits the three edges of an acute triangle. Fagnano orbits, named after the Italian math-
ematician Giulio Fagnano who first studied them in the mid-18th century, arise as solu-
tions to the optimization problem which asks for the shortest such curve. In this work
we explore further connections between billiard trajectories and patrolling as a com-
binatorial optimization problem. In particular, we are asking what are the patrolling
strategies for the edges of an acute triangle that optimize standard frequency-related
objectives are. Our findings demonstrate that a family of Fagnano orbits are actually
optimal solutions to the corresponding combinatorial optimization problems, revealing
this way deeper connections between the seemingly disparate areas of combinatorial
patrolling and billiard trajectories.

2 Related Work

Patrolling problems are a fundamental class of problems in computational geometry,
combinatorial optimization, and robotics that have attracted significant research inter-
est in recent years. Due to their practical applications, they have received extensive
treatment in the realm of robotics, see for example [1,6,14,15,22,31,41], as well as
surveys [3,23,35]. When patrolling is seen as part of infrastructure security, it leads to
a number of optimization problems [27], with one particular example being the identi-
fication of network failures or web pages requiring indexing [31].

Combinatorial trade-offs of triangle edge visitation costs have been explored in [19].
In contrast, the current work pertains to the cost associated with the perpetual monitor-
ing of the triangle edges by a single unit speed agent. Numerous variations of sim-
ilar patrolling problems have been explored in computational geometry, which vary
depending on the application domain, patrolling specifications, agent restrictions, and
computational abilities. Many efficient algorithms have been developed for several of
these variants, utilizing a range of techniques from graph theory, computational geom-
etry, and optimization, see survey [10] for some recent developments. Some examples

The Fagnano Triangle Patrolling Problem 159

of studied domains include the bounded line segment [25], networks [41], polygonal
regions [38], trees [11], disconnected boundaries of one dimensional curves [8], arbi-
trary polygonal environments [33] (with a reduction to graphs), or even 3-dimensional
environments [16].

Identifying optimal patrolling strategies can be computationally hard [12], while
even in seemingly easy setups the optimal trajectories can be counter-intuitive [26]. The
addition of combinatorial specifications has given rise to multiple intriguing variations,
including the requirement of uneven coverage [7,34] or waiting times [13], the presence
of high-priority segments [32], and patrolling with distinct speed agents [9]. Patrolling
has also been studied extensively from the perspective of distributed computing [30],
while the class of these problems also admit a game-theoretic interpretation between an
intruder and a surveillance agent [2,18].

Maybe not surprisingly, the optimal patrolling trajectories that we derive are in fact
billiard-type trajectories, that is, periodic and cyclic trajectories obeying the standard
law of geometric optics, and which are referred to as Fagnano orbits specifically when
the underlying billiard/domain is triangular. Fagnano orbits have been studied exten-
sively both experimentally [28] and theoretically [39]. Billiard-type trajectories have
been explored in equilateral triangles [4], obtuse triangles [21], as well as polygons [40].
More recently, there have been studies on ellipses [17] and general convex bodies [24],
or even fractals [29] and polyhedra [5], with the list of domains or trajectory specifica-
tions still growing.

3 Main Definitions and Results

A patrolling schedule S (or simply a schedule) for triangleΔwith edges (line segments)
E = {α, β, γ} is an infinite sequence {si}i≥0, where each si is on a line segment of
E that we also denote by e(si), i.e. e(si) ∈ E for each i ≥ 0. When e(si) = δ ∈ E
we say that segment δ and point si are visited at step i of the schedule. We will only be
studying feasible schedules, i.e. schedules for which eventually all segments in E are
visited (and infinitely often).

For simplicity, our notation above is tailored to points si that are not vertices of
Δ. When si is a vertex of Δ we assume that both incident edges are visited. We also
think of schedule S as the trajectory of a unit speed agent, and hence we refer to the
time between the visitation of sj , sj+� as the summation of the lengths of segments
sj+isj+i+1 over i ∈ {0, . . . , � − 1}.

A schedule S is called:

– cyclic if {e(s0), e(s1), e(s2)} = E and e(si+3) = e(si), for every i ≥ 0, and
– k-periodic (for k ≥ 3) if si+k = si, for every i ≥ 0.

For any segment δ ∈ E we define its t-gap sequence, gt(δ), that records the visi-
tation time gaps of δ over every t + 1 consecutive visitations. In particular, t = 1 cor-
responds to the standard idle time considered previously, and that measures the addi-
tional time it takes for each object to be revisited, after each visitation. Formally, let
e(sj) = e(sj′) = δ and suppose that points sj , sj′ are the k-th and (k + t)-th visi-
tation of δ, respectively. Then the time between the visitations of sj , sj′ is exactly the

160 K. Georgiou et al.

value of k-th element of sequence gt(δ). From this definition, it is also immediate that
(gt(δ))i =

∑t
i=1

(
g1(δ)

)
i
.

The t-gapGt(δ) of δ ∈ E is defined as supi (gt(δ))i, while the t-gapGt of schedule
S for edges E (hence for input triangle Δ) is defined as maxδ∈E Gt(δ). When it is clear
from the context, we will abbreviate G1 simply by G.

3.1 Main Contributions and More Terminology

In this section we summarize our main contributions, pertaining to the optimal 1-gap
and 2-gap patrolling schedules of acute triangles. Due to space limitations, any omitted
proofs from the following sections can be found in the full version of the paper on
arXiv [20].

As a warm-up, we first give a self-contained proof of optimality for 1-gap patrolling
schedules, restricted to cyclic and 3-periodic schedules. In order to present our result,
we remind the reader of the so-called orthic triangle, a pedal-type triangle of an acute
triangle Δ, which is a triangle inscribed in Δ whose vertices are the projections of the
Δ’s orthocenter (intersection of altitudes) to its three edges. Note also the any 3-periodic
cyclic schedule corresponds to a triangle inscribed in Δ. The next theorem, given first
by Fagnano in 1775, is proven in Sect. 4, where we also introduce some key concepts
for our follow-up main contributions.

Theorem 1 (Fagnano’s Theorem). The optimal 1-gap 3-periodic cyclic patrolling
schedule of a triangle Δ is its orthic triangle.

Towards our goal to provide the optimal 1-gap schedules, we find all (infinitely
many) optimal 2-gap cyclic schedules, which are in fact billiard-type trajectories. We
prove the next theorem in Sect. 6.

Theorem 2. There are infinitely many optimal 2-gap cyclic schedules of a triangle Δ,
that include also the orthic triangle. Every 2-gap optimal schedule is 6-periodic and
has value equal to 2 times the perimeter of the orthic triangle. Moreover, each optimal
schedule is made up of segments that are parallel to the edges of the orthic triangle.

Then in Sect. 7 we derive our main contribution.

Theorem 3. The optimal 1-gap schedule of a triangle Δ is its orthic triangle.

In the same section we also quantify the 1-gap cost of the orthic triangle, and we com-
pare it to the optimal 2-gap schedules. Indeed, we ask which of the optimal 2-gap sched-
ules minimizes the maximum time in-between the visitation of any two edges of Δ (and
not of the same edge), and we prove that the orthic schedule is again the optimal, in this
multi-objective optimization problem.

From our previous contributions, we conclude that a mobile agent whose task is to
1-gap optimally patrol a triangle Δ needs to be able to compute the base points of Δ’s
altitudes. Therefore, a natural question is whether we can obtain efficient solutions with
a primitive agent. In Sect. 8 we show the following result.

The Fagnano Triangle Patrolling Problem 161

Theorem 4. There is a greedy-type schedule that converges to a 3-periodic cyclic
schedule whose 1-gap cost is off from the 1-gap optimal cyclic schedule by a factor
γ ∈ [1, γ0], where γ0 =

√
2/2 + 1/2, and γ admits a closed formula as a function of

the angles of the given triangle.

It will follow from our analysis that our greedy algorithm will be nearly optimal for
any acute triangle with one arbitrarily small angle, and it will be the worst off from the
optimal solution when the given triangle is a right isosceles.

4 The 1-Gap Optimal 3-Periodic Cyclic Schedule

There are many proofs known for the fact that inscribed triangle with the shortest
perimeter is its orthic triangle. In the language of triangle patrolling, the statement is
equivalent to that the optimal 1-gap 3-periodic cyclic schedule of a triangle is its orthic
triangle, articulated in Theorem 1.

The next complementary lemma effectively provides a formula for the optimal 1-
gap cost of cyclic 3-periodic schedules.

Lemma 1. Let p be the perimeter of an acute triangle. Then, the perimeter of its orthic

triangle is given by 2p
(

1
sin(B) sin(C) + 1

sin(A) sin(C) + 1
sin(A) sin(B)

)−1

.

5 Technical Properties of the Orthic Patrolling Schedule

In this section we explore a number of technical properties associated with the orthic
patrolling schedule, which will be the cornerstone of our main results. All observations
in this section refer to Fig. 1 which we explain gradually as we present our findings.

Our starting point is triangle ABC with edges α ≥ β ≥ γ, and hence the same
relation holds for the opposite angles. We also depict the base points K,L,K of alti-
tudes corresponding to A,B,C respectively. It follows that inscribed triangle KLM is
the orthic triangle.

We apply a number of reflections of triangle ABC as follows: we obtain reflection
C1 of C around AB, reflection B1 of B around AC1, reflection A1 of A around B1C1,
reflection C2 of C1 around A1B1, and reflection B2 of B1 around A1C2. We refer to
the resulting triangles as the reflected triangles.

Lemma 2. The line passing through B2, C2 is parallel to line passing through BC.

Proof. We consider the slope of several line segments relevant to BC. We have the
following observations pertaining to counterclockwise rotation of line segments about
one of their endpoints. The rotation of BC about B by angle 2B gives segment BC1.
The rotation of BC1 about C1 by angle 3C gives segment C1A1. The rotation of C1A1

about A1 by angle 3A gives segment A1B2. Finally, the rotation of A1B2 about B2 by
angle B gives segment B2C2.

It follows that segment B2C2 follows by repeated rotation of angle 2B+3C+3A+
B = 3(A + B + C) = 6π. Since 6π is a multiple of π we conclude the claim. ��

162 K. Georgiou et al.

Fig. 1. The orthic channel (stripe enclosed between the red dotted lines) as it is obtained by 5
triangle reflections. (Color figure online)

Next we provide an alternative representation of the orthic trajectory.

Lemma 3. The line passing through MK (green dotted line in Fig. 1) passes through
the following points: L1 on AC1, K1 on B1C1, M1 on A1B1, L2 on A1C2, and K2 on
B2C2. Moreover, points L1,K1,M1, L2,K2 are the bases of corresponding altitudes
in the series of the reflected triangles.

Proof. By the proof of Theorem 1, the orthic triangle KLM can be obtained by con-
sidering the image K1 of K (on B1C1) along the same reflections that resulted into
the reflected triangles. Now consider the intersections M,L1 of KK1 with AB,AC1,
respectively. It follows that CM and C1M are altitudes in triangles ABC,ABC1, and
BL1 and B1L1 are altitudes in triangles ABC1, AB1C1. In particular, it follows that
K,M,L1,K1 are collinear.

The same argument applies if we start from triangle AB1C1 and invoke the same
reflections starting from the third one, in the series that gave us the reflected trian-
gles. It follows that by extending line KK1 we intersect segment A1B1 at a point M1,
and segment A1C2 at a point L2, where C1M1 and C2M1 are altitudes in triangles
A1B1C1, and B1L2 is altitudes in triangles A1B1C2. Hence, L2,M1,K1, L1,M,K
are also collinear.

Finally, we observe that the base K2 of altitude A1K2 is obtained as the reflection
of K1 using the last two reflections of the series of reflections that gave us the reflected
triangles. It follows that K2 is also collinear with L2 and M1 concluding our argument.

��

The Fagnano Triangle Patrolling Problem 163

It follows from Lemma 3 that the orthic trajectory along two cycles of the patrolling
schedule can also be described by the line segment K1K2. We refer to the line pass-
ing through K,K2 as the orthic line. Alternatively, we showed that all points within
segment K1K2 lie within the reflected triangles. Our observation justifies that the fol-
lowing concept is well-defined.

Definition 1. The orthic channel is defined by two lines �1, �2 parallel to the orthic line
of maximum distance, and with the following properties: �1, �2 intersect segments BC
and B2C2 and all points on lines �1, �2 in-between segments BC and B2C2 lie within
the reflected triangles.

Similar reflection-induced channels were studied in [36,37], while the orthic-channel
that we use was also observed experimentally in [28]. Next we formalize its usefulness.

Lemma 4. Any line parallel to the orthic line within the orthic channel gives rise to a
cyclic 6-periodic patrolling schedule with 2-gap cost equal to twice the orthic perimeter.

Proof. Consider an arbitrary line, parallel to the orthic line, that intersects line segments
BC,B1C1, B2C2 at points R,R1, R2 respectively, see Fig. 1. We observe that KK2 is
parallel to RR2, and by Lemma 2 we have that K2R2 is parallel to KR. Therefore,
KRR2K2 is a parallelogram with KR = KR2.

We conclude that R2 is the reflection of R using the same reflections that obtained
K2 from K. But then, it follows RR2 corresponds to cyclic 6-periodic patrolling sched-
ule of 2-gap cost equal to RR2 = KK2 = KK1 + K1K2 = 2KK1, as promised. ��

Next we identify all cyclic 6-periodic patrolling schedules of the same 2-gap costs.
We note that in the following lemma we make explicit use of that the repeated reflec-
tions were done first along the smallest two edges.

Lemma 5. The lines identifying the orthic channel are the two lines parallel to the
orthic line, one passing through A and one passing through A1.

Proof. Consider a line parallel to the orthic line passing through A, and intersecting
BC at T and the line passing through B1C1 at point T1. We will show that T1 lies in
the segment K1B1.

First we claim thatKT = K1T1. To see why, recall thatKK1 is parallel to TT1. It is
enough to show that KTT1K1 is an isosceles trapezoid. Indeed, note that angle AT1C1

(read counterclockwise) equals angle KK1C (because TT1 is parallel to KK1), and
angle KK1C equals angle BKM (because KK1 corresponds to the orthic trajectory
that results from reflections). Finally, angle BKM equals angle BTT1, because TT1 is
parallel to KK1. Overall, this shows that indeed, angles KTT1 and TT1K1 are equal,
showing that KTT1K1 is an isosceles trapezoid as claimed.

We conclude that in order to show that T1 lies within segment K1B1 it is enough
to show that KT < KB. Equivalently, it is enough to show that the middle point of
BT lies within segment BK. To see why recall that AT is parallel to MK. Moreover,
because angle A is at least as large as angle B (that is our initial reflections where done

164 K. Georgiou et al.

using the largest edge last), it follows that the baseM of altitudeCM is closer toA than
to B. Effectively, this shows that BM ≥ AB/2, and hence BK ≥ BT/2 as wanted.

Now let the extension of TT1 intersect the line passing through B2C2 at point T2.
From the parallelogram KTT2K2 we have that KT = K2T2, and hence T2 lies within
segment K2C2, and by construction is it clear than T1T2 intersect segments A1B1 and
A1C2. This shows that indeed the line passing throught AT is one of the extreme lines
of the orthic channel.

The proof follows by observing that we can repeat the same argument, starting from
triangle A1B2C2 and applying the reverse list of reflections that gave us the reflected
triangles (where ABC would be the final reflected triangle, and note that these reflec-
tions would still be first with respect to the two smallest edges). Indeed, we can consider
line, parallel to the orthic line, and passing through A1, which by the same argument
that line is the other extreme line of the orthic channel. ��

6 The Optimal 2-Gap Cyclic Schedules

In this section we prove Theorem 2. We do so by proving that the cyclic 6-periodic
patrolling schedule of Lemma 4 are the 2-gap optimal cyclic schedules of cost twice
the perimeter of the orthic triangle.

Indeed, as per our result, any line parallel to the orthic line within the orthic channel
(whose boundaries are given in Lemma 5) gives rise to a cyclic 6-periodic schedules
that we call sub-orthic schedules. We depict such a sub-orthic schedule in Fig. 2.

Fig. 2. A sub-orthic trajectory example.

In order to show that any sub-orthic trajectory is 2-gap optimal, we consider a new
patrolling problem on input triangle ABC with a limited visitation horizon. In particu-
lar, in the 2k-limited patrolling problem the goal is to find a cyclic trajectory that starts
from edge BC (the largest edge) ends after 2k visitations of BC and is of minimum
total length. Given triangle ABC, we denote by vk the cost of the optimal solution to
the 2k-limited patrolling problem. The following is immediate from our definitions.

The Fagnano Triangle Patrolling Problem 165

Observation 5. For every k ≥ 1, the optimal cyclic 2-gap solution has cost at least
vk/k.

Now recall that by Lemma 4, any sub-orthic trajectory has 2-gap cost equal to twice
the orthic triangle. Hence, Theorem 2 is a corollary of the following lemma.

Lemma 6. The value of limk→∞ vk/k equals twice the perimeter of the orthic triangle.

Proof. In order to visualize the 2k-limited patrolling problem we apply repeatedly (k
times) the gadget induced by the reflected triangles of Sect. 5, see also Fig. 3 for an
example when k = 2.

Fig. 3. Two applications of reflections.

Indeed, the gadget of the reflected triangles defines B2C2 which is parallel to BC.
One more reflection of A1 about B2C2 results into triangle A2B2C2 whose edges are
piecewise parallel to the edges of ABC, hence the same reflection sequence, applied
on A2B2C2 defines B3C3 parallel to B2C2 and so on.

This way, we define a sequence of parallel segments BkCk. Now consider the orthic
channel of ABC identified by lines passing through R,A1 and T,A (as per Lemma 5).
Consider also the corresponding points Rk, Tk that these two lines intersect segments
BkCk.

By the definition of the 2k-limited patrolling problem, its optimal schedule (with
cost vk) is the shortest trajectory that starts from BC and ends at BkCk. Since the
orthic channel stays within all reflected triangles, the optimal solution to the 2k-
limited patrolling problem is the shortest line segment with endpoints within RT and
RkTk. Observe that the shortest such segment is the shortest diagonal of parallelogram
RTTkRk. Now as k grows, one side RT of these parallelograms stays constant, while
the length of both diagonals tend (in the limit) to the length of RRk = TTk which are
also equal to k times the 2-gap cost of any sub-orthic trajectory, and hence are equal to
2k times the orthic perimeter. ��

Note that the orthic trajectory is one among the sub-orthic trajectories, and hence
optimal too to the 2-gap patrolling problem (among cyclic algorithms). In the following
lemma we show that the orthic trajectory is also the optimal solution to a multi-objective
optimization problem.

166 K. Georgiou et al.

Lemma 7. Among all 2-gap optimal sub-orthic trajectories, the one that minimizes the
visitation gap between any two (not necessarily same) edges is the orthic trajectory.

Proof. Consider an arbitrary sub-orthic trajectory RR1R2R3R4R5R, see Fig. 2. Note
that the sub-orthic schedule is made up of segments that are piecewise parallel to the
segments of the orthic trajectory, and any of the orthic line segments lies in the middle
of any of the two parallel segments of the sub-orthic schedule.

In particular we have RR1, R3R4 are parallel to MK, as well as R1R2, R4R5

are parallel to ML, and RR5, R2R3 are parallel to KL. Moreover, MK ≤
max{RR1, R3R4},ML ≤ max{R1R2, R4R5}, and KL ≤ max{RR5, R2R3}. It
follows that maximum visitation gap max{MK,ML,KL} between any two edges in
the orthic trajectory is at most the maximum visitation gap between any two edges in
any sub-orthic trajectory. ��

7 The 1-Gap Optimal Schedule

It is immediate from the definitions that half the cost of the 2-gap optimal patrolling
schedule is a lower bound to the cost of the 1-gap optimal patrolling schedule. By
Theorem 2, the 2-gap optimal patrolling schedule has cost 2 times the perimeter of the
orthic triangle. Hence, the cost of the 1-gap optimal schedule is at least the perimeter of
the orthic triangle. On the other hand, by Theorem 1 we have a patrolling schedule (the
orthic trajectory) with 1-gap cost equal to the orthic perimeter. Therefore, we obtain the
following immediate corollary.

Corollary 1. The optimal 1-gap cyclic schedule of a triangle Δ is its orthic triangle.

The purpose of this section is to prove Theorem 3, that is to strengthen the statement
of Corollary 1 by showing that the optimal 1-gap schedule is actually cyclic. We do
so by showing how to modify an arbitrary schedule into a cyclic schedule, without
increasing its 1-gap cost. Effectively, the next lemma implies Theorem 3.

Lemma 8. There is a 1-gap optimal schedule that is cyclic.

Proof. Consider an arbitrary schedule S = {si}i that is not cyclic. We show how to
construct a new schedule that is cyclic and 3-periodic, without increasing its 1-gap.
Indeed, since S is not cyclic, and after renaming edges, there are two consecutive vis-
itations of edge α so that both edges β, γ are visited in between, with at least one of
them being visited more than once. In other words, for some k, � ∈ N, � ≥ 4 we have
that e(sk) = e(sk+�) = α, e(sk+1) = e(sk+3) = β and e(sk+2) = γ.

In what follows we denote by sisj the distance between points si, sj . Then, we see
that for the 1-gap cost G of S, we have that

G = max
δ∈E

G(δ) ≥ G(α) ≥
�−1∑

i=0

sk+isk+i+1

≥sksk+1 + sk+1sk+2 + sk+2sk+3 + sk+3sk+�

≥2min{sksk+1 + sk+1sk+2, sk+2sk+3 + sk+3sk+�},

The Fagnano Triangle Patrolling Problem 167

where the second to last inequality is due to the triangle inequality.
Now we consider two different cyclic and 3-periodic schedules, S′, S′′, with 1-gap

costs G′, G′′, respectively, and we show that min{G′, G′′} ≤ G. The first schedule
is S′ = sk, sk+1, sk+2, sk, sk+1, sk+2, sk, sk+1, sk+2, . . ., and the second schedule is
S′′ = sk+2, sk+3, sk+�, sk+2, sk+3, sk+�, sk+2, sk+3, sk+� Since both S′, S′′ are
cyclic and periodic, we have that G′ = G′(α) = G′(β) = G′(γ) and G′′ = G′′(α) =
G′′(β) = G′′(γ). In particular, using the triangle inequalities again, we have

G′ = sksk+1 + sk+1sk+2 + sk+2sk ≤ 2(sksk+1 + sk+1sk+2)
G′′ = sk+2sk+3 + sk+3sk+� + sk+�sk+2 ≤ 2(sk+2sk+3 + sk+3sk+�).

But then, min{G′, G′′} ≤ 2min{sksk+1 +sk+1sk+2, sk+2sk+3 +sk+3sk+�} ≤ G, as
wanted. ��

8 The Greedy Cyclic Algorithm

In this section we prove Theorem 4 that is we describe a patrolling schedule that con-
verges to a 3-periodic cyclic schedule whose 1-gap cost is off from the 1-gap optimal
cyclic schedule by a factor γ ∈ [1, 1.20711]. It will follow from our analysis that our
greedy algorithm will be nearly optimal for any acute triangle with one arbitrarily small
angle, and it will be the worst off from the optimal solution when the given triangle is a
right isosceles.

We proceed by the description of a greedy patrolling schedule. We assume that
the patroller can remember the current and previously visited edges (not necessarily
their points), as well as that it can compute (move along) the projection of its current
position to any other edge. Formally, we label the three edges BC,AB,AC as 0, 1, 2,
respectively. The patrolling schedule starts from an arbitrary point p0 on BC. For each
i ≥ 1, the patroller moves to point pi, which is the projection of pi−1 onto edge i mod 3.
Referring to triangle ABC as in Fig. 4, we note that the patrolling schedule induces a
clockwise cyclic visitation of the given triangle. An immediate corollary of our results
will imply that also the corresponding counterclockwise cyclic visitation induces the
same 1-gap cost.

Fig. 4. Six iterations of the greedy patrolling
schedule that starts from point p0 of edge
BC.

Fig. 5. One iteration of the greedy patrolling
schedule, stating from point D 1 iteration.

168 K. Georgiou et al.

Lemma 9. On input acute triangle ABC, and for any starting point, the greedy
algorithm converges to a cyclic 3-periodic schedule that has 1-gap cost p ·

sin(A) sin(B) sin(C)
1+cos(A) cos(B) cos(C) , where p is the perimeter of triangle ABC.

Proof. Consider an arbitrary iteration of the greedy algorithm and a point D on BC,
see Fig. 5. After 3 consecutive steps, the patroller has moved to the projection E of D
onto AB, its projection F on AC and to its projection G back on BD. To simplify
calculations, assume also that AB has length 1. Below, we derive a relation between
BG and BD.

First we note that AF = cos(A)AE = cos(A)(γ − BE) = cos(A)(γ −
cos(B)BD). Then, we use the derived formula for AF to calculate

BG = 1 − CG = 1 − cos(C)CF = 1 − cos(C)(β − AF) = 1 − cos(C) (β − cos(A)(γ − cos(B)BD)) .

It follows that there exists a constant c, independent of points G,D, such that BG =
c − cos(A) cos(B) cos(C)BD. If we denote by di the distance of a point on the greedy
patrolling schedule at the i-th visitation of edge BC, the previous argument shows that
for the same constant c, we have di+1 = c − cos(A) cos(B) cos(C)di.

Since | cos(A) cos(B) cos(C)| < 1, it follows that limi→∞ di exists and its value is
obtained when in the previous argument points D,G coincide, see Fig. 6.

Fig. 6. The limiting cyclic 3-periodic trajectory of the (clockwise) greedy algorithm.

We proved that inscribed triangle DEF is the limiting patrolling schedule of the
greedy algorithm, which is indeed a cyclic 3-periodic schedule. Next we calculate its
cost. To this end, we claim that triangles DEF and ABC are similar. By denoting by
F,E,G the angles of the inscribed triangle, and looking at right triangle FD we have
F = π − π/2 − (π − C − π/2) = C. Similarly we obtain that angles D,B are equal,
and angles E,A are equal.

Finally we compute the similarity ratio k < 1 of triangles DEF,ABC. We have
that

α = BD + D
ED

sin(B)
+

DF

tan(c)
=

kγ

sin(B)
+

kα

tan(C)
=

kα sin(C)
sin(B)

+
kα

tan(C)
,

where the last equality follows from the sin Law in triangle ABC. But then, solving
for k and simplifying the trigonometric expressions yields k = sin(A) sin(B) sin(C)

1+cos(A) cos(B) cos(C) . It
follows that the 1-gap cost of the induced patrolling schedule is equal to the perimeter
of triangle DEF which equals k times the perimeter of ABC as claimed. ��

The Fagnano Triangle Patrolling Problem 169

We are now ready to prove Theorem 4. An immediate corollary of Lemma 9 is
that the (limiting) cost of the greedy algorithm is the same also for the corresponding
counter-clock wise trajectory. Moreover, the ratio between its cost and the optimal 1-
gap cost, as per Lemma 1, is given by

sin(A) sin(B) sin(C)
2(1 + cos(A) cos(B) cos(C))

(
1

sin(B) sin(C)
+

1
sin(A) sin(C)

+
1

sin(A) sin(B)

)

=
sin(A) + sin(B) + sin(C)

2(1 + cos(A) cos(B) cos(C))
.

The latter expression, over all non-obtuse triangles, is maximized when any of the
angles A,B,C is a right angle, and the other two are equal, that is for the right isosce-
les, in which case the ratio becomes 1

2

(√
2 + 1

)
. In the other extreme case, it is also

easy to show that the ratio tends to 1 if any of the angles tends to 0 (hence the other two
tend to π/2), while also for the equilateral triangle, the ratio becomes 2

√
3/3.

9 Discussion

In this work we demonstrated the connection between billiard-type trajectories and opti-
mal patrolling schedules in combinatorial optimization. Specifically, we introduced and
solved the problem of patrolling the edges of an acute triangle using a unit-speed agent
with the goal of minimizing the maximum 1-gap and 2-gap idle time of any edge. We
show that billiard-type trajectories are optimal solution to these combinatorial patrolling
problems.

Our findings point to several future directions. One natural extension of our work
is to generalize the patrolling problem to arbitrary polygons with one or more agents.
Moreover, the introduction of the novel 2-gap patrolling problem suggests the investi-
gation of optimal solutions for more complex frequency requirements or time restric-
tions, especially with the presence of multiple patrolling agents or multiple objects to
be patrolled. In that direction, it would be interesting to examine how our results extend
to patrolling 3 or more arbitrary line segments on the plane, as subsets of the edges of
convex polygones with one or more agents.

References

1. Almeida, A., et al.: Recent advances on multi-agent patrolling. In: Bazzan, A.L.C., Labidi,
S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 474–483. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-28645-5 48

2. Alpern, S., Morton, A., Papadaki, K.: Patrolling games. Oper. Res. 59(5), 1246–1257 (2011)
3. Basilico, N.: Recent trends in robotic patrolling. Curr. Robot. Rep. 3(2), 65–76 (2022)
4. Baxter, A.M., Umble, R.: Periodic orbits for billiards on an equilateral triangle. Amer. Math.

Monthly 115(6), 479–491 (2008)
5. Bedaride, N.: Periodic billiard trajectories in polyhedra. arXiv preprint arXiv:1104.1051

(2011)
6. Chevaleyre, Y.: Theoretical analysis of the multi-agent patrolling problem. In: IAT, pp. 302–

308 (2004)

https://doi.org/10.1007/978-3-540-28645-5_48
http://arxiv.org/abs/1104.1051

170 K. Georgiou et al.

7. Chuangpishit, H., Czyzowicz, J., G ↪asieniec, L., Georgiou, K., Jurdziński, T., Kranakis, E.:
Patrolling a path connecting a set of points with unbalanced frequencies of visits. In: Tjoa,
A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018.
LNCS, vol. 10706, pp. 367–380. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
73117-9 26

8. Collins, A., et al.: Optimal patrolling of fragmented boundaries. In: Blelloch, G.E., Vöcking,
B. (eds.) 25th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
2013, Montreal, QC, Canada, 23–25 July 2013, pp. 241–250. ACM (2013)

9. Czyzowicz, J., Georgiou, K., Kranakis, E., MacQuarrie, F., Pajak, D.: Distributed patrolling
with two-speed robots (and an application to transportation). In: Vitoriano, B., Parlier, G.H.
(eds.) ICORES 2016. CCIS, vol. 695, pp. 71–95. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-53982-9 5

10. Czyzowicz, J., Georgiou, K., Kranakis, E.: Patrolling. In: Flocchini, P., Prencipe, G., Santoro,
N. (eds.) Distributed Computing by Mobile Entities: Current Research in Moving and Com-
puting. LNCS, vol. 11340, pp. 371–400. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-11072-7 15

11. Czyzowicz, J., Kosowski, A., Kranakis, E., Taleb, N.: Patrolling trees with mobile robots.
In: Cuppens, F., Wang, L., Cuppens-Boulahia, N., Tawbi, N., Garcia-Alfaro, J. (eds.) FPS
2016. LNCS, vol. 10128, pp. 331–344. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-51966-1 22

12. Damaschke, P.: Two robots patrolling on a line: integer version and approximability. In:
G ↪asieniec, L., Klasing, R., Radzik, T. (eds.) IWOCA 2020. LNCS, vol. 12126, pp. 211–223.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48966-3 16

13. Damaschke, P.: Distance-based solution of patrolling problems with individual waiting
times. In: Müller-Hannemann, M., Perea, F. (eds.) ATMOS 2021. OASIcs, vol. 96, pp. 14:1–
14:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

14. Elmaliach, Y., Agmon, N., Kaminka, G.A.: Multi-robot area patrol under frequency con-
straints. Ann. Math. Artif. Intell. 57(3–4), 293–320 (2009)

15. Elmaliach, Y., Shiloni, A., Kaminka, G.A.: A realistic model of frequency-based multi-robot
polyline patrolling. In: AAMAS (1), pp. 63–70 (2008)

16. Freda, L., et al.: 3D multi-robot patrolling with a two-level coordination strategy. Auton.
Robots 43(7), 1747–1779 (2019)

17. Garcia, R.: Elliptic billiards and ellipses associated to the 3-periodic orbits. Am. Math. Mon
126(6), 491–504 (2019)

18. Garrec, T.: Continuous patrolling and hiding games. Eur. J. Oper. Res. 277(1), 42–51 (2019)
19. Georgiou, K., Kundu, S., Prałat, P.: Makespan trade-offs for visiting triangle edges. In: Floc-

chini, P., Moura, L. (eds.) IWOCA 2021. LNCS, vol. 12757, pp. 340–355. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-79987-8 24

20. Georgiou, K., Kundu, S., Pralat, P.: The Fagnano triangle patrolling problem. CoRR,
abs/2307.13153 (2023)

21. Halbeisen, L., Hungerbühler, N.: On periodic billiard trajectories in obtuse triangles. SIAM
Rev. 42(4), 657–670 (2000)

22. Hazon, N., Kaminka, G.A.: On redundancy, efficiency, and robustness in coverage for mul-
tiple robots. Robot. Auton. Syst. 56(12), 1102–1114 (2008)

23. Huang, L., Zhou, M., Hao, K., Hou, E.S.H.: A survey of multi-robot regular and adversarial
patrolling. IEEE CAA J. Autom. Sinica 6(4), 894–903 (2019)

24. Karasev, R.N.: Periodic billiard trajectories in smooth convex bodies. Geom. Funct. Anal.
19(2), 423–428 (2009)

25. Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct speeds. Dis-
trib. Comput. 28(2), 147–154 (2015)

https://doi.org/10.1007/978-3-319-73117-9_26
https://doi.org/10.1007/978-3-319-73117-9_26
https://doi.org/10.1007/978-3-319-53982-9_5
https://doi.org/10.1007/978-3-319-53982-9_5
https://doi.org/10.1007/978-3-030-11072-7_15
https://doi.org/10.1007/978-3-030-11072-7_15
https://doi.org/10.1007/978-3-319-51966-1_22
https://doi.org/10.1007/978-3-319-51966-1_22
https://doi.org/10.1007/978-3-030-48966-3_16
https://doi.org/10.1007/978-3-030-79987-8_24

The Fagnano Triangle Patrolling Problem 171

26. Kawamura, A., Soejima, M.: Simple strategies versus optimal schedules in multi-agent
patrolling. Theoret. Comput. Sci. 839, 195–206 (2020)

27. Kranakis, E., Krizanc, D.: Optimization problems in infrastructure security. In: Garcia-
Alfaro, J., Kranakis, E., Bonfante, G. (eds.) FPS 2015. LNCS, vol. 9482, pp. 3–13. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-30303-1 1

28. Lafargue, C., et al.: Localized lasing modes of triangular organic microlasers. Phys. Rev. E
90(5), 052922 (2014)

29. Lapidus, M.L., Niemeyer, R.G.: Families of periodic orbits of the koch snowflake fractal
billiard (2011)

30. Lee, S.K., Fekete, S.P., McLurkin, J.: Structured triangulation in multi-robot systems: cov-
erage, patrolling, voronoi partitions, and geodesic centers. Int. J. Robot. Res. 35(10), 1234–
1260 (2016)

31. Machado, A., Ramalho, G., Zucker, J.-D., Drogoul, A.: Multi-agent patrolling: an empirical
analysis of alternative architectures. In: Simão Sichman, J., Bousquet, F., Davidsson, P. (eds.)
MABS 2002. LNCS (LNAI), vol. 2581, pp. 155–170. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36483-8 11

32. Morales-Ponce, O.: Optimal patrolling of high priority segments while visiting the unit inter-
val with a set of mobile robots. In: Mukherjee, N., Pemmaraju, S.V. (eds.) ICDCN 2020:
21st International Conference on Distributed Computing and Networking, Kolkata, India,
4–7 January 2020, pp. 10:1–10:10. ACM (2020)

33. Pasqualetti, F., Franchi, A., Bullo, F.: On optimal cooperative patrolling. In: CDC, pp. 7153–
7158. IEEE (2010)

34. Piciarelli, C., Foresti, G.L.: Drone swarm patrolling with uneven coverage requirements. IET
Comput. Vis. 14(7), 452–461 (2020)

35. Portugal, D., Rocha, R.: A survey on multi-robot patrolling algorithms. In: Camarinha-
Matos, L.M. (ed.) DoCEIS 2011. IAICT, vol. 349, pp. 139–146. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19170-1 15

36. Schwartz, R.E.: Obtuse triangular billiards i: near the (2, 3, 6) triangle. Exp. Math. 15(2),
161–182 (2006)

37. Schwartz, R.E.: Obtuse triangular billiards ii: one hundred degrees worth of periodic trajec-
tories. Exp. Math. 18(2), 137–171 (2009)

38. Tan, X., Jiang, B.: Minimization of the maximum distance between the two guards patrolling
a polygonal region. Theor. Comput. Sci. 532, 73–79 (2014)

39. Troubetzkoy, S.: Dual billiards, fagnano orbits, and regular polygons. Am. Math. Mon.
116(3), 251–260 (2009)

40. Vorobets, Y.B., Gal’perin, G.A., Stepin, A.M.: Periodic billiard trajectories in polygons: gen-
erating mechanisms. Russ. Math. Surv. 47(3), 5 (1992)

41. Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A distributed ant algorithm for efficiently
patrolling a network. Algorithmica 37(3), 165–186 (2003)

https://doi.org/10.1007/978-3-319-30303-1_1
https://doi.org/10.1007/3-540-36483-8_11
https://doi.org/10.1007/3-540-36483-8_11
https://doi.org/10.1007/978-3-642-19170-1_15

Invited Paper: Monotonicity and
Opportunistically-Batched Actions in

Derecho

Ken Birman1(B) , Sagar Jha1, Mae Milano2 , Lorenzo Rosa1,3 ,
Weijia Song1 , and Edward Tremel4

1 Cornell University, Ithaca, USA
ken@cs.cornell.edu

2 UC Berkeley, Berkeley, USA
3 University of Bologna, Bologna, Italy
4 Augusta University, Augusta, USA

Abstract. Our work centers on a programming style in which a sys-
tem separates data movement from control-data exchange, streaming
the former over hardware-implemented reliable channels, while using a
new form of distributed shared memory to manage the latter. Protocol
decisions and control actions are expressed as monotonic predicates over
the control data guarding protocol actions. Provable invariants about
the protocol are expressed as effectively-common knowledge, which can
be derived from the monotonic predicates in effect during a particular
membership epoch. The methodology enables a natural style of code
that is easy to reason about, and it runs efficiently on modern hardware.
We used this approach to create Derecho, an optimal Paxos-based data
replication library that sets performance records, and we believe it is
broadly applicable to the construction of reliable distributed systems on
high-bandwidth networks.

1 The Design of RDMA-Friendly Protocols

We are interested in distributed systems in which data transfers are streamed
asynchronously by a layer independent of the one used for coordination, and
in which peers asynchronously exchange control data. The approach makes it
possible for the control layer to be implemented using monotonic deduction.
We start by sketching the overall approach, after which subsections discuss the
framework in greater detail.

In any setting, high performance requires developers to match their proto-
cols to the hardware. The hardware of greatest interest for our work is a type
of network that offers remote direct memory access (RDMA), a technology with
which a process can reliably read or write the memory of another process asyn-
chronously and without locking (the underlying mechanism involves message-
passing between the RDMA network interface cards). RDMA is far faster than
TCP/IP, achieving data rates of 100–200 Gbps and latencies as low as 0.75 µs.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 172–190, 2023.
https://doi.org/10.1007/978-3-031-44274-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_14&domain=pdf
http://orcid.org/0000-0003-2400-149X
http://orcid.org/0000-0003-3126-7771
http://orcid.org/0000-0002-4697-1326
http://orcid.org/0000-0003-2108-4998
http://orcid.org/0000-0002-7105-0123
https://doi.org/10.1007/978-3-031-44274-2_14

Monotonicity and Opportunistically-Batched Actions in Derecho 173

Despite its use of RDMA networking hardware, our target environment can
still be modeled in a traditional way. It supports concurrently active processes,
interconnected by asynchronous networks and experiencing infrequent crash
(halting) failures. Network failures do not partition the data center: a severe
disruption will either shut down a group of machines or the entire data center.

Fig. 1. An event triggers a 2PC that sends data (green) in its first phase, then waits
for acknowledgments (dashed) before sending commit messages (red). Efficiency is low:
the full run of the protocol does not end until after all the replies are collected and the
commit has been successfully sent. On a 100Gbps RDMA network, each small message
takes 0.75µs to arrive, which means the entire interaction takes 4.5µs to deliver 100B
of data. This uses only 0.02% of the available bandwidth. (Color figure online)

It is natural to wonder whether protocols such as 2-phase commit, atomic
multicast, leader election, and replicated logging can take full advantage of
RDMA. A first finding is that RDMA is not simply a faster replacement for
TCP/IP: Although RDMA can mimic TCP/IP [15], higher-level protocols that
treat RDMA as if it was TCP/IP gain little speedup. The central issue is latency:
RDMA bandwidth can be 10x-20x better than that of TCP, yet its one-way
latencies are not very different, causing a bottleneck (Fig. 1).

What sorts of protocol-engineering steps are needed to fully leverage ultra-
fast networking? A system can load-balance updates, allowing them to be initi-
ated by all members of the application. Each member could transmit a sequence
or stream of actions, which potentially enables batching multiple operations per
message. It may be feasible to have multiple threads per member, and hence
transmit multiple data streams per member. Peers can send in a one-to-all man-
ner, enabling decentralized decision-making. As illustrated in Fig. 2, which illus-
trates a system streaming atomic multicasts, such steps are indeed helpful. Yet
(and this is also shown in the figure) data flow is likely to remain bursty. There
are limits on how many threads we can have, or how evenly we can spread the
workload. Batching is a wonderful idea, but it delays messages, and sooner or
later, a partial batch may need to be sent. The network remains lightly used and
throughput is limited.

The limiting factor turns out to be the disproportionately high delay noted
above: RDMA delay is low compared with a protocol such as IP, and yet can
seem high when we consider how much data could have been transmitted dur-
ing one RDMA round-trip time. Pausing data transmission to exchange control

174 K. Birman et al.

information, even for a single RTT, will substantially reduce throughput. A sec-
ond issue involves the unpredictable scheduling of endpoint applications: if a
new message arrives but the receiver cannot process it immediately, the sender
will be left waiting.

Lacking a mechanism to reduce the impact of delay, protocol instances will
wait for acknowledgments or commit messages. This will trigger a rapid accu-
mulation of protocol state until resource exhaustion forces the entire system to
pause. As a result, applications will be observed to alternate between streaming
data and pausing to finalize previously-initiated protocols.

Fig. 2. Techniques such as parallel streaming and batching can improve network uti-
lization, yet there is still idle time in the run due to round-trip delays that stall senders.

Our project first encountered this set of challenges when we created Derecho,
a platform intended as a supporting framework for a new generation of cloud
computing applications [12]. Derecho centers on data replication supported by
a self-managed (virtually synchronous) version of Paxos. We decided to build
entirely new protocols from the ground up. Our first step was to separate the
data transportation layer (“data plane”) of the system from the one handling
control data (“control plane”), as seen in Fig. 3, giving each an independent com-
munication channel. Now we can continuously stream, improving concurrency:
members send data messages as updates are initiated. On the receiving side,
these incoming messages trigger state updates, which are reflected in continu-
ously exchanged streams of control data.

Consider a situation in which a receiver participating in some protocol expe-
riences some form of delay. Data piles up briefly, but then the delay ends and
streaming resumes. It will be common for a sequence of pending data messages
or control events to become available as a group (for example, a series of data
messages may have all become deliverable). We use the term opportunistically
batched to refer to an action that can be applied to the whole group of mes-
sages rather one by one, hopefully enabling the receiver to quickly catch up and
amortizing overheads. Opportunistic batching contrasts with sender-side batch-
ing, in which senders deliberately delay messages to group them into fixed-sized

Monotonicity and Opportunistically-Batched Actions in Derecho 175

Fig. 3. By separating data plane (left) from control (right), we can design protocols that
stream data in a continuous and reliable manner, achieving much higher efficiencies.

batches, delaying messages even when doing so is unnecessary. At RDMA speeds,
opportunistic batching is an unqualified improvement: it copes with inevitable
delays yet doesn’t introduce any of its own. Moreover, the technique turns out to
be especially suited to the one-sided RDMA write hardware we use, in which the
receiver asynchronously discovers that some section of its memory has changed,
rather than being explicitly notified each time a new message arrives.

We now need to address two questions. One centers on the best way to stream
data messages reliably while preserving sender order. We describe our work on
this problem in [4,13], and will not repeat that material here.

The second question involves the streaming of control data, and is the main
focus of this paper. Derecho innovates by reexpressing the concept of a stream
of control messages. Rather than viewing such a stream as a series of small
messages, we focus on the actual values, and ask whether a stream of control-
variable updates can be transmitted using the form of shared memory enabled
by RDMA, in which one process is granted permission to asynchronously write
into some memory region in a second process.

Our central idea was to focus on monotonic control data: given a variable such
as a messages-received counter, which only increases, new values can overwrite
older ones. For example, suppose that process a sends message x with id 17 and
then message y with id 18. Process b receives and acknowledges x by writing 17
into a location in the memory of a using a one-sided RDMA write. Now y arrives,
and b overwrites the acknowledgment variable. If a observes 17 first and reacts
to this control event, then observes 18 and reacts to it, it is as if we sent two
acknowledgment messages from b to a. But if a experiences a small delay and
sees the counter jump from 16 to 18, it can infer that 17 was previously reported.
In effect, the observed value (18) covers the range [1 ... 18]. A single RDMA-
shared-memory counter has replaced a stream of acknowledgment messages.

Derecho’s entire control plane is monotonic, and this even includes sequences
of complex objects, such as proposed membership updates: we guard such an
object by a counter and adopt a round-robin model in which we can send
some number of objects without delaying. This approach let us eliminate the
lock-step dependency on round-trip messages carrying acknowledgments and
commits. Jointly, such steps enable the dramatic performance improvements
described in [12]: the system is able to replicate data and coordinate distributed

176 K. Birman et al.

actions with strong consistency at speeds orders of magnitude faster than widely
used datacenter tools such as the Kafka pub/sub message bus, Kafka-Direct (an
RDMA version of Kafka [17,21]), and Zookeeper [14].

1.1 Revisiting an Old Model

Our work builds on a self-managed virtual synchrony membership layer. The idea
of building systems that manage their own membership was introduced in the
1985–1987 period [5–7]. Whereas classic protocols struggle to deal with failures,
virtual synchrony replaces both liveness and failure-tolerance with a subsuming
concept of “dynamic membership.”

Processes must join the system upon starting and cannot exchange messages
with members until they are admitted to the current membership (the current
view). Upon sensing a possible failure, any member can request exclusion of
members suspected of having failed from the current view. No process will accept
or send messages to a suspected peer, and it will promptly be dropped from
the view. This establishes an epoch model, in which each epoch starts with
a new view, performs protocol actions for a period of time, then ends when
the membership management system learns of a new join or failure event. The
membership service will pause the active message-sending protocols, assist in
cleanup to terminate any that were incomplete when paused, then switch to a
new view which initiates a new epoch. Should a full shutdown occur, restart is
similar: the membership service forms what will become the first view, repairs
any persisted state that was damaged by the failure, and then can initiate the
first epoch of the new run. Should any of these steps be impossible (for example,
if persisted data is inaccessible due to crashes), the system refuses to restart and
a human operator would need to repair the problem, for example by loading the
missing data from a backup.

By trusting suspicions and immediately excluding the impacted processes
from the view, virtual synchrony systems wall off potentially malfunctioning
group members. The policy assumes that the rate of mistaken suspicions will
be low, but that assumption is valid in today’s cloud data centers. Importantly,
protocols such as atomic multicast [6] or Paxos replicated logs [18] are simplified
by this model because each instance runs in a single epoch. In effect, we separate
functionality: a protocol has a normal failure-free logic component and a distinct
view-change component used to clean up when a failure disrupts execution, as
we detail immediately below. Finally, the protocol has a component responsible
for reissuing requests (while preserving the sender message ordering) in the event
that cleanup rolled the partially completed messaging protocol back rather than
terminating it by rolling forward and delivering messages. The overall structure
must still guarantee atomicity and ordering (linearizability [11]), but these needs
do not arise all at once.

Derecho, like other virtual synchrony systems (e.g. [1]), uses a leader-
based membership protocol, where age-ranking determines the leader succession
sequence in case of failure; the leader initiates a view change when it learns of
a new join or failure. However, Derecho’s membership protocol is specifically

Monotonicity and Opportunistically-Batched Actions in Derecho 177

designed to use monotonic logic. The new views proposed by leaders form a
monotonic sequence, each building on the prior one. Views must be accepted in
order, and each proposal must individually be accepted by every non-suspected
member. Additionally, the set of healthy (non-suspected) members that accept
a proposal must include a majority of members from both the current view and
from each proposed new view up to and including the new proposal. If some
new membership event occurs while the protocol is running, the leader extends
the list of proposals with follow-on proposals. Similar to the split of data plane
from control plane, we can think of the sequence of proposals as a data plane,
streaming from leader to participants, and the proposal acceptances as a control
plane streaming from participants back to the leader.

We do not wish for this sequence of proposals to ever roll back, or for a
proposal to be lost at some members and yet to commit at others. With this
in mind, when a new leader suspects the older leaders and prepares to take
over, it first queries every non-suspected member it knows of. In doing so, its
own suspicions are immediately shared, and it learns any suspicions or proposals
known to any of those processes. We can then prove that if the system remains
live, any proposal witnessed by a majority of a view will eventually be adopted,
and that any proposal that could have been adopted will be learned by the new
leader. Conversely, if the system loses majority (i.e. observes that a majority of
processes are suspected), it will shut itself down.

Why go to such lengths to make this protocol monotonic? The central issue
revolves around the unpredictable sequencing of events that system members
can experience and the importance of avoiding logical partitioning, in which one
system splits into two separate subsystems that each consider themselves to be in
charge. Members might advance at different rates, but due to monotonicity they
learn of the same views in the same order. Indeed, protocols in which we think
of the peers as reasoning and leveraging monotonicity to take actions based on
monotonic deductions are a hallmark of virtual synchrony and arise extensively
in the Derecho protocols. In some ways this should not be surprising: one could
have made a similar remark about the Isis Toolkit and its protocols in 1987 [5].
Others have reached very similar conclusions. Elaborating the CALM method-
ology for BLOOM (a distributed computing language based on Datalog [2]), a
2013 paper by Ameloot et. al. argues that monotonicity (combined with occa-
sional consensus) is complete for distributed computing in a logically-founded
deductive style [3].

1.2 Effectively-Common Knowledge

Any developer of a non-trivial distributed system eventually encounters a pro-
tocol that is difficult to prove correct. With fault-tolerant systems one issue is
the exponentially large state space that must be considered: distributed runs in
which at each instant, any message that could be in flight might be received, but
also in which any participant might fail. Focusing on our own Derecho protocols,
the most challenging aspects to prove correct are associated with runs in which
the failures could include the initial leader or even a series of leaders, each of

178 K. Birman et al.

which could have made proposals and perhaps even received adequate quorums
to commit some of them. This forces the developer to formalize the concept of a
run, to express the “healthy majority in each view” policy rigorously, and then
to demonstrate that all of this yields a single perceived sequence of views that
will never partition.

The creation of a proof is ultimately an exercise in logical reasoning, and
is increasingly supported by proof checking systems (we have direct experience
with Ivy [22] and have experimented with Coq [8]). Highly visible proofs include
the Dafny proof for IronFleet [10]; Paxos proofs in TLA+ [19] and recent proofs
of a number of protocols using the DistAlgo specification language [20,23]. The
question now arises: does our monotonic protocol specification align well with
formal reasoning?

Not every style of network is conducive to easy correctness proofs. For exam-
ple, protocols expressed using exchanges of unreliable point-to-point messaging
(UDP) are notoriously hard to reason about. UDP does guarantee that a cor-
rupted message will not be delivered, but messages can be lost, delivered out of
order, replayed, or arrive after very long delays. The already large state space
becomes daunting.

It turns out (and this is one of our main contributions) that a virtually-
synchronous monotonic programming style, implemented over RDMA with its
hardware-supported reliability features, dramatically simplifies proof tasks. Logi-
cians refer to information that is simply accepted and trusted by all mem-
bers of a set as common knowledge [9], leading us to use the term effectively-
common knowledge for per-epoch data such as the membership view and other
application-specific information that might be piggybacked along with the view.

Common knowledge can be understood as data that all active members of a
system possess and trust. Every process knows the information, and also knows
that every other process has the identical information. This type of “I know that
you know” inference can be iterated to arbitrary degree. Effectively-common
knowledge is information tied to the epoch. It introduces facts known to every
current member, and that every member can assume that its peers also know,
again iterated to arbitrary degree.

An example of effectively-common knowledge employed in Derecho is the
message delivery ordering used in an epoch. The ordering rule cannot be antici-
pated before the epoch begins: it depends on the membership and the anticipated
message sending patterns in a group, and neither of these is known a priori. By
attaching the ordering rule to the view, Derecho can be flexible and adapt this
rule as needed, while allowing each member to assume for the duration of the
view that every other member knows the same ordering rule. The alternative,
used in the classic Paxos protocol, involves a “competition” for each message
delivery slot, since members can disagree about delivery ordering. That policy
forces the classic Paxos to use just the kind of round-trip message passing we
are trying to avoid due to its sensitivity to delay.

Why not just call epoch knowledge “common knowledge?” The issue is that
common knowledge cannot be gained while a protocol is running (a main result

Monotonicity and Opportunistically-Batched Actions in Derecho 179

in [9]). Effectively-common knowledge, in contrast, is easily generated: we simply
need to create a new epoch.

Appendix A offers some classic examples of common knowledge, showing how
seemingly minor changes to a problem statement can make a protocol “impossi-
ble” to implement. Appendix B then goes to highlight the connection to formal
verification using automated proof systems.

Fig. 4. The shared state table abstraction offers a convenient representation of mono-
tonic protocol control data. In the example shown, processes a and b are streaming
atomic multicasts to a group that also includes c; each has an SST replica and uses it
to share control information with its peers (see [12] for details).

2 Deep Dive: Shared State Table

As discussed in Sect. 1, Derecho separates its protocols into a data plane and a
control plane. The central abstraction used for representing and exchanging con-
trol data is the shared state table or SST (Fig. 4). This table is a replicated data
structure created afresh for each epoch. Every process in the epoch possesses
a copy, within which it owns and can update one row. These updates are then
asynchronously written to its peers using one-sided RDMA write operations,
which are reliable but lock-free (Fig. 5). The effect is that updates arrive con-
tinuously, streaming in an all-to-all pattern.1 Updates to a row arrive in order,
but different peers can see updates to different rows in different orders. If we
were to pause the updates, all SST replicas would converge, but during normal
execution we only do this while switching from epoch to epoch.

Unnoticed updates are a common phenomenon in Derecho, in part because
each process has a single predicate thread. When a process starts up, each pro-
tocol registers one or more predicated actions: a tuple consisting of the boolean

1 All-to-all exchange of control state would scale poorly in many settings, but no issue
arises because Derecho is sharded: most activity occurs in tiny subgroups with just
2 or 3 members. We have experimented with far larger subgroups without problems.
Future systems deploying Derecho in immense subgroups might need to exchange
control data in a different manner, but the underlying principle of asynchronous
updates and monotonic deduction of system state would still apply.

180 K. Birman et al.

function to test and the logic to run if that test evaluates to true. The SST
predicate thread then starts up and loops, evaluating predicates one by one like
a long list of if statements. By the time a predicate is rechecked, the underlying
data may have advanced multiple times, in which case the triggered logic will
catch up by processing several events as a batch.

Derecho’s use of monotonicity plays into this dynamic. Not only is the under-
lying data monotonic, but many aggregating operations over monotonic data are
as well: obvious examples are min and max. This leads us to define predicate
monotonicity: P is a monotonic predicate of some monotonic SST property x if
∀y > x : P (y) ⇒ P (x). It is straightforward to generalize these ideas. Many
expressions computed over monotonic inputs have monotonic results, leading to
the idea of a monotonic row function: A monotonic expression over monotonic
variables in an SST row that can be treated as a higher level abstraction in our
protocols. Similarly, we can define monotonic column functions that are evalu-
ated over the rows of an SST. If a set of values must be treated as a unit and
updated atomically, but do not fit into a single cache-line (the size at which
RDMA writes are atomic), we first update the values, then update some form
of guard, such as a “version counter” (which is a monotonic variable). Any par-
ticipant that sees the updated guard will see the full set of preceding updates,
since writes are applied in sender order.

When we set out to create Derecho’s virtual synchrony view update protocol,
it turned out to remarkably easy to express the algorithm in this manner. Given
the epoch mechanism, we then designed simple atomic multicast (very similar to
protocol II in vertical Paxos) and durable replicated log update protocols (very
similar to classic Paxos in a failure-free run, with the quorum size set to the full
current membership of the group, and the read quorum size set to 1). Again, the
methodology led us directly to simple, highly efficient solutions.

Fig. 5. After updating a row, an SST participant uses RDMA to asynchronously “push”
the new data to the remote replicas. These push operations are lock-free and uncoor-
dinated hence the updates are not totally ordered. However, if one process does two
push operations with the same target, the updates respect the sender order.

Monotonicity and Opportunistically-Batched Actions in Derecho 181

3 Using Logic to Reason About Protocols

A knowledge perspective formalizes a way of describing protocols such as Paxos
that most of us use when reasoning about them. For example, consider the first
stage of a Paxos protocol [18]. The leader (a) sends a proposed update for a
specified slot and ballot number. At the moment of sending it, only a knows
the contents. Upon receiving such a message, participant b learns the contents.
Because a is the sender, b now also knows that a knows the contents, but would
not yet be safe to deliver the message: a and b might both fail, and perhaps no
other member has a copy. In the terminology of Paxos, we would say that the
update is not yet stable. Later, when a process is finally able to deduce that
all other processes have a copy (know the contents), it can conclude that the
update has stabilized. Depending on the particular Paxos protocol used, some
steps can involve all-to-all control-data exchanges. With these versions of Paxos,
if process c discovers that message m has become stable, c may also be able to
deduce that eventually every healthy process will arrive at this same conclusion.

A knowledge logic introduces operators to represent the idea of reasoning
about information directly available to processes in a system (facts), together
with indirect knowledge paths: process a may know that process b knows some
fact f . For example, if a sends a message to b, initially a has no information about
when b will have received that message. Later, b acknowledges the message, and
a now is said to know that b knows any facts carried in the message, etc. This
leads to a hierarchy of knowledge: Ka(f) if a knows f , Ka(Kb(f)), etc. If the
set of participants is known, we write K1

a(f) to denote that a knows that every
member knows f . In a similar sense, Kn denotes the n-fold property that every
process knows, that every process knows, ... (n times), that some fact holds. K∗

denotes common knowledge: a fact for which Kn holds for all values of n.
To make this concrete, here is an example from Derecho’s atomic multicast

protocol. Using asynchronous monotonic deduction over the SST, we employ a
provably-correct safety deduction to detect the condition that all messages from
m to n can safely be delivered, in a round-robin order that also respects the sender
FIFO ordering. If a member has nothing to send, it sends a null multicast. Even
under heavy load, this rule is fast: Experiments showed that the delay from
sending a multicast to delivery is often as small as 1.5us: double the one-way
RDMA latency on our hardware. Moreover, this same pattern arose in several
stages of our protocols, and it lends itself to opportunistic batching.

4 Implications for Other Systems

The success of the effectively-common knowledge model as an enabling tool for
Derecho’s asynchronous, monotonic control plane surprised even the develop-
ment team. We were led to adopt this model by the sequence of insights laid
out in the paper: first the recognition that asynchronous streaming is the key to
high performance on modern networks supporting RDMA, then that this pat-
tern is easy to achieve for data streams but much more challenging with control

182 K. Birman et al.

data. This then led us to the insight that monotonic control data could stream
quite efficiently if the applications consuming the data are able to reason using
a monotonic deductive style, in which missing an update or two poses no diffi-
culty at all because the next deductive inference simply “catches up” on a batch
of events rather than just one. Opportunistic batching doesn’t impact protocol
complexity but it does change the “constants.” Fewer messages are needed, and
when one process falls slightly behind it can catch up quickly.

The power of this sequence of steps became clear when we realized that
our Paxos protocol achieves theoretical lower bounds proved by Keidar and
Schraer [16]. No proof was required: Keidar and Schraer express their bounds in
terms of the number of message exchanges required to safely deliver an atomic
multicast or a similar update. A colleague of ours at the University of Surrey,
Professor Gregory Chockler, offered to review the specification of the Derecho
protocol and undertook to count the exchanges of information that occur through
the intermediary of the Derecho SST. He pointed out that the number of remote
RDMA writes performed by Derecho matches the bound they derived. Interest-
ingly, this is actually a worst case for Derecho: because of batching, Derecho
will sometimes omit some writes, performing one write at the end of a batch of
message receives. When this happens, we actually do even better than the lower
bound! On the other hand, opportunistic batch sizes are limited, so the speedup
is at best a constant factor.

Seemingly, simply by setting out to express the control plane of Derecho as an
asynchronous stream of monotonic information, we stumbled upon an optimal
Paxos implementation. This is particularly striking because, to our knowledge,
no prior Paxos is optimal in the Keidar and Schraer sense. Yet we did not set
out to achieve this property: it emerged from our methodology. Thus while the
idea of effectively-common knowledge may be somewhat esoteric, the pragmatic
value of the overall methodology is evident. It forces a new mindset, and this
mindset turns out to align closely with the “right” way to think about protocols.

Recalling our 2PC examples from the introduction, it makes sense that mono-
tonic SST-based protocols can achieve optimal behavior. Suppose that a is using
a 2PC to stream reliable multicasts to b, c, etc. Clearly, a 2PC can commit as
soon as the required set of acknowledgments are received, which we express as
an aggregation query over the SST. Process a, looping through a series of SST
predicates, will reevaluate this query again and again, reacting as soon as the
needed property is observed. Nonetheless, a’s discovery of message stability may
Snot occur instantly when b performs its RDMA write to acknowledge recep-
tion. After all, a also has other work to do and the predicate thread might not
get a chance to reevaluate the predicate “instantly” in a real-time sense. But
our opportunistic batching approach allows a to sense that the commit property
was achieved for this 2PC instance the very next time the aggregation query
is performed – and because of monotonicity, a simultaneously detects stability
for any other instances that have reached the same knowledge level! Thus, the
detection of safety occurs as early as possible and covers all the 2PC instances
that are now committable, as a batch.

Monotonicity and Opportunistically-Batched Actions in Derecho 183

We have come to believe that distributed protocols are best visualized from
an information-theoretic perspective in which the protocol developer asks what
knowledge is gained from each deductive inference performed by the system, and
what knowledge is communicated in each message or remote RDMA write. We
begin to express safety properties as knowledge predicates: K1 knowledge being
the case required for most steps of Paxos (for example, “when process p deduces
that all peers have received message m, it learns that m cannot be lost and hence
that it is safe to advance to the next protocol stage”). Monotonicity makes the
SST compact, while also guiding the developer towards opportunistic batching.

This methodology could usefully be applied in other settings that depend on
strong consistency or other forms of strong guarantees. Databases and transac-
tion systems are an obvious candidate to consider, but it is notable that even
modern ML training systems provide fault-tolerance and exactly-once semantics
(many MapReduce frameworks adopt this approach). Microsoft’s Azure stor-
age fabric is strongly consistent, and the AWS S3 infrastructure recently added
strong consistency as well. The same sequence of reasoning and development
that yielded Derecho would be a promising basis for work that could lead to
speedups in all of these cases.

5 Conclusion

Our paper is an outgrowth of work on Derecho, a system created at Cornell to
support distributed application development. The paper focuses on effectively-
common knowledge, defining this concept, discussing its value (illustrated by an
unusually efficient message-ordering policy), and describing its implementation.
The approach lends itself to a style of monotonic exchange of state informa-
tion that enables opportunistically batched decision-making, and is particularly
efficient in systems supporting RDMA hardware.

Acknowledgements. The authors are very grateful to Luis Rodriguez, who read
an earlier draft of this paper and suggested many ways that it could be improved.
The SSS 2023 reviewers were incredibly helpful. Our work was funded, in part, by
grants from AFRL under its SWEC program, Microsoft Research and Siemens, and
the experiments summarized here used hardware generously provided by NVIDA and
its Mellanox subsidiary.

Appendices

The two appendices in this section provide additional detail going beyond the
material in the body of the paper. Neither is needed to understand our main
contributions. Appendix A offers two examples of common knowledge, drawing
on examples from [9]. Appendix B discusses the connection between effectively-
common knowledge and a tactic used when formally verifying protocols using
provers that can fully automate subproofs provided that they are fully expressed
in a decidable fragment of first-order logic (often, the subset that the Z3 SMT

184 K. Birman et al.

solver can handle). We considered but decided against including an appendix on
RDMA (this kind of hardware has been actively discussed for at least a decade,
and there is an excellent Wikipedia article covering the one-sided write feature
we used), and on virtual synchrony (well known to the community since 1987).

Appendix A: Common Knowledge

A.1 Impossibility of Outdoor Dining in Seattle

Two friends work in Seattle, a city known for cloud cover and damp weather,
but when the sun pops out they would prefer to meet outside. The complication
is that both sometimes attend meetings in rooms lacking phone reception. A
first idea is that if one of them notices that the weather is fine, they will text
the other, who will confirm, and then they can meet outside for lunch.

“But wait”, says one to the other. “If I text you, but receive no reply, I
will have to assume that my text was not received. In that case I would wait
for you here, in the cafeteria.” “In fact,” replies the other, “I would have the
symmetric problem: even if I do receive your text, I wouldn’t know that you
received my confirmation, and would have no choice but to wait for you in here
in the cafeteria. And if you confirm my confirmation, that doesn’t help either!”

This is very strange. After all, once the intial text is confirmed, and the
confirmation is confirmed, both are aware that it is a sunny day. Yet no matter
how many messages they exchange, they do not converge to the identical state.
An inductive analysis always leads to the cafeteria: their “default” option.

Both fall silent: the impossibility of meeting outside for lunch now being
apparent. “Well,” says one, “if the weather is nice I’ll just send you a text and
will be out here. No need to confirm. If you can’t make it, I’ll understand!”

This first example illustrates that (1) Posed in this manner, logicians can
only base “symmetric” decisions on existing common knowledge. (2) No matter
how many messages are exchanged knowledge asymmetry cannot be eliminated.
Of course, in real life we don’t need common knowledge (and sometimes, things
happen, and we can’t join the lunch crowd).

Discussion: The insight to take from this first story is that distributed systems
in which information must be observed (by some process) and then learned (by
other processes) embody an asymmetry. When formalized, their members will
never all be in the identical knowledge state, and attempts to achieve symmetry
lead to unbounded yet ineffective exchanges of messages.

In what way is this relevant to distributed computing? The main and perhaps
only importance relates to specification and proof. It is very easy to write a
specification that unintentionally requires common knowledge. However, such a
statement must either be implied from the initial conditions (and hence vacuous),
or if not, cannot be achieved by any protocol. A proof assistant can check the
logic of a given proof, or even find certain kinds of proofs or counterexamples
on its own, but will not signal this type of specification error. Thus a seemingly
innocent mistake can lead to an impossible-to-prove specification. The person

Monotonicity and Opportunistically-Batched Actions in Derecho 185

tasked with carrying out the proof would either give up or, more likely, abandon
parts of the task. This last scenario should worry us: it suggests that there could
be “proved correct” systems for critical tasks that actually ignore parts of the
protocols used.

Effectively-common knowledge is in fact not identical to the form of common
knowledge of the kind Halpern and Moses considered in [9]. With effectively-
common knowledge, we consider a modular system in which one module imple-
ments epochs, and the other modules run within epochs and simply trust the
view and any annotations as if they were common knowledge. We carry out sepa-
rate proofs for the two modules, then compose one system from the two modules.
Our proof coverage is stronger, and the developer never confronts what would
otherwise be an infeasible task.

A.2 The Inscription on the Cake was a Lie!

On Carol’s birthday, her friends come to play outside before lunch. It being
Seattle, all are quite muddy when they enter the kitchen. “In this house we have
a rule!”, proclaims her father, Ted. “No dessert for anyone who has a dirty face!”.
His wording is ill-chosen, because no child likes to wash their face, and every child
optimistically believes their own face to be clean until proven otherwise. None
moves a hair, although all the children see one-another’s dirty faces. Increasingly
annoyed, Ted repeats himself a few times. But even after n repetitions (n being
the number of children), no child has washed. Ted puts the cake to the side and
sends them all to wash up.

Later he relents after Carol explains the inductive proof that justified their
action. She first addresses n = 1. “Daddy, just the other day this happened.
You told me I would need to wash if my face was dirty, but I was hoping it was
clean.” “Carol, ” replies Ted, “all you needed to do was to look in the mirror.”
“But Daddy, the mirror is too high!”. Ted is forced to acknowledge that Carol
would have had no way to deduce that her face must have been dirty.

“Now Daddy, consider n = 2. Timmy and I come in, both dirty. You remind
us of the rule. But neither of us likes to wash our faces, and anyway, Timmy is
mean and would love for me to not get cake and have to watch him enjoying it.
And I feel the same! So we both look at each other, and I see that Timmy’s face
is dirty, and he sees that mine is dirty, and neither of us moves.” Ted replies,
“Yes Carol, but now your logic fails. I repeated myself.” “You did, Daddy. But I
was hoping my face was clean. Timmy hoped that his was clean. So our decision
not to go and wash up was consistent with one of us believing that neither of
our faces was dirty, even if it also consistent with one in which both of us had
dirty faces. You didn’t give us enough information!”

At the next party, when the children come in from playing, Ted first says
“Well, I see some very dirty faces here!” and then repeats the household rule
n times. On the nth repetition, all the children simultaneously rush to the sink
and wash up. Beaming, Ted unveils a cake which is inscribed: “K∗ is necessary
and sufficient!” The children groan: A typical Seattle “dad joke.”

186 K. Birman et al.

Later, Carol corners her dad. “Daddy, that was embarrassing! What if one
of my friends hadn’t heard you clearly at the start!” Ted realizes that this is a
valid criticism: was his initial statement genuinely common knowledge?

Discussion: Here, we illustrate another peculiarity of common knowledge. Even
in classic problems such as muddy children, it is debatable that common knowl-
edge is really being introduced dynamically. To the extent that this does occur,
some form of assertion of trust is required: the participants trust that the mech-
anism that shared the new common knowledge is completely reliable.

An epoch-based virtual synchrony system has an advantage here: to switch
from epoch j to epoch j, members definitely must receive and “install” the new
view together with any additional data annotating it. Thus for process a to
interact with process b as members of epoch j, it genuinely is the case that
both have replicas of the new view. By proving that the group membership
cannot partition into two logically distinct views, we arrive at guarantee that
the annotation can be treated like common knowledge. Ted, for example, waited
until all the children were present and then assumed they would understand him.

A.3 Other Forms of Effectively-Common Knowledge

The example we offered in Sect. 1.2 focused on message ordering. What would
be other uses for effectively-common knowledge?

A good place to start is with an old, classic, database partitioning scenario.
When ATM machines were first introduced, they depended on dialup modems
that were not always able to establish a connection (a flurry of ATM use could
overload the central modem pool, leading to persistent busy signals). To fix the
issue, banks introduced the idea of a “primary ATM”. Perhaps, Carol almost
always uses the ATM machine at the intersection of Main Street and Old Market
Avenue. The bank could give that ATM “ownership” of some of Carol’s current
balance. For a withdrawal up to this limit, the ATM could authorize that trans-
action without first phoning the main office. Of course, the bank’s other ATMs
would not be able to access Carol’s full balance: the bank has locked down this
portion of her balance. But schemes were then proposed for dynamically adapt-
ing the policy.

More broadly, effectively-common knowledge arises in situations where some
form of policy will span a dynamically varying set of participants. If the partic-
ipant set was non-varying, we don’t really need effectively-common knowledge:
totally ordered multicast would suffice. But if the set of participants changes and
simultaneously we need a policy that depends on a nondeterministic decision or
attribute of the members, it is hard to avoid an effectively-common knowledge
model.

Our insight is that virtual synchrony epochs can be viewed as virtualizing
many otherwise intractable behaviors and unachievable guarantees. Within an
epoch, failures “do not occur”, hence protocols do not need to be fault-tolerant.
Instead they can simply trust the view. And then when we realized that it would
be faster to preagree on multicast delivery order in Derecho, we simply annotated

Monotonicity and Opportunistically-Batched Actions in Derecho 187

the view with the ordering policy to use. The fully generalized case simply allows
the application itself to provide additional annotations, which it can then treat
as effectively-common knowledge once the epoch begins.

Appendix B: Higher-Order Protocol Components

Effective common knowledge in the context of virtually synchronous epochs
enables a deductive strategy also seen in protocol verification. This statement
may feel like a non-sequitor: any protocol exchanges messages to gain informa-
tion, and is designed to achieve a state in which it is safe to take whatever action
the protocol embodies. Yet we do not normally think of formal reasoning of the
kind used in protocol verification as offering ideas that can be directly useful in
protocol design.

Developers of complex protocols have always struggled to prove them cor-
rect. Today this burden is much reduced: Provers such as Dafny, TLA+ and
Ivy are widely used to check the correctness of protocols [10,19,22]. DistAlgo, a
specification and proof framework, goes even further, allowing rigorously spec-
ified protocols to be proved correct and even generating an executable verified
code instance [20]. Less widely appreciated is that they struggle to overcome a
significant expressivity limit. Today’s most popular provers operate by taking a
specification and reducing it to a decidable logic formula expressed entirely in
first order logic. The basic tactic is to form a conjunction of protocol invariants,
invert it, and then use Z3 (an SMT solver) to search for a counterexample. If Z3
terminates, either it exhibits a counterexample and the protocol is not correct,
or it finds none and the protocol is proved. If Z3 fails to terminate, the devel-
oper modifies assertions and then tries again. If a protocol is buggy, this yields
a concrete example of how the bug can be triggered.

The expressivity issue stems from the inability of first-order logic to capture
and hence verify higher order properties, such as conditions that need to be
expressed over traces, or progress conditions. However, encountering such an
issue is not a dead end. In such systems it is also possible for a developer to
combine hand-created higher order proofs with first order automated checking.

To see how this is done, we should start by noting that first-order provers
normally support modularization of protocol proofs, allowing the user to isolate
and reason about a component of the protocol without simultaneously reasoning
about the rest of the system. An example of this might involve a “sub-protocol”
for forming a collection of processes into a ring: an example relevant to our
running example, which used a ring to define the round-robin order used in
Derecho message delivery.

It may be surprising to realize that a ring is an example of a system property
that cannot be expressed in a first order logic. The central issue is that first-order
logics are limited to boolean variables, relations that take boolean inputs and
output a boolean result, logical conjunctions and (with significant limitations)
existential quantifiers. This model is not strong enough to define the natural
numbers, or to talk about the natural order on the natural numbers, and for

188 K. Birman et al.

the same reason, it is not strong enough to express some properties that depend
on protocol traces that represent runs. And, to be very specific, first order logic
cannot verify a protocol that organizes a set of nodes into a ring.

Yet this is simply a limitation of first-order logic. There are many logics within
which we do have access to the natural numbers, can reason about orderings and
other properties, and can define a ring. For example, on a ring every process has
a predecessor, a successor. Call these pred(a) and succ(a) for process a. Both
are unique, and moreover there exists some integer k such that predk(a) = a
and succk(a) = a. The issue is that to the extent that Dafny and Ivy proofs are
checked by Z3, we accept that it will be infeasible to verify protocol modules
that maintain properties such as the ring one. There would be no problem doing
this in a higher-order logic such as the one used in Coq, but the task will be
much less automated: a human would need to carry out the proof, and perform
many steps by hand.

The usual work-around is to provide a second proof framework in which a
human developer can express higher order questions and carry out higher order
proofs of protocol fragments that rely on higher order logic. To integrate such
proofs into the first-order layer, they then need a way to export artifacts from
these proofs back into first-order logic (and keep in mind: this cannot involve
extending first order logic, which is a fixed and unchangeable aspect of the
methodology).

The solution leverages the fact that first order logic can express relations:
functions on first-order variables that perform some kind of logical computation
and return true or false. We simply treat the higher order protocol as an unin-
terpreted black box that outputs relations magically populated with the correct
content. Our higher order protocol component can be proved to correctly con-
struct these relations. Then, having completed this proof, we can simply declare
that “there exists a relation with the following properties”, using first-order logic
to define those properties. In this way, the higher-order artifact can be reasoned
about rigorously, then used as a tool by the first-order relation. This is how first-
order systems deal with properties such as the ordering on the natural numbers.

Thus, from the perspective of the first order logic, succ, succk, pred, predk

and k are relations, but uninterpreted ones populated “elsewhere”. To reason
about how they are constructed we use the higher-order prover. But if we simply
need to describe a step in which a protocol takes some action, such as a node a
passing a message to its successor, we can use an existential quantifier to assert
that there exists a node b such that succ(a) = b, and this uses only first-order
logic, because the verifier doesn’t actually need to compute a value for a or b:
it treats the logic statement as a universal property. The same is true for the
assertion that in a ring, ∃k : succk(a) = a. This statement is true for all rings,
and for all members, and hence the first-order prover can make use of it without
needing specific values.

Our realization was that these higher order objects and properties are a
bit like effectively-common knowledge: the first-order layer of the protocol sim-
ply trusts that they exist and were properly created. By packaging effectively-

Monotonicity and Opportunistically-Batched Actions in Derecho 189

common knowledge as an annotation to the view, we simplify the use of this
idea. The developer writes software to run in the membership leader and able
to compute any desired annotations for the next membership view. One would
potentially need to prove that module correct, in the higher-order logic. Having
done so, the output of the module becomes effectively-common knowledge and
can be treated as a well-known fact by processes running during the epoch. In
effect, we compartmentalize an otherwise complicated, error-prone task.

We are not claiming that such steps magically make proofs trivial. In the case
of Derecho, we are still faced with doing manual higher-order proofs for many
properties. As an example, the termination condition for Derecho’s virtually
synchronous view update protocol is a fixed-point: eventually either the system
shuts down, or reaches a point where (1) some process believes itself to be the
leader, and (2) it suspects every higher-ranked process, and (3) it gains consent
for some sequence of membership updates, (4) that consent is obtained from
a majority of the most recently active view, and from a majority of members
of each proposed view, and (5) no process in the last of these proposed views
suspects the leader. This is clearly not expressible in first-order logic, nor is it a
trivial proof goal even when expressed in higher-order logic. Yet it is a feasible
proof goal, and yields a progress condition for Derecho. We can even express
optimality assertions as higher-order statements.

References

1. Agarwal, D.A., Moser, L.E., Melliar-Smith, P.M., Budhia, R.K.: The Totem
multiple-ring ordering and topology maintenance protocol. ACM Trans. Comput.
Syst. 16(2), 93–132 (1998). https://doi.org/10.1145/279227.279228

2. Alvaro, P., Conway, N., Hellerstein, J.M., Marczak, W.R.: Consistency analysis
in bloom: a CALM and collected approach. In: Conference on Innovative Data
Systems Research (2011)

3. Ameloot, T.J., Neven, F., Van Den Bussche, J.: Relational transducers for declar-
ative networking. J. ACM 60(2) (2013). https://doi.org/10.1145/2450142.2450151

4. Behrens, J., Jha, S., Birman, K., Tremel, E.: RDMC: a reliable RDMA multicast
for large objects. In: 2018 48th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Luxembourg City, Luxembourg, pp.
71–82. IEEE (2018). https://doi.org/10.1109/DSN.2018.00020

5. Birman, K., Joseph, T.: Exploiting virtual synchrony in distributed systems. In:
SOSP 1987, Austin, Texas, USA, pp. 123–138. ACM (1987). https://doi.org/10.
1145/41457.37515

6. Birman, K.: Guide to Reliable Distributed Systems: Building High-Assurance
Applications and Cloud-Hosted Services. Texts in Computer Science. Springer,
London (2012). https://doi.org/10.1007/978-1-4471-2416-0

7. Birman, K.P.: Replication and fault-tolerance in the ISIS system. SIGOPS Oper.
Syst. Rev. 19(5), 79–86 (1985). https://doi.org/10.1145/323627.323636

8. Coquand, T., Huet, G.: Constructions: a higher order proof system for mechanizing
mathematics. In: Buchberger, B. (ed.) EUROCAL 1985. LNCS, vol. 203, pp. 151–
184. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-15983-5 13

9. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed
environment. J. ACM 37(3), 549–587 (1990). https://doi.org/10.1145/79147.79161

https://doi.org/10.1145/279227.279228
https://doi.org/10.1145/2450142.2450151
https://doi.org/10.1109/DSN.2018.00020
https://doi.org/10.1145/41457.37515
https://doi.org/10.1145/41457.37515
https://doi.org/10.1007/978-1-4471-2416-0
https://doi.org/10.1145/323627.323636
https://doi.org/10.1007/3-540-15983-5_13
https://doi.org/10.1145/79147.79161

190 K. Birman et al.

10. Hawblitzel, C., et al.: IronFleet: proving safety and liveness of practical distributed
systems. Commun. ACM 60(7), 83–92 (2017). https://doi.org/10.1145/3068608

11. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990). https://doi.org/
10.1145/78969.78972

12. Jha, S., et al.: Derecho: fast state machine replication for cloud services. ACM
Trans. Comput. Syst. (TOCS) 36(2), 1–49 (2019)

13. Jha, S., Rosa, L., Birman, K.P.: Spindle: techniques for optimizing atomic mul-
ticast on RDMA. In: 2022 IEEE 42nd International Conference on Distributed
Computing Systems (ICDCS), pp. 1085–1097 (2022). https://doi.org/10.1109/
ICDCS54860.2022.00108

14. Junqueira, F., Reed, B.: ZooKeeper: Distributed Process Coordination, 1st edn.
O’Reilly Media Inc., Sebastopol (2013)

15. Kashyap, V.: IP over InfiniBand (IPoIB) architecture. Technical report (2006)
16. Keidar, I., Shraer, A.: Timeliness, failure-detectors, and consensus performance.

In: Proceedings of the Twenty-fifth Annual ACM Symposium on Principles of
Distributed Computing, PODC 2006, Denver, Colorado, USA, pp. 169–178. ACM
(2006). https://doi.org/10.1145/1146381.1146408

17. Kreps, J., Narkhede, N., Rao, J., et al.: Kafka: a distributed messaging system for
log processing. In: Proceedings of the NetDB, vol. 11, pp. 1–7 (2011)

18. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998). https://doi.org/10.1145/279227.279229

19. Lamport, L., Matthews, J., Tuttle, M., Yu, Y.: Specifying and verifying systems
with TLA+. In: Proceedings of the 10th Workshop on ACM SIGOPS European
Workshop, EW 10, Saint-Emilion, France, pp. 45–48. Association for Computing
Machinery (2002). https://doi.org/10.1145/1133373.1133382

20. Liu, Y.A., Stoller, S.D., Lin, B., Gorbovitski, M.: From clarity to efficiency for
distributed algorithms. In: Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applications, OOPSLA
2012, Tucson, Arizona, USA, pp. 395–410. ACM (2012). https://doi.org/10.1145/
2384616.2384645

21. Network-Based Computing Laboratory at the Ohio State University: RDMA-based
Apache Kafka (RDMA-kafka). https://hibd.cse.ohio-state.edu/kafka

22. Padon, O., McMillan, K.L., Panda, A., Sagiv, M., Shoham, S.: Ivy: safety verifica-
tion by interactive generalization. SIGPLAN Not. 51(6), 614–630 (2016). https://
doi.org/10.1145/2980983.2908118

23. Shivam, K., Paladugu, V., Liu, Y.: Specification and runtime checking of Derecho,
a protocol for fast replication for cloud services. In: Proceedings of the 2023 Work-
shop on Advanced Tools, Programming Languages, and PLatforms for Implement-
ing and Evaluating Algorithms for Distributed Systems, ApPLIED 2023, Orlando,
Florida. ACM (2023). https://doi.org/10.1145/3584684.3597275

https://doi.org/10.1145/3068608
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1109/ICDCS54860.2022.00108
https://doi.org/10.1109/ICDCS54860.2022.00108
https://doi.org/10.1145/1146381.1146408
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/1133373.1133382
https://doi.org/10.1145/2384616.2384645
https://doi.org/10.1145/2384616.2384645
https://hibd.cse.ohio-state.edu/kafka
https://doi.org/10.1145/2980983.2908118
https://doi.org/10.1145/2980983.2908118
https://doi.org/10.1145/3584684.3597275

Robust Overlays Meet Blockchains

On Handling High Churn and Catastrophic Failures

Vijeth Aradhya1(B) , Seth Gilbert1, and Aquinas Hobor1,2

1 National University of Singapore, Singapore, Singapore
{varadhya,seth.gilbert}@comp.nus.edu.sg

2 University College London, London, UK
a.hobor@cs.ucl.ac.uk

Abstract. Blockchains have become ubiquitous in the world of robust
decentralized applications. A crucial requirement for implementing a
blockchain is a reliable “overlay network” providing robust communi-
cation among the participants. In this work, we provide communication-
efficient and churn-optimal (barring log factors) Byzantine-resilient algo-
rithms for maintaining blockchain networks. Our approach utilizes an
interesting “cross-layer optimization” wherein the overlay network relies
on the blockchain that is built on top of it. An important contribution is
a tight “half-life” analysis on the amount of churn that can be tolerated,
where peers have bandwidth restrictions. Moreover, by leveraging syner-
gies between the blockchain and the overlay network, we can provide non-
trivial recovery guarantees from unexpected catastrophic failures, which
include a large class of connectivity issues such as denial-of-service, or
exponentially unlikely lucky streaks for Byzantine peers, etc.

1 Introduction

A network formed by logical links among entities, wherein a logical link may
consist of many physical links, is called an overlay network. Blockchains, dis-
tributed ledgers, and most other distributed services rely on overlays to facili-
tate communication. For example, cryptocurrencies such as Bitcoin [25] rely on
a peer-to-peer network for fast and efficient communication among the peers.

However, existing overlay networks used by blockchains are insecure. In recent
years, there have been attacks on the network connectivity provided by overlays,
exploiting several aspects such as unsafe peer storage and connection policies [15,
22], weak network synchronization [33], and churn [34]. Moreover, such network
partitioning attacks form the basis of other powerful attacks such as double
spending, reducing effective honest resources, and selfish mining [10,28].

V. Aradhya and S. Gilbert acknowledge the support by Singapore MOE Tier 2 Grant
MOE-T2EP20122-0014.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 191–206, 2023.
https://doi.org/10.1007/978-3-031-44274-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_15&domain=pdf
http://orcid.org/0009-0004-7982-1908
https://doi.org/10.1007/978-3-031-44274-2_15

192 V. Aradhya et al.

In this work, we make connections between blockchains and robust over-
lays for distributed hash table, resulting in improvements for both systems,
including efficient joining, guaranteed reliability, and the ability to recover from
bad situations. We exploit a form of “cross-layer optimization”, where the over-
lay maintenance protocols use the blockchain for global coordination, and the
blockchain, in turn, uses the efficient overlay for its communication. We provide
a new Byzantine-resilient algorithm for maintaining an efficient overlay that tol-
erates near-optimal rates of churn. There are four key aspects in which our work
improves on existing solutions by augmenting the overlay with a blockchain.

Table 1. Comparison under different performance metrics.

Join latency
(in rounds)

Join comm.
complexity

Network size
variation

Recovery
(catastr- ophic
failures)

Group spreading [4] O(logN) O(log3 N) ✗ ✗

S-Chord [12] O(logN) O(log3 N) ✗ ✗

Cuckoo rule [5] O(logN) O(log3 N) ✗ ✗

NOW [14] O(log4 N) O(log6 N) ✓ ✗

This work O(1) O(log3 N) ✓ ✓

1. Joining. Byzantine peers can strategically join and leave to affect the overlay
connectivity. This leads to Byzantine join-leave attacks [4], where Byzantine
peers repeatedly rejoin the system. Thus, the join protocol is crucial to main-
tain the properties of the overlay. Unfortunately, existing solutions to such
join-leave attacks can be expensive, both from latency and message complex-
ity perspective [4,5,12,14].

2. Bootstrapping and Churn Analysis. Often, the problem of securely intro-
ducing a new peer to the system is unfortunately swept under the hood (both
in theory and practice). This is, in fact, crucial to the robustness of join algo-
rithms. This is also a reason for the lack of a thorough analysis on the churn
tolerance of a system. A fundamental question in dynamic systems, where
peers can join and leave, is how long do peers necessarily have to remain in
the system so that it works properly? We answer this question in the context
of blockchain networks, where the peers have limited bandwidth. We pro-
vide a “half-life” analysis of churn, showing that our overlay design achieves
near-optimal churn.

3. Changes in Network Size. Early solutions [4,5,12] for join-leave attacks
assumed that the network size changes by at most a constant factor. Those
solutions maintained highly structured (routable) topologies, making it hard
to shrink and expand the overlay if the network size were to polynomially
change over time. A crucial property of the design in [14] is being able to
efficiently adapt to such changes. We show that the peers can consistently

Robust Overlays Meet Blockchains 193

be in consensus on key parameters of the overlay (via the blockchain), which
results in a simple and efficient way to adapt to changes in network size.

4. Recovery. Existing solutions are “brittle” in that if Byzantine peers over-
whelm a part of the overlay, then it is difficult to recover the original proper-
ties of the overlay. This situation can occur over time as these protocols (with
probabilistic guarantees) are run indefinitely. Moreover, open distributed sys-
tems are vulnerable to denial-of-service attacks, for e.g., the Gnutella network,
while resilient to random failures, could be split into a large number of dis-
connected components after a targeted attack [36]. We combine several ideas,
i.e., limited lifetime for a peer [4], fault-tolerant topologies [8], and blockchain
consensus, to quickly and efficiently recover from a large class of connectivity
issues, termed as “catastrophic failures” (cf. Sect. 6).

Our Approach

The standard approach for fault tolerance in overlays is replication (e.g., [5,11,
27]). Thus, our starting point is a virtual network, specifically a hypercube, in
which each vertex of the hypercube is implemented in a replicated fashion by a
small set of peers which are collectively termed as a committee. Such replication
ensures that there are sufficient number of honest peers in each committee.

Typically, replication in dynamic overlays subjected to churn and Byzantine
faults requires considerable coordination among peers. Our insight is that this
coordination can be solved via the blockchain itself by storing small amounts
of auxiliary data on the blocks to achieve the necessary synchronization. For
e.g., our committees do not need to run a consensus algorithm, perform random
walks, or do any other sort of coordination (unlike in [4,5,12,14]). This is similar
to a recent trend exploiting on-chain information to simplify and facilitate off-
chain distributed algorithms, see, e.g., payment channel networks (e.g., [31]) or
dynamic sharding [38].

A key observation is that blockchains are publicly available, i.e., their con-
tents can be read by anyone. Specifically, a recent copy of the blockchain is avail-
able at all times, and this provides an entry point to the service (e.g., blockchain
explorers [6,7]). This allows new peers to easily join the network, avoiding more
centralized solutions [20]. This paves the way for explicitly designing a secure
and dynamic bootstrapping service that tolerates churn and Byzantine faults.

An existing model that captures a similar idea is a “public bulletin
board” [24]. A blockchain differs from a typical bulletin board in three ways:
(1) the amount of auxiliary information in a block must be small, (2) the rate
at which information can be shared is limited by the block interval, and (3) the
network may never be fully synchronized where each peer holds the same chain.
Thus, one of our contributions is to carefully distill the properties provided by
the blockchain in a way that the overlay algorithms can be concisely described
while not losing track of real-world implementations.

Our goal is to minimally use the space on a block for maintaining the overlay.
Specifically, each block stores the identity of only one peer in the overlay. To
maintain a virtual hypercube with at most N peers, we rely on a set of about

194 V. Aradhya et al.

˜Θ(
√

N) of the most recent blocks which store a set of about ˜Θ(
√

N) peers, which
we refer to collectively as a directory. Each peer in the directory is responsible for
a subset of the committees, and keeps track of the members of those committees.

If the adversary can generate unlimited (Sybil) identities, and if the system
has churn, then over time, the adversary can take over honest peers’ connections.
As in many blockchains, we rely on proof-of-work to mitigate such attacks. The
peers can simultaneously mine both identities and blocks without spending extra
computational resources by using the 2-for-1 PoW technique [13,30]. While we
focus on proof-of-work for concreteness, our overlay design can similarly be made
to work with blockchains based on a different resource constraint.

Churn. A primary goal of this paper is to understand the limits of the rate of
churn. We adopt the half-life approach to churn rate for honest peers: if there
are H peers in the system, then over a specific interval of time, the half-life, at
most H/2 new peers can join or at most H/2 peers can depart. This allows for
highly bursty behavior, with large numbers of concurrent joins and departures.
We provide a lower bound for the feasible half-life that depends on the rate of
churn and the bandwidth constraints.

As new blocks are added to the blockchain, and as existing blocks age, the
members of the directory change, handing off information from old directory
members to new directory members in a controlled process. Similarly, when
the number of peers changes significantly, the size of the virtual hypercube has
to change, migrating information to new directory members. Such information
exchanges need to be carefully managed to avoid Byzantine interference.

Recovery. Finally, the blockchain is not just an alternative interface for new
peers to join, it also aids the overlay to recover from catastrophic failures (e.g., a
constant fraction of committees and their corresponding directory members are
instantly corrupted). As long as most of the committees and directory are still
functioning properly, our observation is that the overlay operates sufficiently well
to continue installing new blocks, to continue replacing directory and committee
members, and restoring the fully correct operation of the overlay, i.e., to ensure
that there are again sufficient number of honest peers in every committee. To
show recovery properties, we not only rely on fault-tolerant properties of the
overlay topology (e.g., [3,8,11]), but also prove that the overlay can reliably and
efficiently adapt to large network size variations during recovery.

Summary. We exploit the blockchain for securely bootstrapping peers and
(global) coordination among peers (e.g., agreement on new topology, etc.). We
summarize our contributions (that hold with high probability), in the context of
a network with at most N peers, where the average block interval is β.

1. We design protocols to maintain a hypercubic overlay of committees for a
polynomial number of rounds, where the half-life is α = Θ(β

√
N log N), the

network size can vary polynomially over time, and each peer sends/receives
only O(log3 N) messages per round.

2. We show that when catastrophic failures occur, the overlay recovers (i.e.,
retains its original properties) within a constant number of half-lives.

Robust Overlays Meet Blockchains 195

3. We give a lower bound, barring log-factors, for half-life, α = ˜Ω(
√

βN), show-
ing that it is impossible to tolerate higher rates of churn, even if peers share
a public bulletin board that can be used for joining.

2 Related Works

An in-depth related work exposition can be found in the full version [1].

Early Designs. Fiat and Saia [11] design an overlay based on bipartite
expanders where at least (1 − ε)N peers can efficiently communicate with at
least (1− ε)N peers for a small constant ε. Their topology is fixed; [35] modified
it to handle a restricted form of churn. Datar [8] built a content addressable net-
work over multi-hypercube, having fault-tolerance against adversarial deletion
similar to [11], improving on the communication and storage costs. However, the
design is not resilient against Byzantine failures. Many overlays were designed
to be robust against random failures, where each peer (independently) has a
bounded probability of being Byzantine [9,16,18,26].

Join-Leave Attacks. DHTs are typically made robust by replication of each
data item over a small group, e.g., a logarithmic number of peers, of which a
majority are honest [11,16,26,35]. Alas, Byzantine peers can often repeatedly
join and leave until they overwhelm a particular group.

Awerbuch and Scheideler [4] showed that a hypercubic topology can be main-
tained (with logarithmic redundancy and honest majority) over polynomial num-
ber of join/leave events, where each peer simulates O(log N) nodes and every
node has a limited lifetime, if at most O(1/ log N) fraction of the nodes can be
Byzantine. Subsequent works tolerate a linear fraction of Byzantine faults. Fiat
et al. [12] used the k-rotation rule [37]; Awerbuch and Scheideler [5] introduced
the cuckoo rule; Guerraoui et al. [14] exploit random walks to maintain clusters.
Jaiyeola et al. [17] use the limited lifetime method and O(log log N) redundancy
to show that at least (1 − o(1))N peers can reach at least (1 − o(1))N peers.
This line of work either assumes static “gateway peers” with unlimited band-
width or access to random peers for bootstrapping new peers. Moreover, their
join algorithms are rather complicated and expensive (see Table 1).

Recently, Augustine et al. [2] designed a Byzantine-resilient overlay network
(for a fixed network size) using the idea of a “dynamic whiteboard” to incorpo-
rate new peers into the system. But their algorithms cannot be adapted in our
case, which is optimized for integration with blockchains. They use a constant-
degree expander topology; whereas we rely on a (fault-tolerant) routable topol-
ogy, and prove that the overlay can recover from catastrophic failures.

Blockchain Overlays. Kadcast [32] builds on Kademlia [23] and proposes a
structured broadcast protocol for disseminating blocks. It is unclear how this pro-
tocol performs with respect to high churn and Byantine faults. In Perigree [21], a
peer retains the “best” subset of neighbours after regular intervals, and connects
to a small set of random peers to explore potentially better-connected peers.
But Perigree may actually be prone to eclipse attacks because the adversary can
monopolize a peer’s connections by providing well-connected neighbors.

196 V. Aradhya et al.

3 Model

Entities. A peer is a real-world entity, and can be: (1) honest, following the
protocol, or (2) Byzantine, arbitrarily deviating from the protocol. A peer can
control multiple identities. The network size is the total number of peers. The
maximum network size is denoted by N . Byzantine peers always constitute at
most a ρ fraction of the network size. They know the network topology at any
time (but they cannot modify or delete messages sent by honest peers).

Communication. Each peer maintains a set of neighbouring peers that it is
connected with. The system proceeds in synchronous rounds; in each round, a
message that is sent at the beginning of a round by a peer is assumed to reach
its neighbours by the end of that round.

Computational Restriction. The peers have a hash power constraint, i.e.,
each peer owns one unit of hash power that allows the peer to query a hash func-
tion (modelled as a random oracle) q times in a round [13,29]. (If an entity has
more hash power, then it is viewed as a coalition of peers.) For any given input,
the hash function provides a (fixed) random output of length κ = Θ(log N).

Blockchain. If the overlay has at least μn(1−ρ)n honest peers1 with a diameter
of at most 2 log N , and there are at most ρn Byzantine peers, for appropriate con-
stants ρ < μn < 1, where n is the current number of peers, then the blockchain
is guaranteed to provide the following properties [29,30] for honest peers. (In
this work, our goal is to provably maintain an overlay with such properties.)

Safety. There exists a confirmed chain2 Cr
u for any honest peer u in round r

having the following properties: (i) Δ-Synchronization: If |Cr
u| is honest peer u’s

confirmed chain length at round r, then by round r + Δ, every honest peer’s
confirmed chain length is at least |Cr

u|; (ii) Consistency: Cr
u is a prefix of Cr′

u for
any round r′ ≥ r. At any round r, if |Cr

u| ≤ |Cr
v |, then Cr

u is a prefix of Cr
v , and

for a large enough constant μs, |Cr
u| − |Cr

v | ≤ μs.

Liveness. For large enough T and constant μb, any consecutive T ≥ Ω(1) blocks
are included in any confirmed chain in [Tβ/μb, Tμbβ] rounds; β is the average
block interval.

δ-Approximate Fairness. Any set of honest peers controlling a φ fraction of hash
power is guaranteed to get at least a (1−δ)φ fraction of the blocks in any Ω(κ/δ)
length segment of the chain.

Public Availability. There exists an introduction service I that provides a local
copy of an existing honest peer’s chain.

Churn. We consider the standard “partially oblivious” adversary [4,5,12,14]
that specifies the join/leave sequence σ for honest peers in advance. However,
1 We consider a (large) subset of honest peers because the network can get split into

multiple components during a catastrophic failure (cf. Sect. 6).
2 The interpretation of confirmed chain is typically blockchain-specific; for example,

Bitcoin deems a block to be confirmed if it is at least 6 blocks deep.

Robust Overlays Meet Blockchains 197

it can choose to adaptively join/leave Byzantine peers. In particular, after the
first i events in σ are executed, the adversary can either choose to join/leave a
Byzantine peer or initiate the (i + 1)th event in σ.

Churn Rate. We consider the half-life measure [19] to model the churn rate for
honest peers. At any given round r, the halving time is the number of rounds
taken for half the number of honest peers (which were alive at round r) to leave
the network; the doubling time is the number of rounds required for the number
of honest peers to double. An epoch, denoted by α, is defined as the smallest
halving time or doubling time over all rounds in the execution. Furthermore,
we assume that the epoch is much greater than the average block generation
interval; in other words, α � β log N .

Change of Network Size. The network size can change by a factor of at most
2 in any epoch. It can thus polynomially vary over time; the number of peers at
any round r, Nr ∈ [N1/y, N] for any constant y > 1.

4 Overlay Design and Algorithms (Stable Network Size)

We first describe our overlay algorithm for a fixed network size of Θ(N). Two
key parameters are the epoch length α (half-life) and the “directory size” B. We
will observe that α should roughly be the time it takes Θ̃(

√
N) blocks to be

added, and B (number of blocks in a directory) should be about Θ̃(
√

N).

Nodes. Each peer generates and controls Θ(log N) (virtual) identities, known
as nodes in the overlay. Each peer participates (sends and receives messages)
via its nodes. All peers are required to perform proof-of-work to generate nodes.
Each node has a lifetime after which it will be considered invalid.

Directory. Every node is initially a “non-directory” node. Some nodes also
become directory nodes: a peer that adds a block to the blockchain promotes
one of its nodes to a directory node, adding the identity of the promoted directory
node, along with its network address, to the new block.

Committees. We maintain a hypercubic network of committees; each vertex
corresponds to a committee. There are C = N committees, each consisting of
Θ(log N) nodes. If two committees are adjacent in the hypercube, then every pair
of nodes in those committees are neighbors. Logarithmic redundancy ensures
that a sufficient fraction of peers are honest so that the hypercube structure is
maintained. Each committee is identified by a (unique) committee ID. As a peer
may control multiple nodes, it may be present in multiple committees.

Limited Lifetime. Byzantine peers can repeatedly rejoin until their nodes get
placed (by chance) in desired committees, potentially resulting in honest nodes
having mostly Byzantine neighbors. A standard solution is to limit the lifetime
of nodes, forcing them to rejoin (e.g., [4]). To avoid too much induced churn,
the lifetime should be large, but not so large as to allow Byzantine join-leave
attacks. Thus, we set the node lifetime to be Θ(α/β) blocks, i.e., a constant

198 V. Aradhya et al.

number of half-lives. This ensures that at most a constant fraction of any honest
peer’s neighbours are Byzantine. Moreover, limited node lifetime is important
for providing time bounds on recovery from catastrophic failures (see Sect. 6).

We now provide further details on the overlay maintenance. The technical dif-
ficulty lies in enabling directory nodes to help honest nodes join, while respecting
the bandwidth constraints—even as the adversary may try to flood some direc-
tory nodes with requests. Figure 1 gives an overview of our design.

Fig. 1. High-level overview of our design for 8 peers.

Directories

A directory on the blockchain comprises of B consecutive “buckets”, and each
bucket consists of consecutive λd log2 N blocks, where λd is a suitable constant.
Each block refers to one directory node, so a directory refers to K = Bλd log2 N
directory nodes. (The chain is divided into buckets from the beginning.)

There must always be enough honest directory nodes in each bucket, despite
churn. By the blockchain fairness assumption, Θ(log2 N) bucket size is sufficient
to ensure Ω(log N) honest peers per bucket at any time.

Directory Responsibilities. Each bucket is responsible for a set of commit-
tees, i.e., directory nodes in that bucket help new nodes join those committees.
There are two main functions of a directory node. (1) A directory node stores
information about the nodes in its committees. (2) A directory node sends that
information to new joining nodes and to neighboring committees. There exists a
predetermined mapping [C] → [B] from committees to buckets, specifying which
bucket manages a given committee, such that each bucket is responsible for
(almost) the same number of committees.

Phases of a Bucket. We describe the phases of buckets and its directory nodes
(and the transitions between phases), which determine the nodes’ functions over
time: (1) Infant. A bucket in which at least one block (out of λd log2 N) is
confirmed, but not all the λd log2 N blocks are confirmed. The directory nodes
neither store entry information, nor respond to any requests. If all λd log2 N
blocks of the bucket are confirmed in the blockchain, then the bucket transitions
to middle-aged. (2) Middle-aged. These directory nodes store new node entry

Robust Overlays Meet Blockchains 199

information as they receive it, and reply to requests. If the bucket is not among
the most recent (confirmed) B buckets, then the bucket transitions to veteran
phase. (3) Veteran. These directory nodes do not store new nodes’ entry informa-
tion, but they do reply to requests with committee information already known
to them. If the bucket is not among the most recent (confirmed) Bact buckets
(to be defined), then it shifts to dead phase. (4) Dead. These directory nodes
(as in the infant phase) neither store any new node information, nor respond to
requests. During the transitions, there is a delay of Δ rounds to ensure that the
confirmed chains of honest peers reach the same required height.

Active Directory. The active directory, also known as bootstrapping service,
is the most recent Bact consecutive (confirmed) buckets. The most recent B
consecutive buckets, forming an entire directory, are middle-aged. The rest of
the buckets, forming one or more directories, are veteran. The number of blocks
and number of buckets in an active directory are denoted as Kact and Bact

respectively. An example of an active directory is illustrated in Fig. 2.
New nodes figure out the sequence of buckets in the active directory (using the

blockchain and committee-directory mapping), and contact the relevant buckets
to get the required committees’ entry information for joining the network.

Fig. 2. An illustration of buckets (and their blocks with directory nodes), represented
by their IDs, in different phases.

Node Joins and Lifetimes

A new node must provide a proof-of-work for joining the network, and directory
nodes only interact with a new node if its proof is valid.

Proof for Joining. Let Nc be a nonce, B̂l be the hash of the latest confirmed
block Bl, and net addr be the network address of the peer. Then, the peer
evaluates, Pjoin = H(B̂l ‖ net addr ‖ Nc), where H is the (pseudorandom) hash
function, to join the network through a new node. If Pjoin < Tjoin , where Tjoin is
the mining target for joining, then the node is said to be a “valid” node, which
means that the peer would be able to communicate with the bootstrapping
service to register that node, and join the network. A directory node rejects the
proof if Bl is not among the most recent μs blocks in its confirmed chain.

Joining the Network. A node’s entry information constitutes its network
address, the nonce Nc and the block number of the block that was used while

200 V. Aradhya et al.

mining for that node. We now describe the steps taken by a peer p to generate and
join a new node q into the network. (1) It first produces a proof for joining. The
leftmost log N bits of Pjoin represent the ID of the (random) committee, denoted
by c, to which this new node would belong to. Let Crel be the set of committees
neighboring c in the hypercube, including c. (2) Peer p sends its entry information
to all directory nodes in the middle-aged bucket responsible for committee c. (3)
Peer p requests information, sampling Θ(log N) nodes uniformly in each bucket
responsible for committee c and requesting information on each of its neighbors in
the hypercube. The directory nodes respond with the relevant entry information.
(4) Peer p appropriately sends messages to handle Δ-synchrony. Let b1 and b2
be the first and (B + 1)th confirmed buckets (i.e., most recent middle-aged and
veteran buckets). If the number of blocks confirmed after bucket b1 is at most
μs, and if b1 is responsible for committee c, then p send its entry information to
all nodes in b2. (5) To complete the join, node q takes the union of valid entry
information received in responses (as the adversary can only under-represent the
nodes in a committee). It then sends its entry information to the nodes in each
neighboring committee in the hypercube.

The key observation is that a constant fraction of directory nodes in a bucket
are honest and available at any time, due to logarithmic redundancy in buckets
and blockchain fairness. Thus, it is sufficient for the new node needs to hear back
information from O(log N) directory nodes in each bucket (Step 3), reducing the
communication complexity of join down to O(log3 N), i.e., the new node contacts
at most log N buckets, wherein O(log N) directory nodes in each bucket reply
with committee information of O(log N) nodes.

Lifetime of Non-directory Node. The lifetime of a non-directory node is
Tl = Θ(α/β) blocks. The node u that had joined at block number bl (which can
be checked in its proof for joining) is considered invalid after block bl + Tl is
confirmed, at which point the peer stops controlling that node u, and all other
nodes that had node u as a neighbour remove u from their neighbour list.

Lifetime of Directory Node. If a node is promoted to a directory node, then
it obtains another life (separate from the non-directory life). The directory node
is considered to be alive for Tdl blocks from the block in which it is embedded
in. We set Tdl to be Θ(α/β) blocks, where Tl < Tdl . This time is chosen to
be sufficiently long for the directory node to reach the veteran phase, and then
for the lifetimes of all the non-directory nodes in its committee to fail (i.e., an
additional Tl blocks), i.e., Tdl > (1 + B)λd log2 N + Tl.

Node Generation Rate. The mining target Tjoin is set such that, in each
epoch, the expected number of valid nodes that can be generated during an
epoch is equal to Θ(N log N). Each committee has Θ(log N) nodes at any time
because in every epoch, about Θ(N log N) nodes join, while a similar number of
them leave due to limited lifetime (set to be a constant number of epochs).

Robust Overlays Meet Blockchains 201

Directory Size and Half-Life (Relation between B and α)

First, the lifetime of a non-directory node is Θ(α/β) blocks, so B ≤ Θ
(

α
β log2 N

)

,
so that the node can fully participate in a directory’s life cycle.

Due to node generation rate, the system must have bandwidth for Θ(N log N)
nodes to join in any α (consecutive) rounds. As a new node sends a join request
to all directories within the active directory (both middle-aged and veteran), it
suffices to focus on the number of join requests handled by one directory.

Due to the proof-of-work mechanism, we can ensure that the join requests
are load-balanced across the rounds in an epoch. Let λjr be the highest number
of join requests that can be handled by a bucket per round. For any directory, we
calculate the total number of join requests that need to be handled in any round
as Bλjr ≥ Θ

(

βN log2 N
α

)

, where LHS is the total number of join requests that can
be handled in a round, and RHS represents the minimum number of join requests
that need to be handled in a round. The extra β factor is due to a possible
precomputation attack, where an adversary sends join requests computed over
the last μs confirmed blocks, and the extra log N factor is due to new nodes
contacting O(log N) buckets while joining. These extra multiplicative factors
ensure that the communication complexity per peer per round is O(log3 N).

Ideally, we want to minimize α to handle maximum churn. Solving the above
constraints, with bandwidth cost of O(log3 N) messages per round for a peer,
we find that α = Θ(β

√
N log N) and B = Θ(

√
N/ log N). In Sect. 7, we show

that this value of α is close to optimal.

Analysis Overview

We present the key lemmas and theorems for stable network size. The complete
analysis can be found in the full version [1]. Consider a connectivity property
called partition resilience, where (1) each committee has O(log N) nodes and
Ω(log N) honest peers, (2) every pair of honest nodes in each committee are
connected, and (3) each honest node is connected to Ω(log N) honest peers in
each neighbouring committee. An epoch e is said to be bandwidth-adequate if
each peer needs to send/receive O(log3 N) messages for overlay maintenance in
any round. The active directory is said to be robust if each bucket has Ω(log2 N)
honest nodes that store entry information of all nodes in the relevant committees.

First, we see that no peer gets too many join requests due to load balancing,
random committee assignment (via hash function), and random sampling:

Lemma 1. Each peer receives O(log2 N) join requests and information requests
in any round in an epoch with high probability.

Next, we argue that if the bandwidth is not exceeded, then the active directory
is properly constructed and has the correct information to process join requests:

Lemma 2. The active directory is robust in the epoch with high probability, if
the last Θ(βTdl/α) epochs are bandwidth-adequate.

202 V. Aradhya et al.

Together, these lemmas imply that all joins are successful, ensuring the overlay
is well-connected with each committee having sufficient number of honest peers:

Theorem 1. The network is partition-resilient for polynomial number of rounds
with high probability.

5 Extension to Dynamic Network Size

We briefly discuss how to augment the protocols described in Sect. 4 to handle
polynomial variation in network size over time. These techniques are an extension
of the previous idea—see the full version [1] for the details.

The main problem caused by changing numbers of peers is that the system
needs to adapt to maintain logarithmic redundancy. If the number of committees
remains fixed, while the number of peers decreases, then each peer would need
to simulate too many nodes at any time in order for the system to maintain
Θ(log N) nodes in every committee, exhausting the peer’s bandwidth. And if the
network size keeps increasing, then some peers may not be able to participate
in the network all the time because they may take too long to generate nodes.
Therefore, we adapt the size of the hypercube and the number of committees.

The key insight is that the blockchain can facilitate the necessary coordi-
nation to switch to a new topology. The first step is to efficiently estimate the
network size, every constant number of epochs. Each node keeps track of new
nodes that joined its committee in a span of fixed number of blocks. Then, all
the nodes of a (random) committee (determined by a hash function) broadcast
that count along with the entry information of new nodes that joined that com-
mittee (as evidence of the count) to everyone. This sampled change in committee
size allows peers to estimate the size of the network. This information is then
included on the blockchain to ensure that all peers agree on it.

Each peer then uses this estimate to determine whether the dimension of the
hypercube is changing and number of committees in the new hypercube. Again,
the information is placed on the blockchain to ensure agreement.

At that point, if necessary, the dimension of the hypercube is changed. Dur-
ing dimension change, the new hypercube is constructed while the old one is kept
around to ensure connectivity. The directory goes into a “split state” for about
one epoch, serving committees in the current hypercube and also constructing
committees in the next hypercube. New nodes also get placed in the next hyper-
cube, as well as the old one. Until each committee in the next hypercube has a
sufficient number of new (honest) nodes, the overlay operates in the old hyper-
cube. The directory then stops serving committees in the old hypercube, and
the network adopts the new hypercube for broadcasting blocks.

6 Recovery

Catastrophic failures model a large class of connectivity issues, e.g., denial-of-
service attacks or low probability events. We say that a bucket fails if > 1/2 of

Robust Overlays Meet Blockchains 203

its honest peers are corrupted ; a committee fails if it has < 20 log N honest peers,
or if the bucket responsible for it has failed. The corruption could be Byzantine,
or simply crashing, if honest peers leave faster than allowed by the churn model.

Consider an “(ε, δ)-catastrophic failure” where at most ε fraction of commit-
tees and/or buckets may have failed, and in total, at most δ fraction of honest
peers get corrupted (for small constants ε and δ), while there still exists a con-
nected network of honest peers of linear size and logarithmic diameter for which
bootstrapping can be securely done. Such failures model exceptional scenarios
that occur in practice wherein the network is split into multiple components,
resulting in considerable wastage of honest peers’ hash power over time.

Recovery. Our goal is to provably show that the network recovers from such
catastrophic failures in a short period of time. Here, we naturally define recovery
as the event at which the overlay retains its original properties.

There are two basic requirements for the overlay to recover from a catas-
trophic failure. First, a large fraction of honest peers can continue to run the
blockchain protocol (ensuring the blockchain provides the same guarantees),
albeit some honest peers may end up unable to participate fully (i.e., effective
honest hash power is reduced) for a brief period of time. Secondly, the introduc-
tion service is not affected by the failure, i.e., it continues to return the chain of
an honest peer in the largest connected component of honest peers.

The high-level intuition for recovery is to replace the entire active directory by
a new one (that has no bucket failures), which will reliably facilitate new honest
node joins. After a catastrophic failure, there is a large connected component of
sufficient number of honest peers with a low diameter, that is responsible for the
progress of the blockchain. First, this component should get replenished with
new (honest) peers amidst churn, maintaining the required proportion. Then,
the coordination protocols such as network size estimation, etc., must work for
that component during recovery. Specifically, we rely on the fault-tolerance of
the overlay topology [8] and properties of bipartite expanders [11] for showing
that changing dimensions after a catastrophic failure does not inhibit recovery.

For a wide range of failures, the overlay, augmented with a blockchain, can
exhibit a novel recovery property. The security arguments in existing designs for
join-leave attacks [4,5,12,14,17] heavily rely on honest majority in committees.
In the full version [1], we show the inherent difficulty of such localized algorithms
to recover from committee failures, e.g., a small number of committees having
malicious majority, can keep maintaining the majority over time.

Theorem 2. If the network experiences (ε, δ)-catastrophic failure, then it
becomes partition-resilient within O(1) epochs with high probability.

7 Lower Bound for Half-Life

In dynamic overlays, there is always a problem of bootstrapping a new peer,
i.e., how does a new peer contact an existing peer within the network? A boot-
strapping service S should have two properties: (i) Secure: the service responds

204 V. Aradhya et al.

with the identity of at least one honest peer in the network; and (ii) Bandwidth-
constrained: Each peer communicates at most Õ(1) bits in any round.

We show that there are unavoidable trade-offs in implementing such a service.
Notably, the overlay algorithm described in this paper satisfies these basic service
requirements—and so it is also subject to these inevitable trade-offs.

Let N be the number of peers in the network, and assume peers are hon-
est. Assume network addresses require Ω(log N) bits, i.e., there is no encoding
scheme to compress network addresses. Peers can write O(log N) bit messages
to a publicly visible bulletin board (e.g., [24]). An arbitrary peer is selected to
write to the board at every β rounds. The bulletin board is the only interface
through which the peers can disseminate information to the public.

We prove the following theorem by analyzing the number of bits of useful
information on the bulletin board, compared to the number of identifiers needed
to support the bandwidth required for all joins. Our theorem depends only on
the minimum requirement that to complete a join operation, a newly joining
node must receive at least one message from an existing member of the network.

Theorem 3. Any dynamic system that implements a bootstrapping service S
using a public bulletin board can support a half-life of only ˜Ω(

√
βN).

References

1. Aradhya, V., Gilbert, S., Hobor, A.: OverChain: building a robust overlay with a
blockchain. arXiv preprint arXiv:2201.12809 (2022)

2. Augustine, J., Bhat, W.G., Nair, S.: Plateau: a secure and scalable overlay network
for large distributed trust applications. In: Devismes, S., Petit, F., Altisen, K.,
Di Luna, G.A., Fernandez Anta, A. (eds.) Stabilization, Safety, and Security of
Distributed Systems. LNCS, vol. 13751, pp. 69–83. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-21017-4 5

3. Augustine, J., Chatterjee, S., Pandurangan, G.: A fully-distributed scalable peer-
to-peer protocol for byzantine-resilient distributed hash tables. In: Proceedings of
the 34th ACM Symposium on Parallelism in Algorithms and Architectures, pp.
87–98 (2022)

4. Awerbuch, B., Scheideler, C.: Group spreading: a protocol for provably secure
distributed name service. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D.
(eds.) ICALP 2004. LNCS, vol. 3142, pp. 183–195. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-27836-8 18

5. Awerbuch, B., Scheideler, C.: Towards a scalable and robust DHT. Theory Comput.
Syst. 45(2), 234–260 (2009)

6. BitInfoCharts: Bitcoin Explorer (2023). https://bitinfocharts.com/bitcoin/
explorer/

7. Blockchain.com: Explorer (2023). https://www.blockchain.com/explorer
8. Datar, M.: Butterflies and peer-to-peer networks. In: Möhring, R., Raman, R. (eds.)

ESA 2002. LNCS, vol. 2461, pp. 310–322. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45749-6 30

9. Dolev, D., Hoch, E.N., van Renesse, R.: Self-stabilizing and byzantine-tolerant
overlay network. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS,
vol. 4878, pp. 343–357. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-77096-1 25

http://arxiv.org/abs/2201.12809
https://doi.org/10.1007/978-3-031-21017-4_5
https://doi.org/10.1007/978-3-031-21017-4_5
https://doi.org/10.1007/978-3-540-27836-8_18
https://bitinfocharts.com/bitcoin/explorer/
https://bitinfocharts.com/bitcoin/explorer/
https://www.blockchain.com/explorer
https://doi.org/10.1007/3-540-45749-6_30
https://doi.org/10.1007/3-540-45749-6_30
https://doi.org/10.1007/978-3-540-77096-1_25
https://doi.org/10.1007/978-3-540-77096-1_25

Robust Overlays Meet Blockchains 205

10. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

11. Fiat, A., Saia, J.: Censorship resistant peer-to-peer networks. Theory Comput.
3(1), 1–23 (2007). (previously appearing in SODA 2002)

12. Fiat, A., Saia, J., Young, M.: Making chord robust to byzantine attacks. In: Bro-
dal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 803–814. Springer,
Heidelberg (2005). https://doi.org/10.1007/11561071 71

13. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

14. Guerraoui, R., Huc, F., Kermarrec, A.M.: Highly dynamic distributed computing
with byzantine failures. In: Proceedings of the 2013 ACM Symposium on Principles
of Distributed Computing, pp. 176–183 (2013)

15. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s
peer-to-peer network. In: 24th USENIX Security Symposium, pp. 129–144 (2015)

16. Hildrum, K., Kubiatowicz, J.: Asymptotically efficient approaches to fault-
tolerance in peer-to-peer networks. In: Fich, F.E. (ed.) DISC 2003. LNCS, vol.
2848, pp. 321–336. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-39989-6 23

17. Jaiyeola, M.O., Patron, K., Saia, J., Young, M., Zhou, Q.M.: Tiny groups tackle
byzantine adversaries. In: 2018 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS), pp. 1030–1039. IEEE (2018)

18. Johansen, H.D., Renesse, R.V., Vigfusson, Y., Johansen, D.: Fireflies: a secure
and scalable membership and gossip service. ACM Trans. Comput. Syst. (TOCS)
33(2), 1–32 (2015)

19. Liben-Nowell, D., Balakrishnan, H., Karger, D.: Analysis of the evolution of peer-
to-peer systems. In: Proceedings of the Twenty-First Annual Symposium on Prin-
ciples of Distributed Computing, pp. 233–242 (2002)

20. Loe, A.F., Quaglia, E.A.: You shall not join: a measurement study of cryptocur-
rency peer-to-peer bootstrapping techniques. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pp. 2231–2247
(2019)

21. Mao, Y., Deb, S., Venkatakrishnan, S.B., Kannan, S., Srinivasan, K.: Perigee: effi-
cient peer-to-peer network design for blockchains. In: Proceedings of the 39th Sym-
posium on Principles of Distributed Computing, pp. 428–437 (2020)

22. Marcus, Y., Heilman, E., Goldberg, S.: Low-resource eclipse attacks on ethereum’s
peer-to-peer network. Cryptology ePrint Archive, Report 2018/236 (2018)

23. Maymounkov, P., Mazières, D.: Kademlia: a peer-to-peer information system based
on the XOR metric. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45748-8 5

24. Mitzenmacher, M.: How useful is old information? IEEE Trans. Parallel Distrib.
Syst. 11(1), 6–20 (2000)

25. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (White Paper) (2008).
https://bitcoin.org/bitcoin.pdf

26. Naor, M., Wieder, U.: A simple fault tolerant distributed hash table. In: Kaashoek,
M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 88–97. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45172-3 8

https://doi.org/10.1007/978-3-662-45472-5_28
https://doi.org/10.1007/11561071_71
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-540-39989-6_23
https://doi.org/10.1007/978-3-540-39989-6_23
https://doi.org/10.1007/3-540-45748-8_5
https://doi.org/10.1007/3-540-45748-8_5
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-540-45172-3_8

206 V. Aradhya et al.

27. Naor, M., Wieder, U.: Novel architectures for p2p applications: the continuous-
discrete approach. ACM Trans. Algorithms (TALG) 3(3), 34-es (2007)

28. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish
mining and combining with an eclipse attack. In: 2016 IEEE European Symposium
on Security and Privacy (EuroS&P), pp. 305–320. IEEE (2016)

29. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

30. Pass, R., Shi, E.: Fruitchains: a fair blockchain. In: Proceedings of the ACM Sym-
posium on Principles of Distributed Computing, pp. 315–324 (2017)

31. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant pay-
ments (2016). https://lightning.network/lightning-network-paper.pdf

32. Rohrer, E., Tschorsch, F.: Kadcast: a structured approach to broadcast in
blockchain networks. In: Proceedings of the 1st ACM Conference on Advances
in Financial Technologies, pp. 199–213 (2019)

33. Saad, M., Anwar, A., Ravi, S., Mohaisen, D.: Revisiting nakamoto consensus in
asynchronous networks: a comprehensive analysis of bitcoin safety and chainqual-
ity. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Com-
munications Security, pp. 988–1005 (2021)

34. Saad, M., Chen, S., Mohaisen, D.: Syncattack: double-spending in bitcoin without
mining power. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1668–1685 (2021)

35. Saia, J., Fiat, A., Gribble, S., Karlin, A.R., Saroiu, S.: Dynamically fault-tolerant
content addressable networks. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.)
IPTPS 2002. LNCS, vol. 2429, pp. 270–279. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45748-8 26

36. Saroiu, S., Gummadi, P.K., Gribble, S.D.: Measurement study of peer-to-peer file
sharing systems. In: Multimedia Computing and Networking 2002, vol. 4673, pp.
156–170. International Society for Optics and Photonics (2001)

37. Scheideler, C.: How to spread adversarial nodes? Rotate! In: Proceedings of the
Thirty-Seventh Annual ACM Symposium on Theory of Computing, pp. 704–713
(2005)

38. Tennakoon, D., Gramoli, V.: Dynamic blockchain sharding. In: 5th International
Symposium on Foundations and Applications of Blockchain 2022 (FAB 2022).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2022)

https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://lightning.network/lightning-network-paper.pdf
https://doi.org/10.1007/3-540-45748-8_26
https://doi.org/10.1007/3-540-45748-8_26

Disconnected Agreement in Networks
Prone to Link Failures

Bogdan S. Chlebus1, Dariusz R. Kowalski1, Jan Olkowski2(B),
and Jędrzej Olkowski3

1 School of Computer and Cyber Sciences, Augusta University, Georgia, USA
2 University of Maryland, College Park, MD, USA

olkowski@umd.edu
3 Wydział Matematyki, Mechaniki i Informatyki, Uniwersytet Warszawski,Warszawa,

Poland

Abstract. We consider deterministic distributed algorithms for reach-
ing agreement in synchronous networks of arbitrary topologies. Links
are bi-directional and prone to failures while nodes stay non-faulty at
all times. A faulty link may omit messages. Agreement among nodes
is understood as holding in each connected component of a network
obtained by removing faulty links – we call it a “disconnected agreement”.
We introduce the concept of stretch, which is the number of connected
components of a network, obtained by removing faulty links, minus 1 plus
the sum of diameters of connected components. We define the concepts
of “fast” and “early-stopping” algorithms for disconnected agreement by
referring to stretch. We consider trade-offs between the knowledge of
nodes, the size of messages, and the running times of algorithms. A net-
work has n nodes and m links. We give a general disconnected agreement
algorithm operating in n+1 rounds that uses messages of O(log n) bits.
Let λ be an unknown stretch occurring in an execution; we give an algo-
rithm working in time (λ + 2)3 and using messages of O(n logn) bits.
We show that disconnected agreement can be solved in the optimal O(λ)
time, but at the cost of increasing message size to O(m logn). We also
design an algorithm that uses only O(n) non-faulty links and works in
time O(nm), while nodes start with their ports mapped to neighbors and
messages carry O(m logn) bits. We prove lower bounds on the perfor-
mance of disconnected-agreement solutions that refer to the parameters
of evolving network topologies and the knowledge available to nodes.

Keywords: Network · Synchrony · Omission link failures ·
Agreement · Time complexity · Message size · Link use

1 Introduction

We introduce a variant of agreement and present deterministic distributed algo-
rithms for this problem in synchronous networks. Nodes represent processing

D. R. Kowalski—This work is partially supported by the NSF grant number 2131538.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 207–222, 2023.
https://doi.org/10.1007/978-3-031-44274-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_16&domain=pdf
https://doi.org/10.1007/978-3-031-44274-2_16

208 B. S. Chlebus et al.

units and links model bi-directional communication channels between pairs of
nodes. Links are prone to failures but nodes stay operational at all times. A
faulty link may not convey a message transmitted at a round. A link that has
omitted a message manifested its faultiness and is considered unreliable until the
end of the execution. We model a network with link failures as evolving through
a chain of sub-networks, obtained by removing unreliable links.

We study agreement that allows nodes in different connected components of
the network, obtained by removing unreliable links, to decide on different values
but still requires nodes within a connected component to decide on the same
value.

We use a network’s dynamic attribute, called “stretch”, which is an inte-
ger determined by the number of connected components and their diameters
(see Sect. 2 for formal definition). The purpose of using stretch is to consider
scalability of disconnected agreement solutions to networks evolving through
link failures.

Table 1. A summary of the given deterministic distributed algorithms for disconnected
agreement and their respective performance bounds. Bound Λ is known in Sect. 3. The
dagger symbol † indicates the asymptotic optimality of the respective upper bound.

algorithm/section time message size # links knowledge lower bound

Fast-Agreement/Sect. 3 Λ † O(log n) O(m) Λ known time λ ≤ Λ

SM-Agreement/Sect. 4 n + 1 O(log n) O(m) minimal time λ

LM-Agreement/Sect. 5 (λ + 2)3 O(n log n) O(m) minimal time λ

ES-Agreement/Sect. 6 λ + 2 † O(m log n) O(m) minimal time λ

OL-Agreement/Sect. 7 O(nm) O(m log n) 2n † neighbors known # links Ω(n)

A Summary of the Results. We introduce the problem of disconnected agreement
and give deterministic algorithms for this problem in synchronous networks with
links prone to failures. Let n denote the number of nodes and m the number of
links in an initial network. An upper bound on stretch, denoted Λ, could be given
to all nodes, with an understanding that faults occurring in an execution are
restricted such that the actual stretch never surpasses Λ. An algorithm solving
disconnected agreement with a known upper bound Λ on the stretch is consid-
ered “fast” if it runs in time O(Λ). A fast solution to disconnected agreement is
discussed in Sect. 3. We also show a lower bound which demonstrates that, for
each natural number λ and an algorithm solving disconnected agreement in net-
works prone to link failures, there exists a network that has stretch λ and such
that each execution of the algorithm on this network takes at least λ rounds. In
Sect. 4, we show how to solve disconnected agreement in n+1 rounds with short
messages of O(log n) bits in networks where nodes have minimal knowledge.
We give an algorithm relying on minimal knowledge working in time (λ + 2)3

and using linear messages1 of O(n log n) bits, where λ is an unknown stretch
1 We call a message ’linear’ if it could carry at most O(n) ids (each id has O(log n) bits).

Disconnected Agreement in Networks Prone to Link Failures 209

occurring in an execution; this algorithm is presented in Sect. 5. A disconnected
agreement solution is considered “early-stopping” if it operates in time propor-
tional to the unknown stretch actually occurring in an execution. In Sect. 6, we
develop an early-stopping solution to disconnected agreement relying on minimal
knowledge that employs messages of O(m log n) bits. We propose to count the
number of reliable links used by a communication algorithm during its execution
as its performance metric. To make this performance measure meaningful, the
nodes need to start knowing their neighbors, in having a correct mapping of
communication ports to neighbors. In Sect. 7, we give a solution to disconnected
agreement that uses at most an asymptotically optimum number 2n of reliable
links and works in O(nm) rounds, without knowing the size n of the network.
We then show a separation result in Sect. 7: if the nodes start with their ports
not mapped on neighbors, then any disconnected agreement solution has to use
Ω(m) links in some networks of Θ(m) links, for all numbers n and m such that
n ≤ m ≤ n2. A summary of algorithms with their performance bounds and
optimality is in Table 1. Full paper is available in [8].

The Previous Work on Agreement in Networks. Dolev [10] studied Byzantine
consensus in networks with faulty nodes and gave connectivity conditions suf-
ficient and necessary for a solution to exist; see also Fischer et al. [11], and
Hadzilacos [12]. Khan et al. [13] considered a related problem in the model
with restricted Byzantine faults, in particular, in the model requiring a node to
broadcast identical messages to all neighbors at a round. Tseng and Vaidya [20]
presented necessary and sufficient conditions for the solvability of consensus in
directed graphs under the models of crash and Byzantine failures. For recent
advancements, we refer the reader to [4,7,9,19,21,22].

Next, we discuss previous work on solving consensus in networks undergoing
topology changes, malfunctioning links and transmission failures.

Kuhn et al. [15] considered Δ-coordinated binary consensus in undirected
graphs, whose topology could change arbitrarily from round to round, as long
it stayed connected; here Δ is a parameter that bounds from above the dif-
ference in times of termination for any two nodes. Paper [15] showed how to
solve Δ-coordinated binary consensus in O(nD

D+Δ + Δ) rounds using message
of O(m2 log n) size without a prior knowledge of the network’s diameter D.
Comparing to our work, the paper [15] assumes that network connectivity is
maintained and the Δ-coordination property imposes additional constrains on
the algorithms.

Biely et al. [2] considered reaching agreement and k-set agreement in networks
when communication is modeled by directed-graph topologies controlled by
adversaries, with the goal to identify constraints on adversaries to make the con-
sidered problems solvable. Paper [2] solved k-set agreement in time O(3D + H)
and using messages of O(nD log n) size, where D denotes the dynamic source
diameter and H denotes the dynamic graph depth, and the code of algorithm
includes D. Some of our solutions can be faster and use smaller messages in
this setting, since D = E = Λ ≥ λ; for example, in dynamic networks in which
Dn = ω(m).

210 B. S. Chlebus et al.

Kuhn et al. [14] considered dynamic networks in which the network topology
changes from round to round such that in every T ≥ 1 consecutive rounds
there exists a stable connected spanning subgraph, where T is a parameter.
Paper [14] gave an algorithm that implements any computable function of the
initial inputs, working in O(n + n2/T) time with messages of O(log n + d) size,
where d denotes the size of input values. That solution is similar to our O(n)
time algorithm, but it assumes the existence of a spanning connected subgraph
throughout an execution, and T must be Ω(n) to result in time O(n), while our
algorithm adjusts to disjoint connected components as they occur.

Other related work includes: agreement in complete networks in the presence
of dynamic transmission failures, cf., [6,16,17]; almost-everywhere agreement [1];
approximate consensus [5]; and other models with transient failures [3,18].

2 Preliminaries

We model distributed systems as collections of nodes that communicate through
a wired communication network. Executions of distributed algorithms are syn-
chronous, in that they are partitioned into global rounds coordinated across the
whole network. There are n nodes in a network. Each node has a unique name
used to determine its identity; a name can be encoded by O(log n) bits.

Links connecting pairs of nodes serve as bi-directional communication chan-
nels. If at least one message is transmitted by a link in an execution then this
link is used and otherwise it is unused in this execution. A link may fail to deliver
a message transmitted through it at a round; once such omission happens for a
link, it is considered unreliable. The functionality of an unreliable link is unpre-
dictable, in that it may either deliver a transmitted message or fail to do it. A
link that has never failed to deliver a message by a given round is reliable at this
round. A path in the network is reliable at a round if it consists only of links that
are reliable at this round. Nodes and links of a network can be interpreted as
a simple graph, with nodes serving as vertices and links as undirected edges. A
network at the start of an execution is represented by some initial graph G, which
is simple and connected. An edge representing an unreliable link is removed from
the graph G at the first round it fails to deliver a transmitted message. A graph
representing the network evolves through a sequence of its sub-graphs and may
become partitioned into multiple connected components. Once an algorithm’s
execution halts, we stop this evolution of the initial graph G. An evolving net-
work, and its graph representation G, at the first round after all the nodes have
halted in an execution is denoted by GF .

We precisely define the algorithmic problem of interest as follows. Each node p
starts with an initial value inputp. We assume two properties of such input
values. One is that an input value can be represented by O(log n) bits. The other
is that input values can be compared, in the sense of belonging to a domain
with a total order. In particular, finitely many initial input values contain a
maximum one. We say that a node decides when it produces an output by
setting a dedicated variable to a decision value. The operation of deciding is

Disconnected Agreement in Networks Prone to Link Failures 211

irrevocable. An algorithm solves disconnected agreement in networks with links
prone to failures if the following three properties hold in all executions:

Termination: every node eventually decides.
Validity: each decision value is among the input values.
Agreement: when a node p decides then its decision value is the same as these of

the nodes that have already decided and to which p is connected by a reliable
path at the round of deciding.

If a message sent by a node executing a disconnected agreement solution
carries a constant number of node names and a constant number of input values
then the size of such a message is O(log n) bits, due to our assumptions about
encoding names and input values. Messages of O(log n) bits are called short. If
a message carries O(n) node names and O(n) input values then the size of such
a message is O(n log n) bits. We call messages of O(n log n) bits linear.

Let H be a simple graph. If H is connected then diam(H) denotes the diam-
eter of H. Suppose H has k connected components C1, . . . , Ck, where k ≥ 1,
and let di = diam(Ci) be the diameter of component Ci. The stretch of H is
defined as a number k − 1 +

∑k
i=1 di. The stretch of a connected graph equals

its diameter, because then k = 1. The stretch of H can be interpreted as the
maximum diameter of a graph obtained from H by adding k − 1 edges such
that the obtained graph is connected. The maximum stretch of a graph with n
vertices is n − 1, which occurs when every vertex is isolated or, more generally,
when each connected component is a line of nodes.

We say that an algorithm relies on minimal knowledge if each node knows its
unique name and can identify a port through which a message arrives and can
assign a port for a message to be transmitted through.

A disconnected-agreement algorithm in a synchronous network with links
prone to failures is early stopping if it runs in a number of rounds proportional
to the unknown stretch λ actually occurring. Such an algorithm is fast if it runs
in a number of rounds proportional to an upper bound on stretch Λ, assuming
this bound is known to all the nodes.

3 Fast Agreement

We present a fast algorithm solving disconnected agreement, assuming that
a bound Λ on stretch is known to all nodes. The algorithm is called Fast-
Agreement; its pseudocode is given in Fig. 1.

Theorem 1. Consider an execution of algorithm Fast-Agreement (Λ) in a
network. If the stretch of the network never gets greater than Λ then the algorithm
solves disconnected agreement in Λ rounds using messages of O(log n) bits.

We next focus on lower bounds on the number of rounds of any algorithm.

212 B. S. Chlebus et al.

Fig. 1. A pseudocode of algorithm Fast-Agreement for a node p. The parameter Λ
represents an upper bound on stretches, which is known to all nodes.

Lemma 1. For any algorithm A solving disconnected agreement in networks
prone to link failures, and for positive integers D and n ≥ 2D, there exists a
network G with n nodes and with diameter D such that some execution of A on
G takes at least D rounds with no link failures.

Corollary 1. For any algorithm A solving disconnected agreement in networks
prone to link failures, and for any even positive integer n, there exists a network
G with n nodes such that some execution of A on G takes at least n

2 rounds with
no link failures.

Theorem 2. For any natural number λ ≤ Λ and an algorithm A solving
disconnected agreement in networks prone to link failures, there exists a net-
work G that has stretch at most λ and such that each execution of A on G
takes at least λ rounds.

4 General Agreement with Short Messages

We present a general disconnected-agreement algorithm using short messages
of O(log n) bits. Algorithm Fast-Agreement presented in Sect. 3, which also
employs messages of O(log n) bits, relies on an upper bound on stretch Λ that
is a part of code, and if the actual stretch in an execution goes beyond Λ then
an execution of algorithm Fast-Agreement may not be correct. We assume in
this section that nodes rely on minimal knowledge only and the given algorithm
is correct for arbitrary patterns of link failures and the resulting stretches. The
algorithm terminates in at most n+1 rounds, while the number of nodes n is not
known. The running time is asymptotically optimal in case there are no failures,
by Corollary 1 in Sect. 3.

The algorithm is called SM-Agreement, its pseudocode is in Fig. 2.

Theorem 3. Algorithm SM-Agreement solves disconnected agreement in n+
1 rounds relying on minimal knowledge and using short messages of O(log n) bits.

Disconnected Agreement in Networks Prone to Link Failures 213

Fig. 2. A pseudocode for a node p. The operation of adding an item to a set is void
if the item is already in the set. The operation of appending an item to a list is void
if the item is already in the list. The notation |Inputs| means the number of items in
the list Inputs. For a port α, the set Channel[α] contains pairs of the format (node’s
name, node’s input) that the node p has either received or sent through the port α.

5 Agreement with Linear Messages

The goal of this section is to develop an algorithm whose running time scales well
to the stretch actually occurring in an execution. We are ready to use messages
longer than short ones used in the previous sections, and will use linear messages
of O(n log n) bits. Nodes are to rely on the minimal knowledge only: each node
knows its own name and can distinguish ports by their communication function-
ality. The size of linear messages imposes constrains on the design of algorithms,
and the obtained algorithm is not early stopping, but its running time is polyno-
mial in λ. Our algorithm is called LM-Agreement, its pseudocode is in Fig. 3.

Every node maintains a counter of round numbers, incremented when a round
begins. In each round, a node p generates a new timestamp r equal to the
current value of the round counter, and forms a pair (namep, r), which we call a
timestamp pair of node p. Such timestamp pairs are sent to the neighbors, to be
forwarded through the network. Each node p stores a timestamp pair with the
latest timestamp for a node it has ever received a timestamp pair from, and sends
all such pairs to the neighbors in every round. An execution of the algorithm
at a node is partitioned into epochs, each epoch being a contiguous interval of
rounds. Epochs are not coordinated among nodes, and each node governs its own
epochs. The first epoch begins at round zero, and for the following epochs, the
last round of an epoch is remembered in order to discern timestamp pairs sent

214 B. S. Chlebus et al.

in the following epochs. For the purpose of monitoring progress of discovering
the nodes in the connected component during an epoch, each node maintains
a separate collection of timestamp pairs, which we call pairs serving the epoch.
This collection stores only timestamp pairs sent in the current epoch, a pair with
the greatest timestamp per node which originally generated the pair. The status
of a node q at a node p during an epoch can be either absent, updated, or stale.
If the node p does not have a timestamp pair for q serving the epoch then q is
absent at p. If at a round of an epoch the node p either adds a timestamp pair
serving the epoch for an absent node q or replaces a timestamp pair of a node q
by a new timestamp pair with a greater timestamp than the previously held one,
then q is updated at this round. If the node p has a timestamp pair for a node q
serving the epoch but does not replace it at a round with a different timestamp
pair to make it updated, then q is stale at this round.

Fig. 3. A pseudocode for a node p. Each iteration of the main repeat-loop (2) makes
an epoch. Symbol ⊥ denotes a value different from any actual set of nodes, so the
initialization of Nodes to ⊥ in line (1) guarantees execution of at least two epochs.
A good update of a timestamp pair for a node q either adds a first such a pair for q
or replaces a present pair for q with one with a greater timestamp. At each round, p
checks to see if a message of the form (this-is-decision, z) has been received, and if so
then p forwards this message through each port, then decides on z, and halts.

We say that an epoch of a node p stabilizes at a round if either no new node
has its status changed from absent to updated at p or no node gets its range

Disconnected Agreement in Networks Prone to Link Failures 215

changed at p. If an epoch stabilizes at a round, then the epoch ends. During
an epoch, a node p builds a set of names of nodes from which it has received
timestamp pairs serving this epoch. A similar set produced in the previous epoch
is also stored. As an epoch ends, p compares the two sets. If they are equal then p
stops executing epochs, decides on the maximum input value ever learned about,
notifies the neighbors of the decision, and halts.

Each node p uses a variable candidatep, which it initializes to inputp. Node p
creates a pair (this-is-candidate, candidatep), which we call a candidate pair
of p. Nodes keep forwarding their candidate pairs to the neighbors continually.
If a node p receives a candidate pair of some other node with a value x such that
x > candidatep then p sets its candidatep to x. An execution concludes with
deciding by performing instruction (5). Just before deciding, a node notifies the
neighbors of the decision. Once a notification of a decision is received, the recip-
ient forwards the decision to its neighbors, decides on the same value, and halts.

The variable round is an integer counter of rounds, which is incremented
in each iteration of the inner repeat loop by executing instruction (2(b)i). The
round counter is used to generate timestamps. The variable Timestamps stores
timestamp pairs that p has received and forwards to its neighbors. The variable
EpochTimestamps stores timestamp pairs serving the current epoch, which have
been generated after the beginning of the current epoch. Each set Timestamps
and EpochTimestamps stores at most one timestamp pair per node, the one with
the greatest received timestamp. Each iteration of the inner repeat loop (2b)
implements one round of sending and collecting messages through all the ports
by executing instruction (2(b)iii). The inner repeat loop (2b) ends as soon as
the epoch stays stable at a round, which is represented by condition (2c). The
variable Nodes stores the names of nodes from which timestamp pairs serving
the epoch have been received. The variable Nodes is calculated at the end of an
epoch by instruction (2d). The set of nodes in Nodes at the end of an epoch
is stored as PreviousNodes at the start of the next epoch. The main repeat
loop (2) stops to be iterated as soon as the set of names of nodes stored in
Nodes stays the same as the set stored in PreviousNodes, which is checked by
condition (3).

Theorem 4. Algorithm LM-Agreement solves disconnected agreement in
(λ + 2)3 rounds, relying on minimal knowledge and using O(n log n) bit mes-
sages.

6 Early Stopping Agreement

We give an early-stopping disconnected agreement algorithm whose running time
performance O(λ) scales optimally to the stretch λ occurring in an execution by
the time of halting. Nodes rely only on the minimal knowledge, similarly as
in algorithms SM-Agreement (in Sect. 4) and LM-Agreement (in Sect. 5),
but messages carry O(m log n) bits. This size is greater than that of short mes-
sages with O(log n) bits in algorithm SM-Agreement and linear messages with
O(n log n) bits in algorithm LM-Agreement.

216 B. S. Chlebus et al.

Fig. 4. A pseudocode for a node p. A node q is considered unsettled by p if it is in the
same connected component as p, according to the snapshot at p, and there is no pair
of the form (nameq, ?) in Inputsp.

The algorithm is called ES-Agreement, its pseudocode is given in Fig. 4.
The pseudocode refers to a number of variables that we introduce next. A set
variable Nodes at a node p stores the names of all the nodes that the node p
has ever learned about, and a set variable Links stores the links known by p
to have transmitted messages successfully at least once, a link is represented
as a set of two names of nodes at the endpoints of the link. A set variable
Unreliable stores the edges representing links known to have failed. Knowledge
about failures can be acquired in two ways: either directly, when a neighbor is
expected to send a message at a round and no message arrives through the link,
or indirectly, contained in a snapshot received from a neighbor. A node stores all
known initial input values of nodes q as pairs (nameq, inputq) in a set variable
Inputs. The nodes keep notifying their neighbors of the values of some of their
private variables during iterations of the while loop in instruction (3) in Fig. 4.
A node iterates this loop until all vertices in the connected component of the
node are settled, which is sufficient to decide. Once a node is ready to decide,
it forwards its snapshot to all the neighbors for the last time, decides on the
maximum input value in some pair in Inputs, and halts. An execution of the
algorithm starts with each node announcing its name to all its neighbors, by
executing the instruction (2) in Fig. 4. This allows every node to discover its
neighbors and map its ports to the neighbors’ names. A node does not send
its input in the first round of communication. A node sends its snapshot to
the neighbors for the first time at the second round, by instruction (3) in the
pseudocode in Fig. 4. A node p has heard of a node q if nameq is in the set Nodesp.

Disconnected Agreement in Networks Prone to Link Failures 217

A node p has settled node q once the pair (nameq, inputq) is in Inputsp and the
node q belongs to the connected component of p according to its snapshot.

Theorem 5. Algorithm ES-Agreement is an early stopping solution of dis-
connected agreement that relies on minimal knowledge, terminates within λ + 2
rounds and uses messages carrying O(m log n) bits.

7 Optimizing Link Use

We present an algorithm solving disconnected agreement that uses the optimal
number O(n) of links and messages of O(m log n) bits. We depart from the model
of minimal knowledge of the previous sections and assume that nodes know
their neighbors at the outset, in having names of the corresponding neighbors
associated with all their ports. We complement the algorithm by showing that
using O(n) links is only possible when each node starts with a mapping of ports
on its neighbors, because otherwise Ω(m) is a lower bound on the link use.

The general idea of the algorithm is to have nodes build their maps of the
network that include the connected component of each node. An approximation
of the map at a node evolves through a sequence of snapshots of the vicinity of the
node. Such a snapshot helps to coordinate choosing links through which messages
are sent to extend the current snapshot to a bigger one. Input values could be
a part of node attributes of the vertices on such a map. A node categorizes its
incident links as either passive, active or unreliable; these are exclusive categories
that evolve in time. An active link is used to send messages through it, so a
node categorizes an incident link as active once it receives a message through it.
Initially, one link incident to a node is considered as active by the node, and all
the remaining incident links are considered passive. A link is passive at a round if
none of its endpoint nodes has ever attempted a transmission through this link.
A node transmits through an active port at every round, unless the node decides
and halts. It follows that if a node p considers a link active, which connects it
to a neighbor q, then q considers the link active as well, possibly with a delay
of one round. Similarly, if a node p considers a link passive, which connects it
to a neighbor q, then q considers the link passive as well, possibly for one round
longer than p. A node p detects a failure of an active link and begins to consider
it unreliable after the link fails to deliver a message to p as it should. For an
active link connecting a node p with q, once p considers the link unreliable then
q considers the link unreliable as well, possibly with a delay of one round. The
state of a node p at a round consists of its name, the input value, and a set
of its neighbors, with each incident link categorized as either passive, active, or
unreliable, representing this categorization of links by the node p at the round.
Links start as passive, except for one incident link per node initialized as active,
then they may become active, and finally they may become unreliable.

A snapshot of the network at a node represents the node’s knowledge of its
connected component in the network restricted to the active edges and the states
of its nodes. Formally, a snapshot of network at a node p at a round is a collection

218 B. S. Chlebus et al.

Fig. 5. A pseudocode for a node p. In each round, node p checks to see if a pair of the
form (decision, z) has been received, and if so then p forwards this pair through each
active port, decides on z, and halts.

of states of some nodes that p has received and stores. A snapshot allows to create
a map of a portion of the network, which is a graph with the names of nodes as
vertices and the edges representing links. This map can include the input values
of some nodes, should they become known. A connected component of a node
with other nodes reachable by active links is a part of such a map. Formally, the
active connected component of a node p at a round is a connected component,
of the vertex representing p, in a graph that is a map of the network according
to the snapshot of p at the round with only active links represented by edges.

A node p sends a summary of its knowledge of the states of nodes in the
network to the neighbors through all its active links at each round. If p receives a
message with such knowledge from a neighbor, then p updates its knowledge and
the snapshot by incorporating the newly learned information. At each round, a
node p determines its active connected component based on the current snapshot.
We say that a node p has heard of a node q if the nameq occurs in the snapshot
at p; the node p may either store some q’s state or q’s name may belong to a state
of some other node that p stores. A node p considers another node q settled if p

Disconnected Agreement in Networks Prone to Link Failures 219

has q’s state in its snapshot. A node p considers its active connected component
settled if p has settled all the nodes in its active connected component. If a node p
has heard about another node q such that q does not belong to the node p’s active
connected component, but it is connected to a node r in the active connected
component by a passive link, then the node p considers the link connecting q to r
as outgoing. If there is an outgoing link in p’s active connected component then
p considers its active connected component extendible, otherwise p considers its
active connected component enclosed.

The algorithm is called OL-Agreement, its pseudocode is in Fig. 5. Each
node stores links it knows as unreliable in a set Unreliable, initialized to the
empty set. Each node stores links it considers active in a set Active, initialized to
some incident link. Each node stores passive links in a set Passive, which a node
initializes to the set of all incident links except for the one initially activated link.
All nodes maintain a variable round as a counter of rounds. In each round, a
node creates a timestamp pair, which consists of its current state and the value
of the round counter used as a timestamp. A node p stores timestamp pairs in a
set Timestamps. For each node q different from p, a node p stores a timestamp
pair for q if such a pair arrived in messages and only one pair with the largest
timestamp. These variables are initialized by instruction (1) in Fig. 5.

The initialization is followed by iterating a loop performed by instruction (2)
in the pseudocode in Fig. 5. The purpose of an iteration is to identify a new
settled active connected component; we call an iteration epoch. An epoch is
determined by the round in which it started, remembered in the variable epoch
by instruction (2a). The knowledge of an active connected component of a node p
identified in an epoch is stored in a set Snapshot, which is initialized at the outset
of an epoch to the p’s state by instruction (2a). This knowledge is represented
as a collection of states of nodes that arrived to p in timestamp pairs, with
timestamps indicating that they were created after the start of the current epoch,
as verified by instruction (2(b)iiiB). The main part of an epoch is implemented
as an inner repeat loop (2b). An iteration of this loop implements a round of
communication with neighbors through active links and updating the state by
instruction (2(b)ii).

An incident link in Active is mature if either it became active because a
message arrived through it or p made it active spontaneously at some round i
and the current round is at least i + 2. If a mature active link fails to deliver
a message then p moves it to Unreliable. A set variable Timestamps stores
timestamp pairs that a node sends in each message and updates after receiving
messages at a round. A set variable Snapshot is used to construct an active
connected component. Snapshot is rebuilt in each epoch, starting only with the
current p’s state. We separate storing timestamp pairs in a set Timestamps used
for communication from storing states in Snapshot to build an active connected
component, to facilitate a proper advancement of epochs in other nodes. We
say that node p completes the survey of the network by a round if p has settled
all the nodes in its active connected component according to the snapshot of
this round. If the active connected component is extendible, then p identifies

220 B. S. Chlebus et al.

a connector which is an outgoing edge to be made active. We may identify an
outgoing edge that is minimal with respect to the lexicographic order among all
the outgoing links for a settled active connected component to be designated
as a connector. If a connector is a link incident to p then p moves it to the set
Active, by instruction (2d).

Theorem 6. Algorithm OL-Agreement solves disconnected agreement in
O(nm) rounds with fewer than 2n links used at any round and sending mes-
sages of O(m log n) bits.

Lower Bounds for Link Usage. We now consider a setting in which the desti-
nations of ports are not initially known to nodes. For any positive integers n
and m such that m = O(n2), we design a graph G(n,m) with Θ(n) vertices
and Θ(m) edges, which makes any disconnected agreement solution to use Θ(m)
links even if the nodes know the parameters n and m. We drop the parameters
n and m from the notation G(n,m), whenever they are fixed and understood
from context, and simply use G. Consider any positive integers n and m such
that m = O(n2). Let graph G consist of two identical parts G1 and G2 as its
subgraphs. The parts are

⌈
m
n

⌉
-regular graphs of

⌈
n
2

⌉
vertices each. Without loss

of generality, we can assume that the number
⌈

m
n

⌉
is even, to guarantee that

such regular graphs exist. Graph G is obtained by connecting G1 and G2 with⌈
n
2

⌉
edges such that each vertex from G1 has exactly one neighbor in G2. By

the construction, graph G has 2
⌈

n
2

⌉
= Θ(n) vertices and (

⌈
m
n

⌉
+1)

⌈
n
2

⌉
= Θ(m)

edges. Let us assume now that the destinations of outgoing links are not initially
known to the nodes. This means that ports can be associated with neighbors’s
names only after receiving messages through them. The following holds even if
n,m can be a part of code.

Theorem 7. For any disconnected agreement algorithm A relying on minimal
knowledge and positive integer numbers n and m such that n ≤ m and m ≤ n2,
there exists a network G(n,m) with Θ(n) nodes and Θ(m) links and an execution
of algorithm A on G(n,m) that uses Θ(m) links.

Theorem 8. Let A be a disconnected agreement algorithm that uses O(n) reli-
able links concurrently when executed in networks with n nodes. For all natural
numbers n and λ ≤ n, there exists a network G with the stretch λ on which some
execution of algorithm A takes Ω(n) rounds.

Corollary 2. If a disconnected agreement algorithm uses O(n) reliable links
concurrently at any time, when executed in networks of n nodes, then this algo-
rithm cannot be early stopping.

8 Conclusion

We introduced the problem of disconnected agreement in the model of networks
with links prone to failures such that faulty links may omit messages. This prob-
lem is of different nature than consensus or k-set agreement problems, which are

Disconnected Agreement in Networks Prone to Link Failures 221

typically considered in connected communication network, see the full version of
the paper [8] for a related discussion. We measure the communication efficiency
of algorithms by the size of individual messages or the number of non-faulty
links used. This approach allows to demonstrate apparent trade-offs between
running time and communication. One could study dependencies of the running
time and the total number of messages exchanged or the total number of bits in
messages sent by nodes executing disconnected-agreement algorithms. Another
possible future direction of work concerns more severe link faults, for exam-
ple such that result in delivering forged messages. Studying stretch of specific
families of evolving networks is an open problem of independent interest.

References

1. Augustine, J., Pandurangan, G., Robinson, P., Upfal, E.: Towards robust and effi-
cient computation in dynamic peer-to-peer networks. In: SODA 2012 (2012)

2. Biely, M., Robinson, P., Schmid, U., Schwarz, M., Winkler, K.: Gracefully degrad-
ing consensus and k-set agreement in directed dynamic networks. Theoret. Comput.
Sci. 726, 41–77 (2018)

3. Biely, M., Schmid, U., Weiss, B.: Synchronous consensus under hybrid process and
link failures. Theoret. Comput. Sci. 412(40), 5602–5630 (2011)

4. Castañeda, A., Fraigniaud, P., Paz, A., Rajsbaum, S., Roy, M., Travers, C.: Syn-
chronous t-resilient consensus in arbitrary graphs. In: Proceeding of the 21st Inter-
national Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS) (2019)

5. Charron-Bost, B., Függer, M., Nowak, T.: Approximate consensus in highly
dynamic networks: the role of averaging algorithms. In: ICALP 2015 (2015)

6. Charron-Bost, B., Schiper, A.: The heard-of model: computing in distributed sys-
tems with benign faults. Distrib. Comput. 22, 49–71 (2009)

7. Chlebus, B.S., Kowalski, D.R., Olkowski, J.: Fast agreement in networks with
Byzantine nodes. In: Proceedings of the 34th International Symposium on Dis-
tributed Computing (DISC). LIPIcs, vol. 179, pp. 30:1–30:18 (2020)

8. Chlebus, B.S., Kowalski, D.R., Olkowski, J., Olkowski, J.: Disconnected agreement
in networks prone to link failures. CoRR abs/2102.01251 (2021)

9. Choudhury, A., Garimella, G., Patra, A., Ravi, D., Sarkar, P.: Crash-tolerant con-
sensus in directed graph revisited (extended abstract). In: SIROCCO 2018 (2018)

10. Dolev, D.: The Byzantine generals strike again. J. Algorithms 3(1), 14–30 (1982)
11. Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed

consensus problems. Distrib. Comput. 1(1), 26–39 (1986)
12. Hadzilacos, V.: Connectivity requirements for Byzantine agreement under

restricted types of failures. Distrib. Comput. 2(2), 95–103 (1987)
13. Khan, M.S., Naqvi, S.S., Vaidya, N.H.: Exact Byzantine consensus on undirected

graphs under local broadcast model. In: Proceedings of the ACM Symposium on
Principles of Distributed Computing (PODC), pp. 327–336. ACM (2019)

14. Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic net-
works. In: STOC (2010)

15. Kuhn, F., Moses, Y., Oshman, R.: Coordinated consensus in dynamic networks.
In: Proceedings of the 30th Annual ACM Symposium on Principles of Distributed
Computing (PODC 2011), pp. 1–10. ACM (2011)

222 B. S. Chlebus et al.

16. Perry, K.J., Toueg, S.: Distributed agreement in the presence of processor and
communication faults. IEEE Trans. Software Eng. 12(3), 477–482 (1986)

17. Santoro, N., Widmayer, P.: Time is not a healer. In: Monien, B., Cori, R. (eds.)
STACS 1989. LNCS, vol. 349, pp. 304–313. Springer, Heidelberg (1989). https://
doi.org/10.1007/BFb0028994

18. Schmid, U., Weiss, B., Keidar, I.: Impossibility results and lower bounds for con-
sensus under link failures. SIAM J. Comput. 38(5), 1912–1951 (2009)

19. Tseng, L.: Recent results on fault-tolerant consensus in message-passing networks.
In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 92–108. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-48314-6_7

20. Tseng, L., Vaidya, N.H.: Fault-tolerant consensus in directed graphs. In: Proceed-
ings of ACM Symposium on Principles of Distributed Computing (PODC), pp.
451–460 (2015)

21. Tseng, L., Vaidya, N.H.: A note on fault-tolerant consensus in directed networks.
SIGACT News 47(3), 70–91 (2016)

22. Winkler, K., Schmid, U.: An overview of recent results for consensus in directed
dynamic networks. Bull. EATCS 128 (2019)

https://doi.org/10.1007/BFb0028994
https://doi.org/10.1007/BFb0028994
https://doi.org/10.1007/978-3-319-48314-6_7

Where Are the Constants? New Insights
on the Role of Round Constant Addition

in the SymSum Distinguisher

Sahiba Suryawanshi(B) and Dhiman Saha(B)

de.ci.phe.red Lab, Department of Computer Science & Engineering,
Indian Institute of Technology, Bhilai 492015, India

{sahibas,Dhiman}@iitbhilai.ac.in

Abstract. The current work makes a systematic attempt to describe
the effect of the relative order of round constant (RCon) addition in the
round function of an SPN cipher on its algebraic structure. The observa-
tions are applied to the SymSum distinguisher, introduced by Saha et al. in
FSE 2017 which is one of the best distinguishers on the SHA3 hash func-
tion reported in literature. Results show that certain ordering (referred
to as Type-LCN) of RCon makes the distinguisher less effective but it still
works with some limitations. Results in the form of new SymSum distin-
guishers are reported on concrete Type-LCN constructions - NIST LWC
competition finalist Xoodyak-Hash and its internal permutation Xoodoo.
New linear structures are also reported on Xoodoo that augment the
distinguisher to penetrate more rounds. Final results include SymSum dis-
tinguishers on 7 rounds of Xoodoo and 5 rounds of Xoodyak-Hash with
complexity 2128 and 232, respectively. All practical distinguishers have
been verified. The characterization encompassing the algebraic structure
and effect of RCon provided by the current work improves the under-
standing of SymSum in general and constitutes one of the first such result
on Xoodyak-Hash and Xoodoo.

Keywords: Higher Order Derivative · SPN cipher · SymSum
Distinguisher · ZeroSum Distinguisher · Xoodoo · Xoodyak-Hash

1 Introduction

Substitution-Permutation Networks (SPN) have emerged as one of the most
popular cipher design strategies for modern Symmetric-key cryptography. Since
Rijndael [14], which is an SPN design, was announced as the winner of the
AES [3] competition, SPN based crypto primitives have gained a lot of attention.
Security evaluation of symmetric-key crypto has widely benefited from public
cryptanalysis, which forms the cornerstone of trust on such constructions since
they are not provably secure as their asymmetric counterparts. Public competi-
tions like eSTREAM [5], CAESAR [1] and the National Institute of Standards and
Technology Lightweight Cryptography Competition (NIST-LWC) [2] have largely
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 223–239, 2023.
https://doi.org/10.1007/978-3-031-44274-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_17&domain=pdf
https://doi.org/10.1007/978-3-031-44274-2_17

224 S. Suryawanshi and D. Saha

contributed into the evolution of SPN strategy both from design and cryptanaly-
sis perspectives. Among various cryptanalysis strategies employed, devising dis-
tinguishers targets the most fundamental requirement of a crypto primitive -
non-randomness. A very popular technique to make such distinguishers is based
on higher-order differential cryptanalysis [4] and relies on computing what is
known as the ZeroSum. It is based on the higher-order derivatives principle,
stating that the (d+ 1)th order derivative of a d–degree function leads to a zero
function. This is evidenced by obtaining a zero XOR-Sum for 2d+1 computations
of function on a (d + 1)–dimensional subspace.

A very interesting demonstration of the ZeroSum idea was by Aumasson et
al. on the internal permutation (Keccak-f) of the hash function Keccak [9] which
went on to be the winner of the NIST SHA3 [8] competition. The idea constituted
what is referred to as the inside-out technique that allows to devise the ZeroSum
property from the middle round of the permutations and extending in either
direction. This work spawned a rich body of results [10,11,15,17] including full-
round ZeroSum distinguishers. However, the reliance on the inside-out strategy
implied that the results were inapplicable on the Keccak/SHA3 hash function.
In FSE 2017, Saha et al. came up with the idea of the SymSum distinguisher [22]
which was more efficient than ZeroSum by a factor of 4 and constituted the
most efficient distinguishing attack on SHA3 at that time. SymSum exploited the
fact that RCon were added after the non-linear operation in the SHA3 round
function. Augmenting this with symmetry preserving property of the round sub-
operations, (d − 1)th–fold vectorial derivatives (Refer Definition 1) over sym-
metric input subspaces led to what the authors called as the Symmetric-Sum or
SymSum. Suryawanshi et al. extended the SymSum distinguisher using linearization
to reach higher number of rounds [23].

The current work uncovers new insights on effect of RCon addition on alge-
braic structure in the light of SymSum. This systematic attempt tries to formalize
the SPN structure that leads to SymSum-like properties. In doing so, we classify
SPN designs in three classes: Type-LNC,Type-LCN and Type-CLN based on the
relative order of RCon addition with regards to substitution and permutation
layers. Our research reveals that while Type-LNC is captured by results reported
on SHA3 by Saha et al., linearization used by Suryawanshi et al. actually maps
to Type-CLN. However, analysis of a Type-LCN SPN construction is furnished for
the first time in the current work. The findings of work are finally verified in
the form of new SymSum distinguishers on a concrete Type-LCN SPN design and
NIST-LWC finalist - Xoodyak-Hash [13] and its internal permutation Xoodoo.

Related Work. Despite being a relatively new design by the same team who
designed Keccak, both Xoodoo and Xoodyak have had a fair share of distinguish-
ing attacks. In 2020, Liu et al. proposed a full-round ZeroSum distinguishing
attack on Xoodoo [19]. Since then, other researchers have introduced new distin-
guishing attacks on round-reduced Xoodoo, such as using rotational cryptanalysis
reported by Liu et al. in [20], a functional distinguisher introduced by Bellini and
Minematsu in [6], and a higher-order differential-linear distinguisher presented
by Hu et al. in [18]. Moreover, Dunkelman et al. introduced a distinguishing
attack using differential-linear cryptanalysis on Xoodyak in [16].

New Insights on the Role of RCon Addition in the SymSum Distinguisher 225

Along with the theoretical analysis of the three types of SPN constructions
state above, the current work makes an in-depth study of the round-function
of Xoodoo to mount SymSum on both Xoodoo and Xoodyak-Hash. We report
that the Xoodoo state is symmetric in multiple dimensions (Refer Definition 3)
leading to distinguishers in two different axes. This is a stark difference with
Keccak-f , where symmetry is only in the z–axis. We also report linear struc-
tures in the Xoodoo round-function that allow the SymSum property with lesser
complexity. Overall, using Xoodoo and Xoodyak-Hash, we successfully verify our
theoretical result on Type-LCN SPN primitives which states that for Type-LCN
ordering of RCon, SymSum outperforms ZeroSum by a factor of 2. Final results
constitute distinguishers on 5 rounds of Xoodyak-Hash and 7 rounds of Xoodoo
with complexities of 216 and 2128, respectively. Table 1 summarizes our results.

Table 1. Summary of the results, here DoF is degree of freedom

#Rounds Xoodoo Xoodyak-Hash

ZeroSum SymSum Remark ZeroSum SymSum Remark

1 21 20 Only 1 input required 23 20 Only 1 input required
2 21 20 Only 1 input required 25 24 SymSum

3 25 24 SymSum+ 1R Linearization 29 28 SymSum

4 29 28 SymSum+ 1R Linearization + Insideout 217 216 SymSum

5 217 216 SymSum+ 1R Linearization 233 232 SymSum

6 233 232 SymSum+ 1R Linearization + Insideout 265 - Exceed DoF

7 2129 2128 SymSum 2129 - Exceed DoF

8 2257 - Exceed DoF - - Exceed

Organization: Here is the structure of the paper: Sect. 2 provides an overview of
the m-fold vectorial derivative. Section 3 explores the impact of reordering the
RCon on the algebraic structure of SPN cipher. Finally, in Sect. 4, we apply our
study practically to Xoodoo/Xoodyak-Hash and discuss the linearization tech-
nique for Xoodoo, including their complexity and DoF. Section 5 presents exper-
imental evidence supporting our claims and in Sect. 6, we conclude the paper.
The Appendix includes brief details of Xoodoo and Xoodyak-Hash.

2 Preliminaries

This work relies on the idea m–fold Boolean vectorial derivatives, which allow
differentiation with respect to a specific subspace. While simple Boolean deriva-
tives capture change in a function w.r.t a change in value of a single variable,
vectorial derivatives capture simultaneous change in set of variables [21]. Higher
order vectorial derivatives use multiple such disjoint partitions. Saha et al. used
this operator in [22] and is restated below.

Definition 1 (m-Fold Vectorial Derivative [21,22]). Let {x1,x2, · · · ,xm,
xm+1} be (m + 1) partitions of Boolean variables (x1, x2, · · · , xn) and
f(x1,x2, · · · ,xm,xm+1) = f(x1, x2, · · · , xn) = f(x) a Boolean function of n
variables, then

226 S. Suryawanshi and D. Saha

∂mf

∂xm · · · ∂x2∂x1

∣
∣
∣
∣
∣ (x1,x2,··· ,xm)
=(c1,c2,··· ,cm)

=
∂

∂xm

⎛

⎝· · ·
⎛

⎝
∂

∂x2

⎛

⎝
∂f

∂x1

∣
∣
∣
∣
∣
x1=c1

⎞

⎠

∣
∣
∣
∣
∣
x2=c2

⎞

⎠ · · ·
⎞

⎠

∣
∣
∣
∣
∣
xm=cm

is the m–fold vectorial derivative of the Boolean function f(x1,x2, · · · ,xm,
xm+1) with regards to the m partitions {x1,x2, · · · ,xm}.

∂mf

∂xm · · · ∂x2∂x1

∣
∣
∣
∣
∣ (x1,x2,··· ,xm)
=(c1,c2,··· ,cm)

=
⊕

{x1,x2,··· ,xm}∈C
xm+1=cm+1

f(x1,x2, · · · ,xm,xm+1) (1)

where, C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1, c2, · · · , cm−1, cm
c1, c2, · · · , cm−1, cm
c1, c2, · · · , cm−1, cm
c1, c2, · · · , cm−1, cm
...

...
. . .

...
...

c1, c2, · · · , cm−1, cm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2m×m

ci ∈ F
|xi|
2

3 Investigating Commutativity of Round-Constant
Addition with the Linear and Non-linear Operation

SPN is a round-based iterative function that in a generic form consists of combi-
nation of linear (L) and non-linear operations (N) along-with RCon addition (C)
which is aimed to reduce any symmetry which might eventually develop in the
internal state. Though RCon addition is essentially a linear operation, we look
at it in isolation for reasons that will be apparent soon. Our aim is to study
the algebraic structure of SPN ciphers considering the position of RCon addi-
tion relative to the ordered pair (L,N) implying 3 possibilities: (L,N , RCon),
(L, RCon,N) and (RCon,L,N). We respectively classify SPN ciphers into 3 cat-
egories: Type-LNC, Type-LCN and Type-CLN. Our investigation introduces the
algebraic structure of these ciphers which is based on the nature of the monomi-
als that appear in their Algebraic Normal Form (ANF) and classify1 them into 3
types: Type-I monomials are free from any RCon, Type-II monomials involve both
RCon and state variables and Type-III monomials consist only of constant terms.
To illustrate Type-I, Type-II and Type-III monomials, we use following example.

Example 1. Let us consider an arbitrary Boolean function f with the ANF: f =
x1x2x3x4+x1x3x4c2+x1x4x5+x2x4c1c4+c1c2c3+c2c4, where ci is a constant.

f = x1x2x3x4 + x1x3x4c2 + x1x4x5 + x2x4c1c4 + c1c2c3 + c2c4

=

f
Type-I

︷ ︸︸ ︷

(x1x2x3x4 + x1x4x5)+

f
Type-II

︷ ︸︸ ︷

(x1x3x4c2 + x2x4c1c4)+

f
Type-III

︷ ︸︸ ︷

(c1c2c3 + c2c4)

Throughout the section, we use X = {x1, x2, . . . xn} to denote the state
variables for the initial state of the cipher while C = {c1, c2, . . . cm} denote RCon

1 Note that this classification was introduced in [22].

New Insights on the Role of RCon Addition in the SymSum Distinguisher 227

added at various rounds. λ denotes algebraic degree of non-linear component N .
In the following subsections, we analyze the algebraic structure of Type-LNC,
Type-LCN and Type-CLN SPN cipher.

3.1 Algebraic Structure of Type-LNC SPN Cipher

Type-LNC function is obtained by iterating C ◦ N ◦ L sequence. After 1 round,
resulting polynomial takes form

∑

k

∏

xi∈xk⊂X

xi +
∑

cj∈cr⊂C

cj where |xk| ≤ λ,∀k.

Thus, algebraic degree (d◦) of monomials is upper bounded by λ. This also
implies that for a Type-LNC cipher, no Type-II monomials are generated after
the first round. It is only after second round that Type-II monomials may be
generated. Also after the second round (d◦

maxType-I − d◦
maxType-II ≤ λ). Thus

difference in the highest degrees always persists even at higher rounds. In [22],
Saha et al. utilized this property to develop SymSum distinguisher. The basic idea
was to use m−fold vectorial derivatives to eliminate Type-II monomials thereby
arriving at a RCon independent function. When derivatives were computed over
specially selected symmetric subspaces, the output sum was deterministically
symmetric i.e. SymSum. However, the analysis furnished in [22] was only lim-
ited to Type-LNC design SHA3. In the current work we give it a more gener-
alized treatment and study SymSum property for other variants Type-LCN and
Type-CLN.

3.2 Algebraic Structure of Type-LCN SPN Cipher

We can obtain the Type-LCN function by iterating the N ◦ C ◦ L sequence. The
algebraic form of the resulting function after one iteration is given below.

∑

k

∏

xi∈xk⊂X

xi +
∑ ∏

xm∈xm⊂X
cl∈cl⊂C

xmcl +
∑

r

∏

cj∈cr⊂C

cj (2)

Analyzing this polynomial easily reveals that the highest degrees of Type-I,
Type-II and Type-III monomials are λ, λ − 1 and 0, respectively. Here we can see
that the highest degree of RCon independent monomials is greater than RCon
dependent monomials. Our work studies the case when RCon addition precedes
non-linear (or both linear and non-linear) operations. We argue that SymSum
remains more effective than ZeroSum distinguisher by a factor of 2, even after
switching the operations. In addition, we offer a theoretical validation for our
argument using similar approach as in [22], making it more comprehensible. To
support our claim, we rely on Theorem 1 that builds upon the following Lemma.

Lemma 1. Let F be a SPN round function with N ◦ C ◦ L components, where
C, N and L represent the non-linear, round-constant addition and linear com-
ponents, respectively. Then, we can express the function F as:

F = G + C × H + C,

where d◦F = d◦G > d◦H, G,H : Fn
2 → F

n
2 and C is a constant

228 S. Suryawanshi and D. Saha

Proof. Function Fnr , which consists of nr rounds, can be expressed as follows:

F = (N ◦ Cnr
◦ L) ◦ · · · ◦ (N ◦ C2 ◦ L) ◦ (N ◦ C1 ◦ L)

=
[
(N ◦ Cnr

◦ L) ◦ · · · ◦ (N ◦ C2 ◦ L)) ◦ (N ◦ C1)
]

◦ L (3)

The monomials that contain RCon are unaffected2 by the linear function L in the
first round due to the order of operations illustrated in Eq. (3). To distinguish
monomials, we need to segregate them. The Fnr function in nr round SPN can
be expressed as: Fnr = Fnr

Type-I
+ Fnr

Type-II
+ Fnr

Type-III

Let us examine degree of monomials d◦Fnr = max(d◦Fnr
Type-I

, d◦Fnr
Type-II

,

d◦Fnr
Type-III

) Now, let us pursue the inductive proof. Note that d◦FType-III = 0
by definition.

Base Case: For nr = 1, the degrees of monomials are:

d◦F
Type-I ≤ λ (degree of non-linear layer)

d◦F
Type-II ≤ λ − 1 (Due to Exp (2))

Thus, highest degree d◦F
Type-I > d◦F

Type-II . Thus, statement holds for nr = 1.

Inductive Hypothesis: Assume that Lemma is true for nr = k, then d◦Fk =
d◦Fk

Type-I
(maximum degree of SPN function F is kλ) and d◦Fk

Type-I
> d◦Fk

Type-II

Inductive Step: Let nr = k + 1 then Fk+1 = N ◦ Ck+1 ◦ L ◦ Fk

d◦Fk+1
Type-I

= d◦(N ◦ Ck+1 ◦ L) + d◦Fk
Type-I

> d◦(N ◦ Ck+1 ◦ L) + d◦Fk
Type-II

(∵ d◦Fk
Type-I

> d◦Fk
Type-II

)

> d◦Fk+1
Type-II

Hence, by induction, the Lemma holds ∀nr ∈ N. ��
As a result, we obtain d◦Fnr = d◦Fnr

Type-I
> d◦Fnr

Type-II
, which indicates that even

after swapping the non-linear operation with RCon addition, the highest degree
monomial of F is of Type-I. Obtaining an upper bound on the maximum degree
of the Type-II and understanding how it relates to the highest degree of the Type-I
from Lemma 1 establishes the following:

Theorem 1. The upper-bound on the degree of Type-II monomials is given by
the following expression: d◦Fnr

Type-II
≤ d◦Fnr − 1

Proof. The proof is very similar to the proof of Lemma 1.

Lemma 2. The d◦F–fold vectorial derivative of Fnr is a function which is unaf-
fected by the RCon.

This follows logically from Theorem 1 that d◦F–fold vectorial derivative of Fnr

will give function without Type-II or Type-III monomials. Lemma 2, thus, leads
us toward obtaining a RCon independent function. Later in this work, we demon-
strate practical application of this Lemma in form of new SymSum distinguishers
on real-world Type-LCN primitives namely Xoodoo and Xoodyak-Hash.
2 In terms of the change in algebraic degree.

New Insights on the Role of RCon Addition in the SymSum Distinguisher 229

3.3 Algebraic Structure of Type-CLN SPN Cipher

Type-CLN is generated by iteratively applying the N ◦ L ◦ C sequence. When we
apply N ◦ L ◦ C once, we get a polynomial of the following form.

∑ ∏

xu∈xw⊂X
cv∈cs⊂C

(xu+cv) =
∑

k

∏

xi∈xk⊂X

xi+
∑ ∏

xm∈xm⊂X
cl∈cl⊂C

xmcl+
∑

r

∏

cj∈cr⊂C

cj (4)

It easy to see that Eq. 4 is same as Eq. 2. Thus N ◦ L ◦ C ≡ N ◦ C ◦ L in
terms of the algebraic structure implying that L ◦ C ≡ C ◦ L or alternatively C
and L satisfy the commutative property. As a result, similar to the Type-LCN
scenario, we can deduce that for Type-CLN, the highest degrees of Type-I, Type-II
and Type-III monomials are λ, λ − 1 and 0, respectively. Thus Type-CLN follows
all the properties of Type-LCN.

4 Concrete Applications of Type-LNC Xoodoo/Xoodyak-
Hash

This section will explore how the concepts discussed in the preceding sections can
be applied practically, specifically focusing on Xoodoo/Xoodyak (brief description
of Xoodoo/Xoodyak is given in the Appendix A). To accomplish this, we will
investigate the behaviour of Xoodoo/ Xoodyak under symmetric-inputs. We will
also analyze the benefits of utilizing SymSum over ZeroSum distinguisher after
deploying it on Xoodoo/Xoodyak-Hash.

4.1 Multi-dimensional-Symmetric State

Xoodoo is a permutation that operates on a 3-D array of 384 bits (4×3×32) and
applies a round function to the input state for a specified number of rounds (nr),
denoted as Xnr = Xoodoo[384, nr]. S defines the internal state of Xnr . In order
to capture the notion of symmetry in the internal state of Xoodoo/Xoodyak-Hash
we will use the following definitions.

Definition 2. Symmetric-Half-State (SHS): A state that can be split into two
identical halves is SHS. A SHS in Xoodoo has a size of 192 bits and can be split
in two directions: HSz

along the z-axis with size 4 × 3 × 16 and HSx
along the

x-axis with size 2 × 3 × 32.

Definition 3. Multi-Dimensional-Symmetric State (MDSS): Each member of
S# is referred to as Multi-Dimensional-Symmetry if S# is the set of all states
in which both the conditions satisfy:

HSx1
= HSx2

and HSz1
= HSz2

(5)

230 S. Suryawanshi and D. Saha

Fig. 1. Exhibiting Self-Symmetric State (Color figure online)

Figure 1a depicts three symmetric states, each with unique symmetric char-
acteristics. The leftmost state shows symmetry along the z–axis, where HSz1

(red) is identical to HSz2
(white). Similarly, state in the center has symmetry in

x–axis in which first two sheets (white) are same as the other two (blue). The
right-most state has symmetry in both x and z axes, with first 16 slices being
identical to the last 16 slices and the first two columns in each slice being the
same as the next two. This state is an example of MDSS in two directions. When
symmetry is in one of the directions (x–axis or z–axis), it is clear from Definitions
2 that |Sx| = |Sz| = 2192, where Sx and Sz have all states that have symmetry
in the x–axis and z–axis, respectively, one of the examples is illustrated Table 2.
When symmetry is in both the x–axis and z–axis, then |S#| = 296 (by Definition
3); one of the examples is given in Table 1b.

Table 2. Depicting the Self-Symmetric State in the x–axis with HSx1
(black) and

HSx2
(blue) and the z–axis HSz1

(black) and HSz2
(highlighted in yellow).

Symmetry in z-axis Symmetry in x-axis

FFFA6482 DEEE4E3B FFFA6482 DEEE4E3B 8BED 8BED EC14 EC14 3B68 3B68 EF3F EF3F
C2F49C55 F04F94D1 C2F49C55 F04F94D1 5453 5453 D705 D705 0C7F 0C7F 970A 970A
571AAB4A 335CD3F0 571AAB4A 335CD3F0 51FF 51FF 25D6 25D6 48A0 48A0 B154 B154

4.2 Distinguishing Attack Using Symmetric Property in Xoodoo

This section explores the behaviour of symmetry in Xoodoo. When a symmetric
state is fed into Xoodoo, the output after one round displays near-symmetry
because the ι function introduces asymmetry in some bits. As a result, we get
an output symmetry of over 70% for up to two rounds. However, as the number of
rounds increases, the symmetry diminishes from the third round. This property
enables us to identify round-reduced Xoodoo. Therefore, with just one message,
we can distinguish round-reduced Xoodoo up to two rounds.

Corollary 1. The highest degree of a monomial including round-constant for
nr rounds of the Xoodoo permutation is d◦Knr − 1.

New Insights on the Role of RCon Addition in the SymSum Distinguisher 231

Proof. The Xoodoo design F expresses as F = L2 ◦ N ◦ C ◦ L1, with linear com-
ponents L1 and L2, non-linear component N and constant addition component
C. Fnr , the Xoodoo-permutation in nr rounds, unwraps as follows:

F = (L2 ◦ N ◦ Cnr
◦ L1) ◦ · · · ◦ (L2 ◦ N ◦ C2 ◦ L1) ◦ (L2 ◦ N ◦ C1 ◦ L1)

= (L2 ◦ N) ◦ Cnr
◦ (L1 ◦ L2) ◦ · · · ◦ (L1 ◦ L2) ◦ N ◦ C2 ◦ (L1 ◦ L2) ◦ N ◦ C1 ◦ L1

= (N ′ ◦ Cnr
◦ L′

) ◦ (N ◦ Cnr−1 ◦ L′
) ◦ · · · ◦ (N ◦ C2 ◦ L′

) ◦ (N ◦ C1 ◦ L1)

Here, the composition of two linear functions always is a linear function denoted
by L′

(where L′
= L1 ◦ L2). Also, a nonlinear function followed by a linear

function is a nonlinear function N ′
(where N ′

= L2 ◦ N). Therefore, one round
of the Xoodoo permutation can represent N ◦C◦L. Thus by Theorem 1, d◦Knr −1
is the highest degree of RCon dependent monomial for nr rounds. ��
Proposition 1. While computing the d◦Xoodoo–fold vectorial derivative of the
Xoodoo’s self-symmetric input states, the symmetric property will be maintained.

As RCon addition disturbs symmetry, by Proposition 1 the symmetry will be
preserved while computing (d◦Xoodoo)–fold vectorial derivative of Xoodoo using
self-symmetric inputs. However, this property is not assured for m < (d◦Xoodoo).
The experimental result for the theoretical claim is given in Sect. 5.

Degree of Freedom: There are 2384 ways to generate Xoodoo states, but it must
meet at least one of the two conditions from Eqs. (5) to produce a symmet-
ric state. Thus, the maximum number of symmetric states is 2192 due to 192
conditions. By Corollary 1, (d◦Xoodoo)–fold vectorial derivatives are required
for the symmetric state of Xoodoo. Therefore, this distinguisher can be used on
round-reduced Xoodoo up to 7 rounds with complexity 2128.

4.3 Extending the Distinguisher on Xoodoo Using Linearization

This section formalizes the idea of linearizing Xoodoo for one round, inspired by
the linear structure of Keccak, proposed by Guo et al. in [17]. Xoodoo’s non-linear
function χ acts on the column as xi⊕(xi+1⊕1)xi+2, where i, i+1, i+2 ∈ {0, 1, 2}.
Thus to linearize χ, we must take at most one variable in a column. Moreover,
to handle θ diffusion, we need to maintain state parity which can be achieved
by following constraints.

A(0,0,∗) ⊕ A(1,0,∗) = C0 (6)
A(0,2,∗) ⊕ A(1,2,∗) = C2 (7)

Here, C0 and C1 are constants, lane A(x,y,∗) is located at coordinate (x, y) and
∗ represents the entire lane of 32 bits. Equation (6) and (7) ensure a constant
parity for the first and third sheet, respectively. Figure 2a illustrates the idea
of linearizing Xoodoo. The size of each cell in the figure is 1 byte for a clearer
demonstration. The lanes with white cells are constant, while those with grey

232 S. Suryawanshi and D. Saha

Fig. 2. Showing one round linearization of Xoodoo which is represented in bytes rather
than in bits for brevity.

cells have an algebraic degree of 1, which meet the requirements of Eq. (6) and
(7) to deal with θ.

Due to those conditions after θ, the number of elements with algebraic degree
1 remain the same. ι function does not affect degrees. However, for the subsequent
operation, ρwest, the bit positions change, aiding in maintaining the input to χ.
As we can see in the Fig. 2a, the input to χ should have only linear terms in
each column to maintain linearity of the state after χ. ρeast does not impact the
degree, only alters the positions.

Degree of Freedom: To linearize the state, we can take at most one bit in
each column to handle χ. Thus total variable we can take is 128. These variables
should satisfy 64 constraints to handle θ. As a result, we can have 2128−64 = 264

such states that maintain the linearity for 1 round. Therefore, the degrees of
freedom of such states is 264.

Linearization in Symmetric States: Both x and z axes can provide sym-
metry to the Xoodoo input. To linearize the symmetric input state, we need to
apply the following equations.

A(x,∗,∗) ⊕ A(x+2,∗,∗) = 0 where x ∈ {0, 1} (8)
A(∗,∗,z) ⊕ A(∗,∗,z+16) = 0 where z ∈ {0, 1, . . . , 15} (9)

A(0,0,∗) ⊕ A(1,0,∗) = C0 (10)

Here, ∗ in above equations represents all; more specifically, ∗ represents x ∈
{0, 1, 2, 3}; y ∈ {0, 1, 2}; and z ∈ {0, 1, . . . , 31} on the x, y, and z axis, respec-
tively. Here either Eq. (8) or Eq. (9) is used to provide symmetry in the direction
of x or z axis and Eq. (10) handles θ for linearization.

Figure 2b depicts an overview of one round of linearization for symmetric
input to Xoodoo, with the symmetry shown along x–axis. Here, purple and grey
bytes are equal. Similarly, white and pink bytes are equal. White and pink cells
are constants, and grey and purple cells have an algebraic degree 1. The initial
state satisfies conditions stated in Eq. (8) and (10), ensuring that the plane’s
parity will be constant. As a result, the symmetry of the state is preserved after

New Insights on the Role of RCon Addition in the SymSum Distinguisher 233

θ. The symmetry is destroyed due to ι at lane (0, 0) and the asymmetry induced
due to ι is further propagated by χ as depicted in dark gray. Consequently, there
is only one variable in each column. Thus, the highest degree of the state remains
1 after one round.

Lemma 3. Lemma 1 holds under linearization.

If the SPN round function F were to be linearized for lr rounds, revised F ′
could

be represented as:

F ′
= (N ◦ Cnr

◦ L) ◦ (N ◦ Cnr−1 ◦ L) ◦ · · · ◦ (N ◦ Cnr−lr ◦ L)
◦(L′ ◦ Clr ◦ L) ◦ · · · ◦ (L′ ◦ C1 ◦ L)

=
[

(N ◦ Cnr
◦ L) ◦ (N ◦ Cnr−1 ◦ L) ◦ · · · ◦ (N ◦ Cnr−lr ◦ L)

◦(L′ ◦ Clr ◦ L) ◦ · · · ◦ (L′ ◦ C1)
]

◦ L (11)

Here L′
is a linearized version of N . The lemma mentioned above can be trivially

proved, by observing Eq. (11)

Theorem 2. For an iterated SPN round function F , the relationship between
the upper bound on degree of Type-I and Type-II monomials will remain same
after linearization such that: d◦Fnr

Type-II ≤ d◦Fnr

Type-I − 1

Lemma 1, Lemma 3, and Theorem 2 can be used to easily prove this Theorem.

Corollary 2. With lr linearized rounds d◦F–fold vectorial derivative of F is a
function which is independent of round constants.

The symmetry will be retained by Corollary 2 when computing the d◦Xoodoo–
fold vectorial derivative of linearized Xoodoo with self-symmetric inputs.
Section 5 provides the experimental outcome for theoretical claim.

Degree of Freedom: There are 2384 Xoodoo states, that can be generated, out
of which 2192 symmetric states are possible. Nevertheless, due to the 32 condi-
tions given in Eq. (10) that must be fulfilled to achieve 1-round linearization,
it drops to 2192−32 = 2160. Thus, 2160 is the DoF for these states. Since there
are four lanes of variables, each with a size of 32, we have 128 variables while
fixing the constants. Due to symmetry, half of the variables should be same as
the others because of Eq. (8) and (9) (one of them). However, for 1 round of
linearization of Xoodoo, 32 conditions are required. As a result, we can have
2128−64−32 = 232 states that maintain 1-round linearization while the input to
Xoodoo is symmetric. Therefore, DoF of such states is 232.

Linearization in Backward Direction: The inside-out technique is widely
recognized in the most well-known classical distinguishing attack ZeroSum to
attack any permutation since it can start from the middle and move in both
directions. We have also explored linearization in the backward direction, as
shown in Fig. 3a. Instead of four lanes, we can use a single plane, as shown in
the figure. Furthermore, this linearization method can be applied to symmetric
states, as illustrated in Fig. 3b.

234 S. Suryawanshi and D. Saha

Fig. 3. Linearization of Xoodoo

Extending SymSum Distinguisher in Xoodoo: Using the linearization
technique symmetry property described in the preceding section can be extended
to 1 additional round. We explain our approach by assuming symmetry along the
x–axis. However, other directions can also be applied. To linearize 1-round along
with fulfilling the essential condition for self-symmetry of Xoodoo, the input set
must satisfy the following criteria (for details, see Sect. 4.3):

1. To maintain the input symmetry state should satisfy: HSx1
= HSx2

.
2. The constraint for linearization is A(0,0,∗) ⊕ A(1,0,∗) = C where ∗ define the

whole lane, and C is a 32 bit constant.

Given the circumstances mentioned above, this state has a dimension of 32.
As a result, this strategy can be used up to 6-round with a complexity of 232.
Furthermore, there are 160 constant bits, each with a value of either 0 or 1. So, we
can construct 2160 of such sets using various fixed values. Using linearization and
inside-out technique, we have 16 degree of freedom. As a result, we can attack up
to 10 (4–round backward + 1–round backward linearization + 1–round forward
linearization + 4–round forward) rounds with complexity 216. To simultaneously
visualize the linearization in a backward and forward direction, refer to Fig. 3c.

4.4 Adapting the Distinguisher on Xoodyak-Hash

Xoodyak combines the Cyclist mode of operation with the Xoodoo permutation,
which is responsible for preparing the data before inputting it into Xoodoo and
computing output according to required operation. For example, when calcu-
lating the digest in hash and keyed hash modes, domain separator value is set
to 0x01 and 0x03, respectively. Similarly, in other modes, the domain separator
values differ. However, this study focuses on Xoodyak-Hash mode, which absorbs
at most 16 bytes at a time, and 0x01 is added as a padding bit to indicate the
end of input. Thus, to ensure input state is symmetric, we need to input 15 bytes
with a fixed value of 0x01. However, since we cannot control the capacity bytes
and the Cyclist mode adds domain separator in the capacity portion of the state,
our state cannot become fully symmetric and there will always be an asymmet-
ric byte in the state. Table 3 shows the input state before and after the Cyclist
mode. Xoodyak-Hash exhibits near-symmetry in its output when input has a

New Insights on the Role of RCon Addition in the SymSum Distinguisher 235

Table 3. Input to Xoodyak-Hash and intermediate state after cyclist operation

Input to Cyclist input to Xoodoo

0E2E0E2E 0AAE0AAE 0C440C44 018001 0E2E0E2E 0AAE0AAE 0C440C44 01800180

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000080

near-symmetric state, but the symmetry is lost as the number of rounds increase.
This property allows us to distinguish round-reduced Xoodyak-Hash with just
one input message. The operations that disturb symmetry are RCon addition
and domain separator. However, by Corollary 1, d◦Xoodoo–vectorial derivative of
Xoodoo is independent of round-constant addition, allowing us to observe near-
symmetry in the (d◦Xoodoo)–fold vectorial derivative of Xoodyak-Hash when
using near-symmetric input states. Experimental results conforming to the the-
oretical justifications are presented in Sect. 5.

Degree of Freedom: There are 2128 ways to generate Xoodyak-Hash states, but
only those satisfying at least one condition from Eq. (3) result in a symmetric
state. There are a maximum of 264 symmetric states due to 64 conditions for
symmetry generation. However, one additional condition is needed to handle
the padding byte, limiting the number of possible states to 256. Therefore, DoF
for Xoodyak-Hash symmetric states is 256, and Corollary 1 requires (d◦Xoodoo)
vectorial derivatives. This distinguisher can be used on round-reduced Xoodoo
up to 5 rounds with a complexity of 232.

5 Experimental Verification

This section provides experimental proof for supporting the previous claims by
demonstrating 1-round linearization of 4-rounds Xoodoo. The degree for 4-rounds
is reduced to 24−1 = 8 due to 1-round linearization, and in line with Corollary
2, vectorial derivative of the 8th order will possess the SymSum property. Figure 1
shows input state for Xoodoo.

Table 4. Representing Xoodoo/Xoodyak-Hash state and output Sum

Xoodyak-Hash State
Input State Output Sum

∗E35 ∗E35 ∗041 ∗041 ∗9B6 ∗9B6 ∗B80 ∗B80 B68E B68E B68E B68E B68E B68E B68E B68E
0000 0000 0000 0000 0000 0000 0000 0000 8C51 8C51 8C51 8C51 8C51 8C51 8C51 8C51
0000 0000 0000 0000 0000 0000 0000 0080 CA4F CA4F CA4F CA4F CA4F CA4F CA4F CA4F

Xoodoo State
Input State Output Sum

∗ ∗ ∗ ∗ ∗ ∗ ∗∗ 7E5B9440 ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ 7E5B9440 B9D83814 96F1AF94 B9D83814 96F1AF94
† † † † † † †† 24A2A799 † † † † † † †† 24A2A799 A33C141F AB79F93C A33C141F AB79F93C
14DA894E 4642ACED 14DA894E 4642ACED B7ECCBF7 5A5C712F B7ECCBF7 5A5C712F

Table 4 shows the input state subspace of Xoodyak-Hash. Here the subspace
is generated by setting all possible values to * while maintaining the symmetry
in the z–axis. The text in black is dependent on the text in blue, which means

236 S. Suryawanshi and D. Saha

that the first 16 slices are identical to the next 16 slices. This can be visualized
by left most figure in Fig. 1a. While for the linearized Xoodoo state, the subspace
is generated by setting all possible values to ∗ and † to maintain the parity of
columns while maintaining the symmetry in the x–axis, which means that the
first two sheets are identical to the next two sheets. In Table 4, text in blue is
identical to blacktext, which can be visualized by the middle figure in Fig. 1a.

6 Conclusion

The current work thoroughly investigated the algebraic structure of SPN cipher
with varying RCon ordering relative to the linear and non-linear layers of an
SPN round-function. We also showed how our findings can be used in prac-
tice by mounting the SymSum distinguisher on Xoodoo/Xoodyak-Hash while
achieving one of the most efficient distinguishers reported on Xoodyak-Hash
so far - 5 rounds with 232. We demonstrated how symmetry propagation in
Xoodoo/Xoodyak-Hash allows us to identify attacks with only one symmetric
state for up to two rounds. Furthermore, regardless of the degree of nonlinear
operation, we provided theoretical proof that the SymSum distinguisher outper-
forms the ZeroSum distinguisher by a factor of two. Finally, we applied lin-
earization on Xoodoo, which resulted in a 10–round SymSum distinguisher with
a complexity of 216 leveraging the inside-out technique. Our research expands
the understanding of SPN ciphers with regards to the relation of their algebraic
structure and the influence of RCon on the highest degree monomials which we
believe provides valuable insights for designing future cryptographic algorithms.

Acknowledgment. The first author receives financial assistance through the TCS
Research Scholarship Programme (TCS RSP) thanks to the support of Tata Consul-
tancy Services (TCS). We also thank Darunjeet Bag for his support with this research.

A Xoodoo Permutation [12]

Daemen et al. presented Xoodoo, a 48-byte cryptographic permutation at ToSC
2018, inspired by Keccak [9] and Gimli [7]. It operates on a 3D array of size
4 × 3 × 32, where row, column, and lane refer to 1D arrays in the x, y, and
z directions respectively. Slices, sheets, and planes illustrate the 2D arrays in
(x, y), (y, z), and (x, z) planes. These arrays are 12–bits, 96–bits, and 128–bits
in size. Figure 4 depicts all the terms described above.

Fig. 4. The state displayed is of size 3×4×4 bytes, achieved by combining 8 cells into
1 for brevity, resulting in each cell of the state being of size 1 byte.

New Insights on the Role of RCon Addition in the SymSum Distinguisher 237

The Xoodoo permutation is a sequence of iterations on a 3D Xoodoo state
using five different mappings: X = ρeast ◦ χ ◦ ι ◦ ρwest ◦ θ. The θ mapping
is responsible for diffusing the state linearly, while ρwest and ρeast rotate the
bits of the planes in the x and z directions by specific values for each plane.
Depending on the round number, the ι mapping adds a unique RCon to the first
lane of plane A0. The only non-linear function that operates on the plane is χ.
All the sub-functions of the Xoodoo round-function are listed below.

θ :

⎧

⎪
⎨

⎪
⎩

Ay = Ay ⊕ E where y ∈ {0, 1, 2}
E = P ≪ (1, 5) ⊕ P ≪ (1, 14)
P = A0 ⊕ A1 ⊕ A2

ρwest :

{

A1 = A1 ≪ (1, 0)
A2 = A2 ≪ (0, 11)

ι :
{

A0 = A0 ⊕ RCi

χ :

{

Ay = Ay ⊕ By where y ∈ {0, 1, 2}
By =∼ Ay+1 mod 3 · Ay+2 mod 3

ρeast :

{

A1 = A1 ≪ (0, 1)
A2 = A2 ≪ (2, 8)

B Xoodyak-Hash [13]

Xoodyak-Hash, one of the ten NIST-LWC finalists, is a versatile cryptographic
primitive combining sponge structure and Xoodoo permutation based on an oper-
ational mode termed Cyclist. The number of rounds in Xoodyak-Hash is 12,
which provides the designed primitive with a sufficient safety margin against all
potential attacks. Both hash and keyed modes are available in Xoodyak-Hash.
The block sizes for the hash, the input, and the output in keyed modes are set,
respectively, by the Rhash, Rkin, and Rkout block sizes to the mode of operation
Cyclist, which depends on cryptographic permutation.

The hash mode consumes input strings and squeezes digests. Depending on
the input string length, the absorbing function is called more than once because
it can only absorb up to 16 bytes at once, and depending on the data absorbed so
far, Squeeze(l) outputs an l-byte, where l = 128 bits. The Xoodyak-Hash offers
128-bit security and, as a result, it generates 256-bits (32 bytes) of the digest by
performing considerable squeeze operations, as seen in Fig. 5

238 S. Suryawanshi and D. Saha

Fig. 5. This construction absorbs a variable input size and produces a 32-byte digest.

References

1. Caesar: Competition for authenticated encryption: security, applicability, and
robustness. http://competitions.cr.yp.to/caesar.html

2. NIST Lwc: National institute of standards and technology lightweight crypto-
graphic. https://csrc.nist.gov/Projects/lightweight-cryptography/finalists

3. Dworkin, M.J., Barker, E.B., Nechvatal, J.R., Foti, J.: Advanced encryption stan-
dard (AES) (2001). https://doi.org/10.6028/NIST.FIPS.197

4. Aumasson, J.P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for
the core functions of Luffa and Hamsi. In: Rump Session of Cryptographic Hard-
ware and Embedded Systems-CHES 2009, p. 67 (2009)

5. Babbage, S., et al.: The eSTREAM portfolio. Citeseer (2008). https://www.ecrypt.
eu.org/stream/

6. Bellini, E., Makarim, R.H.: Functional cryptanalysis: application to reduced-round
Xoodoo. IACR Cryptology ePrint Archive, p. 134 (2022)

7. Bernstein, D.J., et al.: Gimli: a cross-platform permutation. In: Fischer, W.,
Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 299–320. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4_15

8. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak SHA-3 submis-
sion. Submission to NIST (Round 3) (2011). http://keccak.noekeon.org/Keccak-
submission-3.pdf

9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_19

10. Boura, C., Canteaut, A.: A zero-sum property for the Keccak-f permutation with
18 rounds. In: ISIT, pp. 2488–2492. IEEE (2010)

11. Boura, C., Canteaut, A., De Cannière, C.: Higher-order differential properties of
Keccak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252–269.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9_15

12. Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: The design of Xoodoo and
Xoofff. IACR Trans. Symmetric Cryptol. 2018(4), 1–38 (2018)

13. Daemen, J., Hoffert, S., Peeters, M., Assche, G.V., Keer, R.V.: Xoodyak, a
lightweight cryptographic scheme. IACR Trans. Symmetric Cryptol. 2020(S1),
60–87 (2020)

http://competitions.cr.yp.to/caesar.html
https://csrc.nist.gov/Projects/lightweight-cryptography/finalists
https://doi.org/10.6028/NIST.FIPS.197
https://www.ecrypt.eu.org/stream/
https://www.ecrypt.eu.org/stream/
https://doi.org/10.1007/978-3-319-66787-4_15
http://keccak.noekeon.org/Keccak-submission-3.pdf
http://keccak.noekeon.org/Keccak-submission-3.pdf
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-642-21702-9_15

New Insights on the Role of RCon Addition in the SymSum Distinguisher 239

14. Daemen, J., Rijmen, V.: The block cipher Rijndael. In: Quisquater, J.-J., Schneier,
B. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 277–284. Springer, Heidelberg (2000).
https://doi.org/10.1007/10721064_26

15. Duan, M., Lai, X.: Improved zero-sum distinguisher for full round Keccak-f per-
mutation. IACR Cryptology ePrint Archive, p. 23 (2011)

16. Dunkelman, O., Weizman, A.: Differential-linear cryptanalysis on Xoodyak. In:
NIST Lightweight Cryptography Workshop (2022)

17. Guo, J., Liu, M., Song, L.: Linear structures: applications to cryptanalysis of round-
reduced Keccak. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10031, pp. 249–274. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53887-6_9

18. Hu, K., Peyrin, T.: Revisiting higher-order differential(-linear) attacks from an
algebraic perspective - applications to Ascon, Grain v1, Xoodoo, and ChaCha.
IACR Cryptology ePrint Archive, p. 1335 (2022)

19. Liu, F., Isobe, T., Meier, W., Yang, Z.: Algebraic attacks on round-reduced Kec-
cak/Xoodoo. IACR Cryptology ePrint Archive, p. 346 (2020)

20. Liu, Y., Sun, S., Li, C.: Rotational cryptanalysis from a differential-linear perspec-
tive. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol.
12696, pp. 741–770. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
77870-5_26

21. Posthoff, C., Steinbach, B.: Logic Functions and Equations: Binary Models for
Computer Science. Springer, New York (2004). https://doi.org/10.1007/978-1-
4020-2938-7

22. Saha, D., Kuila, S., Chowdhury, D.R.: SymSum: symmetric-sum distinguishers
against round reduced SHA3. IACR Trans. Symmetric Cryptol. 2017, 240–258
(2017)

23. Suryawanshi, S., Saha, D., Sachan, S.: New results on the SymSum distinguisher
on round-reduced SHA3. In: Nitaj, A., Youssef, A. (eds.) AFRICACRYPT 2020.
LNCS, vol. 12174, pp. 132–151. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51938-4_7

https://doi.org/10.1007/10721064_26
https://doi.org/10.1007/978-3-662-53887-6_9
https://doi.org/10.1007/978-3-662-53887-6_9
https://doi.org/10.1007/978-3-030-77870-5_26
https://doi.org/10.1007/978-3-030-77870-5_26
https://doi.org/10.1007/978-1-4020-2938-7
https://doi.org/10.1007/978-1-4020-2938-7
https://doi.org/10.1007/978-3-030-51938-4_7
https://doi.org/10.1007/978-3-030-51938-4_7

Invited Paper: Detection of False Data
Injection Attacks in Power Systems Using

a Secured-Sensors and Graph-Based
Method

Gal Morgenstern1(B) , Lital Dabush1 , Jip Kim2 , James Anderson3 ,
Gil Zussman3 , and Tirza Routtenberg1

1 Ben Gurion University of the Negev, 84105 Beer-Sheva, Israel
galmo@post.bgu.ac.il

2 KENTECH, Naju-si, South Korea
3 Columbia University, New York, NY, USA

Abstract. False data injection (FDI) attacks pose a significant threat to
the reliability of power system state estimation (PSSE). Recently, graph
signal processing (GSP)-based detectors have been shown to enable
the detection of well-designed cyber attacks named unobservable FDI
attacks. However, current detectors, including GSP-based detectors, do
not consider the impact of secured sensors on the detection process; thus,
they may have limited power, especially in the low signal-to-noise ratio
(SNR) regime. In this paper, we propose a novel FDI attack detection
method that incorporates both knowledge of the locations of secured
sensors and the GSP properties of power system states (voltages). We
develop the secured-sensors-and-graph-Laplacian-based generalized like-
lihood ratio test (SSGL-GLRT) that integrates the secured data and
the graph smoothness properties of the state variables. Furthermore, we
introduce a generalization of the method that allows the use of differ-
ent high-pass GSP filters together with prior knowledge of the locations
of the secured sensors. Then, we develop the SSGL-GLRT for a dis-
tributed PSSE based on the alternating direction method of multipliers
(ADMM). Numerical simulations demonstrate that the proposed method
significantly improves the probability of detecting FDI attacks compared
to existing GSP-based detectors, achieving an increase of up to 30% in
the detection probability for the same false alarm rate by integrating
secured sensor location information.

Keywords: Graph signal processing (GSP) · false data injection
(FDI) attack detection · secured sensors · power system state
estimation (PSSE) · cyber-physical systems · distributed detection

1 Introduction

Smart grids integrate traditional power system components with advanced infor-
mation and communication technology (ICT), providing critical cyber-physical
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 240–258, 2023.
https://doi.org/10.1007/978-3-031-44274-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_18&domain=pdf
http://orcid.org/0000-0002-1991-5644
http://orcid.org/0000-0003-1993-6629
http://orcid.org/0000-0002-5185-3631
http://orcid.org/0000-0001-8210-6527
http://orcid.org/0000-0002-1845-4460
http://orcid.org/0000-0002-7238-7764
https://doi.org/10.1007/978-3-031-44274-2_18

Detection of False Data Injection Attacks in Power Systems 241

infrastructure [43]. However, this also makes them vulnerable to cyber attacks
[40–42], particularly false data injection (FDI) attacks, where an attacker cor-
rupts measurements and injects fake information into the system. FDI attacks
may inflict severe damage that ranges from economic consequences to the
destruction of grid devices [14,23,24,47,48] by influencing the critical power
system state estimation (PSSE) process, which provides grid monitoring signals
for power system operations [26,27]. PSSE is typically equipped with residual-
based bad data detection (BDD) capabilities and, therefore can identify faulty
data and random faults [27]. However, a well-designed, unobservable FDI attack
can bypass the conventional residual-based BDD [21,25]. Therefore, developing
advanced tools to detect unobservable FDI attacks is crucial to maintaining high
power supply quality and stable system operation.

Fig. 1. Graph representation of IEEE 14-bus system. The node color represents the
value of the states (voltage phases). In (a), the grid is not under attack, whereas in (b),
node 14 is attacked (red circle), and nodes {3, 8, 10, 13} are protected (green circles).
It can be seen that the unattacked grid state is much smoother than the attacked grid
state, i.e., the states of connected buses tend to be similar. (Color figure online)

In the past decade, various methods have been proposed for the detection of
unobservable FDI attacks. Some methods utilize a set of protected measurements
or synchronized phasor measurement units [2,6,19,20]. Specifically, these works
aim to find the best locations for the protected sensors. Machine learning-based
methods have been proposed, but they require a large, stationary, and reliable
database of data, which is often not available [10,12,18,44]. Sparse methods
were proposed in [28,34]. However, these methods impose assumptions on the
stationary and structural characteristics of the system loads, such as the lack of
correlation with the system topology and the sparse nature of the attack in the
time domain, which may not be true in real-world situations. Additionally, previ-
ous studies, such as [17,31,46], investigated the use of BDD and cyber attacks to
compromise the distributed PSSE. Furthermore, graph signal processing (GSP)
methods have been demonstrated to be useful for the detection of failures, topol-
ogy changes, and FDI attacks [4,5,9,11,29,33,37,38]. Despite this, incorporating
information on secured sensor locations into FDI detection designs has not yet
been explored either in centralized or in distributed frameworks. Additionally,

242 G. Morgenstern et al.

the use of GSP properties for FDI detection remains at a preliminary stage and
has not been fully investigated.

In this study, we present a novel approach for the detection of unobservable
FDI attacks in power systems in the presence of secured sensors that are assumed
to be immune to adversarial cyber attacks. These sensors with secured measure-
ments can be obtained by additional validation processes by methods such as
encryption, continuous monitoring, and separation from the Internet [20]. Our
approach leverages the fact that the system states are known to be smooth
graph signals [8,9,33], as illustrated in Fig. 1. Moreover, our approach is distin-
guished from existing GSP-based detectors by its ability to incorporate prior
knowledge on the locations of the secured sensors. We formulate the hypothe-
sis testing for this setting and derive the secured-sensors-and-graph-Laplacian-
based generalized likelihood ratio test (SSGL-GLRT) that incorporates both
the information on the locations of the secured-sensors and the graph smooth-
ness properties of the system states. Furthermore, we introduce a generalization
of the SSGL-GLRT by replacing the graph smoothness measure with any high-
pass graph filter. The considered model can also accommodate distributed power
system operation. In this approach, the network is divided into interconnected
areas that are controlled separately, but share partial information. To this end,
we derive the distributed SSGL-GLRT, that utilizes the alternating detection
method of multipliers (ADMM) optimization algorithm in [3]. The numerical
results indicate that the proposed SSGL-GLRT with secured sensors achieves a
higher probability of detection and a lower false alarm rate, compared to exist-
ing methods, in the presence of secured sensors. This is due to the fact that the
SSGL-GLRT exploits the graph smoothness property of the states as well as the
knowledge of unattacked measurements.

In the following, vectors and matrices are denoted by boldface lowercase and
uppercase letters, respectively. The mth element of the vector a and the (m, q)th

element of the matrix A are denoted by am and Am,q, respectively. Similarly, aΛ

is a subvector of a with the elements indexed by Λ. The matrix I and the vector
0 denote the identity matrix and the zero vector, respectively, with appropriate
dimensions, and || · || denotes the Euclidean l2-norm of vectors.

2 Model

The power system is represented by an undirected weighted graph, G(V, ξ), where
V is the set of N nodes (bus and/or generators), and ξ is the set of edges
(transmission lines) between the nodes. In this graph representation of the power
system, it can be shown that the nodal admittance matrix is a graph Laplacian
matrix. The (k, l)th element of B is given by [27]

Bk,l =

⎧
⎪⎨

⎪⎩

−
∑

n∈Nk

bk,n, k = l

bk,l, (k, l) ∈ ξ

0, otherwise

, ∀k, l = 1, . . . , N, (1)

Detection of False Data Injection Attacks in Power Systems 243

where Nk is the set of buses connected to bus k and bk,n < 0 is the susceptance
of line (k, n) ∈ ξ.

The power system is governed by the nonlinear power flow equations, which
are often approximated by the linearized DC model [27]. We consider the
attacked and noisy DC model:

z = Hθ + a + e, (2)

where the active power measurements, z ∈ R
M , are corrupted by an additive

FDI attack, a ∈ R
M , and by measurement noise, e ∈ R

M , which is assumed to be
a zero-mean Gaussian vector with covariance matrix R. The matrix H ∈ R

M×N

is a known full-rank matrix, which is determined by the network topology and
by the admittance matrix [27]. It should be noted that the matrix B from (1)
is a submatrix of H from (2) that is associated with the power injection meters.
Finally, the system states, i.e., the voltage phases, are denoted by θ ∈ R

N .
In the GSP literature, signals measured over the nodes of the graph are

assumed to be smooth w.r.t. the Laplacian matrix [7,15,22,35,39,45,49]. In the
context of power systems, it was shown in [4,9,32] that the system states are
smooth graph signals, i.e.

TVG(θ)
�
= θTBθ ≤ ε1, (3)

where ε1 > 0 is small relative to all other parameters in the system. By substi-
tuting (1) in (3), we obtain

TVG(θ) =
1
2

N∑

k=1

∑

n∈Nk

Bk,n

(
θk − θn

)2
. (4)

Roughly speaking, the smoothness property in (3), also referred to as graph
total variation (TV), implies that the signal values (states in power systems)
associated with the end nodes of edges with high weights in the graph (buses
with large susceptance values) tend to be similar. In particular, the voltage angles
of connected buses are similar.

The FDI attack, a ∈ R
M , is considered to be an unobservable FDI attack

[25], i.e. it satisfies
a = Hc, (5)

where c ∈ R
N is an arbitrary vector. As a result, the attack a is in the range of H.

It is known that the attack described in (5) surpasses classical BDD methods [21].

3 GSP-Based FDI Detection with Secured Sensors

In this section, we design the SSGL-GLRT for detecting unobservable FDI
attacks in the presence of secured measurements. In particular, it is assumed
that a subset of the measurements is more reliable as these measurements are

244 G. Morgenstern et al.

equipped with additional protection measures, e.g. encryption, continuous mon-
itoring, and separation from the Internet [20]. This set of protected sensors may
encompass generator nodes, which are typically highly secured, and/or specific
locations that were chosen based on a defense policy against FDI attacks. The
SSGL-GLRT is based on the generalized likelihood ratio test (GLRT). Specifi-
cally, we consider the following hypothesis test associated with the model from
Sect. 2: {H0 : a = 0

H1 : a �= 0.

To this end, we derive the secured-sensors-and-graph-Laplacian-based maximum
likelihood estimator (SSGL-ML) of the states in Subsect. 3.1. Subsequently, we
use the SSGL-ML to derive the SSGL-GLRT in Subsect. 3.2, and discuss its
properties in Subsect. 3.3.

3.1 SSGL-MLE

As stated at the beginning of this section, a subset of measurements, Λ ⊂
{1, . . . , M}, is assumed highly secured. From the point of view of an adver-
sary, this assumption implies that the measurements in the subset Λ cannot be
attacked:

aΛ = 0. (6)

From the defender’s perspective, we assume that constraint (6) is relaxed and
replaced by the following assumption:

||aΛ||2 = ||Ma||2 ≤ ε2, (7)

where ε2 is small relative to the other parameters in the system and M is a
diagonal mask matrix with the diagonal elements

Mi,i =

{
1 i ∈ Λ

0 i /∈ Λ.

Assumption (7) implies that the attack, a, has relatively small absolute values
over the sensors in the set Λ ⊂ M. This assumption permits flexibility in the case
where some sensors in the set Λ are affected by random bad data (not originated
by an attack), and makes the system more robust to small misspecifications or
perturbations of Λ.

The SSGL-ML is a PSSE method with prior knowledge about the locations
of the secured measurements and the graph smoothness properties of the system
states [4,9,33]. The SSGL-ML is solved by maximizing the following regularized
log-likelihood function over the system state variables θ and the FDI attack a:

QSSGL(θ,a) = − (z − Hθ − a)TR−1(z − Hθ − a)

− μ1θ
TBθ − μ2||Ma||2, (8)

Detection of False Data Injection Attacks in Power Systems 245

where μ1 > 0 and μ2 > 0 are regularization parameters. These parameters
enable the system operator to adjust the importance of each of the regulariza-
tion functions. Note that the log-likelihood function in (8) is a concave function
(see Appendix), and thus, the solution to the SSGL-ML is obtained by solving
the normal equations. This function is equivalent to the standard PSSE log-
likelihood function with two additional regularization terms:

R.1 Graph-Laplacian regularization (μ1θ
TBθ): A graph smoothness regulariza-

tion term that incorporates the smoothness of the states in (3). This allows
us to make a distinction between the system states, which are considered
smooth, and the non-smooth FDI attack.

R.2 Secured-sensors regularization (μ2||Ma||2): An energy regularization func-
tion that incorporates the information on the locations of the secured sen-
sors by using (7). This allows further distinction between the signal Hθ,
which is a non-sparse signal with energy across all sensor positions, and
the low-energy attack.

We now derive the SSGL-ML for the state vector, θ, and the attack vector,
a, based on the regularized log-likelihood function in (8). Later, these estimators
will be used for deriving the GLRT in Subsect. 3.2. We first consider the null
hypothesis, H0, i.e. there is no attack (a = 0). By substituting a = 0 in (8), we
obtain that under hypothesis H0, the SSGL-ML of θ is

θ̂SSGL-ML
|H0

= arg min
θ∈RN

−QSSGL(θ,a = 0)

= arg min
θ∈RN

(z − Hθ)TR−1(z − Hθ) + μ1θ
TBθ

= Kθz, (9)

where the gain matrix is given by

Kθ �
= (HTR−1H + μ1B)−1HTR−1. (10)

The SSGL-ML estimator in (9)–(10) coincides with the GSP weighted least
squares (GSP-WLS) estimator from [4].

Under hypothesis H1, when it is known that a �= 0, the SSGL-ML for both
θ and a is given by

(θ̂SSGL-ML
|H1

, âSSGL-ML
|H1

) = arg min
θ∈RN ,a∈RM

−QSSGL(θ,a). (11)

Since −QSSGL(θ,a) from (8) is convex (see Appendix), the estimators of θ and
a can be computed by the following normal equations:

a = Ka(z − Hθ) (12)

θ = Kθ (z − a), (13)

where Kθ is defined in (10) and

Ka =(R−1 + μ2M)−1R−1. (14)

246 G. Morgenstern et al.

Substituting (12) into (13) results in

θ̂SSGL-ML
|H1

= Aθz, (15)

where
Aθ �

=
(
I − KθKaH

)−1
Kθ (I − Ka). (16)

Substituting (15) in (12) results in

âSSGL-ML
|H1

= Ka(I − HAθ)z. (17)

The MLEs of θ and a given in (9), (15), and (17), are used in the next subsection
to derive the SSGL-GLRT.

3.2 SSGL-GLRT

The SSGL-GLRT is the difference between the regularized log-likelihood function
from (8) under H1 and under H0 [16]:

T SSGL-GLRT(z) = QSSGL(θ̂SSGL-ML
|H1

, âSSGL-ML
|H1

) − QSSGL(θ̂SSGL-ML
|H0

,0). (18)

By using (15) and (17), we obtain

QSSGL(θ̂SSGL-ML
|H1

, âSSGL-ML
|H1

) = − (z − HAθz − Ka(I − HAθ)z)TR−1

× (z − HAθz − Ka(I − HAθ)z)

− μ1(Aθz)TBAθz − μ2||MKa(I − HAθ)z||2.
(19)

Similarly, using (9), we obtain

QSSGL(θ̂SSGL-ML
|H0

,0) = − (z − HKθz)TR−1(z − HKθz)

− μ1(Kθz)TBKθz.
(20)

Substituting (19) and (20) in (18), results in

T SSGL-GLRT(z) = zTGz, (21)

where

G
�
= (I − HKθ)TR−1(I − HKθ) − (I − HAθ)T (I − Ka)TR−1

× (I − Ka)(I − HAθ) + μ1

(
(Kθ)TBKθ − (Aθ)TBAθ

)

− μ2(I − HAθ)T (Ka)TMKa(I − HAθ).

(22)

The SSGL-GLRT in (21) is a weighted energy detector, where the weight
matrix G in (22) is composed of five components: The first and second compo-
nents evaluate the estimation accuracy of the SSGL-ML under hypotheses H0

and H1, respectively, w.r.t. the input measurements. The third and fourth com-
ponents evaluate the smoothness of the estimated state vector under hypotheses

Detection of False Data Injection Attacks in Power Systems 247

H0 and H1, respectively. Finally, the fifth component evaluates the compliance
of the estimated attack with the assumption in (7).

The computational complexity of the detector proposed in (21)–(22) can be
separated into two parts: the online and offline operations. Online, it is required
to compute (21) given the M × M matrix G and the M × 1 vector z. In this
case, the number of multiplications is in order of O(M2) when G is dense and
unstructured. Offline, it is required to calculate the matrix G defined in (22). In
this case, the most demanding procedure is the inverse of R, which is an M ×M
matrix. Thus, the computational complexity is in order of O(M3) when R is
dense and unstructured.

3.3 Special Cases

In the following, we present a few special cases of the SSGL-GLRT.

C.1 No regularization (μ1 = μ2 = 0): By substituting μ1 = 0 and μ2 = 0 in
(10) and (14), we obtain

Kθ = K
�
= (HTRH)−1HTR−1

and Ka = I, respectively. Substituting these results and μ1 = μ2 = 0 in
(22), results in

G = (I − HK)TR−1(I − HK). (23)

By substituting (23) in (21), one obtains the J(θ)-test [27]:

TBDD(z) = zT (I − HK)TR−1(I − HK)z. (24)

It is known that the BDD detector in (24) cannot detect unobservable FDI
attacks as defined in (5) (see e.g. [21,25]).

C.2 Only Laplacian-based regularization (μ1 > 0, μ2 = 0): When μ2 = 0,
similarly to in C.1, we obtain that Ka = I. By substituting this result and
μ2 = 0 into (16), we get Aθ = 0. Thus, in this case, (22) is reduced to

G = (I − HKθ)TR−1(I − HKθ) + μ1(Kθ)TBKθ . (25)

Finally, substitution of (25) in (21) results in

TGL-GLRT(z) =zT (I − HKθ)TR−1(I − HKθ)T z

+ μ1zT (Kθ)TBKθz,
(26)

which is the graph-Laplacian-regularized GLRT (GL-GLRT) from [5]: that
only considers the prior on the smoothness of the states.

C.3 Only secured-sensors-based regularization (μ1 = 0, μ2 > 0): By sub-
stituting μ1 = 0 in (10) and (16) we obtain Kθ = K and

Aθ
2

�
=

(
I − KKaH

)−1
K(I − Ka).

248 G. Morgenstern et al.

By substituting these results in (22), we obtain the weighting matrix for
this case:

G = − (I − HAθ
2)T (I − Ka)TR−1(I − Ka)(I − HAθ

2)

− μ2(I − HAθ
2)T (Ka)TMKa(I − HAθ

2)

+ (I − HK)TR−1(I − HK).

The resulting detector only takes into account the prior information of the
secured measurements. However, this detector is not practical because if Λ
does not include all measurements, i.e. some measurements are not secured,
then (I − KKaH) is not invertible. Moreover, by substituting (13) in (12)
and then substituting Kθ = K we see that (17) can also be written as

âSS-ML
|H1

= (I − KaHK)−1Ka(I − HK)z.

This indicates that for unobservable attacks, a = Hc, we obtain that âSS-ML
|H1

is the same for input z and its corrupted version z + Hc, because

(I − HK)Hc = Hc − Hc = 0.

Hence, this detector is not effective against unobservable FDI attacks
(Table 1).

Table 1. Classification of the different GLRTs based on the regularization functions
used.

Detector Regularization term

Secured sensors Graph Laplacian

SSGL-GLRT v v

GL-GLRT x v

PP-GLRT v x

BDD x x

3.4 General Graph High Pass Filter (GHPF)

The SSGL-GLRT exploits the smoothness property of the states in (3). Other
approaches in [9,32] are built upon the idea that the states can be thought
of as graph signals with low energy in the high-frequency range of the graph
spectrum, as defined in the GSP literature [39]. Similarly, we can generalize the
proposed SSGL-GLRT as follows. Since the states can be considered low-pass
graph signals [32], the smoothness term, θTBθ, can be replaced by any term of
the form

θTUBf(ΦB)UT
Bθ, (27)

Detection of False Data Injection Attacks in Power Systems 249

where UB and ΦB are the eigenvector and eigenvalue matrices of B, i.e.
B = UBΦBUT

B . The graph filter f(·) is assumed to be a nonnegative
analytic function, defined by its graph frequency response [30], f(Φ) =
diag(f(φ1), . . . , f(φN)). Roughly speaking, f(Φ) is a GHPF if the frequency
response f(φn) increases as the eigenvalue φn increases. Thus, using the GHPF
in (27) results in a penalty on signal content in the high graph frequencies that
can be used to detect outliers/anomalies w.r.t. the graph [36], or, in our case,
FDI attacks. The practical implementation results in the same SSGL-GLRT,
where B is replaced by

(
UBf(ΦB)UT

B

)
everywhere.

For example, using the graph frequency response

f(φn) =
√

φn, n = 1, . . . , N

in (27), results in the smoothness criterion θTBθ used in the CP-GLRT. An
alternative GHPF is the following ideal-GHPF:

fGHPF(φn) =

{
0 φn ≤ φcut

1 φn > φcut

, n = 1, . . . , N, (28)

where φcut is the cutoff frequency. This GHPF is used for FDI detection in [9,33],
but without using protected measurements.

4 Distributed Detection

In the previous section, we derived the SSGL-GLRT for the centralized approach
in which a single control center operates the system. However, a centralized app-
roach may incur impractical computational and communication load, increased
vulnerability, and disclosure of the internal system structure. Therefore, in this
section, we discuss the modification of the SSGL-GLRT, and a special case,
the GL-GLRT, for distributed frameworks. Our derivation is based on the dis-
tributed PSSE approach described in [17], in which the PSSE is performed with
measurements corrupted by bad data. This section is organized as follows. In
Subsect. 4.1, we review the distributed PSSE from [17]. Then, in Subsect. 4.2,
we derive the proposed distributed SSGL-GLRT and GL-GLRT detectors.

4.1 Distributed PSSE

We consider an interconnected power system comprising L control areas. The
measurement model for the lth area, based on the DC power flow model given
in (2), can be expressed as

zl = Hlθl + al + el, l = 1, . . . , L, (29)

where θl ∈ R
Nl×1 represents the subset of interconnected power system states

(i.e. a subvector of θ) associated with the measurements in zl, Hl ∈ R
Ml×Nl is

250 G. Morgenstern et al.

the appropriate submatrix topology matrix (a submatrix of H), al ∈ R
Ml×1 is

the attack on the sensors in the lth area (a submatrix of H), and el ∈ R
Ml×1

represents the system noise in this area, modeled as a zero-mean Gaussian noise
with covariance matrix Rq ∈ R

Ml×Ml (a submatrix of R). The distributed PSSE
can be written as the following optimization problem [17]:

{θ̂l}L
l=1 = arg min

θl
l=1,...,L

L∑

l=1

Ql

s.t. θl[l′] = θl′ [l], ∀l′ ∈ Al, ∀l,

(30)

where the cost function of the different areas, Ql, is jointly minimized subject to
the constraint that the state vectors of each area partially overlap. Specifically,
we assume that the state vector of area l includes all buses in that area and their
first-order neighbors, and the set Al includes all areas that share state variables
with area l. The notation θl[l′] represents the subvector of θl that includes all
state variables shared with area l′.

The solution to (30) by the ADMM algorithm [3] consists of the following
iterative steps [17]:

θ
(t+1)
l = arg min

θ
Ql(θl) +

ζ

2

Nl∑

i=1

1{Ai
l �=∅}|Ai

l|(θl(i) − p(t)
l (i))2, (31a)

s(t+1)
l (i) =

1
|Ai

l|
∑

l′∈Ai
l

θ
(t+1)
l′ [i], ∀i with Ai

l �= ∅, (31b)

p(t+1)
l (i) = p(t)

l (i) + s(t+1)
l (i) − θ

(t)
l (i) − s(t)l (i)

2
, ∀i with Ai

l �= ∅. (31c)

Here, the auxiliary vectors sl and pl are used, and 1(·) denotes the indicator
function, which equals 1 if its condition is met and 0 otherwise. The set Ai

l rep-
resents the areas that share variable θl(i) with area l. Additionally, the param-
eter ζ represents the user-defined step size. We use here the least squares cost
function, QLS(θ) = (z−Hθ)TR−1(z−Hθ), which can be modified for each area
l to QLS

l (θ) = (zl − Hlθl)TR−1
l (zl − Hlθl). In this case, as shown in [17], the

problem is solved using (31) while replacing (31a) with:

θ
(t+1)
l = (HlR−1

l Hl + ζDl)−1(R−1
l HT

l zl + ζDlp
(t)
l), (32)

where Dl is the diagonal matrix with the (i, i) entry |Ai
l|. As for initialization,

the state variables θl are set to arbitrary values θ
(0)
l , variables s(0)l are initialized

as in (31b), and p(0)
l (i) is initialized as (x(0)

l (i)−s(0)l (i))/2. The ADMM iterative
step converges when the objective function and constraints functions are convex,
closed, and proper, and the augmented Lagrangian has a saddle point [3].

4.2 Distributed SSGL-GLRT and GL-GLRT

The cost function for the SSGL-ML in (8) is obtained by solving the standard
PSSE, which is defined as an unconstrained LS problem along with two regular-

Detection of False Data Injection Attacks in Power Systems 251

Algorithm 1: Distributed SS-GLRT in area l

Input: Fix detection threshold γl and step size ζ Set initial guess: θ
(0)

|H0,l
, s

(0)
l ,

and p
(0)
l

1 for t = 0, 1, . . . do
2 Update:

3 θ
(t+1)

|H0,l
= (HlR

−1
l Hl + μ1,lBl + ζDl)

−1(R−1
l HT

l zl + ζDlp
(t)
l)

4 s
(t+1)
l (i) = 1

|Ai
l
|
∑

l′∈Ai
l
θ
(t+1)

|H0,l′ [i], ∀i with Ai
l �= ∅

5 p
(t+1)
l (i) = p

(t)
l (i) + s

(t+1)
l (i) − θ

(t)
|H0,l

(i)−s
(t)
l

(i)

2
, ∀i with Ai

l �= ∅
6 Set θ̂SSGL-ML

|H0,l
= θ

(t+1)

|H0,l

7 Set initial guess: θ
(0)

|H1,l
, s

(0)
l , p

(0)
l , and a

(0)

|H1,l

8 for t = 0, 1, . . . do
9 Update:

10 θ
(t+1)

|H1,l
= (HlR

−1
l Hl + μ1,lBl + ζDl)

−1(R−1
l HT

l (zl − a
(t)
l) + ζDlp

(t)
l)

11 s
(t+1)
l (i) = 1

|Ai
l
|
∑

l′∈Ai
l
θ
(t+1)

|H0,l′ [i], ∀i with Ai
l �= ∅

12 p
(t+1)
l (i) = p

(t)
l (i) + s

(t+1)
l (i) − θ

(t)
|H0,l

(i)−s
(t)
l

(i)

2
, ∀i with Ai

l �= ∅
13 a

(t+1)

|H1,l
= (R−1

l + μ2,lMl)
−1R−1

l (zl − Hlθ
(t+1)
l)

14 Set θ̂SSGL-ML
|H1,l

= θ
(t+1)

|H1,l
and âSSGL-ML

|H1,l
= a

(t+1)

|H1,l

15 if QSSGL
l (θ̂SSGL-ML

|H1,l
, âSSGL-ML

|H1,l
) − QSSGL

l (θ̂SSGL-ML
|H0,l

,0) > γl then

16 return “The area is under an FDI attack”

17 else
18 return “The area is under normal operation”

ization terms. One term, μ1θ
TBθ, imposes prior knowledge on the smoothness

property of the state variables, as defined in (3). The other term, μ2‖Ma‖2,
imposes prior knowledge on the secured sensors, as defined in (7). We modify
the regularization terms to recast the optimization problem as the minimiza-
tion of a regional cost function. Specifically, we introduce the local smoothness
measure defined in [39], which is given by the inner summation of the global
smoothness measure in (4):

Si(θ) =
∑

j∈Ni

Bi,j(θi − θj)2, (33)

where Ni is the first-order neighborhood of bus i. We measure the smoothness
over each region by summing the local smoothness of all buses in that region,
resulting in

∑Nl

i=1 Si(θ). It can be verified that this sum satisfies
∑

i∈R

Si(θ) = θT
l Blθl,

252 G. Morgenstern et al.

where Bl is the submatrix of B associated with the state variables in the lth
region. Moreover, since the prior knowledge on the location of the secured sensors
is local to each sensor, we modify the prior assumption in (34) for each area l to

‖Mlal‖2 ≤ εl, (34)

where Ml is the Ml×Ml submatrix of the diagonal matrix M associated with the
power measurements in the lth area. Using (29) and (33)–(34), we can modify
the log-likelihood function in (8) to measure the cost function of the lth area as

QSSGL
l (θl,al) = −(zl − Hlθl − al)

TR−1
l (zl − Hqθl − al) − µ1,lθ

T
l Blθl − µ2,l‖Mlal‖2.

(35)
As presented in Sect. 3.2, the SSGL-GLRT is a detector derived from (18).

For the distributed case, the SSGL-GLRT can be adapted by defining L detec-
tors, denoted as T SSGL-GLRT

l , where each detection test is performed in the
corresponding control center. These detectors are defined as follows:

T SSGL-GLRT
l = QSSGL

l (θ̂SSGL-ML
|H1,l , âSSGL-ML

|H1,l) − QSSGL
l (θ̂SSGL-ML

|H0,l ,0), l = 1, . . . , L,
(36)

where θ̂SSGL-ML
|H1,l and âSSGL-ML

|H1,l are the ML estimates for the state variables and

the attack in the lth area under the H1 hypothesis, and θ̂SSGL-ML
|H0,l are the ML

estimates for the state variable in the lth area under the H0 hypothesis.
For hypothesis H0, we seek to estimate θ̂SSGL-ML

|H0,l , which is obtained by replac-
ing Ql(θl) in (31) with (35) when al is replaced with 0. Therefore, we can esti-
mate θ̂SSGL-ML

|H0,l by applying the results from (9)–(10) to (31), which results in
replacing (31a) with

θ
(t+1)
|H0,l = (HlR−1

l Hl + μ1,lBl + ζDl)−1(R−1
l HT

l zl + ζDlp
(t)
l). (37)

Note that the inclusion of the term ζDl is motivated by the same reasons as
in (32). For hypothesis H1, we want to estimate (θ̂SSGL-ML

|H1,l , âSSGL-ML
|H1,l), which

is obtained by replacing Ql(θl) in (31) with (35), a function of both θl and al.
In this case, we can estimate (θ̂SSGL-ML

|H1,l , âSSGL-ML
|H1,l) by applying the results from

(9)–(14) to (31), which results in replacing (31a) with

θ
(t+1)
|H1,l = (HlR−1

l Hl + μ1,lBl + ζDl)−1(R−1
l HT

l (zl − a(t)l) + ζDlp
(t)
l) (38)

and adding
a(t+1)

|H1,l = (R−1
l + μ2,lMl)−1R−1

l (zl − Hlθ
(t+1)
l). (39)

Note that steps (31b)–(31c) are not modified, ensuring that the agreement
between shared states is unrelated to the local functions Ql. Moreover, the inclu-
sion of the term ζDl is motivated by the same reasons as in (32) and (37). The
distributed SS-GLRT is summarized in Algorithm 1.

Moreover, from (20) and (26) we observe that the GL-GLRT, which
is a special case of the SSGL-GLRT, can be expressed as TGL-GLRT =

Detection of False Data Injection Attacks in Power Systems 253

Algorithm 2: Distributed GL-GLRT in area l

Input: Fix detection threshold γl and step size ζ Set initial guess: θ
(0)

|H0,l
, s

(0)
l ,

and p
(0)
l

1 for t = 0, 1, . . . do
2 Update:

3 θ
(t+1)

|H0,l
= (HlR

−1
l Hl + μ1,lBl + ζDl)

−1(R−1
l HT

l zl + ζDlp
(t)
l)

4 s
(t+1)
l (i) = 1

|Ai
l
|
∑

l′∈Ai
l
θ
(t+1)

|H0,l′ [i], ∀i with Ai
l �= ∅

5 p
(t+1)
l (i) = p

(t)
l (i) + s

(t+1)
l (i) − θ

(t)
|H0,l

(i)−s
(t)
l

(i)

2
, ∀i with Ai

l �= ∅
6 Set θ̂SSGL-ML

|H0,l
= θ

(t+1)

|H0,l
if −QSSGL

l (θ̂SSGL-ML
|H0,l

,0) > γl then

7 return “The area is under an FDI attack”

8 else
9 return “The area is under normal operation”

QSSGL(θ̂SSGL-ML
|H0

,0). Similar to the SSGL-GLRT, the SSGL-GLRT can be
adjusted for the distributed scenario by applying L detectors, represented as
TGL-GLRT

l , where each test is performed in the appropriate control center. These
detectors are defined as

TGL-GLRT
l = QSSGL

l (θ̂SSGL-ML
|H0,l ,0), l = 1, . . . , L,

where θ̂SSGL-ML
|H0,l estimation is described in (37). The distributed GL-GLRT is

summarized in Algorithm 2.

5 Simulations: IEEE 57-Bus Test Case

The performance of the SSGL-GLRT from (21) is evaluated and compared with
the following detectors:

1. The J(θ) test in (24) [1], which is the conventional BDD method.
2. GSP-based methods: the GL-GLRT in (26). and the Ideal-GLRT introduced

in [9,33].
3. The SSGL-GLRT obtained by using B = f

1
2 (ΦB) in (21), where f(ΦB) =

1 + 99 × fGHPF(ΦB), which is the perturbed ideal GHPF defined in (28).

These methods were selected to demonstrate the advantage of incorporating both
the physical and the GSP information. For the SSGL-GLRT, SS-Ideal-GLRT,
GL-GLRT, and Ideal-GLRT, we chose the regularization parameter μ1 = 900;
in addition, for the SSGL-GLRT and SS-Ideal-GLRT we also set μ2 = 10. We
conducted 1, 000 Monte-Carlo simulations based on the IEEE 57-bus test case
network using the DC-PF model in (2) to evaluate performance. For each trial,
we randomly drew the load demand from a Gaussian distribution with the mean
set to the load values provided in the test case. We computed the system states

254 G. Morgenstern et al.

Fig. 2. The probability of detection is measured versus: (a) the probability of false
alarm (ROC), and (b) the strength of the attack ‖a‖

using the Matpower command runpf(·) [50]. We set the noise covariance matrix
to R = σ2I with σ2 = 0.01. We generated an unobservable FDI attack using (5)
with c33 �= 0, and then normalized it to satisfy ||a|| = 1. In addition, we defined
the set of secured sensors S by constraining 80 power measurements (36% of
the total measurements) such that it was ensured that the state variables in the
generator buses and their first-order neighbors are not affected by the attack.
This set includes the power injection measurements in these buses and the power
flow measurement in the lines entering these buses.

The performance of the different detectors is exhibited in Fig. 2. In Fig. 2(a),
the receiver operating characteristic (ROC) curves demonstrate the balance
between the probability of detection and the probability of false alarms. The
results show that the proposed SSGL-GLRT outperforms all other detectors in
terms of the probability of detection for any level of false alarm probability.
In particular, the inclusion of prior information about protected measurements
gives the SSGL-GLRT an advantage over the GL-GLRT. Similarly, the SS-Ideal-
GLRT, which benefits from incorporating the additional information on the loca-
tions of the secured sensors, outperforms the Ideal-GLRT. The results also show
that detectors based on the smoothness of the states, i.e., the SSGL-GLRT and
GL-GLRT, perform better than those based on the graph-bandlimited assump-
tion, i.e., the SS-Ideal-GLRT and Ideal-GHPF. This is because the smoothness
assumption provides a better description of the states’ behavior than the graph-
bandlimited assumption. Finally, it can be seen that the that the conventional
BDD method - the J(θ) test - has the same power as random chance (“coin
flipping”). Thus, it cannot detect the unobservable FDI attack, as expected.

In Fig. 2(b) the detection probability is shown versus the attack strength,
which is measured by ‖a‖. As expected, it can be seen that the detection proba-
bility of all the detectors except the BDD detector increases with an increase in
‖a‖. In a similar manner to Fig. 2(a), it can be observed that incorporating the
additional information on the locations of the secured sensors improves the prob-

Detection of False Data Injection Attacks in Power Systems 255

ability of detection, where the SSGL-GLRT and SS-Ideal-GLRT outperforms the
GL-GLRT and the Ideal-GLRT, respectively. Moreover, it can be observed that
the SSGL-GLRT shows the best performance. Finally, as expected, the BDD
detector fails to detect the unobservable FDI attack for any selection of ‖a‖
presented.

6 Conclusions

We introduce SSGL-GLRT, which is a new detection method against FDI attacks
based on the well-known GLRT. The SSGL-GLRT is derived while incorporat-
ing knowledge of secured sensors’ locations and graph smoothness properties
of power system state variables. We provide a generalization of the method
that allows the use of different high-pass GSP filters instead of using the graph
smoothness measure. Moreover, we also consider the case where the power sys-
tem is operated in a distributed manner and provide the distributed SSGL-
GLRT detector. Numerical simulation show that incorporating the knowledge
of the locations of the secured sensors alongside the graph smoothness proper-
ties in the design of the detector significantly improves the detection capabilities
against FDI attacks. Future work may focus on expanding the proposed detector
to the alternating current (AC) power flow model, which is often used in power
systems.

Acknowledgments. This work was supported in part by the Next Generation Inter-
net (NGI) program, the Jabotinsky Scholarship from the Israel Ministry of Technology
and Science, the Israel Ministry of National Infrastructure, Energy, National Research
Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No.
RS-2023-00210018), NSF grants CNS-2148128, EPCN-2144634, EPCN-2231350, and
by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy
under the Solar Energy Technology Office Award Number DE-EE0008769. The views
expressed herein do not necessarily represent the views of the U.S. Department of
Energy or the United States Government.

Appendix: Concavity of Q(θ, a)

In order to show that the function Q(θ,a) from (8) is a concave function w.r.t
θ and a, we need to show that the Hessian matrix of the second-order partial
derivatives of −Q(θ,a) is a positive semidefinite matrix. It can be seen that the
Hessian matrix of −Q(θ,a) w.r.t. the vector [θT ,aT]T is

(
HTR−1H + B HTR−1

R−1H R−1 + M

)

=
(
HTR−1H HTR−1

R−1H R−1

)

+
(
B 0
0 M

)

.

The Hessian is a sum of two matrices. In the following, we show that each one
of these matrices is positive semidefinite, which implies that the Hessian is a

positive semidefinite matrix. First, it can be seen that the matrix
(
B 0
0 M

)

is a

256 G. Morgenstern et al.

positive semidefinite matrix because it is a block diagonal matrix of two positive
semidefinite matrices (see the definitions of B and M in (1) and (8), respectively).

Second, the matrix
(
HTR−1H HTR−1

R−1H R−1

)

is a positive semidefinite matrix since

it can be verified that its Schur complement,

HTR−1H − HTR−1RR−1H = 0,

is a positive semidefinite matrix [13].

References

1. Abur, A., Gomez-Exposito, A.: Power System State Estimation: Theory and Imple-
mentation. Marcel Dekker (2004)

2. Bi, S., Zhang, Y.J.: Graphical methods for defense against false-data injection
attacks on power system state estimation. IEEE Trans. Smart Grid 5(3), 1216–
1227 (2014)

3. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed opti-
mization and statistical learning via the alternating direction method of multipliers.
Found. Trends R© Mach. Learn. 3(1), 1–122 (2011)

4. Dabush, L., Kroizer, A., Routtenberg, T.: State estimation in partially observable
power systems via graph signal processing tools. Sens. (MDPI) 23(3), 1387 (2023)

5. Dabush, L., Routtenberg, T.: Detection of false data injection attacks in unob-
servable power systems by Laplacian regularization. In: IEEE Sensor Array and
Multichannel Signal Processing Workshop (SAM), pp. 415–419 (2022)

6. Deng, R., Xiao, G., Lu, R.: Defending against false data injection attacks on power
system state estimation. IEEE Trans. Ind. Informat. 13(1), 198–207 (2015)

7. Dong, X., Thanou, D., Frossard, P., Vandergheynst, P.: Learning Laplacian matrix
in smooth graph signal representations. IEEE Trans. Signal Process. 64(23), 6160–
6173 (2016)

8. Drayer, E., Routtenberg, T.: Detection of false data injection attacks in power
systems with graph Fourier transform. In: Global Conference on Signal and Infor-
mation Processing (GlobalSIP), pp. 890–894 (2018)

9. Drayer, E., Routtenberg, T.: Detection of false data injection attacks in smart grids
based on graph signal processing. IEEE Syst. J. (2019)

10. Esmalifalak, M., Liu, L., Nguyen, N., Zheng, R., Han, Z.: Detecting stealthy false
data injection using machine learning in smart grid. IEEE Syst. J. 11(3), 1644–
1652 (2017)

11. Hasnat, M.A., Rahnamay-Naeini, M.: A graph signal processing framework for
detecting and locating cyber and physical stresses in smart grids. IEEE Trans.
Smart Grid 13(5), 3688–3699 (2022)

12. He, Y., Mendis, G.J., Wei, J.: Real-time detection of false data injection attacks in
smart grid: a deep learning-based intelligent mechanism. IEEE Trans. Smart Grid
8(5), 2505–2516 (2017)

13. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press,
New York (2012)

14. Jia, L., Kim, J., Thomas, R.J., Tong, L.: Impact of data quality on real-time
locational marginal price. IEEE Trans. Power Syst. 29(2), 627–636 (2014)

Detection of False Data Injection Attacks in Power Systems 257

15. Kalofolias, V.: How to learn a graph from smooth signals. J. Mach. Learn. Res.
(JMLR) (2016)

16. Kay, S.M.: Fundamentals of Statistical Signal Processing: Detection Theory, vol.
2. Prentice Hall PTR, Englewood Cliffs (1998)

17. Kekatos, V., Giannakis, G.B.: Distributed robust power system state estimation.
IEEE Trans. Power Syst. 28(2), 1617–1626 (2012)

18. Kim, J., Bhela, S., Anderson, J., Zussman, G.: Identification of intraday false data
injection attack on DER dispatch signals. In: 2022 IEEE International Confer-
ence on Communications, Control, and Computing Technologies for Smart Grids
(SmartGridComm), pp. 40–46 (2022)

19. Kim, J., Tong, L.: On phasor measurement unit placement against state and topol-
ogy attacks. In: SmartGridComm, pp. 396–401 (2013)

20. Kim, T.T., Poor, H.V.: Strategic protection against data injection attacks on power
grids. IEEE Trans. Smart Grid 2(2), 326–333 (2011)

21. Kosut, O., Jia, L., Thomas, R.J., Tong, L.: Malicious data attacks on smart grid
state estimation: Attack strategies and countermeasures. In: 2010 First IEEE Inter-
national Conference on Smart Grid Communications, pp. 220–225 (2010)

22. Kroizer, A., Routtenberg, T., Eldar, Y.C.: Bayesian estimation of graph signals.
IEEE Trans. Signal Process. 70, 2207–2223 (2022)

23. Liang, G., Zhao, J., Luo, F., Weller, S.R., Dong, Z.Y.: A review of false data
injection attacks against modern power systems. IEEE Trans. Smart Grid 8(4),
1630–1638 (2017)

24. Lin, J., Yu, W., Yang, X., Xu, G., Zhao, W.: On false data injection attacks against
distributed energy routing in smart grid. In: International Conference on Cyber-
Physical Systems, pp. 183–192. IEEE Computer Society (2012)

25. Liu, Y., Ning, P., Reiter, M.K.: False data injection attacks against state estimation
in electric power grids. ACM Trans. Inf. Syst. Secur. 14(1), 13 (2011)

26. Minot, A., Lu, Y.M., Li, N.: A distributed Gauss-Newton method for power system
state estimation. IEEE Trans. Power Syst. 31(5), 3804–3815 (2015)

27. Monticelli, A.: State Estimation in Electric Power Systems: A Generalized App-
roach, pp. 39–61, 91–101, 161–199. Springer, Boston (1999)

28. Morgenstern, G., Routtenberg, T.: Structural-constrained methods for the identifi-
cation of unobservable false data injection attacks in power systems. IEEE Access
10, 94169–94185 (2022)

29. Morgenstern, G., Kim, J., Anderson, J., Zussman, G., Routtenberg, T.: Protection
against graph-based false data injection attacks on power systems (2023). https://
arxiv.org/abs/2304.10801

30. Ortega, A., Frossard, P., Kovačević, J., Moura, J.M.F., Vandergheynst, P.: Graph
signal processing: overview, challenges, and applications. Proc. IEEE 106(5), 808–
828 (2018)

31. Primadianto, A., Lu, C.N.: A review on distribution system state estimation. IEEE
Trans. Power Syst. 32(5), 3875–3883 (2016)

32. Ramakrishna, R., Scaglione, A.: Grid-graph signal processing (Grid-GSP): a graph
signal processing framework for the power grid. IEEE Trans. Signal Process. 69,
2725–2739 (2021)

33. Ramakrishna, R., Scaglione, A.: Detection of false data injection attack using graph
signal processing for the power grid. In: 2019 IEEE Global Conference on Signal
and Information Processing (GlobalSIP), pp. 1–5. IEEE (2019)

34. Routtenberg, T., Eldar, Y.C.: Centralized identification of imbalances in power
networks with synchrophasor data. IEEE Trans. Power Syst. 33(2), 1981–1992
(2017)

https://arxiv.org/abs/2304.10801
https://arxiv.org/abs/2304.10801

258 G. Morgenstern et al.

35. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal
algorithms. Phys. D 60(1–4), 259–268 (1992)

36. Sandryhaila, A., Moura, J.M.F.: Discrete signal processing on graphs: frequency
analysis. IEEE Trans. Signal Process. 62(12), 3042–3054 (2014)

37. Shaked, S., Routtenberg, T.: Identification of edge disconnections in networks
based on graph filter outputs. IEEE Trans. Signal Inf. Process. Netw. 7, 578–594
(2021)

38. Shereen, E., Ramakrishna, R., Dán, G.: Detection and localization of PMU time
synchronization attacks via graph signal processing. IEEE Trans. Smart Grid
13(4), 3241–3254 (2022)

39. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The
emerging field of signal processing on graphs: extending high-dimensional data
analysis to networks and other irregular domains. IIEEE Signal Process. Mag.
30(3), 83–98 (2013)

40. Soltan, S., Mazauric, D., Zussman, G.: Analysis of failures in power grids. IEEE
Control Netw. Syst. 4(2), 288–300 (2017)

41. Soltan, S., Yannakakis, M., Zussman, G.: Power grid state estimation following a
joint cyber and physical attack. IEEE Trans. Control. Netw. Syst. 5(1), 499–512
(2016)

42. Soltan, S., Yannakakis, M., Zussman, G.: React to cyber attacks on power grids.
IEEE Trans. Netw. Sci. Eng. 6(3), 459–473 (2018)

43. Sridhar, S., Hahn, A., Govindarasu, M.: Cyber-physical system security for the
electric power grid. Proc. IEEE 100(1), 210–224 (2011)

44. Veith, E., Fischer, L., Tröschel, M., Nieße, A.: Analyzing cyber-physical systems
from the perspective of artificial intelligence. In: Proceedings of the 2019 Inter-
national Conference on Artificial Intelligence, Robotics and Control, pp. 85–95
(2019)

45. Verdoja, F., Grangetto, M.: Graph Laplacian for image anomaly detection. Mach.
Vision Appl. 31(1–2), 11 (2020)

46. Vuković, O., Dán, G.: Security of fully distributed power system state estimation:
detection and mitigation of data integrity attacks. IEEE J. Sel. Areas Commun.
32(7), 1500–1508 (2014)

47. Xie, L., Mo, Y., Sinopoli, B.: Integrity data attacks in power market operations.
IEEE Trans. Smart Grid 2(4), 659–666 (2011)

48. Yuan, Y., Li, Z., Ren, K.: Quantitative analysis of load redistribution attacks in
power systems. IEEE Trans. Parallel Distrib. Syst. 23(9), 1731–1738 (2012)

49. Zhu, X., Kandola, J.S., Lafferty, J., Ghahramani, Z.: Graph kernels by spectral
transforms (2006)

50. Zimmerman, R.D., Murillo-Sanchez, C.E., Thomas, R.J.: MATPOWER: steady-
state operations, planning, and analysis tools for power systems research and edu-
cation. IEEE Trans. Power Syst. 26(1), 12–19 (2011)

KerberSSIze Us: Providing Sovereignty
to the People

Ronald Petrlic(B) and Christof Lange

Nuremberg Institute of Technology, 90489 Nuremberg, Germany

ronald.petrlic@th-nuernberg.de

Abstract. Kerberos is an old, yet widely used protocol for authentica-
tion and authorization in (local) network environments. Self Sovereign
Identity (SSI), on the other hand, is a relatively new model for man-
aging digital identities—not so widely used in practice yet but with a
promising future. We are the first to propose to bring Kerberos and SSI
together and thereby achieve the advantages of both worlds.

We come up with a concept to integrate SSI authentication in Ker-
beros by requiring only a few changes in the Kerberos ecosystem to
enable application in practice. We implement our concept and show its
feasibility.

With our proposed integration of SSI in Kerberos, we not only advance
the usage of SSI in practice but we furthermore get rid of the main secu-
rity problem of Kerberos: the usage of (weak) user passwords, and, thus,
advance the overall security of Kerberos environments.

Keywords: Authentication · Kerberos · Self Sovereign Identity

1 Introduction

Kerberos is the protocol used for authentication and authorization in local net-
works. Developed at MIT decades ago, Kerberos has been further developed (an
RFC search reveals 43 results and a Google Scholar search reveals thousands of
papers and patents) and has become the de-facto standard for authentication
and authorization in Windows Server network environments.

On the other side, a paradigm shift in user authentication is on the horizon:
Self-Sovereign Identity (SSI) promises to give users full control over their digital
identities and, thus, their personal data. In the future, we all might make use of
SSI and get rid of data-collecting central identity providers like Meta or Google.

The goal of our work is to come up with an extension for Kerberos that
supports the usage of SSI as an authentication method. Thereby, the advantages
of SSI—like Selective Disclosure and full control over one’s own identity—can
be directly used in Kerberos. Moreover, the biggest weakness of Kerberos—the
usage of passwords—is mitigated.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 259–273, 2023.
https://doi.org/10.1007/978-3-031-44274-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_19&domain=pdf
https://doi.org/10.1007/978-3-031-44274-2_19

260 R. Petrlic and C. Lange

The rest of the paper is structured as follows. In Sect. 2 we give an overview of
Kerberos and SSI. Then we point out the requirements for our solution in Sect. 3
before we present our concept in Sect. 4 and the implementation in Sect. 5. We
evaluate our approach in Sect. 6. Finally, we present related work in Sect. 7.

2 Background

2.1 Kerberos

The current version of Kerberos is version 5, which is also the basis for the
integration of Kerberos in Windows Active Directory domains.

There are four entities in the Kerberos protocol: Client, Authentication Server
(AS), Ticket-Granting Service (TGS), and Service.

The AS and the TGS are two different entities, which are often implemented
in one program (called Key Distribution Center (KDC))—both have access to
the same database (in Windows network environments the Active Directory
serves as the database for the storage of user and service keys). [1]

The client is a piece of software running on the user’s system, allowing the
user to authenticate and ask for permission to use a certain service. [2] The
protocol flow is as follows.

1. The client contacts the AS, which is responsible for authenticating the user.
If the user authentication is successful, the client receives a so-called Ticket-
Granting Ticket (TGT). Therefore, AS REQ and AS REP messages are
exchanged between the client and AS.

2. In the next step, the authorization takes place: the client contacts the TGS
to receive a (service) Ticket that can later on be used to access a specific
service.

3. The client uses the ticket to access the service.

Main Weakness: Usage of Passwords. In Kerberos, passwords are used both
for authentication and key generation, entailing several risks. An attacker who
gets ahold of a user’s password can assume the victim’s identity. As passwords
are mostly chosen by users they are typically not very strong—increasing the
probability of a successful attack.

An attacker may use an online or offline attack to retrieve a user’s password.
While the online attack entails a request by the attacker to the KDC for every
try, and, thus, can be detected and prohibited, the offline attack is hard to
detect and prohibit. In the offline attack, the attacker eavesdrops on the network
communication and records the AS REQ and AS REP messages. Both messages
include the user name in clear text. Moreover, there is a part that is encrypted
with KClient—the user key derived from the password. The attacker can now
perform a dictionary attack, trying all possible user passwords and checking
whether decryption provides a meaningful message and if so, having found the
correct password. This attack shows that the strength of the password directly
influences how well the messages are protected.

KerberSSIze Us: Providing Sovereignty to the People 261

The users’ keys are stored in the central database of the KDC. An attacker
with access to the database can use the (symmetric) keys to read the encrypted
communication and impersonate users. In the event of an attack, this means
that all user passwords need to be changed.

Extensions. The pre-authentication framework provides extensibility for
Kerberos. The messages that are exchanged with the KDC include a pre-
authentication data field. Within this field, any data can be included. For stan-
dardization purposes, RFC 6113 determines functions and tools that provide
information on how to develop new pre-authentication mechanisms. This allows
for the facilitation of integration in existing software projects. Several such exten-
sions that make use of this possibility have been developed in the past. [3]

One such extension is calledFlexible Authentication Secure Tunneling (FAST).
From a technical perspective, this is a new pre-authentication type that includes
an encrypted component. This enables secure transmission of data between a
client and the KDC (within a tunnel). This functionality is useful for new pre-
authentication mechanisms, as data can be securely exchanged within FAST
messages.

The key for the encryption is called armor key (KArmor). This key is derived
from the session key of the armor TGT and a sub-key of the user key. To retrieve
the armor TGT, several methods are possible according to RFC 6113. One of
them is the use of (anonymous1) PKINIT (Public Key Cryptography for Initial
Authentication), another important Kerberos extension (RFC 4556) that enables
authentication in Kerberos via asymmetric cryptography [5].

2.2 Self-Sovereign Identity (SSI)

With Self-Sovereign Identity (SSI) paradigm, users get control over their digital
identities. This is in contrast to other identity management models used so far.

The basis for SSI is a new identifier that does not rely on a central trust
authority. The Decentralized Identifier (DID), which can be created on one’s own,
identifies a subject (a person, organization, object, etc.). The DID is managed
by a DID controller (in most cases the same person as the DID subject) who can
cryptographically prove that he controls the DID. [6] Typically, a DID document,
containing data like a public key or information about the initiation of a secure
connection (i.e., an URL to the DID subject), is assigned to a DID. The DID
and the corresponding DID document are typically stored on a verifiable data
registry (VDR)—in most cases on a Blockchain [6,7].

Building upon (layer 1) DIDs, the DID Communication Protocol (DID-
Comm) is located on layer 2. DIDComm enables asynchronous and end-to-
end encrypted connections between communication partners. DIDComm can be
used independently of the transport mechanism (e.g., HTTP, Bluetooth, email,
NFC,...). There are different ways how the communication initiation can be
1 Anonymous PKINIT means that only the KDC is authenticated and the client stays
anonymous [4].

262 R. Petrlic and C. Lange

achieved. The sending party might either know the recipient’s DID (and can
then look up the necessary data on the Blockchain—i.e., the URL of the recipi-
ent and its public key) or the sending party receives a communication invitation
by scanning a QR code (and thereby retrieving the necessary data). The sending
party’s agent then encrypts and signs the message and sends it to the recipient—
whose agent performs the decryption and signature check (the public key of the
sender being retrieved through the sender’s DID document on the Blockchain).

Another layer provides trust: On layer 3, we have so-called Verifiable Cre-
dentials (VCs), which can be used to vouch for certain facts, e.g. that a person
is a student at a certain university. [8] VCs are the digital equivalent of ID docu-
ments. They are issued by an issuer and digitally stored by the holder in a wallet
and can be shown to a verifier on demand. The individual statements about a
subject are called claims. For the proof towards a verifier, a so-called Verifiable
Presentation (VP) is created. VPs support Selective Disclosure, which enables
sharing only particular claims and not the whole VC. There are two types of
VCs: W3C Verifiable Credentials and AnonCreds. With W3C VCs a standard
for the data model of VCs is determined. AnonCreds were developed earlier and
have stronger protection of anonymity as a goal. Due to their widespread, they
are the de-facto standard for zero-knowledge proof (ZKP) based credentials.

3 Requirement Analysis

Before we discuss the requirements in detail, we point out why the integration
of SSI in Kerberos is advantageous, i.e., which improvements can be achieved.

Mitigation of the Password Risk: Passwords are completely removed with
our Kerberos extension, as users only present verifiable credentials, thus, mitigat-
ing the main security risk of Kerberos. Moreover, the strength of the encryption
in Kerberos is also improved as it does not depend on the strength of a user
password anymore.

No Central Storage of User Keys: As the users and the KDC does not need
a common secret anymore with our extension, there is no need for a central
database with user keys anymore. This minimizes the risk of an attack and the
compromising of user accounts.

DIDs and VCs Instead of CAs: The drawbacks of passwords could be elim-
inated by the PKINIT Kerberos extension. However, CAs are used as trusted
third parties (TTPs) with the PKINIT extension to bind public keys to user
names (introducing a potential single point of failure). With our extension,
issuers (only) issue VCs that contain claims about a user behind a DID. The
binding of DIDs to keys is done in a decentralized and independent way. The trust
shifts from CAs to governance authorities. For our use case, the SSI architec-
ture has the advantage that the keys of the DIDs can be rotated independently.
Moreover, the number of issuers increases due to the separation of identity verifi-
cation and public key verification [7] and VCs are more flexible than certificates
(e.g., any attributes and any combinations of VCs in a VP are possible).

KerberSSIze Us: Providing Sovereignty to the People 263

Data Minimization: By using selective disclosure, the user only needs to share
the data of a VC that are needed for authentication and authorization.

Single Verification: A user can use a VC for authentication and authorization
at different KDCs. There is no need for a second account, an exchange for a
password, or additional verification. The KDC gets all the needed data for the
login through VCs (or even claims from different VCs in a VP).

Increase of Comfort: The user does not need to remember a password with
our extension but only needs to unlock his wallet and show the claims.

Integration in Existing Infrastructure: It is easier to keep the infrastructure
for services by integrating SSI into an existing protocol than to change the overall
architecture by migrating to SSI (i.e., get rid of IdP, adapt every single service,
etc.). [9]. For our scenario, this means that the access to services is still done
by using tickets (the infrastructure with kerberized services does not need to
be adapted). Only the AS protocol is adapted so that SSI can be used as an
additional login method in Kerberos.

3.1 Requirements

Functional Requirements

– FR1: The user can get a TGT with his SSI
– FR2: Claims can be extracted from a VC to enable authorization
– FR3: CAs get replaced by a decentralized solution
– FR4: The login at a Kerberos system shall be possible without prior registra-

tion at the KDC
– FR5: The KDC does not need to store a database with user keys
– FR6: The user only needs to share those data that are needed for authenti-

cation and authorization (selective disclosure)
– FR7: The access to services is still done via tickets, i.e. the existing infras-

tructure of kerberized services does not need to be modified

Non-functional Requirements

– NFR1: The wallet with the SSI does not need to be on the same device on
which the login shall take place

– NFR2: The extension shall be compatible with Kerberos clients that do not
support the extension

4 Concept

4.1 Assumptions

To be able to log in to a Kerberos system, a user needs credentials from a trust-
worthy issuer. With SSI, a governance framework is used to establish trust. [8]

264 R. Petrlic and C. Lange

4.2 Merging of Kerberos and SSI Components

Let us start the concept description with a high-level overview (shown in Fig. 1)
of a merging of Kerberos and SSI and by discussing the difficulties in doing so.

Fig. 1. Merging of Kerberos and SSI components.

As we can see in the overview, there is only a single change on the Kerberos
side necessary: the KDC is extended by an SSI Agent. This implies a main change
in responsibilities at the KDC as well: The KDC is not responsible for manag-
ing users any longer—instead, the SSI Agent verifies users’ SSI credentials and
provides the KDC with proper identity information. The account management
of services at the KDC remains as it was.

It would be possible to extend the client with SSI capabilities, which would
solve some challenges. We investigated this in detail but in the end, we came
to the conclusion that this solution would have the disadvantage that the client
software would need to be adapted and standard wallets could not be used. Thus,
we will only focus on the solution where the client does not need to be adapted
(except for the need to understand the new pre-authentication type).

Merging Kerberos and SSI is not straightforward and we can identify three
significant challenges when doing so, which we will discuss now:

Challenge 1 (Transmission of the Proof): As shown in Fig. 1, the proof
is directly exchanged between the user wallet and SSI Agent KDC. A possible
protocol for the exchange of the proof is the present proof protocol2.

Another option would be the aforementioned client extension with an SSI
agent. [10] However, this would require that the wallet is able to forward creden-
tials to other agents, a functionality not all wallets are equipped with. Moreover,
the client agent would be involved in the proof process and could read the data.

2 https://github.com/hyperledger/aries-rfcs/blob/main/features/0037-present-
proof/README.md.

https://github.com/hyperledger/aries-rfcs/blob/main/features/0037-present-proof/README.md
https://github.com/hyperledger/aries-rfcs/blob/main/features/0037-present-proof/README.md

KerberSSIze Us: Providing Sovereignty to the People 265

Challenge 2 (AS REP Protection and KDC Authenticity): Parts of the
message AS REP are encrypted with KClient in standard Kerberos. However,
as there are no passwords from which the key could be derived any longer with
our new extension, an alternative needs to be found. In standard Kerberos, the
client knows that the KDC is authentic as only the KDC (and the client itself)
knows the proper KClient. The problem can be solved by using a FAST tunnel.

Challenge 3 (Connection of the client and the wallet): As stated for
Challenge 1, the proof is directly sent from the user’s wallet to the KDC’s agent.
However, the Kerberos message AS REQ is sent from the client to the KDC.
Thus, the KDC needs to link messages from two different sources.

We propose to use personalized DIDComm communication invitations to
solve the problem: The KDC agent generates a communication invitation, which
is then forwarded from the client to the user’s wallet. When the user’s wal-
let establishes a DIDComm communication via that invitation, the KDC agent
determines the client via the connection ID [11].

4.3 Authorization

Authorizations can be extracted based on the user names from a central database
in standard Kerberos. Another option is to transport them within the tickets.

In order to enable the full potential of SSI, we propose to write the claims to
the TGT, resp. tickets. The user’s DID is thereby used as the Kerberos username.
During the login at a Kerberos system, the KDC agent sends a proof request
to the user’s wallet, which queries the role of the user. Afterward, when the
client sends the AS REQ message, the claims from the proof are written as
authorization data into the TGT. When the TGT is used to get a ticket later
on, the KDC transfers the authorization data from the TGT to the ticket. The
service can then use the data for the authorization.

4.4 New Pre-authentication Type

As we decided to only extend the KDC with SSI functionality, it is not possible
to securely communicate between the client and KDC via DIDComm-encrypted
messages. We thus need an alternative for secure communication. We employ
the FAST tunnel as described in Sect. 2 for that.

Another challenge for our extension is that KDCs do not hold state in Ker-
beros (which is a main design goal). KDCs can be replicated and two consecutive
requests do not necessarily get to the same KDC [3].

We use new pre-authentication types: If the type PA-SSI-REQUEST is
contained in the AS REQ message, the KDC knows that the SSI extension
shall be used.

If it is the first request, there is no cookie contained in the message and the
KDC requests a new DIDComm invitation (coming with a Connection ID) from
its SSI agent. The KDC then creates a Connection ID Cookie by encrypting
the Connection ID with KKDC . This ensures that no other party can create the

266 R. Petrlic and C. Lange

cookie. The KDC then sends the invitation and the cookie back to the client as
part of the new pre-authentication type PA-SSI-INFO.

If the Connection ID Cookie is contained in the AS REQ message, the KDC
decrypts it and retrieves the Connection ID. This serves as evidence that the
client retrieved the invitation suitable to the Connection ID before. The Con-
nection ID is then used to check whether a proof is available. If this is the case,
the proof is retrieved and the data are used to generate the AS REP message.

4.5 AS REP Protection and KDC Authenticity

As an alternative to KClient, the armor key is used to encrypt the message
AS REP . The KDC’s authenticity is determined when retrieving the armor
ticket. By using PKINIT, the signature of the KDC (as part of AS REP) is
validated with the KDC’s certificate. The certificate needs to be issued by a CA
trusted by the client.

4.6 Protocol in Detail

Now that we have discussed the design decisions and have the building blocks
together, we can describe the whole protocol in detail.

Phase 1: Invitation for KDC SSI Agent

1. The user starts a new login attempt at a client. After the selection of a realm,
an armor ticket is retrieved.

2. In order to signalize the KDC that the SSI extension shall be used, an
AS REQ message with the pre-authentication type PA-SSI-REQUEST is
sent to the KDC. The FAST mechanism is used to encrypt the message with
the armor key.

3. The KDC retrieves the request and notices the SSI pre-authentication ele-
ment. The KDC then sends a request for a DIDComm invitation to its SSI
agent. The SSI agent responds with a personalized invitation link and a cor-
responding Connection ID.

4. The KDC creates the Connection ID Cookie and forwards it (together with
the invitation link) to the client via an encrypted error message. The error
code is MORE PREAUTH DATA REQUIRED.

5. The client presents the invitation link in the form of a QR code to the user.

Phase 2: Identity Proof

1. The user scans the QR code with his wallet. This causes the wallet to establish
a DIDComm connection to the KDC SSI Agent. The KDC SSI Agent requests
a proof request with the relevant attributes.

2. The wallet shows the user the proof request and the user chooses the proper
credentials. After the user’s confirmation, a proof presentation is sent to the
KDC SSI Agent. All the advantages of SSI, like Selective Disclosure, can be
used in this step.

3. The KDC SSI Agent retrieves and verifies the proof.

KerberSSIze Us: Providing Sovereignty to the People 267

Phase 3: Ticket Retrieval

1. The user informs the client via a button that the proof has been submit-
ted. The client then issues a new AS REQ request with the type PA-SSI-
REQUEST through the FAST tunnel. This time, the Connection ID Cookie
is included.

2. The KDC extracts the cookie from the SSI pre-authentication element and
decrypts it.

3. The KDC asks its SSI Agent whether a successful proof for the Connection
ID is available.

4. If this is the case, the proof with the claims is forwarded to the KDC. The
username and authorization data are set. The answer AS REP is encrypted
with the armor key and sent to the client. The login is finished. If there is no
proof available, the client retrieves an error message.

5 Implementation

To demonstrate the functionality of our concept, we implemented a proof of
concept (PoC). The system overview is shown in Fig. 2.

Fig. 2. PoC Implementation System Overview

268 R. Petrlic and C. Lange

5.1 Components

Indico DemoNet: The public permissioned Blockchain from the Hyperledger
Indy project3 is used for the SSI solution. The schemata and credential defini-
tions are stored on the Blockchain by the issuer.

Aries Cloudagent Python: An agent is needed for the interaction with the
Indy blockchain and other components in the SSI ecosystem. The Aries Clouda-
gent Python4 (ACA-py), developed in the Hyperledger Aries project, is best
suited for our purpose. The agent is controlled by a controller software that
receives webhook events such as the initiation of a new DIDComm connection.
For our PoC, two instances of ACA-py are used in docker containers5. One agent
takes the role of the issuer and the other agent takes the role of the verifier.

Verifier Controller: The controller for the verifier agent is written in Kotlin
and uses the library ktor6, which enables the setup of an HTTP server and the
initiation of HTTP requests. When a new DIDComm connection is initiated
(from ACA-py), an event is triggered. The controller is informed through a
webhook and instructs the agent (via a REST request) to send a proof request.

Aries Toolbox: The Aries Toolbox7 provides a user interface that helps con-
figure the Aries Cloudagent Python: invitations can be created, connections can
be queried and credentials can be created and issued via the UI for example. We
used the toolbox to create and issue credentials (as issuer) and to control the
functionality of the verifier agent.

esatus Wallet: We use the mobile wallet esatus8 for the credential holder. By
scanning a QR code, the invitation by an agent can be accepted and a connection
is established. Credentials can then be received and shown after a proof request.

ngrok: ngrok9 allows to make available the host of the local development
machine for requests from the Internet. In our PoC, ngrok is used to enable
communication between the mobile wallet, the issuer, and the verifier—as in our
PoC, the issuer and verifier are executed on the local development machine.

Apache Kerby: We chose Apache Kerby as Kerberos solution, as it supports
anonymous PKINIT and FAST. For our PoC, we extended the implementation
by a new pre-authentication type. Moreover, we created a sub-project for a demo
client and a demo KDC.

3 https://www.hyperledger.org/use/hyperledger-indy.
4 https://github.com/hyperledger/aries-cloudagent-python.
5 https://hub.docker.com/r/bcgovimages/aries-cloudagent.
6 https://ktor.io.
7 https://github.com/hyperledger/aries-toolbox.
8 https://esatus.com/index.html%3Fp=7947.html.
9 https://ngrok.com.

https://www.hyperledger.org/use/hyperledger-indy
https://github.com/hyperledger/aries-cloudagent-python
https://hub.docker.com/r/bcgovimages/aries-cloudagent
https://ktor.io
https://github.com/hyperledger/aries-toolbox
https://esatus.com/index.html%3Fp=7947.html
https://ngrok.com

KerberSSIze Us: Providing Sovereignty to the People 269

5.2 Issuance of Credentials

The user needs to have credentials in his wallet, which are used for the login to
the Kerberos system. We used the Aries Toolbox to prepare a schema for the
membership at a certain organization (including several attributes) and write
the schema definition to the Indico DemoNet in the role of the issuer. Moreover,
the issuer is bound to the schema by a credential definition.

We furthermore created an invitation QR code for the issuer, which is scanned
by the user with his wallet. The code contains the endpoint, where the issuer
can be reached (in our case: the URL of ngrok with the forwarding to the devel-
opment machine), as well as the key material for the initiation of a secure con-
nection. When the user confirms the connection initiation, the credential can
be sent to the wallet after input of the claim values. After confirmation, the
credential is stored in the wallet and can be used.

5.3 Start of the Login

The user starts the login at the Kerberos client. After the client sends the
AS REQ message, it receives the Connection ID Cookie and the invitation for
the KDC SSI Agent (as part of an error message). The invitation is embedded
into a QR code and shown on the screen. The client shows the notice that the
identity needs to be proven and that a button click proceeds the login later on.

5.4 Proof of the Identity with VP

When the user scans the QR code with his esatus wallet, a DIDComm connection
from the wallet to the verifier is established. The controller is informed about the
new connection via a webhook. The controller then prepares the proof request,
which can be different for every use case. Restrictions can be used to state
conditions for the claims; for example, only credentials from certain issuers with
certain fields (e.g. roles) can be accepted. When the wallet receives the proof
request, the user is notified and sees which information shall be transmitted.
From the available credentials, the suitable ones are selected automatically. The
user sees whether he has the needed authorizations even before sending the data.

5.5 Receiving the TGT

After the proof is sent to the verifier through the wallet, the login at the client is
continued. When the KDC receives the AS REQ (this time with the Connection
ID Cookie), the cookie is decrypted to receive the Connection ID. The verifier
is then contacted and asked via a REST inquiry, whether verified proofs for the
Connection ID are available. If a valid proof is available, the user has proven his
identity, and the username claim from the proof is used as the username in the
TGT. The other claims from the proof are also extracted and written into the
authorization field of the TGT. Before the TGT is sent to the client, the KDC
deletes the proof via a REST call to the KDC SSI Agent. This ensures that the
identity needs to be proven again when the user wants to authenticate again.

270 R. Petrlic and C. Lange

6 Evaluation

Our concept fulfills all requirements stated in Sect. 3.

6.1 Security Evaluation

Authenticity, integrity, and confidentiality of the messages between the user wal-
let and the KDC SSI Agent are ensured by the DIDComm protocol.

For the exchange of messages between the client and the KDC, the client
needs to receive an armor ticket in advance. As we use PKINIT, the authen-
ticity and integrity of the message can be checked by validating the signature
of the KDC. The confidentiality of the message is ensured by the asymmetric
encryption of the key.

With a symmetric key that is derived from the armor ticket, a secure tunnel
can be established. The Connection ID Cookie and the invitation link are secured
through this tunnel. Authenticity and integrity are given, as only the client and
the KDC have the common key.

Every message exchanged between the client and the KDC using FAST is
independent of each other. The KDC does not hold any state. Only the possession
of the cookie identifies a client. Thus, it is important that an attacker does not
gain access to the cookie, as he could impersonate the client then.

The encryption of the cookie with KKDC ensures that only the KDC can
generate and read it. The cookie is only exchanged encrypted and, thus, an
attacker cannot retrieve the cookie in plain text.

The KDC and its SSI Agent communicate within a closed network without
access to external parties, ensuring authenticity, integrity, and confidentiality.

The transmission of the DIDComm invitation from the client to the user’s
wallet is done through a QR code scan. The pre-requisite is that the client is not
compromised and the QR code is authentic.

Replay Attack. An attacker could record the proof presentation from the
user’s wallet to the KDC SSI Agent and later on replay the proof as a response to
another proof request. To prevent this attack, a nonce is included in each request.
Only if the same nonce is included in the answer, the proof is accepted [3].

Another attack surface is the AS REQ and AS REP messages. A recorded
answer could be replayed to the client. This is prevented in standard Kerberos by
including a nonce in the AS REQ message [12]. Moreover, an armor ticket shall
only be used once. Afterward, a new armor ticket is needed [3]. An AS REP
message secured with the old armor key cannot be used in a replay attack.

The Connection ID Cookie shall only be usable once for the receiving of a
TGT. Otherwise, it would equal a ticket with an infinite lifetime. This is why the
proof available for a specific Connection ID is deleted before issuing the TGT.
If the cookie is used once again, the proof does not exist anymore and the user
needs to authenticate with his SSI again.

KerberSSIze Us: Providing Sovereignty to the People 271

6.2 Comparison to Standard Kerberos

The main advantage of our extension is that users do not need to choose strong
Kerberos passwords for each realm. Instead, a single private key for identity veri-
fication is stored via DID and VC within the wallet. Moreover, the strength of the
encryption depends on the strength of the user’s password in standard Kerberos.
As we employ FAST for Kerberos message exchange and asymmetric encryption
for DIDComm, the encryption is stronger as longer keys are employed. Another
advantage of our extension with regards to security is that no more encryption
keys of users are stored in a central database, prone to attacks.

Without the extension, the user is supplied with an identity via his account.
By using SSI, the user is in full control of his identity and can use privacy-
preserving mechanisms such as Selective Disclosure. Moreover, the user knows
exactly which data are shared. Registration at the KDC is not necessary before-
hand, as users can show all necessary attributes via verifiable credentials.

As SSI is universal, users can access services across realm borders, without
the need for a prior registration. This is one of the major advantages of our
extension in terms of usability for users. The main difference to standard Ker-
beros cross-realm authentication is that the home KDC does not need to be
contacted and the target KDC does not need to be registered beforehand at the
home KDC, simplifying cross-realm service usage not only for users but also for
administrators. In the indirect cross-realm trust model in standard Kerberos,
each KDC in the authentication chain has access to the session key, enabling
MITM attacks [13]. As the authenticity is directly proven towards the target
KDC with our extension, an indirect trust model can be realized without secu-
rity loss.

A drawback of our extension is that the complexity of the overall system is
extended. A verifiable data registry, a user wallet and an SSI agent is needed,
which increases the setup overhead.

7 Related Work

An SSI integration has been proposed for other authentication protocols in the
past. Integration in the OAuth 2.0 protocol was presented by Hong et al. [14].
However, the authors propose to store personal data in smart contracts on the
Ethereum blockchain, contradicting privacy protection. In our concept, no per-
sonal data are stored on the Blockchain; instead, personal data are only stored
within the users’ wallets securely. Grüner et al. [15] and Lux et al. [16] pro-
posed concepts for SSI integration in OpenID and Yildiz et al. [11] proposed
to integrate SSI in the SAML protocol. Kuperberg et al. [9] show in their
study how SSI can be integrated into conventional software using established pro-
tocols. They investigate popular SSI implementations and check whether they
work together with typical IAM protocols. They point out that there is no SSI
support for Kerberos—a gap that we close with our paper.

As mentioned in Sect. 2, PKINIT is an extension to Kerberos that allows
authentication via asymmetric cryptography. The KDC and the users are thereby

272 R. Petrlic and C. Lange

certified by a certificate authority (CA). In contrast to our extension, a user
account needs to be created in the KDC database with PKINIT. It would theo-
retically be possible to include attributes in certificates that are used for autho-
rization. However, our approach based on SSI is more flexible as VCs are more
flexible (any content and the combination of VCs to a VP is possible), and better
privacy protection is possible by using Selective Disclosure and ZKPs.

Another extension to Kerberos was proposed by Zheng et al. [17]: Tokens,
issued by token authorities and representing user identities, should be usable as
identity proof towards a Kerberos system. The most common type of token is the
JSON Web Token (JWT). The extension by Zheng et al. currently works with
bearer tokens, which can be used by anyone who possesses them. The approach
provides a bridge to OAuth 2.0. In contrast to our extension, users are not in
full control of their data, though.

8 Conclusion and Outlook

We presented an approach to integrate SSI usage in Kerberos, requiring only
minimal changes in the Kerberos ecosystem in order to foster its practicability.

The main advantage of our approach is that we can get rid of (insecure) user
passwords that pose a real threat in Windows environments, which use Kerberos
for authentication. Moreover, our approach enables practical cross-realm service
usage without requiring prior user registration or registrations of KDCs in other
realms, which would be needed in standard Kerberos environments.

We are the first to propose to use SSI authentication and authorization
in Kerberos. We are very confident that this approach—besides the security
advantages—fosters SSI usage as there is a direct use case due to the widespread
penetration of Kerberos environments in practice. SSI provides full control over
their identities to users—for the first time in identity management and users can
benefit in terms of privacy protection by making use of selective disclosure.

In future work, we plan to extend our solution to provide accounting as well.
This third “a” (besides authentication and authorization) in the AAA Kerberos
protocol has been neglected in practice so far and our approach (being based on
the Blockchain technology) can make this practicable.

A formal security analysis of our approach is left as future work.

References

1. Garman, J.: Kerberos: The Definitive Guide. O’Reilly Media, Sebastopol (2003)
2. Kohl, J.T., Neuman, B.C., Theodore, Y.: The evolution of the Kerberos authenti-

cation service (1994)
3. Hartman, S., Zhu, L.: A Generalized Framework for Kerberos Pre-Authentication.

RFC 6113 (2011). https://www.rfc-editor.org/info/rfc6113
4. PKINIT configuration (2022). https://web.mit.edu/kerberos/www/krb5-latest/

doc/admin/pkinit.html
5. Zhu, L., Tung, B.: Public key cryptography for initial authentication in Kerberos

(PKINIT). RFC 4556 (2006)

https://www.rfc-editor.org/info/rfc6113
https://web.mit.edu/kerberos/www/krb5-latest/doc/admin/pkinit.html
https://web.mit.edu/kerberos/www/krb5-latest/doc/admin/pkinit.html

KerberSSIze Us: Providing Sovereignty to the People 273

6. Reed, D., Sabadello, M., Sporny, M., Guy, A.: Decentralized Identifiers (DIDs) v1.0
(2022). https://www.w3.org/TR/2022/RECdid-core-20220719/

7. Preukschat, A., Reed, D.: Self-Sovereign Identity. Manning Publications, Shelter
Island (2021)

8. Introduction to Trust Over IP (2021). https://trustoverip.org/wp-content/
uploads/Introduction-to-ToIP-V2.0-2021-11-17.pdf

9. Kuperberg, M., Klemens, R.: Integration of self-sovereign identity into conventional
software using established IAM protocols: a survey. In: Roßnagel, H., Schunck,
C.H., Mödersheim, S. (eds.) Open Identity Summit 2022, pp. 51–62. Gesellschaft
für Informatik e.V., Bonn (2022)

10. Noble, G., Sporny, M., Zundel, B., Burnett, D., Hartog, K.D., Longley, D.: Veri-
fiable Credentials Data Model v1.1 (2022). https://www.w3.org/TR/2022/REC-
vc-data-model-20220303/

11. Yildiz, H., Ritter, C., Nguyen, L.T., Frech, B., Martinez, M.M., Küpper, A.:
Connecting self-sovereign identity with federated and user-centric identities via
SAML integration. In: 2021 IEEE Symposium on Computers and Communications
(ISCC), pp. 1–7 (2021)

12. Neuman, C., Yu, T., Hartman, S., Raeburn, K.: RFC 4120: The Kerberos Network
Authentication Service (V5), USA (2005)

13. Sakane, S., Kamada, K., Zrelli, S., Ishiyama, M.: Problem Statement on the Cross-
Realm Operation of Kerberos. RFC, vol. 5868, pp. 1–13 (2010). https://doi.org/
10.17487/RFC5868

14. Hong, S., Kim, H.: VaultPoint: a blockchain-based SSI model that complies with
OAuth 2.0. Electronics 9(8) (2020). https://www.mdpi.com/2079-9292/9/8/1231

15. Grüner, A., Mühle, A., Meinel, C.: An integration architecture to enable service
providers for self-sovereign identity. In: 2019 IEEE 18th International Symposium
on Network Computing and Applications (NCA), pp. 1–5 (2019)

16. Lux, Z.A., Thatmann, D., Zickau, S., Beierle, F.: Distributed-ledger-based authen-
tication with decentralized identifiers and verifiable credentials. In: 2020 2nd Con-
ference on Blockchain Research & Applications for Innovative Networks and Ser-
vices (BRAINS), pp. 71–78. IEEE (2020)

17. Zheng, K., Jiang, W.: A token authentication solution for hadoop based on ker-
beros pre-authentication. In: 2014 International Conference on Data Science and
Advanced Analytics (DSAA), pp. 354–360 (2014)

https://www.w3.org/TR/2022/RECdid-core-20220719/
https://trustoverip.org/wp-content/uploads/Introduction-to-ToIP-V2.0-2021-11-17.pdf
https://trustoverip.org/wp-content/uploads/Introduction-to-ToIP-V2.0-2021-11-17.pdf
https://www.w3.org/TR/2022/REC-vc-data-model-20220303/
https://www.w3.org/TR/2022/REC-vc-data-model-20220303/
https://doi.org/10.17487/RFC5868
https://doi.org/10.17487/RFC5868
https://www.mdpi.com/2079-9292/9/8/1231

Hierarchical Identity-Based Inner Product
Functional Encryption for Unbounded

Hierarchical Depth

Anushree Belel(B), Ratna Dutta, and Sourav Mukhopadhyay

Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
anubelel@gmail.com, {ratna,sourav}@maths.iitkgp.ac.in

Abstract. Cloud computing is becoming popular with emerging appli-
cations in big data analysis, online storage, e-commerce, social network,
accounting, and management. As industries, organizations and individ-
uals prefer to use the cloud for high speed, scalability, and easy accessi-
bility, it is essential to protect data privacy and security. Inner product
functional encryption (IPFE) with access control is a promising tech-
nique for protecting privacy of original data by specifying who can obtain
inner product on encrypted data in the cloud. Hierarchical identity-based
IPFE (HID-IPFE), proposed by Song et al. (Information Sciences 2021)
is a variant in hierarchical environment that specifies which hierarchical
identities are allowed to obtain the inner product on encrypted data. We
have observed that the existing works on HID-IPFE fixes the maximum
hierarchical identity depth at the Setup phase. It is not practical as the
maximum hierarchy depth may increase. To resolve this issue, we intro-
duce the technique of unbounded hierarchical identity-based inner product
functional encryption (UHID-IPFE) that does not fix maximum hierar-
chy depth at the Setup phase to support unbounded hierarchy depth. We
provide an instantiation of selective chosen plaintext attack (CPA) secure
UHID-IPFE protocol based on hardness of the q-RW2 problem. We prove
the security of our protocol by detailed security analysis in the existing
security model. More interestingly, our scheme outperforms the previous
HID-IPFE schemes in terms of storage and is the first scheme supporting
unbounded hierarchy depth.

Keywords: Inner product functional encryption · Hierarchical
identity · Unbounded depth

1 Introduction

Recent emerging applications of cloud services highlight the demand for a
sophisticated method of encryption rather than traditional public key encryp-
tion (PKE). To fix all-or-nothing type access on encrypted data, plain PKE has
been refined over the years into more advanced primitives like identity-based
encryption [9], attribute-based encryption [8], and predicate encryption [16]. All
these mechanisms can be unified into a novel primitive called functional encryp-
tion (FE) proposed by Boneh et al. [12] with applications in privacy-preserving
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 274–288, 2023.
https://doi.org/10.1007/978-3-031-44274-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_20&domain=pdf
https://doi.org/10.1007/978-3-031-44274-2_20

HID-IPFE for Unbounded Hierarchical Depth 275

cloud computing such as IoT e-Health care systems [21], secure Digital Rights
Management system [1], tax calculations in smart cities [23], electricity billing via
smart meters [15], and many more. As realizing FE for general functions requires
heavy-duty cryptographic tools, there is a tendency to sketch FE for specific
functionalities like inner product, boolean formula, and keyword search [16].

Inner product functional encryption (IPFE) is a specific type of FE that com-
putes inner product on encrypted data. IPFE produces secret keys SKy for arbi-
trary chosen vectors y which can be used to decrypt a ciphertext CTx corre-
sponding to a vector x and recover the inner product 〈x,y〉 in contrast to the
original message x as in standard PKE. IPFE has important applications for com-
puting the weighted mean. For enhancing IPFE with access control so that only
specific users with a predefined identity are able to obtain the inner product,
Abdalla et al. [3] introduced the technique of identity-based IPFE (ID-IPFE). This
notion allows encryptors to specify a recipient identity ID in ciphertext CTx,ID.
Every secret key SKy ,ID′ is associated with an identity ID′. A user owning secret
key SKy ,ID′ can decrypt the ciphertext CTx,ID to get 〈x,y〉 only if ID′ = ID. Song
et al. [22] extended the notion of ID-IPFE for hierarchical identity by adding an
extra Delegate algorithm in ID-IPFE. In this notion, a user with hierarchical
identity ˜HID possessing secret key SK

y ,˜HID
can apply the algorithm Delegate to

generate secret key SKy ,HID′ for a lower level user in the hierarchy with iden-
tity HID′ = ˜HID ∪ ID, encryptor specifies recipient identity HID in CTx,HID,
a user can decrypt CTx,HID to obtain 〈x,y〉 if it owns SKy ,HID or can derive
SKy ,HID from its secret key SK

y ˜HID
(˜HID being a prefix of HID). The technique of

hierarchical identity-based IPFE (HID-IPFE) monitors hierarchical system where
higher-level users in the hierarchy can produce secret keys for lower-level users in
the hierarchy. This property is very useful in real-life applications as the struc-
ture of most commercial and industrial systems is hierarchical. For instance,
consider Company A consisting of numerous sectors: Social media marketing,
Digital marketing, Graphic designing, Web development, Client servicing, etc.
Several experts are there in each sector, and many trainers work under each
expert. This company has announced internship advertisement and asked par-
ticipants to encrypt grades for the skills of previous experience, academics, and
programming. Suppose that a fresher candidate Bob receives grades 75 for pre-
vious experience, 65 for academics, and 60 for programming from an assessment
center. Thus, the plaintext of Bob can be considered as a vector x = (75, 65, 60).
Suppose that Bob wants to join as an intern under trainer T working under
expert E at the Digital marketing sector in Company A. Bob encrypts x using
the recipient identity HID = “Company A, Digital marketing sector, Expert E,
Trainer T”. Now, the trainer T is granted secret key SKy ,HID with respect to
weight vector y = (40%, 30%, 30%) which assigns weights 40%, 30% and 30%
for previous experience, academics, and programming respectively. Bob wants
that only trainer T or his superiors (Head of the Company A or Head of the
Digital marketing sector or Expert E) who provided a secret key to trainer T
should learn 〈x,y〉. The advanced primitive HID-IPFE can be utilized in this
application.

276 A. Belel et al.

Generally, HID-IPFE is composed of polynomial time algorithms (Setup,
Encrypt, KeyGen, Delegate, Decrypt). While Setup is performed, a trusted entity
takes as input security parameter, vector length, maximum hierarchical identity
depth and generates a public key together with a master secret key. It declares
the public key and holds the master secret key secret. An encryptor takes input
public key, a recipient hierarchical identity HID (depth of HID is less than or equal
to the maximum hierarchy depth), plaintext vector x, and produces ciphertext
CTx,HID. The trusted entity issues secret key SKy ,HID′ to recipient hierarchical
identity HID′ (depth of HID′ is less than or equal to the maximum hierarchy
depth) for a vector y by invoking the algorithm KeyGen. A higher-level user in
the hierarchy with identity ˜HID owning secret key SK

y ,˜HID
applies Delegate algo-

rithm to produce secret key SKy ,HID′ for a lower-level user in the hierarchy with
identity HID′ = ˜HID ∪ ID. A decryptor performs the algorithm Decrypt on input
public key, CTx,HID, SKy ,HID′ to obtain the inner product 〈x,y〉 if HID = HID′.
Here SKy ,HID′ is produced by either KeyGen for vector y and identity HID′ or by
Delegate algorithm on input identity ˜HID and SK

y ,˜HID
(˜HID being a prefix of

HID′). If HID = HID′, the earlier one represents the event that intended recipient
acts as decryptor while the latter one represents the event that delegator acts
as decryptor. In 2021, Song et al. [22] proposed this notion of HID-IPFE which
is selective chosen plaintext attack (CPA) secure based on the hardness of the
q-decisional bilinear Diffie-Hellman Exponent (DBDHE) problem in a symmetric
bilinear setting. In 2023, Belel et al. [6] provided another construction of selective
CPA secure HID-IPFE from the hardness of standard DBDH problem. Note that,
both of these constructions take input maximum hierarchical identity depth in
the Setup phase.

Table 1. Comparison of storage overhead, communication bandwidth and other prop-
erty

Scheme Storage Communication Maximum hierarchy depth Assumption Security
|PK| |MSK| |SK| |CT|

Song et al. [22] O(d+ n) O(1) O(d+ n) O(l + n) bounded q-DBDHE Selective
Belel et al. [6] O(d+ n) O(n) O(l + n) O(l + n) bounded DBDH Selective
Our O(n) O(1) O(l + n) O(l + n) unbounded q-RW2 Selective

|PK| = size of public key, |MSK| = size of master secret key, |SK| = size of secret key,
|CT| = size of ciphertext, l = hierarchical identity depth, d = maximum hierarchical
identity depth, n = vector length

Our Contribution. In this work, we address the trouble of practical deploy-
ment of the existing HID-IPFE schemes as the maximum depth of hierarchical
identity is kept fixed in the Setup phase. In real-life applications, the maximum
hierarchy depth may change over time. In that case, the Setup algorithm has to
be done again which is problematic. This inherent issue motivates us to extend
the notion of HID-IPFE that supports unbounded hierarchical depth. Our Setup

HID-IPFE for Unbounded Hierarchical Depth 277

algorithm does not take input the maximum hierarchy depth. At the time of
encryption and key generation, any arbitrary length of hierarchical identity can
be chosen. We call this notion unbounded HID-IPFE. Our UHID-IPFE protocol
uses the technique of Ryu et al. [20] and is established to be secure against
selective CPA attacker under q-type assumption in a symmetric bilinear setting.
Specifically, we establish the following.

Theorem 1. (Informal) Based on the hardness of the q-RW2 problem, our
UHID-IPFE = (Setup, Encrypt, KeyGen, Delegate, Decrypt) protocol is secure
against selective CPA adversary.

We compare storage, communication bandwidth, and other features of our
scheme with respect to the previous approach of Song et al. [22] and Belel et al.
[6] in Table 1.

– In our construction, we use symmetric bilinear pairing similar to the work
of Song et al. [22] while Belel et al. [6] use asymmetric bilinear setting. We
emphasize that unlike the previous works [6,22], our public key size does not
depend on the maximum hierarchy depth. The public key sizes (|PK|) of [6,22]
are linear to the maximum hierarchy depth d and length of vector n while
our public key sizes (|PK|) is only linear to the length of vector n. Our master
secret key size (|MSK|) is constant size (only 1) similar to [22] while that of
[6] is linear to n. Our secret key size (|SK|) is linear to n and the depth of
hierarchical identity l (chosen at key generation time) is similar to [6] while
that of [22] is linear to n and d (maximum hierarchy depth). Like the existing
schemes, our ciphertext size is also linear to l and n. Thus, we obtain an HID-
IPFE scheme supporting unbounded hierarchical depth without compromising
storage and communication bandwidth.

– Our scheme achieves selective security against chosen plaintext attack (CPA)
adversary in the existing security model under the hardness of the q-RW2
problem. Note that similar to the previous works our security proof against
selective CPA adversary also follows the standard model without using any
random oracles. Thus, our proposed UHID-IPFE scheme is also comparable
with the previous HID-IPFE schemes in terms of security.

Related Work. In 2015, Abdalla et al. [2] formally introduced IPFE with direct
applications in privacy-preserving approaches in cloud computing followed by
a series of improved variants [5,7,13,17]. In 2020, Abdalla et al. [3] provided
new IPFE schemes allowing users to insert access policy on the encrypted data.
They provided two identity-based IPFE (IB-IPFE) protocols from the learning
with errors (LWE) problem. One scheme combines the LWE based identity-based
encryption (IBE) of Gentry et al. [14] with the LWE based IPFE of Agrawal et al.
[5] and achieves adaptive security in the random oracle model while the other
scheme integrates the LWE based IBE of Agrawal et al. [4] with the LWE based
IPFE of Agrawal et al. [5] and achieves selective security in the standard model.
They also proposed the notion of attribute-based IPFE (AB-IPFE) where cipher-
text CTx,P is related to a predicate P and a vector x, secret key SKy ,att is related

278 A. Belel et al.

to a vector y and an attribute att, a decryptor possessing secret key SKy ,att gets
〈x,y〉 if att satisfies predicate P. Their constructions are quite generic and com-
bine the decisional Diffie-Hellman (DDH) based IPFE scheme of [5] with exist-
ing pairing based attribute-based encryption that makes use of the dual system
encryption methodology. In 2020, Zhang et al. [25] provided an adaptively secure
construction of IB-IPFE from hardness of the DBDH problem. In 2021, Song et
al. [22] introduced hierarchical identity-based IPFE (HID-IPFE) and provided a
selective secure construction of HID-IPFE from the hardness of the q-DBDHE
assumption. In 2023, Belel et al. [6] came up with another selective secure HIB-
IPFE protocol conditioned on the hardness of the DBDH assumption utilizing
hierarchical IBE scheme of Boneh et al. [10]. In 2021, Pal et al. [18] provided
construction of LWE based AB-IPFE integrating the LWE based attribute-based
encryption (ABE) protocol of Boneh et al. [11] with LWE based IPFE protocol of
[5]. In 2019, Sans et al. introduced the concept of unbounded IPFE that handles
vectors of unbounded lengths and provided a selective secure construction of
UIPFE based on the DBDH problem. In 2020, Tomida et al. [24] came up with
two instantiations of UIPFE based on the symmetric external Diffie-Hellman
(SXDH) problem.

2 Preliminaries

2.1 Notation

λ stands for the security parameter and [n] denotes the set {1, 2, . . . , n}. We use
x

u←− S to indicate that x is chosen uniformly from the set S. A map f : N → R

is called a negligible function of n if it is O(n−c) for all c > 0 and we make use
of the notation negl(n) for the negligible function of n. Let ⊥ represent failure
or null value and 〈·, ·〉 stands for inner product of two vectors.

2.2 Unbounded Hierarchical Identity-Based Inner Product
Functional Encryption

We initiate the study of a variant of Hierarchical Identity-based Inner Prod-
uct Functional Encryption (HID-IPFE) supporting unbounded hierarchical depth
following the work of Song et al. [22]. An unbounded HID-IPFE (UHID-IPFE)
scheme comprises the algorithms HID-IPFE = (Setup, Encrypt, KeyGen, Delegate,
Decrypt) as defined below.

– Setup (1λ, n) → (PK,MSK) : On input the security parameter λ, vector length
n, a trusted entity executes this probabilistic algorithm to produce the public
key PK and the master secret key MSK. It publishes PK and keeps MSK secret
to itself.

– Encrypt (PK,HIDl,x) → CTx,HIDl
: An encryptor takes as input the public

key PK, a hierarchical identity HIDl = (ID1, ID2, . . . , IDl) of depth l ∈ N, a
plaintext vector x of length n and computes the corresponding ciphertext
CTx,HIDl

.

HID-IPFE for Unbounded Hierarchical Depth 279

– KeyGen (PK,MSK,HIDl,y) → SKy ,HIDl
: On input the public key PK, the

master secret key MSK, a hierarchical identity HIDl = (ID1, ID2, . . . , IDl) of
depth l ∈ N, a vector y of length n, the trusted entity runs this algorithm to
generate a secret key SKy ,HIDl

. It sends SKy ,HIDl
to the user with hierarchical

identity HIDl via a secure channel between them.
– Delegate (PK,HIDl,SKy ,HIDl

, ID) → SKy ,HIDl+1 : A user with hierarchical iden-
tity HIDl performs this algorithm taking input the public key PK, a secret key
SKy ,HIDl

corresponding to its hierarchical identity HIDl of depth l ∈ N and
vector y of length n, a sub-identity ID and generates a secret key SKy ,HIDl+1

associated with a level l + 1 identity HIDl+1 = HIDl ∪ ID and vector y.
– Decrypt (PK,CTx,HID,SKy ,HID′) → 〈x,y〉/ ⊥: On input the public key PK,

ciphertext CTx,HID, secret key SKy ,HID′ , a decryptor obtains the inner product
〈x,y〉 or ⊥.

Correctness. It is required for (PK, MSK) ← Setup (1λ, n), SKy ,HID′ ←
KeyGen(PK,MSK,HID′,y)/ Delegate (PK, ̂HID,SK

y ,̂HID
, ID) where HID′ = ̂HID∪

ID (̂HID being a prefix of HID′) , CTx,HID ← Encrypt(PK,HID,x) output ⊥ if
HID 	= HID′. Else,

Decrypt(PK,CTx,HID,SKy ,HID′) = 〈x,y〉

where 〈x,y〉 is from a fixed polynomial size range.

Security. The security game of UHID-IPFE between challenger C and selective
chosen plaintext attack adversary A is described below.

– Init: A submits two challenge vectors x�
0, x�

1 (x�
0 	= x�

1) and a challenge
hierarchical identity HID� to C.

– Setup: C produces (PK, MSK) ← Setup(1λ, n) and issues PK to A.
– Query phase 1: A asks private key queries SKy ,HID corresponding to vec-

tor y and hierarchical identity HID to C polynomially many times. We
assume that |HID| ≤ |HID�| where the notation |HID| is used to denote
the depth of the hierarchical identity HID. C answers with SKy ,HID ←
KeyGen(PK,MSK,HID,y) following the restriction that if 〈x�

0 − x�
1,y〉 	=

0, then HID should not be a prefix of the challenge hierarchical identity
HID�. If depth of the hierarchical identity |HID| is strictly greater than
the challenge hierarchical identity |HID�|, C first evaluates SKy ,HID′′ ←
KeyGen(PK,MSK,HID′′,y) (HID′′ being the prefix of HID with |HID′′| =
|HID�|), computes SKy ,HID by applying algorithm Delegate (|HID| − |HID�|)
times beginning from SKy ,HID′′ and sends SKy ,HID to A.

– Challenge: C randomly chooses a bit β ∈ {0, 1}, evaluates CTx�
β ,HID� ←

Encrypt(PK,HID�,x�
β) and issues the challenge ciphertext CTx�

β ,HID� to A.
– Query phase 2: Similar to Query phase 1.
– Guess: At last, A returns a guess β′ and wins the game if β′ = β.

Advantage of A is interpreted as:

AdvsCPA
UHID−IPFE,A(λ) =

∣

∣

∣

∣

Pr[β′ = β] − 1
2

∣

∣

∣

∣

280 A. Belel et al.

A UHID-IPFE protocol is called selectively CPA-secure if

AdvsCPA
HID−IPFE,A(λ) ≤ negl(λ)

The restriction imposed on the Query phase 1 is necessary. Otherwise, A will
get SKy ,HID for some pair (y,HID) where HID is a prefix of HID� and 〈x�

0,y〉 	=
〈x�

1,y〉. Then A applies the Delegate algorithm to produce SKy ,HID� and compute
〈x�

β ,y〉 by using the Decrypt algorithm on input CTx�
β ,HID� and SKy ,HID� . Finally,

A returns a bit 1 if 〈x�
β ,y〉 = 〈x�

1,y〉 and returns a bit 0 if 〈x�
β ,y〉 = 〈x�

0,y〉.
Hence, A easily wins the game.

2.3 Symmetric Bilinear Map and Hardness Assumption

Definition 1. (Symmetric Bilinear Map). Let G,Gt be multiplicative cyclic
groups having prime order p with generators g, e(g, g) respectively. A symmetric
bilinear map e : G × G → Gt satisfies the following.

1. e(ga, hb) = e(g, h)ab ∀g, h ∈ G and ∀a, b ∈ Zp.
2. The mapping is non-degenerate and e(g, g) is a generator of Gt.
3. There exists efficient technique to calculate e(g, h) for all g, h ∈ G.

we assume that there exists a group generator scheme G that on input security
parameter λ outputs a tuple (p,G,Gt, e) where p is a prime having Θ(λ) bits.

Definition 2. (q-RW2 Assumption) [20]. Let G, Gt be cyclic groups hav-
ing prime order p and e : G × G → Gt be a symmetric bilin-
ear map. Let a, b, c, {di}i∈[q]

u←− Zp, g be an arbitrary generator
of G, z1 = (g, ga, gb, gc, g(ac)2 , {gdi , gacdi , gac/di , ga2cdi , gb/d2

i ,
gb2/d2

i }i∈[q], {gacdi/dj , gbdi/d2
j , gabcdi/d2

j , g(ac)2di/dj }i,j∈[q],i �=j) and z2 ∈ Gt. Given
(z1, z2), the q-RW2 problem decides if z2 is e(g, g)abc or an arbitrary member of
Gt. Advantage of a differentiator A is interpreted as

Advq−RW2
A (λ) = |Pr[A(z1, e(g, g)abc) → 1] − Pr[A(z1, z2) → 1]|

This hardness assumption was first introduced by Rouselakis et al. [19] and was
proven to be secure in the generic group model (GGM).

3 Construction of UHID-IPFE

Our UHID-IPFE = (Setup, Encrypt, KeyGen, Delegate, Decrypt) protocol has hier-
archical identity space {0, 1}λl for l ∈ N, vector space Z

n
p and utilizes symmetric

bilinear setting.

– Setup(1λ, n) → (PK,MSK) : A trusted entity on input security parameter λ,
vector length n proceeds in following way.

HID-IPFE for Unbounded Hierarchical Depth 281

• Generates a symmetric bilinear map e : G × G → Gt (G,Gt being cyclic
groups having prime order p) and arbitrarily selects generator g of G.
Let T be a subset of Zp that specifies the polynomial range for the inner
product value to be obtained at the end of decryption phase.

• Arbitrarily selects u, v, h1, h2, . . . , hn ∈ G, a, b ∈ Zp and specifies g1 =
ga, g2 = gb, α = ab, wi = e(g, hi)α for i ∈ [n].

• Specifies public key and master secret key as

PK = (p,G,Gt, e, g, gt = e(g, g), u, v, g1, g2, {hi}i∈[n], {wi}i∈[n]),MSK = α

• It declares PK and holds MSK secret to itself.
– Encrypt(PK,HIDl,x) → CTx,HIDl

: An encryptor takes as input

PK = (p,G,Gt, e, g, gt, u, v, g1, g2, {hi}i∈[n], {wi}i∈[n]),

a recipient identity HIDl = (ID1, ID2, . . . , IDl) ∈ Il where I = {0, 1}λ, plain-
text vector x = (x1, x2, . . . , xn) ∈ Z

n
p and executes the subsequent steps.

• Selects r, s1, s2, . . . , sl
u←− Zp, extracts g, gt, u, v, g1, {wi}i∈[n] from PK and

evaluates

Ei = gxi
t wr

i , i ∈ [n], C0 = gr, {Ck,1 = gsk , Ck,2 = (uIDkv)skg−r
1 }k∈[l]

• Sets CTx,HIDl
= (HIDl, {Ei}i∈[n], C0, {Ck,1, Ck,2}k∈[l]) and publishes

CTx,HIDl
.

– KeyGen(PK,MSK,HIDl,y) → SKy ,HIDl
: On input PK, MSK, HIDl =

(ID1, ID2, . . . , IDl) ∈ Il where I = {0, 1}λ, a vector y = (y1, y2, . . . , yn) ∈ Z
n
p ,

the trusted authority proceeds as follows.
• Chooses γ1, γ2, . . . , γl

u←− Zp, extracts g, g1, u, v, {hi}i∈[n] from PK, α from
MSK and computes

D0 = (hy1
1 hy2

2 . . . hyn
n)α

l
∏

i=1

gγi

1 , {Di,1 = (uIDiv)−γi ,Di,2 = gγi}i∈[l]

• Sets SKy ,HIDl
= (HIDl,y,D0, {Di,1,Di,2}i∈[l]) and provides SKy ,HIDl

to
user owning hierarchical identity HIDl via a safe channel.

– Delegate(PK,HIDl,SKy ,HIDl
, IDl+1) → SKy ,HIDl+1 : A user owning identity

HIDl = (ID1, ID2, . . . , IDl) proceeds as follows taking input PK, SKy ,HIDl
=

(HIDl,y,D0, {Di,1,Di,2}i∈[l]) corresponding to HIDl, vector y and a sub-
identity IDl+1.

• Chooses arbitrarily γl+1 ∈ Zp, extracts g, g1, u, v from PK, computes

D
′
0 = D0g

γl+1
1 , {D

′
i,1 = Di,1, D

′
i,2 = Di,2}i∈[l], D

′
l+1,1 = (u

IDl+1v)
−γl+1 , D

′
l+1,2 = g

γl+1 ,

and sets a temporary delegated secret key

TSKy ,HIDl+1 = (HIDl+1 = HIDl ∪ IDl+1,y,D′
0, {D′

i,1,D
′
i,2}i∈[l+1])

282 A. Belel et al.

• Chooses arbitrarily γ̂1, γ̂2, . . . , γ̂l+1 ∈ Zp, extracts g, g1, u, v from PK and
computes

D′′
0 = D′

0

l+1
∏

i=1

gγ̂i

1 , {D′′
i,1 = D′

i,1(u
IDiv)−γ̂i ,D′′

i,2 = D′
i,2 gγ̂i}i∈[l+1]

• Specifies

SKy ,HIDl+1 = (HIDl+1 = HIDl ∪ IDl+1,y,D′′
0 , {D′′

i,1,D
′′
i,2}i∈[l+1])

corresponding to depth (l + 1) identity HIDl+1 = HIDl ∪ IDl+1 = (ID1,
ID2, . . ., IDl, IDl+1) and vector y.

• Issues SKy ,HIDl+1 to user owning identity HIDl+1 via a safe channel.
– Decrypt(PK,CTx,HID,SKy ,HID′) → 〈x,y〉/ ⊥: On input PK, CT = (HID,

{Ei}i∈[n], C0, {Ci,1, Ci,2}i∈[l]), SK = (HID′, y = (y1, y2, . . . , yn), D0,
{Di,1,Di,2}i∈[l′]) where depth of HID′,HID are l′, l respectively, a decryptor
executes the following steps.

• If HID′ 	= HID, outputs ⊥.
• Else, calculates

A1 =
n

∏

i=1

Eyi

i , A2 =
l

∏

k=1

{e(Ck,1,Dk,1)e(Ck,2,Dk,2)}, A3 = e(C0,D0)

and retrieves
g

〈x,y〉
t =

A1

A2A3

Finds specific M ∈ T such that e(g, g)〈x,y〉 = e(g, g)M and returns M .

Correctness. Let HID = HID′ = (ID1, ID2, . . . , IDl) and KeyGen (PK, MSK,
HID′, y) → SKy ,HID′ . Then we have

A1 =
n

∏

i=1

Eyi

i =
n

∏

i=1

gxiyi

t wryi

i = e(g, g)
n
∑

i=1
xiyi

n
∏

i=1

e(g, hi)αryi

A2 =
l∏

k=1

{e(Ck,1, Dk,1)e(Ck,2, Dk,2)} =
l∏

k=1

{e
(
gsk , (uIDkv)−γk

)
e

(
(uIDkv)skg−r

1 , gγk

)
}

=
l∏

k=1

{e(g, uIDkv)−skγke(uIDkv, g)skγke(g−r
1 , gγk)}

=
l∏

k=1

{e(uIDkv, g)−skγke(uIDkv, g)skγke(g−r
1 , gγk)}

=
l∏

k=1

e(g−r
1 , gγk) =

l∏

k=1

e(g, g1)
−rγk

HID-IPFE for Unbounded Hierarchical Depth 283

A3 = e(C0,D0) = e(gr, (hy1
1 hy2

2 . . . hyn
n)α

l
∏

k=1

gγk

1)

= e(gr, (hy1
1 hy2

2 . . . hyn
n)α)e(gr,

l
∏

k=1

gγk

1)

= e(gr,

n
∏

i=1

hαyi

i)e(gr,

l
∏

k=1

gγk

1) =
n

∏

i=1

e(g, hi)αryi

l
∏

k=1

e(g, g1)rγk

A1

A2A3
=

e(g, g)
n
∑

i=1
xiyi n

∏

i=1

e(g, hi)αryi

l
∏

k=1

e(g, g1)−rγk

n
∏

i=1

e(g, hi)αryi

l
∏

k=1

e(g, g1)rγk

= g
〈x,y〉
t

Let HID′ = HID = (ID1, ID2, . . . , IDl) and Delegate(PK, ̂HID,SK
y ,̂HID

, IDl) →
SKy ,HID′ = (HID′,y,D′′

0 , {D′′
i,1,D

′′
i,2}i∈[l]) where ̂HID = (ID1, ID2, . . . , IDl−1),

HID′ = ̂HID ∪ IDl. Then we have

A1 =
n

∏

i=1

Eyi

i =
n

∏

i=1

gxiyi

t wryi

i = e(g, g)
n
∑

i=1
xiyi

n
∏

i=1

e(g, hi)αryi

A2 =
l

∏

k=1

{e(Ck,1, D
′′
k,1)e(Ck,2, D

′′
k,2)} =

l
∏

k=1

{e

(

g
sk , (u

IDk v)
−γk−γ̂k

)

e

(

(u
IDk v)

sk g
−r
1 , g

γk+γ̂k

)

}

=

l
∏

k=1

{e(g, u
IDk v)

sk(−γk−γ̂k)
e(u

IDk v, g)
sk(γk+γ̂k)

e(g
−r
1 , g

γk+γ̂k)} =

l
∏

k=1

e(g, g1)
−r(γk+γ̂k)

A3 = e(C0, D0) = e(g
r

, (h
y1
1 h

y2
2 . . . h

yn
n)α

l
∏

k=1
g

γk+̂γk
1) = e(g

r
, (h

y1
1 h

y2
2 . . . h

yn
n)α)e(g

r
,

l
∏

k=1
g

γk+̂γk
1)

= e(g
r

,
n
∏

i=1
h

αyi
i)e(g

r
,

l
∏

k=1
g

γk+̂γk
1)

=
n
∏

i=1
e(g, hi)

αryi
l

∏

k=1
e(g, g1)r(γk+̂γk)

A1

A2A3
=

e(g, g)
n
∑

i=1
xiyi n

∏

i=1

e(g, hi)αryi

l
∏

k=1

e(g, g1)−r(γk+γ̂k)
n
∏

i=1

e(g, hi)αryi

l
∏

k=1

e(g, g1)r(γk+γ̂k)

= g
〈x,y〉
t

4 Security Analysis

Theorem 2. Our unbounded hierarchical identity-based inner product func-
tional encryption (UHID-IPFE) is selectively CPA secure in the prescribed security
model assuming that the q-RW2 problem is hard.

284 A. Belel et al.

Proof. Let A be an attacker against UHID-IPFE protocol with non-negligible
advantage ε. We describe the procedure to build up a simulator B to solve the
q-RW2 problem by communicating with A.

– Init: Collecting the pair z1 =
(

g, ga, gb, gc, g(ac)2 , {gdi , gacdi , gac/di , ga2cdi ,

gb/d2
i , gb2/d2

i }i∈[q], {gacdi/dj , gbdi/d2
j , gabcdi/d2

j , g(ac)2di/dj }i,j∈[q],i �=j

)

, z2 ∈ Gt

of q-RW2 problem, B has to find out if z2 is e(g, g)abc or arbitrary member
by interacting with A. A provides two challenge vectors x�

0 = (x�
0,1, x�

0,2, . . .,
x�
0,n), x�

1 = (x�
1,1, x

�
1,2, . . . , x

�
1,n) with x�

0 	= x�
1 and a challenge hierarchical

identity HID� = (ID�
1, ID

�
2, . . . , ID

�
l�) (l� ≤ q) to B.

– Setup: B arbitrarily selects u′, v′, δ ∈ Zp, sets g1 = ga, g2 = gb, hi =
gδ(x�

0,i−x�
1,i) for i ∈ [n], implicitly sets α = ab and computes

u = gu′ l�∏

i=1

gb/d2
i , v = gv′ l�∏

i=1

(
gac/di (gb/d2

i)−ID�
i

)
, wi = e(g1, g2)

δ(x�
0,i−x�

1,i), i ∈ [n]

B issues

PK = (p,G,Gt, e, g, gt = e(g, g), u, v, g1, g2, {hi}i∈[n], {wi}i∈[n])

to A and implicitly sets MSK = α = ab.
– Query Phase 1: A asks secret key queries SKy ,HID to B polynomially many

times. For clarification, let the depth of the queried HID = (ID1, ID2, . . . , IDl)
be l ≤ l�. (Note that if l > l�, the simulator B first computes Key-
Gen (PK, MSK, HID′′, y) → SKy ,HID′′ where HID′′ is prefix of HID having
|HID′′| = |HID�| = l�, gets SKy ,HID by performing algorithm Delegate contin-
uously (l−l�) beginning from SKy ,HID′′ and provides SKy ,HID to A. This secret
key is correctly simulated as the distribution of the secret key generated by
algorithm Delegate is similar to that generated by algorithm KeyGen). For a
query on (HID,y), B performs the tasks as described below.
1. Checks whether (HID,y) has been queried previously, if yes then outputs

0.
2. Checks if HID is the prefix of HID� and 〈x�

0 − x�
1,y〉 	= 0, if yes then

outputs 0.
3. If the previous checks passed but returned no output, it outputs 1.

Now, B goes ahead in the following way.
1. If the check outputs 0, B does not respond and attends the upcoming

query from A.
2. If the check outputs 1 and 〈x�

0 − x�
1,y〉 	= 0, HID = (ID1, ID2, . . .,

IDl) is not a prefix of HID� = (ID�
1, ID

�
2, . . . , ID

�
l). So, at least one

IDj ∈ HID (1 ≤ j ≤ l) exists so that IDj /∈ HID�. B first evaluates
SKy ,HIDj

= (HIDj ,y,D0, {Di,1,Di,2}i∈[j]) for HIDj = (ID1, ID2, . . . , IDj).
It selects randomly γ1, γ2, . . . , γj−1, γ̃j , sets η = δ〈x�

0 − x�
1,y〉 and

computes

HID-IPFE for Unbounded Hierarchical Depth 285

D0 =

l�∏

i=1

{(ga2cdi)
η

IDj−ID�
i g

γ̃j

1 }
j−1∏

i=1

g
γi
1 .{Di,1 = (uIDiv)−γi , Di,2 = gγi}j−1

i=1 ,

Dj,1 = (gη
2g

−γ̃j)(u
′IDj+v′)

l�∏

i=1

[
(gacdi)

−η(u′ IDj+v′)
IDj−ID�

i {(gb2/d2
i)η(gb/d2

i)−γ̃j

l�∏

τ=1
τ �=i

(gabcdi/d2
j)

−η
IDj−ID�

τ }IDj−ID�
i

l�∏

τ=1

(g(ac)2dτ /di)
−η

IDj−ID�
τ (gac/di)−γ̃j

]

Dj,2 = g−η
2

l�
∏

i=1

(gacdi)
η

IDj−ID�
i gγ̃j

After that, B produces secret key for HID = (ID1, ID2, . . . , IDl) by con-
tinuously using the Delegate algorithm (l − j) times beginning from
SKy ,HIDj

= (HIDj ,y,D0, {Di,1,Di,2}i∈[j]).
It can be verified that SKy ,HIDj

= (HIDj ,y,D0, {Di,1,Di,2}i∈[j]) as
defined above is distributed properly.

3. If 〈x�
0 − x�

1,y〉 = 0 and the check outputs 1, then B evaluates SKy ,HID =
(HID,y,D0, {Di,1,Di,2}i∈[l]) by choosing arbitrarily γ1, γ2, . . . , γl ∈ Zp

and computing D0 =
l

∏

i=1

gγi

1 , {Di,1 = (uIDiv)−γi ,Di,2 = gγi}i∈[l]. Observe

that (hy1
1 hy2

2 · · · hyn
n)α =

n
∏

i=1

gabδ(x�
0,i−x�

1,i)yi = gabδ〈x�
0−x�

1 ,y〉 = 1 as 〈x�
0 −

x�
1,y〉 = 0. Hence

D0 = (hy1
1 hy2

2 . . . hyn
n)α

l
∏

i=1

gγi

1 , {Di,1 = (uIDiv)−γi ,Di,2 = gγi}i∈[l]

similar to the real scheme. Hence distribution of SKy ,HID is equivalent to
that generated by KeyGen in real protocol.

– Challenge: B randomly chooses β ∈ {0, 1} and encrypts x�
β =

(x�
β,1, x

�
β,2, . . . , x

�
β,n) under HID� = (ID�

1, ID
�
2, . . . , ID

�
l�) to produce

CTx�
β ,HID� = (HID�, {Ei}i∈[n], C0, {Ck,1, Ck,2}k∈[l�])

286 A. Belel et al.

where Ei = g
x�

β,i

t z
δ(x�

0,i−x�
1,i)

2 for i ∈ [n], C0 = gc. For k ∈ [l�], Ck,1 = gdk ,

Ck,2 = (gdk)u′ID�
k+v′

l�
∏

τ=1
τ �=k

{(gbdk/d2
τ)ID

�
k−ID�

τ gacdk/dτ }

= [gu′ID�
k+v′

l�
∏

τ=1

{(gb/d2
τ)ID

�
k−ID�

τ gac/dτ }]dkg−ac

= (uID�
kv)dkg−ac

[

∵ u = gu′
l�
∏

τ=1

gb/d2
τ , v = gv′

l�
∏

τ=1

(

gac/dτ (gb/d2
τ)−ID�

τ

)]

= (uID�
kv)dkg−c

1

Implicitly setting r = c, sk = dk for k ∈ [l�], it can be seen that CTx�
β ,HID� is

correctly simulated if z2 = e(g, g)abc as for each i ∈ [n],

g
x�

β,i

t wc
i = g

x�
β,i

t e(g, hi)αc = g
x�

β,i

t e(g, gδ(x�
0,i−x�

1,i))abc

= g
x�

β,i

t {e(g, g)abc}δ(x�
0,i−x�

1,i) = g
x�

β,i

t z
δ(x�

0,i−x�
1,i)

2 = Ei

– Query phase 2: Same as Query phase 1.
– Guess: Finally, A returns a guess bit β′ of β. If β′ = β, the simulator B

returns 1 to indicate that z2 = e(g, g)abc. Otherwise, B returns 0 implying
that z2 is a random element of Gt.

Note that, if z2 = e(g, g)abce(g, g)ψ where ψ
u←− Z

�
p then we have

Ei = g
x�

β,i

t z
δ(x�

0,i−x�
1,i)

2 = e(g, g)x�
β,i

(

e(g, g)abce(g, g)ψ

)δi

[δi = δ(x�
0,i − x�

1,i)]

= e(g, g)x�
β,i+ψδie(g, g)abcδi = g

x�
β,i+ψδi

t wc
i

and hence the ciphertext which is simulated turns as encryption of x′ = (x�
β,1 +

ψδ1, x
�
β,2 +ψδ2, . . . , x

�
β,n +ψδn) in place of the challenge vector x�

β = (x�
β,1, x�

β,2,
. . ., x�

β,n). As ψ is selected arbitrarily, x′ 	= x�
β with high probability. B cannot

simulate CTx�
β ,HID� if z2 is an arbitrary element of Gt. Thus, plaintext vector x�

β

is hidden. So, Pr[B(z1, z2) → 1] = 1
2 .

When z2 = e(g, g)abc, B provides properly simulated ciphertext. So, Pr[B(z1,
e(g, g)abc) → 1] = 1

2 +ε. Hence B can resolve the q-RW2 problem with advantage

Advq−RW2
B (λ) =

∣

∣Pr[B(z1, e(g, g)abc) → 1] − Pr[B(z1, z2) → 1]
∣

∣ =
∣

∣

∣

∣

1
2

+ ε − 1
2

∣

∣

∣

∣

= ε

which is non-negligible.

HID-IPFE for Unbounded Hierarchical Depth 287

5 Conclusion

In this work, we have provided the first construction of a selective CPA secure
HID-IPFE scheme supporting unbounded hierarchical depth. We have explained
that handling unbounded depth of hierarchical identity is necessary for practical
applications. We obtain this property following the technique of Ryu et al. and
analyze the security in the standard model based on the hardness of the q-RW2
problem. Furthermore, our design offers better result regarding storage compared
to the previous works.

References

1. Abdalla, H., Xiong, H., Wahaballa, A., Ali, A.A., Ramadan, M., Qin, Z.: Integrat-
ing the functional encryption and proxy re-cryptography to secure DRM scheme.
Int. J. Netw. Secur. 19(1), 27–38 (2017)

2. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. Cryptology ePrint Archive (2015)

3. Abdalla, M., Catalano, D., Gay, R., Ursu, B.: Inner-product functional encryption
with fine-grained access control. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020.
LNCS, vol. 12493, pp. 467–497. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-64840-4_16

4. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28

5. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3_12

6. Belel, A., Dutta, R., Mukhopadhyay, S.: Hierarchical identity based inner product
functional encryption for privacy preserving statistical analysis without Q-type
assumption. In: Chen, J., He, D., Lu, R. (eds.) Emerging Information Security and
Applications. CCIS, vol. 1641, pp. 108–125. Springer, Cham (2023). https://doi.
org/10.1007/978-3-031-23098-1_7

7. Benhamouda, F., Bourse, F., Lipmaa, H.: CCA-secure inner-product functional
encryption from projective hash functions. In: Fehr, S. (ed.) PKC 2017. LNCS,
vol. 10175, pp. 36–66. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54388-7_2

8. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy (SP 2007), pp. 321–334.
IEEE (2007)

9. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_27

10. Boneh, D., Boyen, X.: Efficient selective identity-based encryption without random
oracles. J. Cryptol. 24, 659–693 (2011)

11. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5_30

https://doi.org/10.1007/978-3-030-64840-4_16
https://doi.org/10.1007/978-3-030-64840-4_16
https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-031-23098-1_7
https://doi.org/10.1007/978-3-031-23098-1_7
https://doi.org/10.1007/978-3-662-54388-7_2
https://doi.org/10.1007/978-3-662-54388-7_2
https://doi.org/10.1007/978-3-540-28628-8_27
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30

288 A. Belel et al.

12. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6_16

13. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product
with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang,
B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49384-7_7

14. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Sympo-
sium on Theory of Computing, pp. 197–206 (2008)

15. Im, J.H., Kwon, H.Y., Jeon, S.Y., Lee, M.K.: Privacy-preserving electricity billing
system using functional encryption. Energies 12(7), 1237 (2019)

16. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3_9

17. Kim, S., Lewi, K., Mandal, A., Montgomery, H., Roy, A., Wu, D.J.: Function-
hiding inner product encryption is practical. In: Catalano, D., De Prisco, R. (eds.)
SCN 2018. LNCS, vol. 11035, pp. 544–562. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-98113-0_29

18. Pal, T., Dutta, R.: Attribute-based access control for inner product functional
encryption from LWE. In: Longa, P., Ràfols, C. (eds.) LATINCRYPT 2021. LNCS,
vol. 12912, pp. 127–148. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-88238-9_7

19. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for large
universe attribute-based encryption. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, pp. 463–474 (2013)

20. Ryu, G., Lee, K., Park, S., Lee, D.H.: Unbounded hierarchical identity-based
encryption with efficient revocation. In: Kim, H., Choi, D. (eds.) WISA 2015.
LNCS, vol. 9503, pp. 122–133. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-31875-2_11

21. Sharma, D., Jinwala, D.: Functional encryption in IoT E-health care system. In:
Jajodia, S., Mazumdar, C. (eds.) ICISS 2015. LNCS, vol. 9478, pp. 345–363.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26961-0_21

22. Song, G., Deng, Y., Huang, Q., Peng, C., Tang, C., Wang, X.: Hierarchical identity-
based inner product functional encryption. Inf. Sci. 573, 332–344 (2021)

23. Stan, O., Sirdey, R., Gouy-Pailler, C., Blanchart, P., BenHamida, A., Zayani, M.H.:
Privacy-preserving tax calculations in smart cities by means of inner-product func-
tional encryption. In: 2018 2nd Cyber Security in Networking Conference (CSNet),
pp. 1–8. IEEE (2018)

24. Tomida, J., Takashima, K.: Unbounded inner product functional encryption from
bilinear maps. Jpn. J. Ind. Appl. Math. 37(3), 723–779 (2020). https://doi.org/
10.1007/s13160-020-00419-x

25. Zhang, L., Wang, X., Chen, Y., Yiu, S.-M.: Adaptive-secure identity-based
inner-product functional encryption and its leakage-resilience. In: Bhargavan, K.,
Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp.
666–690. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65277-7_30

https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-662-49384-7_7
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/10.1007/978-3-030-88238-9_7
https://doi.org/10.1007/978-3-030-88238-9_7
https://doi.org/10.1007/978-3-319-31875-2_11
https://doi.org/10.1007/978-3-319-31875-2_11
https://doi.org/10.1007/978-3-319-26961-0_21
https://doi.org/10.1007/s13160-020-00419-x
https://doi.org/10.1007/s13160-020-00419-x
https://doi.org/10.1007/978-3-030-65277-7_30

Brief Announcement: Efficient
Probabilistic Approximations for Sign

and Compare

Devharsh Trivedi(B)

Stevens Institute of Technology, Hoboken, NJ 07030, USA

dtrived5@stevens.edu

Abstract. Fully Homomorphic Encryption (FHE) is a prime candidate
for designing privacy-preserving schemes due to its cryptographic secu-
rity guarantees. For word-wise FHE schemes, often, the complex func-
tions need to be approximated as low-order polynomials. Meanwhile,
Artificial Neural Networks (ANN) are known for their ability to approxi-
mate arbitrary functions. This paper presents an ANN-based probabilis-
tic polynomial approximation approach using a Perceptron with linear
activation in our publicly available Python library. Our approach can be
used to generate approximation polynomials with desired degree terms.
We further provide third and seventh-degree approximations for univari-
ate Sign(x) ∈ {−1, 0, 1} and Compare(a − b) ∈ {0, 1

2
, 1} functions in

the intervals [−1, 1] and [−5,−5]. Finally, we empirically show that our
polynomials improve up to 15% accuracy over Chebyshev’s.

Keywords: python library · comparison approximation · private
machine learning · fully homomorphic encryption

1 Introduction

Fully Homomorphic Encryption (FHE) is a cryptographic primitive that can
perform arithmetic computations directly on encrypted data. This makes FHE a
preferred candidate for privacy-preserving computation and storage [28,29]. FHE
has received significant attention worldwide, which yielded many improvements
since Gentry’s scheme in 2009 [16]. As a result, FHE is used in many applications
[1,3–5,20,26,30]. FHE can be classified as word-wise [6,7,15,17] and bit-wise
[10,14] schemes as per the supported operations.

Word-wise FHE provides component-wise addition and multiplication of an
encrypted array over Zp for a positive integer p > 2 [6,15] or the field of complex
numbers C [7]. These schemes allow for packing multiple data values into a single
ciphertext and performing computations on these values in a Single Instruction
Multiple Data (SIMD) [25] manner. Encrypted inputs are packed to different
slots of ciphertext such that the operations carried over a single ciphertext are
carried over each slot independently.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 289–296, 2023.
https://doi.org/10.1007/978-3-031-44274-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_21&domain=pdf
http://orcid.org/0000-0001-6374-7249
https://doi.org/10.1007/978-3-031-44274-2_21

290 D. Trivedi

For word-wise FHE schemes, performing a non-polynomial operation such
as Sigmoid, Sign(Signum), and Compare becomes difficult. As a compromise,
the existing approaches using these schemes either approximate non-polynomial
functions using a low-degree polynomial [19,21] or avoid using them [13].

Contrary to word-wise FHE schemes, bit-wise FHE provides basic operations
in the forms of logic gates such as NAND [14] and Look-Up Table (LUT) [10,
11]. Bit-wise schemes encrypt their input in a bit-wise fashion such that each
bit of the input is encrypted to a different ciphertext, and the operations are
carried over each bit separately. While these schemes support arbitrary functions
presented by boolean circuits, they are impractical for large circuit depth [9,12].

Our contributions in this paper can be summarized as follows:

– First, we propose to use Perceptron (basic block of Artificial Neural Network
(ANN)) with linear activation for polynomial approximation of arbitrary func-
tions and release the implementation as an open-source Python library.

– We propose to calculate Compare function by approximating Sign(Signum)
as a parameterized TanH function for a word-wise FHE using our ANN
based approximation scheme.

– We also approximate Compare directly as a parameterized Sigmoid in the
intervals [−1, 1] and [−5, 5].

– Finally, we show that the polynomials generated using our scheme have lower
estimation errors (losses) than Chebyshev polynomials of the same order.

2 Approximation Library

Complex (non-linear) functions like Sigmoid (σ(x)) and Hyperbolic Tangent
(tanh x) can be computed with FHE in an encrypted domain using piecewise-
linear functions (a linear approximation of σ(x) = 0.5 + 0.25x can be derived
from the first two terms of Taylor series 1

2 + 1
4x) or polynomial approximations

like Taylor [18], Pade [2], Chebyshev [23], Remez [24], and Fourier [18] series.
These deterministic approaches yield the same polynomial for the same function.
In contrast, we propose to use ANN to derive the approximation polynomial
probabilistically, where the coefficients are based on the initial weights and con-
vergence of the ANN model.

While ANNs are known for their universal function approximation proper-
ties, they are often treated as a black box and used to calculate the output value.
We propose to use a basic 3-layer perceptron (Fig. 1) consisting of an input layer,
a hidden layer, and an output layer; both hidden and output layers having lin-
ear activations to generate the coefficients for an approximation polynomial of
a given order. In this architecture, the input layer is dynamic, with the input
nodes corresponding to the desired polynomial degrees. While having a variable
number of hidden layers is possible, we fix it to a single layer with a single node
to minimize the computation.

Efficient Probabilistic Approximations for Sign and Compare 291

x1

x2

xd

bh bout

w1

w2

wd

wout yout

Linear
Activation

Linear
Activation

Back-propogation
Loss minimization

Input
Layer

Hidden
Layer

Output
Layer

x

Fig. 1. Polynomial approximation using ANN

We show coefficient calculations for a third-order polynomial (d = 3) for a
univariate function f(x) = y for an input x, actual output y, and predicted
output yout. Input layer weights are

{w1, w2, . . . , wd} = {w1, w2, w3} = {x, x2, x3}

and biases are {b1, b2, b3} = bh. Thus the output of the hidden layer is

yh = w1x + w2x
2 + w3x

3 + bh

The predicted output is calculated by

yout = wout · yh + bout

= w1woutx + w2woutx
2 + w3woutx

3 + (bhwout + bout) (1)

where the layer weights {w1wout, w2wout, w3wout} are the coefficients for the
approximating polynomial of order-3 and the constant term is bhwout + bout.

292 D. Trivedi

3 Comparison Approximation

The bi-variate Compare function of two variables a and b is

Compare(a, b) =

⎧
⎪⎨

⎪⎩

0 a < b

0.5 a = b

1 a > b

(2)

We present two approaches to approximate the Compare function. (i) Cal-
culating Compare function by approximating Sign function and (ii) Directly
approximating Compare function.

3.1 Calculated Approximation

The univariate Sign(Signum) function is given by

Sign(x) =

⎧
⎪⎨

⎪⎩

−1 x < 0
0 x = 0
1 x > 0

(3)

Therefore we can calculate

Compare(a, b) =
Sign(a − b) + 1

2
(4)

The step function Sign in Eq. 3 can be approximated as a parameterized
hyperbolic tangent

tanh(x; k) =
ekx − e−kx

ekx + e−kx
(5)

The higher value of the parameter k yields a higher precision. Thus we set
k = 9223372036854775807 = 263−1, which is the value of sys.maxsize in Python
3. Now we can generate approximations using different methods.

Taylor series at point = 0 for Eq. 5 is given by

0 + 1.62800e17x + 9.87590e36x2 − 1.51815e55x3 + . . . (6)

We present (low-order) Chebyshev polynomials of degree = 3 for the Sign
function in Eq. 3 in the range [−1, 1] and [−5, 5].

c31(x) = −2.16478x3 + 2.93015x (7)

c35(x) = −0.0173183x3 + 0.58603x (8)

Chebyshev polynomials of seventh-order with odd coefficients in the interval
[−1, 1] and [−5, 5] are given by

c71(x) = −16.3135x7 + 33.3593x5 − 22.0877x3 + 5.91907x (9)

Efficient Probabilistic Approximations for Sign and Compare 293

c75(x) = −0.000208812x7 + 0.010675x5 − 0.176701x3 + 1.18381x (10)

We further approximate third-order polynomials with the proposed ANN
method in the interval [−1, 1] and [−5, 5].

a3
1(x) = −2.183534x3 + 2.816129x − 0.017685238 (11)

a3
5(x) = −0.017504148x3 + 0.5667412x + 0.000051538 (12)

ANN approximation of degree = 7 with odd coefficients in the interval
[−1, 1] and [−5, 5] are given by

a7
1(x) = −15.559336x7 + 30.594683x5

− 19.622007x3 + 5.366039x − 0.004171798 (13)

a7
5(x) = −0.00018785524x7 + 0.009339935x5

− 0.15198348x3 + 1.0683376x − 0.0025376866 (14)

3.2 Direct Approximation

The step function Compare in Eq. 2 can be approximated as a parameterized
Sigmoid with input x and parameter k

σ(x; k) =
1

1 + e(−kx)
(15)

As explained earlier, we set k = 263 − 1 to generate approximations.
Taylor series at point = 0 for Eq. 15 is given by

0.5 + 4.66779e17x + 2.97300e36x2 − 4.57019e54x3 + . . . (16)

We calculate Chebyshev polynomials of degree = {3, 7} for the intervals
[−1, 1] and [−5, 5].

c31(x) = −1.08239x3 + 1.46508x + 0.5 (17)

c35(x) = −0.00865914x3 + 0.293015x + 0.5 (18)

c71(x) = −8.15673x7 + 16.6797x5 − 11.0438x3 + 2.95953x + 0.5 (19)

c75(x) = −0.000104406x7 + 0.00533749x5 − 0.0883507x3 + 0.591907x + 0.5 (20)

We also generate odd-powered ANN polynomials using our approach for
degree = 3 and the intervals [−1, 1] and [−5, 5].

a3
1(x) = −1.0963224x3 + 1.4150281x + 0.50884116 (21)

a3
5(x) = −0.008709235x3 + 0.28203508x + 0.50143045 (22)

7th-order ANN polynomials for the interval [−1, 1] and [−5, 5] are

294 D. Trivedi

a7
1(x) = −7.795442x7 + 15.27373x5

− 9.812823x3 + 2.6885476x + 0.5056917 (23)

a7
5(x) = −9.614773e − 05x7 + 0.0047283764x5

− 0.07679807x3 + 0.5358904x + 0.4984604 (24)

4 Conclusion

Chebyshev approximations of low order for FHE are widely used in many
privacy-preserving tasks. We compare our ANN-based polynomials with Cheby-
shev and compare the accuracy through various loss functions such as MSLE,
MAE, Huber, Hinge, and Logcosh. E.g., for Compare approximation with
degree = 7 and interval [−5, 5], we achieve an ANN

Chebyshev loss ratio for MAE =
0.8757 (1 indicates equal losses), which is ≈13% improvement in accuracy.

Our publicly available Python library [27] supports Taylor, Remez, Fourier,
Chebyshev, and ANN approximations. In the future, we would like to include
other interpolation techniques, such as Lagrange and Power series. Also, com-
paring our scheme with composite (iterative) polynomials [8,22] would make an
interesting study.

References

1. Angel, S., Chen, H., Laine, K., Setty, S.: PIR with compressed queries and amor-
tized query processing. In: 2018 IEEE symposium on security and privacy (SP),
pp. 962–979. IEEE (2018)

2. Baker, G.A., Baker Jr., G.A., Graves-Morris, P., Baker, S.S.: Pade Approximants:
Encyclopedia of Mathematics and It’s Applications, vol. 59. Cambridge University
Press, Cambridge (1996)

3. Bos, J.W., Castryck, W., Iliashenko, I., Vercauteren, F.: Privacy-friendly forecast-
ing for the smart grid using homomorphic encryption and the group method of
data handling. In: Joye, M., Nitaj, A. (eds.) AFRICACRYPT 2017. LNCS, vol.
10239, pp. 184–201. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
57339-7 11

4. Boudguiga, A., Stan, O., Sedjelmaci, H., Carpov, S.: Homomorphic encryption at
work for private analysis of security logs. In: ICISSP, pp. 515–523 (2020)

5. Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of
deep discretized neural networks. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018, Part III. LNCS, vol. 10993, pp. 483–512. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96878-0 17

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theory (TOCT) 6(3),
1–36 (2014)

7. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part
I. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70694-8 15

https://doi.org/10.1007/978-3-319-57339-7_11
https://doi.org/10.1007/978-3-319-57339-7_11
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15

Efficient Probabilistic Approximations for Sign and Compare 295

8. Cheon, J.H., Kim, D., Kim, D., Lee, H.H., Lee, K.: Numerical method for com-
parison on homomorphically encrypted numbers. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019, Part II. LNCS, vol. 11922, pp. 415–445. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34621-8 15

9. Cheon, J.H., Kim, D., Park, J.H.: Towards a practical clustering analysis over
encrypted data. IACR Cryptol. ePrint Arch. 2019, 465 (2019)

10. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53887-6 1

11. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for TFHE. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017, Part I. LNCS, vol. 10624, pp. 377–408. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70694-8 14

12. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. J. Cryptol. 33(1), 34–91 (2020)

13. Dathathri, R., et al.: CHET: an optimizing compiler for fully-homomorphic neural-
network inferencing. In: Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 142–156 (2019)

14. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I.
LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46800-5 24

15. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive (2012)

16. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
the Forty-First Annual ACM Symposium on Theory of Computing, pp. 169–178
(2009)

17. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

18. George, A.: Mathematical Methods for Physicists. Academic Press, Cambridge
(1985)

19. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy. In: International Conference on Machine Learning, pp. 201–210. PMLR
(2016)

20. Kim, M., Lauter, K.: Private genome analysis through homomorphic encryption.
In: BMC Medical Informatics and Decision Making, vol. 15, pp. 1–12. BioMed
Central (2015)

21. Kim, M., Song, Y., Wang, S., Xia, Y., Jiang, X., et al.: Secure logistic regression
based on homomorphic encryption: Design and evaluation. JMIR Med. Inform.
6(2), e8805 (2018)

22. Lee, E., Lee, J.W., No, J.S., Kim, Y.S.: Minimax approximation of sign function
by composite polynomial for homomorphic comparison. IEEE Trans. Dependable
Secure Comput. 19(6), 3711–3727 (2021)

23. Press, W.H., Vetterling, W.T., Teukolsky, S.A., Flannery, B.P.: Numerical Recipes
Example Book (FORTRAN). Cambridge University Press, Cambridge (1992)

24. Remez, E.Y.: Sur le calcul effectif des polynomes d’approximation de tschebyscheff.
CR Acad. Sci. Paris 199(2), 337–340 (1934)

https://doi.org/10.1007/978-3-030-34621-8_15
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-70694-8_14
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-642-40041-4_5

296 D. Trivedi

25. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Crypt. 71, 57–81 (2014)

26. Trama, D., Clet, P.E., Boudguiga, A., Sirdey, R.: Building blocks for LSTM homo-
morphic evaluation with TFHE. In: Dolev, S., Gudes, E., Paillier, P. (eds.) CSCML
2023. LNCS, vol. 13914, pp. 117–134. Springer, Cham (2023). https://doi.org/10.
1007/978-3-031-34671-2 9

27. Trivedi, D.: GitHub - devharsh/chiku: polynomial function approximation library
in Python. (2023). https://github.com/devharsh/chiku

28. Trivedi, D.: Privacy-preserving security analytics (2023). https://www.isaca.org/
resources/news-and-trends/isaca-now-blog/2023/privacy-preserving-security-
analytics

29. Trivedi, D.: The future of cryptography: performing computations on encrypted
data. ISACA J. 1(2023) (2023). https://www.isaca.org/resources/isaca-journal/
issues/2023/volume-1/the-future-of-cryptography

30. Trivedi, D., Boudguiga, A., Triandopoulos, N.: SigML: supervised log anomaly with
fully homomorphic encryption. In: Dolev, S., Gudes, E., Paillier, P. (eds.) CSCML
2023. LNCS, vol. 13914, pp. 372–388. Springer, Cham (2023). https://doi.org/10.
1007/978-3-031-34671-2 26

https://doi.org/10.1007/978-3-031-34671-2_9
https://doi.org/10.1007/978-3-031-34671-2_9
https://github.com/devharsh/chiku
https://www.isaca.org/resources/news-and-trends/isaca-now-blog/2023/privacy-preserving-security-analytics
https://www.isaca.org/resources/news-and-trends/isaca-now-blog/2023/privacy-preserving-security-analytics
https://www.isaca.org/resources/news-and-trends/isaca-now-blog/2023/privacy-preserving-security-analytics
https://www.isaca.org/resources/isaca-journal/issues/2023/volume-1/the-future-of-cryptography
https://www.isaca.org/resources/isaca-journal/issues/2023/volume-1/the-future-of-cryptography
https://doi.org/10.1007/978-3-031-34671-2_26
https://doi.org/10.1007/978-3-031-34671-2_26

Meeting Times of Non-atomic Random
Walks

Ryota Eguchi1(B), Fukuhito Ooshita2, Michiko Inoue1, and Sébastien Tixeuil3

1 Nara Institute of Science and Technology, Ikoma, Japan
{ry.eguchi,kounoe}@is.naist.jp

2 Fukui University of Technology, Fukui, Japan
f-oosita@fukui-ut.ac.jp

3 Sorbonne Université, CNRS, LIP6, Institut Universitaire de France, Paris, France
Sebastien.Tixeuil@lip6.fr

Abstract. In this paper, we revisit the problem of classical meeting
times of random walks in graphs. In the process that two tokens (called
agents) perform random walks on an undirected graph, the meeting times
are defined as the expected times until they meet when the two agents
are initially located at different vertices. A key feature of the problem
is that, in each discrete time-clock (called round) of the process, the
scheduler selects only one of the two agents, and the agent performs one
move of the random walk. In the adversarial setting, the scheduler utilizes
the strategy that intends to maximizing the expected time to meet. In
the seminal papers [5,11,18], for the random walks of two agents, the
notion of atomicity is implicitly considered. That is, each move of agents
should complete while the other agent waits. In this paper, we consider
and formalize the meeting time of non-atomic random walks. In the non-
atomic random walks, we assume that in each round, only one agent can
move but the move does not necessarily complete in the next round. In
other words, we assume that an agent can move at a round while the
other agent is still moving on an edge. For the non-atomic random walks
with the adversarial schedulers, we give a polynomial upper bound on
the meeting times.

Keywords: meeting times · random walks · adversarial scheduler

1 Introduction

In the process that two tokens (called agents) perform random walks on an
undirected graph, the classical meeting times are defined as the expected times
until they meet when the two agents are initially located at different vertices [3,
5,11,17,18]. A key feature of the meeting times is that, in each discrete time-
clock (called round) of the process, the scheduler selects only one of the two

This paper was supported by ANR project SAPPORO (Ref. 2019-CE25-0005-1). The
full version of this article is available on arXiv.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 297–311, 2023.
https://doi.org/10.1007/978-3-031-44274-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_22&domain=pdf
https://doi.org/10.1007/978-3-031-44274-2_22

298 R. Eguchi et al.

agents, and the agent performs one move of the random walk1. Several schedulers
are considered, namely, random scheduler where the scheduler selects an agent
randomly; ’angel’ scheduler with the intent of minimizing the expected time
before the tokens meet; or adversarial scheduler with the intent of maximizing
the expected time [18]. The schedulers have strategies. According to a strategy,
a scheduler chooses an agent to move in the current configuration. Note that,
the schedulers do not know the future moves of the agent, that is, it does not
have any prior information about the random bits used by the agents. For the
adversarial scheduler, Coppersmith et al. [5] show an upper-bound of the meeting
times of each initial configuration, and after that, Tetali and Winkler [18] give
the exact characterization of the meeting time of each initial configuration. (The
specifications are presented in Subsect. 1.2.) The process they consider, however,
assumes the atomicity of two independent random walks. That is, while an agent
moves, the other agent has to wait until the move completes. Specifically, we
define two random walks are atomic, if in each (atomic) round, (1) only one
agent moves, and (2) at the next round, the moving agent completes the move
and reaches the next vertex.

In this paper, we consider the non-atomic random walks of the two agents.
In the non-atomic random walks, we assume that in each time step, (1) only
one agent can move but (2) the move does not necessarily complete in the next
round. In other words, we assume that an agent can be chosen to move at a
round while the other agent b is still moving on an edge to the goal vertex.
To define such behavior, we consider subdivided graph G̃ of the original graph
G = (V,E). The graph G̃ is produced by subdividing each edge e ∈ E (that
is, adding another vertex in the intermediate point of each edge). We say the
vertices in V are original vertices, and the added vertices intermediate vertices.
Intuitively, the situations in which an agent at some intermediate vertex in G̃ are
interpreted as the ones in which the agent is traversing the corresponding edge
in G. Therefore, the meetings at some intermediate vertex in G̃ are interpreted
as the meetings in an edge in G.

Suppose that the two agents are initially located at original vertices x, y ∈
V at round r. The non-atomic random walks under any scheduler proceed as
follows: When the agent located at x is chosen to move, it determines to move to
adjacent vertex w ∈ NG(x). Then, it moves to the intermediate vertex between x
and w with direction from x to w at the current round r. So the next round r+1,
the scheduler chooses an agent from the configuration that agents are located
at y and intermediate vertex between x and w with direction from x to w. At
the round r + 1, if the adversary chooses the agent in the intermediate vertex,
then the agent reaches vertex w at round r + 2. Otherwise, if at round r + 1,
the agent at y is chosen to move, it also reaches an intermediate vertex with
the corresponding direction. In the executions, the scheduler repeatedly chooses
one of the agents. For the non-atomicity, we do not impose any restrictions for

1 In the literature, the term "meeting time" also be referred to represent the expected
time to meet in the process that the two agents move randomly in each round [4,10,
13,15].

Meeting Times of Non-atomic Random Walks 299

reaching the goals of original vertices from the moves of intermediate vertices.
For example, in an extreme case, the adversary can only choose an agent once
to locate the agent to the intermediate vertex, and after that, it can repeatedly
move the other agent.

When an agent is located at an intermediate vertex, then the state of the
agent is interpreted as traversing the corresponding edge in the original graph
G. Also, similar to the atomic case, the agents do not return to the original
vertex they left in the random walks. Therefore, when the agent located at an
intermediate vertex is chosen to move, the direction for the move is kept. In
other words, when the agent is located at an intermediate vertex between v and
w with direction from v to w, then it must reach the vertex w (not v). Note also
that, if the meetings can occur only when the agents are located at the same
original vertex, then any meeting does not occur in the non-atomic random
walks. For example, the scheduler at first moves an agent to the intermediate
vertex and repeatedly moves another agent. By doing so, the agents never meet
at the original vertices. Therefore, we need to allow the agents to meet in the
intermediate vertices as well as the original vertices.Allowing agents to meet on
intermediate vertices hints that previous results on random walks in the atomic
case may be simply expanded to the non-atomic case. However, this is not the
case:

– Considering a random walk on the subdivided graph (illustrated in part (a)
of Fig. 1) does not take into account that in our setting, since agents may not
return back to the original node they left when at an intermediate node.

– Considering a random walk on the directed graph induced by the intermediate
node direction constraints (part (b) in Fig. 1) does not take into account that
for two original neighboring vertices u and v, the intermediate vertices π{u,v}
and π{v,u} must be a single vertex (otherwise, any meeting cannot occur at
an intermediate node).

1.1 Our Contribution

The first contribution is the formalization of the meeting time of non-atomic
random walks by two agents. For the formalization, we introduce the notion of
non-atomic moves of agents in the subdivided graphs G̃. We then show that
our definitions match the intuitions described above by formally proving the
impossibility to meet when we restrict the meeting points to the original vertices
in V . By the impossibility, we relax the assumption such that the agents can
meet at the intermediate vertices as well as the original vertices. We assume
that the agents can meet when they are located at the same intermediate vertex
regardless of their direction. That is, they can meet if they are located at the
same intermediate vertex in the same direction or opposite directions.

Then, we prove an upper bound of the meeting times of the non-atomic
random walks. Specifically, based on the proof arguments in [5], we extend
their proofs and show the following theorem. For the adversarial scheduler, let

300 R. Eguchi et al.

Fig. 1. In this figure, the white circles represent the original nodes, and the gray circles
represent the intermediate nodes. The objects with a black circle combined with a
triangle represent the agents. (a) (Color figure online) Random walks in the subdivided
graphs. In this case, returning back to the original node they left is unavoidable. (b)
Two intermediate nodes. In this case, the agents cannot meet when they enter the two
intermediate nodes in different directions. (c) Our definition. The intermediate node
is unique, and the agents have a direction as their state(Precise definition is presented
in Sect. 2).

M̃G(x, y) denote the worst meeting time of non-atomic random walks from ini-
tial positions x, y ∈ V . Also, let H(x, y) be the hitting time from x to y, which
is the expected time to reach y from x by an agent for x, y ∈ V in G.

Theorem 1. For a pair of x, y ∈ V , suppose that the agents are initially located
at vertices x, y and conduct the non-atomic random walks under the strategy of
the adversarial scheduler. Then, there is a pair of vertices t, u ∈ V such that

M̃G(x, y) ≤ 2

⎛
⎝H(x, y) + H(y, u) − H(u, y) + du − 1 +

∑
z∈NG(u)\t

H(z, u)

⎞
⎠

holds, where du is the degree of the original vertex u ∈ V .

The vertices t, u in Theorem 1 are special in the sense that the state stu is
hidden, whose precise definition appears in Subsect. 4.2. Also, since the hitting
times have a polynomial upper bound of O(n3), Theorem 1 also shows the poly-
nomial upper bound of O(n4) on the worst meeting times of the non-atomic
random walks.

1.2 Related Work

The meeting times of (atomic) random walks were first presented by Israeli and
Jalfon [11]. In the paper, they introduced a token-management scheme for self-
stabilizing mutual exclusion. In the initial configuration of the scheme, multiple
tokens (i.e., agents) can exist, and processors (i.e., vertices) send the tokens to
their adjacent processors randomly. If some tokens move to the same processor,
then the tokens are merged into one token. For the scheme, it is required that

Meeting Times of Non-atomic Random Walks 301

tokens eventually are eventually merged into one token. In particular, the authors
showed that, in a ring of n vertices, the meeting time is O(n2), and also that, in
general graphs, an exponential upper bound O((Δ − 1)D−1) exists, where Δ is
the maximum degree of the graph, and D is the diameter of the graph.

Tetali and Winkler [17] proved the upper bound of the adversarial meet-
ing times of random walks, specifically as follows. For any connected graph
G, MG(x, y) ≤ H(x, y) + H(y, z) − H(z, y) holds for the initial positions x, y,
where z is special vertex called the hidden vertex. In more detail, z satisfies
H(z, v) ≤ H(v, z) for each v ∈ V . Hence the meeting times MG are upper
bounded by at most twice the worst hitting time of the graph G in the worst
adversarial settings. Then, Coppersmith, Tetali, and Winkler [5] showed another
upper bound: the worst meeting time is upper bounded by (4

27 + o(1))n3 for any
graphs and any initial positions.

Tetali and Winkler [18] provided the exact characterization of the meeting
time of each initial configuration. The specification of the characterization is as
follows: Let c be the vertex such that, for any vertex v ∈ V , H(v, c) ≤ H(c, v)
holds. Let qG(w;x, y) denote the probability that agents initially located at x, y
first meet at vertex w and let Z(x) be another potential function that Z(x) =
H(c, x)−H(x, c). Then, they show MG(x, y) = Φ(x, y)−∑

w∈V qG(w;x, y)[Z(z)−
Z(w)], where Φ(x, y) = H(x, y)+H(y, z)−H(z, y) is introduced by Coppersmith,
Tetali, and Winkle [5].

The meeting times of (atomic) random walks by k agents for k ≥ 2 were
examined by Bshouty et al. [3]. In the paper, they showed that the meeting
times of multiple random walks have an upper bound in terms of the meeting
times of fewer random walks. The meeting time of random walks by k agents is
the expected number of rounds to merge the agents into one agent. Quantities
related to a random walk in graphs such as hitting time, cover time, and commute
time are well studied [2,8,12,16] and the interested reader can refer to the survey
of Lovasz [14]. Interestingly, Brightwell and Winkler showed [2] that the worst
hitting time among all graphs is O(n3), which appears in the so-called lollipop
graphs. The relation between random walks in graphs and electrical networks
has also been investigated [16].

The related problem concerning the meeting time of the non-atomic random
walks is asynchronous rendezvous of two agents [1,6,7,9]. The asynchronous
rendezvous problem is similar problem to the non-atomic meeting time, in the
sense that the adversary controls the speed of the agents (or the rounds to reach
the destination of a move). The notion of subdivided graphs was introduced to
study asynchronous rendezvous by Bampas et al. [1].

1.3 Organization of Paper

In Sect. 2, we explain the definitions and notations for the meeting times of
non-atomic random walks. In Sect. 3, we prove the impossibility that the agents
cannot meet with the assumption that they are only assumed to meet in the
original vertices. In Sect. 4, we show an upper bound for meeting times of non-
atomic random walks. In Sect. 5, we examine the upper bound in several graph

302 R. Eguchi et al.

classes such as lines and rings, and complete graphs. Finally, we conclude this
paper in Sect. 6.

2 Preliminaries

Let G = (V (G), E(G)) be a connected undirected graph with n vertices and
m edges. Let G̃ denote the graph produced by subdividing each edge of G into
two parts. Precisely, we define G̃ = (V (G̃), E(G̃)). The vertex set is defined by
V (G̃) = V (G) ∪ Vintm, where Vintm = {π{v,w} | (v, w) ∈ E(G)}. The edge set
is defined by E(G̃) = {(v, π{v,w}) | v ∈ V (G) ∧ π{v,w} ∈ Vintm}. Note that
π{v,w} = π{w,v} holds. Also, we say vertices in V (G) are original vertices, and
vertices in Vintm are intermediate vertices.

Each state of an agent is an element from a set V ∪ Sintm, where Sintm =
{sxy | π{x,y} ∈ Vintm}. The state sxy represents that the agent is located at
π{x,y} and it has the direction from x to y. That is, in the original graph G,
the agent with state sxy is heading to the vertex y from x in the edge (x, y) in
G. Note that for each π{v,w}, there are two states sxy and syx, and sxy �= syx
holds since the directions are different. The states from V represent that the
current position of the agent is an original vertex of G. We call the states from
V original states. We define states from Sintm are intermediate states. For each
state s, we define the following bar operation: if s ∈ V , then s = s, and if
s = sxy ∈ Sintm, then sxy = syx. Next, we define the adjacent states of each
state. The set of adjacent states Nas(s) for a state s ∈ V ∪Sintm is defined that (1)
Nas(s) = {svw ∈ Sintm | w ∈ NG(v)} if s = v (original), and (2) Nas(s) = {w}
if s = svw ∈ Sintm (intermediate). We also define ds = |Nas(s)|. The set of
configurations C is defined by (V ∪ Sintm)2. The elements of a configuration
correspond to the states of the two agents.

The computation proceeds in discrete time r = 0, 1, 2, . . . , which is called
rounds. In each round r, the adversary determines which agent moves for a
configuration c in the round. The selected agent at state s moves to an adjacent
state s′ ∈ Nas(s) in G̃ with probability 1/ds. Note that if the state is intermediate
state svw, then the next state is uniquely determined to w. Note that even if
we consider the non-atomic moves of the agents, these moves of the agents are
assumed to be complete in the current round, and in the next round the moving
agent should be at the next state in V ∪ Sintm.

The adversary chooses an agent in the current configuration according to
a strategy SG̃ for a subdivided graph G̃. The strategy SG̃ is a function SG̃ :
C → [0, 1], where C is a set of configurations. The expression SG̃(c) = p for
c = (s, s′) ∈ (V ∪ Sintm)2 and p ∈ [0, 1] represents that the adversary moves an
agent in the state s with probability p (otherwise it moves the other agent in
the state s′) in the current configuration c.

We say that the agents meet, if the execution reaches a configuration c =
(s, s′) such that s = s′ or s = s′. In other words, the agents meet if they are
located at the same original vertices or intermediate vertices regardless of the
direction of the agents. We define M̃S(x, y) as the expected rounds for non-atomic

Meeting Times of Non-atomic Random Walks 303

random walks starting at initial position x, y to meet when the adversary adopts
the strategy S. M̃G(x, y) denotes the worst meeting time of non-atomic random
walks starting at x, y ∈ V for all strategies in G̃.

3 Impossibility Results

In this section, using our definition we show the impossibility that the agents
cannot meet when we restrict the meeting points to original vertices.

Theorem 2. If the meeting cannot occur on intermediate vertices, there exists
an adversarial strategy such that agents never meet at an original vertex.

Proof. We specify the strategy as follows. For each v ∈ V and each suv ∈ Sintm

for u ∈ NG(v), the strategy moves the agent at v with probability 1 in the config-
uration (v, suv), and moves agents arbitrary in other configurations. Obviously,
to meet at an original vertex, the agents should reach the configuration (v, suv)
for some v and suv. However, in the next configuration, the agents cannot meet
by the strategy, since by the assumption of meeting, the agents at svu and suv
cannot meet. 	

Observe that weakening the power of the scheduler does not help. Even if
the scheduler is 2-fair (in such a strategy, each agent is selected infinitely often,
and between any two selections of an agent, any other agent is selected at most
twice), it remains impossible to obtain meeting if they can only occur on original
vertices. For example, consider an alternating strategy (the scheduler alternates
between two consecutive activations of the two agents, except for the first acti-
vations in the strategy, where the first time an agent is activated, it is activated
only once). Then, after the first activation, the first agent is on an intermediate
node. After the second agent is activated, both agents are on intermediate nodes.
Then, the first agent is activated twice, and both agents remain on intermediate
nodes. The selection continues so that both agents are on intermediate nodes at
the end of each activation.

4 An Upper Bound for Non-atomic Meeting Time

In this section, we show the upper bound for non-atomic meeting time. At first,
we define the hitting times between states in G̃, which is a generalization of
the hitting time between vertices in G. In the following, we say the generalized
version of the hitting times extended hitting times. We also show a property of
the extended hitting time, which we call triangle property in the following. It
is also the generalized version of the triangle property shown in the arguments
in [5]. In our argument, the property is generalized in a bit tricky way to hold
the latter arguments. Using the generalized triangle property, we can prove the
existence of special states called hidden states (Subsect. 4.2). The hidden states
allow us to introduce a potential function Φ̃ for a pair of states (Subsect. 4.3),
and finally we show an upper bound on the non-atomic meeting times using the
potential function Φ̃.

304 R. Eguchi et al.

4.1 Hitting Time of States and Triangle Property

For a pair of states s, s′, we define that the extended hitting time H̃(s, s′) is the
expected moves to reach the state s′ from the state s by an agent in G̃. The
moves of the agent are the same as the ones in the non-atomic moves in Sect. 2,
specifically as follows: if its state s is in V , then it moves to ssw ∈ Nas(s) with
probability 1/ds for each w ∈ NG(v); If its state s is sxy ∈ Sintm, then it moves
to y as a move.

If s, s′ ∈ V holds, then H̃(s, s′) is twice of the value of the original hitting
time H(s, s′) in G, that is, H̃(s, s′) = 2H(s, s′). This is because, in the moves in
G̃, the agent should move twice to traverse an edge corresponding to G. If the
starting point is intermediate, that is, s = sxy ∈ Sintm and s′ ∈ V , then we have
H̃(sxy, s′) = 1+ H̃(y, s′) = 1+2H(y, s′). The extended hitting time in this case
can be also calculated by the original hitting time. The remaining case is that the
goal state is an intermediate state, that is, s′ = sxy for sxy ∈ Sintm. In this case,
to reach sxy the agent should visit the original vertex x. Therefore, the following
equality holds by the linearity of expectation: H̃(s, sxy) = H̃(s, x) + H̃(x, sxy).
Therefore, we should calculate the value of H̃(x, sxy) for any x and sxy ∈ Nas(x).

Lemma 1. For each x ∈ V and sxy ∈ Sintm, we have

H̃(x, sxy) = 2dx − 1 +
∑

z∈NG(x)\{y}
H̃(z, x).

Proof. Let H̃(x, sxy) = T . At vertex x, the agent reaches the state sxy with
the probability 1/dx. Otherwise, it moves z for z ∈ NG(x) \ {y} with the same
probability with two moves. After the latter case, the agent should return to
the vertex x for reaching the state sxy. Therefore, the value can be written the
following recursive formula:

T =
1
dx

⎛
⎝1 +

∑
z∈NG(x)\{y}

(2 + H̃(z, x) + T)

⎞
⎠ .

Therefore we have

dx · T = 1 + 2dx − 2 +

⎛
⎝ ∑

z∈NG(x)\{y}
H̃(z, x)

⎞
⎠ + (dx − 1) · T

T = 2dx − 1 +
∑

z∈NG(x)\{y}
H̃(z, x).

	

Next, we prove the key property of the extended hitting times. Here we

introduce the original triangle property of the original hitting times.

Lemma 2 (From [5]). For any x, y, z ∈ V , we have
H(x, y) + H(y, z) + H(z, x) = H(x, z) + H(z, y) + H(y, x)

Meeting Times of Non-atomic Random Walks 305

Note that the left side of the equation is the expected time that a random walk
starting at x visits y then visits z, and returns to x, similarly to the right side of
the equation. While there may exist multiple generalizations of the property, we
use the following generalization of the triangle property to establish the latter
argument of our proof.

Lemma 3. For states x, y, z ∈ V ∪ Sintm, we have
H̃(x, y) + H̃(y, z) + H̃(z, x) = H̃(x, z) + H̃(z, y) + H̃(y, x)

Proof. To prove the lemma, we use the function f : V ∪ Sintm → V , where
f(v) = v for v ∈ V and f(sab) = a for sab ∈ Sintm. Using the function, we
can rewrite the extended hitting time as follows: For states s, s′ ∈ V ∪ Sintm,
H̃(s, s′) = H̃(s, f(s′)) + H̃(f(s′), s′). Using the function, we rewrite the left side
of the equation in the lemma as

H̃(x, y)+ H̃ (y, z) + H̃(z, x)
= H̃(x, f(y)) + H̃(f(y), y) + H̃(y, f(z)) + H̃(f(z), z)

+H̃(z, f(x)) + H̃(f(x), x)
= H̃(x, f(y)) + H̃(y, f(z)) + H̃(z, f(x))

+H̃(f(x), x) + H̃(f(y), y) + H̃(f(z), z).

Similarly, for the right side of the equation, we have

H̃(x, z) + H̃(z, y) + H̃(y, x) = H̃(x, f(z)) + H̃(z, f(y)) + H̃(y, f(x))
+H̃(f(x), x) + H̃(f(y), y) + H̃(f(z), z).

Therefore it is sufficient to show that H̃(x, f(y))+ H̃(y, f(z))+ H̃(z, f(x)) =
H̃(x, f(z)) + H̃(z, f(y)) + H̃(y, f(x)). We then define another function g : V ∪
Sintm → V , which returns v if the input is v ∈ V , and b if it is sab ∈ Sintm.
Similarly for f , we have H̃(s, s′) = H̃(s, g(s)) + H̃(g(s), s′). Thus this proof
is reduced to if the following equation holds: H̃(g(x), f(y)) + H̃(g(y), f(z)) +
H̃(g(z), f(x)) = H̃(g(x), f(z))+H̃(g(z), f(y))+H̃(g(y), f(x)). For the functions,
it holds that g(x) = f(x) and g(x) is an original state. Therefore, the last
equation holds by the original triangle property of Lemma 2. 	

4.2 Hidden States

We define the following relation ≤EHT as follows: For any pair of states s, s′,
s ≤EHT s′ holds if H̃(s, s′) ≤ H̃(s′, s) holds. It is also the extension of the
relation ≤HT given in [5]. In the proofs of [5] the relation for the original hitting
times is defined as follows: For any vertex v, w ∈ V , the relation v ≤HT w
holds if H̃(v, w) ≤ H̃(w, v) holds. The main purpose of the relations is to prove
the existence of the hidden vertex (or state). The hidden vertex in the original
argument is the minimum vertex in the relation. It is proven by showing the
relation is transitive. We also prove the extended relation ≤EHT is transitive,
and prove the existence of the hidden state.

306 R. Eguchi et al.

Lemma 4. lemma The relation ≤EHT is transitive. As a consequence, there is
a state s ∈ V ∪ Sintm such that for any s′ ∈ V ∪ Sintm, it holds that s ≤EHT s′.

Proof. It is sufficient to show that for any states x, y, z ∈ V ∪Sintm, if x ≤EHT y
and y ≤EHT z holds, then we have x ≤EHT z. By the assumption, we have
H̃(x, y) ≤ H̃(y, x) and H̃(y, z) ≤ H̃(z, y). Applying the triangle property for the
states x, y, z of Lemma 3, we have

H̃(x, y) + H̃(y, z) + H̃(z, x) = H̃(x, z) + H̃(z, y) + H̃(y, x)
H̃(x, y) − H̃(y, x) + H̃(y, z) − H̃(z, y) = H̃(x, z) − H̃(z, x)

H̃(x, z) − H̃(z, x) ≤ 0

Therefore it holds that H̃(x, z) ≤ H̃(z, x), proving the lemma. 	

Then, we show that the hidden state(s) is intermediate. For any original

state v ∈ V , we show that swv ≤EHT v for any intermediate swv ∈ Sintm for
w ∈ NG(v). For any vertex v and any swv, we have H̃(swv, v) = H̃(swv, v) = 1 by
definition, and H̃(v, swv) = H̃(v, svw) = 2dv − 1 +

∑
z∈Nas(v)\{w} H̃(z, v). Since

the graph G̃ is connected, we have dv ≥ 1. Hence it holds that H̃(v, svw) ≥ 1.
Therefore for v, swv, we have swv ≤EHT v, as desired.

Proposition 1. An intermediate state is hidden.

4.3 Main Argument

Now we define a potential function Φ̃. For each pair of states x, y and a hidden
state stu, we set the function Φ̃(x, y) = H̃(x, y) + H̃(y, stu) − H̃(stu, y). The
function is derived using the triangle property for states s, s′, stu as follows:

H̃(x, y) + H̃(y, stu) + H̃(stu, x) = H̃(x, stu) + H̃(stu, y) + H̃(y, x)
H̃(x, y) + H̃(y, stu) − H̃(stu, y) = H̃(y, x) + H̃(x, stu) − H̃(stu, x)

Therefore it holds that Φ̃(x, y) = Φ̃(y, x). Also, since the states stu is hidden,
we have that H̃(z, stu) − H̃(stu, z) ≥ 0 for any state z ∈ V ∪ Sintm. Thus we
have the following proposition, which is implicitly used in Theorem 3.

Proposition 2. Φ̃(x, y) ≥ 0 for any x, y ∈ V ∪ Sintm

Now we add some modifications for initial positions, define some notations,
and present the preliminary propositions/lemmas for the main proof. At first,
we extend the initial positions of the non-atomic meeting times, to the ones that
include states from V ∪ Sintm. That is, we define that the starting states of
the agents include the intermediate states. In the following, we assume that any
strategy S contains the intermediate states as initial positions. Next, we define
the optimal (longest) and deterministic strategy. A strategy is deterministic, if
for any pair s, s′ ∈ V ∪ Sintm, the moving agent is chosen with probability 1.

Meeting Times of Non-atomic Random Walks 307

Also, an strategy S is optimal, if for any pair s, s′ ∈ V ∪ Sintm, it holds that
M̃G(s, s′) = M̃S(s, s′).

We also define a value of configurations called destination value. For a con-
figuration (s1, s2), the value is defined according to the function g defined in
the proof of Lemma 3. Recall that g(s) = s if s = v ∈ V and g(sab) = b
for sab ∈ Sintm. The destination value of the configuration (s1, s2) is defined
as d(s1, s2) = dist(s1, g(s1)) + dist(g(s1), g(s2)) + dist(s2, g(s2)), where (1)
dist(s, g(s)) = 1 if the state s is intermediate, and (2) dist(s, g(s)) = 0 if s ∈ V ,
and (3) for s, s′ ∈ V , dist(s, s′) is the hop-distance of the vertices in G̃. Observe
that d(s1, s2) ≥ d(g(s1), g(s2)) holds.

To prove the existence of the optimal and deterministic strategy, we first
show the following lemma. Let S(x, y) be the strategy that maximizes the non-
atomic meeting time starting at x, y ∈ V ∪ Sintm, i.e., M̃S(x,y)(x, y) = M̃G(x, y)
holds. Its proof is deferred to the full paper.

Lemma 5. For any x, y ∈ V , suppose that S(x, y) moves the agent with the
state x with positive probability p > 0. Then, we have that

M̃S(x,y)(x, y) = 1 +
1
dx

∑
z∈Nas(x)

M̃G(z, y).

Lemma 6. For any G, there is an optimal and deterministic strategy S∗.

Proof. Using S(x, y), we define the strategy S∗ as follows: If the strategy S(x, y)
moves the agent at x at initial configuration (x, y) with the probability strictly
greater than 0, then the strategy S∗ moves x at (x, y). Otherwise if S(x, y) moves
y with probability 1, then S∗ moves y. The strategy S∗ is created by conduct-
ing the above operation for all pairs of states (x, y). Obviously, the strategy is
deterministic. We argue that such strategy S∗ is optimal.

Towards the contradiction, suppose that S∗ is not optimal. Then there is at
least one pair of states x, y such that M̃G(x, y) − M̃S∗(x, y) > 0 holds. Let α
be the maximum value of M̃G(x, y)− M̃S∗(x, y) among such pairs. We choose a
pair x, y such that they attain α and have the minimum destination value d(x, y)
among the pairs that attain the value α. It holds that x �= y, since if x = y then
M̃G(x, x) = M̃S∗(x, x) = 0. Assume that in the strategy S(x, y) the agent in the
state x is moved with positive probability p > 0. Therefore, S∗ moves the agent
in the state x with probability one. Hence, by averaging the moves of the agent
among the neighbors of the state x, we have

M̃S∗(x, y) = 1 +
1
dx

⎛
⎝ ∑

z∈Nas(x)

M̃S∗(z, y)

⎞
⎠ . (1)

308 R. Eguchi et al.

Using Lemma 5 and Equation (1), we can derive the following contradiction,

M̃S(x,y)(x, y) = 1 +
1
dx

∑
z∈Nas(x)

M̃G(z, y) (by Lemma 5)

= 1 +
1
dx

∑
z∈Nas(x)

(
M̃S∗(z, y) + α(z, y)

)

< 1 +
1
dx

∑
z∈Nas(x)

(
M̃S∗(z, y)

)
+ α

= M̃S∗(x, y) + α (by Equation 1)
= M̃G(x, y) = M̃S(x,y)(x, y),

where α(z, y) = M̃G(z, y)− M̃S(z,y)(z, y). The strict inequality holds because of
the (x, y) choice. That is, there is at least one adjacent state z′ ∈ Nas(x) such
that d(z, y) < d(x, y) by the definition of d. Therefore, at such a configuration
(z′, y) we have α(z′, y) < α.

The other case is that in the strategy S(x, y), the adversary moves the agent
in the state y with probability 1. In this case, we can directly have M̃S(x,y)(x, y) =

1 + 1
dy

∑
z∈Nas(y)

M̃G(x, z). Also, M̃S∗(x, y) = 1 + 1
dy

(∑
z∈Nas(y)

M̃S∗(x, z)
)

holds. Therefore, we can derive a contradiction similarly, proving the lemma. 	

For the extended hitting times, the following proposition holds.

Proposition 3. For any pair of states s1, s2 ∈ V ∪ Sintm such that s1 �= s2, we
have

H̃(s1, s2) = 1 +
1

ds1

∑
z∈Nas(s1)

H̃(z, s2).

Thus we have the following equations for the potential function Φ̃, whose proof
is deferred to the full paper.

Lemma 7. For any pair of states s1, s2 such that s1 �= s2, we have

Φ̃(s1, s2) = 1 +
1

ds1

∑
z∈Nas(s1)

Φ̃(z, s2) = 1 +
1

ds2

∑
z∈Nas(s2)

Φ̃(z, s1).

A similar proposition holds for the non-atomic meeting times.

Proposition 4. For any pair of states s1, s2 such that s1 �= s2 and an optimal
and deterministic strategy S∗, suppose that the agent with state s1 is moved in
the configuration (s1, s2) by the strategy. Then, we have

M̃G(s1, s2) = 1 +
1

ds1

∑
z∈Nas(s1)

M̃G(z, s2).

Meeting Times of Non-atomic Random Walks 309

Otherwise, if the strategy moves the agent with state s2, then we have

M̃G(s1, s2) = 1 +
1

ds2

∑
z∈Nas(s2)

M̃G(z, s1).

Note that these two cases exclusively hold, that is, both equations do not hold
at a time. This fact holds since in the case that the adversary moves the agent
x, we cannot take the average among the adjacent states of y.

Finally, we can claim the main argument.

Theorem 3. Let G be any connected and undirected graph, and let stu be a
hidden state of non-atomic random walks of G̃. Then, for every pair of states
x, y, we have M̃G(x, y) ≤ Φ̃(x, y), where Φ̃(x, y) = H̃(x, y)+H̃(y, stu)−H̃(stu, y).

Proof. To prove the theorem by contradiction, assume that there is a pair of
states x, y such that M̃G(x, y)− Φ̃(x, y) > 0. Let βmax be the maximum value of
such differences. Let β(x, y) be the difference M̃G(x, y)−Φ̃(x, y) at the configura-
tion (x, y). We choose a configuration (x, y) such that it obtains minimum d(x, y)
among the configurations that achieve βmax. Without loss of generality, suppose
that the strategy S∗ moves the agent in the state x. Since M̃G(x, x) = 0 and
Φ̃(x, x) ≥ 0 by Proposition 2, it holds that x �= y. Using the average argument,
we have the following contradiction:

M̃G(x, y) = Φ̃(x, y) + βmax

= 1 +
1
dx

∑
z∈Nas(x)

Φ̃(z, y) + βmax

> 1 +
1
dx

∑
z∈Nas(x)

(
Φ̃(z, y) + β(z, y)

)

= 1 +
1
dx

∑
z∈Nas(x)

M̃G(z, y) = M̃G(x, y).

The second equality uses Lemma 7, and the last equality uses Proposition 4.
The inequality is strict, since there is an adjacent state z′ ∈ Nas(x) such that
d(z′, y) < d(x, y), therefore we have β(z′, y) < βmax. 	

5 Discussion

In this section, we examine the upper bounds for several graph classes, namely
graphs with bounded degrees including lines and rings, and complete graphs. We
also consider the general graphs. Let Δ be the maximum degree of the vertices
in V , and HG = maxx,y∈V H(x, y).

– In general graphs, we have the following upper bound. Since in the last sum-
mation of the upper bound of Theorem 1, the number of sums is upper

310 R. Eguchi et al.

bounded by the max degree of the initial positions x, y, we have the gen-
eral upper bound of O(ΔHG). Also, HG = O(n3) holds for any graph G,
which is shown by the paper [2], we have O(Δn3) = O(n4). For the meet-
ing time of atomic random walks, in the paper [17] the authors show that
MG(x, y) = O(n3) for any graph G and any initial positions x, y.

– For any graph G with bounded degrees for any initial position x, y, the
meeting time M̃(x, y) is bounded by O(HG). Especially in the lines and
rings, since the hitting time H(z, u) for z ∈ NG(u) is O(n), we have
M̃G(x, y) ≤ 4HG + O(n).

– The complete graphs are an instance in which the meeting times are different
between atomic and non-atomic random walks. In the original (atomic) ran-
dom walks, the meeting times for the complete graph with n vertices is Θ(n),
while the one for the non-atomic random walk is Θ(n2). For the original ran-
dom walks, the O(n)-upper bound is derived by the original upper bound in
[5]. Also, Ω(n)-lower bound is given by the following strategy: for the agents
starting at different vertices, the strategy repeatedly chooses the same agent
until they meet. Obviously, the expected time to meet is Θ(n) with the adver-
sary using the strategy. Since there is a strategy that obtains Θ(n) time to
meet, the meeting time of the worst strategy is at least Ω(n). Similarly, in the
non-atomic random walks, an O(n2) upper bound of the meeting time is given
by calculating the potential function Φ̃. Since any intermediate state is hidden
by the symmetry of the topology, we can choose any intermediate state as a
hidden state, suppose sh. For any pair of intermediate states sab, scd, we have
H̃(sab, scd) = 1 + H̃(b, c) + H̃(c, scd) = O(n + H̃(c, scd)) = O(n2). Also, the
upper bound is derived by the following strategy: we let the agents start at
sab and sh, and the strategy repeatedly moves the agent starting at sab until
they meet. This takes expected Θ(n2) time to meet, and as a consequence,
the meeting time of the worst strategy is at least Ω(n2).

6 Conclusion

In this paper, we revisit the adversarial meeting time of the random walks by
two agents and consider the non-atomic version of the random walks. For the
extended version of the random walks, we give a new upper bound of the worst-
case expected time to meet in a given graph G. We also show for atomic and non-
atomic random walks, the meeting times are different in the complete graphs.

References

1. Bampas, E., et al.: On asynchronous rendezvous in general graphs. Theoret. Com-
put. Sci. 753, 80–90 (2019). https://doi.org/10.1016/j.tcs.2018.06.045

2. Brightwell, G., Winkler, P.: Maximum hitting time for random walks on graphs.
Random Struct. Algorithms 1(3), 263–276 (1990). https://doi.org/10.1002/rsa.
3240010303

https://doi.org/10.1016/j.tcs.2018.06.045
https://doi.org/10.1002/rsa.3240010303
https://doi.org/10.1002/rsa.3240010303

Meeting Times of Non-atomic Random Walks 311

3. Bshouty, N.H., Higham, L., Warpechowska-Gruca, J.: Meeting times of random
walks on graphs. Inf. Process. Lett. 69(5), 259–265 (1999). https://doi.org/10.
1016/S0020-0190(99)00017-4

4. Cooper, C., Elsässer, R., Ono, H., Radzik, T.: Coalescing random walks and voting
on connected graphs. SIAM J. Discret. Math. 27(4), 1748–1758 (2013). https://
doi.org/10.1137/120900368

5. Coppersmith, D., Tetali, P., Winkler, P.: Collisions among random walks on a
graph. SIAM J. Discret. Math. 6(3), 363–374 (1993). https://doi.org/10.1137/
0406029

6. Czyzowicz, J., Pelc, A., Labourel, A.: How to meet asynchronously (almost)
everywhere. ACM Trans. Algorithms 8(4), 1–14 (2012). https://doi.org/10.1145/
2344422.2344427

7. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asyn-
chronous deterministic rendezvous in graphs. In: Jȩdrzejowicz, J., Szepietowski, A.
(eds.) MFCS 2005. LNCS, vol. 3618, pp. 271–282. Springer, Heidelberg (2005).
https://doi.org/10.1007/11549345_24

8. Feige, U.: A tight upper bound on the cover time for random walks on graphs.
Random Struct. Algorithms 6(1), 51–54 (1995). https://doi.org/10.1002/rsa.
3240060106

9. Guilbault, S., Pelc, A.: Asynchronous rendezvous of anonymous agents in arbitrary
graphs. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS,
vol. 7109, pp. 421–434. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25873-2_29

10. Hassin, Y., Peleg, D.: Distributed probabilistic polling and applications to pro-
portionate agreement. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.)
ICALP 1999. LNCS, vol. 1644, pp. 402–411. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48523-6_37

11. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self-
stabilizing mutual exclusion. In: Proceedings of the Ninth Annual ACM Symposium
on Principles of Distributed Computing, pp. 119–131 (1990)

12. Kahn, J.D., Linial, N., Nisan, N., Saks, M.E.: On the cover time of random walks
on graphs. J. Theor. Probab. 2, 121–128 (1989)

13. Kanade, V., Mallmann-Trenn, F., Sauerwald, T.: On coalescence time in graphs-
when is coalescing as fast as meeting? ACM Trans. Algorithms 19(2), 1–46 (2023).
https://doi.org/10.1145/3576900

14. Lovász, L.: Random walks on graphs. Comb. Paul Erdos Eighty 2, 1–46 (1993)
15. Oliveira, R.I., Peres, Y.: Random walks on graphs: new bounds on hitting, meet-

ing, coalescing and returning. In: 2019 Proceedings of the Meeting on Analytic
Algorithmics and Combinatorics, pp. 119–126 (2019). https://doi.org/10.1137/1.
9781611975505.13

16. Tetali, P.: Random walks and the effective resistance of networks. J. Theor. Probab.
4, 101–109 (1991)

17. Tetali, P., Winkler, P.: On a random walk problem arising in self-stabilizing token
management. In: Proceedings of the Tenth Annual ACM Symposium on Principles
of Distributed Computing, pp. 273–280. Association for Computing Machinery
(1991). https://doi.org/10.1145/112600.112623

18. Tetali, P., Winkler, P.: Simultaneous reversible Markov chains. Comb. Paul Erdos
Eighty 1 (1993)

https://doi.org/10.1016/S0020-0190(99)00017-4
https://doi.org/10.1016/S0020-0190(99)00017-4
https://doi.org/10.1137/120900368
https://doi.org/10.1137/120900368
https://doi.org/10.1137/0406029
https://doi.org/10.1137/0406029
https://doi.org/10.1145/2344422.2344427
https://doi.org/10.1145/2344422.2344427
https://doi.org/10.1007/11549345_24
https://doi.org/10.1002/rsa.3240060106
https://doi.org/10.1002/rsa.3240060106
https://doi.org/10.1007/978-3-642-25873-2_29
https://doi.org/10.1007/978-3-642-25873-2_29
https://doi.org/10.1007/3-540-48523-6_37
https://doi.org/10.1007/3-540-48523-6_37
https://doi.org/10.1145/3576900
https://doi.org/10.1137/1.9781611975505.13
https://doi.org/10.1137/1.9781611975505.13
https://doi.org/10.1145/112600.112623

Minimum Algorithm Sizes for
Self-stabilizing Gathering and Related

Problems of Autonomous Mobile Robots
(Extended Abstract)

Yuichi Asahiro1(B) and Masafumi Yamashita2

1 Kyushu Sangyo University, Fukuoka, Japan
asahiro@is.kyusan-u.ac.jp

2 Kyushu University, Fukuoka, Japan
masafumi.yamashita@gmail.com

Abstract. We investigate swarms of autonomous mobile robots in the
Euclidean plane. Each robot has a target function to determine a desti-
nation point from the robots’ positions. All robots in a swarm conven-
tionally take the same target function. We allow the robots in a swarm to
take different target functions, and investigate the effects of the number
of distinct target functions on the problem-solving ability. Specifically,
we are interested in how many distinct target functions are necessary
and sufficient to solve some well-known problems which are not solvable
when all robots take the same target function, regarding target function
as a resource, like time and message, to solve a problem. The number of
distinct target functions necessary and sufficient to solve a problem Π
is called the minimum algorithm size (MAS) for Π. (The MAS is ∞, if
Π is not solvable even for the robots with unique target functions.) We
establish the MASs for solving the gathering and related problems from
any initial configuration, i.e., in a self-stabilizing manner. Our results
include: There is a family of the scattering problems cSCT (1 ≤ c ≤ n)
such that the MAS for the cSCAT is c, where n is the size of the swarm.
The MAS for the gathering problem is 2. It is 3, for the problem of gath-
ering all non-faulty robots at a single point, regardless of the number
(< n) of crash failures. It is however ∞, for the problem of gathering all
robots at a single point, in the presence of at most one crash failure.

Keywords: Autonomous mobile robot · Minimum algorithm size ·
Scattering · Gathering · Pattern formation · Crash failure

1 Introduction

Swarms of anonymous oblivious mobile robots have been attracting many
researchers over four decades, e.g., [1,3,9–12,15,21,22,26,27]. An anonymous

Due to space limitation, some proofs and contributions are deferred to full version [7].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 312–327, 2023.
https://doi.org/10.1007/978-3-031-44274-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_23&domain=pdf
https://doi.org/10.1007/978-3-031-44274-2_23

MAS for Self-stabilizing Gathering and Related Problems 313

oblivious mobile robot, which is represented by a point in the Euclidean
space, looks identical and indistinguishable, lacks identifiers and communica-
tion devices, and operates in Look-Compute-Move cycles: When a robot starts
a cycle, it identifies the multiset of the robots’ positions, computes a destination
point using a function called target function based only on the multiset identi-
fied, and then moves to the destination point. All papers listed above investigate
swarms, provided that all robots composing a swarm take the same target func-
tion. It makes sense: Anonymous robots taking different target functions can
behave, as if they had different identifiers. On the other hand, robots with dif-
ferent identifiers can behave, as if they took different target functions, even when
they take the same one. The problems investigated cover from simple problems
like the convergence and the gathering problems (e.g., [1,22]) to hard problems
like the formation problem of a sequence of patterns and the gathering prob-
lem in the presence of Byzantine failures (e.g., [12,18]). It has turned out that
a swarm of anonymous oblivious robots is powerful enough to solve sufficiently
hard problems. At the same time, however, we have realized limitation of its
problem-solving ability. For example, the gathering problem is, in general, not
solvable even if the number of robots is 2 [26].

A promising idea to increase the problem-solving ability of a swarm is to
allow robots to take different target functions. It is also natural, since almost all
artificial distributed systems enjoy unique identifiers, e.g., serial numbers. This
paper takes this approach, and investigates the effects of the number of distinct
target functions on the problem-solving ability. Specifically, we are interested in
how many distinct target functions are necessary and sufficient to solve some
problems which are not solvable when all robots take the same target function.

Let R and Φ be a swarm of n robots, and a set of target functions such
that |Φ| ≤ n, respectively. An assignment A : R → Φ of target functions is a
surjection from R to Φ, i.e., every target function is assigned to at least one robot.
We call Φ an algorithm1 of R for a problem Π, if R solves Π, regardless of the
assignment A that R takes. (Thus, we cannot assume a particular assignment
to design target functions.) The minimum algorithm size (MAS) for Π is the
size |Φ| of algorithm Φ necessary and sufficient to solve Π. It is ∞, if Π is not
solvable even for the robots with unique target functions. We then investigate
the MASs of self-stabilizing algorithms for solving the gathering and related
problems from any initial configuration. In what follows, an algorithm means a
self-stabilizing algorithm, unless otherwise stated.

Motivations. We have investigated the time and the message complexities of
distributed problems, considering time and message as important resources in the
distributed computing. We regard target function as another resource. You will
find the MASs of many problems are larger than 1 (but not ∞). The complexity
of a problem is thus (at least partly) measured by its MAS. Also, an anonymous

1 Here, we abuse a term “algorithm.” Despite that an algorithm must have a finite
description conventionally, a target function (and hence a set of target functions)
may not, as defined in Sect. 2. To compensate the abuse, when we will show the
existence of an algorithm, we insist on giving a finite procedure to compute it.

314 Y. Asahiro and M. Yamashita

swarm with c distinct target functions can be regarded as a swarm with c distinct
identifiers (and the same target function). Maintaining a large number of distinct
identifiers not only is a centralized task, but also causes a substantial load. These
motivate our theoretical work of establishing the MASs for problems.

Homonymous Distributed Systems. A distributed system is homonymous, if
some processing elements (e.g., processors, processes, agents, or robots) may have
the same identifier. Two extreme cases are anonymous systems and those whose
identifiers are unique. The extreme cases have been investigated extensively.
A relatively small number of researches on “properly” homonymous distributed
system are known. Recall that we can identify an anonymous distributed system
with c distinct local algorithms with a homonymous distributed system with c
distinct identifiers.

Angluin [4] started investigation on anonymous computer networks in 1980,
and a few researchers (e.g., [8,20,23]) followed her, to pursuit a purely distributed
algorithm which does not rely on a central controller, in the spirit of the mini-
malist. Yamashita and Kameda [24] investigated the leader election problem on
homonymous computer networks in 1989. Their main research topic was sym-
metry breaking, and they searched for a condition symmetry breaking becomes
possible. A rough conclusion established is that symmetry breaking is impossible
in general, but the probability that it is possible approaches to 1, as the num-
ber of processors increases, provided that the network topology is random, and
identifiers, even if they are not unique, substantially increase the probability.
The leader election problem on homonymous computer networks has also been
investigated under several assumptions e.g., in [2,14,17,25].

Other research topics on homonymous computer networks include failure
detectors [5] and the Byzantine agreement problem [13]. In [13], the authors
showed that the Byzantine agreement problem is solvable if and only if � ≥
3f + 1 in the synchronous case, and it is solvable only if � > n+3f

2 in the
partially synchronous case, where � is the number of distinct identifiers and f
is an upperbound on the number of faulty processors. Thus, the MAS of the
Byzantine agreement problem is 3f + 1 in the synchronous case.

Only a few researchers have investigated homonymous swarms of robots:
Team assembly of heterogeneous robots, each dedicated to solve a subtask, is
discussed in [19], and the compatibility of target functions is discussed in [6,11].

Contributions. We investigate the MASs for a variety of self-stabilizing prob-
lems, which are asked to solve problems from any initial configuration. The c-
scattering problem (cSCT) is the problem of forming a configuration in which
robots are distributed at least c different positions. The scattering problem is the
nSCT. The c-gathering problem (cGAT) is the problem of forming a configura-
tion in which robots are distributed at most c different positions. The gathering
problem (GAT) is the 1GAT. The pattern formation problem (PF) for a given
pattern G is the problem of forming a configuration P similar2 to G.

2 We say that one object is similar to another, if the latter is obtained from the former
by a combination of scaling, translation, and rotation (but not by a reflection).

MAS for Self-stabilizing Gathering and Related Problems 315

We also investigate problems in the presence of crash failures: A faulty robot
can stop functioning at any time, becoming permanently inactive. A faulty robot
may not cause a malfunction, forever. We cannot distinguish such a robot from
a non-faulty one. The f-fault tolerant c-scattering problem (fFcS) is the problem
of forming a configuration in which robots are distributed at c (or more) different
positions, as long as at most f robots have crashed. The f-fault tolerant gathering
problem (fFG) is the problem of gathering all non-faulty robots at a point, as
long as at most f robots have crashed. The f-fault tolerant gathering problem to
f points (fFGP) is the problem of gathering all robots (including faulty ones)
at f (or less) points, as long as at most f robots have crashed.

Table 1 summarizes main results.

Table 1. For each problem Π, the MAS for Π, an algorithm for Π achieving the
MAS (and the theorem/corollary/observation citation number establishing the result
in parentheses) are shown.

problem Π MAS algorithm

cSCT (1 ≤ c ≤ n) c cSCTA (Thm. 1)
cGAT (2 ≤ c ≤ n) 1 2GATA (Cor. 1)
GAT 2 GATA (Thm. 3)
PF n PFA (Thm. 6)
fF1S (1 ≤ f ≤ n − 1) 1 1SCTA (Obs. 1)
fF2S (1 ≤ f ≤ n − 2) f + 2 (f + 2)SCTA (Thm. 7)
(n − 1)F2S ∞ – (Thm. 7)
fFcS (c ≥ 3, c + f − 1 ≤ n) c + f − 1 (c + f − 1)SCTA (Thm. 7)
fFcS (c ≥ 3, c + f − 1 > n) ∞ – (Thm. 7)
fFG (1 ≤ f ≤ n − 1) 3 SGTA (Thm. 8)
fFGP (1 ≤ f ≤ n − 1) ∞ – (Thm. 9)

Organization. After introducing the robot model and several measures in
Sect. 2, we first establish the MAS for the cSCT in Sect. 3. Then the MASs
for the cGAT and the PF are respectively investigated in Sects. 4 and 5. Sec-
tions 6 and 7 consider the MASs for the fFcS, the fFG, and the fFGP. Finally,
we conclude the paper by giving open problems in Sect. 8.

2 Preliminaries

The Model. Consider a swarm R of n robots r1, r2, . . . , rn. Each robot ri has
its own unit of length and a local compass, which define an x-y local coordinate
system Zi: Zi is right-handed and self-centric, i.e., the origin (0, 0) always shows

316 Y. Asahiro and M. Yamashita

the position of ri. Robot ri has the strong multiplicity detection capability, and
can count the number of robots that reside at a point.

A target function φ is a function from (R2)n to R2 ∪ {⊥} for all n ≥ 1 such
that φ(P) = ⊥, if and only if (0, 0) �∈ P .3 Here, ⊥ is a special symbol to denote
that (0, 0) �∈ P . Given a target function φi, ri executes a Look-Compute-Move
cycle when it is activated:

Look: ri identifies the multiset P of the robots’ positions in Zi.
Compute: ri computes xi = φi(P). Since (0, 0) ∈ P , φi(P) �= ⊥. (In case φi is

not computable, we simply assume that φi(P) is given by an oracle.)
Move: ri moves to xi, where it always reaches xi before this Move phase ends.

We assume a discrete time 0, 1, At each time t ≥ 0, a scheduler activates
some unpredictable non-empty subset (that may be all) of robots. Then activated
robots execute a cycle which starts at t and ends before (not including) t + 1,
i.e., R is semi-synchronous (SSYNC).

Let Z0 be the x-y global coordinate system. It is right-handed. The coordinate
transformation from Zi to Z0 is denoted by γi. We use Z0 and γi just for the
purpose of explanation. They are not available to any robot ri.

The position of robot ri at time t in Z0 is denoted by xt(ri). Then Pt =
{xt(ri) : 1 ≤ i ≤ n} is a multiset representing the positions of all robots at time
t, which is called the configuration of R at t.

Given an initial configuration P0, an assignment A of a target function φi

to each robot ri, and an SSYNC schedule, the execution is a sequence E :
P0, P1, . . . , Pt, . . . of configurations starting from P0. Here, for all ri and t ≥ 0,
if ri is not activated at t, then xt+1(ri) = xt(ri). Otherwise, if it is activated,
ri identifies Q

(i)
t = γ−1

i (Pt) in Zi, computes y = φi(Q
(i)
t), and moves to y in

Zi. (Since (0, 0) ∈ Q
(i)
t , y �= ⊥.) Then xt+1(ri) = γi(y). We assume that the

scheduler is fair: It activates every robot infinitely many times. Throughout the
paper, we regard the scheduler as an adversary.

An SSYNC schedule is said to be fully synchronous (FSYNC), if every robot
ri is activated every time instant t = 0, 1, 2, A schedule which is not SSYNC
is said to be asynchronous (ASYNC). Throughout the paper, we assume that the
scheduler is fair and SSYNC, i.e., it always produces a fair SSYNC schedule.

Orders and Symmetries. Let <4 be a lexicographic order on R2. For distinct
points p = (px, py) and q = (qx, qy), p < q, if either (i) px < qx or (ii) px =
qx and py < qy holds. Let � be a lexicographic order on (R2)n. For distinct
multisets of n points P = {p1,p2, . . . ,pn} and Q = {q1, q2, . . . , qn}, where
for all i = 1, 2, . . . , n − 1, pi ≤ pi+1 and qi ≤ qi+1 hold, P � Q, if there
is an i(1 ≤ i ≤ n − 1) such that pj = qj for all j = 1, 2, . . . , i − 1,5 and

3 Since Zi is self-centric, (0, 0) �∈ P means an error of eye sensor, which we assume
will not occur.

4 We use the same notation < to denote the lexicographic order on R2 and the order
on R to save the number of notations.

5 We assume p0 = q0.

MAS for Self-stabilizing Gathering and Related Problems 317

pi < qi. The set of distinct points of P is denoted by P = {q1, q2, . . . , qm},
where |P | = n and |P | = m. We denote the multiplicity of q in P by μP (q), i.e.,
μP (q) = |{i : pi = q ∈ P}|. We identify P with the pair (P , μP), where μP is a
labeling function to associate label μP (q) with each element q ∈ P .

Let GP be the rotation group GP of P about oP preserving μP , where oP is
the center of the smallest enclosing circle of P . The order |GP | of GP is denoted
by kP . We assume that kP = 0, if |P | = 1, i.e., if P = {oP }. The symmetricity
σ(P) of P is GCD(kP , μP (oP)) [22]. See Fig. 1(1) for an example.

Fig. 1. (1) A configuration P , where P = {oP ,a, b, c}. If μP (a) = μP (b) = μP (c) =
i for an integer i > 0, then kP = 3. If (kP=3 and) μP (oP) = 3j for an integer
j ≥ 0, then σ(P) = 3; otherwise, σ(P) = 1. (2) A configuration P , where P =
{oP ,a, b, c,d}. In Z0, oP = (0, 0), a = (−1/2, 1/2), b = (1, 0), c = (0, 1), d = (0, −1),
and the radius of C is 1. Solid arrows represent directions of x- and y-axes of Ξa

and Ξb , and have the unit length (the radius 1 of C). In Ξb , oP ,a, b, c, and d are
(1, 0),(3/2, −1/2),(0, 0),(1, −1), and (1, 1), respectively, and thus γ−1

b (P) = VP (b) =
{(1, 0), (3/2, −1/2), (0, 0), (1, −1), (1, 1)}.

We use both measures kP and σ(P). Suppose that P is a configuration in
Z0. When activated, a robot ri identifies the robots’ positions Q(i) = γ−1

i (P) in
Zi in Look phase. Since P and Q(i) are similar, kP = kQ(i) and σ(P) = σ(Q(i))
hold, i.e., all robots can consistently compute kP and σ(P).

On the contrary, robots cannot consistently compute lexicographic orders <
and �. To see this fact, let x and y be distinct points in P in Z0. Then both
γ−1
i (x) < γ−1

i (y) and γ−1
i (x) > γ−1

i (y) can occur, depending on Zi. Thus robots
cannot consistently compare x and y using >. And it is the same for �.

We introduce a total order
 on P , in such a way that all robots can agree
on the order, provided kP = 1. A key trick behind the definition of
 is to
use, instead of Zi, an x-y coordinate system Ξi which is computable for any
robot rj from Q(j). Let ΓP (q) ⊆ P be the orbit of GP through q ∈ P . Then
|ΓP (q)| = kP if q �= oP , and μP (q′) = μP (q) if q′ ∈ ΓP (q). If oP ∈ P ,
ΓP (oP) = {oP }. Let ΓP = {ΓP (q) : q ∈ P}. Then ΓP is a partition of P . Define
an x-y coordinate system Ξq for each point q ∈ P \ {oP }. The origin of Ξq

is q, the unit distance is the radius of the smallest enclosing circle of P , the

318 Y. Asahiro and M. Yamashita

x-axis is taken so that it goes through oP , and it is right-handed. Let γq be the
coordinate transformation from Ξq to Z0. Then the view VP (q) of q is defined to
be γ−1

q (P). Obviously VP (q′) = VP (q) (as multisets), if and only if q′ ∈ ΓP (q).
Let V iewP = {VP (q) : q ∈ P \ {oP }}. See Fig. 1(2) for an example.

A robot ri, in Compute phase, can compute from Q(i), for each q ∈
Q(i) \ {oQ(i)}, Ξq , VQ(i)(q), and V iewQ(i) . Since P and Q(i) are similar, by the
definition of Ξq , V iewP = V iewQ(i) , which implies that all robots ri can con-
sistently compute V iewP . We define
P on ΓP using V iewP . For any distinct
orbits ΓP (q) and ΓP (q′), ΓP (q)
P ΓP (q′), if one of the following conditions
hold:

1. μP (q) > μP (q′).
2. μP (q) = μP (q′) and dist(q,oP) < dist(q′,oP) hold, where dist(x,y) is the

Euclidean distance between x and y.
3. μP (q) = μP (q′), dist(q,oP) = dist(q′,oP), and VP (q) � VP (q′) hold.6

Then
P is a total order on ΓP . If kP = 1, since ΓP (q) = {q} for all q ∈ P , we
regard
P as a total order on P by identifying ΓP (q) with q. For a configuration
P (in Z0), from Q(i) (in Zi), each robot ri can consistently compute kP = kQ(i) ,
ΓP = ΓQ(i) and V iewP = V iewQ(i) , and hence
P=
Q(i) . Thus, all robots can
agree on, e.g., the largest point q ∈ P with respect to
P .

3 C -Scattering Problem

Let P = {P ∈ (R2)n : (0, 0) ∈ P, n ≥ 1}. Since a target function returns ⊥
when (0, 0) �∈ P , we regard P as the domain of a target function.

The scattering problem (SCT) is the problem to have the robots occupy dis-
tinct positions, starting from any configuration [15]. For 1 ≤ c ≤ n, let the
c-scattering problem (cSCT) be the problem of transforming any initial configu-
ration to a configuration P such that |P | ≥ c. Thus, the nSCT is the SCT. An
algorithm for the cSCT is an algorithm for the (c − 1)SCT, for 2 ≤ c ≤ n.

Consider a set cSCTA = {sct1, sct2, . . . , sctc} of c target functions, where
target function scti is defined as follows for any P ∈ P.
[Target function scti]

1. If |P | ≥ c, then scti(P) = (0, 0) for i = 1, 2, . . . , c.
2. If |P | = 1, then sct1(P) = (0, 0), and scti(P) = (1, 0) for i = 2, 3, . . . , c.
3. If 2 ≤ |P | ≤ c− 1, scti(P) = (δ/(2(i+1)), 0) for i = 1, 2, . . . , c, where δ is the

smallest distance between two (distinct) points in P .

Theorem 1. For any 1 ≤ c ≤ n, cSCTA is an algorithm for the cSCT. The
MAS for the cSCT is c.

6 Since dist(oP ,oP) = 0, VP (q) is not compared with VP (oP) with respect to �.

MAS for Self-stabilizing Gathering and Related Problems 319

Proof. We omit the proof that cSCTA is a correct algorithm for the cSCT, and
present only a proof that the MAS for the cSCT is at least c.

The proof is by contradiction. Suppose that the MAS for the cSCT is m < c
to derive a contradiction. Let Φ = {φ1, φ2, . . . , φm} be an algorithm for the
cSCT. Consider the following situation:

1. All robots ri (1 ≤ i ≤ n) share the unit length and the direction of positive
x-axis.

2. A target function assignment A is defined as follows: A(ri) = φi for 1 ≤ i ≤
m − 1, and A(ri) = φm for m ≤ i ≤ n.

3. All robots initially occupy the same location (0, 0). That is, P0 = {(0, 0),
(0, 0), . . . , (0, 0)}.

4. The schedule is FSYNC.

Let E : P0, P1, . . . be the execution of R starting from P0, under the above
situation. By an easy induction on t, all robots ri (m ≤ i ≤ n) occupy the
same location, i.e., for all t ≥ 0, xt(rm) = xt(rm+1) = · · · = xt(rn). Since
|Pt| ≤ m < c for all t ≥ 0, a contradiction is derived. �

4 C -Gathering Problem

Let P = {p1,p2, . . . ,pn} ∈ P, P = {q1, q2, . . . , qmP
}, mP = |P | be the size

of P , μP (q) denote the multiplicity of q in P , oP be the center of the smallest
enclosing circle CP of P , and CH(P) be the convex hull of P .

The c-gathering problem (cGAT) is the problem of transforming any initial
configuration to a configuration P such that |P | ≤ c. The 1GAT is thus the
gathering problem (GAT). An algorithm for the cGAT is an algorithm for the
(c + 1)GAT, for 1 ≤ c ≤ n − 1.

Under the SSYNC scheduler, the GAT from distinct initial positions is solv-
able (by an algorithm of size 1), if and only if n ≥ 3 [22], and the GAT from
any initial configuration is solvable (by an algorithm of size 1), if and only if
n is odd [16]. The MAS for the GAT is thus at least 2. Gathering algorithms
ψf−point(n) (for n ≥ 3 robots from distinct initial positions) in Theorem 3.4 of
[22] and Algorithm 1 (for odd n robots from any initial positions) in [16] share
the skeleton: Given a configuration P , if there is the (unique) “largest point”
q ∈ P , then go to q; otherwise, go to oP . Consider the following singleton
2GATA = {2gat} of a target function 2gat, which is a direct implementation of
this strategy using
P as the measure to determine the largest point in P .
[Target function 2gat]

1. If mP = 1, or mP = 2 and kP = 2, i.e., μP (q1) = μP (q2), then 2gat(P) =
(0, 0).

2. If mP ≥ 2 and kP = 1, then 2gat(P) = q, where q ∈ P is the largest point
with respect to
P .

3. If mP ≥ 3 and kP ≥ 2, then 2gat(P) = oP .

320 Y. Asahiro and M. Yamashita

Theorem 2. Suppose that all robots take 2gat as their target functions. Then
they transform any initial configuration P0 to a configuration P satisfying that
(1) mP = 1, or (2) mP = 2 and kP = 2.

Corollary 1. The MAS for the cGAT is 1, for all 2 ≤ c ≤ n.

Corollary 2. 2GATA solves the GAT, if and only if the initial configuration P0

satisfies either mP0 �= 2 or kP0 �= 2.

Corollary 2 has been obtained by some researchers: The GAT is solvable (for
the robots with the same target function), if and only if n is odd [16]. Or more
precisely, it is solvable, if and only if the initial configuration is not bivalent [9].
Note that the algorithm of [9] makes use of the Weber point and tolerates at
most n − 1 crashes.

Consider a set GATA = {gat1, gat2} of target functions gat1 and gat2 defined
as follows:
[Target function gat1]

1. If m = 1, then gat1(P) = (0, 0).
2. If m = 2 and kP = 1, or m ≥ 3, gat1(P) = 2gat(P).
3. If m = 2 and kP = 2, then gat1(P) = (0, 0).

[Target function gat2]

1. If m = 1, then gat2(P) = (0, 0).
2. If m = 2 and kP = 1, or m ≥ 3, then gat2(P) = 2gat(P).
3. Suppose that m = 2 and kP = 2. Let q (�= (0, 0)) be the point in P . Since

(0, 0) ∈ P , q is uniquely determined. If q > (0, 0), then gat2(P) = q. Else if
q < (0, 0), then gat2(P) = 2q.

Theorem 3. GATA is an algorithm for the GAT. The MAS for the GAT is,
hence, 2.

For a configuration P , let −P = {−p : p ∈ P}. A target function φ is said to
be symmetric (with respect to the origin) if φ(P) = −φ(−P) for all P ∈ P. An
algorithm Φ is said to be symmetric if every target function φ ∈ Φ is symmetric.
Target function 2gat is symmetric, but GATA is not a symmetric algorithm.
Indeed, the next lemma holds.

Lemma 1. There is no symmetric algorithm of size 2 for the GAT.

There is however a symmetric gathering algorithm SGTA = {sgat1, sgat2,
sgat3}, where target functions sgat1, sgat2, and sgat3 are defined as follows:

[Target function sgat1]

1. If m = 1, then sgat1(P) = (0, 0).
2. If m ≥ 3, or m = 2 and kP �= 2, then sgat1(P) = 2gat(P).
3. Suppose that m = 2 and kP = 2. Let q (�= (0, 0)) be the point in P . Since

(0, 0) ∈ P , q is uniquely determined. Then sgat2(P) = −q.

MAS for Self-stabilizing Gathering and Related Problems 321

[Target function sgat2]

1. If m = 1, then sgat2(P) = (0, 0).
2. If m ≥ 3, or m = 2 and kP �= 2, then sgat2(P) = 2gat(P).
3. Suppose that m = 2 and kP = 2. Let q (�= (0, 0)) be the point in P . Since

(0, 0) ∈ P , q is uniquely determined. Then sgat2(P) = −2q.

[Target function sgat3]

1. If m = 1, then sgat3(P) = (0, 0).
2. If m ≥ 3, or m = 2 and kP �= 2, then sgat3(P) = 2gat(P).
3. Suppose that m = 2 and kP = 2. Let q (�= (0, 0)) be the point in P . Since

(0, 0) ∈ P , q is uniquely determined. Then sgat3(P) = −3q.

Theorem 4. SGTA solves the GAT. The MAS of symmetric algorithm for the
GAT is 3.

5 Pattern Formation Problem

Given a goal pattern G ∈ (R2)n in Z0, the pattern formation problem
(PF) for G is the problem of transforming any initial configuration I into
a configuration similar to G. The GAT is the PF for a goal pattern G =
{(0, 0), (0, 0), . . . , (0, 0)} ∈ (R2)n, and the SCT is reducible to the PF for a
right n-gon.

Theorem 5 ([26]). The PF for a goal pattern G is solvable (by an algorithm
of size 1) from an initial configuration I such that |I| = |I|, if and only if σ(G)
is divisible by σ(I). The only exception is the GAT for two robots.

Thus a pattern G is not formable from a configuration I by an algorithm
of size 1, if σ(G) is not divisible by σ(I). In the following, we investigate an
algorithm that solves the PF from any initial configuration I, for any G.

Lemma 2. The MAS for the PF is at least n.

Proof. If there were a pattern formation algorithm for a right n-gon with size
m < n, it could solve the SCT, which contradicts to Theorem 1. �
Theorem 6. The MAS for the PF is n.

Proof. By Lemma 2, the MAS for the PF is at least n.
To show that the MAS for the PF is at most n, we propose a PF algorithm

PFA of size n, and then give a sketch of its correctness proof.
A scattering algorithm nSCTA transforms any initial configuration I into a

configuration P satisfying P = P . We can modify nSCTA so that the resulting
algorithm nSCTA∗ can transform any initial configuration I into a configuration
P satisfying (P = P and) σ(P) = 1. On the other hand, there is a pattern
formation algorithm (of size 1) for G which transforms any initial configuration

322 Y. Asahiro and M. Yamashita

P satisfying (P = P and) σ(P) = 1 into a configuration similar to a goal pattern
G (see, e.g., [26]). The pattern formation problem is thus solvable by executing
nSCTA∗ as the first phase, and then such a pattern formation algorithm as
the second phase, if we can modify these algorithms so that the robots can
consistently recognize which phase they are working. Algorithm PFA takes this
approach. Since the cases of n ≤ 3 are trivial, we assume n ≥ 4.

We say a configuration P is good, if P satisfies either one of the following
conditions (1) and (2):

(1) P = P , i.e., P is a set, and can be partitioned into two subsets P1 and P2

satisfying all of the following conditions:
(1a) P1 = {p1} for some p1 ∈ P .
(1b) dist(p1,o2) ≥ 10δ2, where o2 and δ2 are respectively the center and

the radius of the smallest enclosing circle C2 of P \ {p1}.
(2) The smallest enclosing circle C of P contains exactly two points p1,p3 ∈ P ,

i.e., p1p3 forms a diameter of C. Consider a (right-handed) x-y coordinate
system Z satisfying p1 = (0, 0) and p3 = (31, 0).7 For i = 1, 2, 3, let Ci

be the unit circle with center oi (and radius 1 in Z), where o1 = (0, 0),
o2 = (10, 0), and o3 = (30, 0). Let Pi ⊆ P be the multiset of points included
in Ci for i = 1, 2, 3. Then P is partitioned into three submultisets P1, P2,
and P3, i.e., P \ (P1 ∪P2 ∪P3) = ∅, and P1, P2, and P3 satisfy the following
conditions:

(2a) P1 = {p1}.
(2b) P2 is a set (not a multiset).
(2c) P3 is a multiset that includes p3 as a member. It has a supermultiset

P ∗ which is similar to G, and is contained in C3, i.e., P3 is similar to
a submultiset H ⊆ G.

Let P be a good configuration. Then P satisfies exactly one of conditions (1)
and (2), and p1 is uniquely determined in each case. We first define nSCTA∗ =
{sct∗i : i = 1, 2, . . . , n}, which is a slight modification of nSCTA.
[Target function sct∗i]
(I) If P is good: sct∗i (P) = (0, 0) for i = 1, 2, . . . , n.
(II) If P is not good:

1. For i = 2, 3, . . . , n:
If P �= P , then sct∗i (P) = scti(P). Else if P = P , then sct∗i (P) = (0, 0).

2. For i = 1:
(a) If P �= P , then sct∗1(P) = scti(P).
(b) If P = P and dist((0, 0),o) < 10δ, then sct∗1(P) = p. Here o and δ

are, respectively, the center and the radius of the smallest enclosing circle
of P \ {(0, 0)}. If o �= (0, 0), p is the point such that (0, 0) ∈ op and
dist(p,o) = 10δ. If o = (0, 0), p = (10δ, 0).

(c) If P = P and dist((0, 0),o) ≥ 10δ, then sct∗1(P) = (0, 0).

7 Note that Z is uniquely determined, and the unit distance of Z is dist(p1,p3)/31.

MAS for Self-stabilizing Gathering and Related Problems 323

Then nSCTA∗ transforms any initial configuration P0 to a good configuration
P . We next explain how to construct a configuration similar to G from a good
configuration P .
(I) Suppose that P satisfies condition (1) for a partition {P1, P2}, where P1 =
{p1}. If there is a point q such that P2 ∪ {q} is similar to G, then we move the
robot at p1 to q to complete the formation.

Otherwise, let p3 be the point satisfying o2 ∈ p1p3 and dist(o2,p3) = 21δ2,
where o2 and δ2 are, respectively, the center and the radius of the smallest
enclosing circle C2 of P2. We choose a point p in P2, and move the robot at p
to p3. Note that the robot at p is uniquely determined, since P2 = P2.

Then P is transformed into a configuration P ′ which is good, and satisfies
condition (2) for partition {P1, P2 \ {p2}, {p3}}.
(II) Suppose that P satisfies condition (2) for a partition {P1, P2, P3}, where
P1 = {p1}. Like the above case, we choose a point p in P2, and move the robot
at p to a point q. Here q must satisfy that there is a superset P ∗ of P3 ∪ {q}
which is contained in C3, and is similar to G.

By repeating this transformation, a configuration P such that |P3| = n − 1
and P3 is similar to a submultiset of G is eventually obtained, when P2 becomes
empty. Then p1 can move to q to complete the formation.

To carry out this process, we need to specify (i) p ∈ P2 in such a way that
all robots can consistently recognize it, and (ii) p3 in (I) and q in (II).

We define a point p ∈ P2. When |P2| = 1, p is the unique element of P2.
When |P2| ≥ 2, let P12 = P1 ∪ P2. Then kP12 = 1 by the definition of p1. Since
kP12 = 1,
P12 is a total order on P12 (and hence on P2), which all robots in P
(in particular, in P2) can compute. Let p ∈ P2 be the largest point in P2 with
respect to
P12 . Since P2 is a set, the robot r at p is uniquely determined, and
r (or its target function) knows that it is the robot to move to p3 or q.

We define the target points p3 and q. It is worth emphasizing that r can
choose the target point by itself, and the point is not necessary to share by
all robots. Point p3 is uniquely determined. To determine q, note that P3 has a
supermultiset P ∗ which is similar to G, and is contained in C3. Thus r arbitrarily
chooses such a multiset P ∗, and takes any point in P ∗ \ P3 as q. (There may be
many candidates for P ∗. Robot r can choose any one, e.g., the smallest one in
terms of � in its x-y local coordinate system.)

Using points p, p3, and q defined above, we finally describe PFA = {pf1, pf2,
. . . , pfn} for a goal pattern G, where target functions pfi(i = 1, 2, . . . , n) are
defined as follows:
[Target function pfi]

1. When P is not good: pfi(P) = sct∗i (P).
2. When P is a good configuration satisfying condition (1):
(2a) Suppose that there is a q such that P2∪{q} is similar to G. Then pfi(P) =

q if (0, 0) ∈ P1; otherwise, pfi(P) = (0, 0).
(2b) Suppose that there is no point q such that P2 ∪{q} is similar to G. Then

pfi(P) = p3 if (0, 0) is the largest point in P2 with respect to
P1∪P2 ;
otherwise, pfi(P) = (0, 0).

324 Y. Asahiro and M. Yamashita

3. When P is a good configuration satisfying condition (2): pfi(P) = q if (0, 0)
is the largest point in P2 with respect to
P1∪P2 ; otherwise, pfi(P) = (0, 0).

The correctness of PFA is clear from its construction. �

6 Fault Tolerant Scattering Problems

A fault means a crash fault in this paper. The f-fault tolerant c-scattering problem
(fFcS) is the problem of transforming any initial configuration to a configuration
P such that |P | ≥ c, as long as at most f robots have crashed.

Observation 1 1. 1SCTA solves the fF1S for all 1 ≤ f ≤ n, since |P | ≥ 1 for
any configuration P . The MAS for the fF1S is thus 1 for all 1 ≤ f ≤ n.

2. The MAS for the nFcS is ∞ for all 2 ≤ c ≤ n, since |P0| = |Pt| = 1 holds for
all t ≥ 0, if |P0| = 1, and all robots have crashed at time 0.

Theorem 7. Suppose that 1 ≤ f ≤ n − 1 and 2 ≤ c ≤ n.

1. The MAS for the fF2S is ∞, if f = n − 1; otherwise if 1 ≤ f ≤ n − 2,
the MAS for the fF2S is f + 2. Indeed, (f + 2)SCTA solves the fF2S, if
1 ≤ f ≤ n − 2.

2. If 3 ≤ c ≤ n, the MAS for the fFcS is ∞, if c + f − 1 > n; otherwise if
c + f − 1 ≤ n, the MAS for the fFcS is c + f − 1. Indeed, (c + f − 1)SCTA
solves the fFcS, if c + f − 1 ≤ n.

7 Fault Tolerant Gathering Problems

The f-fault tolerant c-gathering problem (fFcG) is the problem of gathering
all non-faulty robots at c (or less) points, as long as at most f robots have
crashed. The f-fault tolerant c-gathering problem to c points (fFcGP) is the
problem of gathering all robots (including faulty ones) at c (or less) points, as
long as at most f robots have crashed. When c = 1, fFcG is abbreviated as
fFG, and fFcGP is abbreviated as fFGP when c = f . The fFcG is not harder
than the fFcGP by definition. In general, the fFcGP is not solvable if c < f .

Theorem 8. SGTA solves the fFG for all f = 1, 2, . . . , n−1. The MAS for the
fFG is 3.

The fFGP is definitely not easier than the fFG by definition. You might
consider that the difference of difficulty between them would be subtle. Indeed,
it is not the case.

Theorem 9. The fFGP is unsolvable for all f = 1, 2, . . . , n − 1. That is, the
MAS for the fFGP is ∞ for all f = 1, 2, . . . , n − 1.

MAS for Self-stabilizing Gathering and Related Problems 325

Proof (sketch). Suppose that there is an algorithm Φ for the fFGP. We arbi-
trarily choose a configuration P0 such that m0 > f , and consider any execution
E : P0, P1, . . . from P0, provided that no crashes occur, under a schedule S we
specify as follows: For Pt, let At be a largest set of robots such that its activation
does not yield a goal configuration. If there are two or more such largest sets, At

is an arbitrary one. Then S activates all robots in At at time t, and the execution
reaches Pt+1, which is not a goal configuration. (At may be an empty set.)

Then |U | ≤ f holds. Suppose that at t0 all robots in U crash, and consider
a schedule S ′ that activates At for all 0 ≤ t ≤ t0 − 1, and At ∪ U for all t ≥ t0.
Then the execution E ′ starting from P0 under S ′ is exactly the same as E , and
does not reach a goal configuration, despite that S ′ is fair; Φ is not an algorithm
for the fFGP. It is a contradiction. �

It is interesting to see that the fF(f +1)GP, which looks to be the “slightest”
relaxation of the fFGP (= fFfGP), is solvable by an easy algorithm 2GATA of
size 1.

Theorem 10. 2GATA solves both of the fF2G and the fF(f + 1)GP, for all
f = 1, 2, . . . , n − 1. The MASs for the fF2G and fF(f + 1)GP are both 1, for
all f = 1, 2, . . . , n − 1.

8 Conclusions

There is a problem like the self-stabilizing gathering problem which is not solv-
able by a swarm of anonymous oblivious mobile robots when all robots take
the same target function. For a problem Π, we have investigated the minimum
algorithm size (MAS) for Π, which is the number of distinct target functions
necessary and sufficient to solve Π from any initial configuration. To figure out
the effects of the number of distinct target functions on the problem-solving
ability, we have established the MASs for the gathering and related problems.

As mentioned in Sect. 1, we consider target function as a resource like time
and message, and regard the MAS of a problem as a measure to measure the
complexity of the problem. There is an apparent trade-off between the number
of distinct target functions and the time complexity, but this topic has not been
investigated in this paper, and is left as an interesting open problem.

In the real world, gathering objects needs energy (since entropy decreases),
while scattering them does not (since entropy increases). Thus a natural guess
would be that cGAT is harder than cSCT. On the contrary, we have showed
that, for 2 ≤ c ≤ n, the MAS is c for cSCT, while it is 1, for cGAT. Other main
results are summarized in Table 1.

Finally, we conclude the paper by giving a list of some open problems.

1. What is the MAS for the gathering problem under the ASYNC scheduler?
2. What is the MAS for the pattern formation problem for a fixed G?
3. What is the MAS for the f -fault tolerant convergence problem to f points,

for f ≥ 3?

326 Y. Asahiro and M. Yamashita

4. What is the MAS for the Byzantine fault tolerant gathering problem?
5. Characterize the problem whose MAS is 2.
6. Investigate trade-off between the number of distinct target functions and the

time complexity.

Acknowledgments. This work is supported in part by JSPS KAKENHI Grant Num-
bers JP17K00024 and JP22K11915.

References

1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile
robots. In: 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1063–
1071(2004)

2. Altisen, K., Datta, A.K., Devismes, S., Durand, A., Larmore, L.L.: Election in uni-
directional rings with homonyms. J. Parallel Distrib. Comput. 146, 79–95 (2010)

3. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: A distributed memoryless point
convergence algorithm for mobile robots with limited visibility. IEEE Trans. Robot.
Autom. 15, 818–828 (1999)

4. Angluin, D.: Local and global properties in networks of processors. In: 12th ACM
Symposium on Theory of Computing, pp. 82–93 (1980)

5. Arévalo, S., Anta, A.F., Imbs, D., Jiménez, E., Raynal, M.: Failure detectors in
homonymous distributed systems (with an application to consensus). J. Parallel
Distrib. Comput. 83, 83–95 (2015)

6. Asahiro, Y., Yamashita, M.: Compatibility of convergence algorithms for
autonomous mobile robots. In: Rajsbaum, S., Balliu, A., Daymude, J.J., Olivetti,
D. (eds.) Structural Information and Communication Complexity. SIROCCO 2023.
LNCS, vol. 13892, pp. 149–164. Springer, Cham (2023). https://doi.org/10.1007/
978-3-031-32733-9_8

7. Asahiro, Y., Yamashita, M.: Minimum algorithm sizes for self-stabilizing gathering
and related problems of autonomous mobile robots. arXiv: 2304.02212

8. Attiya, H., Snir, M., Warmuth, M.K.: Computing on the anonymous ring. J. ACM
35(4), 845–875 (1988)

9. Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple
crash faults. In: IEEE 33rd International Conference on Distributed Computing
Systems, pp. 337–346 (2013)

10. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by
mobile robots: gathering. SIAM J. Comput. 41, 829–879 (2012)

11. Cord-Landwehr, A., et al.: A new approach for analyzing convergence algorithms
for mobile robots. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS,
vol. 6756, pp. 650–661. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22012-8_52

12. Das, S., Flocchini, P., Santoro, N., Yamashita, M.: Forming sequences of geometric
patterns with oblivious mobile robots. Distrib. Comput. 28, 131–145 (2015)

13. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Kermarrec, A., Ruppert, E.,
Tran-The, H.: Byzantine agreement with homonyms. Distrib. Comput. 26, 321–340
(2013)

14. Delporte-Gallet, C., Fauconnier, H., Tran-The, H.: Leader election in rings with
homonyms. In: Noubir, G., Raynal, M. (eds.) NETYS 2014. LNCS, vol. 8593, pp.
9–24. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09581-3_2

https://doi.org/10.1007/978-3-031-32733-9_8
https://doi.org/10.1007/978-3-031-32733-9_8
http://arxiv.org/abs/2304.02212
https://doi.org/10.1007/978-3-642-22012-8_52
https://doi.org/10.1007/978-3-642-22012-8_52
https://doi.org/10.1007/978-3-319-09581-3_2

MAS for Self-stabilizing Gathering and Related Problems 327

15. Dieudonné, Y., Petit, F.: Scatter of weak mobile robots. Parallel Process. Lett.
19(1), 175–184 (2009)

16. Dieudonné, Y., Petit, F.: Self-stabilizing gathering with strong multiplicity detec-
tion. Theor. Comput. Sci. 428, 47–57 (2012)

17. Dobrev, S., Pelc, A.: Leader election in rings with nonunique labels. Fund. Inform.
59(4), 333–347 (2004)

18. Flocchini, P.: Gathering. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Dis-
tributed Computing by Mobile Entities. Lecture Notes in Computer Science,
vol. 11340, pp. 63–82. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
11072-7_4

19. Liu, Z., Yamauchi, Y., Kijima, S., Yamashita, M.: Team assembling problem for
asynchronous heterogeneous mobile robots. Theor. Comput. Sci. 721, 27–41 (2018)

20. Matias, Y., Afek, Y.: Simple and efficient election algorithms for anonymous net-
works. In: Bermond, J.-C., Raynal, M. (eds.) WDAG 1989. LNCS, vol. 392, pp.
183–194. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51687-5_42

21. Prencipe, G.: Pattern formation. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.)
Distributed Computing by Mobile Entities. LNCS, vol. 11340, pp. 37–62. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_3

22. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots - formation and
agreement problems. SIAM J. Comput. 28, 1347–1363 (1999)

23. Yamashita, M., Kameda, T.: Computing on an anonymous network. In: 7th ACM
Symposium on Principles of Distributed Computing, pp. 117–130(1988)

24. Yamashita, M., Kameda, T.: Electing a leader when processor identity numbers
are not distinct (extended abstract). In: Bermond, J.-C., Raynal, M. (eds.) WDAG
1989. LNCS, vol. 392, pp. 303–314. Springer, Heidelberg (1989). https://doi.org/
10.1007/3-540-51687-5_52

25. Yamashita, M., Kameda, T.: Leader election problem on networks in which pro-
cessor identity numbers are not distinct. IEEE Trans. Parallel Distrib. Syst. 10(9),
878–887 (1999)

26. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theor. Comput. Sci. 411, 2433–2453 (2010)

27. Yamauchi, Y., Uehara, T., Kijima, S., Yamashita, M.: Plane formation by syn-
chronous mobile robots in the three-dimensional Euclidean space. J. ACM 64,
1–43 (2017)

https://doi.org/10.1007/978-3-030-11072-7_4
https://doi.org/10.1007/978-3-030-11072-7_4
https://doi.org/10.1007/3-540-51687-5_42
https://doi.org/10.1007/978-3-030-11072-7_3
https://doi.org/10.1007/3-540-51687-5_52
https://doi.org/10.1007/3-540-51687-5_52

Separation of Unconscious Colored
Robots

Hirokazu Seike1 and Yukiko Yamauchi2(B)

1 Graduate School of ISEE, Kyushu University, Fukuoka, Japan
2 Faculty of ISEE, Kyushu University, Fukuoka, Japan

yamauchi@inf.kyushu-u.ac.jp

Abstract. We introduce a new mobile robot model, called unconscious
colored robots, where each robot is given a color and can observe the
colors of robots except itself. We consider the separation problem that
requires the robots to be separated according to their colors. We consider
two variants; the separation-into-points problem requires the robots with
the same color gather at one point and the separation-into-circles prob-
lem requires the robots with the same color form a circle concentric with
the smallest enclosing circle of the entire robots. We first show that the
separation-into-points problem is not always solvable due to symmetry
of an initial configuration. We then present a distributed algorithm for
the separation-into-circles problem by oblivious semi-synchronous uncon-
scious colored robots with two colors. The proposed algorithm requires
that there are at least three robots of the same color and the total number
of robots is larger than five.

Keywords: Mobile robots · externally visible color · separation

1 Introduction

Distributed coordination of autonomous mobile robots has been extensively stud-
ied for more than 25 years. The robots are points moving on a 2D Euclidean
space. They are anonymous (indistinguishable), oblivious (state-less), and uni-
form (executing a common algorithm). They are not equipped with communica-
tion capabilities and have no access to the global coordinate system. Each robot
repeats a Look-Compute-Move cycle, where it observes the positions of other
robots in its local coordinate system (Look), computes its next position and
movement by a common algorithm (Compute), and moves to the next position
(Move). One of the most challenging properties of the mobile robot systems is
their homogeneity. That is, the combination of anonymity, uniformity and local-
ity results in the impossibility of symmetry breaking. Existing literature shows
that the computational power of a mobile robot system is determined by the
symmetry of its initial configuration, i.e., rotational symmetry of the positions
and local coordinate systems of the robots [7,8,11,13]. For example, starting
from an initial configuration, where the robots form a regular polygon, they
cannot form a line. The symmetricity of a set of points is in general the num-
ber of rotation operations that yields the same set of points. When the center
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 328–343, 2023.
https://doi.org/10.1007/978-3-031-44274-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_24&domain=pdf
https://doi.org/10.1007/978-3-031-44274-2_24

Separation of Unconscious Colored Robots 329

of the smallest enclosing circle (SEC) of the points is contained in the set of
points, the symmetricity is defined to be one, because the robot on the center
can break the symmetry by slightly moving away. It has been shown that the
set of formable shapes can be characterized by the symmetricity of an initial
configuration irrespective of obliviousness [13] and asynchrony [7,11].

Heterogeneous mobile robot systems have been introduce for the partition-
ing problem and the team assembling problem. Sugihara and Suzuki proposed
a partitioning algorithm for mobile robots when given a small number of lead-
ers controlled externally [10]. Partitioning is achieved by the leaders moving in
different directions and non-leader robots following their neighbors. Liu et al.
introduced the colored robots, each of which is given a color [8]. The color of
a robot is observed by all robots, but the robots with the same color are still
indistinguishable. Hence, robots can behave differently according to their colors.
The colors of the robots can be considered as the difference in their abilities or
equipment, such as CPUs, programs, sensors, robot arms, and so on. The team
assembling problem requires the robots to form small teams according to a given
specification on the number of robots of each color in a team [8]. The authors
present a necessary and sufficient condition on the team specifications for the
colored robots to separate into teams according to a given specification.

In this paper, we introduce a new colored robot model. A colored robot is
unconscious if it can observe the colors of other robots but cannot observe its
own color. Although the robots may have unique colors, they are still uniform
in the sense that they execute a common algorithm. The color of a robot can be
considered as externally visible properties that the robot itself cannot recognize,
such as the degree of damage, failure, residual resource, and so on. We then newly
introduce the separation problem, that requires the unconscious colored robots
to separate according to their colors. We recognize two variants of the separation
problem; the separation-into-points problem requires the robots with the same
color to form a point, and the separation-into-circles problem requires the robots
with the same color to form a circle concentric with the smallest enclosing circle
of the entire robots. The gathering points or circles must be distinct for different
colors. Hence, these separation problems require the unconscious colored robots
behave differently according to their colors.

We first show that the robots cannot always solve the separation-into-points
problem due to the symmetry of an initial configuration. We then propose a
distributed algorithm for the separation-into-circles problem for two colors, say
blue and red, for oblivious semi-synchronous robots. We assume that there are
more than two red robots and the total number of robots is larger than five.
The proposed algorithm first makes the robots form a regular polygon (thus, a
uniform circle on the SEC) and then each blue robot is informed to enter the
interior of the SEC by its clockwise neighbor approaching it. Finally, the blue
robots form a circle concentric with the SEC.

Related Work. Symmetry of an initial configuration of a robot system is a
source of many impossibilities in distributed coordination of mobile robots irre-
spective of the degree of synchronization among the robots. There are three syn-

330 H. Seike and Y. Yamauchi

chronization models; the asynchronous (ASYNC) model, the semi-synchronous
(SSYNC) model, and the fully-synchronous (FSYNC) model. In the FSYNC
model, the robots synchronously execute a Look-Compute-Move cycle at each
time step. In the SSYNC model, non-empty subset of the robots synchronously
execute a Look-Compute-Move cycle at each time step. In the ASYNC model,
there is no assumption on the timing of Look-Compute-Move cycles, but the
length of each cycle is finite. For example, anonymous robots on the same point
(also called multiplicity) cannot separate themselves by a deterministic algo-
rithm irrespective of the synchronization model. In the worst case, these robots
may have identical local coordinate system, execute the common algorithm syn-
chronously, and thus the computed next position is always the same. This worst-
case FSYNC execution occurs in the SSYNC model and the ASYNC model. The
pattern formation problem requires the robots to form a target pattern from an
initial configuration. It has been shown that oblivious ASYNC robots can form
a target pattern T from an initial configuration I if and only if the symmetric-
ity of I divides that of T except the target pattern of a single point for two
robots [7,11,13]. The target patterns with the highest symmetricity are a uni-
form circle and a single multiplicity point. Flocchini et al. showed that more
than four oblivious ASYNC robots do not need an agreement on the clockwise
direction (i.e., chirality) for forming a regular polygon [6]. Cieliebak et al. showed
that more than two oblivious ASYNC robots can form a single point without
chirality [2]. The point formation problem for two robots is called the rendezvous
problem, and it is unsolvable in the SSYNC (thus, the ASYNC) model [11].

One of the most important related robot models is the luminous robot model
introduced by Das et al. [4]. A luminous robot is equipped with a light that can
take different colors and each robot can change the color of its light as a result
of computation. There are three types of lights; the internally visible light is vis-
ible only to the robot with the light, and the externally visible light is visible to
all robots except the robot with the light. Finally, the internally and externally
visible light is visible to all robots. The internally visible light serves as a local
memory at a robot and an externally visible light is a communication mech-
anism among the robots. The minimum requirement on the number of colors
shows the necessary size of local memory or necessary message size. Existing lit-
erature shows that luminous robots can solve problems that non-luminous robots
cannot solve including the rendezvous problem [4,9,12], formation of sequence
of patterns [3], and collision-less solutions for mutual visibility [5]. Das et al.
proposed simulation algorithms for luminous robots to overcome asynchrony [4].
Buchin et al. showed the relationship between the classes of solvable problems
by the robots equipped with the three different types of lights [1]. The uncon-
scious colored robot model is analogous to the externally visible lights, however
a colored robot cannot change its color.

2 Preliminary

We consider a set of anonymous mobile robots R = {r1, r2, . . . , rn}, where ri

is used just for notation. Each robot ri is a point in the 2D Euclidean space

Separation of Unconscious Colored Robots 331

and pi(t) denotes its position at time t in the global coordinate system Z0. The
color ci of robot ri is selected from a set C of colors and ri does not know ci.
Let Rj be the robots with color j ∈ C. Then, we have Rj ∩ Rk = ∅ for two
different colors j, k ∈ C, and

⋃
j∈C Rj = R. The configuration of the robots at

time t is a multiset P (t) = {(p1(t), c1), (p2(t), c2), . . . , (pn(t), cn)}. We call the
point occupied by more than one robots a multiplicity.

Each robot ri repeats a Look-Compute-Move cycle. In a look phase, ri

observes the positions and colors of all robots except ci in its local coordinate
system. Let Zi(t) be the local coordinate system of ri at time t, which is a right-
handed orthogonal coordinate system with the origin pi(t), an arbitrary unit
length, and arbitrary directions and orientations of x-y axes.1 Then, the result
of a Look is Zi(t)[P (t) \ {(pi(t), ci)} ∪ {(pi(t),⊥)}] at some time t. The robots
are equipped with the multiplicity detection ability, i.e., ri can observe whether
a point in its observation is occupied by a single robot or more than one robots.
When a point is occupied by robots with different colors, ri can observe all colors
of the robots at the point but does not know the number of robots for each color.
The robots are oblivious, i.e., in a compute phase, ri computes its next position
and moving track by a common deterministic algorithm ψ and the input to ψ
is the observation of the preceding look phase. In a move phase, ri moves along
the result of the compute phase. We assume non-rigid movement ; ri may stop
en route after moving the minimum moving distance δ (in Z0), whose value is
not known to ri. When the length of the moving track is shorter than δ, ri stops
at the destination.

The robots are semi-synchronous, i.e., at each time step t = 0, 1, 2, . . . a
non-empty subset of robots are activated and execute a Look-Compute-Move
cycle with each of the look, compute, and move phases executed synchronously.
We assume that each robot executes infinite number of cycles to guarantee fair-
ness and progress. We call the sequence of configurations P (0), P (1), P (2), . . . an
execution of algorithm ψ from an initial configuration P (0). We may have more
than one executions from P (0) due to the activation of the robots and non-rigid
movement.

The smallest enclosing circle (SEC) of a set of points is the smallest circle
that contains all points in its interior and on its boundary. Let C(P) be the SEC
of a configuration P and c(P) be the center of C(P).

A problem for a robot system is defined by a set of terminal configurations.
When any execution of algorithm ψ from an initial configuration P (0) reaches a
terminal configuration, we say ψ solves the problem from P (0).

The separation problem requires the robots to geometrically separate accord-
ing to their colors. The separation-into-points problem requires the robots to
form points for each color. That is, for each color j ∈ C, the robots in Rj gather
at a single point and these |C| gathering points must be different. The separation-
into-circles problem requires the robots to form circles concentric with the SEC

1 In this paper, we only need that the robots agree on the clockwise direction. Thus,
not only the origin but also the unit length and x-y axes of a local coordinate system
may change over time.

332 H. Seike and Y. Yamauchi

of the entire robots for each color. That is, for each color j ∈ C, the robots in
Rj are on a concentric circle and these |C| concentric circles must be different.

In the following, when we consider two colors (i.e., |C| = 2), we call one color
red and the other blue.

3 Separation into Points

We first show that separation-into-points problem cannot be solved from an
arbitrary initial configuration. We use the colored symmetricity defined in [8].
Given a set P of colored points, we consider the decomposition of P into regular
monochromatic k-gons centered at c(P). That is, each regular k-gon consists of
the robots with the same color. The maximum value of such k is the colored
symmetricity of P , denoted by ρ(P). A point is a regular 1-gon centered at c(P)
and a pair of points is a regular 2-gon when their midpoint is c(P). However,
when P contains c(P), we define ρ(P) as one. When ρ(P) is larger than one, we
say P has rotational symmetry.

Theorem 1. The separation-into-points problem cannot be solved by a deter-
ministic algorithm when the initial configuration has rotational symmetry irre-
spective of the synchronization model.

Due to the page limitation, we show a sketch of the proof. When an initial
configuration I has rotational symmetry, the robots are divided into regular
ρ(I)-gons each of which is centered at c(I) and formed by more than one robots
with the same color. In the worst case, these ρ(I) robots cannot break their
symmetry, and the possible gathering point is c(I). Hence, when I contains
robots with different colors, they cannot be separated into points according to
their colors.

Next, we consider the case where Rj = ∅ for some j ∈ C.

Theorem 2. The separation-into-points problem for three robots with two colors
(i.e., |C| = 2) cannot be solved by a deterministic algorithm.

Proof. Consider the separation-into-points problem for three robots when |C| =
2. Assume that there exists an algorithm A for the separation-into-points prob-
lem in the SSYNC model. Thus, there exists an execution of A for three blue
robots, where the terminal configuration is reached by a single blue robot moving
to a point of multiplicity formed by two blue robots. Thus, a robot is navigated
by A to a multiplicity point when it observes a multiplicity formed by two blue
robots. Now, consider a terminal configuration for two blue robots and one red
robot. That is, the two blue robots form a multiplicity and one red robot is
at another point. In this case, A guides the red robot to move to the multi-
plicity. Hence, A never solves the separation-into-points problem for two blue
robots and one red robot. Consequently, there exists no algorithm that solves
the separation-into-points problem for three robots. ��

When we assume that there exists at least one red robot and one blue robot,
the following simple algorithm solves the separation-into-points problem for three

Separation of Unconscious Colored Robots 333

C 3
4

C 1
2

C

(a)

r1r2

r3

r4

θ1,2

r5

r6

(b)

Fig. 1. Concentric circles and robots on the SEC. A small black circle represents a blue
robot and a small white circle represents a red robot. (a) Smallest enclosing circle C
and its concentric circles C1/2 and C3/4. (b) The successor of r1 is r2, and its predecessor
is r6. The angle between r1 and r2 is θ1,2. The three robots r4, r5, and r6 are on a
radius, where r4 is the head and r6 is the tail.

robots: If a robot observes one blue robot and one red robot, then it moves to the
Weber point of the three robots. Otherwise (i.e., the robot observes two robots
with the same color), if it is on the Weber point of the three robots, it leaves
the current position.

4 Separation into Circles for Two Colors

In this section, we propose a distributed algorithm for the separation-into-circles
problem for two colors. We assume that there are more than two red robots and
the total number of robots is larger than five.

4.1 Overview of the Proposed Algorithm

The proposed algorithm consists of three phases. The first phase makes n robots
form a regular n-gon on the SEC, say C, of an initial configuration. The second
phase makes the blue robots move to the interior of C. Finally, in the third
phase, the blue robots form a circle concentric with C. In the following, we use
“initial configuration” and “terminal configuration” for each of the three phases.

During any execution of the proposed algorithm, the robots keep SEC C of
an initial configuration. We consider the radius of C as the unit distance and
C� denotes the concentric circle with radius �. When a robot ri is on a circle
C ′ concentric with C, we call C ′ the concentric circle of ri. See Fig. 1(a) as an
example. In the third phase, the blue robots spread over C1/2.

When robot ri is on C, its successor is the first robot that appears on C in
the counter-clockwise direction. If ri is a successor of rj , rj is the predecessor of
ri. Predecessors and successors are defined for the robots on C. For each robot
ri, ri’s radius is the radius of C containing ri. The (central) angle θi,j between
a pair of robots ri and rj is the counter-clockwise angle from ri’s radius to rj ’s
radius and we say rj is at angle θi,j from ri. If θi,j is equal to or smaller than
some value φ, we say rj is within angle φ from ri. See Fig. 1(b) as an example.

334 H. Seike and Y. Yamauchi

We sometimes use negative angles to address clockwise angles. When a radius of
C contains some robots, we call the robot nearest to the center c of C the head
and the robot farthest from c the tail. In Fig. 1(b), r4 is a head and r6 is a tail
of a radius containing r4, r5, and r6.

The most challenging part of the proposed algorithm is sending the blue
robots to the interior of C, that is, the second phase. A predecessor of a blue
robot informs its blue successor of its color by approaching it at angle 2π/4n.
In an initial configuration of the second phase, the robots form a regular n-gon
on C. Then, C is cut into arcs by the blue robots on C whose successor is a red
robot. We call these blue robots the blue leaders. Each arc starts from a blue
leader, spans clockwise, and ends at the position of the predecessor of the first
red robot (but not containing the predecessor). For a blue leader ri, we call the
robots that appear on ri’s arc (except ri) the followers of ri. See Fig. 2(a) as an
example. By definition, the followers are blue robots and one last red robot. The
predecessor of the last follower is either a blue leader or a red robot. Intuitively,
in the second phase, the blue leader and its followers line up on the blue leader’s
radius, which we call the aligning radius. However, each robot cannot determine
whether it is a blue leader or a follower by itself due to unconsciousness. Instead,
when robot ri is a blue leader, its predecessor, say rj , approaches ri at angle
2π/4n and informs that ri is a blue leader. Then, ri moves to C1/2 along its radius
and rj becomes a new blue leader. After that, rj proceeds to the endpoint of the
aligning radius. If rj is blue, rj ’s predecessor approaches rj . By repeating this
procedure, the last follower robot, which is a red robot, reaches the endpoint of
the aligning radius and the second phase for this arc finishes. Figure 2 shows an
execution of the second phase.

However, when the arc of a blue leader is longer than π, this procedure may
change C. We say a blue leader’s arc is long when it is longer than π, otherwise
short. When a blue leader’s arc is long, the aligning radius is selected so that C
is kept unchanged. We will show the detail in Sect. 4.3.

We then give an overview of the other two phases. The first phase and the
third phase do not use the colors of the robots. The first phase makes the robots
form a regular n-gon on C. It first divides C into congruent sectors so that each
sector contains the same number of robots. The arc of each sector starts at a
robot on C and spreads counterclockwise. We call this robot on the starting point
a sector leader. The robots on the sector leader’s radius belong to this sector,
and the robots on the other border radius do not. There may exist more than
one such sector decompositons but the robots select the one that maximizes the
number of sectors. For example, in Fig. 3(a), there are four robots on the SEC,
but only two of them divide the robots into sectors containing equal number of
robots. Further ties are broken by the observations at sector leaders as explained
in Sect. 4.2. The target regular n-gon is embedded so that its corners overlap the
sector leaders. Then, non-leader robots can agree on a matching between their
positions and the corners of the regular n-gon and each of them moves to its
matched corners first along its concentric circle, then along its radius. See Fig. 3
as an example.

Separation of Unconscious Colored Robots 335

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. The second phase for short arcs. (a) Arcs cut by the blue leaders. (b) The first
followers move. (c) The blue leaders are informed and move toward C1/2. (d) The new
blue leaders move to the endpoint of their aligning radii. (e) The first followers move.
(f) New blue leaders enter the interior of C. (g) Last followers move. (h) A terminal
configuration of the second phase.

In the third phase, the blue robots in the interior of C spread on C1/2.
Figure 4 shows an execution of the third phase.

Due to unconsciousness, some robots may execute an algorithm for a wrong
phase or perform wrong movements. For example, consider an initial configu-
ration shown in Fig. 5, where all robots except the red robot r5 can recognize
that they are not in the second phase, but r5 cannot. In this case, the proposed
algorithm must allow r5 to execute the algorithm for the second phase as if it is
blue, otherwise the proposed algorithm never moves r5 in a configuration shown
in Fig. 2(c). In each look phase, a robot considers two possibilities for the current
observation, one is the case where its color is blue and the other is the case where
it is red. Then, the robot optimistically chooses the one which goes ahead of the
other. There is at most one robot that executes the algorithm for a wrong phase,
but such movement stops in finite steps due to the SSYNC model, while other
robots execute the algorithm for the correct phase. Then, all robots eventually
execute the algorithm for the current phase.

4.2 First Phase

The goal of the first phase is to form a regular n-gon on the SEC of an initial
configuration P . Let C = C(P) and c = c(P). In this first phase, the robots do
not use their colors. Rather, they use only their positions.

For a configuration P , its sector decomposition is a set of non-overlapping
sectors of C that satisfies, (i) the arc of a sector starts at a robot on C (i.e., a
sector leader) and spreads counter-clockwise, (ii) all sectors are the same size,
and (iii) all sectors contain the same number of robots. A robot on an start-
ing border radius of a sector belongs to the sector, and a robot on the other

336 H. Seike and Y. Yamauchi

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. The first phase. (a) Two sector leaders and their sectors. (b) The sector sup-
porters move to C1/4, then (c) to the leaders’ radii. (d) The sector members move along
their concentric circles, then (e) along their radii to C. (f) The sector supporters move
to the radii of their destinations, then (g) to C. (h) A terminal configuration of the
first phase.

(a) (b) (c)

Fig. 4. The third phase for short arcs. (a) Blue head robots spread on C1/2. (b) New
blue head robots reach C1/2. (b) A terminal configuration for the third phase.

border radius of a sector does not. There may exist more than one sector decom-
positions, and we select the one that maximize the number of sectors. When
a sector decomposition divides C into k sectors, we call the decomposition k-
sector decomposition. When there exist more than one k-sector decompositions,
we select one of them based on the polar view of sector leaders. The polar view
of a sector leader is the sequence of polar coordinates of all robots except the
leader itself in the increasing order. The polar axis is the radius of the leader
and each point is represented as (θ, r), where θ is the angle between the leader
and the robot and r is the distance from c. We have (θ, r) < (θ′, r′) when θ < θ′

or θ = θ′ and r < r′. Thus, in the polar view of a sector leader, robots appear in
the increasing order of their angles with respect to the sector leader’s axis. The
first phase chooses the sector decomposition that contains a sector leader with
the lexicographically minimum polar view. Clearly, all robots can agree on this
sector decomposition because they can compute the polar view of any robots
on C.

We first consider the case where C is divided into k(≥ 2) sectors. The tar-
get regular n-gon is embedded so that its corners overlap the sector leaders.

Separation of Unconscious Colored Robots 337

r2

r4

r3

r1

r5
r6
r7

r8

Fig. 5. Optimistic choice of the current phase at r5.

r2

r4

d0

d1

d2

d3

d4

r3

r1

Fig. 6. Destinations in the first phase

Thus, each arc of a sector contains n/k corners. We focus on one sector. Let
d0, d1, . . . , dn/k−1 be these corners in the counter-clockwise direction and let
r1, r2, . . . , rn/k−1 be the first n/k − 1 robots in the polar view of the sector
leader. We call r1 the sector supporter and r2, . . . , rn/k−1 the sector members.
The sector leader is at d0, and the final destination of ri in the first phase is di.
See Fig. 6 as an example.

The first phase starts by sending r1 to the radius of the sector leader. It first
moves to the interior of C1/4 along its radius and then moves clockwise along its
concentric circle. By definition, no robot is on this moving track. The selection
of the sector decomposition does not change by this movement, because one of
the sector leaders keep the minimum polar view.

We call the sector formed by the radius of a sector member ri and that of its
destination di the moving sector of ri. We have the following properties. Due to
the page limitation, we omit the proof.

Lemma 1. For a sector of a k-sector decomposition of a configuration P , let
r1, r2, . . . , rn/k−1 be the first n/k − 1 robots in the polar view of the sector leader
and d0, d1, d2, . . . , dn/k−1 be the corners of the regular n-gon embedded by the
sector leaders. Then, we have the following properties.

1. For any pair of robots ri and rj, ri’s moving sector does not overlap rj’s
moving sector if their moving directions are opposite.

2. For any pair of robots ri and rj, ri’s moving sector covers rj’s moving sector
if and only if they are on the same radius.

Each sector member first moves toward the radius of the destination corner
along its concentric circle. The sector members move cautiously, that is, they
avoid any overlap of their radii, thus any change in their ordering in the polar
view of the sector leader. Because each robot can compute the matching of all

338 H. Seike and Y. Yamauchi

(a) (b) (c)

Fig. 7. Movement on the concentric circles in a single sector.

robots, they walk as follows; If my radius contains no other robot, I move along
my concentric circle just before the first point where my concentric circle overlaps
a moving sector of some other robot until I reach the radius of my destination.
Otherwise, I will move if I am the tail of my radius in the same way. After the
robot reaches the radius of its destination, it moves to C along its radius. By
Lemma 1, this cautious walk makes no collision among the robots.

When the number of sectors (i.e., the value of k) is one, the sector supporter
is the first robot in the polar view of the single sector leader that does not
change C when it leaves the current position. Then, the robot first moves to the
interior of C1/4 along its radius and then to the radius of its leader along C1/4.
By definition, no other robot is on this moving track. During this movement, the
sector leader may change, but due to SSYNC execution, the robots start with
the new sector leader. The regular n-gon is embedded so that one of its corners
overlaps the sector leader. Some sector members on C may collapse C by the
first movement. Figure 7 shows some examples. In this case, such robot ri waits
until all robots that can move finish their movements. By the second property
of Lemma 1, when ri moves counter-clockwise, the robots whose destinations
are d1, d2, . . . , d� can move without waiting for ri to move, where d� is the last
destination that appears before ri’s position on C. This observation can be also
applied to the case where ri moves clockwise. Thus, after these robots move to
C, the movement ri does not collapse C.

4.3 Second Phase

An initial configuration of the second phase is a regular n-gon. The goal of the
second phase is to make for each blue leader’s arc the blue leader and followers
line up on one radius. On an arc of a blue leader ri, when the followers ri1 , ri2 , . . .
appear clockwise, we say rik is the kth follower of ri. As already explained, when
all arcs are short, the procedure is easy to understand. The first follower informs
the blue leader to move to the interior of C by approaching the blue leader, and
the blue leader moves along its radius toward C1/2. Once the blue leader leaves C
the first follower moves counter-clockwise to the previous blue leader’s position.
Now, the first follower becomes a new blue leader and it will be informed by the
new first follower. By repeating this, the robots on a short arc line up on the
aligning radius.

Separation of Unconscious Colored Robots 339

When a robot enters the interior of C, its destination is the first midpoint,
which is the intersection of its radius and C1/2 if there is no other robot on its
radius, otherwise it is the mid point between it and the nearest robot on its
radius. The robot may stop before it reaches the first midpoint due to nonrigid
movement.

When a regular n-gon formed in the first phase has a long arc, the proposed
algorithm fold the long arc so that the red robots keep C in a terminal configura-
tion of the second phase. However, each follower of a long arc cannot determine
whether it is on a long arc or not due to unconsciousness. The proposed algo-
rithm makes the blue leader inform the followers that they are on a long arc. We
say a blue leader of a long arc is locked if it is at angle −2π/8n from its original
position and its blue predecessor is at angle −2π/8n. A blue leader becomes
locked by moving 2π/8n clockwise after it is informed by its predecessor. Hence,
robot ri can recognize that it is a follower of a long arc when there is a locked
blue leader and the counter-clockwise arc from ri to the blue leader contains
only blue robots. Then the followers of a long arc lines up a radius at the folding
point, which is defined when its blue leader is locked. The blue arc of a robot
is the arc starting from the robot, spans clockwise, and ends at the predecessor
of the first red robot. The folding point of a long arc is the first follower whose
blue arc is equal to or shorter than π. When the first follower is at the folding
point, the folding point is defined to be the position of the second follower. By
the assumption on the number of red robots, this keeps the SEC unchanged.
Then, the blue robots that resides on the arc from the folding point to the sec-
ond follower first lines up the radius of the folding point. After that, the blue
leader and its first follower enters the interior of C. Then, the new blue leader
is the robot on the folding point. The remaining robots on the long arc joins
one by one the radius on the folding point in the same way as the short arcs.
Finally the last follower reaches the folding point. Figure 8 shows an example of
the second phase for a long arc.

4.4 Third Phase

An initial configuration of the third phase is a terminal configuration of the
second phase, where all red robots are on C, while all blue robots are on the
radii of red robots except the locked leader and its first follower.

From this configuration, the robots scatter on C1/2. For each radius of a
red robot, if it contains blue robots, r1, r2, . . . , rk, these robots move counter-
clockwise on C1/2. Let r� be the first robot that appears on C1/2 in the counter-
clockwise direction. Then, r1 moves to the point which divides the arc of C1/2

between r1r� into half. After r1 reaches its destination, r2 proceeds to C1/2 and
circulates on it to the point computed in the same way with respect to r1. By
repeating this procedure, the blue robots can scatter on C1/2.

340 H. Seike and Y. Yamauchi

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 8. The second phase with a long arc. (a) Initial configuration. (b) The blue leader
is informed. (c) The blue leader is locked. (d) The follower on the folding point enters
the interior of SEC. (e) The second and third followers join the aligning radius. (f)
The first follower enters the interior of SEC. (g) The blue leader enters the interior of
SEC. (h) The new blue leader is informed. (i) The new blue leader enters the interior of
SEC. (j) By repeating the same procedure as short arcs, the second and later followers
line up the radius at the folding point.

4.5 Combining the Phases

We show how to combine the three phases. Let Cj,k be the set of all possible
configurations of j blue robots and k red robots. We divide Cj,k into three classes,
that is, class C2j,k is the set of configurations that appear in the second phase,
and class C3j,k is that in the third phase. Then, C1j,k = Cj,k \ (C2j,k ∪ C3j,k).
The robots are expected to execute the algorithm for the ith phase when their
configuration is in Cij,k. As already explained in Sect. 4.1, each robot considers
two possibilities for the current observation, one is the case where its color is
blue and the other is the case where it is red. Then, the robot optimistically
chooses the one which goes ahead of the other.

We then show how each robot checks the membership of a current config-
uration. Class C2j,k and class C3j,k are defined by the conditions on the blue
leader’s arcs. Although, the blue leader changes during the execution of the sec-
ond phase, by the algorithm the robots can recognize the original blue leader.
The conditions for each arc in C2j,k is defined as follows.

– C2 − 1. The robots are placed every 2π/n on the arc.
– C2 − 2. The blue robots are forming a line on the aligning radius.
– C2 − 3a. If the blue leader’s arc was short in an initial configuration of the

second phase, all blue robots are on an aligning arc and a red robot is at the
end of the arc.

– C2 − 3b. If the blue leader’s arc was long in an initial configuration of the
second phase, its blue leader and the first follower is in the interior of SEC

Separation of Unconscious Colored Robots 341

and the other blue robots are on an aligning arc and a red robot is at the end
of the arc.

– C2 − 3c. All red robots are on the SEC.

Intuitively, the conditions corresponds to the progress of the proposed algorithm.
When the second phase starts, each arc satisfies C2−1, and during the execution,
it satisfies C2 − 2. Eventually each arc satisfies either C2 − 3a or C2 − 3b. The
terminal configuration of the second phase is a configuration where all blue
leaders’ arcs satisfy C2 − 3a or C2 − 3b while red robots satisfy C2 − 3c at
the same time. The execution of the proposed algorithm progresses in each arc
without any synchronization. Thus, C2j,k is a set of all configurations where each
blue leader’s arc satisfies one of the configurations.

The conditions for each arc in C3j,k is defined as follows.

– C3− 1. All blue robots are on the aligning radius and the red robot is on the
endpoint.

– C3 − 2. The blue robots are moving to their destinations on C1/2.
– C3 − 3a. The blue robots have reached their destinations on C1/2.
– C3 − 3b. All red robots are on the SEC.

Then, C3j,k is a set of all configurations where each blue leader’s arc satisfies one
of the above configurations while the red robots satisfy C3−3b. A configuration
is a terminal configuration of the third phase if all blue leaders’ arcs satisfy
C3 − 3a while red robots satisfy C3 − 3c at the same time.

We have the following theorem. Due to the page limitation, we omit the
proof.

Theorem 3. Oblivious SSYNC unconscious colored robots can solve the
separation-into-circles problem when there exists more than two red robots and
the total number of robots is larger than five.

Consequently, each robot eventually recognizes its color. We finally note that
at least three red robots are necessary to keep the smallest enclosing circle in the
second phase. The total number of robots is also a requirement from the second
phase. Consider the case where two succeeding red robots and three succeeding
blue robots on C form a regular pentagon and execute the second phase. Then
the blue locked robots cannot enter the interior of the SEC because it changed
the SEC. If there are six robots containing three red robots, even when the robots
with the same color appears successively on SEC, the SEC cannot be changed
by the proposed algorithm.

5 Conclusion

In this paper, we newly introduced the unconscious colored robot model and the
separation problem. We first showed that the separation-into-points problem
cannot be always solved due to the symmetry in the initial configuration. We
then proposed a distributed algorithm for the separation-into-circles problem

342 H. Seike and Y. Yamauchi

by the oblivious SSYNC unconscious colored robots. The proposed algorithm is
designed for a robot system with two colors, and it can be easily extended to
more than two colors due to the SSYNC model. That is, in the first stage, the
robots of color c1 is placed on the SEC and in the ith stage, the robots of color
ci is separated on the C1/2i .

There are many interesting open problems for the unconscious colored robots
and the separation problem. One of the most important direction is a separation
algorithm for the ASYNC model, where uncertain movement due to obsolete
observation of the ASYNC model and unconsciousness of colors must be carefully
treated. Second, solutions for small number of robots is open. Third, solving the
separation problem for all robot systems including the one lacking some colors
might be difficult as discussed in Sect. 3. Finally, any parallel solution can speed
up the separation procedure.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Number
JP18H03202.

References

1. Buchin, K., Flocchini, P., Kostitsyna, I., Peters, T., Santoro, N., Wada, K.: On the
computational power of energy-constrained mobile robots: algorithms and cross-
model analysis. In: Parter, M. (ed.) SIROCCO 2022. LNCS, vol. 13298, pp. 42–61.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09993-9 3

2. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by
mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)

3. Das, S., Flocchini, P., Prencipe, G., Santoro, N.: Synchronized dancing of oblivi-
ous chameleons. In: Ferro, A., Luccio, F., Widmayer, P. (eds.) FUN 2014. LNCS,
vol. 8496, pp. 113–124. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07890-8 10

4. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Autonomous
mobile robots with lights. Theoret. Comput. Sci. 609(1), 171–184 (2016)

5. Di Luna, G.A., Flocchini, P., Gan Chaudhuri, S., Poloni, F., Santoro, N., Viglietta,
G.: Mutual visibility by luminous robots without collisions. Inf. Comput. 254(3),
392–418 (2017)

6. Flocchini, P., Prencipe, G., Santoro, N., Viglietta, G.: Distributed computing by
mobile robots: uniform circle formation. Distrib. Comput. 30, 413–457 (2017)

7. Fujinaga, N., Yamauchi, Y., Ono, H., Kijima, S., Yamashita, M.: Pattern formation
by oblivious asynchronous mobile robots. SIAM J. Comput. 44(3), 740–785 (2015)

8. Liu, Z., Yamauchi, Y., Kijima, S., Yamashita, M.: Team assembling problem for
asynchronous heterogeneous mobile robots. Theoret. Comput. Sci. 721, 27–41
(2018)

9. Okumura, T., Wada, K., Défago, X.: Optimal rendezvous L-algorithms for asyn-
chronous mobile robots with external-lights. In: Proceedings of the 22nd Inter-
national Conference on Principles of Distributed Systems (OPODIS 2018), pp.
24:1–24:16 (2018)

10. Sugihara, K., Suzuki, I.: Distributed algorithms for formation of geometric patterns
with many mobile robots. J. Robot. Syst. 13, 127–139 (1996)

https://doi.org/10.1007/978-3-031-09993-9_3
https://doi.org/10.1007/978-3-319-07890-8_10
https://doi.org/10.1007/978-3-319-07890-8_10

Separation of Unconscious Colored Robots 343

11. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

12. Terai, S., Wada, K., Katayama, Y.: Gathering problems for autonomous mobile
robots with lights. Theoret. Comput. Sci. 941, 241–261 (2023)

13. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theoret. Comput. Sci. 411(26–28), 2433–2453 (2010)

Forbidden Patterns in Temporal Graphs
Resulting from Encounters in a Corridor

Michel Habib1, Minh-Hang Nguyen1, Mikaël Rabie1(B), and Laurent Viennot2

1 Université Paris Cité, CNRS, IRIF, 75013 Paris, France
{michel.habib,minh-hang.nguyen,mikael.rabie}@irif.fr

2 Université Paris Cité, CNRS, Inria, IRIF, 75013 Paris, France
laurent.viennot@irif.fr

Abstract. In this paper, we study temporal graphs arising from mobil-
ity models where some agents move in a space and where edges appear
each time two agents meet. We propose a rather natural one-dimensional
model.

If each pair of agents meets exactly once, we get a simple temporal
clique where each possible edge appears exactly once. By ordering the
edges according to meeting times, we get a subset of the temporal cliques.
We introduce the first notion of forbidden patterns in temporal graphs,
which leads to a characterization of this class of graphs. We provide,
thanks to classical combinatorial results, the number of such cliques for
a given number of agents.

Our characterization in terms of forbidden patterns can be extended
to the case where each edge appears at most once. We also provide a
forbidden pattern when we allow multiple crossings between agents, and
leave open the question of a characterization in this situation.

Keywords: Temporal graphs · mobility models · forbidden patterns ·
mobile clique

1 Introduction

1.1 Motivation

Temporal graphs arise when the edges of a graph appear at particular points
in time (see e.g. [4,11,14]). Many practical graphs are indeed temporal from
social contacts, co-authorship graphs, to transit networks. A very natural range
of models for temporal graphs comes from mobility. When agents move around
a space, we can track the moments when they meet each other and obtain a
temporal graph. We ask how to characterize temporal graphs resulting from
such a mobility model.

A classical model used for mobile networks is the unit disk graph where a
set of unit disks lie in the plane, and two disk are linked when they intersect.
When the disks are moving, we obtain a so-called dynamic unit disk graph [19],

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 344–358, 2023.
https://doi.org/10.1007/978-3-031-44274-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_25&domain=pdf
https://doi.org/10.1007/978-3-031-44274-2_25

Forbidden Patterns in Temporal Graphs 345

and the appearance of links then forms a temporal graph. We consider a one-
dimensional version where the disks are moving along a line or equivalently a
narrow corridor of unit width. This could encompass practical settings such as
communicating cars on a single road. In particular, if each car has constant
speed, each pair of cars encounters each other at most once. We further restrict
to the sparse regime where each disk intersects at most one other disk at a time.
In other words, the edges appearing at any given time always form a matching.
This restriction, called local injectivity, has already been considered in the study
of simple temporal cliques [5] which are temporal graphs where an edge between
any pair of nodes appears exactly once.

When two agents can communicate when they meet, one can ask how infor-
mation can flow in the network. The appropriate notion of connectivity then
arises from temporal paths which are paths where edges appear one after another
along the path. A temporal spanner can then be defined as a temporal subgraph
that preserves connectivity. An interesting question concerning temporal graphs
is to understand which classes of temporal graphs have temporal spanners of
linear size. Although some temporal graphs have only Θ(n2)-size temporal span-
ners [2], simple temporal cliques happen to have O(n log n)-size temporal span-
ners [5], and it is conjectured that they could even have linear size spanners.
Indeed, a natural question is whether temporal graphs resulting from a mobility
model can have sparse spanners. In particular, do temporal cliques arising from
our 1D model have temporal spanners of linear size?

1.2 Our Contribution

Our main contribution is a characterization of the simple temporal cliques that
result from this 1D model. A simple temporal clique can only arise when agents
start out in a certain order along the corridor and end up in the opposite order
after crossing each other exactly once. We provide a characterization of such
temporal cliques in terms of forbidden ordered patterns on three nodes. This
characterization leads directly to an O(n3)-time algorithm for testing whether
an ordering of the n nodes of a temporal clique is appropriate and allows to
exclude these patterns. Interestingly, an O(n2)-time algorithm allows to find
such an appropriate initial ordering of the nodes from the list of the edges of the
clique ordered by appearance time. Moreover, we can actually check in O(n2)
time that this order excludes the forbidden patterns to obtain an overall linear-
time recognition algorithm, since we have n(n − 1)/2 edges in our graphs.

Another way of looking at this problem is sorting through adjacent transpo-
sitions an array A, where n elements are initially stored in reverse order. At each
step, we choose an index i such that A[i] > A[i + 1] and swap the two elements
at positions i and i+1. The array is guaranteed to be sorted in increasing order
after T = n(n − 1)/2 steps, since the permutation of the elements in A has ini-
tially T inversions while each step decreases this number by one. Note that this
is reminiscent of bubble sorting, which indeed operates according to a sequence
of such transpositions. This naturally connects our 1D model to the notion of
reduced decompositions of a permutation [17]. A classical combinatorial result

346 M. Habib et al.

gives a formula for the number of temporal cliques with n nodes resulting from
our 1D model.

As far as we know, we introduce the first definition of forbidden patterns in a
temporal graph. Our definition is based on the existence of an order on the nodes
(which actually corresponds to their initial order along the line). A forbidden
pattern is a temporal subgraph with a relative ordering of its nodes, and with a
forbidden relative ordering of its edges according to their time labels.

In addition, we show that our temporal cliques do contain temporal spanners
of linear size (with exactly 2n − 3 edges) by enlightening a convenient temporal
subgraph that considers only the edges having, as one of their endpoints, one of
the two extreme agents in the initial order along the line.

Finally, we consider some generalizations. First, what happens if each edge
appears at most once. We provide the forbidden patterns to add to characterize
that situation. Second, we consider what might be a forbidden pattern definition
if edges can occur multiple times, that is when some pairs of agents can cross
each other multiple times.

1.3 Related Works

Dynamic Unit Disk Graph. A closely related work concerns the detection of
dynamic unit disk graphs on a line [18,19]. An algorithm is proposed to decide
whether a continuous temporal graph can be embedded in the line along its
evolution, such that the edges present at each time instant correspond to the unit
disk graph within the nodes according to their current position in the embedding
at that time. The sequence of edge events (appearance or disappearance) is
processed online one after another, relying on a PQ-tree to represent all possible
embeddings at the time of the current event according to all events seen so far.
It runs within a logarithmic factor from linear time. Our model is tailored for
discrete time and assumes that two nodes cross each other when an edge appears
between them. This is not the case in the dynamic unit disk graph model: an
edge can appear during a certain period of time between two nodes even if they
don’t cross each other. The PQ-tree approach can probably be adapted to our
model for a more general recognition of the temporal graphs it produces. Note
that our characterization leads to a faster linear-time algorithm for recognizing
simple temporal cliques arising from our model.

Temporal Graph. Temporal graphs (also known as dynamic, evolving or time-
varying networks) can be informally described as graphs that change with time,
and are an important topic in both theory and practice when there are many real-
world systems that can be modelled as temporal graphs, see [11]. The problem
of temporal connectivity has been considered, by Awerbuch and Even [1], and
studied more systematically in [12].

Forbidden Patterns. Since the seminal papers [6,15], many hereditary graph
classes have been characterized by the existence of an order of the vertices that
avoids some pattern, i.e. an ordered structure. These include bipartite graphs,
interval graphs, chordal graphs, comparability graphs and many others. In [10],

Forbidden Patterns in Temporal Graphs 347

it is proved that any class defined by a set of forbidden patterns on three nodes
can be recognized in O(n3) time. This was later improved in [7] with a full char-
acterization of the 22 graph classes that can be defined with forbidden patterns
on three nodes. An interesting extension to forbidden circular structures is given
in [9]. The growing interest in forbidden patterns in the study of hereditary graph
classes is partly supported by the certification that such an ordering avoiding
the patterns provides a recognition algorithm in the YES case.

Reduced Decomposition. The number of reduced decompositions of a per-
mutation of n elements is studied in [16]. An explicit formula is given for the
reverse permutation n, n − 1, . . . , 1 based on the hook length formula [3,8].

1.4 Roadmap

In Sect. 2, we introduce the notions that we will use throughout the paper. In
particular, we provide the definitions of temporal graphs and 1D mobility models.
Section 3 provides our main results: a characterization of mobility cliques through
forbidden patterns, the number of cliques of a given size, a detection algorithm,
and a linear size spanner of the graph. Section 4 handles the case where each
pair crosses at most once, by providing the patterns needed. Section 5 provides
a forbidden pattern in the case where pairs can cross each other several times.
Finally, we raise some open questions and perspectives in Sect. 6.

2 Preliminaries and Mobility Model

In this section, we introduce the definitions and notations we will use through
the paper. In particular, we first define formally temporal graphs and forbid-
den patterns. We then introduce the mobility model and related combinatoric
concepts.

2.1 Temporal Graphs and Forbidden Patterns

Informally, a temporal graph is a graph with a fixed vertex set and whose edges
change with time. A temporal graph can be formally defined as a pair G = (G,λ)
where G = (V,E) is a graph with vertex set V and edge set E, and λ : E → 2N

is a labeling assigning to each edge e ∈ E a non-empty set λ(e) of discrete times
when it appears. We note uv ∈ E the edge between the pair of vertices (or
nodes) u and v. If λ is locally injective in the sense that adjacent edges have
disjoint sets of labels, then the temporal graph is said to be locally injective. If λ
is additionally single valued (i.e. |λ(e)| = 1 for all e ∈ E), then (G,λ) is said to
be simple [5]. The maximum time label T = max ∪e∈Eλ(e) of an edge is called
the lifetime of (G,λ). In the sequel, we will mostly restrict ourselves to simple
temporal graphs and even require the following restriction of locally injective.
A temporal graph is incremental if at most one edge appears in each time step,
that is λ(e) ∩ λ(f) = ∅ for any distinct e, f ∈ E.

348 M. Habib et al.

A (strict) temporal path is a sequence of triplets (ui, ui+1, ti)i∈[k] such that
(u1, . . . , uk+1) is a path in G with increasing time labels where its edges appear:
formally, for all i ∈ [k], we have uiui+1 ∈ E, ti ∈ λ(uiui+1) and ti < ti+1.
Note that our definition corresponds to the classical strict version of temporal
path as we require time labels to strictly increase along the path1. A temporal
graph is temporally connected, if every vertex can reach any other vertex through
a temporal path. A temporal subgraph (G′, λ′) of a temporal graph (G,λ) is a
temporal graph such that G′ is a subgraph of G and λ′ satisfies λ′(e) ⊆ λ(e)
for all e ∈ E′. A temporal spanner of G is a temporal subgraph H preserving
temporal connectivity, that is there exists a temporal path from u to v in H
whenever there exists one in G.

A representation R of a temporal graph G = ((V,E), λ) is defined as an
ordered list of M = |λ| =

∑
e∈E |λ(e)| triplets R = (u1, v1, t1), . . . , (uM , vM , tM)

where each triplet (ui, vi, ti) indicates that edge uivi appears at time ti. We
additionally require that the list is sorted by non-decreasing time. In other
words, we have λ(uv) = {ti : ∃i ∈ [M], (u,vi, ti) ∈ R} for all uv ∈ E. Note
that any incremental temporal graph G has a unique representation denoted
by R(G). Indeed, its temporal connectivity only depends on the ordering in
which edges appear, we can thus assume without loss of generality that we
have ∪e∈Eλ(e) = [T] where T is the lifetime of ((V,E), λ) (we use the nota-
tion [T] = {1, . . . , T}). Given two incremental temporal graphs G = ((V,E), λ)
and G′ = ((V ′, E′), λ′), an isomorphism from G to G′ is a one-to-one mapping
φ : V → V ′ such that, for any u, v ∈ V , uv ∈ E ⇔ φ(u)φ(v) ∈ E′ (φ is a graph
isomorphism), and their representation R(G) = (u1, v1, t1), . . . , (uM , vM , tM)
and R(G′) = (u′

1, v
′
1, t

′
1), . . . , (u

′
M , v′

M , t′M) have same length M = |λ| = |λ′|
and are temporally equivalent in the sense that edges appear in the same order:
u′

iv
′
i = φ(ui)φ(vi) for all i ∈ [M]. When such an isomorphism exists, we say that

G and G′ are isomorphic.
A temporal clique is a temporal graph (G,λ) where the set of edges is com-

plete, and where we additionally require the temporal graph to be incremental
and λ to be single valued. Notice that it is a slight restriction compared to the
definition of [5] which requires (G,λ) to be locally injective rather than incre-
mental. However, we do not lose in generality as one can easily transform any
locally injective temporal graph into an incremental temporal graph with same
temporal connectivity (we simply stretch time by multiplying all time labels by
n2 and arbitrarily order edges with same original time label within the corre-
sponding interval of n2 time slots in the stretched version). With a slight abuse
of notation, we then denote the label of an edge uv by λ(uv) ∈ N.

A temporal pattern is defined as an incremental temporal graph H = (H,λ).
An incremental temporal graph G = (G,λ′) excludes H when it does not have
any temporal subgraph H′ which is isomorphic to H. A temporal pattern with
forbidden edges is a temporal pattern H = (H,λ) together with a set F ⊆
V × V \ E of forbidden edges in H = (V,E). An incremental temporal graph

1 The interested reader can check that the two notions of strict temporal path and
non-strict temporal path are the same in locally injective temporal graphs.

Forbidden Patterns in Temporal Graphs 349

G = ((V ′, E′), λ′) excludes H when it does not have any temporal subgraph
H′ which is isomorphic to (H,λ′) through an isomorphism φ respecting non-
edges, that is any pair of nodes u, v ∈ V ′ which is mapped to a forbidden edge
φ(u)φ(v) ∈ F , we have uv /∈ E′.

An ordered temporal graph is a pair (G, π), where G is a temporal graph
and π is an ordering of its nodes. Similarly, an ordered temporal pattern (H, π)
is a temporal pattern H together with an ordering π of its node. An ordered
incremental temporal graph (G, π′) excludes (H, π) when it does not have any
temporal subgraph H′ which is isomorphic to H through an isomorphism φ
preserving relative orderings, that is π(φ(u)) < π(φ(v)) whenever π′(u) < π′(v).
We then also say that the ordering π′ excludes (H, π) from G, or simply
excludes (H, π) when G is clear from the context. We also define an ordered
temporal pattern with forbidden edges similarly as above.

2.2 1D-Mobility Model

We introduce here the notion of temporal graph associated to mobile agents
moving along a line that is an one-dimensional space. Consider n mobile agents
in an oriented horizontal line. At time t0 = 0, they initially appear along the line
according to an ordering π0. These agents move in the line and can cross one
another as time goes on. We assume that a crossing is always between exactly
two neighboring agents, and a single pair of agents cross each other at a single
time. By ordering the crossings, we have the kth crossing happening at time
tk = k.

A 1D-mobility schedule from an ordering π0 = a1, . . . , an of n agents is a
sequence x = x1, . . . , xT of crossings within the agents. Each crossing xt is a
pair uv indicating that agents u and v cross each other at time t. Note that
their ordering πt at time t is obtained from πt−1 by exchanging u and v, and it
is thus required that they appear consecutively in πt−1. To such a schedule, we
can associate a temporal graph Gπ0,x = ((V,E), λ) such that:

– V = {a1, . . . , an},
– E = {uv : ∃t ∈ [T], xt = uv},
– for all uv ∈ E, λ(uv) = {t : xt = uv}.

We are interested in particular by the case where all agents cross each other
exactly once as the resulting temporal graph is then a temporal clique which is
called 1D-mobility temporal clique. More generally, we say that an incremental
temporal graph G corresponds to a 1D-mobility schedule if there exists some
ordering π of its vertices and a 1D-mobility schedule x from π such that the
identity is an isomorphism from G to Gπ,x. It is then called a 1D-mobility temporal
graph.

2.3 Reduced Decomposition of a Permutation

Our definition of mobility model is tightly related to the notion of reduced
decomposition of a permutation [17]. Let Sn denote the symmetric group on n

350 M. Habib et al.

elements. We represent a permutation w ∈ Sn as a sequence w = w(1), . . . , w(n)
and define its length l(w) as the number of inverse pairs in w, i.e. l(w) = |{i, j :
i < j, w(i) > w(j)}|. A sub-sequence w′ of w is defined by its length k ∈ [n] and
indices 1 ≤ i1 < · · · < ik ≤ n such that w′ = w(i1), . . . , w(ik).

A transposition τ = (i, j) is the transposition of i and j, that is τ(i) = j,
τ(j) = i and τ(k) = k for k ∈ [n] \ {i, j}. It is an adjacent transposition when
j = i+1. Given a permutation w and an adjacent transposition τ = (i, i+1), we
define the right product of w by τ as the composition wτ = w◦τ . Note that w′ =
wτ , as a sequence, is obtained from w by exchanging the numbers in positions i
and i + 1 as we have w′(i) = w(τ(i)) = w(i + 1), w′(i + 1) = w(τ(i + 1)) = w(i)
and w′(k) = w(k) for k �= i, j. A reduced decomposition of a permutation w ∈ Sn

with length l(w) = l, is a sequence of adjacent transpositions τ1, τ2, . . . , τl such
that we have w = τ1 . . . τl. Counting the number of reduced decompositions of a
permutation has been well studied (see in particular [16]).

The link with our 1D-mobility model is the following. Consider a 1D-mobility
schedule x from an ordering π0. Without loss of generality we assume that agents
are numbered from 1 to n. Each ordering πt is then a permutation. If agents u
and v cross at time t, i.e. xt = uv, and their positions in πt−1 are i and i+1, we
then have πt = πt−1τt where τt = (i, i + 1). If each pair of agents cross at most
once, then one can easily see that the schedule x of crossings corresponds to a
reduced decomposition τ1, . . . , τT of π−1

0 πT = τ1 · · · τT as the ending permutation
is πT = π0τ1 · · · τT . Note that this does not hold if two agents can cross each
other more than once as the length of the schedule can then be longer than the
length of π−1

0 πT .
Interestingly, another decomposition is obtained by interpreting the crossing

xt = uv at time t as the transposition (u, v). We then have πt = xtπt−1 for
each time t, and finally obtain πT = xT · · · x1π0. Note that given an arbitrary
sequence of transpositions x1, . . . , xT , it is not clear how to decide whether there
exists an ordering π0 and a corresponding sequence of adjacent transpositions
τ1, . . . , τT such that xt · · · x1π0 = π0τ1 · · · τt for all t ∈ [T]. This is basically the
problem we address in the next section.

3 1D-Mobility Temporal Cliques

3.1 Characterization

Consider the ordered temporal patterns from Fig. 1 with respect to the initial
ordering of the nodes in a 1D-mobility schedule x producing a temporal clique
Gx. One can easily see that the upper-left pattern cannot occur in Gx within
three agents a, b, c appearing in that order initially: a and c cannot cross each
other as long as b is still in-between them, while the pattern requires that edge
ac appears before ab and bc. A similar reasoning prevents the presence of the
three other patterns. It appears that excluding these four patterns suffices to
characterize 1D-mobility temporal cliques, as stated bellow.

Forbidden Patterns in Temporal Graphs 351

Theorem 1. A temporal clique is a 1D-mobility temporal clique if and only
if there exists an ordering of its nodes that excludes the four ordered temporal
patterns of Fig. 1.

Fig. 1. Ordered forbidden patterns in an ordered 1D-mobility temporal clique. Each
pattern is ordered from left to right and has associated ordering a, b, c.

Let C denote the class of temporal cliques which have an ordering excluding
the four ordered temporal patterns of Fig. 1. We first prove that any 1D-mobility
temporal clique is in C:

Proposition 1. For any 1D-mobility schedule x from an ordering π of n agents
such that Gπ,x = ((V,E), λ) is a temporal clique, the initial ordering π excludes
the four patterns of Fig. 1.

This proposition is a direct consequence of the following lemma.

Lemma 1. Consider three nodes a, b, c ∈ V such that time λ(ac) happens in-
between λ(ab) and λ(bc), i.e. λ(ac) is the median of {λ(ab), λ(ac), λ(bc)}, then
b is in-between a and c in the initial ordering, i.e. either a, b, c or c, b, a is a
sub-sequence of π.

Proof. For the sake of contradiction, suppose that b is not in-between a and
c initially. At time min {λ(ab), λ(bc)}, it first crosses a or c, and it is now in-
between a and c. As a and c cannot cross each other as long as b lies in-between
them, the other crossing of b with a or c should thus occur before λ(ac), imply-
ing max {λ(ab), λ(bc)} < λ(ac), in contradiction with the hypothesis. The only
possible initial orderings of these three nodes are thus a, b, c and c, b, a. �

One can easily check that the above Lemma forbids the four patterns of
Fig. 1. Indeed, in each pattern, the edge of label 2 that appears in-between the
two others in time, is adjacent to the middle node while it should link the leftmost
and rightmost nodes. Proposition 1 thus follows.

We now show that forbidding these four patterns fully characterizes 1D-
mobility temporal cliques. For that purpose, we construct a mapping from
ordered temporal cliques in C to the set R(wn) of all reduced decompositions of
wn where wn = n, n − 1, . . . , 1 is the permutation in Sn with longest length.

352 M. Habib et al.

Lemma 2. Any temporal clique G ∈ C having an ordering π excluding the four
patterns of Fig. 1, can be associated to a reduced decomposition f(G, π) of wn.
Moreover, the representation R(G) of G corresponds to a 1D-mobility schedule
starting from π and G is a 1D-mobility temporal clique.

Proof. Recall that, up to isomorphism, we can assume that G has lifetime T =
n(n − 1)/2 and that exactly one edge appears at each time t ∈ [T]. Consider
the corresponding representation R(G) = (u1, v1, 1), (u2, v2, 2), . . . , (uT , vT , T).
Starting from the initial ordering π0 = π, we construct a sequence π1, . . . , πT

of orderings corresponding to what we believe to be the positions of the agents
at each time step if we read the edges in R(G) as a 1D-mobility schedule. More
precisely, for each t ∈ T , πt is defined from πt−1 as follows. As the edge utvt

should correspond to a crossing xt = utvt, it can be seen as the transposition
exchanging ut and vt so that we define πt = xtπt−1. Equivalently, we set τt =
(i, j) where i and j respectively denote the indexes of ut and vt in πt−1, i.e.
πt−1(i) = ut and πt−1(j) = vt. We then also have πt = πt−1τt.

Our main goal is to prove that f(G, π) := τ1, . . . , τT is the desired reduced
decomposition of wn. For that, we need to prove that ut and vt are indeed
adjacent in πt−1 = π0τ1 · · · τt−1 = xt−1 · · · x1π0. For the sake of contradiction,
consider the first time t when this fails to be. That is τ1, . . . , τt−1 are indeed
adjacent transpositions, edge uv appears at time t, i.e. uv = utvt, and u, v are
not consecutive in πt−1. We assume without loss of generality that u is before
v in π0, i.e. u, v is a sub-sequence of π0. We will mainly rely on the following
observation:

Consider two nodes x, y such that x is before y in π0, then x is before y in
πt−1 if and only edge xy appears at t or later, i.e. λ(xy) ≥ t.

The reason comes from the assumption that τ1, . . . , τt−1 are all adjacent
transpositions: as long as only x or y is involved in such a transposition, their
relative order cannot change. The above observation thus implies in particular
that u is still before v in πt−1. Now, as u and v are not consecutive in πt−1,
there must exist an element w between elements u and v in πt−1. We consider
the two following cases:

Case 1. w was already in-between u and v in π0, that is u,w, v is a sub-
sequence of π0. As the relative order has not changed between these three nodes,
we have λ(uw) > t and λ(wv) > t as their appearing time is distinct from
t = λ(uv). This is in contradiction with the exclusion of the two patterns on the
left of Fig. 1.

Case 2. w was not in-between u and v in π0. Consider the case where u, v, w
is a sub-sequence of π0. From the observation, we we deduce that λ(vw) < t and
λ(uw) > t, which contradicts with the exclusion of the bottom-right pattern of
Fig. 1. The other case where w, u, v is a sub-sequence of π0 is symmetrical and
similarly leads to a contradiction with the exclusion of the top-right pattern of
Fig. 1.

We get a contradiction in all cases and conclude that τ1, . . . , τT are all adja-
cent transpositions. This implies that x is indeed a valid 1D-mobility schedule

Forbidden Patterns in Temporal Graphs 353

from π. As x is defined according to the ordering of edges in R(G) by appearing
time, G is obviously isomorphic to Gπ,x.

Additionally, as each pair of elements occurs exactly in one transposition,
the permutation τ1 · · · τT has length T = n(n − 1)/2 and must equal wn. The
decomposition f(G, π) = τ1, . . . , τT is thus indeed a reduced decomposition of
wn. �

Theorem 1 is a direct consequence of Proposition 1 and Lemma 2.

3.2 Recognition Algorithm

The full version provides an algorithm that decides if a clique belongs to C, and
provides an ordering of the nodes that avoids the patterns if it is the case. The
algorithm runs in O(n2) time, which is linear in the size of the description of the
clique.

The main idea of the algorithm relies on Lemma 1 which allows to detect
within a triangle which node should be in-between the two others in any ordering
avoiding the patterns by checking the three times at which the edges of the
triangle appear.

First we try to compute an ordering of the vertices. To do that, we use a
subroutine that provides the two nodes that should be at the extremities of some
given subset V of nodes. It outputs these two nodes by excluding repeatedly a
node out of some triplets again and again until only two nodes are left, using
Lemma 1 to identify which one is in the middle.

We deduce the two extremities a and z of V , keep a as the first element.
We then repeat n − 2 times: add back z to the remaining nodes, compute the
extremities. If z is one of the extremities, remove the other element and add it
to the ordering. Otherwise, return ⊥ as a contradiction has been found (z must
always be an extremity if we have a 1D-mobility temporal clique).

We then need to check that each edge indeed switches two consecutive
nodes one after another in the 1D-mobility model. To do that, we represent
the sequence of permutations starting from π the initial ordering, and check
that each switch, according to the edges sorted by time label, corresponds to an
exchange between two consecutive nodes. If at some point, we try to switch non
consecutive elements, we return False, otherwise at the end we proved that we
had a 1D-mobility temporal clique and return True.

3.3 Counting

We now provide the exact number |C| of 1D-mobility temporal cliques with n
nodes. The proof appears in the full version of the article, using combinatoric
results from [8,16].

Proposition 2. The number of 1D-mobility temporal cliques with n nodes is

|C| =
|R(wn)|

2
=

1
2

(
n
2

)
!

1n−13n−2 · · · (2n − 3)1
.

354 M. Habib et al.

3.4 Temporal Spanner

In this subsection, we show that any 1D-mobility temporal clique has a spanner
of G of size (2n− 3). Moreover, this spanner has diameter 3, and provides a new
structure for (sub)spanners compared to the ones introduced in [5], see Fig. 2
below.

Theorem 2. Given a 1D-mobility temporal clique G, let H be the temporal sub-
graph of G consisting in the (2n − 3) edges that are adjacent with either v1 or
vertex vn. H is a temporal spanner of G.
Proof. Let us consider the edge (v1, vn, t) that corresponds to the crossing of
the initial two extremities on the line. When this happens, we have two sets: VL

(resp. VR) corresponding to the agents being at the left of v1 (resp. right of vn)
at time t. Before t, we got all edges of the form v1vl with vl ∈ VL and of the
form vrvn with vr ∈ VR. After t, we get all edges of the form v1vr with vr ∈ VR

and of the form vlvn with vl ∈ VL. Figure 2 shows how we get each path between
a pair of vertices. �

VL VR

v1

vn

t′ < t

t′ > t t′ < t

t′ > t

t

Fig. 2. Relative order of edge-labelling between the sets VL, VR and the two vertices
v1 and vn. Edges are here to show how connectivity paths are used

4 Mobility Graph with at Most One Crossing

In this section, we consider the case where each pair of agents cross each other
at most once. We provide a characterization with the addition of the forbidden
patterns of Fig. 3 which includes non-edges corresponding of the non-crossings.

Theorem 3. A single valued incremental temporal graph is a 1D-mobility tem-
poral graph if and only if there exists an ordering of its nodes that excludes the
ordered temporal patterns of Figs. 1 and 3.

Proposition 3. For any mobility schedule x of n agents where each pair of
agents cross at most once producing a incremental single valued temporal graph
Gx = ((V,E), λ), the initial ordering π of the agents excludes the patterns of
Figs. 1 and 3.

Forbidden Patterns in Temporal Graphs 355

Fig. 3. Ordered forbidden patterns with forbidden edges in the 1D-mobility model
when each pair of agents cross at most once. The ordering associated to each pattern
is a, b, c.

Proof. Lemma 1 gives us the proof for the patterns of Fig. 1. About the patterns
of Fig. 3, we have the following observations. Pick three nodes a, b, c such that
a, b, c is a sub-sequence of π and there exists two agents among them which do
not cross each other. If b and c do not cross each other, and a crosses b and c,
then a crosses b before crossing agent c (top left pattern). If b and c do not cross
each other, and a does not cross b, then a does not cross c (bottom pattern). If
a and b do not cross, similarly, π excludes the top right pattern and the bottom
pattern. If a and c do not cross each other, then b cannot cross both a and c
(two patterns in the second row). �
Lemma 3. Any incremental single valued temporal graph G having an ordering
π excluding the patterns of Figs. 1 and 3 can be associated to a mobility schedule
x of n agents where each pair of agents cross at most once.

Proof. Starting from the initial ordering π0 = π, we define a sequence π1, . . . , πT ,
of orderings, corresponding to what, we believe, to be the positions of the agents
at each time step if we read the edges of G by increasing time label as a mobility
schedule. More precisely, for each t ∈ T , πt is defined from πt−1 as follows.
Consider the edge uv = λ−1(t) appearing at time t in G. We define τt as the
transposition exchanging u and v in wt−1. Equivalently, we set τt = (i, j) where
i and j respectively denote the indexes of u and v in πt−1, i.e. πt−1(i) = u and
πt−1(j) = v. We then set πt = πt−1τt.

We need to proof that ut and vt are indeed adjacent in πt−1. Consider the
first time t when this fails to be. That is τ1, . . . , τt−1 are adjacent transpositions,
edge uv appears at time t, i.e. uv = utvt, and u, v are not consecutive in πt−1. It
implies that there exists another node w such that in πt−1, the relative ordering
amongs the three vertices is ut, w, vt. We consider the temporal subgraph, H,
induced by the three vertices ut, w, vt. We get to a contradiction by proving that
any order on those nodes in π0 will imply that H is a forbidden pattern.

Case 1. w was already in-between ut and vt in π0. It implies that (utw /∈ E
or λ(utw) > t) and (vtw /∈ E or λ(vtw) > t). This is forbidden by the two left
patterns of Fig. 1, the two top patterns and the last pattern of Fig. 3.

356 M. Habib et al.

Case 2. w was initially before ut and vt in π0. It implies that λ(utw) < t,
and vtw /∈ E or λ(vtw) > t. This is forbidden by the top right pattern of Fig. 1
and the third pattern of Fig. 3.

Case 3. w was initially after ut and vt in π0. It implies that λ(vtw) < t, and
utw /∈ E or λ(utw) > t. This is forbidden by the bottom right pattern of Fig. 1
and the fourth pattern of Fig. 3. �

We make the following observation thanks to the characterization of classes
of graphs through forbidden patterns of size 3 from [7].

Proposition 4. The set of graphs that can be associated to a mobility schedule
x of n agents where each pair of agents cross at most once is contained in the
set of permutation graphs.

Proof. First we can note that in the 5 patterns of Fig. 3, the last three do not
depend on the time labels, either by symmetry (3, 4) or because there is only
one label on the pattern (5). Using [7], we know that the corresponding class
of graph is the permutation graphs, i.e. they are comparability graph and their
complement also. Therefore this class is included in permutation graphs. �

It should be noted that if we consider only patterns of Fig. 3 ignoring the
labels of the 2 first patterns, this corresponds exactly to the particular case of
trivially perfect graphs [7].These graphs are also known as comparability graphs
of trees or quasi-threshold graphs.

5 Multi-crossing Mobility Model

In this section, we consider schedules where a pair of agents can cross each
other more than once. Each edge can have multiple times. Hence, the previous
patterns have no more sense, as they concern only 0 or 1 crossing. We do not have
a characterization of the class through forbidden patterns. However, we provide
an unordered pattern by introducing the notion of sliding windows: given two
time limits T1 < T2, if each edge on each pair of some subset of nodes appear
at most once, we can forbid a pattern. In particular, with this definition, we get
the following result:

Theorem 4. Any temporal graph associated to a 1D-mobility schedule must
exclude the pattern of Fig. 4 in any of its single-valued sliding window.

Proof. Let assume that there exists some 1D-mobility schedule which produces a
temporal graph where the pattern of Fig. 4 on some nodes a, b, c and d. Thanks
to Lemma 1 applied to 3 nodes, we know from the largest label which node is
in between two others. We deduce that, at time T1, b is between a and c, d is
between b and c, and d in between a and b. There is no way to order a, b, c and
d with regards to those constrains. �

Forbidden Patterns in Temporal Graphs 357

Fig. 4. A forbidden structure in multi-crossing mobility graphs.

Even though we have a forbidden pattern, we cannot characterize this class
only with single valued patterns. For example, we could not detect a subgraph
with the pattern of Fig. 4 where an edge is multiplied. More precisely, if we
have λ[T1,T2](cd) = {5, 6, 7} and λ[T1,T2](bc) = {8}, this cannot happen in a
1D-mobility schedule for the same reason, but it does not have any forbidden
pattern in some subinterval.

6 Conclusion and Perspectives

In this paper, we have introduced the first notion of forbidden patterns in tem-
poral graphs. In particular, this notion allowed us to describe a new class of
temporal cliques corresponding to a mobility problem of agents crossing each
other exactly once on a line. This new class of temporal cliques has spanners of
size 2n−3, following the conjecture from [5]. The mobility description allows the
agents to adapt their speed to ensure that each crossing occurs in the correct
order. A first open question is: can any 1D mobility temporal clique be the result
of crossings if the agents move at constant speed, choosing wisely the distance
at which they start? We can note that, for each crossing to occur from a starting
situation, we would need to sort the agents by increasing speed from left to right.

Another question that arises is: can we find a mobility model on more dimen-
sions that also provides a temporal clique that could be studied?

Our patterns only consider single times on the edges. One perspective is to
figure out how to describe forbidden patterns on edges such that λ provides more
than one time slot. Considering sub-intervals where λ gives at most one value is
a possibility, but we multi-crossing section showed that it would not be enough
to describe all forbidden patterns. This raises another question: is there a way
to fully describe multi-crossing mobility model with forbidden patterns?

Our work can also be seen as a characterization of square integers matrices in
terms of patterns, perhaps it could be generalized to a study of well-structured
matrices as in the seminal work of [13] on Robinsonian matrices which are closely
related to interval graphs.

Acknowledgement. This work was supported by ANR project TEMPOGRAL
(ANR-22-CE48-0001). The second author has received funding from the European
Union’s Horizon 2020 research and innovation programme under the Marie Sk�lodowska-
Curie grant agreement No 945332.

358 M. Habib et al.

References

1. Awerbuch, B., Even, S.: Efficient and reliable broadcast is achievable in an even-
tually connected network. In: Proceedings of the Third Annual ACM Symposium
on Principles of Distributed Computing, pp. 278–281 (1984)

2. Axiotis, K., Fotakis, D.: On the size and the approximability of minimum tem-
porally connected subgraphs. In: Chatzigiannakis, I., Mitzenmacher, M., Rabani,
Y., Sangiorgi, D. (eds.) 43rd International Colloquium on Automata, Languages,
and Programming, ICALP 2016, 11–15 July 2016, Rome, Italy. LIPIcs, vol. 55, pp.
149:1–149:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://
doi.org/10.4230/LIPIcs.ICALP.2016.149

3. Bandlow, J.: An elementary proof of the hook formula. Electron. J. Combin. R45
(2008)

4. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. IJPEDS 27(5), 387–408 (2012)

5. Casteigts, A., Peters, J.G., Schoeters, J.: Temporal cliques admit sparse spanners.
J. Comput. Syst. Sci. 121, 1–17 (2021)

6. Damaschke, P.: Forbidden ordered subgraphs. In: Bodendiek, R., Henn, R. (eds.)
Topics in Combinatorics and Graph Theory: Essays in Honour of Gerhard
Ringel, pp. 219–229. Springer, Heidelberg (1990). https://doi.org/10.1007/978-3-
642-46908-4 25

7. Feuilloley, L., Habib, M.: Graph classes and forbidden patterns on three vertices.
SIAM J. Discret. Math. 35(1), 55–90 (2021)

8. Frame, J.S., Robinson, G.D.B., Thrall, R.M.: The hook graphs of the symmetric
group. Can. J. Math. 6, 316–324 (1954)

9. Guzmán-Pro, S., Hell, P., Hernández-Cruz, C.: Describing hereditary properties by
forbidden circular orderings. Appl. Math. Comput. 438, 127555 (2023)

10. Hell, P., Mohar, B., Rafiey, A.: Ordering without forbidden patterns. In: Schulz,
A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 554–565. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-44777-2 46

11. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)
12. Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for

temporal networks. In: Proceedings of the Thirty-Second Annual ACM Symposium
on Theory of Computing, pp. 504–513 (2000)

13. Laurent, M., Seminaroti, M., Tanigawa, S.: A structural characterization for cer-
tifying Robinsonian matrices. Electron. J. Comb. 24(2), 2 (2017)

14. Michail, O.: An introduction to temporal graphs: an algorithmic perspective. Inter-
net Math. 12(4), 239–280 (2016)

15. Skrien, D.J.: A relationship between triangulated graphs, comparability graphs,
proper interval graphs, proper circular-arc graphs, and nested interval graphs. J.
Graph Theory 6(3), 309–316 (1982)

16. Stanley, R.P.: On the number of reduced decompositions of elements of coxeter
groups. Eur. J. Comb. 5(4), 359–372 (1984)

17. Tenner, B.E.: Reduced decompositions and permutation patterns. J. Algebraic
Combin. 24(3), 263–284 (2006). https://doi.org/10.1007/s10801-006-0015-6

18. Villani, N.: Dynamic unit disk graph recognition. Master’s thesis, Université de
Bordeaux (2021). https://perso.crans.org/vanille/share/satge/report.pdf

19. Villani, N., Casteigts, A.: Some thoughts on dynamic unit disk graphs. Algorith-
mic Aspects of Temporal Graphs IV (2021). https://www.youtube.com/watch?
v=yZRNLjbfxxs. Satellite workshop of ICALP

https://doi.org/10.4230/LIPIcs.ICALP.2016.149
https://doi.org/10.4230/LIPIcs.ICALP.2016.149
https://doi.org/10.1007/978-3-642-46908-4_25
https://doi.org/10.1007/978-3-642-46908-4_25
https://doi.org/10.1007/978-3-662-44777-2_46
https://doi.org/10.1007/s10801-006-0015-6
https://perso.crans.org/vanille/share/satge/report.pdf
https://www.youtube.com/watch?v=yZRNLjbfxxs
https://www.youtube.com/watch?v=yZRNLjbfxxs

Uniform k-Circle Formation by Fat
Robots

Bibhuti Das(B) and Krishnendu Mukhopadhyaya

Advanced Computing and Microelectronics Unit, Indian Statistical Institute,
Kolkata, India

dasbibhuti905@gmail.com

Abstract. In this paper, we study the uniform k-circle formation by a
swarm of mobile robots with dimensional extent. For some k > 0, the
k-circle formation problem asks the robots to form disjoint circles. Each
circle must be centered at one of the pre-fixed points given in the plane.
Each circle should contain exactly k distinct robot positions. The k-
circle formation problem has already been studied for punctiform robots
in the plane. In this paper, the robots are represented by transparent unit
disks in the plane. They are autonomous, anonymous, homogeneous, and
silent. The robots are oblivious and execute Look-Compute-Move (LCM)
cycle under a fair asynchronous scheduler. The direction and orientation
of one of the axes are agreed upon by the robots. In this setting, we have
characterized all the initial configurations and values of k for which the
uniform k-circle formation problem is deterministically unsolvable. For
the remaining configurations and values of k, a deterministic distributed
algorithm has been proposed that solves the uniform k-circle formation
problem within finite time.

Keywords: Distributed Computing · k-Circle Formation · Fat
Robots · Asynchronous · Oblivious

1 Introduction

In the field of distributed computing by a swarm of mobile robots [1], the research
focuses on the computational and complexity issues for an autonomous multi-
robot system. The study aims at identifying sets of minimal capabilities for the
robots to accomplish a given task. Some of the well-studied problems in this
research area are gathering [2,3], pattern formation [4–8], etc. In this paper,
we are interested in studying the k-circle formation problem [9,10] which is a
special kind of pattern formation problem. For some k > 0, the k-circle formation
problem requires the robots to form disjoint circles with exactly k distinct robot
positions. Also, each circle must be centered at one of the pre-fixed points given in
the plane. The problem is theoretically interesting as it has both the components
of partitioning [11,12] and circle formation [13–16]. In addition, Bhagat et al. [9]
showed that if the k-circle formation problem can be solved in a deterministic

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 359–373, 2023.
https://doi.org/10.1007/978-3-031-44274-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_26&domain=pdf
https://doi.org/10.1007/978-3-031-44274-2_26

360 B. Das and K. Mukhopadhyaya

manner, then the robots can also deterministically solve the k-epf problem, which
is a more general version of the embedded pattern formation [7,8]).

Bhagat et al. [9,10] investigated the k-circle formation problem for punc-
tiform robots where the formed circles were non-uniform. In the real world, a
robot cannot possibly be dimensionless. Czyzowicz et al. [3] considered unit disk
robots in the plane. In this current paper, we have investigated the uniform
k-circle formation problem in a more realistic model where the robots have a
dimensional extent. They are represented by unit disks in the Euclidean plane.

The assumption on the dimension of a robot introduces additional challenges
to solve the uniform k-circle formation problem. A point robot can always pass
through the gap between any two points in the plane. It can compute a path in
the plane that lies at an infinitesimal distance from another robot. In comparison,
a fat robot cannot do so due to its dimensional extent. A fat robot would act as
a physical barrier for the other robots. If a robot is punctiform, then either it lies
on a circle or it does not. However, for a fat robot, there are two scenarios (e.g.,
the unit disk intersects the circle or the center of the unit disk lies on the circle)
when a robot can be said to lie on a circle. Also, the robots need to compute
a suitable radius for the circles so that k robots can be accommodated without
any overlapping. Therefore, the solution proposed by Bhagat et al. [9,10] would
fail to work for fat robots.

Our Contributions: This paper studies the uniform k-circle formation problem
for a swarm of transparent fat robots in the Euclidean plane. The activations
of the robots are determined by a fair asynchronous scheduler. The following
results are shown under the assumption of one-axis agreement:

1. All the initial configurations and values of k for which the uniform k-circle
formation problem is deterministically unsolvable are characterized.

2. A deterministic distributed algorithm is proposed that solves the uniform
k-circle formation problem within finite time.

1.1 Related Works

The partitioning problem [11] and the team assembling problem [12] are very
closely related to the k-circle formation problem. To solve the partitioning prob-
lem the robots must divide into multiple groups. Each group should contain
equal number of robots. The robots in each group also need to converge to a
small area. For a swarm of heterogeneous robots, Liu et al. [12] studied the team
assembling problem which asks the robots to form multiple teams, each team
containing a pre-fixed number of robots of different kinds. For a given set of
pre-fixed pattern points, the embedded pattern formation problem [7,8] requires
the robots to transform a given configuration into one in which each pattern
point is occupied by a single robot.

Another very closely related problem to k-circle formation problem is the
circle formation problem. The circle formation problem [13–16] asks the robots
to position themselves on a circle centered at a point, which is not defined a
priori, within finite time. Biswas et al. [17] studied the formation of multiple

Uniform k-Circle Formation by Fat Robots 361

uniform circles by fat robots under synchronous scheduler without fixed points.
Jiang et al. [18] proposed a decentralized algorithm for repeating pattern forma-
tion by a multi-robot system. Cicerone et al. [19] introduced molecular oblivious
robots (MOBLOT): similar to the way atoms combine to form molecules, in the
MOBLOT model, simple robots can move to form more complex computational
units, having an extent and different capabilities with respect to robots. In this
model, they investigated matter formation by molecular oblivious robots and
provided a necessary condition for its solvability, which relies on symmetricity.

For an arbitrary number of fat robots, Agathangelou et al. [20] solved the
gathering problem. Bose et al. [21] studied the arbitrary pattern formation prob-
lem for opaque fat robots with externally visible lights that can assume a con-
stant number of pre-defined colors. Sharma et al. [22] investigated the complete
visibility problem for opaque fat robots.

2 The Model, Notations and Definitions

Consider m > 0 pre-fixed points in the plane. Let F = {f1, f2, . . . , fm} represent
the set of fixed points. The center of gravity of F is denoted by Fc. For some
k > 0, we have considered n = km mobile robots. The robots are represented
by transparent unit disks in the Euclidean plane. R = {R1, R2, . . . , Rn} denotes
the set of all the robots in the plane. Ri(t) represents the centre of Ri at time t.
R(t) = {R1(t), R2(t), . . . , Rn(t)} denotes the set of all the robot centers at time
t. Ui(t) denotes the unit disk centered at Ri(t). The configuration at time t is
denoted by C(t) = (R(t), F). In this paper, the robots are assumed to have an
agreement on the orientation and direction of the y-axis. Let Fy denote the set of
fixed points on the y-axis. Also, let Ry(t) represent the set of robots whose center
lies on the y-axis at time t. The robots consider Fc as the origin. They do not
have any agreement on a common chirality (agreement on the global clockwise
or counter-clockwise direction). They are assumed to be: autonomous (no cen-
tralized controller), anonymous (no unique identifier), oblivious (no memory of
past actions), silent (no explicit direct communication), and homogeneous (run
the same algorithm). The robots are not allowed to overlap each other. They
have unlimited visibility, i.e., they can observe the entire plane.

Robots can either be in an active state or an idle state. Initially, all the
robots are considered to be static. An active robot executes Look-Compute-
Move (LCM) cycle. In its look phase, a robot observes the current configuration
in its own local coordinate system. In the compute phase, a robot computes
a destination point based on its observation in its look phase. A robot moves
towards its destination point in its move phase and exhibits non-rigid motion. In
non-rigid movements, a robot may be stopped by an adversary before reaching
its destination point. However, to guarantee finite-time reachability, there exists
a fixed but unknown δ > 0 so that the robots are guaranteed to move by at
least δ distance towards its destination point. If the destination point is located
within δ distance, it is guaranteed that the robot will reach it. A robot is unable
to differentiate between static and moving robots.

362 B. Das and K. Mukhopadhyaya

It is assumed that the robots are activated by a fair asynchronous (ASYNC)
scheduler. Each robot is activated an infinite number of times, and its LCM
cycle is completed within a finite amount of time. They do not have any global
concept of time. Each LCM cycle has a finite but unbounded duration.

y-axis

f1

f2

R1

R2
R2(t)

R1(t)

(a)

y-axis

f1 f2

R1

R2

R1(t)

R2(t)

(b)

y-axis

f1 f2

R1

R2

R3

f3

R2(t)

R3(t)
R1(t)

(c)

Fig. 1. Disks represent robot positions, small black circles represent center of a robot
and crosses represent fixed points. (a) I1-configuration. (b) I2-configuration. (c) I3-
configuration.

Let y(pi) represent the y-coordinate of a point pi in the plane. If the robots
could make an agreement on the positive x-axis direction, then x(pi) represents
the x-coordinate of pi. Otherwise, x(pi) denotes the distance of pi from the y-
axis. γ(pi) = (x(pi), y(pi)) is called the rank of point pi. A point pj is said to have
lower rank than pi, if either y(pj) < y(pi) or y(pj) = y(pi) and x(pj) < x(pi). In
its look phase, a robot perceives the ranks of all the robots and fixed points as
its configuration view. Two distinct robots are said to be symmetric about the
y-axis if their centers have the same rank. Similarly, if two fixed points have the
same rank, then they are said to be symmetric. C(t) is said to be symmetric if
R(t)∪F is symmetric about the y-axis. As R(t)∪F can be ordered with respect
to the y-axis, the presence of rotational symmetries can be overlooked.

All the configurations can be partitioned into the following disjoint classes:

1. I1− F is asymmetric about the y-axis (Fig. 1(a)).
2. I2− F is symmetric about the y-axis and Fy = ∅ (Fig. 1(b)).
3. I3− F is symmetric about the y-axis and Fy �= ∅ (Fig. 1(c)).

Since the partition is based upon fixed points, the robots can easily identify the
class of a configuration by observing the fixed points.

The radii of the circles are assumed to be homogeneous. Let r > 0 denote
the radius of a circle. The choice of the value of r is arbitrary. However, it must
be ensured that k robots can be placed on a circle without overlapping. The
minimum radius for a circle for fat robots is achieved when there are no gaps
between any two adjacent robots on the circle. When k = 1, we assume that the

radius is one unit. For k > 1, let α =
2π

k
and a be the mid-point of the line

segment R1(t)R2(t) (Fig. 2).

Uniform k-Circle Formation by Fat Robots 363

We have, sin
α

2
=

R2(t)a
R2(t)f

=
1
r

=⇒ r =
1

sin
α

2

.

Fig. 2. The minimum radius required
to form a circle containing exactly k
robots.

Fig. 3. An example of a configura-
tion satisfying the impossibility cri-
terion (Theorem 1).

Let Pi denote the regular k-gon centered at fi ∈ F with {β1, β2, . . . , βk} as
the set of vertices such that d(βi, βj) = 2, where i ∈ {1, 2, . . . , k} and j = i + 1
mod k. We assume that the minimum distance between any two fixed points
is greater than or equal to 2(r + 1). This would always ensure that even if
two adjacent k-gons are rotated, the formation of disjoint circles without any
overlapping of robots would be guaranteed.

Let C(fi, r) denote the circle centered at fi ∈ F . If Ri(t) lies on a circle, then
Ri is said to lie on that circle. Depending on the number of robots on C(fi, r),
the fixed point fi can be catagorized as one of the following types: unsaturated
(number of robots < k), saturated (number of robots = k), and oversaturated
(number of robots > k).

The Uniform k-Circle Formation Problem: C(t) for some t ≥ 0 is said to
be a final configuration, if it satisfies the following conditions:

i) ∀Ri ∈ R, Ri(t) ∈ C(fj , r) for some fj ∈ F ,
ii) |C(fi, r) ∩ R(t)| = k, ∀fi ∈ F , and
iii) All k robots located on the same circle form a regular k-gon.

For a given initial configuration, the robots are required to transform and remain
in a final configuration to solve uniform k-circle formation problem.

3 Impossibility Results

Theorem 1. Let C(0) be a given initial configuration. If k is some odd integer
and C(0) ∈ I3, such that the following conditions hold:

364 B. Das and K. Mukhopadhyaya

i) R(0) is symmetric about the y-axis, and
ii) Ry(0) = ∅,
then the uniform k-circle formation problem is deterministically unsolvable.

Proof. If possible, let algorithm A solve the uniform k-circle formation problem.
Suppose φ(Ri) denotes the symmetric image of Ri. Assume that the robots are
activated under a semi-synchronous1 scheduler. Also, assume that both Ri and
φ(Ri) are activated simultaneously. It is assumed that the robots move at the
same constant speed without any transient stops. Consider that Ri and φ(Ri)
travel the same distance. Assume that both Ri and φ(Ri) have opposite notions
of positive x-axis direction. They would have identical configuration views. Since
the robots are homogeneous, their destinations and the corresponding paths for
their movements would be mirror images. Starting from a symmetric config-
uration, the symmetry cannot be broken by any algorithm in a deterministic
manner. Let fi ∈ Fy. Since the configuration is symmetric, Pi must be symmet-
ric about the y-axis. As k is odd, Pi must have a vertex on the y-axis. We have
Ry(0) = ∅. Thus, moving a robot Ri to the y-axis would mean moving φ(Ri) to
the same point. However, overlapping of the robots is not allowed. Hence, the
uniform k-circle formation problem is deterministically unsolvable.
�
Let I denote set of all the initial configurations and U be the set of all the
configurations satisfying impossibility criterion presented in Theorem 1 (Fig. 3).

4 Algorithm

Fig. 4. (a) R(Rj(t)q) is empty. (b) R(Rj(t)q) is non-empty

In this section, we present a distributed algorithm that deterministically
solves the uniform k-circle formation problem for C(0) ∈ I \U . An active robot
would execute the proposed algorithm AlgorithmFatRobot unless the current
configuration is a final configuration.

Definition 1. Let p be the destination point of Rj and q be the point such
that p ∈ Rj(t)q and d(p, q) = 1. The rectangular strip ABCD (Figs. 4(a) and

1 Time is divided into global rounds within the semi-synchronous (SSYNC) scheduler.
A subset of robots is activated in each round. An active robot completes its LCM
cycle in the round in which it becomes active.

Uniform k-Circle Formation by Fat Robots 365

4(b)) between Rj(t) and q having width of two units is denoted by R(Rj(t)q).
If �Ri ∈ R such that Ui(t) intersects R(Rj(t)q), then R(Rj(t)q) is said to be
empty (Fig. 4(a)). Otherwise, it is said to be non-empty (Fig. 4(b)). If R(Rj(t)q)
is empty, then Rj is said to have a free path for movement towards p.

Half-planes: Let H1 and H2 denote the two open half-planes delimited by the
y-axis. Fi denotes the set of fixed points in Hi ∈ {H1,H2}. Ci(t) = (R(t), Fi)
represents the part of the configuration consisting of R(t) ∪ Fi, where i ∈ {1, 2}.
C3(t) = (R(t), Fy) denotes the part of the configuration consisting of R(t) ∪
Fy. In H1, the positive x-axis direction is considered along the perpendicular
direction away from the y-axis. Similarly, the positive x-axis direction in H2 is
the perpendicular direction away from the y-axis.

Definition 2. If k is some odd integer and C(t) ∈ I3, then C(t) is said to be
an unsafe configuration. A pivot position is defined for an unsafe configuration.
Suppose f ∈ Fy be the topmost fixed point. Let ρ1 ∈ H1 be the point such that

ρ1 ∈ C(f, r) and x(ρ1)−x(f) =
1
2
unit distance. Similarly, let ρ2 be such a point

in H2. The points ρ1 and ρ2 are said to be pivot positions. A robot placed on a
pivot position is said to be a pivot robot.

4.1 Overview

During the execution of AlgorithmFatRobot (Sect. 4.5), the robots decide their
strategy depending on the class of the initial configuration. Due to its dimen-
sional extent, a robot can only start to move towards its destination point if
it has a free path for movement. An overview of the AlgorithmFatRobot is
described below:

1. If C(0) ∈ I1 or C(0) is an unsafe configuration, then the robots agree upon
the positive x-axis direction. In case, C(0) ∈ I1 the x-axis agreement is based
on fixed points only. If C(0) is an unsafe configuration, then the robots would
execute PivotSelection (Sect. 4.3). This is the procedure by which a pivot
robot would be selected and placed in a pivot position. The pivot robot would
remain fixed at the pivot position. The pivot position is selected by ensuring
that the configuration will remain asymmetric once the pivot robot is placed.
In this case, the x-axis agreement is based on the pivot position.

2. The robots would execute CircleFormation (Sect. 4.4) for a unique fixed
point (or for two fixed points when there is no global x-axis agreement). Such
a fixed point is said to be a target fixed point. The robots would accomplish
the formation of circles by executing the procedure CircleFormation.

During the execution of the AlgorithmFatRobot, the robots would move down-
wards by the execution of procedure DownwardMovement (Sect. 4.2).

4.2 DownwardMovement

DownwardMovement is the procedure in AlgorithmFatRobot by which the
robots would move downwards. Assume that Rj has been selected for downward

366 B. Das and K. Mukhopadhyaya

movement by one unit. Rj would move one unit vertically downwards by the
execution of the procedure DownwardMovement. However, if the pivot robot
falls in its path, then it cannot move downwards. In such a case, it would move
one unit horizontally. First, some new notations and definitions are introduced.

Fig. 5. (a) Mj(t) = {R1, R2, R3, R4}. As U1(t) intersects R(Rj(t)pj(t)), R1 ∈ Mj(t).
Also, U2(t) and U3(t) intersect R(R1(t)p1(t)), R2 ∈ Mj(t) and R3 ∈ Mj(t). U4(t)
intersects R(R3(t)p3(t)) and R4 ∈ Mj(t). (b) Nj(t) = {R1, R2, R3, R4}. As U1(t)
intersects R(Rj(t)qj(t)), R1 ∈ Nj(t). U3(t) intersects R(R1(t)q1(t)) and R3 ∈ Nj(t).
Also, U2(t) and U4(t) intersect R(R3(t)q1(t)), R2 ∈ Nj(t) and R4 ∈ Nj(t).

Suppose V Lj(t) denotes the vertical line passing through Rj(t). Let pj(t) ∈
V Lj(t) be the point such that γ(Rj(t)) > γ(pj(t)) and d(Rj(t), pj(t)) = 2.
Define the set Mj(t) as follows:

1. Base case: If R(Rj(t)pj(t)) is empty, then Mj(t) = ∅. Else, Mj(t) = {Ra |
Ua(t) intersects R(Rj(t)pj(t))}.

2. Constructor case:
Mj(t) = Mj(t) ∪ {Rb | Ub(t) intersects R(Ri(t)pi(t)) for some Ri ∈ Mj(t)}.

The set Mj(t) contains all the robots that must be moved downwards before
Rj can move one unit vertically downwards (Fig. 5(a)). Let HLj(t) denote the
horizontal line passing through Rj(t). In case, Rj is selected for horizontal
movement, let qj(t) ∈ HLj(t) be the point such that γ(Rj(t)) < γ(qj(t)) and
d(Rj(t), qj(t)) = 2. Define the set Nj(t) as follows:

1. Base case: If R(Rj(t)qj(t)) is empty, then Nj(t) = ∅. Else, Nj(t) = {Ra |
Ua(t) intersects R(Rj(t)qj(t))}.

2. Constructor case:
Nj(t) = Nj(t) ∪ {Rb | Ub(t) intersects R(Ri(t)qi(t)) for some Ri ∈ Nj(t)}.

The set Nj(t) contains all the robots that must be moved horizontally so that
R(Rj(t)qj(t)) becomes empty (Fig. 5(b)). During the execution of the procedure
DownwardMovement(Rj), the following cases are to be considered:

Uniform k-Circle Formation by Fat Robots 367

1. Mj(t) = ∅. Rj would start moving towards pj(t) along Rj(t)pj(t).
2. Mj(t) �= ∅. There are two possible cases:

(a) Mj(t) contains the pivot robot. If Nj(t) = ∅, then Rj moves towards qj(t)
along Rj(t)qj(t). Otherwise, let Ra ∈ Nj(t) be such that d(Rj(t), Ra(t)) =

max
Rk∈Nj(t)

d(Rj(t), Rk(t)). Ra moves towards qa(t) along Ra(t)qa(t). There

may be multiple such robots which would perform the required movement.
(b) Mj(t) does not contain the pivot robot. Let Ra ∈ Mj(t) be such that

γ(Ra(t)) ≤ min
Rk∈Mj(t)

γ(Rk(t)). Ra moves towards pa(t) along Ra(t)pa(t).

If there are multiple such robots, then all of them would perform the
required vertical movement.

4.3 PivotSelection

PivotSelection is the procedure in AlgorithmFatRobot by which a robot would
be placed at one of the pivot positions. Let Ra be the robot that is located at
the closest distance from the pivot position ρ1. If there are multiple such robots,
then select the topmost one. In case there is a tie, select the one closest to the
y-axis. Similarly, consider Rb to be the robot that is located closest to ρ2. The
following cases are to be considered:

1. d(Ra(t), ρ1) �= d(Rb(t), ρ2). Without loss of generality, let d(Ra(t), ρ1) <
d(Rb(t), ρ2). The robot Ra would start moving towards ρ1 along Ra(t)ρ1.

2. d(Ra(t), ρ1) = d(Rb(t), ρ2) and Ry(t) = ∅. Since C(t) /∈ U , it must be asym-
metric about the y-axis. Let Rl be the topmost asymmetric robot. If there
are multiple such robot then select the one which is at the closest distance
from the y-axis. Without loss of generality, assume that Rl ∈ H1. The robot
Ra would start moving towards ρ1 along Ra(t)ρ1.

3. d(Ra(t), ρ1) = d(Rb(t), ρ2) and Ry(t) �= ∅. There are two possible cases:
(i) C(t) is asymmetric. In this case, the robots will perform the required

actions similarly as in case 2.
(ii) C(t) is symmetric. First, consider the case when ∃Ra ∈ Ry(t) that can be

moved horizontally half a unit away from the y-axis. If there are multiple
such robots, select the topmost one. Ra would move horizontally half a
unit away from the y-axis. Next, consider the case when there are no such
robots on the y-axis. Let Ra ∈ Ry(t) be the robot that has the minimum
rank. DownwardMovement(Ra) would be executed.

4.4 CircleFormation

CircleFormation is the procedure in AlgorithmFatRobot by which the robots
would accomplish the formation of a circle. Let fi be a target fixed point. The
selection of the regular k-gon Pi is discussed below:

1. The robots have global x-axis agreement or fi /∈ Fy. Pi denotes the regular
k-gon centered at fi with βi as one of the vertices. If fi ∈ Fy and C(t) is an
unsafe configuration, then the center of pivot robot position is considered as
one the vertices of Pi.

368 B. Das and K. Mukhopadhyaya

2. The robots do not have any global x-axis agreement and fi ∈ Fy. Let β1 ∈ H1

be the point on C(fi, r) such that it is at one unit distance from the y-axis.
Since there are two such points in H1, select the one that has the highest
rank. Similarly, let β2 be such a point in H2. Pi denotes the regular k-gon
centered at fi with β1 and β2 as vertices.

The following additional notations and terminologies are introduced:

1. Ai(t) = {Rj | Rj(t) ∈ C(fa, r) where fa ∈ F be such that γ(fa) ≥ γ(fi)}.
2. fl ∈ F denotes a fixed point such that γ(fl) ≤ γ(fj), ∀fj ∈ F .
3. Rj is said to satisfy condition C1 if it is not the pivot robot.
4. Rj is said to satisfy condition C2 if y(Rj(t)) ≥ y(fl) − (r + 1).
5. Bi(t) = {Rj | Rj /∈ Ai(t) and it satisfies C1 and C2}.
6. Let βa ∈ Pi be the empty vertex that has the highest rank. Assume that Rj

has been selected for moving towards βa. If R(Rj(t), βa) is non-empty, then
let aj ∈ HLj(t) denote the point that lies at the closest distance from Rj

such that R(Rj(t) = aj , βa) is empty.

Definition 3. C(fi, r) is called a perfect circle, if the following conditions hold:

1. If Rj(t) ∈ C(fi, r), then Rj(t) = βk for some βk ∈ Pi.
2. If Rj(t) ∈ C(fi, r) and Rj(t) = βk ∈ Pi, then � βj ∈ Pi such that γ(βk) <

γ(βj) and βj is not occupied.

If Rj ∈ C(fi, r) be such that one of the above conditions is not satisfied, then it
is said to be an imperfect robot. A circle is said to be imperfect if it contains an
imperfect robot.

During an execution of CircleFormation(C(t), fi), an active robot considers the
following cases:

1. The robots have global x-axis agreement or fi /∈ Fy . The following
cases are to be considered:
(a) |Bi(t)| > 1. Let Rj ∈ Bi(t) be the robot that has the maximum rank.

The robots would execute DownwardMovement(Rj).
(b) |Bi(t)| = 1. Let βc ∈ Pi be the empty vertex that has the maximum

rank. Let Rj ∈ Bi(t). If R(Rj(t)βc) is empty, then Rj would start moving
towards βc. Otherwise, DownwardMovement(Rj) would be executed.

(c) |Bi(t)| = 0 and C(fi, r) is imperfect . Let βc ∈ Pi be the empty vertex
that has the maximum rank. Let Rj ∈ C(fi, r) be such that γ(Rj(t)) <
γ(βc) and d(Rj(t), βc) is minimum. If there is a tie, select the one that
has the maximum rank. Rj would start moving towards βc along Rj(t)βc.

(d) |Bi(t)| = 0 and C(fi, r) is perfect . Let βc ∈ Pi be the empty ver-
tex that has the maximum rank. Let Rj ∈ R(t) \ Ai(t) be such that
d(Rj(t), βc) is minimum. If there is a tie, select the one that has the max-
imum rank. If R(Rj(t)βc) is empty, then Rj would start moving towards
βc along Rj(t)βc. Else, Rj would start moving towards aj along Rj(t)aj .

Fig. 6 depicts the transformations among the above-mentioned cases.

Uniform k-Circle Formation by Fat Robots 369

Fig. 6. A flow chart showing the transformations among the various cases during an
execution of CircleFormation when the robots have a global x-axis agreement or the
target fixed point does not belong to Fy.

2. The robots do not have any global x-axis agreement and fi ∈ Fy .
The following cases are to be considered:
(a) |Bi(t)| > 2. Let Rj ∈ Bi(t) be the robot that has the maximum rank.

The robots would execute DownwardMovement(Rj).
(b) 0 < |Bi(t)| ≤ 2. Let βa ∈ H1 be the empty vertex of Pi that has the

highest rank. Similarly, let βb be such a vertex in H2. Assume that Rj

and Rk are the robots that are at the closest distance from βa and βb,
respectively. If R(Rj(t)βa) is empty, then Rj would start moving towards
βa. Otherwise, DownwardMovement(Rj) would be executed. Similarly,
if R(Rk(t)βb) is empty, then Rk would start moving towards βb. Other-
wise, DownwardMovement(Rk) would be executed.

(c) |Bi(t)| = 0 and C(fi, r) is imperfect . Let βa ∈ H1 be the empty
vertex of Pi that has the highest rank. Similarly, let βb be such a vertex
in H2. Let Rj ∈ C(fi, r) be such that γ(Rj(t)) < γ(βa) and d(Rj(t), βa)
is minimum. If there is a tie, select the one that has the maximum rank.
Let Rk be such an robot for the vertex βb. Rj would move towards βa

along Rj(t)βa. Similarly, Rk would move towards βb along Rk(t)βb.
(d) |Bi(t)| = 0 and C(fi, r) is perfect . Let βa ∈ H1 be the empty vertex

of Pi that has the highest rank. Similarly, let βb be such a vertex in H2.
Let Rj ∈ R(t) \ Ai(t) such that d(Rj(t), βa) is minimum. If there is a tie,
select the one that has the maximum rank. Assume that Rk be such a
robot for βb. If R(Rj(t)βa) is empty, then Rj would start moving towards
βa along Rj(t)βa. Otherwise, Rj would move towards aj along Rj(t)aj .
Similarly, Rk would select its destination point and move towards it.

If Rj = Rk for any of the above cases, then Rj would select the target fixed
point that lies at the closest distance from it. If there is a tie, it would select
one of the target fixed point arbitrarily. Figure 7 depicts the transformations
among the above mentioned cases.

370 B. Das and K. Mukhopadhyaya

Fig. 7. A flow chart showing the transformations among the various cases during an
execution of CircleFormation when the robots do not have any global x-axis agreement
and the target fixed point belongs to Fy.

4.5 AlgorithmFatRobot

AlgorithmFatRobot is the proposed deterministic distributed algorithm that
solves the uniform k-circle formation problem within finite time. If C(t) is a non-
final configuration, then AlgorithmFatRobot(C(t)) would be executed. Consider
the following cases:

1. C(t) ∈ I1. Since F is asymmetric, the fixed points can be ordered. Let f
be the topmost asymmetric fixed point. In case there are multiple such fixed
points, select the one that has the minimum rank. The direction from the
y-axis towards f is considered to be the positive x-axis direction. This is a
global agreement. Let fi ∈ C(t) be the unsaturated fixed point that has the
maximum rank. fi is selected as the target fixed point. The robots would
execute CircleFormation(C(t), fi).

2. C(t) ∈ I2. Let fa ∈ C1(t) be the unsaturated fixed point that has the max-
imum rank. fi is selected as the target fixed point in C1(t). Similarly, the
robots would select a unique target fixed point (say fb) in C2(t). The robots
would execute CircleFormation(C1(t), fa) and CircleFormation(C2(t), fb).

3. C(t) ∈ I3. In this case, Fy �= ∅. The following cases are to be considered:
(a) k is even and C(t) is not an unsafe configuration. Consider the

following cases:
(i) ∃f ∈ Fy such that f is unsaturated . Let fj ∈ Fy be the topmost

unsaturated fixed point. fj is selected as the target fixed point. They
would execute CircleFormation(C3(t), fj).

(ii) ∀f ∈ Fy , f is saturated . Let fa ∈ C1(t) be the unsaturated
fixed point that has the maximum rank. fa is selected as the tar-
get fixed point in C1(t). Since the fixed points in C1(t) are order-
able, fa is unique. Similarly, the robots would select a unique
target fixed point (say fb) in C2(t). The robots would execute
CircleFormation(C1(t), fa) and CircleFormation(C2(t), fb).

(b) C(t) is an unsafe configuration. If none of the pivot positions have
been occupied, then the robots would execute PivotSelection(C(t)).

Uniform k-Circle Formation by Fat Robots 371

Next, consider the case when one of the pivot positions has been occupied.
The direction from the y-axis towards the pivot robot is considered as the
positive x-axis direction. This is a global agreement. Next, the algorithm
proceeds similarly to the case when C(t) ∈ I1.

5 Correctness

In this section, the correctness of AlgorithmFatRobot is discussed. During an
execution of AlgorithmFatRobot, the following points must be ensured:

1. Solvability: At time t > 0, C(t) /∈ U .
2. Progress: The uniform k-circle formation is solved within finite time.

Lemma 1. If C(0) ∈ I1 ∪I2 ∪I3 and C(0) ∈ I \U , then at any arbitrary point
of time t ≥ 0 during an execution of AlgorithmFatRobot, C(t) /∈ U .

During an execution of algorithm AlgorithmFatRobot, a robot will move by
either PivotSelection or DownwardMovement or CircleFormation.

Progress of First Kind: For some Rj ∈ C(t), consider an execution of pro-
cedure DownwardMovement(Rj). Define k1(t) = d(Rj(t), pj(t)) and k2(t) =
d(Rj(t), qj(t)). In case |Mj(t)| > 0, let Ra ∈ Mj(t) be a robot that has the
minimum rank. Define d1(t) = d(Ra(t), pa(t)). If |Mj(t)| = 0, then assume
that d1(t) = 0. Similarly, if |Nj(t)| > 0 then assume that Rb ∈ Nj(t) be a
robot that lies at the farthest distance from Rj(t). Let d2(t) = d(Rb(t), qa(t)).
If |Nj(t)| = 0, then assume that d2(t) = 0. Define W1(t) = (k1(t), |Mj(t)|, d1(t))
and W2(t) = (k2(t), |Nj(t)|, d2(t)). In the time interval t to t′, Wi(t′) < Wi(t)
where i ∈ {1, 2} if Wi(t′) is lexicographically smaller than Wi(t). During an
execution of DownwardMovement, the configuration is said to have progress of
first kind in the time interval t to t′ if either W1(t′) < W1(t) or W2(t′) < W2(t).

Lemma 2. During the execution of DownwardMovement(Rj) for some Rj ∈
C(t), let t′ > t be the point of time at which each robot has completed at least
one LCM cycle. Progress of first kind is ensured in the time interval t to t′.

Lemma 3. Let C(t) ∈ I3 be an unsafe configuration. The pivot robot would be
placed within finite time by the execution of PivotSelection(C(t)).

Progress of Second Kind: Suppose Rj has been selected for movement
towards a vertex βk ∈ Pi during an execution CircleFormation(C(t), fi). For
the configurations without any global x-axis agreement, there might be two
such moving robots. In that case, both the robots would move towards different
vertices of Pi. First, consider the case when there is only one such robot. Let
ni(t) = k − |C(fi, r) ∩ R(t)|. Suppose n(t) denotes the number of unsaturated
fixed points. Let

Ej(t) =

{
d(Rj(t), βk) R(Rj(t)βk) is empty
d(Rj(t), aj) R(Rj(t)βk) is non-empty

372 B. Das and K. Mukhopadhyaya

Let Zj(t) = (n(t), ni(t), Ej(t)). In case there are two such moving robots,
assume that Ra is the other robot that starts moving towards a vertex βb ∈ Pi.
Similarly, define Ea(t) and Za(t) = (n(t), ni(t), Ea(t)). In the time interval t
to t′, Zi(t′) < Zi(t), where i ∈ {j, a} if Zi(t′) is lexicographically smaller than
Zi(t). During an execution of AlgorithmFatRobot, the configuration is said to
have progress of second kind in the time interval t to t′, if either Zj(t′) < Zj(t)
or Za(t′) < Za(t).

Lemma 4. Let C(t) be a given configuration. During the execution of the pro-
cedure CircleFormation, let t′ > t be an arbitrary point of time at which all
the robots have completed at least one LCM cycle. In the time between t and t′,
either progress of first kind or progress of second kind is guaranteed.

Lemma 5. Let C(0) be a given initial configuration. During the execution of
AlgorithmFatRobot collision-free movement is ensured by the robots.

Theorem 2. If C(0) ∈ I \ U , then the uniform k-circle formation problem is
deterministically solvable by the execution of AlgorithmFatRobot.

Conclusions

In this paper, we have investigated the uniform k-circle formation problem for
transparent fat robots under asynchronous scheduler. The problem can be con-
sidered under various types of restricted visibility models, namely, obstructed
visibility and limited visibility range. We have assumed that the robots have
one-axis agreement. Another direction for future work would be to study the
problem without the assumption of one-axis agreement.

References

1. Flocchini, P., Prencipe, G., Santoro, N. (eds.): Distributed Computing by Mobile
Entities, Current Research in Moving and Computing, LNCS, vol. 11340. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-11072-7

2. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in
asynchronous robot systems. SIAM J. Comput. 34(6), 1516–1528 (2005)

3. Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane.
Theor. Comput. Sci. 410(6–7), 481–499 (2009)

4. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

5. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1), 412–
447 (2008)

6. Cicerone, S., Di Stefano, G., Navarra, A.: Asynchronous arbitrary pattern forma-
tion: the effects of a rigorous approach. Distrib. Comput. 32(2), 91–132 (2019)

7. Fujinaga, N., Ono, H., Kijima, S., Yamashita, M.: Pattern formation through opti-
mum matching by oblivious CORDA robots. In: Lu, C., Masuzawa, T., Mosbah,
M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 1–15. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17653-1 1

https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-642-17653-1_1

Uniform k-Circle Formation by Fat Robots 373

8. Cicerone, S., Di Stefano, G., Navarra, A.: Embedded pattern formation by asyn-
chronous robots without chirality. Distrib. Comput. 32(4), 291–315 (2019)

9. Bhagat, S., Das, B., Chakraborty, A., Mukhopadhyaya, K.: k-circle formation and
k-epf by asynchronous robots. Algorithms 14(2), 62 (2021)

10. Das, B., Chakraborty, A., Bhagat, S., Mukhopadhyaya, K.: k-circle formation by
disoriented asynchronous robots. Theor. Comput. Sci. 916, 40–61 (2022)

11. Efrima, A., Peleg, D.: Distributed algorithms for partitioning a swarm of
autonomous mobile robots. Theor. Comput. Sci. 410(14), 1355–68 (2009)

12. Liu, Z., Yamauchi, Y., Kijima, S., Yamashita, M.: Team assembling problem for
asynchronous heterogeneous mobile robots. Theor. Comput. Sci. 721, 27–41 (2018)

13. Flocchini, P., Prencipe, G., Santoro, N., Viglietta, G.: Distributed computing by
mobile robots: uniform circle formation. Distrib. Comput. 30(6), 413–457 (2017)

14. Dieudonné, Y., Labbani-Igbida, O., Petit, F.: Circle formation of weak mobile
robots. ACM Trans. Auton. Adapt. Syst. (TAAS) 3(4), 1–20 (2008)

15. Feletti, C., Mereghetti, C., Palano, B.: Uniform circle formation for swarms of
opaque robots with lights. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS,
vol. 11201, pp. 317–332. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03232-6 21

16. Dutta, A., Gan Chaudhuri, S., Datta, S., Mukhopadhyaya, K.: Circle Formation by
asynchronous fat robots with limited visibility. In: Ramanujam, R., Ramaswamy,
S. (eds.) ICDCIT 2012. LNCS, vol. 7154, pp. 83–93. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28073-3 8

17. Biswas, M., Rahaman, S., Mondal, M., Gan Chaudhuri, S.: Multiple uniform circle
formation by fat robots under limited visibility. In: 24th International Conference
on Distributed Computing and Networking, pp. 311–317 (2023)

18. Jiang, S., Liang, J., Cao, J., Wang, J., Chen, J., Liang, Z.: Decentralized algorithm
for repeating pattern formation by multiple robots. In: 2019 IEEE 25th Interna-
tional Conference on Parallel and Distributed Systems (ICPADS), pp. 594–601.
IEEE (2019)

19. Cicerone, S., Di Fonso, A., Di Stefano, G., Navarra, A.: MOBLOT: molecular obliv-
ious robots. In: Proceedings of the 20th International Conference on Autonomous
Agents and MultiAgent Systems, pp. 350–358 (2021)

20. Agathangelou, C., Georgiou, C., Mavronicolas, M.: A distributed algorithm for
gathering many fat mobile robots in the plane. In: Proceedings of the 2013 ACM
Symposium on Principles of Distributed Computing, 2013, pp. 250–259 (2013)

21. Bose, K., Adhikary, R., Kundu, M.K., Sau, B.: Arbitrary pattern formation by
opaque fat robots with lights. In: Changat, M., Das, S. (eds.) CALDAM 2020.
LNCS, vol. 12016, pp. 347–359. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-39219-2 28

22. Sharma, G., Alsaedi, R., Busch, C., Mukhopadhyay, S.: The complete visibility
problem for fat robots with lights. In: Proceedings of the 19th International Con-
ference on Distributed Computing and Networking, pp. 1–4 (2018)

https://doi.org/10.1007/978-3-030-03232-6_21
https://doi.org/10.1007/978-3-030-03232-6_21
https://doi.org/10.1007/978-3-642-28073-3_8
https://doi.org/10.1007/978-3-030-39219-2_28
https://doi.org/10.1007/978-3-030-39219-2_28

Brief Announcement: Rendezvous
on a Known Dynamic Point in a Finite

Unoriented Grid

Pritam Goswami(B) , Avisek Sharma , Satakshi Ghosh ,
and Buddhadeb Sau

Jadavpur University, 188, Raja S.C. Mallick Rd, Kolkata 700032, India
{pritamgoswami.math.rs,aviseks.math.rs,satakshighosh.math.rs,

buddhadeb.sau}@jadavpuruniversity.in

Abstract. In this paper, we have considered two fully synchronous
OBLOT robots having no agreement on coordinates entering a finite
unoriented grid through a door vertex at a corner, one by one. There is
a resource that can move around the grid synchronously with the robots
until it gets co-located with at least one robot. Assuming the robots can
see and identify the resource, we consider the problem where the robots
must meet at the location of this dynamic resource within finite rounds.
We name this problem “Rendezvous on a Known Dynamic Point”.

Here, we have provided an algorithm for the two robots to gather
at the location of the dynamic resource. We have also provided a lower
bound on time for this problem and showed that with certain assump-
tions on the waiting time of the resource on a single vertex, the algorithm
provided is time optimal. We have also shown that it is impossible to
solve this problem if the scheduler considered is semi-synchronous.

Keywords: Rendezvous · Finite Grid · Unoriented Grid · Dynamic
Resource · Oblivious Robots

1 Introduction

Gathering (first introduced in [2]) is a classical problem studied in swarm
robotics, where multiple computational entities (robots) need to move to a single
point to exchange information. Rendezvous is a special case of gathering where
only two robots are involved. The main motivation for gathering is to meet at a
single point where the robots can exchange information. Now, let the information
be stored at a single point or a set of points called resources in the environment,
and the robots need to be on one of those resources to exchange information.
In that case, the robots must gather at one of those specific points to exchange
information. Now the question is, “What happens if the resource is also mobile?”.
This has been the main motivation behind the paper.

Now, it is quite obvious that the environment should be a bounded region;
otherwise, it would be impossible to reach the resource. Also, for a bounded
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 374–379, 2023.
https://doi.org/10.1007/978-3-031-44274-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_27&domain=pdf
http://orcid.org/0000-0002-0546-3894
http://orcid.org/0000-0001-8940-392X
http://orcid.org/0000-0003-1747-4037
http://orcid.org/0000-0001-7008-6135
https://doi.org/10.1007/978-3-031-44274-2_27

Rendezvous on a Known Dynamic Point in a Finite Unoriented Grid 375

region in a plane, finitely many point robots can’t meet at the location of the
resource, as there are infinitely many empty points where the resource can move
to avoid the meeting. Thus, it is natural to consider this problem for a bounded
network. A finite grid is a widely used network in various fields and has many
real-life applications. For that reason, we have considered a finite grid as the
environment in this work.

This work assumes that two fully synchronous robots enter a finite, unori-
ented grid one by one through a door at a corner of the grid. They know the
current location of the meeting point (i.e., they can see and identify the resource).
A deterministic and distributed algorithm has been provided that solves the ren-
dezvous problem on a known dynamic meeting point within O(Tf × (m + n))
rounds, where Tf is the upper bound of the number of consecutive rounds the
meeting point (i.e., the resource) can stay at a single vertex alone and m × n is
the dimension of the grid. We have also shown that for solving rendezvous on a
known dynamic point on a finite grid of dimension m×n at least Ω(m+n) epochs
are necessary, and proved that solving rendezvous on a known dynamic point on
a finite grid is impossible if the scheduler considered is semi-synchronous, so a
fully synchronous scheduler has been considered in this work.

2 Model and Problem Definition

2.1 Model

Let G = (V,E) be a graph embedded on an euclidean plane where V = {(i, j) ∈
R

2 : i, j ∈ Z, 0 ≤ i < n, 0 ≤ j < m} and there is an edge e ∈ E between two
vertices, say (i1, j1) and (i2, j2), only if either i1 = i2 and |j1 − j2| = 1 or j1 = j2
and |i1− i2| = 1. We call this graph a finite grid of dimension m×n. Though the
graph is defined here using coordinates, the robots have no perception of these
coordinates, which makes this grid unoriented. A corner vertex is a vertex of G
of degree two. A vertex is called a boundary if either the degree of that vertex is
three or the vertex is a corner. G has four corner vertices, among which exactly
one corner vertex has a door. This vertex having a door is called the door vertex.
Robots can enter the grid by entering through that door one by one. There is
a movable resource (which we can think of as another robot doing some other
task in the environment), initially placed arbitrarily at a vertex g0 (g0 is not
the door) of G. The resource moves synchronously with the robots. i.e., in a
round, if the resource moves, it must move to one of its adjacent vertices. The
resource can stay at a single vertex for infinitely many consecutive rounds only
if it is co-located with at least one robot. Otherwise, it cannot stay alone at a
single vertex for more than Tf consecutive rounds. Also, it is assumed that the
resource cannot cross a robot on an edge without colliding. On such a collision,
the colliding robot carries the resource to the robot’s destination vertex and
terminates.

We consider the weakest OBLOT robot model. In this model, the robots are
considered to be points. They do not have persistent memory and communication
capabilities. A robot can distinguish if a vertex is on the boundary or a corner

376 P. Goswami et al.

of the grid. Also, a robot can identify the door only if it is on the door vertex.
A robot can distinguish the resource. Also, the robots are capable of detecting
whether a vertex contains one or more entities (i.e., robot and resource). This
capability is known as weak multiplicity detection. Each robot has its own local
coordinate system, but they do not agree on any global coordinate system.

The robots operate in a Look-Compute-Move (LCM) cycle upon activa-
tion. In Look operation, it gets the position of the other robot and the resource
as input. Then in Compute operation, it runs the algorithm and gets an out-
put. The output is a vertex, which can be its current position or any one of
the adjacent vertices. Finally, during Move operation, the robot moves to the
output vertex.

Fig. 1. Diagram of an InitGather
Configuration

After completion of Move operation,
the robot becomes idle until it is activated
again. In this paper, we assume that the
activation of robots is controlled by a fully
synchronous (FSYNC) scheduler. In this
type of scheduler, the time can be divided
into global rounds of equal duration, and
at the beginning of each round, all robots
are activated.

We now define a special type of con-
figuration called InitGather Configu-
ration (Fig. 1) which will be needed to
describe the algorithm.
Definition 1 (InitGather Configuartion). A configuration C is called a
InitGather Configuartion if:

1. two robots, r and r′, are not on the same grid line.
2. there is a robot r such that r and the resource res are on a grid line (say L).
3. the perpendicular distance of the other robot r′ to the line passing through res

and perpendicular to L is at most one.

2.2 Problem Definition

Let G be a finite grid of dimension m × n. Suppose there is a doorway in a
corner of the grid through which two synchronous robots r1 and r2 can enter the
grid. The robots can only identify the door if they are located on it. Consider
a movable resource that is placed arbitrarily on a vertex of G. Both robots can
see the resource. The resource will become fixed if at least one of r1 or r2 is
on the same vertex as the resource. Now the problem is to design a distributed
algorithm such that, after a finite execution, both robots gather at the vertex of
the resource.

3 Some Results and Overview of the Algorithm

We start this section by describing some results. The first obvious observation
is that for a m × n grid, at least Ω(m + n) rounds must be needed to solve

Rendezvous on a Known Dynamic Point in a Finite Unoriented Grid 377

this problem. Now we will discuss the impossibility result in the next theorem.
which justifies our assumption of considering a fully synchronous scheduler for
the algorithm to work.

Theorem 1. No algorithm can solve the problem of rendezvous on a known
dynamic point on a finite grid of dimension m × n if the scheduler is semi-
synchronous.

We now describe the algorithm Dynamic Rendezvous which solves the pro-
posed problem under a fully synchronous scheduler. The main idea of the algo-
rithm is to push the resource towards a corner before meeting it. The algorithm
Dynamic Rendezvous is executed in three phases. Entry Phase, Boundary
Phase and Gather Phase. The pseudocode of the algorithm is given below.
Algorithm 1: Dynamic Rendezvous
1 Input: A configuration C.
2 Output: A destination point of robot r.
3 if a robot, say r, is at a corner ∧ no robot terminates ∧ (there is no other robot on the

grid ∨ another robot is adjacent to r) then
4 Execute Entry Phase;
5 else
6 if C is InitGather Configuration then
7 Execute Gather Phase;
8 else
9 Execute Boundary Phase;

Entry Phase: The robots move in the grid one by one through the door
vertex and moves to an empty adjacent vertex of the door vertex. This phase
ends when the two robots are located on the two adjacent vertices of the door
vertex.

Boundary Phase: This phase starts after the Entry Phase and termi-
nates when the configuration becomes an InitGather Configuration. The
main idea behind forming an InitGather Configuration is that it is easy to
contain the resource in a bounded region while decreasing the area of the region
eventually with such a configuration. This is necessary for the robots to meet
the resource. Also in the next phase (called Gather Phase), when the robots
leave their corresponding boundary, they lose the direction agreement. The Init-
Gather Configuration helps the robots agree on a direction to move in.

Now, before describing this phase, let us define the distance of the resource
res from the robot r as dist(r). This phase starts after Entry Phase. During
this phase, if a robot r sees that no robots are terminated and for both the robots
r and r′, dist(r) and dist(r′) are not zero, and if the vertex v along its boundary
towards the resource is not a corner, then r moves to v only if it sees r′ is also
not adjacent to a corner. On the other hand, if r′ is adjacent to a corner, then r
moves to v only if dist(r) �= 1. r also moves to v if dist(r′) = 0 and dist(r) > 1. If
a robot already terminates in this phase by meeting the resource, the other robot
will then move to the meeting node via the shortest path, avoiding corners. If
no robots terminate, we ensure that eventually the robots form an InitGather
Configuration and then start the next phase.

378 P. Goswami et al.

Gather Phase: This phase is executed if the configuration is an InitGather
Configuration.The main idea behind this phase is that the robots move, main-
taining the InitGather Configuration and push the resource to a corner.
During this phase, if the robot r is on the same line, say L, along with the
resource res, then r moves along L towards res only if r is not adjacent to res
or if res is at a corner and both r and r′ are adjacent to res. On the other
hand, if r is not on the same line as res, then r′ must be on the same line as
L along with res. In that case, r moves parallel to L towards res. In the worst
case, if no robot terminates, in the penultimate configuration, the resource will
be located at a corner, and the robots will be located on two adjacent vertices of
that corner. In this configuration, the robots finally move and meet the resource
at the corner. Now we have the following theorem that ensures the correctness
of the algorithm Dynamic Rendezvous

Fig. 2. a) After Entry Phase terminates robots start Boundary Phase. b) Robots
forms InitGather Configuration to terminate Boundary Phase. c) Robots in
Gather Phase moves such a way that res stays inside the shaded region called RCon

and it decrease to a point eventually.

Theorem 2. Algorithm Dynamic Rendezvous terminates within O(Tf×(m+
n)) rounds.

So if we assume Tf is constant then our algorithm becomes time optimal.
For the pseudo code of each of the phases along with detailed description

and correctness proofs, check the full version of the paper [1].

4 Conclusion

The gathering is a classical problem. To the best of our knowledge, this is the
first work that considers a known but dynamic gathering point. In this work, we
have shown that it is impossible to solve this problem on a finite grid with two
robots if the scheduler is semi-synchronous. So assuming a fully synchronous
scheduler, we have provided a deterministic and distributed algorithm called
Dynamic Rendezvous that solves the problem in O(Tf × (m+n)) rounds. Tf

Rendezvous on a Known Dynamic Point in a Finite Unoriented Grid 379

is the maximum number of consecutive rounds the resource can stay at a single
vertex alone, and m × n is the dimension of the grid. In the future, it would be
interesting to model this problem on different graphs and find out the minimum
number of robots necessary to solve the problem on those graphs under different
schedulers.

Acknowledgement. The first and second authors are supported by UGC, the Gov-
ernment of India. The third author is supported by the West Bengal State Government
Fellowship Scheme.

References

1. Goswami, P., Sharma, A., Ghosh, S., Sau, B.: Rendezvous on a known dynamic
point on a finite unoriented grid (2023). https://arxiv.org/abs/2301.08519

2. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geo-
metric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999). https://doi.org/10.
1137/S009753979628292X

https://arxiv.org/abs/2301.08519
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1137/S009753979628292X

Brief Announcement: Crash-Tolerant
Exploration by Energy Sharing Mobile

Agents

Quentin Bramas1(B), Toshimitsu Masuzawa2, and Sébastien Tixeuil3,4

1 ICUBE, Strasbourg University, CNRS, Strasbourg, France
bramas@unistra.fr

2 Graduate School of Information Science and Technology, Osaka University,
Osaka, Japan

3 Sorbonne University, CNRS, LIP6, Paris, France
4 Institut Universitaire de France, Paris, France

Abstract. This paper examines the exploration of a weighted graph by
two mobile agents, where the energy cost of traversing an edge is equal
to the edge weight. Agents located at the same position (potentially on
an edge) can freely transfer energy, but one agent may unpredictably
crash and cease operation. Two settings are considered: asynchronous,
with no bound on the relative speed of the agents, and synchronous, with
synchronized clocks and equal speeds. The study focuses ring networks
and investigates the conditions for complete edge exploration based on
the initial energy levels of the agents.

1 Introduction

Swarm robotics has led to numerous studies on the abilities of groups of
autonomous mobile robots, or agents, with limited individual capabilities. These
agents work together to accomplish complex tasks such as pattern formation,
object clustering and assembly, search, and exploration. Collaboration offers
several advantages, including faster task completion, the possibility of fault tol-
erance, and lower construction costs and energy efficiency compared to larger,
more complex agents.

This paper examines the collective exploration of a known edge-weighted
graph by mobile agents starting at arbitrary nodes. The goal is for every edge to
be traversed by at least one agent, with edge weights representing their lengths.
Each agent has a battery with an initial energy level, which may vary between
agents. Moving a distance of x depletes an agent’s battery by x.

A recently explored mechanism for collaboration among agents is the ability
to share energy, allowing one agent to transfer energy to another when they meet.
This capability opens up new possibilities for tasks that can be accomplished
with the same initial energy levels. Energy-sharing capabilities enable graph
exploration in situations where it would otherwise be impossible. On the other
hand, an exploration algorithm with energy sharing must assign trajectories to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 380–384, 2023.
https://doi.org/10.1007/978-3-031-44274-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_28&domain=pdf
https://doi.org/10.1007/978-3-031-44274-2_28

Crash-Tolerant Exploration by Energy Sharing Mobile Agents 381

agents to collectively explore the entire graph and schedule achievable energy
transfers, and is therefore more complex to design.

This paper introduces the possibility of an agent crashing, or ceasing to oper-
ate indefinitely and unpredictably. An exploration algorithm must now consider
not only the feasibility of energy sharing, but also the feasibility of any plan that
accounts for an agent crashing at any point in its prescribed algorithm.

Related Works. Energy transfer by mobile agents was previously considered by
Czyzowicz et al. [1]. Agents travel and spend energy proportional to distance
traversed. Some nodes have information acquired by visiting agents. Meeting
agents may exchange information and energy. They consider communication
problems where information held by some nodes must be communicated to other
nodes or agents. They deal with data delivery and convergecast problems for a
centralized scheduler with full knowledge of the instance. With energy exchange,
both problems have linear-time solutions on trees. For general undirected and
directed graphs, these problems are NP-complete.

Most related to our paper are the works by Czyzowicz et al. [2] and Sun et
al. [3]. On the one hand, Czyzowicz et al. [2] study the collective exploration of a
known n-node edge-weighted graph by k mobile agents with limited energy and
energy transfer capability. The goal is for every edge to be traversed by at least
one agent. For an n-node path, they give an O(n + k) time algorithm to find an
exploration strategy or report that none exists. For an n-node tree with � leaves,
they provide an O(n+�k2) algorithm to find an exploration strategy if one exists.
For general graphs, deciding if exploration is possible by energy-sharing agents
is NP-hard, even for 3-regular graphs. However, it’s always possible to find an
exploration strategy if the total energy of agents is at least twice the total weight
of edges; this is asymptotically optimal. Sun et al. [3] examines circulating graph
exploration by energy-sharing agents on an arbitrary graph. They present the
necessary and sufficient energy condition for exploration and an algorithm to
find an exploration strategy if one exists. The exploration requires each node to
have the same number of agents before and after.

Our Contribution. We consider the problem of exploring every weighted edge
of a given graph by a team of two mobile agents. To fully traverse an edge
of weight x, the agent must spend energy x. Two agents located at the same
location (possibly on an edge) may freely transfer energy in an arbitrary manner.
However, we introduce the possibility for an agent to fail unpredictably and stop
operating forever (that is, crashing).

In this context, we consider two settings: asynchronous (where no bound on
the relative speed of the agents is known, so one agent cannot wait at a meeting
point for another agent a bounded amount of time and deduce that the other
agent is crashed, as it may just be arbitrarily slow), and synchronous (where
the two agents have synchronized clocks and move at the exact same speed). We
consider ring shaped networks, and study the necessary and sufficient conditions
for full edge exploration solvability, depending on the initial energies allocated
to each agent.

382 Q. Bramas et al.

2 Model

Our model is similar to that proposed by Czyzowicz et al. [2], except that we
simplify the edge weights to be strictly positive integers rather than real numbers.
Also, we consolidate the model to accommodate agent crashes.

We are given a weighted graph G = (V,E) where V is a set of n nodes,
E is a set of m edges, and each edge ei ∈ E is assigned a positive integer
wi ∈ N

+, denoting its weight (or length). We have k mobile agents (or agents)
r0, r1, . . . , rk−1 respectively placed at some of the nodes s0, s1, . . . sk−1 of the
graph. We allow more than one agents to be located in the same place. Each
mobile agent (or agent for short) ri initially possesses a specific amount of energy
equal to eni for its moves. An agent has the ability to travel along the edges
of graph G in any direction. It can pause its movement if necessary and can
change its direction either at a node or while traveling along an edge. The energy
consumed by a moving agent is equal to the distance x it moved. An agent can
move only if its energy is greater than zero. Now, the distance between two
agents is the smallest amount of energy needed for them to meet at some point.

In our setting, agents can share energy with each other. When two agents,
ri and rj , meet at a point (possibly in an edge) in the graph, ri can take some
energy from rj . If their energy levels at the time of meeting are en′

i and en′
j ,

then ri can take an amount of energy 0 < en ≤ en′
j from rj . After the transfer,

their energy levels will be en′
i + en and en′

j − en, respectively.
Each agent adheres to a pre-established trajectory until encountering another

agent. At this point, the agent determines if it acquires energy, and calculates
its ensuing trajectory. The definition of a trajectory depends on the synchrony
model:

– In the synchronous model, a trajectory is a sequence of pairs ((u0, t0),
(u1, t1), . . .), where ui is a node, and ti denotes the time at which the agent
should reach ui. For each i ≥ 0, ti < ti+1, and ui+1 is either equal to ui

(i.e., the agent waits at ui between ti and ti+1), or is adjacent to ui (i.e., the
agent leaves ui at time ti and arrives at ui+1 at time ti+1). For simplicity, we
assume in our algorithm that the moving speed in always one (it takes time
d to travel distance d, so if ui �= ui+1 and the weight between ui and ui+1 is
w, then ti+1 − ti = w).

– In the asynchronous model, a trajectory is just a sequence of nodes
(u0, u1, u2, . . .), ui+1 being adjacent to ui for each i ≥ 0, and the times at
which it reaches the nodes are determined by an adversary.

In other words, in the synchronous model, the agent controls its speed and its
waiting time at nodes. The computation of the trajectory and the decision to
echange energy is based on a localized algorithm (that is, an algorithm executed
by the agent). Time can be divided into discrete rounds that correspond to
the time instants where at least two agents meet. In a given execution, the
configuration at round t is denoted Ct.

Localized Algorithm. A localized algorithm fi executed by an agent ri at time t
takes as input the past of ri and its collocated agents, and returns (i) a trajectory

Crash-Tolerant Exploration by Energy Sharing Mobile Agents 383

traji, and (ii) the amount of energy takei,j taken from each collocated agent
rj . The past Pasti(t) of Agent ri at round t corresponds to the path already
traversed by ri union the past of all the previously met agents. More formally:

Pasti(t) = {pathi(t)} ∪ {Pastj(t′) | ri met rj at round t′ ≤ t}
A set of localized algorithms is valid for a given initial configuration c, if

for any execution starting from c, agents that are ordered to move have enough
energy to do so, and when an agent ri takes energy from an agent rj at round
t, then rj does not take energy from ri at the same time.

In this paper, we introduce the possibility of agent crashes. At any point in
the execution, an agent ri may crash and stop operating forever. However, if ri’s
remaining energy en′

i > 0, other agents meeting ri may take energy from ri for
any purpose. Now, a set of localized algorithms is t-crash-tolerant if it is valid
even in executions where at most t agents crash. We are interested in solving
the following general problem of t-crash-tolerant collaborative exploration:

Crash-tolerant Collaborative Exploration. Given a weighted graph G =
(V,E) and k mobile agents r0, r1, . . . , rk−1 together with their respective initial
energies en0, en1, . . . , enk−1 and positions s0, s1, . . . , sk−1 in the graph, find a
valid set of localized algorithms that explore (or cover) all edges of the graph
despite the unexpected crashes of at most t < k agents.

3 Crash-Tolerant Algorithms for Two Energy-Sharing
Agents in Ring Shaped Networks

Our algorithms are presented as a set of rules. Each rule is composed of a con-
dition (that must be true to execute the rule action) and an action (the rest
of the rule, that is executed when the condition is satisfied). Each action can
be a move; an alternation of actions, depending on a Boolean condition ; or a
waiting instruction (in the synchronous setting). There are two possible moves
towards a target point p, one to move clockwise ((p)) and the other to move
counterclockwise ((p)). The Boolean condition p1 ≺ p2 is true if and only if
the point p1 is closer than the point p2.

Let G = (V,E) be a ring graph. � denotes the total weight of G, and d, resp.
m, the weight of the shortest, resp. longest, path from r0 to r1. Consider that
agents r0 and r1 are initially located at nodes s0 and s1 respectively. Without
loss of generality, we can assume the shortest path from r0 to r1 is along the
counterclockwise direction.

Asynchronous Rings. We show that an algorithm exists if and only if the
following condition is satisfied: c1: (en0 ≥ d) ∧ (en1 ≥ d) ∧ (en0 + en1 ≥ 2�). In
this case the localized algorithms are the following:

r0: (r1) ; (s0) r1: (r0) ; (s1)

In the above algorithms, when two agent meet, they share energy so that
both have the same amount.

384 Q. Bramas et al.

Lemma 1. If condition c1 holds, then if at most one agent crashes, two asyn-
chronous agents executing localized algorithms prescribed above explore the entire
ring. Otherwise, if c1 does not hold, the problem is not solvable.

Synchronous Rings. When the agents are synchronous, we show that one of
the following conditions must be satisfied:

c1 : (en0 ≥ d) ∧ (en1 ≥ d) ∧ (en0 + en1 ≥ � + m)
c2 : (en0 ≥ m) ∧ (en1 ≥ m) ∧ (en0 + en1 ≥ max

(
� + d, � + m

2

)
)

For each condition, the corresponding actions are as follows:

Action a1

r0 : (r1) ; (s0)

r1 :

wait d time units r0 then
(s0)

timeout
(r0)

if * then s0 ≺ s1 (s0) ;
(s1)
else * (s1) ; (s0)

end

Action a2:

r0 : (r1) ; (s0)

r1 :

wait m time units r0 then
(s0)

timeout
(r0)
if * then s0 ≺ s1 (s0) ;
(s1)
else * (s1) ; (s0)

end

In the above algorithms, when two agent meet, if the other agent is not
crashed (yet), the agents share energy so that both have the same amount.
Otherwise, if an agent r is crashed, then the other agent takes all the remaining
energy from r.

Lemma 2. If condition c1, resp. c2, holds, then if at most one agent crashes,
two synchronous agents executing localized algorithms prescribed by action a1,
resp. a2, explore the entire ring. If both conditions c1 and c2 are not satisfied,
then the problem is not solvable.

References

1. Czyzowicz, J., Diks, K., Moussi, J., Rytter, W.: Communication problems for mobile
agents exchanging energy. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988,
pp. 275–288. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48314-6 18

2. Czyzowicz, J., et al.: Graph exploration by energy-sharing mobile agents. In: Jur-
dziński, T., Schmid, S. (eds.) SIROCCO 2021. LNCS, vol. 12810, pp. 185–203.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79527-6 11

3. Sun, X., Kitamura, N., Izumi, T., Masuzawa, T.: Circulating exploration of an
arbitrary graph by energy-sharing agents. In: Proceedings of the 2023 IEICE General
Conference, pp. 1–2 (2023)

https://doi.org/10.1007/978-3-319-48314-6_18
https://doi.org/10.1007/978-3-030-79527-6_11

Time-Optimal Geodesic Mutual Visibility
of Robots on Grids Within Minimum Area

Serafino Cicerone1 , Alessia Di Fonso1 , Gabriele Di Stefano1 ,
and Alfredo Navarra2(B)

1 Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica, Università
degli Studi dell’Aquila, L’Aquila, Italy

{serafino.cicerone,alessia.difonso,gabriele.distefano}@univaq.it
2 Dipartimento di Matematica e Informatica, Università degli Studi di Perugia,

Perugia, Italy
alfredo.navarra@unipg.it

Abstract. For a set of robots disposed on the Euclidean plane, Mutual
Visibility is often desirable. The requirement is to move robots without
collisions so as to achieve a placement where no three robots are collinear.
For robots moving on graphs, we consider the Geodesic Mutual Visi-
bility (GMV) problem. Robots move along the edges of the graph, with-
out collisions, so as to occupy some vertices that guarantee they become
pairwise geodesic mutually visible. This means that there is a shortest
path (i.e., a “geodesic”) between each pair of robots along which no other
robots reside. We study this problem in the context of square grids for
robots operating under the standard Look-Compute-Move model. We
add the further requirement to obtain a placement of the robots so as
that the final bounding rectangle enclosing all the robots is of minimum
area. This leads to the GMVarea version of the problem. We show that
GMVarea can be solved by a time-optimal distributed algorithm for syn-
chronous robots sharing chirality.

Keywords: Autonomous mobile robots · Oblivious robots · Mutual
visibility · Grids

1 Introduction

One of the basic primitives required within the distributed computing for
autonomous robots moving in the Euclidean plane is certainly the Mutual Vis-
ibility. Robots are required to move without collisions, i.e., no two robots must
reach the same position at the same time, in order to achieve a configuration
where no three robots are collinear.

Mutual Visibility has been largely investigated in the recent years in many
forms, subject to different assumptions. We are interested in autonomous, identi-
cal and homogeneous robots operating in cyclic operations dictated by the well-
known Look-Compute-Move model [11,12,15]. When activated, in one cycle a

The work has been supported in part by project SICURA – CUP C19C200005200004,
and by the Italian National Group for Scientific Computation (GNCS-INdAM).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 385–399, 2023.
https://doi.org/10.1007/978-3-031-44274-2_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_29&domain=pdf
http://orcid.org/0000-0001-8893-9335
http://orcid.org/0000-0002-9093-0679
http://orcid.org/0000-0003-4521-8356
http://orcid.org/0000-0001-8547-5934
https://doi.org/10.1007/978-3-031-44274-2_29

386 S. Cicerone et al.

robot takes a snapshot of the current global configuration (Look) in terms of rela-
tive robots’ positions, according to its own local coordinate system. Successively,
in the Compute phase, it decides whether to move toward a specific direction,
and in case it moves (Move).

Concerning Mutual Visibility, in [3], robots are assumed to be synchronous,
i.e., they are always all active and perform each computational cycle within a
same amount of time; in [6,13,17], semi-synchronous robots are considered, i.e.,
they are not always all active but all active robots perform their computational
cycles within a same amount of time, after which a new subset of robots can be
activated; in [1,4,5,13,16–18], asynchronous robots are considered, where each
robot can be activated at any time and the duration of its computational cycle
is finite but unknown. In most of the work, robots are assumed to have limited
visibility but endowed with visible and persistent lights. More recently, in [1,18]
robots are constrained to move along the edges of a graph embedded in the plane
instead of freely moving in the plane. Still, Mutual Visibility is defined according
to the collinearity of the robots in the plane.

The Complete Visitability problem concerns robots moving on the nodes of a
graph that must rearrange themselves so that each robot has a path to all others
without an intermediate node occupied by any other robot. In [2] this problem
is introduced and studied in infinite square and hexagonal grids embedded in
the plane. In [8], the Geodesic Mutual Visibility problem (GMV, for short) has
been introduced. Two robots on a graph are defined to be mutually visible if
there is a shortest path (i.e., a “geodesic”) between them, along which no other
robots reside. GMV requires that within finite time the robots reach, without
collisions, a configuration where they all are in geodesic mutual visibility, i.e.,
they are pairwise mutually visible. In [8], GMV has been investigated when the
underlying graph is a tree. The motivation for introducing GMV comes by the
fact that once the problem is solved, robots can communicate in an efficient and
“confidential” way, by exchanging messages through the vertices of the graph
that are not occupied by other robots. Furthermore, once GMV is solved, a
robot can reach any other one along a shortest path without collisions.

The geodesic mutual visibility has been investigated in [14] from a pure graph-
theoretical point of view, to understand how many robots, at most, can poten-
tially be placed within a graph G in order to guarantee GMV. The corresponding
number of robots has been denoted by μ(G). It is shown that computing μ(G) in
a general graph G is NP-complete, whereas there are exact formulas for special
graph classes like paths, cycles, trees, block graphs, cographs, and grids [9,14].

In this paper, we solve GMV for robots moving on square grids embedded
in the plane. Furthermore, we add the requirement to obtain a placement of the
robots such that the final minimum bounding rectangle enclosing all the robots
is of minimum area (this area-constrained problem is denoted as GMVarea). First,
we provide a time-optimal algorithm that is able to solve GMVarea in finite grid
graphs. Furthermore, we provide useful hints to extend the algorithm to infinite
square grids. The algorithm works for synchronous robots endowed with chirality
(i.e., a common handedness), but without any explicit means of communication
nor memory of past events, i.e., robots are oblivious and without lights.

Geodesic Mutual Visibility of Robots on Grids 387

2 The Robot Model and the Addressed Problem

An Oblot system is composed by a set R = {r1, r2, . . . , rn} of robots, that live
and operate in graphs. Robots are viewed as points (they are dimensionless).
They have the following basic properties: identical (indistinguishable from their
appearance), anonymous (they do not have distinct ids), autonomous (they
operate without a central control or external supervision), homogeneous (they
all execute the same algorithm), silent (they have no means of direct commu-
nication of information to other robots), and disoriented (each robot has its
own local coordinate system - LCS) but they share a common handedness, i.e.,
chirality is assumed. A robot is capable of observing the positions (expressed
in its LCS) of all the robots. We consider synchronous robots whose behavior
follows the sequential phases that form a so-called computational LCM cycle:

– Wait. The robot is idle. A robot cannot stay indefinitely idle.
– Look. The robot obtains a snapshot of the positions of all the other robots

expressed in its own LCS.
– Compute. The robot performs a local computation according to a deterministic

algorithm A (i.e., the robot executes A), which is the same for all robots, and
the output is a vertex among its neighbors or the one where it resides.

– Move. The robot performs a nil movement if the destination is its current
location otherwise it instantaneously moves on the computed neighbor.

Robots are oblivious, that is they have no memory of past events. This
implies that the Compute phase is based only on what determined in their cur-
rent cycle (in particular, from the snapshot acquired in the current Look phase).
A data structure containing all the information elaborated from the current
snapshot represents what later is called the view of a robot. Since each robot
refers to its own LCS, the view cannot exploit absolute orienteering but it is
based on relative positions of robots. Hence, if symmetries occur, then symmet-
ric robots have the same view. In turn, (i) the algorithm cannot distinguish
between symmetric robots (even when placed in different positions), and (ii)
symmetric robots perform the same movements. As chirality is assumed, and we
are considering square grids embedded in the plane as field of movement, the
only possible symmetries are rotations of 90 or 180◦.

The topology where robots are placed on is represented by a simple, undi-
rected, and connected graph G = (V,E). A function λ : V → N represents the
number of robots on each vertex of G, and we call C = (G,λ) a configuration
whenever

∑
v∈V λ(v) is bounded and greater than zero. A vertex v ∈ V such

that λ(v) > 0 is said occupied, unoccupied otherwise.

The GMV problem.

– Given a configuration C = (G,λ) where each robot lies on a different vertex
of the graph G, design a deterministic distributed algorithm working under
the LCM model that, starting from C, brings all robots on distinct vertices –
without generating collisions, in order to obtain the geodesic mutual visibility.

388 S. Cicerone et al.

Fig. 1. (first three) Examples of mbr(R); (last three) Examples for the notion of center
of three rotational configurations: in order, tc(C1) = 1, tc(C2) = 2, and tc(C3) = 3.

We study this problem in the context of square grids. We add the further
requirement to obtain a placement of the robots such that the final minimum
bounding rectangle enclosing all the robots is of minimum area. This area-
constrained GMV problem is denoted as GMVarea. We then provide a time-
optimal algorithm – simply denoted as A, that is able to solve GMVarea in finite
grid graphs. Then, we provide some hints on how to extend the approach to
infinite grids.

3 Notation and Preliminary Concepts

Let C = (G,λ) be a configuration, with G = (V,E). R = {r1, r2, . . . , rn} denotes
the set of robots located on C. As usual, d(u, v) denotes the distance in G
between two vertices u, v ∈ V . We extend the notion of distance to robots: given
ri, rj ∈ R, d(ri, rj) represents the distance between the vertices in which the
robots reside. D(r) denotes the sum of distances of r ∈ C from any other robot,
that is D(r) =

∑
ri∈C d(r, ri). A square tessellation of the Euclidean plane is

the covering of the plane using squares of side length 1, called tiles, with no
overlaps and in which the corners of squares are identically arranged. Let S be
the infinite lattice formed by the vertices of the square tessellation. The graph
called infinite grid graph, and denoted by G∞, is such that its vertices are the
points in S and its edges connect vertices that are distance 1 apart. In what
follows, G denotes a finite grid graph formed by M · N vertices (i.e., informally
generated by M “rows” and N “columns”). By mbr(R), we denote the minimum
bounding rectangle of R, that is the smallest rectangle (with sides parallel to
the edges of G) enclosing all robots (cf. Fig. 1). Note that mbr(R) is unique. By
c(R), we denote the center of mbr(R).

Symmetric configurations. As chirality is assumed, we already observed
that the only possible symmetries that can occur in our setting are rotations of
90 or 180◦. A rotation is defined by a center c and a minimum angle of rotation
α ∈ {90, 180, 360} working as follows: if the configuration is rotated around c by
an angle α, then a configuration coincident with itself is obtained. The order
of a configuration is given by 360/α. A configuration is rotational if its order
is 2 or 4. The symmetricity of a configuration C, denoted as ρ(C), is equal
to its order, unless its center is occupied by one robot, in which case ρ(C) = 1.
Clearly, any asymmetric configuration C implies ρ(C) = 1.

Geodesic Mutual Visibility of Robots on Grids 389

Fig. 2. Examples of special-paths with respect to different configurations.

The type of center of a rotational configuration C is denoted by tc(C) and
is equal to 1, 2, or 3 according whether the center of rotation is on a vertex, on a
median point of an edge, or on the center of a square of the tessellation forming
a grid, respectively (cf. Fig. 1).

The view of robots. In A, robots encode the perceived configuration into a
binary string called lexicographically smallest string and denoted as LSS (R)
(cf. [7,12]). To define how robots compute the string, we first analyze the case in
which mbr(R) is a square: the grid enclosed by mbr(R) is analyzed row by row
or column by column starting from a corner and proceeding clockwise, and 1 or
0 corresponds to the presence or the absence, respectively, of a robot for each
encountered vertex. This produces a string assigned to the starting corner, and
four strings in total are generated. If mbr(R) is a rectangle, then the approach
is restricted to the two strings generated along the smallest sides. The lexico-
graphically smallest string is the LSS (R). Note that, if two strings obtained from
opposite corners along opposite directions are equal, then the configuration is
rotational, otherwise it is asymmetric. The robot(s) with minimum view is the
one with minimum position in LSS (R). The first three configurations shown in
Fig. 1 can be also used for providing examples about the view. In particular: in
the first case, we have ρ(C) = 1 and LSS (R) = 0110 1001 1000 0100 0011; in the
second case, we have ρ(C) = 2 and LSS (R) = 00110 01001 10001 10010 01100;
in the last case, we have ρ(C) = 4 and LSS (R) = 0110 1001 1001 0110.

Regions. Our algorithm assumes that robots are assigned to regions of mbr(R)
as follows (cf. Fig. 2). If mbr(R) is a square, the four regions are those obtained by
drawing the two diagonals of mbr(R) that meet at c(R). If mbr(R) is a rectangle,
then from each of the vertices positioned on the shorter side of mbr(R) starts a
line at 45◦ toward the interior of mbr(R) - these two pairs of lines meet at two
points (say c1(R) and c2(R)) which are then joined by a segment.

In each of the four regions, it is possible to define a special-path that starts
from a corner v and goes along most of the vertices in the region. To simplify the
description of such a path, assume that mbr(R) coincides with a sub-grid with
M rows and N columns, and the vertices are denoted as (i, j), with 1 ≤ i ≤ M
and 1 ≤ j ≤ N . The special-path that starts at (1, 1) is made of a sequence of
“traits” defined as follows: the first trait is (1, 1), (1, 2), . . . , (1, N −1), the second
is (2, N − 1), (2, N − 2), . . . , (2, 3), the third is (3, 3), (3, 4), . . . , (3, N − 3), and

390 S. Cicerone et al.

Fig. 3. Patterns F for asymmetric input configurations with n = 8, 10, 12 robots. For
n = 7, 9, 11, the position represented in light gray is not considered in F . (Color figure
online)

so on. This process ends after �min{M,N}/2� traits are formed in each region,
and the special-path is obtained by composing, in order, the traits defined in
each region (see the red lines in Fig. 2).

4 A Resolving Algorithm for GMVarea

In this section, we present a resolution algorithm for the GMVarea problem, when
the problem concerns n ≥ 7 fully synchronous robots endowed with chirality and
moving on a finite grid graph G with M,N ≥ �n/2	 rows and columns. Note
that, the constraint depends on the fact that on each row (or column) it is
possible to place at most two robots, otherwise the outermost robots on the row
(or column) are not in mutual visibility.

Our approach is to first design a specific algorithm Aasym that solves GMVarea

only for asymmetric configurations. Later, we will describe (1) how Aasym can
be extended to a general algorithm A that also handles symmetric configurations,
and (2) how, in turn, A can be modified into an algorithm A∞ that solves the
same problem for each input configuration defined on infinite grids.

The pattern formation approach. Aasym follows the “pattern formation”
approach. In the general pattern formation problem, robots belonging to an
initial configuration C are required to arrange themselves in order to form a
configuration F which is provided as input. In [10] it is shown that F can be
formed if and only if ρ(C) divides ρ(F). Hence, here we show some patterns that
can be provided as input to Aasym so that:

1. ρ(C) divides ρ(F);
2. if ρ(C) ∈ {2, 4} then tc(C) = tc(F);
3. the positions specified by F solve GMVarea.

The first requirement trivially holds since we are assuming that C is asym-
metric and hence ρ(C) = 1. The second is required since the center of symmetric
configuration is an invariant for synchronous robots. Concerning the last require-
ment, in Fig. 3 we show some examples for F when 7 ≤ n ≤ 12. In [14], it is
shown how F is defined for any n and it is also proved that the elements in these

Geodesic Mutual Visibility of Robots on Grids 391

patterns always solve GMV for the grid G. Finally, since in F there are two
robots per row and per column, and since in mbr(F) all the rows and columns
are occupied (for n even), it can be easily observed that F solves GMVarea.

4.1 High Level Description of the Algorithm

The problem GMVarea is divided into a set of sub-problems that are simple
enough to be thought as “tasks” to be performed by (a subset of) robots.

As a first sub-problem, the algorithm Aasym selects a single robot, called
guard rg, to occupy a corner of the grid G. As robots are disoriented (only
sharing chirality), the positioning of the guard allows the creation of a common
reference system used by robots in the successive stages of the algorithm. Given
chirality, the position of rg allows robots to identify and enumerate rows and
columns. rg is not moved until the final stage of the algorithm and guarantees
that the configuration C is kept asymmetric during the movements of the other
robots. Given the common reference system, all robots agree on the embedding
of the pattern F , which is realized by placing the corner of F with the maximum
view in correspondence with the corner of G in which rg resides. This sub-
problem is solved by tasks T1a, T1b, or T1c. In task T2, the algorithm moves the
robots so as to obtain the suitable number of robots for each row according to
pattern F , that is, two robots per row. The only exception comes when n is odd,
in which case the last row will require just one robot. During task T3, robots
move toward their final target along rows, except for rg. When T3 ends, n − 1
robots are in place according to the final pattern F . During task T4, rg moves
from the corner of G toward its final target, placed on a neighbor vertex, hence
leading to the final configuration in one step.

4.2 Detailed Description of the Tasks

In this section, we detail each of the tasks.

Task T1. Here the goal is to select a single robot rg to occupy a corner of the
grid G. This task is divided into three sub-tasks based on the number of robots
occupying the perimeter – and in particular the corners, of G. Let RS be the
number of robots on the sides of G, and let RC be the number of robots on the
corners of G.

Task T1a starts when there are no robots on the perimeter of G and selects
the robot rg such that D(r) is maximum, with r of minimum view in case of
ties. The planned move is m1a: rg moves toward the closest side of G. At the
end of the task, rg is on the perimeter of G.

Task T1b activates when the following precondition holds:

pre1b ≡ RS ≥ 1 ∧ RC = 0.

In this case, there is more than one robot on the perimeter of G but none on
corners. The task selects the robot rg located on a side of G closest to a corner

392 S. Cicerone et al.

Algorithm 1. MoveAlong special-path
Input: a configuration C
1: if p = 0 then
2: Let S be the occupied special-path whose first robot has the minimum view.
3: move: all the robots on a special-subpath and not on S move toward the neighbor

vertex along the special-path.
4: if p = 1 then
5: Let I be the fully-occupied special-path
6: move: all the robots on a special-subpath and not on I move toward the neighbor

vertex along the special-path
7: if p = 2 then
8: move: the robot on a corner of G, with an empty neighbor, moves toward it.

of G, with the minimum view in case of ties, to move toward a corner of G. Move
m1b is defined as follows: rg moves toward the closest corner of G – arbitrarily
chosen if more than one. At the end of task T1b, a single robot rg occupies a
corner of the grid G. Task T1c activates when the following precondition holds:

pre1c ≡ RC > 1.

In this case, all the robots on the corners but one move away from the corners.
The moves are specified by Algorithm 1. This algorithm uses some additional
definitions. In particular, a special-path is said occupied if there is a robot on
its corner. A special-path is said to be fully-occupied if robots are placed on
all its vertices. Given an occupied special-path P , a special-subpath is a fully
occupied sub-path of P starting from the corner of P . Finally, p denotes the
number of fully-occupied special-paths.

At line 1, the algorithm checks if there are no fully-occupied special-paths.
In this case, there are at least two occupied special-paths. The robot, occupying
the corner, with minimum view, is elected as guard rg. The move is designed
to empty all the other corners of G except for the one occupied by rg. In each
occupied special-paths, but the one to which rg belongs to, the robots on the
corners, and those in front of them along the special-paths until the first empty
vertex, move forward along the special-path. At line 4, there is exactly one fully-
occupied special path. Therefore, robots on the fully-occupied special-path are
kept still. Concerning the other occupied special-paths, the robots on corners,
and those in front of them until the first empty vertex, move forward along the
special-path. At line 7 there are more than one fully-occupied special-path. In
fact, this can occur only for a 4× 4 grid G with two fully-occupied special-paths
located on two successive corners of G. Therefore, there is a single robot r, on a
corner of G, with an empty neighbor. Then, r moves toward that neighbor.

Note that, Algorithm 1 is designed so that, in a robot cycle, a configuration
is obtained where exactly one corner of G is occupied.

Task T2. In task T2, the algorithm moves the robots to place the suitable number
of robots for each row according to the pattern F , starting from the first row,

Geodesic Mutual Visibility of Robots on Grids 393

while possible spare rows remain empty. At the end of the task, for each row
corresponding to those of the pattern F , there are two robots, except when the
number of robots n is odd, in which case in the last row is placed a single robot.
The position of rg allows robots to identify the embedding of F and hence the
corresponding rows and columns. We assume, without loss of generality, that
rg is positioned on the upper-right corner of G. rg identifies the first row. In
this task, we define c(r) and l(r) the column and the row, respectively, where
robot r resides. Columns are numbered from left to right, therefore l(rg) = 1
and c(rg) = N . Let tl be the number of targets on row l in F , let (t1, t2, . . . , tM)
be the vector of the number of targets, and let (r1, r2, . . . , rM) be the number of
robots on each of the M rows of G.

For each row l, the algorithm computes the number of exceeding robots above
and below l wrt the number of targets, to determine the number of robots that
need to leave row l. Given a row l, let Rl be the number of robots on rows from 1
to l−1, and let R′

l be the number of robots on rows from l+1 to M . Accordingly,
let Tl and T ′

l be the number of targets above and below the line l, respectively.
We define the subtraction operation ´ between two natural numbers a and b as
a´ b = 0 if a < b, a´ b = a− b, otherwise. Concerning to the number of targets,
given a row l, let Bl be the number of exceeding robots above l, l included,
and let Al be the number of exceeding robots below l, l included. Formally,
Bl = (Rl + rl)´ (Tl + tl) and Al = (R′

l + rl)´ (T ′
l + tl).

Let RDl = rl − (rl ´Bl) be the number of robots that must move downward
and RUl = rl − (rl ´Al) be the number of robots that must move upward from
row l. Task T2 activates when precondition pre2 becomes true:

pre2 ≡ RC = 1 ∧ ∃ l ∈ 1, . . . ,M : Bl �= 0 ∨ Al �= 0.

The precondition identifies the configuration in which the guard rg is placed on
a corner of G and there is at least a row in which there is an excess of robots. We
define outermost a robot that resides on the first or the last column of G. Let Ul

(Dl, resp.) be a set of robots on row l chosen to move upward (downward, resp.)
and let U (D, resp.) be the list of sets Ul (Dl, resp.) with l ∈ {1, . . . ,M}. The
robots that move upward or downward are chosen as described in Algorithm 2.

For each row l, at lines 4–7, the algorithm computes the number of exceeding
robots Bl , Al , and the number RDl and RUl of robots that must leave the row.
Then, it checks whether the number M of rows of G is greater than the number
k of rows of F . The algorithm selects RDl robots to move downward, starting
from the first column, and Al robots to move upward, starting from the N -th
column. Line 11 deals with the case in which M = k, the algorithm selects RDl

robots to move downward, starting from the second column and RUl robots to
move upward, starting from the N −1 column. This avoids the selection of robots
that may move in one of the corners of G. At line 14, the algorithm checks if a
robot r selected to move upward on row 2, occupies vertex (2, 1). In the positive
case, r is removed from U2. This avoids r to move to a corner of G. At line 15,
the algorithm returns the sets U of robots chosen to move upward for each row,
and the sets D of robots chosen to move downward. Given a robot r on a row l,
let AlignedUp (AlignedDown, resp.) be the boolean variable that is true when

394 S. Cicerone et al.

Algorithm 2. SelectRobots
Input: C′ = (C \ rg)
1: Let U = {U1, U2, . . . , UM} be a list of empty sets
2: Let D = {D1, D2, . . . , DM} be a list of empty sets
3: for all l ∈ (1 . . .m) do
4: Bl ← (Rl + rl)´ (Tl + tl)
5: Al ← (R′

l + rl)´ (T ′
l + tl)

6: RDl ← rl − (rl ´ Bl)
7: RUl ← rl − (rl ´ Al)
8: if M >
n/2� then
9: Let Ul be the set of RUl robots of row l selected from right

10: Let Dl be the set of RDl robots of row l selected from left
11: else
12: Let Ul be the set of RUl robots of row l from right and not outermost
13: Let Dl be the set of RDl robots of row l from left and not outermost
14: if U2 = {r} and l(r) = 2 and c(r) = 1 then U2 = ∅
15: return U , D

there exists another robot r′ such that Ul+1 = {r′} (Dl−1 = {r′}, resp.) and
c(r) = c(r′) holds. Let t(r) be the target of a robot r defined as follows:

t(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(l(r) + 1, c(r)) if r ∈ Dl

(l(r) − 1, c(r)) if r ∈ Ul

(l(r), c(r) − 1) if (AlignedUp or AlignedDown) and c(r) ≥ N/2

(l(r), c(r) + 1) if (AlignedUp or AlignedDown) and c(r) < N/2

(2, 2) if RU2 = 1 and ∃! r on l2 | c(r) = 1 and l(r) = 2

(l(r), c(r)) otherwise

(1)

The first two cases reported in the definition of Eq. (1) identify the target of
robot r when is selected to move downward (upward, resp.). The target of r is
one row below (above, resp.) its current position and on the same column. The
third and the fourth cases refer to the occurrence in which there is a robot r1,
positioned in the same column of r, that is selected to move upward or downward.
Then, the target of r is on a neighboring vertex, on the same row, closer to the
center of G. The fifth case reports the target of a robot r when positioned on
the second row and first column, and one robot is required to move on the first
row. To avoid occupying a corner of G, the target of r is the neighboring vertex
to r on its same row. In all other cases, the target of a robot r is its current
position. Robots move according to Algorithm 3.

Each robot runs Algorithm 3 independently. At line 1, a robot calls procedure
SelectRobots on C ′ = {C \ rg} and acquires the sets of robots selected to move
upward and downward, respectively. At lines 2–3, a robot computes the targets
of all the robots. At line 4, the robot checks if it is not selected to move upward
and if any couple of robots have the same target. This test avoids collisions.
Possible conflicting moves are shown in Fig. 4.(b). Two robots can have the same
target when they are in the same column at distance two and the robot with

Geodesic Mutual Visibility of Robots on Grids 395

Algorithm 3. MoveRobot
Input: a configuration C, guard rg
1: U , D = SelectRobots(C \ rg)
2: for all robots r do
3: Compute t(r)
4: if r /∈ Ul(r) or ∀ r1, r2, t(r1) �= t(r2) then
5: move to t(r)

Fig. 4. The three possibile movement combinations as described in task T2. Grey circles
represent robots, arrows the direction of movements, small dots are robot targets.
(Color figure online)

the smallest row index is selected to move downward, while the other upward.
An example is shown in Fig. 4.(b) for robots r3 and r4. The only other possibile
collision is for the robot r1 having t(r1) = (2, 2) (case five in Eq. (1)). There
might be a robot r2 with l(r2) = 3 and c(r2) = 2 selected to move upward. This
configuration is shown in Fig. 4.(b). In all these cases, to avoid any collision, the
upward movement is performed only when there are no robots having the same
target, otherwise the robot stays still. Each conflict is resolved in a robot cycle
since downward and side movements are always allowed.

Figure 4 shows the three types of possible movements performed by robots.
Robots move concurrently without collisions. Figure 4.(a) shows robots moving
downward or upward and having different targets. Figure 4.(b) shows two robots
having the same target. To resolve the conflict, the upward movement is stopped
for a cycle. Figure 4.(c) shows the cases in which a robot is selected to move
upward (r8) or downward (r5) on a target vertex that is already occupied by
another robot (r7, r6 respectively). Robots r5 and r8 perform their move while
r6 and r7 move on a neighboring vertex on the same row and closer to the center
of G. Since movements are concurrent (robots are synchronous), collisions are
avoided.

Task T3. This task is designed to bring n − 1 robots to their final target except
for rg. This task activates when task T2 is over, therefore pre3 holds:

pre3 ≡ RC = 1 ∧ ∀ row l : (Bl = 0 ∧ Al = 0).

Given the embedding of F on G, in each row l, there are tl targets and rl
robots, with tl=rl, therefore robots identify their final target and move toward
it without collisions. Given the particular shape of F , there are at most two
targets per row, therefore we can state the move m3 as follows: for each row, the

396 S. Cicerone et al.

rightmost robot moves toward the rightmost target and the leftmost robot moves
toward the leftmost target except for rg.
Task T4. During task T4, the guard rg moves from the corner of G and goes
toward its final target. This task activates when pre4 holds:

pre4 ≡ n − 1 robots but rg match their final target.

The corresponding move is called m4 and is defined as follows: rg moves toward
its final target. The embedding of F guarantees that the final target of rg is on
its neighboring vertex on row 1. Therefore, in one step, rg reaches its target.
After task T4, the pattern is completed.
Task T5. This is the task in which each robot recognizes that the pattern is
formed and no more movements are required. Each robot performs the null
movement keeping the current position. The precondition is

pre5 ≡ F is formed.

4.3 Formalization of the Algorithm

The algorithm has been designed according to the methodology proposed in [11].
Table 1 summarizes the decomposition into tasks for Aasym. To detect which
task must be accomplished in any configuration observed during an execution,
a predicate Pi is assigned to task Ti, for each i. Pi is defined as follows:

Pi = prei ∧ ¬(prei+1 ∨ prei+2 ∨ . . . ∨ pre5).

The predicate is evaluated in the Compute phase, based on the view acquired
during the Look phase. As soon as the robots recognize that a task Ti must be
accomplished, move mi – associated with that task, is performed by a subset of
designed entities. In the Compute phase, each robot evaluates – for the perceived
configuration and the provided input – the preconditions starting from pre5 and
proceeding in the reverse order until a true precondition is found. In case all
predicates P5, P4, . . . , P1b are evaluated false, then task T1a, whose precondition
is simply true, is performed. It follows that the provided algorithm Aasym can
be used by each entity in the Compute phase as follows:

– if an entity executing the algorithm detects that predicate Pi holds, then
it simply performs move mi associated with Ti.

4.4 Main Result

In the following, we state our main result in terms of time required by the
algorithm to solve the problem GMVarea. Time is calculated using the number
of required LCM cycles given that robots are synchronous. Let L be the side of
the smallest square that can contain both the initial configuration and target
configuration. Note that, any algorithm requires at least O(L) LCM cycles to
solve GMVarea. Our algorithm solves GMVarea in O(L) LCM cycles which is time
optimal. Our result is stated in the following theorem:

Geodesic Mutual Visibility of Robots on Grids 397

Table 1. Phases of the algorithm: the first column reports a summary of the task’s goal,
the second column reports the task’s name, the third column reports the precondition
to enter each task, the last column reports the transitions among tasks.

sub-problems task precondition transitions

Placement of the guard robot T1a true T1b

T1b RS ≥ 1 ∧ RC = 0 T2, T3, T4

T1c RC > 1 T2, T3, T4

Bringing tl robots or each row T2 RC = 1 ∧ ∃ l ∈ {1 . . .m} : Bl �= 0 ∨ Al �= 0 T3, T4

Bring n − 1 robots to final target T3 RC = 1 ∧ ∀ row l (Bl = 0 ∧ Al = 0) T4

Bring the guard robot to final target T4 n − 1 robots on final target T5

Termination T5 F formed T5

Theorem 1. Aasym is a time-optimal algorithm that solves GMVarea in each
asymmetric configuration C defined on a finite grid.

The correctness of Aasym is obtained by proving all the following properties:
(1) for each task Ti, the transitions from Ti are exactly those declared in Table 1,
(2) each transition occurs within finite time, (3) possible cycles among transitions
are traversed a finite number of times, (4) the algorithm is collision-free. Actually,
as the transitions reported in Table 1 do not constitute cycles, requirement (3)
is automatically satisfied. Concerning the time required by Aasym, tasks T1a, T1b

require O(L) LCM cycle; T1c requires one LCM cycle; T2 and T3 require at most
O(L) LCM cycles, and T4 one LCM cycle.

5 Symmetric Configurations and Infinite Grids

In this section, we discuss (1) how Aasym can be extended to a general algorithm
A able to handle also symmetric configurations, and (2) how, in turn, A can
be modified into an algorithm A∞ that solves the same problem defined on the
infinite grid G∞.

We first explain how to solve symmetric initial configurations with ρ(C) = 1,
then those with ρ(C) ∈ {2, 4}. If C is a symmetric configuration with ρ(C) = 1,
then there exists a robot rc located at the center c of C, and for C ′ = {C \ rc},
ρ(C ′) ∈ {2, 4}. To make the configuration asymmetric, A moves rc out of c.
To this end, when rc has an empty neighbor – arbitrarily chosen if more than
one, then it moves toward it. Otherwise, all robots having either the same row
or the same column as rc move away from c to an empty vertex if it exists
and a neighbor of rc will eventually be emptied. If all the vertices on the same
row and column of rc are occupied, then all other vertices except one (if any)
must be empty. Therefore the neighbor robots of rc move toward a vertex placed
on the right wrt c, if empty. After the synchronous move of all these robots,
rc has empty neighbors and it moves toward one of them, hence making the
configuration asymmetric. Then, Aasym runs on C and GMVarea is solved.

Consider now C with ρ(C) ∈ {2, 4}. Since robots in C are synchronous,
irrespective of the algorithm operating on C, the center c of C is invariant,

398 S. Cicerone et al.

therefore robots agree on the embedding of F by identifying its center with c. F
is suitably selected so that ρ(F) = ρ(C), tc(F) = tc(C), and the placement of
robots in F solves GMVarea. According to the embedding of F , robots also agree
on how to subdivide G into ρ(F) “sectors”, i.e., regions of G which are equivalent
wrt rotations. Since each sector contains a sub-configuration that is asymmetric
wrt the whole configuration, then A instantiates Aasym in each sector: a guard
robot is chosen in each sector and the definitions of functions Al, Bl, RDl, and
RUl guarantee that the algorithm works in a sector of G since the number of
exceeding robots is computed wrt the number of targets of F . Algorithm Aasym

requires slight adaptations to deal with sectors, e.g., concerning the movement
of the guards toward their final target.

Concerning infinite grids, in order to obtain algorithm A∞, it is sufficient to
make small changes to tasks T1a, T1b, and T4. In Aasym, task T1a selects a single
robot rg to occupy a corner of G. Since G∞ does not have corners, A∞ selects
rg as in T1a and then moves it to a distance D ≥ 3 · max{w(C ′), w(F)}, where
C ′ = {C \ rg}, and w(C ′), w(F) are the longest sides of mbr(C ′) and mbr(F),
respectively. In task T1b, rg must be chosen as the robot with distance D from
C ′, and it moves toward a corner of C. In T2, the first row is identified as the first
row of C ′ occupied by a robot, approaching C ′ from rg. The embedding on F is
achieved by matching the corner of F with the maximum view in correspondence
with the corner of C ′ on the first row and having the same column of rg. Tasks
T2 and T3 are unchanged, while in task T4, rg takes D LCM cycles to move toward
its final target in F .

6 Conclusion

We have studied the Geodesic Mutual Visibility problem in the context of robots
moving along square grids according to the LCM model. The considered robots are
synchronous, oblivious and sharing chirality. We have shown that this problem
can be solved by a time-optimal distributed algorithm even when a further opti-
mality constraint is considered: when robots reach the geodesic mutual visibility,
the bounding rectangle enclosing all the robots must have minimum area.

This work opens a wide research area concerning GMV on other graph topolo-
gies or even on general graphs. However, difficulties may arise in moving robots in
presence of symmetries or without chirality. Then, the study of GMV in asym-
metric graphs or graphs with a limited number of symmetries deserves main
attention. Other directions concern the investigation on semi-synchronous or
asynchronous environments.

References

1. Adhikary, R., Bose, K., Kundu, M.K., Sau, B.: Mutual visibility by asynchronous
robots on infinite grid. In: Gilbert, S., Hughes, D., Krishnamachari, B. (eds.)
ALGOSENSORS 2018. LNCS, vol. 11410, pp. 83–101. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-14094-6_6

https://doi.org/10.1007/978-3-030-14094-6_6

Geodesic Mutual Visibility of Robots on Grids 399

2. Aljohani, A., Poudel, P., Sharma, G.: Complete visitability for autonomous robots
on graphs. In: International Parallel and Distributed Processing Symposium
(IPDPS), pp. 733–742. IEEE (2018)

3. Bhagat, S.: Optimum algorithm for the mutual visibility problem. In: Rahman,
M.S., Sadakane, K., Sung, W.-K. (eds.) WALCOM 2020. LNCS, vol. 12049, pp.
31–42. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39881-1_4

4. Bhagat, S., Gan Chaudhuri, S., Mukhopadhyaya, K.: Mutual visibility for asyn-
chronous robots. In: Censor-Hillel, K., Flammini, M. (eds.) SIROCCO 2019. LNCS,
vol. 11639, pp. 336–339. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-24922-9_24

5. Bhagat, S., Mukhopadhyaya, K.: Optimum algorithm for mutual visibility among
asynchronous robots with lights. In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS,
vol. 10616, pp. 341–355. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-69084-1_24

6. Bhagat, S., Mukhopadhyaya, K.: Mutual visibility by robots with persistent mem-
ory. In: Chen, Y., Deng, X., Lu, M. (eds.) FAW 2019. LNCS, vol. 11458, pp.
144–155. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18126-0_13

7. Cicerone, S., Di Fonso, A., Di Stefano, G., Navarra, A.: Arbitrary pattern formation
on infinite regular tessellation graphs. Theor. Comput. Sci. 942, 1–20 (2023)

8. Cicerone, S., Di Fonso, A., Di Stefano, G., Navarra, A.: The geodesic mutual vis-
ibility problem for oblivious robots: the case of trees. In: Proceedings of the 24th
International Conference on Distributed Computing and Networking (ICDCN), pp.
150–159. ACM (2023)

9. Cicerone, S., Di Stefano, G., Klavzar, S.: On the mutual visibility in cartesian
products and triangle-free graphs. Appl. Math. Comput. 438, 127619 (2023)

10. Cicerone, S., Di Stefano, G., Navarra, A.: Solving the pattern formation by mobile
robots with chirality. IEEE Access 9, 88177–88204 (2021)

11. Cicerone, S., Di Stefano, G., Navarra, A.: A structured methodology for designing
distributed algorithms for mobile entities. Inf. Sci. 574, 111–132 (2021)

12. D’Angelo, G., Di Stefano, G., Klasing, R., Navarra, A.: Gathering of robots on
anonymous grids and trees without multiplicity detection. Theor. Comput. Sci.
610, 158–168 (2016)

13. Di Luna, G.A., Flocchini, P., Chaudhuri, S.G., Poloni, F., Santoro, N., Viglietta,
G.: Mutual visibility by luminous robots without collisions. Inf. Comput. 254,
392–418 (2017)

14. Di Stefano, G.: Mutual visibility in graphs. Appl. Math. Comput. 419, 126850
(2022)

15. Flocchini, P., Prencipe, G., Santoro, N. (eds.): Distributed Computing by Mobile
Entities, Current Research in Moving and Computing, LNCS, vol. 11340. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-11072-7

16. Poudel, P., Aljohani, A., Sharma, G.: Fault-tolerant complete visibility for asyn-
chronous robots with lights under one-axis agreement. Theor. Comput. Sci. 850,
116–134 (2021)

17. Sharma, G., Busch, C., Mukhopadhyay, S.: Mutual visibility with an optimal num-
ber of colors. In: Bose, P., Gąsieniec, L.A., Römer, K., Wattenhofer, R. (eds.)
ALGOSENSORS 2015. LNCS, vol. 9536, pp. 196–210. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-28472-9_15

18. Sharma, G., Vaidyanathan, R., Trahan, J.L.: Optimal randomized complete visi-
bility on a grid for asynchronous robots with lights. Int. J. Netw. Comput. 11(1),
50–77 (2021)

https://doi.org/10.1007/978-3-030-39881-1_4
https://doi.org/10.1007/978-3-030-24922-9_24
https://doi.org/10.1007/978-3-030-24922-9_24
https://doi.org/10.1007/978-3-319-69084-1_24
https://doi.org/10.1007/978-3-319-69084-1_24
https://doi.org/10.1007/978-3-030-18126-0_13
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-319-28472-9_15

Privacy in Population Protocols with
Probabilistic Scheduling

Talley Amir(B) and James Aspnes

Yale University, New Haven, CT 06511, USA
{talley.amir,james.aspnes}@yale.edu

Abstract. The population protocol model [3] offers a theoretical frame-
work for designing and analyzing distributed algorithms among limited-
resource mobile agents. While the original population protocol model
considers the concept of anonymity, the issue of privacy is not investi-
gated thoroughly. However, there is a need for time- and space-efficient
privacy-preserving techniques in the population protocol model if these
algorithms are to be implemented in settings handling sensitive data,
such as sensor networks, IoT devices, and drones. In this work, we intro-
duce several formal definitions of privacy, ranging from assuring only
plausible deniability of the population input vector to having a full
information-theoretic guarantee that knowledge beyond an agent’s input
and output bear no influence on the probability of a particular input
vector. We then apply these definitions to both existing and novel proto-
cols. We show that the Remainder-computing protocol from [10] (which is
proven to satisfy output independent privacy under adversarial schedul-
ing) is not information-theoretically private under probabilistic schedul-
ing. In contrast, we provide a new algorithm and demonstrate that it cor-
rectly and information-theoretically privately computes Remainder under
probabilistic scheduling.

Keywords: Mobile ad-hoc networks · Population protocols ·
Information-theoretic privacy

1 Introduction

Various issues arise when applying the theoretical population protocol model to
real-world systems, one of the most critical of which is that of preserving privacy.
The motivation for furthering the study of privacy within population protocols
is to better adapt these algorithms to the real-world systems that they aim to
model, such as sensor networks, systems of IoT devices, and swarms of drones,
all of which handle sensitive data. Previous research in private population pro-
tocols only considers adversarial scheduling, which makes generous assumptions
about our obliviousness to the scheduler’s interaction choices and offers only very
weak criteria for satisfying the definition of “privacy”. In this work, we further
refine these definitions considering a realistic range of threat models and security
concerns under arbitrary schedules.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 400–413, 2023.
https://doi.org/10.1007/978-3-031-44274-2_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_30&domain=pdf
http://orcid.org/0009-0005-8404-7627
http://orcid.org/0000-0001-6188-1663
https://doi.org/10.1007/978-3-031-44274-2_30

Privacy in Population Protocols with Probabilistic Scheduling 401

1.1 Related Work

Research in private computation within ad hoc networks is distributed (pun
intended) over multiple academic fields. We limit our review of the literature to
works that most closely relate to the theoretical model we study in this paper.

Population Protocols. Privacy was introduced to the population protocol
model in [10], where the authors define a notion of privacy called output inde-
pendent privacy and provide protocols satisfying this definition for computing
the semilinear predicates. Output independent privacy basically states that for
any input vector and execution yielding a particular sequence of observations at
an agent, there exists a different input vector and execution yielding the same
sequence of observations at that agent. The practicality of this definition relies
on adversarial scheduling, which allows the schedule of interactions to delay pairs
of agents from interacting for an unbounded number of steps. Due to adversarial
scheduling, the existence of an execution is sufficient to achieve plausible deni-
ability: Agents have no metric for estimating time elapsed nor approximating
how many interactions in which another agent has participated. Therefore, the
observed state of an agent cannot be used to infer the agent’s input as it may
have deviated from its original state over the course of many interactions. How-
ever, if instead the scheduler is probabilistic, then there arises the issue of data
leakage from inferring the population’s interaction patterns.

Sensor Networks. Population protocols are designed to model sensor net-
works, but there is a large body of literature on sensor networks that is not con-
nected to the population protocol model. The capacity of agents in the domain
of sensor networks is much larger than is assumed in population protocols; in
particular, much of the privacy-preserving algorithms in this area involve encryp-
tion, which requires linear state space in the size of the population.

In recent years, viral exposure notification via Bluetooth has become a popu-
lar area of study [7,9], and one that demands verifiable privacy guarantees due to
widespread laws governing protected health data. However, the solutions in [7,9]
require centralization and high storage overhead. The closely related problem
of anonymous source detection is studied in [5,6]; however, these works require
superconstant state space and only address this one task. Other research in wire-
less sensor networks investigates private data aggregation, which most closely
resembles the goal of our research [8,12,15]. As before, these works require high
computation and local memory as they implement their solutions using homo-
morphic encryption. Where alternative methods are used to avoid relying on
encryption, a specialized network topology is needed for success [14] or only
specific functions are computable [15].

While far from comprehensive, this sample of related works suggests that
much of the research on privacy in wireless sensor networks is either limited
by network topology or relies on computationally intensive encryption. For this
reason, our goal is to develop privacy-preserving solutions for data aggregation
in population protocols, bearing in mind the resource restrictions of the model.

402 T. Amir and J. Aspnes

1.2 Contribution

In this work, we study the privacy of population protocols in the random schedul-
ing model. We demonstrate how existing privacy definitions fail under certain
modelling assumptions, give new precise definitions of privacy in these settings,
and offer a novel protocol in the uniform random scheduling population proto-
col model satisfying the new privacy definitions. In this work, we restrict our
focus to computing the Remainder predicate. The proofs of all claims in this
publication can be found in the extended version of our paper [1].

2 Preliminaries

A population protocol P is a tuple (Q, δ,Σ, I, O,O) consisting of state set
Q, transition function δ, input set Σ, input function I, output set O,
and output function O [3]. Protocols are run by a population, which consists
of a set of n agents {Aj}n

j=1 each with some input ij ∈ Σ. At the start of
the protocol, each agent converts its input to a state in Q via I : Σ → Q.
In the early population protocol literature, I is only ever considered to be a
deterministic function; however, in this work, we extend the model to allow
for I to be randomized. The transition function δ : Q2 → Q2 designates how
the agents update their states upon interacting with each other in pairs. As
a shorthand for saying δ(q1, q2) = (q′

1, q
′
2), we write q1, q2 → q′

1, q
′
2 where δ is

implied. The protocol aims to compute some function (whose output is in the
output set O) on the initial inputs of the agents in the population. An agent’s
output value is a function of the agent’s state, determined by O : Q → O.

The collection of agents’ inputs is denoted as a vector I ∈ Σn, where each
index of I reflects the input of a particular agent in the population. Adopting
terminology from [10], we refer to I as an input vector. When the size of
the state space is O(1), the protocol cannot distinguish between two agents in
the same state nor with the same input; therefore, we may want to refer to
the multiset of input values in the input vector I, denoted multiset(I). After
converting these inputs to elements of Q, the global state of the population is
called a configuration and is represented as a vector C ∈ Qn, where the i-th
entry of the vector denotes the state of the i-th agent. Abusing notation, we say
that I(I) = 〈I(ij)〉n

j=1 is the configuration resulting from applying the input
function I to each of the agent inputs in I = 〈ij〉n

j=1.
Agents update their states via interactions with one another which are per-

formed at discrete intervals, called steps. At each step, an ordered pair of
agents (Ai, Aj) is selected from the population by the scheduler. To distinguish
between the two agents in the ordered pair, we call the first agent the Initia-
tor and the second the Responder. When an interaction takes place, the two
selected agents update their states according to the transition function δ which
may change the counts of states in the population, thereby updating the configu-
ration. Let C be the configuration space, or the set of all possible configurations
for a population of n agents with state space Q. We say that a configuration
D ∈ C is reachable from C ∈ C via δ if there exists some series of ordered agent

Privacy in Population Protocols with Probabilistic Scheduling 403

pairs such that starting from C, if the configuration is updated according to δ on
those ordered pairs, then the resulting configuration is D [3]. If D is reachable
from C, then we write C → D. The infinite sequence of configurations resulting
from the scheduler’s infinite choice of interaction pairs is called an execution.
An execution of a protocol is said to converge at a step τ when, for every step
t > τ , the output of each agent’s state at t is the same as it is at τ (i.e. the output
of every agent converges to some value and never changes thereafter). A stronger
notion of termination is for a protocol to stabilize, meaning that after reaching
some configuration C∗, the only configurations reachable from C∗ result in the
same outputs at every agent as in C∗. Abusing notation, we say O(C) = λ (or,
the output of the configuration is λ) if O(qj) = λ for every qj ∈ C.

The goal of the population is to compute some function Φ on the input
vector I, which means that the population eventually stabilizes towards a set
of configurations D ⊆ C for which O(D) = Φ(I) for all D ∈ D. The results
of our work are commensurable with those of [10] which demonstrate that the
semilinear predicates, which can be expressed using Threshold and Remainder,
can be computed with output independent privacy under adversarial scheduling.
Our work focuses on Remainder, defined for population protocols as follows:

Definition 1. Given positive integers k and n, non-negative integer r < k, and
input vector I ∈ Z

n
k , let Remainder(I) = True iff

∑n
j=1 ij ≡ r (mod k).

The scheduler determines the pair of agents that interact at each step. The
scheduler’s choice of agent pairs may either be adversarial or probabilistic. An
adversarial scheduler chooses pairs of agents to interact at each step as it
desires, subject to a fairness condition. The condition used most commonly is
called strong global fairness, and it states that if some configuration C occurs
infinitely often, and C → C ′, then C ′ must occur infinitely often as well [3]. This
means that if some configuration can occur, it eventually must occur, even if
the adversarial scheduler wishes to delay its occurrence indefinitely. In works
adopting adversarial scheduling, it can be claimed that a protocol eventually
stabilizes to the correct answer, but not how quickly. A random or probabilistic
scheduler instead selects pairs of agents to interact with one another according
to some fixed probability distribution (usually uniform) over the ordered pairs of
agents. Although population protocols consider interactions to occur in sequence,
the systems they model typically consist of agents participating in interactions
in parallel. As such, a natural estimation of parallel time is to divide the total
number of interactions by n, as this roughly estimates the expected number of
interactions initiated by a particular agent in the population.1

Our work crucially relies on distinguishing between an externally visible com-
ponent of the agent state and a concealable secret state. Adopting notation from
[2], we let S be the internal state space and M the set of messages which
can be sent between the agents. Since each agent has both an internal and
external state component, the total state space is then the Cartesian product
of these sets Q = S × M . This means that δ is instead a function computed

1 Under non-uniform random scheduling, this notion of time no longer applies.

404 T. Amir and J. Aspnes

locally at each agent according to its own state and the “message received” by
its interacting partner δ : S × M × M × {Initiator,Responder} → S × M . This
new mapping enforces the restriction that an agent can only use its received
message to update its own state, and it does not observe the update to its inter-
acting partner’s state. For convenience, we use the original shorthand notation
〈s0,m0〉, 〈s1,m1〉 → 〈s′

0,m
′
0〉, 〈s′

1,m
′
1〉 to reflect the agents’ state changes, where

it is understood that the state update of Ab is computed independently of s1−b.

3 Adversarial Model

In order to evaluate the extent to which private information can be learned by
an observer in a population protocol, we must define the nature of the observer
and its capabilities. In this work, we consider the agent inputs to be private
information. We will consider the observer to take the form of an agent inter-
acting in the protocol, meaning that it can observe the population only as other
agents do, i.e., by participating in interactions as they are slated by the sched-
uler. However, we do not preclude the possibility that the observer may have
greater computational capabilities than ordinary honest agents, and may there-
fore infer additional information from its observed history of interactions. We
assume that the observer is semi-honest, meaning that it must adhere to the
protocol rules exactly, but may try to infer additional knowledge from the sys-
tem [11]. As such, the observer can only gather knowledge by interacting with
other agents as prescribed by the transition function δ.

Since an observer presents as an agent in the population, we can imagine that
multiple adversaries may infiltrate the system. However, we restrict that each
observer be non-colluding, meaning that it cannot communicate with other
nodes in the network besides participating in the protocol interactions honestly.
This is because otherwise we could imagine that an observer may disguise itself
as multiple agents in the population making up any fraction of the system.
Although not studied within this work, it is of interest to find bounds on the
fraction of agents that can be simulated by the observer in any network and
still successfully hide honest agents’ inputs. Notice that the restriction that the
observer is both semi-honest and non-colluding is equivalent to assuming that
there is only one such agent in the population, because from the point of view
of the observer, all other agents appear to be honest.

Finally, we allow a distinction between externally visible messages and inter-
nally hidden states as in [2] to allow agents to conceal a portion of their states
toward the end goal of achieving privacy. The distinction between messages and
the internal state will be crucial to studying privacy in the population model as
without it, there is no mechanism for hiding information from an observer.

4 Definitions of Input Privacy

In this section, we examine definitions of privacy in population protocols under
adversarial and probabilistic scheduling given our specified adversarial model.

Privacy in Population Protocols with Probabilistic Scheduling 405

4.1 Output Independent Privacy

The privacy-preserving population protocol from [10] operates under the adver-
sarial scheduling model and uses constant state-space. Therefore, [10] demon-
strates privacy in the context of computing semilinear predicates only. The
authors offer a formal definition of input privacy under these circumstances
called output independent privacy, defined as follows:

“A population protocol has this property if and only if there is a constant
n0 such that for any agent p and any inputs I1 and I2 of size at least n0

in which p has the same input, and any execution E1 on input I1, and any
T , there exists an execution E2 on input I2, such that the histories of p’s
interactions up to T are identical in E1 and E2”.

Essentially, this definition states that a semi-honest process p cannot tell whether
the input vector is I1 or I2 given its sequence of observations because either input
could have yielded the same observations under an adversarial scheduler.

Output independent privacy is a successful measure in [10] because the
scheduling in that work is assumed to be adversarial, therefore no inference
can be made about the interaction pattern. The authors leverage this to achieve
privacy which is best framed as “plausible deniability” – an agent may directly
observe another agent’s input, but the unpredictability of the scheduler disallows
the observer to claim with certainty that the observed value is indeed the input.

This argument breaks down when the scheduler is probabilistic because now
an agent can infer a probability distribution on the interaction pattern, and thus
also infer a probability distribution on the input value of the agent’s interacting
partner. In light of this insight, we now introduce novel definitions for the purpose
of assessing privacy in population protocols with probabilistic scheduling.

4.2 Definitions of Privacy Under Probabilistic Schedules

Consider an agent A with initial state qA
0 = (sA

0 ,mA
0). Given its sequence

of observed messages and the role (Initiator or Responder) played by A in
each interaction, A can deterministically compute each of its subsequent state
updates. Let’s call these messages (observed by A) oA

1 , oA
2 , oA

3 , ..., and denote
by qA

ε = δ(ρA
ε , sA

ε−1,m
A
ε−1, o

A
ε) = (sA

ε ,mA
ε) the updated state of A, originally in

state qA
ε−1 = (sA

ε−1,m
A
ε−1), upon interacting as ρA

ε ∈ {Initiator,Responder} with
another agent with message oA

ε in its ε-th interaction. Adopting notation from
[11], we denote the view of an agent A participating in protocol P in an execu-
tion E by viewP

A(E) = 〈iA; qA
0 ; (ρA

1 , oA
1), (ρ

A
2 , oA

2), ...〉. This view consists of A’s
input, the initial state of A, and a list of A’s interactions over the course of the
execution, from which every subsequent state of A can be computed.2

Let viewAP(C) be a random variable representing the view of agent A drawn
uniformly from all realizable executions starting from configuration C resulting
2 For randomized δ, we assume A has a fixed tape of random bits that it uses to update

its state, so A can still reconstruct its entire view from the specified information.

406 T. Amir and J. Aspnes

from the possible randomness used by the scheduler. Similarly, let viewP
A(I)

be a random variable representing the view of agent A drawn from all possible
executions starting from any configuration C in the range of I(I) according to
the probability distribution given by the randomness of I. In general, we use the
convention that random variables appear in mathematical boldface.

Privacy, like many other security-related key terms, has a wide range of
technical interpretations. As such, we now offer several distinct formal definitions
of privacy in the population model.

Plausible Deniability. Perhaps the weakest form of privacy we can possibly
define is that of plausible deniability, meaning that an adversary always doubts
its guess of an agent’s input value (even if it has unbounded resources). This
is not a novel concept [10,13], but in the context of input vector privacy for
probabilistic population protocols, we define this notion as follows:

Let Mλ = {multiset(I) : Φ(I) = λ} be the set of all distinct mul-
tisets of inputs whose corresponding input vector evaluates to λ,3 and let
Mκ

λ = {multiset(I) : multiset(I) ∈ Mλ ∧ κ ∈ multiset(I)} be the set of all
distinct multisets of inputs outputting λ which contain at least one input equal
to κ.

Definition 2. Let P be a population protocol on n agents with input set Σ
and let D be any probability distribution on input vectors in Σn. Then P is
weakly private if for every distribution D on Σn, every non-colluding semi-
honest unbounded agent A in a population of size n executing P, and for any
view V = 〈i; q; {(ρA

ε , oA
ε)}〉 with output λ (as determined from the view V) and

with |Mi
λ| > 1, there exist I1 and I2 in Sλ such that

1. both multiset(I1) and multiset(I2) are elements of Mi
λ,

2. multiset(I1) 	= multiset(I2), and
3. Pr(viewP

A(I1) = V) = Pr(viewP
A(I2) = V),

where the probabilities in the final condition are taken over D, the randomness
of I, and the uniform randomness of the scheduler.

In plain English, Definition 2 says that any agent participating in the protocol
cannot simply guess the “most likely” input vector because for each such vector,
pending certain circumstances, there exists a distinct input vector yielding the
same views for that agent with the same probabilities. This definition differs
from output independent privacy [10] in that it considers adversarial strategies
for guessing the input vector which rely on distributional data collected from
interactions with other agents.

The condition |Mi
λ| > 1 necessitates that weak privacy may only hold for

multisets of inputs for which plausible deniability is even possible. For example,
if the output of the computation for the Or predicate is 0, then there is only one
possible multiset of inputs that could have yielded this outcome, so there is no
denying what the input vector must have been (namely, the all-zero vector).
3 Recall that agents in the same state are indistinguishable by the protocol; therefore,

Φ must map any input vectors with the same multiset of inputs to the same output.

Privacy in Population Protocols with Probabilistic Scheduling 407

Information-Theoretic Input Privacy. A stronger notion of privacy is one
that claims that an observer cannot narrow down the possibility of input vectors
at all based on its observations. This prompts our next definition.

Let P be a population protocol with input set Σ and let D be a probability
distribution on input vectors in Σn. Let I ∼ D be a random variable represent-
ing the selected input vector. Additionally, let iA and λA be random variables
representing the input and output at agent A, and let viewP

A(i, λ) be a random
variable representing the view of agent A participating in an honest execution
of P that is consistent with a fixed input i at A and observed output λ.

Definition 3. Protocol P satisfies information-theoretic input privacy if
for every non-colluding semi-honest unbounded agent A and every input i ∈ Σ,
output λ ∈ O, view V , input vector I ∈ Sλ, and distribution D on Σn,

Pr(I = I | viewP
A(i, λ) = V) = Pr(I = I | iA = i,λA = λ),

where V is consistent with input i and output λ.

The above definition essentially states that conditioned on knowing one’s
own input and the output of the computation, the rest of the agent’s view in the
protocol’s computation gives no advantage in guessing the input vector.

We offer another definition of privacy called input indistinguishability in
the extended version of this paper that is independent of our main results.

Intuitively, it is straightforward to see that information-theoretic privacy is
the strongest of the definitions discussed in this section (proof in full paper):

Theorem 1. If P is information-theoretically private, then P also satisfies out-
put independent privacy, weak privacy, and input indistinguishability.

5 Private Remainder with Adversarial Scheduling

As a means for comparison, we analyze the Remainder protocol from [10], shown
in Algorithm 1. The protocol does not distinguish between internal state space
and message space, so the entirety of each agent’s state is seen by its interacting
partner. The agent states are tuples (v, f), initially (ij , 1), where v is the value
of the agent and f is a flag bit denoting whether or not the agent has decided
its output yet. The protocol accumulates the total sum (modulo k) of all agents’
inputs by transferring values in units rather than in full in a single interaction.
As shown in (M1), the protocol subtracts 1 (modulo k) from one of the inputs
and adds it to the other input, maintaining the invariant that the sum of all the
values in the population is the same at each step. Because all computations are
done modulo k, (M1) can be repeated indefinitely. Transitions (M2) and (M3)
handle the flag bit (where ∗ is a wildcard that can match any value), ensuring
that (M1) occurs an unbounded but finite number of times. The output values
are {⊥0,⊥1}, denoting that the predicate is False or True, respectively. The
protocol converges when all but one agent has ⊥0 or ⊥1 as their value.

408 T. Amir and J. Aspnes

(v1, 1), (v2, 1) → (v1 + 1, 1), (v2 − 1, 1) (M1)

(∗, 1), (∗, ∗) → (∗, 0), (∗, ∗) (M2)

(∗, 0), (∗, 1) → (∗, 1), (∗, 1) (M3)

(v1, 0), (v2, 0) → (v1 + v2, 0), (0, 0) (M4)

(v1, 0), (0, 0) → (v1, 0), (⊥0, 0) (M5)

(⊥i, ∗), (∗, 1) → (0, 0), (∗, 1) (M6)

(r, 0), (⊥i, 0) → (r, 0), (⊥1, 0) (M7)

(v1, 0), (⊥i, 0) → (v1, 0), (⊥0, 0), if v1 �= r (M8)

Algorithm 1: Output Independent Private Remainder [10]

The crux of the proof that Algorithm 1 satisfies output independent privacy
focuses on transition (M1). When an adversarial process p interacts with an
honest agent A in state (v, f), p cannot know how close v is to A’s original input
because, for n ≥ 3, we can construct multiple executions wherein A has value
v upon interacting with p. For example, we can construct an execution where
some agent B transfers as many units to A via (M1) as needed to get A’s value
to be v, and as long as p and B do not interact with each other before p interacts
with A, p’s view is the same in this execution.

However, output independent privacy does not successfully carry over to the
random scheduling model because we can no longer construct any execution
“fooling” the process p, as some such executions are of very low probability. For
instance, the probability that agents A and B interact v′ times in a row, during
which time p does not interact with B at all, becomes small for large values of
v′. This means that it is less probable that an agent’s value will deviate from its
original input value early on in the execution.

6 Private Remainder with Probabilistic Scheduling

In this section, we introduce a novel algorithm for information-theoretically pri-
vately computing Remainder in the population protocol model with probabilistic
scheduling. Our algorithm is inspired by the famous example of cryptographi-
cally secure multiparty computation of Remainder in a ring network. We refer
to this algorithm as RingRemainder, and it works as follows:

There are n agents A1, ..., An arranged in a circle. Agent A1 performs the
leader’s role, which is to add a uniformly random element r ∈ Zk to their input
and pass the sum (modulo k) to agent A2. For each remaining agent Ai, upon
receiving a value from Ai−1, Ai adds its own input to that value and passes the
resulting sum to Ai+1 (mod n). When A1 receives a value from An, it subtracts r
and broadcasts the result to everyone. Suppose the agents have inputs i1, ..., in.
Then A1 sends m1 = i1 + r to A2, A2 sends m2 = i1 + r + i2 to A3, and so on,
until An sends mn = r +

∑n
j=1 ij to A1. Thus, the value broadcast to all agents

mn − r is exactly equal to
∑n

j=1 ij , the sum of the agents’ inputs modulo k.

Privacy in Population Protocols with Probabilistic Scheduling 409

Assuming honest participants and secure pairwise communication, this protocol
achieves information-theoretic input privacy (see extended paper for proof).

We now adapt this scheme to compute Remainder in the population model
with information-theoretic privacy.

Algorithm Overview. Our protocol simulates the transfer of information
exactly as in RingRemainder. We assume that the protocol has an initial
leader with a special token that circulates the population. Each time an agent
receives the token and some accompanying value, it adds its input to that value
and passes the sum, along with the token, to another agent. This means the
current owner of the token holds the aggregate sum of the agents’ inputs who
previously held the token. When an agent passes the token to another agent,
it labels itself as “visited” so as to ensure that its input is included in the sum
exactly one time. Once the token has visited all of the agents, it is returned to
the leader (along with the total sum of all of the agents’ inputs). In order to
achieve this functionality, there are two crucial obstacles we must overcome:

First, we need a mechanism for securely transferring a message between two
agents such that no other agent learns the message except the sender and the
intended recipient. This task is nontrivial because population protocols do not
allow agents to verify a condition before transmitting a message in an interaction;
it is assumed that the message exchange and state update occur instantaneously.
To do this, we provide a secure peer-to-peer transfer subroutine in Sect. 6.1.

Second, we need a way to determine whether or not every agent in the popu-
lation has been visited by the token. When this happens, we want the final token
owner to pass the token back to the leader so that the leader can remove the
randomness it initially added to the aggregate that has been passed among the
agents. We must try to prevent passing the aggregate back to the leader before
all inputs have been incorporated into the aggregate as this would cause some
agents to be excluded from the computation. In order to achieve this, we use the
probing protocol from [4] which we describe in further detail in Sect. 6.2.

Leveraging these two subroutines, we design our main algorithm for comput-
ing Remainder with information-theoretic privacy in Sect. 6.3.

6.1 Secure Peer-to-Peer Transfer

In order for our algorithm to guarantee input privacy, the communication of
the intermediate sums between any two agents must remain secure. Here we
introduce a novel secure peer-to-peer transfer protocol, defined as follows:

Definition 4. Let M be a message space, D be some distribution on M , and
I be any fixed input vector in Σn. A secure peer-to-peer transfer routine
is a protocol P that transfers data m

D←− M from one agent Sender to another
Receiver such that there exist PPT algorithms W1,W2 where

Pr
(
W1(viewP

Sender(I)) = m
)
= Pr

(
W2(viewP

Receiver(I)) = m
)
= 1

410 T. Amir and J. Aspnes

〈μ, (r,S)〉, 〈∗, (∗, u)〉 → 〈μ, (r′,S)〉, 〈∗, (∗, u)〉 (S1)

〈μ, (r,S)〉, 〈∗, (∗, u)〉 → 〈⊥, (μ − r,S′)〉, 〈r, (∗,R)〉 (S2)

〈⊥, (x,S′)〉, 〈y, (∗,R)〉 → 〈⊥, (⊥, u)〉, 〈x + y, (∗,S)〉 (S3)

Algorithm 2: Population Protocol for Secure P2P Transfer

and for all i : Ai 	∈ {Sender,Receiver} and PPT algorithm W ′

Pr
(
W ′(viewP

Ai
(I)) = m

)
= Pr(m D←− M)

In other words, a secure peer-to-peer transfer routine allows a Sender to transfer
a message m to a Receiver such that only Sender and Receiver are privy to m
and all other agents cannot guess m with any advantage over knowing only the
a priori distribution on the message space.

Our Algorithm 2 satisfies this definition: Each agent’s state 〈μ, (r, L)〉 consists
of a hidden secret μ, and a public randomness value r and label L. The goal of
the protocol is to pass a secret message from one agent (marked as Sender with
label S, of which there may only be one in the population) to another agent
meeting some specified criteria labeled by u, of which there may be any number
(including zero). Until the Sender meets an agent with label u, it refreshes its
randomness at each interaction to ensure that the randomness it transmits to
the Receiver is uniform (S1). When the Sender finally meets some agent with
u, it marks that agent as the Receiver and transmits r; it also updates its own
token to S′ to remember that it has met and labeled a Receiver (S2). Then, the
Sender waits to meet the Receiver again, at which point it gives it a message
masked with the randomness it sent in the previous interaction and marks itself
with the label u to signify the end of the transmission (S3). By the end of the
protocol, exactly one agent is selected as the Receiver and stores μ internally.
The protocol has state space (Zk ∪ {⊥})2 × {S,S′,R, u, u}, which for constant
k is of size O(1). As such, we conclude (and prove in the extended paper):

Theorem 2. Algorithm 2 is a secure peer-to-peer transfer routine.

6.2 Probing Protocol

In order to adapt RingRemainder to the population protocol model, we need
a way to detect when every agent has been included in the aggregation so the
final sum can be passed back to the leader. To do this, we use a probe.

A probing protocol, or probe, is a population protocol that detects the
existence of an agent in the population satisfying a given predicate [4]. In essence,
the probe (initiated by the leader) sends out a 1-signal through a population of
agents in state 0. If the 1-signal reaches an agent satisfying the predicate, that
agent initiates a 2-signal which spreads back to the leader by epidemic. Higher
number epidemics overwrite lower ones, so if some agent in the population satis-
fies π then the leader eventually sees the 2-signal. The probe, used in conjunction

Privacy in Population Protocols with Probabilistic Scheduling 411

with the phase clock from the same work [4], allows the leader to detect the pres-
ence of an agent satisfying π in O(n log n) interactions using O(1) states with
probability 1 − n−c for any fixed constant c > 0.

We define the “output” of the protocol (computed only at the leader) to be 0
for states 0 and 1, and 1 for state 2 (i.e. the leader’s probe outputs 1 if and only if
some agent in the population satisfies π). At the start of each round of the phase
clock, agents reset their value to 0 and the leader initiates a new probe. Both
the probe and the phase clock states are components of the message space, and
the transitions for these subroutines are independent of the transitions for the
main protocol, so we consider the two “protocols” to be taking place in parallel.

6.3 Remainder with Information-Theoretic Privacy

We provide here a novel algorithm which computes Remainder and achieves
information-theoretic input privacy in the population protocol model with high
probability, assuming a uniform random scheduler.

First, each agent applies the input function I to their input as follows:

I(ij , �) =
{

〈ij + r0, (rj ,S, 1, Z = Z0)〉 � = 1
〈ij , (rj , u, 0, Z = Z0)〉 � = 0

where rj is drawn uniformly at random from Zk for j ∈ {0, 1, ..., n}, and Z
(initialized to Z0) is a probe subroutine (including its associate phase clock). The
input function assumes an initial leader, specified by � = 1. The components of
the state 〈μ, (r, L, �, Z)〉 are μ (the hidden internal component of the state called
the secret), r (the mask), L (the agent’s label), � (the leader bit), and Z (the
probe). The transitions describing the protocol can be found in Algorithm 3.

The general structure of the transitions from the secure peer-to-peer transfer
protocol in Algorithm 2 is used to send the intermediate sums in (R1), (R2), and
(R3). However, instead of just storing the message received, the Receiver com-
putes the sum of the message and its own input and stores the result internally.
Each subsequent Sender searches the population for an agent whose input has
not yet been incorporated into the sum (signified by the u state). When no one
in the population has u anymore, the probe detects this and outputs 1 at the
leader from this point onward.

Although not shown, each interaction also performs an update to the probing
subroutine by advancing the phase clock and probe at both agents in the inter-
action. When the probe begins to output 1, with high probability every agents’
label is set to u, alerting the leader to set its label to u. This makes the leader the
only agent able to be the next Receiver. When the leader receives the final value
stored at the Sender, the leader can place the answer into a separate portion of
the external state (not shown in Algorithm 3) so that all other agents can copy
it, which takes O(n2 log n) additional steps with high probability. The leader
must also have an additional component to its hidden state which stores the
randomness used in its initial message transfer (also not shown in Algorithm 3).

412 T. Amir and J. Aspnes

〈∗, (r,S, ∗, ∗)〉, 〈∗, (∗, u, ∗, ∗)〉 → 〈∗, (r′,S, ∗, ∗)〉, 〈∗, (∗, u, ∗, ∗)〉 (R1)

〈u, (r,S, ∗, ∗)〉, 〈v, (∗, u, ∗, ∗)〉 → 〈⊥, (u − r,S′, ∗, ∗)〉, 〈v + r, (∗,R, ∗, ∗)〉 (R2)

〈∗, (x,S′, ∗, ∗)〉, 〈y, (∗,R, ∗, ∗)〉 → 〈∗, (⊥, u, ∗, ∗)〉, 〈x + y, (∗,S, ∗, ∗)〉 (R3)

〈⊥, (⊥, u, 1, 1)〉, 〈∗, (∗, ∗, ∗, ∗)〉 → 〈⊥, (⊥, u, 1, 1)〉, 〈∗, (∗, ∗, ∗, ∗)〉 (R4)

Algorithm 3: Information-Theoretically Private Remainder

The correctness and privacy guarantees of Algorithm 3 are stated below (see
extended paper for proofs):

Theorem 3. For any fixed c > 0, Algorithm 3 computes Remainder in a popu-
lation of size n in Θ(n3 log n) steps with probability at least 1 − n−c.

Theorem 4. When Algorithm 3 correctly computes the Remainder predicate, it
satisfies information-theoretic input privacy.

If the protocol fails due to a phase clock error in the probing subroutine, we
actually do not know how much information is leaked by the protocol, though
we suspect it to be limited. We designate this as outside of the scope of this
work and only make claims about privacy when the protocol succeeds. Note
that it is impossible to achieve information-theoretic privacy with probability 1
in asynchronous distributed systems because there is always the possibility of
premature termination due to indefinite exclusion of agents from the protocol.

7 Conclusion

In this work, we offer various new security definitions in population protocols,
such as multiple definitions of privacy which accommodate a range of threat
models and scheduling assumptions, and a formal definition of secure peer-to-
peer communication. We also develop algorithms solving secure pairwise commu-
nication in the model and information-theoretically private computation of the
Remainder predicate. In order to show that we can achieve information-theoretic
privacy (with high probability) for all semilinear predicates, as in [10], similar
algorithms for computing Threshold and Or are also needed. We leave these
problems as open for future work.

References

1. Amir, T., Aspnes, J.: Privacy in population protocols with probabilistic scheduling
(2023). https://arxiv.org/abs/2305.02377

2. Amir, T., Aspnes, J., Doty, D., Eftekhari, M., Severson, E.: Message complexity
of population protocols. In: 34th International Symposium on Distributed Com-
puting (DISC 2020). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 179, pp. 6:1–6:18. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl,
Germany (2020). https://doi.org/10.4230/LIPIcs.DISC.2020.6

https://arxiv.org/abs/2305.02377
https://doi.org/10.4230/LIPIcs.DISC.2020.6

Privacy in Population Protocols with Probabilistic Scheduling 413

3. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Proc. Annu. ACM Symp. Prin-
ciples Distrib. Comput. 18, 235–253 (2006). https://doi.org/10.1007/s00446-005-
0138-3

4. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population proto-
cols with a leader. Distrib. Comput. 21, 183–199 (2006). https://doi.org/10.1007/
s00446-008-0067-z

5. Aspnes, J., Diamadi, Z., Gjøsteen, K., Peralta, R., Yampolskiy, A.: Spreading alerts
quietly and the subgroup escape problem. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 253–272. Springer, Heidelberg (2005). https://doi.org/10.
1007/11593447_14

6. Blazy, O., Chevalier, C.: Spreading alerts quietly: new insights from theory and
practice. In: Proceedings of the 13th International Conference on Availability, Reli-
ability and Security. ARES 2018, Association for Computing Machinery, New York,
NY, USA (2018). https://doi.org/10.1145/3230833.3230841

7. Canetti, R., et al.: Privacy-preserving automated exposure notification. IACR
Cryptology ePrint Archive 2020, 863 (2020)

8. Castelluccia, C., Mykletun, E., Tsudik, G.: Efficient aggregation of encrypted data
in wireless sensor networks. In: The Second Annual International Conference on
Mobile and Ubiquitous Systems: Networking and Services, pp. 109–117 (2005)

9. Chan, J., et al.: PACT: privacy sensitive protocols and mechanisms for mobile
contact tracing (2020)

10. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Ruppert, E.: Secretive birds:
privacy in population protocols. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.)
OPODIS 2007. LNCS, vol. 4878, pp. 329–342. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-77096-1_24

11. Lindell, Y.: How to simulate it – a tutorial on the simulation proof technique. In:
Tutorials on the Foundations of Cryptography. ISC, pp. 277–346. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-57048-8_6

12. Liu, C.X., Liu, Y., Zhang, Z.J., Cheng, Z.Y.: High energy-efficient and privacy-
preserving secure data aggregation for wireless sensor networks. Int. J. Commun
Syst 26(3), 380–394 (2013). https://doi.org/10.1002/dac.2412

13. Monshizadeh, N., Tabuada, P.: Plausible deniability as a notion of privacy. In: 2019
IEEE 58th Conference on Decision and Control (CDC), pp. 1710–1715 (2019).
https://doi.org/10.1109/CDC40024.2019.9030201

14. Setia, P.K., Tillem, G., Erkin, Z.: Private data aggregation in decentralized net-
works. In: 2019 7th International Istanbul Smart Grids and Cities Congress and
Fair (ICSG), pp. 76–80 (2019). https://doi.org/10.1109/SGCF.2019.8782377

15. Taban, G., Gligor, V.D.: Privacy-preserving integrity-assured data aggregation in
sensor networks. In: Proceedings of the 2009 International Conference on Com-
putational Science and Engineering - Volume 03, pp. 168–175. CSE 2009, IEEE
Computer Society, USA (2009). https://doi.org/10.1109/CSE.2009.389

https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1007/s00446-008-0067-z
https://doi.org/10.1007/s00446-008-0067-z
https://doi.org/10.1007/11593447_14
https://doi.org/10.1007/11593447_14
https://doi.org/10.1145/3230833.3230841
https://doi.org/10.1007/978-3-540-77096-1_24
https://doi.org/10.1007/978-3-540-77096-1_24
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1002/dac.2412
https://doi.org/10.1109/CDC40024.2019.9030201
https://doi.org/10.1109/SGCF.2019.8782377
https://doi.org/10.1109/CSE.2009.389

Dispersion of Mobile Robots in Spite of Faults

Debasish Pattanayak1 , Gokarna Sharma2(B) , and Partha Sarathi Mandal3

1 Université du Québec en Outaouais, Gatineau, Canada
2 Kent State University, Kent, OH, USA

gsharma2@kent.edu
3 Indian Institute of Technology Guwahati, Guwahati, India

psm@iitg.ac.in

Abstract. We consider the problem of dispersion that asks a group of k ≤ n
mobile robots to relocate autonomously on an anonymous n-node m-edge graph
of maximum degree Δ such that each node contains at most one robot. We
consider the case where the robots may crash at any time. The objective is to
minimize (or provide trade-off between) the time to achieve dispersion and the
memory requirement at each robot. Following the literature, we consider the syn-
chronous setting where time is measured in rounds. We present two determin-
istic algorithms for arbitrary graphs under local communication model in which
only the robots at the current node can communicate. The presented algorithms
are interesting since they trade-off one metric for the sake of another metric.
Specifically, the first algorithm solves dispersion in O(min{m, kΔ}) rounds
with O(k log(k + Δ)) bits memory at each robot, independent of the num-
ber of robot crashes f ≤ k, whereas the second algorithm solves dispersion
in O(min{m, kΔ} · (� + f)) rounds with O(log(k + Δ)) bits memory at each
robot; � denotes the number of nodes with multiple robots positioned in the initial
configuration. Both of the algorithms work without a priori knowledge on graph
parameters m and Δ as well as problem parameters �, k, and f . To the best of
our knowledge, these are the first such bounds for dispersion under crash faults.

1 Introduction

How to disperse autonomous mobile robots or agents in a given region is a problem
of significant interest in distributed robotics [15,16]. Recently, this problem has been
formulated by Augustine and Moses Jr. [1] in a graph setting as follows: Given any
arbitrary initial configuration of k ≤ n robots positioned on the nodes of an anonymous
n-node m-edge graph G of maximum degree Δ, the robots reposition autonomously to
reach a configuration where each robot is positioned on a distinct node of the graph;
which we call the DISPERSION problem. See Fig. 1 for an example. This problem
has many practical applications, e.g., in relocating self-driving electric cars (robots)
to recharging stations (nodes), assuming that the cars have smart devices to communi-
cate with each other to find a free/empty charging station [1,19,20,23]. This problem
is also important due to its relationship to many other coordination problems including
exploration, scattering, and load balancing, and self-deployment [1,19,20,23].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 414–429, 2023.
https://doi.org/10.1007/978-3-031-44274-2_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_31&domain=pdf
http://orcid.org/0000-0003-2862-2795
http://orcid.org/0000-0002-4930-4609
http://orcid.org/0000-0002-8632-5767
https://doi.org/10.1007/978-3-031-44274-2_31

Dispersion of Mobile Robots in Spite of Faults 415

Fig. 1. The DISPERSION problem of k = 8 robots on a 10-node graph: (a) The initial configu-
ration; (b) The final configuration with each node having at most one robot. Integers near nodes
denote robot counts on those nodes.

The main objective is to simultaneously minimize (or provide trade-off between)
two performance metrics that are fundamental to the problem: (i) time to achieve dis-
persion and (ii) memory requirement at each robot. DISPERSION has been studied sig-
nificantly in a long series of works recently [1,7,14,17,19–24,26–28], considering both
specific (such as trees) and arbitrary graphs as well as static and dynamic natures of
the graphs [22]. However, most of these works focus consider fault-free robots, except
[4,29] which provide partial solution under crash faults, assuming either (i) all k robots
start initially from a single node (� = 1) or (ii) the algorithm is provided with a priori
knowledge on graph as well as problem parameters m,Δ, �, k, f , where f ≤ k denotes
the number of robot crash faults. Under faults, DISPERSION is said to be achieved when
k − f non-faulty robots are positioned on k − f different nodes of G. The following
question naturally arises:

Starting from any arbitrary initial configuration and without a priori knowledge on
parameters m,Δ, �, k, f , is it possible to solve DISPERSION on an anonymous graph
G when f ≤ k robots may experience crash fault?

In this paper, we answer this question in the affirmative providing two deterministic
algorithms that solve DISPERSION on any anonymous graph, with robots starting from
any initial configuration and without a priori knowledge on parameters m,Δ, �, k, f .

Contributions. Graph G is anonymous, connected, undirected, and port-labeled, i.e.,
nodes have no unique IDs and hence are indistinguishable but the ports (leading to inci-
dent edges) at each node have unique labels in the range [1, δ], where δ is the degree
of that node. The robots are distinguishable, i.e., they have unique IDs in the range
[1, kO(1)]. Nodes are memory-less but robots have memory. The setting is synchronous
– all robots are activated in a round and they perform their operations in synchronized
rounds. Runtime is measured in rounds (or steps). Additionally, we consider the stan-
dard local communication model, where the robots can only communicate with other
co-located robots at the same node of G. We say that f ≤ k robots may experience
crash fault at any time, meaning that they remain stationary, the information, if any,
stored by them is lost, they lose their communication capability, and hence they can be
treated as if they are vanished from the system. In the initial configuration, the robots
may be positioned on one or more nodes. If the robots are on k different nodes in the ini-
tial configuration, DISPERSION is already achieved. Therefore, the interesting cases are
those initial configurations in which the k robots are on < k different nodes. Therefore,
a graph node may have zero, one, or more robots in any initial configuration.

416 D. Pattanayak et al.

Table 1. Algorithms solving DISPERSION for k ≤ n robots on an anonymous n-node m-edge
graph of maximum degree Δ for f ≤ k robot crashes. †� is the number of multiplicity nodes in
the initial configuration. Theorem 1 should be compared with the result of [24] whereas Theorem
2 should be compared with the second result of [4].

Algorithm Memory/robot (in bits) Time (in rounds) �† Faults Knowledge of
m, Δ, �, k, f

Lower bound Ω(log(k + Δ)) [19] Ω(k) [19] � ≥ 1 Fault-free No

[24] Θ(log(k + Δ)) O(min{m, kΔ}) � ≥ 1 Fault-free No

[29] Θ(log(k + Δ)) O(min{m, kΔ} · f) � = 1 Crash No

[4] Θ(log(k + Δ)) O(k2) � = 1 Crash No

[4] Θ(log(k + Δ)) O(min{m, kΔ, k2} · (� + f)) � > 1 Crash Yes

Theorem 1 O(k log(k + Δ)) O(min{m, kΔ}) � ≥ 1 Crash No

Theorem 2 Θ(log(k + Δ)) O(min{m, kΔ} · (� + f)) � ≥ 1 Crash No

We have the following two results for DISPERSION in any arbitrary anonymous
graph G. Table 1 outlines and compares them with the best previous results.

– There is a deterministic algorithm that solves DISPERSION tolerating f ≤ k crash
faults in O(min{m, kΔ}) rounds with O(k log(k +Δ)) bits memory at each robot.

– There is a deterministic algorithm that solves DISPERSION tolerating f ≤ k crash
faults in O(min{m, kΔ} · (�+ f)) rounds with O(log(k+Δ)) bits memory at each
robot, where � the number of nodes with multiple robots in the initial configuration.

The results are interesting and provide time-memory trade-offs. The time bound
in the first result is optimal for constant degree graphs (given the Ω(k) lower bound)
but memory is O(k) factor away from the optimal, whereas the memory bound in the
second result is optimal given the memory lower bound Ω(log(k + Δ)) even for the
fault-free case but the time bound is O(� + f) factor away from the time bound in the
first result. In other words, time (memory) is sacrificed for better memory (time).

We now discuss how our results compare with two previous works [4,29] that con-
sidered crash faults. Chand et al. [4] provided an O(k2)-round algorithm for � = 1, and
for � > 1, provided an O(min{m, kΔ, k2} · (� + f))-round algorithm. The algorithm
for � > 1 is designed under the assumption that the robots have a priori knowledge on
the graph and problem parameters m,Δ, �, k, f . Compared to their result for � = 1, the
time bound in our algorithm is better when Δ ≤ k for even � > 1. Compared to their
result for � > 1, both of our algorithms work without such assumption. Pattanayak et
al. [29] provided an O(min{m, kΔ} · f)-round algorithm only for � = 1. Compared to
their result, both of our algorithms work for � = 1 as well as � > 1.

Challenges and Techniques. The well-known depth first search (DFS) traversal was
heavily used to solve DISPERSION [1,14,17,19–21,23,24,28]. If all k robots are posi-
tioned initially on a single node, the DFS traversal finishes in min{4m− 2n+2, 4kΔ}
rounds solving DISPERSION [1,19,20]. If k robots are initially on k different nodes,
DISPERSION is solved in a single round. However, if not all of them are on a single
node, then the robots on nodes with multiple robots need to reposition to reach to free
nodes and settle. The natural approach is to run DFS traversals in parallel to minimize

Dispersion of Mobile Robots in Spite of Faults 417

time. The challenge arises when two or more DFS traversals meet before all robots set-
tle. When this happens, the robots that have not settled yet need to find free nodes. For
this, they may need to re-traverse the already traversed part of the graph by the DFS
traversal. With O(log(k + Δ)) bits memory per robot, this re-traversal was shown to
add an O(�) multiplicative factor [1,19], which has been progressively improved to an
O(log �) factor [20,32] to finally an O(1) factor [24]. Therefore, even in the case of two
or more DFS traversals meet, DISPERSION can be solved in O(min{4m−2n+2, 4kΔ})
rounds, independent of �. With O(k log(k + Δ)) bits memory per robot, it has been
shown by Augustine and Moses Jr. [1] that multiple meeting DFSs can be synchronized
with O(1) factor overhead, solving the problem in O(min{4m−2n+2, 4kΔ}) rounds.
Therefore, the time result of [24] matched [1] with only O(log(k + Δ)) bits memory
per robot. However, all these results were obtained considering fault-free robots.

The natural question is can the time bound of O(min{4m − 2n+ 2, 4kΔ}) rounds
be obtained in the case of robot crash faults. Indeed, our first result shows that the time
bound of O(min{4m − 2n + 2, 4kΔ}) rounds can be obtained with O(k log(k + Δ))
bits memory at each robot even when f ≤ k robots crash. The idea behind this result
is highly non-trivial. In the fault-free case, having the O(k log(k + Δ)) bits memory
allows for each robot to track k different DFS traversals. A robot runs its DFS traversal
until it reaches an empty node, at some round t, on which it settles if it is the highest ID
robot among the robots that are on that node, at that round t. Others continue their DFS
traversals. Since there are k robots, all robots must find an empty node to settle within
O(min{4m − 2n+ 2, 4kΔ}) rounds. However, in the crash fault case, the information
of all the DFS traversals stored at the settled robot rv at some node v will be lost when it
crashes. Therefore, the neighbor nodes of v need to be visited to recover the information
that was lost from rv . However, there might be the case that one or multiple neighbors
may also have crashed and this might create problem on how to recover the informa-
tion correctly. We modified the DFS traversal developing a novel technique so that the
DFS information can be recovered visiting the first non-crashed robot towards the root
node of the DFS tree and the total time to recover this information is proportional to
O(min{4m−2n+2, 4kΔ}) rounds, giving in overall the O(min{4m−2n+2, 4kΔ})
rounds time bound, independent of � tolerating any number f ≤ k of robot crashes.

Our second result asks what can be done w.r.t. time when only O(log(k + Δ)) bits
memory is provided to each robot. Recall that, in the fault-free case, Kshemkalyani
and Sharma [24] obtained O(min{4m − 2n + 2, 4kΔ}) rounds time bound with
O(log(k + Δ)) bits memory at each robot. However, in the fault case, it turned out
to be difficult to recover the lost DFS information maintained by a robot rv settled at
a node v. This is partly due to the fact that with O(log(k + Δ)) bits memory at each
robot, only information related to O(1) DFSs can be tracked/recovered. Therefore, we
extend the result of Pattanayak et al. [29] for the case of � = 1 to � > 1 along the lines
of the O(k log(k + Δ)) bits memory algorithm we designed as the first result in this
paper (Theorem 1). Recall that, [29] showed O(min{m, kΔ} · f) rounds time bound
with O(log(k + Δ)) bits memory at each robot for the case of � = 1. They used the
technique of starting a new DFS traversal as soon as a crash was detected. They showed
that for f ≤ k crashes, f+1 such DFS traversals may be initiated throughout the execu-
tion of the algorithm, which will finish in total time O(min{m, kΔ} · f) rounds, since

418 D. Pattanayak et al.

for the fault-free case, the single DFS traversal finishes in O(min{m, kΔ}) rounds. We
borrow the idea of [29] and extend it to the case of � > 1 developing a synchronization
mechanism so that all � different DFS traversals finish in O(min{m, kΔ} · (� + f))
rounds. We observe that there are total �+ f different DFS traversals initiated through-
out the execution. The trivial analysis would only give O(min{m, kΔ} · � · f) rounds
time bound but we proved that if there is no crash for the duration of O(min{m, kΔ})
rounds, then the number of total DFS traversals decrease by at least 1. Therefore, since
there are total (� + f) DFS traversals, they finish in O(min{m, kΔ} · (� + f)) rounds.

RelatedWork. The most relevant results to this paper are listed in Table 1 as well as the
established results. The best previously known fault-free result is due to Kshemkalyani
and Sharma [24] which solves DISPERSION in O(min{m, kΔ}) rounds with O(log(k+
Δ)) bits memory at each robot. This time is optimal for constant-degree graphs (i.e.,
Δ = O(1)) given the time lower bound of Ω(k) [19]. Additionally, the memory is
optimal given the lower bound of Ω(log(k + Δ)) [19,23]. Under robots crash faults,
there are two existing results due to Pattanayak et al. [29] and Chand et al. [4]. Pat-
tanayak et al. [29] solved DISPERSION for the case of � = 1 in O(min{m, kΔ} · f)
rounds with O(log(k + Δ)) memory bits at each robot for f ≤ k robot crashes.
Chand et al. [4] solved DISPERSION for � = 1 in O(k2) rounds and for � > 1 in
O(min{m, kΔ, k2} · (� + f)) rounds with O(log(k + Δ)) bits memory at each robot
under the assumption that the graph and problem parameters n,m,Δ, k, f are known
to the algorithm. Our results do not have that assumption.

DISPERSION was studied in a graph setting intensively [1,4,7,14,17–24,26,32].
The majority of works considered the faulty-free case, except [27,28] which consid-
ered Byzantine faults (in which robots might act arbitrarily) and [4,29] which con-
sidered crash faults (where robots stop working). The majority of the works considered
the local communication model, except Kshemkalyani et al. [23] where they considered
the global communication model – robots can communicate irrespective of their posi-
tions on the graph. Most of the works considered static graphs, except Kshemkalyani et
al. [22] which considered in dynamic graphs. Moreover, most of the works presented
deterministic algorithms except [7,26] where randomness is used to minimize memory
requirement for the � = 1 case. DISPERSION is considered by providing an alterna-
tive measure to communication capability of co-located robots in [14] and putting an
additional constraint that no two adjacent nodes can contain robots in the final configu-
ration in [18]. The majority of the studies considered DISPERSION in arbitrary graphs
but special graph cases were also considered: grid [21], ring [1,28], and trees [1,23].

Additionally, DISPERSION is closely related to graph exploration by mobile robots
or agents. The exploration problem has been quite extensively studied for specific as
well as arbitrary graphs, e.g., [2,5,9,13,25]. Another problem related to DISPERSION

is the scattering of robots. This problem has been studied for rings [10,31] and grids
[3]. Recently, Poudel and Sharma [30] provided a Θ(

√
n)-time algorithm for uniform

scattering on a grid [8]. DISPERSION is also related to the load balancing problem,
where a given load has to be (re-)distributed among several nodes. This problem has
been studied quite heavily in graphs, e.g., [6,33]. Note that all these studies do not
consider faults. We refer readers to [11,12] for recent developments in these topics.

Dispersion of Mobile Robots in Spite of Faults 419

Roadmap. The model, formal problem definition, and preliminaries are given in Sect. 2.
The first O(min{m, kΔ})-round O(k log(k + Δ))-bit memory algorithm is described
in Sect. 3. The second O(min{m, kΔ} · (� + f))-round O(log(k + Δ))-bit memory
algorithm is described in Sect. 4. Finally, we conclude the paper in Sect. 5 with a short
discussion. Some proofs are omitted due to space constraints.

2 Model and Preliminaries

Graph. Let G = (V,E) represent an arbitrary, connected, unweighted, undirected,
anonymous graph with n nodes and m edges, i.e., |V | = n and |E| = m. The nodes
lack identifiers but, at any node v ∈ V , its incident edges are uniquely identified by a
label (aka port number) in the range [1, δv], where δv is the degree of v. The maximum
degree of G is Δ := maxv∈V δv . We assume that there is no correlation between two
port numbers of an edge. Any number of robots are allowed to move along an edge at
any time. The graph nodes do not have memory, i.e., they can not store information.

Robots. Let R := {r1, r2, . . . , rk} be a set of k ≤ n robots residing on the nodes of G.
No robot can reside on the edges of G, but multiple robots can occupy the same node. A
node with multiple robots is called a multiplicity node. Each robot has a unique �log k�-
bit ID taken from [1, kO(1)]. We denote a robot ri’s ID by ri.ID with ri.ID = i. When
a robot moves from node u to node v in G, it is aware of the port of u it used to leave
u and the port of v it used to enter v. Furthermore, it is assumed that each robot is
equipped with memory to store information.

Communication Model. There are two communication models: local and global. In
the local model, a robot can only communicate with other robots co-located at a node.
In the global model, a robot can communicate with any other robot, not necessarily
co-located. This paper considers the local model.

Time Cycle. At any time, a robot ri ∈ R could be active or inactive. When ri becomes
active, it performs the “Communicate-Compute-Move” (CCM) cycle as follows.

– Communicate: For each robot rj ∈ R that is at some node vi, another robot ri at vi

can observe the memory of rj . Robot ri can also observe its own memory.
– Compute: ri may perform an arbitrary computation using the information observed

during the “communicate” portion of that cycle. This includes determination of a
port to use to exit vi and the information to store in the robot rj that is at vi.

– Move: At the end of the cycle, ri writes new information (if any) in the memory of
a robot rk at vi, and exits vi using the computed port to reach to a neighbor of vi.

Faults. We consider crash faults. Robots may be susceptible to fault at any point in
time during execution. The robot which experiences a crash fault at some time t stops
interaction after t, i.e., the robot stops communicating, giving the perception that it has
vanished from the system. Robot ri will not have any information on whether rj �= ri

is faulty and also does not have information on the number of faulty robots f .

Time and Memory Complexity. We consider the synchronous setting where every
robot performs each CCM cycle in synchrony becoming active in every CCM cycle.

420 D. Pattanayak et al.

Therefore, time is measured in rounds (a cycle is a round). Another important parameter
is memory. Memory comes from a single source – the number of bits stored at each
robot. We assume that the execution starts at round 1. We denote the initial configuration
(in the beginning of round 1) by Cinit. We divide Cinit into two categories:

– rooted – all k ≤ n robots are initially on a single node (� = 1).
– general – k ≤ n robots are initially on multiple nodes (1 < � ≤ k/2).

Dispersion. The DISPERSION problem can be formally defined as follows.

Definition 1. (DISPERSION). Given an n-node anonymous graph G = (V,E) having
k ≤ n robots, out of which f ≤ k may experience crash faults, positioned initially arbi-
trarily on the nodes of G, the robots reposition autonomously to reach a configuration
where each non-faulty robot is on a distinct node of G and stay stationary thereafter.

The initial configuration may have � < k multiplicity nodes. A settled robot at a node
u stays stationary at u. Another robot can settle at u, after the settled robot crashes. A
node can have at most one settled robot at one time.

3 O(min{m, kΔ})-Round Algorithm

In this section, we present a deterministic algorithm for DISPERSION with a runtime
of O(min{m, kΔ}) rounds that tolerates f ≤ k crash faults using O(k log(k + Δ))
bits memory per robot. This is the first algorithm that achieves this time bound for the
crash robot faults even when � > 1, matching the time bound for the fault-free case [24]
(recall � is the number of multiplicity nodes in the initial configuration).

First, we describe the high-level idea behind the algorithm. In the detailed descrip-
tion, we start with fault-free scenario and then extend that to handle crash faults.

High-level Overview of the Algorithm. The objective of a robot is to find an empty
node such that it can settle at that node. If there are multiple robots, the highest ID
robot among them settles and it remains at that node thenceforth. An unsettled robot
executes the algorithm until it settles. The algorithm consists of four phases: forward,
backtrack, retrace, and revert. The forward and backtrack phases are as in the standard
DFS traversal of a graph. The two phases retrace and revert are the new phases added
to handle the crash faults once they are detected in the forward phase. In the forward
phase, a robot explores new nodes; on encountering an already visited node, backtrack
phase begins, and it returns to the last node on its path with unvisited ports. The forward
and backtrack phases are sufficient if there are no crashes. In these two phases, the
robot builds and maintains a list to keep track of the visited nodes and the parent-
child relationship among them using settled robots as identifiers and port numbers as
parent pointers. If a settled robot crashes at some node, and an exploring robot reaches
that node in backtrack phase, then it is sufficient for the exploring robot to recognize
the newly settled robot at that node and update the robot ID in the list in its memory.
However, if a crash is not handled properly in the forward phase, there is a possibility
that the parent pointers may form a cycle and thus leading to failure of backtrack and
hence the DFS traversal. Thus, the phases retrace and revert are necessary to recover

Dispersion of Mobile Robots in Spite of Faults 421

the parent-children relationship among the nodes in case of robot crashes. The DFS
traversal is maintained by a robot in its memory and it produces a tree, i.e., the DFS
tree. The algorithm always starts in the forward phase.

On crash detection in the forward phase, retrace and revert phases are used. In the
retrace phase, the robot retraces its path from the current node to an ancestor in the
DFS tree that has not crashed. If no such non-crashed ancestor is found during retrace
phase, it can recognize that it has reached the root of the DFS traversal due to the
absence of a parent pointer and hence it can start the revert phase. In the revert phase,
the robot returns to the head of the DFS tree following the reverse of the path it has
taken in the retrace phase to the non-crashed ancestor. In some cases, the retrace phase
is implicit if the robot reaches to a non-crashed ancestor in the forward phase itself (the
crash detection happens due to the non-crashed ancestor), then it immediately starts the
revert phase. We call this fault-tolerant algorithm DFS recover since this algorithm
uses a technique to recover the correct DFS traversal once a crash is detected. Note that
the DFS recovery is done in the memory of each robot based on the information it is
storing about the DFS traversal (more on this in the detailed description). Therefore, the
recovery procedure does not ask robot to revisit previously explored parts of the graph.
In other words, the DFS traversal state is in the memory of each robot. Figure 2 (top)
shows the diagram of the state transitions between the phases. The second to bottom
of Fig. 2 show respectively the conditions which make a phase (forward, backtrack,
retrace, and revert, respectively) to either stay in that phase or transition to another.

Detailed Description of the Algorithm. We first describe the DISPERSION process of
the robots in a fault-free scenario and then extend it to handle crash faults. Recall that, in
the fault-free scenario, each robot only needs forward and backtrack phases. We explain
how the robot keeps track of information in each of the phases and correctly maintains
the DFS tree it has traversed.

The Datastructure at Each Robot: To achieve this, each robot maintains a list P
of its own that describes its path as a sequence of visited nodes with specific infor-
mation. An element of the list P corresponding to node u is a quadruple σu =
(pin

u , ru.ID, ru.depth, pout
u), where pin

u is the port number via which it enters u, ru.ID
is the ID of the settled robot ru at u, ru.depth is the depth of u, and pout

u is the port
via which it exits u. The robot ri also maintains ri.phase (indicating the phase of ri),
ri.depth (indicating the depth of ri at the current node), and ri.trace (a stack of robot
IDs used in the retrace and revert phases).

Intuitively, the list P contains elements corresponding to a node u if it is visited by
an edge traversal of the DFS tree. The list P has at most two entries corresponding to
each edge of the DFS tree. If the robot ri visiting node u contains ru.ID in its list P ,
it can determine the following from list P . Let σu and σ′

u be the first and last element
of P with ru.ID. Now, ru.parent is pin

u in σu, and ru.recent is pout′
u in σ′

u. The top
robot in the stack ri.trace is called rtop. A fully-visited node is a node u with all of its
ports visited. A node contains unvisited ports if it is not fully-visited. The head of the
DFS is the node with unvisited ports at the highest depth. To determine the head of the
DFS in P , a robot starts at the last element of P and moves in reverse order until it finds
a node with unvisited ports. We call this element of P as σhead and the corresponding
robot as rhead.

422 D. Pattanayak et al.

Fig. 2. The top figure shows an illustration of the transitions between the four phases (forward,
backtrack, retrace, and revert) of the O(min{m, kΔ})-time algorithm DFS recover and each
of the subsequent figures show the conditions that trigger transition of the algorithm from one
state to another for each of the states in the order forward, backtrack, retrace, and revert, respec-
tively. The algorithm always starts with the forward phase. In each scenario, the robot ri visits a
node u with settled robot ru.

Dispersion of Mobile Robots in Spite of Faults 423

Finding the Smallest Unvisited Port: To find the smallest unvisited port at node u
with settled robot ru, a robot goes through all the elements of P with ru.ID and checks
if port p was taken for each p in [1, δu] in increasing order, where p �= ru.parent. This
is enough to run the forward and backtrack phases correctly.

We would like the readers to keep note on the following robot behavior, which will
be common to all phases in our algorithm. When the robot ri reaches a node u, if u
does not have a settled robot and ri has the highest ID among the unsettled robots at
u, it settles at u and finishes its execution. Otherwise, the robot with the highest ID
among the unsettled robots at u settles at u. For the rest of the section, we describe the
following phases from the perspective of the last robot to settle among all the robots.

Initialization: Algorithm DFS recover starts at round 1. In round 1, the robot ri

initializes with ri.phase = forward at node v with pin
v =⊥ (⊥ indicates that no

parent pointer exists for the root node of the DFS traversal). The current depth ri.depth
is initialized to 1. Let rv be the settled robot at v. The robot ri adds the quadruple
(⊥, rv.ID, ri.depth, 1) to the list P . Initially, ri.trace is empty.

In round t ≥ 2, suppose ri visits node u from port pin
u . Let ru be the settled

robot at u. We are ready to describe the algorithm DFS recover. We first describe
DFS recover for the fault-free execution and then the crash-fault execution.

Fault-Free DFS. We describe the action of the robots in the fault-free scenario. Recall
that in the fault-free scenario, only forward and backtrack phases are enough.

Forward Phase: In this case, ri checks if an element σu with ru exists in P .

1. If σu does not exist in P , then ri adds the quadruple (pin
u , ru.ID, ri.depth, pout

u)
to the list P , where pout

u is the smallest unvisited port at u. The robot ri increases
ri.depth by 1 and leaves u via port pout

u .
2. If σu exists in P , then ri.phase = backtrack. The robot ri reduces ri.depth by 1

and leaves u via port pin
u .

Backtrack Phase: The robot ri finds the last element σu containing ru in P . By design,
σu = σhead.

1. The robot ri finds the smallest unvisited port p at u. The robot ri adds the quadruple
(pin

u , ru.ID, ri.depth, p) to P , sets ri.phase = forward, increases ri.depth by 1,
and leaves u via port p.

2. If there are no unvisited ports, then u is fully-visited, and p = ru.parent. The
robot ri adds the quadruple (pin

u , ru.ID, ri.depth, p) to the list P , sets ri.phase =
backtrack, reduces ri.depth by 1, and leaves u via port p.

Since ri keeps an element in P for each edge traversal of the DFS tree, it
merges the last two elements of P if they are of the same robot ru. Let
σu = (pin

u , ru.ID, ri.depth, pout
u) and σ′

u = (pin′
u , ru.ID, ri.depth, pout′

u) be
the last two elements of P . Robot ri merges them by replacing them with
(pin

u , ru.ID, ri.depth, pout′
u). Note that this merging happens for each leaf of the DFS

tree.

Crash Detection. We identify that there are faults in each of the phases as follows.

424 D. Pattanayak et al.

1. In the forward phase, a fault can be identified if the robot ri visits a node u with a
settled robot ru either from port ru.parent or ru.recent.
(a) If it visits from ru.parent, this means the parent robot of ru has crashed, allow-

ing ri to visit u in the forward phase from the parent port.
(b) If it visits from the ru.recent port, this means the most recent child of ru has

crashed, since otherwise, this port would be taken only in the backtrack phase.
2. If ri leaves a node u with a settled robot ru from the parent pointer in either the

retrace or backtrack phase to reach node v with a settled robot rv in P , and the robot
ID does not match, then there is a crash.

3. If ri reaches a node in the revert phase where rtop (the robot at the top of the stack
ri.trace) does not match, then there is a crash.

We are now ready to we discuss the fault-tolerant algorithm.

Crash-Fault DFS. The algorithm in this case includes the forward, backtrack, retrace,
and revert phases, designed to handle crash faults.

Crash-Tolerant Forward Phase: Suppose robot ri visits node u with settled robot ru

from port pin
u , and ru is present in the list P . The robot operates as follows:

1. If pin
u = ru.parent, robot ri sets its phase to retrace, locates the parent rv of ru in

P , adds rv.ID to ri.trace, and leaves via port pin
u .

2. If pin
u = ru.recent, robot ri sets its phase to revert, locates the recent child rw of

ru, adds rw.ID to ri.trace, and leaves via pin
u .

Retrace Phase: Robot ri retraces the path from the DFS head to a non-crashed ancestor
or until depth reaches 1, utilizing stack ri.trace. If ru.ID �= rtop.ID, ri replaces rtop

in P with ru, changes rtop.ID = ru.ID, pushes rv.ID onto ri.trace where v is the
parent of u in P , and leaves u via ru.parent. If ru.ID = rtop.ID or rtop.depth = 1,
ri switches to the revert phase, pops the top of ri.trace, and leaves via pin

u .

Revert Phase: Robot ri returns to the DFS head, following the path in the stack. If
ru.ID �= rtop.ID, ri replaces instances of rtop in P with ru. Pop the top of the stack
ri.trace. Now, based on the stack’s state:

1. If ri.trace is empty, ri sets its phase to backtrack, leaves via pin
last where rlast is the

robot in the last element of P , and removes the last element from P .
2. If ri.trace is not empty, ri finds port p leading to the new rtop from ru and leaves

via port p.

Crash-Tolerant Backtrack Phase: At node u, robot ri identifies the DFS head rhead

from σhead in P . If ru.ID �= rhead.ID, implying robot rhead has crashed, ri replaces
all instances of rhead.ID with ru.ID in P and proceeds with the crash-free backtrack
phase.

Example: Figure 3 illustrates the robot’s behavior, starting at node a. As the robot
moves through the graph, it updates the list P with corresponding entries for each vis-
ited node. When the robot encounters a crashed robot, it initiates the retrace and revert
phases to handle the fault, as demonstrated in the example.

Dispersion of Mobile Robots in Spite of Faults 425

Fig. 3. Example of the crash-tolerant forward phase.

In the example, robot ri begins at node a and visits nodes b, c, d, and e, before
returning to node d. During this traversal, P stores entries for robots ra, rb, rc, rd, and
re. When robot rb crashes and is replaced by robot r′

b, robot ri does not immediately
detect the crash. It adds r′

b to P and moves to node c. At node c, ri recognizes that it
has already visited the node and that it arrived from rc.parent. It then enters the retrace
phase, adds rb.ID to ri.trace, and leaves via rc.parent.

At node b, robot ri replaces all instances of rb with r′
b in P , adds ra.ID to ri.trace,

and moves to node a. At node a, ri completes the retrace phase, enters the revert phase,
and removes the top of the stack ri.trace. Since the stack is not empty, it finds the port
p of ra that leads to r′

b from P . Robot ri then follows the path in the revert phase,
reaching node b. Since the stack ri.trace is empty, it follows pin

last to reach node d.
Then, the robot continues executing the algorithm in the backtrack phase.

3.1 Analysis of the Algorithm

In the list P , we define the parent pointer for a robot ru as the pin
u for the first occurrence

of ru. We construct a graph G′ starting at the root, taking the first occurrence of a new
robot r and the corresponding previous robot in P as its parent. We show that the graph
G′ is a tree with distinct robot IDs. Due to space constraints, we omit the proofs.

Lemma 1. The parent pointer graph G′ constructed from P is a tree.

We show that a node becomes fully-visited as long as the robots do not crash.

Lemma 2. A node is fully-visited only once for each settled robot.

Now, we show that the crashes can be recovered in time proportional to the number
of crashes detected. This is an important lemma which is crucial on establishing the
claimed time bound.

Lemma 3. Crash detection and recovery takes O(f) rounds for f crashes.

Finally, we have the following theorem for the algorithm of this section.

Theorem 1. Algorithm DFS recover achieves DISPERSION in O(min{m, kΔ})
rounds using O(k log(k + Δ)) bits memory at each robot.

Proof. (sketch). Each robot performs its own crash-free DFS traversal in at most
O(min{m, kΔ}) rounds and it can recover from f crashes in at most O(f) rounds
where f < k.
�

426 D. Pattanayak et al.

4 O(min{m, kΔ})-Round Algorithm

In this section, we present a deterministic algorithm for DISPERSION with runtime
O(min{m, kΔ} · (�+f)) rounds that tolerates f ≤ k crash faults using O(log(k+Δ))
bits memory per robot. The bounds are analogous to the algorithm by Chand et al. [4]
but in contrast to [4] the knowledge on m,Δ, �, k, f is not required in our algorithm.

High-level Idea of the Algorithm. O(log(k + Δ)) bits memory per robot is in fact
optimal for DISPERSION even in the fault-free case [19]. To achieve DISPERSION under
this lower memory bound, we extend the idea of DFS traversal as in [29]. Unlike the
previous section, the robots do not maintain a list P to keep track of the traversal.
Instead, each group of unsettled robots start a DFS traversal with a DFS ID that con-
sists of a tuple (round no, rdfshead.ID), where rdfshead is the robot with highest ID
among them and that settles at the node. A settled robot ru at node u maintains a DFS
ID ru.DFSID for a DFS traversal. It also maintains ru.parent and ru.recent corre-
sponding to the DFS ID. The algorithm follows the crash-free forward and backtrack
phases with crash detection. Every time a crash is detected, the unsettled robots at the
DFS head begin a new DFS traversal with the current round number in the DFS ID.
Since we assume synchronous rounds and simultaneous start for all robots, the round
number is consistent across all robots in the graph. The DFS IDs are ordered lexico-
graphically and the higher DFS ID has higher priority compared to the lower one. We
call this algorithm DFS new, as it starts a new DFS traversal for each detected crash. By
the hierarchy among the DFS IDs, a DFS traversal that begins later has higher priority.

Detailed Description of the Algorithm. We begin the description with the variables
stored at each robot. The forward and backtrack phases are same as the crash-free algo-
rithm in the previous section. We describe here the details of meeting between two DFS
traversals. In the previous section, since each robot maintained their own traversal, there
was no need for involvement of the settled robot. However, here the settled robot keeps
track of the DFS traversal and hence it needs to update its memory according to the
changes in the DFS traversal.

Initialization: A group of unsettled robots at a node u begin a DFS traversal. The
highest ID robot ru among them settles at the node u, and it takes the DFS ID consisting
of (1, ru.ID). It sets ru.parent =⊥ and ru.recent = 1. Other unsettled robots at u
also set the same DFS ID and leave u via port number 1.

The forward and backtrack phases work similarly to the previous section. As long
as the exploring robots meet a settled robot at v with the same DFS ID, they backtrack
to the previous node u by pin

v and find the smallest unvisited port at u.

Determining the Smallest Unvisited Port: In the backtrack phase, the exploring
robot(s) has to determine the smallest unvisited port at a settled robot ru. The settled
robot keeps track of the recent and parent ports. The ports at each node are visited in
an increasing order excluding the parent. If (ru.recent = δu) or (ru.recent = δu − 1
and ru.parent = δu), then u does not have unvisited ports, and the next port to take
is ru.parent in the backtrack phase. Otherwise, we can determine the smallest unvis-
ited port of u as ru.recent + 1 (if ru.recent + 1 �= ru.parent) or ru.recent + 2 and
continue in the forward phase.

Dispersion of Mobile Robots in Spite of Faults 427

Merging DFS Traversals. When ri visits u with a settled robot ru in the forward phase
and ri.DFSID �= ru.DFSID, we have two cases.

(i) ri.DFSID > ru.DFSID: In this case, the ri has the higher DFS ID. Thus the
node u becomes part of the same DFS traversal as ri. Now, ru becomes a settled
robot of ri.DFSID; ru updates its DFS ID as ru.DFSID ← ri.DFSID and
ru.parent = pin

u . The robot ri leaves node u via smallest unvisited port pout
u at

u in the forward phase. Since ru essentially behaves like a newly settled robot of
ri.DFSID, pout

u = 1 if pin
u �= 1 or pout

u = 2 if pin
u = 1. Now, ru also updates the

recent pointer to ru.recent = pout
u .

(ii) ri.DFSID < ru.DFSID: In this case, the DFS traversal that ri is part of
becomes subsumed by the DFS traversal of ru.DFSID. Then, ri updates its DFS
ID as ri.DFSID ← ru.DFSID. Now, it follows ru.recent in the forward phase.

Crash Detection: A crash is detected during the forward phase if a robot ri encoun-
ters a settled robot ru possessing the same DFS ID, arriving either from the ru.recent
or ru.parent port. In the backtrack phase, the detection of a crash occurs under
two conditions: either if ru.DFSID < ri.DFSID or if pin

u �= ru.recent when
ru.DFSID = ri.DFSID. Upon crash detection at round t, unsettled robots at node
u initialize a fresh DFS traversal. The new DFS ID is set as (t, rk.ID), where rk is
the unsettled robot with the highest ID present at u. Concurrently, the settled robot ru

adopts the newly generated DFS ID as its own. This initiates a new DFS traversal during
the forward phase with ru as the root.

Analysis of the Algorithm. We prove that this algorithm correctly performs dispersion
and show the time and memory requirements. Intuitively, the correctness follows from
the fact that the DFS traversal with the highest ID starts at round t such that no crash
is detected after t. Since it is the highest ID DFS traversal, it continues without crash
detection and achieves DISPERSION. The details are omitted due to space constraints.

Theorem 2. Algorithm DFS new achieves DISPERSION in O(min{m, kΔ} · (� + f))
rounds using O(log(k + Δ)) bits memory at each robot.

Proof. (sketch). Algorithm DFS new creates at most (� + f) DFS traversals, each of
which may take at most O(min{m, kΔ}) rounds when active and O(k) rounds of inac-
tivity when unsettled robots join the DFS traversal.
�

5 Concluding Remarks

In this paper, we have presented two deterministic algorithms for DISPERSION of k ≤ n
mobile robots in any n-node arbitrary anonymous graph tolerating f ≤ k robot crash
faults. The algorithms are interesting since they provide trade-offs on two fundamental
performance metrics, time and memory per robot. The first (second) algorithm achieves
improved time (memory) complexity with O(k) (O(f)) factor more memory (time)
compared to the second (first) algorithm. For the future work, it would be interesting
to see whether memory in the first algorithm (or time in the second algorithm) can be
improved keeping time (or memory in the second algorithm) as is.

428 D. Pattanayak et al.

References

1. Augustine, J., Moses Jr., W.K.: Dispersion of mobile robots: a study of memory-time trade-
offs. In: ICDCN, pp. 1:1–1:10 (2018)

2. Bampas, E., Gasieniec, L., Hanusse, N., Ilcinkas, D., Klasing, R., Kosowski, A.: Euler tour
lock-in problem in the rotor-router model. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805,
pp. 423–435. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04355-0 44

3. Barriere, L., Flocchini, P., Mesa-Barrameda, E., Santoro, N.: Uniform scattering of
autonomous mobile robots in a grid. In: IPDPS, pp. 1–8 (2009)

4. Chand, P.K., Kumar, M., Molla, A.R., Sivasubramaniam, S.: Fault-tolerant dispersion of
mobile robots. In: Bagchi, A., Muthu, R. (eds.) CALDAM, pp. 28–40 (2023)

5. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph explo-
ration by a finite automaton. ACM Trans. Algorithms 4(4), 42:1–42:18 (Aug 2008)

6. Cybenko, G.: Dynamic load balancing for distributed memory multiprocessors. J. Parallel
Distrib. Comput. 7(2), 279–301 (1989)

7. Das, A., Bose, K., Sau, B.: Memory optimal dispersion by anonymous mobile robots. In:
Mudgal, A., Subramanian, C.R. (eds.) CALDAM 2021. LNCS, vol. 12601, pp. 426–439.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67899-9 34

8. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Autonomous mobile robots
with lights. Theor. Comput. Sci. 609, 171–184 (2016)

9. Dereniowski, D., Disser, Y., Kosowski, A., Pajak, D., Uznański, P.: Fast collaborative graph
exploration. Inf. Comput. 243(C), 37–49 (2015)

10. Elor, Y., Bruckstein, A.M.: Uniform multi-agent deployment on a ring. Theor. Comput. Sci.
412(8–10), 783–795 (2011)

11. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots.
Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, San
Rafael (2012)

12. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Mobile Entities, Theoret-
ical Computer Science and General Issues, vol. 1. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-11072-7

13. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite
automaton. Theor. Comput. Sci. 345(2–3), 331–344 (2005)

14. Gorain, B., Mandal, P.S., Mondal, K., Pandit, S.: Collaborative dispersion by silent robots. In:
Devismes, S., Petit, F., Altisen, K., Di Luna, G.A., Fernandez Anta, A. (eds.) Stabilization,
Safety, and Security of Distributed Systems. SSS 2022. LNCS, vol. 13751, pp. 254–269.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21017-4 17

15. Hsiang, T.R., Arkin, E.M., Bender, M.A., Fekete, S., Mitchell, J.S.B.: Online dispersion
algorithms for swarms of robots. In: SoCG, pp. 382–383 (2003)

16. Hsiang, T., Arkin, E.M., Bender, M.A., Fekete, S.P., Mitchell, J.S.B.: Algorithms for rapidly
dispersing robot swarms in unknown environments. In: WAFR, pp. 77–94 (2002)

17. Italiano, G.F., Pattanayak, D., Sharma, G.: Dispersion of mobile robots on directed anony-
mous graphs. In: Parter, M. (ed.) Structural Information and Communication Complexity.
SIROCCO 2022. LNCS, vol. 13298, pp. 191–211. Springer, Cham (2022). https://doi.org/
10.1007/978-3-031-09993-9 11

18. Kaur, T., Mondal, K.: Distance-2-dispersion: dispersion with further constraints. In:
Mohaisen, D., Wies, T. (eds.) Networked Systems, pp. 157–173 (2023)

19. Kshemkalyani, A.D., Ali, F.: Efficient dispersion of mobile robots on graphs. In: ICDCN,
pp. 218–227 (2019)

20. Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Fast dispersion of mobile robots on arbitrary
graphs. In: Dressler, F., Scheideler, C. (eds.) ALGOSENSORS 2019. LNCS, vol. 11931, pp.
23–40. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34405-4 2

https://doi.org/10.1007/978-3-642-04355-0_44
https://doi.org/10.1007/978-3-030-67899-9_34
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-031-21017-4_17
https://doi.org/10.1007/978-3-031-09993-9_11
https://doi.org/10.1007/978-3-031-09993-9_11
https://doi.org/10.1007/978-3-030-34405-4_2

Dispersion of Mobile Robots in Spite of Faults 429

21. Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Dispersion of mobile robots on grids. In:
Rahman, M.S., Sadakane, K., Sung, W.-K. (eds.) WALCOM 2020. LNCS, vol. 12049, pp.
183–197. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39881-1 16

22. Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Efficient dispersion of mobile robots on
dynamic graphs. In: ICDCS, pp. 732–742 (2020)

23. Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Dispersion of mobile robots using global
communication. J. Parallel Distrib. Comput. 161, 100–117 (2022)

24. Kshemkalyani, A.D., Sharma, G.: Near-optimal dispersion on arbitrary anonymous graphs.
In: Bramas, Q., Gramoli, V., Milani, A. (eds.) OPODIS. LIPIcs, vol. 217, pp. 8:1–8:19 (2021)

25. Menc, A., Pajak, D., Uznanski, P.: Time and space optimality of rotor-router graph explo-
ration. Inf. Process. Lett. 127, 17–20 (2017)

26. Molla, A.R., Moses, W.K.: Dispersion of mobile robots: the power of randomness. In: Gopal,
T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 481–500. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-14812-6 30

27. Molla, A.R., Mondal, K., Moses Jr, W.K.: Byzantine dispersion on graphs. In: IPDPS, pp.
942–951. IEEE (2021)

28. Molla, A.R., Mondal, K., Moses Jr, W.K.: Optimal dispersion on an anonymous ring in the
presence of weak byzantine robots. Theor. Comput. Sci. 887, 111–121 (2021)

29. Pattanayak, D., Sharma, G., Mandal, P.S.: Dispersion of mobile robots tolerating faults. In:
WDALFR, pp. 17:1–17:6 (2021)

30. Poudel, P., Sharma, G.: Time-optimal uniform scattering in a grid. In: ICDCN, pp. 228–237
(2019)

31. Shibata, M., Mega, T., Ooshita, F., Kakugawa, H., Masuzawa, T.: Uniform deployment of
mobile agents in asynchronous rings. In: PODC, pp. 415–424 (2016)

32. Shintaku, T., Sudo, Y., Kakugawa, H., Masuzawa, T.: Efficient dispersion of mobile agents
without global knowledge. In: Devismes, S., Mittal, N. (eds.) SSS 2020. LNCS, vol. 12514,
pp. 280–294. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64348-5 22

33. Subramanian, R., Scherson, I.D.: An analysis of diffusive load-balancing. In: SPAA, pp.
220–225 (1994)

https://doi.org/10.1007/978-3-030-39881-1_16
https://doi.org/10.1007/978-3-030-14812-6_30
https://doi.org/10.1007/978-3-030-64348-5_22

Brief Announcement: Asynchronous
Gathering of Finite Memory Robots
on a Circle Under Limited Visibility

Satakshi Ghosh(B) , Avisek Sharma , Pritam Goswami ,
and Buddhadeb Sau

Jadavpur University, 188, Raja S.C. Mallick Rd, Kolkata 700032, India
{satakshighosh.math.rs,aviseks.math.rs,

pritamgoswami.math.rs,buddhadeb.sau}@jadavpuruniversity.in

Abstract. In this paper, we consider a set of mobile entities, called
robots, located in distinct locations and operating on a continuous circle
of fixed radius. The gathering problem asks for the design of a distributed
algorithm that allows the robots to assemble at a single point on the cir-
cle. Robots have limited visibility π, i.e., each robot can only see the
points of the circle, which are at an angular distance strictly less than π
from the robot. Di Luna et al. [1] provided a deterministic gathering algo-
rithm of oblivious and silent robots on a circle under a semi-synchronous
scheduler with π visibility. Now, considering the asynchronous scheduler,
to the best of our knowledge, there is no work that solves this problem.
So, here in this work, we have proposed a deterministic algorithm that
gathers any number of robots on a circle having π visibility and finite
memory under an asynchronous scheduler.

Keywords: Gathering · Asynchronous · Circle · Limited visibility ·
Robots · Finite memory

1 Introduction

In swarm robotics, robots achieving some tasks with minimum capabilities are
the main focus of interest. If a swarm of robots with minimum capabilities can do
the same task, then it is more effective to use swarm robots rather than robots
with many capabilities, as designing the robots in the swarm is much cheaper
and simpler than making robots with many capabilities. The gathering problem
requires n robots that are initially positioned arbitrarily must meet at a single
point within a finite time. Note that the meeting point is not fixed initially. In
this work, we investigate the gathering of robots on a circle, and they are on the
perimeter of a circle of fixed radius R. They can only move along the perimeter
of that circle. Here the robots have limited visibility, which means each robot can
see only the points on the circle that have an angular distance strictly smaller
than a constant θ from the robot’s current location, where 0 < θ ≤ π. Here,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 430–434, 2023.
https://doi.org/10.1007/978-3-031-44274-2_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_32&domain=pdf
http://orcid.org/0000-0003-1747-4037
http://orcid.org/0000-0001-8940-392X
http://orcid.org/0000-0002-0546-3894
http://orcid.org/0000-0001-7008-6135
https://doi.org/10.1007/978-3-031-44274-2_32

Gathering on a Circle Under Asynchronous Scheduler 431

angles are expressed in radians. This problem becomes trivial if a unique leader
can be chosen who remains the leader throughout the algorithm. But even with
chirality, electing a unique leader is not trivial, even when the robots can not see
only one point on the circle. Also, even if a unique leader is elected, making sure
that the leader remains the leader throughout the execution of the algorithm is
another challenge that has to be taken care of. This challenge makes this problem
quite nontrivial and interesting.

Here we have proposed an algorithm for solving the gathering of robots on a
circle with a finite memory robot model under ASync scheduler and visibility
π. The work that is most related to our work is done by Di Luna et al. [1].
In their paper, they have shown that robots on a circle cannot gather if the
visibility is less or equal to π

2 and provided an algorithm under SSync scheduler
with oblivious robots considering a robot’s having π visibility. In this paper, our
main achievement is that, by equipping the robots with finite memory, we have
gained a deterministic gathering algorithm that works under an asynchronous
scheduler.

2 Robot Model

In the problem, we are considering the FST A robot model. The robots are
anonymous and identical, but not oblivious. Robots have a finite persistent mem-
ory. Robots cannot communicate with each other. Robots have weak multiplicity
detection capability, i.e., robots can detect a multiplicity point, but cannot deter-
mine the number of robots present at a multiplicity point. All robots are placed
on a circle of fixed radius. The robots agree on a global sense of handedness.
All robots move at the same speed, and their movement is rigid. Robots oper-
ate in Look-Compute-Move cycle. In each cycle, a robot takes a snapshot of
the positions of the other robots according to its own local coordinate system
(Look); based on this snapshot, it executes a deterministic algorithm to deter-
mine whether to stay put or to move to another point on the circle (Compute);
and based on the algorithm, the robots either remain stationary or make a move
to a point (Move). In fully asynchronous adversarial scheduler (ASync), the
robots are activated independently, and each robot executes its cycles indepen-
dently. This implies the amount of time spent in Look, Compute, Move, and
inactive states are finite but unbounded, unpredictable, and not necessarily the
same for different robots. We do not consider a general asynchronous scheduler.
Precisely, we assumed that in the LCM cycle of a robot, it takes a non-zero time
(non instantaneous) to finish its look and compute phase together. The robots
have no common notion of time. Here, the initial configuration is asymmetric.
Robots have limited visibility, which means they cannot see the entire circle. Let
a and b be two points on a circle C, then the angular distance between a and b
is the measure of the angle subtended at the centre of C by the shorter arc with
endpoints a and b. A robot has visibility π, which means that it can see all the
other robots that have an angular distance less than π.

432 S. Ghosh et al.

3 Definitions and Preliminaries

Before discussing the algorithm, we first introduce some definitions. A configu-
ration with no multiplicity point is said to be rotationally symmetric if there is
a nontrivial rotation with respect to the center which leaves the configuration
unchanged. Let r be a robot in a given configuration with no multiplicity point
and let r1, r2, . . . , rn be the other robots on the circle in clockwise order. Then
the angular sequence for robot r is the sequence

(cwAngle(r, r1), cwAngle(r1, r2), cwAngle(r2, r3), . . . , cwAngle(rn, r)).

We denote this sequence as S(r). Further, we call cwAngle(r, r1) as the leading
angle of r. A robot r is said to be an antipodal robot if there exists a robot r′ on
the angular distance π of the robot. In such a case, r and r′ are said to be antipo-
dal robots to each other. Note that a robot that is not antipodal is said to be a
non antipodal robot. Also, as the configuration is initially rotationally asymmet-
ric, based on the results from the paper [1] we can say that all the robots have
distinct angle sequences. In a configuration, a robot with the lexicographically
smallest angular sequence is called a true leader. If the configuration is rota-
tionally asymmetric and contains no multiplicity point, there exists exactly one
robot that has strictly the smallest lexicographic angle sequence. Hence, there is
only one true leader in such a configuration. Since a robot on the circle cannot
see whether its antipodal position is occupied by a robot or not. So a robot can
assume two things: 1) the antipodal position is empty, let’s call this configu-
ration C0(r) 2) the antipodal position is nonempty, let’s call this configuration
C1(r). So a robot r can form two angular sequences. One considering C0(r)
configuration and another considering C1(r). The next two definitions are from
the viewpoint of a robot. There may be the following possibilities. Possibility-1:
C0(r) configuration has rotational symmetry, so C1(r) is the only possible con-
figuration. Possibility-2: C1(r) configuration has rotational symmetry, so C0(r)
is the only possible configuration. Possibility-3: Both C0(r) and C1(r) has no
rotational symmetry, so both C0(r) and C1(r) can be possible configurations.

A robot r in a rotationally asymmetric configuration with no multiplicity
point is called sure leader if r is the true leader in C0(r) and C1(r) configurations.
Note that, the Sure leader is definitely the true leader of the configuration.
Hence at any time if the configuration is asymmetric and contains no multiplicity
point, there is at most one Sure leader. A robot r in a rotationally asymmetric
configuration with no multiplicity point is called a confused leader if both C0(r)
and C1(r) are possible configurations and r is a true leader in one configuration
but not in another. A robot in an asymmetric configuration with no multiplicity
point is said to be a follower robot if it is neither a sure leader nor a confused
leader. Suppose r is a confused leader, and s is the first clockwise neighbour of
r. The robot s is said to be a safe neighbour of r if the first clockwise neighbour
of the true leader of the C1(r) configuration is not antipodal to s.

Note that the above definitions are set in such a way that the sure leader (or,
a confused leader or, a follower robot) can recognise itself as a sure leader (or, a

Gathering on a Circle Under Asynchronous Scheduler 433

confused leader or, a follower robot). One result that holds for any asymmetric
configuration is:

Result 1. For any given rotationally asymmetric configuration with no multi-
plicity point, there can be at most one confused leader other than the true leader.

The Fig. 1 and Fig. 2 give the existence of all four above cases.

Fig. 1. Only one sure leader (SL) and
two confused leaders (CL)

Fig. 2. Only one confused leader (CL)
and one sure leader (SL) and one con-
fused leader (CL).

4 Discussion of the Algorithm and Correctness

Each robot has four states that are off, moveHalf, moveMore, and terminate.
A sure leader always moves to its neighbour’s position and makes a multiplicity
point. But a confused leader cannot always move to its neighbour’s position.
If a confused leader has a safe neighbour, then it will move to its neighbour’s
position and make a multiplicity point. But if the neighbour is not safe, then
a confused leader will not always move to its neighbour’s position. If the first
clockwise neighbour of the confused leader (say, r) is not safe and the C0(r)
configuration has another confused leader other than r, then r does nothing.
But if the neighbour is not safe and there is no other confused leader in the
C0(r) configuration, then r first changes its state to moveHalf and moves to
the midpoint of the leading angle with the first clockwise neighbour. After this
move, if r sees the sure leader of the initial configuration, then r changes its state
terminate and moves counter clockwise to its initial position. So r will not move
to its clockwise first neighbour position. But if the confused leader cannot see
any robot, then it changes its state to moveMore and moves the midpoint of its
leading angle with the clockwise neighbour. As the scheduler is non-standard
asynchronous, after this move, r will know if its antipodal has a robot or not. So
either it changes its state terminate or moves to the clockwise first neighbour
position by changing its state off and makes a multiplicity point. So in all
the cases, at least one and at most two multiplicity points will form. When a
robot sees a multiplicity point and it is the first clockwise or counterclockwise
neighbour of the multiplicity point, it will move to that multiplicity point. In
this way, when all robots gather at any one multiplicity point between two
multiplicity points, robots from one multiplicity point at a smaller clockwise

434 S. Ghosh et al.

distance from the other multiplicity point will move to the other multiplicity
point. In this way, all robots will gather at a point and no longer move.

We have proved that, if all robots are initially placed in a rotationally asym-
metric configuration with no multiplicity point, the execution of the algorithm
ensures that all robots eventually meet at a point within a finite time and no
longer move under the asynchronous scheduler. First, we demonstrate that, start-
ing from the initial configuration, robots will produce at least one and a maxi-
mum of two multiplicity points during the algorithm’s finite execution.

Theorem 1. Let C be a rotationally asymmetric configuration with no multi-
plicity point, then after finite execution of Algorithm at least one multiplicity
point will be created.

Lemma 1. From any rotationally asymmetric configuration with no multiplicity
point, within finite execution of Algorithm, the robots can form at most two
multiplicity points, and then all robots gather at a point on the circle.

Hence, we can conclude the following theorem.

Theorem 2. There exists a gathering algorithm that gathers any set of robots
with finite memory and π visibility from any initial rotationally asymmetric con-
figuration under asynchronous scheduler.

Details results and proofs are available in the full version of the paper [2].

5 Conclusion

In this paper, we present a gathering algorithm for robots with finite memory on
a circle under an asynchronous scheduler with visibility π. Robots are initially in
distinct positions on the circle, forming any rotationally asymmetric configura-
tion. We assume that each robot has finite persistent memory. For future studies
on this problem, it will be interesting if one can give a gathering algorithm when
robots are oblivious or the visibility is less than π.

Acknowledgement. The first author is supported by the West Bengal State Govern-
ment Fellowship Scheme. The Second and third authors are supported by UGC, the
Government of India.

References

1. Luna, G.A.D., Uehara, R., Viglietta, G., Yamauchi, Y.: Gathering on a circle with
limited visibility by anonymous oblivious robots. In: DISC 2020, pp. 12:1–12:17
(2020)

2. Ghosh, S., Sharma, A., Goswami, P., Sau B.: Asynchronous gathering of robots with
finite memory on a circle under limited visibility. CoRR abs/2302.07600 (2023)

Wait-Free Updates and Range Search
Using Uruv

Gaurav Bhardwaj1(B), Bapi Chatterjee2, Abhay Jain1, and Sathya Peri1

1 Indian Institute of Technology Hyderabad, Hyderabad, India
CS19RESCH11003@iith.ac.in

2 Indraprastha Institute of Information Technology Delhi, Delhi, India

Abstract. CRUD operations, along with range queries make a highly
useful abstract data type (ADT), employed by many dynamic analytics
tasks. Despite its wide applications, to our knowledge, no fully wait-free
data structure is known to support this ADT. In this paper, we intro-
duce Uruv, a proactive linearizable and practical wait-free concurrent
data structure that implements the ADT mentioned above. Structurally,
Uruv installs a balanced search index on the nodes of a linked list. Uruv is
the first wait-free and proactive solution for concurrent B+tree. Exper-
iments show that Uruv significantly outperforms previously proposed
lock-free B+trees for dictionary operations and a recently proposed lock-
free method to implement the ADT mentioned above.

Keywords: Wait-Free · Lock-Free · Range Search · B+ Tree

1 Introduction

With the growing size of main memory, the in-memory big-data analytics engines
are becoming increasingly popular [25]. Often the analytics tasks are based on
retrieving keys from a dataset specified by a given range. Additionally, such
applications are deployed in a streaming setting, e.g., Flurry [12], where the
dataset ingests real-time updates. Ensuring progress to every update would be
attractive for many applications in this setting, such as financial analytics [21].
The demand for real-time high-valued analytics, the powerful multicore CPUs,
and the availability of large main memory together motivate designing scalable
concurrent data structures to utilize parallel resources efficiently.

It is an ever desirable goal to achieve maximum progress of the concurrent
operations on a data structure. The maximum progress guarantee – called wait-
freedom [14] – ensures that each concurrent non-faulty thread completes its oper-
ation in a finite number of steps. Traditionally, wait-freedom has been known
for its high implementation cost and subsided performance. Concomitantly, a
weaker guarantee that some non-faulty threads will finitely complete their oper-
ations – known as lock-freedom – has been a more popular approach. However,
it has been found that the lock-free data structures can be transformed to prac-
tical wait-free [16] ones with some additional implementation and performance
overhead. Progress promises of wait-free data structures make their development
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 435–450, 2023.
https://doi.org/10.1007/978-3-031-44274-2_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_33&domain=pdf
https://doi.org/10.1007/978-3-031-44274-2_33

436 G. Bhardwaj et al.

imperative, to which a practical approach is to co-design them with their effi-
cient lock-free counterpart. While a progress guarantee is desirable, consistency
of concurrent operations is a necessity. The most popular consistency framework
is linearizability [15], i.e., every concurrent operation emerges taking effect at an
atomic step between its invocation and return.

In the existing literature, the lock-free data structures such as k-ary search
trees [7], and the lock-based key-value map KiWi [3] provide range search. In
addition, several generic methods of concurrent range search have been pro-
posed. Chatterjee [9] presented a lock-free range search algorithm for lock-free
linked-lists, skip-lists, and binary search trees. Arbel-Raviv and Brown [1] pro-
posed a more generic approach associated with memory reclamation that fits
into different concurrency paradigms, including lock-based and software transac-
tional memory-based data structures. Recently, two more approaches – bundled-
reference [19] and constant time snapshots [24] – were proposed along the same
lines of generic design. Both these works derive from similar ideas of expand-
ing the data structure with versioned updates to ensure linearizability of scans.
While the former stores pointers with time-stamped updates, the latter adds
objects to nodes time-stamped by every new range search. Moreover, bundled-
reference [19] design requires locks in every node.

In most cases, for example [3,9,19,24], the range scans are unobstructed even
if a concurrent modification (addition, deletion, or update) to the data structure
starves to take even the first atomic step over a shared node or pointer. A
reader would perceive, indeed for good reasons, that once the modifications are
made wait-free the entire data structure will become wait-free. However, to our
knowledge, none of these works actually investigates how trivial or non-trivial
it would be to arrive at the final implementation of concurrent wait-free CRUD
and range-search. This is exactly where our work contributes.

Proposed Wait-Free Linearizable Proactive Data Structure

In principle, Uruv’s design derives from that of a B+Tree [10], a self-balancing
data structure. However, we need to make the following considerations:

Wait-Freedom: Firstly, to ensure wait-freedom to an operation that needs to
perform at least one CAS execution on a shared-memory word, it must announce
its invocation [16]. Even if delayed, the announcement has to happen on realizing
that the first CAS was attempted a sufficient number of times, and yet it starved
[16]. The announcement of invocation is then followed by a guaranteed help by
a concurrent operation at some finite point [16].

Linearizability: Now, to ensure linearizability of a scan requires that its out-
put reflects the relevant changes made by every update during its lifetime. The
technique of repeated multi-scan followed by validation [7], and collecting the
updates at an augmented object, such as RangeCollector in [9], to let the range
search incorporate them before it returns, have been found scaling poorly [7,9].
Differently, multi-versioning of objects, for example [19], can have a (theoreti-
cal) possibility to stockpile an infinite number of versioned pointers between two
nodes. Interestingly, [1] exploits the memory reclamation mechanism to synchro-
nize the range scans with delete operations via logically deleted nodes. However,

Wait-Free Updates and Range Search Using Uruv 437

for lock-freedom, they use a composite primitive double-compare-single-swap
(DCSS). In comparison, [24] uses only single-word CAS. However, managing the
announcement by a starving updater that performs the first CAS to introduce a
versioned node to the data structure requires care for a wait-free design.

Node Structure: The “fat” (array-based) data nodes, for example Kiwi [3],
improve traversal performance by memory contiguity [17]. However, the bench-
marks in [24] indicate that it does not necessarily help as the number of concur-
rent updates picks up. Similarly, the lock-free B+trees by Braginsky and Petrank
[5] used memory chunks, and our experiments show that their method substan-
tially underperforms. Notwithstanding, it is wise to exploit memory contiguity
wherever there could be a scope of “slow” updates in a concurrent setting.

Proactive Maintenance: Finally, if the number of keys in a node exceeds
(falls short of) its maximum (minimum) threshold after an insertion (deletion),
it requires splitting (merging). The operation splitting the node divides it into
two while adding a key to its parent node. It is possible that the split can per-
colate to the root of the data structure if the successive parent nodes reach
their respective thresholds. Similarly, merging children nodes can cause cascad-
ing merges of successive parent nodes. With concurrency, it becomes extremely
costly to tackle such cascaded split or merge of nodes from a leaf to the root.
An alternative to this is a proactive approach which checks threshold of nodes
whiles traversing down a tree every time; if a node is found to have reached
its threshold, without waiting for its children, a pre-emptive split or merge is
performed. As a result, a restructure remains localized. To our knowledge, no
existing concurrent tree structure employs this proactive strategy.

With these considerations, we introduce a key-value store Uruv (or, Uru-
vriksha1) for wait-free updates and range search. More specifically,

(a) Uruv stores keys with associated values in leaf nodes structured as linked-
list. The interconnected leaf nodes are indexed by a balanced tree of fat
nodes, essentially, a classical B+ Tree [10], to facilitate fast key queries
(Sect. 2).

(b) The key-nodes are augmented with list of versioned nodes to facilitate range
scans synchronize with updates (Sect. 3).

(c) Uruv uses single-word CAS primitives. Following the fast-path-slow-path
technique of Kogan and Petrank [16], we optimize the helping procedure
for wait-freedom (Sect. 4). We prove linearizability and wait-freedom and
present the upper bound of step complexity of operations (Sect. 5).

(d) Our C++ implementation of Uruv significantly outperforms existing similar
approaches – lock-free B+tree of [5], and OpenBWTree [23] for dictionary
operations. It also outperforms a recently proposed method by Wei et al.
[24] for concurrent workloads involving range search (Sect. 6).

A full version of the paper is available at http://arxiv.org/abs/2307.14744
[4]. Please refer to the full version for detailed pseudocode.
1 Uruvriksha is the Sanskrit word for a wide tree.

http://arxiv.org/abs/2307.14744

438 G. Bhardwaj et al.

2 Preliminaries

We consider the standard shared-memory model with atomic read, write, FAA
(fetch-and-increment), and CAS (compare-and-swap) instructions. Uruv imple-
ments a key-value store (K,V) of keys K ∈ K and their associated values V ∈ V.

The Abstract Data Type (ADT): We consider an ADT A as a set of
operations: A = {Insert(K,V), Delete(K), Search(K), RangeQuery
(K1,K2)}
1. An Insert(K,V) inserts the key K and an associated value V if K /∈ K.
2. A Delete(K) deletes the key K and its associated value if K ∈ K.
3. A Search(K) returns the associated value of key K if K ∈ K; otherwise, it

returns −1. It does not modify (K,V).
4. A RangeQuery(K1,K2) returns keys {K ∈ K : K1≤K≤K2}, and associ-

ated values without modifying (K,V); if no such key exists, it returns −1.

2.1 Basics of Uruv’s Lock-Free Linearizable Design

Uruv derives from a B+Tree [10], a self-balancing data structure. However, to
support linearizable range search operations, they are equipped with additional
components. The key-value pairs in Uruv are stored in the key nodes. A leaf node
of Uruv is a sorted linked-list of key nodes. Thus, the leaf nodes of Uruv differ
from the array-based leaf nodes of a B+Tree. The internal nodes are implemented
by arrays containing ordered set of keys and pointers to its descendant children,
which facilitate traversal from the root to key nodes. A search path in Uruv is
shown in Fig. 1.

Fig. 1. Example of Uruv’s design. In this
example, a search operation is being performed
wherein the red arrows indicate a traversal
down Uruv, and we find the key, highlighted
red, in the linked-list via a linear search. (Color
figure online)

Fig. 2. Versioned key nodes

Unlike an array in a B+Tree’s leaf node, the key nodes making leaf nodes of
Uruv contain lists of versioning nodes mainly to ensure linearizability of range

Wait-Free Updates and Range Search Using Uruv 439

search operations. The mechanism of linearizable range search derives from that
of Wei et al. [24] – every range search increments a data structure-wide version
counter whereby concurrent addition and removal operations determine their
versions. A range search returns the keys and corresponding values only if its
version is at most the version of the range search. Thus the linearization point
of range search coincides with the atomic increment of version counter.

The associated values to a key are stored in the versioning nodes, see Fig. 2.
The creation of a key-value pair, its deletion, and addition back to the key-
value store updates the version list with a version and associated value. With
this design, Uruv supports concurrent linearizable implementation of the ADT
operations as described above.

3 Lock-Free Algorithm

3.1 The Structures of the Component Nodes

Here we first describe the structure of the nodes in Uruv. See Fig. 3. A versioning
node is implemented by the objects of type Vnode. A key node as described in
the last section, is implemented by the objects of the class llNode. Nodes of type
llNode make the linked-list of a leaf-node which is implemented by the class
VLF LL.

The leaf and internal nodes of Uruv inherit the Node class. See Fig. 4. An
object of class Node of Uruv, hereafter referred to as a node object, keeps count
of the number of keys. A node object also stores a boolean to indicate if it is a leaf
node. A boolean variable ‘frozen’ helps with “freezing a node” while undergoing
a split or merge in a lock-free updatable setting. A thread on finding that a node
is frozen helps the operation that triggered the freezing.

Fig. 3. Versioned Lock-Free Linked-List Data Structure

Every leaf node has three pointers next, newNext and a pointer to version
list ver head and one variable ts for the timestamp. The next pointer points to
the next adjacent leaf node in Uruv. When a leaf node is split or merged, the
newNext pointer ensures leaf connection. A new leaf node is created to replace it
when a leaf node is balanced. Using the newNext pointer, we connect the old and
new leaf nodes. When traversing the leaf nodes for RangeQuery with newNext
set, we follow newNext instead of next since that node has been replaced by
a newer node, ensuring correct traversal. The initial ts value is associated with
the construction of the leaf node.

440 G. Bhardwaj et al.

Fig. 4. The details of object structures

3.2 Versioned Linked-List

The description of lock-free linearizable implementation of the ADT operations
RangeQuery, Insert, and Delete requires detailing the versioned linked list.
A versioned list holds the values associated with the key held at various periods.
Each versioned node (Vnode) in the versioned list has a value, the time when
the value was modified, and a link to the previous version of that key. Versioned
linked-list information may be seen in Fig. 2 and Fig. 3. The versioned list’s nodes
are ordered in descending order by the time they have been updated. Compared
to the [13], there is no actual delinking of nodes; instead, we utilise a tombstone
value (a special value not associated with any key) to indicate a deleted node.
Moreover, deleting a node requires no help since there is no delinking. Although,
for memory reclamation, we retain a record of active RangeQuery and release
nodes that are no longer needed. Any modification to the versioned linked list
atomically adds a version node to the vhead of llNode using CAS.

3.3 Traversal and Proactive Maintenance in Uruv

We traverse from root to leaf following the order provided by the keys in the
internal nodes. In each internal node, a binary search is performed to determine
the appropriate child pointer. While traversal in Insert and Delete opera-
tions, we follow the proactive approach as described earlier. Essentially, if we
notice that a node’s key count has violated the maximum/minimum threshold,
we instantly conduct a split/merge action, and the traversal is restarted. The
proactive maintenance is shown in Fig. 5.

Fig. 5. (a) Split Leaf, (b) Merge Leaf, (c) Split Internal

Wait-Free Updates and Range Search Using Uruv 441

3.4 ADT Operations

Fig. 6. Pseudocode of Insert operation

An Insert operation starts with performing a traversal as described above to
locate the leaf node to insert a key and its associated value. It begins with the
root node; if it does not exist, it builds a new leaf node and makes it the root
with a CAS. If it cannot update the root, another thread has already changed
it, and it retries insertion. Method balanceRoot splits the root if needed and
replaces it with a new root using CAS. If CAS fails, then some other thread must
have changed the root, and it returns null. If there is no need to split the root,
it will return the current root (Fig. 6).

Lines 14–17 describe the helping mechanism, which makes the data structure
lock-free. If any node helpIdx is set to a value other than −1, then the child
node at helpIdx is undergoing the split/merge process. In that case, it will help
that child finish its split/merge operation. Method help helps child node in
split/merge operation and returns the new curr node if it successfully replaces
it using CAS; otherwise, it returns null. Then, it performs a binary search over
curr’s keys at line 18 to find the correct child pointer. It copies the child pointer
into child and stores its index in the pointer array as cidx.

If the child node is a frozen leaf node or an internal node that has reached the
threshold, it performs a split/merge operation. It starts by freezing its parent,
curr, at line 21 by setting a special freezing marker on every child pointer, so
that no other thread can change the parent node and cause inconsistency. After
freezing the parent, it stores the index of the child pointer in helpIdx of the
parent node using CAS so that other threads can help in split/merge operation.
If setHelpIdx fails, that means some other thread has already set the helpIdx,
and it retries.

442 G. Bhardwaj et al.

Restructuring a child is performed at line 24 and 32 using balanceLeaf and
splitInternal respectively. balanceLeaf performs the split/merge operation on
the leaf node based on the number of elements and returns the node replaced by
the parent node using CAS. Similarly, splitInternal splits the internal node and
returns the new parent node. If in any of the above methods, CAS is failed, then
some other thread must have replaced it, and it will return nullptr and retries at
line 31 and 35. It repeats the same process until it reaches the leaf node. Once
it reaches the leaf node, it performs the insert operation in the leaf node at line
39. It returns on success, otherwise it retries.

Insert into a Leaf. In the leaf node, all the updates occur concurrently in
the versioned linked list. It first checks if the leaf node is frozen. If it is, it
returns “Failed”, realizing that another thread is trying to balance this node. If
the node’s count has reached the maximum threshold, it freezes it and returns
“Failed”. Leaf node is frozen by setting a special freezing mark on llnode next
pointer and the vhead pointer. In both the cases, when it returns “Failed” inser-
tion will be retried after balancing it. Otherwise, it would insert the key into the
versioned lock-free linked list. If another thread is concurrently freezing the leaf
node, the insertion into the linked list might fail. If it fails, it will again return
“Failed” and retries the insertion. If the key is already present in the linked list,
it updates that key’s version by adding a new version node in the version list
head with a new value. Else it will create a new node in the linked list contain-
ing the key and its value in the version node. After the key is inserted/updated
in the linked list, its timestamp is set to the current timestamp, which is the
linearization point for insertion in the tree.

A Delete operation follows a similar approach as Insert. It traverses the tree
to the leaf node, where the key is present. The difference in traversal with respect
to Insert operation is that at line 28, instead of checking the max threshold, it
checks for the minimum threshold. Instead of splitting the internal node at line
32, it merges the internal node. Once a leaf node is found, it checks whether the
key is in the linked list. If it is in the linked list, it will update a tombstone value
in the version list to mark that key as deleted. If the key is absent, it returns
“Key not Present”.

Delete from Leaf. If the key is present, this operation creates a versioned node
with a tombstone value to set it as deleted. Just like inserting the new versioned
node its timestamp is set to the current timestamp. If the key is not present in
the linked list it simply returns “Key Not Present”.

Search Operation. Traversal to a leaf node in case of searching doesn’t need
to perform any balancing. After finding the leaf node, it checks the key in the
linked list; if it is present, it returns the value from the version node from the
head of the list; otherwise, it simply returns “Key not Present”. Before reading
the value from the versioned node it checks if the timestamp is set or not. If it is
not set, it sets the timestamp as the current timestamp before reading the value.

RangeQuery. A range query returns keys and their associated values by a
given range from the data. Uruv supports a linearizable range query employing a

Wait-Free Updates and Range Search Using Uruv 443

multi-version linked list augmented to the nodes containing keys. This approach
draws from Wei et al. [24]’s work. A global timestamp is read and updated every
time a range query is run. The leaf node having a key larger than or equal to
the beginning of the supplied range is searched after reading the current time.
Then, it chooses a value for the relevant key from the versioned list of values.
Figure 5(c) depicts a versioned linked list, with the higher versions representing
the most recent modifications.

By iterating over each versioned node individually, it selects the first value
in the list whose timestamp is smaller than the current one. This means that
the value was changed before the start of the range query, making it consistent.
It continues to add all keys and values that are less than or equal to the end of
the given range. Because all of the leaf nodes are connected, traversing them is
quick. After gathering the relevant keys and values, the range query will produce
the result.

As a leaf node could be under split or merge, for every leaf node that we
traverse, we first check whether their newNext is set. If it is and the leaf pointed
to by newNext has a timestamp lower than the range query’s timestamp, it
traverses the newNext pointer. This ensures that our range query collects data
from the correct leaf nodes. Were the timestamp not part of the leaf node, there
is a chance that the range query traverses newNext pointers indefinitely due to
repeated balancing of the leaf nodes.

4 Wait-Free Construction

We now discuss a wait-free extension to the presented lock-free algorithm above.
Wait-freedom is achieved using fast-path-slow-path method [22]. More specif-
ically, a wait-free operation starts exactly as the lock-free algorithm. This is
termed as the fast path. If a thread cannot complete its operation even after
several attempts, it enters the slow path by announcing that it would need help.
To that effect, we maintain a global stateArray to keep track of the operations
that every thread currently needs help with. In the slow path, an operation first
publishes a State object containing all the information required to help complete
its operation.

For every thread that announces its entry to the slow path, it needs to find
helpers. After completing some fixed number of fast path operations, every
thread will check if another thread needs some help. This is done by keeping
track of the thread to be helped in a thread-local HelpRecord object presented
in Fig. 7. After completing the nextCheck amount of fast path operations, it
will assist the currT id. Before helping, it checks if lastPhase equals phase in
currT id’s stateArray entry. If it does, the fast path thread will help execute the
wait-free implementation of that operation; otherwise, currT id doesn’t require
helping as its entry in the stateArray has changed, meaning the operation has
already been completed. In the worst case, if the helping thread also faces massive
contention, every available thread will eventually execute the same operation,
ensuring its success.

444 G. Bhardwaj et al.

Fig. 7. Data structures used in wait-free helping

Notice that when data and updates are uniformly distributed, the contention
among threads is low, often none. Concomitantly, in such cases, a slow path by
any thread is minimally taken.

Wait-Free Insert. Traversal in Wait-free Insert is the same as that in the
lock-free Insert as mentioned in Sect. 3. While traversal a thread could fail the
CAS operation in a split/merge operation of a node and would need to restart
traversal from the root again. At first glance, this would appear to repeat indef-
initely, contradicting wait-freedom, but this operation will eventually finish due
to helping. If a thread repeatedly fails to traverse Uruv due to such failure, every
other thread will eventually help it find the leaf node. Once we reach the leaf
node, we add the key to the versioned linked list as described below. There are
two cases - either a node containing the key already exists, or a node does not
exist.

In the former case, we need to update the linked list node’s vhead with the
versioned node, vnode, containing the new value using CAS. The significant differ-
ence between both methods is the usage of a shared Vnode from the stateArray
in wait-free versus a thread local Vnode in lock-free. Every thread helping this
insert will take this vnode from the stateArray and first checks the variable
finished if the operation has already finished. They then check if the phase is the
same in the stateArray, and vnode’s timestamp is set or not. If either is not
true, some other thread has already completed the operation, and they mark
the operation as finished. Else, they will try to update the vhead with vnode
atomically. After inserting the vnode, it initialises the timestamp and sets the
finished to be true.

In the latter case, we create a linked list node, newNode, and set its vhead
to the vnode in the stateArray entry. It tries adding newNode like the lock-free
linked list’s insert. If it is successful, the timestamp of vnode is initialized, and
the finished is set to true in the stateArray.

Wait-Free Delete. Delete operation follows the same approach as Insert. If
the key is not present in the leaf node, it returns “Key Not Present” and sets the
finished to be true. Otherwise, it will add the vnode from stateArray similar to
wait-free Insert. The only difference is that the vnode contains the tombstone
value for a deleted node.

Search and RangeQuery. Neither operation modifies Uruv nor helps any other
operation; hence their working remain as explained in Sect. 3.

Wait-Free Updates and Range Search Using Uruv 445

5 Correctness and Progress Arguments

To prove the correctness of Uruv, we have shown that Uruv is linearizable
by describing linearization points (LPs) that map any concurrent setting to
a sequential order of said operations. We discuss them in detail below.

5.1 Linearization Points

As explained earlier, we traverse down Uruv to the correct leaf node and perform
all operations on the linked list in that leaf. Therefore, we discuss the LPs of the
versioned linked list.

Insert: There are two cases. If the key does not exist, we insert the key into the
linked list. However, the timestamp of the vnode is not set, so the LP for Insert
operation is when the timestamp of vnode is set to the current timestamp. This
can be executed either just after the insertion of the key in the linked list or by
some other thread before reading the value from vnode.

If the key already exists, we update its value by atomically replacing a new
versioned node by its current vhead. After successfully changing the vhead, the
node’s timestamp is still not set. It can be set just after adding the new versioned
node or by some other thread before reading the value from the newly added
versioned node. In both the cases the LP is when the timestamp of the versioned
node is set to the current timestamp.

Delete. There are two cases. If the key does not exist, then there is no need
to delete the key as it does not exist. Therefore, the LP would be where we last
read a node from the linked list. Instead, if the key exists, the LP will be same
as Insert when we set the timestamp of the versioned node.

Search. There are two cases, first if the key doesn’t exist in the linked list, the
Search LP would be when we first read the node whose key is greater than the
key we are searching for in the linked list. Second, if the key is present in the
linked list it reads the value in the versioned node at vhead. So the LP is when we
atomically reads the value from the versioned node. If a concurrent insert/delete
leads to a split/merge operation, then there is a chance that the search will end
up at a leaf node that is no longer a part of Uruv. In that case, the search’s LP
would have happened before insert/delete’s LP. Search’s LP remains the same as
above.

RangeQuery. RangeQuery method reads the global timestamp and incre-
ment it by 1. So the LP for range query would be the atomic read of global
timestamp. The range query’s LP will remain the same regardless of any other
concurrent operation.

6 Experiments

In this section, we benchmark Uruv against (a) previous lock-free variants of
the B+Tree for updates and search operations (to our knowledge, there are no

446 G. Bhardwaj et al.

existing wait-free implementations of the B+Tree, and lock-free B+Trees do not
implement range search), and (b) the lock-free VCAS-BST of [24], which is the
best-performing data structure in their benchmark. The code of the benchmarks
is available at https://github.com/PDCRL/Uruv.git.

Experimental Setup. We conducted our experiments on a system with an IBM
Power9 model 2.3 CPU packing 40 cores with a minimum clock speed of 2.30 GHz
and a maximum clock speed of 3.8 GHz. There are four logical threads for each
core, and each has a private 32 KB L1 data cache and L1 instruction cache. Every
pair of cores shares a 512 KB L2 cache and a 10 MB L3 cache. The system has
240 GB RAM and a 2 TB hard disk. The machine runs Ubuntu 18.04.6 LTS. We
implement Uruv in C++. Our code was compiled using g++ 11.1.0 with -std =
c++17 and linked the pthread and atomic libraries. We take the average of the
last seven runs out of 10 total runs, pre-warming the cache the first three times.
Our average excludes outliers by considering results closest to the median.

(a) (b) (c)

Fig. 8. The performance of Uruv when compared to LF B+Tree [5] and
Open BwTree [23]. Higher is better. The workload distributions are (a) Reads -
100% (b) Reads - 95%, Updates - 5%, and (c) Reads - 50%, Updates - 50%

Benchmark. Our benchmark takes 7 parameters - read, insert, delete, range
query, range query size, prefilling size, and dataset size. Read, insert, delete,
and range queries indicate the percentage of these operations. We use a uniform
distribution to choose between these four operations probabilistically. We prefill
each data structure with 100 million keys, uniformly at random, from a universe
of 500 million keys ranging [1, 500M].

Performance for Dictionary Operations. Results of three different workloads -
Read-only (Fig. 8a), Read-Heavy (Fig. 8b), and a Balanced workload (Fig. 8c) are
shown in Fig. 8. Across the workloads, at 80 threads, Uruv beats LF B+Tree [5]
by 95×, 76×, and 44× as it replaces the node with a new node for every insert.

https://github.com/PDCRL/Uruv.git

Wait-Free Updates and Range Search Using Uruv 447

Uruv beats OpenBwTree [23] by 1.7×, 1.7×, and 1.25×. The performance of
LF-URUV and WF-URUV correlates since WF-URUV has a lower possibility
of any thread taking a slow path. In all three cases, the gap between Uruv and
the rest increases as the number of threads increases. This shows the scalability
of the proposed method. As we move from 1 to 80 threads, Uruv scales 46×
to 61× in performance, LFB+Tree scales 2.4× to 5× and OpenBw-Tree scales
39× to 42×. These results establish the significantly superior performance of
Uruv over its existing counterpart.

Performance for Workloads Including Range Search. We compare Uruv against
VCAS-BST in various workloads in Fig. 9. Figures 9a–9c are read-heavy work-
loads and Fig. 9d–9f are update-heavy workloads. Across each type of workload,
we vary the range query percentage from 1% to 10%. At 80 threads, we beat
VCAS-BST by 1.38× in update-heavy workloads and 1.68× in read-heavy
workloads. These set of results demonstrate the efficacy of Uruv’s wait-free range
search.

(a) (b) (c)

(d) (e) (f)

Fig. 9. The performance of Uruv when compared to VCAS-BST. The workload
distributions are (a) Reads - 94%, Updates - 5%, Range Queries of size 1K - 1%, (b)
Reads - 90%, Updates - 5%, Range Queries of size 1K - 5%, (c) Reads - 85%, Updates
- 5%, Range Queries of size 1K - 10%, (d) Reads - 49%, Updates - 50%, Range Queries
of size 1K - 1%, (e) Reads - 45%, Updates - 50%, Range Queries of size 1K - 5%, and
(f) Reads - 40%, Updates - 50%, Range Queries of size 1K - 10%

448 G. Bhardwaj et al.

7 Related Work

We have already discussed the salient points where Uruv differs from existing
techniques of concurrent range search. In particular, in contrast to the locking
method of bundled references [19] and the lock-free method of constant time
snapshots [24], Uruv guarantees wait-freedom. The architecture ensuring wait-
freedom in Uruv, i.e., its stateArray, has to accommodate its multi-versioning.
The existing methods did not have to consider this.

Anastasia et al. [5] developed the first lock-free B+Tree. In their design, every
node implements a linked-list augmented with an array. This ensures that each
node in the linked-list is allocated contiguously. It slows down updates at the leaf
and traversal down their tree. Uruv’s design is inspired by their work, but, does
away with the arrays in the nodes. As the experiments showed, it clearly benefits.
Most importantly, we also support linearizable wait-free range search, which is
not available in [5]. OpenBw-Tree [23] is an optimized lock-free B+tree that was
designed to achieve high performance under realistic workloads. However, again,
it does not support range search.

We acknowledge that other recently proposed tree data structures could be
faster than Uruv, for example, C-IST [8] and LF-ABTree [6]. However, LF-
ABTree is a relaxed tree where the height and the size of the nodes are relaxed
whereas C-IST [8] uses interpolation search on internal nodes to achieve high
performance. That is definitely an attractive dimension towards which we plan
to adapt the design of Uruv. Furthermore, they are not wait-free. Our focus
was on designing a B+Tree that supports wait-free updates and range search
operations.

In regards to wait-free data structures, most of the attempts so far has been
for Set or dictionary abstract data types wherein only insertion, deletion, and
membership queries are considered. For example, Natarajan et al. [18] presented
wait-free red-black trees. Applying techniques similar to fast-path-slow-path,
which we used, Petrank and Timmet [20] proposed converting lock-free data
structures to wait-free ones. They used this strategy to propose wait-free imple-
mentations of inked-list, skip-list and binary search trees. There have been prior
work on wait-free queues and stacks [2,11]. However, to our knowledge, this is the
first work on a wait-free implementation of an abstract data type that supports
add, remove, search and range queries.

8 Conclusion

We developed an efficient concurrent data structure Uruv that supports wait-free
addition, deletion, membership search and range search operations. Theoreti-
cally, Uruv offers a finite upper bound on the step complexity of each operation,
the first in this setting. On the practical side, Uruv significantly outperforms the
existing lock-free B+Tree variants and a recently proposed linearizable lock-free
range search algorithm.

Wait-Free Updates and Range Search Using Uruv 449

References

1. Arbel-Raviv, M., Brown, T.: Harnessing epoch-based reclamation for efficient range
queries. ACM SIGPLAN Not. 53(1), 14–27 (2018)

2. Attiya, H., Castañeda, A., Hendler, D.: Nontrivial and universal helping for wait-
free queues and stacks. J. Parallel Distrib. Comput. 121, 1–14 (2018)

3. Basin, D., et al.: KiWi: a key-value map for scalable real-time analytics. In: PPOPP,
pp. 357–369 (2017)

4. Bhardwaj, G., Jain, A., Chatterjee, B., Peri, S.: Wait-free updates and range search
using Uruv (2023). arXiv:2307.14744

5. Braginsky, A., Petrank, E.: A lock-free B+ tree. In: Proceedings of the Twenty-
Fourth Annual ACM Symposium on Parallelism in Algorithms and Architectures,
pp. 58–67 (2012)

6. Brown, T.: Techniques for constructing efficient lock-free data structures. CoRR,
abs/1712.05406 (2017). arXiv:1712.05406

7. Brown, T., Avni, H.: Range queries in non-blocking k -ary search trees. In: Baldoni,
R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 31–45.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35476-2 3

8. Brown, T., Prokopec, A., Alistarh, D.: Non-blocking interpolation search trees with
doubly-logarithmic running time. In: PPOPP, pp. 276–291 (2020)

9. Chatterjee, B.: Lock-free linearizable 1-dimensional range queries. In: Proceedings
of the 18th International Conference on Distributed Computing and Networking,
pp. 1–10 (2017)

10. Comer, D.: Ubiquitous B-tree. ACM Comput. Surv. (CSUR) 11(2), 121–137 (1979)
11. Fatourou, P., Kallimanis, N.D.: A highly-efficient wait-free universal construction.

In: Proceedings of the Twenty-Third Annual ACM Symposium on Parallelism in
Algorithms and Architectures, pp. 325–334 (2011)

12. Flurry. Flurry Analytics (2022). https://www.flurry.com/. Accessed May 2022
13. Harris, T.L.: A pragmatic implementation of non-blocking linked-lists. In: Welch,

J. (ed.) DISC 2001. LNCS, vol. 2180, pp. 300–314. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45414-4 21

14. Herlihy, M., Shavit, N.: On the nature of progress. In: OPODIS, pp. 313–328 (2011)
15. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent

objects. ACM Trans. Program. Lang. Syst. (TOPLAS) 12(3), 463–492 (1990)
16. Kogan, A., Petrank, E.: A methodology for creating fast wait-free data structures.

ACM SIGPLAN Not. 47(8), 141–150 (2012)
17. Kowalski, T., Kounelis, F., Pirk, H.: High-performance tree indices: locality mat-

ters more than one would think. In: 11th International Workshop on Accelerating
Analytics and Data Management Systems (2020)

18. Natarajan, A., Savoie, L.H., Mittal, N.: Concurrent wait-free red black trees. In:
Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M.
(eds.) SSS 2013. LNCS, vol. 8255, pp. 45–60. Springer, Cham (2013). https://doi.
org/10.1007/978-3-319-03089-0 4

19. Nelson, J., Hassan, A., Palmieri, R.: Bundled references: an abstraction for highly-
concurrent linearizable range queries. In: PPOPP, pp. 448–450 (2021)

20. Petrank, E., Timnat, S.: A practical wait-free simulation for lock-free data struc-
tures (2017)

21. Tian, X., Han, R., Wang, L., Gang, L., Zhan, J.: Latency critical big data com-
puting in finance. J. Finance Data Sci. 1(1), 33–41 (2015)

http://arxiv.org/abs/2307.14744
http://arxiv.org/abs/1712.05406
https://doi.org/10.1007/978-3-642-35476-2_3
https://www.flurry.com/
https://doi.org/10.1007/3-540-45414-4_21
https://doi.org/10.1007/978-3-319-03089-0_4
https://doi.org/10.1007/978-3-319-03089-0_4

450 G. Bhardwaj et al.

22. Timnat, S., Braginsky, A., Kogan, A., Petrank, E.: Wait-free linked-lists. In:
OPODIS, pp. 330–344 (2012)

23. Wang, Z., et al.: Building a bw-tree takes more than just buzz words. In: Proceed-
ings of the 2018 International Conference on Management of Data, pp. 473–488
(2018)

24. Wei, Y., Ben-David, N., Blelloch, G.E., Fatourou, P., Ruppert, E., Sun, Y.:
Constant-time snapshots with applications to concurrent data structures. In:
PPOPP, pp. 31–46 (2021)

25. Zhang, H., Chen, G., Ooi, B.C., Tan, K.-L., Zhang, M.: In-memory big data man-
agement and processing: a survey. IEEE Trans. Knowl. Data Eng. 27(7), 1920–1948
(2015)

Stand-Up Indulgent Gathering on Lines

Quentin Bramas1 , Sayaka Kamei2 , Anissa Lamani1(B) ,
and Sébastien Tixeuil3

1 University of Strasbourg, ICube, CNRS, Strasbourg, France
alamani@unistra.fr

2 Hiroshima University, Higashihiroshima, Japan
3 Sorbonne University, CNRS, LIP6, IUF, Paris, France

Abstract. We consider a variant of the crash-fault gathering problem
called stand-up indulgent gathering (SUIG). In this problem, a group of
mobile robots must eventually gather at a single location, which is not
known in advance. If no robots crash, they must all meet at the same
location. However, if one or more robots crash at a single location, all
non-crashed robots must eventually gather at that location. The SUIG
problem was first introduced for robots operating in a two-dimensional
continuous Euclidean space, with most solutions relying on the ability of
robots to move a prescribed (real) distance at each time instant.

In this paper, we investigate the SUIG problem for robots operating
in a discrete universe (i.e., a graph) where they can only move one unit
of distance (i.e., to an adjacent node) at each time instant. Specifically,
we focus on line-shaped networks and characterize the solvability of the
SUIG problem for oblivious robots without multiplicity detection.

Keywords: Crash failure · fault-tolerance · LCM robot model

1 Introduction

1.1 Context and Motivation

Mobile robotic swarms recently received a considerable amount of attention
from the Distributed Computing scientific community. Characterizing the exact
hypotheses that enable solving basic problems for robots represented as dis-
oriented (each robot has its own coordinate system) oblivious (robots cannot
remember past action) dimensionless points evolving in a Euclidean space has
been at the core of the researchers’ goals for more than two decades. One of
the key such hypotheses is the scheduling assumption [14]: robots can execute
their protocol fully synchronized (FSYNC), in a completely asynchronous man-
ner (ASYNC), of having repeatedly a fairly chosen subset of robots scheduled
for synchronous execution (SSYNC).

Among the many studied problems, the gathering [22] plays a benchmarking
role, as its simplicity to express (robots have to gather in finite time at the exact

This paper was supported by JSPS KAKENHI No. 23H03347, 19K11828, and project
SAPPORO (Ref. 2019-CE25-0005-1).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 451–465, 2023.
https://doi.org/10.1007/978-3-031-44274-2_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_34&domain=pdf
http://orcid.org/0000-0003-0612-5616
http://orcid.org/0000-0003-1716-3028
http://orcid.org/0000-0001-7774-8402
http://orcid.org/0000-0002-0948-7172
https://doi.org/10.1007/978-3-031-44274-2_34

452 Q. Bramas et al.

same location, not known beforehand) somewhat contradicts its computational
tractability (two robots evolving assuming SSYNC scheduling cannot gather,
without additional hypotheses).

As the number of robots grows, the probability that at least one of them fails
increases, yet, relatively few works consider the possibility of robot failures. One
of the simplest such failures is the crash fault, where a robot unpredictably stops
executing its protocol. In the case of gathering, one should prescribe the expected
behavior in the presence of crash failures. Two variants have been studied: weak
gathering expects all correct (that is, non-crashed) robots to gather, regardless
of the positions of the crashed robots, while strong gathering (also known as
stand-up indulgent gathering – SUIG) expects correct robots to gather at the
(supposedly unique) crash location. In continuous Euclidean space, weak gath-
ering is solvable in the SSYNC model [1,3,6,13], while SUIG (and its variant
with two robots, stand up indulgent rendezvous – SUIR) is only solvable in the
FSYNC model [4,5].

A recent trend [14] has been to move from the continuous environment set-
ting to a discrete one. More precisely, in the discrete setting, robots can occupy
a finite number of locations, and move from one location to another if they
are neighboring. This neighborhood relation is conveniently represented by a
graph whose nodes are locations, leading to the “robots on graphs” denomina-
tion. This discrete setting is better suited for describing constrained physical
environments, or environments where robot positioning is only available from
discrete sensors [2]. From a computational perspective, the continuous setting
and the discrete setting are unrelated: on the one hand, the number of possible
configurations (that, the number of robot positions) is much more constrained in
the discrete setting than in the continuous setting (only a finite number of config-
urations exists in the discrete setting), on the other hand, the continuous setting
offers algorithms designers more flexibility to solve problematic configurations
(e.g., using arbitrarily small movements to break a symmetry).

In this paper, we consider the discrete setting, and aim to characterize the
solvability of the SUIR and SUIG problems: in a set of locations whose neigh-
borhood relation is represented by a line-shaped graph, robots have to gather at
one single location, not known beforehand; furthermore, if one or more robots
crash anytime at the same location, all robots must gather at this location.

1.2 Related Works

In graphs, in the absence of faults, mobile robot gathering was primarily consid-
ered for ring-shaped graphs [10,11,15–17,19,20]. For other topologies, gathering
problem was considered, e.g., in finite grids [12], trees [12], tori [18], complete
cliques [9], and complete bipartite graphs [9]. Most related to our problem is the
(relaxed) FSYNC gathering algorithm presented by Castenow et al. [8] for grid-
shaped networks where a single robot may be stationary. The main differences
with our settings are as follows. First, if no robot is stationary, their [8] robots
end up in a square of 2 × 2 rather than a single node as we require. Second,
when one robot is stationary (and thus never moves), all other robots gather

Stand-Up Indulgent Gathering on Lines 453

at the stationary robot location, assuming a stationary robot can be detected as
such when on the same node (instead, we consider that a crashed robot cannot
be detected), and assuming a stationary robot never moves from the beginning
of the execution (while we consider anytime crashes). Third, they assume that
initial positions are neighboring (while we characterize which patterns of initial
positions are solvable).

In the continuous setting, the possibility of a robot failure was previously con-
sidered. As previously stated, the weak-gathering problem in SSYNC [1,3,6,13],
and the SUIR and SUIG problems in FSYNC [4,5] were previously considered.
In particular, solutions to SUIR and SUIG [4,5] make use of a level-slicing tech-
nique, that mandates them to move by a fraction of the distance to another
robot. Obviously, such a technique cannot be translated to the discrete model,
where robots always move by exactly one edge.

Works combining the discrete setting and the possibility of robot failures are
scarce. Ooshita and Tixeuil [21] considered transient robot faults placing them
at arbitrary locations, and presented a probabilistic self-stabilizing gathering
algorithm in rings, assuming SSYNC, and that robots are able to exactly count
how many of them occupy a particular location. Castaneda et al. [7] presented
a weaker version of gathering, named edge-gathering. They provided a solution
to edge-gathering in acyclic graphs, assuming that any number of robots may
crash. On the one hand, their scheduling model is the most general (ASYNC);
on the other hand, their robot model makes use of persistent memory (robots
can remember some of their past actions, and communicate explicitly with other
robots).

Overall, to our knowledge, the SUIR and SUIG problems were never
addressed in the discrete setting.

1.3 Our Contribution

In this paper, we initiate the research on SUIG and SUIR feasibility for robots
on line-shaped graphs, considering the vanilla model (called OBLOT [14]) where
robots are oblivious (that is, they don’t have access to persistent memory
between activations), are not able to distinguish multiple occupations of a given
location, and can be completely disoriented (no common direction). More pre-
cisely, we focus on both of finite/infinite lines, and study conditions that preclude
or enable SUIG and SUIR solvability. As in the continuous model, we first prove
that SUIG and SUIR are impossible to solve in the SSYNC model, so we con-
centrate on the FSYNC model. It turns out that, in FSYNC, SUIR is solvable
if and only if the initial distance between the two robots is even, and that SUIG
is solvable if only if the initial configuration is not edge-symmetric. Our positive
results are constructive, as we provide an algorithm for each case and prove it
correct. As expected, the key enabling algorithmic constructions we use for our
protocols are fundamentally different from those used in continuous spaces [4,5],
as robots can no longer use fractional moves to solve the problem, and can be
of independent interest to build further solutions in other topologies.

454 Q. Bramas et al.

The rest of the paper is organized as follows. Section 2 presents our model
assumptions, Sect. 3 is dedicated to SUIR, and Sect. 4 is dedicated to SUIG. We
provide concluding remarks in Sect. 5.

2 Model

The line consists of an infinite or finite number of nodes u0, u1, u2, . . . , such that
a node ui is connected to both u(i−1) and u(i+1) (if they exist). Note that in the
case where the line is finite of size n, two nodes of the line, u0 and un−1 are only
connected to u1 and un−2, respectively.

Let R = {r1, r2, . . . , rk} be the set of k ≥ 2 autonomous robots. Robots are
assumed to be anonymous (i.e., they are indistinguishable), uniform (i.e., they all
execute the same program, and use no localized parameter such as a particular
orientation), oblivious (i.e., they cannot remember their past actions), and dis-
oriented (i.e., they cannot distinguish left and right). We assume that robots do
not know the number of robots k. In addition, they are unable to communicate
directly, however, they have the ability to sense the environment including the
positions of all other robots, i.e., they have infinite view. Based on the snapshot
resulting of the sensing, they decide whether to move or to stay idle. Each robot
r executes cycles infinitely many times, (i) first, r takes a snapshot of the envi-
ronment to see the positions of the other robots (LOOK phase), (ii) according to
the snapshot, r decides whether it should move and where (COMPUTE phase),
and (iii) if r decides to move, it moves to one of its neighbor nodes depending
on the choice made in COMPUTE phase (MOVE phase). We call such cycles
LCM (LOOK-COMPUTE-MOVE) cycles. We consider the FSYNC model in
which at each time instant t, called round, each robot r executes an LCM cycle
synchronously with all the other robots, and the SSYNC model where a non-
empty subset of robots chosen by an adversarial scheduler executes an LCM
cycle synchronously, at each t.

A node is considered occupied if it contains at least one robot; otherwise, it
is empty. If a node u contains more than one robot, it is said to have a tower or
multiplicity. The ability to detect towers is called multiplicity detection, which
can be either global (any robot can sense a tower on any node) or local (a robot
can only sense a tower if it is part of it). If robots can determine the number of
robots in a sensed tower, they are said to have strong multiplicity detection. In
this work, we assume that robots do not have multiplicity detection and cannot
distinguish between nodes with one robot and those with multiple robots.

As robots move and occupy nodes, their positions form the system’s config-
uration Ct = (d(u0), d(u1), . . .) at time t. Here, d(ui) = 0 if node ui is empty
and d(ui) = 1 if it is occupied.

Given two nodes ui and uj , a segment [ui, uj] represents the set of nodes
between ui and uj , inclusive. No assumptions are made about the state of the
nodes in [ui, uj]. Any node u ∈ [ui, uj] can be either empty or occupied. The num-
ber of occupied nodes in [ui, uj] is represented by |[ui, uj]|. In Fig. 1, each node
ui, where i ∈ {2, 3, . . . , 9}, is part of the segment [u2, u9]. Note that |[u2, u9]| = 3
since nodes u2, u5, and u9 are occupied.

Stand-Up Indulgent Gathering on Lines 455

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9

[u2, u9]

Fig. 1. Instance of a configuration in which the segment [u2, u9] is highlighted.

For a given configuration C, let ui be an occupied node. Node uj is considered
an occupied neighboring node of ui in C if it is occupied and if |[ui, uj]| = 2. A
border node in C is an occupied node with only one occupied neighboring node.
A robot on a border node is referred to as a border robot. In Fig. 1, when k = 4,
nodes u0 and u9 are border nodes.

The distance between two nodes ui and uj is the number of edges between
them. The distance between two robots ri and rj is the distance between the two
nodes occupied by ri and rj , respectively. We denote the distance between ui

and uj (resp. ri and rj) dist(ui, uj) (resp. dist(ri, rj)). Two robots or two nodes
are neighbors (or adjacent) if the distance between them is one. A sequence of
consecutive occupied nodes is a block. Similarly, a sequence of consecutive empty
nodes is a hole.

An algorithm A is a function mapping the snapshot (obtained during the
LOOK phase) to a neighbor node destination to move to (during the MOVE
phase). An execution E = (C0, C1, . . .) of A is a sequence of configurations,
where C0 is an initial configuration, and every configuration Ct+1 is obtained
from Ct by applying A.

Let r be a robot located on node ui at time t and let S+(t) = d(ui), d(ui+1),
. . . , d(ui+m) and S−(t) = d(ui), d(ui−1), . . . d(ui−m′) be two sequences such that
m,m′ ∈ N. Note that m = n− i−1 and m′ = i in the case where the line is finite
of size n, m = m′ = ∞ in the case where the line is infinite. The view of robot
r at time t, denoted V iewr(t), is defined as the pair {S+(t), S−(t)} ordered in
the increasing lexicographical order.

Let C be a configuration at time t. Configuration C is said to be symmetric
at time t if there exist two robots r and r′ such that V iewr(t) = V iewr′(t).
In this case, r and r′ are said to be symmetric robots. Let C be a symmetric
configuration at time t then, C is said to be node-symmetric if the distance
between two symmetric robots is even (i.e., if the axis of symmetry intersects
with the line on a node), otherwise, C is said to be edge-symmetric. Finally, a
non-symmetric configuration is called a rigid configuration.

Problem Definition. A robot is said to be crashed at time t if it is not activated
at any time t′ ≥ t. That is, a crashed robot stops execution and remains at the
same position indefinitely. We assume that robots cannot identify a crashed
robot in their snapshots (i.e., they are able to see the crashed robots but remain
unaware of their crashed status). A crash, if any, can occur at any round of
the execution. Furthermore, if more than one crash occurs, all crashes occur at
the same location. In our model, since robots do not have multiplicity detection
capability, a location with a single crashed robot and with multiple crashed

456 Q. Bramas et al.

robots are indistinguishable, and are thus equivalent. In the sequel, for simplicity,
we consider at most one crashed robot in the system.

We consider the Stand Up Indulgent Gathering (SUIG) problem defined in
[5]. An algorithm solves the SUIG problem if, for any initial configuration C0

(that may contain multiplicities), and for any execution E = (C0, C1, . . .), there
exists a round t such that all robots (including the crashed robot, if any) gather
at a single node, not known beforehand, for all t′ ≥ t. The special case with
k = 2 is called the Stand Up Indulgent Rendezvous (SUIR) problem.

3 Stand Up Indulgent Rendezvous

We address in this section the case in which k = 2, that is, the SUIR problem.
We show that SSYNC solutions do not exist when one seeks a deterministic
solution (Corollary 1), and that even in FSYNC, not all initial configurations
admit a solution (Theorem 1). By contrast, all other initial configurations admit
a deterministic SUIR solution (Theorem 2).

Theorem 1. Starting from a configuration where the two robots are at odd dis-
tance from each other on a line-shaped graph, the SUIR problem is unsolvable in
FSYNC by deterministic oblivious robots without additional hypotheses.

Proof. Let us first observe that in any configuration, both robots must move.
Indeed, if no robot moves, then no robot will ever move, and SUIR is never
achieved. If one robot only moves, then the adversary can crash this robot, and
the two robots never move, hence SUIR is never achieved.

In any configuration, two robots can either: (i) move both in the same direc-
tion, (ii) move both toward each other, or (iii) move both in the opposite direc-
tion. Assuming an FSYNC scheduling and no crash by any robot, in the case of
(i), the distance between the two robots does not change, in the case of (ii), the
distance decreases by two, and in the case of (iii), it increases by two. Since the
distance between the two robots is initially odd, then any FSYNC execution of
a protocol step keeps the distance between robots odd. As a result, the distance
never equals zero, and the robots never gather. �

Corollary 1. The SUIR problem is unsolvable on a line in SSYNC without
additional hypotheses.

Proof. For the purpose of contradiction, suppose that there exists a SUIR algo-
rithm A in SSYNC. Consider an SSYNC schedule starting from a configuration
where exactly one robot is activated in each round. Since any robot advances
by exactly one edge per round, and that A solves SUIR, every such execution
reaches a configuration where the two robots are at distance 2i + 1, where i is
an integer, that is, a configuration where robots are at odd distance from one
another. From this configuration onward, the schedule becomes synchronous (as
a synchronous schedule is still allowed in SSYNC). By Theorem 1, rendezvous
is not achieved, a contradiction. �

Stand-Up Indulgent Gathering on Lines 457

By Theorem 1, we investigate the case of initial configurations where the
distance between the two robots is even. It turns out that, in this case, the
SUIR problem can be solved.

Theorem 2. Starting from a configuration where the two robots are at even dis-
tance from each other, the SUIR problem is solvable in FSYNC by deterministic
oblivious robots without additional hypotheses.

Proof. Our proof is constructive. Consider the simple algorithm “go to the other
robot position”.

When no robot crashes, at each FSYNC round, the distance between the
two robots decreases by two. Since it is initially even, it eventually reaches zero,
and the robots stop moving (the other robot is on the same location), hence
rendezvous is achieved.

If one robot crashes, in the following FSYNC rounds, the distance between
the two robots decreases by one, until it reaches zero. Then, the correct robot
stops moving (the crashed robot is on the same location), hence rendezvous is
achieved. �

Observe that both Theorems 1 and 2 are valid regardless of the finiteness of
the line network.

4 Stand Up Indulgent Gathering

We address the SUIG problem (k ≥ 2) on line-shaped networks in the following.
Section 4.1 first derives some impossibility results, and then Sect. 4.2 presents
our algorithm; finally, the proof of our algorithm appears in Sect. 4.3.

4.1 Impossibility Results

Theorem 3 ([20]). The gathering problem is unsolvable in FSYNC on line net-
works starting from an edge-symmetric configuration even with strong multiplic-
ity detection.

Corollary 2. The SUIG problem is unsolvable in FSYNC on line networks
starting from an edge-symmetric configuration even with strong multiplicity
detection.

Proof. Consider a FSYNC execution without crashes, and apply Theorem 3. �

As a result of Corollary 2, we suppose in the remaining of the section that
initial configurations are not edge-symmetric.

Lemma 1. Even starting from a configuration that is not edge-symmetric, the
SUIG problem is unsolvable in SSYNC without additional hypotheses.

458 Q. Bramas et al.

Proof. The proof is by induction on the number X of occupied nodes. Suppose
for the purpose of contradiction that there exists such an algorithm A.

If X = 2, and if the distance between the two occupied nodes is 1, consider
an FSYNC schedule. All robots have the same view, so either all robots stay
on their locations (and the configuration remains the same), or all robots go to
the other location (and the configuration remains with X = 2 and a distance of
1 between the two locations). As this repeats forever, in both cases, the SUIG
is not achieved, a contradiction. If X = 2, and if the distance between the
two occupied nodes, ui and uj , is at least 2, consider a schedule that either (i)
executes all robots on ui, or (ii) executes all robots at uj , at every round. So, the
system behaves (as robots do not use additional hypotheses such as multiplicity
detection) as two robots, initially on distinct locations separated by distance
at least 2. As a result, the distance between the two occupied nodes eventually
becomes odd. Then, consider an FSYNC schedule, and by Theorem 1, A cannot
be a solution, a contradiction.

Suppose now that for some integer X, the lemma holds. Let us show that it
also holds for X + 1. Consider an execution starting from a configuration with
X+1 occupied nodes. Since A is a SUIG solution, any execution of A eventually
creates at least one multiplicity point by having a robot r1 on one occupied
node moved to an adjacent occupied node. Consider the configuration Cb that is
immediately before the creation of the multiplicity point. Then, in Cb, all robots
at the location of r1 make a move (this is possible in SSYNC), so the resulting
configuration has X occupied nodes. By the induction hypothesis, algorithm A
cannot solve SUIG from this point, a contradiction.

So, for all possible initial configurations, algorithm A cannot solve SUIG, a
contradiction. �

As a result of Lemma 1, we suppose in the sequel that the scheduling is
FSYNC.

4.2 Algorithm AL

In the following, we propose an algorithm AL in FSYNC such that the initial
configuration is not edge-symmetric.

Before describing our strategy, we first provide some definitions that will be
used throughout this section. In given configuration C, let dC be the largest even
distance between any pair of occupied nodes and let UC be the set of occupied
nodes at distance dC from another occupied node. If C is node-symmetric, UC

consists only of the two border nodes (|UC | = 2). Then, let u and u′ be nodes
in UC . By contrast, if C is rigid, then |UC | ≥ 2 (refer to Lemma 2). Since each
robot has a unique view in a rigid configuration, let u ∈ UC be the node that
hosts the robots with the largest view among those on a node of UC and let u′ be
the occupied node at distance dC from u. Observe that if there are two candidate
nodes for u′, using the view of the robots again, we can uniquely elect one of
the two which are at distance dC from u (by taking the one with the largest
view). That is, u and u′ can be identified uniquely in C. We refer to [u, u′] by

Stand-Up Indulgent Gathering on Lines 459

Fig. 2. Instance of a configuration in which [u, u′] is the target segment. Nodes v and
v′ are both in O[u,u′].

the target segment in C, and denote the number of occupied nodes in [u, u′] by
|[u, u′]|. Finally, the set of occupied nodes which are not in [u, u′] is denoted by
O[u,u′]. Refer to Fig. 2 for an example.

We first observe that in any configuration C in which there are at least three
occupied nodes, there exist at least two occupied nodes at an even distance.

Lemma 2. In any configuration C where there are at least three occupied nodes,
there exists at least one pair of robots at an even distance from each other.

Proof. Assume by contradiction that the lemma does not hold and let u1, u2, and
u3 be three distinct occupied nodes such that u2 is located between u1 and u3.
Assume w.l.o.g. that d1 = dist(u1, u2) and d2 = dist(u2, u3). By the assumption,
both d1 and d2 are odd. That is, there exist q, q′ ∈ N, d1 = 2q+1 and d2 = 2q′+1.
Hence, d1 + d2 is even since d1 + d2 = 2(q + q′ + 1). A contradiction. �

We propose, in the following, an algorithm named AL that solves the SUIG
problem on line-shaped networks. The main idea of the proposed strategy is to
squeeze the robots by reducing the distance between the two border robots such
that they eventually meet on a single node. To guarantee this meeting, robots
aim to reach a configuration in which the border robots are at an even distance.
Note that an edge-symmetric configuration can be reached during this process.
However, in this case, we guarantee that not only one robot has crashed but also,
eventually, when there are only two occupied adjacent nodes, the crashed robot
is alone on its node ensuring the gathering. Let C be the current configuration.
In the following, we describe robots’ behavior depending on C:

1. C is edge-symmetric. The border robots move toward an occupied node.
2. Otherwise. Let [u, u′] be the target segment in C, and let O[u,u′] be the set

of robots located on a node, not part of [u, u′]. Robots behave differently
depending on the size of O[u,u′]:
(a) |O[u,u′]| = 0 (u and u′ host the border robots). In this case, the border

robots are the ones to move. Their destination is their adjacent node
toward an occupied node (refer to Fig. 3 for an example).

(b) |O[u,u′]| = 1. Let uv be the unique occupied node in O[u,u′]. Assume
w.l.o.g. that uv is closer to u than to u′. We address only the case in which
dist(u, uv) is odd. (Note that if dist(u, uv) is even, the border nodes are
at an even distance and |O[u,u′]| = 0.)
i. If the number of occupied nodes is three and uv and u are two adjacent

nodes, robots on both u and u′ are the ones to move. Their destination
is their adjacent node toward uv (refer to Fig. 4).

460 Q. Bramas et al.

Fig. 3. Instance of a configuration in which |O[u,u′]| = 0. Robots at the border move
toward an occupied node as shown by the red arrows. (Color figure online)

Fig. 4. Instance of a configuration of the special case in which |O[u,u′]| = 1 with only
three occupied nodes. Robots on u and u′ move to their adjacent node toward the node
in O[u,u′], node uv, as shown by the red arrows. (Color figure online)

Fig. 5. Instance of a configuration in which |O[u,u′]| = 1. Robots in [u, u′] move to their
adjacent node toward the robot in O[u,u′] while the robots in O[u,u′] move toward the
target segment as shown by the red arrows. (Color figure online)

Fig. 6. Instance of a configuration in which |O[u,u′]| > 1. Robots in O[u,u′] move to
their adjacent node toward the target segment as shown by the red arrows. (Color
figure online)

ii. Otherwise, all robots are ordered to move. More precisely, robots on
a node of [u, u′] move to an adjacent node toward uv while the robots
on uv move to an adjacent node toward u (refer to Fig. 5).

(c) |O[u,u′]| > 1. In this case, the robots that are in O[u,u′] move toward a
node of [u, u′] (refer to Fig. 6).

4.3 Proof of the Correctness

We prove in the following the correctness of AL.

Lemma 3. Let C be a non-edge-symmetric configuration, and let [u, u′] be the
target segment. If |O[u,u′]| > 1, then all nodes in O[u,u′] are located on the same
side of [u, u′].

Proof. Assume by contradiction that the lemma does not hold and assume that
there exists a pair of nodes u1, u2 ∈ O[u,u′] such that u1 and u2 are on different

Stand-Up Indulgent Gathering on Lines 461

sides of [u, u′]. Assume w.l.o.g. that u1 is the closest to u and u2 is the closest
to u′. Let dist(u1, u) = d1 and dist(u2, u

′) = d2. If d1 and d2 are both even or
both odd, dist(u1, u2) is even. Since dist(u1, u2) > dist(u, u′), [u, u′] is not the
target segment, a contradiction. Otherwise, assume w.l.o.g. that d1 is even and
d2 is odd, then dist(u1, u

′) is even. Since dist(u1, u
′) > dist(u, u′), [u, u′] is not

the target segment, a contradiction. �

Lemma 4. Starting from a non-edge-symmetric configuration C, if no robot
crashes, all robots gather without multiplicity detection in O(D) by executing
AL, where D denotes the distance between the two borders in C.

We focus in the following on the case in which a single robot crashes.

Lemma 5. Starting from a configuration C where there are only two occupied
nodes at distance D > 1, one hosting the crashed robot, gathering is achieved in
D rounds, where D denotes the distance between the two borders in C.

Proof. First observe that if the crashed robot is not collocated with a non-
crashed robot, after one round the robots on the other border move towards the
crashed robot location, and gathering is achieved after D rounds.

Now assume that the crashed robot is collocated with at least one non-
crashed robot. If D = 2, then after one round, all non-crashed robots are located
at the same node, adjacent to the crashed robot location, and after one more
round, gathering is achieved. If D > 3 is even, then after one round the crashed
robot is alone, and the non-crashed robots form two multiplicity points and
are the extremities of the target segment. So, after one more round, they both
move towards the crashed robot location, and we reach a configuration with
two occupied nodes, and the distance between them has decreased by two. By
induction and the previous case, gathering is eventually achieved. If D = 3, then
similarly, one can show that in three rounds, gathering is achieved. If D > 3 is
odd, then similarly, one can show that after three rounds we reach configuration
with two occupied nodes, and their distance has decreased by 3 (so, the distance
is now even and we can apply one of the previous even cases). �

Lemma 6. Let C be a configuration where [u, u′] is the target segment with
O[u,u′] = {v}, and w.l.o.g. u′ is a border. Let D be the distance between the
two border nodes u′ and v. If u′ hosts a crashed robot and dist(v, u) = 1, then
gathering is achieved in O(D) rounds.

Lemma 7. Let C be a configuration where [u, u′] is the target segment,
|O[u,u′]| = 1 and w.l.o.g. dist(u, v) < dist(u′, v) where v ∈ O[u,u′]. Let D be
the distance between the two border nodes u′ and v in C. If u′ hosts a crashed
robot, then gathering is achieved in O(D) rounds.

Proof. Recall that, since v ∈ O[u,u′], dist(u′, v) is odd in C. If the distance m
between u and v is 1, the we apply Lemma 6, otherwise, by AL, the robots in v
move to an empty node toward u, and all the other robots move towards v. Thus,
after one round, we reach a configuration C1 where the robots on v becomes at an

462 Q. Bramas et al.

even distance from u′, the crashed robot location. Since the robots on u are also
ordered to move toward v, the distance between the robots at v and u decreases
by two.

Again, as u′ hosts a crashed robot, after one more round, a configuration C2

in which the borders are at an odd distance is reached again, and the distance
between the robots at u and v is again decreased by two (or stay the same if
they are adjacent in C2 as they just swap their positions).

As the distance m between v and u is odd in C (otherwise, the border robots
are at an even distance in C), we can repeat the same 2-round process (�m/4�
times) until we reach a configuration in which the robots at u and v are at
distance 1 so, by Lemma 6, gathering is achieved. �

Lemma 8. Starting from a configuration C where the crashed robot is at a bor-
der, and the border robots are at an even distance D, by executing AL, after
O(D) rounds, gathering is achieved.

Lemma 9. Starting from a non-edge-symmetric configuration C with one
crashed robot, all robots executing AL eventually gather without multiplicity
detection in O(D) rounds, where D denotes the distance between the two bor-
ders in C.

Proof. First, let us consider the case where D is even.

1. If the crashed robot is at an equal distance from both borders, by AL, the
border robots move toward each other. As they do, the distance between
them remains even. Hence, the border robots remain the only ones to move.
Eventually, all robots which are not co-located with the crashed robot become
border robots and hence move. Thus, the gathering is achieved in D

2 rounds.
2. If the crashed robot is a border, by Lemmas 8, we can deduce that the gath-

ering is achieved in O(D) rounds.
3. Otherwise, as the border robots move toward each other by AL, the crashed

robot eventually becomes at the border. We hence retrieve case 2..

From the cases above, we can deduce that the gathering is achieved whenever
a configuration in which the borders are at an even distance, is reached.

Let us now focus on the case where D is odd. By AL, two occupied nodes u
and u′ at the largest even distance are uniquely identified to set the target seg-
ment [u, u′] (recall that C is, in this case, rigid, and each robot has a unique view
since the initial configuration cannot be edge-symmetric). The robots behave dif-
ferently depending on the size of O[u,u′], the set of occupied nodes outside the
segment [u, u′]. By Lemma 3, all nodes in O[u,u′] are on the same side. Assume
w.l.o.g. that for all ui ∈ O[u,u′], ui is closer to u than u′. Two cases are possible:

1. |O[u,u′]| > 1. Let uf , uf ′ ∈ O[u,u′] be the two farthest nodes from u such that
dist(u, uf) > dist(u, uf ′). Note that uf is a border robot. Let uf+1 be uf ’s
adjacent node toward u′

f . If uf does not host a crashed robot, then as the
robots on uf move toward u and those on u′ remain idle by AL, after one
round, the border robots become at an even distance and we are done. By

Stand-Up Indulgent Gathering on Lines 463

contrast, if uf hosts a crashed robot, then either uf hosts other non-crashed
robots, and hence after one round, we retrieve a configuration C ′ in which
[uf+1, u

′] is the target segment and |O[uf+1,u′]| = 1 or a configuration C ′ in
which [uf ′ , u′] is the target segment and |O[uf′ ,u′]| = 1 as robots on uf ′ also
move toward u by AL. In both cases, we retrieve the following case.

2. |O[u,u′]| = 1. Let uf be in O[u,u′] and assume w.l.o.g. that dist(u, uf) <
dist(u′, uf) (observe that uf is a border node). If uf hosts the crashed robot,
then, after one round, the border robots are at an even distance as robots
on u′ move toward uf by AL. Similarly, if u′ hosts the crashed robot, then
by Lemmas 6 and 7 after O(D) rounds, a configuration in which the border
robots are at an even distance is reached. If neither uf nor u′ hosts the crashed
robot, then when the border robots move by AL (other robots also move, but
we focus for now on the border robots), either the distance between the two
borders becomes even after one round (in the case where uf is adjacent to
u as the robots simply exchange their respective positions) or the distance
between the border robots remains odd but decreases by two. Observe that
in the later case, the border robots keep moving toward each other by AL

until one of them becomes a neighbor to a crash robot.
Let C ′ be the configuration reached once a border robot becomes adjacent to
a crashed robot. Let ub be the border node that is adjacent to crashed robot,
and let ub be the other border node. We refer to the node that hosts the
crashed robot by uc. Since dist(ub, uc) = 1 and dist(ub, ub) is odd, dist(ub, uc)
is even. Hence, |O[ub,uc]| = 1. Two cases are possible:

– If C ′ hosts only three occupied nodes, then, after one round, the distance
between the border robots becomes even, and we are done (recall that
robots on ub and uc move toward ub by AL.

– If there are more than 3 occupied nodes and uc hosts also non-crashed
robots in C ′, then after one round, the distance between the border robots
becomes even as the robots on ub move toward uc, those on ub move to
uc and the non-crashed robots on uc move toward ub by AL. Hence, we
are done.

– Otherwise, after one round, the distance between the two borders remains
odd as both borders move toward each other by AL. In the configuration
reached C ′′, uc becomes a new border occupied by a crashed robot and
non-crashed robots. If there are only two occupied nodes in C ′′, by AL,
the border robots move toward each other. That is, in the next round,
the border robots become at an even distance, and we are done. If there
are more than two occupied nodes in C ′′, by Lemmas 2 and 3, a con-
figuration with a new target segment [o, o′] which includes one border
node is reached. Let us first consider the case in which uc ∈ [o, o′]. If
|O[o,o′]| > 1, then after one round, the border robots become at an even
distance, and we are done. By contrast, if |O[o,o′]| = 1, then we are done
by Lemmas 6 and 7. Next, let us consider the case where uc �∈ [o, o′].
Let of be the closest occupied node of uc. Without loss of generality,
dist(o, uc) < dist(o′, uc) holds. If |O[o,o′]| > 1, then after one round, a
configuration in which [o′, of] is the target segment and uc ∈ O[o′,of] is

464 Q. Bramas et al.

reached. After one additional round, we are done. Finally, if |O[o,o′]| = 1,
then robots on the nodes in [o, o′] move toward uc, and we are done.

From the cases above, we can deduce that the theorem holds. �

From Lemmas 4 and 9, we can deduce:

Theorem 4. Starting from a non-edge-symmetric configuration C, algorithm
AL solves the SUIG problem on line-shaped networks without multiplicity detec-
tion in O(D) rounds, where D denotes the distance between the two borders in
C.

5 Concluding Remarks

We initiated the research about stand-up indulgent rendezvous and gathering by
oblivious mobile robots in the discrete model, studying the case of line-shaped
networks. For both rendezvous and gathering cases, we characterized the initial
configurations from which the problem is impossible to solve. In the case of
rendezvous, a very simple algorithm solves all cases left open. In the case of
gathering, we provide an algorithm that works when the starting configuration
is not edge-symmetric. Our algorithms operate in the vanilla model without
any additional hypotheses, and are asymptotically optimal with respect to the
number of rounds to achieve rendezvous or gathering. Open questions include:

1. Is it possible to circumvent impossibility results in SSYNC using extra
hypotheses (e.g., multiplicity detection)?

2. Is it possible to solve SUIR and SUIG in other topologies?

References

1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile
robots. SIAM J. Comput. 36(1), 56–82 (2006)

2. Balabonski, T., Courtieu, P., Pelle, R., Rieg, L., Tixeuil, S., Urbain, X.: Continuous
vs. discrete asynchronous moves: a certified approach for mobile robots. In: Atig,
M.F., Schwarzmann, A.A. (eds.) NETYS 2019. LNCS, vol. 11704, pp. 93–109.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31277-0_7

3. Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple
crash faults. In: IEEE 33rd International Conference on Distributed Computing
Systems (ICDCS), pp. 337–346 (2013)

4. Bramas, Q., Lamani, A., Tixeuil, S.: Stand up indulgent rendezvous. In: Devismes,
S., Mittal, N. (eds.) SSS 2020. LNCS, vol. 12514, pp. 45–59. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64348-5_4

5. Bramas, Q., Lamani, A., Tixeuil, S.: Stand up indulgent gathering. In: Gąsieniec,
L., Klasing, R., Radzik, T. (eds.) ALGOSENSORS 2021. LNCS, vol. 12961, pp.
17–28. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89240-1_2

6. Bramas, Q., Tixeuil, S.: Wait-free gathering without chirality. In: Scheideler, C.
(ed.) SIROCCO 2014. LNCS, vol. 9439, pp. 313–327. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-25258-2_22

https://doi.org/10.1007/978-3-030-31277-0_7
https://doi.org/10.1007/978-3-030-64348-5_4
https://doi.org/10.1007/978-3-030-89240-1_2
https://doi.org/10.1007/978-3-319-25258-2_22

Stand-Up Indulgent Gathering on Lines 465

7. Castaneda, A., Rajsbaum, S., Alcántara, M., Flores-Penaloza, D.: Fault-tolerant
robot gathering problems on graphs with arbitrary appearing times. In: 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pp. 493–
502 (2017)

8. Castenow, J., Fischer, M., Harbig, J., Jung, D., auf der Heide, F.M.: Gathering
anonymous, oblivious robots on a grid. Theor. Comput. Sci. 815, 289–309 (2020)

9. Cicerone, S., DiStefano, G., Navarra, A.: Gathering robots in graphs: the central
role of synchronicity. Theoret. Comput. Sci. 849, 99–120 (2021)

10. D’Angelo, G., Navarra, A., Nisse, N.: A unified approach for gathering and exclusive
searching on rings under weak assumptions. Distrib. Comput. 30(1), 17–48 (2017)

11. D’Angelo, G., Stefano, G.D.: AlfredoNavarra: gathering on rings under the look-
compute-move model. Distrib. Comput. 27(4), 255–285 (2014)

12. D’Angelo, G., Stefano, G.D., Klasing, R., Navarra, A.: Gathering of robots on
anonymous grids and trees without multiplicity detection. Theoret. Comput. Sci.
610, 158–168 (2016)

13. Défago, X., Potop-Butucaru, M., Raipin-Parvédy, P.: Self-stabilizing gathering of
mobile robots under crash or byzantine faults. Distrib. Comput. 33, 393–421 (2020)

14. Flocchini, P., Prencipe, G., Santoro, N. (eds.): Distributed Computing by Mobile
Entities, Current Researchin Moving and Computing, vol. 11340. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-11072-7

15. Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Time-optimal gathering algorithm
of mobile robots with local weak multiplicity detection in rings. IEICE Trans.
96-A(6), 1072–1080 (2013)

16. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Asynchronous mobile robot gath-
ering from symmetric configurations without global multiplicity detection. In:
Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 150–161.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22212-2_14

17. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Gathering an even number of
robots in an odd ring without global multiplicity detection. In: Rovan, B., Sassone,
V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 542–553. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32589-2_48

18. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S., Wada, K.: Asynchronous gathering
in a torus. In: 25th International Conference on Principles of Distributed Systems
(OPODIS 2021), vol. 217, pp. 9:1–9:17 (2021)

19. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: gathering
of many asynchronous oblivious robots on a ring. Theoret. Comput. Sci. 411(34–
36), 3235–3246 (2010)

20. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots
in a ring. Theoret. Comput. Sci. 390(1), 27–39 (2008)

21. Ooshita, F., Tixeuil, S.: On the self-stabilization of mobile oblivious robots in
uniform rings. Theoret. Comput. Sci. 568, 84–96 (2015)

22. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-642-22212-2_14
https://doi.org/10.1007/978-3-642-32589-2_48

Offline Constrained Backward Time
Travel Planning

Quentin Bramas1(B), Jean-Romain Luttringer1, and Sébastien Tixeuil2,3

1 ICUBE, Strasbourg University, CNRS, Strasbourg, France
bramas@unistra.fr

2 Sorbonne University, CNRS, LIP6, Paris, France
3 Institut Universitaire de France, Paris, France

Abstract. We model transportation networks as dynamic graphs and
introduce the ability for agents to use Backward Time-Travel (BTT)
devices at any node to travel back in time, subject to certain constraints
and fees, before resuming their journey.

We propose exact algorithms to compute travel plans with constraints
on BTT cost or the maximum time that can be traveled back while min-
imizing travel delay (the difference between arrival and starting times).
These algorithms run in polynomial time. We also study the impact of
BTT device pricing policies on the computation of travel plans with
respect to delay and cost and identify necessary properties for pricing
policies to enable such computation.

1 Introduction

Evolving graphs (and their many variants) are graphs that change over time
and are used to model real-world systems that evolve. They have applications
in many fields in Computer Science, where they arise in areas such as com-
pilers, databases, fault-tolerance, artificial intelligence, and computer networks.
To date, such graphs were studied under the hypothesis that time can be trav-
eled in a single direction (to the future, by an action called waiting), leading to
numerous algorithms that revisit static graph notions and results.

In this paper, we introduce the possibility of Backward time travel (BTT)
(that is, the ability to go back in time) when designing algorithms for dynamic
graphs. In more details, we consider the application of BTT devices to trans-
portation networks modeled by evolving graphs. In particular we focus on the
ability to travel from point A to point B with minimal delay (that is, minimiz-
ing the time difference between arrival and start instants), taking into account
meaningful constraints, such as the cost induced by BTT devices, or their span
(how far back in time you are allowed to go).

To this paper, BTT was mostly envisioned in simple settings (with respect to
the cost associated to time travel or its span). For example, the AE model [12]
considers that a single cost unit permits to travel arbitrarily in both space
and time, trivializing the space-time travel problem entirely. Slightly more con-
strained models such as TM [11] and BTTF [16] consider devices that either: (i)
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 466–480, 2023.
https://doi.org/10.1007/978-3-031-44274-2_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_35&domain=pdf
https://doi.org/10.1007/978-3-031-44274-2_35

Offline Constrained Backward Time Travel Planning 467

only permit time travel [11] (but remain at the same position), or (ii) permit
either time travel or space travel, but not both at the same time [16]. However,
the cost involved is either null [11], or a single cost unit per time travel [16].

Instead, we propose to discuss BTT in a cost-aware, span-aware context,
that implies efficiently using BTT devices within a transportation system (from
a simultaneous delay and cost point of view), and the computation of the cor-
responding multi-modal paths. More precisely, in this paper, we address the
problem of space-time travel planning, taking into account both the travel delay
of the itinerary and the cost policy of BTT device providers. The context we
consider is that of transportation systems, where BTT devices are always avail-
able to the agents traveling. Using each BTT device has nevertheless a cost,
decided by the BTT device provider, and may depend on the span of the back-
ward time jump. Although BTT devices are always active, the ability to go from
one location to another (that is, from one BTT device to another) varies across
time. We consider that this ability is conveniently modeled by a dynamic graph,
whose nodes represent BTT devices, and whose edges represent the possibility
to instantly go from one BTT device to another. Given a dynamic graph, we aim
at computing travel plans, from one BTT device to another (the closest to the
agent’s actual destination), considering not only travel delay and induced cost,
but also schedule availability and common limitations of BTT devices.

In the following, we study the feasibility of finding such travel plans, depend-
ing on the pricing policy. It turns out that when the schedule of connections is
available (that is, the dynamic graph is known), very loose conditions on the pric-
ing policy enable to devise optimal algorithms (with respect to the travel delay
and induced cost) in polynomial time, given a cost constraint for the agents, or
a span constraint for the BTT devices.

Related Work. Space-Time routing has been studied, but assuming only for-
ward time travel, i.e., waiting, is available. The idea of using dynamic graphs
to model transportation network was used by many studies (see e.g. Casteigts
et al. [2] and references herein), leading to recently revisit popular problems
previously studied in static graphs [1,4,10]. In a dynamic (or temporal) graph,
a journey represents a temporal path consisting in a sequence of edges used at
given non-decreasing time instants. The solvability of a problem can depend on
whether or not a journey can contain consecutive edges occurring at the same
time instant. Such journeys are called non-strict, as opposed to strict journey
where the sequence of time instants must be strictly increasing. In our work, we
extend the notion of non-strict journey to take into account the possibility to
go back in time at each node, but one can observe that our algorithm also work
with the same extension for strict journey by adding one time unit to the arrival
of each edge in our algorithms.

The closest work in this research path is due to Casteigts et al. [3], who study
the possibility of discovering a temporal path between two nodes in a dynamic
network with a waiting time constraint: at each step, the traveling agent cannot
wait more than c time instants, where c is a given constant. It turns out that
finding the earliest arriving such temporal path can be done in polynomial time.
Perhaps surprisingly, Villacis-Llobet et al. [14] showed that if one allows to go

468 Q. Bramas et al.

several times through the same node, the obtained temporal path can arrive
earlier, and finding it can be done in linear time. As previously mentioned, this
line of work only considers forward time travel: a temporal path cannot go back
in time.

Constrained-shortest-paths computation problems have been extensively
studied in the context of static graphs [5]. Although these problems tend to
be NP-Hard [7] (even when considering a single metric), the ones considering
two additive metrics (commonly, the delay and a cost) gained a lot of traction
over the years due to their practical relevance, the most common use-case being
computer networks [8,9]. In this context, each edge is characterized by a weight
vector, comprising both cost and delay. Path computation algorithms thus have
to maintain and explore all non-comparable paths, whose number may grow
exponentially with respect to the size of the network. To avoid a worst-case
exponential complexity, most practical algorithms rely on either approximation
schemes [13] or heuristics. However, these contributions do not study multi-
criteria path computation problems within a time travel context. Conversely, we
study and provide results regarding the most relevant time-traveling problems
while considering the peculiarities of this context (in particular, the properties
of the cost function). In addition, we show that most of these problems can be
solved optimally in polynomial-time.

Contributions. In this paper, we provide the following contributions:

– An in-depth analysis of the impact of the BTT device providers pricing poli-
cies on the computation of low-latency and low-cost paths. In particular, we
show that few features are required to ensure that the efficient computation
of such paths remains possible.

– Two exact polynomial algorithms able to compute travels with smallest delay
to a given destination and minimizing the cost of traveling back in time. The
first algorithm also supports the addition of a constraint on the backward
cost of the solution. The other one supports a constraint on how far back in
the past one can go at each given time instant.

2 Model

In this section, we define the models and notations used throughout this paper,
before formalizing the aforementioned problems.

We represent the network as an evolving graph, as introduced by Ferreira [6]:
a graph-centric view of the network that maps a dynamic graph as a sequence
of static graphs. The footprint of the dynamic graph (that includes all nodes
and edges that appear at least once during the lifetime of the dynamic graph),
is fixed. Furthermore, we assume that the set of nodes is fixed over time, while
the set of edges evolves.

More precisely, an evolving graph G is a pair (V, (Et)t∈N), where V denotes
the finite set of vertices, N is the infinite set of time instants, and for each t ∈ N,
Et denotes the set of edges that appears at time t. The snapshot of G at time t is

Offline Constrained Backward Time Travel Planning 469

the static graph G(t) = (V,Et), which corresponds to the state, supposedly fixed,
of the network in the time interval [t, t+1). The footprint F(G) of G is the static
graph corresponding to the union of all its snapshots, F(G) =

(
V,

⋃
t∈N

Et

)
. We

say ((u, v), t) is a temporal edge of graph G if (u, v) ∈ Et. We say that an
evolving graph is connected if its footprint is connected.

Space-Time Travel. We assume that at each time instant, an agent can travel
along any number of adjacent consecutive communication links. However, the
graph may not be connected at each time instant, hence it may be that the
only way to reach a particular destination node is to travel forward (i.e., wait)
or backward in time, to reach a time instant where an adjacent communication
link exists. In more detail, an agent travels from a node s to a node d using a
space-time travel (or simply travel when it is clear from the context).

Definition 1. A space-time travel of length k is a sequence ((u0, t0), (u1, t1),
. . . , (uk, tk)) such that

– ∀i ∈ {0, . . . k}, ui ∈ V is a node and ti ∈ N is a time instant,
– ∀i ∈ {0, . . . k − 1}, if ui �= ui+1, then ti = ti+1 and (ui, ui+1) ∈ Eti

i.e., there
is a temporal edge between ui and ui+1 at time ti.

By extension, the footprint of a travel is the static graph containing all edges
(and their adjacent nodes) appearing in the travel. Now, the itinerary of a travel
((u0, t0), (u1, t1), . . . , (uk, tk)) is its projection (u0, u1, . . . , uk) on nodes, while its
schedule is its projection (t0, t1, . . . , tk) on time instants.

Definition 2. A travel ((u0, t0), (u1, t1), . . . , (uk, tk)) is simple if for all i ∈
{2, . . . , k} and j ∈ {0, . . . , i − 2}, we have ui �= uj.

Intuitively, a travel is simple if its footprint is a line (i.e., a simple path) and
contains at most one time travel per node (as a consequence, no node appears
three times consecutively in a simple travel).

Definition 3. The delay of a travel T = ((u0, t0), (u1, t1), . . . , (uk, tk)), denoted
delay(T) is defined as tk − t0.

The Backward Cost of a Travel

Definition 4. The backward-cost is the cost of going to the past. The backward-
cost function f : N∗ → R

+ returns, for each δ ∈ N, the backward-cost f(δ) of
traveling δ time instants to the past. As we assume that there is no cost associated
to forward time travel (that is, waiting), we extend f to Z by setting f(−δ) = 0,
for all δ ∈ N. In particular, the backward-cost of traveling 0 time instants in the
past is zero. When it is clear from context, the backward-cost function is simply
called the cost function.

Definition 5. The backward-cost (or simply cost) of a travel T = ((u0, t0),
(u1, t1), . . . , (uk, tk)), denoted cost(T) is defined as follows:

cost(T) =
k−1∑

i=0

f(ti − ti+1)

470 Q. Bramas et al.

Definition 6. Let T1 = ((u0, t0), (u1, t1), . . . , (uk, tk)) and T2 = ((u′
0, t

′
0),

(u′
1, t

′
1), . . . , (u′

k′ , t′k′)) be two travels. If (uk, tk) = (u′
0, t

′
0), then the concate-

nated travel T1 ⊕ T2 is defined as follows:

T1 ⊕ T2 = ((u0, t0), (u1, t1), . . . , (uk, tk), (u′
1, t

′
1), . . . , (u

′
k′ , t′k′))

Remark 1. One can easily prove that cost(T1 ⊕ T2) = cost(T1) + cost(T2). In
the following, we sometimes decompose a travel highlighting an intermediate
node: T = T1 ⊕ ((ui, ti)) ⊕ T2. Following the definition, this means that T1

ends with (ui, ti), and T2 starts with (ui, ti), so we also have T = T1 ⊕ T2 and
cost(T) = cost(T1) + cost(T2).

Our notion of space-time travel differs from the classical notion of journey
found in literature related to dynamic graphs [6] as we do not assume time
instants monotonically increase along a travel. As a consequence, some evolving
graphs may not allow a journey from A to B yet allows one or several travels
from A to B (See Fig. 3).

We say a travel is cost-optimal if there does not exist a travel with the same
departure and arrival node and times as T having a smaller cost. One can easily
prove the following Property.

Property 1. Let T be a cost-optimal travel from node u to node v arriving at
time t, and T ′ a sub-travel of T i.e., a travel such that T = T1 ⊕ T ′ ⊕ T2. Then
T ′ is also cost-optimal. However, this is not true for delay-optimal travels.

Problem Specification. We now present the problems that we aim to solve in
this paper. First, we want to arrive at the destination as early as possible, i.e.,
finding a time travel that minimizes the delay. Among such travels, we want to
find one that minimizes the backward cost.

In the remaining of this paper, we consider a given evolving graph G =
(V, (Et)t∈N), a given a cost function f, a source node src and a destination node
dst in V . Travels(G, src, dst) denotes the set of travels in G starting from src at
time 0 and arriving at dst .

Definition 7. The Optimal Delay Optimal Cost space-time travel planning
(ODOC) problem consists in finding, among all travels in Travels(G, src, dst),
the ones that minimize the travel delay and, among them, minimize the cost. A
solution to the ODOC problem is called an ODOC travel.

One can notice that this problem is not very hard as there is a single metric
(the cost) to optimize, because a travel with delay zero always exists (if the graph
is temporally connected). But in this paper we study the two variants defined
thereafter (see the difference in bold).

Definition 8. The C-cost-constrained ODOC problem consists in finding
among all travels in Travels(G, src, dst) with cost at most C ≥ 0, the ones
that minimize the travel delay and, among them, one that minimizes the cost.

Offline Constrained Backward Time Travel Planning 471

Definition 9. The H-history-constrained ODOC problem consists in finding
among all travels in Travels(G, src, dst) satisfying,

∀u, u′, t, t′, if T = T1 ⊕ ((u, t)) ⊕ T2 ⊕ ((u′, t′)) ⊕ T3, then t′ ≥ t − H,

the ones that minimize the travel delay and, among them, one that minimizes
the cost (Fig. 3).

Fig. 1. Possible representation of an
evolving graph. Possible travels from x0 to
x7 are shown in red, green and blue. Note
that the blue and green travels require to
send an agent to the past (to a previous
time instant). (Color figure online)

Fig. 2. Footprint of the evolving
graph represented in Fig. 1.

Fig. 3. Example of an evolving graph for
which there exists no journey, yet there
exists several travels from x0 to x7. The
two travels, in blue and green, are 1-
history-constrained. (Color figure online)

Fig. 4. Example of an evolving
graph for which there exist at least
three travels from x0 to x7 with a
cost constraint of 1 (assuming f :
d �→ d). The blue travel has opti-
mal delay. (Color figure online)

Visual Representation of Space-Time Travels. To help visualize the prob-
lem, consider a set of n+1 nodes denoted x0, x1, x2, . . . , xn. Then, the associated
evolving graph can be seen as a vertical sequence of graphs mentioning for each
time instant which edges are present. A possible visual representation of an

472 Q. Bramas et al.

evolving graph can be seen in Fig. 1. One can see the evolution of the topology
(consisting of the nodes x0 to x7) over time through eight snapshots performed
from time instants 0 to 7. Several possible travels are shown in red, green and
blue. The red travel only makes use of forward time travel (that is, waiting)
and is the earliest arriving travel in this class (arriving at time 7). The green
and blue travels both make use of backward time travel and arrive at time 0,
so they have minimal travel delay. Similarly, the red travel concatenated with
((x7, 7), (x7, 0)) (i.e., a backward travel to reach x7 at time 0) also has mini-
mal travel delay. However, if we assume that the cost function is the identity
(f : d �→ d) then the green travel has a backward cost of 3, the blue travel has
a backward cost of 4, and the concatenated red travel has a backward cost of
7. Adding constraints yields more challenging issues: assuming f : d �→ d and a
maximal cost C of 1, at least three travels can be envision for the evolving graph
depicted in Fig. 4, but finding the 1-cost-constrained travel that minimizes the
delay (that is, the blue travel) is not as straightforward in this case, even if the
footprint of the evolving graph is a line.

Similarly, in Fig. 3 we show two H-history-constrained travels, with H = 1
(assuming f : d �→ d). Here, clearly, the green travel is optimal with a cost of 2
(the blue travel has cost 3). The choice made by the green travel to wait at node
x1 two time instants is good, even if it prevents future backward travel to time 0
since H = 1; because it is impossible to terminates at time 0 anyway. So it seems
like the choice made at node x1 is difficult to make before knowing what is the
best possible travel. If we add more nodes to the graph and repeat this kind of
choice, we can create a graph with an exponential number of 1-history-constraint
travel and finding one that minimizes the cost is challenging. Surprisingly, we
show that it remains polynomial in the number of nodes and edges.

3 Backward-Cost Function Classes

The cost function f represents the cost of going back to the past. Intuitively,
it seems reasonable that the function is non-decreasing (travelers are charged
more it they go further back in time), however we demonstrate that such an
assumption is not necessary to enable travelers to derive optimal cost space-
time travel plans. As a matter of fact, the two necessary conditions we identify
to optimally solve the ODOC space-time travel planning problem are f to be
non-negative and that it attains its minimum (not just converge to it). These
conditions are shown to be sufficient by construction, thanks to the algorithm
presented in the next section (and Theorem 2). Due to space constrains, proofs
are omitted.

Definition 10. A cost function f is user optimizable if it is non-negative, and
it attains its minimum when restricted to any interval [C,∞), with C > 0. Let
UO be the set of user optimizable cost functions.

Theorem 1. If the cost function f is not in UO, then there exist connected
evolving graphs where no solution exists for the ODOC space-time travel planning
problem.

Offline Constrained Backward Time Travel Planning 473

Proof. First, it is clear that if f(d) < 0 for some d ∈ N
∗, then we can construct

travels with arbitrarily small cost by repeatedly appending ((y, t), (y, t+d), (y, t))
to any travel arriving at node y at time t (i.e., by waiting for d rounds and going
back in time d rounds), rendering the problem unsolvable.

Now, let C ∈ N
∗ and f be a non-negative function that does not attain its

minimum when restricted to [C,∞). This implies that there exists an increas-
ing sequence (wi)i∈N of integers wi ≥ C, such that the sequence (f(wi))i∈N is
decreasing and converges towards the lower bound mC = inft≥C(f(t)) of f|[C,∞)

.
Consider a graph with two nodes x0 and x1 that are connected by a temporal
edge after time C and disconnected before. Since a travel from x0 to x1 arriving
at time 0 must contain a backward travel to the past of amplitude at least C,
its cost is at least equal to mC . Since mC is not attained, there is no travel with
cost exactly mC . Now, assume for the sake of contradiction that a cost-optimal
travel T to x1 arriving at time 0 has cost mC + ε with ε > 0. Then, we can
construct a travel with a smaller cost. Let iε such that f(wiε

) < mC + ε (this
index exists because the sequence (f(wi))i∈N converges to mC).

Let T ′ = ((x0, 0), (x0, C), (x1, C), (x1, wiε
), (x1, 0)). Then we have

cost(T ′) = f(wiε
) < mC + ε = cost(T),

which contradicts the optimality of T .
�
We now present the set of user friendly cost functions that we use in the

sequel to ease proving optimization algorithms, as they allow simple solutions
to the ODOC problem (Lemma 1). We prove in Theorem 2 that we do not lose
generality since an algorithm solving the ODOC problem with user friendly cost
functions can be transformed easily to work with any user optimizable ones.

Definition 11. A cost function f is user friendly if it is user optimizable, non-
decreasing, and sub-additive1. Let UF be the set of user friendly cost functions.

Lemma 1. If the cost function f is in UF and there exists a solution to the
ODOC space-time travel planning problem in an evolving graph G, then there
also exists a simple travel solution.

Proof. Let T be a solution to the ODOC space-time travel planning problem.
If there exists a node xi and two time instants t1 and t2, such that T = T1 ⊕
((xi, t1)) ⊕ T2 ⊕ ((xi, t2)) ⊕ T3, then we construct T ′ as follows

T ′ = T1 ⊕ ((xi, t1), (xi, t2)) ⊕ T3

and we show that cost(T ′) ≤ cost(T). Indeed, it is enough to show (thanks to
Remark 1) that

cost(((xi, t1), (xi, t2))) ≤ cost(T2).

By definition cost(((xi, t1), (xi, t2))) = f(t1 − t2). If t1 < t2, then the cost is
null by convention and the Lemma is proved. Otherwise t1 > t2. On the right
hand side, we have:
1 sub-additive means that for all a, b ∈ N, f(a + b) ≤ f(a) + f(b).

474 Q. Bramas et al.

cost(T2) =
k∑

i=1

f(di)

where d1, d2, . . . , dk is the sequence of differences between the times appearing
in T2. Since T2 starts at time t1 and ends at time t2, then

∑k
i=1 di = t1 − t2.

Since the function is sub-additive and increasing, we obtain:

f(t1 − t2) <
k∑

i=1

f(di)

By repeating the same procedure, we construct a time-travel with the same
destination and same backward-cost as T but that does not contain two occur-
rences of the same node, except if they are consecutive.
�
Theorem 2. If an algorithm A solves the optimal cost space-time travel plan-
ning problem for any cost function in UF , then there exists an algorithm A′

solving the same problem with any f in UO.

Proof. We consider an algorithm A as stated. Let f be an arbitrary cost function
in UO, that is, f is non-negative, and always attains its minimum.

From f, we now construct a cost function finc as follows:

finc(t) = min
j≥t

(f(j))

By construction, finc is non-decreasing. Moreover, since f is in UO, it always
attains its minimum, and we have:

∀d, ∃dm such that finc(d) = f(dm). (1)

Then, we construct f̃ as follows:

f̃(t) = min
a∈α(t)

(
∑

ai∈a

finc(ai)

)

where α(t) is the set of all the non-negative sequences that sum to t. Now, f̃ is
sub-additive by construction, hence f̃ ∈ UF . Since α(t) is finite, the minimum is
attained.

Also, ∀t ≥ 1, f̃(t) ≤ f(t), so that for any travel, its backward cost with respect
to f is at least equal to its backward cost with respect to f̃.

Let G be a dynamic graph. Our goal is to construct an algorithm A′ finding a
cost-optimal (with respect to f) space-time travel in G. The algorithm A′ works
as follows. Let T̃ be an optimal solution found by algorithm A on G assuming
function f̃ is used. A′ now constructs, from T̃ , a time-travel T that is a cost-
optimal (with respect to f) on G.

The travel T is constructed from T̃ by replacing any sub-space-time travel
((xi, ti), (xi, ti − t)), with t ≥ 0, by the following sub space-time travel: ((xi, ti −
a1), (xi, ti − a1 − a2), . . . , (xi, ti − ∑k

j=1 aj)) satisfying:

Offline Constrained Backward Time Travel Planning 475

a ∈ α(t) ∧ f̃(t) =
length of a∑

j=1

finc(aj)

Then, each ((u, t), (u, t − d)), with d ≥ 0, is replaced by ((u, t), (u, t − d +
dm), (u, t − d)) such that:

dm ≥ d ∧ finc(dm) = f(d)

We know that dm exists thanks to Eq. 1. The space-time travel T uses the same
temporal edges as T̃ , so it is well defined. Moreover, by construction f(T) =
f̃(T̃), and T is optimal with respect to f because the backward-cost of a travel
with respect to f is at least equal to its backward-cost with respect to f̃, as
observed earlier. Hence, if a better solution exists for f, it is also a solution with
the same, or smaller, cost with f̃, contradicting the optimality of T̃ . The above
procedure defines an algorithm, based on A, that solves the ODOC problem with
function f.
�

4 Offline C-Cost-Constrained ODOC Algorithm

In this section, we present Algorithm 1 that solves the C-cost-constrained ODOC
problem in time polynomial in the number of edges. More precisely, since the
number of edges can be infinite, we only consider edges occurring before a certain
travel (see the end of the section for a more precise description of the complexity).
Algorithm 1 is different from existing shortest path algorithms because we need
to efficiently take into account the cost and the delay of travels. It is well-known
that constrained shortest path algorithms are exponential when considering two
additive metrics [15] but surprisingly, our algorithm is polynomial by using the
specificity of the time travel. Our algorithm works as follows. At each iteration,
we extract the minimum cost to reach a particular node at a particular time and
we extend travels from there by updating the best-known cost of the next node.
We reach the next nodes either by using the next temporal edge that exists in
the future (we prove that considering only the next future edge is enough) or
using each of the past temporal edge.

We first prove that our algorithm terminates, even if the graph is infinite and
if there is no solution.

Lemma 2. Algorithm 1 always terminates.

Proof. Assume for the sake of contradiction that it does not terminates. First,
we observe that, for any u ∈ V , minCost[u] is non-increasing (using the lex-
icographical order), so it must reach a minimum value (cu,min, tu,min), which
represent, for a node u, the minimum cost a travel towards u can have and
the minimum time such a travel can arrive. Moreover, the cost associated with
a pair (u, t) extracted in Line 4 is non-decreasing (because we always extract
a pair with minimum cost), so either this cost reach a maximum or tends to

476 Q. Bramas et al.

Algorithm 1: Offline C-cost-constrained ODOC Algorithm (input:
G, f, C, src, dst)
/* nodeCost[u,t] stores the current best cost of travels from node

src to node u arriving at time t. minCost[u] stores a pair (c, t)
where c is the current known minimum cost of a travel towards u,
and t the smallest time where such travel arrives. pred[u, t] stores

the suffix of an optimal travel to u arriving at t. */

1 ∀u ∈ V, ∀t, nodeCost[u, t] = ∞ minCost[u] = (∞,∞);
2 nodeCost[src, 0] ← 0; done ← ∅;
3 while ∃(u, t) /∈ done such that nodeCost[u, t] < ∞ do
4 (u, t) ← argmin(u,t)/∈done(nodeCost[u, t]) ;

5 done ← done ∪ {(u, t)};
6 c ← nodeCost[u, t];
7 for each neighbor v of u do
8 let tfuture the smallest time after (or equal to) t where edge

((u, v), tfuture) exists;
9 let (cmin, tmin) = minCost[v];

10 if nodeCost[v, tfuture] > c and (c < cmin or tfuture < tmin) then
11 nodeCost[v, tfuture] ← c;
12 pred[v, tfuture] ← ((u, t), (u, tfuture), (v, tfuture));
13 if (c, tfuture) <lexico minCost[v] then minCost[v] ← (c, tfuture) ;

14 for each tpast such that (u, v) ∈ Etpast do
15 let cpast = c + f(t − tpast);
16 if cpast ≤ C and nodeCost[v, tpast] > cpast then
17 nodeCost[v, tpast] ← cpast ;
18 pred[v, tpast] ← ((u, t), (u, tpast), (v, tpast));

19 let tmin be the minimum time instant such that ∃t,
nodeCost[dst , t] + f(t − tmin) ≤ C;

20 if tmin exists then return ExtractTimeTravel(dst , tmin, nodeCost, pred);
21 else return ⊥ ;

infinity. In the former case, let cmax be that maximum i.e., after some time,
every time a pair (u, t) is extracted, nodeCost[u, t] = cmax. Since a pair is never
extracted twice, pairs are extracted with arbitrarily large value t. Some, at some
point in the execution, for every pair (u, t) extracted, we have t > tu,min. More-
over, cmax ≥ cu,min. So, every time a pair is extracted, condition Line 10 is
false. Hence, cmax is not added into nodeCost anymore, which contradicts the
fact that cmax is associated with each extracted pair after some time. So the
latter case occurs i.e., the cost associated with extracted pairs tends to infinity.
After some time, this cost is greater than any cu,min. Again, since a pair is never
extracted twice, pairs are extracted with arbitrarily large value t. Some, at some
point in the execution, for every pair (u, t) extracted, we have t > tu,min, and
the condition Line 10 is always false. Hence, from there, every time a value is
added into nodeCost, it is according to Line 17, so the associated time smaller

Offline Constrained Backward Time Travel Planning 477

than the time extracted, which contradicts the fact that arbitrarily large value
t are added to nodeCost.
�

We now prove the correctness of our algorithm, starting with the main prop-
erty we then use to construct a solution. Let δC be the function that returns, for
each pair (u, t) where u is a node and t a time, the best backward-cost smaller
or equal to C, from src to u, for travels arriving at time t.

Lemma 3. When a pair (u, t) is extracted from nodeCost at line 4, then

δC(u, t) = nodeCost[u, t]

Proof. Assume for the sake of contradiction that this is not true, and let (u, t) be
the first tuple extracted such that the property is false. Let cu,t = nodeCost[u, t].
Let T be a C-cost-constrained backward-cost-optimal travel to u arriving at time
t (hence cost(T) < cu,t by assumption).

Let T ′ be the longest prefix of T , to (x, t′) (i.e., such that T = T ′ ⊕ (x, t′) ⊕
T ′′, for some T ′′), such that (x, t′) was extracted from nodeCost and satisfies
δC(x, t′) = nodeCost[x, t′]. Now, T ′ is well defined because the first element
in T is (src, 0) and, by Line 2, (src, 0) is the first extracted pair, and satisfies
nodeCost[src, 0] = 0 = δC(src, 0). Hence, prefix ((src, 0)) satisfies the property,
so the longest of such prefixes exists. Observe that T ′, resp. T ′′, ends, resp. starts,
with (x, t′), by the definition of travel concatenation.

When (x, t′) is extracted from nodeCost, it is extended to the next future
edge (Lines 8 to 11), and all past edges (Lines 14 to 17). T ′′ starts either (a) with
((x, t′), (x, ta), (y, ta)), with ta < t′, (b) with ((x, t′), (x, ta), (y, ta)) with ta > t′,
or (c) with ((x, t′), (y, t′)), where y ∈ N(x).

In case (a), this means that the temporal edge ((x, y), ta) exists, hence, by
Line 17, we know that nodeCost[y, ta] ≤ nodeCost[x, t′] + f(t′ − ta). However,
since T ′ is a sub-travel, cost(T ′) = δC(x, t′) = nodeCost[x, t′], hence

nodeCost[y, ta] ≤ cost(T ′ ⊕ ((x, t′), (x, ta), (y, ta))) = δC(y, ta),

and (y, ta) must have been extracted before (u, t), otherwise

δC(u, t) < nodeCost[y, t] ≤ nodeCost[y, ta] = δC(y, ta)

which is a contradiction (a sub-travel of a cost-optimal travel cannot have a
greater cost, see Property 1). So, T ′ ⊕ ((x, t′), (x, ta), (y, ta)) is a longer prefix of
T with the same property as T ′, which contradicts the definition of T ′.

In case (b), this means that the temporal edge ((x, y), ta) exists, hence,
by Line 11, we know that nodeCost[y, ta] ≤ nodeCost[x, t′]. Again, we have
cost(T ′) = δC(x, t′) = nodeCost[x, t′], hence

nodeCost[y, ta] ≤ cost(T ′ ⊕ ((x, t′), (x, ta), (y, ta))) = δC(y, ta),

which contradicts the definition of T ′.
In case (c), this means that the edge ((x, y), t′) exists, which implies, using

a similar argument, a contradiction.
�

478 Q. Bramas et al.

The previous lemma says that nodeCost contains correct information about
the cost to reach a node, but actually, it does not contain all the informa-
tion. Indeed, a node u can be reachable by a travel at a given time t and still
nodeCost[u, t] = ∞. This fact helps our algorithm to be efficient, as it does not
compute all the optimal costs for each possible time (in this case, the complexity
would depend on the duration of the graph, which could be much higher than the
number of edges). Fortunately, we now prove that we can still find all existing
travel using nodeCost.

Lemma 4. For all u ∈ V , t ∈ N, there exists a C-cost-constrained travel T
from src to u arriving at time t, if and only if there exists t′ ∈ N such that
nodeCost[u, t′] + f(t′ − t) ≤ C.
Theorem 3. If the cost function f is in UF , Algorithm 1 outputs a travel T if
and only if T is a solution of the C-cost-constrained ODOC problem.

Let us now analyze the complexity of Algorithm 1. We assume that retrieving
the next or previous edge after or before a given time takes O(1) time. For
example, the graph can be stored as a dictionary that maps each node to an
array that maps each time to the current, previous, and next temporal edges.
This array can be made sparser with low complexity overhead to save space if
few edges occur per time-instant.

Since each temporal edge is extracted from nodeCost at most once and the
inner for loop iterates over a subset of edges, the time complexity is polynomial
in the number of temporal edges. We must also consider the time to extract the
minimum from nodeCost, which is also polynomial. If there are an infinite num-
ber of temporal edges2, Lemma 2 shows that our algorithm always terminates,
even if no solution exists. Therefore, its complexity is polynomial in the size of
the finite subset of temporal edges extracted from nodeCost.

Let E be the set of temporal edges ((u, v), t) such that (u, t) or (v, t) is
extracted in Line 4 of our algorithm during its execution.

Theorem 4. If the cost function f is in UF , then Algorithm 1 terminates in
O(|E|2).

5 Offline H-History-Constrained ODOC Algorithm

Section 4 made the assumption that a given agent was able to go back to any
previous snapshot of the network. However, this hypothesis might not hold as
the difficulty to go back in time may depend on how far in the future we already
reach. Hence, we consider in this section that H denotes the maximum number of
time instants one agent can travel back to. In more detail, once an agent reaches
time instant t, it cannot go back to t′ < t − H, even after multiple jumps.

2 An evolving graph with an infinite number of edges can exist in practice even with
bounded memory, e.g., when the graph is periodic.

Offline Constrained Backward Time Travel Planning 479

Algorithm 2: Offline H-history-constrained ODOC Algorithm
/* c[i, t − h, t] stores the cost of a cost optimal travel to node xi,

arriving before or at time t − h, that is H-history-constrained,

and never reaches a time instant greater than t.
pred[u, t − h, t] stores the suffix of an optimal travel to u
arriving at t − h that never reaches a time greater than t. */

1 c[∗] ← ∞; c[src, ∗] ← 0 pred[∗] ← ⊥;
2 tmax ← upper bound on the time reached by a cost-optimal travel to dst ;
3 for t = 0, 1, 2, . . . , tmax do

/* for simplicity, we assume c[u, t − h, t] = ∞ if t − h < 0 */

4 for u ∈ V do
5 c[u, t − h, t] ← min (c[u, t − h, t − 1], c[u, t − h − 1, t − 1]);

6 repeat |V | times
7 for u ∈ V do
8 for h = H,H − 1, . . . , 0 do
9 m ← min

t′∈[t−H,t]
(u,v)∈Et′

(
c[v, t′, t] + f(t′ − (t − h))

)
;

10 if c[u, t − h, t] < m then
11 c[u, t − h, t] ← m;
12 pred[u, t − h, t] ← (v, t′) (with the corresponding min

arguments);

13 if the minimum time instant tmin such that c[dst , tmin, tmin + H] < ∞ exists
then

14 return ExtractHistoryConstrainedTravel(dst , tmin, tmin + H, c);

15 return ⊥;

In this section, it is important to notice that the capability of BTT
devices does not depend on the time when the agent uses it but rather
on the largest time reached by the agent.

We present Algorithm 2 that solve the H-history-constrained ODOC prob-
lem. The algorithm uses dynamic programming to store intermediary results. At
each iteration, we update the optimal cost based on the best cost of previous
nodes. For each node xi and time t we need to store the best cost depending on
the maximum time reached by the agent.

Theorem 5. If the cost function f is in UF , then Algorithm 2 solves the H-
history-constrained ODOC problem and has O(n2H(tmin + H)) complexity, with
tmin the delay of a solution.

6 Conclusion

We presented the first solutions to the optimal delay optimal cost space-time
constrained travel planning problem in dynamic networks, and demonstrated

480 Q. Bramas et al.

that the problem can be solved in polynomial time, even in the case when back-
ward time jumps can be made up to a constant, for any sensible pricing policy.
It would be interesting to investigate the online version of the problem, when
the future of the evolving graph is unknown to the algorithm.

References

1. Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Shortest, fastest, and foremost
broadcast in dynamic networks. Int. J. Found. Comput. Sci. 26(4), 499–522 (2015).
https://doi.org/10.1142/S0129054115500288

2. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27(5), 387–408
(2012). https://doi.org/10.1080/17445760.2012.668546

3. Casteigts, A., Himmel, A., Molter, H., Zschoche, P.: Finding temporal paths under
waiting time constraints. Algorithmica 83(9), 2754–2802 (2021). https://doi.org/
10.1007/s00453-021-00831-w

4. Casteigts, A., Peters, J.G., Schoeters, J.: Temporal cliques admit sparse spanners.
J. Comput. Syst. Sci. 121, 1–17 (2021). https://doi.org/10.1016/j.jcss.2021.04.004

5. Chen, S., Nahrstedt, K.: An overview of QoS routing for the next generation high-
speed networks: problems and solutions. IEEE Netw. 12, 64–79 (1998). https://
doi.org/10.1109/65.752646

6. Ferreira, A.: On models and algorithms for dynamic communication networks: the
case for evolving graphs. In: Quatrièmes Rencontres Francophones sur les Aspects
Algorithmiques des Télécommunications (ALGOTEL 2002), Mèze, France, pp.
155–161. INRIA Press (2002)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., San Francisco (1990)

8. Garroppo, R.G., Giordano, S., Tavanti, L.: A survey on multi-constrained opti-
mal path computation: exact and approximate algorithms. Comput. Netw. 54(17),
3081–3107 (2010). https://doi.org/10.1016/j.comnet.2010.05.017

9. Guck, J.W., Van Bemten, A., Reisslein, M., Kellerer, W.: Unicast QoS routing
algorithms for SDN: a comprehensive survey and performance evaluation. IEEE
Commun. Surv. Tutor. 20(1), 388–415 (2018). https://doi.org/10.1109/COMST.
2017.2749760

10. Luna, G.A.D., Flocchini, P., Prencipe, G., Santoro, N.: Black hole search in
dynamic rings. In: 41st IEEE International Conference on Distributed Comput-
ing Systems, ICDCS 2021, Washington DC, USA, 7–10 July 2021, pp. 987–997.
IEEE (2021). https://doi.org/10.1109/ICDCS51616.2021.00098

11. Pal, G.: The time machine (1960)
12. Russo, A., Russo, J.: Avengers: Endgame (2019)
13. Thulasiraman, K., Arumugam, S., Brandstädt, A., Nishizeki, T.: Handbook of

Graph Theory, Combinatorial Optimization, and Algorithms (2016)
14. Villacis-Llobet, J., Bui-Xuan, B.M., Potop-Butucaru, M.: Foremost non-stop jour-

ney arrival in linear time. In: Parter, M. (ed.) SIROCCO 2022. LNCS, vol. 13298,
pp. 283–301. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09993-
9 16

15. Wang, Z., Crowcroft, J.: Quality-of-service routing for supporting multimedia
applications. IEEE J. Sel. Areas Commun. 14(7), 1228–1234 (1996). https://doi.
org/10.1109/49.536364

16. Zemeckis, R.: Back to the future (1985)

https://doi.org/10.1142/S0129054115500288
https://doi.org/10.1080/17445760.2012.668546
https://doi.org/10.1007/s00453-021-00831-w
https://doi.org/10.1007/s00453-021-00831-w
https://doi.org/10.1016/j.jcss.2021.04.004
https://doi.org/10.1109/65.752646
https://doi.org/10.1109/65.752646
https://doi.org/10.1016/j.comnet.2010.05.017
https://doi.org/10.1109/COMST.2017.2749760
https://doi.org/10.1109/COMST.2017.2749760
https://doi.org/10.1109/ICDCS51616.2021.00098
https://doi.org/10.1007/978-3-031-09993-9_16
https://doi.org/10.1007/978-3-031-09993-9_16
https://doi.org/10.1109/49.536364
https://doi.org/10.1109/49.536364

Machine Learning-Based Phishing
Detection Using URL Features:

A Comprehensive Review

Asif Uz Zaman Asif1(B), Hossein Shirazi2, and Indrakshi Ray1

1 Colorado State University, Fort Collins, CO 80523, USA
{asif09,indrakshi.ray}@colostate.edu

2 San Diego State University, San Diego, CA 92182, USA
hshirazi@sdsu.edu

Abstract. Phishing is a social engineering attack in which an attacker
sends a fraudulent message to a user in the hope of obtaining sensitive
confidential information. Machine learning appears to be a promising
technique for phishing detection. Typically, website content and Unified
Resource Locator (URL) based features are used. However, gathering
website content features requires visiting malicious sites, and preparing
the data is labor-intensive. Towards this end, researchers are investigat-
ing if URL-only information can be used for phishing detection. This
approach is lightweight and can be installed at the client’s end, they do
not require data collection from malicious sites and can identify zero-day
attacks. We conduct a systematic literature review on URL-based phish-
ing detection. We selected recent papers (2018 –) or if they had a high
citation count (50+ in Google Scholar) that appeared in top conferences
and journals in cybersecurity. This survey will provide researchers and
practitioners with information on the current state of research on URL-
based website phishing attack detection methodologies. In this survey, we
have seen that even though there is a lack of a centralized dataset, algo-
rithms like Random Forest, and Long Short-Term Memory with appro-
priate lexical features can detect phishing URLs effectively.

Keywords: Phishing · social engineering · URL-based · survey ·
cybersecurity · machine learning · feature extraction · data repository

1 Introduction

Phishing is a social engineering attack intended to deceive the victim and
attempt to obtain sensitive data with the ultimate goal of stealing the victim’s
valued possessions. Although phishing has persisted since the mid 90’s [22], such
attacks have escalated in recent times due to the increased use of online activities.
According to reports provided by the Anti-Phishing Working Group (APWG),
more than a million phishing attacks were recorded in the First Quarter (Q1) of
2022. With 23.6% of all attacks, the financial sector was the one most commonly
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 481–497, 2023.
https://doi.org/10.1007/978-3-031-44274-2_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_36&domain=pdf
https://doi.org/10.1007/978-3-031-44274-2_36

482 A. U. Z. Asif et al.

targeted by phishing in Q1 [9]. Attackers are constantly adapting their strategies
which makes phishing detection particularly hard.

Typically, the attacker attempts to redirect users to a phishing site using a
malicious URL. URL manipulation is often the first stage in building phishing
websites. Attackers work on various means through which a malicious URL can
be represented. Since the representation of URL keeps on changing, even pro-
fessionals cannot correctly identify phishing URLs. Past approaches for phish-
ing detection use signature-based and rule-based mechanisms. However, these
approaches are ineffective against zero-day attacks which are referred to as vul-
nerabilities that are exploited as soon as they are discovered or even before
anyone is aware of them.

Machine learning researchers have used URL-based features and content-
based features (website images, HTML, and JavaScript code) to distinguish
phishing from genuine websites. In this survey, we focussed only on URL-based
features. A number of reasons motivated this choice. First, machine learning
algorithms focusing on lexical characteristics of URL are lightweight and more
efficient than those using both content-based and URL-based features. Second,
this approach can thwart phishing attacks at the very initial stage when a user
stumbles into a potentially harmful URL or phishing campaign. Third, the use
of URL only features does not require one to visit malicious websites to down-
load content-based features. Visiting malicious websites may cause malware to
be loaded which may lead to future attacks. Fourth, URL-based classifiers can be
installed on clients’ mobile devices as they are lightweight – the clients’ browsing
habits are abstracted from the servers – making them more privacy-preserving.

In this survey, we produced a comprehensive review of the research on URL-
based phishing detectors using machine learning. We looked into the feature
extraction procedure, the datasets, the algorithms, the experimental design, and
the results for each work. We looked at the crucial steps in creating a phishing
detector, and after analyzing several different approaches, we gave our conclu-
sions regarding the features that may be used, the ideal algorithms, the dataset’s
current state, and some recommendations. We used two criteria for the paper
selection process in this survey. First, we looked into the articles on URL-based
phishing detection that has been published in the past five years (2018 onwards)
in journals having an impact factor of 2.0 or higher and in conferences from Tier
(1, 2, and 3)1. We also examined papers having at least 50 citations in Google
Scholar. We found 26 papers satisfying our criteria.

The rest of the paper is organized as follows. The anatomy of an URL is
explained in Sect. 2. Feature extraction techniques used by researchers are illus-
trated in Sect. 3. Section 4 of the paper discusses machine learning algorithms
that are used. The numerous data sources that are used by researchers are
covered in Sect. 5. Section 6 contains the experimental results and presents an
overview of the survey findings. Finally, Sect. 7 concludes the paper.

1 We used the following sources for conference rankings: https://people.engr.tamu.
edu/guofei/sec_conf_stat.htm.

https://people.engr.tamu.edu/guofei/sec_conf_stat.htm
https://people.engr.tamu.edu/guofei/sec_conf_stat.htm

ML-Based Phishing Detection Using URL Features 483

2 Malicious URLs

The anatomy of an URL is critical for understanding how attackers manipulate
it for launching phishing attacks. An attacker may manipulate any segment of
the URL to create a malicious link that can be used to launch a phishing attack.

The URL of a website is made up of three major components: scheme,
domain, and path. The scheme specifies the protocol used by the URL. The
domain name identifies a specific website on the internet. The paths are then
used to identify the specific resource that a web client is attempting to access.

An attacker often uses social engineering to trick a victim so that the mali-
cious URL goes undetected. To accomplish this goal, the attacker will employ
various obfuscation techniques. In this case, the attacker may obfuscate the host-
name with the IP address, and the phished domain name is placed in the path,
for example, http://159.203.6.191/servicepaypal/. Furthermore, an attacker can
obfuscate a domain name that is unknown or misspelled, such as http://paypa1.
com, which is misspelled and unrelated to the actual domain.

The most important details in the above URLs are the techniques used to
redirect a victim to a malicious site and entice them to provide sensitive infor-
mation to the attacker. PayPal is incorporated in the malicious URL in all of
these cases, creating a sense of urgency for the victim and making them vulner-
able to judgemental errors. To prevent URL-based website phishing attacks, an
automated approach is needed.

3 Feature Extraction

Manual feature extraction is required for URL-based website phishing attack
detection when using machine-learning; this is generally known as using hand-
crafted features. However, when a deep learning approach is employed, the fea-
ture extraction procedure is done automatically and does not require domain
expertise.

Researchers have often used URL lexical features alongside domain features
to create a better ML model. Table 1 provides a list of features used by the
algorithms.

URL Lexical Features: Information that is directly connected to a website’s
URL components is referred to as URL lexical features. URL-based characteris-
tics include lexical features that keep track of the attributes of the URL, such
as its length, domain, and subdomain. Popular lexical elements of URLs include
the use of the Hypertext Transfer Protocol Secure (HTTPS) protocol, special
characters and their counts (for a dot, a hyphen, and at symbol), numerical
characters, and IP addresses.

Domain Features: Information about the domain on which a website is hosted
is included in the domain features. The age of the domain and free hosting is
generally included in this feature set as it is a crucial signal for distinguishing
between a legitimate website and a phishing website. Typically, a newly hosted
website serves as a warning sign for a phishing site.

http://159.203.6.191/servicepaypal/
http://paypa1.com
http://paypa1.com

484 A. U. Z. Asif et al.

Word Features: These prevent a typical user from becoming suspicious.
Attackers utilize words like secure, support, safe, and authentic within the URL
itself to make it appear real. To make the URL appear legitimate, they also
include well-known brand names, such as PayPal and Amazon inside the URL.

Character Features: Phishing sites often use suspicious characters. The length
of the URL, the usage of uncommon letters or symbols, and misspelled words are
a few examples of character-based indicators that are frequently used to identify
phishing websites.

Search Index Based Features: These include website page ranking, Google
index, and website traffic information. The average lifespan of a phishing website
is quite short, and it typically produces no statistics.

Table 1. Combination of features used in the literature

Ref. [19] [37] [11] [24] [21] [2] [35] [13] [6] [34] [14] [17] [42] [40] [7] [39] [45] [41] [44] [4] [3] [5] [8] [29] [12] [20]

Automatic Features � � �
Hand-Crafted Features � � � � � � � � � � � � � � � � � � �
URL Lexical Features � � � � � � � � � � � � � � � � � � �
Domain Features � � � � � � � �
Word Features � � � � � � � �
Character Features � � � �
Search Index Features �
Total Features 17 – 46 51 14 35 104 12 42 93980 17 – – – 95+ 87 – 9 – – – 111 30 30 – 48

4 Algorithms

The parts that follow provide a description of the machine learning and deep
learning algorithms used for URL-based phishing detection.

4.1 Classification Using Machine Learning

Logistic Regression (LR) is a common statistical machine-learning method
for binary classification problems or for predicting an outcome with two possible
values and this is specifically required for phishing detection because URL might
either be legitimate or fraudulent [6,7,14,29,34,37,41]. LR can process a lot of
URLs as it is a computationally efficient technique and can handle big datasets
with high-dimensional feature spaces [7,29]. In order to select the most crucial
aspects for phishing URL detection, feature selection can be done using LR
models. In addition to increasing the model’s effectiveness, this can decrease the
input space’s dimensionality and works with word-based features [37], character-
based features [7] and bi-gram-based features which is, contiguous pairs of words
[41]. Additionally, when given a balanced dataset, LR can learn the decision
boundary that best discriminates between positive and negative samples without
favoring either class [14,34]. However, in order to train the model, LR needs

ML-Based Phishing Detection Using URL Features 485

labeled data. This can be a problem in phishing detection because acquiring
labeled data can be challenging [6].

Decision Tree (DT) is a type of supervised machine learning method for clas-
sification and regression tasks. It works by iteratively segmenting the input data
into subsets based on the values of the input attributes in order to discriminate
between the various classes or forecast the target variable. DT is commonly used
by researchers for phishing detection problems [5,6,13,20,29,34,35,40]. Phish-
ing URLs frequently exhibit traits that set them apart from real URLs. DT
algorithm learns to distinguish between legal and phishing URLs using these
properties as input to the features needed to train the algorithm. For detecting
URL-based phishing, DT is advantageous because it is a highly interpretable
model that makes it possible for human specialists to determine the reasoning
behind a choice. Given the large potential for feature density in URLs, the fea-
ture space is highly dimensional. Without suffering dimension problems, DT can
handle this type of data [29]. Moreover, DT that use lexical features can pro-
duce a better result, it creates a set of rules based on lexical properties that
are simple for human specialists to comprehend [34,35,40]. When working with
massive datasets, decision trees offer outcomes with good performance [5,40].
However, overfitting is common in DT, especially in small or significantly unbal-
anced datasets. A model may as a result perform well on training data but badly
on the newly collected information [13].

Random Forest (RF) is another machine learning method used for classifica-
tion, regression, and feature selection tasks [4,6,7,11,13,20,24,29,34,35,39,40,
42]. Because RF can manage large and complex datasets and has the capability
to deal with noisy data it is well-adapted for URL-based phishing detection [40].
To make predictions, the ensemble learning method of RF, combines data from
various decision trees, reducing the possibility of overfitting while improving the
model’s generalization capabilities [7,29,34,35,39]. A measure of feature impor-
tance can also be provided by RF, which means that this algorithm can be used
to understand the key features that contribute to phishing detection, improv-
ing the algorithm’s overall accuracy [11,24,29]. RF is better for the real-time
detection of phishing URLs because it is computationally efficient and can be
trained on big datasets rapidly as it requires minimal parameter tuning [11].
We also observed that using the lexical features of the URL, RF can produce
good performance accuracy [35]. However, the RF algorithm may not work well
with imbalanced datasets but it can be observed that on a balanced dataset, it
gives better performance [4,39,42]. Another disadvantage of using RF is that
the model produces better results at the cost of both training and prediction
time [13].

Naive Bayes (NB) algorithm is a probabilistic algorithm used in machine
learning for classification purposes which is based on Bayes’ theorem, to identify
URL-based website phishing [7,11,13,14,20,21,29,35,39–41]. NB can manage
high-dimensional data, which means the algorithm can handle a large number
of features in the URL [7]. NB is susceptible to the model’s feature selection,

486 A. U. Z. Asif et al.

though the model’s accuracy may suffer if essential features are excluded [41].
It can therefore work better on small feature sets with important features [29].
Additionally, it was discovered that applying only word-based features to NB
does not yield better results [35]. The NB algorithm also has the benefit of learn-
ing the underlying patterns in the data with a small quantity of labeled training
data, given how difficult it can be to acquire labeled data, this is especially help-
ful for URL-based phishing detection [39,40]. When there are an uneven amount
of samples in each class, NB may not perform well. This could lead to a model
that is biased in support of the dominant class [21]. On a balanced sample,
however, this algorithm performance improves [11].

Gradient Boosting (GB) is a machine learning technique that creates a
sequence of decision trees, each of which aims to fix the flaws of the one previ-
ous to it. The combined forecasts of all the trees result in the final prediction
[7,20,29,34,39]. Since GB can be used to train models on huge datasets, it is
especially suitable for large-scale phishing attack detection [39]. Additionally,
the balanced dataset makes sure that the accuracy of the model is not biased
towards one class over another and forces the model to equally understand the
underlying patterns of the data for each class. As a result, the model becomes
more accurate and generalizable [20,34,39]. Moreover, GB is effective when more
attributes are considered [7,34] as well as on character-based features [29,39].
The model may be less accurate or may not perform well on new, untested data
if the training data is biased or insufficient. However, on a balanced dataset,
the algorithm performs better [20]. To ensure that the model is able to extract
the most informative features from the data, GB necessitates thorough feature
engineering. When dealing with complicated and diverse information like URLs,
this can be a time-consuming and difficult operation [7,34].

Adaptive Boosting (AdaBoost) is a machine learning algorithm that is a
member of the ensemble learning technique family. This approach for supervised
learning can be applied to classification and regression tasks and is also used for
URL-based website phishing detection [29,35,39,40]. As an ensemble approach
it combines several weak learners to provide a final prediction, AdaBoost is a
powerful algorithm that can be a viable choice for URL-based phishing detection
[29]. AdaBoost can predict outcomes more precisely when it has access to a
larger training dataset. The algorithm can produce predictions that are more
accurate by better capturing the underlying relationships and patterns in the
data [39,40]. However, AdaBoost may not be the best option for datasets with a
lot of irrelevant or redundant features because it does not directly do the feature
selection. This may lead to longer training times and poor results [35].

K-Nearest Neighbour (K−NN) is an algorithm where a prediction is made
based on the labels of the k data points that are closest to an input data point
in the training set. In the context of URL-based phishing detection, this means
that the algorithm may compare a new URL to a list of known phishing and
legitimate URLs and find the ones that are most similar to the new URL and thus
are used for URL-based website phishing detection [2,4,6,20,29,34,35,39]. High-

ML-Based Phishing Detection Using URL Features 487

dimensional feature vectors, such as those found in URLs, might be challenging to
process. However, the K−NN technique can efficiently detect similarities across
URLs and is well-suited to high-dimensional data [39]. Even with imbalanced
datasets, where the proportion of samples in one class is significantly higher than
the other, the K−NN approach can perform well [20,34]. Additionally, K−NN
works well with word-based features [2,34,35]. In K − NN when producing
predictions, an algorithm that has a bigger value of k will take into account
more neighbors and improves performance [4]. However, the number of nearest
neighbors taken into account or the distance measure utilized can have an impact
on how well the K −NN method performs. These hyperparameters may need a
lot of effort to be tuned [29]. The K −NN method is susceptible to adversarial
attacks, in which a perpetrator creates URLs on purpose to avoid being detected
by the system [6,34].

Support Vector Machine (SVM), a form of supervised learning algorithm
used in classification and regression analysis, was commonly used by researchers
[2,4,6,11,13,14,20,21,24,29,34,39,42]. SVM is good for detecting URL-based
website phishing because it can handle high-dimensional data and identify intri-
cate connections between features [39]. Numerous characteristics, including the
lexical features of the URL, and the existence of specific keywords, can be used
to detect phishing when analyzing URLs. These characteristics can be used by
SVM to recognize trends in phishing URLs and separate them from real URLs.
It can be observed that only using the lexical features of the URL does not yield
good results [34]. However, hybrid features like a combination of text, image, and
web page content work better for SVM [2]. Hence to achieve optimum perfor-
mance, SVM requires fine-tuning of several parameters, SVM s additionally can
require a lot of computational power, especially when working with big datasets
[13]. This may slow down training and prediction times and necessitate the use
of powerful hardware [4]. Moreover, the ratio of legitimate URLs to phishing
URLs is very uneven, which can result in unbalanced data that will degrade
the performance of SVM [11]. However, on a balanced dataset, SVM performs
better [42]. Additionally, if there is a lack of training data, SVM ’s accuracy is
likely to decline [21].

4.2 Classification Using Deep Learning

Neural Network (NN) uses complex patterns and correlations between input
features can be learned. By finding patterns that are suggestive of phish-
ing attempts, NN can learn to differentiate between legitimate and phishing
URLs in the context of URL-based phishing detection [5,7,20]. The ability of
NN to acquire intricate patterns and connections between the characters in a
sequence makes them effective for character-based characteristics [7]. Addition-
ally, because the algorithm can learn from the data and produce predictions for
each class with nearly equal importance, neural networks can perform well on
balanced datasets [20]. However, to perform well, NN needs a lot of high-quality

488 A. U. Z. Asif et al.

training data. Especially in rapidly changing phishing contexts, collecting and
identifying a sufficiently large and diverse array of URLs might be difficult [5].

Multi-Layer Perceptron (MLP) is another type of NN that has been found
to be successful in URL-based phishing detection [13,14,39]. A class imbalance
may significantly affect several other algorithms, however, because MLPs employ
numerous hidden layers and may thus identify more complex patterns in the
data, they are less prone to this problem [13,14]. However, it can be computa-
tionally expensive to train MLPs, especially for larger datasets or more intricate
network designs. Long training periods may result from this, which may slow
down the deployment of phishing detection systems [39].

Convolutional Neural Network (CNN) is a class of neural networks that are
frequently employed in computer vision, but recently it has emerged to be a great
tool for phishing detection [3,4,7,8,12,40–42,45]. When labeled training data is
limited, CNN s can benefit from pre-trained models and transfer learning to
enhance performance in detecting phishing URLs. CNN is capable of handling
variations in the input data, including changes to the URL’s length and the
existence of unexpected letters or symbols. This is because the pooling layers
can downsample the feature maps to lessen the influence of variances, while the
convolutional filters used in CNN can recognize patterns in various regions of
the CNN [7,45]. Without manual feature engineering, CNN can automatically
extract high-level features from the data that comes in. This is because the
filters in the convolutional layers are trained to identify the most important data
patterns [4,7,8,41]. Additionally, the CNN performs well on a balanced dataset
[12,42]. It is possible to train more sophisticated CNN architectures that can
recognize subtler patterns and correlations in the data with a larger dataset
which can increase the model’s capacity to correctly categorize new phishing
samples [3,4,40]. However, if a CNN model fits the training data too closely
and cannot generalize to new, untested data, the problem of overfitting arises.
This can be prevented by using batch normalization and dropout techniques
[3]. Additionally, CNN s can require a lot of processing power, particularly when
employing deep structures with numerous layers, therefore, this can need a lot
of computing power and hardware resources [4,8,41].

Recurrent Neural Network (RNN) are a type of neural network that excels
at processing sequential data such as text or time series data. Because URLs
may be represented as a sequence of characters, and because RNN s can learn
to recognize patterns and characteristics in this sequence, they can be utilized
for URL-based phishing detection [40,41]. Each character or characteristic in a
URL is built sequentially, depending on the ones that came before. These sequen-
tial relationships can be observed by RNN s, which can then utilize to forecast
whether a URL is genuine or phishing. RNN performance on balanced datasets
depends on the particular task at hand as well as the network’s architecture.
For tasks requiring capturing long-term dependencies and temporal correlations
between the input features, RNN s are especially well-suited [41]. To properly
learn to recognize patterns in sequential data, such as URLs, RNN s need a lot
of training data. This implies that RNN s may not be used efficiently for phish-

ML-Based Phishing Detection Using URL Features 489

ing detection for enterprises with limited access to training data [40]. RNN s
can be challenging to understand, particularly when working with massive data
sets. RNN s can only be as effective as the training set that they are given.
The RNN may struggle to accurately identify new and emerging dangers if the
training data is not representative of all the threats that an organization might
encounter [40].

Long Short-Term Memory (LSTM) is a specific type of RNN that was
developed to address the issue of vanishing gradients that RNN frequently
encounter and thus this algorithm is used by researchers for phishing detection
[3,8,14,19,40,42,44,45]. The long-term dependencies and sequential patterns in
URLs can be captured by LSTM, making it a good choice for URL-based website
phishing detection. In order to detect tiny variations and patterns in phishing
URLs that could otherwise go undetected, LSTM networks are particularly good
at identifying sequential data and hence is a good choice for URL-based website
phishing attack [3,14]. LSTM s can function well even when trained on mini-
mal amounts of data [40]. These models are perfect for dealing with imbalanced
datasets because they can find long-term correlations in the data. For identifying
trends in the minority class, these dependencies can be very important [44,45].
Additionally, LSTM performs poorly for small datasets [8] but performs well
on large datasets [19]. However, particularly when using vast data sets, training
LSTM models can be computationally and memory-intensive [42]. Overfitting
is a possibility with LSTM models, especially when working with limited data.
When a model develops a proficiency at recognizing trends in training data but
is unable to generalize that skill to fresh, untried data, overfitting occurs. This
issue can be solved by using dropout in LSTM [3]. LSTM is complex in nature
but the number of parameters needed for an LSTM model can be decreased by
using pre-trained word embeddings like Word2Vec [19].

Bidirectional Long Short-Term Memory (BiLSTM) is a form of machine
learning-based RNN architecture that is used to detect URL-based website
phishing attacks [12,19,41,44]. BiLSTM is a form of neural network design that
is effective at detecting data’s sequential patterns. The capacity of BiLSTM
algorithms is to examine the complete URL string in both ways, i.e., from the
beginning to the end and from the end to the beginning, which makes them par-
ticularly useful for URL-based phishing detection [12,19,41]. Positive instances
are often more scarce in imbalanced datasets than negative examples. BiLSTM
may simultaneously learn from both phishing and legitimate instances, which
may aid in improving its ability to distinguish between the two classes [19,44].
It can be costly computationally to train BiLSTM networks, especially if the
input sequences are large and complex. The algorithm’s capacity to scale for
very big datasets may be constrained by this [19,44].

Gated Recurrent Units (GRU) is a sort of recurrent neural network that
has been found to be useful for URL-based phishing detection [19,44]. GRU s
are more memory-efficient and require fewer parameters than other recurrent
neural network types. They are thus well suited for use in contexts with limited

490 A. U. Z. Asif et al.

resources, such as those seen in cloud-based systems or on mobile devices [19].
Additionally, on imbalance datasets, GRU s can perform well [19,44].

Bidirectional Gated Recurrent Units (BiGRU) is a GRU version that cap-
tures sequential dependencies in both forward and backward directions. BiGRU
is useful for detecting URL-based phishing [19,44]. There are two layers in
BiGRU, one of which moves the input sequence forward and the other which
moves it backward. This gives the network the ability to record dependencies that
happen both before and after a certain input feature, which is helpful for identi-
fying intricate patterns in URLs. Additionally, on imbalance datasets, BiGRU s
can perform well [19,44].

5 Dataset

The availability and quality of data are essential for the performance of machine
learning-based phishing detection algorithms. To detect phishing attacks, algo-
rithms need to be trained on large and diverse datasets. It is also important
to keep the data up-to-date to reflect the latest trends and techniques used
by attackers. This section will explore various data sources available for both
phishing and legitimate websites and the detailed overview is shown in Table 3.

Phishing data sources are collections of URLs used to identify and block
phishing websites and train a machine-learning model to detect new samples of
phishing websites.

PhishTank.com is a community-based repository where contributors work to
sanitize data and information pertaining to online phishing. The data is available
in CSV or XML formats. In addition, an Application programming interface
(API) is also available for research purposes [32].

OpenPhish.com is a live repository of phishing URLs, obtained from security
researchers, government agencies, and other organizations. It uses automated
and manual verification methods to ensure the sites are phishing sites [31].

Researchers also use websites like MalwareUrl [26], MalwareDomain [33],
and MalwareDomainList [25] to collect malicious URLs. These community-
driven tools are used to combat cyber threats.

Researchers collect legitimate URLs by compiling a list of popular websites,
using web crawling sources, and online directories.

Common Crawl is a large-scale web crawl that is made up of petabytes of data
that have been collected since 2008. It includes raw web page data, extracted
metadata, and text extractions. This repository’s material is maintained in Web
ARChive (WARC) format, which contains URL-related data [15].

DMOZ.org was a large, open directory of the web, created and maintained by
a volunteer editor community. It was one of the largest and most comprehen-
sive directories on the web, with millions of websites listed and organized into
thousands of categories. However, the project was discontinued in 2017 due to a
decline in editor participation and the dominance of search engines [16].

ML-Based Phishing Detection Using URL Features 491

Yandex.XML as a search engine provides API to submit queries and receive
answers in XML format [43].

Alexa Web Crawl. Alexa is used to collect authentic URLs through the Inter-
net Archive starting from 1996 [10].

In addition to data sources of phishing and legitimate URLs, there are exist-
ing ready-to-use datasets.

ISCXURL2016 is a dataset that includes both authentic and phishing URLs.
There are 35,300 benign URLs in this dataset that was gathered from the top
Alexa websites using the Heritrix web crawler. For phishing, this dataset also
contains 12,000 URLs from the WEBSPAM-UK2007 dataset, 10,000 URLs from
OpenPhish, 11,500 URLs from DNS-BH, and 45,450 URLs from Defacement
URLs; a total of more than 78,000 URLs [38].

MillerSmiles Archives is a collection of phishing emails compiled by security
researcher Paul Miller. The archives have not been updated since 2013 and the
domain name millersmiles.co.uk is inactive [28].

Phishstorm is a dataset that contains both legitimate and phishing URLs.
48,009 legitimate URLs and 48,009 phishing URLs are included in this dataset’s
total of 96,018 URLs [27].

Ebbu2017 dataset comprises 36,400 valid URLs and 37,175 phishing URLs.
The legitimate URLs were collected from Yandex.XML and the phishing data
was collected from PhishTank [18].

UCI-15 dataset defined 30 different attributes for phishing URLs and extracted
values of those attributes for each phishing URL. Data were collected mainly
from PhishTank, MillerSmiles, and from Google search operator and the total
number of instances in this dataset is 2456 [30].

UCI-16 dataset containing 1353 examples of both legitimate and phishing
URLs, is also used by researchers. It comprises 10 distinct features. Phishing
URL data are gathered from PhishTank and legitimate URLs as collected from
Yahoo and using a crawler [1].

MDP-2018 dataset, which was downloaded between January and May 2015
and May and June 2017, has 48 features that were taken from 5000 legitimate
URLs and 5000 phishing URLs. This dataset includes details on both legal and
fraudulent URLs. Sources of fraudulent websites include PhishTank, OpenPhish,
and legitimate websites like Alexa and Common Crawl [36].

6 Experimental Evaluations and Survey Findings

The findings reported in the phishing literature are important because they will
aid in the identification of the algorithms that will be used to detect phishing
in URL. Detailed information is provided in Table 2 where the best-performing
algorithms are reported. Additionally, the metrics are briefly explained in the
appendix.

492 A. U. Z. Asif et al.

Table 2. Performance evaluation by researchers with metrics: [Acc]uracy, [P]recision,
[Rec]all, [F1]-Score. Studies [6,24,37] used other metrics.

Ref Best Performing Algorithm P Rec Acc F1

[5] DT 97.40 96.30
[39] Gradient Tree Boosting (GTB) 97.42
[29] eXtreme Gradient Boosting (XGBoost) 95.78 96.77 96.71 96.27
[11] RF 94.00 94.00 94.05 93.20
[35] RF 97.00 97.98
[13] RF 97.40 99.29 98.22
[21] SVM 91.28
[42] CNN 99.57 100.00 99.80 99.78
[8] CNN 99.00 99.20 99.20 99.20
[4] CNN 96.53 95.09 95.78 95.81
[41] CNN 97.33 93.78 95.60 95.52
[45] CNN 98.30 94.95
[7] CNN 92.35 98.09 99.02 95.13
[40] LSTM 99.88 99.82 99.97 99.85
[3] GRU 98.00 97.56
[19] BiGRU 99.40 99.50 99.50 99.40
[44] BiGRU 99.64 99.43 95.55 99.54
[20] Transformer 96+
[17] LURL 97.40
[34] EXPOSE 97+
[12] GramBedding 97.59 98.26 98.27 99.73
[2] Adaptive Neuro-Fuzzy Inference System (ANFIS) 98.30
[14] Multi-Modal Hierarchical Attention Model (MMHAM) 97.84 96.66 97.26 97.24

We now list our observations on automated URL-based website phishing
detection strategies employing machine learning algorithms.

Feature Selection process has a significant impact on the performance of an
automated website phishing detector. The specific features must be chosen before
the classification process can begin for both machine learning and deep learn-
ing approaches. However, if a deep learning-based approach is used, the feature
extraction process can be done automatically because these algorithms are capa-
ble of identifying the key characteristics on their own; as a result, deep learning
features can also be used if researchers are attempting to come up with new sets
of features. For a URL-based website phishing attack detector to operate well, a
combination of features directly connected to the URL is required. For instance,
combining Domain Name System (DNS), domain, and lexical elements of the
URL will improve the detector’s accuracy. There is one thing to keep in mind,
though, and that is to avoid using too many features for classification as this

ML-Based Phishing Detection Using URL Features 493

could lead to bias and over-fitting, both of which would impair the detector’s
effectiveness.

Algorithms from the fields of machine learning and deep learning used by
researchers to combat the problem of phishing. Researchers initially employed
heuristic-based approaches to tackle these issues, but as machine learning models
advanced, this strategy was swiftly supplanted. The manual feature extraction
was a vital component of the machine learning-based method because it influ-
enced how well the algorithms worked. Deep learning-based approaches, however,
are currently quite popular because the models can now automatically infer the
semantics of the URL, eliminating the need for manual extraction. Although the
essence of these works has been simplified, the underlying architecture is still a
conundrum. As a result of this survey, we can see that developing a URL-based
detector using deep learning-based algorithms yields better results. Additionally,
someone who has little prior domain expertise about what features to choose for
categorization purposes may benefit from a deep learning method because this
can be done automatically.

Based on the classification accuracy of these algorithms in this domain, it
can be suggested that RF algorithms in the area of machine learning perform
the best with an accuracy of 99.29% with DT being another excellent machine
learning algorithm that comes in second place with an accuracy of 97.40%. LSTM
is an algorithm that is the best choice (accuracy 99.96%) and CNN is the second-
best-performing algorithm with accuracy of 99.79% for the deep learning-based
approaches.

Datasets utilized were not from a single source, and each researcher used a
separate dataset to develop their system. As a result, the lack of a shared dataset
can be a concern because one dataset may contain certain phishing site data
while the other one does not. Furthermore, because phishing URL databases are
not open-source, many academics do not use them. This is advantageous because
attackers may acquire publicly accessible datasets and use them to extract key
attributes and tailor their assaults accordingly. The drawback of that is that it
might be laborious and time-consuming for a researcher to create a dataset.

7 Conclusions

We discussed URL-based phishing detection approaches, focusing on the fea-
tures, algorithms, and datasets used by researchers. We observed that lexical
analyzers are effective tools for detecting URL-based phishing since they can
detect phishing on the fly (real-time detection), and they can also correctly
identify newly constructed malicious websites. However, more effort needs to be
put into making the detector more robust because attackers are always coming
up with new ways to use phishing attacks to evade the defenses. One approach
to do this is to use adversarial phishing samples to train the model, and these
samples can be produced using an Generative Adversarial Network (GAN).

Google Sites is increasingly used to create websites, and fraudsters use it
to build phishing websites and conduct phishing attacks. The problem, in this

494 A. U. Z. Asif et al.

case, is that because sites created with Google Sites disclose less information in
the URL, the approaches covered in this survey may not be adequate to thwart
phishing attempts made using Google Sites. For such websites, a combination of
URL-based and content-based features need to be used to make the detection
techniques effective.

Acknowledgements. This work was supported in part by funding from NSF under
Award Numbers CNS 1715458, DMS 2123761, CNS 1822118, NIST, ARL, Statnett,
AMI, NewPush, and Cyber Risk Research.

Appendix

The metrics used to assess the performance of the algorithms are described
below. We use N to represent the number of legitimate and phishing websites,
with P denoting phishing and L denoting legitimate.

Precision is the proportion of phishing attacks (NP→P) classified correctly
as phishing attacks to the total number of attacks detected (NL→P +NP→P).
Precision = NP →P

NL→P+NP →P

Recall is the proportion of phishing attacks (NP→P) classified correctly to total
phishing attacks (NP→P +NP→L). Recall = NP →P

NP→P+NP →L

Accuracy is the proportion of phishing and legitimate sites that have been
correctly classified (NL→L +NP→P) to the total number of sites Accuracy =
NL→L+NP→P

TotalSites

F1-Score is a widely used evaluation metric that combines the model’s recall
and precision into a single score for binary classification models. F1 − score =
2∗(Precision∗Recall)
Precision+Recall

ML-Based Phishing Detection Using URL Features 495

Table 3. Dataset sources and the size of the data used for experiments in the literature

Ref Dataset
Dataset source Dataset size Total Samples
Legitimate Phishing Legitimate Phishing

[19] Common Crawl PhishTank 800k 759k 1,500k
[37] DMOZ PhishTank 55k 55k 100k
[11] DMOZ PhishTank 100k 15k 115k
[24] Alexa PhishTank 110k 32k 142k
[21] Yahoo directory, DMOZ PhishTank 2k 32k 34k
[2] Google Search Operator PhishTank, MillerSmiles 6k 6.8k 12.8k
[35] Yandex.XML PhishTank 36k 37k 73k
[13] Kaggle [23] PhishTank 40k 60k 100k
[6] DMOZ PhishTank, MillerSmiles 54k 52.8k 106.8k
[34] DMOZ, Alexa, Phish-storm PhishTank, OpenPhish, Phish-storm 96k 96k 192k
[14] DMOZ PhishTank 4k 4k 8k
[17] Alexa PhishTank 7k 6k 13k
[42] Common Crawl PhishTank 10.6k 10.6k 21.2k
[40] Alexa, DOMZ PhishTank, OpenPhish, MalwareURL,

MalwareDomain, MalwareDomainList
79k 62k 141k

[7] Alexa, Yandex, Common Crawl PhishTank, OpenPhish,
MalwareDomain

278k 278k 556k

[39] Google Search Operator, Yahoo,
Alexa, Common Crawl

PhishTank, MillerSmiles, OpenPhish 10.4k 11.9k 22.3k

[45] Alexa PhishTank 343k 70k 413k
[41] Alexa PhishTank 245k 245kk 490k
[44] Common Crawl PhishTank 800k 759kk 1559k
[4] Common Crawl PhishTank 1140k 1167kk 2307k
[3] Common Crawl PhishTank 2220k 2353k 4573k
[5] Alexa PhishTank 85k 60k 145k
[8] Alexa PhishTank 10k 9.7k 19.7k
[29] Kaggle (Source not mentioned) Kaggle (Source not mentioned) - - 11k
[12] Custom Crawler developed PhishTank, OpenPhish 400k 400k 800k
[20] Alexa, Common Crawl PhishTank, OpenPhish 25.96k 25.96k 51.9k

References

1. Abdelhamid, N.: UCI Machine Learning Repository (2016). https://archive.ics.uci.
edu/ml/datasets/Website+Phishing

2. Adebowale, M.A., Lwin, K.T., Sanchez, E., Hossain, M.A.: Intelligent web-phishing
detection and protection scheme using integrated features of images, frames and
text. Expert Syst. Appl. 115, 300–313 (2019)

3. Al-Ahmadi, S., Alotaibi, A., Alsaleh, O.: PDGAN: phishing detection with gener-
ative adversarial networks. IEEE Access 10, 42459–42468 (2022)

4. Al-Alyan, A., Al-Ahmadi, S.: Robust URL phishing detection based on deep learn-
ing. KSII Trans. Internet Inf. Syst. (TIIS) 14(7), 2752–2768 (2020)

5. Al-Haija, Q.A., Al Badawi, A.: URL-based phishing websites detection via machine
learning. In: 2021 International Conference on Data Analytics for Business and
Industry (ICDABI), pp. 644–649. IEEE (2021)

6. AlEroud, A., Karabatis, G.: Bypassing detection of URL-based phishing attacks
using generative adversarial deep neural networks. In: Proceedings of the Sixth
International Workshop on Security and Privacy Analytics, pp. 53–60 (2020)

https://archive.ics.uci.edu/ml/datasets/Website+Phishing
https://archive.ics.uci.edu/ml/datasets/Website+Phishing

496 A. U. Z. Asif et al.

7. Aljofey, A., Jiang, Q., Qu, Q., Huang, M., Niyigena, J.P.: An effective phishing
detection model based on character level convolutional neural network from URL.
Electronics 9(9), 1514 (2020)

8. Alshingiti, Z., Alaqel, R., Al-Muhtadi, J., Haq, Q.E.U., Saleem, K., Faheem, M.H.:
A deep learning-based phishing detection system using CNN, LSTM, and LSTM-
CNN. Electronics 12(1), 232 (2023)

9. APWG: phishing activity trends report (2021). https://apwg.org/trendsreports/.
Accessed 14 Nov 2021

10. ARossi: Alexa crawls. https://archive.org/details/alexacrawls?tab=about
11. Aung, E.S., Yamana, H.: URL-based phishing detection using the entropy of non-

alphanumeric characters. In: Proceedings of the 21st International Conference
on Information Integration and Web-based Applications & Services, pp. 385–392
(2019)

12. Bozkir, A.S., Dalgic, F.C., Aydos, M.: GramBeddings: a new neural network for
URL based identification of phishing web pages through n-gram embeddings. Com-
put. Secur. 124, 102964 (2023)

13. Butnaru, A., Mylonas, A., Pitropakis, N.: Towards lightweight URL-based phishing
detection. Future Internet 13(6), 154 (2021)

14. Chai, Y., Zhou, Y., Li, W., Jiang, Y.: An explainable multi-modal hierarchical
attention model for developing phishing threat intelligence. IEEE Trans. Depend-
able Secure Comput. 19(2), 790–803 (2021)

15. Common crawl. https://commoncrawl.org/
16. Curlie. https://curlie.org/
17. Dutta, A.K.: Detecting phishing websites using machine learning technique. PLoS

ONE 16(10), e0258361 (2021)
18. Ebubekirbbr: Pdd/input at master · ebubekirbbr/pdd (2019). https://github.com/

ebubekirbbr/pdd/tree/master/input
19. Feng, T., Yue, C.: Visualizing and interpreting RNN models in URL-based phishing

detection. In: Proceedings of the 25th ACM Symposium on Access Control Models
and Technologies, pp. 13–24 (2020)

20. Haynes, K., Shirazi, H., Ray, I.: Lightweight URL-based phishing detection using
natural language processing transformers for mobile devices. Procedia Comput.
Sci. 191, 127–134 (2021)

21. Jain, A.K., Gupta, B.B.: PHISH-SAFE: URL features-based phishing detection
system using machine learning. In: Bokhari, M.U., Agrawal, N., Saini, D. (eds.)
Cyber Security. AISC, vol. 729, pp. 467–474. Springer, Singapore (2018). https://
doi.org/10.1007/978-981-10-8536-9_44

22. KnowBe4: History of phishing. https://www.phishing.org/history-of-phishing.
Accessed 24 June 2022

23. Kumar, S.: Malicious and benign URLs (2019). https://www.kaggle.com/datasets/
siddharthkumar25/malicious-and-benign-urls

24. Lee, J., Ye, P., Liu, R., Divakaran, D.M., Chan, M.C.: Building robust phishing
detection system: an empirical analysis. In: NDSS MADWeb (2020)

25. Malware domain list. https://www.malwaredomainlist.com/. Accessed 03 Apr 2023
26. MalwareURL: Fighting malware and cyber criminality. http://www.malwareurl.

com/. Accessed 03 Apr 2023
27. Marchal, S.: Phishstorm - phishing/legitimate URL dataset (2014). https://

research.aalto.fi/fi/datasets/phishstorm-phishing-legitimate-url-dataset
28. MillerSmiles.co.uk: Phishing scams and spoof emails at millersmiles.co.uk. http://

www.millersmiles.co.uk/

https://apwg.org/trendsreports/
https://archive.org/details/alexacrawls?tab=about
https://commoncrawl.org/
https://curlie.org/
https://github.com/ebubekirbbr/pdd/tree/master/input
https://github.com/ebubekirbbr/pdd/tree/master/input
https://doi.org/10.1007/978-981-10-8536-9_44
https://doi.org/10.1007/978-981-10-8536-9_44
https://www.phishing.org/history-of-phishing
https://www.kaggle.com/datasets/siddharthkumar25/malicious-and-benign-urls
https://www.kaggle.com/datasets/siddharthkumar25/malicious-and-benign-urls
https://www.malwaredomainlist.com/
http://www.malwareurl.com/
http://www.malwareurl.com/
https://research.aalto.fi/fi/datasets/phishstorm-phishing-legitimate-url-dataset
https://research.aalto.fi/fi/datasets/phishstorm-phishing-legitimate-url-dataset
http://www.millersmiles.co.uk/
http://www.millersmiles.co.uk/

ML-Based Phishing Detection Using URL Features 497

29. Mithra Raj, M., Arul Jothi, J.A.: Website phishing detection using machine learn-
ing classification algorithms. In: Florez, H., Gomez, H. (eds.) ICAI 2022. CCIS,
vol. 1643, pp. 219–233. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
19647-8_16

30. Mohammad, R.M.A.: UCI Machine Learning Repository (2015). https://archive.
ics.uci.edu/ml/datasets/phishing+websites

31. OpenPhish: Phishing intelligence. https://openphish.com/
32. PhishTank: Join the fight against phishing. https://phishtank.com/
33. RiskAnalytics: Not all threat intel is created equal. https://riskanalytics.com//.

Accessed 03 Apr 2023
34. Sabir, B., Babar, M.A., Gaire, R.: An evasion attack against ml-based phishing

URL detectors. arXiv preprint arXiv:2005.08454 (2020)
35. Sahingoz, O.K., Buber, E., Demir, O., Diri, B.: Machine learning based phishing

detection from URLs. Expert Syst. Appl. 117, 345–357 (2019)
36. Tan, C.L.: Phishing dataset for machine learning: feature evaluation (2018).

https://data.mendeley.com/datasets/h3cgnj8hft/1
37. Tupsamudre, H., Singh, A.K., Lodha, S.: Everything is in the name – a URL

based approach for phishing detection. In: Dolev, S., Hendler, D., Lodha, S., Yung,
M. (eds.) CSCML 2019. LNCS, vol. 11527, pp. 231–248. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-20951-3_21

38. UNB. https://www.unb.ca/cic/datasets/url-2016.html
39. Vaitkevicius, P., Marcinkevicius, V.: Comparison of classification algorithms for

detection of phishing websites. Informatica 31(1), 143–160 (2020)
40. Vinayakumar, R., Soman, K., Poornachandran, P.: Evaluating deep learning

approaches to characterize and classify malicious URL’s. J. Intell. Fuzzy Syst.
34(3), 1333–1343 (2018)

41. Wang, W., Zhang, F., Luo, X., Zhang, S.: PDRCNN: precise phishing detection
with recurrent convolutional neural networks. Secur. Commun. Netw. 2019, 1–15
(2019)

42. Wei, W., Ke, Q., Nowak, J., Korytkowski, M., Scherer, R., Woźniak, M.: Accurate
and fast URL phishing detector: a convolutional neural network approach. Comput.
Netw. 178, 107275 (2020)

43. Yandex. https://yandex.com/dev/
44. Yuan, L., Zeng, Z., Lu, Y., Ou, X., Feng, T.: A character-level BiGRU-attention

for phishing classification. In: Zhou, J., Luo, X., Shen, Q., Xu, Z. (eds.) ICICS
2019. LNCS, vol. 11999, pp. 746–762. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-41579-2_43

45. Zheng, F., Yan, Q., Leung, V.C., Yu, F.R., Ming, Z.: HDP-CNN: highway deep
pyramid convolution neural network combining word-level and character-level rep-
resentations for phishing website detection. Comput. Secur. 114, 102584 (2022)

https://doi.org/10.1007/978-3-031-19647-8_16
https://doi.org/10.1007/978-3-031-19647-8_16
https://archive.ics.uci.edu/ml/datasets/phishing+websites
https://archive.ics.uci.edu/ml/datasets/phishing+websites
https://openphish.com/
https://phishtank.com/
https://riskanalytics.com//
http://arxiv.org/abs/2005.08454
https://data.mendeley.com/datasets/h3cgnj8hft/1
https://doi.org/10.1007/978-3-030-20951-3_21
https://www.unb.ca/cic/datasets/url-2016.html
https://yandex.com/dev/
https://doi.org/10.1007/978-3-030-41579-2_43
https://doi.org/10.1007/978-3-030-41579-2_43

Workflow Resilience for Mission Critical
Systems

Mahmoud Abdelgawad(B), Indrakshi Ray(B), and Tomas Vasquez(B)

Department of Computer Science, Colorado State University, Fort Collins, CO 80523, USA
{M.Abdelgawad,Indrakshi.Ray,Tomas.Vasquez}@colostate.edu

Abstract. Mission-critical systems, such as navigational spacecraft and drone
surveillance systems, play a crucial role in a nation’s infrastructure. Since these
systems are prone to attacks, we must design resilient systems that can withstand
attacks. Thus, we need to specify, analyze, and understand where such attacks
are possible and how to mitigate them while a mission-critical system is being
designed. This paper specifies the mission-critical system as a workflow consist-
ing of atomic tasks connected using various operators. Real-world workflows can
be large and complex. Towards this end, we propose using Coloured Petri Nets
(CPN), which has tool support for automated analysis. We use a drone surveil-
lance mission example to illustrate our approach. Such an automated approach is
practical for verifying and analyzing the resiliency of mission-critical systems.

Keywords: Mission-critical Systems · Workflow · Coloured Petri Nets

1 Introduction

A mission-critical system is one whose failure significantly impacts the mission [8,16].
Examples of mission-critical systems include navigational systems for a spacecraft and
drone surveillance systems for military purposes. These systems are prone to attacks
because they can cripple a nation [6]. Mission-critical systems must fulfill survivabil-
ity requirements so that a mission continues in the face of attacks. Thus, this requires
specifying and analyzing a mission before deployment to assess its resilience and gauge
what failures can be tolerated.

A mission can be described in the form of a workflow consisting of various tasks
connected via different types of control-flow operators. Researchers have addressed
workflow resiliency in the context of assigning users to tasks [7,12–15,19,21]. How-
ever, active attackers can compromise the capabilities of various entities. The destruc-
tion of the capabilities may cause the mission to abort or fulfill only a subset of its
objectives. Analyzing resiliency considering attacker actions for mission-critical sys-
tems is yet to be explored.

Our work aims to fill this gap. We formally specify a mission in the form of a
workflow, the definition of which is adapted from an earlier work [20]. A mission is
often complex, and manually analyzing the workflow is tedious and error-prone. We
demonstrate how such a workflow can be transformed into a Coloured Petri Net (CPN).
CPN has automated tool support [17] that can be used for formal analysis.

Formal analysis may reveal deficiencies in the mission specification. Addressing
such deficiencies improves the cyber-resiliency posture of the mission. We demonstrate
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 498–512, 2023.
https://doi.org/10.1007/978-3-031-44274-2_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_37&domain=pdf
https://doi.org/10.1007/978-3-031-44274-2_37

Workflow Resilience for Mission Critical Systems 499

our approach using a mission-critical drone surveillance system. We provide a divide-
and-conquer approach that helps decompose a complex workflow and shows how to
analyze the sub-parts and obtain the analysis results for the total workflow.

The rest of the paper is organized as follows. Section 2 provides the formal defini-
tions for workflow and Coloured Petri Nets. Section 3 describes a motivating example
and formally represents the workflow for mission-critical systems. Section 4 defines the
transformation rules from workflow to CPN along with the development of the CPN
hierarchy model. Section 5 focuses on verifying the CPN so-generated and analyzing
resiliency. Section 6 enumerates some related work. Section 7 concludes the paper and
points to future directions.

2 Background

2.1 Workflow Definition

Typically, a workflow consists of tasks connected through operators [1–5,20]. The syn-
tax of the workflow adapted from [20] is defined as follows.

Definition 1 (Workflow). A workflow is defined recursively as follows.
W = ti ⊗ (t|W1 ⊗W2|W1#W2|W1&W2|i f{C}W1 elseW2|while{C}{W1}W2)⊗ t f
where

– t is a user-defined atomic task.
– ti and t f are a unique initial task and a unique final tasks respectively.
– ⊗ denotes the sequence operator. W1 ⊗W2 specifies W2 is executed after W1 com-

pletes.
– # denotes the exclusive choice operator. W1#W2 specifies that either W1 executes or
W2 executes but not both.

– & denotes the and operator. W1&W2 specifies that both W1 and W2 must finish exe-
cuting before the next task can start.

– i f{C}W1 elseW2 denotes the conditioning operator. C is a Boolean valued expres-
sion. Either W1 or W2 execute based on the result of evaluating C but not both.

– while{C}{W1} denotes iteration operator. If C evaluates to trueW1 executes repeat-
edly until the expression C evaluates to false.

Definition 2 (Simple and Complex Operators). A simple operator is an operator
that imposes one single direct precedence constraint between two tasks. The only sim-
ple operator is the sequence operator. All other operators are referred to as complex
operators.

Definition 3 (Simple and Compound Workflows). A simple workflow is a workflow
that consists of at most one single complex operator and finitely many simple oper-
ators. All other workflows are compound workflows. A compound workflow can be
decomposed into component workflows, each of which may be a simple or a compound
one.

Definition 4 (Entities). The tasks of a workflow are executed by active entities, referred
to as subjects. The entities on which we perform tasks are referred to as objects. An
entity has a set of typed variables that represents its attributes.

500 M. Abdelgawad et al.

Definition 5 (State of an Entity). The values of the attributes of an entity constitute its
state. The state of a subject determines whether it can execute a given task. The state of
an object determines whether some task can be performed on it.

In the remainder of this paper we abstract from objects and only consider critical sys-
tems specified as subjects.

Definition 6 (Mission). A mission is expressed as a workflow with a control-flow, a
set of subjects, a subject to task assignment relation, and some initial conditions and
objectives. Formally,M = (W,S ,ST ,I ,O) whereW is the control-flow corresponding
to the mission, S is a set of subjects, ST ⊆ S×Tasks(W) is the set of subject to task
assignments, I is the set initial conditions, and O is the set of mission objectives. The
subject to task assignment should satisfy the access control policies of the mission. The
conditions and objectives are expressed in predicate logic.

2.2 Coloured Petri Nets (CPN)

A Colored Petri Net (CPN) is a directed bipartite graph, where nodes correspond to
places P and transitions T . Arcs A are directed edges from a place to a transition or a
transition to a place. The input place of transition is a place for which a directed arc
exists between the place and the transition. The set of all input places of a transition
r ∈ T is denoted as •r. An output place of transition is a place for which a directed arc
exists between the transition and the place. The set of all output places of a transition
r ∈ T is denoted as r•. Note that we distinguish between tasks and transitions by using
the label r for transitions. CPNs operate on multisets of typed objects called tokens.
Places are assigned tokens at initialization. Transitions consume tokens from their input
places, perform some action, and output tokens on their output places. Transitions may
create and destroy tokens through their executions. The distribution of tokens over the
places of the CPN defines the state, referred to as marking, of the CPN. Formally, a
Non-Hierarchical CPN is defined [9,10] as CPN = (P,T,A,Σ,V,C,G,E, I), where P,
T , A, Σ, and V , are sets of places, transitions, arcs, colors, variables, respectively. C,
G, E, I are functions that assign colors to places, guard expressions to transitions, arc
expressions to arcs, tokens at initialization expression respectively.

Definition 7 (Simple Workflow CPN). A simple workflow CPN is a CPN that models
a simple workflow. A simple workflow CPN has a unique input place i and a unique
output place o.

Definition 8 (CPN Module). A CPN Module consists of a CPN, a set of substitution
transitions, a set of port places, and a port type assignment function. The set of port
places defines the interface through which a module exchanges tokens with other mod-
ules. Formally a CPN module is defined as in [10] as: CPNM = (CPN,Tsub,Pport ,PT)
where (i) CPN is a Colored Petri Net (ii) Tsub ⊆ T is a set of substitution transitions (iii)
Pport ⊆ P is a set of port places (iv) PT : Pport → {IN,OUT, IN\OUT}
Definition 9 (Simple CPNModule). A Simple CPNModule is a CPN module in which
the CPN is a Simple Workflow CPN and the interface of the module is defined by a single
input port place i′ and a single output port place o′.

Workflow Resilience for Mission Critical Systems 501

Definition 10. Hierarchical CPN A Hierarchical CPN is defined by the authors in [10]
as: CPNH = (S,SM,PS,FS) where (i) S is a finite set of modules. ces and transitions
must be disjoint from all other modules’ places and transitions. For a module s ∈ S we
use the notation Ps to denote the set of places of the module s. Similarly, for each of the
other elements of the module s. (ii) SM ⊆ Tsub ×S is a relation that maps each substitu-
tion transition to a sub- module. Note that [9,10] defines SM : Tsub → S as a function.

However, it is easier to compute SM if defined as a set. (iii) PS(t) ⊆ Psock(t)×PSM(t)
port is

a port-socket relation function that assigns a port-socket relation to each substitution
transition. (iv) FS ⊆ 2p is a set of non-empty fusion sets. A fusion set is a set of places
that are functionally equivalent. (v) We additionally define global sets of places, tran-
sitions, arcs, colors, and variables as the union of the places, transitions, arcs, colors,
and variables of each module. Furthermore, we define global initialization, arc expres-
sion, guard expression functions to be consistent with the functions defined for each
module. We refer to these global elements by omitting the superscript in the notation.

Definition 11 (Module Hierarchy). A Module Hierarchy is a directed graph where
each module s ∈ S is a node; and for any two modules s1,s2 ∈ S, there exists a directed
arc from s1 to s2 if and only if there is a substitution transition in s1 that is mapped
to the module s2. As represented in [10], the module hierarchy is formally defined as:
MH = (NMH ,AMH) where (i) NMH = S is the set of nodes, and (ii) AMH = {(s1,r,s2) ∈
NMH ×Tsub ×NMH | r ∈ T s1

sub ∧ s2 = SM(r)}
A module with no incoming arcs in the module hierarchy is refereed to as a prime
module.

3 Motivating Example

We shall refer to the surveillance drone mission example to illustrate the transforma-
tion framework. Let Mdrone be a mission specification that models a drone performing
some data collection tasks over a region of interest. The drone has a camera that can
take pictures at high and low altitudes and sensors capturing heat signals and radiation
levels. The sensors are only accurate at low altitudes. There are three regions of interest:
Regions A, B, and C. Region A is where the drone is regularly scheduled to perform
surveillance; this region is large but close to the deployment point. Regions B and C
are smaller but are further away from the deployment point. The drone is likely to be
detected at low altitudes when it is in Region A. Therefore, the drone can only fly at
high altitudes from where it can only use its camera. The drone may fly over regions
B or C at high or low altitudes. However, due to the lack of visibility over the regions,
only the heat and radiation sensors can capture meaningful data. Therefore, the drone
can only collect data with its sensors over regions B and C. The mission succeeds if
the drone collects data and returns to the deployment point. The control-flow of this
mission is described by the task graph in Fig. 1 and given as control-flow expression
below:

W = Init⊗Check_Status⊗Deploy⊗ i f (instruction){(Fly_to_RegionB # Fly_to_RegionC)⊗
(Measure_Radiation_level # Measure_Heat_Signal)}else{Fly_to_RegionA⊗while{battery_level > 1}
{Scan_Vehicles&Scan_Construction}}⊗Return_to_Base⊗Final

502 M. Abdelgawad et al.

Fig. 1. Workflow of Surveillance Drone Mission.

This mission has a single entity called drone1 of type Drone, that is, S =
{drone1 : Drone}. The attributes of type Drone, denoted as Drone.Attributes,
are given as: Drone.Attributes = {type : string; location : string; f ly_enabled :
bool; battery_level ∈ {1,2,3,4}; instruction_issued : bool; camera_enabled : bool;
sensors_enabled : bool; data_collected : bool}

We define functions that return the values of various attributes. For example,
location(drone1) returns the location of drone1. Every task can be performed by
drone1. Therefore, the subject task assignment function assigns drone1 to each task.
ST = {(drone1, transition) |t ∈ Tasks(W)}. Let I be a predicate logic formula giving
the initialization conditions as:

I = ∃ s ∈ S | (type(s) = Drone)∧ (location(s) = “base”)

∧(f ly_enabled(s) = true)∧ (battery_level(s) = 4)∧ (instruction_issued(s) = f alse)∧
(camera_enabled(s) = true)∧ (sensors_enabled(s) = true)∧ (data_collected = f alse)

Let O be a predicate logic formula that defines the mission objectives as:
O = ∃ s ∈ S | (type(s) =Drone)∧ (location(s) = “base”)∧ (data_collected(s) = true)
If an attribute of the subject s is not explicitly constrained by the initial conditions or the
objective, then that attribute can take on any value in its domain. Mission specification
is as follows: Mdrone = (W,S ,ST ,I ,O).

4 Workflow to CPN Transformation Rules

Our approach maps a Mission-Specification M = (W,S ,ST ,I ,O) to a Hierarchical
Colored Petri Net CPNH = (S,SM,PS,FS). The approach follows six processes as
shown in Fig. 2. The first two processes deal with the decomposition and simplifica-
tion of the control-flow. The decomposition procedure partitions the control-flow into
a set of disjoint expressions that each model a workflow component. Each component
is either a simple or compound workflow. The simplification procedure then iterates
each component substituting any nested components with tasks. A task substituting a

Workflow Resilience for Mission Critical Systems 503

nested workflow in another workflow is substitution task. A workflow that has had all of
its components substituted for tasks is said to be simplified. The simplification process
outputs a set of simple workflows, a set of substitution tasks for each component, and
a substitution relation that tracks which component was substituted by which task. The
formalization process extracts from the simple workflow the sets of workflow tasks,
substitution tasks, begin and end tasks, and precedence constraints over all tasks. These
sets are collectively called a formalized component.

Fig. 2. Workflow to CPN Transformation Framework

The fourth process applies 7 rules to each component that, together with the remain-
ing elements of the mission, are mapped to a Non-Hierarchical Colored Petri Net. The
structure of each Non-Hierarchical CPN (places, transitions, and arcs) is semantically
equivalent to the component. The fifth process generates a CPN module by adding an
interface to each Non-Hierarchical CPN. The sixth process relates each module through
relationships between substitution transitions, sub-modules, and port and socket places.
The final output is a Hierarchical CPN representing a complete model of the original
mission. Table 1 illustrates the notation used to decompose, simplify and formalize the
control-flow. Note that the sets Task(W), TaskS(W), and TaskU (W) are disjoint subsets
of the set of all tasks TasksW . i.e. Task(W)∩TaskS(W)∩TaskU (W) = /0

Table 1. Control-flow Notation Table

Symbol Description

TasksW Set of all tasks in a workflow

Tasks(W) ⊆ TasksW Set of all workflow tasks in W

Components Set of component workflows

TasksS(W) ⊆ TasksW Set of substitution tasks of W

TasksU (W) ⊆ TasksW Set of support tasks of W

TasksB(W) ⊆ TasksW Set of begin tasks of W

TasksE (W) ⊆ TasksW Set of end tasks of W

Prec(W) The set of precedence constraints in W

Substitutions Relation between component workflows and substitution tasks of W

Transformation Rules. The structure of the Non-Hierarchical CPN is made up of the
places P′, transitions T ′, and arcs A′. We define the structure of Non-Hierarchically
CPNs in a similar manner as a workflow-net or process net [1,2,18]. A workflow-net is
a Petri Net with a unique input place i and a unique output place o. A workflow-net has
the additional property that when the output place o is connected to the input place i by
a transition r′, the resulting extended net is strongly connected.

504 M. Abdelgawad et al.

Rule 1: Transition Set Generation: Tasks are modeled as transitions in the Non-
Hierarchical CPN. Our algorithm maps each task tk ∈ TasksW ′ to a unique transition
rk ∈ T ′. Let T ′

map be a relation between the set of tasks and the set of transitions. The
pair (tk,rk) ∈ T ′

map indicates that the transition rk is mapped from the task tk. Through
the remainder of the paper, we maintain this indexing convention. That is, rk denotes
the transition mapped from the task tk. Let T ′

sub, T ′
U , T ′

B and T ′
E be subsets of T ′. The

set T ′
sub is the set of substitution transitions such that T ′

sub = {rs | (ts,rs) ∈ T ′
map ∧ ts ∈

TasksS(W ′)}. The sets of support transitions T ′
U , begin transitions T ′

B, and end transi-
tions T ′

E are constructed similarly from the respective subsets of tasks. Consider our
running example, the sets of transitions for CPN′ are mapped from the sets of tasks of
W ′ as follows:
Tasks′W → T ′ = {r1,rs1,rs5,r5,rc}, TasksU (W ′) → T ′

U = {rc}, TasksS(W ′) → T ′
S =

{rs1,rs5}, TasksB(W ′) → T ′
B = {r1}, and TasksE(W ′) → T ′

E = {r5}. The relation
between tasks and transitions is T ′

map = {(t1,r1),(ts1,rs1),(ts5rs5),(t5,r5),(tc,rc)}.

Rule 2: Place and Arc Set Generation: The set of places P′ is initialized with a unique
input place i and a unique output place o. The set of arcs is initialized to the empty set.
For each begin transition rb ∈ T ′

B the algorithm adds a directed arc connecting the input
place i and the transition rb to A′, i.e. A′ ← (i,rb). Similarly, for each end transition
re ∈ T ′

E , the algorithm adds a directed arc connecting the transition rb and the input place
i to A′, i.e. A′ ← (re,o). Consider our running example, r1 ∈ T ′

B implies that A′ ← (i,r1)
and r5 ∈ T ′

E implies A′ ← (r5,o). For each (tk, t j) in Prec(W ′), we create a new place
m and add the arcs (rk,m) and (m,r j) to A′. That is, P′ ← m, and A′ ← (tk,m),(m, t j).
If one task has two direct successors i.e. (tq, t j),(tq, tk) ∈ Prec(W ′), then this denotes a
point at which a split occurs. If a task has two direct predecessors, i.e. (t j, tq),(tk, tq) ∈
Prec(W ′), then this denotes a point at which a join occurs. There are two types of splits
and joins. There are or-splits/joins and there are and-splits/joins [18]. Or-splits should
always be joined by an or-join. Similarly, an and-split should always be joined by an
and-join. The or-split/join only occurs in control-flows that contain the exclusive-or
operator or the conditioning operator. When an or-split is imposed by the exclusive-
or operator and there is task tq that directly precedes t j#tk, such as tq ⊗ (t j#tk), the
transition rq should output to a single place m that is the input to both r j and rk. Then
the either transition r j or rk will execute by consuming the output of rq, but not both.
We thus leverage the fact that given a place m that is input to two transitions, then
either transition may consume the token in the place m. When an or-split is imposed
by the conditioning operator, then the split is modeled by the support transition rc-
where rc routs the execution based on the evaluation of a Boolean expression. Therefore,
(tq, t j),(tq, tk)∈ A′ and an exclusive-or operator in the control-flow implies that P′ ←m,
P′ ← m′, and A′ ← (rq,m),(rq,m′),(m,r j),(m′,rk)), however, m= m′. Similarly, when
an or-join is imposed by the exclusive-or operator or the conditioning operator, and
there is task tq that directly succeeds t j#tk, such as (t j#tk)⊗ tq, then the output place of
r j and rk should be a single place that is the input to rq. Therefore, (t j, tq),(tk, tq) ∈ A′
and the conditioning operator or exclusive-or is in the control-flow implies that P′ ← m
and P′ ← m′, and A′ ← (r j,m),(rk,m′),(m,rq),(m′,r1), however, m = m′. The and-
split/join only occurs in control-flows that contain the parallel-split operator. The and-
split is modeled by the support transition rg. The and-join is modeled by the support
transition rs. The structure of CPN′ is formally described as:

Workflow Resilience for Mission Critical Systems 505

P′ = {i,o, p1, p2, p3, p4}
T ′ = {r1,rs1,rs5,r5,rc}
A′ = {(i,r1),(r1, p1),(p1,rc),(rc, p2),(rc, p3),(p2,rs1),(p3,rs5),(rs1, p4),(rs5, p4),(p4,r5),(r5,o)}

Thus far we have addressed five of the six well-behaved building blocks proposed by
the Workflow Management Coalition [18] to model any control-flow. That is, the and-
split, and-join, or-split, or-join, and sequence. The final building block is iteration. In
the special case that the simple workflow contains the iteration operator, our algorithm
adds two additional arcs to the set of arcs. One directed arc going from the support
transition rc1 to the output place o models the iteration never executing. One directed
arc going from the support transition rc2 to the output place of rc1 models the iteration
continuing. One can see that our model can implement all six well-behaved building
blocks proposed by the Workflow Management Coalition [18] and can therefore model
any control-flow. Furthermore, we will later show that the manner in which we connect
our CPN modules forms well behaved control structures [18].

Rule 3: Colors and Variable Set Generation: The color set of a simple workflow
CPN consists of the different types of entities in the Simple CPN model. The types can
be primitive types such as Bool, Int, or String or more complex user-defined types. In
the drone surveillance example, there is only one subject of type Drone. The data type
Drone is mapped to a record color set labeled Drone. Each attribute of the type Drone
becomes a label in the record color set as:

colorDrone= record {type : String; location : String; f ly_enabled : Bool;

detected : bool;battery_level : Int ∈ {1,2,3,4}; instruction_issued : Bool;

sensors_enabled : Bool;camera_enabled : Bool;data_collected : Bool}
Set of colors Σ′ is constructed by adding any compound color sets and declaring

the primitives that compose them. Σ′ = {Bool,String, Int,Drone} Set of variables V
is declared such that there is variable for each color in Σ. V ′ = {instruction : Bool;y :
String, i : Int,drone : Drone}.

Rule 4: Assigning Colors to Places: Each task can be performed by a drone. Therefore,
each place p ∈ P′ is assigned the color Drone ∈ Σ′.

Rule 5: Assigning Guard Expressions: For each workflow task tk ∈ TasksW ′ , we
assign to the transition rk a guard expression G′(rk) equivalent to Pre(tk). In other
words, the guard expression evaluates to true if and only if the conjunction of the
preconditions of tk evaluates to true. The empty set of pre conditions is equivalent
to the pre condition that always evaluates to true. Support and substitution tasks
always have an empty set of pre conditions, therefore the guards of the respective
transitions always evaluate to true. The only tasks of W ′ that have non-empty sets of
pre conditions are t1 and t5 such that Pre(t1) = { f ly_enabled(drone1) = true} and
Pre(t5) = { f ly_enabled(drone1) = true,battery_level(drone1) ≥ 1}. Therefore, the
guard expression function is G′(r1) = g1 = f ly_enabled(drone) = true and G′(r5) =
g5 = f ly_enabled(drone) = true∧battery_level(drone) ≥ 1. Where drone ∈V ′ takes
on the value of the instance of drone1 when r1 and r2 are enabled. For all other cases in
CPN‘ the guard expression is always true.

506 M. Abdelgawad et al.

Rule 6: Assigning Arc Expressions: Each transition is assigned an input arc expres-
sion that evaluates to a token of the same color as the input place of the transition. Each
transition is assigned an output arc expression that updates the token received over the
input arc, such that the post conditions of the corresponding task evaluate to true. Substi-
tution transitions can neither be enabled nor occur. Therefore, the arc expressions over
their connected arcs have no semantic meaning. Support transitions route the execution
of the workflow. For sequential and parallel executions, the output arc expressions are
identical to the input arc expressions. For support transitions that evaluate a condition,
each output arc models a case of the condition. The output arc of these transitions,
should output the token received over the input arc only if the case evaluates to true.
Otherwise, they output the empty set.

For example, for the arc (rc, p2)∈ A′, is given the arc expression E ′((rc, p1)) = c1 =
i f (instruction_issued(drone) = true){drone}else{empty}. The arc (r5,o) is given
the arc expression E ′((r5,o)) = e5 = {(location(drone) = “deployment_point”) ∧
(battery_level(drone) = battery_level(drone)− 1)}. Note that the syntax we use for
the arc expressions is based on function notation that is easy to understand. CPN Tools
has its own modeling language which we avoid using for simplicity.

Rule 7: Initialization: The initialization function I′ sets the initial state of the model
by assigning a multiset of tokens to each place p ∈ P′. I must satisfy the initial
conditions of the mission. Recall, I calls for a subject s with the following valua-
tion: (type(s) = Drone)∧ (location(s) = “deployment_point”)∧ (f ly_enabled(s) =
true)∧ (battery_level(s) = 4)∧ (instruction_issued(s) = f alse))∧
(camera_enabled(s) = true) ∧ (sensors_enabled(s) = true) ∧ (data_collected =
f alse)

Over the input place i, the initialization function I′(i) evaluates to a multiset of
size one that satisfies the initial conditions of the workflow. For every other place, the
initialization function evaluates to the empty set of tokens. It is important to note that for
our analysis we are considering a single drone in isolation. Therefore, the initialization
function of every other CPN in our final hierarchical model will evaluate to the empty
set for every place. The result of applying rules 1–7 to our example W ′ is CPN′ as
described by Fig. 3. We have omitted writing each arc expression explicitly into the
diagram to maintain readability.

We construct a hierarchical CPN (CPNH) from the set of modules S and their
original relationships in the workflow. Recall that a Hierarchical Colored Petri Net
CPNH = (S,SM,PS,FS) consists of a set of modules S, an assignment of substitution
transitions to modules SM, a relation between port places and socket places PS -where
the pair (p, p′) ∈ PS signifies that p is a socket place of a substitution transition t that
has been mapped to a a sub module s such that p′ is a port place of the same type
as p; and a set of fusion places FS. We have already defined and computed the set of
modules S. The set of fusion places is empty e.g. FS = /0. Therefore, the task is now to
compute SM and PS. The module CPN′

M is the prime module (top level of the hierar-
chy) and every other module is a sub-module with respect to CPN′. The initial marking
M0 always evaluates to a non-empty set of tokens at the input port i′ ∈ P′; and every
other place is empty. The place i′ has a single output arc connected to the transition ri.
Thus, all execution sequences must begin at ri. The model has a single final transition r f

Workflow Resilience for Mission Critical Systems 507

Fig. 3. CPN Models of Surveillance Drone Mission.

with a single output place o′. Therefore, any execution sequence that is complete must
terminate with the transition r f and a token in the place o′. The initial transition ri ∈ T ′
and final transition r f ∈ T ′ model the begin and end tasks of the original workflow.

5 Resiliency Analysis

An attack is an action taken by an adversary that changes the state of a subject in a way
that renders it unable to perform a task it has been assigned. An attack scenario consists
of the target of the attack. The set of attributes of the target, which are attackable,
an attack task, and an integer limit on the number of times the attack may occur. A
mission workflow is resilient to an attack scenario if, after the attack occurs, there exists
a successful execution from the point at which the attack occurred.

There are various scenarios of workflow resilience, including static, decremental,
and dynamic resilience [19] (see Sect. 6). In this paper, we investigate static resilience.
Static resilience describes a situation where a subset of users become unavailable before
the execution of the workflow. Once a subset of users is made unavailable, no user of
this subset may become available again.

The analysis examines the state space of the CPN model with the attack scenario
where the drone’s camera fails while scanning region A since we know that it is the only
location where the drone uses its camera. Table 2 reports 57 nodes and 65 arcs that are
strongly connected components (SCC). It also reports that model transitions are fully

508 M. Abdelgawad et al.

executed. However, the state space report has two dead markings (42 and 57). The first
dead marking (42) has a drone in the output place and received instruction. The second
dead marking (57) has a drone in the output place and did not receive an instruction.
Therefore, the mission is guaranteed to terminate in success under an attack scenario.

Table 2. State Space Verification

State Space SCC Graph Status

#Nodes
57

#Arcs
65

#Nodes
57

#Arcs
65

Full

Dead Markings [42, 57] Dead Transition None Live Tran-
sition
None

We then write a program using the CPN-ML programming language [11] to analyze
the mission’s resilience. We then use the CPN State Space Analysis Tool to evaluate the
program functions and return an execution sequence for each outcome where the attack
succeeded. The program then backtracks through the shortest execution sequence and
finds the node in the state space representing the state where the attack occurred. From
that state, it searches for an execution sequence that results in a successful outcome
(attack failure). If it finds one, it returns the execution sequence. Otherwise, it returns
an empty list. The program also returns information about the set of dead markings and
partitions the set into three subsets. The dead markings represent outcomes where the
attack did not occur, the attack occurred, and the mission failed, and where the attack
occurred, and the mission succeeded.

Table 3 summarizes the resiliency analysis result. The first column describes the
scanning iteration of Region A. The first row shows 37 total dead markings (DM), 2
dead markings that represent outcomes where the attack did not occur (DNA), 10 dead
markings that represent outcomes where the attack occurred but failed (DAF), 25 dead
markings that represent outcomes where the attack occurred and succeeded (DAS). The
algorithm found paths that reach only 4 of the 25 DAS markings (RDAS).

Table 3. Static Resilience Analysis Results

Scan Iteration
Number

Dead Markings
(DM)

Attack Didn’t
Occur (DNA)

Attack Occurred
but Failed (DAF)

Attack Occurred
and Succeede
(DAS)

Reachable DAS
(RDAS)

1 37 2 10 25 4

2 33 2 10 21 0

3 16 2 9 5 0

4 12 2 10 0 0

The program inspects the set of DNA markings and returns that the mission is cor-
rect and valid. The DNA markings represent the original outcomes of the mission. The
size of this set should be the same as the original set of dead markings. For the 25

Workflow Resilience for Mission Critical Systems 509

failed outcomes, the program found a successful execution sequence for four outcomes.
We compare the successful execution sequence with the failed execution sequence for
each of these four outcomes. It leads us to find the state where the execution sequences
diverge and, from that state, ensure that the transition and binding element that leads
to success always occur. For instance, node 42 corresponds to a failed outcome where
the attack happened at node 3. From node 3, our program found a path to node 57 - a
successful outcome. We now compare the path from node 3 to node 57 and the path
from node 3 to node 42. We find that the execution sequences diverge at node 5. From
node 5, proceeding to node 10 or node 9 is possible. The change in state from node 5
to node 10 results from the transition with the variable instruction bound to the value
f alse. The change in state from node 5 to node 9 results from the transition with the
variable instruction bound to the value true. We now know that the attack succeeds if
the drone’s battery is less than 3 units in the state represented by node 5, where transi-
tion receiveinstruction is enabled. Transition receive instruction models the workflow
routing based on an instruction issued.

In Iteration 2, the state space is re-calculated, and the analysis is repeated. The sec-
ond row of Table 3 describes the statistics generated by the program’s second iteration.
The result is four fewer outcomes where the attack succeeded. The program returns a
set of nodes representing the states where the attack occurred, and no path to a success-
ful outcome exists. Note that these are not dead markings. From each of these nodes,
there is a path to a dead marking that represents the failure of the mission (success of
the attack).

In Iteration 3, the state space is re-calculated, and the analysis is repeated. The third
row of Table 3 summarizes the statistics generated by the program’s second iteration.
We expected the set of outcomes where the attack failed to remain at 10, now 9. The
reduced size of the failed attack set means the outcome is lost because the drone is
initialized with its instruction set to f alse. Thus the attack at node 3, which was found
to be resilient, never executes. We focus on the 5 markings where the attack occurred
and succeeded. After inspecting all five markings, we find the attack succeeds because
it is delivered when the drone has just enough battery to perform one additional pass
over Region A. We can eliminate these failed outcomes by increasing the requirement
on the loop over Region A from more than one unit of battery to more than two units of
battery. It turns out that the drone always has some reserve battery if it is attacked.

In Iteration 4, the state space is re-calculated, and the analysis is repeated. The third
row of Table 3 summarizes the statistics generated by the program’s second iteration.
Since the set of attack successes is empty, we can be confident that the attack can not
succeed under the restricted workflow.

In summary, we have shown how to assess a mission’s resilience and find the condi-
tions required for the mission to succeed. We have also shown how to restrict a workflow
to improve its resilience.

6 Related Work

The literature on workflow resiliency problems introduces solutions to address the
unavailability [13,15,19]. Our work argues that the workflow resiliency problem can

510 M. Abdelgawad et al.

sometimes be viewed as unavailability and degradation. In other words, attacks do not
permanently remove subjects from service; they decrease their capabilities. Consider
the drone surveillance example; a failure in the drone’s camera affects the termination
and success of the workflow. Regarding resilience based on availability, one can assume
whether the camera’s loss is critical enough to remove the drone from the workflow. The
drone should be kept since its other sensors can complete the workflow.

Wang et al. [19] introduce three types of resilience, static, decremental, and dynamic
resilience. Static resilience refers to a situation in which users become unavailable
before the workflow executes, and no users may become available during the execution.
Decremental resiliency expresses a situation where users become unavailable before or
during the execution of the workflow, and no previously unavailable users may become
available during execution, while dynamic resilience describes the situation where a
user may become unavailable at any time; a previously unavailable user may become
available at any time. The different types of resilience formulations capture various
types of attack scenarios.

Mace et al. [13,15] propose a quantitative measure of workflow resiliency. They
use a Markov Decision Process (MDP) to model workflow to provide a quantitative
measure of resilience. They refer to binary classification, such as returning an execu-
tion sequence if one exists and declaring the workflow resilient; or returning false and
declaring the workflow not resilient. The authors show that the MDP models give a
termination rate and an expected termination step.

7 Conclusion

This paper emphasizes the workflow resiliency of the task degradation problem, specifi-
cally for mission-critical cyber systems. We presented a set of rules that formally trans-
forms workflow represented by a mission into Coloured Petri Nets (CPNs). We then
solved various analysis problems related to the resiliency of mission-critical such as
cyber-attacks. We developed an approach based on formalization rules that address the
complexity of mission workflows, simplify them, and transform them into simple CPNs.
These simple CPNs are then modulated and combined as a hierarchy CPN model.

We applied the approach to a drone surveillance system as an illustrative example.
We used the CPN tools to run verification and reachability analysis. The results showed
that the workflow resiliency problem could sometimes be unavailability and degra-
dation. A workflow subject is not permanently removed from service when an attack
occurs; it decreases its capabilities. However, the mission can continue, and the work-
flow can be completed. We have shown how to assess a mission’s resilience and find
the conditions to succeed. We have also shown how to restrict a workflow to improve
its resilience.

Future work will focus on extending the generated model to account for multiple
subjects and investigating decremental and dynamic resilience. We will design a set of
algorithms corresponding to the transformation rules. Our end goal is to automate the
process of verification and resilience analysis of workflows.

Workflow Resilience for Mission Critical Systems 511

Acknowledgements. This work was supported in part by funding from NSF under Award Num-
bers CNS 1715458, DMS 2123761, CNS 1822118, NIST, ARL, Statnett, AMI, NewPush, and
Cyber Risk Research.

References

1. Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997.
LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
63139-9_48

2. van der Aalst, W.: Structural characterizations of sound workflow nets (1996)
3. Arpinar, I.B., Halici, U., Arpinar, S., Doğaç, A.: Formalization of workflows and correct-

ness issues in the presence of concurrency. Distrib. Parallel Databases 7(2), 199–248 (1999).
https://doi.org/10.1023/A:1008758612291

4. Bride, H., Kouchnarenko, O., Peureux, F.: Verifying modal workflow specifications using
constraint solving. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol. 8739, pp. 171–
186. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10181-1_11

5. Bride, H., Kouchnarenko, O., Peureux, F., Voiron, G.: Workflow nets verification: SMT or
CLP? In: ter Beek, M.H., Gnesi, S., Knapp, A. (eds.) FMICS/AVoCS -2016. LNCS, vol.
9933, pp. 39–55. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45943-1_3

6. Chong, J., Pal, P., Atigetchi, M., Rubel, P., Webber, F.: Survivability architecture of a mis-
sion critical system: the DPASA example. In: 21st Annual Computer Security Applications
Conference (ACSAC 2005), pp. 10–pp. IEEE (2005)

7. Fong, P.W.L.: Results in workflow resiliency: complexity, new formulation, and ASP encod-
ing, pp. 185–196. Association for Computing Machinery, New York (2019)

8. Houliotis, K., Oikonomidis, P., Charchalakis, P., Stipidis, E.: Mission-critical systems design
framework. Adv. Sci. Technol. Eng. Syst. J. 3(2), 128–137 (2018)

9. Jensen, K., Kristensen, L., Wells, L.: Coloured Petri Nets and CPN Tools for modelling and
validation of concurrent systems. STTT 9, 213–254 (2007). https://doi.org/10.1007/s10009-
007-0038-x

10. Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of Concurrent
Systems, 1st edn. Springer, Heidelberg (2009). https://doi.org/10.1007/b95112

11. Jensen, K., Kristensen, L.M.: CPN ML programming. In: Jensen, K., Kristensen, L.M.
(eds.) Coloured Petri Nets, pp. 43–77. Springer, Heidelberg (2009). https://doi.org/10.1007/
b95112_3

12. Mace, J., Morisset, C., van Moorsel, A.: Modelling user availability in workflow resiliency
analysis. In: Proceedings of the 2015 Symposium and Bootcamp on the Science of Security,
HotSoS 2015, pp. 1–10. ACM (2015)

13. Mace, J.C., Morisset, C., van Moorsel, A.: Quantitative workflow resiliency. In: Kutyłowski,
M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 344–361. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11203-9_20

14. Mace, J.C., Morisset, C., van Moorsel, A.: WRAD: tool support for workflow resiliency
analysis and design. In: Crnkovic, I., Troubitsyna, E. (eds.) SERENE 2016. LNCS, vol. 9823,
pp. 79–87. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45892-2_6

15. Mace, J.C., Morisset, C., Moorsel, A.: Impact of policy design on workflow resiliency com-
putation time. In: Campos, J., Haverkort, B.R. (eds.) QEST 2015. LNCS, vol. 9259, pp.
244–259. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22264-6_16

16. Ponsard, C., Massonet, P., Molderez, J.F., Rifaut, A., van Lamsweerde, A., Van Tran, H.:
Early verification and validation of mission critical systems. Formal Methods Syst. Des.
30(3), 233–247 (2007). https://doi.org/10.1007/s10703-006-0028-8

https://doi.org/10.1007/3-540-63139-9_48
https://doi.org/10.1007/3-540-63139-9_48
https://doi.org/10.1023/A:1008758612291
https://doi.org/10.1007/978-3-319-10181-1_11
https://doi.org/10.1007/978-3-319-45943-1_3
https://doi.org/10.1007/s10009-007-0038-x
https://doi.org/10.1007/s10009-007-0038-x
https://doi.org/10.1007/b95112
https://doi.org/10.1007/b95112_3
https://doi.org/10.1007/b95112_3
https://doi.org/10.1007/978-3-319-11203-9_20
https://doi.org/10.1007/978-3-319-45892-2_6
https://doi.org/10.1007/978-3-319-22264-6_16
https://doi.org/10.1007/s10703-006-0028-8

512 M. Abdelgawad et al.

17. Ratzer, A.V., et al.: CPN tools for editing, simulating, and analysing coloured Petri nets.
In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 450–462.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44919-1_28. http://cpntools.org

18. van der Aalst, W.M., ter Hofstede, A.H.: Verification of workflow task structures: a
Petri-net-baset approach. Inf. Syst. 25(1), 43–69 (2000). https://doi.org/10.1016/S0306-
4379(00)00008-9. https://www.sciencedirect.com/science/article/pii/S0306437900000089

19. Wang, Q., Li, N.: Satisfiability and resiliency in workflow authorization systems. ACM
Trans. Inf. Syst. Secur. 13(4), 1–35 (2010)

20. Yang, P., Xie, X., Ray, I., Lu, S.: Satisfiability analysis of workflows with control-flow pat-
terns and authorization constraints. IEEE Trans. Serv. Comput. 7(2), 237–251 (2014). https://
doi.org/10.1109/TSC.2013.31

21. Zavatteri, M., Viganò, L.: Last man standing: static, decremental and dynamic resiliency via
controller synthesis. J. Comput. Secur. 27(3), 343–373 (2019)

https://doi.org/10.1007/3-540-44919-1_28
http://cpntools.org
https://doi.org/10.1016/S0306-4379(00)00008-9
https://doi.org/10.1016/S0306-4379(00)00008-9
https://www.sciencedirect.com/science/article/pii/S0306437900000089
https://doi.org/10.1109/TSC.2013.31
https://doi.org/10.1109/TSC.2013.31

Invited Paper: How Do Humans Succeed
in Tasks Like Proving Fermat’s Theorem

or Predicting the Higgs Boson?

Leonid A. Levin(B)

Boston University, Boston, MA 02215, USA
https://www.cs.bu.edu/fac/Lnd/

Abstract. I discuss issues of inverting feasibly computable functions,
optimal discovery algorithms, and the constant overheads in their per-
formance.

Keywords: Search problems · Optimal algorithm · Inductive inference

Our computers do a huge number of absolutely wonderful things. Yet most
of these things seem rather mechanical. Lots of crucial problems that do yield
to the intuition of our very slow brains are beyond our current computer arts.

Great many such tasks can be stated in the form of inverting easily com-
putable functions, or reduced to this form. (That is, finding inputs/actions that
could produce a given result in a given realistic process.)

We have no idea about intrinsic difficulty of these tasks. And yet, traveling
salesmen do get to their destinations, mathematicians do find proofs of their
theorems, and physicists do find patterns in transformations of their bosons and
fermions! How is this done, and how could computers emulate their success?

Of course, these are collective achievements of many minds engrossed in a
huge number of papers. But today’s computers can easily search through all
math and physics papers ever written. The limitation is not in physical capacity.

And insects solve problems of such complexity and with such efficiency, as we
cannot dream of. Yet, few of us would be flattered by comparison to the brain
of an insect. What advantage do we humans have?

One is the ability to solve new problems on which evolution did not train
zillions of our ancestors. We must have some pretty universal methods, not
dependent on the specifics of focused problems. Of course, it is hard to tell how,
say, mathematicians find their proofs. Yet, the diversity and dynamism of math
achievements suggest that some pretty universal mechanisms must be at work.

Let me now focus on a specific technical problem: Consider, for instance,
algorithms that 3-color given graphs1. Is it true that every such algorithm can
be sped-up 10 times on some infinite set of graphs?

Or, there is a “perfect” algorithm, that cannot be
outsped 10 times even on a subset of graphs?

1 This is a complete problem, i.e. all other inversion problems are reducible to it.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 513–517, 2023.
https://doi.org/10.1007/978-3-031-44274-2_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_38&domain=pdf
http://orcid.org/0000-0002-3207-5176
https://doi.org/10.1007/978-3-031-44274-2_38

514 L. A. Levin

Note, there is a 3-coloring algorithm that cannot be outsped by more than
constant factors on any subset. The question is, must these constants get really
big?

But before further discussion, some history:
In the 50s, in the Russian math community there was much interest in the

works of Claude Shannon. But many of Shannon’s constructions required exhaus-
tive search of all configurations. There was an intense interest in whether these
exponential procedures could be eliminated (see [9]).

And Sergey Yablonsky wrote a paper that he interpreted as showing that no
subexponential method could work on a problem that is, in today’s terms, co-NP.
It is a problem of finding a boolean function of maximal circuit complexity.

Kolmogorov saw this claim as baseless since the proof considered only a
specific type of algorithms. Unhappy with such misleading ideas being promoted,
Kolmogorov advocated the need for efforts to find valid proofs for common beliefs
that complexities of some popular problems are indeed unavoidable.

This task required a convincing definition of the running time. But Turing
Machines were seen as too restricted to use for meaningful speed lower bounds.
Kolmogorov formulated (see [6]) a graph-based model of algorithms that had
time complexities as they are understood today.

He also ran a seminar where he challenged mathematicians with quadratic
complexity of multiplication. And an unexpected answer was soon found by
Anatoly Karatsuba, and improved by Andrei Toom: multiplication complexity
turned out nearly linear.

This was an impressive indication that common sense is an unreliable guide
for hardness of computational problems, and must be verified by valid proofs.

I, at that time, was extremely excited by some other work of Kolmogorov. He
(and independently Ray Solomonoff) used the Turing’s Universal Algorithm for
an optimal definition of informational complexity, randomness, and some other
related concepts.

I noted that similar constructions yield an optimal up to a constant factor
algorithm for a problem now called Tiling, and thus for any search problem, as
they all have a straightforward reduction to Tiling.

To my shagreen, Kolmogorov was not impressed with the concept of optimal-
ity, saw it as too abstract for the issue at hand. (Indeed, finding specific bounds
did not look as hopeless then as it now does.) But he was much more interested
in my remark that Tiling allows reduction to it of all other search problems. He
thought I should publish that rather than the optimal search.

I thought it would only be worth publishing if I can reduce it to some popular
problems. My obstacle was that combinatorics was not popular in Russia, and my

How We Succeed in Proving Fermat Theorem, Predicting Higgs Boson, etc? 515

choice of problems that might impress the math community was rather limited.
I saw no hope for something like factoring, but spent years in naive attempts on
things like graph isomorphism, finding small circuits for boolean tables, etc.

Meanwhile an interesting angle was added to the issues. In 1969 Michael
Dekhtiar, a student of Boris Trakhtenbrot, published a proof [3] that under
some oracles inverting simple functions has exponential complexity. In the US,
Baker, Gill, and Solovay did this independently [1].

Later I ran into problems with communist authorities. And friends advised
me to quickly publish all I have while the access to publishing is not yet closed to
me. So I submitted several papers in that 1972, including the one about search
[7] (where Kolmogorov agreed to let me include the optimal search). I guess I
must thank the communists for this publication.

But the greatest developments by far were going on in the United States. S.
Cook [2], R. Karp [5], and Garey and Johnson [4] made a really revolutionary dis-
covery. They found that 3-SAT reduces to great many important combinatorics
problems.

Combinatorics received much attention in the West and these results became
a coup!

Kolmogorov asked several questions at that time, still open and interesting. One
was: Are there polynomial time algorithms that have no linear size circuits? We
knew that some slow polynomial time algorithms cannot be replaced by faster
algorithms. But can linear-sized circuits families replace all of them?

His other interesting comment was a bit more involved. We proved at that
time that mutual information between strings is roughly symmetric. The proof
involved exponential search for short programs transforming a strings x into
y. Kolmogorov wondered if such search for short fast (meant in robust terms,
tolerating +O(1) slacks in length and in log time) programs would not be a better
candidate than my Tiling to see if search problems are exponentially hard.

He said that, often, a good candidate to consider is one that is neither too
general, nor too narrow. Tiling, being universal, may be too general, lacking
focus. Some other problems (say, factoring) – too narrow. And search for fast
short programs looked like a good middle bet to him. It still does to me! :-)

Such search is involved in another type of problems that challenge our creativ-
ity: extrapolating the observed data to their whole natural domains. It is called
by many names, “Inductive Inference”, “passive learning”, and others. Occam
Razor is a famous principle of extrapolation. A version attributed to Einstein
suggests: hypothesis need be chosen as simple as possible, but no simpler :-).

Ray Solomonoff gave it a more formal expression: The likelihoods of various
extrapolations, consistent with known data, decrease exponentially with the

516 L. A. Levin

length of their shortest descriptions. Those short programs run about as fast
as the process that had generated the data.

There have been several technical issues that required further attention. I
will stay on a simple side, not going into those details. Most of them have been
clarified by now, if we ignore the time needed to find such short fast programs.
This may be hard. Yet, this is still an inversion task, bringing us back to the
issues of optimal search. I have a little discussion of such issues in [8].

Now, back to my focus. The concept of optimal algorithm for search problems
ignores constant factors completely. So, it is tempting to assume that they
must be enormous.

However, this does not seem so to me. Our brains have evolved on jumping
in trees, not on writing math articles. And yet, we prove Fermat’s Theorems,
design nukes, and even write STOC papers. We must have some quite efficient
and quite universal guessing algorithms built-in.

So, I repeat a formal question on these constants:

Can every algorithm for complete search problems be outsped 10
times on an infinite subset? OR, there is a “perfect” one that

cannot be, even on a subset?

Of course, careless definitions of time can allow fake speed-ups. For instance
if we ignore the alphabet size and reduce the number of steps just by making
each step larger due to the larger alphabet. Or if we exclude the required end
testing of the input/output relation, and choose a relation that itself allows a
non-constant speed-up. But it is easy to carefully define time to preclude such
cheating.

Let me now go into some little technicalities to see what issues are involved
in understanding these constant factors. We look at the optimal search for an
inverse w of a fast algorithm f , given the output x that f must produce from w.

We refine Kolmogorov Complexity with time, making it computable. The
time-refined complexity Kt of w given x considers all prefixless programs p by
which the universal algorithm U generates w from x in time T . (T includes run-
ning f(w) to confirm it is x.) Kt(w|x) is the minimum of length of p, plus log T .

The Optimal Inverter searches for solutions w in increasing order of this
complexity Kt of w given x, not of length of w. For instance, shorter proofs
may be much harder to find, having higher complexities. The Inverter generates
and checks in time 2k all w up to complexity k.

Btw, the optimal search makes the concept of complexity applicable to indi-
vidual instances of search tasks, not just to families of instances which we now

How We Succeed in Proving Fermat Theorem, Predicting Higgs Boson, etc? 517

call “problems” and complexities of which we study. So we can ask how hard
is, say, to find a short proof for Fermat’s theorem, not for theorems in general.
Would not this notion fit tighter?

The big catch here is that each wasteful bit U requires of p doubles the
time. We would need a very “pure” U , frugal with wasting bits. Do our brains
have such a one built-in? It seems so to me. We do seem to have little dis-
agreement on what is “neat” and what is cumbersome. There are differences in
our tastes, but they are not so huge that we could not understand each other’s
aesthetics. But this is just a feeling. The formal question remains:

Is there an algorithm for a complete search problem that cannot be
outsped ten times, even on an infinite subset?

(Of course, this 10 is a bit arbitrary, can be replaced with your favorite reasonable
constant.)

References

1. Baker, T.P., Gill, J., Solovay, R.: Relativizations of the P = NP question. SIComp
4(4), 431–442 (1975)

2. Cook, S.: The complexity of theorem proving procedures. In: STOC-1971, pp. 151–
158 (1971)

3. Dekhtiar, M.: On the impossibility of eliminating exhaustive search in computing a
function relative to its graph. Russ. Proc. USSR Acad. Sci. 14, 1146–1148 (1969)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman (1979)

5. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher,
J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum (1972)

6. Kolmogorov, A.N., Uspenskii, V.A.: On the definition of an algorithm. Uspekhi Mat.
Nauk 13(4), 3–28 (1958). AMS Transl. 1963. 2nd ser. 29:217–245

7. Levin, L.A.: Universal�nye Zadaqi Perebora (1973). (in Russian) [Universal
search problems]. Probl. Inf. Transm. 9(3), 115–116. English Translation in [9]

8. Levin, L.A.: Universal heuristics: how do humans solve “unsolvable” problems? In:
Dowe, D.L. (ed.) Algorithmic Probability and Friends. Bayesian Prediction and Arti-
ficial Intelligence. LNCS, vol. 7070, pp. 53–54. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-44958-1 3. Also in a CCR/SIGACT Workshop Report
“Visions for Theoretical Computer Science”

9. Trakhtenbrot, B.A.: A survey of Russian approaches to perebor (brute-force search)
algorithms. Ann. Hist. Comput. 6(4), 384–400 (1984)

https://doi.org/10.1007/978-3-642-44958-1_3
https://doi.org/10.1007/978-3-642-44958-1_3

Self-stabilizing Byzantine-Tolerant
Recycling

Chryssis Georgiou1, Michel Raynal2, and Elad M. Schiller3(B)

1 Computer Science, University of Cyprus, Nicosia, Cyprus
chryssis@cs.ucy.ac.cy

2 IRISA, Univ. Rennes 1, Rennes, France
michel.raynal@irisa.fr

3 Computer Science and Engineering, Chalmers University of Technology,
Gothenburg, Sweden
elad@chalmers.se

Abstract. Numerous distributed applications, such as cloud computing
and distributed ledgers, necessitate the system to invoke asynchronous
consensus objects for an unbounded number of times, where the comple-
tion of one consensus instance is followed by the invocation of another.
With only a constant number of objects available, object reuse becomes
vital. We investigate the challenge of object recycling in the presence
of Byzantine processes, which can deviate from the algorithm code in
any manner. Our solution must also be self-stabilizing, as it is a pow-
erful notion of fault tolerance. Self-stabilizing systems can recover auto-
matically after the occurrence of arbitrary transient-faults, in addition
to tolerating communication and (Byzantine or crash) process failures,
provided the algorithm code remains intact. We provide a recycling mech-
anism for asynchronous objects that enables their reuse once their task
has ended, and all non-faulty processes have retrieved the decided val-
ues. This mechanism relies on synchrony assumptions and builds on a
new self-stabilizing Byzantine-tolerant synchronous multivalued consen-
sus algorithm, along with a novel composition of existing techniques.

Glossary:

BC Byzantine-tolerant Consensus;
BDH Ben-Or, Dolev, and Hoch [5];
BFT non-self-stabilizing Byzantine fault-tolerant solutions;
COR Consensus Object Recycling (Definition 1);
DPS Dolev, Petig, and Schiller [9];

MMR Mostéfaoui, Moumen, and Raynal [22];
RCCs random common coins;

SSBFT self-stabilizing Byzantine fault-tolerant;
κ−SGC κ-state global clock.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 518–535, 2023.
https://doi.org/10.1007/978-3-031-44274-2_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_39&domain=pdf
https://doi.org/10.1007/978-3-031-44274-2_39

Self-stabilizing Byzantine-Tolerant Recycling 519

1 Introduction

We study the problem of recycling asynchronous consensus objects. We propose
a more robust solution than the state-of-the-art solution to achieve this goal.

Fault Model. We study solutions for message-passing systems. We model a
broad set of failures that can occur to computers and networks. Our model
includes up to t process failures, i.e., crashed or Byzantine [19]. In detail, the
adversary completely controls any Byzantine node, e.g., the adversary can send
a fake message that the node never sent, modify the payload of its messages,
delay the delivery of its messages, or omit any subset of them. We assume a
known maximum number, t, of Byzantine processes. For solvability’s sake, we
also restrict the adversary from letting a Byzantine process impersonate a non-
faulty one, i.e., as in [27], we assume private channels between any pair of nodes.

Self-stabilization. In addition to the failures captured by our model, we also
aim to recover from arbitrary transient-faults, i.e., any temporary violation
of assumptions according to which the system was designed to operate. This
includes the corruption of control variables, such as the program counter, packet
payload, and indices, e.g., sequence numbers, which are responsible for the cor-
rect operation of the studied system, as well as operational assumptions, such as
that at least a distinguished majority of processes never fail. Since the occurrence
of these failures can be arbitrarily combined, we assume that these transient-
faults can alter the system state in unpredictable ways. In particular, when
modeling the system, Dijkstra [7] assumes that these violations bring the system
to an arbitrary state from which a self-stabilizing system should recover. Dijk-
stra requires recovery after the last occurrence of a transient-fault and once the
system has recovered, it must never violate the task specifications. I.e., there
could be any finite number of transient faults before the last one occurs, which
may leave the system in an arbitrary state. Moreover, recovery from an arbitrary
system state is demonstrated once all transient faults cease to happen, see [3,8]

Memory Constraints. In the absence of transient faults, one can safely assume
that the algorithm variables, such as a counter for the message sequence number,
are unbounded. This assumption can be made valid for any practical setting by
letting each counter use enough bits, say, 64, because counting (using sequential
steps) from zero to the maximum value of the counter will take longer than the
time during which the system is required to remain operational. Specifically,
if each message transmission requires at least one nanosecond, it would take at
least 584 years until the maximum value can be reached. However, in the context
of self-stabilization, a single transient fault can set the counter value into one
that is close to the maximum value. Thus, any self-stabilizing solution must cope
with this challenge and use only bounded memory and communication.

520 C. Georgiou et al.

Self-stabilization via Algorithmic Transformation. This work is dedicated to
designing a generic transformer, which takes an algorithm as input and systemat-
ically redesigns it into its self-stabilizing variation as output. Existing transform-
ers differ in the range of input algorithms and fault models they can transform,
see Dolev [8, 2.8], Katz and Perry [17], Afek et al. [2], and Awerbuch et al. [4].

Dolev, Petig, and Schiller [9] (DPS in short) proposed a transformer of crash-
tolerant algorithms for asynchronous message-passing systems into ones that also
recover from transient faults.Lundström et al. show DPS’s applicability to vari-
ous communication abstractions, such as atomic snapshot [12], consensus [15,21],
reliable broadcast [20], and state-machine replication [16]. DPS mandates that
(DPS.i) the input algorithm guarantees, after the last transient fault occur-
rence, the completion of each invocation of the communication abstraction, i.e.,
it should eventually terminate regardless of the starting state. This condition
facilitates the eventual release of resources used by each invocation. Additionally,
(DPS.ii) it associates a sequence number with each invocation to differentiate the
resources utilized by different invocations. This enables the recycling of resources
associated with obsolete invocations through a sliding window technique, along
with a global restart once the maximum sequence number is reached.

Recently, DPS was utilized by Duvignau et al. [11] for converting Byzantine
fault-tolerant (BFT) reliable broadcast proposed by Bracha and Toueg [6] into a
Self-Stabilizing BFT (SSBFT) variation. This solution recycles reliable broadcast
objects using synchrony assumptions. It also relies on the fact that the process
may allocate independent local memory and sequence numbers per sender. How-
ever, consensus objects often use shared sequence numbers, and thus, parts of
their local memories are codependent. Therefore, we use another approach.

Problem Description. This work studies an important building block that is
needed for the SSBFT implementation of asynchronous consensus objects. With
only a bounded number of consensus objects available, it becomes essential to
reuse them robustly. We examine the case in which the repeated invocation of
consensus needs to reuse the same memory space and the (k + 1)-th invocation
can only start after the completion of the k-th instance. In an asynchronous
system that uses only a bounded number of objects, ensuring the termination of
the k-th instance before invoking the (k + 1)-th might be crucial, e.g., for total
order broadcasting, as in some blockchains. Thus, we require SSBFT consensus
objects to eventually terminate regardless of their starting state, as in (DPS.i).

We focus on addressing the challenge of recycling asynchronous consensus
objects after they have completed their task and delivered their decision to all
non-faulty processes. This task becomes complex due to the presence of asyn-
chrony and Byzantine failures. Utilizing the joint sequence numbers of (DPS.ii)
for recycling consensus objects is not straightforward, because it requires ensur-
ing that all non-faulty processes have delivered the decided value (for the k-th
consensus invocation) as well as agreeing that such collective delivery occurred

Self-stabilizing Byzantine-Tolerant Recycling 521

before incrementing the sequence number counter (that is going to be used by
the (k + 1)-th invocation). To overcome this chicken-and-egg problem, we relax
the problem requirements by allowing the recycling mechanism to depend on
synchrony assumptions. To mitigate the impact of these assumptions, a single
recycling action can be performed for a batch of δ objects, where δ is a predefined
constant determined by the available memory. Thus, our approach facilitates
asynchronous networking in communication-intensive components, i.e., the con-
sensus objects, while Asynchronous recycling actions are performed according
to a load parameter, δ.

Our Solution in a Nutshell. Our solution aims to emulate (DPS.ii) by incor-
porating synchrony assumptions specifically for the recycling service, while keep-
ing the consensus object asynchronous to handle intensive message exchange.

To begin, we maintain an index that points to the most recently invoked
object in a constant-size array. In order to ensure that all non-faulty processes
agree on the value of the index, we utilize a novel technique called simultaneous
increment-or-get indexes (SGI-index). When recycling an object, we increment
the index, but this increment is performed only after an agreement among the
non-faulty processes that the relevant object has made its decision and delivered
it to all non-faulty processes. Thus, we use a new SSBFT multivalued consensus
before each increment, ensuring that consensus is reached before the increment.
I.e., all needed deliveries had occurred before the increment.

Additionally, our solution answers how an SSBFT asynchronous consensus
object can provide an indication that at least one non-faulty process has made a
decision and delivered. We utilize this indication as input to trigger the recycling
action, effectively incorporating it into the SSBFT multivalued consensus.

Related Work. Object recycling was studied mainly in the context of crash-
tolerant (non-BFT) systems [25,29]. There are a few (non-self-stabilizing) imple-
mentations of garbage collection in the presence of Byzantine processes, e.g., [23].

Non-self-stabilizing BFT Consensus. Rabin [26] offers a solution to BFT consen-
sus (cf. Sect. 2 for definitions). It assumes the availability of random common
coins (RCCs), allowing for a polynomial number of communication steps and
optimal resilience, i.e., t < n/3, where n is the number of participating processes.
Mostéfaoui, Moumen, and Raynal [22], or MMR in short, is a signature-free BFT
binary consensus solution. MMR is optimal in resilience, uses O(n2) messages
per consensus invocation, and completes within O(1) expected time.

522 C. Georgiou et al.

Non-self-stabilizing Synchronous BFT Multivalued Consensus. The proposed
recycling mechanism uses an SSBFT multivalued consensus, which is based on a
non-self-stabilizing BFT multivalued consensus. Kowalski and Mostéfaoui [18]
proposed the first multivalued optimal resilience, polynomial communication
cost, and optimal t + 1 rounds, but without early stopping. Abraham and
Dolev [1] advanced the state of the art by offering also optimal early stop-
ping. Unlike the above BFT solutions, our SSBFT multivalued solution adds
self-stabilization.

SSBFT Consensus. To the best of our knowledge, the only SSBFT RCCs con-
struction is the one by Ben-Or, Dolev, and Hoch [5], in short BDH, for syn-
chronous systems with private channels. BDH uses its SSBFT RCCs construc-
tion as a building block for devising an SSBFT clock synchronization solution.
Recently, Georgiou, Marcoullis, Raynal, and Schiller [13], or GMRS in short,
presented an SSBFT variation on MMR, which offers a BFT binary consen-
sus. GMRS preserves MMR’s optimality, and thus, we use GMRS in this work.
AGMRS follows the design criteria of loosely self-stabilizing systems, ensuring
task completion but with rare safety violation events. In the context of the stud-
ied problem, the former guarantee renders the latter one irrelevant.

Our Contribution. We propose an important building block for reliable dis-
tributed systems: a new SSBFT mechanism for recycling SSBFT consensus
objects. The proposed mechanism stabilizes within expected O(κ) synchronous
rounds, where κ ∈ O(t) is a predefined constant (that depends on synchrony
assumptions) and t is an upper bound on the number of Byzantine processes.
We also present, to the best of our knowledge, the first SSBFT synchronous mul-
tivalued consensus solution. The novel composition of (i) SSBFT recycling and
(ii) SSBFT recyclable objects has a long line of applications, such as replication
and blockchain. Thus, our transformation advances the state of the art by facili-
tating solutions that are more fault-tolerant than the existing implementations,
which cannot recover from transient faults.

For convenience, a Glossary appears after the References. Due to the
page limit, the full correctness proof appear in the Acomplementary technical
report [14].

2 Basic Result: Recyclable SSBFT Consensus Objects

In this section, we define a recyclable variation on the consensus problem, which
facilitates the use of an unbounded number of consensus instances via the reuse
of a constant number of objects (as presented in Sect. 4). Then, we sketch Algo-
rithm 1, which presents a recyclable variation on an SSBFT asynchronous con-
sensus algorithm (such as GMRS). Towards the end of this section, Theorem 1
demonstrates that Algorithm 1 constructs recyclable SSBFT consensus objects.

Self-stabilizing Byzantine-Tolerant Recycling 523

Algorithm 1: A recyclable variation on GMRS; pi’s code.
1 local variables: /* the algorithm’s local state is defined here. */

2 delivered[P] := [False, . . . ,False] delivery indications; delivered[i] stores the local

3 indication and delivered[j] stores the last received indication from pj ∈ P;

4 constants: initState := (•, [False, . . . ,False]);

5 interfaces: recycle() do (local state, delivered) ← initState; /* also

initialize all attached communication channels [8, Ch. 3.1] */

6 wasDelivered() do {if ∃S ⊆ P : n−t ≤ |S| : ∀pk ∈ S : delivered[k] = True then

return 1 else return 0;}

7 operations: propose(v) do {implement the algorithm logic};
8 result() do begin
9 if there is a decided value then {delivered[i] ← True; return v};

10 else if an error occurred then {delivered[i] ← True; return �};

11 else return ⊥;

12 do forever begin

13 if result() = ⊥ then delivered[i] ← ⊥;/* consistency test */

/* implementation of the algorithm’s logic */

14 foreach pj ∈ P do send EST(•, delivered[i]) to pj ;

15 upon EST(•, deliveredJ) arrival from pj begin
16 delivered[j] ← deliveredJ ;

/* merge arriving information with the local one */

Byzantine-Tolerant Consensus (BC). This problem requires agreeing on a
value from a given set V , which every A(non-faulty) node inputs via propose().
It requires BC-validity, i.e., if all non-faulty nodes propose the same value v ∈ V,
only v can be decided, BC-agreement, i.e., no two non-faulty nodes can decide
different values, and BC-completion, i.e., all non-faulty nodes decide a value.
When the set, V , from which the proposed values are taken is {0, 1}, the problem
is called binary consensus. Otherwise, it is referred to as multivalued consensus.

Recyclable Consensus Objects. We study systems that implement consen-
sus objects using storage of constant size allocated at program compilation
time. Since these objects can be instantiated an unbounded number of times,
it becomes necessary to reuse the storage once consensus is reached and each
non-faulty node has received the object result via result(). To facilitate this, we
assume that the object has two meta-statuses: used and unused. The unused
status represents both objects that were never used and those that are no longer

524 C. Georgiou et al.

in current use, indicating they are available (for reuse). Our definition of recy-
clable objects assumes that the objects implement an interface function called
wasDelivered() that must return 1 anytime after the result delivery. Recycling is
triggered by the recycling mechanism (Sect. 4), which invokes recycle() at each
non-faulty node, thereby setting the meta-status of the corresponding consensus
object to unused. We specify the task of recyclable object construction as one
that requires eventual agreement on the value of wasDelivered(). In detail, if a
non-faulty node pi reports delivery (i.e., wasDeliveredi() = 1), then all non-faulty
nodes will eventually report delivery as well. We clarify that during the recycling
process, i.e., when at least one non-faulty node invokes recycle(), there is no need
to maintain agreement on the values of wasDelivered().

Algorithm Outline. Algorithm 1’s boxed code lines highlight the code lines
relevant to recyclability. AThe set of nodes is denoted by P. We avoid the restate-
ment of the algorithm, and to focus on the parts that matter in this work, the
other parts are given in words (cf. GMRS [13] for full details). The code uses the
symbol • to denote any sequence of values. We assume that the object allows
the proposal of v via propose(v) (line 7). As in result() (line 8), once the con-
sensus algorithm decides, one of the decided value is returned (line 9). Since the
algorithm tolerates transient faults, the object may need to indicate an internal
error via the return of the (transient) error symbol, � (line 10). In all other cases,
the ⊥-value is returned (line 11). GMRS uses a do-forever loop that broadcasts
the protocol messages (line 14). Any node that receives this protocol message,
merges the arriving information with the one stored by the local state (line 16).

Recyclable Variation. Algorithm 1 uses the array delivered[P] (initialized to
[False, . . . ,False]) for delivery indications, where deliveredi[i] : pi ∈ P stores the
local indication and deliveredi[j] : pi, pj ∈ P stores the indication that was last
received from pj . This indication is set to True whenever result() returns a non-⊥
value (lines 9 to 10). Algorithm 1 updates delivered[j] according to the arriving
values from pj (lines 14 and 16). The interface function wasDelivered() (line 6)
returns 1 if at least n − t entries in delivered[] hold True. The interface function
recycle() (line 5) allows the node to restart its local state w.r.t. Algorithm 1.

Theorem 1. Algorithm 1 offers a recyclable asynchronous consensus object.

Proof Sketch of Theorem 1. If ∃i ∈ Correct : wasDeliveredi() = 1, then
resulti() �= ⊥ (line 13). By BC-completion, eventually ∀j ∈ Correct : resultj() �=
⊥ ∧ wasDeliveredj() = 1 (lines 9 and 10). �Theorem 1

3 System Settings for the Recycling Mechanism

This model considers a synchronous message-passing system. The system con-
sists of a set, P, of n nodes (sometimes called processes or processors) with
unique identifiers. At most t < n/3, out of the n nodes, are faulty. Any pair
of nodes pi, pj ∈ P has access to a bidirectional reliable communication chan-
nel, channel j,i. In the interleaving model [8], the node’s program is a sequence

Self-stabilizing Byzantine-Tolerant Recycling 525

of (atomic) steps. Each step starts with (i) the communication operation for
receiving messages that is followed by (ii) an internal computation, and (iii)
finishes with a single send operation. The state, si, of node pi ∈ P includes
all of pi’s variables and channel j,i. The term system state refers to the tuple
c = (s1, s2, · · · , sn). Our model also assumes the availability of a κ-state global
clock, reliable communications, and random common coins (RCCs).

A κ-State Global Clock. We assume that the algorithm takes steps according
to a common global pulse (beat) that triggers a simultaneous step of every
node in the system. Specifically, we denote synchronous executions by R =
c[0], c[1], . . ., where c[x] is the system state that immediately precedes the x-th
global pulse. And, ai[x] is the step that node pi takes between c[x] and c[x + 1]
simultaneously with all other nodes. We also assume that each node has access to
a κ-state global clock via the function clock(κ), which returns an integer between
0 and κ − 1. Algorithm 3 of BDH [5] offers an SSBFT κ-state global clock that
stabilizes within a constant time.

Reliable Communication. Recall that we assume the availability of reliable
communication. Also, any non-faulty node pi ∈ P starts any step ai[x] with
receiving all pending messages from all nodes. And, if pi sends any message
during ai[x], it does so only at the end of ai[x]. We require (i) any message that
a non-faulty node pi sends during step ai[x] to another non-faulty node pj is
received at pj at the start of step aj [x+1], and (ii) any message that pj received
during step aj [x + 1], was sent at the end of ai[x].

Random Common Coins (RCCs). As mentioned, BDH presented a syn-
chronous SSBFT RCCs solution. Algorithm A, which has the output of randi ∈
{0, 1}, is said to provide an RCC if A satisfies the following:

– RCC-completion: A completes within ΔA ∈ Z
+ synchronous rounds.

– RCC-unpredictability: Denote by Ex∈{0,1} the event that for any non-
faulty process, pj , randj = x holds with constant probability px > 0. Suppose
either E0 or E1 occurs at the end of round ΔA. We require that the adversity
can predict the output of A by the end of round ΔA − 1 with a probability
that is not greater than 1−min{p0, p1}. Following [22], we assume that p0 =
p1 = 1/2.

Our solution depends on the existence of a self-stabilizing RCC service, e.g.,
BDH. BDH considers (progress) enabling instances of RCCs if there is x ∈ {0, 1}
such that for any non-faulty process pi, we have randi = x. BDH correctness
proof depends on the consecutive existence of two enabling RCCs instances.

Legal Executions. The set of legal executions (LE) refers to all the executions
in which the requirements of task T hold. In this work, Trecycl denotes the task
of consensus object recycling (specified in Sect. 4), and LErecycl denotes the set
of executions in which the system fulfills Trecycl’s requirements.

Arbitrary Node Failures. As explained in Sect. 1, Byzantine faults model any
fault in a node including crashes, arbitrary behavior, and malicious behavior [19].

526 C. Georgiou et al.

For the sake of solvability [19,24,28], our fault model limits only the number of
nodes that can be captured by the adversary. That is, the number, t, of Byzantine
failure needs to be less than one-third of the number, n, of nodes. The set of
non-faulty nodes is denoted by Correct .

Arbitrary Transient-Faults. We consider any temporary violation of the
assumptions according to which the system was designed to operate. We refer
to these violations and deviations as arbitrary transient-faults and assume that
they can corrupt the system state arbitrarily (while keeping the program code
intact). Our model assumes that the last transient fault occurs before the system
execution starts [3,8]. Also, it leaves the system to start in an arbitrary state.

Self-stabilization. An algorithm is self-stabilizing for the task of LE, when
every (unbounded) execution R of the algorithm reaches within a finite period
a suffix Rlegal ∈ LE that is legal. Namely, Dijkstra [7] requires ∀R : ∃R′ :
R = R′ ◦ Rlegal ∧ Rlegal ∈ LE ∧ |R′| ∈ Z

+, where the operator ◦ denotes that
R = R′◦R′′ is the concatenation of R′ with R′′. The part of the proof that shows
the existence of R′ is called the convergence (or recovery) proof, and the part
that shows that Rlegal ∈ LE is called the closure proof. We clarify that once
the execution of a self-stabilizing system becomes legal, it stays legal due to the
property of closure. The main complexity measure of a self-stabilizing system is
its stabilization time, which is the length of the recovery period, R′, which is
counted by the number of its synchronous rounds.

4 SSBFT Recycling Mechanism

We present an SSBFT recycling mechanism for recyclable objects (Sect. 2). The
mechanism is a service that recycles consensus objects via the invocation of
recycle() by all (non-faulty) nodes. The coordinated invocation of recycle() can
occur only after the consensus object has terminated and the non-faulty nodes
have delivered the result, via result(), as indicated by wasDelivered().

Consensus Object Recycling (COR). Definition 1 specifies the COR prob-
lem for a single object. COR-validity-1 is a safety property requiring that
recycle() is invoked only if there was at least one reported delivery by a non-faulty
node. COR-validity-2 is a liveness property requiring that eventually recycle() is
invoked. COR-agreement is a safety property requiring that all non-faulty nodes
simultaneously set the object’s status to unused. This allows any node pi to reuse
the object immediately after the return from recyclei().

Definition 1 (Consensus Object Recycling).

– COR-validity-1: If a non-faulty node, pj, invokes recyclej(), then at least
one non-faulty node, pi, reported delivery.

– COR-validity-2: If all non-faulty nodes report delivery, then at least one
non-faulty node, pj, eventually invokes recyclej().

– COR-agreement: If a non-faulty node invokes recycle(), then all non-faulty
nodes, pi, invoke recyclei() simultaneously.

Self-stabilizing Byzantine-Tolerant Recycling 527

upon MSG() arrival from pj

the object’s
interface

send MSG() to pj

SIG-index
(synchronous)

geti()recycling
mechanism
(synchronous)

consensus
(synchronous)

resulti()

wasDeliveredi() / input()

recyclei()recyclable
object

(asynchronous)

Fig. 1. The solution uses recyclable objects (Algorithm 1), a recycling mechanism
(Algorithm 2), multivalued consensus (Algorithm 3), and SIG-index (Algorithm 4).
Algorithms 1 and 3 solve the BC problem (Sect. 2) for asynchronous, and resp.,
synchronous settings. Algorithms 2 and 4 solve the COR, resp., SGI-index problems
(Sect. 4).

Multiple Objects. We also specify that the recycling mechanism makes sure
that, at any time, there are at most a constant number, logSize, of active objects,
i.e., objects that have not completed their tasks. Once an object completes its
task, the recycling mechanism can allocate a new object by moving to the next
array entry as long as some constraints are satisfied. Specifically, the proposed
solution is based on a synchrony assumption that guarantees that every (correct)
node retrieves (at least once) the result of a completed object, x, within logSize
synchronous rounds since the first time in which at least t + 1 (correct) nodes
have retrieved the result of x, and thus, x can be recycled.

Solution Overview. The SSBFT recycling solution is a composition of several
algorithms, see Fig. 1. Our recycling mechanism is presented in Algorithm 2.
It allows every (correct) node to retrieve at least once the result of any object
that is stored in a constant-size array and yet over time that array can store an
unbounded number of object instances. The proposed service mechanism (Algo-
rithm 2) ensures that every instance of the recyclable object, which is imple-
mented by Algorithm 1, is guaranteed that every (correct) node calls result()
(line 6) at least once before all (correct) nodes simultaneously invoke recycle()
(line 5). This aligns with the solution architecture (Fig. 1).

We consider the case in which the entity that retrieves the result of object obj
might be external (and perhaps, asynchronous) to the proposed solution. The
proposed solution does not decide to recycle obj before there is sufficient evidence
that, within logSize synchronous cycles, the system is going to reach a state in
which obj can be properly recycled. Specifically, Assumption 1 considers an event
that can be locally learned about when wasDelivered() returns ‘1’ (line 6).

Assumption 1 (A bounded time result Aretrieval) Let us consider the
system state, c[r], in which the result of object obj was retrieved by at least t+1
(correct) nodes. We assume, within logSize synchronous cycles from c[r], the

528 C. Georgiou et al.

Algorithm 2: SSBFT synchronous recycling; pi’s code
17 constants: indexNum number of indices of recyclable objects;
18 logSize ∈ {0, . . . , indexNum − 2} user-defined bound on the object log size;
19 variables: obj[indexNum] : array of recyclable objects, e.g., GMRS;
20 ssbftIndex : an SSBFT index of the current object in use (Algorithm 4);
21 upon pulse /* signal from global pulse system */ begin
22 foreach x /∈ {y mod indexNum : y ∈ {z − logSize, . . . , z}} where

z = indexNum + ssbftIndex .getIndex() do obj[x].recycle();

system reaches a state, c[r + logSize], in which all n − t (correct) nodes have
retrieved the result of obj at least once.

Algorithm 2’s recycling guarantees are facilitated by an SSBFT multivalued
consensus object (Algorithm 3). It helps to decide on a single piece of evidence
from all collected ones (regarding recyclability) and Algorithm 4 uses the agreed
evidence for updating the index that points to the current entry in the object
array. We later add details on Algorithm 2 before proving its correctness (The-
orem 4).

Multivalued Consensus Alg. is
active between round 0 and t

SIG-index Alg. is active
between round κ-4 and κ-1

Fig. 2. The solution schedule uses a
cycle of κ = max{t + 1, logSize} syn-
chronous rounds.

Evidence Collection Using an SSBFT
(Multivalued) Consensus (Algorithm 3).
The SSBFT multivalued consensus pro-
tocol returns within t + 1 synchronous
rounds an agreed non-⊥ value as long as
at least t + 1 nodes proposed that value,
i.e., at least one (correct) node proposed
that value. As mentioned, wasDelivered()
(line 6) provides the input to this con-
sensus protocol. Thus, whenever ‘1’ is
decided, at least one (correct) node gets an indication from at least n − t nodes
that they have retrieved the results of the current object. This implies that by
at least t + 1 (correct) nodes have retrieved the results, and, by Assumption 1,
all n − t (correct) nodes will retrieve the object result within a known number
of synchronous rounds. Then, the object could be recycled. We later add details
on Algorithm 3 before proving its correctness.

SSBFT Simultaneous Increment-or-Get Index (SIG-Index). Algorithm 4 allows
the proposed solution to keep track of the current object index that is cur-
rently used as well as facilitate synchronous increments to the index. We call this
task simultaneous increment-or-get index (SIG-index). During legal executions
of Algorithm 4, the (correct) nodes assert their agreement on the index value and
update the index according to the result of the agreement on wasDelivered()’s
value. We later add details on Algorithm 4 before proving its correctness (The-
orem 3).

Self-stabilizing Byzantine-Tolerant Recycling 529

Algorithm 3: SSBFT synchronous multivalued consensus; pi’s code
23 variables: currentResult stores the most recent result of co;
24 co a (non-self-stabilizing) BFT (multivalued) consensus object;
25 interface required:
26 input() : source of (the proposed values) of the given consensus protocol;
27 interface provided:
28 result(): do return(currentResult) // most recent co’s decided value;
29 message structure: 〈appMsg〉, where appMsg is the application message, i.e.,

a message sent by the given consensus protocol;
30 upon pulse /* signal from global pulse system */ begin
31 let M be a message that holds at M [j] the arriving 〈appMsgj〉 messages

from pj for the current synchronous round and M ′ = [⊥, . . . , ⊥];
32 if clock(κ) = 0 then
33 currentResult ← co.result();
34 co.restart();
35 M ′ ← co.propose(input()) // for recycling input() ≡ wasDelivered()

36 else if clock(cycleSize) ∈ {1, . . . , t} then M ′ ← co.process(M);
37 foreach pj ∈ P do send 〈M ′[j]〉 to pj ;

Scheduling Strategy. As mentioned, our SSBFT multivalued consensus requires
t+1 synchronous rounds to complete and provide input to Algorithm 4 and κ−
(t+1) synchronous rounds after that, any (correct) node can recycle the current
object (according to the multivalued consensus result), where κ = max{t +
1, logSize}. Thus, Algorithm 4 has to defer its index updates until that time.
Fig. 2 depicts this scheduling strategy, which considers the schedule cycle of κ.
That is, the SIG-index and multivalued consensus starting points are 0 and κ−4,
respectively. Note that Algorithm 2 does not require scheduling since it accesses
the index only via Algorithm 4’s interface of SIG-index, see Fig. 1.

Communication Piggybacking and Multiplexing. We use a piggybacking technique
to facilitate the spread of the result (decision) values of the recyclable objects. As
Fig. 1 illustrates, all communications are piggybacked. Specifically, we consider
a meta-message MSG() that has a field for each message sent by all algorithms
in Fig. 1. That is, when any of these algorithms is active, its respective field in
MSG() includes a non-⊥ value. With respect to GMRS’s field, MSG() includes
the most recent message that GMRS has sent (or currently wishes to send). This
piggybacking technique allows the multiplexing of timed and reliable communi-
cation (assumed for the recycling mechanism) and fair communication (assumed
for the recyclable object).

SSBFT Recycling (Algorithm 2). As mentioned, Algorithm 2 has an array,
obj[] (line 19), of indexNum recyclable objects (line 17). The array size needs
to be larger than logSize (line 18 and Assumption 1). Algorithm 2’s variable
set also includes ssbftIndex , which is an integer that holds the entry number
of the latest object in use. Algorithm 2 accesses the agreed current index via

530 C. Georgiou et al.

Algorithm 4: SSBFT synchronous SIG-index; pi’s code
38 constants: I : bound on the number of states an index may have;
39 variables: index ∈ {0, . . . , I − 1} : a local copy of the global object index;
40 ssbftCO : an SSBFT multivalued consensus object (Algorithm 3) used for

agreeing on the recycling state, i.e., 1 when there is a need to recycle
(otherwise 0);

41 interfaces provided: getIndex() do return index;
42 message structure: 〈index〉: the logical object index;
43 upon pulse /* signal from global pulse system */ begin
44 let M be the arriving 〈indexj〉 messages from pj ;
45 switch clock(κ) /* consider clock() at the pulse beginning */ do
46 case κ − 4 do broadcast 〈index = getIndex()〉;
47 case κ − 3 do
48 let propose := ⊥;
49 if ∃v �= ⊥ : |{〈v〉 ∈ M}| ≥ An − t then propose ← v;
50 broadcast 〈propose〉;
51 case κ − 2 do
52 let bit := 0; save ← ⊥;
53 if ∃s �= ⊥ : |{〈s〉 ∈ M}| > n/2 then save ← s;
54 if |{〈save �= ⊥〉 ∈ M}| ≥ An − t then bit ← 1;
55 if save = ⊥ then save ← 0;
56 broadcast 〈bit〉;
57 case κ − 1 do
58 let inc := 0;
59 if ssbftCO .result() then inc ← 1;
60 if |{〈1〉 ∈ M}| ≥ An − t then index ← (save + inc) mod I;
61 else if |{〈0〉 ∈ M}| ≥ An − t then index ← 0;
62 else index ← rand(save + inc) mod I;

ssbftIndex .getIndex(). This lets the code to nullify any entry in obj[] that is
not ssbftIndex .getIndex() or at most logSize older than ssbftIndex .getIndex().
Theorem 4 shows Algorithm 2’s correctness.

SSBFT Synchronous Multivalued Consensus. Algorithm 3 assumes access
to a deterministic (non-self-stabilizing) BFT (multivalued) consensus object, co,
such as the ones proposed by Kowalski and Mostéfaoui [18] or Abraham and
Dolev [1], for which completion is guaranteed to occur within t+1 synchronous
rounds. We list our assumptions regarding the interface to co in Definition 2.
Required consensus object interface. Our solution uses the technique of recom-
putation of co’s floating output [8, Ch. 2.8], where co is specified in Definition 2.

Definition 2 (Synchronous BFT Consensus). Let co be a BFT (non-self-
stabilizing) synchronous multivalued consensus that implements the following.

– restart() sets co to its initial state.

Self-stabilizing Byzantine-Tolerant Recycling 531

– propose(v) proposes the value v when invoking (or re-invoking) co. The
returned value is a message vector, M [], that includes all the messages, M [j],
that co wishes to send to node pj for the current synchrony round.

– process(M) runs a single step of co. The returned value is a message vector
that includes all the messages that co wishes to send for the current round.

– result() returns a non-⊥ results after the completion of co.

Detailed Description. Algorithm 3’s set of variables includes co itself (line 24)
and the current version of the result, i.e., currentResult (line 23). This way,
the SSBFT version of co’s result can be retrieved via a call to result() (line 28).
Algorithm 3 proceeds in synchronous rounds. At the start of any round, node pi
stores all the arriving messages at the message vector M (line 31).

When the clock value is zero (line 32), it is time to start the re-computation of
co’s result. Thus, Algorithm 3 first stores co’s result at currentResulti (line 33).
Then, it restarts co’s local state and proposes a new value to co (lines 34 and 35).
For the recycling solution presented in this paper, the proposed value is retrieved
from wasDelivered() (line 6). For the case in which the clock value is not zero
(line 36), Algorithm 3 simply lets co process the arriving messages of the current
round. Both for the case in which the clock value is zero and the case it is not,
Algorithm 3 broadcasts co’s messages for the current round (line 37).

Correctness Proof. Theorem 2 shows that Algorithm 3 stabilizes within 2κ
rounds.

Theorem 2. Algorithm 3 is an SSBFT deterministic (multivalued) consensus
solution that stabilizes within 2κ synchronous rounds.

Proof of Theorem 2. Let R be an execution of Algorithm 3 Within κ syn-
chronous rounds, the system reaches a state c ∈ R in which clock(κ) = 0 holds.
Immediately after c, every (correct) node, pi, simultaneously restarts coi and pro-
poses the input (lines 34 and 35) before sending the needed messages (line 37).
Then, for the t < κ synchronous rounds that follow, all (correct) nodes simul-
taneously process the arriving messages and send their replies (line 36 and 37).
Thus, within 2κ synchronous rounds from R’s start, the system reaches a state
c′ ∈ R in which clock(κ) = 0 holds. Also, in the following synchronous round,
all (correct) nodes store co’s results. These results are correct due to Defini-
tion 2. �Theorem 2
SSBFT Simultaneous Increment-or-Get Index. The task of simultaneous
increment-or-get index (SGI-index) requires all (correct) nodes to maintain iden-
tical index values that all nodes can independently retrieve via getIndex(). The
task assumes that all increments are performed according to the result of a con-
sensus object, ssbftCO , such as Algorithm 3. Algorithm 4 presents an SGI-index
solution that recovers from disagreement on the index value using RCCs. That
is, whenever a (correct) node receives An− t reports from other nodes that they
have each observed An−t identical index values, an agreement on the index value
is assumed and the index is incremented according to the most recent result of

532 C. Georgiou et al.

ssbftCO . Otherwise, a randomized strategy is taken for guaranteeing recovery
from a disagreement on the index value. Our strategy is inspired by BDH [5].

Detailed Description. Algorithm 4 is active during four clock phases, i.e., κ − 4
to κ−1. Each phase starts with storing all arriving messages (from the previous
round) in the array, M (line 44). The first phase broadcasts the local index value
(line 46). The second phase lets each node vote on the majority arriving index
value, or ⊥ in case such value was not received (lines 48 to 50). The third phase
resolves the case in which there is an arriving non-⊥ value, save, that received
sufficient support when voting during phase two (lines 52 to 55). Specifically, if
save �= ⊥ exists, then 〈bit = 1〉 is broadcast. Otherwise, 〈bit = 0〉 is broadcast.
On the fourth phase (lines 58 to 62), the (possibly new) index is set either to be
the majority-supported index value of phase two plus inc (lines 58 to 60), where
inc is the output of ssbftCO , or (if there was insufficient support) to a randomly
chosen output of the RCC (lines 61 and 62).

Correctness Proof. Theorem 3 bounds Algorithm 4’s Astabilization time.

Theorem 3. Algorithm 4 is an SSBFT SGI-index implementation that stabi-
lizes within expected O(1) synchronous rounds.

Proof Sketch of Theorem 3. Lemma 1 implies that, within O(1) of expected
rounds, all (correct) nodes have identical index values. Recall that c[r] ∈ R
is (progress) enabling if ∃x ∈ {0, 1} : ∀i ∈ Correct : randi = x holds at c[r]
(Sect. 3). Due to the page limit, the Closure proof appears in [14].

Lemma 1 (Convergence). Let r > κ. Suppose c[r] ∈ R is (progress) enabling
system state (Sect. 3) for which clock(κ) = κ − 1 holds. With probability at least
min{p0, p1}, all (correct) nodes have the same index at c[r + 1].

Proof Sketch of Lemma 1. The proof is implied by Claims 1, 2, 3 and 4.

Claim 1. Suppose no (correct) pi ∈ P receives 〈x〉 from at least An− t different
nodes at ai[r]. With probability p0, any (correct) pj assigns 0 to indexj at aj [r].

Proof of Claim 1 The proof is implied directly from lines 59 to 62. �Claim1

Claim 2. Suppose pi : i ∈ Correct receives 〈0〉 from at least An − t different
nodes at ai[r]. Also, pj : j ∈ Correct receive 〈x〉 from at least An − t different
nodes at aj [r], where i = j may or may not hold. The step aj [r] assigns 0 to
indexj.

Proof Sketch of Claim 2. Line 61 implies the proof since x = 0. �Claim2

Claim 3. Suppose pi receives 〈1〉 from at least An − t different nodes at ai[r].
At c[r], (ssbftCO i.result(), savei) = (ssbftCOj .result(), savej) : i, j ∈ Correct .

Self-stabilizing Byzantine-Tolerant Recycling 533

Proof Sketch of Claim 3. At c[r], ssbftCO i.result() = ssbftCOj .result() holds
(BC-agreement). There is pk : k ∈ Correct that has sent 〈1〉 at a[r − 1]. By
lines 52 to 54, pj receives at aj [r − 1] the message 〈x〉 from at least An − t
different nodes, where x = savej �= ⊥. Any (correct) node broadcasts (line 50)
either ⊥ or x at a[r − 2]. At a[r − 1], (correct) nodes receive at most f < n − 2f
values that are neither ⊥ nor x �= ⊥. Thus, savei = savej . �Claim3
Claim 4. Let i, j ∈ Correct . Suppose pi receives 〈1〉 from at least An−t different
nodes at ai[r] and pj receives 〈x〉 from at least An − t different nodes at aj [r].
With a probability of at least min{p0, p1}, ai[r] and aj [r] assign the same value
to indexj, and resp., indexj.

Proof Sketch of Claim 4. Steps a[r − 1] and a[r] independently assign x, and
resp., rand. With a probability of at least min{p0, p1}, all (correct) nodes update
index to 0 or save + inc (Claim 3). �Claim 4 �Lemma1 �Theorem 3
Theorem 4. Algorithm 2 is an SSBFT recycling mechanism (Definition 1) that
stabilizes within expected O(κ) synchronous rounds.

Proof of Theorem 4. COR-validity-1 and COR-validity-2 are implied by argu-
ments 1 and 2, respectively. COR-agreement is implied by Argument 3. The
stabilization time is due to the underlying algorithms.

Argument 1. During legal executions, if the value of index is incremented
(line 60), ∃i ∈ Correct : wasDelivered() = 1 holds. By the assumption that
wasDelivered() provides the proposed values used by the SSBFT multivalued
consensus. The value decided by this SSBFT consensus is used in line 59 deter-
mines whether, during legal executions, the value of index is incremented module
I (line 60), say, from ind1 to ind2.

Argument 2. During legal executions, if ∀i ∈ Correct : wasDeliveredi() = 1
holds, index is incremented. Implied by Argument 1 and BC-validity.

Argument 3. During legal executions, the increment of index is fol-
lowed by the recycling of a single object, obj[x], the same for all (correct)
nodes. Line 21 (Algorithm 2) uses the value of index as the returned
value from ssbftIndex .getIndex() when calculating the set S(ind) = {y mod
indexNum : y ∈ {indexNum + ind − logSize, . . . , indexNum + ind}}, where
ind ∈ {ind1, ind2}. For every x /∈ S(ind), obj[x].recycle() is invoked. Since
ind2 = ind1 + 1 mod I, during legal executions, there is exactly one index,
x, that is in S(ind1) but not in S(ind2). I.e., x = (indexNum + ind1 −
logSize) mod indexNum and only obj[x] is recycled by all (correct) nodes (BC-
agreement of the SSBFT consensus). �Theorem 4

5 Conclusion

We have presented an SSBFT algorithm for object recycling. Our proposal can
support an unbounded sequence of SSBFT object instances. The expected stabi-
lization time is in O(t) synchronous rounds. We believe that this work is prepar-
ing the groundwork needed to construct SSBFT Blockchains. As a potential

534 C. Georgiou et al.

avenue for future research, one could explore deterministic recycling mecha-
nisms, say by utilizing the Dolev and Welch approach to SSBFT clock syn-
chronization [10], to design an SSBFT SIG-index. However, their solution has
exponential stabilization time, making it unfeasible in practice.

Acknowledgments. Supported by VINNOVA, the CyReV project (2019-03071).

References

1. Abraham, I., Dolev, D.: Byzantine agreement with optimal early stopping, optimal
resilience and polynomial complexity. In: STOC, pp. 605–614. ACM (2015)

2. Afek, Y., Kutten, S., Yung, M.: Memory-efficient self stabilizing protocols for gen-
eral networks. In: van Leeuwen, J., Santoro, N. (eds.) WDAG 1990. LNCS, vol.
486, pp. 15–28. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54099-
7_2

3. Altisen, K., Devismes, S., Dubois, S., Petit, F.: Introduction to Distributed Self-
Stabilizing Algorithms. Morgan & Claypool Publishers (2019)

4. Awerbuch, B., Patt-Shamir, B., Varghese, G., Dolev, S.: Self-stabilization by local
checking and global reset. In: Tel, G., Vitányi, P. (eds.) WDAG 1994. LNCS, vol.
857, pp. 326–339. Springer, Heidelberg (1994). https://doi.org/10.1007/bfb0020443

5. Ben-Or, M., Dolev, D., Hoch, E.N.: Fast self-stabilizing Byzantine tolerant digital
clock synchronization. In: PODC, pp. 385–394. ACM (2008)

6. Bracha, G., Toueg, S.: Resilient consensus protocols. In: PODC, pp. 12–26. ACM
(1983)

7. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

8. Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)
9. Dolev, S., Petig, T., Schiller, E.M.: Self-stabilizing and private distributed shared

atomic memory in seldomly fair message passing networks. Algorithmica 85(1),
216–276 (2023)

10. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of
Byzantine faults. J. ACM 51(5), 780–799 (2004)

11. Duvignau, R., Raynal, M., Schiller, E.M.: Self-stabilizing Byzantine fault-tolerant
repeated reliable broadcast. Theor. Comput. Sci. 114070 (2023)

12. Georgiou, C., Lundström, O., Schiller, E.M.: Self-stabilizing snapshot objects for
asynchronous failure-prone networked systems. In: PODC, pp. 209–211. ACM
(2019)

13. Georgiou, C., Marcoullis, I., Raynal, M., Schiller, E.M.: Loosely-self-stabilizing
byzantine-tolerant binary consensus for signature-free message-passing systems.
In: Echihabi, K., Meyer, R. (eds.) NETYS 2021. LNCS, vol. 12754, pp. 36–53.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91014-3_3

14. Georgiou, C., Raynal, M., Schiller, E.M.: Self-stabilizing Byzantine-tolerant recy-
cling. CoRR, arXiv:2307.14801 (2023)

15. Lundström, O., Raynal, M., Schiller, E.M.: Self-stabilizing multivalued consensus
in asynchronous crash-prone systems. In: EDCC, pp. 111–118. IEEE (2021)

16. Lundström, O., Raynal, M., Schiller, E.M.: Brief announcement: self-stabilizing
total-order broadcast. In: Devismes, S., Petit, F., Altisen, K., Di Luna, G.A., Fer-
nandez Anta, A. (eds.) SSS 2022. LNCS, vol. 13751, pp. 358–363. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-21017-4_27

https://doi.org/10.1007/3-540-54099-7_2
https://doi.org/10.1007/3-540-54099-7_2
https://doi.org/10.1007/bfb0020443
https://doi.org/10.1007/978-3-030-91014-3_3
http://arxiv.org/abs/2307.14801
https://doi.org/10.1007/978-3-031-21017-4_27

Self-stabilizing Byzantine-Tolerant Recycling 535

17. Katz, S., Perry, K.J.: Self-stabilizing extensions for message-passing systems. In:
PODC, pp. 91–101. ACM (1990)

18. Kowalski, D.R., Mostéfaoui, A.: Synchronous Byzantine agreement with nearly a
cubic number of communication bits. In: PODC, pp. 84–91. ACM (2013)

19. Lamport, L., Shostak, R.E., Pease, M.C.: The Byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

20. Lundström, O., Raynal, M., M. Schiller, E.: Self-stabilizing uniform reliable broad-
cast. In: Georgiou, C., Majumdar, R. (eds.) NETYS 2020. LNCS, vol. 12129, pp.
296–313. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67087-0_19

21. Lundström, O., Raynal, M., Schiller, E.M.: Self-stabilizing indulgent zero-
degrading binary consensus. In: ICDCN, pp. 106–115 (2021)

22. Mostéfaoui, A., Moumen, H., Raynal, M.: Signature-free asynchronous Byzantine
consensus with t< n/3, O(n2) messages. In: PODC, pp. 2–9. ACM (2014)

23. Oliveira, T., Mendes, R., Bessani, A.N.: Exploring key-value stores in multi-writer
Byzantine-resilient register emulations. In: OPODIS, vol. 70, pp. 30:1–30:17 (2016)

24. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228–234 (1980)

25. Plainfossé, D., Shapiro, M.: A survey of distributed garbage collection techniques.
In: Baler, H.G. (ed.) IWMM 1995. LNCS, vol. 986, pp. 211–249. Springer, Heidel-
berg (1995). https://doi.org/10.1007/3-540-60368-9_26

26. Rabin, M.O.: Randomized Byzantine generals. In: FOCS, pp. 403–409 (1983)
27. Raynal, M.: Fault-Tolerant Message-Passing Distributed Systems. Springer, Hei-

delberg (2018). https://doi.org/10.1007/978-3-319-94141-7
28. Toueg, S.: Randomized Byzantine agreements. In: PODC, pp. 163–178. ACM

(1984)
29. Veiga, L., Ferreira, P.: Asynchronous complete distributed garbage collection. In:

IPDPS. IEEE Computer Society (2005)

https://doi.org/10.1007/978-3-030-67087-0_19
https://doi.org/10.1007/3-540-60368-9_26
https://doi.org/10.1007/978-3-319-94141-7

Do Not Trust in Numbers: Practical Distributed
Cryptography with General Trust

Orestis Alpos(B) and Christian Cachin

University of Bern, Bern, Switzerland
{orestis.alpos,christian.cachin}@unibe.ch

Abstract. In distributed cryptography independent parties jointly perform some
cryptographic task. In the last decade distributed cryptography has been receiv-
ing more attention than ever. Distributed systems power almost all applications,
blockchains are becoming prominent, and, consequently, numerous practical and
efficient distributed cryptographic primitives are being deployed.

The failure models of current distributed cryptographic systems, however,
lack expressibility. Assumptions are only stated through numbers of parties, thus
reducing this to threshold cryptography, where all parties are treated as identical
and correlations cannot be described. Distributed cryptography does not have to
be threshold-based. With general distributed cryptography the authorized sets,
the sets of parties that are sufficient to perform some task, can be arbitrary, and
are usually modeled by the abstract notion of a general access structure.

Although the necessity for general distributed cryptography has been recog-
nized long ago and many schemes have been explored in theory, relevant prac-
tical aspects remain opaque. It is unclear how the user specifies a trust structure
efficiently or how this is encoded within a scheme, for example. More impor-
tantly, implementations and benchmarks do not exist, hence the efficiency of the
schemes is not known.

Our work fills this gap. We show how an administrator can intuitively describe
the access structure as a Boolean formula. This is then converted into encod-
ings suitable for cryptographic primitives, specifically, into a tree data structure
and a monotone span program. We focus on three general distributed crypto-
graphic schemes: verifiable secret sharing, common coin, and distributed sig-
natures. For each one we give the appropriate formalization and security defi-
nition in the general-trust setting. We implement the schemes and assess their
efficiency against their threshold counterparts. Our results suggest that the gen-
eral distributed schemes can offer richer expressibility at no or insignificant extra
cost. Thus, they are appropriate and ready for practical deployment.

Keywords: Distributed cryptography · Monotone span programs · Digital
signature · Verifiable secret sharing · Common coin

1 Introduction

1.1 Motivation

Throughout the last decade, largely due to the advent of blockchains, there has been an
ever-increasing interest in distributed systems and practical cryptographic primitives.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 536–551, 2023.
https://doi.org/10.1007/978-3-031-44274-2_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_40&domain=pdf
http://orcid.org/0000-0001-5477-3736
http://orcid.org/0000-0001-8967-9213
https://doi.org/10.1007/978-3-031-44274-2_40

Do Not Trust in Numbers: Practical Distributed Cryptography with General Trust 537

Naturally, the type of cryptography most suitable for distributed systems is distributed
cryptography: independent parties jointly hold a secret key and perform some cryp-
tographic task. Many deployments of distributed cryptography exist today. Threshold
signature schemes [8,17] distribute the signing power among a set of parties. They have
been used in state-machine replication (SMR) protocols, where they serve as unique and
constant-size vote certificates [33,47]. Furthermore, random-beacon and common-coin
schemes [11,15] provide a source of reliable and distributed randomness. Multiparty
computation (MPC) is a cryptographic tool that enables a group of parties to compute
a function of their private inputs. As it finds applications in private [7] and sensitive
computations [30], security is of paramount importance.

One can thus say that we are in the era of distributed cryptography. However, all
currently deployed distributed-cryptographic schemes express their trust assumptions
through a number, with a threshold, hence reducing to the setting of threshold cryp-
tography, where all parties may misbehave with the same probability. Distributed cryp-
tography does not have to be threshold-based. In general distributed cryptography the
authorized sets, the sets of parties sufficient to perform the task, can be arbitrary. Our
position is that general distributed cryptography is essential for distributed systems.

Increasing Systems Resilience and Security. First, general distributed cryptography has
the capacity to increase the resilience of a system, as failures are, in practice, always
correlated [46]. Cyberattacks, exploitation of specific implementation vulnerabilities,
zero-day attacks, and so on very seldom affect all parties in an identical way—they
often target a specific operating systems or flavor of it, a specific hardware vendor, or a
specific software version. In another example, blockchain nodes are typically hosted by
cloud providers or mining farms, hence failures are correlated there as well. Such failure
correlations are known and have been observed; they can be expressed in a system that
supports general trust, significantly increasing resilience and security.

Facilitating Personal Assumptions and Sybil Resistance. Some works in the area of
distributed systems generalize trust assumptions in yet another dimension: they allow
each party to specify its own. The consensus protocol of Stellar [29] allows each party to
specify the access structure of its choice, which can consist of arbitrary sets and nested
thresholds. Similarly, the consensus protocol implemented by Ripple [41] allows each
party to choose who it trusts and communicates with. In both networks, the resulting
representation of trust in the system, obtained when the trust assumptions of all parties
are considered together, can only be expressed as a generalized structure. Hence, current
threshold-cryptographic schemes cannot be integrated or used on top of these networks.

1.2 State of the Art

We focus on three important distributed-cryptographic primitives for distributed
protocols.

Verifiable secret sharing. Secret sharing [42] allows a dealer to share a secret in a way
that only authorized sets can later reconstruct it. Verifiable Secret Sharing (VSS) [23,37]
additionally allows the parties to verify their shares against a malicious dealer.

538 O. Alpos and C. Cachin

Common coin. A common coin [11,38] scheme allows a set of parties to calculate a
pseudorandom function U , mapping coin names C to uniformly random bits U(C) ∈
{0, 1} in a distributed way.
Distributed signatures. We additionally describe, implement, and benchmark a gen-
eral distributed-signature scheme [8,17] based on BLS signatures [9]. However, due to
space limitations, this scheme and its evaluation are shown only in the full version of
this paper [3].

The generalization of threshold-cryptographic schemes to any linear access struc-
ture is known and typically employs Monotone Span Programs (MSP) [27], a linear-
algebraic model of computation. General schemes using the MSP have already been
described in theory [14,22,32]. However, no implementations exist, despite the merit
of general distributed cryptography. In our point of view, the reasons are the following.

– Essential implementation details are missing, and questions related to the usability
of general schemes have never been answered in a real system. How can the trust
assumptions be efficiently encoded? Previous general distributed schemes assume
the MSP is given to all algorithms, but how is this built from the trust assumptions?

– Some distributed cryptographic schemes, such as VSS and common-coin schemes,
have been described in models weaker than the MSP. Can we describe and prove all
schemes of interest in a unified language?

– Most importantly, implementations and benchmarks do not exist, hence the effi-
ciency of general schemes is not known. What is the concrete efficiency of the MSP?
How does a generalized scheme compare to its threshold counterpart? How much
efficiency needs to be “sacrificed” in order to support general trust?

1.3 Contributions

The goal of this work is to bridge the gap between theory and practice by answering the
aforementioned questions.

– We explore intuitive ways for an administrator to specify the trust assumption. This
is then converted into two different encodings, a tree and an MSP, the former used
for checking whether a set of parties is authorized and the latter for all algebraic
operations. An algorithm and its efficiency are shown for building the MSP.

– We first recall a general VSS scheme, and then extend the common-coin construction
of Cachin, Kursawe, and Shoup [11] into the general-trust model. The schemes are in
the MSP model, and we provide security definitions and proofs that are appropriate
for the general-trust setting.

– We implement and benchmark the aforementioned schemes, both threshold and gen-
eral versions.We assess the efficiency of the general schemes and provide insights on
the observed behavior. The benchmarks include multiple trust assumptions, thereby
exploring how they affect the efficiency of the schemes.

Do Not Trust in Numbers: Practical Distributed Cryptography with General Trust 539

1.4 Related Work

General Distributed Cryptography. Secret sharing over arbitrary access structures has
been extensively studied in theory. The first scheme is presented by Ito, Saito, and
Nishizeki [26], where the secret is shared independently for every authorized set.
Benaloh and Leichter [6] use monotone Boolean formulas to express the access struc-
ture and introduce a recursive secret-sharing construction. Gennaro presents a general
VSS scheme [22], where trust is specified as Boolean formulas in disjunctive nor-
mal form. Choudhury presents general asynchronous VSS and common-coin schemes
secure against a computationally-unbounded adversary [13].

Later, the Monotone Span Program (MSP) is introduced [27] as a linear-algebraic
model of computation. In the information-theoretic setting, Cramer, Damgård, and
Maurer [14] construct a VSS scheme that uses MSPs. A general VSS scheme is also
presented by Mashhadi, Dehkordi, and Kiamari [32], which requires multiparty compu-
tation for share verification. A different line of work encodes the access structure using
a vector-space secret-sharing scheme [10], a special case of an MSP where each party
owns exactly one row. Specifically, Herranz and Sáez [24] construct a VSS scheme
based on Pedersen’s VSS [37]. Distributed key generation schemes have also been
described on vector-space secret sharing [16].

Common Coin Schemes. Common coin schemes (or random beacons [15,18]) model
randomness produced in a distributed way. Multiple threshold schemes have been
proposed in the literature [11,15,38] and are used in practice [18]. Raikwar and
Gligoroski [39] present an overview. Our work extends the common-coin scheme of
Cachin, Kursawe, and Shoup [11]. The same threshold construction appears in DiSE [1,
Figure 6], where it is modeled as a DPRF [34]. The scheme outputs an unbiased value.

Lower Bounds for General Secret Sharing. Superpolynomial lower bounds are known
for MSPs [4,40] and general secret sharing [28]. As the focus of this work is on practi-
cal aspects, we assume that the administrator can, in the first place, efficiently describe
the trust assumptions, either as a collection of sets or as a Boolean formula. Arguably,
access structures of practical interest fall in this category. Moreover, it is known that
MSPs are more powerful than Boolean formulas and circuits. Babai, Gál, and Wigder-
son [4] prove the existence of monotone Boolean functions that can be computed by
a linear-size MSP but only by exponential-size monotone Boolean formulas. In those
cases the MSP can be directly plugged into a generalized scheme.

2 Background and Model

Notation. A bold symbol a denotes a vector. We avoid distinguishing between a and
aᵀ, that is, a denotes both a row and a column vector. Moreover, for vectors a ∈ K|a|

and b ∈ K|b|, where K is a field, a‖b ∈ K|a|+|b| denotes concatenation, and ai is short

for a[i]. Notation x
$← S means x is chosen uniformly at random from set S. The set of

all parties is P = {p1, . . . , pn}. E.w.n.p. means “except with negligible probability”.

540 O. Alpos and C. Cachin

Adversary Structures and Access Structures. An adversary structure F is a collection
of all unauthorized subsets of P , and an access structure (AS) A is a collection of
all authorized subsets of P . Both are monotone. Any subset of an unauthorized set is
unauthorized, i.e., if F ∈ F and B ⊂ F , then B ∈ F , and any superset of an authorized
set is authorized, i.e., if A ∈ A and C ⊃ A, then C ∈ A. As in the most general
case [25] we assume that any set not in the access structure can be corrupted by the
adversary, that is, the adversary structure and the access structure are the complement
of each other. We say that F is a Q2 adversary structure if no two sets in F cover the
whole P .

In all schemes we assume that the adversary structure F , implied by the access
structure A, is a Q2 adversary structure. The adversary is Byzantine and static, and
corrupts a set F ∈ F which is, w.l.o.g, maximally unauthorized, i.e., there is no F ′ ∈ F
such that F ′ ⊃ F .

Monotone Span Programs [27]. Given a finite field K, an MSP is a tuple (M,ρ), where
M is an m × d matrix over K and ρ is a surjective function {1, . . . , m} → P that
labels each row of M with a party. We say that party pi owns row j ∈ {1, . . . , m}
if ρ(j) = pi. The size of the MSP is m, the number of its rows. The fixed vector
e1 = [1, 0, . . . , 0] ∈ Kd is called the target vector. For any set A ⊆ P , define MA to
be the mA × d matrix obtained from M by keeping only the rows owned by parties
in A, i.e., rows j with ρ(j) ∈ A. Let Mᵀ

A denote the transpose of MA and Im(Mᵀ
A)

the span of the rows of MA. We say that the MSP accepts A if the rows of MA span
e1, i.e., e1 ∈ Im(Mᵀ

A). Equivalently, there is a recombination vector λA such that
λAMA = e1. Otherwise, the MSP rejects A. For any access structure A, we say that an
MSP accepts A if it accepts exactly the authorized sets A ∈ A. It has been proven that
each MSP accepts exactly one monotone access structure and each monotone access
structure can be expressed in terms of an MSP [5,27].

Algorithm 1 (Linear secret-sharing scheme). A linear secret-sharing scheme (LSSS)
over a finite field K shares a secret x ∈ K using a coefficient vector r, in such a way
that every share is a linear combination of x and the entries of r. Linear secret-sharing
schemes are equivalent to monotone span programs [5,27]. We formalize an LSSS as
two algorithms, Share() and Reconstruct().

1. Share(x). Choose uniformly at random d − 1 elements r2, . . . , rd from K and
define the coefficient vector r = (x, r2, . . . , rd). Calculate the secret shares x =
(x1, . . . , xm) = Mr. Each xj , with j ∈ [1,m], belongs to party pi = ρ(j). Hence,
pi receives in total mj shares, where mj is the number of MSP rows owned by pi.

2. Reconstruct(A,xA). To reconstruct the secret given an authorized set A and the
shares xA of parties in A, find the recombination vector λA and compute the secret
as λAxA.

Computational Assumptions. Let G = 〈g〉 be a group of prime order q and x0
$←

{0, . . . , q−1}. TheDiscrete Logarithm (DL) assumption is that no efficient probabilistic
algorithm, given g0 = gx0 ∈ G, can compute x0, e.w.n.p. The Computational Diffie-
Hellman (CDH) assumption is that no efficient probabilistic algorithm, given g, ĝ, g0 ∈
G, where ĝ

$← G and g0 = gx0 , can compute ĝ0 = ĝx0 , e.w.n.p.

Do Not Trust in Numbers: Practical Distributed Cryptography with General Trust 541

3 Specifying and Encoding the Trust Assumptions

An important aspect concerning the implementation and deployment of general dis-
tributed cryptography is specifying the Access Structure (AS). We require a solution
that is intuitive, so that users or administrators can easily specify it, that facilitates the
necessary algebraic operations, such as computing and recombining secret shares, and
in the same time offers an efficient way to check whether a given set is authorized.

The administrator first specifies the access structure as a monotone Boolean
formula, which consists of and, or, and threshold operators. A threshold operator
ΘK

k (q1, . . . , qK) specifies that any subset of {q1, . . . , qK} with cardinality at least k
is authorized, where each qi can be a party identifier or a nested operator (observe that
the and and or operators are special cases of this). This is an intuitive format and can
be easily specified in JSON format, as shown in the examples that follow.

The next step is to internally encode the access structure within a scheme. For this
we use two different encodings. First, the Boolean formula is encoded as a tree, where
a node represents an operator and its children are the operands. The size of the tree is
linear in the size of the Boolean formula, and checking whether a set is authorized takes
time linear in the size of the tree. The second is a an MSP, which is the basis for all our
general distributed cryptographic primitives. The MSP is directly constructed from the
JSON-encoded Boolean formula, using the following algorithm.

Building the MSP from a Monotone Boolean Formula [2,35].We now describe how an
MSP can be constructed given a monotone Boolean formula. The details of the algo-
rithm can be found in the full version of this paper [3]. We use a recursive insertion-
based algorithm. The main observation is that the t-of-n threshold access structure is
encoded by an MSP M = (M,ρ) over finite field K, with M being the n × t Van-
dermonde matrix V (n, t). The algorithm parses the Boolean formula as a sequence of
nested threshold operators (and and or are special cases of threshold). Starting from the
outermost operator, it constructs the Vandermonde matrix that implements it and then
recursively performs insertions for the nested threshold operators. In a high level, an
insertion replaces a row of M with a second MSP M ′ (which encodes the nested oper-
ator) and pads with 0 the initial matrix M , in case M ′ is wider than M . If the Boolean
formula includes in total c operators in the form Θmi

di
, then the final matrix M of the

MSP that encodes it has m =
∑c

1 mi − c + 1 rows and d =
∑c

1 di − c + 1 columns,
hence size linear in the size of the formula.

Example 1. Recent work [20] presents the example of an unbalanced-AS1, where n
parties in P are distributed into two organizations P1 and P2, and the adversary is
expected to be within one of the organizations, making it easier to corrupt parties from
that organization. They specify this with two thresholds, t and k, and allow the adver-
sary to corrupt at most t parties from P and in the same time at most k parties from
P1 or P2. For example, we can set t = �n/2� and k = �t/2� − 1. Let n = 9,
P1 = {p1, . . . , p5}, P2 = {p6, . . . , p9}, t = 4, and k = 1. The access structure (taken
as the complement of the adversary structure) is A = {A ⊂ P : |A| > 4∨ (|A ∩ P1| >
1 ∧ |A ∩ P2| > 1)}. In terms of a monotone Boolean formula, this can be written as

1 This is a special case of bipartite AS [36].

542 O. Alpos and C. Cachin

Fig. 1. A JSON file that specifies the access structure of the SDF1 validator in the live Stellar
blockchain (we use the literals returned by Stellar as party identifiers).

FA = Θ9
5(P) ∨ (

Θ5
2(P1) ∧ Θ4

2(P2)
)
. The MSP constructed with the given algorithm

has m = 2n rows and d = t + 2k + 2 = n − 1 columns.

Example 2. Another classical general AS from the field of distributed systems is the
M-Grid [31]. Here n = k2 parties are arranged in a k × k grid and up to b =
k − 1 Byzantine parties are tolerated. An authorized set consists of any t rows and
t columns, where t = �√b/2 + 1�. Let us set n = 16 and, hence, k = 4, b = 3,
and t = 2. This means that and any two rows and two columns (twelve parties in
total) make an authorized set. The Boolean formula that describes this AS is FA =
Θ4

2

(
Θ4

4(R1), Θ4
4(R2), Θ4

4(R3), Θ4
4(R4)

) ∧ Θ4
2

(
Θ4

4(C1), Θ4
4(C2), Θ4

4(C3), Θ4
4(C4)

)
,

where R� and C� denote the sets of parties at row and column �, respectively. We call
this access structure the grid-AS.

Example 3. The Stellar blockchain supports general trust assumptions for consen-
sus [29]. Each party can specify its own access structure, which is composed of nested
threshold operators. We extract2 the AS of one Stellar validator and show in Fig. 1 a
JSON file that can be used in our general schemes. It can be directly translated into an
MSP, enabling general distributed cryptography in or on top of the blockchain of Stel-
lar. The MSP constructed with the presented algorithm has m = 25 rows and d = 15
columns.

4 Verifiable Secret Sharing

In this section we recall a general Verifiable Secret Sharing (VSS) scheme [24]. It gen-
eralizes Pedersen’s VSS [23,37] to the general setting.

Security. The security of a general VSS scheme is formalized by the following proper-
ties (in analogy with the threshold setting [23,37]).

1. Completeness. If the dealer is not disqualified, then all honest parties complete the
sharing phase and can then reconstruct the secret.

2 https://www.stellarbeat.io/, https://api.stellarbeat.io/docs/.

https://www.stellarbeat.io/
https://api.stellarbeat.io/docs/

Do Not Trust in Numbers: Practical Distributed Cryptography with General Trust 543

2. Correctness. For any authorized sets A1 and A2 that have accepted their shares and
reconstruct secrets z1 and z2, respectively, it holds that z1 = z2, e.w.n.p. Moreover,
if the dealer is honest, then z1 = z2 = s.

3. Privacy. Any unauthorized set F has no information about the secret.

The Scheme. The scheme is synchronous and uses the same communication pattern
as the standard VSS protocols [23,37]. Hence complaints are delivered by all honest
parties within a known time bound, and we assume a broadcast channel, to which all

parties have access. Let G = 〈g〉 be a group of large prime order q and h
$← G.

1. Share(x) . The dealer uses Algorithm 1 to compute the secret-shares x =
(x1, . . . , xm) = LSSS.Share(x) . The dealer also chooses a random value x′ ∈ Zq

and computes the random-shares x′ = (x′
1, . . . , x

′
m) = LSSS.Share(x′). Let

r = (x, r2, . . . , rd) and r′ = (x′, r′
2, . . . , r

′
d) be the corresponding coefficient

vectors. The dealer computes commitments to the coefficients C1 = gxhx′ ∈ G
and C� = gr�hr′

� ∈ G, for � = 2, . . . d, and broadcasts them. The indexed share
(j, xj , x

′
j) is given to party pi = ρ(j). Index j is included because each pi may

receive more than one such tuples, if it owns more than one row in the MSP. We call
a sharing the set of all indexed shares Xi = {(j, xj , x

′
j) | ρ(j) = pi} received by

party pi.
2. Verify(j, xj , x

′
j) . For each indexed share (j, xj , x

′
j) ∈ Xi, party pi verifies that

gxj hx′
j =

d∏

�=1

C
Mj�

� , (1)

where Mj is the j-th row-vector of M and Mj�, for � ∈ {1, . . . d}, are its entries.
3. Complain() . Complaints are handled exactly as in the standard version [23]. Party pi

broadcasts a complaint against the dealer for every invalid share. The dealer is dis-
qualified if a complaint is delivered, for which the dealer fails to reveal valid shares.

4. Reconstruct(A,XA) . Given the sharings XA = {(j, xj , x
′
j) | ρ(j) ∈ A} of an

authorized set A, a combiner party first verifies the correctness of each share. If a
share is found to be invalid, reconstruction is aborted. The combiner constructs the
vector xA = [xj1 , . . . , xjmA

], consisting of the mA secret-shares of parties in A,
and, using Algorithm 1, returns LSSS.Reconstruct(A,xA) .

Theorem 1. Under the discrete logarithm assumption for group G, the above general
VSS scheme is secure (satisfies completeness, correctness, and privacy).

A proof can be found in the full version of this paper [3]. Completeness holds by con-
struction of the scheme, while correctness reduces to the discrete-log assumption. For
the privacy property, we pick arbitrary secrets x and x̃ and show that the adversary
cannot distinguish between two executions with secret x and x̃.

5 Common Coin

The scheme extends the threshold coin scheme of Cachin, Kursawe, and Shoup [11] to
accept any general access structure. It works on a group G = 〈g〉 of prime order q and

544 O. Alpos and C. Cachin

uses the following cryptographic hash functions: H : {0, 1}∗ → G, H ′ : G6 → Zq,
and H ′′ : G → {0, 1}. The first two, H and H ′, are modeled as random oracles. The
idea is that a secret value x ∈ Zq uniquely defines the value U(C) of a publicly-known
coin name C as follows: hash C to get an element g̃ = H(C) ∈ G, let g̃0 = g̃x ∈ G,
and define U(C) = H ′′(g̃0). The value x is secret-shared among P and unknown to any
party. Parties can create coin shares using their secret shares. Any party that receives
enough coin shares can then obtain g̃0 by interpolating x in the exponent.

Security. The security of a general common-coin scheme is captured by the following
properties (analogous to threshold common coins [11]).

1. Robustness. The adversary cannot produce coinC and valid coin shares for an autho-
rized set, s.t. and their combination outputs value different from U(C), e.w.n.p.

2. Unpredictability. It is defined through the following game. The adversary corrupts,
w.l.o.g, a maximally unauthorized set F . It interacts with honest parties according to
the scheme and in the end outputs a coin C, which was not submitted for coin-share
generation to any honest party, as well as a coin-value prediction b ∈ {0, 1}. The
probability that U(C) = b should not be significantly different from 1/2.

The Scheme. It consists of the following algorithms.

1. KeyGen() . A dealer chooses uniformly an x ∈ Zq and shares it among P using the
MSP-based LSSS from Algorithm 1, i.e., x = (x1, . . . , xm) = LSSS.Share(x) .
The secret key x is destroyed after it is shared. We call a sharing the set of all key
shares Xi = {(j, xj) | ρ(j) = pi} received by party pi. The verification keys
g0 = gx and gj = gxj , for 1 ≤ j ≤ m, are made public.

2. CoinShareGenerate(C) . For coin C, party pi calculates g̃ = H(C) and generates
a coin share g̃j = g̃xj for each key share (j, xj) ∈ Xi. Party pi also generates a
proof of correctness for each coin share, i.e., a proof that logg̃ g̃j = logg gj . This is
the Chaum-Perdersen proof of equality of discrete logarithms [12] collapsed into a
non-interactive proof using the Fiat-Shamir heuristic [21]. For every coin share g̃j a
valid proof is a pair (cj , zj) ∈ Zq × Zq, such that

cj = H ′(g, gj , hj , g̃, g̃j , h̃j), where hj = gzj /g
cj

j and h̃j = g̃zj /g̃
cj

j . (2)

Party pi computes such a proof for coin share g̃j by choosing sj at random, comput-
ing hj = gsj , h̃j = g̃sj , obtaining cj as in (2), and setting zj = sj + xjcj .

3. CoinShareVerify(C, g̃j , (cj , zj)) . Verify the proof above.
4. CoinShareCombine() . Each party sends its coin sharing {(j, g̃j , cj , zj) | ρ(j) = pi}

to a designated combiner. Once valid coin shares from an authorized set A have been
received, find the recombination vector λA for set A and calculate g̃0 = g̃x as

g̃0 =
∏

j|ρ(j)∈A

g̃
λA[j]
j , (3)

where the set {j | ρ(j) ∈ A} denotes the MSP indexes owned by parties in A. The
combiner outputs H ′′(g̃0).

Do Not Trust in Numbers: Practical Distributed Cryptography with General Trust 545

Theorem 2. In the random oracle model, the above general common coin scheme is
secure (robust and unpredictable) under the assumption that CDH is hard in G.

The proof is presented in the full version of this paper [3]. In a high level, we
assume an adversary that can predict the value of a coin with non-negligible probability
and show how to use this adversary to solve the CDH problem in G. The proof handles
specific issues that arise from the general access structures. Specifically, the simulator,
given the shares of F , has to create valid shares for other parties. As opposed to the
threshold case, it can be the case that the shares of F , together with the secret x, do not
fully determine all other shares.

6 Evaluation

In this section we compare the polynomial-based and MSP-based encodings, and
benchmark the presented schemes on multiple general trust assumptions. To this goal,
we benchmark each scheme on four configurations, resulting from different combina-
tions of encoding and access structure (AS), as seen in Table 1. Notice that the first two
describe the same threshold AS, encoded once by a polynomial and once an MSP. With
the first two configurations we investigate the practical difference between polynomial-
based and MSP-based encoding of the same access structure. The last three configura-
tions measure the efficiency we sacrifice for more powerful and expressive AS.

Table 1. Evaluated configurations and corresponding MSP dimensions. Configurations with gen-
eral AS encode it as an MSP (necessary for algebraic operations, such as sharing and reconstruc-
tion) and as a tree (for checking whether a set of parties is authorized).

Configuration Encoding Access Structure MSP dimensions

m d

polynomial (n+ 1)/2 polynomial �n+1
2

�-of-n – –

MSP (n+ 1)/2 MSP+tree �n+1
2

�-of-n n �n+1
2

�
MSP Unbalanced MSP+tree unbalanced-AS, Example 1 2n n − 1

MSP Grid MSP+tree grid-AS, Example 2 2n 2(n+ t − k) ≈ 2n

We implement all presented schemes in C++. The benchmarks only consider CPU
complexity, by measuring the time it takes a party to execute each algorithm. Network
latency, parallel share verification, and communication-level optimizations are not con-
sidered, as they are independent to the encoding of the AS. All benchmarks are made on
a virtual machine running Ubuntu 22.04, with 16 GB memory and 8 dedicated CPUs
of an AMD EPYC-Rome Processor at 2.3GHz and 4500 bogomips. The number of
parties n is always a square, for grid-AS to be well-defined, and we report mean values
and standard deviation over 100 runs with different inputs.

546 O. Alpos and C. Cachin

6.1 Benchmarking Basic Properties of the MSP

We first measure the size of authorized sets. Authorized sets are obtained in the fol-
lowing way. Starting from an empty set, add a party chosen uniformly from the set of
all parties, until the set becomes authorized. This simulates an execution where shares
arrive in an arbitrary order, and may result in authorized sets that are not minimal,
in the sense that they are supersets of smaller authorized sets, but contain redundant
parties. We repeat this experiment 1000 times and report the average size in Fig. 2a.
For the �n+1

2 �-of-n AS, of course, authorized sets are always of size �n+1
2 �. For the

unbalanced-AS they slightly smaller, and for the grid-AS they are significantly larger,
as they contain full rows and columns of the grid.

We next measure the bit length of the recombination vector. This is relevant because
the schemes involve interpolation in the exponent, exponentiation is an expensive oper-
ation, and a shorter recombination vector results in fewer exponentiations. We observe
in Fig. 2b that the complexity of the AS does not necessarily affect the bit length of the
recombination vector. There are two important observations to explain Fig. 2b. First,
each entry of the recombination vector that corresponds to a redundant party is 0,
as that share does not contribute to reconstruction. Second, we observe through our
benchmarks that, when the MSP is sparse and has entries with short bit length, then the
recombination vector also has a short bit length.

Fig. 2. Benchmarking basic properties of the MSP, for a varying number of parties.

6.2 Running Time of Verifiable Secret Sharing

We implement and compare the MSP-based scheme of Sect. 4 with Pedersen’s
VSS3 [37]. For Share() we report the time it takes to share a random secret s ∈ Zq,

3 Polynomial evaluation is done without the DFT optimization.

Do Not Trust in Numbers: Practical Distributed Cryptography with General Trust 547

Fig. 3. Time taken by each algorithm in the threshold and general VSS (3a–3c), and in the thresh-
old and general coin (3d) for a varying number of parties.

for Verify() the average time it takes a party to verify one of its shares and for Recon-
struct() the time to reconstruct the secret from an authorized group. The results are
shown in Fig. 3.

The first conclusion (comparing the first two configurations in Figs. 3a and 3b) is
that the MSP-based and polynomial-based operations are equally efficient, when instan-
tiated with the same AS. The only exception is the Reconstruct() algorithm, shown in
Fig. 3c, where general VSS is up to two times slower. This is because computing the
recombination vector employs Gaussian elimination, which has cubic time complexity.

The second conclusion (comparing the last three configurations) is that general VSS
is moderately affected by the complexity of the AS. For Share() , shown in Fig. 3a, more
complex AS incur a slowdown because a larger number of shares and commitments
have to be created. Reconstruct() , in Fig. 3c, is also slower with more complex AS,
because it performs Gaussian elimination on a larger matrix. We conclude this is the
only part of general VSS that cannot be made as efficient as in threshold VSS. On the
other hand, Verify() , in Fig. 3b, exhibits an interesting behavior: the more complex the

548 O. Alpos and C. Cachin

AS, the faster it is on average to verify one share. This might seem counter-intuitive,
but can be explained from the observations of Sect. 6.1; more complex AS result in an
MSP with many 0-entries, hence the exponentiations of (1) are faster.

6.3 Running Time of Common Coin

We implement the general scheme of Sect. 5 and the threshold coin scheme from [11].
For both schemes G is instantiated as an order-q subgroup of Zp, where p = qm+1, for
q a 256-bit prime, p a 3072-bit prime, and m ∈ N. These lengths offer 128-bit security
and are chosen according to current recommendations [19, Chapter 4.5.2]. The arith-
metic is done with NTL [44]. The hash functions H,H ′,H ′′ use the openSSL imple-
mentation of SHA-512 (so that it’s not required to expand the digest before reducing
modulo the 256-bit q [43, Section 9.2]).

The results are shown in Fig. 3. We only show the benchmark of CoinShareCom-
bine() , because KeyGen() behaves very similar to Share() in the VSS, and CoinShare-
Generate() and CoinShareVerify() are identical in the general and threshold scheme. In
Sect. 6.2 we observed that Reconstruct() was slower for the general scheme, because it
involved no exponentiations and the cost of matrix manipulations dominated the run-
ning time. Here, however, CoinShareCombine() runs similarly in all cases, as the expo-
nentiations in (3) become dominant. As a matter of fact, the general scheme is some-
times faster. This is because complex AS often result in recombination vectors with
shorter bit length, as shown in Sect. 6.1, hence exponentiations are faster.

7 Conclusion

In this work we provide the first implementation and practical assessment of dis-
tributed cryptography with general trust. We fill all gaps on implementation details
and show how a system can be engineered to support general distributed cryptography.
We describe, implement, and benchmark distributed cryptographic schemes, specifi-
cally, a verifiable secret-sharing scheme, a common-coin scheme, and a distributed
signature scheme (as a generalization of threshold signatures), all supporting general
trust assumptions. For completeness, we also present the security proofs for all general
schemes and handle specific cases that arise from the general trust assumptions (see
Theorem 2). Our results suggest that practical access structures can be used with no
significant efficiency loss. It can even be the case (VSS share verification, Fig. 3b) that
operations are on average faster with complex trust structures encoded as Monotone
Span Programs (MSP). We nevertheless expect future optimizations, orthogonal to our
work, to make MSP operations even faster. Similar optimizations have already been
discovered for polynomial evaluation and interpolation [45]. We expect that our work
will improve the understanding and facilitate the wider adoption of general distributed
cryptography.

Acknowledgments. This work has been funded by the Swiss National Science Foundation
(SNSF) under grant agreement Nr. 200021_188443 (Advanced Consensus Protocols).

Do Not Trust in Numbers: Practical Distributed Cryptography with General Trust 549

References

1. Agrawal, S., Mohassel, P., Mukherjee, P., Rindal, P.: DiSE: distributed symmetric-key
encryption. In: CCS, pp. 1993–2010. ACM (2018)

2. Alpos, O., Cachin, C.: Consensus beyond thresholds: generalized Byzantine quorums made
live. In: SRDS, pp. 21–30. IEEE (2020)

3. Alpos, O., Cachin, C.: Do not trust in numbers: practical distributed cryptography with gen-
eral trust. IACR Cryptology ePrint Archive, p. 1767 (2022). https://eprint.iacr.org/2022/1767

4. Babai, L., Gál, A., Wigderson, A.: Superpolynomial lower bounds for monotone span pro-
grams. Combinatorica 19(3), 301–319 (1999)

5. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis, Technion
(1996)

6. Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser,
S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, New York (1990). https://doi.
org/10.1007/0-387-34799-2_3

7. Benhamouda, F., et al.: Can a public blockchain keep a secret? In: Pass, R., Pietrzak, K.
(eds.) TCC 2020. LNCS, vol. 12550, pp. 260–290. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-64375-1_10

8. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the Gap-
Diffie-Hellman-Group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol.
2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_3

9. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. J. Cryptol. 17(4),
297–319 (2004)

10. Brickell, E.F.: Some ideal secret sharing schemes. In: Quisquater, J.-J., Vandewalle, J. (eds.)
EUROCRYPT 1989. LNCS, vol. 434, pp. 468–475. Springer, Heidelberg (1990). https://doi.
org/10.1007/3-540-46885-4_45

11. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantinople: practical asyn-
chronous Byzantine agreement using cryptography. J. Cryptol. 18(3), 219–246 (2005)

12. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO
1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993). https://doi.org/10.1007/3-
540-48071-4_7

13. Choudhury, A.: Almost-surely terminating asynchronous Byzantine agreement against gen-
eral adversaries with optimal resilience. In: ICDCN, pp. 167–176. ACM (2023)

14. Cramer, R., Damgård, I., Maurer, U.: General secure multi-party computation from any linear
secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–
334. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_22

15. Das, S., Krishnan, V., Isaac, I.M., Ren, L.: SPURT: scalable distributed randomness beacon
with transparent setup. In: IEEE Symposium on Security and Privacy, pp. 2502–2517. IEEE
(2022)

16. Daza, V., Herranz, J., Sáez, G.: On the computational security of a distributed key distribution
scheme. IEEE Trans. Comput. 57(8), 1087–1097 (2008)

17. Desmedt, Y.: Society and group oriented cryptography: a new concept. In: Pomerance, C.
(ed.) CRYPTO 1987. LNCS, vol. 293, pp. 120–127. Springer, Heidelberg (1988). https://doi.
org/10.1007/3-540-48184-2_8

18. Drand: A distributed randomness beacon daemon (2022). https://drand.love
19. ECRYPT-CSA: Algorithms, key size and protocols report. H2020-ICT-2014 - Project

645421 (2018). https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
20. Eriguchi, R., Nuida, K.: Homomorphic secret sharing for multipartite and general adversary

structures supporting parallel evaluation of low-degree polynomials. In: Tibouchi, M., Wang,
H. (eds.) ASIACRYPT 2021. LNCS, vol. 13091, pp. 191–221. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-92075-3_7

https://eprint.iacr.org/2022/1767
https://doi.org/10.1007/0-387-34799-2_3
https://doi.org/10.1007/0-387-34799-2_3
https://doi.org/10.1007/978-3-030-64375-1_10
https://doi.org/10.1007/978-3-030-64375-1_10
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-46885-4_45
https://doi.org/10.1007/3-540-46885-4_45
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-48184-2_8
https://doi.org/10.1007/3-540-48184-2_8
https://drand.love
https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
https://doi.org/10.1007/978-3-030-92075-3_7

550 O. Alpos and C. Cachin

21. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature
problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer,
Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

22. Gennaro, R.: Theory and practice of verifiable secret sharing. Ph.D. thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA (1996)

23. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for
discrete-log based cryptosystems. J. Cryptol. 20(1), 51–83 (2007)

24. Herranz, J., Sáez, G.: Verifiable secret sharing for general access structures, with application
to fully distributed proxy signatures. In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp.
286–302. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45126-6_21

25. Hirt, M., Maurer, U.M.: Complete characterization of adversaries tolerable in secure multi-
party computation (extended abstract). In: PODC, pp. 25–34. ACM (1997)

26. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access structure.
Electron. Commun. Jpn. 72, 56–64 (1989)

27. Karchmer, M., Wigderson, A.: On span programs. In: Computational Complexity Confer-
ence, pp. 102–111. IEEE Computer Society (1993)

28. Larsen, K.G., Simkin, M.: Secret sharing lower bound: either reconstruction is hard or shares
are long. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp. 566–578.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6_28

29. Lokhava, M., et al.: Fast and secure global payments with stellar. In: SOSP, pp. 80–96. ACM
(2019)

30. Lu, D., Yurek, T., Kulshreshtha, S., Govind, R., Kate, A., Miller, A.K.: HoneyBadgerMPC
and AsynchroMix: practical asynchronous MPC and its application to anonymous commu-
nication. In: CCS, pp. 887–903. ACM (2019)

31. Malkhi, D., Reiter, M.K., Wool, A.: The load and availability of Byzantine quorum systems.
SIAM J. Comput. 29(6), 1889–1906 (2000)

32. Mashhadi, S., Dehkordi, M.H., Kiamari, N.: Provably secure verifiable multi-stage secret
sharing scheme based on monotone span program. IET Inf. Secur. 11(6), 326–331 (2017)

33. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of BFT protocols. In:
CCS, pp. 31–42. ACM (2016)

34. Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and KDCs. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327–346. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48910-X_23

35. Nikov, V., Nikova, S.: New monotone span programs from old. IACR Cryptology ePrint
Archive, p. 282 (2004)

36. Padró, C., Sáez, G.: Secret sharing schemes with bipartite access structure. IEEE Trans. Inf.
Theory 46(7), 2596–2604 (2000)

37. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1_9

38. Rabin, M.O.: Randomized Byzantine generals. In: FOCS, pp. 403–409. IEEE Computer
Society (1983)

39. Raikwar, M., Gligoroski, D.: SoK: decentralized randomness beacon protocols. In: Nguyen,
K., Yang, G., Guo, F., Susilo, W. (eds.) ACISP 2022. LNCS, vol. 13494, pp. 420–446.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22301-3_21

40. Robere, R., Pitassi, T., Rossman, B., Cook, S.A.: Exponential lower bounds for monotone
span programs. In: FOCS, pp. 406–415. IEEE Computer Society (2016)

41. Schwartz, D., Youngs, N., Britto, A.: The Ripple protocol consensus algorithm. Ripple Labs
(2014). https://ripple.com/files/ripple_consensus_whitepaper.pdf

42. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-540-45126-6_21
https://doi.org/10.1007/978-3-030-57990-6_28
https://doi.org/10.1007/3-540-48910-X_23
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-031-22301-3_21
https://ripple.com/files/ripple_consensus_whitepaper.pdf

Do Not Trust in Numbers: Practical Distributed Cryptography with General Trust 551

43. Shoup, V.: A Computational Introduction to Number Theory and Algebra Version 2. Cam-
bridge University Press (2009). https://shoup.net/ntb/ntb-v2.pdf

44. Shoup, V.: Number Theory Library for C++ version 11.5.1 (2020). https://shoup.net/ntl
45. Tomescu, A., et al.: Towards scalable threshold cryptosystems. In: IEEE Symposium on

Security and Privacy, pp. 877–893. IEEE (2020)
46. Vogels, W.: Life is not a State-Machine (2006). https://www.allthingsdistributed.com/2006/

08/life_is_not_a_statemachine.html
47. Yin, M., Malkhi, D., Reiter, M.K., Golan-Gueta, G., Abraham, I.: Hotstuff: BFT consensus

with linearity and responsiveness. In: PODC, pp. 347–356. ACM (2019)

https://shoup.net/ntb/ntb-v2.pdf
https://shoup.net/ntl
https://www.allthingsdistributed.com/2006/08/life_is_not_a_statemachine.html
https://www.allthingsdistributed.com/2006/08/life_is_not_a_statemachine.html

Synergistic Knowledge

Christian Cachin , David Lehnherr(B) , and Thomas Studer

University of Bern, Bern, Switzerland
{christian.cachin,david.lehnherr,thomas.studer}@unibe.ch

Abstract. In formal epistemology, group knowledge is often modelled
as the knowledge that the group would have if the agents shared all their
individual knowledge. However, this interpretation does not account for
relations between agents. In this work, we propose the notion of synergis-
tic knowledge, which makes it possible to model those relationships. As
examples, we investigate the use of consensus objects and the problem
of the dining cryptographers. Moreover, we show that our logic can also
be used to model certain aspects of information flow in networks.

Keywords: Distributed Knowledge · Synergy · Modal Logic

1 Introduction

A simplicial interpretation of the semantics of modal logic has gained recent
interest, due to the success of applying topological methods to problems occur-
ring in distributed systems. The topological approach to distributed computing,
exemplified by Herlihy, Kozlov and Rajsbaum [10], interprets the configurations
of a distributed system as a simplicial complex. The vertices of a simplicial com-
plex represent local states of different agents and an edge between two vertices
means that the two local states can occur together.

Modal logic has various applications to problems in distributed computing,
such as agreement (c.f. Halpern and Moses [8]). Models for modal logic are
usually based on a possible worlds approach where the operator � is evaluated
on Kripke frames. In a world w, a formula φ is known, denoted by �φ, if and
only if φ is true in each world indistinguishable from w. These frames can be
extended to multi-agent systems by introducing an indistinguishability relation
for each agent. A formula φ is distributed knowledge of a group, first introduced
by Halpern and Moses [8], if and only if φ is true in all worlds that cannot be
distinguished by any member of the group.

Given a set of agents, van Ditmarsch, Goubault, Ledent and Rajsbaum [2]
define a simplicial model for settings in which all agents are present at any point
in time. This semantics is shown to be equivalent to the modal logic S5n. In the
same setting, Goubault, Ledent and Rajsbaum [5] look at distributed task com-
putability through the lens of dynamic epistemic logic (c.f. van Ditmarsch, van
der Hoek and Kooi [3]). Using dynamic epistemic logic makes it possible to model
the relationship between input and output configurations of tasks, which is one
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 552–567, 2023.
https://doi.org/10.1007/978-3-031-44274-2_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_41&domain=pdf
http://orcid.org/0000-0001-8967-9213
http://orcid.org/0000-0002-4956-4064
http://orcid.org/0000-0002-0949-3302
https://doi.org/10.1007/978-3-031-44274-2_41

Synergistic Knowledge 553

of the core objectives of the classical topological approach to distributed sys-
tems (c.f. Herlihy and Shavit [11]). Work regarding models where some agents
might not be present in a configuration was conducted independently by van
Ditmarsch and Kuznets [4] and Goubault, Ledent and Rajsbaum [6]. The latter
work shows the equivalence between their simplicial models and Kripke models
for the logic KB4n, whereas van Ditmarsch and Kuznets [4] deal with crashed
agents by letting formulas be undefined and show that their logic is sound. Ran-
drianomentsoa, van Ditmarsch and Kuznets [12] show in a follow up work that
the route taken by van Ditmarsch and Kuznets [4] leads to a sound and complete
semantic for their axiom system. Both works remark that impure complexes can-
not capture the information of improper Kripke frames, i.e. models in which some
worlds cannot be distinguished from others by all agents. They point out the
need for extending the interpretation of simplicial complexes to simplicial sets,
i.e. simplicial complexes that may contain the same simplex arbitrarily often.
Furthermore, the latter work also shed light on a new notion of group knowledge
which differs from the usual definition of distributed knowledge. Their example
is depicted in Fig. 1 in which the agents a and b individually cannot distinguish
the worlds X and Y , i.e. the two solid triangles, since the vertices labelled with
a and b belong to both X and Y . However, a and b together can distinguish
between X and Y since the worlds do not share an edge between vertices a and
b. In a follow up work, Goubault, Kniazev, Ledent and Rajsbaum [7] provide,
among various results, a semantics for such simplicial sets and provide a higher
order interpretation of distributed knowledge for a set of agents.

a

b

c c′X Y

Fig. 1. A model in which two agents a and b can together distinguish between the
worlds X and Y . However, they cannot do so individually.

In this paper, we propose the notion of synergistic knowledge, which allows
a group of agents to know more than just the consequences of their pooled
knowledge. That is, our newly introduced epistemic operator [G] supports a
principle that could be paraphrased as the sum is greater than its parts, hence
the name synergistic knowledge. Different to the higher order interpretation of
distributed knowledge by Goubault, Kniazev, Ledent and Rajsbaum [7], which
analyses the knowledge of a set of agents, we interpret G as a simplicial complex
over the set of agents. Hence, we refer to G as an agent pattern instead of a group.

554 C. Cachin et al.

The operator [G] allows us to model relations between subgroups of agents and
how they interact with each other. Hence, two agent patterns G and H may
contain the same agents, but differ in the relations among them. For example,
in Fig. 1, we can distinguish the pattern {{a}, {b}}, which cannot distinguish
between X and Y because the two worlds share vertices labelled with a and
with b, from the pattern {{a, b}}, which can distinguish X and Y due to X and
Y not sharing an edge. As applications for synergistic knowledge, we investigate
the use of consensus objects (c.f. Herlihy [9]) and the problem of the dining
cryptographers (c.f. Chaum [1]).

Our main contribution consists in i) providing a novel simplicial set semantics
for modal logic that is simpler than previous approaches as it does not refer to
category theory or make use of chromatic maps, and ii) the introduction of a new
knowledge operator [G] that allows us to express distributed knowledge in a more
fine grained way, as well as iii) presenting a new notion of indistinguishability,
called componentwise indistinguishability, which models the flow of information
in networks. All points mentioned are accompanied by examples.

In Sect. 2, we introduce our new simplicial set model together with a cor-
responding indistinguishability relation. Section 3 studies the logic induced by
our model. In Sect. 4, we present examples that illustrate the use of our logic.
In Sect. 5, we adapt our notion of indistinguishability and show how it can be
used in order to model the information flow in a network. Lastly, we draw a
conclusion of our work in Sect. 6.

2 Indistinguishability

In this section, we introduce the indistinguishability relation that is used to
model synergistic knowledge. Let Ag denote a set of finitely many agents and let

Agsi = {(A, i) | A ⊆ Ag and i ∈ N}.

We may think of a pair ({a}, i) ∈ Agsi as representing agent a in local state i.
Further, let S ⊆ Agsi. An element (A, i) ∈ S is maximal in S if and only if

∀(B, j) ∈ S.|A| ≥ |B|, where |X| denotes the cardinality of the set X.

Definition 1 (Simplex). Let ∅ �= S ⊆ Agsi. S is a simplex if and only if

S1: The maximal element is unique, i.e.

if (A, i) ∈ S and (B, j) ∈ S are maximal in S then, A = B and i = j.

The maximal element of S is denoted as max(S).
S2: S is uniquely downwards closed, i.e. for all (B, i) ∈ S and ∅ �= C ⊆ B

∃!j ∈ N.(C, j) ∈ S, where !∃j means that there exists exactly one j.

Synergistic Knowledge 555

S3: S contains nothing else, i.e.

(B, i) ∈ S and (A, j) = max(S) implies B ⊆ A.

Definition 2 (Complex). Let C be a set of simplices. C is a complex if and
only if

C: For any S, T ∈ C, if there exist A and i with (A, i) ∈ S and (A, i) ∈ T , then

for all B ⊆ A and all j (B, j) ∈ S ⇐⇒ (B, j) ∈ T.

Condition C guarantees that the maximal element of a simplex uniquely
determines it within a given complex.

Lemma 1. Let C be a complex and S, T ∈ C. We find

max(S) = max(T) implies S = T.

Proof. We show S ⊆ T . The other direction is symmetric. Let (A, i) = max(S).
Assume (B, j) ∈ S. Because of S3, we have B ⊆ A. By Condition C, we conclude
(B, j) ∈ T . ��

Whenever it is clear from the context, we abbreviate ({a1, ..., an}, i) as
a1...ani in order to enhance readability. Furthermore, we may use a row (or
a mixed row-column) notation to emphasize simplices. For example,

⎧
⎨

⎩

⎧
⎨

⎩

ab0
a0
b0

⎫
⎬

⎭
,

⎧
⎨

⎩

ab1
a0
b1

⎫
⎬

⎭

⎫
⎬

⎭

is a complex that contains 2 simplices. Whenever we refer to a simplex within a
complex, we write 〈Ai〉 for the simplex with maximal element (A, i). Condition C
guarantees that this notation is well-defined.

Oberserve that Condition C ensures that neither

{{
ab0

a0, b0

}

,

{
ab0

a1, b1

}}

nor

⎧
⎨

⎩

⎧
⎨

⎩

abc0
ab0, ac0, bc0

a0, b0, c0

⎫
⎬

⎭
,

{
ab0

a1, b1

}
⎫
⎬

⎭

is a complex, although each individual simplex is well-formed.

Definition 3 (Indistinguishability). Let S ⊆ Agsi, we define

S◦ = {A | ∃i ∈ N : (A, i) ∈ S}.

An agent pattern G is a subset of Pow(Ag) \ {∅}. An agent pattern cannot
distinguish between two simplices S and T , denoted by S ∼G T , if and only if
G ⊆ (S ∩ T)◦.

Definition 4 (Partial equivalence relation (PER)). A relation R ⊆ S × S
is a partial equivalence relation if and only if it is symmetric and transitive.

556 C. Cachin et al.

Lemma 2 (PER). ∼G is a PER.

Proof. Symmetry immediately follows from the fact that set intersection is com-
mutative. To show transitivity, let S, T, U be simplices with S ∼G T and T ∼G U ,
i.e.

G ⊆ (S ∩ T)◦ (1)
G ⊆ (T ∩ U)◦ (2)

Let A ∈ G. Because of (1), there exists i with

(A, i) ∈ S and (A, i) ∈ T. (3)

Because of (2), there exists j with

(A, j) ∈ T and (A, j) ∈ U. (4)

From (3), (4), and Condition S2 we obtain i = j. Thus by (3) and (4), we get
A ∈ (S ∩ U)◦. Since A was arbitrary in G, we conclude G ⊆ (S ∩ U)◦. ��
Lemma 3. Let G ⊆ Pow(Ag) be an agent pattern and

noSym(G) := {{a} | ∃A ∈ G and a ∈ A}.

Let SG be a set of simplices such that for any S ∈ SG we have noSym(G) ⊆ S◦.
The indistinguishability relation ∼G is reflexive on SG×SG and empty otherwise.

Proof. We first show reflexivity. If G = ∅, then trivially G ⊆ (S ∩ S)◦ for any S.
Assume G �= ∅. Let S ∈ SG. For each B ∈ G, we have to show that B ∈ (S∩S)◦,
i.e. that

there exists i with (B, i) ∈ S. (5)

Let (A, i) := max(S). Let b ∈ B. Because of noSym(G) ⊆ S◦, there exists l such
that ({b}, l) ∈ S. By S3 we get b ∈ A. Since b was arbitrary in B, we get B ⊆ A.
By S2 we conclude that (5) holds and symmetry is established.

We now show that ∼G is empty otherwise. Let S be a simplex such that
noSym(G) � S◦ and let T be an arbitrary simplex. Then there exists a,A with
a ∈ A ∈ G and {a} /∈ S◦, i.e.

for all i, ({a}, i) /∈ S. (6)

Suppose towards a contradiction that

G ⊆ (S ∩ T)◦ (7)

Because of A ∈ G we get A ∈ (S ∩ T)◦. Hence A ∈ S◦, i.e. there exists l with
(A, l) ∈ S. With S2 and {a} ⊆ A we find that there exists j with ({a}, j) ∈ S.
This is a contradiction to (6). Thus (7) cannot hold. ��
Corollary 1. ∼G is an equivalence relation on SG × SG.

Synergistic Knowledge 557

The following two lemmas establish basic properties of the indistinguishabil-
ity relation.

Lemma 4 (Anti-Monotonicity). G ⊆ H implies ∼H⊆∼G.

Proof. Assume G ⊆ H. For any two simplices S and T with S ∼H T , we have
G ⊆ H ⊆ (S ∩ T)◦ by definition and hence S ∼G T , which concludes the proof.
��
Lemma 5 (Downward closure). Let C be a complex and S, T ∈ C. Further,
let A ∈ (S ∩ T)◦ and B ⊆ A. We find B ∈ (S ∩ T)◦.

Proof. From A ∈ (S ∩ T)◦, we obtain that there exists i such that (A, i) ∈ S
and (A, i) ∈ T . From S2 we find that there exists j such that (B, j) ∈ S. Thus
by C, we get (B, j) ∈ T and we conclude B ∈ (S ∩ T)◦. ��

From the previous two lemmas we immediately obtain the following:

Corollary 2. Let G be an agent pattern. Let A,B ⊆ Ag such that A ⊆ B ∈ G.
We have

∼G∪{A} = ∼G .

The next lemma states that adding synergy to an agent pattern makes it
stronger in the sense that it can distinguish more simplices. This is shown in
Example 1 where the pattern {{a}, {b}} cannot distinguish 〈abc0〉 and 〈abc1〉
but {{a, b}} can distinguish these two simplices.

Lemma 6. Let H1,H2, . . . , Hn ⊆ Ag with n ≥ 2 We have

∼{H1∪H2,...,Hn} ⊆ ∼{H1,H2,...,Hn} .

Proof. From the Lemma 5 and Lemma 4 we find that

∼{H1∪H2,...,Hn} = ∼{H1∪H2,H1,H2,...,Hn} ⊆ ∼{H1,H2,...,Hn} .

��
In traditional Kripke semantics, distributed knowledge of a set of agents is

modeled by considering the accessibility relation that is given by the intersec-
tion of the accessibility relations of the individual agents. The following lemma
states that in our framework, this intersection corresponds to the agent pattern
consisting of singleton sets for each agent.

Lemma 7. Let G ⊆ Ag and H =
⋃

a∈G{{a}}. We have

⋂

a∈G

∼{{a}} = ∼H .

Proof. (S, T) ∈ ⋂
a∈G ∼{{a}} iff for each a ∈ G, we have {a} ∈ (S ∩ T)◦ iff (by

the definition of H) H ⊆ (S ∩ T)◦ iff S ∼H T . ��

558 C. Cachin et al.

3 Logic

The logic of synergistic knowledge is a normal modal logic that includes a
modality [G] for each agent pattern G. It is closely related to the logic of dis-
tributed knowledge but has some additional validities concerning the pattern-
based modalities, see, e.g., (Sub) and (Clo) below.

Let Prop be a countable set of atomic propositions. Formulas of the language
of synergistic knowledge LSyn are inductively defined by the following grammar:

φ ::= p | ¬φ | φ ∧ φ | [G]φ

where p ∈ Prop and G is an agent pattern. The remaining Boolean connectives
are defined as usual. In particular, we set ⊥ := p ∧ ¬p for some fixed p ∈ Prop.

Definition 5 (Model). A model M = (C, V) is a pair where

1. C is a complex and
2. V : C → Pow(Prop) is a valuation.

Definition 6 (Truth). Let M = (C, V) be a model, w ∈ C, and φ ∈ LSyn. We
define M, w � φ inductively by

M, w � p iff p ∈ V (w)
M, w � ¬φ iff M, w �� φ

M, w � φ ∧ ψ iff M, w � φ and M, w � ψ

M, w � [G]φ iff w ∼G v implies M, v � φ for all v ∈ C.

We write M � φ if M, w � φ for all w ∈ C. A formula φ is valid if M � φ for
all models M.

The following formulas are valid:

[G](φ → ψ) → ([G]φ → [G]ψ) (K)
[G]φ → [G][G]φ (4)
φ → [G]¬[G]¬φ (B)

[G]φ → [H]φ if G ⊆ H (Mono)

Let G be an agent pattern. We define, as usual, the formula alive(G) to be
¬[G]⊥. For a single agent a we write alive(a) instead of alive({a}). The expected
equivalences hold:

M, w � alive(G) iff G ⊆ w◦ iff w ∼G w. (8)

Indeed, we have M, w � ¬[G]⊥ iff it is not the case that for all v with w ∼G v,
it holds that M, v � ⊥. This is equivalent to there exists v with w ∼G v, which
is equivalent to there exitsts v with G ⊆ (w ∩ v)◦. This is equivalent to w ∼G w
and also to G ⊆ w◦.

Synergistic Knowledge 559

Related to alive(·), the following formulas are valid:

alive(G) ∧ alive(H) → alive(G ∪ H) (Union)
alive(G) → alive({B}) if there is A with A ∈ G and B ⊆ A (Sub)

alive(G) → alive({A ∪ B}) if A,B ∈ G (Clo)

(Union) is an immediate consequence of (8). For (Sub), assume w ∼G w, A ∈ G,
and B ⊆ A. We have A ∈ (w ∩ w)◦. By Lemma 5 we find B ∈ (w ∩ w)◦. Hence
w ∼{B} w, which yields (Sub). To show Clo, assume w ∼G w and A,B ∈ G.
Hence A ∈ (w ∩ w)◦. That is A ∈ w◦, i.e. there exists i with (A, i) ∈ w. Let C, j
be such that (C, j) = max(w). By S3, we get A ⊆ C. Similarly, we find B ⊆ C,
and thus A ∪ B ⊆ C. Using S2, we obtain A ∪ B ∈ w◦. Therefore, w ∼{A∪B} w
and (Clo) is estabished.

Further, note that axiom (T) holds when restricted to groups of agents that
are alive:

alive(G) → ([G]φ → φ) (T)

Question 1. Do the axioms (K), (4), (B), (Mono), (Union), (Sub), and (Clo)
together with all propositional tautologies and the rules of modus ponens and
[G]-necessitation provide a complete axiom system for our notion of validity?

Lemma 7 motivates the following abbreviation. Let G ⊆ Ag be a set of
agents and set H :=

⋃
a∈G{{a}}. Then we let DG be the modality [H]. We call

this the distributed knowledge modality and let LD be the restriction of LSyn

that contains distributed knowledge DG as the only modality. Note that the
usual axioms for the logic of distributed knowledge, formulated in LD, hold with
respect to synergistic models.

Question 2. Is the logic of synergistic knowledge a conservative extension (with
respect to LD) of the logic of distributed knowledge?

4 Examples

In this section, we present some examples that illustrate possible applications
of our logic to distributed systems. Example 1 highlights one of the main char-
acteristics of synergetic knowledge. That is, the agents a and b can together
distinguish between the worlds 〈abc0〉 and 〈abc1〉 although they cannot do so
individually. Hence, our logic can express the difference between the patterns
{{a}, {b}} and {{a, b}}.

Regarding the notation, we will omit the set parentheses for agent patterns
whenever it is clear from the context and write for example [abc, ab, ac] instead
of [{{a, b, c}, {a, b}, {a, c}}].

560 C. Cachin et al.

Example 1 (Two triangles). Let Ag = {a, b, c}, p ∈ Prop, and consider the
model M = (C, V) in Fig. 2 which is given by the complex

C =

⎧
⎨

⎩

⎧
⎨

⎩

abc0
ab0, bc0, ac0

a0, b0, c0

⎫
⎬

⎭
,

⎧
⎨

⎩

abc1
ab1, bc1, ac1

a0, b0, c1

⎫
⎬

⎭

⎫
⎬

⎭

and by a valuation V such that p ∈ V (〈abc0〉) and p �∈ V (〈abc1〉). We find

M, 〈abc0〉 � [ab]p and M, 〈abc1〉 � [ab]¬p,

because the worlds 〈abc0〉 and 〈abc1〉 can be distinguished due to

{{a, b}} �⊆ (〈abc0〉 ∩ 〈abc1〉)◦ = {{a}, {b}}.

However, for the pattern H = {{a}, {b}} it holds that

H = {{a}, {b}} ⊆ (〈abc0〉 ∩ 〈abc1〉)◦,

and hence M, 〈abc0〉 �� [H]p. Lastly, if we add c to H, the agents know p:

M, 〈abc0〉 � [a, b, c]p.

a0

b0

c0 c1abc0 abc1

Fig. 2. A model in which two agents a and b can together distinguish between the
worlds X and Y . However, they cannot do so individually.

Another motivation for simplicial sets is that we can model how agents can
reason about each others death. As remarked by van Ditmarsch and Kuznets [4]
as well as by Goubault, Ledent and Rajsbaum [6], simplicial complexes are not
enough to model a setting where an agent considers it possible to be the only
one alive. Such scenarios are important, because they arise in failure detection
protocols. Example 2 shows such a model.

Example 2 (Two-agents). Let Ag = {a, b}, and consider the model M = (C, V)
in Fig. 3 which is given by an arbitrary valuation and the complex

C =
{{

ab0
a0, b0

}

, {a0}
}

Synergistic Knowledge 561

It is straightforward to verify that M, 〈ab0〉 � alive(a) and M, 〈ab0〉 � alive(b).
However, M, 〈a0〉, �� alive(b) because {b} �⊆ 〈a0〉◦ and hence M, 〈a0〉 � [b]⊥.
Moreover, a alone does not know whether alive(b) because a cannot distinguish
〈a0〉 from 〈ab0〉 due to {{a}} ⊆ (〈a0〉 ∩ 〈ab0〉)◦.

a0 b0
ab0

Fig. 3. A model in which a considers it possible that it is the only agent alive.

In Examples 3 and 4 we interpret synergy as having access to some shared
primitives. Given three agents, Example 3 captures the idea that for some appli-
cations, the agent pattern must include the area of the triangle and not just its
edges. Example 4 demonstrates that the patterns {{a, b}, {a, c}}, {{a, b}, {b, c}},
and {{b, c}, {a, c}} are weaker than the pattern {{a, b}, {a, c}, {b, c}}.

Example 3 (Consensus number). A n-consensus protocol is implemented by n
processes that communicate through shared objects. The processes each start
with an input of either 1 or 0 and must decide a common value. A consensus
protocol must ensure that

1. Consistency: all processes must decide on the same value.
2. Wait-freedom: each process must decide after a finite number of steps.
3. Validity: the common decided value was proposed by some process.

Herlihy [9] defines the consensus number of an object O as the largest n for
which there is a consensus protocol for n processes that only uses finitely many
instances of O and any number of atomic registers. It follows from the definition
that no combination of objects with a consensus number of k < n can implement
an object with a consensus number of n.

We can represent the executions of a n-consensus protocol as a tree in which
one process moves at a time. By validity and wait-freedom, the initial state of
the protocol must be bivalent (i.e. it is possible that 0 or 1 are decided), and
there must exist a state from which on all successor states are univalent. Hence,
the process that moves first in such a state decides the outcome of the protocol.
This state is called the critical state.

In order to show that an object has a consensus number lower than k, we
derive a contradiction by assuming that there is a valid implementation of a
k-consensus protocol. Next, we maneuver the protocol into a critical state and
show that the processes will not be able to determine which process moved first.
Therefore, for some process P , there exist two indistinguishable executions in
which P decides differently. However, if the object has a consensus number of k,
the processes will be able to tell who moved first.

562 C. Cachin et al.

Synergetic knowledge is able to describe the situation from the critical state
onwards. We interpret an element {p1, ..., pk} of a synergy pattern G as the
processes p1 up to pk having access to objects with a consensus number of k.
For each process pi, we define a propositional variable movei that is true if pi
moved first at the critical state. Furthermore, we define

ϕi := movei ∧
∧

1≤j≤n and j �=i

¬movej ,

i.e., if ϕi is true, then the i-th process moved first. Let M = (C, V) be a model,
if M � [G]ϕ1 ∨ [G]ϕ2 ∨ · · · ∨ [G]ϕn holds in the model, then it is always possible
for the processes in G to tell who moved first. Lastly, if G has n agents, we have
for any G′ with less than n agents

M �� [G′]ϕ1 ∨ [G′]ϕ2 ∨ · · · ∨ [G′]ϕn,

which means that the access to objects with a consensus number of n is required.
For three agents a, b and c, the model M = (C, V) is given by

C =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

abc0
ab0
bc0
ac0

a0, b0, c0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

abc1
ab0
bc0
ac0

a0, b0, c0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

abc2
ab0
bc0
ac0

a0, b0, c0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

with a valuation V that represents that someone moved first, i.e.

M, 〈abc0〉 � ϕa M, 〈abc1〉 � ϕb M, 〈abc2〉 � ϕc.

It is easy to check that 〈abc0〉 ∼ab,ac,bc 〈abc1〉 and hence, having access to an
object with consensus number 2 is not enough in order to distinguish those
worlds. However,

M � [abc]ϕa ∨ [abc]ϕb ∨ [abc]ϕc

is true and shows that access to objects with consensus number 3 suffices.

Example 4 (Dining cryptographers). The dining cryptographers problem, pro-
posed by Chaum [1], illustrates how a shared-coin primitive can be used by three
cryptographers (i.e. agents) to find out whether their employer or one of their
peers paid for the dinner. However, if their employer did not pay, the payer
wishes to remain anonymous.

For lack of space, we do not give a full formalisation of the dining cryptogra-
phers problem. Instead, we solely focus on the ability of agreeing on a coin-flip
and the resulting knowledge. In what follows, we will provide a model in which
the agents a, b and c can determine whether or not their employer paid if and
only if they have pairwise access to a shared coin.

Let the propositional variable p denote that their employer paid. We interpret
an agent pattern G = {{a, b}} as a and b, having access to a shared coin. Our
model M = (C, V), depicted in Fig. 4, is given by the complex

Synergistic Knowledge 563

c0

b0

a0

bc0

ac0

ab
0

ac1

ab
1 bc1

Fig. 4. Dining cryptographers model.

C =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

abc0
ab0
bc0
ac0

a0, b0, c0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

abc1
ab1
bc0
ac0

a0, b0, c0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

abc2
ab0
bc1
ac0

a0, b0, c0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

abc3
ab0
bc0
ac1

a0, b0, c0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

abc4
ab1
bc1
ac0

a0, b0, c0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

abc5
ab1
bc0
ac1

a0, b0, c0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

abc6
ab0
bc1
ac1

a0, b0, c0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

abc7
ab1
bc1
ac1

a0, b0, c0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

and the valuation V is chosen such that

p ∈ V (〈abc0〉), p �∈ V (〈abc1〉), p �∈ V (〈abc2〉), p �∈ V (〈abc3〉),
p ∈ V (〈abc4〉), p ∈ V (〈abc5〉), p ∈ V (〈abc6〉), p �∈ V (〈abc7〉).

Consider the agent pattern G = {{a, b}, {a, c}, {b, c}}, then

M � [G]p ∨ [G]¬p, (9)

i.e. in any world, if all agents have pairwise access to shared coins, they can know
the value of p. Furthermore, for each H � G and each w ∈ C

M, w �� [H]p ∨ [H]¬p. (10)

Notice that (10) states that there is no world, where an agent pattern H can
know whether p or ¬p, and hence, it is stronger than M �� [H]p ∨ [H]¬p.

564 C. Cachin et al.

5 Communication

In this section, we will explore a different reading of agent patterns, namely as a
description of the communication happening between the agents. Let G be the
pattern {{a}, {b, c}}. We interpret this as b and c communicate with each other
but there is no communication between a and b or c. A formula [G]φ will thus
be interpreted as a knows φ and the group b,c has distributed knowledge of φ.
We can also distinguish the patterns {{a, b}, {b, c}} and {{a, b}, {b, c}, {a, c}}.
In the first one, a and c can only communicate via b whereas in the second one,
a and c have a direct communication channel.

Definition 7 (Connected). Let C ⊆ Pow(Ag), we call two elements X,Y ∈ C
connected in C if and only if there exist Z0, ..., Zk ∈ C with Zi ∩ Zi+1 �= ∅ for
0 ≤ i < k and Z0 = X and Zk = Y .

Definition 8 (Connected Component). Let C ⊆ Pow(Ag), we call C a con-
nected component if and only if for any X,Y ∈ C with X �= Y it holds that X
and Y are connected in C.

Let G ⊆ Pow(Ag). We call H a maximal connected component of G if and
only if H ⊆ G and there is no connected component H ′ ⊆ G such that H is a
proper subset of H ′.

We can represent an agent pattern G as the union of its maximal connected
components. Let C1, . . . , Ck be the maximal connected components of G. We
have G =

⋃k
i=1 Ci and if X ∈ Ci and Y ∈ Cj with i �= j, then X and Y are not

connected in G.

Definition 9 (Componentwise indistinguishability). Let G =
⋃k

i=1 Ci

be an agent pattern with k maximal connected components Ci. We say that G
cannot distinguish componentwise two simplices S and T , denoted by S EG T , if
and only if

∃1 ≤ j ≤ k. S ∼Cj
T,

i.e. there is some maximal component of G that cannot distinguish S and T .

We use the notation EG since this relation is used to model something like
every component of G knows that. For this section, we adapt the truth definition
as follows:

M, w � [G]φ iff w EG v implies M, v � φ for all v ∈ C.

Let G := {{a} | a ∈ Ag}. Then we can read [G]φ as everybody knows that φ.
We immediately obtain the following properties:

Lemma 8. Let G =
⋃k

i=1 Ci be an agent pattern with k maximal connected
components Ci. Then EG is symmetric. Moreover, let SG be a set of simplices
such that for any S ∈ SG we have noSym(Ci) ⊆ S◦ for some 1 ≤ i ≤ n. Then
the indistinguishability relation EG is reflexive on SG × SG.

Synergistic Knowledge 565

Note that EG is not transitive. Also, anti-monotonicity does not hold in
general. It does, however, hold componentwise.

Lemma 9 (Anti-monotonicity). Let G =
⋃k

i=1 Ci be an agent pattern with k
maximal connected components Ci. Let C be a connected component with C ⊇ Ci

for some 1 ≤ i ≤ k and let H := G ∪ C. We find that EH ⊆ EG.

Lemma 10 (Link). Let F,G,H ⊆ Pow(Ag) be connected components such
that F ∪ G is connected and F ∪ H is connected. The following formula is valid:

[G]A ∧ [H]B → [F ∪ G ∪ H](A ∧ B).

Proof. First, observe that F ∪ G ∪ H is connected. Thus, by Lemma 9, [G]A
implies [F ∪ G ∪ H]A and [H]B implies [F ∪ G ∪ H]B. Since [F ∪ G ∪ H] is a
normal modality, we conclude [F ∪ G ∪ H](A ∧ B). ��
Example 5 (Missing link). Two networks G and H, each modelled as a connected
component, both know that if malicious activity is detected, certain services
must be stopped. Let mact be a propositional variable that indicates whether an
intruder has been spotted and let stop indicates that the services are disabled.
Since the procedure is known to both networks, we have

[G](mact → stop) ∧ [H](mact → stop) as well as [G ∪ H](mact → stop).

Suppose now that G detects malicious activity, i.e. [G]mact. Thus, G will stop
certain services, i.e. [G]stop. If the networks cannot communicate with each
other, i.e. G ∪ H is not connected, then H will not stop the services. Hence, G
and H as a whole are not following the security protocol, i.e. ¬[G ∪ H]stop, and
might leave the system in a vulnerable state. However, if a coordinating node
relays messages from G to H, then H could shut down its services as well. By
Lemma 10 we find that for some network F , such that F ∪ G as well as F ∪ H
is connected, it holds that

([G ∪ H](mact → stop) ∧ [G]mact) → [F ∪ G ∪ H]stop.

6 Conclusion

In this paper we present a semantics for epistemic reasoning on simplicial sets
and introduce the synergistic knowledge operator [G]. Synergistic knowledge
describes relations among agents of a group and enables us to reason about
what the group can know beyond traditional distributed knowledge. For exam-
ple, in Example 4, the pattern {{a, b}, {a, c}} differs from {{a, b}, {a, c}, {b, c}},
although both contain the same agents.

Furthermore, we develop a logic based on our model and study some of
its validities. We show that classical distributed knowledge, as introduced by
Halpern and Moses [8], can be expressed with the operator [G], if G is a set of
singleton sets.

566 C. Cachin et al.

Moreover, we provide various examples of how our logic can be used to
describe problems that arise in distributed computing. In Example 2 we illustrate
how to model scenarios that arise in failure detection protocols, and in Exam-
ples 3 and 4 we showcase how synergistic knowledge may occur in distributed
systems, if agents access shared primitives.

Lastly, we discussed a new notion of indistinguishability that accounts for the
connectivity of the agent pattern G. Componentwise indistinguishability seems
fruitful for analysing knowledge in networks with respect to their underlying
topology.

Acknowledgments. This work has been funded by the Swiss National Science Foun-
dation (SNSF) under grant agreement Nr. 200021 188443 (Advanced Consensus Pro-
tocols).

References

1. Chaum, D.: The dining cryptographers problem: unconditional sender and recip-
ient untraceability. J. Cryptol. 1(1), 65–75 (1988). https://doi.org/10.1007/
BF00206326

2. van Ditmarsch, H., Goubault, É., Ledent, J., Rajsbaum, S.: Knowledge and sim-
plicial complexes. In: Lundgren, B., Nuñez Hernández, N.A. (eds.) Philosophy of
Computing, vol. 143, pp. 1–50. Springer, Cham (2022). https://doi.org/10.1007/
978-3-030-75267-5 1

3. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic, 1st edn.
Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5839-4

4. van Ditmarsch, H., Kuznets, R.: Wanted dead or alive: epistemic logic for impure
simplicial complexes. J. Log. Comput. (to appear)

5. Goubault, É., Ledent, J., Rajsbaum, S.: A simplicial complex model for dynamic
epistemic logic to study distributed task computability. Inf. Comput. 278, 104597
(2021). https://doi.org/10.1016/j.ic.2020.104597

6. Goubault, É., Ledent, J., Rajsbaum, S.: A simplicial model for KB4n: epistemic
logic with agents that may die. In: Berenbrink, P., Monmege, B. (eds.) 39th Inter-
national Symposium on Theoretical Aspects of Computer Science, STACS 2022.
LIPIcs, Marseille, France, 15–18 March 2022 (Virtual Conference), vol. 219, pp.
33:1–33:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://
doi.org/10.4230/LIPIcs.STACS.2022.33

7. Goubault, É.G., Kniazev, R., Ledent, J., Rajsbaum, S.: Semi-simplicial set models
for distributed knowledge (2023)

8. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed envi-
ronment. In: Kameda, T., Misra, J., Peters, J.G., Santoro, N. (eds.) Proceedings
of the Third Annual ACM Symposium on Principles of Distributed Computing,
Vancouver, B.C., Canada, 27–29 August 1984, pp. 50–61. ACM (1984). https://
doi.org/10.1145/800222.806735

9. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),
124–149 (1991). https://doi.org/10.1145/114005.102808

10. Herlihy, M., Kozlov, D.N., Rajsbaum, S.: Distributed Computing Through Combi-
natorial Topology. Morgan Kaufmann (2013). https://store.elsevier.com/product.
jsp?isbn=9780124045781

https://doi.org/10.1007/BF00206326
https://doi.org/10.1007/BF00206326
https://doi.org/10.1007/978-3-030-75267-5_1
https://doi.org/10.1007/978-3-030-75267-5_1
https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.1016/j.ic.2020.104597
https://doi.org/10.4230/LIPIcs.STACS.2022.33
https://doi.org/10.4230/LIPIcs.STACS.2022.33
https://doi.org/10.1145/800222.806735
https://doi.org/10.1145/800222.806735
https://doi.org/10.1145/114005.102808
https://store.elsevier.com/product.jsp?isbn=9780124045781
https://store.elsevier.com/product.jsp?isbn=9780124045781

Synergistic Knowledge 567

11. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
J. ACM 46(6), 858–923 (1999). https://doi.org/10.1145/331524.331529

12. Randrianomentsoa, R.F., van Ditmarsch, H., Kuznets, R.: Impure simplicial com-
plexes: complete axiomatization. Log. Methods Comput. Sci. (to appear)

https://doi.org/10.1145/331524.331529

Post-quantum Secure Stateful
Deterministic Wallet from Code-Based

Signature Featuring Uniquely
Rerandomized Keys

Pratima Jana(B) and Ratna Dutta

Department of Mathematics, Indian Institute of Technology Kharagpur,
Kharagpur 721302, India

pratimajanahatiary@kgpian.iitkgp.ac.in, ratna@maths.iitkgp.ac.in

Abstract. The deterministic wallet is a promising cryptographic primi-
tive used in cryptocurrencies to protect users’ wealth where a key deriva-
tion process enables the creation of any number of derived keys from
a master key. A general architecture of a deterministic wallet using
a signature with rerandomizable keys was introduced by Das et al. in
CCS’19. A signature scheme with rerandomizable keys allows indepen-
dently but consistently rerandomizing the master private key and the
master public key. The deterministic wallet from rerandomizable signa-
tures by Das et al. was instantiated from the signature scheme of Boneh-
Lynn-Shacham (BLS) and Elliptic Curve Digital Signature Algorithm
(ECDSA) which do not provide security against quantum computers.
Designing a deterministic wallet is a difficult task and there are only a
limited number of deterministic wallet constructions. In this paper, we
focus on designing a post-quantum secure code-based deterministic wal-
let as code-based public key cryptosystem is a promising alternative in
the post-quantum era. We first develop a post-quantum secure signing
technique with key rerandomizability property that relies on the hard-
ness of Restricted Decision General Decoding problem (RDGDP), Deci-
sional Syndrome Decoding Problem (DSDP), General Decision Syndrome
Decoding problem (GDSDP) and Syndrome Decoding Problem (SDP). In
addition, our scheme exhibits the feature of uniquely rerandomizable
keys. We present a thorough security proof and show that our design
is secure against existential unforgeability under chosen-message attacks
using honestly rerandomized keys. Finally, we employ the property of
uniquely rerandomizable keys of our construction to develop a determin-
istic wallet that achieves security against wallet unlinkability and wallet
unforgeability under the hardness of RDGDP, DSDP, GDSDP and SDP
problems. We support the conjectured security of our deterministic wal-
let with regional security analysis.

Keywords: Post-quantum Cryptography · Stateful Deterministic
Wallet · Rerandomized Signature · Code-based Cryptography ·
Cryptocurrency

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 568–582, 2023.
https://doi.org/10.1007/978-3-031-44274-2_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_42&domain=pdf
https://doi.org/10.1007/978-3-031-44274-2_42

PQ Secure Stateful Deterministic Wallet from Code-Based Signature 569

1 Introduction

Blockchain technology has become quite popular in the last ten years since it
offers a distributed architecture that makes it possible to execute applications
securely in addition to making straightforward payments. It gets further pro-
moted by Bitcoin [15], the first cryptocurrency to gain widespread adoption.
Cryptocurrency is a digital asset that is also recognized as a digital currency and
is primarily built on blockchain technology. The money transferred in decentral-
ized cryptocurrencies is managed by a network of miners. Most cryptocurren-
cies use transactions to update their balances. A cryptocurrency transaction is
the transmission of information between specified blockchain addresses. Let us
consider two users Alice and Bob with private-public key pairs (skA, pkA) and
(skB , pkB). The public address of a user is generated by taking the hash of the
corresponding user’s public key. Let Alice want to transfer the amount amt,
to Bob’s address (which is the hash of Bob’s public key pkB). These transfers
have to be signed with Alice’s private key skA on the message that informally
says “The amount amt is transferring from pkA to pkB”. Signed transactions are
broadcast to a network of nodes and active computers that validate transactions
according to a set of criteria. Valid transactions need to be confirmed by being
included in blocks through the process of mining which is done by the miner.
Since only Alice knows the private key skA corresponding to pkA, only she can
compute a valid signature. Thus possession of skA implies complete control over
the funds corresponding to address pkA. As a result, attacks against private
keys are extremely tempting. Naturally, there are several instances of remark-
able cyberattacks in which the attacker stole millions of dollars by getting into a
system and obtaining the private key [5,19]. In 2018, attackers were able to steal
more than $1 billion worth of Bitcoin according to the cryptocurrency research
firm CipherTrace [11].

In general, storing just a small quantity of bitcoin in a hot wallet and mov-
ing bigger sums of money to a cold wallet can help ones prevent this attack. A
hot wallet is software with a direct Internet connection that operates on a PC
or a smartphone and a cold wallet is one that is frequently not linked to the net-
work. A hot/cold wallet can be easily constructed by creating a key pair (pkcold,
skcold) and keeping the appropriate public key pkcold on the hotwallet, while
the corresponding private key skcold is kept on the cold wallet. By broadcasting
that the user is giving money to pkcold on the blockchain a user can transfer
money to the coldwallet. The cold wallet never needs to turn on as long as the
owner doesn’t wish to use his or her money. There is a significant flaw in this
basic strategy. All transactions are publicly visible as blockchain is transparent.
Therefore, it is simple to link all transactions to a particular public address to
a hot wallet that has the public key pkcold (whose hash is that particular public
address). Since the same public key pkcold is used for all transactions that target
the cold wallet which consists the private key skcold, a significant sum of money
may eventually accrue in the cold wallet. As a result, the next time when the
wallet goes online, pkcold is a tempting target for an attack. The primary reason
for this kind of attack is the linkability between the transaction. Creating as

570 P. Jana and R. Dutta

many new key pairs as there are transactions is a common technique for mak-
ing the transactions unlinkable. This method, however, is limited to a priori set
of transactions and requires a sizable hot/cold wallet that expands linearly in
storage as transactions increase.

The bitcoin improvement proposal (BIP32) [23] for the well-known cryp-
tocurrency Bitcoin has solved these two concerns of linkability and large storage
space and the method is frequently referred to as deterministic wallets [7] in the
literature on cryptocurrencies. The definition of stateful deterministic wallets in
the context of hot/cold was first formalized by Das et al. [8]. For deterministic
wallets, one creates a single master public key and master private key in an ini-
tialization phase and stores them in the hot and cold wallets respectively. Instead
of creating new key pairs each time, two session key derivation algorithms are
used in deterministic wallets to produce session public keys and session private
keys from the master public and the master private keys respectively. In addi-
tion to the master public and master private keys, the deterministic public key
derivation algorithm and the private key derivation algorithm also maintain some
state information to generate session public keys and session private keys respec-
tively. This allows one to produce an unlimited number of session keys while only
requiring the storage of a single (master) key. Deterministic wallet schemes must
satisfy unlinkability property in addition to the basic idea of unforgeability to
make sure that it is impossible for a third party to connect two transactions
made to the same wallet. According to the notion of forward security in unlinka-
bility, a transaction transmitted to session public keys generated before the hot
wallet attack cannot be connected to the master public key.

1.1 Related Works

Many cryptocurrencies leverage the idea of hot and cold wallets to give their
users additional security assurances. The deterministic wallet mechanism pro-
posed in BIP32 [23] that is utilized for Bitcoin has many flaws as identified
by Gutoski and Stebila [12] in 2015. They investigated the well-known attacks
against deterministic wallets [7] and after just one session key has been exposed
it enables the recovery of the master private key. Instead of taking into account
the conventional model of unforgeability where the adversary attempts to forge
a signature, they have adopted a significantly weaker model where the adver-
sary’s goal is to obtain the master private key. In 2018, Fan et al. [10] examined
the security of hot/cold by addressing “privilege escalation attacks” which lacks
any formal security analysis. Later, in 2016, Turuani et al. [22] investigated the
Bitcoin Electrum wallet in the Dolev-Yao model [9].

Das et al. [8] formally proposed the concept of a stateful deterministic wal-
let in 2019, taking into account the two desirable security properties of wallet
unforgeability and wallet unlinkability. Perfectly rerandomizable keys are the
foundation for their stateful deterministic wallet. They proposed a general model
for a stateful deterministic wallet that makes use of signature techniques with
keys that are perfectly rerandomizable. The discrete logarithm-based Elliptic

PQ Secure Stateful Deterministic Wallet from Code-Based Signature 571

Curve Digital Signature Algorithm (ECDSA) signature system is used to imple-
ment all widely used cryptocurrencies and Das et al. instantiated a provably
secure ECDSA-based deterministic wallet in [8]. In addition, they have shown
how Boneh-Lynn-Shacham (BLS) signatures [6] can be used to construct sig-
natures using rerandomizable keys and thus can be a possible candidate for
instantiating their deterministic wallet.

The aforementioned deterministic wallet scheme offers an efficient way to
improve the security of users’ money, but none are resistant to quantum attacks
as they are built on the discrete logarithm problem and its variants, which is
vulnerable to quantum attack due to Shor’s algorithm [18]. Alkadri et al. [1] pre-
sented a construction from a generic lattice-based Fiat-Shamir signature scheme
to develop the first post-quantum secure signature technique with only public
key is rerandomizable. They showed how to implement the wallet scheme sug-
gested by Das et al. [8] based on the qTESLA signature [2]. However, they offered
security using a weaker model than that in Das et al. [8].

1.2 Our Contributions

The somewhat unsatisfactory state-of-affairs inspires our search for a code-based
construction of a stateful deterministic wallet. The difficulty arises from the need
for an efficient code-based signature scheme with uniquely rerandomizable keys.
[8] and [1] are the closest related works to ours. The two stateful determinis-
tic wallets presented by Das et al. [8] relied on the Discrete Logarithm Problem
(DLP) and Computational Diffie-Hellman (CDH) problem and do not guarantee
security in the quantum world due to Shor’s algorithm [18]. Alkadri et al. [1]
introduced the first post-quantum secure signature scheme with rerandomizable
public keys by presenting a construction from the lattice settings which is secure
under the Module Learning With Errors (MLWE) assumption and Module Short-
est Integer Solution with infinity norm (MSIS∞) assumption. Our contribution
in this paper can be summed up as follows:

– We initiate the study of the signature scheme with rerandomized keys in code-
based settings and develop the first code-based signature scheme Code-RSig
with rerandomized keys. Furthermore, our scheme satisfies the property of
uniquely rerandomizable keys. It is proven to achieve existential unforgeabil-
ity under chosen message attack assuming the hardness of Restricted Decision
General Decoding problem (RDGDP), Decisional Syndrome Decoding Problem
(DSDP), General Decision Syndrome Decoding problem (GDSDP) and Syn-
drome Decoding Problem (SDP) which is supported by a concrete security
analysis.

– We exploit the feature of uniquely rerandomizable keys of Code-RSig to
develop a code-based stateful deterministic wallet against wallet unlinkability
and wallet unforgeability under the hardness of RDGDP, DSDP, GDSDP and
SDP.

Table 1 compares our code-based signature scheme Code-RSig with reran-
domized keys to existing works in relation to the size of the key, the size of

572 P. Jana and R. Dutta

Table 1. Comparative analysis of signature scheme with rerandomized keys with
respect to key size, signature size and quantum security

Scheme Quantum
secure

Key Size Signature Security
|sk| |pk| |σ|

REC [8] No 1 in Zp 1 in G 2 in Zp DLP

RBLS [8] No 1 in Zp 1 in G 1 in G CDH

Lattice-RSig [1] Yes 1 in Rk1+k2
q , 1 in Rk1

q 1 in Rk1+k2
q , MLWE, MSIS∞

1 in {0, 1}�G 1 in T
m
κ

Code-RSig Yes 1 in F
s×n
2 1 in F

(n−k)×s
2 1 in F

n
2 , RDGDP, DSDP,

1 in F
s
2 GDSDP, SDP

|sk| is the size of the private key, |pk| is the size of the public key, Com. Cost is
Computation Cost, Sig. Gen. is Signature generation cost, Sig. Ver. is the Signature
Verification cost. G be a group with prime order, R = Z[x]/(f(x)) = polynomial ring
and Rq = Zq[x]/(f(x)) where q is prime and f(x) is a monic polynomial of degree
m, Rq = R/q for prime q. T

m
κ represents the subset of Rq include all polynomials

Hamming weight κ and coefficients are from {−1, 0, 1}. n, k, s, k1, k2 are integers.
CDH = Computational Diffie-Hellman, DLP = Discrete Logarithm Problem, MSIS∞ =
Module Shortest Integer Solution with infinity norm, MLWE = Module Learning With
Errors Problem, RDGDP = Restricted Decision General Decoding problem, DSDP
= Decisional Syndrome Decoding Problem, GDSDP = General Decision Syndrome
Decoding problem, SDP = Syndrome Decoding Problem.

the signature and quantum security. We compare our scheme with two Diffie-
Hellman based constructions REC and RBLS proposed by Das et al. [8] as well
as lattice-based construction given by Alkadri et al. [1]. In contrast to [8], our
scheme Code-RSig enjoys post-quantum security similar to the lattice-based sig-
nature scheme with rerandomized public keys Lattice-RSig [1]. However, Lat-
tice-RSig necessitates a large key length and signature size compared to our
candidate. Besides, this lattice-based scheme is proven to be secure in the weak
security model in the sense that the Lattice-RSig scheme only achieved indistin-
guishability between session public keys distribution and the master public key
distribution but session private keys distribution are not indistinguishable from
the distribution of the master private key. Our code-based key rerandomizable
signature scheme is secure in the strong security model proposed in [8] where the
randomized session private key and randomized session public key are identically
distributed to the master private key and the master public key respectively.

As exhibited in Table 2 our scheme outperforms Lattice-RSig in terms of com-
putation cost since Lattice-RSig scheme requires 2k1k2 multiplication over Rq and
our scheme requires 2n(n+s−k)−ks multiplication over F2. Although, in terms
of computational cost the schemes of [8] are efficient compared to our scheme
but these are not quantum secure.

2 Preliminary

An overview of the underlying mathematics is given in this section, along with
some recalls of the fundamental cryptographic building blocks.

PQ Secure Stateful Deterministic Wallet from Code-Based Signature 573

Table 2. Comparative analysis of the computational cost of the signature scheme with
rerandomized keys

Scheme Computational Cost

Signature Generation Signature Verification

REC [8] 1 exponential in G, 2 mul in G, 1 add in G,

1 inverse in Zp

2 exponential in G, 2 mul in G, 1 add in

G,1 inverse in Zp

RBLS [8] 1 exponential in G 2 pairing

Lattice-RSig [1] k1k2 mul in Rq , k2(k1 + 2) add in Rq k1k2 mul in Rq , k2(k1 + 1) add in Rq

Code-RSig n(n + s − k) mul in F2,

n(n + s − k − 1) + k add in F2

(n − k)(n + s) mul in F2,

(n − k)(n + s − 1) add in F2

Here G be a group with prime order, R = Z[x]/(f(x)) = polynomial ring, Rq = Zq [x]/(f(x)) where q is

prime and f(x) is a monic polynomial of degree m, T
m
κ represent the subset of Rq include all polynomials

Hamming weight κ and coefficients are from {−1, 0, 1}.n, k, s, k1, k2 are integers. n, k, s, k1, k2 are integers.

2.1 Notations

For an unambiguous presentation of the paper, we adopt the notations described
in Table 3.

Table 3. Notations used

Symbol Description

λ : security parameter

a
$←− A : uniformly sampling any random a from the set A

Sn
w ⊆ F

n
2 : All binary vectors with weight w and length n are included in this set

wt(x) : denotes Hamming weight of x, which is the number of 1 in the binary vector x

N(R) : the highest Hamming weight that each row of matrix R can have

dGV : Gilbert-Varshamov (GV) bound

S1||S2 : concatenation of matrices S1 and S2

Definition 2.11. The function ε(·) is said to be negligible, if for every positive
integer n, there exists an integer Nn such that for all x > Nn, |ε(x)| < 1/xn.

2.2 Basic Definition of Coding Theory

Given integers n and k, a binary linear [n, k] code C is a k-dimensional subspace
of Fn

2 . Each element of C is called a codeword. A matrix G ∈ F
k×n
2 is a generator

matrix of a linear code C if C = {mG : m ∈ F
k
2}. A matrix H ∈ F

(n−k)×n
2 is a

parity check matrix of C if C = {c ∈ F
n
2 : HcT = 0}. The syndrome of a vector

e ∈ F
n
2 under H is defined as s = HeT where s ∈ F

n−k
2 . Given an [n, k]-linear

code C over F2, the generator matrix G is under systematic form if and only if
it is of the form [Ik||P]. For every x = (x1, . . . , xn) ∈ F

n
2 the Hamming weight

wt(x) equals the number of 1 in binary vector x. N(R) denotes the row sum
norm of a matrix R in F

s×n
2 .

In [17], Pierce proved that the Gilbert-Varshamov (GV) bound is a strict
bound for almost every linear code. The lemma below comes from Tilburg [21].

574 P. Jana and R. Dutta

Lemma 2.21 (Gilbert-Varshamov (GV) bound [21]). Consider C to be an [n, k]-
linear code over Fq. The GV bound dGV is the minimum is the smallest d that
ensures

d−2∑

i=0

(
n

i

)
(q − 1)i ≥ qn−k.

Furthermore, it says

dGV = nH−1
q

(
1 − k

n

)
+ O(n), [for large n]

in which Hq(x) = −x logq(x) − (1 − x) logq(1 − x) + x logq(q − 1) denotes the
q-ary entropy function and it is invertible when restricted to [0, 1 − 1

q].

In the following, we recall some hard problems of coding theory.

Definition 2.22 (Syndrome Decoding Problem (SDP) [14]). Let n, k, wH be inte-
gers. Given a parity check matrix H ∈ F

(n−k)×n
2 and a syndrome s ∈ F

n−k
2 , the

SDP asks to find a vector e ∈ F
n
2 such that HeT = s and wt(e) ≤ wH .

Definition 2.23 (Decisional Syndrome Decoding Problem (DSDP) [20]). Let
n, k, wH be integers. Given a parity check matrix H ∈ F

(n−k)×n
2 , the DSDP asks

to distinguish the pair (H,HeT) from (H, s) with s $←− F
n−k
2 and wt(e) ≤ wH .

The syndrome decoding problem is proven to be NP-complete by Berlekamp,
McEliece and Tilborg in [4]. If wH is less than the Gilbert − V arshamov bound
then the solution to the SDP is ensured to be unique and SDP is NP hard. The
DSDP has been shown to be hard by Applebaum, Ishai and Kushilevitz in [3].

Definition 2.24 (General Decoding problem(GDP) [20]). Let wH , n, and k all
be positive integers. Given a generator matrix G ∈ F

k×n
2 of random [n, k]-linear

codes over F2 and y ∈ F
n
2 , the GDP asks to find m ∈ F

k
2 and e ∈ F

n
2 such that

wt(e) ≤ wH and y = mG + e.

Lemma 2.25 ([13]). Let n and k be positive integers. Let G ∈ F
k×n
2 be a gener-

ator matrix and H ∈ F
(n−k)×n
2 be a parity check matrix of random [n, k]-linear

codes over F2, then GDP is as hard as the SDP.

Definition 2.26 (Decision General Decoding problem(DGDP) [20]). Let wH , n
and k all be positive integers. Given a generator matrix G ∈ F

k×n
2 of random

[n, k]-linear code over F2, m ∈ F
k
2 and e ∈ F

n
2 with wt(e) ≤ wH , the DGDP asks

to distinguish the pair (G,mG + e) from (G,y) with y $←− F
n
2 .

In [13], Li et al. proved that the McEliece cryptosystems and Niederreiter cryp-
tosystems are equivalent. This, in turn, implies the GDP and the SDP are also
equivalent. In [16], the DGDP is proved as an NP-hard problem by Persichetti.

Song et al. [20] introduced the following problems and showed a reduction
to prove that these problems are as hard as some well-known hard problems in
code-based cryptography.

PQ Secure Stateful Deterministic Wallet from Code-Based Signature 575

Definition 2.27 (General Syndrome Decoding problem (GSDP) [20]). Let wH , n

and k all be positive integers. Given a parity check matrix H ∈ F
(n−k)×n
2 of a

random [n, k]-linear codes and T ∈ F
(n−k)×s
2 a random matrix, the GSDP asks

to find a matrix R ∈ F
s×n
2 such that N(R) ≤ wH and HRT = T .

Lemma 2.28 ([20]). Let wH , n and k all be positive integers. Given a parity
check matrix H ∈ F

(n−k)×n
2 of a random [n, k]-linear codes and a random matrix

T ∈ F
(n−k)×s
2 , the GSDP is as hard as the SDP problem.

Definition 2.29 (General Decision Syndrome Decoding problem (GDSDP) [20]).
Let wH , n and k all be positive integers. Given a parity check matrix H ∈
F
(n−k)×n
2 of a random [n, k]-linear codes and a random matrix R ∈ F

s×n
2 and

N(R) ≤ wH , the GDSDP asks to distinguish the pair (H,HRT) from (H,Y)

with Y
$←− F

(n−k)×s
2 .

Lemma 2.210 ([20]). Let wH , n and k all be positive integers. Given a parity
check matrix H ∈ F

(n−k)×n
2 of a random [n, k]-linear codes and a random matrix

R ∈ F
s×n
2 and N(R) ≤ w, the GDSDP is as hard as the DSDP problem.

Definition 2.211 (Restricted Decision General Decoding problem (RDGDP) [20]).
Let G be a generator matrix of a random [n, k]-linear codes and w′

H a positive

integer. If wt(mG + e) ≤ w′
H always holds for m $←− F

k
2 and e $←− Sn

wH
, then the

RDGDP asks to distinguish the pair (G,mG + e) from (G,y) with y $←− F
n
2 and

wt(y) ≤ w′
H .

Lemma 2.212 ([20]). Let G be a generator matrix of a random [n, k]-linear

codes and w′
H a positive integer. If wt(mG + e) ≤ w′

H always holds for m
$←− F

k
2

and e
$←− Sn

wH
, then RDGDP is as hard as DGDP.

3 Our Code-Based Signature Scheme with Perfectly
Rerandomizable Keys

3.1 Protocol Description

We describe below our code-based signature scheme with perfectly rerandomiz-
able keys Code-RSig leveraging the code-based Fiat-Shamir signatures scheme of
Song et al. [20] Code-Sig.

Code-RSig.Setup(1λ) → ppsgn: This algorithm is run by a trusted party on
input 1λ and returns the public parameter ppsgn as follows.
i. Chooses positive integers (n, k, r, s, �, w1, w2) ∈ N

7 such that n = �r and
�(w1+r−s)+w2 ≤ dGV where w1 and w2 represent the Hamming weight
and let dGV be the Gilbert − V arshamov bound of random [n, k]-linear
codes over F2.

576 P. Jana and R. Dutta

ii. Samples uniformly a parity check matrix H from F
(n−k)×n
2 and a keyed

weight restricted hash function H : Fn−k
2 × {0, 1}∗ → Ss

w1
.

iii. Publishes ppsgn = (n, k, r, s, �, w1, w2, dGV ,H,H).
Code-RSig.KeyGen(ppsgn) → (sk, pk): On input ppsgn, a user executes this
algorithm below and generates a private key sk and public key pk:
i. Chooses randomly systematic generator matrices E1, . . . , E� of � distinct

random [r, s]-linear codes over F2 where each Ei = [Is||Ri], Is is the
identity matrix of order s and Ri is a random matrix from F

s×(r−s)
2 for

i = 1, . . . , �, sets E = [E1|| . . . ||E�] ∈ F
s×n
2 and samples permutation

matrices P1 ∈ F
s×s
2 and P2 ∈ F

n×n
2 .

ii. Computes U = P1EP2 ∈ F
s×n
2 and V = HUT ∈ F

(n−k)×s
2 .

iii. Sets sk = U and pk = V .
iv. Publishes pk and keeps sk secret to himself.
Code-RSig.Sign(ppsgn, sk, m) → σ: By running this algorithm, a signer gen-
erates a signature σ on a message m ∈ {0, 1}∗ using public parameter ppsgn
and his private key sk = U by working as follows:
i. Samples e from Sn

w2
.

ii. Computes syndromes y = HeT ∈ F
n−k
2 and the challenge c = H(y, m) ∈

Ss
w1

.
iii. Computes the response z = cU + e ∈ F

n
2 .

iv. Outputs the signature σ = (z, c).
Code-RSig.Verify(ppsgn, pk, m, σ) → Valid/Invalid: Employing the public
parameter ppsgn and signer’s public key pk = V , a verifier verifies the sig-
nature σ on m by checking the following steps.
i. Parses σ = (z, c) ∈ F

n
2 × Ss

w1
.

ii. If wt(z) ≤ �(w1 + r − s) + w2 and H((HzT − V cT), m) = c then returns
Valid, otherwise returns Invalid. Note that, this z and a random vector z′

of weight ≤ �(w1 + r − s) + w2 in F
n
2 are indistinguishable.

Code-RSig.Randsk(ppsgn, sk, ρ) → sk′: This deterministic private key random-
ization algorithm is run by a user who takes as input the public parameter
ppsgn = (n, k, r, s, �, w1, w2, dGV ,H,H), his own private key sk =U and a ran-
domness matrix ρ = [ρ′

1|| . . . ||ρ′
�] ∈ F

s×n
2 where each ρ′

i = [Os||R′
i], Os is the

zero matrix of order s and R′
i is a random matrix from F

s×(r−s)
2 for i = 1, . . . , �

and generates a rerandomized private key sk′ = sk + ρ = U + ρ ∈ F
s×n
2 .

Code-RSig.Randpk(ppsgn, pk, ρ) → pk′: A user runs this deterministic pub-
lic key rerandomization algorithm, on input the public parameter ppsgn =
(n, k, r, s, �, w1, w2, dGV ,H,H), a public key pk = V and a randomness matrix
ρ = [ρ′

1|| . . . ||ρ′
�] ∈ F

s×n
2 where each ρ′

i = [Os||R′
i], Os is the zero matrix of

order s and R′
i is a random matrix from F

s×(r−s)
2 for i = 1, . . . , � and generates

a rerandomized public key pk′ = V ′ = V + HρT ∈ F
(n−k)×s
2 .

Remark 3.11. Let U = P1EP2 ∈ F
s×n
2 where P1 ∈ F

s×s
2 , P2 ∈ F

n×n
2 are

permutation matrices, E = [E1|| . . . ||E�] ∈ F
s×n
2 with Ei = [Is||Ri], Is is the

identity matrix of order s and Ri ∈ F
s×(r−s)
2 is a random matrix for i = 1, . . . , �.

PQ Secure Stateful Deterministic Wallet from Code-Based Signature 577

Also assume that, ρ = [ρ′
1|| . . . ||ρ′

�] ∈ F
s×n
2 where each ρ′

i = [Os||R′
i], Os is the

zero matrix of order s and R′
i ∈ F

s×(r−s)
2 is a random matrix for i = 1, . . . , �.

Then, U+ρ = P1[E′
1|| . . . ||E′

�]P2 where E′
i = [Is||Ri+P−1

1 R′
iP

−1
2] for i = 1, . . . , �.

Since Ri and R′
i both are uniformly random matrix in F

s×(r−s)
2 , implies

that Ri + P−1
1 R′

iP
−1
2 is also a uniformly random matrix in F

s×(r−s)
2 . Hence,

U + ρ = P1[E′
1|| . . . ||E′

�]P2 where E′
i = [Is||Ri + P−1

1 R′
iP

−1
2] for i = 1, . . . , � and

Ri +P−1
1 R′

iP
−1
2 is uniformly random matrix in F

s×(r−s)
2 . This implies U +ρ and

U have the same distribution.

Remark 3.12. Let the signature z = cU + e be generated by the above signa-
ture scheme where c ∈ Ss

w1
and e ∈ Sn

w2
and U = P1EP2 ∈ F

s×n
2 , P1 ∈ F

s×s
2 ,

P2 ∈ F
n×n
2 are permutation matrices, then wt(z) ≤ �(w1 + r − s) + w2.

Correctness: Our proposed scheme is correct as it satisfies the following three
requirements:

i. For all ppsgn = (n, k, r, s, �, w1, w2, dGV ,H,H) ← Code-RSig.Setup(1λ), all
(sk = U, pk = V) ← Code-RSig.KeyGen (ppsgn), all message m ∈ {0, 1}∗

and all signature σ = (z, c) ← Code-RSig.Sign(ppsgn, sk, m) we have
Code-RSig.Verify (ppsgn, pk,m, σ) = Valid which follows from the correctness
of signature scheme Code-Sig.

ii. For all ppsgn = (n, k, r, s, �, w1, w2, dGV ,H,H) ← Code-RSig.Setup(1λ), all
(sk = U, pk = V) ← Code-RSig.KeyGen(ppsgn), all message m ∈ {0, 1}∗, all
randomness matrix ρ ∈ F

s×n
2 and signature σ′ = (z′, c′) ← Code-RSig.Sign(

ppsgn, sk
′, m) where sk′ = U + ρ ←− Code-RSig.Randsk(ppsgn, sk, ρ), it holds

that Code-RSig.Verify(ppsgn, pk
′, m, σ) = Valid where pk′ = V ′ = V +HρT =

H(UT + ρT) ←− Code-RSig.Randpk(ppsgn, pk, ρ) as z′ = c′(U + ρ) + e′ with
e′ ← Sn

w2
,y′ = H(e′)T , c′ = H(y′||m) and therefore,

H(H(z′)T − V ′(c′)T), m) = H((H(c′(U + ρ) + e′)T − V ′(c′)T, m)

= H(H((UT + ρT)(c′)T) + H(e′)T − V ′(c′)T, m)

= H((V ′(c′)T + y′ − V ′(c′)T), m)
= H(y′, m)
= c′

and from Remarks 3.11 and 3.12, it follows that wt(z′) ≤ �(w1 + r − s) + w2.
iii. Consider a randomized private-public key pair (sk′ = U +ρ , pk′ = V +HρT)

which is a randomization of private-public key pair (sk = U, pk = V) ←
Code-RSig.KeyGen(ppsgn). Here U = P1EP2 ∈ F

s×n
2 , P1 ∈ F

s×s
2 , P2 ∈ F

n×n
2

are permutation matrices and E = [E1|| . . . ||E�] ∈ F
s×n
2 with Ei = [Is||Ri]

for i = 1, . . . , � and randomness matrix ρ = [ρ′
1|| . . . ||ρ′

�] ∈ F
s×n
2 where each

ρ′
i = [Os||R′

i], Os is the zero matrix of order s and R′
i ∈ F

s×(r−s)
2 is a random

matrix for i = 1, . . . , �. Hence, U+ρ = P1[E′
1|| . . . ||E′

�]P2 where E′
i = [Is||Ri+

P−1
1 R′

iP
−1
2] for i = 1, . . . , � and set E′ = E′

1|| . . . ||E′
�. Consider a freshly

578 P. Jana and R. Dutta

generated key pair (sk′′, pk′′) ← Code-RSig.KeyGen(ppsgn) where sk′′ = U1 ∈
F

s×n
2 and pk′′ = V1 = HUT

1 and let U1 = Q1FQ2 ∈ F
s×n
2 and Q1 ∈ F

s×s
2 ,

Q2 ∈ F
n×n
2 are permutation matrices and F = [F1|| . . . ||F�] ∈ F

s×n
2 with

Fi = [Is||Ai], Ai is s × (r − s) random matrix for i = 1, . . . , �. Hence, sk′ =
U + ρ = P1E

′P2 and sk′′ = U1 = Q1FQ2 are identically distributed by
Remark 3.12. Also both pk = V and pk′ = V1 are indistinguishable from
random Y

$←− F
(n−k)×s
2 under the hardness of GDSDP 2.29. Then in turn

implies that pk′ and pk′′ are identically distributed. Thus the distribution of
(sk′ , pk′) and (sk′′ , pk′′) is identical.

3.2 Security

Lemma 3.21. The proposed code-based rerandomizable signature scheme
Code-Rsig has uniquely rerandomizable public keys.

Proof. Due to page restrictions, the proof of Lemma 3.21 will appear in the full
version of the paper.

Theorem 3.22. The proposed signature scheme Code-RSig with perfectly reran-
domizable keys is secure against unforgeability under chosen message attack with
honestly rerandomized keys (UF-CMA-HRK) as the code-based signature scheme
Code-Sig is secure against existential unforgeability under adaptive chosen mes-
sage attack (UF-CMA).

Proof. The proof of Theorem 3.22 will appear in the full version of the paper.

4 Our Code-Based Stateful Deterministic Wallet

4.1 Protocol Description

This section contains the construction of a stateful deterministic wallet SDW
= (SDW.Setup, SDW.MGen, SDW.SKDer, SDW.PKDer, SDW.Sign, SDW.Verify)
leveraging our code-based signatures with key rerandomization Code-RSig pre-
sented in Sect. 3.

SDW.Setup(1λ) → ppwsgn: A trusted party executes this algorithm on input
1λ and returns the public parameter ppwsgn as follows.
i. Choose positive integers (n, k, r, s, �, w1, w2) ∈ N

7 such that n = �r and
�(w1+r−s)+w2 ≤ dGV where w1 and w2 represent the Hamming weight
and let dGV be the Gilbert-Varshamov(GV) bound of random [n, k]-linear
codes over F2.

ii. Samples uniformly H from F
(n−k)×n
2 and a keyed weight-restricted hash

function H : Fn−k
2 ×{0, 1}∗ → Ss

w1
and H1 : {0, 1}κ ×Λ → F

s×n
2 ×{0, 1}κ

where κ is polynomially depended on the security parameter λ and H is
a parity check matrix.

PQ Secure Stateful Deterministic Wallet from Code-Based Signature 579

iii. Publishes ppwsgn = (ppsgn,H1) where ppsgn = (n, k, r, s, �, w1, w2, dGV ,
H,H).

SDW.MGen(ppwsgn) → (msk,mpk, St0): On input ppwsgn, a user runs this
algorithm to generate a master private-public key pair (msk,mpk) and an
initial state St0 as follows:
i. Samples uniformly an initial state St0

$←− {0, 1}κ.
ii. Executes the Code-RSig.KeyGen(ppsgn) algorithm (see Sect. 3) to compute

the master private-public key pair as follows:
– Chooses randomly systematic generator matrices E1, . . . , E� of � dis-

tinct random [r, s]-linear codes over F2 where each Ei = [Is||Ri], Is

is s × s identity matrix and Ri is s × (r − s) matrix for i = 1, . . . , �,
sets E = [E1|| . . . ||E�] ∈ F

s×n
2 and samples permutation matrices

P1 ∈ F
s×s
2 , P2 ∈ F

n×n
2 and computes U = P1EP2 ∈ F

s×n
2 and

V = HUT ∈ F
(n−k)×s
2 .

– Sets msk = U and mpk = V .
iii. Publishes mpk and keeps msk and St0 secret to himself.
SDW.SKDer(ppwsgn, msk, id, St) −→ (skid, St′): This randomize private key
derivation algorithm is invoked by a user on input the public parameter ppwsgn

along with his master private key msk = U , his identity id ∈ Λ and current
state St and generates a session private key skid and an updated state St′ as
follows:
i. Computes H1(St, id) = (ρid, St′) where ρid ∈ F

s×n
2 and St′ ∈ {0, 1}∗.

ii. Computes a session
private key by executing Code-RSig.Randsk(ppsgn,msk, ρid) presented in
Sect. 3 as follows:

– Parses the randomness matrix ρid = [E′
1|| . . . ||E′

�] ∈ F
s×n
2 where each

E′
i = [Os||R′

i], Os is s × s zero matrix and R′
i is s × (r − s) matrix for

i = 1, . . . , �.
– Sets the rerandomized private key skid = msk + ρid = Uid (say).

iii. Keeps the session private key skid = Uid and an updated state St′ secret
to himself.

SDW.PKDer(ppwsgn, mpk, id, St) −→ (pkid, St′): This probabilistic public key
rerandomization algorithm is invoked by a user who takes as input the public
parameter ppwsgn, his master public key mpk = V ∈ F

(n−k)×s
2 , his identity id

∈ Λ, and a current state St ∈ {0, 1}κ and generates a session public key pkid
and an updated state St′ as follows:
i. Computes H1(St, id) = (ρid, St′) where ρid ∈ F

n×s
2 and St′ ∈ {0, 1}∗.

ii. Sets the session public key by executing Code-RSig.Randpk(ppsgn,
mpk, ρid) described in Sect. 3 as follows:

– Parses the randomness matrix ρid = [E′
1|| . . . ||E′

�] ∈ F
s×n
2 where each

E′
i = [Os||R′

i], Os is the zero matrix of order s and R′
i ∈ F

s×(r−s)
2 is

a random matrix for i = 1, . . . , �.
– Sets the rerandomized public key pkid = V + HρTid = HUT + HρTid =

H(U + ρid)T = Vid (say).

580 P. Jana and R. Dutta

iii. Publishes the session public key pkid ∈ F
(n−k)×s
2 and keeps the updated

state St′ ∈ {0, 1}κ secret to himself.
SDW.Sign(ppwsgn,skid, pkid, m) → σ: In this algorithm, a signer generates a
signature σ on the message m ∈ {0, 1}∗ using his session private key skid =
Uid ∈ F

s×n
2 and session public key pkid = Vid ∈ F

(n−k)×s
2 corresponding to his

identity id. By proceeding as follows:
i. Sets m = (pkid,m).
ii. Computes a signature σ on the message m by executing the algorithm

Code-RSig.Sign(ppsgn, skid,m) described in Sect. 3 as follows:

– Samples e $←− Sn
w2

.
– Computes syndrome y = HeT ∈ F

n−k
2 and the challenge c = H(y, m)

∈ Ss
w1

.
– Computes the response zid = cUid + e ∈ F

n
2 .

– Sets the signature σ = (zid, c)
iii. Returns the signature σ.
SDW.Verify(ppwsgn, pkid, m, σ) → Valid/Invalid: Employing the session public

key pkid = Vid ∈ F
(n−k)×s
2 of signer with identity id ∈ Λ, a verifier verifies the

signature σ on m ∈ {0, 1}∗. It proceeds as follows:
i. Set m = (pkid,m).
ii. Verifies the signature σ on the message m by running the algorithm Code-

RSig.Verify(ppsgn, pkid,m, σ) is presented in Sect. 3 as follows:
– Parse σ = (zid, c) ∈ F

n
2 × Ss

w1
where c = H(y, m), y = HeT and

zid = cUid + e.
– If wt(zid) ≤ �(w1 + r − s) + w2 and H(HzTid − VidcT, m) = c then

returns Valid, otherwise returns Invalid.

Correctness: The correctness of our stateful deterministic wallet from code-
based cryptography derives from the correctness of the code-based signature
scheme with perfectly rerandomizable keys described in Sect. 3.

4.2 Security

Theorem 4.21. Let A be an adversary that plays with the challenger C in the
experiment ExpWAL-UNL

SDW, A (λ) against our construction of code-based stateful deter-
ministic wallet SDW = (SDW.Setup, SDW.MGen, SDW.SKDer, SDW.PKDer,
SDW.Sign, SDW.Verify) presented above. Then

AdvWAL-UNL
SDW, A (λ) ≤ QH1(QPK + 2)

2κ

where QPK denotes the number of queries to oracle OPK(·) and QH1 denotes
the number of random oracle queries to the H1 by A.

Proof. The proof of Theorem 4.21 will appear in the full version of the paper.

PQ Secure Stateful Deterministic Wallet from Code-Based Signature 581

Theorem 4.22. Let A be an adversary that plays in the wallet unforgeability
experiment ExpWAL-UNF

SDW, A (λ) against our construction of a code-based stateful deter-
ministic wallet SDW = (SDW.Setup, SDW.MGen, SDW.SKDer, SDW.PKDer,
SDW.Sign, SDW.Verify) presented above. Let B is an adversary that plays the UF-
CMA-HRK experiment ExpUF-CMA-HRK

RSig, A (λ) against the code-based signature Code-
RSig scheme with uniquely rerandomizable keys presented in Sect. 3. Then

AdvWAL-UNF
SDW, A (λ) ≤ AdvUF-CMA-HRK

Code−RSig, B(λ) +
Q2

H1

N

where QH1 denotes the number of random oracle queries to H1 made by A and
N = 2ns.

Proof. The proof of Theorem 4.22 will appear in the full version of the paper.

5 Conclusion

Throughout this paper, we developed a secure stateful deterministic wallet
scheme from code-based cryptography. In terms of key size and signature size
our scheme Code-RSig seems well as compared to some other existing works on
the signature scheme with rerandomized keys as shown in Table 1. As compared
to the lattice-based scheme [1], our code-based key rerandomizable signature
technique is shown to be secure in the strong security model. In the near future,
it would be preferable to design constructs that are more practical and secure
by employing appropriate signature techniques from code-based cryptography.

Acknowledgements. This work is supported by the University Grants Commission,
Government of India under Grant No. 1223/(CSIRNETJUNE2019).

References

1. Alkeilani Alkadri, N., et al.: Deterministic wallets in a quantum world. In: Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1017–1031 (2020)

2. Alkim, E., Barreto, P.S.L.M., Bindel, N., Krämer, J., Longa, P., Ricardini, J.E.:
The lattice-based digital signature scheme qTESLA. In: Conti, M., Zhou, J.,
Casalicchio, E., Spognardi, A. (eds.) ACNS 2020. LNCS, vol. 12146, pp. 441–460.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57808-4 22

3. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography with constant input local-
ity. J. Cryptol. 22(4), 429–469 (2009)

4. Berlekamp, E., McEliece, R., Van Tilborg, H.: On the inherent intractability of
certain coding problems (corresp.). IEEE Trans. Inf. Theory 24(3), 384–386 (1978)

5. BLOOMBERG: “How to Steal $500 Million in Cryptocurrency”. http://fortune.
com/2018/01/31/coincheck-hack-how/

6. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. J. Cryp-
tol. 17, 297–319 (2004)

https://doi.org/10.1007/978-3-030-57808-4_22
http://fortune.com/2018/01/31/coincheck-hack-how/
http://fortune.com/2018/01/31/coincheck-hack-how/

582 P. Jana and R. Dutta

7. Buterin, V.: Deterministic Wallets, Their Advantages and Their Understated
Flaws. http://bitcoinmagazine.com/technical/deterministic-wallets-advantages-
flaw-1385450276

8. Das, P., Faust, S., Loss, J.: A formal treatment of deterministic wallets. In: Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pp. 651–668 (2019)

9. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(2), 198–208 (1983)

10. Fan, C.I., Tseng, Y.F., Su, H.P., Hsu, R.H., Kikuchi, H.: Secure hierarchical bitcoin
wallet scheme against privilege escalation attacks. Int. J. Inf. Secur. 19, 245–255
(2020)

11. Forgang, G.: Money laundering through cryptocurrencies (2019)
12. Gutoski, G., Stebila, D.: Hierarchical deterministic bitcoin wallets that tolerate key

leakage. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 497–504.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47854-7 31

13. Li, Y.X., Deng, R.H., Wang, X.M.: On the equivalence of McEliece’s and Nieder-
reiter’s public-key cryptosystems. IEEE Trans. Inf. Theory 40(1), 271–273 (1994)

14. Li, Z., Xing, C., Yeo, S.L.: A new code based signature scheme without trapdoors.
Cryptology ePrint Archive (2020)

15. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Bus.
Rev., 21260 (2008)

16. Persichetti, E.: Improving the efficiency of code-based cryptography. Ph.D. thesis,
University of Auckland (2012)

17. Pierce, J.: Limit distribution of the minimum distance of random linear codes.
IEEE Trans. Inf. Theory 13(4), 595–599 (1967)

18. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

19. Skellern, R.: Cryptocurrency hacks: More than $2 b USD lost between 2011–2018
(2018)

20. Song, Y., Huang, X., Mu, Y., Wu, W., Wang, H.: A code-based signature scheme
from the lyubashevsky framework. Theor. Comput. Sci. 835, 15–30 (2020)

21. van Tilburg, J.: Security-analysis of a class of cryptosystems based on linear error-
correcting codes (1994)

22. Turuani, M., Voegtlin, T., Rusinowitch, M.: Automated verification of electrum
wallet. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M.,
Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 27–42. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53357-4 3

23. Wiki, B.: Bip32 proposal (2018). http://en.bitcoin.it/wiki/BIP 0032

http://bitcoinmagazine.com/technical/deterministic-wallets-advantages-flaw-1385450276
http://bitcoinmagazine.com/technical/deterministic-wallets-advantages-flaw-1385450276
https://doi.org/10.1007/978-3-662-47854-7_31
https://doi.org/10.1007/978-3-662-53357-4_3
http://en.bitcoin.it/wiki/BIP_0032

Square Attacks on Reduced-Round
FEA-1 and FEA-2

Amit Kumar Chauhan1, Abhishek Kumar2,3(B),
and Somitra Kumar Sanadhya4

1 QNu Labs Private Limited, Bengaluru, India
akcindia.macs@gmail.com

2 Indian Institute of Technology Ropar, Rupnagar, India
3 Bosch Global Software Technologies Private Limited, Bengaluru, India

abhishekk.iitrpr@gmail.com
4 Indian Institute of Technology Jodhpur, Jodhpur, India

somitra@iitj.ac.in

Abstract. FEA-1 and FEA-2 are the South Korean Format-Preserving
Encryption (FPE) standards. In this paper, we discuss the security of
FEA-1 and FEA-2 against the square attacks. More specifically, we
present a three-round distinguishing attack against FEA-1 and FEA-2.
The data complexity of this three-round distinguisher is 28 plaintexts. We
use this three-round distinguisher for key recovery against four rounds
of FEA-1. The time complexity of this key recovery attacks is 2137.6, for
both 192-bit and 256-bit key sizes.

In addition, we extend the three-round distinguisher to a five-round
distinguisher for FEA-2 using the tweak schedule. We use this distin-
guisher to mount six round key recovery attack with complexity 2137.6,
for 192-bit and 256-bit key sizes.

Keywords: Format-preserving encryption · FEA · Square attacks ·
FEA-1 · FEA-2

1 Introduction

1.1 Format-Preserving Encryption (FPE)

A block cipher is a cryptographic algorithm that transforms a message to ensure
its confidentiality. In principle, the modern days block ciphers work on some
fixed-size binary strings, for example, the domain size of AES [10] and DES [8]
are 128-bit and 64-bit, respectively. In other words, these ciphers permute the
binary string data for a chosen key. The block cipher modes [13] of operations
play an important role if the message size is other than the block size.

In many practical applications, such as encryption of Credit Card Number
(CCN) or Social Security Number (SSN), the data itself is treated as an integer.
Considering the efficiency and ease of handling these data, it is preferable to
encrypt these arbitrarily domain sized data onto the same set, i.e., treating
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 583–597, 2023.
https://doi.org/10.1007/978-3-031-44274-2_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_43&domain=pdf
https://doi.org/10.1007/978-3-031-44274-2_43

584 A. K. Chauhan et al.

such data as string of digits/letters rather that string of bits. Unfortunately, the
conventional block ciphers and their modes, such as ECB, CBC, or CTR [13]
are not able to cater this purpose.

Format-Preserving Encryption (FPE) refers a symmetric-key cryptographic
primitive that transforms data of a predefined domain into itself. In other words,
FPF encrypts a sequence digits/letters into another sequence of digits/letters.
Moreover, the encrypted data has the same length as the original data. Many
financial or e-commerce applications store fixed format financial data like CCN
and such formatted data should be encrypted and treated as same format data
only for practical reasons. It implies that an encryption algorithm which works
for these applications must be a permutation over the same field. Since a con-
ventional block cipher can not fulfill this purpose, FPE schemes are in use for
this purpose.

1.2 Related Work

The history of FPE starts with the introduction of data-type preserving encryp-
tion by Brightwell and Smith [5] from the database community. The first notable
FPE solution from the cryptographic community is by Black and Rogaway [3].
This work introduced the use of Feistel construction and usability of cycle walk-
ing technique for designing a FPE schemes. Most of the popular FPE schemes
including NIST standard FF1 and FF3-1 follow the design principle of combining
cycle walking with Feistel network [1,4,14,17]. On the other hand, the feasibility
of designing substitution-permutation network (SPN) based FPE construction
is explored in [6,7,12,15].

In 2014, two different Feisel based FPE schemes FEA-1 and FEA-2 were
proposed by Lee et al. [16]. Currently, these schemes are the South-Korean FPE
standards (TTAK.KO-12.0275). The lighter round function of these schemes
results in almost double efficiency than FF1 and FF3-1 despite of more number
of rounds. The first third party analysis of FEA-1 and FEA-2 is reported by
Dunkelman et al. [11]. These attacks exploit the fact that the smallest domain
size of these schemes is 8-bit only. In this work, the authors proposed full round
distinguishing attacks for all versions of FEA-1 and FEA-2 and full round key-
recovery attacks on FEA-1 and FEA-2 with 192-bit and 256-bit key-sizes. For a
domain size N2 and number of rounds r, the time and data complexity of these
attacks are O(Nr−3) and O(Nr−4), respectively. The second analysis is based on
linear cryptanalysis of FEA-1 and FEA-2 by Tim Beyne [2]. For FEA-1, the time
and data complexity are O(Nr/2−1.5) for both distinguishing as well as message
recovery attacks. For FEA-2, distinguishing and message-recovery attack needs
O(Nr/3−1.5) and O(Nr/3−0.5) time and data, respectively.

To the best of our knowledge, apart from the above-mentioned attacks on
FEA algorithms, there does not exist any other third party analysis on FEA.
In [16], the designers analyzed the security against the square attack and claimed:
“Square attacks are not effective against the TBCs since the KSP-KSP function
with MDS diffusion layers do not admit good integral characteristics. There are
3-round integral characteristics for our TBCs for some block bit-lengths. But

Square Attacks on Reduced-Round FEA-1 and FEA-2 585

there do not seem to exist useful characteristics when the number of rounds is
greater than 4.”

1.3 Our Contribution

In this work, we present new distinguishing and key recovery attacks for FEA-1
and FEA-2. To the best of our knowledge, this is the first third-party analysis
of FEA-1 and FEA-2 based on square attacks. For FEA-1, the proposed distin-
guisher covers up to three rounds, i.e., six layers of SP functions. For FEA-2, the
proposed distinguisher can distinguish up to five rounds, i.e., ten layers of SP
functions. The data and time complexity of both distinguishers are 28 plaintexts
and encryptions, respectively. Note that we explain these distinguishing attacks
for 128-bit blocks only, but these distinguishers are valid for all block lengths
more than 16-bit long.

Moreover, we use these proposed distinguishers to mount the key recovery
attacks for both FEA-1 and FEA-2. Since both FEA-1 and FEA-2 use 128-bit
key material in each round function, this implies that the key recovery attack
can’t be extended for 128-bit key size. For 192-bit and 256-bit key sizes, only
one round extension is possible for both the FEA-1 and FEA-2. For all block
lengths equal or greater thant 16-bit, the complexities of a four round FEA-1
and six round FEA-2 key recovery attacks are 2137.6. In Table 1, we summarize
the results of square attacks for both FEA-1 and FEA-2.

Table 1. Summery of square attacks on reduced-round FEA-1 and FEA-2.

Algorithm Rounds Key Size Attack Type Complexity Ref.

FEA-1 3 - Distinguisher 28 Sect. 4.1

FEA-1 4 192/256 Key Recovery 2137.6 Sect. 5.2

FEA-2 5 - Distinguisher 28 Sect. 4.2

FEA-2 6 192/256 Key Recovery 2137.6 Sect. 5.1

It is interesting to note that for selected parameters (domain size and number
of rounds), attacks presented in this paper are more efficient than the attacks
explained in [11]. For example, the time complexity of key recovery attack of six
round FEA-2 for domain size 128-bit is 2192 as per [11]. The time complexity of
our attack for same parameters is 2137.6 (Table 1). Moreover, this work confirms
that square attacks are not really a threat for considered ciphers as the number
of rounds attacked are less than 30% of the total rounds, in all cases. However,
our analysis proves that the number of round that can be attacked using square
attack certainly goes beyond the designer’s claim for FEA-2.

1.4 Organization of the Paper

In Sect. 2, we explain the notations followed by brief introduction of square
attack. Section 3 of this paper explains brief details of FEA-1 and FEA-2. In

586 A. K. Chauhan et al.

Sect. 4, we propose the three rounds square distinguishers for FEA-1 and five
rounds square distinguishers for FEA-2. Section 5 describes the key recovery
attacks on FEA-2 and FEA-1. Finally, we conclude our work and discuss future
works in Sect. 6.

2 Preliminaries

2.1 Notations

Throughout the paper, we will use the following notations.

– |x| : Length of bit-string x.
– X[i] : (i + 1)th byte of string X.
– X

(r−1)
R : Right half input of the rth round.

– X
(r−1)
L : Left half input of the rth round.

– Rk
(r)
a and Rk

(r)
b : The rth round subkeys.

– Tr : Tweak input for the rth round.

2.2 Square Attack

For a byte oriented cipher, the square attack starts with a Λ-set that are all
different for some of the state bytes and all equal for the remaining state bytes.
The all different byte and the equal bytes are termed as ‘active’ (A) bytes and
‘passive’ (C) bytes, respectively. Further, a byte is called ‘balanced’ (B) if the
sum of all 256 values of a byte is 0 and if it is not possible to make any prediction
about the sum of all 256 values of a byte, we call it an ‘unknown’ (?) byte.

The main operations used by FEA-1 and FEA-2 are substitution layer (S),
diffusion layer (P), Key addition layer (K), tweak addition and xor (⊕). Apply-
ing the substitution layer and key addition layer results over an active/passive
byte as input, outputs an active/passive bytes. In other words, given a Λ-set as
input to substitution layer and key addition layer results in a Λ-set.

The permutation layer (P) of FEA-1 and FEA-2 is an 8 × 8 MDS matrix.
Every output byte of the permutation layer is a linear combination of all eight
input bytes. Application of permutation layer over a all passive byte input, out-
puts all passive byte outputs. An input Λ-set with a single active byte results an
output with all active bytes. Moreover, an input Λ-set with more than a single
active byte results in a all byte balanced output.

The xor of an active byte with a balanced byte results in a balanced byte.
The xor of an active byte with an active byte definitely results in a balanced
byte. Furthermore, Table 2 represents the properties of xor operation. Note that
for the tweak addition, if the tweak is a constant value an input active/passive
byte, outputs active/passive byte. For the distinguisher, we choose round tweak
as Λ-sets where one byte of the tweak is active. In such situations, if the tweak
byte as well as the state byte are active such that Λi ⊕ ti = c for 0 ≤ i ≤ 255 for
each i, the byte becomes a constant byte after tweak addition.

Square Attacks on Reduced-Round FEA-1 and FEA-2 587

Table 2. Properties of XOR operation. Here, A, B and C denotes active bytes, balanced
bytes and passive bytes respectively [18].

⊕ A B C

A B B A

B B B B

C A B C

3 Specification of FEA

FEA is a format-preserving encryption algorithm and follows the Feistel struc-
ture with tweaks. There are two variants of FEA, namely FEA-1 and FEA-2
which support the domain size in [28, . . . , 2128] and key bit-lengths 128, 192, and
256. Both FEA-1 and FEA-2 specifies two different families of tweakable block
ciphers (TBC). Table 3 represents the number of rounds defined according to the
key bit-lengths and TBC types.

Table 3. Number of rounds according to the key bit-lengths and TBC types.

Key Length FEA-1 FEA-2

128 12 18

192 14 21

256 16 24

There are three main components of both FEA-1 and FEA-2 families: the key
schedule, the tweak schedule, and the round function. In subsequent subsections,
we briefly describe these components.

3.1 Key Schedule

FEA-1 and FEA-2 both use the same key schedule. The key schedule takes the
secret key K and the block size n as inputs. Each iteration of the key sched-
ule outputs four 64-bit round keys. Each round of the encryption/decryption
needs two 64-bit sub-keys. i.e., these four round keys are used in two consecutive
rounds.

3.2 Tweak Schedule

Let n denote the block bit-length of TBC, and let n1 = �n/2� and n2 = �n/2�.
The tweak schedule for each type TBC is described next.

588 A. K. Chauhan et al.

For FEA-1, the tweak T of bit-length (128−n) is divided into two sub-tweaks
TL and TR of length 64 − n2 and 64 − n1, respectively. Then, we let T i

a = 0 for
every round, and define T i

b for the i-th round by

T i
b =

{
TL if i is odd
TR if i is even

For FEA-2, the tweak T of bit-length 128 is divided into two sub-tweaks TL

and TR of 64-bit each. Here, TL is the first 64 consecutive bits of T and TR is
the next 64 consecutive bits. Then, T i

a and T i
b for i-th round are determined as

T i
a||T i

b =

⎧⎪⎨
⎪⎩

0 if i ≡ 1 (mod 3)
TL if i ≡ 2 (mod 3)
TR if i ≡ 0 (mod 3)

3.3 Round Function

As defined in [16], the round functions are composition of Tw-KSP-KSP-Tr func-
tions. Here, Tw and Tr define round tweak addition and truncation, respectively.
The KSP defines composition of round key addition (K), substitution layer (S)
and diffusion layer (P). The substitution layer is defined as the eight parallel
same 8-bit S-boxes. The diffusion layer is defined as multiplication with an 8×8
MDS matrix M defined over the field GF(28). The round function supports
input/output bit-length in [4 . . . 64].

A complete description of the round function is depicted in Fig. 1.

Fig. 1. Round function of FEA algorithm.

4 Distinguishers for FEA Algorithms

In this section, we present three round distinguishers for both FEA-1 and FEA-
2. Additionally, we present an improved five round distinguisher for FEA-2 using
the tweak schedule. The distinguishers presented in this section are based on the
square attack, originally demonstrated for block cipher Square [9].

Square Attacks on Reduced-Round FEA-1 and FEA-2 589

4.1 Three Round Distinguishers for FEA-1 and FEA-2

Here, we present a basic three round distinguishing attack for both FEA-1 and
FEA-2. For simplicity, the block size n, chosen for the following attacks are 128-
bits for both FEA-1 and FEA-2. The corresponding tweak lengths are 0-bit for
FEA-1 and 128-bits for FEA-2 (considering the design specifications).

As shown in Fig. 2, we start with a Λ-set of 256 plaintexts such that only
first byte is active and other bytes are constant values. We then run three rounds
of FEA-1 or FEA-2, and observe that all the bytes of the left half of the third
round output are balanced.

Let X
(r−1)
L and X

(r−1)
R be the right and left inputs of the state for the rth

round, respectively. Let Tr be the tweak input for the rth round and R represents
one round of FEA-1/FEA-2. We now provide a three round distinguisher for
FEA-1/FEA-2, which is described as follows:

1. Choose a set of 256 plaintexts P = {(X(0)
L,i ,X

(0)
R,i) | 0 ≤ i ≤ 255} such that the

first byte of P is active and all other bytes are constant.
2. Set round tweaks T2 = T3 = 0 and by design specification T1 = 0 for FEA-2.

The round tweak length for FEA-1 is 0 (refer Sect. 3.2).
3. For 0 ≤ i ≤ 255:

(a) For 0 ≤ j ≤ 2:
i. Compute (X(j+1)

L,i ,X
(j+1)
R,i) from (X(j)

L,i,X
(j)
R,i, Tj):

(X(j+1)
L,i ,X

(j+1)
R,i) ← R(X(j)

L,i,X
(j)
R,i, Tj).

4. Check that all bytes of X
(3)
L are balanced.

We further describe the details of the three round distinguisher attack pro-
cedure. Start with choosing plaintexts X

(0)
L and X

(0)
R which are as follows:

X
(0)
L = (A, β2, β3, β4, β5, β6, β7, β8) (1)

X
(0)
R = (α1, α2, α3, α4, α5, α6, α7, α8), (2)

where the byte A takes all 256 values for making a Λ-set, and other bytes αi

for 1 ≤ i ≤ 8 and βj for 1 ≤ j ≤ 8 are fixed arbitrary constants.
After executing the first round on inputs (X(0)

L ,X
(0)
R), the second round

inputs X
(1)
L and X

(1)
R becomes

X
(1)
L = (α1, α2, α3, α4, α5, α6, α7, α8) (3)

X
(1)
R = (A, γ2, γ3, γ4, γ5, γ6, γ7, γ8). (4)

After applying the second round function to X
(1)
R , we expect that each byte

right output of the second round are balanced.

590 A. K. Chauhan et al.

X
(2)
L = (A, γ2, γ3, γ4, γ5, γ6, γ7, γ8) (5)

X
(2)
R = (B1, B2, B3, B4, B5, B6, B7, B8). (6)

We then apply the third round, and it can be easily observed that all the
bytes of the left half of third round output are balanced. Thus, we obtain a three
round distinguisher for both FEA-1 and FEA-2.

Fig. 2. Three round distinguisher for FEA-1.

Note that the distinguisher presented above is valid for all the domain size
in between 16-bit to 128-bit. An attacker just need to choose the tweak length
accordingly.

4.2 Five Round Distinguisher for FEA-2

We now present a five round distinguisher for FEA-2 (Fig. 2), by exploiting the
tweak scheduling algorithm. As specified in design, the tweak T is always a 128-
bit value and the process of round tweak generation is explained in Sect. 3. We
explain the attack for 128-bit block size, i.e., n = 128. However, this attack is
valid for all domain size of 16-bit or more.

Square Attacks on Reduced-Round FEA-1 and FEA-2 591

Let X
(r−1)
L , X

(r−1)
R and Tr be the right input, left inputs, and tweak for

the rth round, respectively. Now, we can construct a five round distinguisher by
suitably choosing X

(0)
L , X

(0)
R , and T2. The round tweaks T1, T3 and T4 are passive

(T1 = T4 = 0 and T3 is constant) for all 256 plaintexts. Let R represents one
round of FEA-2. We now provide a five round distinguisher for FEA-2, which is
described as follows:

1. Choose a set of 256 plaintexts P = {(X(0)
L,i ,X

(0)
R,i) | 0 ≤ i ≤ 255} such that the

first byte of P is active and all other bytes are constant.
2. Set round tweak T3 = 0. By design specification T1 = T4 = 0 and T2 = T5.
3. Set seven bytes of T2 (T2[1], T2[2], . . . , T2[7]) as constants.
4. For 0 ≤ i ≤ 255:

(a) Compute (X(1)
L,i ,X

(1)
R,i) from (X(0)

L,i,X
(0)
R,i, T1) (by applying one round of

FEA-2):

(X(1)
L,i ,X

(1)
R,i) ← R(X(0)

L,i ,X
(0)
R,i, T1).

(b) Choose T2,i[0] such that (X(1)
R,i[0] ⊕ T2,i[0]) a constant (all other bytes of

T2 are set as constants in Step 3).
(c) For 1 ≤ j ≤ 4:

i. Compute (X(j+1)
L,i ,X

(j+1)
R,i) from (X(j)

L,i,X
(j)
R,i, Tj):

(X(j+1)
L,i ,X

(j+1)
R,i) ← R(X(j)

L,i,X
(j)
R,i, Tj).

5. Check that all bytes of X
(5)
L are balanced.

A detailed description of the five round distinguising attack is provided below:
We start with a Λ-set of 256 plaintexts as input, where the first byte is active

and all other bytes are arbitrary constants, i.e.,

X
(0)
L = (A, β2, β3, β4, β5, β6, β7, β8) (7)

X
(0)
R = (α1, α2, α3, α4, α5, α6, α7, α8) (8)

After executing the first round, the first byte of X
(1)
R , i.e., X

(1)
R [0] is active

and remaining bytes are still constant values.

X
(1)
L = (α1, α2, α3, α4, α5, α6, α7, α8) (9)

X
(1)
R = (A, γ2, γ3, γ4, γ5, γ6, γ7, γ8) (10)

Here, we choose the round tweaks T2, such that the xor of the round tweaks
and the corresponding round inputs are always a constant value. Since, only the
first byte of X

(1)
R is an active byte, the corresponding tweak byte T2[0] (the first

byte of T2) is chosen active such that (X(1)
R [0]i ⊕ T2[0]i) is passive (constant

592 A. K. Chauhan et al.

value) for 0 ≤ i ≤ 255. This implies that the second round function is not active
and the left half of the output of the second round is constant, i.e., the input of
the third round is constant.

Now we extend this distinguisher for three more rounds (Fig. 3), i.e., total
five rounds, and observe that all the bytes of the left half of the fifth round
output are balanced. Thus, we obtain a distinguisher for five rounds of FEA-2.
Note that similar to the three round distinguisher, only one round function is
effectively active for five round distinguisher.

Fig. 3. Five round distinguisher for FEA-2.

Square Attacks on Reduced-Round FEA-1 and FEA-2 593

5 Key Recovery Attacks

In this section, we describe key recovery attacks on FEA-2 using the distinguish-
ers presented in the Subsect. 4.2. Firstly, we describe six round key recovery
attacks for FEA-2 using the five round distinguisher. This attack works for 192-
bit and 256-bit key-sizes of FEA-2. Further, we present a four round attack for
both 192-bit and 256-bit key-sizes of FEA-1.

5.1 Six Round Key Recovery Attack on FEA-2

We describe six round key recovery attacks for FEA-2 by using the five round
distinguisher, described in Subsect. 4.2.

5.1.1 Extension by a Round at the Beginning In order to construct this
six round key recovery attack, we append an extra round at the start of five
round distinguisher described in Subsect. 4.2. The key idea for this six round
attack is based on choosing a collection of plaintexts such that the first round
output forms a Λ-set as described in Eqs. (7) and (8). The attack is demonstrated
in Fig. 4.

In the specification of FEA-2, it is given that T1 is always 0, while we choose
T2 = 0 and T3 such that T3 ⊕ X

(2)
R is constant for every 256 values of X

(2)
R .

Step 1. Guess the all eight byte of Rk
(1)
a and Rk

(1)
b of the first round key. That

is, guess total 16-bytes of the key.

Step 2. Choose input plaintexts as

I = {(X(0)
L (i),X(0)

R (i)) | 0 ≤ i ≤ 255},

where X
(0)
R (i) = (i, β1, β2, β3, β4, β5, β6, β7) for arbitrarily chosen constants

(β1, . . . , β7) and X
(0)
L (i) = (zj(i) ⊕ αj) for 0 ≤ j ≤ 7, where αj are arbitrary

constant values for 0 ≤ i ≤ 7 and z0(i) is defined as

z0(i) = 28 · S(y0(i) ⊕ Rk
(1)
b [0]) ⊕ 1a · S(y1(i) ⊕ Rk

(1)
b [1])

⊕ 7b · S(y2(i) ⊕ Rk
(1)
b [2]) ⊕ 78 · S(y3(i) ⊕ Rk

(1)
b [3])

⊕ c3 · S(y4(i) ⊕ Rk
(1)
b [4]) ⊕ d0 · S(y5(i) ⊕ Rk

(1)
b [5])

⊕ 42 · S(y6(i) ⊕ Rk
(1)
b [6]) ⊕ 40 · S(y7(i) ⊕ Rk

(1)
b [7]). (11)

In Eq. 1, y0(i), y1(i), y2(i), y3(i), y4(i), y5(i), y6(i), y7(i) are defined as

y0(i) = 28 · S(i ⊕ Rk(1)
a [0]) ⊕ C0; y4(i) = c3 · S(i ⊕ Rk(1)

a [0]) ⊕ C4

y1(i) = 1a · S(i ⊕ Rk(1)
a [0]) ⊕ C1; y5(i) = d0 · S(i ⊕ Rk(1)

a [0]) ⊕ C5

y2(i) = 7b · S(i ⊕ Rk(1)
a [0]) ⊕ C2; y6(i) = 42 · S(i ⊕ Rk(1)

a [0]) ⊕ C6

y3(i) = 78 · S(i ⊕ Rk(1)
a [0]) ⊕ C3; y7(i) = 40 · S(i ⊕ Rk(1)

a [0]) ⊕ C7,

594 A. K. Chauhan et al.

here C0, C1, C2, C3, C4, C5, C6, C7 values depend upon the constants and other
seven key bytes of Rka.

Similarly, we can compute zj(i)’s for 1 ≤ j ≤ 7. Basically, zj(i)’s values are
the output of the round function corresponding to the inputs X

(0)
R (i), Rk

(1)
a

and Rk
(1)
b .

Step 3. If the guessed keys are the correct keys, then the right half of the sec-
ond round input (X(1)

R) consists of constant bytes αj for 0 ≤ j ≤ 7, i.e.,
X

(1)
R = (α0, α1, α2, α3, α4, α5, α6, α7).

Step 5. Use the five round distinguisher as described previously.

Step 6. Let X
(6)
L and X

(6)
R be outputs corresponding to the inputs in the set I

(see Step 2) after 6 rounds of FEA-2. If all bytes of X
(6)
L are balanced, then

we can accept guessed key as the correct key. Otherwise, go back to Step 1,
and guess another key and repeat the process.

In Step 1, we guess all eight bytes of RK
(1)
a and RK

(1)
b . That is, we guess all 16

bytes of the round key in Step 1. A wrong key can pass this test with a probability
2−64. In order to filter the wrong key, we need three Λ-sets of plaintexts as inputs.
We require 28 number of six round encryptions for each guessed key. Therefore,
the time complexity of six round attack is 3 × 28 × (28)16 ≈ 2137.6 (Fig. 4).

Fig. 4. Six round key recovery attacks on FEA-2 by adding a round in the beginning.

Square Attacks on Reduced-Round FEA-1 and FEA-2 595

Fig. 5. Six round key recovery attack of FEA-2 by extending a round at the end.

5.1.2 Extension by a Round at the End In order to construct this six
round key recovery attack, we extend the five rounds distinguisher presented in
Subsect. 4.2 by adding an extra round at the end. The attack is demonstrated
in Fig. 5.

This six round attack initiates with choosing a collection of plaintexts such
that the first round input forms a Λ-set as described in Eqs. (7) and (8). The
tweak value T1 is always 0 (by design specification), while we choose T2 such that
(T2 ⊕ X

(1)
R) is constant for every 256 values of X

(1)
R and T3 = 0. After choosing

plaintexts and the round tweaks, run six rounds of FEA-2. Let YL, YR represents
the left and right halves of six round output, respectively, i.e., X

(6)
L = YL and

X
(6)
R = YR.

In order to check the balance property at the end of the 5th round, we decrypt
the ciphertext YL, YR, by one round by guessing all the 16-bytes of round keys
Rk

(6)
a and Rk

(6)
b for all 256 ciphertexts of the set. After decrypting, check whether

the XOR of all 256 values of x
(5)
L equals zero, i.e., X

(5)
L is balanced. If X

(5)
L is

not balanced, then the guessed round key is a wrong key. Otherwise, the guessed
key is the correct key.

A wrong key can pass this test with a probability 2−64. To filter the wrong
key, we need three Λ-sets of plaintexts as inputs. We require 28 number of six
round encryptions for each guessed key. Therefore, the time complexity of six
round attack is 3 × 28 × (28)16 ≈ 2137.6.

596 A. K. Chauhan et al.

5.2 Four Round Key Recovery Attacks on FEA-1

The key recovery attacks on four rounds of FEA-1 is based on the three round
distinguisher given in Fig. 2.

Note that there is no role of tweak values for the presented three round distin-
guisher unlike the five round distinguisher of FEA-2. This allows the flexibility
of extending the rounds from both the end for the purpose of the key recov-
ery attacks. Similar to the attacks provided in Subsect. 5.1.1, the key recovery
attacks are based on choosing a set of plaintexts such that all the X

(0)
L form a

Λ-set while all the X
(0)
R remain constant bytes for all 256 values.

In order to mount the four round key recovery attack, we append extra
round at the beginning and guess all 16 bytes of the key of the first round. After
choosing the set of plaintexts and round keys, we execute three round of FEA-1.
If the guessed keys are the correct keys, all the bytes of the left half of the output
are balanced. Further, we need three or more Λ-sets of plaintexts as inputs to
filter the wrong key. Therefore, the time complexity of the four round attack is
3× 28 × (28)16 ≈ 2137.6. This attack is valid for all 192-bit and 256-bit key-sizes.

6 Conclusion and Future Works

We presented two new distinguishers for FEA-1 and FEA-2 and extended these
distinguishers to mount key-recovery attacks. In particular, we showed that the
reduced round FEA-2 is vulnerable to square cryptanalysis beyond the author’s
claims. Increasing the number of rounds or improving the efficiency of presented
distinguishing as well as key recovery attacks are open problems in this domain.
Moreover, analyzing the security strength of FEA-1/FEA-2 against other crypt-
analytic techniques are interesting line of work.

References

1. Bellare, M., Ristenpart, T., Rogaway, P., Stegers, T.: Format-preserving encryp-
tion. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS,
vol. 5867, pp. 295–312. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-05445-7 19

2. Beyne, T.: Linear cryptanalysis of FF3-1 and FEA. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12825, pp. 41–69. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-84242-0 3

3. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.)
CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45760-7 9

4. Brier, E., Peyrin, T., Stern, J.: BPS: a format-preserving encryption proposal.
Submission to NIST (2010)

5. Brightwell, M., Smith, H.: Using datatype-preserving encryption to enhance data
warehouse security. In: 20th National Information Systems Security Conference
Proceedings (NISSC), pp. 141–149 (1997)

https://doi.org/10.1007/978-3-642-05445-7_19
https://doi.org/10.1007/978-3-642-05445-7_19
https://doi.org/10.1007/978-3-030-84242-0_3
https://doi.org/10.1007/978-3-030-84242-0_3
https://doi.org/10.1007/3-540-45760-7_9
https://doi.org/10.1007/3-540-45760-7_9

Square Attacks on Reduced-Round FEA-1 and FEA-2 597

6. Chang, D., et al.: SPF: a new family of efficient format-preserving encryption algo-
rithms. In: Chen, K., Lin, D., Yung, M. (eds.) Inscrypt 2016. LNCS, vol. 10143,
pp. 64–83. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54705-3 5

7. Chang, D., Ghosh, M., Jati, A., Kumar, A., Sanadhya, S.K.: A generalized format
preserving encryption framework using MDS matrices. J. Hardw. Syst. Secur. 3(1),
3–11 (2019)

8. Coppersmith, D., Holloway, C., Matyas, S.M., Zunic, N.: The data encryption
standard. Inf. Secur. Tech. Rep. 2(2), 22–24 (1997)

9. Daemen, J., Knudsen, L., Rijmen, V.: The block cipher square. In: Biham, E. (ed.)
FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997). https://doi.
org/10.1007/BFb0052343

10. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Information Security and Cryptography. Springer, Heidelberg
(2002). https://doi.org/10.1007/978-3-662-04722-4

11. Dunkelman, O., Kumar, A., Lambooij, E., Sanadhya, S.K.: Cryptanalysis of feistel-
based format-preserving encryption. IACR Cryptol. ePrint Arch., p. 1311 (2020)

12. Durak, F.B., Horst, H., Horst, M., Vaudenay, S.: FAST: secure and high perfor-
mance format-preserving encryption and tokenization. In: Tibouchi, M., Wang, H.
(eds.) ASIACRYPT 2021. LNCS, vol. 13092, pp. 465–489. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-92078-4 16

13. Dworkin, M.: NIST Special Publication 800–38A: recommendation for block cipher
modes of operation-methods and techniques (2001)

14. Dworkin, M.: Recommendation for block cipher modes of operation: methods for
format-preserving encryption. NIST Special Publication SP 800–38G Rev. 1, 800–
38G (2019)

15. Granboulan, L., Levieil, É., Piret, G.: Pseudorandom permutation families over
abelian groups. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 57–77.
Springer, Heidelberg (2006). https://doi.org/10.1007/11799313 5

16. Lee, J.-K., Koo, B., Roh, D., Kim, W.-H., Kwon, D.: Format-preserving encryption
algorithms using families of tweakable blockciphers. In: Lee, J., Kim, J. (eds.)
ICISC 2014. LNCS, vol. 8949, pp. 132–159. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-15943-0 9

17. Spies, T.: Feistel Finite Set Encryption. NIST submission (2008). https://csrc.nist.
gov/groups/ST/toolkit/BCM/modes-development.html

18. Yeom, Y., Park, S., Kim, I.: On the security of CAMELLIA against the square
attack. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 89–99.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45661-9 7

https://doi.org/10.1007/978-3-319-54705-3_5
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-030-92078-4_16
https://doi.org/10.1007/11799313_5
https://doi.org/10.1007/978-3-319-15943-0_9
https://doi.org/10.1007/978-3-319-15943-0_9
https://csrc.nist.gov/groups/ST/toolkit/BCM/modes-development.html
https://csrc.nist.gov/groups/ST/toolkit/BCM/modes-development.html
https://doi.org/10.1007/3-540-45661-9_7

Asynchronous Silent Programmable
Matter: Line Formation

Alfredo Navarra(B) and Francesco Piselli

Dipartimento di Matematica e Informatica, Università degli Studi di Perugia,
Perugia, Italy

alfredo.navarra@unipg.it, francesco.piselli@unifi.it

Abstract. Programmable Matter (PM) has been widely investigated in
recent years. It refers to some kind of matter with the ability to change
its physical properties (e.g., shape or color) in a programmable way. One
reference model is certainly Amoebot, with its recent canonical version
(DISC 2021). Along this line, with the aim of simplification and to better
address concurrency, the SILBOT model has been introduced (AAMAS
2020), which heavily reduces the available capabilities of the particles
composing the PM. In SILBOT, in fact, particles are asynchronous, with-
out any direct means of communication (silent) and without memory of
past events (oblivious). Within SILBOT, we consider the Line formation
primitive in which particles are required to end up in a configuration
where they are all aligned and connected. We propose a simple and ele-
gant distributed algorithm – optimal in terms of number of movements,
along with its correctness proof.

Keywords: Programmable Matter · Line Formation · Asynchrony ·
Stigmergy

1 Introduction

The design of smart systems intended to adapt and organize themselves in order
to accomplish global tasks is receiving more and more interest, especially with the
technological advance in nanotechnology, synthetic biology and smart materials,
just to mention a few. Among such systems, main attention has been devoted
in the recent years to the so-called Programmable Matter (PM). This refers to
some kind of matter with the ability to change its physical properties (e.g.,
shape or color) in a programmable way. PM can be realized by means of weak
self-organizing computational entities, called particles.

In the early 90s, the interest in PM by the scientific community was mostly
theoretical. In fact, the ideas arising within such a context did not find sup-
port in technology that was unprepared for building computational devices at

A brief announcement about the results contained in this paper appears in the proceed-
ings of the 37th International Symposium on Distributed Computing (DISC) 2023 [17].
The work has been supported in part by the Italian National Group for Scientific
Computation (GNCS-INdAM).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 598–612, 2023.
https://doi.org/10.1007/978-3-031-44274-2_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44274-2_44&domain=pdf
http://orcid.org/0000-0001-8547-5934
https://doi.org/10.1007/978-3-031-44274-2_44

Asynchronous Silent Programmable Matter: Line Formation 599

micro/nanoscale. Nowadays, instead, nano-technology has greatly advanced and
the pioneering ideas on PM could find a practical realization. The production
of nano units that integrate computing, sensing, actuation, and some form of
motion mechanism are becoming more and more promising. Hence, the investi-
gation into the computational characteristics of PM systems has assumed again
a central role, driven by the applied perspective. In fact, systems based on PM
can find a plethora of natural applications in many different contexts, includ-
ing smart materials, ubiquitous computing, repairing at microscopic scale, and
tools for minimally invasive surgery. Nevertheless, the investigation on model-
ing issues for effective algorithm design, performance analysis and study on the
feasibility of foundational tasks for PM have assumed a central and challenging
role. Various models have been proposed so far for PM. One that deserves main
attention is certainly Amoebot, introduced in [10]. By then, various papers have
considered that model, possibly varying some parameters. Moreover, a recent
proposal to try to homogenize the referred literature has appeared in [8], with
the intent to enhance the model with concurrency.

One of the weakest models for PM, which includes concurrency and elimi-
nates direct communication among particles as well as local and shared memory,
is SILBOT [6]. The aim has been to investigate on the minimal settings for PM
under which it is possible to accomplish basic global tasks in a distributed fash-
ion. Actually, with respect to the Amoebot model, in SILBOT particles admit a 2
hops distance visibility instead of just 1 hop distance. Even though this does not
seem a generalization of SILBOT with respect to Amoebot, the information that
can be obtained by means of communications (and memory) in Amoebot may
concern particles that are very far apart from each other. Moreover, there are
tasks whose resolution has been shown to require just 1 hop distance visibility
even in SILBOT (see, e.g. [18]), perhaps manipulating some other parameters.
Toward this direction of simplification and in order to understand the require-
ments of basic tasks within PM, we aim at studying in SILBOT the Line forma-
tion problem, where particles are required to reach a configuration where they
are all aligned (i.e., lie on a same axis) and connected.

1.1 Related Work

The relevance of the Line formation problem is provided by the interest shown in
the last decades within various contexts of distributed computing. In graph the-
ory, the problem has been considered in [13] where the requirement was to design
a distributed algorithm that, given an arbitrary connected graph G of nodes
with unique labels, converts G into a sorted list of nodes. In swarm robotics,
the problem has been faced from a practical point of view, see, e.g. [14]. The
relevance of line or V-shape formations has been addressed in various practical
scenarios, as in [1,3,23], based also on nature observation. In fact, ants form
lines for foraging activities whereas birds fly in V-shape in order to reduce the
air resistance. In robotics, line or V-shape formations might be useful for explo-
ration, surveillance or protection activities. Most of the work on robots considers

600 A. Navarra and F. Piselli

direct communications, memory, and some computational power. For applica-
tion underwater or in the outerspace, instead, direct communications are rather
unfeasible and this motivates the investigation on removing such a capability,
see, e.g. [15,21]. Concerning more theoretical models, the aim has been usually to
study the minimal settings under which it is possible to realize basic primitives
like Line formation. In [2,20], for instance, Line formation has been investigated
for (semi-)synchronized robots (punctiform or not, i.e., entities occupying some
space) moving within the Euclidean plane, admitting limited visibility, and shar-
ing the knowledge of one axis on direction. For synchronous robots moving in 3D
space, in [22], the plane formation has been considered, which might be consid-
ered as the problem corresponding to Line formation for robots moving in 2D.
In [16], robots operate within a triangular grid and Line formation is required
as a preliminary step for accomplishing the Coating of an object. The environ-
ment as well as the movements of those robots remind PM. Within Amoebot,
Line formation has been approached in [11], subject to the resolution of Leader
Election, which is based, in turn, on communications and not on movements.

1.2 Outline

In the next section, we provide all the necessary definitions and notation, along
with the formalization of the Line formation problem. In Sect. 3, we give some
preliminary results about the impossibility to resolve Line formation within
SILBOT. Then, in Sect. 4, we provide a resolution algorithm for the case of
particles sharing a common orientation. In Sect. 5, we show a possible running
example about the proposed algorithm. In Sect. 6, we prove the correctness as
well as the optimality in terms of number of moves of the proposed algorithm.
Finally, in Sect. 7, we provide some conclusive remarks and possible directions
for future work.

2 Definitions and Notation

In this section, we review the SILBOT model for PM introduced in [5,6], and then
we formalize the Line formation problem along with other useful definitions.

In SILBOT, particles operate on an infinite triangular grid embedded in the
plane. Each node can contain at most one particle. Each particle is an automaton
with two states, contracted or expanded (they do not have any other form
of persistent memory). In the former state, a particle occupies a single node of
the grid while in the latter, the particle occupies one single node and one of the
adjacent edges, see, e.g. Figure 1. Hence, a particle always occupies one node, at
any time. Each particle can sense its surrounding up to a distance of 2 hops, i.e.,
if a particle occupies a node v, then it can see the neighbors of v, denoted by
N(v), and the neighbors of the neighbors of v. Hence, within its visibility range,
a particle can detect empty nodes, contracted, and expanded particles.

Any positioning of contracted or expanded particles that includes all
n particles composing the system is referred to as a configuration. Particles

Asynchronous Silent Programmable Matter: Line Formation 601

alternate between active and inactive periods decided by an adversarial schedule,
independently for each particle.

In order to move, a particle alternates between expanded and contracted
states. In particular, a contracted particle occupying node v can move to a
neighboring node u by expanding along edge (v, u), and then re-contracting on u.
Note that, if node u is already occupied by another particle then the expanded
one will reach u only if u becomes empty, eventually, in a successive activation.
There might be arbitrary delays between the actions of these two particles. When
the particle at node u has moved to another node, the edge between v and u
is still occupied by the originally expanded particle. In this case, we say that
node u is semi-occupied.
A particle commits itself into moving to node u by expanding in that direction.
At the next activation of the same particle, it is constrained to move to node u,
if u is empty. A particle cannot revoke its expansion once committed.

The SILBOT model introduces a fine grained notion of asynchrony with possi-
ble delays between observations and movements performed by the particles. This
reminds the so-called Async schedule designed for theoretical models dealing
with mobile and oblivious robots (see, e.g. [4,7,12]). All operations performed by
the particles are non-atomic: there can be delays between the actions of sensing
the surroundings, computing the next decision (e.g., expansion or contraction),
executing the decision.

The well-established fairness assumption is included, where each particle
must be activated within finite time, infinitely often, in any execution of the
particle system, see, e.g., [12].

Particles are required to take deterministic decisions. Each particle may be
activated at any time independently from the others. Once activated, a particle
looks at its surrounding (i.e., at 2 hops distance) and, on the basis of such an
observation, decides (deterministically) its next action.

If two contracted particles decide to expand on the same edge simultane-
ously, exactly one of them (arbitrarily chosen by the adversary) succeeds.

If two particles are expanded along two distinct edges incident to a same
node w, toward w, and both particles are activated simultaneously, exactly one
of the particles (again, chosen arbitrarily by the adversary) contracts to node w,
whereas the other particle does not change its expanded state according to the
commitment constraint described above.

A relevant property that is usually required in such systems concerns con-
nectivity. A configuration is said to be connected if the set of nodes occupied by
particles induce a connected subgraph of the grid.

Definition 1. A configuration is said to be initial, if all the particles are con-
tracted and connected.

Definition 2. [Line formation] Given an initial configuration, the Line forma-
tion problem asks for an algorithm that leads to a configuration where all the
particles are contracted, connected and aligned.

602 A. Navarra and F. Piselli

Definition 3. Given a configuration C, the corresponding bounding box of C is
the smallest parallelogram with sides parallel to the West–East and SouthWest–
NorthEast directions, enclosing all the particles.

See Fig. 1b for a visualization of the bounding box of a configuration. Note
that, in general, since we are dealing with triangular grids, there might be three
different bounding boxes according to the choice of two directions out of the
three available. As it will be clarified later, for our purposes we just need to
define one by choosing the West–East and SouthWest–NorthEast directions. In
fact, as we are going to see in the next section, in order to solve Line formation
in SILBOT, we need to add some capabilities to the particles. In particular, we
add a common orientation to the particles. As shown in Fig. 2a, all particles
commonly distinguish among the six directions of the neighborhood that by
convention are referred to as the cardinal points NW, NE, W, E, SW, and SE.

Furthermore, in order to describe our resolution algorithm, we need two
further definitions that identify where the particles will be aligned.

Definition 4. Given a configuration C, the line of the triangular grid containing
the southern side of the bounding box of C is called the floor.

Fig. 1. (a) A possible initial configuration with emphasized the floor (dashed line); (b)
a possible evolution of the configuration shown in (a) with an expanded particle. The
shaded parallelogram is the minimum bounding box containing all the particles.

Fig. 2. (a) A representation of the orientation of a particle; (b) An initial configuration
where Line formation is unsolvable within SILBOT; (c) Enumerated visible neighbor-
hood of a particle; the two trapezoids emphasize two relevant areas for the definition
of the resolution algorithm.

Asynchronous Silent Programmable Matter: Line Formation 603

Table 1. Literature on SILBOT.

Problem Schedule View Orientation Reference

Leader Election Async 2 hops no [5]
Scattering ED-Async 1 hop no [18]
Coating Async 2 hops chirality [19]
Line formation Async 2 hops yes this paper

Definition 5. A configuration is said to be final if all the particles are con-
tracted, connected and lie on floor.

By the above definition, a final configuration is also initial. Moreover, if a
configuration is final, then Line formation has been solved. Actually, it might
be the case that a configuration satisfies the conditions of Definition 2 but still
it is not final with respect to Definition 5. This is just due to the design of our
algorithm that always leads to solve Line formation on floor.

3 Impossibility Results

As shown in the previous section, the SILBOT model is very constrained in terms
of particles capabilities. Since its first appearance [6], where the Leader Election
problem has been solved, the authors pointed out the need of new assump-
tions in order to allow the resolution of other basic primitives. In fact, due to
the very constrained capabilities of the particles, it was not possible to exploit
the election of a leader to solve subsequent tasks. The parameters that can be
manipulated have concerned the type of schedule, the hop distance from which
particles acquire information, and the orientation of the particles. Table 1 sum-
marizes the primitives so far approached within SILBOT and the corresponding
assumptions. Leader Election was the first problem solved when introducing
SILBOT [5]. Successively, the Scattering problem has been investigated [18]. It
asks for moving the particles in order to reach a configuration where no two
particles are neighboring to each other. Scattering has been solved by reducing
the visibility range to just 1 hop distance but relaxing on the schedule which is
not Async. In fact, the ED-Async schedule has been considered. It stands for
Event-Driven Asynchrony, i.e., a particle activates as soon as it admits a neigh-
boring particle, even though all subsequent actions may take different but finite
time as in Async. For Coating [19], where particles are required to surround an
object that occupies some connected nodes of the grid, the original setting has
been considered apart for admitting chirality, i.e., a common handedness among
particles.

In this paper, we consider the Line formation problem, where particles are
required to reach a configuration where they are all aligned and connected. About
the assumptions, we add a common orientation to the particles to the basic
SILBOT model. The motivation for endowing the particles with such a capability
comes by the following result:

604 A. Navarra and F. Piselli

Theorem 1. Line formation is unsolvable within SILBOT, even though particles
share a common chirality.

Proof. The proof simply comes by providing an instance where Line formation
cannot be accomplished within the provided assumptions. By referring to Fig. 2b,
we note that even if particles share chirality, they are all indistinguishable. No
matter the algorithm designed for solving Line formation, an adversary may
activate all particles synchronously so that they all behave symmetrically to each
other. Hence, any action performed by a particle will be applied by all of them
in a symmetric way. It means that any reachable configuration maintains the
initial symmetry. Since a configuration solving Line formation for the provided
instance requires to distinguish a particle which lies between the other two, we
conclude that such a solution cannot be achieved. ��

Note that, the arguments provided in the proof of Theorem 1 can be extended
to any configuration where the initial symmetry is ‘not compatible’ with the
formation of a line.

Motivated by Theorem 1, we assume a common orientation to the particles.
Consequently, each particle can enumerate its neighborhood, up to distance of 2
hops, as shown in Fig. 2c. This will be useful for the definition of the resolution
algorithm. Actually, it remains open whether it is possible to design an algorithm
even when particles share just one direction instead of the full orientation.

4 Algorithm WRain

The rationale behind the name WRain of the proposed algorithm comes by the
type of movements allowed. In fact, the evolution of the system on the basis of
the algorithm mimics the behavior of particles that fall down like drops of rain
subject to a westerly wind. The Line formation is then reached on the lower
part of the initial configuration where there is at least a particle – what we have
called floor.

In order to define the resolution Algorithm WRain, we need to define some
functions, expressing properties related to a node of the grid. We make use of
the enumeration shown in Fig. 2c, and in particular to the neighbors enclosed by
the two trapezoids.

Definition 6. Given a node v, the next Boolean functions are defined:

– Upper(v) is true if at least one of the visible neighboring nodes from v at
positions {1, 2, 4, 5, 6} is occupied by a particle;

– Lower(v) is true if at least one of the visible neighboring nodes from v at
positions {13, 14, 15, 17, 18} is occupied by a particle;

– Pointed(v) is true if there exists a particle p occupying a node u ∈ N(v) such
that p is expanded along edge (u, v);

– Near(v) is true if there exists an empty node u ∈ N(v) such that Pointed(u)
is true.

Asynchronous Silent Programmable Matter: Line Formation 605

For the sake of conciseness, sometimes we make use of the above functions
by providing a particle p as input in place of the corresponding node v occupied
by p.

We are now ready to formalize our Algorithm WRain.

Algorithm 1. WRain.
Require: Node v occupied by a contracted particle p.
Ensure: Line formation.
1: if ¬Near(v) then
2: if Pointed(v) then
3: p expands toward E

4: else
5: if ¬Upper(v) ∧ Lower(v) then
6: p expands toward SE

It is worth noting that Algorithm WRain allows only two types of expan-
sion, toward E or SE. Moreover, the movement toward E can happen only when
the node v occupied by a particle is intended to be reached by another parti-
cle, i.e., Pointed(v) holds. Another remarkable property is that the algorithm
only deals with expansion actions. This is due to the constraint of the SILBOT
model that does not permit to intervene on expanded particles, committed to
terminate their movement. An example of execution of WRain starting from the
configuration of Fig. 1a is shown in the next section.

5 Running Example

In this section, we show a possible execution of Algorithm WRain, starting from
the configuration shown in Fig. 1a (or equivalently by starting directly from
the configuration shown in Fig. 3a). Being in an asynchronous setting, there are
many possible executions that could occur. In our example, we consider the
case where all the particles that can move according to the algorithm apply the
corresponding rule. It is basically an execution subject to the fully synchronous
schedule (which is a special case of Async).

From the considered configuration of Fig. 1a, Algorithm WRain allows only
the particle on top to move. In fact, considering the node v occupied by such a
particle, we have that Near(v), Pointed(v) and Upper(v) are all false, whereas
Lower(v) is true. Note that, none of the nodes occupied by the other particles
imply function Upper to be true but the leftmost for which function Lower is
false. Hence, the configuration shown in Fig. 1b is reached, eventually. After the
movement of the expanded particle, see Fig. 3a, the configuration is basically
like an initial one with contracted and connected particles. The only move-
ment occurring in initial configurations is given by Line 6 of Algorithm WRain.
In fact, when there are no expanded particles, only Line 6 can be activated,

606 A. Navarra and F. Piselli

as Line 3 requires function Pointed to be true for a node occupied by a con-
tracted particle. From the configuration of Fig. 3a, there are two particles –
the top ones, that can move according to the algorithm. If both are activated,
configuration of Fig. 3b is obtained. Successively, the rightmost expanded par-
ticle is free to move, whereas the other expanded particle allows the pointed
particle to expand, as shown in Fig. 3c, by means of Line 3 of the algorithm.

Fig. 3. A possible execution when starting from the configuration shown in Fig. 1a.

As already observed, the movement toward SE is generated by the rule at
Line 6 of Algorithm WRain, whereas the movement toward E can only be induced
by expanded particles as specified by the rule at Line 3. By keep applying the
two rules among all particles, the execution shown in the subsequent Figs. 3d–k is
obtained, hence leading to the configuration where all particles are contracted
and aligned along floor. It is worth noting that the configuration shown in Fig. 3g
is disconnected. However, as we are going to show, the possible disconnections
occurring during an execution are always recovered. In particular, in the specific
example, connectivity is recovered right after as shown in Fig. 3i.

Asynchronous Silent Programmable Matter: Line Formation 607

6 Correctness and Optimality

In this section, we prove the correctness of Algorithm WRain as well as its
optimality in terms of number of moves performed by the particles.

We prove the correctness of Algorithm WRain by showing that the four
following claims hold:

Claim 1 - Configuration Uniqueness. Each configuration generated during
the execution of the algorithm is unique, i.e., non-repeatable, after move-
ments, on the same nodes nor on different nodes;

Claim 2 - Limited Dimension. The extension of any (generated) configura-
tion is confined within a finite bounding box of sides O(n);

Claim 3 - Evolution guarantee. If the (generated) configuration is connected
and not final there always exists at least a particle that can expand or con-
tract;

Claim 4 - Connectivity. If two particles initially neighboring to each other get
disconnected, they recover their connection sooner or later (not necessarily
becoming neighbors).

The four claims guarantee that a final configuration is achieved, eventually,
in finite time, i.e., Line formation is solved. In fact, by assuming the four claims
true, we can state the next theorem.

Theorem 2. Given n contracted particles forming a connected configura-
tion, Algorithm WRain terminates in a connected configuration where all the
particles are aligned along floor.

Proof. By Claim 3 we have that from any non-final configuration reached during
an execution of WRain there is always at least one particle that moves. Hence,
by Claim 1, any subsequent configuration must be different from any already
reached configuration. However, since Claim 2 states that the area where the
particles move is limited, then a final configuration must be reached as the num-
ber of achievable configurations is finite. Actually, if we imagine a configuration
made of disconnected and contracted particles, all lying on floor, then the con-
figuration is not final according to Definition 5 but none of the particles would
move. However, by Claim 4, we know that such a type of configurations cannot
occur, and in particular, if two particles initially neighboring to each other get
disconnected, then they recover their connection, eventually. Since the initial
configuration is connected, then we are ensured that also the final configuration
is connected as well. ��

We now provide a proof for each of the above claims.

Proof (of Claim 1 - Configuration Uniqueness).
Since the movements allowed by the algorithm are toward either E or SE

only, then the same configuration on the same nodes cannot arise during an
execution as it would mean that some particles have moved toward W, NW, or
NE. Concerning the case to form the same configuration but on different nodes,

608 A. Navarra and F. Piselli

it is sufficient to note that a particle lying on a node v of floor can only move
toward E (since Lower(v) is false, cf. Line 6 of Algorithm WRain). Hence, either
none of the particles on floor move, in which case the same configuration should
appear on the same nodes – but this has been already excluded; or the same
configuration may appear if all the particles move toward E. However, based on
the algorithm, the only movement that can occur from an initial configuration
is toward SE, hence the claim holds. ��
Proof (of Claim 2 - Limited Dimension).

From the arguments provided to prove Claim 1, we already know that any
configuration obtained during an execution of WRain never overpasses floor,
defined by the initial configuration. Moreover, since the movements are toward
either E or SE only, then the northern and the western sides of the bounding box
of the initial configuration are never overpassed as well. Concerning the eastern
side, we show that this can be shifted toward east in the generated configurations
at most n times

About movements toward SE that overpass the eastern side, they cannot
happen more than n − 1 times according to Algorithm WRain. In fact, each
time it happens, the northern side moves toward south.

About the movement toward E, it requires a pushing-like process by another
particle that either comes from W or from NW. The claim then follows by observ-
ing that a particle can be pushed at most n−1 times, one for each other particle.
In fact, if a particle p is pushed toward E, then the pushing particle p′ either
comes from W or from NW, i.e., after the pushing p and p′ are on the same
WestEast axis. Hence, in order to push again p toward E, it is necessary that a
third particle, p′′ pushes p′ that in turn pushes p. This may happen, for instance,
if initially the particles are all aligned along the western side of the bounding
box. Hence, by making the union of the bounding boxes of all the configurations
obtained during an execution of WRain, the obtained box has the sides of size
upper bounded by n. ��
Proof (of Claim 3 - Evolution guarantee).

Let us assume the configuration does contain a particle p, occupying node v,
expanded toward node u. If u is empty, then p (or possibly another particle)
will reach u, eventually. If u is occupied, then the particle p′ in u – if not already
expanded, will be pushed to move toward E. In any case, there must be a
particle at the end of a chain of expanded particles that either expands itself
or moves toward the empty node toward which it is expanded. In any case, the
configuration evolves.

Let us consider then the case where all the particles are con-
tracted and connected. If all the particles lie on floor, then the con-
figuration is final. Hence, if the configuration is not final, there must
exist a particle p occupying a node v which is not on floor such that,
¬Near(v) ∧ ¬Pointed(v) ∧ ¬Upper(v) ∧ Lower(v) holds, i.e., according
to Algorithm WRain, p expands toward SE. The existence of p is guaranteed by
the fact that ¬Near(v) ∧ ¬Pointed(v) clearly holds since none of the particles

Asynchronous Silent Programmable Matter: Line Formation 609

are expanded, whereas ¬Upper(v) ∧ Lower(v) holds for at least one of the
topmost particles that of course does not admit neighboring particles on top,
but admits particles below, due to connectivity. ��
Proof (of Claim 4 - Connectivity).

Let us consider two neighboring particles p and p′ of the initial configuration.
Without loss of generality, let us assume that the two particles become discon-
nected due to the movement of p from node v to node u. In fact, expansions
do not cause disconnections as an expanded particle still maintains the node
occupied. If the movement is toward E, then we are sure there is another par-
ticle expanded toward v, i.e., v remains semi-occupied. Consequently, either p′

moves and recovers its connection with p or another particle moves to v, again
recovering the connection between p and p′. Moreover, after its movement, p
cannot move again as long as v remains semi-occupied since Near(p) is true
during that time; whereas, if p′ moves during that time (necessarily toward E or
SE), it becomes neighbor of p again.

Then, the movement of p must be toward SE. According to Algorithm WRain,
p has decided to move toward SE because: Near(v) is false, i.e., none of the
nodes in N(v) is semi-occupied; Pointed(v) is false; Upper(v) is false and in
particular the are no particles in positions {4, 5, 6} according to the enumeration
of its neighborhood shown in Fig. 2c; whereas there is at least one particle p′′

among positions {13, 15, 17, 18}. In fact, 14 must be empty as p is moving there.
Hence, the movement toward 14 makes p neighboring p′′. It follows that, if the
movement of p has caused a disconnection from p′, then p′ is in position 9, with
respect to v, that represents the connection to p before the movement. In fact,
we know that positions {5, 6} are empty, whereas the movement to 14 maintains
p neighboring with {10, 13}, i.e., only the connection to 9 can get lost. Hence,
p′ makes Upper(p) true, and p makes Lower(p′) true. It follows that p won’t
move anymore unless another particle p (possibly arriving successively) pushes
it from v or from 13. In either cases, p connects p with p′. If p doesn’t move
before p′, then p′ must move, eventually. In fact, this happens as soon as either
it is pushed or the Upper function evaluated from 9 becomes false. By Claims
1, 2 and 3, this must happen, eventually, since the configuration is not final. ��

We are now ready to prove the optimality of Algorithm WRain in terms of
number of total moves performed by the robots.

Lemma 1. Given n contracted particles forming a connected configuration,
Algorithm WRain terminates within O(n2) movements.

Proof. In order to prove the lemma, it suffices to remark that any particle moves
at most n − 1 times toward E and n − 1 times toward SE, hence obtaining a
number of total movements upper bounded by O(n2). ��
Theorem 3. Algorithm WRain is asymptotically optimal in terms of number of
movements.

610 A. Navarra and F. Piselli

Proof. As proven in [11], Line formation requires Ω(n2) movements. That proof
simply comes by assuming the initial configuration formed by n particles com-
posing a connected structure of diameter at most 2

√
n + 2 (e.g., if they form

a hexagonal or square shape), and then summing up all the necessary move-
ments required to reach a configuration where particles form a line. Hence, by
combining such a result with Lemma 1, the claim holds. ��

7 Conclusion

We investigated on the Line formation problem within PM on the basis of the
SILBOT model. With the aim of considering the smallest set of assumptions, we
proved how chirality was not enough for particles to accomplish Line formation.
We then endowed particles with a common sense of direction and we proposed
WRain, an optimal algorithm – in terms of number of movements, for solving
Line formation. Actually, it remains open whether by assuming just one common
direction is enough for solving the problem. Furthermore, although in the original
paper about SILBOT [5] it has been pointed out that 1 hop visibility is not enough
for solving the Leader Election, it is worth investigating what happens for Line
formation.

Other interesting research directions concern the resolution of other basic
primitives, the formation of different shapes or the more general pattern forma-
tion problem. Also variants on the original SILBOT model deserve main atten-
tion. As shown in Table 1, small modifications to the original model may allow the
resolution of challenging tasks. It would be interesting, for instance, to under-
stand what might change if expanded particles are allowed to revoke from
their commitment on moving forward, i.e., if algorithms could deal also with
expanded particles.

Furthermore, adding a few bits of visible memory like allowing the particles
to assume different states other than contracted and expanded, or being
endowed with visible lights similar to those studied in robot systems as in [9],
might reveal higher potentials for PM.

References

1. Cai, H., Guo, S., Gao, H.: A dynamic leader-follower approach for line marching
of swarm robots. Unmanned Syst. 11(01), 67–82 (2023)

2. Castenow, J., Götte, T., Knollmann, T., Meyer auf der Heide, F.: The max-line-
formation problem. In: Johnen, C., Schiller, E.M., Schmid, S. (eds.) SSS 2021.
LNCS, vol. 13046, pp. 289–304. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-91081-5_19

3. Chaudhuri, S.G.: Flocking along line by autonomous oblivious mobile robots. In:
Hansdah, R.C., Krishnaswamy, D., Vaidya, N.H., (eds.) Proceedings of the 20th
International Conference on Distributed Computing and Networking (ICDCN), pp.
460–464. ACM (2019)

4. Cicerone, S., Di Stefano, G., Navarra, A.: A structured methodology for designing
distributed algorithms for mobile entities. Inf. Sci. 574, 111–132 (2021)

https://doi.org/10.1007/978-3-030-91081-5_19
https://doi.org/10.1007/978-3-030-91081-5_19

Asynchronous Silent Programmable Matter: Line Formation 611

5. D’Angelo, G., D’Emidio, M., Das, S., Navarra, A., Prencipe, G.: Asynchronous
silent programmable matter achieves leader election and compaction. IEEE Access
8, 207619–207634 (2020)

6. D’Angelo, G., D’Emidio, M., Das, S., Navarra, A., Prencipe, G.: Leader election
and compaction for asynchronous silent programmable matter. In: Proceedings of
the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 276–284. International Foundation for Autonomous Agents and
Multiagent Systems (2020)

7. D’Angelo, G., Di Stefano, G., Navarra, A., Nisse, N., Suchan, K.: Computing on
rings by oblivious robots: a unified approach for different tasks. Algorithmica 72(4),
1055–1096 (2015)

8. Daymude, J.J., Richa, A.W., Scheideler, C.: The canonical Amoebot model: algo-
rithms and concurrency control. In: 35th International Symposium on Distributed
Computing, DISC 2021, vol. 209 of LIPIcs, pp. 20:1–20:19 (2021)

9. D’Emidio, M., Di Stefano, G., Frigioni, D., Navarra, A.: Characterizing the com-
putational power of mobile robots on graphs and implications for the Euclidean
plane. Inf. Comput. 263, 57–74 (2018)

10. Derakhshandeh, Z., Dolev, S., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann,
T.: Brief announcement: Amoebot - a new model for programmable matter. In:
Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Archi-
tectures, (SPAA), pp. 220–222. ACM (2014)

11. Derakhshandeh, Z., Gmyr, R., Strothmann, T., Bazzi, R., Richa, A.W., Scheideler,
C.: Leader election and shape formation with self-organizing programmable matter.
In: Phillips, A., Yin, P. (eds.) DNA 2015. LNCS, vol. 9211, pp. 117–132. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21999-8_8

12. Flocchini, P., Prencipe, G., Santoro, N. (eds.): Distributed computing by mobile
entities, current research in moving and computing, vol. 11340. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-11072-7

13. Gall, D., Jacob, R., Richa, A.W., Scheideler, C., Schmid, S., Täubig, H.: A note on
the parallel runtime of self-stabilizing graph linearization. Theory Comput. Syst.
55(1), 110–135 (2014)

14. Jeong, D., Lee, K.: Dispersion and line formation in artificial swarm intelligence. In:
Proceedings of the 20th International Conference on Collective Intelligence (2014)

15. Jiang, Z., Wang, X., Yang, J.: Distributed line formation control in swarm robots.
In: IEEE International Conference on Information and Automation (ICIA), pp.
636–641. IEEE (2018)

16. Kim, Y., Katayama, Y., Wada, K.: Pairbot: a novel model for autonomous mobile
robot systems consisting of paired robots (2020)

17. Navarra, A., Piselli, F.: Line formation in silent programmable matter. In: Pro-
ceedings of the 37th International Symposium on Distributed Computing (DISC),
LIPIcs (2023)

18. Navarra, A., Prencipe, G., Bonini, S., Tracolli, M.: Scattering with programmable
matter. In: Barolli, L. (ed.) AINA 2023. LNCS, vol. 661, pp. 236–247. Springer,
Cham (2023). https://doi.org/10.1007/978-3-031-29056-5_22

19. Piselli, F.: Silent programmable matter: Coating. Master’s thesis, University of
Perugia, Italy (2022)

20. Sil, A., Chaudhuri, S.G.: Formation of straight line by swarm robots. In: Mandal,
J.K., Mukherjee, I., Bakshi, S., Chatterji, S., Sa, P.K. (eds.) Computational Intel-
ligence and Machine Learning. AISC, vol. 1276, pp. 99–111. Springer, Singapore
(2021). https://doi.org/10.1007/978-981-15-8610-1_11

https://doi.org/10.1007/978-3-319-21999-8_8
https://doi.org/10.1007/978-3-030-11072-7
https://doi.org/10.1007/978-3-031-29056-5_22
https://doi.org/10.1007/978-981-15-8610-1_11

612 A. Navarra and F. Piselli

21. Sousselier, T., Dréo, J., Sevaux, M.: Line formation algorithm in a swarm of reactive
robots constrained by underwater environment. Expert Syst. Appl. 42(12), 5117–
5127 (2015)

22. Yamauchi, Y., Uehara, T., Kijima, S., Yamashita, M.: Plane formation by syn-
chronous mobile robots in the three-dimensional Euclidean space. J. ACM, 64(3),
16:1–16:43 (2017)

23. Yang, J., Wang, X., Bauer, P.: Line and V-shape formation based distributed
processing for robotic swarms. Sensors 18(8), 2543 (2018)

Author Index

A
Abdelgawad, Mahmoud 498
Afeaneku, Winfred 52
Alpos, Orestis 536
Altisen, Karine 1, 18
Amir, Talley 400
Anderson, James 240
Aradhya, Vijeth 191
Asahiro, Yuichi 312
Asif, Asif Uz Zaman 481
Aspnes, James 400

B
Belel, Anushree 274
Berns, Andrew 52
Bhardwaj, Gaurav 106, 435
Birman, Ken 172
Bramas, Quentin 380, 451, 466
Brown, Trevor 36

C
Cachin, Christian 536, 552
Chatterjee, Bapi 435
Chauhan, Amit Kumar 583
Chlebus, Bogdan S. 207
Cicerone, Serafino 385
Coccimiglio, Gaetano 36

D
Dabush, Lital 240
Das, Bibhuti 359
Devismes, Stéphane 1, 18
Di Fonso, Alessia 385
Di Stefano, Gabriele 385
Dutta, Ratna 274, 568

E
Eguchi, Ryota 297

G
Gafni, Eli 62
Garg, Vijay K. 126
Georgiou, Chryssis 518
Georgiou, Konstantinos 157
Ghosh, Satakshi 374, 430
Gilbert, Seth 191
Goswami, Pritam 374, 430
Gupta, Arya Tanmay 141

H
Habib, Michel 344
Hobor, Aquinas 191
Hu, Changyong 126

I
Inoue, Michiko 297

J
Jahier, Erwan 1, 18
Jain, Abhay 435
Jana, Pratima 568
Jha, Sagar 172

K
Kallimanis, Nikolaos D. 90
Kamei, Sayaka 451
Kanellou, Eleni 90
Kim, Jip 240
Kiosterakis, Charidimos 90
Kowalski, Dariusz R. 207
Kshemkalyani, Ajay D. 57, 111
Kuchenberg, Weston 52
Kulkarni, Sandeep S. 141
Kumar, Abhishek 583
Kundu, Somnath 157

L
Lamani, Anissa 451
Lange, Christof 259

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
S. Dolev and B. Schieber (Eds.): SSS 2023, LNCS 14310, pp. 613–614, 2023.
https://doi.org/10.1007/978-3-031-44274-2

https://doi.org/10.1007/978-3-031-44274-2

614 Author Index

Lehnherr, David 552
Leisinger, Sara 52
Levin, Leonid A. 513
Liagkou, Vasiliki 90
Liu, Cedric 52
Losa, Giuliano 62
Luttringer, Jean-Romain 466

M
Mandal, Partha Sarathi 414
Masuzawa, Toshimitsu 380
Milano, Mae 172
Misra, Anshuman 57, 111
Morgenstern, Gal 240
Mukhopadhyay, Sourav 274
Mukhopadhyaya, Krishnendu 359

N
Navarra, Alfredo 385, 598
Nguyen, Minh-Hang 344
Nugroho, Saptadi 75

O
Olkowski, Jan 207
Olkowski, Jędrzej 207
Ooshita, Fukuhito 297

P
Pattanayak, Debasish 414
Peri, Sathya 106, 435
Petrlic, Ronald 259
Piselli, Francesco 598
Prałat, Paweł 157

R
Rabie, Mikaël 344
Ravi, Srivatsan 36
Ray, Indrakshi 481, 498

Raynal, Michel 518
Rosa, Lorenzo 172
Routtenberg, Tirza 240

S
Saha, Dhiman 223
Sanadhya, Somitra Kumar 583
Sant’Anna, Gabriel B. 18
Sau, Buddhadeb 374, 430
Schiller, Elad M. 518
Schindelhauer, Christian 75
Seike, Hirokazu 328
Sharma, Avisek 374, 430
Sharma, Gokarna 414
Shetty, Pratik 106
Shirazi, Hossein 481
Song, Weijia 172
Studer, Thomas 552
Suryawanshi, Sahiba 223

T
Tixeuil, Sébastien 297, 380, 451, 466
Tremel, Edward 172
Trivedi, Devharsh 289

V
Vasquez, Tomas 498
Viennot, Laurent 344

W
Weinmann, Alexander 75

Y
Yamashita, Masafumi 312
Yamauchi, Yukiko 328

Z
Zussman, Gil 240

	 Preface
	 Organization
	 Contents
	Exploring Worst Cases of Self-stabilizing Algorithms Using Simulations
	1 Introduction
	2 Exploring Daemons
	3 Exploring Initial Configurations
	3.1 Assessing Initial Configurations
	3.2 Local Search

	4 Conclusion
	References

	Model Checking of Distributed Algorithms Using Synchronous Programs
	1 Introduction
	2 The Atomic-State Model
	3 The Synchronous Programming Model
	4 From ASM Processes to Synchronous Nodes
	5 ASM Algorithms Verification via Synchronous Observers
	6 salut: Self-stabilizing Algorithms in LUsTre
	7 Automatic Formal Verification
	8 Experimentations
	9 Conclusion
	References

	The Fence Complexity of Persistent Sets
	1 Introduction
	2 Lower Bounds
	3 Upper Bounds
	3.1 Our Persistent List Implementations

	4 Evaluation
	5 Discussion
	References

	Brief Announcement: Understanding Self-stabilizing Node-Capacitated Overlay Networks Through Simulation
	1 Introduction
	2 The Node-Capacitated Overlay Network Model
	3 Simulation
	4 Results and Discussion
	4.1 Convergence Time vs. Node Capacity
	4.2 Convergence Time vs. Message Sending Limit

	5 Conclusion
	References

	Brief Announcement: Byzantine-Tolerant Detection of Causality in Synchronous Systems
	1 Introduction
	2 System Model
	3 Problem Formulation and a Brief Overview of Solutions
	References

	Invited Paper: Time Is Not a Healer, but It Sure Makes Hindsight 20:20
	1 Introduction
	1.1 Four Equivalent Models
	1.2 The New Impossibility Proof

	2 The Models
	2.1 Simulations and Colorless Tasks

	3 Model Equivalences
	3.1 Fail-to-send = fail-to-receive
	3.2 FLP = fail-to-receive

	4 Impossibility of Consensus in the Fail-To-Send Model
	5 Related Work
	References

	Adding Pull to Push Sum for Approximate Data Aggregation
	1 Introduction
	2 Related Work
	3 Model
	4 Algorithms
	5 Experiments and Analysis
	6 Conclusion
	References

	Exploring Trade-Offs in Partial Snapshot Implementations
	1 Introduction
	1.1 Related Work

	2 Model
	3 1-Snap
	3.1 A Partial Version of 1-Snap

	4 -Snap
	4.1 A Partial Version of -Snap

	5 Discussion
	References

	Brief Announcement: Non-blocking Dynamic Unbounded Graphs with Wait-Free Snapshot
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries and ADT
	2.1 The Abstract Data Type (ADT)

	3 Design and Algorithm
	3.1 Graph Point Operations
	3.2 Graph Snapshot Operation

	4 Experiments and Results
	References

	Byzantine Fault-Tolerant Causal Order Satisfying Strong Safety
	1 Introduction
	2 System Model
	3 Some Cryptographic Basics
	4 Reliable Broadcast and Atomic (Total Order) Broadcast Properties
	5 Causal Order Unicast in a Synchronous System
	6 Causal Order Multicast for an Asynchronous System
	6.1 Adaptations to Special Cases

	7 Discussion
	References

	Improved Paths to Stability for the Stable Marriage Problem
	1 Introduction
	2 Proposal Vector Lattice
	3 Algorithm
	4 Algorithm : Downward Traversal
	5 Algorithm : Path to Stability
	References

	Lattice Linearity of Multiplication and Modulo
	1 Introduction
	1.1 Contributions of the Paper
	1.2 Organization of the Paper

	2 Preliminaries
	2.1 Modeling Distributed Programs
	2.2 Execution Without Synchronization
	2.3 Embedding a <-Lattice in Global States
	2.4 Lattice Linear Problems

	3 Related Work
	4 Parallelized Karatsuba's Multiplication Operation
	4.1 Key Idea of the Sequential Karatsuba's Algorithm ch12Karatsuba1962
	4.2 The CM Parallelization ch12Cesari1996 for Karatsuba's Algorithm
	4.3 Lattice Linearity

	5 Parallel Processing Modulo Operation
	5.1 Lattice Linearity
	5.2 Time Complexity Analysis

	6 Conclusion
	References

	The Fagnano Triangle Patrolling Problem (Extended Abstract)
	1 Introduction
	2 Related Work
	3 Main Definitions and Results
	3.1 Main Contributions and More Terminology

	4 The 1-Gap Optimal 3-Periodic Cyclic Schedule
	5 Technical Properties of the Orthic Patrolling Schedule
	6 The Optimal 2-Gap Cyclic Schedules
	7 The 1-Gap Optimal Schedule
	8 The Greedy Cyclic Algorithm
	9 Discussion
	References

	Invited Paper: Monotonicity and Opportunistically-Batched Actions in Derecho
	1 The Design of RDMA-Friendly Protocols
	1.1 Revisiting an Old Model
	1.2 Effectively-Common Knowledge

	2 Deep Dive: Shared State Table
	3 Using Logic to Reason About Protocols
	4 Implications for Other Systems
	5 Conclusion
	References

	Robust Overlays Meet Blockchains
	1 Introduction
	2 Related Works
	3 Model
	4 Overlay Design and Algorithms (Stable Network Size)
	5 Extension to Dynamic Network Size
	6 Recovery
	7 Lower Bound for Half-Life
	References

	Disconnected Agreement in Networks Prone to Link Failures
	1 Introduction
	2 Preliminaries
	3 Fast Agreement
	4 General Agreement with Short Messages
	5 Agreement with Linear Messages
	6 Early Stopping Agreement
	7 Optimizing Link Use
	8 Conclusion
	References

	Where Are the Constants? New Insights on the Role of Round Constant Addition in the SymSum Distinguisher
	1 Introduction
	2 Preliminaries
	3 Investigating Commutativity of Round-Constant Addition with the Linear and Non-linear Operation
	3.1 Algebraic Structure of Type-LNC SPN Cipher
	3.2 Algebraic Structure of Type-LCN SPN Cipher
	3.3 Algebraic Structure of Type-CLN SPN Cipher

	4 Concrete Applications of Type-LNC Xoodoo/Xoodyak-Hash
	4.1 Multi-dimensional-Symmetric State
	4.2 Distinguishing Attack Using Symmetric Property in Xoodoo
	4.3 Extending the Distinguisher on Xoodoo Using Linearization
	4.4 Adapting the Distinguisher on Xoodyak-Hash

	5 Experimental Verification
	6 Conclusion
	A Xoodoo Permutation ch17DaemenHAK18
	B Xoodyak-Hash ch17DaemenHPAK20
	References

	Invited Paper: Detection of False Data Injection Attacks in Power Systems Using a Secured-Sensors and Graph-Based Method
	1 Introduction
	2 Model
	3 GSP-Based FDI Detection with Secured Sensors
	3.1 SSGL-MLE
	3.2 SSGL-GLRT
	3.3 Special Cases
	3.4 General Graph High Pass Filter (GHPF)

	4 Distributed Detection
	4.1 Distributed PSSE
	4.2 Distributed SSGL-GLRT and GL-GLRT

	5 Simulations: IEEE 57-Bus Test Case
	6 Conclusions
	References

	KerberSSIze Us: Providing Sovereignty to the People
	1 Introduction
	2 Background
	2.1 Kerberos
	2.2 Self-Sovereign Identity (SSI)

	3 Requirement Analysis
	3.1 Requirements

	4 Concept
	4.1 Assumptions
	4.2 Merging of Kerberos and SSI Components
	4.3 Authorization
	4.4 New Pre-authentication Type
	4.5 AS_REP Protection and KDC Authenticity
	4.6 Protocol in Detail

	5 Implementation
	5.1 Components
	5.2 Issuance of Credentials
	5.3 Start of the Login
	5.4 Proof of the Identity with VP
	5.5 Receiving the TGT

	6 Evaluation
	6.1 Security Evaluation
	6.2 Comparison to Standard Kerberos

	7 Related Work
	8 Conclusion and Outlook
	References

	Hierarchical Identity-Based Inner Product Functional Encryption for Unbounded Hierarchical Depth
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Unbounded Hierarchical Identity-Based Inner Product Functional Encryption
	2.3 Symmetric Bilinear Map and Hardness Assumption

	3 Construction of UHID-IPFE
	4 Security Analysis
	5 Conclusion
	References

	Brief Announcement: Efficient Probabilistic Approximations for Sign and Compare
	1 Introduction
	2 Approximation Library
	3 Comparison Approximation
	3.1 Calculated Approximation
	3.2 Direct Approximation

	4 Conclusion
	References

	Meeting Times of Non-atomic Random Walks
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Organization of Paper

	2 Preliminaries
	3 Impossibility Results
	4 An Upper Bound for Non-atomic Meeting Time
	4.1 Hitting Time of States and Triangle Property
	4.2 Hidden States
	4.3 Main Argument

	5 Discussion
	6 Conclusion
	References

	Minimum Algorithm Sizes for Self-stabilizing Gathering and Related Problems of Autonomous Mobile Robots (Extended Abstract)
	1 Introduction
	2 Preliminaries
	3 C-Scattering Problem
	4 C-Gathering Problem
	5 Pattern Formation Problem
	6 Fault Tolerant Scattering Problems
	7 Fault Tolerant Gathering Problems
	8 Conclusions
	References

	Separation of Unconscious Colored Robots
	1 Introduction
	2 Preliminary
	3 Separation into Points
	4 Separation into Circles for Two Colors
	4.1 Overview of the Proposed Algorithm
	4.2 First Phase
	4.3 Second Phase
	4.4 Third Phase
	4.5 Combining the Phases

	5 Conclusion
	References

	Forbidden Patterns in Temporal Graphs Resulting from Encounters in a Corridor
	1 Introduction
	1.1 Motivation
	1.2 Our Contribution
	1.3 Related Works
	1.4 Roadmap

	2 Preliminaries and Mobility Model
	2.1 Temporal Graphs and Forbidden Patterns
	2.2 1D-Mobility Model
	2.3 Reduced Decomposition of a Permutation

	3 1D-Mobility Temporal Cliques
	3.1 Characterization
	3.2 Recognition Algorithm
	3.3 Counting
	3.4 Temporal Spanner

	4 Mobility Graph with at Most One Crossing
	5 Multi-crossing Mobility Model
	6 Conclusion and Perspectives
	References

	Uniform k-Circle Formation by Fat Robots
	1 Introduction
	1.1 Related Works

	2 The Model, Notations and Definitions
	3 Impossibility Results
	4 Algorithm
	4.1 Overview
	4.2 DownwardMovement
	4.3 PivotSelection
	4.4 CircleFormation
	4.5 AlgorithmFatRobot

	5 Correctness
	References

	Brief Announcement: Rendezvous on a Known Dynamic Point in a Finite Unoriented Grid
	1 Introduction
	2 Model and Problem Definition
	2.1 Model
	2.2 Problem Definition

	3 Some Results and Overview of the Algorithm
	4 Conclusion
	References

	Brief Announcement: Crash-Tolerant Exploration by Energy Sharing Mobile Agents
	1 Introduction
	2 Model
	3 Crash-Tolerant Algorithms for Two Energy-Sharing Agents in Ring Shaped Networks
	References

	Time-Optimal Geodesic Mutual Visibility of Robots on Grids Within Minimum Area
	1 Introduction
	2 The Robot Model and the Addressed Problem
	3 Notation and Preliminary Concepts
	4 A Resolving Algorithm for GMVarea
	4.1 High Level Description of the Algorithm
	4.2 Detailed Description of the Tasks
	4.3 Formalization of the Algorithm
	4.4 Main Result

	5 Symmetric Configurations and Infinite Grids
	6 Conclusion
	References

	Privacy in Population Protocols with Probabilistic Scheduling
	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 Preliminaries
	3 Adversarial Model
	4 Definitions of Input Privacy
	4.1 Output Independent Privacy
	4.2 Definitions of Privacy Under Probabilistic Schedules

	5 Private Remainder with Adversarial Scheduling
	6 Private Remainder with Probabilistic Scheduling
	6.1 Secure Peer-to-Peer Transfer
	6.2 Probing Protocol
	6.3 Remainder with Information-Theoretic Privacy

	7 Conclusion
	References

	Dispersion of Mobile Robots in Spite of Faults
	1 Introduction
	2 Model and Preliminaries
	3 O(min{m,k})-Round Algorithm
	3.1 Analysis of the Algorithm

	4 O(min{m,k})-Round Algorithm
	5 Concluding Remarks
	References

	Brief Announcement: Asynchronous Gathering of Finite Memory Robots on a Circle Under Limited Visibility
	1 Introduction
	2 Robot Model
	3 Definitions and Preliminaries
	4 Discussion of the Algorithm and Correctness
	5 Conclusion
	References

	Wait-Free Updates and Range Search Using Uruv
	1 Introduction
	2 Preliminaries
	2.1 Basics of Uruv's Lock-Free Linearizable Design

	3 Lock-Free Algorithm
	3.1 The Structures of the Component Nodes
	3.2 Versioned Linked-List
	3.3 Traversal and Proactive Maintenance in Uruv
	3.4 ADT Operations

	4 Wait-Free Construction
	5 Correctness and Progress Arguments
	5.1 Linearization Points

	6 Experiments
	7 Related Work
	8 Conclusion
	References

	Stand-Up Indulgent Gathering on Lines
	1 Introduction
	1.1 Context and Motivation
	1.2 Related Works
	1.3 Our Contribution

	2 Model
	3 Stand Up Indulgent Rendezvous
	4 Stand Up Indulgent Gathering
	4.1 Impossibility Results
	4.2 Algorithm AL
	4.3 Proof of the Correctness

	5 Concluding Remarks
	References

	Offline Constrained Backward Time Travel Planning
	1 Introduction
	2 Model
	3 Backward-Cost Function Classes
	4 Offline C-Cost-Constrained ODOC Algorithm
	5 Offline H-History-Constrained ODOC Algorithm
	6 Conclusion
	References

	Machine Learning-Based Phishing Detection Using URL Features: A Comprehensive Review
	1 Introduction
	2 Malicious URLs
	3 Feature Extraction
	4 Algorithms
	4.1 Classification Using Machine Learning
	4.2 Classification Using Deep Learning

	5 Dataset
	6 Experimental Evaluations and Survey Findings
	7 Conclusions
	References

	Workflow Resilience for Mission Critical Systems
	1 Introduction
	2 Background
	2.1 Workflow Definition
	2.2 Coloured Petri Nets (CPN)

	3 Motivating Example
	4 Workflow to CPN Transformation Rules
	5 Resiliency Analysis
	6 Related Work
	7 Conclusion
	References

	Invited Paper: How Do Humans Succeed in Tasks Like Proving Fermat's Theorem or Predicting the Higgs Boson?
	References

	Self-stabilizing Byzantine-Tolerant Recycling
	1 Introduction
	2 Basic Result: Recyclable SSBFT Consensus Objects
	3 System Settings for the Recycling Mechanism
	4 SSBFT Recycling Mechanism
	5 Conclusion
	References

	Do Not Trust in Numbers: Practical Distributed Cryptography with General Trust
	1 Introduction
	1.1 Motivation
	1.2 State of the Art
	1.3 Contributions
	1.4 Related Work

	2 Background and Model
	3 Specifying and Encoding the Trust Assumptions
	4 Verifiable Secret Sharing
	5 Common Coin
	6 Evaluation
	6.1 Benchmarking Basic Properties of the MSP
	6.2 Running Time of Verifiable Secret Sharing
	6.3 Running Time of Common Coin

	7 Conclusion
	References

	Synergistic Knowledge
	1 Introduction
	2 Indistinguishability
	3 Logic
	4 Examples
	5 Communication
	6 Conclusion
	References

	Post-quantum Secure Stateful Deterministic Wallet from Code-Based Signature Featuring Uniquely Rerandomized Keys
	1 Introduction
	1.1 Related Works
	1.2 Our Contributions

	2 Preliminary
	2.1 Notations
	2.2 Basic Definition of Coding Theory

	3 Our Code-Based Signature Scheme with Perfectly Rerandomizable Keys
	3.1 Protocol Description
	3.2 Security

	4 Our Code-Based Stateful Deterministic Wallet
	4.1 Protocol Description
	4.2 Security

	5 Conclusion
	References

	Square Attacks on Reduced-Round FEA-1 and FEA-2
	1 Introduction
	1.1 Format-Preserving Encryption (FPE)
	1.2 Related Work
	1.3 Our Contribution
	1.4 Organization of the Paper

	2 Preliminaries
	2.1 Notations
	2.2 Square Attack

	3 Specification of FEA
	3.1 Key Schedule
	3.2 Tweak Schedule
	3.3 Round Function

	4 Distinguishers for FEA Algorithms
	4.1 Three Round Distinguishers for FEA-1 and FEA-2
	4.2 Five Round Distinguisher for FEA-2

	5 Key Recovery Attacks
	5.1 Six Round Key Recovery Attack on FEA-2
	5.2 Four Round Key Recovery Attacks on FEA-1

	6 Conclusion and Future Works
	References

	Asynchronous Silent Programmable Matter: Line Formation
	1 Introduction
	1.1 Related Work
	1.2 Outline

	2 Definitions and Notation
	3 Impossibility Results
	4 Algorithm WRain
	5 Running Example
	6 Correctness and Optimality
	7 Conclusion
	References

	Author Index

