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Abstract. Runtime verification (RV) can be used for checking the execution of a
system against a formal specification. First-order temporal logic allows express-
ing constraints on the order of occurrence of events and the data that they carry.
We present an algorithm for predicting possible verdicts, within (some paramet-
ric) k events, for online monitoring executions with data against a specification
written in past first-order temporal logic. Such early prediction can allow preven-
tive actions to be taken as soon as possible. Predicting verdicts involves checking
multiple possibilities for extensions of the monitored execution. The calculations
involved in providing the prediction intensify the problem of keeping up with the
speed of occurring events, hence rejecting the naive brute-force solution that is
based on exhaustively checking all the extensions of a certain length. Our method
is based on generating representatives for the possible extension, which guaran-
tee that no potential verdict is missed. In particular, we take advantage of using
BDD representation, which allows efficient construction and representation of
such classes. The method is implemented as an extension of the RV tool DejaVu.

1 Introduction

Runtime verification (RV) allows verifying system executions against a specification,
either online as the traces are generated or offline. Monitoring is often confined to safety
properties, where a failure to satisfy the specification occurs when the inspected prefix
of execution cannot be extended in any way that would satisfy the specification. The
specification is typically expressed using automata or temporal logic. In particular, past
time propositional temporal logic can be used to express safety properties [24], allow-
ing an efficient RV monitoring algorithm [18]. A monitored execution trace may further
consist of events that contain observed data values. To deal with observations with data,
RVmonitoring was extended to use first-order past temporal logic [5,15]. Other RV sys-
tems that monitor sequences of events with data include [1–4,6,11–14,16,19,25,26].

While detecting failures at run time can be used to terminate bad executions, pre-
dicting the possibility of failures before they occur can be used to employ preventing
measures. We present here an algorithm for predicting a potential failure during the
RV monitoring a few steps before it can potentially happen. Our prediction algorithm
involves the computation of possible futures of the next k events.
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In online RV, it is essential to keep the incremental complexity, i.e., the amount of
computation performed between consecutively events, as small as possible so that we
keep up with the speed of reported events. This pace can be smoothened-up to a certain
extent with the help of a buffer, but not for the long run. For predictive RV, the problem
of minimizing the incremental complexity intensifies, as it involves analyzing different
possibilities for the following k events. A straightforward algorithm goes through all
possible event sequences for the next k steps, stopping when a failure occurs. This type
of “brute-force” approach is immediately disqualified because of the incremental time
complexity of O(nk), where n is the number of available possibilities for each event. In
the case of monitoring events with data, n can be huge, or even, in principle, unbounded.

Our approach is based on using equivalence classes between data values that occur
within events, which generate isomorphic extensions to the current observed trace. Then
our algorithm restricts itself to using representatives from these equivalence classes for
extending the current observed trace. This is shown to be sufficient to preserve the cor-
rectness of the prediction. In particular, we show how to take advantage of BDD repre-
sentation, as is used in the DejaVu system [15] to calculate the equivalence classes and
select representatives. We describe the algorithm and its implementation as an exten-
sion of the DejaVu system. We demonstrate the algorithm with experimental results
and show that our method provides a substantial improvement over the straightforward
prediction algorithm.

An early verdict for a finite trace against a propositional temporal specification,
based on the agreement between all of its possible infinite extensions, can be calculated
based on translating the specification into an automaton [21]. We show that for first-
order properties of the form �ϕ, where ϕ is a past first-order temporal logic property,
calculating such a verdict is undecidable. This further motivates our k-step predictive
algorithm as a practical compromise, when an early prediction of failures is required.
This also gives an explanation of the reason why systems like DejaVu [15] and MON-
POLY [5] provide only the immediate true/false verdict per each input prefix against the
past first-order LTL specification ϕ rather than for �ϕ.

Predictive Runtime Verification (PRV), has been proposed as an extension to stan-
dard runtime verification for propositional LTL in [27,28]. There, extensions to the
currently observed trace are proposed based on static analysis or abstraction of the
monitored system. A prediction of runtime verdicts based on assumptions about the
monitored system is described in [10]. This is done using SMT-based model checking.
That work also performs the prediction for a first-order LTL, but this version of the
logic is restricted not to have quantifiers. This approach is orthogonal to ours, where
our approach does not assume any further knowledge that can be used in generating
such extensions; but combining the two approaches, when possible, can be beneficial.
Predictive semantics for propositional LTL was used in [28] based on providing an early
verdict for satisfaction of all extensions or failure to satisfy of all extensions for an LTL
property based a on minimally observed trace. Providing such verdicts is also related
to the notion of monitorability [7], classifying a finite trace based on all of its possible
extensions as good or bad respectively. An algorithm for providing such an early verdict
was given in [21].
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For a past time LTL ϕ, one can employ an efficient algorithm that returns a true/false
answer per each finite prefix that is monitored. Hence, the outcome can alternate
between these two results. A false answer for a past property ϕ is sufficient to provide
a failure verdict for the safety specification ϕ, albeit using an automata based algorithm
such as [21] could have sometimes predict that failure is unavoidable after a shorter pre-
fix. In [20], anticipatory monitoring is defined to provide the possible future verdicts
after a given trace, which is also the goal of our paper. Anticipatory monitoring allows
providing further information: the shortest distance to a true output and the longest dis-
tance to a false output. That work also includes a decision procedure for calculating
this information for past LTL, based on a DFS on an automaton that is used to per-
form the monitoring. Our goal is to provide predictions for the future verdicts for traces
with data with respect to a specification in first-order past temporal logic. We use here
the unifying term predictive monitoring to refer both to the case that we calculate the
possible verdicts after a bounded number of look-ahead steps as in anticipatory moni-
toring, for which we provide an algorithm for first-order past temporal logic, and to the
case where early verdicts based on all the possible infinite extensions are sought (for an
impossibility result).

2 Preliminaries

2.1 Past Time First-Order Temporal Logic

The QTL logic, used by the DejaVu tool [15,31] and as a core subset of the logic used by
the MONPOLY tool [5], is a specification formalism that allows expressing properties of
executions that include data. The restriction to past time allows interpreting the formulas
on finite traces.

Syntax. The formulas of the QTL logic are defined using the following grammar, where
p stands for a predicate symbol, a is a constant and x is a variable.

For simplicity of the presentation, we define here the QTL logic with unary pred-
icates, but this is not due to a principal restriction, and in fact QTL supports pred-
icates over multiple arguments, including zero arguments, corresponding to proposi-
tions. The DejaVu system, as well as the method presented in this paper and its imple-
mentation [30], fully supports predicates over multiple arguments.

ϕ ::= true | p(a) | p(x) | (ϕ∧ψ) | ¬ϕ | (ϕ S ψ) | �ϕ | ∃x ϕ

Denote by η ∈ sub(ϕ) the fact that η is a subformula of ϕ. A QTL formula can be inter-
preted over multiple types (domains), e.g., natural numbers or strings. Accordingly,
each variable, constant and parameter of predicate is defined over a specific type (such
type declarations can appear external to the QTL formula). Type matching is enforced,
e.g., for p(a) (p(x), respectively), the types of the parameter of p and of a (x, respec-
tively) must be the same. We denote the type of a variable x by type(x).

Propositional past time linear temporal logic is obtained by restricting the predicates
to be parameterless, essentially Boolean propositions; then, no variables, constants and
quantification is needed either.



Runtime Verification Prediction for Traces with Data 151

Semantics. A QTL formula is interpreted over a trace (or observation), which is a finite
sequence of events. Each event consists of a predicate symbol and parameters, e.g.,
p(a), q(7). It is assumed that the parameters belong to particular domains that are asso-
ciated with (places in) the predicates. The events in a trace are separated by dots, e.g.,
p(a).q(7).p(b). A more general semantics can allow each event to consist of a set of
predicates with parameters1. However, this is not allowed in DejaVu and in the context
of this paper; for predictive RV, such generalized events can increase the complexity
dramatically.

QTL subformulas have the following informal meaning: p(a) is true if the last event
in the trace is p(a). The formula p(x), for some variable x, holds if x is bound to a
constant a such that p(a) is the last event in the trace. The formula (ϕ S ψ), which
reads as ϕ since ψ, means that ψ holds in some prefix of the current trace, and for all
prefixes between that one and the current trace, ϕ holds. The since operator is the past
dual of the future time until modality. The property � ϕ means that ϕ is true in the
trace that is obtained from the current one by omitting the last event. This is the past
dual of the future time next modality. The formula ∃x ϕ is true if there exists a value
a such that ϕ is true with x bound to a. We can also define the following additional
derived operators: false= ¬true, (ϕ∨ψ) = ¬(¬ϕ∧¬ψ), (ϕ → ψ) = (¬ϕ∨ψ), � ϕ =
(trueS ϕ) (“previously”), � ϕ = ¬ � ¬ϕ (“always in the past” or “historically”), and
∀x ϕ = ¬∃x ¬ϕ.

Formally, let free(η) be the set of free (i.e., unquantified) variables of a subformula
η. Let γ be an assignment to the variables free(η). We denote by γ[v 
→ a] the assignment
that differs from γ only by associating the value a to x; when γ assigns only to the
variable x, we simply write [v 
→ a]. Let σ be a trace of events of length |σ| and i a
natural number, where i ≤ |σ|. Then (γ,σ, i) |= η if η holds for the prefix of length i of
σ with the assignment γ.

We denote by γ|free(ϕ) the restriction (projection) of an assignment γ to the free
variables appearing in ϕ. Let ε be an empty assignment. In any of the following cases,
(γ,σ, i) |= ϕ is defined when γ is an assignment over free(ϕ), and i ≥ 1.

– (ε,σ, i) |= true.
– (ε,σ, i) |= p(a) if σ[i] = p(a).
– ([x 
→ a],σ, i) |= p(x) if σ[i] = p(a).
– (γ,σ, i) |= (ϕ∧ψ) if (γ|free(ϕ),σ, i) |= ϕ and (γ|free(ψ),σ, i) |= ψ.
– (γ,σ, i) |= ¬ϕ if not (γ,σ, i) |= ϕ.
– (γ,σ, i) |= (ϕ S ψ) if for some 1 ≤ j ≤ i, (γ|free(ψ),σ, j) |= ψ and for all j < k ≤ i,
(γ|free(ϕ),σ,k) |= ϕ.

– (γ,σ, i) |= �ϕ if i > 1 and (γ,σ, i−1) |= ϕ.
– (γ,σ, i) |= ∃x ϕ if there exists a ∈ type(x) such that (γ [x 
→ a],σ, i) |= ϕ.

Set Semantics. We define an alternative semantics that is equivalent to the standard
semantics presented above, but it presents the meaning of the formulas from a different
point of view: the standard semantics defines whether a subformula holds given (1) an

1 In the generalized semantics, the condition σ[i] = p(a) in the definition for the p(a) and p(x)
subformulas should be replaces with p(a) ∈ σ[i] and similarly in the subsequent set semantics.
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assignment of values to the (free) variables appearing in the formula, (2) a trace and (3) a
position in the trace. Instead, set semantics gives the set of assignments that satisfy the
subformula given a trace and a position in it.

Set semantics allows presenting of the RV algorithm for QTL in a similar way
to the RV algorithm for propositional past time temporal logic [15]. Let I[ϕ,σ, i] be
the interpretation function that returns a set of assignments such that (γ,σ, i) |= ϕ iff
γ|free(ϕ) ∈ I[ϕ,σ, i]. The empty set of assignments /0 behaves as the Boolean constant
false and the singleton set {ε}, which contains the empty assignment ε, behaves as the
Boolean constant true. The union

⋃
and intersection

⋂
operators on sets of assignments

are defined, even if they are applied to non-identical sets of variables; in this case, the
assignments are extended to the union of the variables. Thus intersection between two
sets of assignments A1 and A2 is defined like database “join” operator; i.e., it consists of
the assignments whose projection on the common variables agrees with an assignment
in A1 and with an assignment in A2. Union is defined as the dual operator of intersection.

Let A be a set of assignments. We denote by hide(A,x) (for “hiding” the variable
x) the set of assignments obtained from A after removing from each assignment the
mapping from x to a value. In particular, if A is a set of assignments over only the
variable x, then hide(A,x) is {ε} when A is nonempty, and /0 otherwise. Afree(ϕ) is the
set of all possible assignments of values to the variables that appear free in ϕ. For
convenience of the set semantics definition, we add a 0 position for each sequence
σ, where I returns the empty set for each formula. The set semantics is shown in the
following. For all occurrences of i, it is assumed that i ≥ 1.

– I[ϕ,σ,0] = /0.
– I[true,σ, i] = {ε}.
– I[p(a),σ, i] = if σ[i] = p(a) then {ε} else /0.
– I[p(x),σ, i] = {[x 
→ a] | σ[i] = p(a)}.
– I[¬ϕ,σ, i] = Afree(ϕ) \ I[ϕ,σ, i].
– I[(ϕ∧ψ),σ, i] = I[ϕ,σ, i]

⋂
I[ψ,σ, i].

– I[�ϕ,σ, i] = I[ϕ,σ, i−1].
– I[(ϕ S ψ),σ, i] = I[ψ,σ, i]

⋃
(I[ϕ,σ, i]

⋂
I[(ϕSψ),σ, i−1]).

– I[∃x ϕ,σ, i] = hide(I[ϕ,σ, i],x).

2.2 Monitoring First-Order Past LTL

We review first the algorithm for monitoring first-order past LTL, implemented as part
of the DejaVu tool [15]. The algorithm is based on calculating a summary for the current
monitored trace. The summary is used, instead of storing and consulting the entire trace,
for providing verdicts, and is updated when new monitored events are reported.

Consider a classical algorithm for past time propositional LTL [18]. There, the sum-
mary consists of two vectors of bits. One vector, pre, keeps the Boolean (truth) value
for each subformula, based on the trace observed so far except the last observed event.
The other vector, now, keeps the Boolean value for each subformula based on that trace
including the last event. Given a new event e consisting of a set of propositions, which
extends the monitored trace, the vector now is calculated based on the vector pre and
the event e. This is summarized below:
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– now(true) = True
– now(p) = (p ∈ e)
– now((ϕ∧ψ)) = (now(ϕ)∧now(ψ))
– now(¬ϕ) = ¬now(ϕ)
– now((ϕ S ψ)) = (now(ψ)∨ (now(ϕ)∧pre((ϕ S ψ)))).
– now(� ϕ) = pre(ϕ)

When a new event appears, now becomes pre, and the now values are calculated accord-
ing to the above cases.

The first-order monitoring algorithm replaces the two vectors of bits by two vec-
tors of assignments: pre, for the assignments that satisfy each subformula given the
monitored trace, except the last event, and now that for the assignments that satisfy
the monitored trace. The updates in the first-order case replace, according to the set
semantics, negation with complementations, conjunction with intersection and disjunc-
tion with union. We will describe how sets of assignments or, equivalently, relations,
can be represented as BDDs. Then, complementation, intersection and union between
relations correspond back to negation, conjunction and disjunction, respectively. Thus,
the BDD-based algorithm for monitoring traces with data against a QTL specification
which will be presented after explaining the BDD representation, will look similar to
the RV algorithm for the propositional case without data.

BDD Representation. BDD representation, as used in the DejaVu tool allows an effi-
cient implementation of RV for traces with data against first-order past temporal logic.
We enumerate data values appearing in monitored events, as soon as we first see them.
We represent enumerations as bit-vectors (i.e., Binary) encodings and construct the rela-
tions over this representation rather than over the data values themselves. Bit vectors are
concatenated together to represent a tuple of values. The relations are then represented
as BDDs [8]. BDDs were featured in model checking because of their ability to fre-
quently achieve a highly compact representation of Boolean functions [9,23]. Extensive
research of BDDs allowed implementing optimized public BDD packages, e.g., [29].

In order to deal with unbounded domains (where only a finite number of elements
may appear in a given observed trace) and maintain the ability to perform complemen-
tation, unused enumerations represent the values that have not been seen yet. In fact, it
is sufficient to use one enumeration representing these values per each variable of the
LTL formula. We guarantee that at least one such enumeration exists by reserving for
that purpose the enumeration 11 . . .11. We present here only the basic algorithm. For
versions that allow extending the number of bits used for enumerations and garbage
collection of enumerations, see [17].

When an event p(a) is observed in the monitored execution, matched with p(x)
in the monitored property, a call to the procedure hash(a) checks if this is the first
occurrence of the value a in an event. Then a will be assigned a new enumeration
val(a), which will be stored under the key a. We can use a counter, for each variable x, to
count the number of different values appearing so far for x. When a new value appears,
this counter is incremented and converted to a binary (bit-vector) representation. The
function build(x,val(a)) returns a BDD that represents an assignment for the bit vector
x mapped to the enumeration corresponding to a.
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For example, assume that the runtime-verifier sees the input events open(“a”),
open(“b”) and that it encodes the argument values with 3 bits. We use x1, x2, and x3
to represent the enumerations, with x1 being the least significant bit. Assume that the
value “a” gets mapped to the enumeration x3x2x1 = 000 and that the value “b” gets
mapped to the enumeration x3x2x1 = 001. Then, the Boolean function representing the
enumerations for {a, b} is (¬x2 ∧¬x3), which returns 1 (true) for 000 and for 001.

Intersection and union of sets of assignments are translated simply into conjunction
and disjunction of their BDD representation, respectively; complementation becomes
BDD negation. We will denote the Boolean BDD operators as and, or and not. To
implement the existential operators ∃x, we use the BDD existential operators over the
Boolean variables x1 . . .xn that represent (the enumerations of) the values of x. Thus, if
Bη is the BDD representing the assignments satisfying the subformula η in the current
state of the monitor, then exists(x,Bη) = ∃x1 . . .∃xkBη is the BDD that represents the
assignments satisfying ∃xη. Finally, BDD(⊥) and BDD(�) are the BDDs that return
always 0 or 1, respectively.

The RV algorithm for a QTL formula ϕ based on BDDs is as follows:

1. Initially, for each η ∈ sub(ϕ) of the specification ϕ, now(η) = BDD(⊥).
2. Observe a new event p(a) as input; hash(a)
3. Let pre := now.
4. Make the following updates for the formulas sub(ϕ), where

if ψ ∈ sub(η) then now(ψ) is updated before now(η).
– now(true) = BDD(�)
– now(p(a)) = if current event is p(a) then BDD(�) else BDD(⊥)
– now(p(x)) = if current event is p(a) then build(x,val(a)) else BDD(⊥)
– now((η∧ψ)) = and(now(η),now(ψ))
– now(¬η) = not(now(η))
– now((η S ψ)) = or(now(ψ),and(now(η),pre((η S ψ))))
– now(� η) = pre(η)
– now(∃x η) = exists(〈x0, . . . ,xk−1〉,now(η))

5. Goto step 2.

For a subformula η of the specification, now(η) is the BDD representation of
I[η,σ, i] according to the set semantics. The output of the algorithm after a given trace
corresponds to the value of now(ϕ). Accordingly, it will be true if this value is BDD(�)
and false if it is BDD(⊥).

2.3 Predictive Runtime Verification

While monitoring an execution of a system against a formal specification, it is some-
times beneficial to be able to predict forthcoming possible results. The RV algorithm
for QTL provides a true/false output for each prefix that is observed. The output can
alternate between these truth values for subsequent prefixes. It is sometimes useful to
be able to predict the possible outputs for extensions of the current trace, e.g., a possible
future false output that corresponds to some potential problem. Then, one may apply
some measures to alleviate such a situation, either by imposing some control on the
system or by performing an abort.
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Classical definitions for RV over temporal properties, e.g., [7,21], suggest calculat-
ing a conclusive verdict of success or failure, respectively, when all the extensions of
the current trace into a full execution agree w.r.t. satisfying or not satisfying, respec-
tively, the property. In particular, this can be useful if such a verdict can be decided
based on a minimal prefix. For past temporal logic, a true/false output is given based
on the currently monitored prefix. The outputs can alternate over subsequent prefixes.
Aniticipatory RV [20] generalizes this, and looks at the possible outputs after a given
prefix and the (minimal and maximal) distances to them (including the distance ∞) and
provides an algorithm for the propositional version of the logic. We are interested here
in calculating the possible outputs for all extensions of the current trace, limited to k
additional events, where k is fixed, for the first-order past LTL QTL. We will show in
Sect. 4 that making a prediction about all the extensions of a QTL property, without a
given bound, is undecidable.

A naive k-step prediction algorithm would check, after the currently inspected trace,
the possible extensions of up to k events. For each such extension, the RV algorithm is
applied, continuing from the current prefix, to provide a verdict. Depending on the inter-
pretation, a subsequent false output can mean a failure verdict, which can be sufficient
to stop the generation of longer or further extensions and take some preventing action.
Obviously, this method is impractical: even if the number of possible events extending
a single trace by one step is finite, say n, its time complexity is O(nk). For the proposi-
tional case, this may be feasible when the specification involves only a few propositions
(withm propositions, one can form n= 2m events). However, for the case of events with
data, n can be enormous, or even unbounded.

2.4 Isomorphism over Relations Representing QTL Subformulas

The main challenge in predicting the future outputs for a trace is to restrict the number
of cases one needs to consider when extending it. It can be argued that one can limit the
number of possible events extending a trace by a single step to the values that appeared
so far; in addition, for values that did not appear so far in the trace, a single representa-
tive is enough (but after using that representative in the current event, one needs a fresh
representative for the values not seen so far, and so forth). However, in this case, the
number of relevant events increases as the trace increases (although some clever use of
garbage collection [17] may sometimes decrease the relevant values), which can result
in a large number of values after a long trace.

Our proposed prediction method is based on calculating equivalence relations on
the observed data values that guarantee the following: an extension of the currently
observed trace can be simulated by an extension of the same length and with the same
verdict when replacing in the next observed event an occurring data value with an equiv-
alent one.

Let R ⊆ D = D1 × . . . ×Dn be a relation over multiple (not necessarily distinct)
domains obtained as the set semantics. Recall from sets semantics that if R = I[η,σ, i]
then it represents the assignments that satisfy the specification η at the ith position of
the trace σ. In this context, each tuple in R is an assignment for the free variables of η.
Thus, each component Di is associated with some variable x∈ free(η). Let f x :Di 
→Di

be a function over Di, where the ith component of the relation R is associated with the
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variable x. We abuse notation and denote by f x(τ) also the extension of f x to a tuple
τ ∈D , which changes only the Di component in the tuple according to f x. Furthermore,
denote by f x[R] the application of f x to each tuple in R. We say that R and R′ are
isomorphic with respect to f x if R′ = f x[R] for an injective and surjective function f x.
If R= f x[R], then we say that R is an automorphism with respect to f x.

Lemma 1. If Ri and Ri
′ are isomorphic (automorphic) w.r.t. f x for i ∈ {1, 2}, then also

the following are isomorphic with respect to f x:

– Ri (the complement of Ri),
– R1 ∩R2 and R1

′ ∩R2
′ and

– R1 ∪R2 and R1
′ ∪R2

′.

Denote by f xa↔b the function that replaces a with b and vice versa, and does not
change the other values. Denote by Rx=a the restriction of the relation R to tuples where
their x component has the value a. The following lemma provides a condition for decid-
ing automorphism.

Lemma 2. f xa↔b is an automorphism over R if Rx=a = Rx=b.

Denote by E[η,σ,x] the equivalence relation w.r.t. the variable x ∈ free(η) for a
subformula η of a given specification ϕ, constructed from R = I[η,σ, i] where i = |σ|.
That is,

E[η,σ,x] = {(a,b) | Rx=a = Rx=b}. (1)

Let t be some type of variables allowed in the specification. Then, let

E [σ, t] =
⋂

x∈free(η)∧ type(x)=t∧η∈sub(ϕ)
E[η,σ,x]. (2)

We need to take care of the following special case. Let r(a) appears in the
specification for some constant a. Then a can only be equivalent to itself, since
I[r(a), σ.r(a), i] �= I[r(a), σ.r(b), i] for any b �= a for events r(a) and r(b). (A sim-
ilar argument holds for an event with more arguments, e.g., r(y,a,b).) For simplicity,
the following descriptions will refer to events with a single argument (as we did in the
definition of the syntax of QTL).

Lemma 3. Let (a,b) ∈ E [σ, t] and r is a predicate over a parameter of type t. Then,
f xa↔b is an isomorphism between the relations in the summary after σ.{r(a)} and
σ.{r(b)}.
Proof. By construction, f xa↔b[R] is an automorphism for each relation R = I[σ,η, i]
in the summary. The result is obtained using Lemma 1 by induction on the number
of operators that need to be applied to construct the relations I[σ.r(a),η, i+ 1] and
I[σ.r(b),η, i+ 1] in the subsequent summary, according to the set semantics, from the
relations calculated for σ. Note that because of using different singleton relation for
the event r(a) extending the current trace and a different singleton relation for the event
r(b), the automorphism calculated from the original summary results is an isomorphism
for the subsequently constructed relations rather than an automorphism. ��
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Lemma 4. Let (a,b) ∈ E [σ, t]. Then for each finite trace σ.r(a).ρ there exists a trace
σ.r(b).ρ′ such that these traces result in the same verdict, and ρ and ρ′ have the same
length.

Proof.We construct the extension ρ′ as follows: for each term that appears in an event of
ρ, we construct a corresponding term with the same predicate, and with a replaced with
b and vice versa, and other values unchanged. Then the result is obtained by induction
on the length of the considered extensions. The induction step (including the first step
after σ) is obtained using Lemma 3. ��

Consequently, it is redundant to generate two extensions r(a) and r(b) for a trace
σ where (a,b) ∈ E [σ, t]. Applying Lemma 4 repeatedly from σ results in the following
recursive procedure for predicting RV. From every extension of σ up to k events, it
runs on every predicate r and extends it with a single value for every equivalence class
from E [σ, t]. The principle algorithm then appears in Algorithm 1. In this version, the
algorithm stops and produces a failure verdict whenever one of the extensions of the
current trace falsifies the specification ϕ. Other variants can exit upon satisfying ϕ, or
continue to check whether both true and false are attainable.

Algorithm 1. Pseudocode for the prediction algorithm
1: procedure PREDICT(σ,k)
2: for each type t in the specification do
3: E ← E [σ, t]
4: while E �= /0 do
5: let [a] ∈ E � [a] is the eq. class containing a.
6: for each predicate r over parameter of type t do
7: generate an event r(a)
8: apply RV to update summary from σ to σ.r(a)
9: if RV output is false then
10: exit(“failure verdict”)
11: if k > 1 then
12: PREDICT(σ.r(a),k−1)

13: E ← E \ [a]

An (implemented) extension of the described algorithm allows the predicates to
have multiple parameters as follows. Equivalence classes are calculated independently
for each parameter, and each event includes a representative for each corresponding
equivalence class. Hence, in write( f , d), we select a representative for f and a repre-
sentative for d, making the number of cases the product of the two equivalence classes
used.

The calculation of E [σ, t] involves intersecting equivalence classes of relations
associated with the assignments for the free variables that satisfy subformulas of ϕ.
Each individual equivalence class is calculated with respect to a free variable with
the type t. Refining the type definitions in the formula can result in checking less
representatives. Consider for example the following property ∀ f ((∃d write( f , d)) →
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(¬close( f ) S open( f ))). Both variables f and d can be originally defined with type
strings. However, the f operator corresponds to a file-name, and the d operator corre-
sponds to data. If we duplicate the type string into these two copies, we can achieve a
more efficient prediction, where representatives for the file names observed would be
used solely for f and representatives for the data values observed would be used for d.

Duplicating of types associated with variables, and corresponding also to constants
and parameters of predicates, can be automated. First, rename the variables so that
each quantified variable appears exactly once (this does not change the meaning of the
formula). Now, observe the following principle: all the variables that appear within the
same predicate (and in the same position, if the predicate has multiple parameters),
must have the same type. Now, if the same variable appears (in the same position) in
different predicates and within the same scope of quantification, then forcing variables
to have the same type based on the above principle can diffuse to other occurrences of
these predicates.

A graph algorithm can then be used for automating type duplication. The nodes
of the graph are labeled by either variables or predicates (for predicates with multi-
ple parameters, such a node will include the predicate and the position of the relevant
parameter, respectively). Undirected edges will connect variables with the predicates
(with positions, respectively) in which they occur. Then, all the variables in a maximal
connected subgraph must have the same type, whereas a type that is shared by multiple
such subgraphs can be duplicated in order to refine the calculation of the equivalences.
Consider the following formula (∃x� (q(x)∨ r(x))∧ (∀y∃z(� r(y) →� q(z))∨∃u�
p(u))). Then according to the constructed graph, which appears in Fig. 1, the variables
x, y and z need to be of the same type, but u can have a different type.

x

q r

yz u

p

Fig. 1. Variables/Predicates dependency graph

An Example of Equivalence Class Partitioning. Consider the following property
∃x (� q(x)∧¬� r(x)) and the trace q(1).q(2).r(1).q(3).q(4).q(5).r(2).r(3).r(4).q(6)

Table 1 presents relations that correspond to the subformulas in the summary. The
table shows these relations in now after a trace that includes the first event, the first two
events, all but the last event, and the entire trace. The letter U represents the set of all
possible values for x (this can be, e.g., the natural numbers). The last column presents
the equivalence relations, as defined in Eq. (1), calculated per each relation at the end
of the trace.

The intersection of the equivalence relations that appear in the last column of the
table gives the following equivalence classes:

{{1,2,3,4},{5},{6},U \{1,2,3,4,5,6}}.
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Table 1. Calculating relations and equivalence classes for the example property

Subformula Event

q(1) q(2) . . . r(4) q(6) Eq. classes

q(x) {1} {2} /0 {6} {{6},U \{6}}
� q(x) {1} {1,2} {1,2,3,4,5} {1,2,3,4,5,6} {{1,2,3,4,5,6},U \{1,2,3,4,5,6}}
r(x) /0 /0 . . . {4} /0 {U}
� r(x) /0 /0 {1,2,3,4} {1,2,3,4} {{1,2,3,4},U \{1,2,3,4}}
¬� r(x) U U U \{1,2,3,4} U \{1,2,3,4} {{1,2,3,4},U \{1,2,3,4}}
� q(x)∧¬� r(x) {1} {1,2} {5} {5,6} {{5,6},U \{5,6}}

This is the equivalence relation defined in Eq. (2) that is used to select the representa-
tives for extending the trace.

3 Prediction Using BDD Representation

We saw in the previous section how to define equivalence classes on data values that
would lead to extensions of the current trace with the same lengths and verdicts. We
established that it is sufficient to select a single representative from each equivalence
class. Calculating these equivalence classes explicitly can be complex and time consum-
ing. Instead, we show how to take advantage of the BDD representation to calculate the
equivalence classes. We encode these equivalence classes using Boolean formulas that
involve the components of the summary, calculated during the RV algorithm, which are
also BDDs. These formulas can be used to calculate the equivalence classes using a
BDD package. Then, selecting a representative from the equivalence class and updating
the remaining equivalence classes are also implemented using operators on BDDs.

Recall that the RV algorithm described in Sect. 2.2 calculates BDDs that correspond
to the assignments for the subformulas after an inspected trace σ of length i. That is, for
a subformula η, the BDD now(η) represents the relation R = I[η,σ, i] containing the
assignments to the free variables of R that satisfy η at position i = |σ| of the trace σ.
Suppose that R is such a BDD B in the summary, with the bits x1, . . . ,xn representing
(enumeration) values of theDi component of R, and with the bits y1, . . . ,ym representing
the rest of the components.

Implementing the algorithm using BDDs, we start by translating the condition of
Lemma 2 for automorphism into a check that can be automated using BDDs. Let B be
the BDD representation of R = I[η,σ, i], let a1, . . . ,an be the bit vector that represents
the value (enumeration) a, and let b1, . . . ,bn be the bit vector that represents the value
b. Then f xa↔b is an automorphism over R iff the following BDD formula evaluates to
true2:

∀y1 . . .∀ym((B[x1 \a1] . . . [xn \an]) ↔ (B[x1 \b1] . . . [xn \bn])) (3)

2 (η ↔ ψ) is a shorthand for ((η → ψ)∧ (η ← ψ)). Also B[c \ d] denotes the BDD where the
value of the bit c in the BDD is set constantly to d.
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Next, we generate from a BDD B, representing some relation R = I[η,σ, i] in the
summary, a representation of the equivalence classes of E[η,σ,x]. This is an implemen-
tation of Equation (1) using BDDs. The bit vectors g1, . . . ,gn and h1, . . . ,hn represent
pairs of values g and h for the variable x such that fg↔h is an isomorphism for R. That
is Rx=g = Rx=h for each pair of values g and h. We denote this formula by GH[B,x].

GH[B,x] = ∀y1 . . .∀ym(∃x1 . . .∃xn(B∧ (x1 ↔ g1) . . .∧ (xn ↔ gn)) ↔
∃x1 . . .∃xn(B∧ (x1 ↔ h1) . . .∧ (xn ↔ hn)))

(4)

An alternative and more efficient method for obtaining the BDD GH[B,x] is to
employ the simplified formula, which avoids using the existential quantification.

GH[B,x] = ∀y1 . . .∀ym(B[x1 \g1] . . . [xn \gn] ↔ B[x1 \h1] . . .B[xn \hn]) (5)

Now we can construct a BDD representation for the equivalence classes E [σ, t], as
defined in Eq. (2). We need to take, for each type t the conjunction of all GH[Bη,x], for
η ∈ sub(ϕ), x ∈ free(ϕ) and type(x) = t, and where Bη = now(η) in the summary of the
RV algorithm.

GH =
∧

x∈ f ree(η)∧ type(x)=t∧η∈sub(ϕ)
GH[Bη,x] (6)

4 Undecidability of Unbounded Prediction

We presented an algorithm for calculating the verdicts that can be obtained by extending
the inspected trace, checked against a first-order past LTL specification, by up to k steps.
In this section we will show that making such a prediction without a length restriction
is undecidable3.

The proof is by reduction from the undecidable post correspondence problem
(PCP). An instance of the PCP problem consists of two indexed sets T1 and T2, each
of n > 0 nonempty words from over some finite alphabet Σ. The problem is to decide
whether there is a non-empty finite sequence i1, i2, . . . , ik of indexes, where each
i j ∈ [1..|T1|], such that T1(i1).T1(i2) . . .T1(ik) = T2(i1).T2(i2) . . .T2(ik) (using the con-
catenation operator “.”). That is, whether concatenating words from T1 and from T2,
with possible repeats , according to some common sequence of indexes, gives the same
string.

For example, consider an instance of PCP where T1 = {(aa,1),(abb,2),(aba,3)}
and T2 = {(baa,1),(aab,2),(ab,3)}, where each pair includes a word and its cor-
responding index. Thus, we can write, e.g., T1(2) = abb. For this instance of PCP,
there is a simple solution, where each word appears exactly once; when concatenat-
ing the words with index order 3 2 1, we obtain T1(3).T1(2).T1(1) = aba.abb.aa, and
for T2(3).T2(2).T2(1) = ab.aab.baa, resulting in the same string

abaabbaa. (7)

3 A proof of undecidability of first-order future LTL that includes interpreted and uninterpreted
relation and function symbols is shown in [6]. Note that our logic is far more restrictive than
that.
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The reduction constructs from each instance of the PCP problem a past first-order
LTL formula that is satisfiable by a trace if and only if it describes a solution to the prob-
lem. The trace simulates a concatenating of words from T1 and T2. The input includes,
except for the sequence of letters, additional information that allows breaking the string
according to the tokens of T1 and according to the tokens of T2.

Adjacent to each letter in the string, we add two values, from some unbounded
events, which delimit the individual strings for T1 and for T2, correspondingly. For
example, given the delimiting values p, q, r, we obtain from the above concatenated
word in (7) the following sequence of triples, each consisting of a letter from Σ, and
two delimiters, for T1 and T2:

(a, p, p)(b, p, p)(a, p,q)(a,q,q)(b,q,q)(b,q,r)(a,r,r)(a,r,r).

p q r

p q r

T1

T2 (8)

In each triple, the first component is the letter, the second is the delimiting value for
T1 and the third component is the delimiting value for T2.

The delimiting value will appear for both strings in T1 and of T2 in the same order,
to impose the restriction that the same sequence of indexes are used. Thus, in (8), p
appears before q and q appears before r. A delimiting value will not repeat after having
followed the letters for a single appearance of a string from T1, and similarly for T2,
even if the same string repeats in the concatenation. The temporal specification will
enforce that delimiting of a word from T1 and delimiting of a word from T2 with the
same value (e.g., the value q) to words with the same indexes in T1 and T2 respectively.
In the above example, the delimiting value q corresponds to words of T1 and T2 with the
index 2.

Now, to represent such as sequence as an input trace for RV, each of the above triples
will correspond to a successive triple of events, each of the form l(x).t1(v1).t2(v2).
Finally, the trace ends with a single parameterless event e. The predicates in the moni-
tored events have the following roles:

e with no parameters (a proposition). It designates the end of the sequence representing
a solution for the PCP problem.

l(x) This is a letter within the concatenation. Since the two concatenations of words
need to produce the same string, there is only a single l(x) event in each triple.

t1(v1) v1 is a delimiting value for the currently observed word from T1. Similarly,
t2(v2) v2 is a delimiting value for the currently observed word from T2.

Then, the sequence (8) become the following sequence of events:

l(a).t1(p).t2(p). l(b).t1(p).t2(p). l(a).t1(p).t2(q). l(a).t1(q).t2(q).
l(b).t1(q).t2(q). l(b).t1(q).t2(r). l(a).t1(r).t2(r). l(a).t1(r).t2(r). e.
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Then, we construct a QTL formula ϕ as the concatenation of the following condi-
tions:

– Value v1 (v2, respectively) within the predicates t1 (t2, respectively) can only appear
in adjacent triples. Once this value is replaced by a different value in the next triple,
the old value never returns.

– The order between the v1 values and the v2 values is the same, that is, t1(p) appears
before t1(q) if and only if t2(p) appears before t2(q).

– Each concatenation of letters l(x) from subsequent triples, that is limited by events
of the form t1(p) for some value p forms a word T1(i) for some i. Similarly, the
concatenation of letters l(x) limited by t2(q) forms a word T2( j) for some j. Fur-
thermore, if p= q then i= j.

Now, ϕ is satisfied by a trace σ if σ describes a solution for the PCP instance.
Hence, predicting when there is a true outcome for an extension of the empty trace
is undecidable. The undecidability proof suggests that our algorithm for predicting the
verdict in k steps gives a compromise for this kind of long-term prediction.

Our undecidability proof has several additional consequences. Temporal safety [22]
properties can be written as �ψ (see [24]), where � stands for the standard LTL oper-
ator always, i.e., for each prefix, and ψ contains only past modalities. It follows from
the above construction that the satisfiability of the first-order temporal safety properties
of the form �ψ for a past ψ is undecidable: just take ψ = ¬ϕ with the above con-
structed formula ϕ, which is satisfiable exactly when the instance of the PCP problem
does not have a solution. For propositional LTL, it is useful to conclude a success (fail-
ure, respectively) verdict based on monitoring a minimal prefix of a trace, when all of
its infinite extensions satisfy (does not satisfy, respectively) the property. Such an algo-
rithm appears in [21]. It follows from our construction that this is undecidable for the
first-order case. This also gives some explanation of why RV tools for first-order past
LTL, such as DejaVu and MONPOLY provide a true/false outputs for past properties ψ,
instead of checking �ψ.

5 Experiments

In order to assess the effectiveness and efficiency of our algorithm, which we term iPRV
(isomorphic Predictive RV), we extended DejaVu to incorporate our prediction app-
roach. The experiments were performed on an Apple MacBook Pro laptop with an M1
Core processor, 16 GB RAM, and 512 GB SSD storage, running the macOS Monterey
operating system. We carried out a comparative analysis against the straightforward
brute-force prediction method, which was also integrated into DejaVu. We expressed
properties, four of them are shown in Fig. 2, using DejaVu’s syntax, and evaluated the
tool’s performance based on time, and the number of prediction extensions (we termed
cases orC) used. We repeated experiments with traces of diverse sizes and events order.
To measure performance and the influence of the size of parameter k, we experimented
with different sizes of k. We used two different approaches when conducting experi-
ments: some experiments stopped once the expected verdict false was reached, while
others ran until all possible extensions, either exhaustively, for brute-force, or based on
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representatives with our algorithm, were examined (unless a time limit was surpassed).
The unstopped experiments simulated the worst-case scenario when the expected ver-
dict was not found. All the experiments in this section, along with their specifications
and the corresponding traces, including further examples, are available in our GitHub
repository [30].

Fig. 2. Evaluated properties in DejaVu (left) and QTL (right) formalism. (The QTL operators �
and� are denoted in DejaVu as H and P respectively)

Traces. Distinct trace files, τmin, τmed , and τmax, were generated for each property, to
evaluate iPRV approach. Those files contain random traces in which the order of the
events along with their values were set in randomly. Moreover, the min,med, and max
descriptors associated with each file represent the size of the trace. The diversity of
traces enabled us to perform a thorough analysis and comparison of the performance of
iPRV in comparison to the trivial brute-force approach, under different trace sizes and
events order for each property.

The τmin traces consist of small traces with less than 15 events each; they provide
small equivalence classes. The τmed traces consist of up to 150 events, while the τmax
trace can contain up to 1000 events.

For example, for property P4, the traces were created as a random sequence of
events with predicates q and r, with data that was randomly generated within a specified
range. However, a constraint was applied such that the number of all the q events does
not exceed in every prefix of the generated trace the number of r events by more than
5. This guarantees the violation of property P4 for k ≥ 6.

Results. Tables 2 and 3 summarize part of our experiment results. They illustrate the
efficacy of the iPRV, our proposed prediction algorithm, in comparison to the straight-
forward brute-force approach. The use of the ∞ symbol indicates instances where
the prediction process exceeded 1000 seconds. Additionally, C denotes the number of
extensions calculated during a single prediction.

Table 2 displays the results of the experiments where the prediction process was
executed until all possible outcomes were found, which simulates the worst-case sce-
nario when the expected verdict is not found. Table 3 offers a comparative on-the-fly
analysis, where the prediction process stops upon the discovery of a failure. Not sur-
prisingly, as the prediction horizon increases from k = 4 to k = 5, both methods take
more time to complete the executions. The brute-force method, in particular, struggles
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to complete the executions as complexity rises. From the results, we can conclude that
iPRV is at least a few times faster than the brute-force method.

In few cases, in particular where the trace is short and the prediction horizon is not
large, the speed improvement was not very significant, but still iPRV is faster; whereas
in some comparisons it takes almost the same time. In other cases, it is four times faster
and even much more. For example, in Table 2, for property P1, the iPRV method with
k = 4 and τmed took 0.05 seconds, while in the same configuration, but for the brute-
force method, it took more than 131.54 seconds, which means that iPRV is approxi-
mately 2600 times faster in this case. In other cases, the brute-force method did not
stop within the time frame of 1000 seconds while iPRV managed to stop with a calcu-
lation time that is significantly shorter than the 1000 seconds. In these cases, the speed
improvement is several orders of magnitude (assuming, optimistically, a 1000 seconds
execution time for the brute-force executions). Furthermore, the number of extensions
(denoted in the table byC) required by the iPRVmethod to provide the prediction is sig-
nificantly less than for the brute-force method. The gap between these methods intensi-
fies as the prediction horizon k increases.

Table 2. Comparison where both methods run fully

Property Method Trace τmin Trace τmed Trace τmax
P1 iPRV (k = 4) 0.06 s, 1,280C 0.05 s, 1,168 C 0.10 s, 2,184 C

Brute (k = 4) 0.07 s, 2,416C 131.54 s, 108,496,240C ∞
iPRV (k = 5) 0.21 s, 7,816C 0.15 s, 6,984 C 0.31 s, 13,304C

Brute (k = 5) 0.24 s, 21,568C ∞ ∞
P2 iPRV (k = 4) 0.09 s, 2,240C 0.07 s, 1,856 C 0.12 s, 2,240 C

Brute (k = 4) 0.81 s, 296,631C ∞ ∞
iPRV (k = 5) 0.23 s, 15,292C 0.21 s, 12,672C 0.29 s, 15,296C

Brute (k = 5) 6.62 s, 7,103,366C ∞ ∞
P3 iPRV (k = 4) 0.04 s, 864C 0.03 s, 576C 0.04 s, 864C

Brute (k = 4) 0.05 s, 1,504C 0.64 s, 259,840C ∞
iPRV (k = 5) 0.14 s, 5,184C 0.10 s, 4,352 C 0.17 s, 5,184 C

Brute (k = 5) 0.15 s, 10,736C 1.21 s, 2,538,680C ∞
P4 iPRV (k = 4) 0.12 s, 4,388C 0.14 s, 4,388 C 0.19 s, 4,388 C

Brute (k = 4) 0.50 s, 170,304C ∞ ∞
iPRV (k = 5) 0.40 s, 37,512C 0.45 s, 37,512C 0.69 s, 37,512C

Brute (k = 5) 3.29 s, 3,558,752C ∞ ∞
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Table 3. Comparison where both methods stopped at the expected verdict

Prop Method k = 5 k = 10 k = 20 k = 50 k = 100

P1 iPRV 0.02 s, 1C 0.01 s, 1C 0.03 s, 1C 0.03 s, 1 C 0.04 s, 1C

Brute 0.05 s, 1C 0.09 s, 1C 0.14 s, 1C 0.27 s, 1 C 0.39 s, 1C

P2 iPRV 0.29 s, 15,296 C ∞ ∞ ∞ ∞
Brute ∞ ∞ ∞ ∞ ∞

P3 iPRV 0.02 s, 3C 0.03 s, 3C 0.08 s, 3C 0.05 s, 3 C 0.08 s, 3C

Brute 1.31 s, 819 C 1.51 s, 819 C 2.29 s, 819 C 5.19 s, 819 C 10.22 s, 819 C

P4 iPRV 0.62 s, 37,512 C 4.24 s, 446,857 C 6.10 s, 668,869 C 6.87 s, 668,869 C 6.58 s, 668,869 C

Brute ∞ ∞ ∞ ∞ ∞

6 Conclusion

In this work, we presented an algorithm for predicting the possible future outputs dur-
ing RV of executions with data; the specification is written in past time first-order linear
temporal logic QTL and the prediction is limited to the next (parametric) k events. This
can be used for preventive actions to be taken before an unrecoverable situation occurs.
For efficiency, our algorithm calculates equivalence classes of values that produce iso-
morphic extensions to the currently observed trace. This allows exploring only represen-
tative extensions in order to perform predictions, avoiding the inefficient naive method
that checks all the possible event sequences for the next k steps. We demonstrated how
to leverage from the BDDs representations for efficient construction and representation
of these equivalence classes. The algorithm was implemented as an extension of the RV
tool DejaVu.

We have shown that, unlike propositional temporal logic, prediction for past first-
order temporal specification without a fixed length limit is an undecidable problem.
This was proved using a reduction from the post correspondence problem (PCP). This
makes the k-step prediction a decidable compromise.

The experimental results indicate that our proposed algorithm significantly outper-
forms the brute-force method in terms of time and the number of prediction cases calcu-
lated during the prediction process; in certain cases, our prediction method successfully
concluded its prediction, while the brute-force approach persisted in running without
attaining completion within a reasonable time frame.

Although our experimental results show that the speed of our algorithm is far bet-
ter than the brute-force approach, prediction can still be a significant time consum-
ing task. Whereas the incremental processing after each event in DejaVu takes typ-
ically microseconds [15], the incremental complexity for prediction for, e.g., k = 4
can take a significant fraction of a second, and for a larger prediction horizon it can
further grow. This of course depends on the property and the observed trace. Thus, a
naive use of the prediction algorithm with a not so large prediction horizon should be
able, in principle, to online monitor traces with the arrival speed of a few events per
second. We propose that prediction should be used in combination with other meth-
ods that allow restricting the future executions of the observed system, e.g., when an
approximated model of the system is available or is obtained using learning techniques
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(see, e.g., [27,28]). Moreover, prediction should be delegated to a concurrent task, so
that normal (prediction-less) monitoring would not be delayed, in case of a quick burst
of newly observed events.

Acknowledgements. The authors would like to thank Panagiotis Katsaros for insightful com-
ments on a preliminary draft of the paper.
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