
Panagiotis Katsaros
Laura Nenzi (Eds.)

23rd International Conference, RV 2023
Thessaloniki, Greece, October 3–6, 2023
Proceedings

Runtime VerificationLN
CS

 1
42

45
Fo

rm
al

 M
et

ho
ds

Lecture Notes in Computer Science 14245

Formal Methods
Subline of Lecture Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK

Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany

Annabelle McIver, Macquarie University, Sydney, NSW, Australia

Peter Müller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands

Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

Founding Editors

Gerhard Goos
Juris Hartmanis

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China

Bernhard Steffen , Germany
Moti Yung , USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Panagiotis Katsaros • Laura Nenzi
Editors

Runtime Verification
23rd International Conference, RV 2023
Thessaloniki, Greece, October 3–6, 2023
Proceedings

123

Editors
Panagiotis Katsaros
Aristotle University of Thessaloniki
Thessaloniki, Greece

Laura Nenzi
University of Trieste
Trieste, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-44266-7 ISBN 978-3-031-44267-4 (eBook)
https://doi.org/10.1007/978-3-031-44267-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
Chapter “Monitoring Hyperproperties With Prefix Transducers” is licensed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). For further
details see license information in the chapter.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0002-4309-5295
https://orcid.org/0000-0003-2263-9342
https://doi.org/10.1007/978-3-031-44267-4
http://creativecommons.org/licenses/by/4.0/

Preface

This volume contains the refereed proceedings of the 23rd International Conference on
Runtime Verification (RV 2023), which was held during October 3–6, 2023, at the
Aristotle University of Thessaloniki, in Greece. The RV series is a sequence of annual
meetings that bring together scientists from both academia and industry interested in
investigating novel lightweight formal methods to monitor, analyze, and guide the
runtime behavior of software and hardware systems. Runtime verification techniques
are crucial for system correctness, reliability, and robustness; they provide an additional
level of rigor and effectiveness compared to conventional testing and are generally
more practical than exhaustive formal verification. Runtime verification can be used
prior to deployment, for testing, verification, and debugging purposes, and after
deployment for ensuring reliability, safety, and security, for providing fault contain-
ment and recovery, and for online system repair.

RV started in 2001 as an annual workshop and turned into a conference in 2010.
The workshops were organized as satellite events of established forums, including the
conference on Computer-Aided Verification and ETAPS. The proceedings of RV from
2001 to 2005 were published in Electronic Notes in Theoretical Computer Science.
Since 2006, the RV proceedings have been published in Springer's Lecture Notes in
Computer Science. Previous RV conferences took place in Istanbul, Turkey (2012);
Rennes, France (2013); Toronto, Canada (2014); Vienna, Austria (2015); Madrid,
Spain (2016); Seattle, USA (2017); Limassol, Cyprus (2018); and Porto, Portugal
(2019). The conferences in 2020 and 2021 were held virtually due to COVID-19,
whereas in 2022 RV took place in Tbilisi, Georgia.

This year we received 39 submissions, 28 as regular contributions and 11 as short,
tool, or benchmark papers. Each of these submissions went through a rigorous single-
blind review process as a result of which all papers received three review reports. The
committee selected 20 contributions, 13 regular and 7 short/tool/benchmark papers, for
presentation during the conference and inclusion in these proceedings. The evaluation
and selection process involved thorough discussions among the members of the Pro-
gram Committee (PC) and external reviewers through the EasyChair conference
manager, before reaching a consensus on the final decisions.

The conference featured two keynote speakers:

– Corina Păsăreanu, KBR – NASA Ames and Carnegie Mellon University, US
– Saddek Bensalem, Université Grenoble Alpes, VERIMAG, France

Both keynote talks focused on the runtime monitoring of autonomous systems with
machine learning components and the monitoring of the learning components them-
selves, an area that poses important new challenges for the RV community.

These latest developments are presented in the two invited papers that were sub-
mitted by the keynote speakers and their collaborators:

– “Assumption Generation for Learning-Enabled Autonomous Systems” by Corina
Păsăreanu, Ravi Mangal, Divya Gopinath, and Huafeng Yu

– “Customizable Reference Runtime Monitoring of Neural Networks using Resolu-
tionBoxes” by Changshun Wu, Yliès Falcone, and Saddek Bensalem

The conference also included four tutorials:

– “Instrumentation for RV: From Basic Monitoring to Advanced Use Cases” by Yliès
Falcone and Chukri Soueidi

– “Runtime Monitoring DNN-based Perception” by Chih-Hong Cheng, Michael
Luttenberger, and Rongjie Yan

– “Monitorability for Runtime Verification” by Klaus Havelund and Doron Peled
– “Learning-Based Approaches to Predictive Monitoring with Conformal Statistical

Guarantees” by Francesca Cairoli, Luca Bortolussi and Nicola Paoletti

RV 2023 is the result of the combined efforts of many individuals to whom we are
deeply grateful. In particular, we thank the PC members and sub-reviewers for their
accurate and timely reviewing, all authors for their submissions, and all attendees of the
conference for their participation. We also thank Thao Dang and Volker Stolz, chairs of
RV 2022, for their help and the RV Steering Committee for their support.

August 2023 Panagiotis Katsaros
Laura Nenzi

vi Preface

Organization

Program Committee

Giorgio Audrito University of Turin, Italy
Benoit Barbot Univ. Paris-Est Creteil, France
Saddek Bensalem Univ. Grenoble Alpes, VERIMAG, France
Domenico Bianculli University of Luxembourg, Luxembourg
Borzoo Bonakdarpour Michigan State University, USA
Chih-Hong Cheng Fraunhofer IKS and TU München, Germany
Michele Chiari TU Wien, Austria
Thao Dang CNRS/VERIMAG, France
Jyotirmoy Deshmukh University of Southern California, USA
Alexandre Donzé Decyphir, Inc., USA
Georgios Fainekos Toyota NA R&D, USA
Yliès Falcone Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP,

France
Lu Feng University of Virginia, USA
Adrian Francalanza University of Malta, Malta
Sylvain Hallé Université du Québec à Chicoutimi, Canada
Klaus Havelund California Institute of Technology, USA
Panagiotis Katsaros Aristotle University of Thessaloniki, Greece
Anna Lukina TU Delft, The Netherlands
Anastasia Mavridou KBR Inc, NASA Ames Research Center, USA
Stefan Mitsch Carnegie Mellon University, USA
Laura Nenzi University of Trieste, Italy
Dejan Nickovic Austrian Institute of Technology AIT, Austria
Gordon Pace University of Malta, Malta
Nicola Paoletti King's College London, UK
Doron Peled Bar-Ilan University, Israel
Giles Reger Amazon Web Services, USA and University of

Manchester, UK
Jose Ignacio Requeno Complutense University of Madrid, Spain
Indranil Saha Indian Institute of Technology Kanpur, India
Cesar Sanchez IMDEA Software Institute, Spain
Gerardo Schneider Chalmers — University of Gothenburg, Sweden
Julien Signoles CEA LIST, France
Oleg Sokolsky University of Pennsylvania, USA
Volker Stolz Høgskulen på Vestlandet, Norway
Hazem Torfah Chalmers University of Technology, Sweden
Dmitriy Traytel University of Copenhagen, Denmark
Stavros Tripakis Northeastern University, USA

Masaki Waga Kyoto University, Japan
Wenhua Yang Nanjing University of Aeronautics and Astronautics,

China

Steering Committee

Saddek Bensalem VERIMAG, France
Yliès Falcone Univ. Grenoble Alpes, France
Giles Reger Amazon Web Services, USA and University of

Manchester, UK
Oleg Sokolsky University of Pennsylvania, USA
Klaus Havelund Jet Propulsion Laboratory, USA
Howard Barringer University of Manchester, UK
Ezio Bartocci Technical University of Vienna, Austria
Insup Lee University of Pennsylvania, USA
Martin Leucker University of Lübeck, Germany
Grigore Rosu University of Illinois, Urbana-Champaign, USA

Additional Reviewers

Abusdal, Ole Jørgen
Araujo, Hugo
Balakrishnan, Anand
Cairoli, Francesca
El-Hokayem, Antoine
Esposito, Marco
Ganguly, Ritam
Godbole, Adwait

Hildebrandt, Thomas
Hsu, Tzu-Han
Kuipers, Tom
Mukhopadhyay, Shilpa
Nouri, Ayoub
Schneider, Joshua
Soueidi, Chukri

viii Organization

Contents

Invited Papers

Assumption Generation for Learning-Enabled Autonomous Systems 3
Corina S. Păsăreanu, Ravi Mangal, Divya Gopinath, and Huafeng Yu

Customizable Reference Runtime Monitoring of Neural Networks Using
Resolution Boxes . 23

Changshun Wu, Yliès Falcone, and Saddek Bensalem

Regular Papers

Scalable Stochastic Parametric Verification with Stochastic Variational
Smoothed Model Checking . 45

Luca Bortolussi, Francesca Cairoli, Ginevra Carbone,
and Paolo Pulcini

Monitoring Blackbox Implementations of Multiparty Session Protocols 66
Bas van den Heuvel, Jorge A. Pérez, and Rares A. Dobre

Mining Specification Parameters for Multi-class Classification 86
Edgar A. Aguilar, Ezio Bartocci, Cristinel Mateis, Eleonora Nesterini,
and Dejan Ničković

General Anticipatory Monitoring for Temporal Logics on Finite Traces 106
Hannes Kallwies, Martin Leucker, and César Sánchez

Metric First-Order Temporal Logic with Complex Data Types 126
Jeniffer Lima Graf, Srđan Krstić, and Joshua Schneider

Runtime Verification Prediction for Traces with Data 148
Moran Omer and Doron Peled

Monitoring Hyperproperties with Prefix Transducers 168
Marek Chalupa and Thomas A. Henzinger

Compositional Simulation-Based Analysis of AI-Based Autonomous
Systems for Markovian Specifications . 191

Beyazit Yalcinkaya, Hazem Torfah, Daniel J. Fremont,
and Sanjit A. Seshia

Decentralized Predicate Detection Over Partially Synchronous
Continuous-Time Signals . 213

Charles Koll, Anik Momtaz, Borzoo Bonakdarpour, and Houssam Abbas

Flexible Runtime Security Enforcement with Tagged C 231
Sean Anderson, Allison Naaktgeboren, and Andrew Tolmach

Pattern Matching for Perception Streams . 251
Jacob Anderson, Georgios Fainekos, Bardh Hoxha, Hideki Okamoto,
and Danil Prokhorov

Learning Monitor Ensembles for Operational Design Domains 271
Hazem Torfah, Aniruddha Joshi, Shetal Shah, S. Akshay,
Supratik Chakraborty, and Sanjit A. Seshia

Monitoring Algorithmic Fairness Under Partial Observations 291
Thomas A. Henzinger, Konstantin Kueffner, and Kaushik Mallik

Short and Tool Papers

AMT: A Runtime Verification Tool of Video Streams 315
Valentin Besnard, Mathieu Huet, Stoyan Bivolarov, Nourredine Saadi,
and Guillaume Cornard

Bridging the Gap: A Focused DSL for RV-Oriented Instrumentation
with BISM . 327

Chukri Soueidi and Yliès Falcone

CCMOP: A Runtime Verification Tool for C/C++ Programs 339
Yongchao Xing, Zhenbang Chen, Shibo Xu, and Yufeng Zhang

A Stream Runtime Verification Tool with Nested and Retroactive
Parametrization . 351

Paloma Pedregal, Felipe Gorostiaga, and César Sánchez

eMOP: A Maven Plugin for Evolution-Aware Runtime Verification 363
Ayaka Yorihiro, Pengyue Jiang, Valeria Marqués, Benjamin Carleton,
and Owolabi Legunsen

Runtime Monitoring of Accidents in Driving Recordings with Multi-type
Logic in Empirical Models . 376

Ziyan An, Xia Wang, Taylor T. Johnson, Jonathan Sprinkle,
and Meiyi Ma

x Contents

Safety Monitoring for Pedestrian Detection in Adverse Conditions 389
Swapnil Mallick, Shuvam Ghosal, Anand Balakrishnan,
and Jyotirmoy Deshmukh

Tutorials

Instrumentation for RV: From Basic Monitoring to Advanced Use Cases 403
Chukri Soueidi and Yliès Falcone

Runtime Monitoring DNN-Based Perception: (via the Lens of Formal
Methods) . 428

Chih-Hong Cheng, Michael Luttenberger, and Rongjie Yan

Monitorability for Runtime Verification . 447
Klaud Havelund and Doron Peled

Learning-Based Approaches to Predictive Monitoring with Conformal
Statistical Guarantees. 461

Francesca Cairoli, Luca Bortolussi, and Nicola Paoletti

Author Index . 489

Contents xi

Invited Papers

Assumption Generation
for Learning-Enabled Autonomous

Systems

Corina S. Păsăreanu1,2(B), Ravi Mangal2, Divya Gopinath1, and Huafeng Yu3

1 KBR, NASA Ames, Mountain View, USA
pcorina@cmu.edu

2 Carnegie Mellon University, Pittsburgh, USA
3 Boeing Research and Technology, Arlington, USA

Abstract. Providing safety guarantees for autonomous systems is dif-
ficult as these systems operate in complex environments that require
the use of learning-enabled components, such as deep neural networks
(DNNs) for visual perception. DNNs are hard to analyze due to their
size (they can have thousands or millions of parameters), lack of for-
mal specifications (DNNs are typically learnt from labeled data, in the
absence of any formal requirements), and sensitivity to small changes in
the environment. We present an assume-guarantee style compositional
approach for the formal verification of system-level safety properties of
such autonomous systems. Our insight is that we can analyze the sys-
tem in the absence of the DNN perception components by automatically
synthesizing assumptions on the DNN behaviour that guarantee the sat-
isfaction of the required safety properties. The synthesized assumptions
are the weakest in the sense that they characterize the output sequences
of all the possible DNNs that, plugged into the autonomous system, guar-
antee the required safety properties. The assumptions can be leveraged
as run-time monitors over a deployed DNN to guarantee the safety of
the overall system; they can also be mined to extract local specifications
for use during training and testing of DNNs. We illustrate our approach
on a case study taken from the autonomous airplanes domain that uses
a complex DNN for perception.

1 Introduction

Autonomy is increasingly prevalent in many applications, such as recommenda-
tion systems, social robots and self-driving vehicles, that require strong safety
guarantees. However, this is difficult to achieve, since autonomous systems
are meant to operate in uncertain environments that require using machine-
learnt components. For instance, deep neural networks (DNNs) can be used
in autonomous vehicles to perform complex tasks such as perception from high-
dimensional images. DNNs are massive (with thousands, millions or even billions
of parameters) and are inherently opaque, as they are trained based on data, typ-
ically in the absence of any specifications, thus precluding formal reasoning over
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 3–22, 2023.
https://doi.org/10.1007/978-3-031-44267-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_1&domain=pdf
https://doi.org/10.1007/978-3-031-44267-4_1

4 C. S. Păsăreanu et al.

their behaviour. Current system-level assurance techniques that are based on for-
mal methods, either do not scale to systems that contain complex DNNs [27,30],
provide no guarantees [24], or provide only probabilistic guarantees [16,29] for
correct operation of the autonomous system. Falsification techniques [9,11] can
be used to find counterexamples to safety properties but they cannot guarantee
that the properties hold.

Moreover, it is known that, even for well-trained, highly-accurate DNNs, their
performance degrades in the presence of distribution shifts or adversarial and
natural perturbations from the environment (e.g., small changes to correctly
classified inputs that cause DNNs to mis-classify them) [17]. These phenom-
ena present safety concerns but it is currently unknown how to provide strong
assurance guarantees about such behaviours. Despite significant effort in the
area, current formal verification and certification techniques for DNNs [15,23]
only scale to modest-sized networks and provide only partial guarantees about
input-output DNN behaviour, i.e. they do not cover the whole input space. Fur-
thermore, it is unknown how to relate these (partial) DNN guarantees to strong
guarantees about the safety of the overall autonomous system.

We propose a compositional verification approach for learning-enabled
autonomous systems to achieve strong (i.e., non-probabilistic) assurance guaran-
tees. The inputs to the approach are: the design models of an autonomous system,
which contains both conventional components (controller and plant modeled as
labeled transition systems) and the learning-enabled components (DNN used for
perception), and a safety property specifying the desired behaviour of the system.

While the conventional components can be modeled and analyzed using well-
established techniques (e.g., using model checking for labeled transition systems,
as we do in this paper), the challenge is to reason about the perception compo-
nents. This includes the complex DNN together with the sensors (e.g., cameras)
that generate the high-dimensional DNN inputs (e.g., images), which are subject
to random perturbations from the environment (e.g., change in light conditions),
all of them difficult, if not impossible, to model precisely. To address this chal-
lenge, we take an abductive reasoning approach, where we analyze the system in
the absence of the DNN and the sensors, deriving conditions on DNN behaviour
that guarantee the safety of the overall system. We build on our previous work
on automated assume-guarantee compositional verification [14,28], to automat-
ically generate assumptions in the form of labeled transition systems, encoding
sequences of DNN predictions that guarantee system-level safety. The assump-
tions are the weakest in the sense that they characterize the output sequences of
all the possible DNNs that, plugged into the autonomous system, satisfy the prop-
erty. We further propose to mine the assumptions to extract local properties on
DNN behavior, which in turn can be used for the separate testing and training of
the DNNs.

We envision the approach to be applied at different development phases for
the autonomous system. At design time, the approach can be used to uncover
problems in the autonomous system before deployment. The automatically gen-
erated assumptions and the extracted local properties can be seen as safety
requirements for the development of neural networks. At run time, the assump-

Assumption Generation for Learning-Enabled Autonomous Systems 5

tions can be deployed as safety monitors over the DNN outputs to guarantee the
safety behaviour of the overall system.

We summarize our contributions as follows: (1) Analysis with strong safety
guarantees for autonomous systems with learning-enabled perception compo-
nents. The outcome of the analysis is in the form of assumptions and local speci-
fications over DNN behavior, which can be used for training and testing the DNN
and also for run-time monitoring to provide the safety guarantees. (2) Demon-
stration of the approach on a case study inspired by a realistic scenario of an
autonomous taxiing system for airplanes, that uses a complex neural network for
perception. (3) Experimental results showing that the extracted assumptions are
small and understandable, even if the perception DNN has large output spaces,
making them amenable for training and testing of DNNs and also for run-time
monitoring. (4) Probabilistic analysis, using empirical probabilities derived from
profiling the perception DNN, to measure the probability that the extracted
assumptions are violated when deployed as run-time safety monitors. Such an
analysis enables developers to estimate how restrictive the safety monitors are
in practice.

2 Preliminaries

Labeled Transition Systems. We use finite labelled transition systems (LTSs)
to model the behaviour of an autonomous system. A labeled transition system
(LTS) is a tuple M = (Q,Σ, δ, q0), where

– Q is a finite set of states;
– Σ, the alphabet of M , is a set of observable actions;
– δ ⊆ Q × (Σ ∪ {τ}) × Q is a transition relation;
– q0 ∈ Q is the initial state.

Here τ denotes a local, unobservable action. We use α(M) to denote the alphabet
of M (i.e. α(M) = Σ). A trace σ ∈ Σ∗ of an LTS M is a sequence of observable
actions that M can perform starting in the initial state. The language of M ,
denoted L(M), is the set of traces of M . Note that our definition allows non-
deterministic transitions.

Given two LTSs M1 and M2, their parallel composition M1 ||M2 synchronizes
shared actions and interleaves the remaining actions. We provide the definition
of || (which is commutative and associative) in a process-algebra style. Let M =
(Q,Σ, δ, q0) and M ′ = (Q′, Σ′, δ′, q′

0) be two LTSs. We say that M transits to
M ′ with action a, written as M

a−→ M ′, iff (q0, a, q′
0) ∈ δ, Σ = Σ′, Q = Q′, and

δ = δ′. Let M1 = (Q1, Σ1, δ1, q1,0) and M2 = (Q2, Σ2, δ2, q2,0). M1 || M2 is an
LTS M = (Q,Σ, δ, q0) such that Q = Q1 × Q2, q0 = (q1,0, q2,0), Σ = Σ1 ∪ Σ2

and δ is defined as follows:

M1
a−→ M ′

1, a �∈ Σ2

M1 || M2
a−→ M ′

1 || M2

M1
a−→ M ′

1,M2
a−→ M ′

2, a �= τ

M1 || M2
a−→ M ′

1 || M ′
2

6 C. S. Păsăreanu et al.

We also use LTSs to represent safety properties P . P can be synthesized, for
example, from a specification in a temporal logic formalism such as (fluent) LTL
[12]. The language of P describes the set of allowable behaviours for M ; M |= P
iff L(M↓α(P)) ⊆ L(P) where α(P) is the alphabet of P . The ↓Σ operation hides
(i.e., makes unobservable by replacing with τ) all the observable actions of an
LTS that are not in Σ. The verification of property P is performed by first
building an error LTS, Perr , which is the complement of P trapping possible
violations with an extra error state err , and checking reachability of err in
M || Perr .

Weakest Assumption. A component (or subsystem) M , modeled as an LTS,
can be viewed as open, interacting with its context (i.e., other components or
the external world) through an interface ΣI ⊆ α(M). For a property P , the
weakest assumption characterizes all the contexts in which M can be guaranteed
to satisfy the property. We formalize it here, generalizing [14] to consider a subset
of ΣI .

Definition 1. (Weakest assumption). For LTS M , safety property P
(α(P) ⊆ α(M)) and Σ ⊆ ΣI , the weakest assumption AΣ

w for M with respect
to P and Σ is a (deterministic) LTS such that α(AΣ

w) = Σ and for any other
component N , M↓Σ || N |= P iff N |= AΣ

w .

Prior work [14] describes an algorithm for building the weakest assumption
for components and safety properties modeled as LTSs. We modify it for our
purpose in this paper.

3 Compositional Verification of Learning-Enabled
Autonomous Systems

We present a compositional approach for verifying the safety of autonomous
systems with learning-enabled components. We model our system as a parallel
composition of LTSs; however our approach is more general, and can be adapted
to reasoning about more complex, possibly unbounded, representations, such
as transition systems with countably infinite number of states and hybrid sys-
tems, by leveraging previous work on assuming-guarantee reasoning for such
systems [4,13]. We focus on cyber-physical systems that use DNNs for vision
perception (or more generally, perception from high-dimensional data). These
DNNs are particularly difficult to reason about, due to large sizes, opaque nature,
and sensitivity to input perturbations or distribution shifts.

Let us consider an autonomous system consisting of four components; sys-
tems with more components can be treated similarly. The system contains a
Perception component (i.e., a DNN) which processes images (img ∈ Img) and
produces estimates (sest ∈ Est) of the system state, a Controller that sends
commands1 (c ∈ Cmd) to the physical system being controlled in order to
1 We use “commands” instead of “actions” since we already use actions to refer to the

transition labels of LTSs.

Assumption Generation for Learning-Enabled Autonomous Systems 7

maneuver it based on these state estimates, the Dynamics modeling the evolu-
tion of the actual physical system states (s ∈ Act) in response to control signals,
and the Sensor, e.g., a high-definition camera, that captures images represent-
ing the current state of the system and its surrounding environment (e ∈ Env).
There may be other sensors (radar, LIDAR, GPS) that we abstract away for
simplicity.

Suppose that each of these components can be modeled as an LTS. The
alphabet of observable actions for each component is as follows: α(Perception) =
Img ∪ Est, α(Controller) = Est ∪ Cmd, α(Dynamics) = Act ∪ Cmd, and
α(Sensor) = Act ∪ Env ∪ Img. We can write the overall system as System =
Sensor || Perception || Controller || Dynamics.

Although simple, the type of system we consider resembles (semi-
)autonomous mechanisms that are already deployed in practice, such as adaptive
cruise controllers and lane-keeping assist systems, which similarly use a DNN
for visual perception to provide guidance to the software controlling electrical
and mechanical subsystems of modern vehicles. An example of such a system
designed for autonomous taxiing of airplanes on taxiways is illustrated in Fig. 1.
Section 4 includes a detailed explanation of this system.

Fig. 1. Autonomous system using
a DNN for perception

We aim to check that the overall system
satisfies a safety property P . For the exam-
ple described in the next section, one such
safety property is that the airplane does not
go off the taxiway, which can be expressed in
terms of constraints on the allowed actual sys-
tem states. In order to check this property,
one could run many simulations, using, e.g.,
XPlane [1]. However, simulation alone may
not be enough to achieve the high degree of
confidence in the correctness of the system
necessary for deployment in a safety-critical
setting (e.g., an airplane in our case). We therefore aim to formally verify the
property, i.e., we aim to check that System |= P holds.

Formally verifying System presents serious scalability challenges, even ignor-
ing the learning-enabled aspect, since the conventional components (Controller
and Dynamics) can be quite complex; nevertheless they can be tackled with pre-
vious techniques, possibly involving abstraction to reduce their state spaces [13].
The DNN component makes the scalability problem extremely severe. Further,
the perturbations from the external world can not be modeled precisely.

Assume-Guarantee Reasoning. To address the above challenges, we decom-
pose System into two subsystems—M1 = Controller || Dynamics, i.e., the con-
ventional components, which can be modeled and analyzed using established
model-checking techniques, on one side, and M2 = Perception ||Sensor, i.e., the
perception components, which are challenging to analyze precisely, on the other
side. The interface between M1 and M2 consists of the updates to the actual sys-
tem states, henceforth called actuals (performed by the Dynamics component)

8 C. S. Păsăreanu et al.

Algorithm 3.1: Computing Weakest Assumption
Inputs: LTS model M , property P , and interface alphabet Σ ⊆ ΣI

Output: Assumption AΣ
w for M with respect to P , Σ

1 BuildAssumption(M, P, Σ):
2 M ′ := (M || Perr)↓Σ

3 M ′′ := BackwardErrorPropagation(M ′)
4 AΣ

err := Determinization(M ′′)
5 ÂΣ

err := CompletionWithSink(AΣ
err)

6 AΣ
w := ErrorRemoval(ÂΣ

err)

7 return AΣ
w

and to the estimated system states, henceforth called estimates (performed by
the Perception component); let us denote it as ΣI = Act ∪ Est . We then focus
the analysis on M1.

Formally checking that system-level property P holds on M1 in isolation
does not make too much sense, as M1 is meant to work together with M2 and
will not satisfy P by itself (except in very particular cases). Assume-guarantee
reasoning addresses this problem by checking properties using assumptions about
a component’s context (i.e., the rest of the system). In the assume-guarantee
paradigm, a formula is a triple 〈A,M,P 〉, where A is an assumption, M is a
component, and P is a property. The formula is true if whenever M is part of
a system that satisfies A, the system also guarantees P , i.e., ∀M ′, M || M ′ |=
A ⇒ M || M ′ |= P . For LTSs, this is equivalent to A || M |= P ; 〈true,M,P 〉 is
equivalent to M |= P .

Using these triples we can formulate rules for compositional, assume-
guarantee reasoning. The simplest such rule allows us to prove that our System,
composed of M1 and M2, satisfies property P , by checking that M1 satisfies P
under an assumption A and discharging A on M2:

〈A,M1, P 〉 〈true,M2, A〉
〈true,M1‖M2, P 〉

We then seek to automatically build an assumption A such that 〈A,M1, P 〉
holds; one such assumption is the weakest assumption described in Sect. 2 for
some alphabet Σ ⊆ ΣI ; i.e., by definition 〈AΣ

w ,M1, P 〉 is true. If we can also
show that 〈true,M2, A

Σ
w 〉 is true, then, according to the rule, it follows that the

autonomous system satisfies the property.

M1 Analysis and Assumption Generation. We first check that M1 does not
violate the property assuming perfect perception by using a simple abstraction
that maps each actual to the corresponding estimate. This mimics a DNN that is
perfetly accurate. This allows us to uncover and fix all the errors that are due to
interactions in the controller and dynamics, independent of errors in perception.

Assumption Generation for Learning-Enabled Autonomous Systems 9

We then build the weakest assumption for M1 with respect to property P and
interface alphabet Σ ⊆ ΣI . We use Algorithm 3.1 which adapts the algorithm
from [14] for our purpose. The function BuildAssumption has as parameters an
LTS model M (M1 in our case), a property P , and an interface alphabet Σ. The
first step builds M || Perr (Perr is the complement of P) and applies projection
with Σ to obtain the LTS M ′. The next step performs backward propagation of
err over transitions that are labeled with either τ or actuals (i.e., actions in Act)
thus pruning the states where the context of M can not prevent it from entering
the err state. The resulting LTS is further processed with a determinization step
which performs τ elimination and subset construction (for converting the non-
deterministic LTS into a deterministic one). Unlike regular automata algorithms,
Determinization treats sets that contain err as err. In this way, if performing a
sequence of actions from Σ does not guarantee that M is safe, it is considered as
an error trace. Subsequently, the resulting deterministic LTS AΣ

err is completed
such that every state has an outgoing transition for every action. This is done
by adding a special sink state and transitions leading to it. These are missing
transitions in AΣ

err and represent behaviors that are never exercised by M ; with
this completion, they are made into sink behaviors and no restriction is placed
on them. The assumption AΣ

w is obtained from the complete LTS by removing
the err state and all the transitions to it.

This procedure is similar to the one in [14] with the difference that the
backward error propagation step is performed not only over τ transitions but
also over transitions labeled with actuals. Intuitively, this is because the actuals
are updated by M1 (via the Dynamics component in our system) and are only
read by M2; thus, the assumption should restrict M1 by blocking the estimates
that lead to error but not by refusing to read the actuals. Another difference is
that we allow the assumption alphabet to be smaller than ΣI (this is needed as
explained later in this section).

By construction, AΣI
w captures all the traces over Σ∗

I = (Act ∪ Est)∗ that
ensure that M1 does not violate the prescribed safety property, i.e. AΣI

w ||M1 |= P
and therefore 〈AΣI

w ,M1, P 〉.
Theorem 1. Let AΣI

w be the LTS computed by BuildAssumption(M1, P,ΣI),
then AΣI

w is the weakest, i.e., ∀M2.M2 |= AΣI
w iff M1‖M2 |= P .

Proof. (Sketch) ‘⇒’ similar to [14]. ‘⇐’ by contradiction. Assume M2 �|= AΣI
w

although M1‖M2 |= P . Then there is a trace σ ∈ L(M2↓ΣI
) that is also in

L(AΣI
err). From the construction of the assumption, either (1) σ or (2) σ.a is in

L((M1‖Perr)↓ΣI
), where a ∈ Act represents an update to the actuals by M1

and . denotes concatenation. Case (1) is similar to [14]. Case (2) is new. By
construction, σ must end in an estimate (due to our special backward error
propagation). Furthermore, for our system, actuals and estimates are alternat-
ing; thus, M2 must perform a read of the actuals after the estimate and that
actual must be a; thus σ.a is also in L(M2↓ΣI

), and can be used to build a
counterexample for M1‖M2 |= P , which is a contradiction.

10 C. S. Păsăreanu et al.

Note that since we checked that the system satisfies the property assuming
the DNN is perfectly accurate, it follows that property violations can happen
only when the DNN is inaccurate. As a result, the assumption will only place
restrictions on the incorrect outputs of the DNN.

To complete the assume-guarantee proof, we also need to formally check
〈true,M2, A

Σ
w 〉. However, this may be infeasible in practice (as explained before).

Instead, we show how the assumption can be leveraged for monitoring (at run-
time) the outputs of the DNN, to guarantee that the overall system satisfies
the required property. This is achieved by blocking the behaviours that violate
the assumption. We also show how automatically generated assumptions can be
leveraged for extracting local DNN specifications and how both the assumptions
and the local specifications can be leveraged for training and testing the DNN.

AEst
w for Run-Time Monitoring. The assumptions AΣI

w can potentially be
used as a monitor deployed at run-time to ensure that the autonomous system
guarantees the desired safety properties. One difficulty is that ΣI refers to labels
in both Est and Act which represent the estimated and actual values of the
system states, respectively. However the autonomous system may not have access
to the actual system state—the very reason it uses a DNN is to get the estimated
values of the system state.

While in some cases, it may be possible to get the actual values through
alternative means, e.g., through other sensors, we can also set the alphabet of
the assumption to be only in terms of the estimates received from the DNN, i.e.,
Σ = Est, and build a run-time monitor solely based on AEst

w .
Since AEst

w is modeled only in terms of the Est alphabet, it follows that it
can be deployed as a run-time monitor on the outputs of a DNN that is used
by the autonomous system. If an assumption is violated, the system will go to a
fail-safe mode (modeled as Q = −1 in our case study). This could involve e.g.,
calling the human operator to take over control of the airplane.

AEst
w for Testing and Training DNNs. The extracted assumptions over

alphabet Est can also be used for testing a candidate DNN to ensure that it
follows the behaviour prescribed by the assumption. For many autonomous sys-
tems (see e.g., the airplane taxiing application in Sect. 4), the perception DNN
is trained and tested based on images obtained from simulations which naturally
come in a sequence, and therefore, can be easily checked against the assumption
by evaluating if the sequence of DNN predictions represents a trace in L(AEst

w).
The assumption can also be used during the training of the DNN as a speci-
fication of desired output for unlabeled real data, thus reducing the burden of
manually labeling the input images. We leave these directions for future work.

AΣI
w for Synthesizing Local Specifications. We also propose to analyze the

(complement of the) weakest assumption generated over the full interface alpha-
bet ΣI = Act∪Est to synthesize local, non-temporal specifications for the DNN.
These specifications can be used as formal documentation of the expected DNN
behavior; furthermore, they can be leveraged to train and test the DNN. Unlike
the temporal LTS assumptions, evaluating the DNN with respect to local spec-

Assumption Generation for Learning-Enabled Autonomous Systems 11

Algorithm 3.2: Synthesizing Local Specifications

Inputs: AΣI
err = (Q, ΣI , δ, q0)

Output: Local specifications Φ
1 SynthesizeSpec(AΣI

err):
2 Φ := {}
3 foreach q ∈ Q do
4 if ∃a.(q, a, err) ∈ δ then
5 E := {a | (q, a, err) ∈ δ}
6 E′ := Est − E
7 foreach (q′, a′, q) ∈ δ do
8 φ := (s = a′) ⇒ ∨

a∈E′(sest = a)
9 Φ := Φ ∪ φ

10 return Φ

ifications does not require sequential data, making them more natural to use
when evaluating DNNs.

Algorithm 3.2 describes a procedure for synthesizing such local specifications.
The input to the algorithm is the complement of the assumption, i.e., the output
of line 4 in Algorithm 3.1, which encodes the error traces of the assumption. We
aim to extract local specifications from the error transitions. We first note that
in AΣI

err, only transitions corresponding to estimates (i.e., labeled with elements
from Est) can lead to the err state; this is due to our special error propaga-
tion. Furthermore, actuals and estimates are alternating, due to the nature of
the system. Algorithm 3.2 exploits this structure in AΣI

err to synthesize local
specifications.

For each state q in AΣI
err (line 3) that can directly transition to the err state

(line 4), the algorithm first collects all the actions a that lead to err (line 5).
As described earlier, these actions belong to Est. Next, for each incoming tran-
sition to q (line 7), we construct a local specification φ (line 8). Each incoming
transition to q corresponds to an action a′ ∈ Act as described earlier. The local
specification expresses that for an actual system state s with value a′, the cor-
responding estimated system state (sest) should have a value in E′ to avoid
err.

We can argue that if M2 = Perception || Sensor satisfies these local specifi-
cations then it also satisfies the assumption (proof by contradiction). Intuitively,
this is true because the local specifications place stronger requirements on M2

compared with the assumption AΣI
w .

Theorem 2. For AΣI
err and M2 = Perception || Sensor, if M2 satisfies local

specifications Φ = SynthesizeSpec(AΣI
err), then 〈true,M2, A

ΣI
w 〉 holds.

Proof. (Sketch) Assume that 〈true,M2, A
ΣI
w 〉 does not hold, i.e., there is a coun-

terexample trace σ of M2 that violates the assumption; this is a trace in AΣI
err.

Due to our error propagation, it must be the case that the last action in this
trace is an estimate sest ∈ Est. Let qi be the state in AΣI

w that is reached by
simulating σ on AΣI

w prior to the last, violating estimate sest. Since M2 satisfies

12 C. S. Păsăreanu et al.

the local specification for qi it means there can be no sest leading to err from
qi, a contradiction.

Furthermore, if 〈true,M2, A
ΣI
w 〉 holds, then, according to the assume-

guarantee reasoning rule, it follows that the System = M1 || M2 satisfies the
required properties. While it may be infeasible to formally prove such properties
for M2, these local specifications can be used instead for testing and even train-
ing the DNN. Given an image img labeled with the underlying actual a′ (i.e.,
the Sensor produces img when the actual state is a′), we can test the DNN
against the local specification s = a′ ⇒ ∨

a∈E′(sest = a), by checking if the
DNN prediction on img satisfies the consequent of the specification. Compared
with the standard DNN testing objective that checks if the state estimated by
the DNN matches the underlying actual system state, our local specifications
yield a relaxed testing objective. Similarly, these specifications can also be used
during training to relax the training objective. Instead of requiring the DNN to
predict the actual system state from the image, under the relaxed objective, any
prediction that satisfies the corresponding local specification is acceptable. Such
a relaxed objective could potentially lead to a better DNN due to the increased
flexibility afforded to the training process, but we leave the exploration of this
direction for future work.

4 The TaxiNet System

We present a case study applying our compositional approach to an experi-
mental autonomous system for center-line tracking of airplanes on airport taxi-
ways [3,29]. The system uses a DNN called TaxiNet for perception. TaxiNet is
a regression model with 24 layers including five convolution layers, and three
dense layers (with 100/50/10 ELU [5] neurons) before the output layer. TaxiNet
is designed to take a picture of the taxiway as input and return the plane’s posi-
tion with respect to the center-line on the taxiway. It returns two outputs; cross
track error (cte), which is the distance in meters of the plane from the center-line
and heading error (he), which is the angle in degrees of the plane with respect to
the center-line. These outputs are fed to a controller which in turn manoeuvres
the plane such that it remains close to the center of the taxiway. This forms a
closed-loop system where the perception network continuously receives images
as the plane moves on the taxiway. The architecture of the system is the same
as in Fig. 1. For this application, state s captures the position of the airplane on
the surface in terms of cte and he values.

Safety Properties. We aim to check that the system satisfies two safety prop-
erties, as provided by the industry partner. The properties specify conditions for
safe operation in terms of allowed cte and he values for the airplane by using
taxiway dimensions. The first property states that the airplane shall never leave
the taxiway (i.e., |cte| ≤ 8 meters). The second property states that the airplane
shall never turn more than a prescribed degree (i.e., |he| ≤ 35 degrees), as it
would be difficult to manoeuvre the airplane from that position. Note that the

Assumption Generation for Learning-Enabled Autonomous Systems 13

Fig. 2. Controller and Dynamics in the process-algebra style FSP language [26] for the
LTSA tool. Identifiers starting with lowercase/uppercase letters denote labels/processes
(states in the underlying LTS), respectively; → denotes labeled transitions between
states. Both labels and processes can be indexed.

DNN output values are normalized to be in the safe range; however, this does
not preclude the overall system from reaching an error state.

Component Modeling. We build a discrete-state model of M1 = Controller ||
Dynamics as an LTS. We assume a discrete-event controller and a discrete
model of the aircraft dynamics. The Controller and the Dynamics operate
over discretized actual and estimated values of the system state. We use a fixed
discretization for he and experiment with discretizations at different granularities
for cte, as defined by a parameter MaxCTE. For instance, when MaxCTE = 2, the
discretization divides the cte and he as follows.

cte =

⎧
⎨

⎩

0 if cte ∈ [−8,−2.7)
1 if cte ∈ [−2.7, 2.7]
2 if cte ∈ (2.7, 8]

he =

⎧
⎨

⎩

1 if he ∈ [−35,−11.67)
0 if he ∈ [−11.67, 11.66]
2 if he ∈ (11.66, 35.0]

For simplicity, we use cte and he to denote both the discrete and continuous
versions in other parts of the paper (with meaning clear from context).

Figure 2 gives a description of the Controller and Dynamics components. We
use act[cte][he] to denote actual states s in the Act alphabet and est[cte][he]
to denote the estimated states sest in Est. While we could express the safety
properties as property LTSs, for simplicity, we encode them here as the ERROR
states in the LTS of the Dynamics component, where an error for either cte
or he indicates that the airplane is off the taxiway or turned more than the

14 C. S. Păsăreanu et al.

prescribed angle, respectively. Tools for analyzing LTSs, such as LTSA [32], can
check reachability of error states automatically.

The Controller reads the estimates via est-labeled transitions. The
Controller can take three possible actions to steer the airplane—GoStraight,
TurnLeft, and TurnRight (denoted by cmd[0], cmd[1], and cmd[2] respectively).
The Dynamics updates the system state, via act-labeled transitions; the initial
state is act[1][0]. Action turn is meant to synchronize the Controller and the
Dynamics, to ensure that the estimates happen after each system update.

We analyze M1 = Controller || Dynamics as an open system; in M1

the estimates can take any values (see transition labeled est[cte : CTERange]
[he : HERange] in the Controller), irrespective of the values of the actuals. Thus,
we implicitly take a pessimistic view of the Perception DNN and assume the
worst-case—the estimates can be arbitrarily wrong—for its behavior. It may be
that a well-trained DNN with high test accuracy may perform much better in
practice than this worst-case scenario. However, it is well known that even highly
trained, high performant DNNs are vulnerable to adversarial attacks, natural
and other perturbations as well as to distribution shifts which may significantly
degrade their performance. We seek to derive strong guarantees for the safety
of the overall system even in such adversarial conditions, hence our pessimistic
approach.

Note also that when using an optimistic Perception component, LTSA
reports no errors, meaning that the system is safe assuming no errors in the
perception.

Assumption Generation. We build an assumption, using the procedure
described in Algorithm 3.1, that restricts M1 in such a way that it satisfies
the safety properties. At the same time, the assumption does not restrict M1

unnecessarily, i.e., it allows M1 to operate normally, as long as it can be pre-
vented (via parallel composition with the assumption) from entering the error
states.

For the assumption alphabet, we consider ΣI = act[CTERange][HERange] ∪
est[CTERange][HERange] which consists of actual and estimated values exchanged
between M1 and M2. As mentioned in Sect. 3, while the resulting assumption
AΣI

w can be leveraged for synthesizing local specifications, using it as run-time
monitor can be difficult since the actual values of the system state may not be
available at run-time with the system accessing the external world only through
the values that are estimated by the DNN. We therefore define a second alphabet,
Σ=est[CTERange][HERange], which consists of only the estimated values, and
build a second assumption AEst

w . We describe these two assumptions in more
detail below.

Assumption AEst
w . Figure 3 shows the assumption that was generated for the

alphabet Σ consisting of only the estimated values (est[CTERange][HERange]).
In the figure, each circle represents a state. The initial state (0) is shown

in red. Let us look at some of the transitions in detail. The initial state has
a transition leading back to itself with labels est[0][2], est[1][0], est[2][1]. This
indicates that if the DNN keeps estimating either [0][2] or [1][0] or [2][1] for

Assumption Generation for Learning-Enabled Autonomous Systems 15

Fig. 3. Assumption AEst
w for TaxiNet when MaxCTE = 2.

Fig. 4. AΣI
err for TaxiNet when ΣI = Est ∪ Act and MaxCTE = 2. We show it in textual

form for readability.

cte and he, then the system continues to remain safe, regardless of the actuals.
Intuitively, this is true because the system starts in initial actual state [1][0]
and all three estimates ([0][2], [1][0], [2][1]) lead to the same action issued by the
controller, which is GoStraight, ensuring that the system keeps following the
straight line, never going to error.

The assumption can be seen as a temporal specification of the DNN behaviour
which was derived automatically from the behaviour of M1 with respect to the
desired safety properties.
Assumption AΣI

w . The code for AΣI
err, generated for the purpose of synthesizing

local specifications using the alphabet ΣI with both actual and estimated values
(act[CTERange][HERange], est[CTERange][HERange]), is shown in Fig. 4. Recall
that this code is the result of step 4 in Algorithm 3.1; thus it encodes the error

16 C. S. Păsăreanu et al.

behaviour of the perception in terms of estimated and ground-truth (actual)
output values for the DNN.

Let us consider how Algorithm 3.2 synthesizes local, non-temporal specifica-
tions using this code. For instance, in state Q3, estimates {[0][0..2], [1][0..1], [2][1]}
lead to error, thus only estimates [1][2], [2][0], and [2][2] are safe. Furthermore,
Q3 is reached (from Q1) when the actual state is [2][2]. Following similar reason-
ing, in state Q5, estimates [0][2], [1][0], [1][2], [2][0..2] are safe (since estimates
{[0][0..1], [1][1]} lead to error) and Q5 is reached when actual is [2][0]. Similar
patterns can be observed for Q7, Q10, Q12, and Q14.

From Q3, we can infer the following local specification for the DNN: (cte∗ =
2 ∧ he∗ = 2) ⇒ (

(cte = 1 ∧ he = 2) ∨ (cte = 2 ∧ he = 0) ∨ (cte =
2 ∧ he = 2)). Here ’*’ denotes actual state values. This specification gets
translated back to the original, continuous DNN outputs as follows: (cte∗ ∈
[2.7, 8)∧he∗ ∈ (11.66, 35.0]) ⇒ (

(cte ∈ [−2.7, 2.7] ∧ he ∈ (11.66, 35.0]) ∨(cte ∈
[2.7, 8) ∧ he ∈ [−11.67, 11.66]) ∨ (cte ∈ [2.7, 8) ∧ he ∈ (11.66, 35.0])). This
specification can be interpreted as follows. For an input image that has ground
truth cte∗ ∈ [2.7, 8) ∧ he∗ ∈ (11.66, 35.0], the output of the DNN on that image
should satisfy (cte ∈ [−2.7, 2.7] ∧ he ∈ (11.66, 35.0]) ∨ (cte ∈ [2.7, 8) ∧ he ∈
[−11.67, 11.66]) ∨ (cte ∈ [2.7, 8) ∧ he ∈ (11.66, 35.0]).

Thus, the specification tolerates some DNN output values that are different
than the ground truth, as they do not affect the safety of the overall system. The
industry partner is using these specifications to help elicit DNN requirements,
which are always a challenge in learning-enabled system development. The speci-
fications can also be used to support sensitivity analysis of the DNN. The require-
ments and sensitivity analysis are important contributors in the assurance of
learning-enabled safety-critical systems.

5 Evaluation

Assumptions for Increasing Alphabet Sizes. Our approach is general, and
is not dependent on the granularity of discretization used for the system states

Table 1. Effect of discretization gran-
ularity on assumptions.

MaxCTE Assump.

size

M1 size Time (sec.) Memory

(KB)

2 7 99 0.079 9799

4 13 261 0.126 10556

6 19 495 0.098 9926

14 43 2151 0.143 13324

30 91 8919 0.397 31056

50 151 23859 2.919 45225

100 301 92709 81.529 132418

Fig. 5. Probability of the assump-
tion being violated. n indicates hori-
zon length. Low and High correspond
to lower and higher accuracy DNNs.

Assumption Generation for Learning-Enabled Autonomous Systems 17

(cte and he); however, this granularity defines the size of the interface alphabet
and can thus affect the scalability of the approach (Table 1).

We experimented with generating assumptions AEst
w for the TaxiNet case

study, under different alphabet sizes; i.e., different values of MaxCTE defining the
granularity for cte; the granularity of he stays the same. Figure 5 shows the
results; we used an implementation in LTSA on a MacBook Air with a 1.4 GHz
Intel Core i5 processor and 8 GB memory.

We first note that the generated assumptions are much smaller than the cor-
responding M1 components. For instance, for MaxCTE = 2, M1 has 99 states (and
155 transitions) while the assumption is much smaller (7 states); it appears for
this problem, the assumption size is linear in the size of the interface alphabet,
making them good candidates for efficient run-time monitoring. The results indi-
cate that the assumption generation is effective even when the size of the inter-
face alphabet—corresponding to the number of possible DNN output values—is
large. For instance, when MaxCTE = 100, it means that cte has 101 intervals
while HE has 3 intervals, thus the DNN can be seen as having 101 ∗ 3 = 303 pos-
sible discrete output values. The generated assumption has 301 states and the
assumption generation is reasonably fast. The results indicate that our approach
is promising in handling practical applications, even for DNNs (classifiers) with
hundreds of possible output values.

In case assumption generation no longer scales, we can group multiple DNN
output values into a single (abstract) value, guided by the logic of the down-
stream decision making components (similar to how we group together multiple
continuous DNN output values into discrete values representing intervals in the
TaxiNet example). Incremental techniques, that use learning and alphabet refine-
ment [10] can also help alleviate the problem and we plan to explore them in
the future.

Assumptions as Run-time Safety Monitors. The goal of this evaluation
is to: (i) check that the TaxiNet system augmented with the safety monitor is
guaranteed to be safe, (ii) quantify the permissiveness of the monitor, i.e., the
probability of the the assumption being violated during system operation.

To this end, we devised an experiment that leverages probabilistic model
checking using the PRISM tool [25]. We built PRISM models for the TaxiNet
Controller and Dynamics components that are equivalent to the corresponding
LTSs encoded in the FSP language. We also had to encode the Sensor and
Perception components since our goal is to study the behavior of the overall
system. For this purpose, we use our prior work [29] to build a conservative
probabilistic abstraction of M2 = Sensor || Perception that maps every actual
system state value to a probability distribution over estimated system state
values; the probabilities associated with the transitions from actual to estimated
values are empirically derived from running the DNN on a representative data
set provided by the industrial partner (11,108 images).

18 C. S. Păsăreanu et al.

PRISM Results. We first double-checked that the PRISM model of the Tax-
iNet system, augmented with the run-time monitor2, does not violate the two
safety properties, which PRISM confirmed, validating the correctness of our
approach.

The run-time monitor blocks the system when the assumption is violated (see
Q = −1 in Appendix, with no out-going transitions). While blocking the system
is always safe, it comes at a cost, as it prevents the system from performing its
normal operation. We analyzed a PCTL [25] property, P =?[F (Q = −1)], that
asks for the probability of the system reaching Q = −1, thereby quantifying the
permissiveness of the run-time monitor. The results are shown in Fig. 5 for two
different versions of the DNN that vary in their accuracies. Our comparison shows
that, as expected, using a DNN with better accuracy leads to less likelihood of
the monitor to block the system.

6 Related Work

There are several approaches for formally proving safety properties of
autonomous systems with low-dimensional sensor readings [7,8,19–22,31]; how-
ever, they are intractable for systems that use rich sensors producing high-
dimensional inputs such as images. More closely related works aim to build
models based on the analysis of the perception components. However, they either
do not provide guarantees [24] or do not scale to large networks [30].

The most closely related approach is the one in [16], which builds abstrac-
tions of the DNN components as guided by system-level safety properties. The
method does not provide strong system-level guarantees; instead it only provides
a probabilistic result that measures empirically how close a real DNN is to the
abstraction. Another difference is that the approach in [16] uses the training
data to help discover the right abstraction, whereas we do not rely on any data.

In recent work [29], we built a probabilistic abstraction of the camera and
perception DNN for the probabilistic analysis of the same TaxiNet case study.
The approach facilitates obtaining probabilistic guarantees with respect to the
satisfaction of safety properties of the entire system. Another recent work lever-
ages assume-guarantee contracts and probabilistic model checking to evaluate
probabilistic properties of the end-to-end autonomy stack [18]. In contrast, we
focus here on obtaining strong (non-probabilistic) safety guarantees.

The work in [27] aims to verify the safety of the trajectories of a camera-
based autonomous vehicle in a given 3D-scene. Their abstraction captures only
one environment condition (i.e., one scene) and one camera model, whereas our
approach is not particular to any camera model and implicitly considers all the
possible environment conditions.

Our work is also related to safe shielding for reinforcement learning [2]. That
work does not consider complex DNNs as part of the system and therefore does

2 We provide the code of the monitor in the appendix.

Assumption Generation for Learning-Enabled Autonomous Systems 19

not discuss suitable techniques for them. Nevertheless, we note that our assump-
tions are monitoring the outputs of the DNN instead of the actions of the con-
troller (as in shielding), and can thus be used to prevent errors earlier. Further
the local specifications enable DNN testing and training.

7 Conclusion

We presented a compositional approach for the verification of autonomous sys-
tems that use DNNs for perception. We demonstrated our approach on the Tax-
iNet case study. While our approach opens the door to analyzing autonomous
systems with state-of-the-art DNNs, it can suffer from the well known scalability
issues associated with model checking. We believe we can address this issue via
judicious use of abstraction and compositional techniques. Incremental, more
scalable, techniques for assumption generation can also be explored, see. e.g. [6].

In future work we plan to investigate systems with multiple machine learning
components (e.g., both camera and LIDAR) and decompose the global assump-
tion into assumptions for each such component. These assumptions can then
be used to guide the development of the components and can be deployed as
monitors.

Appendix: PRISM Encoding for TaxiNet with Safety
Monitor

We show the PRISM code for M2 and the safety monitor in Fig. 6. We use
the output of step 4 in procedure BuildAssumption(Algorithm 3.1) as a safety
monitor, i.e., the assumption LTS has both err and sink states, with a transition
to err state interpreted as the system aborting. The encoding closely follows the
transitions of the assumption computed for M1 over alphabet Σ = Est.

Variable pc encodes a program counter. M2 is encoded as mapping the actual
system state (represented with variables cte and he) to different estimated states
(represented with variables cte est and he est). The transition probabilities
are empirically estimated based on profiling the DNN; for simplicity we update
cte est and he est in sequence. The monitor maintains its state using variable
Q (initially 0); it transitions to its next state after cte est and he est have been
updated; the abort state (Q = −1) traps behaviours that are not allowed by the
assumption; there are no outgoing transitions from such an abort state.

20 C. S. Păsăreanu et al.

Fig. 6. TaxiNet M2 and safety monitor in PRISM.

References

1. X-plane flight simulator. https://www.x-plane.com/
2. Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.:

Safe reinforcement learning via shielding. In: McIlraith, S.A., Weinberger, K.Q.
(eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18),
and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, 2–7 February 2018, pp. 2669–2678.
AAAI Press (2018). https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/
view/17211

3. Beland, S., et al.: Towards assurance evaluation of autonomous systems. In:
IEEE/ACM International Conference On Computer Aided Design, ICCAD 2020,
San Diego, CA, USA, 2–5 November 2020, pp. 84:1–84:6. IEEE (2020)

4. Bogomolov, S., Frehse, G., Greitschus, M., Grosu, R., Pasareanu, C., Podelski, A.,
Strump, T.: Assume-guarantee abstraction refinement meets hybrid systems. In:
Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp. 116–131. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13338-6 10

5. Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learn-
ing by exponential linear units (elus). In: Bengio, Y., LeCun, Y. (eds.) 4th Inter-
national Conference on Learning Representations, ICLR 2016, San Juan, Puerto

https://www.x-plane.com/
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17211
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17211
https://doi.org/10.1007/978-3-319-13338-6_10

Assumption Generation for Learning-Enabled Autonomous Systems 21

Rico, 2–4 May 2016, Conference Track Proceedings (2016). http://arxiv.org/abs/
1511.07289

6. Cobleigh, J.M., Giannakopoulou, D., PĂsĂreanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X 24

7. Dawson, C., Gao, S., Fan, C.: Safe control with learned certificates: a survey of
neural lyapunov, barrier, and contraction methods for robotics and control. IEEE
Trans. Rob. 39(3), 1749–1767 (2023). https://doi.org/10.1109/TRO.2022.3232542

8. Dawson, C., Lowenkamp, B., Goff, D., Fan, C.: Learning safe, generalizable
perception-based hybrid control with certificates. IEEE Rob. Autom. Lett. 7(2),
1904–1911 (2022)

9. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical
systems with machine learning components. J. Autom. Reason. 63, 1031–1053
(2019)

10. Gheorghiu, M., Giannakopoulou, D., Păsăreanu, C.S.: Refining interface alphabets
for compositional verification. In: Grumberg, O., Huth, M. (eds.) TACAS 2007.
LNCS, vol. 4424, pp. 292–307. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-71209-1 23

11. Ghosh, S., Pant, Y.V., Ravanbakhsh, H., Seshia, S.A.: Counterexample-guided
synthesis of perception models and control. In: 2021 American Control Conference
(ACC), pp. 3447–3454. IEEE (2021)

12. Giannakopoulou, D., Magee, J.: Fluent model checking for event-based systems. In:
Paakki, J., Inverardi, P. (eds.) Proceedings of the 11th ACM SIGSOFT Symposium
on Foundations of Software Engineering 2003 held jointly with 9th European Soft-
ware Engineering Conference, ESEC/FSE 2003, Helsinki, Finland, 1–5 September
2003, pp. 257–266. ACM (2003). https://doi.org/10.1145/940071.940106

13. Giannakopoulou, D., Pasareanu, C.S.: Abstraction and learning for infinite-state
compositional verification. In: Banerjee, A., Danvy, O., Doh, K., Hatcliff, J. (eds.)
Semantics, Abstract Interpretation, and Reasoning about Programs: Essays Ded-
icated to David A. Schmidt on the Occasion of his Sixtieth Birthday, Manhat-
tan, Kansas, USA, 19–20 September 2013, EPTCS, vol. 129, pp. 211–228 (2013).
https://doi.org/10.4204/EPTCS.129.13

14. Giannakopoulou, D., Pasareanu, C.S., Barringer, H.: Assumption generation for
software component verification. In: 17th IEEE International Conference on Auto-
mated Software Engineering (ASE 2002), Edinburgh, Scotland, UK, 23–27 Septem-
ber 2002, pp. 3–12. IEEE Computer Society (2002). https://doi.org/10.1109/ASE.
2002.1114984

15. Gopinath, D., Katz, G., Păsăreanu, C.S., Barrett, C.: DeepSafe: a data-driven
approach for assessing robustness of neural networks. In: Lahiri, S.K., Wang, C.
(eds.) ATVA 2018. LNCS, vol. 11138, pp. 3–19. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-01090-4 1

16. Hsieh, C., Li, Y., Sun, D., Joshi, K., Misailovic, S., Mitra, S.: Verifying controllers
with vision-based perception using safe approximate abstractions. IEEE Trans.
Comput.-Aided Des. Integr. Circ. Syst. 41(11), 4205–4216 (2022)

17. Huang, X., et al.: A survey of safety and trustworthiness of deep neural networks:
verification, testing, adversarial attack and defence, and interpretability. Comput.
Sci. Rev. 37, 100270 (2020)

18. Incer, I., et al.: Pacti: scaling assume-guarantee reasoning for system analysis and
design. arXiv preprint arXiv:2303.17751 (2023)

http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1109/TRO.2022.3232542
https://doi.org/10.1007/978-3-540-71209-1_23
https://doi.org/10.1007/978-3-540-71209-1_23
https://doi.org/10.1145/940071.940106
https://doi.org/10.4204/EPTCS.129.13
https://doi.org/10.1109/ASE.2002.1114984
https://doi.org/10.1109/ASE.2002.1114984
https://doi.org/10.1007/978-3-030-01090-4_1
https://doi.org/10.1007/978-3-030-01090-4_1
http://arxiv.org/abs/2303.17751

22 C. S. Păsăreanu et al.

19. Ivanov, R., Carpenter, T., Weimer, J., Alur, R., Pappas, G., Lee, I.: Verisig 2.0:
verification of neural network controllers using taylor model preconditioning. In:
Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 249–262. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-81685-8 11

20. Ivanov, R., Carpenter, T.J., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verifying
the safety of autonomous systems with neural network controllers. ACM Trans.
Embed. Comput. Syst. (TECS) 20(1), 1–26 (2020)

21. Ivanov, R., Jothimurugan, K., Hsu, S., Vaidya, S., Alur, R., Bastani, O.: Composi-
tional learning and verification of neural network controllers. ACM Trans. Embed.
Comput. Syst. (TECS) 20(5s), 1–26 (2021)

22. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: Proceedings of
the 22nd ACM International Conference on Hybrid Systems: Computation and
Control, pp. 169–178 (2019)

23. Katz, G., et al.: The marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

24. Katz, S.M., Corso, A.L., Strong, C.A., Kochenderfer, M.J.: Verification of image-
based neural network controllers using generative models. J. Aeros. Inf. Syst. 19(9),
574–584 (2022)

25. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

26. Magee, J., Kramer, J.: Concurrency: State Models and Java Programs. John Wiley
and Sons Inc., Hoboken (2000)

27. Habeeb, P., Deka, N., D’Souza, D., Lodaya, K., Prabhakar, P.: Verification of
camera-based autonomous systems. IEEE Trans. Comput.-Aided Des. Integr. Circ.
Syst. (2023). https://doi.org/10.1109/TCAD.2023.3240131

28. Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer,
H.: Learning to divide and conquer: applying the l* algorithm to automate assume-
guarantee reasoning. Formal Methods Syst. Des. 32(3), 175–205 (2008). https://
doi.org/10.1007/s10703-008-0049-6

29. Pasareanu, C.S., et al.: Closed-loop analysis of vision-based autonomous systems:
A case study. In: Enea, C., Lal, A. (eds.) Computer Aided Verification - 35th
International Conference, CAV 2023, Paris, France, 17–22 July 2023, Proceedings,
Part I. Lecture Notes in Computer Science, vol. 13964, pp. 289–303. Springer,
Heideleberg (2023). https://doi.org/10.1007/978-3-031-37706-8 15

30. Santa Cruz, U., Shoukry, Y.: Nnlander-verif: a neural network formal verifica-
tion framework for vision-based autonomous aircraft landing. In: NASA Formal
Methods Symposium, pp. 213–230. Springer, Heidelberg (2022). https://doi.org/
10.1007/978-3-031-06773-0 11

31. Seshia, S.A.: Introspective environment modeling. In: Finkbeiner, B., Mariani, L.
(eds.) RV 2019. LNCS, vol. 11757, pp. 15–26. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-32079-9 2

32. Yang, Y., Zu, Q., Ke, W., Zhang, M., Li, X.: Real-time system modeling and
verification through labeled transition system analyzer. IEEE Access 7, 26314–
26323 (2019). https://doi.org/10.1109/ACCESS.2019.2899761

https://doi.org/10.1007/978-3-030-81685-8_11
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1109/TCAD.2023.3240131
https://doi.org/10.1007/s10703-008-0049-6
https://doi.org/10.1007/s10703-008-0049-6
https://doi.org/10.1007/978-3-031-37706-8_15
https://doi.org/10.1007/978-3-031-06773-0_11
https://doi.org/10.1007/978-3-031-06773-0_11
https://doi.org/10.1007/978-3-030-32079-9_2
https://doi.org/10.1007/978-3-030-32079-9_2
https://doi.org/10.1109/ACCESS.2019.2899761

Customizable Reference Runtime
Monitoring of Neural Networks Using

Resolution Boxes

Changshun Wu1 , Yliès Falcone2 , and Saddek Bensalem1(B)

1 University Grenoble Alpes, VERIMAG, Grenoble, France
{changshun.wu,saddek.bensalem}@univ-grenoble-alpes.fr

2 Univ. Grenoble Alpes, Inria, CNRS, LIG, 38000 Grenoble, France
ylies.falcone@univ-grenoble-alpes.fr

Abstract. Classification neural networks fail to detect inputs that do
not fall inside the classes they have been trained for. Runtime monitoring
techniques on the neuron activation pattern can be used to detect such
inputs. We present an approach for monitoring classification systems via
data abstraction. Data abstraction relies on the notion of box with a
resolution. Box-based abstraction consists in representing a set of values
by its minimal and maximal values in each dimension. We augment boxes
with a notion of resolution and define their clustering coverage, which is
intuitively a quantitative metric that indicates the abstraction quality.
This allows studying the effect of different clustering parameters on the
constructed boxes and estimating an interval of sub-optimal parameters.
Moreover, we automatically construct monitors that leverage both the
correct and incorrect behaviors of a system. This allows checking the size
of the monitor abstractions and analysing the separability of the network.
Monitors are obtained by combining the sub-monitors of each class of
the system placed at some selected layers. Our experiments demonstrate
the effectiveness of our clustering coverage estimation and show how
to assess the effectiveness and precision of monitors according to the
selected clustering parameter and monitored layers.

Keywords: Runtime monitoring · Neural networks · Resolution boxes

1 Introduction

Today’s systems rely on so-called learning-enabled components (LECs). Pro-
totyping such systems may seem quick and easy, but prototypes are not safe
and incur a high cost, referred to as technical debt [19]. Traffic violations, acci-
dents, and even human casualties have resulted from faults of LECs. Therefore,
such systems are not trustworthy [10]. The safety-critical nature of such systems

Support from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No. 956123 - FOCETA and the French national program “Pro-
gramme Investissements d’Avenir IRT Nanoelec" (ANR-10-AIRT-05).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 23–41, 2023.
https://doi.org/10.1007/978-3-031-44267-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_2&domain=pdf
http://orcid.org/0000-0001-8293-2888
http://orcid.org/0000-0002-0114-0641
http://orcid.org/0000-0002-5753-2126
https://doi.org/10.1007/978-3-031-44267-4_2

24 C. Wu et al.

involving LECs raised the need for formal methods [20]. Verification techniques
for data-driven learning components have been actively developed in the past
3–4 years (cf. [9] for a survey). However, their scalability should be significantly
improved to meet industrial needs. To favor scalability, and because some essen-
tial properties of LECs cannot be guaranteed statically at design time, some
research efforts in the last few years have focused on using dynamic verification
techniques such as testing [17,21–23] and runtime monitoring [3,4,7,14].

We contribute to the research efforts on monitoring LECs. One challenge is
the absence of a behavioral specification of components. This implies a change
of paradigm: to move from behavior-based verification to data-based verifica-
tion. Henceforth, existing approaches essentially proceed in two steps. First, one
characterizes the seen data (e.g., via probability distribution) or the compact
patterns generated from them (via Boolean or high-dimension geometry abstrac-
tion). Then, one uses the established characterizations as references to check the
system decisions on new inputs by checking the similarity between the produced
patterns at runtime and the reference patterns. Existing approaches can be split
in two categories depending on the abstractions used to record the reference
patterns: Boolean abstraction [3,4] and geometrical-shape abstraction [3,7,14].

We focus on the monitoring approaches based on geometrical-shape abstrac-
tion and make two main contributions. First, we extend the approach in [7],
which only leverages the good reference behaviors of the network. We leverage
both the good and bad reference behaviors for two reasons: i) the monitored sys-
tems are learned from massive data and bad reference behaviors often contain
useful information, as we demonstrate in the experiments; ii) the geometrical-
shape abstractions of the good and bad reference behaviors may intersect or not.
Thus, a new generated pattern can belong to both abstractions. Hence, the ver-
dicts produced by [7] based only on good behaviors may be partial. We use both
the good and bad network behaviors, i.e., correct and incorrect decisions respec-
tively as references to build box abstractions. Using these references, a runtime
monitor assigns verdicts to a new input as follows. If the input generates patterns
(e.g., values at close-to-output layers) that fall only within the good references,
then the input is accepted. If the input generates patterns captured by both the
good and bad references, it marks the input as uncertain. Otherwise, the input is
rejected. Moreover, introducing uncertainty verdicts allows identifying suspicious
regions when the abstractions of good and bad references overlap. By reducing
the abstraction size, one may remove the overlapping regions and obtain suitable
abstraction size. Otherwise, it indicates that the network does not have a good
separability: the correctly classified and mis-classified samples are tangled. This
provides feedback to the network designer. It also permits comparing the regions
of patterns and thus enables the study of the relationship between good and bad
behavior patterns of the network.

Second, in order to reduce the white space in an abstraction (a box) for a
dataset, the authors in [7] proposed to first partition the dataset into a set of
smaller subsets via applying a parameterised clustering algorithm and then build
an abstraction for each obtained cluster. However, the approach in [7] completely

Customizable Reference Monitors of DNNs Using Resolution Boxes 25

ignores how to tune the clustering parameter and compare the sizes of the single
abstraction and a set of smaller abstractions before and after the partition. Thus,
we introduce the notion of box with resolution which consists intuitively in tiling
the space of a box. By doing this, one can measure the clustering coverage which
is an indicator of the coarseness of the abstraction and the precision of the boxes.
In choosing the box resolution, there is a tradeoff between the precision of the
related abstractions and the related overhead (i.e., augmenting the precision
augments the overhead). To control the precision, we discuss how to tune the
clustering parameters by observing the clustering coverage and the number of
uncertainties. We achieve better precision and recall in all cases.

Paper Organization. Sect. 2 introduces preliminary concepts and notation.
Section 3 defines boxes with a resolution. Section 4 presents our monitoring
framework. Section 5 presents the results of our experimental evaluations.
Section 6 positions our work and details the improvements over state of the
art.

2 Preliminaries

For a set E, |E| denotes its cardinality. N and R are the sets of natural and
real numbers. For x ∈ R, �x� denotes the least integer strictly greater than x.
To refer to integer intervals, we use [a ··· b] with a, b ∈ N and a ≤ b. To refer to
real intervals, we use [a, b] with a, b ∈ R ∪ {−∞,∞} and if a, b ∈ R, then a ≤ b.
For n ∈ N \ {0}, Rn def= R × · · · × R

︸ ︷︷ ︸

n times

is the space of real coordinates of dimension

n and its elements are called n-dimensional vectors. We use x = (x1, . . . , xn)
to denote an n-dimensional vector and θi : Rn → R the projection on the i-th
dimension for i ∈ [1 ··· n], i.e., θi(x) = xi.

Feedforward Neural Networks. A neuron is an elementary mathematical func-
tion. A (forward) neural network is a sequential structure of L ∈ N \ {0} layers,
where, for i ∈ [1 ··· L], the i-th layer comprises di neurons and implements a
function g(i) : R

di−1 → R
di . The inputs of neurons at layer i comprise (1)

the outputs of neurons at layer (i − 1) and (2) a bias. The outputs of neu-
rons at layer i are inputs for neurons at layer i + 1. Given a network input
x ∈ R

d0 , the output at the i-th layer is computed by the function composition
f (i)(x) def= g(i)(· · · g(2)(g(1)(x))). For networks used for classification tasks, aka
classification networks, the decision dec(x) of classifying input x into a certain
class is given by the index of the neuron of the output layer whose value is max-
imum, i.e., dec(x) def= argmax1≤i≤dL

θi(f (L)(x)). We only consider well-trained
networks (weights and bias related to neurons are fixed). Our method is appli-
cable to networks with various neuron activation functions.

26 C. Wu et al.

Abstraction for High-level Features. As runtime monitoring requires intensive
usage of the high-level features (here, the features are neuron values at some
layers in form of high dimensional vectors), affordable computational complexity
of storage, construction, membership query, and coarseness control is paramount.
While there are other candidate abstractions using different geometry shapes
(e.g., zonotope [15], polyhedra [5]), our study of these alternative shapes along
with the complexity considerations, led us to follow [7] and use box abstraction.

Box Abstraction [7]. A box is a set of contiguous n-dimensional vectors con-
strained by real intervals. The box abstraction of X ⊆ R

n is defined as B(X) def=
{(x1, . . . , xn) ∈ R

n | ∧

i∈[1···n]
ai ≤ xi ≤ bi}, where ai = min({θi(x)}) and bi =

max({θi(x)}), for x ∈ X and i ∈ [1 ··· n]. A box is equivalently encoded as the list
of intervals of its bounds on each dimension, i.e., B(X) =

[

[a1, b1], · · · , [an, bn]
]

.
Moreover, given two n-dimensional boxes B(X ′) = [[a′

1, b
′
1], . . . , [a

′
n, b′

n]] and
B(X) = [[a1, b1], · · · , [an, bn]], B(X ′) is said to be a sub-box of B(X) if the
vectors of B(X ′) are all in B(X), i.e., if ∀i ∈ [1 ··· n] : ai ≤ a′

i ∧ b′
i ≤ bi. For

two datasets X ′ and X, if X ′ ⊆ X, then B(X ′) is a sub-box of B(X). Fur-
thermore, the emptiness check of a box as well as the intersection between two
n-dimensional boxes is a box and can be easily computed using their lower and
upper bounds on each dimension.

Example 1. Consider a set of vectors (dataset) X = {(0.1, 0.5), (0.1, 1.0), (0.2,
0.8), (0.6, 0.2), (1.0, 0.3)}. Its box abstraction is the set {(x1, x2) ∈ R

2 | x1 ∈
[0.1, 1.0], x2 ∈ [0.2, 1.0]}, also encoded as [[0.1, 1.0], [0.2, 1.0]].

Remark 1. An n-dimensional box can be represented by 2 × n bounds. The
complexity of building a box for a set of n-dimensional vectors of cardinal m is
O(m × n), while the membership query of a vector in a box is O(n).

x1

x2

sub-box
12

sub-box
23

sub-box
11

sub-box
22

sub-box
21

Box 2

Box 1

Fig. 1. Box abstractions for two sets of points (the green and red one) built without
and with clustering. (Color figure online)

Customizable Reference Monitors of DNNs Using Resolution Boxes 27

Box with Clustering. In certain cases (e.g., with boxes 1 and 2 in Fig. 1), the box
of a set X is s.t. most of the elements of X end up close to the boundaries of the
box (there is “white space”). Consequently, more elements not originally present
in the set end up in the box. This situation is not desirable for our monitoring
purpose. To remedy this, one can apply a clustering algorithm to determine a
partition of the set based on an appropriate similarity measure such as distance
(e.g., k-means clustering [13]), density (DBSCAN [18]), connectivity (hierarchi-
cal clustering [16]), etc. Finding the best clustering algorithms for monitoring
remains an open question out of the scope of this paper. We adopt k-means even
though other clustering algorithms are usable with our framework.

By grouping the close points in a cluster and computing the boxes on each
cluster separately permits abstracting these sets more precisely as the union of
the boxes (sub-boxes in Fig. 1) computed for the clusters.

3 Boxes with a Resolution

Applying clustering algorithm before computing abstractions for a set of points
was first proposed in [7]. However, neither the effect of using clustering algo-
rithms in monitoring nor the relationship between the clustering parameters and
the monitor performance were studied in [7]. Moreover, going back to Fig. 1, with
boxes, we observe that it is difficult to quantify the precision of the abstraction
provided by boxes.

To address the aforementioned problems, we introduce box with a resolution,
which is essentially a box divided into a certain number of cells of the same size.
Moreover, we use the ratio between the number of cells covered by the set of
boxes computed for the partition of points to the total number of cells. This
ratio serves to measure the relative coarseness of the box abstractions computed
with and without clustering.

We refer to this metric as the clustering coverage. In this section, we compute
efficiently (an approximation) of the clustering coverage.

We consider a set X of n-dimensional vectors, its n-dimensional box (abstrac-
tion) B(X) = [[a1, b1], · · · , [an, bn]], its partition π(X) = {X1, . . . , Xk} obtained
with clustering, and the set of boxes computed for the partitioned dataset
BX = {B1, . . ., Bk} where Bi = B(Xi) for i ∈ [1 ··· k]. We refer informally
to B(X) as the global box and to B1, . . . , Bk as the local boxes. We measure
their relative sizes. Local boxes often exist on different dimensions, i.e., some of
their intervals is of length 0.

Box Covered Space. The box covered space associated with B(X) is a box of
(possibly) lower dimension used for measuring the spaced covered.

Definition 1 (Box covered space). The covered space of B(X) is defined as
CovB(X) def= [[ai, bi] if ai �= bi | [ai, bi] ∈ B(X)].

Example 2. For X = {(1.5, 2.0, 1), (1.8, 2.3, 1)} and B(X) = [[1.5, 1.8], [2.0, 2.3],
[1, 1]], we have: CovB(X) = [[1.5, 1.8], [2.0, 2.3]].

28 C. Wu et al.

Adding Resolution. Let |CovB(X)| denote the length of CovB(X) – it is the
number of dimensions on which the box abstraction of X exists. We divide
each interval/dimension of CovB(X) into |X| subintervals of the same length.
Consequently, the space enclosed in CovB(X) is equally divided into |X||CovB(X)|

subspaces. Each such a subspace is called a box cell. Each box cell can be encoded
(as a box) by |CovB(X)| intervals and can be indexed by coordinates of size
|CovB(X)|. We can hence reuse the notions and notation related to boxes. We
use CX to denote the set of cells obtained from CovB(X).

Definition 2 (Covered cells). A box cell c ∈ CX is said to be covered by a box
b ∈ BX if c ∩ b �= ∅. The set of covered cells by a box b, {c ∈ CX | c ∩ b �= ∅}, is
denoted by CovCell (b).

Using the intervals defining a local box b and the global box B(X), we can
compute the number of covered cells in b ∈ B, denoted by |CovCell (b) |. For
b ∈ B, let b = [[a′

1, b
′
1], . . . , [a

′
n, b′

n]], we have: |CovCell (b) | =
∏n

i=1 ni, with
ni = min(|X|, � |X|×(b′

i−ai)
(bi−ai)

�) − � |X|×(a′
i−ai)

(bi−ai)
� + 1, if b′

i �= a′
i; otherwise 1.

Definition 3 (Sub-box coverage). The sub-box coverage of b ∈ BX to B(X)
is defined as: covgeX (b) = |CovCell(b)|

|X||CovB(X)| .

Example 3. Consider set X in Example 1. Its covered space is CovB(X) =
[[0.1, 1.0], [0.2, 1.0]]. For X1 = {(0.1, 0.5), (0.1, 1.0), (0.2, 0.8)}, the coverage of

B(X1) = [[0.1, 0.2], [0.5, 1.0]] is covgeX

(

B(X1)
)

=
|CovCell(B(X1))|

|X|2 = 4/25.

Clustering Coverage Estimation. We extend the notion of sub-box coverage to
set BX of local boxes. We note it covgeX (BX) and define it as the ratio between
the total number of cells covered by the union of boxes in BX to the whole
number of cells in CovB(X): covgeX (BX) = covgeX (∪b∈BX

).
The exact value of covgeX (BX) can, in theory, be easily computed. However,

in practice the computation may be very expensive with high dimensionality due
to the large number of cells and intersections between boxes. Henceforth, we only
estimate the coverage value by considering the pair-wise intersections of boxes.
This is a reasonable approximation because the set of sub-boxes considered is
built from a partition of the input dataset after applying a clustering algorithm:
in principle a good clustering implies few elements in the intersections between
the clusters, especially if the number of clusters is important.

For BX , we define Bint
X = {bi ∩ bj | i ∈ [1 ··· k − 1], j ∈ [i + 1 ··· k]} as the set

of pair-wise intersections of boxes in BX .

Proposition 1 (Clustering coverage estimation). The clustering coverage
is lower and upper bounded by rl and ru, respectively, where:

ru =
∑

b∈BX

covgeX (b) and rl = ru − ∑

b∈Bint
X

covgeX (b) .

Customizable Reference Monitors of DNNs Using Resolution Boxes 29

Example 4. Considering the set X in Example 1, we assume that it is partitioned
into two clusters X1 = {(0.1, 0.5), (0.1, 1.0), (0.2, 0.8)} and X2 = {(0.6, 0.2),
(1.0, 0.3)} along with two smaller boxes B(X1) = [[0.1, 0.2], [0.5, 1.0]] and B(X2)
= [[0.6, 1.0], [0.2, 0.3]], then the clustering coverage is 0.28 because: rl = ru =
|CovCell(B(X1)|+|CovCell(B(X2)|

52 = 4+3
25 = 0.28.

Fig. 2. Framework of runtime monitoring of neural networks.

Remark 2. Clustering coverage allows to better assess the amount of “blank
space” between the points in a given set. On the one hand, obtaining smaller
clusters (equivalence classes) before applying abstraction technique augments
the precision of the abstraction. On the other hand, having too small clusters:
(1) augments the computational overhead, and (2) induces some overfitting for
the monitor. We further demonstrate the effect of clustering in our experiments.

4 Runtime Monitoring of NNs Using Resolution Boxes

The frameworks defined in [4,7] only utilize the high-level features obtained
from the layers close to the output layer. Moreover, to build the monitor, [4,7]
only consider “good behaviors”, i.e., the features of correctly classified inputs as
reference. Our framework shown in Fig. 2 is inspired from [4,7] but additionally
makes use of the “bad behaviors”, i.e. the ones of misclassified inputs. This has
two advantages. First, it allows refining the monitor output by adding a notion
of uncertainty to the previous monitor verdicts, i.e., accept and reject. Second,
when the monitor produces “uncertainty” as output, it avoids falsely accepted
samples.

4.1 Clustering Parameter Selection Using Coverage

Using the clustering coverage estimation, we show how to adjust the cluster-
ing parameter of the k-means clustering algorithm1. The clustering parameter
τ serves as a threshold for determining the number k of clusters as follows.

1 Recall that the k-means algorithm divides a set of N samples from a set X into k
disjoint clusters C =

{
C1, . . . , Ck

}
, each cluster Cj denoted by the mean μj of the

samples in the cluster, and aims to choose centroids that minimise inertia. .

30 C. Wu et al.

Essentially, the algorithm starts by grouping the inputs into one cluster2 and
iteratively incrementing the number of clusters. At each step k, it computes the
so called inertiak =

∑k
j=1

∑|Cj |
i=1 ‖xi −μj‖2, computes the improvement over the

previous step and compares it to the threshold τ . That is, it checks whether
1 − inertiak+1

inertiak < τ and stops if the answer is positive.
Our experiments suggested (see Sect. 5.1) that the difference of clustering

coverage between the parameters τ in the regions close to two endpoints is very
small, that is the higher variations of clustering coverage with τ mainly happen
in an intermediate interval of [0, 1]. Thus, it is of interest to identify such regions
by determining the maximum value τmax (resp. the minimum τmin) whose cor-
responding clustering coverage is close enough to the one for which τ = 1 (resp.
τ = 0). Then, one can roughly divide the domain of τ into three parts: [0, τmin],
[τmin, τmax], and [τmax, 1]. Each part demonstrates the correlated effect on parti-
tioning the dataset in terms of space coverage. Based on this, one can fine-tune
the value of τ according to the monitor performance (see Sect. 5.2). We believe
that this can also be used with other geometrical shape abstractions for initial
clustering parameter selection, especially when the enclosed space is hard to cal-
culate in high-dimensional space, e.g., zonotope and polyhedra. For identifying
such regions, we use binary searches of the values of τmin and τmax with two
user-specified thresholds.

Algorithm 1. Construct abstraction for class y at layer �

Input: y ∈ Y (output class), � (monitored layer), D =
{
(x1, y1), . . . , (xm, ym)

}
(train-

ing data), τ (clustering parameter)
Output: My,� = (Mc

y,�, Minc
y,�) (a pair of two sets of abstractions)

1: V c
y,� ← {

f �(x) | (x, y′) ∈ D ∧ y′ = y ∧ y = dec(x)
}

(* collect the neuron values at layer � for inputs correctly classified in y *)
2: V inc

y,� ← {f �(x) | (x, y′) ∈ D ∧ y′ �= y ∧ y = dec(x)}
(* collect the neuron values at layer � for inputs incorrectly classified as class y *)

3: C
c
y,�, C

inc
y,� ← cluster(V c

y,�, τ), cluster(V inc
y,� , τ)
(* divide collected vectors into clusters *)

4: Mc
y,�, Minc

y,� ← ∅, ∅ (* sets of abstractions for class y *)
5: for C ∈ C

c
y,�, C′ ∈ C

inc
y,� do

6: AC
y,�, AC′

y,� ← abstract(C), abstract(C′)
(* abstractions for clusters C and C′ *)

7: Mc
y,�, Minc

y,� ← Mc
y,� ∪ {AC

y,�}, Minc
y,� ∪ {AC′

y,�}
8: end for
9: return My,� = (Mc

y,�, Minc
y,�)

4.2 Monitor Construction

We construct and attach monitors to specific chosen layers. For a given layer �
and each output class y ∈ Y, we construct a monitor My,�, which has two parts,
2 The starting point of searching a fine k can be optimized, details are omitted for

space reasons.

Customizable Reference Monitors of DNNs Using Resolution Boxes 31

Table 1. Data and patterns related to the network in Fig. 3.

true-label x1 x2 v1 v2 y1 y2 prediction

class 1 0.1 0 0.08 0.06 0.078 0.062 class 1
class 1 0.2 0.1 0.18 0.16 0.222 0.162 class 1
class 1 0.8 0.3 0.7 0.6 0.69 0.61 class 1
class 1 0.9 0.4 0.8 0.7 0.79 0.71 class 1
class 2 0.3 0.25 0.29 0.28 0.289 0.281 class1

class 2 0.4 0.35 0.39 0.38 0.389 0.381 class1

class 2 0.5 0.8 0.56 0.62 0.566 0.614 class 2
class 2 0.6 0.9 0.66 0.72 0.666 0.714 class 2

Fig. 3. An example of neural network.

Mc
y,� and Minc

y,�, both of which are sets of abstractions used as references of high-
level features for inputs correctly and incorrectly classified as y, respectively.

Algorithm 1 constructs the monitor in three steps: i) extract the values of
high-level features at monitored layer � (lines 1 and 2); ii) apply clustering algo-
rithm to the obtained features and partition them into local distributed clusters
(line 3), see Sect. 4.1; iii) construct an abstraction for each cluster. The union of
abstractions computed as such forms Mc

y,�.

Example 5. Consider the network in Fig. 3 and the data used to build its monitor
given by columns 1–3 in Table 1. We consider output class 1 at layer 2. Algo.1:

1. extracts the features (values of v1 and v2 in Table 1) generated at layer 2 and
classify them into two sets V c

1,2 = {(0.078, 0.062), (0.222, 0.162), (0.69, 0.61),
(0.79, 0.71)} and V inc

1,2 = {(0.289, 0.281), (0.389, 0.381)} according to whether
their inputs are correctly classified or not.

2. partitions set V c
1,2 into two clusters C

c
1,2 = {C1, C2}} with C1 = {(0.078,

0.062), (0.222, 0.162)}, C2 = {(0.69, 0.61), (0.79, 0.71), and keeps V inc
1,2 as a

single cluster C
inc
1,2 = {C3} with C3 = {(0.289, 0.281), (0.389, 0.381)};

32 C. Wu et al.

3. builds the box abstractions for each cluster obtained at step 2: AC1
1,2 = B(C1)

= [[0.078, 0.222], [0.062, 0.162]], AC2
1,2 = B(C2) = [[0.69, 0.79], [0.61, 0.71]], and

AC3
1,2 = B(C3)= [[0.289, 0.389], [0.281, 0.381]].

Finally, the monitor for class 1 is the pair of sets: M1,2 = (Mc
1,2,Minc

1,2), where
Mc

1,2 = {AC1
1,2, A

C2
1,2} and Minc

1,2 = {AC3
1,2}.

4.3 Monitor Execution

After constructing the monitor, it is deployed in the network and works as fol-
lows. For each new input, it gets the value v at monitored layer � (v ← f �(x))
and determines its memberships to abstractions from Mc

y,� and Minc
y,� according

the network prediction of class y. Out of the four possibilities, we distinguish
three outcomes: i) “uncertainty”, if v is contained by both abstractions from
Mc

y,� and Minc
y,�; ii) “accept”, if v is only contained by some abstraction from

Mc
y,�; iii) “reject”, otherwise.

Example 6. Consider the network in Fig. 3 and the monitor constructed in
Example 5. Since there is no overlap between the built abstractions, the moni-
tor has only two possible outcomes: accept and reject. Assume x1 = (0.15, 0.1)
and x2 = (0.6, 0.5) are input. We first collect its output at watched layer 2:
f2(x1) = (0.14, 0.13) and f2(x2) = (0.58, 0.56). Then, the network outputs the
predictions: dec(x1) = 1, dec(x2) = 1. Based on the predicted classes, the mon-
itor checks whether its produced feature is in some abstractions: f2(x1) is in
abstraction AC1

1,2, while f2(x2) is outside any abstraction in Mc
1,2. The monitor

accepts x1 and rejects x2.

4.4 Dealing with Uncertainty Verdicts

We note that using “uncertainty” provides a new dimension to verify the quality
of the built monitor for a given network, since it measures the “overlap” between
the abstractions of correct and incorrect behaviors. The more “uncertainty” a
monitor produces as verdict, the worse the abstraction is. The reason for a high
level of uncertainty can be twofold, as illustrated in Fig. 4: i) the abstraction
built is too coarse (shown on the left); ii) the network intrinsically has a bad
separability of classification, i.e., good and bad features are entangled (on the
right).

In the following, we give a sufficient condition for the non-existence of uncer-
tainty verdict of a monitor and discuss how to distinguish the types of uncer-
tainties.

Proposition 2. A monitor My,� = (Mc
y,�,Minc

y,�) for an output class y built at
layer � never produces a “uncertainty” verdict if Mc

y,� ∩ Minc
y,� = ∅.

The above condition states that there exists no box in Mc
y,� which intersects

with a box in Minc
y,�. The condition can be verified in time O(k1×k2×n), provided

that Mc
y,� and Minc

y,� contain k1 and k2 n-dimensional boxes, respectively.

Customizable Reference Monitors of DNNs Using Resolution Boxes 33

x1

x2

x1

x2

Fig. 4. Uncertainty sources.

When there exists a box in Mc
y,� overlapping with a box in Minc

y,�, we define
a two-step method to roughly conclude the possibility of the overlapping region.
Deep exploration of such an overlapping region is out of the scope of this paper.

• Step 1. Check if the features to be abstracted are well partitioned using two
criteria: i) whether the clustering parameter τ is small enough (compared to
a user-guided threshold 0.05 or 0.01), since a small value of τ implies that
partitioning the features into more clusters does not improve the clustering
effect significantly; ii) whether the average number of features per cluster is
small enough, which can be directly seen when the partition is fine.

• Step 2. Stab at overlapping region in two steps. Considering a pair of over-
lapping boxes B(Xc) and B(X inc) for two clusters of good and bad fea-
tures Xc and X inc, respectively, let Xc

o = Xc ∩ B(Xc) ∩ B(X inc) and
X inc

o = X inc ∩ B(Xc) ∩ B(X inc) be the corresponding sets of good and bad
features located in the overlapping region.

• Step 2.1. Calculate the ratios between the numbers of good and bad fea-
tures inside the overlapping region to the total numbers of good and
bad features, i.e., rc = |Xc

o |/|Xc| and rinc = |X inc
o |/|X inc|. If any of the

ratios is greater than a user-guided threshold (e.g., 10%), we say that the
features are potentially entangled. This requires further analysis (step
2.2). Otherwise, we conclude that the overlapping region is due to coarse
abstractions and a more precise abstraction should be used.

• Step 2.2. Label features in Xc
o and X inc

o as 0 and 1, respectively. Consider
a good (bad) feature x in the overlapping region, then explore the k
neighbors of x to see if the label of x will be inverted by its neighbors;
if there are only a few points (say 5%, perhaps outliers) whose labels are
inverted, then we conclude that the overlapping region is not an entangled
area, else it is.

To sum up, the possibility of overlapping between Mc
y,� and Minc

y,� can be
determined in two steps: first verify if the features to be abstracted are fine-
partitioned and then explore how many overlapping regions between Mc

y,� and
Minc

y,� can be considered as entangled areas.

34 C. Wu et al.

Fig. 5. Clustering coverage estimations for the high-level features obtained at the out-
put layer for benchmark MNIST.

5 Experimental Evaluation

First, we show that our estimation of clustering coverage is precise, i.e., the differ-
ence between the estimated lower and upper bounds is zero or negligible. Second,
we assess the monitor performance under different settings of clustering parame-
ter τ and chosen monitoring layers. We built monitors on benchmark MNIST [12]
using its 60, 000 training samples and tested the monitors’ performance via its
10, 000 test samples and 10, 000 samples from the test set of F_MNIST [25].
For consistency, we used the common network in [4] and [7], whose accuracies
on training and test sets are 99% and 98.52%, respectively. The monitors are
placed at the last four layers (layers 6, 7, 8, and 9). For parameter τ , we tried out
the 12 values in T = {1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01}. Since a
monitor is built for each output class at each monitored layer, 480 monitors were
constructed and tested. For space reasons, further evaluation results confirming
our conclusions can be found in [24].

5.1 Clustering Coverage Estimation

Figure 5 contains 4 graphs which result from the clustering coverage estimation
for partitioning the high-level features at the output layer by using the cluster-
ing parameters in T. Each graph contains six curves which represent the lower

Customizable Reference Monitors of DNNs Using Resolution Boxes 35

bounds, the upper bounds, the bound differences of clustering coverage for the
partitions corresponding to the good and bad features used to construct the
corresponding monitor reference.

We observed that the relative difference between estimated lower and upper
bounds is zero or extremely small – less than 1%�, as shown in Fig. 5. Moreover, as
we stated in previous section, the clustering coverage lines close to two endpoints
are flat, which indicates that the difference of clustering coverage between the
parameters τ in such regions is zero or very small.

5.2 Assessing Monitor Precision

Evaluating Monitors for Classification Systems. Since we create monitors for
image classification systems, we use two sorts of images to construct the test
dataset. The first sort is referred to as known inputs; these are the images belong-
ing to one of classes of the system (i.e., from MNIST). The second sort is referred
to as unknown inputs; these are the images not belonging to any class of the
system (i.e., from F_MNIST). In testing a monitor, one can choose the ratio
between known and unknown inputs depending on the criticality and the pur-
pose of the classification system. Once the test data is prepared, we feed it to the
network and evaluate the performance of every monitor by considering different
kinds of outcomes as indicated in the confusion matrix shown in Table 2.

Comparison with [7]. Controlling the coarseness of built abstractions with regard
to effectiveness is crucial. However, how to control the size of sub-box abstrac-
tions via clustering parameter is ignored in [7]. This paper addresses it as fol-
lows. First, we introduce the notion of clustering coverage to measure, in terms
of covered space, the relative size of sub-box abstractions w.r.t the global one.
Second, we leverage the network bad behaviors, which introduces a new moni-
tor outcome of uncertainty. The number of uncertainty outcomes (MN and MP
in Table 2) is an hint on the coarseness of built abstractions. Furthermore, we
provide the following improvements: 1) the object of study, novelty detection, is
refined to each output class of a given network, since the original definition of
novelty, true positive in [7], includes not only unknown inputs, but also known
inputs which belong to one of output classes but misclassified and whose feature
is outsize abstraction; 2) we use a clustering parameter that is specific to each
output class at each monitored layer, and possibly to each set of good and bad
features; while [7] uses a uniform clustering parameter for all output classes and
monitored layers. This enables precise control on the numbers of FN and FP,
e.g., see Fig. 6: a higher F1 score can be always achieved via selecting a group of
clustering parameters customized to each output class.

In the sequel, we discuss in details three topics: i) relationship between mon-
itor effectiveness and clustering parameter; ii) how to tune the clustering param-
eter; iii) how to select the best layers to monitor.

Monitor Effectiveness vs Clustering Parameter. We now evaluate the monitor
effectiveness according to the clustering parameter τ . For space reasons, in Fig. 7,

36 C. Wu et al.

Fig. 6. Comparison of F1 scores obtained via setting uniform (as in [7]) and combined
parameters on benchmark MNIST.

Table 2. Confusion matrix – outcomes given monitor verdict and real nature.

real nature verdict
negative (accept) positive (reject) uncertainty

negative (labelled y) true negative (TN) false positive (FP) missed negative (MN)

positive (labelled non-y) false negative (FN) true positive (TP) missed positive (MP)

we only present the results of 72/480 monitors, representing 12 values of τ for
6 output classes (more results in [24]). Monitors watch the last layer of the
network. Each curve depicts the number of outcomes indicated in Table 2. By
changing the value of τ , one can directly control the sensitivity of the monitor to
report an abnormal input. This encourages (i) clustering the high-level features
into smaller clusters before computing a global abstraction for them and (ii)
selecting a clustering parameter specific for each output-class monitor.

Moroever, we make the following observations. 1) The number of TN is only
affected when the value of τ is very small, in most cases less than 0.1. Con-
sequently, the abstractions for good high-level features are too coarse in most
cases. 2) In most cases, the number of uncertainties is zero or close to zero by
setting a small value of τ . This indicates that the network has a good separa-
bility of classification and also that the abstractions for good and bad features
are precise enough. However, the capability of reducing uncertainty to zero may
stem from over-precise abstractions. 3) In terms of errors, the number of FP
is very small, meaning that the probability of mis-classifying negative samples
is very low, while the number of FN is very high. However, the number of FN

Customizable Reference Monitors of DNNs Using Resolution Boxes 37

Fig. 7. Numbers of outcomes in Table 2 for 10 monitors built at the output layer for
MNIST.

can be greatly reduced. This indicates that the detection of positive samples is
insufficient due to the coarseness of abstraction. 4) The number of TP can be
always augmented by shrinking the abstraction. 5) The monitors for different
output classes have different degrees of sensitivity to parameter τ . For example,
the performance of monitors for classes 9 does not depend on τ .

Clustering Parameter Tuning. The monitor effectiveness depends on the clus-
tering parameter. One can adjust τ to improve the monitor detection capa-
bility of positive samples, i.e., abnormal inputs. In doing so, one can observe:
i) the clustering coverage estimation to decide whether the “white space” has
been sufficiently removed; ii) the numbers of uncertainties to determine if they
can be reduced to zeros, indicating whether the good and bad features can
be well separated by box abstractions; iii) the number changes of TN and TP
when τ is decreased after reducing the numbers of uncertainties into zeros (i.e.,
abstractions for good and bad features are non-overlapping). For instance, if one

38 C. Wu et al.

Fig. 8. Precision-Recall curves for monitors built on benchmark MNIST.

observes that the number of TN decreases while the number of TP increases,
it means that the box abstractions are not able to distinguish the TN and TP
samples. This suggests investigating the appropriateness of boxes to abstract
the features or the network separability, since in some regions real negative and
positives samples are entangled. Furthermore, the dependence to τ differs among
classes, so it is desirable to fine-tune τ for each class separately. This also applies
to the monitors built in different layers because their features completely differ.

Monitor Precision vs Monitored Layer. We use precision and recall to study
the relationship between the monitor effectiveness and the monitored layer. We
use precision-recall curves to show the tradeoff between precision and recall for
different values of τ . Precision or positive predictive value (PPV) is defined as
the number of TP over the total number of predictive positive samples, i.e.,
precision = TP

TP+FP , while recall or true positive rate (TPR) is defined as the
number of TP over the total number of real positive samples, i.e., recall =

TP
TP+FN+MP . A large area under the curve indicates both a high recall and
high precision. High precision indicates a low false positive rate, and high recall
indicates a low false negative rate. High scores for both show that the classifier
is returning accurate results (high precision), as well as returning a majority of
all positive results (high recall). Based on this, by examining the precision-recall
curves shown in Fig. 8, we can see that for MNIST, it is better to monitor the
output layer, as one can mostly achieve high precision and recall.

Customizable Reference Monitors of DNNs Using Resolution Boxes 39

5.3 Discussion and Lessons Learned

Our experiments were conducted on a Windows PC (Intel Core i7-7600U CPU
@2.80GHz, with 8GB RAM) and the implementation is available3. The one-step
construction and test of 480 monitors on benchmark MNIST took, respectively,
2, 473 and 85 seconds.4

We also experimented on F_MNIST and CIFAR10 [11] and report the results
in [24]. The overall results on different benchmarks confirm that it is necessary
to partition (e.g., clustering here) the high-level used features before computing
a global abstraction for them, since on all tried benchmarks there exist many
uncertainties. Results also suggest that the clustering parameter should be cus-
tomized for each output-class of a network at different layers, even for the good
and bad features of the same output-class. However, we point out that the opti-
mal monitored layer is not always the output layer, since we observed on bench-
mark F_MNIST that in most cases the monitor’s performance at the fourth to
the last layer is superior than that ones at the last three layers by observing
their precision-recall curves. Until now, no general law can be given to predict
such optimal monitored layer and we believe that it makes the method presented
in this paper important to best configure monitors for a given classification sys-
tem. Last but not least, the success of using abstraction-based monitors relies
on three pivotal factors: i) accuracy and separability of classification of the mon-
itored network, which determines the reliability of the system itself and can not
be improved by added monitors; ii) sufficiency of data for constructing a mon-
itor, else the abstraction will be not representative so that the monitor is not
reliable; iii) implementation error of network and monitors since the construction
and membership query of box abstractions demand precise computation.

6 Related and Future Work

We compare with the approaches aiming at assessing the decisions of neural
networks to improve the confidence (in safety-critical scenarios).

Anomaly detection is a statistical approach that has been extensively studied
in the areas of statistics and traditional machine learning; see [1,2,8] for surveys.
All recent approaches consist essentially in computing a confidence score over
the network decisions. Whenever a decision has a score lower than the required
threshold, it is rejected and the input declared abnormal. For instance, in the
context of deep learning, [6] is a well-known method that calculates a confidence
score (i.e., softmax prediction probability) in terms of sample distribution.
3 https://gricad-gitlab.univ-grenoble-alpes.fr/rvai-public/decision-boundary-of-box-

based-monitors.
4 To save computation cost (and favor reproducibility), we proceed 3 steps: 1) high-

level features extraction, which can be one-time generated in seconds and used mul-
tiple times afterwards; 2) feature partition with many values of τ , during the exper-
iment, which took the most time due to the search of the fine k. But, this can be
very efficient if the options are tried out in descending order; 3) monitor creation
and test, which can be done immediately.

https://gricad-gitlab.univ-grenoble-alpes.fr/rvai-public/decision-boundary-of-box-based-monitors
https://gricad-gitlab.univ-grenoble-alpes.fr/rvai-public/decision-boundary-of-box-based-monitors

40 C. Wu et al.

Some recent approaches in formal methods build runtime monitors to super-
vise the network decision [3,4,7,14]. Such runtime monitoring approaches fun-
damentally differ from the traditional ones for software and hardware systems: a
network input is declared abnormal when the network decision is rejected by the
monitor following some references. The monitor verdict is based on the mem-
bership test of the induced neuron activation pattern in a pre-established sound
over-approximation of neuron activation patterns recorded from network correct
decisions constructed from re-applying the training dataset on a well trained
network. The approach in [4] uses boolean abstraction to approximate and rep-
resent neuron activation patterns from correctly classified training data and is
effective on reporting network misclassifications. However, the construction and
membership test of boolean formula are computationally expensive, especially
when dealing with patterns at layers with many neurons, e.g., running out of 8
GB memory when building such formula for a layer of 84 neurons. To reduce the
complexity of abstraction methods, [7] introduces box abstraction, which can be
easily computed and membership tested. It shows how to partition the obtained
patterns into smaller clusters first and then constructing abstractions on these
smaller clusters. Furthermore, [14] extends [7] by active monitoring of networks
that detects unknown input classes and adapts to them at runtime; however [14]
requires human interactions and retraining the network.

Our approach complements and generalises the frameworks in [4,7] by observ-
ing and recording the neuron activation patterns at hidden and output layers
from both correct and incorrect classifications of known classes of inputs. Addi-
tional patterns from misclassified known classes of inputs introduces “uncer-
tainty”, which provides insights to the precision of the abstraction-based monitor
and the separability of network. Moreover, boxes with a resolution allow defining
clustering coverage as a metric to quantify the precision improvement in terms of
the spaces covered by the box abstraction constructed with and without cluster-
ing. Hence, one can compare the effectiveness of different clustering parameters
and tune the parameter of the monitoring approach.

In the future, we aim to study combinations of monitors. Beyond boxes, sev-
eral candidate abstractions remain to be studied for monitoring purposes. In
terms of monitoring, updating at operation time the abstractions would permit
monitors that continuously learn operation-time inputs. Moreover, reacting to
abnormal inputs remains to be studied. More generally, we believe that LECs
need different interacting and complementary methods and toolsets to provide
comprehensive solutions affording the needed confidence, e.g., testing and mon-
itoring for design time, monitoring and enforcement for operation time.

References

1. Chalapathy, R., Chawla, S.: Deep learning for anomaly detection: a survey. arXiv
preprint arXiv:1901.03407 (2019)

2. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-
put. Surv. (CSUR) 41(3), 1–58 (2009)

http://arxiv.org/abs/1901.03407

Customizable Reference Monitors of DNNs Using Resolution Boxes 41

3. Cheng, C.H.: Provably-robust runtime monitoring of neuron activation patterns.
arXiv preprint arXiv:2011.11959 (2020)

4. Cheng, C.H., Nührenberg, G., Yasuoka, H.: Runtime monitoring neuron activation
patterns (2019)

5. Cromwell, P.R.: Polyhedra. Cambridge University Press, Cambridge (1997)
6. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-

distribution examples in neural networks. arXiv preprint arXiv:1610.02136 (2016)
7. Henzinger, T.A., Lukina, A., Schilling, C.: Outside the box: abstraction-based mon-

itoring of neural networks. In: ECAI 2020, pp. 2433–2440. IOS Press (2020)
8. Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell.

Rev. 22(2), 85–126 (2004)
9. Huang, X., et al.: A survey of safety and trustworthiness of deep neural networks:

verification, testing, adversarial attack and defence, and interpretability. Comput.
Sci. Rev. 37, 100270 (2020)

10. Intelligence, F.C.F.A.: Research challenge ii: Dependability, finnish center for arti-
ficial intelligence (2018)

11. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

12. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

13. Lloyd, S.: Least squares quantization in pcm. IEEE Trans. Inf. Theory 28(2), 129–
137 (1982)

14. Lukina, A., Schilling, C., Henzinger, T.A.: Into the unknown: active monitoring of
neural networks. arXiv preprint arXiv:2009.06429 (2020)

15. McMullen, P.: On zonotopes. Trans. Am. Math. Soc. 159, 91–109 (1971)
16. Murtagh, F., Contreras, P.: Algorithms for hierarchical clustering: an overview.

Wiley Interdisc. Rev. Data Min. Knowl. Disc. 2(1), 86–97 (2012)
17. Pei, K., Cao, Y., Yang, J., Jana, S.: Deepxplore: automated whitebox testing of

deep learning systems (2017)
18. Schubert, E., Sander, J., Ester, M., Kriegel, H.P., Xu, X.: DBSCAN revisited,

revisited: why and how you should (still) use DBSCAN. ACM Trans. Database
Syst. (TODS) 42(3), 1–21 (2017)

19. Sculley, D., et al.: Hidden technical debt in machine learning systems (2015)
20. Seshia, S.A., Sadigh, D.: Towards verified artificial intelligence. CoRR

arXiv:1606.08514 (2016)
21. Sun, Y., Huang, X., Kroening, D., Sharp, J., Hill, M., Ashmore, R.: Testing deep

neural networks. arXiv preprint arXiv:1803.04792 (2018)
22. Tian, Y., Pei, K., Jana, S., Ray, B.: Deeptest: automated testing of deep-neural-

network-driven autonomous cars (2018)
23. Wicker, M., Huang, X., Kwiatkowska, M.: Feature-guided black-box safety testing

of deep neural networks (2018)
24. Wu, C., Falcone, Y., Bensalem, S.: Customizable reference runtime monitoring

of neural networks using resolution boxes. CoRR abs/2104.14435 (2021). https://
arxiv.org/abs/2104.14435v2

25. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

http://arxiv.org/abs/2011.11959
http://arxiv.org/abs/1610.02136
http://arxiv.org/abs/2009.06429
http://arxiv.org/abs/1606.08514
http://arxiv.org/abs/1803.04792
https://arxiv.org/abs/2104.14435v2
https://arxiv.org/abs/2104.14435v2
http://arxiv.org/abs/1708.07747

Regular Papers

Scalable Stochastic Parametric
Verification with Stochastic Variational

Smoothed Model Checking

Luca Bortolussi , Francesca Cairoli(B) , Ginevra Carbone, and Paolo Pulcini

Department of Mathematics and Geoscience, University of Trieste, Trieste, Italy

francesca.cairoli@units.it

Abstract. Parametric verification of linear temporal properties for sto-
chastic models requires to compute the satisfaction probability of a cer-
tain property as a function of the parameters of the model. Smoothed
model checking (smMC) [8] infers the satisfaction function over the entire
parameter space from a limited set of observations obtained via simula-
tion. As observations are costly and noisy, smMC leverages the power of
Bayesian learning based on Gaussian Processes (GP), providing accurate
reconstructions with statistically sound quantification of the uncertainty.
In this paper we propose Stochastic Variational Smoothed Model Check-
ing (SV-smMC), which exploits stochastic variational inference (SVI)
to approximate the posterior distribution of the smMC problem. The
strength and flexibility of SVI, a stochastic gradient-based optimiza-
tion making inference easily parallelizable and enabling GPU acceler-
ation, make SV-smMC applicable both to Gaussian Processes (GP) and
Bayesian Neural Networks (BNN). SV-smMC extends the smMC frame-
work by greatly improving scalability to higher dimensionality of param-
eter spaces and larger training datasets, thus overcoming the well-known
limits of GP.

1 Introduction

Parametric verification of logical properties aims at providing meaningful
insights into the behaviour of a system, checking whether its evolution satis-
fies or not a certain requirement while varying some parameters of the system’s
model. The requirement is typically expressed as a temporal logic formula. Sto-
chastic systems, however, require the use of probabilistic model checking (PMC)
techniques as the satisfaction of a property is itself a stochastic quantity, fac-
ing significant scalability issues. To ameliorate such problems, statistical model
checking (SMC) uses statistical tools to estimate the satisfaction probability of
logical properties from trajectories sampled from the stochastic model. These
estimates are enriched with probabilistic bounds of the estimation errors. If the
number of sampled trajectories is sufficiently large, the satisfaction probability,
estimated as the average of satisfaction on individual runs, will converge to the
true probability. However, if the parameters of the stochastic model vary, the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 45–65, 2023.
https://doi.org/10.1007/978-3-031-44267-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_3&domain=pdf
http://orcid.org/0000-0001-8874-4001
http://orcid.org/0000-0002-6994-6553
https://doi.org/10.1007/978-3-031-44267-4_3

46 L. Bortolussi et al.

dynamics of the system will also vary. Therefore, SMC has to be performed from
scratch for each set of parameter values, making SMC computationally unfeasi-
ble for stochastic parametric verification at runtime. This includes, for instance,
estimating a satisfaction probability from the current state of the system, con-
sidering the current state as the varying parameter, or estimating the effect on
future behaviour of tuning some control parameter. In other words, we can eas-
ily express runtime verification (RV) of a stochastic system, whose goal is to
monitor how the future satisfaction of a given requirement behaves w.r.t. the
current state of the system, as a parametric verification problem. The current
state of the system, which changes over time, can be represented as a varying
parameter. Therefore, RV inherits the computational unfeasibility of stochastic
parametric verification.

Population continuous-time Markov chains (CTMC) offer a very expressive
formalism to describe the dynamical behaviour of stochastic processes. More-
over, the satisfaction probability of a signal temporal logic (STL) requirement
over parametric stochastic models, in particular CTMCs, has been proved to
be a smooth function of the parameters of the model [8]. This result enables
the use of machine learning techniques to infer an approximation of this func-
tion from a limited pool of observations. Observations, computed via SMC for
a small number of parameter values, are noisy and may be computationally
demanding to obtain. This calls for Bayesian approaches, where predictions are
efficiently computed and enriched with a probabilistic quantification of the pre-
dictive uncertainty. In this regard, in [8] the authors present smoothed model
checking (smMC), a fully Bayesian solution based on Gaussian Processes (GP).
Since the observation process is non-Gaussian, outputs are in fact realizations
of a Bernoulli distribution, exact GP inference is unfeasible. The authors thus
resort to the Expectation Propagation (EP) algorithm to approximate the pos-
terior inference. Unfortunately, the cost of EP is cubic in the number of obser-
vations used to train the GP, making smMC applicable only to models with a
low dimensional parameter space as they require a limited number of training
observations. In [26], this scalability problem is tackled by using a sparse varia-
tional approach to GP inference that builds on [30]. Variational inference (VI)
is used to perform approximate inference of a GP classification (GPC) prob-
lem, whereas sparsification is used to reduce the computational complexity, by
performing inference on a limited set of observations, called inducing points.
However, the objective function used in [26] presents limitations that severely
affect the overall performance in terms of both accuracy and efficiency. More pre-
cisely, it leaves no room for an optimal selection of the inducing variables and it
does not allow for mini-batch optimization, a popular technique used to improve
the efficiency of gradient-descent methods over large-scale problems. Moreover,
in [26] the observation process is modeled by a Bernoulli likelihood instead of
a binomial as in [8]. The latter can condense the satisfaction of the M simula-
tions into a single observation, whereas the former must considers them as M
different observations. This has a strong effect on the dimension of the training
set which is of paramount importance for the sake of scalability. While smMC

Scalable Stochastic Parametric Verification with SV-SmMC 47

in [8] and in [26] renders parametric verification feasible at runtime, the number
of parameters that are allowed to vary is still limited (up to a 4-dimensional
parameter space with a reasonable computational budget). Finding an effec-
tive solution that makes smMC scale to large datasets, thus to large parameter
spaces, remains an open issue.

Main Contributions. The main contribution is to tackle the scalability issues of
smMC by leveraging stochastic variational inference (SVI), instead of EP or VI,
to solve the smMC Bayesian inference problem. More precisely, we propose a
novel approach for scalable stochastic parametric verification, called Stochastic
Variational Smoothed Model Checking (SV-smMC), that leverages Stochastic
Variational Inference (SVI) to make the smMC Bayesian inference scale to large
datasets. The variational rationale is to transform the inference problem into
an optimization one. The approach is stochastic in the sense that stochastic
gradient descent (SGD) is used in the gradient-based optimization of a suitable
variational objective function. SVI is extremely flexible and it is thus applied
both to Gaussian Processes (GP) and to Bayesian Neural Networks (BNN). The
main advantage of SVI, compared to the VI used for example in [26], is the use of
mini-batches that makes inference easily parallelizable, enabling also GPU accel-
eration. Moreover, in SVI the inducing variables are optimally selected during
inference so that sparsification causes a less pronounced drop in the reconstruc-
tion accuracy w.r.t. [26]. As a result, SV-smMC can face extremely large datasets.
This result has significant implications for RV as it enables us to consider vari-
ability both in the rate parameters and in the initial state of the stochastic
system. One can also take into account the variability solely in the state space,
thereby accommodating larger state spaces that are commonly encountered in
complex systems.

Overview of the Paper. This paper is structured as follows. We start by present-
ing the background theory in Sect. 2, comprised of the formal definition of the
smMC Bayesian inference problem (Sect. 2.3). In Sect. 3 the theoretical details
of SV-smMC are presented both for the GP version (Sect. 3.1) and for the BNN
version (Sect. 3.2). Section 4 compares the performances of SV-smMC against
those of smMC on three stochastic models with increasing parametric complex-
ity. Two of these case studies are taken from [8] to make a fair comparison of the
performances. Moreover, in order to have a better quantification of the scalabil-
ity of the proposed solution, we test SV-smMC on a pool of randomly generated
stochastic processes over parameter spaces of increasing dimension for multiple
randomly generated temporal properties. Finally, Sect. 5.1 briefly discuss how to
obtain local statistical guarantees over the prediction error.

2 Background

2.1 Population Continuous Time Markov Chain

A population of interacting agents can be modeled as a stochastic system evolv-
ing continuously in time over a finite or countable state space X . Assuming the

48 L. Bortolussi et al.

system is Markovian, meaning the memory-less property holds, we can rely on
the formalism of population Continuous Time Markov Chains (CTMC) M. A
population is specified by n different species {S1, . . . , Sn} subject to a dynamics
described by r different rules (reactions) {R1, . . . , Rr}. The respective CTMC is
described by:

– a state vector, X(t) = (X1(t), . . . , Xn(t)), taking values in X ⊆ N
n and

counting the number of agents in each species at time t;
– a finite set of reactions R = (R1, . . . , Rr) describing how the state of the

population changes in time. A general reaction Ri is identified by the tuple
(τi, νi), where:

– ρi : X ×Θi → R≥0 is the rate function of reaction Ri that associates with
each reaction the rate of an exponential distribution, as a function of the
global state of the model and of parameters θi, and

– νi is the update vector, giving the net change of agents due to the reaction,
so that the firing of reaction Ri results in a transition of the system from
state X(t) to state X(t) + νi.

Reaction rules are easily visualised in the chemical reaction style, as

Ri :
∑

j∈{1,...,n}
αijSj

ρi(X,θi)−→
∑

j∈{1,...,n}
βijSj .

The stoichiometric coefficients αi = [αi1, . . . , αin], βi = [βi1, . . . , βin] can be
arranged so that they form the update vector νi = βi − αi for reaction Ri.

The parameters θ = (θ1, . . . , θr) have a crucial effect on the dynamics of the
system: changes in θ can lead to qualitatively different dynamics. We stress such
crucial dependency by using the notation Mθ. The trajectories of such a CTMC
can be seen as samples of random variables X(t) indexed by time t over a state
space X . A parametric CTMC (pCTMC) is a family Mθ of CTMCs where the
parameters θ vary in a domain Θ. For simplicity, but without loss of generality,
for the rest of the paper we fix the initial state of the pCTMC and consider only
the rate parameters as varying conditions. We stress that all the results remain
valid if the initial state of the system varies, e.g. when it represents the current
state in an RV framework.

Running Example. A well-known example of pCTMC is the SIR model describ-
ing the spread of an epidemic in a population of fixed size N . Let S, I and R
denote respectively the species of susceptible, infected and recovered individuals.
The stochastic dynamics is described by an infection reaction R1 : S + I → 2I
happening with rate function βXSXI/N , and a recovery reaction R2 : I → R
happening with rate function γXI . The rate parameters, θ = (β, γ), and the ini-
tial state of the population, X(0) = (XS(0),XI(0), N − XS(0) − XI(0)), play a
crucial role in shaping the future dynamics of the system, ultimately determining
whether and when the disease will be eradicated.

Scalable Stochastic Parametric Verification with SV-SmMC 49

2.2 Signal Temporal Logic

Properties of CTMC trajectories can be expressed via Signal Temporal Logic
(STL) [21] formulas. STL allows the specification of properties of dense-time,
real-valued signals, and the automatic generation of monitors for testing proper-
ties on individual trajectories. The rationale of STL is to transform real-valued
signals into Boolean ones, using formulae built on the following STL syntax :

ϕ := true | μ | ¬ϕ | ϕ ∧ ϕ | ϕ UIϕ, (1)

where UI is the until operator, I ⊆ T is a temporal interval, either bounded,
I = [a, b], or unbounded, I = [a,+∞), for any 0 ≤ a < b. Atomic propositions μ
are (non-linear) inequalities on population variables. From this essential syntax it
is easy to define other operators: false := ¬true, ϕ∨ψ := ¬(¬ϕ∧¬ψ), eventually
FI := true UIϕ and globally GI := ¬FI¬ϕ. Monitoring the satisfaction of a
formula is done recursively on the parsing tree structure of the STL formula.
See [21] for the details on STL Boolean semantics and on Boolean STL monitors.

Running Example (Continued). In the context of the previously described SIR
model, we can define an STL property to monitor the termination of the epidemic
in a time between 100 and 120 time units from the epidemic onset. Formally,
ϕ = (XI > 0) U[100,120] (XI = 0). Because of the stochastic nature of the
system, even when both the rate parameters and the initial state are fixed, the
satisfaction of this property is a random variable over Boolean truth values.

2.3 Smoothed Model Checking

Probabilistic Model Checking (PMC). Verification of temporal properties is of
paramount importance, especially for safety-critical processes. When the system
evolves stochastically, probabilistic model checking [2] comes into play. For lin-
ear time properties, like those of STL, the goal is to compute the probability
Pr(ϕ|M) that a stochastic system M satisfies a given STL formula ϕ. Exact
computation of Pr(ϕ|M) suffers from very limited scalability and furthermore
requires the full knowledge of the stochastic model.

Statistical Model Checking (SMC). Statistical model checking [33] fights the
two aforementioned issues: instead of analyzing the model, it evaluates the sat-
isfaction of the given formula on a number of observed runs of the system,
and derives a statistical estimate of Pr(ϕ|M), valid only with some confidence.
Given a CTMC Mθ with fixed parameters θ, time-bounded CTMC trajectories
are sampled by standard simulation algorithms, such as SSA [13], and monitor-
ing algorithms for STL [21] are used to assess if the formula ϕ is satisfied for
each sampled trajectory. This process produces samples from a Bernoulli ran-
dom variable equal to 1 if and only if ϕ is true. SMC [34,37] then uses standard
statistical tools, either frequentist [34] or Bayesian [37], to estimate from these
samples the satisfaction probability Pr(ϕ|Mθ) or to test if Pr(ϕ|Mθ) > q with
a prescribed confidence level.

50 L. Bortolussi et al.

Satisfaction Function for pCTMCs. Building on [8], our interest is in parametric
verification [16], i.e. to quantify how the satisfaction of STL formulae depend
on the unknown parameters of the pCTMC. We define the satisfaction function
fϕ : Θ → [0, 1] associated to ϕ as

fϕ(θ) = Pr(ϕ = true|Mθ). (2)

In practice, for every θ ∈ Θ, fϕ(θ) quantifies the probability that a realization of
Mθ satisfies ϕ. An accurate estimation of the satisfaction function fϕ over the
entire parameter space Θ by means of SMC would require a prohibitively large
number of evaluations. In particular, SMC must be run from scratch for every
parameter θ ∈ Θ. In [8] – Theorem 1 – it has been shown that fϕ(θ) is a smooth
function of the model parameters and thus machine learning techniques can be
used to infer this function from a limited set of observations and this is exactly
the goal of smoothed model checking (smMC).

Smoothed Model Checking. Given a pCTMC Mθ and an STL formula ϕ, the goal
of smMC is to find a statistical estimate of the satisfaction function of (2) from a
set of noisy observations of fϕ obtained at few parameter values θ1, θ2, The
task is to construct a statistical model that, for any value θ∗ ∈ Θ, computes effi-
ciently an estimate of fϕ(θ∗) together with a credible interval associated with the
prediction. More precisely, given an input point θ, our observations are obtained
by evaluating a property ϕ on few trajectories sampled from the stochastic model
Mθ via SSA. Thus, given a set of Nt parameter values, Θt = {θ1, . . . , θNt

}, we
simulate, for each parameter θi, Mt trajectories, obtaining Mt Boolean values
�j
i ∈ {0, 1} for j = 1, . . . , Mt. We condense these Boolean values in a vector

Li = [�1i , . . . , �
Mt
i] . The noisy observations form the training set

Dt = {(θi, Li) | i = 1, . . . , Nt} . (3)

In practice, smMC can be framed as a Bayesian inference problem that aims
at inferring an accurate probabilistic estimate of the unknown satisfaction func-
tion fϕ : Θ → [0, 1]. In the following, let f : Θ → [0, 1]. The main ingredients of
a Bayesian approach are the following:

1. Choose a prior distribution, p(f), over a suitable function space, encapsulat-
ing the beliefs about function f prior to any observations being taken.

2. Determine the functional form of the observation process by defining a suit-
able likelihood function that effectively models how the observations depend
on the uncertain parameter θ. Our observation process can be modeled by
a binomial over Mt trials with parameter fϕ(θ). Given the nature of our
training set, defined in (3), we define the probabilistic likelihood as

p(Dt|f) =
Nt∏

i=1

Binomial(Li | Mt, f(θi)).

Scalable Stochastic Parametric Verification with SV-SmMC 51

3. Leverage Bayes’ theorem to define the posterior distribution over functions
given the observations

p(f |Dt) =
p(Dt|f)p(f)

p(Dt)
.

Computing p(Dt) =
∫

p(Dt|f)p(f)df is almost always computationally
intractable as we have non-conjugate prior-likelihood distributions. Therefore,
we need algorithms to accurately approximate such posterior distribution.

4. Evaluate such posterior at points θ∗, resulting in a predictive distribution
p(f∗|θ∗,Dt), whose statistics are used to obtain the desired estimate of the
satisfaction probability together with the respective credible interval.

Two main ingredients are essential to define the smMC solution strategy:

(i) the probabilistic model chosen to describe the distribution over functions f ,
(ii) the approximate inference strategy.

Fig. 1. Bayesian inference of the
satisfaction function fϕ(γ).

Running Example (Continued). For visual-
ization purposes, consider a one-dimensional
configuration, where β = 0.12 and γ varies
in the interval [0.005, 0.2]. The exact satisfac-
tion function fϕ(γ) is unknown, but we can
obtain noisy observations via SMC. We ran-
domly sample Nt values of γ and, for each
value of γ, we simulate Mt trajectories and
evaluate the STL satisfaction of each real-
ization. The purple bars in Fig. 1 represent
the SMC 95% confidence intervals around the
empirical mean of the satisfaction probability.
SmMC learns a probabilistic model of the satisfaction function over γ, i.e. infers
the posterior distribution (point 3). Estimating the satisfaction probability at
a new point γ∗ reduces to evaluating the posterior predictive distribution in γ∗
(point 4). Figure 1 shows the 95% credible intervals of the posterior predictive
distribution over a grid of test parameters.

Previous Works and Limitations. The smMC technique presented in [8] uses
Gaussian Processes (GP) as probabilistic model – ingredient (i) – and the Expec-
tation Propagation (EP) algorithm to approximate the posterior distribution –
ingredient (ii). EP [22,27] is an iterative algorithm that aims at matching the
product of non-Gaussian likelihoods with a product of univariate Gaussian dis-
tributions. If the prior is Gaussian, this results in a closed-form analytic expres-
sion of the approximate posterior. However, the resulting analytic expression
involves the inversion of the covariance matrix estimated at all pairs of param-
eter values. Therefore, this solution scales as O(N3

t), it is thus unfeasible for
large datasets. On the other hand, the rationale of VI, used in [26], is to directly
approximate the non-Gaussian posterior with a parametric distribution (typi-
cally a Gaussian) building an optimization problem to search for the variational

52 L. Bortolussi et al.

parameters that best fit the data. However, computing the optimization loss
requires the derivation of the analytical form of a Gaussian with the inversion of
a covariance matrix. Therefore, the cost is still cubic in the number of parameter
values. Moreover, if the observation process is modeled by a Bernoulli, as in [26],
meaning if Boolean values �j

i are considered as individual observations instead
of condensing them in a vector Li, inference scales as O (

(NtMt)3
)
. In order

to mitigate such scalability issues, the authors of [26] propose a sparsification
technique. Sparsification reduces the computational complexity to O (

(mMt)3
)
,

where m is the number of sparse observations, known as inducing variables,
considered. Nonetheless, sparsification strongly reduces the reconstruction accu-
racy, especially if the m sparse observations are randomly selected. The objective
function used in [26] does not explicitly depend on the inducing variables, forc-
ing them to be fixed a priori, leaving no room for an optimal selection of such
points. Moreover, the variational optimization problem of [26] cannot be framed
in terms of stochastic gradient descent optimization. These issues strongly limit
the scalability capabilities of the proposed solution.

Our Contribution. The main contribution of this paper, explained in the next
section, is to introduce stochastic variational inference (SVI) as an efficient and
scalable alternative for ingredient (ii). The rationale is to frame Bayesian infer-
ence as an optimization problem, typical workaround of variational approaches,
and define an objective function that enables optimization in terms of stochastic
gradient descent (SGD) so that smMC becomes efficient and scalable even on
extremely large datasets. Furthermore, our objective function explicitly depends
on the inducing variables that can be considered as additional variational param-
eters to be optimized with SGD. Therefore, our sparsification strategy allows for
an optimal selection of sparse observations. SVI is then applied on two differ-
ent probabilistic models, i.e. on two alternatives for ingredient (i): Gaussian
Processes (GP) and Bayesian Neural Networks (BNN).

3 Stochastic Variational Smoothed Model Checking

The goal of Stochastic Variational Smoothed Model Checking (SV-smMC) is to
make smMC scale to high-dimensional models. SV-smMC proposes stochastic
variational inference as ingredient (ii) to efficiently compute the approximate
posterior distribution p(f |Dt) so that inference scales well to large datasets Dt.

The core idea behind variational approaches is to translate the posterior infer-
ence into an optimization problem, where a parametric distribution is proposed
as a candidate approximator of the unknown posterior distribution. The opti-
mization problem aims at minimizing the difference, measured by the Kullback-
Leibler (KL) divergence, between these two distributions. However, as the pos-
terior is unknown, various model-specific strategies can be developed to derive
from the KL formula a lower bound of the marginal log-likelihood of our data.
This lower bound, known as evidence lower bound (ELBO), is used as new
objective function as it does not depend explicitly on the unknown posterior.

Scalable Stochastic Parametric Verification with SV-SmMC 53

This bound is then optimized with respect to the parameters of the proposed
variational distribution. The latter is typically chosen to have nice statistical
properties, making predictions feasible and efficient. Owing to the work of [15],
in order to scale VI over very large datasets, the (black-box VI) optimization
task can be phrased as a stochastic optimization problem [36] by estimating the
gradient of the ELBO with Monte Carlo methods. Moreover, the dataset can be
divided into mini-batches. As for ingredient (i), SV-smMC can use two alterna-
tive probabilistic models to define distributions over function f . The first one is
based on Gaussian Processes (GP), whereas the second one is based on Bayesian
Neural Networks (BNN). SVI is applied to both probabilistic models with the
proper model-specific adjustments to the variational formulation. Below, we pro-
vide an intuitive presentation of the approximate inference processes, whereas
more formal details are provided in Appendix A in [6].

3.1 Gaussian Processes over Non-Gaussian Likelihoods

Gaussian Processes (GP) are a well-known formalism to define distributions
over real-valued functions of the form g : Θ → R. A GP distribution is uniquely
identified by its mean μ(θ) = E[g(θ)] and its covariance function kγ(θ, θ′) and
characterized by the fact that the distribution of g over any finite set of points θ̂
is Gaussian with mean μ(θ̂) and variance kγ(θ̂, θ̂). In the following, we let gt, μt

and KNtNt
denote respectively the latent, the mean and the covariance functions

evaluated on the training inputs Θt.
The GP prior over latent functions g evaluated at training inputs Θt – step

1 – is defined as p(g|Θt) = N (g|μt,KNtNt
). The posterior over latent variables

p(gt|Dt) – step 3 – is not available in closed form since it is the convolution
of a Gaussian and a binomial distribution. Hence, we have to rely on SVI for
posterior approximation (details later). Once we obtain a tractable posterior
approximation, in order to make predictions over a test input θ∗, with latent
variable g∗, we have to compute an empirical approximation of the predictive
distribution

p(f∗|θ∗,Dt) =
∫

Φ(g∗)p(g∗|θ∗,Dt)dg∗, (4)

in which the outputs of the latent function g : Θ → R are mapped into the [0, 1]
interval by means of a so-called link function Φ, typically the inverse logit or the
inverse probit function [5], so that f : Θ → [0, 1] is obtained as f = g ◦ Φ.

Stochastic Variational Inference. Here we outline an intuitive explanation of the
SVI steps to approximate the GP posterior when the likelihood is non-Gaussian.
For a more detailed mathematical description see Appendix A in [6]. The main
issue with GP inference is the inversion of the Nt ×Nt covariance matrix KNtNt

.
This is the reason why variational approaches to GP start with sparsification,
i.e. with the selection of m
 Nt inducing points that live in the same space of
Θt and, from them, define a set of inducing variables ut. The covariance matrix
over inducing points, Kmm, is less expensive to invert and thus it acts as a low-
rank approximation of KNtNt

. We introduce a Gaussian variational distribution

54 L. Bortolussi et al.

q(ut) over inducing variables whose goal is to be as similar as possible to the
posterior p(ut|Dt). A classical VI result is to transform the expression of the KL
divergence between the variational distribution q(ut) and the posterior p(ut|Dt)
into a lower bound over the marginal log-likelihood log p(Dt). As our likelihood –
step 2 – factors as p(Dt|gt) =

∏Nt

i=1 p(Li|gi) and because of the Jensen inequality
we obtain the following ELBO (see Appendix A.1 in [6] for the mathematical
details):

log p(Dt) ≥
Nt∑

i=1

Eq(gi)[log p(Li|gi)] − KL[q(ut)||p(ut)] := LGP (ν, γ), (5)

where Li denotes the set of observed Boolean tuples corresponding to points
in θi in Dt, p(ut) denotes the prior distribution over inducing variables and
ν denotes the hyper-parameters introduced to describe the sparsification and
the variational distribution. The distribution q(gt) is Gaussian with an exact
analytic derivation from q(ut) that requires O(m2) computations (no matrix
inversion involved here). The SVI algorithm then consists of maximizing LGP

with respect to its parameters using gradient-based stochastic optimization. We
stress that, at this step, the selection of inducing variable is optimized, resulting
in a more effective sparsification. Computing the KL divergence in (5) requires
only O(m3) computations. Most of the work will thus be in computing the
expected likelihood terms. Given the ease of parallelizing the simple sum over
Nt, we can optimize LGP in a stochastic fashion by selecting mini-batches of the
data at random.

Predictive Distribution. The predictive posterior p(g∗|θ∗,Dt) is now approxi-
mated by a variational distribution q(g∗), which is Gaussian and whose mean
and variance can be analytically computed with cost O(m2). From the mean
and the variance of q(g∗), we obtain the respective credible interval and we can
use the link function Φ to map it to a subset of the interval [0, 1], in order to
obtain the mean and the credible interval of the posterior predictive distribution
p(f∗|θ∗,Dt) of equation (4).

3.2 Bayesian Neural Networks

The core idea of Bayesian neural networks (BNNs) [5,14,18,31], is to place a
probability distribution over the weights w of a neural network fw : Θ → [0, 1],
transforming the latter into a probabilistic model.

The Bayesian learning process starts by defining a prior distribution p(w)
over w – step 1 – that expresses our initial belief about the values of the weights.
As we observe data Dt, we update this prior to a posterior distribution p(w|Dt)
– step 3 – using Bayes’ rule. Because of the non-linearity introduced by the
neural network function fw(θ) and since the likelihood p(Dt|w) – step 2 – is
binomial, the posterior p(w|Dt) is non-Gaussian and it cannot be computed
analytically. In order to predict the satisfaction function over an unobserved

Scalable Stochastic Parametric Verification with SV-SmMC 55

input θ∗, we marginalize the predictions with respect to the posterior distribution
of the parameters, obtaining

p(f∗|θ∗,Dt) =
∫

fw(θ∗)p(w|Dt)dw. (6)

The latter is called posterior predictive distribution and it can be used to retrieve
information about the uncertainty of a specific prediction f∗. Unfortunately,
the integration is analytically intractable due to the non-linearity of the neural
network function [5,20] so we empirically estimate such quantity.

Stochastic Variational Inference. The rationale of SVI for BNNs is to choose a
parametric variational distribution qψ(w) that approximates the unknown poste-
rior distribution p(w|Dt) by minimizing the KL divergence KL[qψ(w)||p(w|Dt)]
between these two distributions. Since the posterior distribution is not known,
the classic variational approach is to transform the minimization of the KL diver-
gence into the maximization of the Evidence Lower Bound (ELBO) [17], defined
as

LBNN (ψ) := Eqψ(w) [log p(Dt|w)] − KL [qψ(w)||p(w)] ≤ log p(Dt), (7)

see Appendix A.2 in [6] for the mathematical details. The first term is the
expected log-likelihood of our data with respect to values of fw sampled from
qψ(w|Dt), whereas the second term is the KL divergence between the proposal
distribution and the prior. The distribution qψ should be a distribution easy to
sample from and such that the KL divergence is easy to compute. A common
choice for qψ is the Gaussian distribution (where ψ denotes its mean and vari-
ance). KL divergence among two Gaussian distributions has an exact analytical
form, hence the ELBO of (7) can be computed and it can be used as the objective
function of a maximization problem over ψ.

Predictive Distribution. The predictive distribution (6) is a non-linear combina-
tion of Gaussian distributions, and thus it is not Gaussian. However, samples can
be easily extracted from qψ(w), which allows us to obtain an empirical approx-
imation of the predictive distribution. Let [w1 , . . . ,wC] denote a vector of C
realizations of the random variable w ∼ qψ(w). Each realization wi induces a
deterministic function fwi

that can be evaluated at θ∗, the unobserved input,
providing an empirical approximation of p(f∗|θ∗,Dt).

Running Example (End). The SIR model is rather simple with a two-dimensional
parameter space and a two-dimensional state space. However, if one is interested
in estimating the satisfaction function w.r.t. both states and rate parameters (a
typical RV framework) we notice how EP inference already reaches its compu-
tational bottleneck, VI fails, whereas, SV-smMC easily succeeds (see Sect. 4.3
below).

56 L. Bortolussi et al.

4 Experiments

4.1 Case Studies

We briefly introduce the case studies used to investigate the scalability and the
accuracy of SV-smMC. In order to make a fair comparison, we start by reproduc-
ing the case studies presented in [8], Network Epidemics and Prokaryotic Gene
Expression, and then add a third biological model, Three-layer Phosphorelay.
Finally, to have a better and unbiased quantification of the performances and of
the scalability of SV-smMC, we test it over randomly generated pCTMC with
parameter spaces of increasing dimensions.

– Network Epidemics (SIR): see running example.
– Prokaryotic Gene Expression (PGE): model of LacZ, XLacZ , protein

synthesis in E. coli. The dynamics is governed by 11 parameters k1, k2, . . . ,
k11. We choose an STL property for monitoring bursts of gene expression,
rapid increases in LacZ counts followed by long periods of lack of protein
production: ϕ = F[1600,2100](ΔXLacZ > 0 ∧ G[10,200](ΔXLacZ ≤ 0)), where
ΔXLacZ(t) = XLacZ(t) − XLacZ(t − 1).

– Three-layer Phosphorelay (PR): network of three proteins L1, L2, L3
involved in a cascade of phosphorylation reactions (changing the state of
the protein), in which protein Lj, in its phosphorylated form Ljp, acts as a
catalyser of phosphorylation of protein L(j+1). There is a ligand B triggering
the first phosphorylation in the chain. The dynamics depends on 6 parameters
kp, k1, k2, k3, k4, kd. The chosen STL property models a switch in the most
expressed protein between L1p and L3p after time 300: ϕ = G[0,300](L1p −
L3p ≥ 0) ∧ F[300,600](L3p − L1p ≥ 0).

– Random pCTMC: we randomly generate pCTMC over parameter spaces
of increasing dimension. The number of interacting species n and the type
and the number of reactions are randomly determined. The STL proper-
ties considered captures different behaviours: ϕ1 = G[0,T](Si ≤ Sj), ϕ2 =
F[0,T](Si ≤ Sj) and ϕ3 = F[0,T](G (Si < τ)), where τ and T are two fixed
hyper-parameters and the species to be monitored, Si and Sj , are randomly
sampled for each property.

Details about the dynamics, i.e. about the reactions, the selected initial states
and the chosen parametric ranges, are provided in Appendix B in [6].

4.2 Experimental Details

Dataset Generation. The training set Dt is built as per (3). The test set, used
to validate our results, can be summarized as Dv =

{
(θj , (�1j , . . . , �

Mv
j)) | j =

1, . . . , Nv

}
, where Mv is chosen very large, Mv Mt, so that we have a good

estimate of the true satisfaction probability over each test input. Input data,
i.e. the parameter values, are scaled to the interval [−1, 1] to enhance the per-
formances of the inferred models and to avoid sensitivity to different scales in
the parameter space. In the first three case studies, the biology-inspired ones,

Scalable Stochastic Parametric Verification with SV-SmMC 57

we choose different subsets of varying parameters and train a separate model
on each of these choices. In other words, we fix some of the parameters and let
only the remaining ones vary. In particular, in SIR we consider the following
configurations: (a) fix γ and let β vary, (b) fix β and let γ vary, (c) vary both
β and γ; in PGE we consider the following configurations: (d) k2 is the only
parameter allowed to vary, (e) we let k2 and k7 vary; in PR we consider the fol-
lowing configurations: (f) only k1 varies, (g) only kp, kd vary, (h) only k1, k2, k3
vary, (i) only k1, k2, k3, k4 vary, (l) all six parameters are allowed to vary.

On the other hand, to better analyze the scalability of SV-smMC we ran-
domly generate pCTMC over parameter spaces Θ of dimension 2, 3, 4, 8, 12, 16
and 20. For each dimension, we generate three different models and each model
is tested over the three random properties ϕ1, ϕ2, ϕ3 defined above. Table 2 in
Appendix B in [6] shows the chosen dimensions for each generated dataset. In
general, the number of observed parameters Nt and the number of observations
per point Mt increase proportionally to the dimensionality of Θ.

Experimental Settings. The CTMC dynamics is simulated via StochPy SSA1

simulator for biology inspired models, whereas GillesPy22 is used to generate and
simulate random pCTMC. The Boolean semantics of pcheck library3 is used to
check the satisfaction of a certain formula for a specific trajectory. GPyTorch [12]
library is used to train the VI-GP and SVI-GP models, whereas Pyro [4] library
is used to train the SVI-BNN models, both built upon PyTorch [25] library.
Instead, EP-GP is implemented in NumPy4. The experiments were conducted
on a shared virtual machine with a 32-Core Processor, 64 GB of RAM and an
NVidia A100 GPU with 20GB, and 8 VCPU. Code and data are available at:
https://github.com/ailab-units/SV-smMC.git.

Training and Evaluation. We apply Stochastic Variational Inference on both
Gaussian Processes (SVI-GPs) and Bayesian Neural Networks (SVI-BNNs) and
compare them to the baseline smMC approaches, where Gaussian Processes
were inferred using either Expectation Propagation (EP-GPs) [8] or Variational
Inference (VI-GPs) [26]. All models (EP-GP, VI-GP, SVI-GP and SVI-BNN) are
Bayesian and trained over the training set Dt. Once the training phase is over,
for each pair

(
θj , (�1j , . . . , �

Mv
j)

) ∈ Dv in the test set, we obtain a probabilistic
estimate of the satisfaction probability f(θj) (defined in Sect. 3). We compare
such distribution to the satisfaction probability fϕ(θj) estimated as the mean
L̄i over the Bernoulli trials (�1j , . . . , �

Mv
j) and we call the latter SMC satisfaction

probability. We stress that SMC estimates provably converge to the true satis-
faction probabilities, meaning that the width of confidence intervals converges
to zero in the limit of infinite samples, while Bayesian inference quantifies the

1 https://github.com/SystemsBioinformatics/stochpy.
2 https://github.com/StochSS/GillesPy2.
3 https://github.com/simonesilvetti/pcheck.
4 Our implementation builds on https://github.com/simonesilvetti/pyCheck/blob/

master/smothed/smoothedMC.py.

https://github.com/ailab-units/SV-smMC.git
https://github.com/SystemsBioinformatics/stochpy
https://github.com/StochSS/GillesPy2
https://github.com/simonesilvetti/pcheck
https://github.com/simonesilvetti/pyCheck/blob/master/smothed/smoothedMC.py
https://github.com/simonesilvetti/pyCheck/blob/master/smothed/smoothedMC.py

58 L. Bortolussi et al.

predictive uncertainty. Consequently, regardless of the number of samples, SMC
and Bayesian estimates have different statistical meanings.

Evaluation Metrics. To define meaningful measures of performance, let’s clarify
the notation. For each point in the test set, j ∈ {1, . . . , Nv}, let L̄j and σj denote
respectively the average and the standard deviation over the Mv Bernoulli tri-
als (�1j , . . . , �

Mv
j). The inferred models, on the other hand, provide a posterior

predictive distribution p(fj |θj ,Dt), let qj
ε denote the ε-th quantile of such dis-

tribution. The metrics used to quantify the overall performances of the models
over each case study and each configuration are the following:

(i) the root mean squared error (RMSE) between SMC and the expected sat-
isfaction probabilities, i.e. the root of the average of the squared residuals

RMSE =
1

Nv

Nv∑

j=1

(
L̄j − Ep(f |θj ,Dt)[f(θj)]

)2
.

This measure evaluates the quality of reconstruction provided by the mean
of the posterior predictive distribution;

(ii) the accuracy over the test set, i.e. the fraction of non empty intersections
between SMC confidence intervals and estimated (1 − ε) credible intervals:

Acc =
1

Nv
·
∣∣∣∣∣

{
j ∈ {1, . . . , Nv} :

[
− z σj√

Mv

,
z σj√
Mv

]
∩

[
qj
ε/2, q

j
1−ε/2

]
�= ∅

}∣∣∣∣∣.

In particular, we set z = 1.96 and ε = 0.05 in order to have the 95%
confidence intervals and the 95% credible intervals respectively;

(iii) the average width of the estimated credible intervals

Unc =
1

Nv

Nv∑

j=1

(
qj
1−ε/2 − qj

ε/2

)
,

which quantifies how informative the predictive uncertainty is and allows
us to detect over-conservative predictors.

A good predictor should be balanced in terms of low RMSE, high test accuracy,
i.e. high values for Acc, and narrow credible intervals, i.e. low values for Unc.

Implementation Details. Both SVI-GP and SVI-BNN models are trained for 2k
epochs with mini-batches of size 100 and a learning rate of 0.001. In SVI-GP
the prior is computed on a maximum of 1k inducing points selected from the
training set. SVI-BNNs have a fully connected architecture with 3 layers and
Leaky ReLU nonlinear activations. To evaluate SVI-BNNs we take 1k samples
from the posterior distribution evaluated over test inputs.

Scalable Stochastic Parametric Verification with SV-SmMC 59

Prior Tuning. Choosing an adequate prior is of paramount importance. In this
paper we leverage model-specific strategies to pick reasonable ones, however, no
guarantees can be provided about the adequacy of such priors. For GP, the prior
is strongly related to the chosen kernel and adapted to data by type II max-
imum likelihood maximization. In EP-GP the optimal kernel hyperparameters
are searched beforehand (as in [8]), whereas in SVI-GP the kernel hyperparam-
eters are optimized on the fly, i.e. the variational loss is maximized also w.r.t.
the kernel hyperparameters. In SVI-BNN, a deterministic NN (with the same
architecture of the BNN) is trained and the learned weights are used to center
the prior distribution which is Gaussian with standard deviation equal to 1/m
(m is the layer-width).

4.3 Experimental Results

Computational Costs. The cost of EP-GP inference is dominated by the cost
of matrix inversion, which is cubic in the number of points in the training set.
The cost of VI-GP is cubic in the number of randomly selected inducing points
and linear in the total number of observations, i.e. the number of training points
times the number of observations per point. The cost of SVI-GP inference is
cubic in the number of optimally selected inducing points, which is chosen to be
sufficiently small, and linear in the number of training instances. The cost of SVI-
BNN is linear in the number of training points but it also depends on the archi-
tectural complexity of the chosen neural network. Stochastic variational models
are trained by means of SGD, which is a stochastic inference approach. Thus, at
least on simple configurations, it is likely to take longer than EP in reaching con-
vergence. The computational advantage becomes significant as the complexity of
the case study increases, i.e., when the training set is sufficiently large. EP faces
memory limits, becoming unfeasible on configurations with parameter space of
dimension higher than four. As a collateral advantage, SVI-GP optimizes the
kernel hyperparameters on the fly during the training phase, whereas in EP-GP
the hyperparameters search is performed beforehand and it is rather expensive.
Compared to our SV-smMC approaches, VI-GPs do not allow for GPU acceler-
ation, as a consequence the training times over one-dimensional case studies go
from the 40 min of our SVI-based approaches to 3 h.

For the randomly generated pCTMC we let the dimension of the training
set grow linearly with the dimension of the parameter space (Nt = 5000 · r)
and so does the training time of SVI-GP and SVI-BNN (see Fig. 2). On the
other hand, Fig. 2 shows how the training time of EP-GP grows much faster
with respect to r and becomes soon unfeasible (r > 4). SV-smMC is trained
leveraging GPU acceleration. Its convergence times are comparable to EP’s on
simple configurations and they outperform EP on more complex ones. Evaluation
time for EP-GPs and SVI-GPs is negligible as it is computed from the analytic
posterior. The evaluation time for SVI-BNNs with 1k posterior samples is in
turn negligible.

60 L. Bortolussi et al.

Fig. 2. Quantitative analysis of the scalability performances over randomly generated
pCTMC with parameter spaces of increasing dimension (x-axis). For each dimension,
we plot the 95% confidence interval of Acc, RMSE and Unc over each test set corre-
sponding to that dimension.

Table 1. Root Mean Square Error (×10−2), test accuracy (%) and average uncertainty
width for EP-GP, VI-GP, SVI-GP and SVI-BNN. SVI-BNNs are evaluated on 1k poste-
rior samples. For each case study, we highlight the minimum MSE, the highest accuracy
values and the lowest and highest uncertainty values. Uncertainty is compapurple to
the average uncertainty width of the test set.

Configuration RMSE Accuracy Uncertainty

EP-GP VI-GP SVI-GP SVI-BNN EP-GP VI-GP SVI-GP SVI-BNN Test EP-GP VI-GP SVI-GP SVI-BNN

(a) SIR β 1.41 2.11 1.38 1.43 100.00 96.3 98.80 100.00 0.044 0.044 0.060 0.032 0.097

(b) SIR γ 1.02 2.12 0.84 0.96 77.80 59.8 77.30 92.60 0.018 0.018 0.041 0.012 0.058

(c) SIR β, γ 1.25 – 1.20 0.99 72.75 – 85.75 92.25 0.019 0.042 – 0.019 0.047

(d) PGE k2 5.34 6.06 5.83 5.51 93.75 95.75 94.00 97.50 0.039 0.030 0.057 0.037 0.080

(e) PGE k2, k7 6.48 – 3.44 2.06 78.25 – 89.25 95.00 0.043 0.021 – 0.056 0.093

(f) PR k1 2.25 1.76 1.99 1.78 99.70 99.80 99.20 100.00 0.058 0.059 0.066 0.046 0.100

(g) PR kp, kd 2.95 – 2.31 1.89 99.25 – 96.25 99.75 0.055 0.108 – 0.037 0.093

(h) PR k1, k2, k3 6.97 – 2.30 2.01 99.80 – 93.70 100.0 0.050 0.340 – 0.030 0.121

(i) PR k1, . . . , k4 10.63 – 2.44 2.67 99.02 – 93.65 99.92 0.050 0.682 – 0.030 0.150

(l) PR kp, k1, . . . , k4, kd – – 1.87 1.56 – – 97.02 99.80 0.049 – – 0.028 0.087

Performance Evaluation. The evaluation metrics are the root mean square error
(RMSE), the accuracy (Acc) and the width of the uncertainty quantification area
(Unc). Results over the randomly generated pCTMC are summarized in Fig. 2,
whereas results over the biological case studies are summarized in Table 1. For
completeness, we compare our SV-smMC with the VI-GPs approach presented
in [26]. However, using a Bernoulli likelihood instead of a Binomial creates an
extremely inefficient computational bottleneck that makes VI-GP feasible only
over the one-dimensional scenario, where it is outperformed by all methods (see
Table 1). Figure 2 shows, for each dimension, the 95% confidence interval of Acc,
RMSE and Unc over each test set corresponding to that dimension. More pre-
cisely, each dimension has nine associated datasets, three models with three
properties each, so that nine different smMC models have been trained. Notice

Scalable Stochastic Parametric Verification with SV-SmMC 61

how the width of the inferred credible intervals is compared against the width
of SMC confidence intervals.

In addition, Fig. 7–Fig. 10 in Appendix D of [6] show the results over one-
dimensional configurations - (a), (b), (d) and (f) respectively - whose results over
the test set are easy to visualise. In particular, we show the mean and the 95%
credible intervals of the estimated satisfaction probability f(θj) for EP-GPs,
SVI-GPs and SVI-BNNs. Figure 11–Fig. 13 in Appendix D of [6] compare the
results of EP-GPs, SVI-GPs and SVI-BNNs over two-dimensional configurations
- (c), (e) and (g). In particular, we compare the SMC estimate of the satisfaction
probability fϕ(θj) to the average satisfaction probability E[f(θj)] estimated by
EP-GPs, SVI-GPs and SVI-BNNs over each input θj of the test set.

We now compare the performances obtained by the variational approaches
of SV-smMC to those of the smMC baseline based on EP-GP. Table 1 and Fig. 2
show how the RMSE of SV-smMC solutions is almost always lower than that
of smMC. In addition, the baseline solution presents an RMSE that grows pro-
portionally to the complexity and the dimensionality of the underlying config-
uration. On the contrary, SV-smMC solutions do not reflect such behaviour, as
the value of the RMSE is almost constant across all the different configurations.
About the informativeness of uncertainty estimations, we notice how SVI-BNN
tends to produce credible intervals that are always larger than the one of SVI-
GP, which, in turn, tends to underestimate the underlying uncertainty. This
phenomenon appears in all the different configurations and it is easily observ-
able in Fig. 2. We argue that SVI-GP tends to provide overconfident predictions
due to the sparsification strategies used during inference. Such behaviour is well-
known and discussed in [10,28]. SVI-BNN does not present such behaviour as
it does not undergo any sparsification. On the other hand, the baseline smMC
tends to have tight uncertainty estimates on low-dimensional configurations,
but it becomes excessively over-conservative in high-dimensional configurations,
making the predicted credible intervals almost uninformative. All models reach
extremely high accuracies over the test set. SVI-BNN reaches the best perfor-
mances over all the configurations: the average accuracy is around 95% and it is
always higher than 71%. This result is not surprising given that SVI-BNN shows
low RMSEs (overall average around 0.02) and slightly over-conservative credible
intervals (overall average uncertainty width around 0.1). The SVI-GP accuracy,
on the other hand, fluctuates around 60% as it tends to provide over-confident
credible intervals with an overall average RMSE comparable to that of SVI-BNN
but with overall average uncertainty width of around 0.03.

Related Work. A number of recent works tackle the problem of parametric ver-
ification of a stochastic process, we here present the most relevant. In [1] the
parameter space of a pCTMC is explicitly explored, while [11] assumes a proba-
bility distribution over the parameters and proposes a sampling-based approach.
In [19] conformal predictions are used over the expected value of the stochastic
process rather than its distribution and [7] presents a frequentist, rather than
Bayesian, approach based on quantile regression. The conformal recalibration

62 L. Bortolussi et al.

is constant over the entire state space, whereas our Bayesian quantification of
uncertainty is point-specific.

Discussion. To summarize, we can see how, in general, SV-smMC solutions scale
a lot better to high-dimensional problems compared to smMC, both in terms of
feasibility and in terms of quality of the results. SVI-BNN reaches the highest
accuracy and provides rather conservative predictions. SVI-GP, on the other,
reaches low RMSEs and tends to provide overconfident predictions. Therefore
BNNs should be preferred in the verification of safety-critical systems, whereas
GPs can be a good solution when overconfidence is more tolerable. Finally, we
see how EP-GP is competitive only on extremely simple configurations. As the
dimensionality increases, so does the error: the RMSE increases and the credible
intervals become excessively broad. Moreover, we soon reach the memory-bound
wall that makes EP-GP solution unfeasible on configurations with more than
four parameters.

We conclude by suggesting how smMC, either the original EP-based version
or the novel SVI-based version, may be enriched with probabilistically approxi-
mately correct statistical guarantees over the generalization error holding point-
wise at any prediction point without affecting the scalability at runtime. See
Sect. 5.1 for an intuition of the solution based on Conformal Predictions [32]. A
detailed presentation of such an extension is left for future work.

5 Conclusions

This paper presents SV-smMC, an extension of Smoothed Model Checking,
based on stochastic variational inference, that scales well to high dimensional
parameter spaces and that enables GPU acceleration. In addition, this paper
offers a comparison of the performances of stochastic variational inference over
two different Bayesian approaches - namely Gaussian processes (SVI-GP) and
Bayesian neural networks (SVI-BNN) - against those of the baseline smMC,
based on the expectation propagation technique. In particular, our experiments
show that the posterior predictive distribution provided by SVI-BNN provides
the best overall results in terms of the estimated satisfaction probabilities. On the
other hand, thanks to GPU acceleration, SVI-GP is able to achieve competitive
performances with a significant speed-up in computational time. Furthermore,
we show how variational approaches are able to overcome the computational
limitations of the expectation propagation algorithm over large datasets.

SV-smMC can be naturally extended with active learning ideas, following
the line of [3,9,29], solving efficiently parameter synthesis and design tasks.

5.1 Statistical Guarantees

The Bayesian quantification of uncertainty, despite being based on statistically
sound operations, offers no guarantees per se as it strongly depends on the
chosen prior. Additionally, in smMC, either EP- or SVI-based, we further add

Scalable Stochastic Parametric Verification with SV-SmMC 63

the error of approximate inference on top of this. Here we briefly discuss how
smMC, in all its versions, can be enriched with probabilistically approximately
correct statistical guarantees over the generalization error holding point-wise at
any prediction point. This result is obtained by combining Bayesian estimates of
uncertainty with Inductive Conformal Prediction [32,35], a framework that can
be applied on top of any deterministic regressor to enrich its predictions with
statistically valid quantification of the predictive uncertainty. The rationale is to
transform point-wise predictions made by the expectation over the posterior q(f)
into statistically valid prediction intervals. ICP is non-informative to check how
the uncertainty distributes over Θ as the interval width is constant over the entire
parameter space Θ. Normalized Inductive Conformal Predictions (NICP) [23,24]
consider locally weighted residuals to overcome this limitation, so that prediction
intervals are tighter for parameters that are deemed easy to predict and vice-
versa. Retrieving such guarantees does not affect the scalability at runtime. Our
intuition is to exploit the Bayesian quantification of uncertainty of smMC as
the normalizing function of a NICP approach, that in turn will provide us with
point-specific statistical guarantees over the error coverage. More details and
some preliminary results can be found in Appendix C in [6].

Acknowledgments. This work has been partially supported by the PRIN project
“SEDUCE” n. 2017TWRCNB and by the PNRR project iNEST (Interconnected
North-Est Innovation Ecosystem) funded by the European Union Next-GenerationEU
(Piano Nazionale di Ripresa e Resilienza (PNRR) - Missione 4 Componente 2, Inves-
timento 1.5 - D.D. 1058 23/06/2022, ECS 00000043).

References

1. Badings, T.S., Jansen, N., Junges, S., Stoelinga, M., Volk, M.: Sampling-based
verification of ctmcs with uncertain rates. In: Shoham, S., Vizel, Y. (eds.) Computer
Aided Verification: 34th International Conference, CAV 2022, Haifa, Israel, 7–10
August 2022, Proceedings, Part II, pp. 26–47. Springer, Heidelberg (2022). https://
doi.org/10.1007/978-3-031-13188-2 2

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT press, Cambridge
(2008)

3. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: System design of stochastic
models using robustness of temporal properties. Theor. Comput. Sci. 587, 3–25
(2015). https://doi.org/10.1016/j.tcs.2015.02.046

4. Bingham, E., et al.: Pyro: Deep universal probabilistic programming. J. Mach.
Learn. Res. 20, 28:1–28:6 (2019). https://jmlr.org/papers/v20/18-403.html

5. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg
(2006)

6. Bortolussi, L., Cairoli, F., Carbone, G., Pulcini, P.: Stochastic variational smoothed
model checking. arXiv preprint arXiv:2205.05398 (2022)

7. Bortolussi, L., Cairoli, F., Paoletti, N.: Conformal quantitative predictive mon-
itoring of stl requirements for stochastic processes. In: 26th ACM International
Conference on Hybrid Systems: Computation and Control (2023)

8. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain
continuous-time Markov chains. Inf. Comput. 247, 235–253 (2016)

https://doi.org/10.1007/978-3-031-13188-2_2
https://doi.org/10.1007/978-3-031-13188-2_2
https://doi.org/10.1016/j.tcs.2015.02.046
https://jmlr.org/papers/v20/18-403.html
http://arxiv.org/abs/2205.05398

64 L. Bortolussi et al.

9. Bortolussi, L., Silvetti, S.: Bayesian statistical parameter synthesis for linear tem-
poral properties of stochastic models. In: Beyer, D., Huisman, M. (eds.) TACAS
2018. LNCS, vol. 10806, pp. 396–413. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89963-3 23

10. Candela, J.Q., Rasmussen, C.E.: A unifying view of sparse approximate gaussian
process regression. J. Mach. Learn. Res. 6, 1939–1959 (2005)

11. Češka, M., Dannenberg, F., Paoletti, N., Kwiatkowska, M., Brim, L.: Precise
parameter synthesis for stochastic biochemical systems. Acta Informatica 54, 589–
623 (2017)

12. Gardner, J.R., Pleiss, G., Bindel, D., Weinberger, K.Q., Wilson, A.G.: Gpytorch:
blackbox matrix-matrix gaussian process inference with gpu acceleration. In: Pro-
ceedings of the 32nd International Conference on Neural Information Processing
Systems, pp. 7587–7597. NIPS’18, Curran Associates Inc., Red Hook (2018)

13. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 2340–2361 (1977)

14. Goan, E., Fookes, C.: Bayesian neural networks: an introduction and survey. In:
Mengersen, K.L., Pudlo, P., Robert, C.P. (eds.) Case Studies in Applied Bayesian
Data Science. LNM, vol. 2259, pp. 45–87. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-42553-1 3

15. Hoffman, M.D., Blei, D.M., Wang, C., Paisley, J.: Stochastic variational inference.
J. Mach. Learn. Res. 14, 1303–1347 (2013)

16. Jansen, N., et al.: Accelerating parametric probabilistic verification. In: Norman,
G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 404–420. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10696-0 31

17. Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., Saul, L.K.: An introduction to vari-
ational methods for graphical models. Mach. Learn. 37(2), 183–233 (1999)

18. Lampinen, J., Vehtari, A.: Bayesian approach for neural networks-review and case
studies. Neural Netw. 14(3), 257–274 (2001)

19. Lindemann, L., Qin, X., Deshmukh, J.V., Pappas, G.J.: Conformal prediction for
stl runtime verification. arXiv preprint arXiv:2211.01539 (2022)

20. MacKay, D.J.: A practical bayesian framework for backpropagation networks. Neu-
ral Comput. 4(3), 448–472 (1992)

21. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

22. Minka, T.P.: Expectation propagation for approximate bayesian inference. arXiv
preprint arXiv:1301.2294 (2013)

23. Papadopoulos, H., Haralambous, H.: Reliable prediction intervals with regression
neural networks. Neural Netw. Off. J. Int. Neural Netw. Soc. 24(8), 842–51 (2011)

24. Papadopoulos, H., Vovk, V., Gammerman, A.: Regression conformal prediction
with nearest neighbours. J. Artif. Intell. Res. 40, 815–840 (2014)

25. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, pp. 8024–8035
(2019)

26. Piho, P., Hillston, J.: Active and sparse methods in smoothed model checking. In:
Abate, A., Marin, A. (eds.) QEST 2021. LNCS, vol. 12846, pp. 217–234. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-85172-9 12

27. Rasmussen, C.E.: Gaussian processes in machine learning. In: Bousquet, O., von
Luxburg, U., Rätsch, G. (eds.) ML -2003. LNCS (LNAI), vol. 3176, pp. 63–71.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28650-9 4

https://doi.org/10.1007/978-3-319-89963-3_23
https://doi.org/10.1007/978-3-319-89963-3_23
https://doi.org/10.1007/978-3-030-42553-1_3
https://doi.org/10.1007/978-3-030-42553-1_3
https://doi.org/10.1007/978-3-319-10696-0_31
http://arxiv.org/abs/2211.01539
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
http://arxiv.org/abs/1301.2294
https://doi.org/10.1007/978-3-030-85172-9_12
https://doi.org/10.1007/978-3-540-28650-9_4

Scalable Stochastic Parametric Verification with SV-SmMC 65

28. Rasmussen, C.E., Candela, J.Q.: Healing the relevance vector machine through
augmentation. In: Proceedings of the 22nd international conference on Machine
learning (2005)

29. Silvetti, S., Policriti, A., Bortolussi, L.: An active learning approach to the fal-
sification of black box cyber-physical systems. In: Polikarpova, N., Schneider, S.
(eds.) IFM 2017. LNCS, vol. 10510, pp. 3–17. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66845-1 1

30. Titsias, M.: Variational learning of inducing variables in sparse gaussian processes.
In: Artificial Intelligence and Statistics, pp. 567–574. PMLR (2009)

31. Titterington, D.: Bayesian methods for neural networks and related models. Stat.
Sci. 19, 128–139 (2004)

32. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World,
vol. 29. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-031-06649-8

33. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45657-0 17

34. Younes, H.L., Simmons, R.G.: Statistical probabilistic model checking with a focus
on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)

35. Zeni, G., Fontana, M., Vantini, S.: Conformal prediction: a unified review of theory
and new challenges. ArXiv arXiv:2005.07972 (2020)

36. Zinkevich, M., Weimer, M., Li, L., Smola, A.: Parallelized stochastic gradient
descent. Adv. Neural Inf. Process. Syst. 23 (2010)

37. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to simulink/stateflow verification. In: Proceedings of the 13th ACM
International Conference on Hybrid Systems: Computation and Control, pp. 243–
252 (2010)

https://doi.org/10.1007/978-3-319-66845-1_1
https://doi.org/10.1007/978-3-319-66845-1_1
https://doi.org/10.1007/978-3-031-06649-8
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0_17
http://arxiv.org/abs/2005.07972

Monitoring Blackbox Implementations
of Multiparty Session Protocols

Bas van den Heuvel(B) , Jorge A. Pérez , and Rares A. Dobre

University of Groningen, Groningen, The Netherlands

vdheuvel.bas@gmail.com

Abstract. We present a framework for the distributed monitoring of
networks of components that coordinate by message-passing, following
multiparty session protocols specified as global types. We improve over
prior works by (i) supporting components whose exact specification is
unknown (“blackboxes”) and (ii) covering protocols that cannot be ana-
lyzed by existing techniques. We first give a procedure for synthesizing
monitors for blackboxes from global types, and precisely define when a
blackbox correctly satisfies its global type. Then, we prove that moni-
tored blackboxes are sound (they correctly follow the protocol) and trans-
parent (blackboxes with and without monitors are behaviorally equiva-
lent).

Keywords: distributed monitoring · message-passing · concurrency ·
multiparty session types

1 Introduction

Runtime verification excels at analyzing systems with components that cannot
be (statically) checked, such as closed-source and third-party components with
unknown/partial specifications [2,12]. In this spirit, we present a monitoring
framework for networks of communicating components. We adopt global types
from multiparty session types [17,18] both to specify protocols and to synthesize
monitors. As we explain next, rather than process implementations, we consider

“blackboxes”—components whose exact structure is unknown. Also, aiming at
wide applicability, we cover networks of monitored components that implement
global types that go beyond the scope of existing techniques.

Session types provide precise specifications of the protocols that components
should respect. It is then natural to use session types as references for distributed
monitoring [3,7,14,20,21,24]. In particular, Bocchi et al. [6,7,9] use multiparty
session types to monitor networks of π-calculus processes. Leveraging notions
originally conceived for static verification (such as global types and their projec-
tion onto local types), their framework guarantees the correctness of monitored
networks with statically and dynamically checked components.

This research has been supported by the Dutch Research Council (NWO) under project
No. 016.Vidi.189.046 (Unifying Correctness for Communicating Software).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 66–85, 2023.
https://doi.org/10.1007/978-3-031-44267-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_4&domain=pdf
http://orcid.org/0000-0002-8264-7371
http://orcid.org/0000-0002-1452-6180
https://doi.org/10.1007/978-3-031-44267-4_4

Monitoring Blackbox Implementations of Multiparty Session Protocols 67

Fig. 1. Monitoring setup based on the global type (multiparty protocol) Ga (1). Each
protocol participant has a blackbox (an LTS), attached to a monitor (e.g. Pc and Mc).
The monitors are synthesized from Ga (thick arrows). Relative types (e.g. Rc,s) obtained
by projection from Ga (thin gray arrows) are used in this synthesis (dotted arrows).

However, existing monitoring techniques based on multiparty session types
have two limitations. One concerns the class of protocols they support; the other
is their reliance on fully specified components, usually given as (typed) processes.
That is, definitions of networks assume that a component can be inspected—an
overly strong assumption in many cases. There is then a tension between (i) the
assumptions on component structure and (ii) the strength of formal guarantees:
the less we know about components, the harder it is to establish such guarantees.

Our Approach. We introduce a new approach to monitoring based on multiparty
session types that relies on minimal assumptions on a component’s structure.
As key novelty, we consider blackboxes—components with unknown structure
but observable behavior—and networks of monitored blackboxes that use asyn-
chronous message-passing to implement multiparty protocols specified as global
types.

As running example, let us consider the global type Ga (inspired by an
example by Scalas and Yoshida [23]), which expresses an authorization protocol
between three participants: server (s), client (c), and authorization service (a).

Ga := μX.s!c{login〈〉.c!a{pwd〈str〉.a!s{succ〈bool〉.X}}, quit〈〉.end} (1)

This recursive global type (μX) specifies that s sends to c (s!c) a choice between
labels login and quit. In the login-branch, c sends to a a password of type 〈str〉
and a notifies s whether it was correct, after which the protocol repeats (X). In
the quit-branch, the protocol simply ends (end). As explained in [23], Ga is not
supported by most theories of multiparty sessions, including those in [6,7,9].

Figure 1 illustrates our approach to monitoring global types such as Ga. There
is a blackbox per participant, denoted Ps, Pc, and Pa, whose behavior is given
by a labeled transition system (LTS). Each blackbox implements a participant as
dictated by Ga while coupled with a monitor (Ms, Mc, and Ma in Fig. 1). Monitors
are synthesized from Ga by relying on relative types [15], which provide local views
of the global type: they specify protocols between pairs of participants; hence, in
the case of Ga, we have three relative types: Rc,s, Rc,a, and Rs,a.

68 B. van den Heuvel et al.

Introduced in [15] for type-checking communicating components, relative
types are instrumental to our approach. They give a fine-grained view of protocols
that is convenient for monitor synthesis. Relative types explicitly specify depen-
dencies between participants, e.g., when the behavior of a participant p is the
result of a prior choice made by some other participants q and r. Treating depen-
dencies as explicit messages is key to ensuring the distributed implementability of
protocols that usual multiparty theories cannot support (e.g., Ga (1)). Our algo-
rithm for monitor synthesis mechanically computes these dependencies from rel-
ative types, and exploits them to coordinate monitored blackboxes.

A central ingredient in our technical developments is the notion of satisfac-
tion (Definition 13), which defines when a monitored blackbox conforms to the
role of a specific protocol participant. Building upon satisfaction, we prove sound-
ness and transparency for networks of monitored blackboxes. Soundness (Theo-
rem 17) ensures that if each monitored blackbox in a network behaves correctly
(according to a global type), then the entire network behaves correctly too. Trans-
parency (Theorem 23) ensures that monitors do not interfere with the (observable)
behavior of their contained blackboxes; it is given in terms of a (weak) behavioral
equivalence, which is suitably informed by the actions of a given global type.

Related Work. The literature on distributed runtime verification is vast. In this
setting, the survey by Francalanza et al. [12] proposes several classification crite-
ria. Phrased in terms of their criteria, our work concerns distributed monitoring
for asynchronous message-passing. We work with blackboxes, whose monitors are
minimally intrusive: they do not alter behavior, but do contribute to coordination.

The works by Bocchi et al. [6,7,9] and by Scalas and Yoshida [23], mentioned
above, are a main source of inspiration to us. The work [23] highlights the lim-
itations of techniques based on the projection of a global type onto local types:
many practical protocols, such as Ga, cannot be analyzed because their projec-
tion onto local types is undefined. With respect to [6,7,9], there are three major
differences. First, Bocchi et al. rely on precise specifications of components (π-
calculus processes), whereas we monitor blackboxes (LTSs). Second, we resort to
relative types, whereas they rely on local types; this is a limitation, as just men-
tioned. Third, their monitors drop incorrect messages (cf. [1]) instead of signaling
errors, as we do. Their framework ensures transparency (akin to Theorem 23)
and safety, i.e., monitored components do not misbehave. In contrast, we estab-
lish soundness, which is different and more technically involved than safety: our
focus is on monitoring blackboxes rather than fully specified components, and
soundness concerns correct behavior rather than the absence of misbehavior.

We mention runtime verification techniques based on binary session types, a
sub-class of multiparty session types. Bartolo Burló et al. [3] monitor sequential
processes that communicate synchronously, prove that ill-typed processes raise
errors, and consider also probabilistic session types [4,5]. Other works couple moni-
toring session types with blame assignment upon protocol violations [14,19,21,24].
Jia et al. [21] monitor asynchronous session-typed processes. Gommerstadt et
al. [13,14] extend [21] with rich refinement-based contracts. We do not consider
blame assignment, but it can conceivably be added by enhancing error signals.

Monitoring Blackbox Implementations of Multiparty Session Protocols 69

Fig. 2. Actions, messages, networks, and monitors.

Outline. Section 2 defines networks of monitored blackboxes and their behav-
ior. Section 3 defines how to synthesize monitors from global types. Section 4
defines correct monitored blackboxes, and establishes soundness and trans-
parency. Section 5 concludes the paper. We use colors to improve readability.

The full version of this paper [16] includes an appendix with additional exam-
ples (including the running example from [7]), a description of a practical toolkit
based on this paper, and omitted proofs.

2 Networks of Monitored Blackboxes

We write P,Q, . . . to denote blackbox processes (simply blackboxes) that imple-
ment protocol participants (denoted p, q, . . .). We assume that a blackbox P is
associated with an LTS that specifies its behavior. Transitions are denoted P

α−→
P ′. Actions α, defined in Fig. 2 (top), encompass messages m, which can be
labeled data but also dependency messages (simply dependencies). As we will
see, dependencies are useful to ensure the coordinated implementation of choices.
Messages abstract away from values, and include only their type.

A silent transition τ denotes an internal computation. Transitions p!q(�〈T 〉)
and p?q(�〈T 〉) denote the output and input of a message of type T with label �

70 B. van den Heuvel et al.

between p and q, respectively. If a message carries no data, we write �〈〉 (i.e., the
data type is empty). Dependency outputs are used for monitors, defined below.

We adopt minimal assumptions about the behavior of blackboxes:

Definition 1 (Assumptions). We assume the following about LTSs of black-
boxes:

– (Finite τ) Sequences of τ -transitions are finite.
– (Input/Output) There are never input- and output-transitions available at

the same time.
– (End) There are never transitions after an end-transition.

Example 2. The blackboxes Pc, Ps, Pa implement c, s, a, respectively, in Ga (1)
with the following LTSs:

Pc P q
c P e

cP l
c

c?s(quit〈〉) endc?s(login〈〉)
c!a(pwd〈str〉)

Ps P q
s P e

sP l
s

s!c(quit〈〉) ends!c(login〈〉)
s?a(succ〈bool〉)

Pa P qs
a P qc

a

P e
a

P ls
a

P lc
a P p

a

a?s((quit)) a?c((quit))

end

a?s((login))

a?c((login))

a?c(pwd〈str〉)
a!s(succ〈bool〉)

All three LTSs above respect the assumptions in Definition 1. On the other hand,
the following LTS violates all three assumptions; in particular, there are an input-
and an output-transition simultaneously enabled at Q:

Q QqQp c?s(quit〈〉)

end

c!a(pwd〈str〉)
τ

Blackboxes communicate asynchronously, using buffers (denoted �m): ordered
sequences of messages, with the most-recently received message on the left. The
empty buffer is denoted ε. When a blackbox does an input transition, it attempts
to read the message from its buffer. An output transition places the message in
the recipient’s buffer; to accommodate this, we mark each blackbox with the
participant they implement. The result is a buffered blackbox, denoted 〈p :P : �m〉.

By convention, the buffer of p contains output messages with recipient p. We
allow the silent reordering of messages with different senders; this way, e.g., given
q �= r, �m, q!p(�〈T 〉), r!p(�′〈T ′〉), �n and �m, r!p(�′〈T ′〉), q!p(�〈T 〉), �n are the same.

Having defined standalone (buffered) blackboxes, we now define how they
interact in networks. We couple each buffered blackbox with a monitor M , which
has its own buffer �n. The result is a monitored blackbox, denoted [〈p:P : �m〉:M :�n].

Monitoring Blackbox Implementations of Multiparty Session Protocols 71

Monitors define finite state machines that accept sequences of incoming and
outgoing messages, as stipulated by some protocol. An error occurs when a mes-
sage exchange does not conform to such protocol. Additionally, monitors support
the dependencies mentioned earlier: when a blackbox sends or receives a mes-
sage, the monitor broadcasts the message’s label to other monitored blackboxes
such that they can receive the chosen label and react accordingly.

Networks, defined in Fig. 2 (bottom), are compositions of monitored black-
boxes and error signals. An error signal errorD replaces a monitored blackbox
when its monitor detects an error involving participants in the set D. Indeed, a
participant’s error will propagate to the other monitored blackboxes in a network.
Output and (dependency) input monitors check outgoing and incoming (depen-
dency) messages, respectively. Output dependency monitors p!D(�).M broadcast
� to the participants in D. Recursive monitors are encoded by recursive defini-
tions (μX.M) and recursive calls (X). The end monitor waits for the buffered
blackbox to end the protocol. The error monitor denotes an inability to process
received messages; it will be useful when the sender and recipient of an exchange
send different dependency messages. The finished monitor � is self-explanatory.

We now define the behavior of monitored blackboxes in networks:

Definition 3 (LTS for Networks). We define an LTS for networks, denoted
P α−→ Q, by the rules in Fig. 3 (Page 7) with actions α as in Fig. 2 (top).
We write P ⇒ Q to denote a sequence of zero or more τ -transitions P τ−→ . . .

τ−→
Q, and we write P �→ to denote that there do not exist α,Q such that P α−→ Q.

Figure 3 gives four groups of rules, which we briefly discuss. The Transition group
[buf-∗] defines the behavior of a buffered blackbox in terms of the behavior of
the blackbox it contains; note that input transitions are hidden as τ -transitions.
The Transition group [mon-∗] defines the behavior of a monitored blackbox when
the behavior of the enclosed buffered blackbox concurs with the monitor; again,
input transitions are hidden as τ -transitions.

When the behavior of the buffered blackbox does not concur with the monitor,
the Transition group [error-∗] replaces the monitored blackbox with an error
signal. Transition [par-error] propagates error signals to parallel monitored
blackboxes. If a network parallel to the monitored blackbox of p has an outgo-
ing message with recipient p, Transition [out-mon-buf] places this message in
the buffer of the monitored blackbox as a τ -transition. Transition [par] closes
transitions under parallel composition, as long as the recipient in the action
of the transition (recip(α)) is not a subject of the composed network (sub(Q),
the participants for which monitored blackboxes and error signals appear in Q).
Transition [cong] closes transitions under ≡, which denotes a congruence that
defines parallel composition as commutative and associative.

Figure 4 shows transitions of correct/incorrect communications in networks.

72 B. van den Heuvel et al.

Fig. 3. LTS for Networks (Definition 3).

Monitoring Blackbox Implementations of Multiparty Session Protocols 73

Fig. 4. The LTS for Networks at work: transitions of correctly/incorrectly communi-
cating monitored blackboxes of participants of Ga (1). Top: s sends to c label quit,
monitor of c reads message, blackbox of c reads message, both components end. Bot-
tom: monitor of c expects login message but finds quit message so signals error, error
propagates to s.

3 Monitors for Blackboxes Synthesized from Global
Types

In theories of multiparty session types [17,18], global types conveniently describe
message-passing protocols between sets of participants from a vantage point.
Here we use them as specifications for monitors in networks (Algorithm 2); for a
local view of such global protocols we use relative types [15], which describe the
interactions and dependencies between pairs of participants.

Definition 4 (Global and Relative Types).

Global types G,G′ ::= p!q{i〈Ti〉.G}i∈I (exchange) | end (end)
| μX.G | X (recursion)

Relative types R,R′ ::= p!q⦃i〈Ti〉.R⦄i∈I (exchange) | end (end)
| (p!r)!q⦃i.R⦄i∈I (output dep.) | μX.R | X (recursion)
| (p?r)!q⦃i.R⦄i∈I (input dep.)

We write part(G) to denote the set of participants involved in exchanges in G.

The global type p!q{i〈Ti〉.Gi}i∈I specifies that p sends to q some j ∈ I with
Tj , continuing as Gj . A relative type specifies a protocol between a pair of
participants, say p and q. The type p!q⦃i〈Ti〉.Ri⦄i∈I specifies that p sends to q
some j ∈ I with Tj , continuing as Rj . If the protocol between p and q depends
on a prior choice involving p or q, their relative type includes a dependency :
(p!r)!q⦃i.Ri⦄i∈I (resp. (p?r)!q⦃i.Ri⦄i∈I) specifies that p forwards to q the j ∈ I
sent to (resp. received from) r by p. For both global and relative types, tail-
recursion is defined with recursive definitions μX and recursive calls X, and end
specifies the end of the protocol.

Relative types are obtained from global types by means of projection:

Definition 5 (Relative Projection). The relative projection of a global type
onto a pair of participants, denoted G 〉 (p, q), is defined by Algorithm1.

74 B. van den Heuvel et al.

Algorithm 1: Relative Projection of G onto p and q (Def. 5).
1 def G 〉 (p, q) as
2 switch G do
3 case s!r{i〈Ti〉.Gi}i∈I do
4 ∀i ∈ I. Ri := Gi 〉 (p, q)
5 if (p = s ∧ q = r) then return p!q⦃i〈Ti〉.Ri⦄i∈I

6 else if (q = s ∧ p = r) then return q!p⦃i〈Ti〉.Ri⦄i∈I

7 else if ∀i, j ∈ I. Ri = Rj then return
⋃

i∈I Ri

8 else if s ∈ {p, q} ∧ t ∈ {p, q} \ {s} then return (s!r)!t⦃i.Ri⦄i∈I

9 else if r ∈ {p, q} ∧ t ∈ {p, q} \ {r} then return (r?s)!t⦃i.Ri⦄i∈I

10 case µX.G′ do
11 R′ := G′ 〉 (p, q)
12 if (R′ contains an exchange or a recursive call on any Y �= X) then

return µX.R′

13 else return end

14 case X do return X
15 case end do return end

The projection of an exchange onto (p, q) is an exchange if p and q are sender
and recipient (lines 5 and 6). Otherwise, if the protocol between p and q does not
depend on the exchange (the projections of all branches are equal), the projection
is the union of the projected branches (line 7). The union of relative types,
denoted R∪R′, is defined only on identical relative types (e.g., p!q⦃i〈Ti〉.Ri⦄i∈I ∪
p!q⦃i〈Ti〉.Ri⦄i∈I = p!q⦃i〈Ti〉.Ri⦄i∈I ; see [16] for a formal definition). If there is a
dependency and p or q is sender/recipient, the projection is a dependency (lines
8 and 9). Projection is undefined if there is a dependency but p nor q is involved.

The projection of μX.G′ is a relative type starting with a recursive definition,
provided that the projection of G′ onto (p, q) contains an exchange or nested
recursive call (line 12) to avoid recursion with only dependencies; otherwise, the
projection returns end (line 13). The projections of recursive calls and end are
homomorphic (lines 14 and 15).

Example 6. The relative projections of Ga (1) are:

Rc,s := Ga 〉 (c, s) = μX.s!c⦃login〈〉.X, quit〈〉.end⦄
Rc,a := Ga 〉 (c, a) = μX.(c?s)!a⦃login.c!a⦃pwd〈str〉.X⦄, quit.end⦄

Rs,a := Ga 〉 (s, a) = μX.(s!c)!a⦃login.a!s⦃succ〈bool〉.X⦄, quit.end⦄

Hence, the exchange from s to c is a dependency for the protocols of a.

Not all global types are sensible. A valid global type may, e.g., require a
participant p to have different behaviors, depending on a choice that p is unaware
of (see, e.g., [8]). In the following, we work only with well-formed global types:

Definition 7 (Well-formedness). We say a global type G is well-formed if
and only if, for all pairs of participants p �= q ∈ part(G), the projection G 〉 (p, q)
is defined, and all recursion in G is non-contractive (e.g., G �= μX.X) and
bound.

Monitoring Blackbox Implementations of Multiparty Session Protocols 75

Algorithm 2: Synthesis of Monitors from Global Types (Definition 9).
1 def gt2mon(G, p,D) as
2 switch G do
3 case s!r{i〈Ti〉.Gi}i∈I do
4 deps := {q ∈ D | q depsOn p in G}
5 if p = s then return p!r{{i〈Ti〉.p!deps(i).gt2mon(Gi, p,D)}}i∈I

6 else if p = r then return p?s{{i〈Ti〉.p!deps(i).gt2mon(Gi, p,D)}}i∈I

7 else if p /∈ {r, s} then
8 depOns := (s ∈ D ∧ p depsOn s in G)
9 depOnr := (r ∈ D ∧ p depsOn r in G)

10 if (depOns ∧ ¬depOnr) then return p?s{{i.gt2mon(Gi, p,D)}}i∈I

11 else if (depOnr ∧ ¬depOns) then return p?r{{i.gt2mon(Gi, p,D)}}i∈I

12 else if (depOns ∧ depOnr) then
13 return p?s

{{
i.p?r{{i.gt2mon(Gi, p,D)}} ∪ {{j.error}}j∈I\{i}

}}
i∈I

14 else return gt2mon(Gk, p,D) (arbitrary k ∈ I)

15 case µX.G′ do
16 D′ := {q ∈ D | G 〉 (p, q) �= end}
17 if D′ �= ∅ then return µX.gt2mon(G′, p,D′)
18 else return end

19 case X do return X
20 case end do return end

Our running example Ga (1) is well-formed in the above sense; also, as explained
in [23], Ga is not well-formed in most theories of multiparty sessions (based on
projection onto local types). As such, Ga goes beyond the scope of such theories.

Synthesizing Monitors. Next, we define a procedure to synthesize monitors for
the participants of global types. This procedure detects dependencies as follows:

Definition 8 (Dependence). Given a global type G, we say p depends on q
in G, denoted p depsOn q in G, if and only if
G = s!r{i〈Ti〉.Gi}i∈I ∧ p /∈ {s, r} ∧ q ∈ {s, r} ∧ ∃i, j ∈ I. Gi 〉 (p, q) �= Gj 〉 (p, q).

Thus, p depsOn q in G holds if and only if G is an exchange involving q but
not p, and the relative projections of at least two branches of the exchange are
different.

Definition 9 (Synthesis of Monitors from Global Types). Algorithm2
synthesizes the monitor for p in G with participants D, denoted gt2mon(G, p,D).

Initially, D = part(G) \ {p}. The monitor for p of an exchange where p is sender
(resp. recipient) is an output (resp. input) followed in each branch by a depen-
dency output, using Dependence to compute the participants with dependencies
(lines 5 and 6). If p is not involved, we detect a dependency for p with Dependence.
In case p depends on sender/recipient but not both, the monitor is a dependency
input (lines 10 and 11). If p depends on sender and recipient, the monitor con-
tains two consecutive dependency inputs (line 13); when the two received labels
differ, the monitor enters an error-state. When there is no dependency for p, the

76 B. van den Heuvel et al.

monitor uses an arbitrary branch (line 14). To synthesize a monitor for μX.G′,
the algorithm uses projection to compute D′ with participants having exchanges
with p in G′ (cf. Algorithm 1 line 12). If D′ is non-empty, the monitor starts with
a recursive definition (line 17) and the algorithm continues with D′; otherwise,
the monitor is end (line 18). The monitors of X and end are homomorphic
(lines 19 and 20).

Example 10. Let us use G = p!q{�〈T 〉.μX.p!r{�′〈T ′〉.X, �′′〈T ′′〉.end}} to illus-
trate Algorithm 2. We have G 〉 (p, q) = p!q⦃�〈T 〉.end⦄: the projection of
the recursive body in G is (p!r)!q⦃�′〈T ′〉.X, �′′〈T ′′〉.end⦄, but there are no
exchanges between p and q, so the projection of the recursive definition
is end. Were the monitor for p synthesized with q ∈ D, Dependence
would detect a dependency: the recursive definition’s monitor would be
p!r{{�′〈T ′〉.p!{q}(�′).X, �′′〈T ′′〉.p!{q}(�′′).end}}. However, per G 〉 (p, q), p nor q
expects a dependency at this point of the protocol. Hence, the algorithm removes
q from D when entering the recursive body in G.

Example 11. The monitors of c, s, a in Ga (1) are:

Mc := gt2mon(Ga, c, {s, a})

= μX.c?s
{{

login〈〉.c!{a}(login).c!a{{pwd〈str〉.c!∅(pwd).X}},
quit〈〉.c!{a}(quit).end

}}

Ms := gt2mon(Ga, s, {c, a})

= μX.s!c
{{

login〈〉.s!{a}(login).s?a{{succ〈bool〉.s!∅(succ).X}},
quit〈〉.s!{a}(quit).end

}}

Ma := gt2mon(Ga, a, {c, s})

= μX.a?s

⎧⎪⎪⎨
⎪⎪⎩

⎧⎪⎪⎨
⎪⎪⎩
login.a?c

⎧⎨
⎩
⎧⎨
⎩
login.a?c{{pwd〈str〉.a!∅(pwd).

a!s{{succ〈bool〉.a!∅(succ).X}}}},
quit.error

⎫⎬
⎭
⎫⎬
⎭ ,

quit.a?c{{quit.end, login.error}}

⎫⎪⎪⎬
⎪⎪⎭

⎫⎪⎪⎬
⎪⎪⎭

4 Properties of Correct Monitored Blackboxes

Given a global type G, we establish the precise conditions under which a network
of monitored blackboxes correctly implements G. That is, we define how the
monitored blackbox P of a participant p of G should behave, i.e., when P satisfies
the role of p in G (Satisfaction, Definition 13). We then prove two important
properties of networks of monitored blackboxes that satisfy a given global type:

Soundness: The network behaves correctly according to the global type
(Theorem 17);

Transparency: The monitors interfere minimally with buffered blackboxes
(Theorem 23).

As we will see in Sect. 4.2, satisfaction is exactly the condition under which a
network P is sound with respect to a global type G.

Monitoring Blackbox Implementations of Multiparty Session Protocols 77

4.1 Satisfaction

Our aim is to attest that P satisfies the role of p in G if it meets certain conditions
on the behavior of monitored blackboxes with respect to the protocol. As we
have seen, the role of p in G is determined by projection. Satisfaction is then
a relation R between (i) monitored blackboxes and (ii) maps from participants
q ∈ part(G)\{p} to relative types between p and q, denoted RTs; R must contain
(P, RTs) with relative projections of G. Given any (P ′, RTs′) in R, the general
idea of satisfaction is (i) that an output to q by P ′ means that RTs′(q) is a
corresponding exchange from p to q, and (ii) that if there is a q such that RTs′(q)
is an exchange from q to p then P ′ behaves correctly afterwards.

In satisfaction, dependencies in relative types require care. For example, if
RTs′(q) is an exchange from p to q and RTs′(r) is a dependency on this exchange,
then P ′ must first send a label to q and then send the same label to r. Hence, we
need to track the labels chosen by the monitored blackbox for later reference. To
this end, we uniquely identify each exchange in a global type by its location ��: a
sequence of labels denoting the choices leading to the exchange. Projection then
uses these locations to annotate each exchange and recursive definition/call in
the relative type it produces. Because projection skips independent exchanges
(Algorithm 1, line 7), some exchanges and recursive definitions/calls may be asso-
ciated with multiple locations; hence, they are annotated with sets of locations,
denoted L. Satisfaction then tracks choices using a map from sets of locations to
labels, denoted Lbls. Projection with location annotations is formally defined
in [16], along with a corresponding definition for unfolding recursion.

Before defining satisfaction, we set up some useful notation for type signa-
tures, locations, relative types, and maps.

Notation 12. Let P denote the set of all participants, R the set of all relative
types, N the set of all networks, and L the set of all labels.

Notation P(S) denotes the powerset of S. Given a set S, we write �S to denote
the set of all sequences of elements from S. We write L�L

′ to stand for L∩L
′ �= ∅.

We write L ≤ L
′ if every ��′ ∈ L

′ is prefixed by some �� ∈ L.
In relative types, we write ♦ to denote either ! or ?. We write unfold(R) for

the inductive unfolding of R if R starts with recursive definitions, and for R
itself otherwise. We write R � R′ whenever unfold(R) = unfold(R′).

We shall use monospaced fonts to denote maps (such as RTs and Lbls). We
often define maps using the notation of injective relations. Given a map M, we
write (x, y) ∈ M to denote that x ∈ dom(M) and M(x) = y. We write M[x �→ y′] to
denote the map obtained by adding to M an entry for x pointing to y′, or updating
an already existing entry for x. Maps are partial unless stated otherwise.

Definition 13 (Satisfaction). A relation R is sat-signed if its signature is
N × (P → R) × (P(�L) → L). We define the following properties of relations:

– A sat-signed relation R holds at p if it satisfies the conditions in Fig. 5.
– A sat-signed relation R progresses at p if for every (P, RTs, Lbls) ∈ R, we

have P α−→ P ′ for some α and P ′, given that one of the following holds:

78 B. van den Heuvel et al.

Fig. 5. Satisfaction: conditions under which R holds at p (Definition 13).

• RTs �= ∅ and, for every (q,R) ∈ RTs, R � end;
• There is (q,R) ∈ RTs such that (i) R � p!qL⦃i〈Ti〉.Ri⦄i∈I or R �

(p♦r)!qL⦃i.Ri⦄i∈I , and (ii) for every (q′, R′) ∈ RTs \ {(q,R)}, either
R′ � end or unfold(R′) has locations L

′ with L ≤ L
′.

– A sat-signed relation R is a satisfaction at p if it holds and progresses at p.

We write R �Lbls P � RTs@ p if R is a satisfaction at p with (P, RTs, Lbls) ∈ R,
and R � P � RTs@ p when Lbls is empty. We omit R to indicate such R exists.

Satisfaction requires R to hold at p: each (P, RTs, Lbls) ∈ R enjoys the condi-
tions in Fig. 5, discussed next, which ensure that P respects the protocols in RTs.

(Tau) allows τ -transitions without affecting RTs and Lbls. (End) allows an
end-transition, given that all relative types in RTs are end. The resulting state
should not transition, enforced by empty RTs and Lbls.

(Output) allows an output-transition with a message to q, given that RTs(q)
is a corresponding output by p. Then, RTs(q) updates to the continuation of the
appropriate branch and Lbls records the choice under the locations of RTs(q).

(Input) triggers when there is (q,R) ∈ RTs such that R is a message from
q to p. Satisfaction targets the behavior of P on its own, so we simulate a
message sent by q. The resulting behavior is then analyzed after buffering any
such message; RTs(q) is updated to the continuation of the corresponding branch.
As for outputs, Lbls records the choice at the locations of RTs(q).

(Dependency Output) allows an output-transition with a dependency mes-
sage to q, given that RTs(q) is a corresponding dependency output by p with
locations L. The message’s label should be recorded in Lbls at some L

′ that
shares a location with L: here L

′ relates to a past exchange between p and some
r in G from which the dependency output in RTs(q) originates. This ensures that
the dependency output is preceded by a corresponding exchange, and that the

Monitoring Blackbox Implementations of Multiparty Session Protocols 79

dependency output carries the same label as originally chosen for the preceding
exchange. Afterwards, RTs(q) is updated to the continuation of the appropriate
branch.

(Dependency Input) triggers when there is (q,R) ∈ RTs such that R is a
dependency exchange from q to p, forwarding a label exchanged between q and r.
As in the input case, a message from q is simulated by buffering it in P. In this
case, RTs(r) could be a dependency exchange from r to p, originating from the
same exchange between q and r in G. To ensure that the buffered messages
contain the same label, we distinguish “fresh” and “known” cases. In the fresh
case, we consider the first of the possibly two dependency exchanges: there is
no L

′ ∈ dom(Lbls) that shares a location with the locations L of RTs(q). Hence,
we analyze each possible dependency message, updating RTs(q) appropriately
and recording the choice in Lbls. The known case then considers the second
dependency exchange: there is a label in Lbls at L

′ that shares a location with L.
Hence, we buffer a message with the same label, and update RTs(q) accordingly.

Satisfaction also requires R to progress at p, for each (P, RTs, Lbls) ∈ R
making sure that P does not idle whenever we are expecting a transition from P.
There are two cases. (1) If all relative types in RTs are end, we expect an end-
transition. (2) If there is a relative type in RTs that is a (dependency) output, we
expect an output transition. However, P may idle if it is waiting for a message:
there is (q,R) ∈ RTs such that R is a (dependency) input originating from an
exchange in G that precedes the exchange related to the output.

Definition 14 (Satisfaction for Networks). Let us write RTsOf(G, p) to
denote the set {(q,G 〉 (p, q)) | q ∈ part(G) \ {p}}. Moreover, we write

– R � [〈p : P : ε〉 : M : ε] � G @ p if and only if M = gt2mon(G, p,part(G) \ {p})
and R � [〈p :P : ε〉 :M : ε] � RTsOf(G, p)@ p. We omit R to say such R exists.

– � P � G if and only if P ≡ ∏
p∈part(G) [〈p : Pp : ε〉 : Mp : ε] and, for every

p ∈ part(G), � [〈p : Pp : ε〉 : Mp : ε] � G @ p.

Example 15. The following satisfaction assertions hold with implementations,
relative types, and monitors from Examples 2 and 6 and 11, respectively:

� [〈c : Pc : ε〉 : Mc : ε] � {(s,Rc,s), (a,Rc,a)} @ c

� [〈s : Ps : ε〉 : Ms : ε] � {(c,Rc,s), (a,Rs,a)} @ s

� [〈a : Pa : ε〉 : Ma : ε] � {(c,Rc,a), (s,Rs,a)} @ a

� [〈c : Pc : ε〉 : Mc : ε]‖[〈s : Ps : ε〉 : Ms : ε]‖[〈a : Pa : ε〉 : Ma : ε] � Ga

We also have: � [〈c : Pc : ε〉 : μX.c?s{{quit〈〉.end}} : ε] � Ga @ c. This is because
Rc,s specifies that s may send login to c, which this monitor would not accept.

4.2 Soundness

Our first result is that satisfaction is sound with respect to global types: when
a network of monitored blackboxes satisfies a global type G (Definition 14), any

80 B. van den Heuvel et al.

path of transitions eventually reaches a state that satisfies another global type
reachable from G. Hence, the satisfaction of the individual components that a
network comprises is enough to ensure that the network behaves as specified by
the global type. Reachability between global types is defined as an LTS:

Definition 16 (LTS for Global Types). We define an LTS for global types,
denoted G

�−→ G′, by the following rules:

j ∈ I

p!q{i〈Ti〉.Gi}i∈I
j−→ Gj

G{μX.G/X} �−→ G′

μX.G �−→ G′

Given �� = �1, . . . , �n, we write G
��−→ G′ to denote G

�1−→ . . .
�n−→ G′.

Theorem 17 (Soundness). If � P �G (Definition 14) and P ⇒ P0 then there
exist G′, ��,P ′ such that G

��−→ G′, P0 ⇒ P ′, and � P ′ � G′.

We sketch the proof of Theorem 17 (see [16] for details). We prove a stronger
statement that starts from a network P that satisfies an intermediate G0 reach-
able from G. This way, we apply induction on the number of transitions between
P and P0, relating the transitions of the network to the transitions of G0 one step
at a time by relying on Satisfaction. Hence, we inductively “consume” the transi-
tions between P and P0 until we have passed through P0 and end up in a network
satisfying G′ reachable from G0. We use an auxiliary lemma to account for global
types with independent exchanges, such as G′ = p!q{�〈T 〉.r!s{�′〈T ′〉.end}}. In G′,
the exchange involving (p, q) is unrelated to that involving (r, s), so they occur
concurrently in a network implementing G′. Hence, the transitions from P to P0

might not follow the order specified in G0. The lemma ensures that concurrent
(i.e., unrelated) transitions always end up in the same state, no matter the order.
This way we show transitions from P in the order specified in G0, which we
restore to the observed order using the lemma when we are done.

Theorem 17 implies that any P that satisfies some global type is error free,
i.e., P never reduces to a network containing errorD (stated and proved formally
in the full version of this paper [16]).

4.3 Transparency

The task of monitors is to observe and verify behavior with minimal interfer-
ence: monitors should be transparent. Transparency is usually expressed as a
bisimulation between a monitored and unmonitored component [1,7,11,22].

Our second result is thus a transparency result. For it to be informative, we
assume that we observe the (un)monitored blackbox as if it were running in a
network of monitored blackboxes that adhere to a given global protocol. This way,
we can assume that received messages are correct, such that the monitor does
not transition to an error signal. To this end, we enhance the LTS for Networks:

1. As in Satisfaction, we consider (un)monitored blackboxes on their own. Hence,
we need a way to simulate messages sent by other participants. Otherwise, a

Monitoring Blackbox Implementations of Multiparty Session Protocols 81

Fig. 6. Enhanced LTS for Networks (Definition 19).

blackbox would get stuck waiting for a message and the bisimulation would
hold trivially. We thus add a transition that buffers messages. Similar to
Satisfaction (Input) and (Dependency Input), these messages cannot be arbi-
trary; we parameterize the enhanced LTS by an oracle that determines which
messages are allowed as stipulated by a given global type.

2. Besides observing and verifying transitions, our monitors additionally send
dependency messages. This leads to an asymmetry in the behavior of mon-
itored blackboxes and unmonitered blackboxes, as the latter do not send
dependency messages. Hence, we rename dependency output actions to τ .

We now define the enhanced LTS for networks, after setting up some notation.

Notation 18. Let A denote the set of all actions. Given Ω : P(�A), we write
α + Ω to denote the set containing every sequence in Ω prepended with α. We
write Ω(α) = Ω′ iff α + Ω′ ⊆ Ω and there is no Ω′′ such that α + Ω′ ⊂
α + Ω′′ ⊆ Ω.

Definition 19 (Enhanced LTS for Networks). We define an enhanced LTS
for Networks, denoted P Ω

α
Ω′ P ′ where Ω,Ω′ : P(�A), by the rules in Fig. 6. We

write P Ω Ω P ′ whenever P transitions to P ′ in zero or more τ -transitions,
i.e., P Ω

τ
Ω · · · Ω

τ
Ω P ′. We write P Ω

α
Ω′ P ′ when P Ω Ω P1 Ω

α
Ω′

P2 Ω′ Ω′ P ′, omitting the α-transition when α = τ . Given �α = α1, . . . , αn,
we write P Ω0

�α
Ωn

P ′ when P Ω0

α1
Ω1 P1 · · · Pn−1 Ωn−1

αn

Ωn
P ′.

Thus, Transitions [buf-∗] simulate messages from other participants, consulting
Ω and transforming it into Ω′. Transition [dep] renames dependency outputs to
τ . Transition [no-dep] passes any other transitions, updating Ω to Ω′ accord-
ingly.

We now define a weak bisimilarity on networks, governed by oracles.

Definition 20 (Bisimilarity). A relation B : N × P(�A) × N is a (weak)
bisimulation if, for every (P, Ω,Q) ∈ B: (1) For every P ′, α,Ω1 such that
P Ω

α
Ω1 P ′, there exist �b,Ω2,Q′,P ′′ such that Q Ω

�b,α
Ω2 Q′, P ′

Ω1

�b
Ω2 P ′′,

and (P ′′, Ω2,Q′) ∈ B; and (2) The symmetric analog.
We say P and Q are bisimilar with respect to Ω, denoted P ≈Ω Q, if there

exists a bisimulation B such that (P, Ω,Q) ∈ B.

82 B. van den Heuvel et al.

Fig. 7. Definition of the Label Oracle (Definition 21), LO(p, RTs, Lbls).

Clause 1 says that Q can mimic a transition from P to P ′, possibly after τ - and
[buf]-transitions. We then allow P ′ to “catch up” on those additional transitions,
after which the results are bisimilar (under a new oracle); Clause 2 is symmetric.
Additional [buf]-transitions are necessary: an unmonitored blackbox can read
messages from its buffer directly, whereas a monitor may need to move messages
between buffers first. If the monitor first needs to move messages that are not
in its buffer yet, we need to add those messages with [buf]-transitions. The
unmonitored blackbox then needs to catch up on those additional messages.

Similar to Soundness, Satisfaction defines the conditions under which we
prove transparency of monitors. Moreover, we need to define the precise oracle
under which bisimilarity holds. This oracle is defined similarly to Satisfaction: it
depends on actions observed, relative types (in RTs), and prior choices (in Lbls).

Definition 21 (Label Oracle). The label oracle of participant p under RTs :
P → R and Lbls : P(�L) → L, denoted LO(p, RTs, Lbls) is defined in Fig. 7.

The label oracle LO(p, RTs, Lbls) thus consists of several subsets, each resem-
bling a condition of Satisfaction in Fig. 5. Dependency outputs are exempt: the
Enhanced LTS for Networks renames them to τ , so the label oracle simply looks
past them without requiring a dependency output action.

We now state our transparency result, after defining a final requirement:
minimality of satisfaction. This allows us to step backward through satisfaction
relations, such that we can reason about buffered messages.

Definition 22 (Minimal Satisfaction). We write � P �G@p whenever there
exists R such that R � P � RTsOf(G, p) @ p (Definition 13) and R is minimal,
i.e., there is no R′ ⊂ R such that R′ � P � RTsOf(G, p) @ p.

Monitoring Blackbox Implementations of Multiparty Session Protocols 83

Theorem 23 (Transparency). Suppose � [〈p:P :ε〉:M :ε]�G@p (Definition 22).
Let Ω := LO(p, RTsOf(G, p), ∅). Then [〈p : P : ε〉 : M : ε] ≈Ω 〈p : P : ε〉.

We sketch the proof of Theorem 23 (see [16]). The minimal satisfaction of
the monitored blackbox contains all states that the monitored blackbox can
reach through transitions. We create a relation B by pairing each such state
[〈p:P ′ : �m〉:M ′ :�n] with 〈p:P ′ :�n, �m〉—notice how the buffers are combined. We do
so while keeping an informative relation between relative types, monitors, buffers,
and oracles. This information gives us the appropriate oracles to include in B. We
then show that B is a weak bisimulation by proving that the initial monitored
and unmonitored blackbox are in B, and that the conditions of Definition 20
hold. While Clause 1 is straightforward, Clause 2 requires care: by using the
relation between relative types, monitors, and buffers, we infer the shape of the
monitor from a transition of the unmonitored blackbox. This allows us to show
that the monitored blackbox can mimic the transition, possibly after outputting
dependencies and/or receiving additional messages (as discussed above).

We close by comparing our Theorems 17 and 23 with Bocchi et al.’s safety
and transparency results [7], respectively. First, their safety result [7, Thm. 5.2]
guarantees satisfaction instead of assuming it; their framework suppresses unex-
pected messages, which prevents the informative guarantee given by our Theo-
rem 17. Second, Theorem 23 and their transparency result [7, Thm. 6.1] differ,
among other things, in the presence of an oracle, which is not needed in their
setting: they can inspect the inputs of monitored processes, whereas we cannot
verify the inputs of a blackbox without actually sending messages to it.

5 Conclusion

We have proposed a new framework for dynamically analyzing networks of com-
municating components (blackboxes), governed by global types, with minimal
assumptions about observable behavior. We use global types and relative pro-
jection [15] to synthesize monitors, and define when a monitored component
satisfies the governing protocol. We prove that networks of correct monitored
components are sound with respect to a global type, and that monitors are
transparent.

We have implemented a practical toolkit, called RelaMon, based on the
framework presented here. RelaMon allows users to deploy JavaScript programs
that monitor web-applications in any programming language and with third-
party/closed-source components according to a global type. The toolkit is pub-
licly available [10] and includes implementations of our running example (the
global type Ga), as well as an example that incorporates a closed-source weather
API.

As future work, we plan to extend our framework to uniformly analyze sys-
tems combining monitored blackboxes and statically checked components (follow-
ing [15]). We also plan to study under which restrictions our approach coincides
with Bocchi et al.’s [7].

84 B. van den Heuvel et al.

Acknowledgments. We are grateful to the anonymous reviewers for useful remarks.

References

1. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: On runtime enforcement
via suppressions. In: Schewe, S., Zhang, L. (eds.) 29th International Conference on
Concurrency Theory (CONCUR 2018). Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 118, pp. 34:1–34:17. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany (2018). https://doi.org/10.4230/LIPIcs.CONCUR.
2018.34

2. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification.
LNCS, vol. 10457, pp. 1–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-75632-5 1

3. Bartolo Burlò, C., Francalanza, A., Scalas, A.: On the monitorability of session
types, in theory and practice. In: Møller, A., Sridharan, M. (eds.) 35th Euro-
pean Conference on Object-Oriented Programming (ECOOP 2021). Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 194, pp. 20:1–20:30. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021). https://
doi.org/10.4230/LIPIcs.ECOOP.2021.20

4. Bartolo Burlò, C., Francalanza, A., Scalas, A., Trubiani, C., Tuosto, E.: Towards
probabilistic session-type monitoring. In: Damiani, F., Dardha, O. (eds.) COOR-
DINATION 2021. LNCS, vol. 12717, pp. 106–120. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-78142-2 7

5. Bartolo Burlò, C., Francalanza, A., Scalas, A., Trubiani, C., Tuosto, E.: PSTMoni-
tor: monitor synthesis from probabilistic session types. Sci. Comput. Program. 222,
102847 (2022). https://doi.org/10.1016/j.scico.2022.102847

6. Bocchi, L., Chen, T.-C., Demangeon, R., Honda, K., Yoshida, N.: Monitoring
networks through multiparty session types. In: Beyer, D., Boreale, M. (eds.)
FMOODS/FORTE -2013. LNCS, vol. 7892, pp. 50–65. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38592-6 5

7. Bocchi, L., Chen, T.C., Demangeon, R., Honda, K., Yoshida, N.: Monitoring net-
works through multiparty session types. Theor. Comput. Sci. 669, 33–58 (2017).
https://doi.org/10.1016/j.tcs.2017.02.009

8. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-
party session. Logical Methods Comput. Sci. 8(1) (2012). https://doi.org/10.2168/
LMCS-8(1:24)2012

9. Chen, T.-C., Bocchi, L., Deniélou, P.-M., Honda, K., Yoshida, N.: Asynchronous
distributed monitoring for multiparty session enforcement. In: Bruni, R., Sassone,
V. (eds.) TGC 2011. LNCS, vol. 7173, pp. 25–45. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30065-3 2

10. Dobre, R.A., Heuvelvan den Heuvel, B., Pérez, J.A.: RelaMon: a JS toolkit for the
runtime verification of web applications written in any language (2023). https://
github.com/basvdheuvel/RelaMon. Accessed June 2023

11. Falcone, Y., Fernandez, J.C., Mounier, L.: What can you verify and enforce at
runtime? Int. J. Softw. Tools Technol. Transfer 14(3), 349–382 (2012). https://doi.
org/10.1007/s10009-011-0196-8

12. Francalanza, A., Pérez, J.A., Sánchez, C.: Runtime verification for decentralised
and distributed systems. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime

https://doi.org/10.4230/LIPIcs.CONCUR.2018.34
https://doi.org/10.4230/LIPIcs.CONCUR.2018.34
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.4230/LIPIcs.ECOOP.2021.20
https://doi.org/10.4230/LIPIcs.ECOOP.2021.20
https://doi.org/10.1007/978-3-030-78142-2_7
https://doi.org/10.1007/978-3-030-78142-2_7
https://doi.org/10.1016/j.scico.2022.102847
https://doi.org/10.1007/978-3-642-38592-6_5
https://doi.org/10.1016/j.tcs.2017.02.009
https://doi.org/10.2168/LMCS-8(1:24)2012
https://doi.org/10.2168/LMCS-8(1:24)2012
https://doi.org/10.1007/978-3-642-30065-3_2
https://github.com/basvdheuvel/RelaMon
https://github.com/basvdheuvel/RelaMon
https://doi.org/10.1007/s10009-011-0196-8
https://doi.org/10.1007/s10009-011-0196-8

Monitoring Blackbox Implementations of Multiparty Session Protocols 85

Verification. LNCS, vol. 10457, pp. 176–210. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-75632-5 6

13. Gommerstadt, H., Jia, L., Pfenning, F.: Session-typed concurrent contracts. In:
Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 771–798. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89884-1 27

14. Gommerstadt, H., Jia, L., Pfenning, F.: Session-typed concurrent contracts. J. Log-
ical Algebraic Methods Program. 124, 100731 (2022). https://doi.org/10.1016/j.
jlamp.2021.100731

15. Van den Heuvel, B., Pérez, J.A.: A decentralized analysis of multiparty protocols.
Sci. Comput. Program. 102840 (2022). https://doi.org/10.1016/j.scico.2022.102840

16. Van den Heuvel, B., Pérez, J.A., Dobre, R.A.: Monitoring blackbox implementa-
tions of multiparty session protocols (2023). https://doi.org/10.48550/arXiv.2306.
04204

17. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2008, San Francisco, California, USA, pp.
273–284. Association for Computing Machinery (2008). https://doi.org/10.1145/
1328438.1328472

18. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1) (2016). https://doi.org/10.1145/2827695

19. Igarashi, A., Thiemann, P., Tsuda, Y., Vasconcelos, V.T., Wadler, P.: Gradual
session types. J. Funct. Program. 29, e17 (2019/ed). https://doi.org/10.1017/
S0956796819000169

20. Igarashi, A., Thiemann, P., Vasconcelos, V.T., Wadler, P.: Gradual session types.
Proc. ACM Program. Lang. 1(ICFP), 38:1–38:28 (2017). https://doi.org/10.1145/
3110282

21. Jia, L., Gommerstadt, H., Pfenning, F.: Monitors and blame assignment for higher-
order session types. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016, pp. 582–594.
ACM, New York (2016). https://doi.org/10.1145/2837614.2837662

22. Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for
run-time security policies. Int. J. Inf. Secur. 4(1), 2–16 (2005). https://doi.org/10.
1007/s10207-004-0046-8

23. Scalas, A., Yoshida, N.: Less is more: multiparty session types revisited. Proc. ACM
Program. Lang. 3(POPL), 30:1–30:29 (2019). https://doi.org/10.1145/3290343.
Revised, extended version at https://www.doc.ic.ac.uk/research/technicalreports/
2018/DTRS18-6.pdf

24. Thiemann, P.: Session types with gradual typing. In: Maffei, M., Tuosto, E. (eds.)
TGC 2014. LNCS, vol. 8902, pp. 144–158. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-45917-1 10

https://doi.org/10.1007/978-3-319-75632-5_6
https://doi.org/10.1007/978-3-319-75632-5_6
https://doi.org/10.1007/978-3-319-89884-1_27
https://doi.org/10.1016/j.jlamp.2021.100731
https://doi.org/10.1016/j.jlamp.2021.100731
https://doi.org/10.1016/j.scico.2022.102840
https://doi.org/10.48550/arXiv.2306.04204
https://doi.org/10.48550/arXiv.2306.04204
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1017/S0956796819000169
https://doi.org/10.1017/S0956796819000169
https://doi.org/10.1145/3110282
https://doi.org/10.1145/3110282
https://doi.org/10.1145/2837614.2837662
https://doi.org/10.1007/s10207-004-0046-8
https://doi.org/10.1007/s10207-004-0046-8
https://doi.org/10.1145/3290343
https://www.doc.ic.ac.uk/research/technicalreports/2018/DTRS18-6.pdf
https://www.doc.ic.ac.uk/research/technicalreports/2018/DTRS18-6.pdf
https://doi.org/10.1007/978-3-662-45917-1_10
https://doi.org/10.1007/978-3-662-45917-1_10

Mining Specification Parameters
for Multi-class Classification

Edgar A. Aguilar1 , Ezio Bartocci2 , Cristinel Mateis1 ,
Eleonora Nesterini1,2(B) , and Dejan Ničković1

1 AIT Austrian Institute of Technology, Vienna, Austria
{cristinel.mateis,dejan.nickovic}@ait.ac.at

2 TU Wien, Vienna, Austria
{ezio.bartocci,eleonora.nesterini}@tuwien.ac.at

Abstract. We present a method for mining parameters of temporal
specifications for signal classification. Given a parametric formula and
a set of labeled traces, we find one parameter valuation for each class
and use it to instantiate the specification template. The resulting for-
mula characterizes the signals in a class by discriminating them from
signals of other classes. We propose a two-step approach: first, for each
class, we approximate its validity domain, which is the region of the
valuations that render the formula satisfied. Second, we select from each
validity domain the valuation that maximizes the distance from the valid-
ity domain of other classes. We provide a statistical guarantee that the
selected parameter valuation is at a bounded distance from being opti-
mal. Finally, we validate our approach on three case studies from different
application domains.

Keywords: Specification mining · Signal Temporal Logic ·
Cyber-physical systems

1 Introduction

Formal specifications are crucial during system design, verification, and opera-
tion. They allow a precise and unambiguous exchange of requirements between
engineering teams, enable rigorous verification of critical system components,
and translate into test oracles and runtime monitors during system execution.

Cyber-physical systems (CPS) include physical parts whose properties are
only partially known at design time. Generally, an engineer may expect a system
to act a certain way without knowing the exact numerical values that characterize
the system’s behavior. For instance, an engineer may know that the system
response to a step input is an overshoot while being unaware of its delay from

This work has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 956123 and it is partially funded by
the TU Wien-funded Doctoral College for SecInt: Secure and Intelligent Human-Centric
Digital Technologies.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 86–105, 2023.
https://doi.org/10.1007/978-3-031-44267-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_5&domain=pdf
http://orcid.org/0000-0002-1177-9246
http://orcid.org/0000-0002-8004-6601
http://orcid.org/0000-0001-7502-0688
http://orcid.org/0000-0002-1229-5331
http://orcid.org/0000-0001-5468-0396
https://doi.org/10.1007/978-3-031-44267-4_5

Mining Specification Parameters for Multi-class Classification 87

the input or its amplitude. We can express this partial knowledge about the
intended property using a parameterized specification template. Characterizing
the actual parameters is a challenging task that requires the help of an automated
tool.

Related Work. Specification mining [3] is an emerging area of research in the field
of CPS motivated by the need to analyze and explain the massive amount of data
gathered from these systems while interacting with the environment. The vast
majority of the available approaches employ Signal Temporal Logic (STL) [14] as
the formal specification language for mining requirements in CPS [5,19]. Para-
metric Signal Temporal Logic (PSTL) [1] is a parametric extension of STL in
which parameters replace both threshold constants in numerical predicates and
time bounds in temporal operators. Some works address the problem of learn-
ing the optimal parameters for a given candidate template formula [1,2,10],
while others learn both the structure and the parameters [5,6,11,16]. These
approaches focus on learning an STL formula using only positive examples of
trajectories [11] or positive and negative examples [2,16].

In this paper, we broaden the applicability of STL specification mining to
the multi-class classification problem: we aim to find the set of parameters for
given PSTL template formulas that can discriminate multiple classes of trajec-
tories. We assume a set of labeled traces and characterize each class of traces
with an STL formula. A final classifier leverages STL quantitative semantics
to evaluate how robustly a trace satisfies/violates each specification and conse-
quently predicts the trace’s label. Recently, also other papers [13,15] considered
a similar task. However, both works limit the space of mined specifications to
STL fragments, reducing the resulting expressiveness. Moreover, they are both
template-free methods; namely, they mine both the formula template and its
numerical predicates. Such an approach is a double-edged sword: on the one
hand, template-free methods do not require prior knowledge, but, on the other
hand, they do not allow embedding information in the procedure and thus steer
the search toward specific properties that are relevant in a particular applica-
tion. Conversely, we aim to tackle the complementary task of mining parameters
without any restrictions on STL grammar.

Our Contribution. In this paper, we propose a family of methods for mining
PSTL parameters for multi-class classification. We assume a PSTL template
associated with each labeled class of signals and choose the parameters in each
template to maximize discrimination from the signals with the other labels. We
devise a two-step approach to this problem. For each labeled class of signals,
we first approximate two validity domains, one for the signals belonging to that
class and one for all other signals. The validity domain is the region of the
parameter space that instantiates satisfied specifications from a given template.
In the second step, we select a parameter instantiation within the first validity
domain and maximize its distance from the other one. We return both the set of
instantiated STL specifications (one for each class) and a classifier that combines
them. The former helps gain insights into what discriminates one class from the

88 E. A. Aguilar et al.

others. At the same time, the latter is essential to performing the classification
task and, in particular, to classifying new unlabeled traces.

One of the main advantages of the proposed methods is that they do not
require any assumptions regarding the monotonicity of parameters. Monotonic-
ity is a common restriction in the specification mining literature because it sig-
nificantly simplifies the geometry of the resulting validity domains and thus leads
to a much more tractable problem. Additionally, we show that our selection of
parameter valuations has a statistical guarantee of being optimal. We implement
our approach in a publicly available prototype tool and evaluate it on three case
studies from different application domains.

2 Preliminaries

A time series x = (t1, x1), (t2, x2), . . . , (tl, xl) is a finite sequence of (time, value)
pairs, where t1 = 0, ti < ti+1 for every i ∈ {1, . . . , l − 1}, and xi ∈ R

k is a vector
of real values. We denote by |x| = l the length of x. We will abuse notation, and
also denote by x the signal R≥0 → R

k, such that x(t) = xi if t ∈ [ti, ti+1) with
i < l, or x(t) = xl if t ≥ tl.

Fig. 1. The Hausdorff distance DH

between sets V and Q is defined as:
DH(V,Q) := max{D(V,Q), D(Q,V)}.
In the above example, D(V,Q) =
d(v̄,Q), D(Q,V) = d(q̄,V), and
DH(V,Q) = D(V,Q).

The distance between a point v ∈ R
k and

a (non-empty) set Q ⊂ R
k is defined as:

d(v,Q) = inf{‖v − q‖ | q ∈ Q}, (1)

where ‖ · ‖ is the Euclidean norm in R
k.

To compute the distance from one set to
another, we consider the so-called directed
Hausdorff distance defined by:

D(V,Q) = sup{d(v,Q) | v ∈ V}. (2)

We observe that function D is not a
proper distance because it is not neces-
sarily symmetric. Intuitively, the function computes the longest distance from a
point in V and its closest point in Q. Figure 1 depicts how function D works and
how it is related to the Hausdorff distance.

Signal Temporal Logic (STL) [14] is a specification language used to express
continuous temporal properties over real-valued signals. The syntax of STL is
given by the grammar:

ϕ := true | f(x) > 0 | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 UI ϕ2

where true is the Boolean true constant, f(x) > 0 is an atomic proposition with
f : Rk → R, ¬ is the Boolean negation, ∧ is the Boolean conjunction, and UI is
the until operator defined over the interval I in R≥0. The interval I is generally
omitted if I = [0,∞). The finally F and globally G operators can be derived as
follows: FIϕ := trueUIϕ and GIϕ := ¬FI¬ϕ.

Mining Specification Parameters for Multi-class Classification 89

The quantitative semantics of STL [7] is defined in terms of the robustness
function ρ that has as arguments: the STL specification ϕ, the signal x and the
time t. The value ρ(ϕ,x, t) is defined inductively as follows:

ρ(true,x, t) = +∞
ρ(f(x) > 0,x, t) = f(x(t))

ρ(¬ϕ,x, t) = −ρ(ϕ,x, t)
ρ(ϕ1 ∧ ϕ2,x, t) = min (ρ(ϕ1,x, t), ρ(ϕ2,x, t))

ρ(ϕ1 UI ϕ2,x, t) = sup
t′∈t⊕I

(
min

(
ρ(ϕ2,x, t′), inf

t′′∈(t,t′)
(ρ(ϕ1,x, t′′))

))

where ⊕ denotes the Minkowski sum. We indicate ρ(ϕ,x, 0) by ρ(ϕ;x). The STL
quantitative semantics is sound, i.e., when ρ(ϕ,x, t) > 0 the signal x satisfies ϕ,
while when ρ(ϕ,x, t) < 0 it violates it.

A PSTL template is an STL formula where some temporal or magnitude
values are replaced by parameter symbols [1]. If m is the number of different
parameter symbols in a PSTL formula, we indicate by P = {p1, . . . , pm} the set
of parameter symbols and with W the parameter space, that is the set of values
that parameter symbols may assume. In our case, W is a closed hyperbox in R

m:

W =
m∏
i=1

[ai, bi], (3)

where, for every i ∈ {1, . . . , m}, ai and bi are scalar values in R and bi > ai. A
parameter valuation v ∈ W maps a PSTL formula ϕ into the STL formula ϕv

obtained from ϕ by replacing its parameter symbols with v. For example, given
the template ϕ = G[T1,T2](x ≥ k), where T1 and T2 are temporal parameters and
k is a magnitude parameter, if v = (0, 2, 3.5), then the resulting STL formula
ϕv is ϕv = G[0,2](x ≥ 3.5). With a little abuse of notation, we will occasionally
write that a signal x satisfies/violates a parameter valuation v to mean that x
satisfies/violates the specification ϕv .

Given a signal x and a PSTL formula ϕ, the validity domain V(x, ϕ) ⊆ W is
defined as the set of all parameter valuations v that generate STL formulas ϕv

satisfied by the signal x. In the example, if the signal x satisfies ϕv = G[0,2](x ≥
3.5), then v ∈ V(x, ϕ). The validity domain of a finite set S of signals corresponds
to the intersection of all validity domains of signals in the set S. In other words,
v ∈ V(S, ϕ) if and only if ϕv is satisfied by all signals in S.

3 Problem Description

Hypotheses. We assume that two classes of time-series are given: S1 and S2. The
restriction to two classes is for the sake of a simpler description: in Sect. 4.3, we
show how the proposed method is extended to an arbitrary number of classes.
In addition, the user provides a PSTL template for each class of signals. We
first assume the template ϕ is the same for both classes and then, in Sect. 4.2,

90 E. A. Aguilar et al.

we present the generalization to different templates. Finally, we assume that the
lower/upper bounds on parameter values are available, so the values of ai and
bi in Eq. (3) are known for all i = 1, . . . ,m.

Goal. Our goal is to discriminate classes S1 and S2 using formula ϕ. To do
so, we need to find two parameters valuations v∗

1 and v∗
2 for ϕ such that they

characterize the two sets of time series and best discriminate between them,
where best refers to the following optimality criteria. We denote by Vi the validity
domain V(Si, ϕ) of class Si with respect to ϕ whenever ϕ is clear from the
context.

Definition 1. An optimal parameter valuation v∗
1 for S1 with respect to S2 is

such that (i) v∗
1 ∈ V1, and (ii) d(v,V2) ≤ d(v∗

1 ,V2) for all v ∈ V1, where d is the
point-set distance defined in (1).

The first condition ensures that all time series in S1 satisfy the STL formula
ϕv∗

1
, while the second one forces v∗

1 to be the point in V1 that is the furthest from
the other class satisfaction region. In other words, the first condition makes ϕv∗

1

a characterization of time series in S1, while the second condition renders ϕv∗
1

one of the best instantiations of ϕ for discriminating S1 from S2 (the optimal
point is not necessarily unique). The definition of v∗

2 for S2 is analogous.
In some extreme cases, we observe that the given definition of an optimal

point is meaningless because the Hausdorff distance between the two validity
domains is zero (for example, if the two validity domains are identical or one
validity domain is a subset of the other). This eventuality may happen when the
template ϕ is not suitable for discriminating the two classes; in this case, there
is no choice of the parameter valuations that would help with the classification.
The only reasonable possibility is that the user changes the PSTL template.
Section 5 shows an example of this instance.

Once our procedure identifies the parameter valuations, we need to perform
the classification. We remind that the validity domain of a class is the intersection
of the validity domains of all signals belonging to that class. It follows that a
signal x belonging to S2 does not necessarily violate ϕv with v ∈ V1 \ V2. As a
consequence, it may happen that x satisfies both ϕv∗

1
and ϕv∗

2
. Hence, we cannot

simply use the Boolean satisfaction of ϕv∗
1

and ϕv∗
2

to predict the signal’s label.
For this reason, we use the quantitative semantics of STL and classify a signal x
in class 1 if ρ(ϕv∗

1
;x) ≥ ρ(ϕv∗

2
;x) and in class 2 otherwise, being ρ the robustness

function defined in Sect. 2.

4 Our Approach

We propose a two-step approach to address the problem of Sect. 3: for each class,
we compute (i) an over-approximation V̂ of its validity domain V, and (ii) an
approximation of the optimal point in the validity domain. For the approxima-
tion of the validity domains, we divide the parameter space W into a lattice of
cells. We present two methods: one in which the cell resolution is fixed and one

Mining Specification Parameters for Multi-class Classification 91

in which it is adaptive. We first consider the case in which the same PSTL tem-
plate is associated with the two different classes of signals (Sect. 4.1). Then, we
extend our approach to allow two different PSTL templates (Sect. 4.2) and an
arbitrary number of classes (Sect. 4.3). The proofs are shown in the Appendix.

4.1 Binary Satisfaction

Algorithm 1: Validity
domain approximation
with FixedBin
Input: PSTL template

ϕ, set of signals
S, parameter
space W,
number of
trials N

Output: Approximated
validity
domain V̂

1 V̂ ← ∅
2 C ← cell partition(W)
3 foreach C ∈ C do
4 for i = 1, . . . , N do
5 v ←

uniform(C)
6 flag ← true
7 foreach x ∈ S

do
8 if x �|= ϕv

then
9 flag ←

false
10 break

11 if flag then
12 V̂ ← V̂ ∪ C
13 break

14 return V̂

Algorithm 2: Validity domain
approximation using AdaBin.
Input: PSTL template ϕ, set of

signals S, cell C, approx.
validity domain V̂, # trials
N , threshold on the
concentration of satisfied
parameter valuation h

Output: New approximation for V̂
1 counter ← 0
2 for i = 1, . . . , N do
3 v ← uniform(C)
4 flag ← true
5 foreach x ∈ S do
6 if x �|= ϕv then
7 flag ← false
8 break

9 if flag then counter ← counter
+1

10 if counter
N ≥ h then return V̂ ∪ C

11 else if counter = 0 then return
V̂

12 else if size(C) = g then return
V̂ ∪ C

13 else
14 C1, . . . , C2m ←split(C)
15 for j = 1, . . . , 2m do
16 V̂ ←

Algorithm2(ϕ,S, Cj , V̂ , N, h)

17 return V̂

Fixed Granularity with Binary Satisfaction (FixedBin). We first
describe how we compute the approximation V̂ of a validity domain V (Algo-
rithm 1). The parameter space W is divided into a partition C of axis-aligned
closed-hyperboxes having all the same size that we call cells (line 2). Each cell

92 E. A. Aguilar et al.

is then evaluated separately, and included in the over-approximation V̂ only if
a parameter valuation v inside the cell is found such that the STL formula ϕv

is satisfied by all time series in the class under study. If, after N trials, no valid
parameter valuation is found, then the cell is not included in V̂.

We observe that V̂ is intended to be an over-approximation of V. However,
it is possible that a cell C ⊆ W is not included in V̂ even though there exists a
valuation v ∈ C in the cell that is also included in V. This can happen because we
decide whether C shall be included in V̂ based on a finite number N of samples
in C. It follows that the choice of N in Algorithm 1 affects the likelihood of a cell
that has non-empty intersection with the true validity domain to be included in
the over-approximation, as stated by Lemma 1.

Lemma 1 (Choice of N). Let V be a validity domain and C a cell not included
in the (intended) over-approximation V̂ computed with N random samples per
cell. If N ≥ log1−p0

(α) with p0, α ∈ (0, 1), then the fraction of points in C that
are contained in V is smaller than p0 with confidence 1 − α.

As a concrete example, let us set p0 = 0.01 and α = 0.05. In this setting, we
need to examine N ≥ log(1−p0) α = log0.99(0.05) = 298 parameter valuations to
conclude with confidence 95% that the proportion of satisfied parameter valua-
tions in the cell is less than 1%.

Once we have computed both V̂1 and V̂2, we select the point v̂1 in V̂1 such
that v̂1 and V̂2 have maximum distance. In other words, we select v̂1 such that
d(v̂1, V̂2) = D(V̂1, V̂2), where the functions d and D are defined in (1) and (2),
respectively. To prove the existence of such a point v̂1, we need to show that V̂1

is a compact set, so that the supremum in definition (2) is in fact a maximum.
Since the cells used to approximate V1 are closed-hyperboxes, V̂1 is also a closed
set (it is finite union of closed sets). Moreover, V̂1 is a bounded set because it is
a subset of the parameter space W that is bounded by hypothesis. Finally, being
a closed and bounded set in R

m, V̂1 is compact. The same reasoning is applied
to the choice of v̂2 in V̂2.

The following theorem relates the selected parameter valuation to an optimal
one, showing that the difference of their respective distances to the other class
validity domain is upper-bounded by the cells’ size. Hence, it can be arbitrarily
reduced.

Theorem 1 (Optimality) . Let i ∈ {1, 2}, Vi be the validity domain for class
Si, and V̂i be the approximation of Vi using N ≥ log1−p0

(α) random samples
per cell and the cell resolution given by vector g ∈ R

m
≥0. Let v∗

i be an optimal
parameter valuation for class i and v̂i the parameter valuation found with Fixed-
Bin. Then, the difference of the distances from v̂i and from v∗

i to the other class
validity domain is bounded by the cell resolution:

|d(v̂i,V(imod 2)+1) − d(v∗
i ,V(imod 2)+1)| ≤ ‖g‖ (4)

with probability 1 − p0 and confidence 1 − α.

Mining Specification Parameters for Multi-class Classification 93

In practice, the values of p0 and α are chosen freely by the user, affecting the
number of random samples N required to guarantee (4): the smaller p0 and α
are, the greater N must be.

Finally, the complexity of the algorithm is reported in the following theorem.

Theorem 2 (Complexity) . Let n be the total number of signals and let m be
the number of different parameter symbols in the PSTL template ϕ. Let g ∈ R

m
≥0

be the vector that contains the minimal sizes of the cells and let the parameter
space be W =

∏m
i=1[ai, bi] as in Eq. (3). Then, the total number L of monitors

is exponential in m and linear in n. In particular,

L ≤
(

max
i=1,...,m

⌈
bi − ai

gi

⌉)m

· (N · n) = O(Mm) · O(n),

where N is the maximum number of parameter valuations to be evaluated in
every cell and M is a suitable positive number.

Adaptive Granularity with Binary Satisfaction (AdaBin). We present
an alternative to compute over-approximations of validity domains using an
adaptive cell resolution that exploits binary search (Algorithm 2).

The algorithm starts considering an initial empty approximation of the valid-
ity domain (V̂ ← ∅), and the whole parameter space as a single cell (C ← W).
One cell at a time is then evaluated with three possible outcomes: (i) the cell
is added to the approximation of the validity domain; (ii) the cell is not added
to the approximation of the validity domain; (iii) the cell is split. The first
two scenarios happen, respectively, when the cell presents a high concentration
h of satisfied parameter valuations (line 10), or when no satisfied parameter
valuations are found (line 11). Otherwise, reminding that m is the number of
parameter symbols in the template ϕ, the cell is split into 2m new cells generated
by dividing each edge into two (at its middle point). When the minimal cell size
is reached (line 12), we perform (i) if at least one satisfied parameter valuation
is found. The minimal cell resolution g has to be reached by doing the same
amount of splits in all parameter dimensions. Recalling the representation of
parameter space W in Eq. (3), it follows that there must exist a natural number
k such that

bi − ai = 2k · gi ∀i ∈ {1, . . . , m}. (5)

AdaBin is introduced to speed up the approximation of the validity domains
by employing the finest cell resolution only in the most uncertain areas of the
parameter space, such as those on the validity domains boundaries. On the other
hand, AdaBin may be less accurate than FixedBin, and the guarantee expressed
by Theorem 1 does not apply. However, we observe that a reduction in the
accuracy of the approximation of the validity domain does not necessarily result
in a decrease in the classification accuracy.

94 E. A. Aguilar et al.

Monotonic Variant. The monotonic variant of the previous methods is intro-
duced to speed up the computation of the validity domain approximations in case
the parametric STL template is monotonic with respect to all its parameters. A
PSTL formula ϕ is monotonically increasing (or decreasing) with respect to its
parameter pi, if, for every pair of valuations wi and w′

i such that wi ≤ w′
i (or

wi ≥ w′
i) and for every signal x, ρ(ϕv ,wi

;x) ≤ ρ(ϕv ,w′
i
;x), where v corresponds

to a generic valuation of the other parameters in ϕ.
For a PSTL formula ϕ that is monotonic with respect to all its parameters,

we define the lowest point and the highest point of a cell C. The cells that we
use to approximate the parameter space are closed hyperboxes in R

m; hence,
they are representable as C =

∏m
i=1[qi, Qi], where qi, Qi ∈ R and qi < Qi

for every i ∈ {1, . . . , m}. The lowest point in C is the point that is the most
likely to be violated, namely the vector in R

m whose i-th component is qi if ϕ is
increasing with respect to parameter pi, or Qi if ϕ is decreasing with respect to
pi. Conversely, the highest point of a cell C is the point which is most likely to
be satisfied, being the vector in R

m whose i-th component is Qi if ϕ is increasing
with respect to parameter pi, or qi if ϕ is decreasing with respect to pi.

The following equivalences are the bases of the monotonic variant methods,
allowing for a complete evaluation of a cell through the study of only these two
special parameter valuations: (i) all parameter valuations in a cell are violated
if and only if its highest point is violated, and (ii) all parameter valuations in a
cell are satisfied if and only if its lowest point is satisfied.

Remark 1. If the PSTL template is monotonic with respect to all its parame-
ters, then (4) holds deterministically because the statistical guarantee in Lemma 1
is not needed for the evaluation of the cell if highest and lowest points are studied.

4.2 Different Templates

The following extension should be applied when the user wants to describe the
two classes of signals with different PSTL templates. Let ϕ1 represent the tem-
poral behavior of time series in class S1 and ϕ2 for class S2. The parameter
valuation v̂1 is chosen in V̂(S1, ϕ1) to maximize the distance from V̂(S2, ϕ1) and
is used to instantiate the PSTL template ϕ1 for the characterization of S1. Analo-
gously, v̂2 will instantiate ϕ2 to characterize S2 by discriminating V̂(S2, ϕ2) from
V̂(S1, ϕ2). In other words, the computation of v̂1 and v̂2 is carried out separately
by applying one of the previous methods twice: once as if the only given PSTL
formula were ϕ1, and the other time as if the only given PSTL formula were ϕ2.

4.3 Multiple Classes

In this section, we describe the generalization of our approach to the more gen-
eral problem where the number of classes of time series is k > 2. Let us suppose
to have a dataset of time series labeled with k values. The symbol Si repre-
sents the class of time series labeled by i, where i ∈ {1, 2, . . . , k}. The validity
domain (with respect to a given PSTL formula ϕ) is represented by Vi. We

Mining Specification Parameters for Multi-class Classification 95

approximate all Vi separately with one of the two proposed methods. Then, for
every label i ∈ {1, . . . , k}, the parameter valuation v̂i is chosen in V̂i to maxi-
mize the distance from the union set of the other validity domains. Therefore,
v̂i = arg maxv∈V̂i

d
(
v,

⋃k
j=1
j �=i

V̂j

)
, where d is the point-set distance defined in (1).

Finally, for the classification purpose, in analogy with the binary case, we
classify a signal x into the class i such that i = arg maxj=1,...,k ρ(ϕv̂j

;x).

5 Application

We implemented our approach in the publicly available tool MiniPaSTeL1 (Min-
ing Parameters for Signal Temporal Logic), leveraging the RTAMT tool [17] for
monitoring STL formulas, and applied it to three case studies. We provide the
scripts and the seeds to reproduce the results we present. We run the experiments
on a MacBook Pro with 16 GB RAM and M1 processor. For each application, we
report the set of mined STL specifications and the misclassification rate (MCR)
achieved in the classification. Moreover, each case study focuses on seeking an
answer to a research question:

RQ1 [Applicability]. Does the need for a PSTL template as input limit the
applicability of our approach? Our method requires the user to provide the PSTL
template, but such a template may not be available or may be inadequate to
discriminate between different classes. In such cases, we can interleave our app-
roach with the human investigation to refine guesses for the PSTL template. The
Aircraft Elevator case study illustrates how we can use the method to support
the user in finding a suitable specification.

RQ2 [Performance Evaluation]. How does our method compare to state-of-
the-art? We compare our approach to existing ones on the Naval dataset showing
that it is comparable to or outperforms the state-of-the-art in terms of MCR.
Moreover, we study how the MCR and the execution time vary with the number
of training samples in the dataset.

RQ3 [Explainability of the Results]. Can the user exploit the results to
infer new insights into the traces? The choice of parameter values in existing
specification mining methods is generally carried out by applying off-the-shelf
optimization techniques that minimize a given objective function without pro-
viding a general understanding of the values selection. Conversely, our method
provides a visual understanding of how the parameters are selected by plotting
(projections of) the validity domains. Thanks to that, it is possible to explain
(unexpected) results, as shown in the Parking case study.

1 https://github.com/eleonoranesterini/MiniPaSTeL.

https://github.com/eleonoranesterini/MiniPaSTeL

96 E. A. Aguilar et al.

5.1 Aircraft Elevator

To answer RQ1, we consider the Simulink model of the Aircraft Elevator Control
System [9], whose output signals report the position over time of the left elevator
of the aircraft. We generated time series of two classes, S1 and S2, by varying
the parameters of the system input function: Fig. 2a depicts one representative
signal per class.

We explore the workflow in which an engineer uses our approach to explore
manually crafted templates and find one that discriminates well between two
classes of signals.

By analyzing the shape of the time series in Fig. 2a, we observe that the sig-
nals from both classes are characterized by oscillations around the same values,
but with different frequencies. In particular, the red one has a higher frequency
than the blue one. To leverage this difference, we may design a specification that
imposes that signals oscillate around the higher (unknown) value p for a certain
(unknown) amount of time T . For each class, we learn the values p and T . We
expect the signals of the two classes stabilizing around the same value with the
interval of time for the time series in S1 longer than for time series in S2. Thus,
we consider the following PSTL template:

ϕ = G
(
(x ≥ p) → (G[0,T]|x − p| < 0.5)

)
.

The formula ϕ expresses the behavior of signal x that remains “close” to the
magnitude parameter p for T time units, immediately after the signal has become
greater than p. We decided to manually set the notion of “closeness” to indi-
cate a distance smaller than the value 0.5. This makes the validity domains
2-dimensional, giving the reader a better visual understanding of how the pro-
posed methods work.

The parameter space is given by W = [0, 1000] × [−1.6, 1.6]. We impose the
minimal sizes of cells in the parameter space to be g = (31.25, 0.1) to satisfy (5)
for k = 5. We then apply FixedBin method to compute the parameter valuations
v̂1 and v̂2. V̂1, V̂2, v̂1, and v̂2 are shown in Fig. 2b: V̂1 is represented by the cyan
region, V̂2 by the red one (not visible because entirely subsumed by V̂1), while
the gray color represents their overlapping. The use of AdaBin method leads to
the same approximations with the only difference that cells do not have all the
same (minimal) size.

The mined parameter valuations are v̂1 = (438, 1.0) and v̂2 = (719, 1.6) for
S1 and S2, respectively, yielding the following specifications:

S1 : ϕv̂1 = G((x ≥ 1.0) → (G[0,438]|x − 1.0| < 0.5))
S2 : ϕv̂2 = G((x ≥ 1.6) → (G[0,719]|x − 1.6| < 0.5)).

We note that v̂2 belongs not only to V̂2, but also to V̂1. From Fig. 2b, we
observe that this is inevitable: since V̂2 is a subset of V̂1, every parameter valu-
ation v ∈ V̂2 is also in V̂1, resulting in d(v, V̂1) = 0. Hence, the chosen ϕ cannot
be instantiated to discriminate S2 from S1. This observation suggests the PSTL
formula should be changed to better discriminate between the two sets.

Mining Specification Parameters for Multi-class Classification 97

Fig. 2. Time series and validity domains for the Aircraft Elevator case study.

We then observe that ϕ requires the signal to remain close to p for at least
T time units without specifying any condition about when the signal has to fall.
Therefore, V1 includes V2 because the satisfaction of high values of T implies the
satisfaction of low values of T . Hence, we change the PSTL formula ϕ by adding
the requirement that the signal has to move away from the value around which
it oscillates after T2 time units. Furthermore, to remain in the 2-dimensional
parameter space for visualization reasons, we replace the parameter value p with
the scalar value 1.1. As a result, the new PSTL template we define is:

ψ = G
(
(x ≥ 1.1) → (

G[0,T1]|x − 1.1| < 0.5 ∧ G[T2,T2+T1]|x − 1.1| > 0.5
))

,

where T1 is just a different symbol to indicate the parameter T in ϕ. In this
case, both parameters T1 and T2 are temporal parameters, so the parameter
space becomes W = [0, 1000] × [0, 1000].

The approximations of validity domains with respect to the new template ψ
are shown in Fig. 2c (this plot is done with AdaBin to show what the approxi-
mation with adaptive cell size looks like). We see that no validity domain sub-
sumes the other one any longer, so it is possible to find parameter valuations
discriminating one set of time series from the other one. The mined values are
v̂1 = (500, 500) and v̂2 = (16, 47).

By studying the performances of ϕ and ψ as classifiers, we confirm the out-
comes of the manual analysis carried out with the visualization of the validity
domains. As expected, ϕ performs very poorly, with a MCR of 0.5 because all
signals in S1 are misclassified in class 2; conversely, ψ achieves a MCR of 0.

98 E. A. Aguilar et al.

To summarize, template-based techniques are usually employed when an
engineer expects a certain behavior from the system and wants to extrapolate its
numerical values. Nevertheless, this case study shows how our approach can be
used not only to mine the desired parameters but also to help the engineer refine
the PSTL template, providing a visual understanding of the differences between
two signal classes. This observation opens up to processes in which the algo-
rithm’s executions and human investigation are interleaved: the engineer steers
the search while the algorithm refines it.

5.2 Naval Surveillance

We use the naval surveillance dataset [12] to compare the performance of our
methods to existing ones (RQ2). Since, to the best of our knowledge, there are no
existing works focusing on parameter mining for STL to tackle the classification
task, the only meaningful comparisons that are possible are with methods mining
both the template and the parameters of the STL formula.

The dataset contains 2000 2-dimensional signals describing the evolution over
time of the coordinates of ships approaching a harbor; each signal contains 61
sample points. Figure 3 depicts the projection of some examples of the signal
data set to the 2-dimensional spatial coordinates. The signals are partitioned
into three different classes:

• green signals represent nominal behaviors in which ships arrive from the sea,
get through the passage between the island and the peninsula, and reach the
harbor.

• red signals describe anomalous trajectories of ships deviating to the island
before heading towards the harbor (behavior relatable to human trafficking
activities).

• blue signals depict ships that approach the passage between the island and
the peninsula but that, at a certain point, turn around and go back to the
open sea; this scenario could be connected to terrorist activities.

Fig. 3. Traces representing ship trajectories.
The Figure has been redrawn from [12].

This dataset was mainly used
for anomaly detection purposes,
namely with the goal of discrim-
inating the normal behavior from
the two anomalous ones [4,12,16].
Similarly to authors in [15], we
are rather interested in character-
izing the three classes by discrim-
inating each class from the other
two. We consider the PSTL tem-
plate mined in [16]: ϕ = ((x2 >
p2)U[T1,T2] (x1 ≤ p1)), where x1

and x2 are variables that refer to
the first and second coordinate of the signals, respectively. For each one of the
three classes, we aim to find the parameter valuations for p1, p2, T1 and T2 that
produce the most appropriate instantiation of ϕ.

Mining Specification Parameters for Multi-class Classification 99

We observe that ϕ is monotonic with respect to all its parameters (increasing
with respect to T2 and p1, and decreasing with respect to T1 and p2). Hence,
we can apply the monotonic variant of our methods. The set of specifications
generated using 150 training samples (50 for each class) is:

Class 1 (green): ϕv̂1 = (x2 > 22.44)U[110,150] (x1 ≤ 42.0)
Class 2 (red): ϕv̂2 = (x2 > 24.25)U[20,75] (x1 ≤ 42.0)

Class 3 (blue): ϕv̂3 = (x2 > 29.69)U[110,300] (x1 ≤ 66.37).

We evaluate the classification performance of our method for each class by
considering the misclassification rate (MCR), namely the number of misclas-
sified signals over the total number of signals. MCR for class i is defined as
MCRi := |FNi|+|FPi|∑k

j=1|Sj | , where FNi and FPi correspond to the false negatives and

false positives of class i, respectively.
Table 1 summarizes the results of average MCRs on the testing set over five

different runs (different training samples are drawn at every run), the number of
training and testing samples used and the computational time. We use Table 1 to
first study how our method scales when varying the number of training samples
and then to compare our approach with previous works in the literature.

As stated by Theorem 2, the complexity of FixedBin increases linearly with
the increasing of the number of traces in the dataset; this is consistent with the
experimental results reported in the first three rows of Table 1 and (depicted in
the Figure in the Appendix). In terms of MCR, we would expect the perfor-
mance to improve when increasing the number of traces in the training set; we
observe that this trend is confirmed (FixedBin achieves better results with 150
signals than with 30), but not in a monotonic way, as FixedBin with 90 samples
outperforms the other two.

To make a fair comparison with the existing works from the literature, we
installed the tools presented in [4,15,16] on our laptop and ran them with the
same number of training and testing samples. For [16] we could not reproduce the
results reported in the paper and the MCR we obtained is very poor; conversely,
the results achieved for [4,15] are consistent with the values presented in the
respective papers.

Our misclassification rates in classifying class 1 for FixedBin and AdaBin are
slightly greater but still comparable with MCR1 of [4,15], while, for the second
and third classes, our methods outperform the only method that tackled the
multi-class classification problem. We remark that [15] addresses the multi-class
classification problem as multiple binary classification problems. This means that
three different classifiers are trained: one to distinguish class 1 from classes 2 and
3 together, a second for class 2 versus classes 1 and 3, and a third for class 3
versus classes 1 and 2. This is a common approach when tackling the multi-class
classification problem, but, if no rules about how to combine the classifiers are
presented, the prediction of the label of a new trace might be ambiguous: a trace
might be unintentionally classified in several classes at the same time. Conversely,
we combine different classifiers into a unique one discriminating among the three
classes simultaneously.

100 E. A. Aguilar et al.

Table 1. Comparison of MCR values (average and standard deviation, when avail-
able) with previous works on testing set, number of training and testing samples and
computational time.

samples
(train–test)

MCR1 MCR2 MCR3 Time (hours)

FixedBin 30–1970 0.04± 0.02 0.003± 0.003 0.04± 0.02 0.78± 0.02

FixedBin 90–1910 0.008± 0.008 0.002± 0.002 0.006± 0.006 1.71± 0.05

FixedBin 150–1850 0.02± 0.01 0.003± 0.002 0.02± 0.01 2.53± 0.07

AdaBin 150–1850 0.01± 0.02 0.002± 0.001 0.01± 0.02 3.7± 0.3

[4] 150–1850 0.008± 0.004 – – 0.0001± 0.0001

[15] 150–1850 0.009± 0.01 0.01± 0.005 0.08± 0.07 0.53± 0.01

[16] 150–1850 0.52± 0.1 – – 0.043± 0.001

Since both of our methods approximate the entire validity domain before
selecting the parameter values, the computational time is higher compared to
that of other tools. Nevertheless, the approaches we propose can be parallelized
because the most expensive part corresponds to the computation of the different
validity domains that are independent of each other. For FixedBin, even different
cells within the same validity domain are computed independently. Surprisingly,
we observe that AdaBin performs slower than FixedBin, despite evaluating a
smaller number of parameters (12138 versus 65536). The reason for that might
be attributed to the recursive implementation of AdaBin, which is generally less
efficient than an iterative one (as used in FixedBin). However, it is important
to note that this result is specific to the monotonic variants, where only one
parameter is monitored for every cell. Therefore, in this setting, skipping the
evaluation of one cell does not accelerate the overall process as much as in the
general case.

5.3 Parking Scenario

Fig. 4. Example of images extracted from the
onboard camera of the vehicle. For illustration pur-
pose, four pedestrians were placed in each scene.
Left: scenario of a clear day with adult pedestrian.
Right: scenario with foggy night and child.

In this case study, a vehi-
cle is driving through a park-
ing lot when a pedestrian
walks out from behind a SUV
onto the path of the ego
vehicle. More specifically, the
pedestrian walks in the x-
direction at a speed of 1.5m/s,
while the vehicle drives in an
orthogonal y-direction with a
constant velocity in the range
[5.55, 11.11] mps (20–40 kph).
The vehicle is equipped with an automatic emergency braking (AEB) function
which brakes as hard as possible to avoid a collision with the pedestrian. We

Mining Specification Parameters for Multi-class Classification 101

simulate the scenario with CARLA 9.13, an open-source photo-realistic driv-
ing simulator for autonomous vehicle research [8]. An RGB camera is mounted
on top of the vehicle and is equipped with YOLOv7, a state of the art image
detection deep neural network [18]. We use the YOLOv7 model off-the-shelf and
trigger an AEB procedure when there is an output with the label “person” with
over 0.94 confidence probability (the threshold was set to completely eliminate
false positives).

Since the AEB functionality is triggered through visual data, we have 3
different visual variations of the scenario: Time of day {day, night}, Clarity
{clear, foggy}, Pedestrian type {adult, child}. For each combination, we collected
200 batches of data (coordinates of the position, velocity and acceleration of the
car and the pedestrian). Figure 4 shows two images extracted from the onboard
camera for further illustration.

Suppose we are an engineer who wants to characterize the dynamics of two
classes of data belonging to two opposite scenarios: an adult crossing the parking
lot during the day versus a child pedestrian at night. Since each episode might
end either with the vehicle braking and reaching a complete stop before hitting
the pedestrian or with the vehicle crashing into the pedestrian, we start our
analysis by providing the outcome of the episodes (crash or no crash) with an
intuitive robustness measure. In particular, in the case of a non-crashing episode,
we study the distance d(t) of the car and the pedestrian over time. If we registered
no crash, the car managed to stop in time, so d(t) remains strictly positive
throughout the whole episode. The greater the distance is, the safer the episode
is (and vice versa). We translate the study of the distance between car and
pedestrian as a function of the car’s velocity as the following PSTL template:

ϕ1 = G(vc(t) < vno-crash) → G(d(t) ≥ dno-crash),

where vc(t) indicates the car’s velocity at time t, while vno-crash and dno-crash are
the parameters to be mined.

Conversely, we can quantify the robustness of a crashing scenario by studying
how strong the impact on the pedestrian is. To do so, we can either consider the
car’s velocity at the moment of the crash or the distance the car would have
required to stop after passing the crashing point. We opt for the latter option
so that both the two measures of robustness are distances. Knowing the velocity
v and the acceleration a (which is a deceleration) at the last frame before the
crash, we apply basic notions of physics and estimate the distance D covered
by the car before getting to a complete stop after passing the pedestrian’s y-
position using the following relationship: D = v2

2a . The greater D is, the stronger
the impact is, and, consequently, the unsafer the scenario is. To study the value
of D as a function of the car’s velocity, we consider the following PSTL template:

ϕ2 = F(vc(t) > vcrash) → (D ≥ dcrash),

where vc(t) represents the car’s velocity at time t, while vcrash and dcrash are the
parameters to learn.

102 E. A. Aguilar et al.

The quantification of the robustness of crashing and non-crashing episodes
led to two PSTL templates. What would the engineer need to do now? Pick
just one of the two templates? If our approach discriminated two classes using
only one formula (as is always the case in the literature), the answer would be
yes, but our approach allows different classes to be associated with different
templates (Sect. 4.2). Guided by common sense, we judge the scenario taking
place during the day and with the adult as pedestrian to be safer than the one
by night with the child pedestrian since the greater visibility should allow the
car to identify the pedestrian in advance (we will see later on that our method’s
output verifies the validity of this assumption). Since ϕ1 describes a non-crashing
episode, we associate it to the safer scenario - day and adult - whose class of
data we indicate by S1. Conversely, the crashing episode template ϕ2 is used for
the unsafer scenario - night and child - indicated by S2.

Fig. 5. Left and Middle: Approximation of validity domains for S1 in cyan and S2 in
red (gray color is given by their overlapping) with respect to ϕ1 (Left) and ϕ2 (Middle).
Right: Approximation of validity domains of S1 and S̄2 with respect to ϕ1. (Color figure
online)

We run the experiments with FixedBin (in 6.2 min) learning from the 80% of
the dataset. Figure 5a depicts the approximated validity domains of S1 and S2

with respect to ϕ1: parameter p̂1 is chosen in V(S1, ϕ1) to maximize the distance
from V(S2, ϕ1). Similarly, Fig. 5b represents the validity domains with respect
to ϕ2, where p̂2 is extracted in V(S2, ϕ2). The learned specifications are:

S1 : ϕ1,p̂1 = G(vc(t) < 9.87) → G(d(t) ≥ 1.18)
S2 : ϕ2,p̂2 = F(vc(t) > 9.53) → (D ≥ 1.31).

We combine ϕ1,p̂1 and ϕ2,p̂2 to predict the classification of the unseen set of
traces (20% of the dataset) and we achieve a MCR of 0.037. In this application,
all other tools perform worse: the MCR for [4] is 0.13, for [16] is 0.5, while [15]
returns failure after more than one hour and half of computation. Moreover, to

Mining Specification Parameters for Multi-class Classification 103

answer RQ3, we observe that, apart from the classification itself, our approach
provides additional insights into the case study thanks to the computation of
the entire validity domains. For instance, by observing Fig. 5 (Left and Middle),
the engineer gets the proof that S2 actually describes an unsafer scenario than
S1 (for every velocity value, dno-crash is smaller for S2, while dcrash is greater).
In addition, the engineer finds out that the safety on non-crashing scenarios
remains unchanged by varying the velocity in the range [6, 7.5] mps (dno-crash
remains, indeed, around 5 meters for the day-adult scenario and 3 meters for the
night-child one), but it falls abruptly when the velocity overcomes the threshold
of 7.5 mps (≈ 27 kph). Finally, the knowledge of the entire validity domains
allows the engineer to easily add restrictions on the parameters to be learned
(e.g., increasing the lower bound of dno-crash from one meter to two meters to
enhance safety).

So far, we compared the scenarios of an adult pedestrian crossing the park-
ing lot during the day versus a child pedestrian at night, both with a clear
sky. What would happen if the latter scenario had foggy weather instead? Our
human experience would consider the fog as a factor that decreases visibility
and, consequently, increases the danger. To check this hypothesis, we run new
experiments with the second class of data S̄2 representing traces collected in
a foggy night and with a child pedestrian. The MCR value we obtain now is
0.15, significantly greater than before (the other tools achieved the following
MCRs: 0.11 for [4], 0.5 for [16], failure for [15]). Without any additional insights,
we would not be able to understand the reason behind this unintuitive result:
we would have expected a decrease in the MCR due to a larger gap in safety
between the two classes caused by the presence of fog. By comparing Fig. 5a
with Fig. 5b, we observe that the addition of fog produces the expansion of the
validity domain of S̄2 with respect to ϕ1, meaning that the vehicle manages
to stop further from the pedestrian than in the limpid scenario. Consequently,
the foggy scenario is actually safer and therefore less distinguishable from S1.
By manually inspecting the CARLA simulations, we confirmed this analysis by
noticing that the fog added some visual noise masking the pedestrian, but in
fact also accentuated their contour. The latter effect made the pedestrians more
easily recognizable for YOLO. In conclusion, thanks to the insights provided by
our method, we discovered that our human intuition for which the fog renders
a pedestrian less visible does not hold in the CARLA simulation environment.

6 Conclusion and Future Work

We presented a new approach to mine parameters of arbitrary PSTL templates
to perform multi-class classification tasks over time series data. We proposed two
variants of the mining procedure, providing a statistical guarantee of optimality
for the mined parameters. We validated the applicability of our approach in
three case studies by demonstrating how to leverage our method’s outputs to
refine the PSTL template or infer new insights into the data and by comparing
our performances with the state-of-the-art.

104 E. A. Aguilar et al.

The approach proposed in this paper is passive - the specification is mined
with respect to a set of existing signals. We plan to explore the active learning
approach and devise a testing strategy that can help inferring a representative
specification that explains well the examples.

References

1. Asarin, E., Donzé, A., Maler, O., Nickovic, D.: Parametric identification of tem-
poral properties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp.
147–160. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-
8 12

2. Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-Driven Statistical Learning of
Temporal Logic Properties. In: Legay, A., Bozga, M. (eds.) FORMATS 2014.
LNCS, vol. 8711, pp. 23–37. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-10512-3 3

3. Bartocci, E., Mateis, C., Nesterini, E., Nickovic, D.: Survey on mining signal tem-
poral logic specifications. Inf. Comput. 289(Part), 104957 (2022). https://doi.org/
10.1016/j.ic.2022.104957

4. Bombara, G., Vasile, C.I., Penedo, F., Yasuoka, H., Belta, C.: A decision tree app-
roach to data classification using signal temporal logic. In: Proceedings of HSCC
2016, pp. 1–10. ACM (2016). https://doi.org/10.1145/2883817.2883843

5. Bortolussi, L., Gallo, G.M., Křet́ınský, J., Nenzi, L.: Learning model checking and
the kernel trick for signal temporal logic on stochastic processes. In: TACAS 2022.
LNCS, vol. 13243, pp. 281–300. Springer, Cham (2022). https://doi.org/10.1007/
978-3-030-99524-9 15

6. Bufo, S., Bartocci, E., Sanguinetti, G., Borelli, M., Lucangelo, U., Bortolussi, L.:
Temporal logic based monitoring of assisted ventilation in intensive care patients.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 391–403.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45231-8 30

7. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 19

8. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open
urban driving simulator. In: Proceedings of CoRL. PMLR, vol. 78, pp. 1–16, 2017.
http://proceedings.mlr.press/v78/dosovitskiy17a.html

9. Ghidellaand, J., Mosterman, P.: Requirements-based testing in aircraft control
design. In: AIAA Modeling and Simulation Technologies Conference and Exhibit,
pp. 1–11 (2005). https://doi.org/10.2514/6.2005-5886

10. Hoxha, B., Dokhanchi, A., Fainekos, G.: Mining parametric temporal logic proper-
ties in model-based design for cyber-physical systems. Int. J. Softw. Tools Technol.
Transf. 20(1), 79–93 (2017). https://doi.org/10.1007/s10009-017-0447-4

11. Jha, S., Tiwari, A., Seshia, S.A., Sahai, T., Shankar, N.: TeLEx: learning signal
temporal logic from positive examples using tightness metric. Formal Methods
Syst. Des. 54(3), 364–387 (2019). https://doi.org/10.1007/s10703-019-00332-1

12. Kong, Z., Jones, A., Belta, C.: Temporal logics for learning and detection of anoma-
lous behavior. IEEE Trans. Autom. Control 62(3), 1210–1222 (2017). https://doi.
org/10.1109/TAC.2016.2585083

https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.1007/978-3-319-10512-3_3
https://doi.org/10.1007/978-3-319-10512-3_3
https://doi.org/10.1016/j.ic.2022.104957
https://doi.org/10.1016/j.ic.2022.104957
https://doi.org/10.1145/2883817.2883843
https://doi.org/10.1007/978-3-030-99524-9_15
https://doi.org/10.1007/978-3-030-99524-9_15
https://doi.org/10.1007/978-3-662-45231-8_30
https://doi.org/10.1007/978-3-642-39799-8_19
http://proceedings.mlr.press/v78/dosovitskiy17a.html
https://doi.org/10.2514/6.2005-5886
https://doi.org/10.1007/s10009-017-0447-4
https://doi.org/10.1007/s10703-019-00332-1
https://doi.org/10.1109/TAC.2016.2585083
https://doi.org/10.1109/TAC.2016.2585083

Mining Specification Parameters for Multi-class Classification 105

13. Linard, A., Torre, I., Leite, I., Tumova, J.: Inference of multi-class STL specifica-
tions for multi-label human-robot encounters. In: 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 1305–1311 (2022).
https://doi.org/10.1109/IROS47612.2022.9982088

14. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

15. Mohammadinejad, S., Deshmukh, J.V., Puranic, A.G., Vazquez-Chanlatte, M.,
Donzé, A.: Interpretable classification of time-series data using efficient enumera-
tive techniques. In: Proceedings of HSCC 2020, pp. 9:1–9:10. ACM (2020). https://
doi.org/10.1145/3365365.3382218

16. Nenzi, L., Silvetti, S., Bartocci, E., Bortolussi, L.: A robust genetic algorithm
for learning temporal specifications from data. In: McIver, A., Horvath, A. (eds.)
QEST 2018. LNCS, vol. 11024, pp. 323–338. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99154-2 20

17. Ničković, D., Yamaguchi, T.: RTAMT: online robustness monitors from STL. In:
Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 564–571.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6 34

18. Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: YOLOv7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors. arXiv preprint
arXiv:2207.02696 (2022)

19. Xu, Z., Julius, A.A.: Census signal temporal logic inference for multiagent group
behavior analysis. IEEE Trans. Autom. Sci. Eng. 15(1), 264–277 (2018). https://
doi.org/10.1109/TASE.2016.2611536

https://doi.org/10.1109/IROS47612.2022.9982088
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1145/3365365.3382218
https://doi.org/10.1145/3365365.3382218
https://doi.org/10.1007/978-3-319-99154-2_20
https://doi.org/10.1007/978-3-319-99154-2_20
https://doi.org/10.1007/978-3-030-59152-6_34
http://arxiv.org/abs/2207.02696
https://doi.org/10.1109/TASE.2016.2611536
https://doi.org/10.1109/TASE.2016.2611536

General Anticipatory Monitoring
for Temporal Logics on Finite Traces

Hannes Kallwies1 , Martin Leucker1 , and César Sánchez2(B)

1 University of Lübeck, Lübeck, Germany
{kallwies,leucker}@isp.uni-luebeck.de
2 IMDEA Software Institute, Madrid, Spain

cesar.sanchez@imdea.org

Abstract. Runtime Verification studies how to check a run of a system
against a formal specification, typically expressed in some temporal logic.
A monitor must produce a verdict at each step that is sound with respect
to the specification. It is often the case that a monitor must produce a
? verdict and wait for more observations. On the other hand, sometimes
a verdict is inevitable but monitoring algorithms wait to produce the
verdict, because it seemingly depends on future inputs. Anticipation is
the property of a monitor to immediately produce inevitable verdicts,
which has been studied for logics on infinite traces.

Monitoring problems depend on the logic and on the semantics that
the monitor follows. In initial monitoring, at every instant the moni-
tor answers whether the specification holds for the observed trace from
the initial state. In recurrent monitoring, the monitor answers at every
instant whether the specification holds at that time.

In this paper we study anticipatory monitoring for temporal logics
on finite traces. We first show that many logics on finite traces can be
reduced linearly to Boolean Lola specifications and that initial monitor-
ing can be reduced to recurrent monitoring for Lola. Then we present an
algorithm with perfect anticipation for recurrent monitoring of Boolean
Lola specifications, which we then extend to exploit assumptions and
tolerate uncertainties.

1 Introduction

In this paper we study the anticipatory recurrent monitoring problem for runtime
verification of temporal logics on finite traces. We provide a general solution and
extend it to handle assumptions and uncertainties.

Runtime verification (RV) is a lightweight formal dynamic verification tech-
nique analyzing single executions of systems wrt. given correctness properties.
RV has been studied both in theory and practical applications [1,25]. The start-
ing point is a formal specification of the property to monitor. A common speci-
fication language is Linear-time Temporal Logic (LTL) [30] which was originally

This work was funded in part by PRODIGY Project (TED2021-132464B-I00)
funded by MCIN/AEI/10.13039/501100011033/ and the European Union NextGenera-
tionEU/PRTR, and by a research grant from Nomadic Labs and the Tezos Foundation.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 106–125, 2023.
https://doi.org/10.1007/978-3-031-44267-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_6&domain=pdf
http://orcid.org/0000-0002-8301-4752
http://orcid.org/0000-0002-3696-9222
http://orcid.org/0000-0003-3927-4773
https://doi.org/10.1007/978-3-031-44267-4_6

Anticipatory Monitoring for Temporal Logics on Finite Traces 107

introduced for infinite runs. Since in monitoring the sequence of observations at
any point in time is necessarily finite, LTL has been adapted to finite traces,
including infinite extensions of the finite prefix seen so far [4], limiting the logic
to use only the next-operator [22], or finite version of LTL [26], strong and weak
versions of LTL [14] or the so-called mission time LTL [32]. These monitor-
ing approaches attempt to answer the initial monitoring problem: whether the
trace at the initial position satisfies the property. Monitoring ongoing executions
requires to emit a verdict for every event observed, so an uncertain verdict “?”
is temporarily produced if the trace observed is not yet guaranteed to be only
extendable into a model (verdict tt) or only extendable into a counter-model
(verdict ff). Consider for example (p → q) (globally a p implies that there
was once a q). The monitor emits ? until the first q or p is observed. The mon-
itor emits tt if q happens no later than the first p, and ff if p happens strictly
before the first q. In initial monitoring, once a certain verdict (tt,ff) is produced
it remains fixed.

The seminal work by Havelund and Rosu [18] considers an alternative app-
roach. Starting from specifications of past LTL formulas, the monitors in [18]
produce at instant i a fresh verdict about whether the property holds at i,
thus recurrently producing potentially different outcomes. We call this variant
recurrent monitoring. As the current position is shifted with every new obser-
vation, recurrent monitoring performs a different evaluation at every instant.
When recurrently monitoring (p →q), the monitor emits a ff for each p that
is before the first q, then recovers and starts emitting ? attempting to see a q
before the next p (moving then to tt). These two approaches are unified in [19],
separating the monitoring time at which the questions are answered from the
time at which the verdict is referring to.

In recurrent monitoring, the output for the specification at time i is either
produced, or a “?” is cast and the concrete verdict for time i is never cast.
An alternative family of formalisms for runtime verification are stream-based
runtime verification (SRV), pioneered by Lola [12], which produce one output
stream value for each input position (delaying if necessary the production of the
outcome of the monitor for input i until a later instant). We call this variant
the universal monitoring because the monitors ultimately produce (sooner or
later or even at the end of the trace) all verdicts for all positions. Even though
the common use of SRV is to encode recurrent monitoring problems for past
(or at least bounded future) specifications future universal monitoring can be
performed at the price of (1) unbounded resources and (2) only guaranteeing all
verdicts at the end of the trace. Modern SRV systems (both synchronous and
asynchronous) including RTLola [7], Lola2.0 [15], CoPilot [29], TeSSLa [11] and
Striver [17] follow this approach. In summary,

– initial monitoring attempts to answer, at every instant t, whether the
observed trace satisfies the specification if evaluated at time 0.

– recurrent monitoring attempts to answer, at every instant t, whether the
observed trace satisfies the specification if evaluated at t.

108 H. Kallwies et al.

– universal monitoring attempts to answer, as soon as possible and for every
position t, whether the observed trace satisfies the specification at t.

It is desirable that a monitor produces a verdict as soon as possible when
this verdict is inevitable, a feature called anticipation. For example, a naive
monitor for the initial monitoring for (XX false) would wait two steps until false is
encountered to produce ff as verdict. An anticipatory monitor would immediately
produce the correct verdict ff at time 0. As another example, X(p → (X false))
would require to check whether p holds at the first instant (producing ff if p
holds and tt if p does not hold), under perfect anticipation. Anticipation has been
solved for LTL on ω-words [5] where all (infinite) futures are explored at every
step and deciding an outcome when the opposite is impossible. Anticipation
guarantees that equivalent specifications produce the same outputs for the same
inputs and at the same times.

The contributions of this paper are the following. We consider many logics for
finite traces (in Sect. 2) and translate them into SRV language Lola on Boolean
streams (in Sect. 3), and show that initial monitoring can be reduced to recur-
rent monitoring for Lola. Section 4 gives a recurrent monitoring algorithm with
perfect anticipation for Lola, and extends it to exploit assumptions and tolerate
uncertainties. We have implemented our approach in a prototype tool and report
on a preliminary empirical evaluation (Sect. 5).

2 Temporal Logics on Finite Traces

Preliminaries. We use Z for the set of integers and T = {0 . . . N − 1} for the
natural numbers from 0 to N − 1. Given a set of propositions AP the alphabet
Σ = 2AP consists of subsets of atomic propositions. A word σ is an element of
Σ+, and |σ| is the length of σ. We say that a natural number i is an index or
position of a word σ whenever 0 ≤ i < |σ|. Given a word σ and an index i, we
use σ(i) for the letter at position i, (σ, i) is called a “pointed word”, and (σ, i, j)
is called a “segment”. A basic expression is a Boolean combination of elements
from AP, defined as follows:

β:: = true
∣
∣ a

∣
∣ β ∧ β

∣
∣ β ∨ β

∣
∣ ¬β

where a ∈ AP is an atomic proposition. Given a letter s from Σ, s |= p is defined
as s |= a whenever a ∈ s, and the usual definitions for Boolean operators.

We define non-deterministic finite automata with a forward and backwards
acceptance, in terms of segments of words. An ε-NFA over alphabet Σ is a
tuple (Q, q0, δ, δε, F) where Q is a finite set of states, q0 is the initial state,
F ⊆ Q is a set of final states, δ ⊆ Q × Σ × Q is the transition relation and
δε ⊆ Q × Q is the epsilon transition relation. Given a word σ, two positions
0 ≤ i, j < |σ| and an ε-NFA A, we say that A accepts (σ, i, j) in the forward
manner, denoted (σ, i, j) |= A if there is a sequence of states and positions
(q0, i0), (q1, i1) . . . (qn, in) starting at q0 such that (1) i0 = i and in = j; (2)

Anticipatory Monitoring for Temporal Logics on Finite Traces 109

qn ∈ F ; and (3) for every 0 ≤ k < n, either (qk, σ(ik), qk+1) ∈ δ and ik+1 = ik+1,
or (qk, qk+1) ∈ δε and ik+1 = ik.

Similarly, A accepts (σ, i, j) in the backwards manner, denoted (σ, i, j) |= A−1

if there is a sequence of states and positions (q0, i0), (q1, i1) . . . (qn, in) starting
at q0 such that (1) i0 = i and in = j, (2) qn ∈ F and (3) for every 0 ≤ k < n,
either (qk, σ(ik), qk+1) ∈ δ and ik+1 = ik − 1, or (qk, qk+1) ∈ δε and ik+1 = ik.

2.1 Temporal Logics and Formalisms on Finite Traces

We now present several temporal logics over finite traces:

– LTLf : an adaptation of LTL to finite traces [16,27], with past operators.
– RE: regular expressions [21,28] extended with past.
– RLTLf : Regular Linear Temporal Logic (RLTL) [24,34,35] for finite paths.
– LDLf : linear dynamic logic on finite traces [16].
– TRLTLf : a slight variation of RLTLf introduced in this paper.
– Lola: a stream runtime verification language [12].

For all these formalisms we use basic expressions over AP for individual obser-
vations obtained from the environment.

LTLf . Manna and Pnueli [27] already studied how to adapt LTL from infinite
traces to finite traces, by observing that one can adapt the next operator (X)
into a new variant (weak next)

Xϕ. Weak next is always true at the end of

the trace in spite of the sub-formula ϕ, while Xϕ is defined to be false at the
end of the trace in spite of ϕ. These notions are dual to the corresponding past
operators ϕ (which is automatically true at the first position) and ϕ (which
is automatically false at the first position). The syntax of LTLf is:

ϕ:: = β
∣
∣ ϕ ∧ ϕ

∣
∣ ¬ϕ

∣
∣Xϕ

∣
∣

Xϕ

∣
∣ ϕ U ϕ

∣
∣ϕ

∣
∣ϕ

∣
∣ ϕ S ϕ

where β is a basic expression. The semantics of LTLf associates traces σ ∈ Σ+

with formulae as follows:

(σ, i) |= β iff σ(i) |= β
(σ, i) |= ϕ1 ∧ ϕ2 iff (σ, i) |= ϕ1 and (σ, i) |= ϕ2

(σ, i) |= ¬ϕ iff (σ, i) �|= ϕ
(σ, i) |= Xϕ iff i + 1 < |σ| and (σ, i + 1) |= ϕ
(σ, i) |= Xϕ iff i + 1 ≥ |σ| or (σ, i + 1) |= ϕ
(σ, i) |= ϕ iff 0 > i − 1 or (σ, i − 1) |= ϕ
(σ, i) |= ϕ iff 0 ≤ i − 1 and (σ, i − 1) |= ϕ
(σ, i) |= ϕ1 U ϕ2 iff for some j ≥ i (σ, j) |= ϕ2 and for all i ≤ k < j, (σ, k) |= ϕ1

(σ, i) |= ϕ1 S ϕ2 iff for some j ≤ i (σ, j) |= ϕ2 and for all j < k ≤ i, (σ, k) |= ϕ1

We use common derived operators like ∨ as the dual of ∧, R as the dual of U ,
 (as true U ϕ) and (as false R ϕ). Likewise for past: (as true S ϕ). Note
that (σ, i) |= ϕ U ψ if and only if (σ, i) |= ψ ∨ (ϕ ∧ X(ϕ U ψ)). Also ¬Xϕ is
equivalent to

X¬ϕ, ¬Xϕ is equivalent to X¬ϕ, ¬ϕ is equivalent to ¬ϕ, ¬ϕ

is equivalent to ¬ϕ. The presented logic was later re-introduced in [16] and
named LTLf .

110 H. Kallwies et al.

RE with Past. Regular expressions [21,28] is a classical formalism to express
regular sets of finite words. The syntax of RE is:

ρ:: = β
∣
∣ ρ + ρ

∣
∣ ρ ; ρ

∣
∣ ρ∗ρ

where β is a basic expression. For convenience, we define the semantics of regular
expressions using segments (as in [24]):

(σ, i, j) |= β iff σ(i) |= β and j = i + 1
(σ, i, j) |= x + y iff (σ, i, j) |= x or (σ, i, j) |= y
(σ, i, j) |= x ; y iff for some k < |σ|, (σ, i, k) |= x and (σ, k, j) |= y.
(σ, i, j) |= x∗y iff either (σ, i, j) |= y, or for some sequence (i0 = i, i1, . . . im),

(σ, ik, ik+1) |= x and (σ, im, j) |= y

We say that a finite word σ matches a regular expression ρ whenever (σ, 0, |σ|) |=
ρ. In [34] past regular expressions were introduced in the context of regular linear
temporal logic RLTL. The main idea is to define a new operator β for a basic
expression β defined as (σ, i, j) |= β iff σ(i) |= β and j = i − 1. Then, a pure
past regular expression ρ is obtained from a regular expression ρ by replacing
all basic expressions β with β. Note that all basic steps in a pure future regular
expression move forward and all basic steps in a past regular expression move
backwards. It is crucial that we have first defined basic expressions (with ∧,
∨ and ¬) that work on single letters and we do not allow ∧ and ¬ in regular
expressions, to allow linear translations into richer logics.

TRLTLf . Regular Linear Temporal Logic (RLTL) [24] (see also [34,35]) extends
the expressivity of LTL to all regular languages, introducing temporal operators
that generalize both temporal operators from LTL and concatenation from reg-
ular expressions. The resulting logic has the same complexity as LTL and allows
linear translations from both LTL and regular expressions. We now introduce a
variation of RLTL for finite traces, called TRLTLf where we also add the capa-
bility in the regular expression layer to test previously defined formulas. RLTLf

is TRLTLf without the ϕ? operator below, which does not add expressivity
because RLTLf withour ϕ? can already cover all regular languages. The result-
ing syntax has a regular expression layer (ρ) and a temporal layer (ϕ), where α
is only used to decide whether the regular expression is interpreted forward or
backwards in the trace.

ρ:: = ρ + ρ
∣
∣ ρ ; ρ

∣
∣ ρ∗ρ

∣
∣ β

∣
∣ ϕ? α:: = ρ

∣
∣ ρ

ϕ:: = true
∣
∣ β

∣
∣ ϕ ∨ ϕ

∣
∣ ϕ ∧ ϕ

∣
∣ ¬ϕ

∣
∣ α ; ϕ

∣
∣ ϕ |α〉〉ϕ

Note that the regular expression layer is extended with a “test operator” ϕ?
whose intention is to extend the language of atomic propositions with the capa-
bility to check previously defined expressions. We only introduce ϕ? to obtain
an immediate subsumption from LDLf below. The semantics of the ϕ? operator
is (σ, i, i) |= ϕ? iff (σ, i) |= ϕ.

The operator ϕ|α〉〉ϕ is called the power operator. The power expression x|r〉〉y
(read x at r until y) is built from three elements: y (the attempt), x (the obliga-
tion) and r (the delay). Informally, for x |r〉〉y to hold, either the attempt holds,

Anticipatory Monitoring for Temporal Logics on Finite Traces 111

or the obligation is met and the whole expression evaluates successfully after
the delay. In particular, for a power expression to hold, the obligation must be
met after a finite number of delays. The power operator generalizes both Kleene
repetition (x∗y is simply true |x〉〉y) and the LTL Until operator (x U y is simply
x|true〉〉y). That is, conventional regular expressions can describe sophisticated
delays with trivial obligations and escapes, while conventional LTLf constructs
allow complex obligations and escapes, but trivial one-step delays. The power
operator extends the expressive power of LTL, for example, Wolper’s expres-
sion [36] “p holds at even moments”—that cannot be expressed in LTL—is defined
in TRLTLf as ¬(true |true ; true〉〉¬p), that is “it is not the case that after some
sequence of true ; true, there is no p”.

The completeness of TRLTLf with respect to regular languages is easily
derived from the expressibility of regular expressions. Formally, the semantics of
TRLTLf (∧, ∨ and ¬ are standard as in LTLf above):

(σ, i) |= r ; ϕ iff for some j (σ, i, j) |= r and (σ, j) |= ϕ
(σ, i) |= ϕ1 |r〉〉ϕ2 iff for some sequence (i0 = i, i1, . . . , im) : (σ, im) |= ϕ2 and

(σ, ik, ik+1) |= r and (σ, ik) |= ϕ1 for every k < m

It is easy to see that LTLf is subsumed by TRLTLf (using the linear translation
from U) because Xϕ is true ; ϕ. Similarly, RE (for pure past expressions or pure
future expressions) can also be expressed in TRLTLf using the linear translation
for Kleene star.

LDLf . Linear Dynamic Logic on finite traces (LDLf) was introduced [16] as an
extension of LTLf to increase the expressivity to regular languages, inspired by
dynamic logic. As RLTL, LDLf considers a regular expression layer (extended
with test) but restricts the temporal layer to a single “dynamic operator” 〈α〉ϕ:

ϕ:: = ϕ ∨ ϕ
∣
∣ ϕ ∧ ϕ

∣
∣ ¬ϕ

∣
∣ 〈α〉ϕ

∣
∣ [α]ϕ

The semantics of the dynamic operator are precisely 〈α〉ϕ = α ; ϕ, while [α]ϕ
is its dual ¬(α ; ¬ϕ). Therefore LDLf can be translated linearly to TRLTLf .
Note that TRLTLf contains all oeprators from LDLf and RLTLf to ease the
translation from both. Since the expressive power of both LDLf and RLTLf is
the set of all regular languages they are equally expressive. We conjecture that
one can have a linear translation from LDLf into RLTLf and vice-versa, but the
proof of this conjucture is out of the scope of this paper.

The following lemma summarizes our expressivity results.

Lemma 1. For every LTLf , RE, RLTLf and LDLf expression there is an equiv-
alent TRLTLf expression of linear size.

It is well-known that RE, RLTLf (and therefore TRLTLf) and LDLf can express
all regular languages. It is an open problem whether there is a linear translation
from RLTL into LDL and from RLTLf into LDLf .

112 H. Kallwies et al.

2.2 The Stream Runtime Verification Language Lola

In this section we recall the Lola stream runtime verification language [12].
A Lola specification describes a transformation from a set of input to output
streams. Let D be an arbitrary data domain (which essentially is a collection
of types and constructor symbols, with their interpretations as values and func-
tions). We denote by SD : T → D the set of streams of type D. In this paper
we restrict ourselves to Boolean streams, i.e. domain B = {tt,ff} with the usual
symbols true, false ∧, ∨, ¬, etc.

The output streams of a Lola specification are defined by expressions over
other stream identifiers. Given a set of Boolean stream variables S, the set of
Lola expressions ExprS is:

ExprS = true
∣
∣ false

∣
∣ s[o|c]

∣
∣ ¬ExprS

∣
∣ ExprS ∧ ExprS

∣
∣ ExprS ∨ ExprS

where s ∈ S is a stream variable, o ∈ Z is an offset, and c ∈ {tt,ff} is a Boolean
constant. Thus a Lola expression is either a constant or the application of a ¬,
∧, ∨. The intended meaning of s[o, c] is the value of stream s, o time instants
from the current position, using c as default value if this position does not exist
(because the offset takes the position beyond the beginning or end of the trace).
For example, s[3, tt] represents the value of s three instants in the future, or tt
if the trace end is reached. Note that an offset 0 references the current value
of other streams, and the index is guaranteed to be legal after adding 0. Since
in this case the default value is not necessary we use the alternatives s[now] or
s for s[0, tt]. Further we use true, false for the stream which has value tt resp.
ff at all instances. In the following we assume Lola specifications to be in a so-
called flat format, i.e. only the offsets −1, 0, 1 may be used. It is easy to see that
every Lola specification can be transformed into a flat equivalent by introducing
intermediate streams and splitting larger offsets in a sequence of +1/−1 offsets.
This translation is linear (in the unary encoding of offsets).

A Lola specification ϕ = (I, S,E) is given by I an ordered set of input stream
identifiers, S an ordered set of output stream identifiers disjunct from I, and
E : S → ExprS∪I a mapping which assigns to every output stream its defining
expression. The semantics of a Lola specification ϕ = (I = (i1, . . . , in), S =
(s1, . . . , sm), E) is a transformation from input to output streams: �ϕ� : (SB)n →
(SB)m with �ϕ�(τ1, . . . , τn) = (σ1, . . . , σm) such that σi(t) = �E(si)�(t) for all
i ∈ {1, . . . , m}, t ∈ T where the semantics of the defining expression is given as
follows (for c ∈ B, o ∈ Z, e1, e2 ∈ ExprS∪I , stream σ corresponding to identifier
s ∈ S ∪ I):

�true�(t) = tt
�false�(t) = ff

�e1 ∧ e2�(t) = �e1�(t) ∧ �e2�(t)
�e1 ∨ e2�(t) = �e1�(t) ∨ �e2�(t)

�¬e1�(t) = ¬�e1�(t)

�s[o|c]�(t) =
{

σ(t + o) if t + o ∈ T

c else

The semantics of ϕ is well defined if no stream instant is dependent on
itself. We only allow Lola specifications where this is guaranteed (which can
be statically checked [12,33]).

Anticipatory Monitoring for Temporal Logics on Finite Traces 113

3 Translating TRLTLf to Lola

In this section, we describe how to translate TRLTLf into Lola. More specifically,
given a TRLTLf formula ϕ, we derive a corresponding Boolean Lola specification
Lϕ with a distinguished stream for sϕ that is true at position i whenever the
input word satisfies ϕ in position i. The input streams of the Lola specification
are given by the atomic propositions. We will introduce one input stream variable
tp for each p ∈ AP. Given a word σ and an atomic proposition p, the input stream
corresponding to tp, τtp

(i), is true if and only if p ∈ σ(i). Abusing notation, given
a stream s and a set of streams S we use s∪S for {s}∪S. We also use (s = e)∪E
for {s = e} ∪ E.

The idea of the translation is as follows. Given a TRLTLf formula ϕ we
create for each sub-formula ψ a fresh new stream sψ that captures the truth
value of ψ at each position, depending on the truth value of the streams for its
sub-expressions. For atomic propositions, the definition is immediate as it has to
coincide with the corresponding proposition on the input word. Boolean combi-
nations of subformulas translate to the corresponding Boolean combinations of
the corresponding streams. The syntax for sequential operators take a regular
expression (with its direction of the evaluation) followed by another formula. The
regular expressions are first transformed linearly into their corresponding ε-NFA
representation. Without loss of generality we assume that final states have no
successor1. We will introduce a fresh stream variable for each state of the ε-NFA
mimicking the evaluation of the automata followed by the continuing expression.
Whenever a testing operator ψ? is used within the regular expression, we refer
to the stream variable sψ and take a transition in the NFA only if sψ is true
at the current position. The power operator in TRLTLf is translated similarly,
according its unwinding law ϕ |α〉〉ψ ≡ ψ ∨ (ϕ ∧ α ; ϕ |α〉〉ψ).

Let us now formally describe the translation, which is given inductively by
providing a transformer for each operator of TRLTLf . Each transformer takes a
subformula ϕ and delivers a pair (sϕ,Lϕ) where sϕ is the distinguished stream
of the Lola specification Lϕ. Therefore, we give the translation of ϕ as (sϕ,Lϕ)
and only need to define Lϕ as follows.

– For true, Ltrue is (I, {strue}, {strue = true}). For atomic propositions p ∈ AP,
Lp is (I, {sp}, {sp = tp[now]}). For ∨:

Lϕ∨ψ := (I, (sϕ∨ψ ∪ Sϕ ∪ Sψ), (sϕ∨ψ = sϕ ∨ sψ) ∪ Eϕ ∪ Eψ)

Conjunction and negation can be processed in a similar manner. Basic expres-
sions β are also inductively processed using conjunctions, disjunctions, com-
plementation and atomic propositions.

– For α ; ϕ with forward α = ρ, let (Q, q0, δ, δε, F) be the ε-NFA accepting the
language defined by α, obtained using standard constructions. In the regular

1 Every ε-NFA can be linearly transformed into such a representation by duplicating
final states that have successors into two copies: one (final) with no successor and
the other (non-final) with the successors.

114 H. Kallwies et al.

expression, we treat any testing operator ψ? as a single letter. To define Lα;ϕ

we add a stream for each state of the automaton and one equation following
the execution of the automaton. We use SQ and EQ for these sets of streams
and equations. Let us first consider non-final states (q /∈ F), for which the
automaton in state q may choose a letter a to proceed to some next state
(processing an input letter), may choose an ε-transition to proceed to some
next state or may perform a check ψ? (at the current input). The equation
that we add for state q /∈ F is:

sq =
∨

(q,a,q′)∈δ

(sa ∧ sq′ [+1|ff]) ∨
∨

(q,q′)∈δε

sq′ ∨
∨

(q,ψ?,q′)∈δ

(sψ ∧ sq′)

For final states q ∈ F , the formula ϕ has to be checked at the current state
as the only possible continuation: sq = sϕ. Finally, we add the equation for
the distinguished stream sα;ϕ as sα;ϕ = sq0 , being true whenever a succesful
run of the ε-NFA followed by the successful evaluation of ϕ is achieved by
starting in the initial state.

Lα;ϕ = (I, (sα;ϕ ∪ SQ ∪ Sϕ), ({sα;ϕ = sq0} ∪ EQ ∪ Eϕ))

– For α ; ϕ with backward α = ρ̄, we follow a similar construction, except that
upon reading a letter the offset used to continue is −1 instead of +1. For
q /∈ F :

sq =
∨

(q,a,q′)∈δ

(sa ∧ sq′ [−1|ff]) ∨
∨

(q,q′)∈δε

sq′ ∨
∨

(q,ψ?,q′)∈δ

(sψ ∧ sq′)

For final states q ∈ F , sq = sϕ and for the resulting specification

Lρ;ϕ = (I, (sρ;ϕ ∪ SQ ∪ Sϕ), ({sρ;ϕ = sq0} ∪ EQ ∪ Eϕ))

– For ϕ |α〉〉ψ and a forward regular expression α, let (sϕ,Lϕ) be the translation
of ϕ and (sψ,Lψ) the translation of ψ. Let also (Q, q0, δ, δε, F) be the ε-NFA
for α. The equations for sϕ|α〉〉ψ follow the unwinding equivalence ϕ |α〉〉ψ ≡
ψ ∨ (ϕ ∧ α ; ϕ | α〉〉ψ). For α ; (ϕ | α〉〉ψ) we follow the construction for the
sequential operator by adding streams for each state of the automaton and
equations following the transitions. Non-final states are treated exactly as
before. For final states q ∈ F and for the distinguished stream:

sq = sϕ|α〉〉ψ sϕ|α〉〉ψ = sψ ∨ (sϕ ∧ sq0)

Finally, Lϕ|α〉〉ψ = (I, Sϕ|α〉〉ψ, Eϕ|α〉〉ψ) where

Sϕ|α〉〉ψ = sϕ|α〉〉ψ ∪ SQ ∪ Sϕ ∪ Sψ

ELϕ|α〉〉ψ
= (sϕ|α〉〉ψ = sψ ∨ (sϕ ∧ sq0)) ∪ EQ ∪ Eϕ ∪ Eψ

It is easy to see that the resulting Lola specification is linear in the length of
the formula. The following result establishes the correctness of the translation,
which can be formally shown by induction, following the inductive definition of
the construction.

Anticipatory Monitoring for Temporal Logics on Finite Traces 115

Lemma 2 (Correctness of Translation). Let ϕ be a TRLTLf formula and
(sϕ,Lϕ) be the corresponding Lola specification. Let σ ∈ Σ+ be a word. Then,
for all i ∈ {0, . . . , |σ|}, (σ, i) |= ϕ if and only if sϕ(i) = tt.

4 General Anticipatory Monitoring

In this section we develop an anticipatory algorithm for the recurrent monitoring
problem of Lola specifications. Then, we will extend our algorithm to support
assumptions and uncertainties. Our algorithm can be used for the initial moni-
toring problem as well, because, given a Lola specification (s, (I, S,E)) that we
would like to use for initial monitoring, we can create (r, (I, S ∪ {r}, E′)) where

E′ = E ∪ {r = if false[−1|tt] then s[now] else r[−1|ff]}

We use r〈i〉 to denote the value of stream r at timepoint i. It is easy to see that
at each point in time r〈i〉 = s〈0〉 Therefore answering the question, at position
i, of whether r〈i〉 is true or false, is equivalent to answering whether s〈0〉 is
true of false. Thus, in the case of Lola, recurrent monitoring subsumes initial
monitoring.

In the rest of the section to simplify the definitions we assume that ϕ =
(I, S,E) is an arbitrary well-defined Lola specification. We start with a general
definition of recurrent monitors for Lola specifications.

4.1 Recurrent Monitors as Moore Machines

We first define the class of monitors for a Lola specification as Moore machines.
These monitors will receive as inputs the values of the input streams and produce,
at each instant, as output one Boolean verdict (or ?) per output stream.

Definition 1 (Moore Machine Monitor). Given a Lola specification ϕ =
(I, S,E) a Moore Machine for ϕ is a tuple Mϕ = (P,Σ,Ω, p0, δm, ω) where

– P is a set of states and p0 ∈ P is the initial state;
– Σ = 2I is the input alphabet;
– Ω = S → {tt,ff, ?} is the output alphabet, that encodes one verdict per output

stream;
– δm : P × Σ → P is the transition function;
– ω : P → Ω is the verdict function.

A monitor Mϕ for a Lola specification ϕ is sound for output stream s if
after processing an input string u (of length i), it produces tt only if for all
continuations of u, the value of s〈i〉 is tt (analogous for ff). Note that a sound
monitor must produce ? if both tt and ff can be the result for s〈i〉 depending on
the continuation. Note also that a sound monitor is allowed to produce ?, even
if the verdict is definite (in the extreme case, a monitor that always produces ?
is sound).

116 H. Kallwies et al.

4.2 An Anticipatory Algorithm

In general Lola specifications may contain future offsets, which potentially make
stream events dependent on other streams at later instants. While in offline
monitoring this is not a problem, as the full input word is already accessible,
this poses a difficulty for online monitoring. The traditional online monitoring
algorithm for Lola [12] tackles this problem by stalling computations, delaying
the production of verdicts until the required values are available. This algorithm
does not produce a value even when it is inevitable.

In this section we present an alternative recurrent monitoring for Lola as
follows. A translation from Lola to DFA is presented in [8], which captures
whether a sequence of input and output stream values matches a given Lola
specification. Based on this construction, we transform a Lola specification into
a labeled transition system, from which we build a perfect anticipatory monitor.

We will define a nondeterministic transition system, where the states encode
(1) valuations of all (input and output) streams at the current instant and (2)
guesses of the valuations at the next position. A valuation v ∈ 2I∪S encodes
which inputs and outputs are true, so states are pairs of valuations 2I∪S × 2I∪S .
To encode the end of the input trace we use the symbol ⊥, so the states are
elements of 2I∪S × (2I∪S ∪{⊥}). Finally we also add an initial state # where no
input letter has been received and thus no stream has a valuation yet, resulting
in a state space

Qϕ
def= {#} ∪ (2I∪S × (2I∪S ∪ {⊥}))

Example 1. Consider for example the LTL formula ϕ = p ∧¬p. Following
the translation from the previous section with some trivial simplifications (like
inlining constant streams), the corresponding Lola specification would have an
input stream sp and four defined streams

s¬p = ¬sp[now] sp = sp[now] ∧ sp[+1 | tt]
s¬p = s¬p[now] ∨ s¬p[+1 | ff] sϕ = sp[now] ∧ s¬p[now]

Some possible states of the transition system include

q1 = ({s¬p, s¬p}, {sp, sp}) q2 = (∅, ∅) q3 = ({sp, sp, s¬p, sϕ},⊥)

State q1 encodes the situation where sp and sp are false and s¬p and s¬p

are true in the current instant. In the subsequent instant sp and sp are true
but the other streams are false. Note that in fact only q1 is compatible with the
Lola specification, but the other states are a contradiction to the equations of
the specification. State q2 is a contradiction because sp and s¬p cannot be false
at the same time. State q3 is a contradiction because when sp is true at the last
position of the trace, s¬p has to be false. ��

Based on this encoding we build a nondeterministic transition system, where
the transition relation maps state (u, v) to state (v, w) when the first component

Anticipatory Monitoring for Temporal Logics on Finite Traces 117

of the post state coincides the second component of the pre-state (unless v =
⊥). The second component w of the post-state is not determined and different
transitions can make different guesses.

Our transition system will have Σ = 2I as input alphabet, determining which
input streams are true and which are false. Given an input b ∈ 2I and an element
(v, v′) ∈ Q we write v(b) when v coincides with b in the truth value of all input
streams (i.e. v ∩ I = b). Given v, v′, v′′ ∈ 2I∪S we further say (v, v′) |=i E if
substituting every 0 offset with the value corresponding to v and every +1 offset
with those corresponding to v′ makes all equations E in the Lola specification
ϕ true for position 0. We say (v, v′, v′′) |= E if substituting all 0 offset operators
with the value according v′, all −1 offsets with the value according v and all
+1 offsets with the value according v′′ makes all equations in E are satisfied.
Finally we write (v, v′) |=f E if −1 offset operators replaced by values according
to v and 0 offset operators by those according to v′ makes the equations in E
satisfied for the last instant before the trace end.

Definition 2 (Lola Nondeterministic Transition System). Let ϕ =
(I, S,E) be a well-defined Lola specification. The Lola nondeterministic tran-
sition system (LNTS) for ϕ is a tuple Tϕ = (Qϕ, Σ, q0, δ), where q0 = # and

– δ(#, b) = {(v, v′) | v(b) and (v, v′) |=i E}

– δ((u, v), b) =

{

{(v, v′) | (u, v, v′) |= E} ∪ {(v,⊥) | (u, v) |=f E} if v(b)
∅ otherwise

The transition relation first checks that the guessed successor v is compatible
with inputs received and then guesses a new successor state v′ that satisfies all
equations E of the specification (including the possibility of guessing ⊥ denoting
the end of the trace).

Given a tuple of input streams τ ∈ (SB)|I| and a well-defined Lola specifica-
tion ϕ, there is a unique state sequence q0, q1, . . . , q|τ | such that qi+1 ∈ δ(qi, τ(i))
and q|τ | = (v,⊥). This follows from the fact that a well-defined Lola specification
has a unique valuation (given the whole input sequence).

The LNTS Tϕ allows to define a sequence of stream valuations for the current
time instant, which is consistent with the inputs received so far and with ϕ. To
build an anticipatory monitor for ϕ we determinize Tϕ by applying the following
two stages:

Removing Dead States. First we remove all states from the transition system
from which a state with ⊥ in the second component is not reachable, which
corresponds to a situation where a wrong guess was made and that cannot be
completed, no matter of the future inputs. Dead states can be identified by
a depth-first search in Tϕ starting at the initial state. We therefore limit the
state space Qϕ to {q ∈ Qϕ | ∃w ∈ Σ∗, (q′,⊥) ∈ δ̂(q, w)} where δ̂ is defined as
δ̂(q, ε) = q and δ̂(q, aw) = δ̂(δ(q, a), w).

Example 2. Consider again the specification for ϕ = p ∧¬p and the states
q1 = ({s¬p, s¬p}, {sp, sp}) and q2 = ({sp, sp, s¬p, sϕ}, {sp, sp, s¬p, sϕ}).

118 H. Kallwies et al.

From s1 the state ({sp, sp},⊥) is reachable, because the sub-formula sp is
satisfied at the trace end iff sp is satisfied. Thus q1 is alive. On the other hand q2
is dead, because sp, sp and s¬p being true at some instant imply that these
three streams (and thus also sϕ) are also true at the next instant. Consequently
q2 is the only possible successor of q2 and especially ({sp, sp, s¬p, sϕ},⊥) is
not a valid successor. ��

Determinize. Second, we use a power set construction to determinize the
resulting transition system2. If the monitor is in a power state which corre-
sponds to states in the original transition system that have different values for
an output stream, then the monitoring output is ? for this stream. On the other
hand, if all states in the power set agree on the valuation of an output stream,
the monitor yields exactly this valuation. In particular, the distinguished stream
receives either the valuation ? or a definite valuation tt or ff. Formally, the
resulting monitor is defined as follows, where s(q) denotes the current valuation
of stream s ∈ I ∪ S in state q.

Definition 3 (Anticipatory Recurrent Lola monitor). Let ϕ = (I, S,E)
be a well-defined Lola specification and Tϕ = (Qϕ, Σ, q0, δ) be the corresponding
LNTS with dead states removed. The anticipatory recurrent Lola monitor for ϕ is
the Moore Machine Monitor Mϕ : (P,Σ,Ω, p0, δm, ω) where P = 2Qϕ , p0 = {q0}
and

– δm(p, x) = {δ(q, x) | q ∈ p} ∩ Qϕ

– ω(p)(s) =

⎧

⎪⎨

⎪⎩

tt if s(q) = tt for all q ∈ p

ff if s(q) = ff for all q ∈ p

? otherwise

An anticipatory monitor is a sound monitor for all output streams that pro-
duces tt if and only if the evaluation of the output stream at this position is tt
for all continuations, i.e. when the verdict is inevitable and the analogous for
ff. Such a monitor thus only yields ? when both results are possible in different
continuations.

The following result proves the correctness of our construction.

Theorem 1. Let ϕ = (I, S,E) be a well-defined Lola specification and Mϕ the
monitor according to Definition 3. Then Mϕ is an anticipatory recurrent monitor
for ϕ.

The proof follows because Mϕ only contains states that can lead to end states,
so for every power state in Mϕ there is a continuation of the input streams such
that the equations in ϕ are satisfied. On the other hand the power set contains all
non-dead states which are reachable from q0 after processing the input received.
A tt (resp. ff) verdict for a specific stream is cast if and only if all states agree
on that valuation and thus there is no continuation of the currently received
inputs compatible with a different verdict. It is easy to see that the size of Mϕ

is 22
O(|ϕ|)

.
2 which can for performance reasons also be done on the fly while monitoring.

Anticipatory Monitoring for Temporal Logics on Finite Traces 119

4.3 Assumptions

Assumptions are additional knowledge about the system and its environment
and thus restrict the set of possible input sequences that may be passed to the
monitor. A general way to formalize assumptions in Lola [20] is to introduce
an output stream sa expressing the assumption and assume the stream to be
always true. We rule out those states where sa is false, or states that inevitably
lead to those states. We restrict the state space to states where the assumption
stream is true Qa

def= {(u, v) ∈ Qϕ | sa ∈ u, and v = ⊥ or sa ∈ v} and refine
the definition of alive states to aliveϕ

a = {q ∈ Qϕ | ∃w ∈ Σ∗, (q′,⊥) ∈ δ̂a(q, w)}
where δ̂a is defined as δ̂a(q, b) = δ(q, b)∩ Qa and δ̂a(q, bw) = δ̂a(δ̂a(q, b), w), that
is, δ̂a is like δ̂ but only considers successor states that satisfy the assumption.
We define a recurrent Lola monitor with assumptions, which differs from the
monitor of Definition 3 by considering an advanced set of dead states.

Definition 4 (Recurrent Lola monitor with Assumptions). Let ϕ =
(I, S,E) be a well-defined Lola specification and let Tϕ = (Qϕ, Σ, q0, δ) be the
corresponding LNTS with dead states (not in aliveϕ

a) removed. The anticipa-
tory recurrent Lola monitor for ϕ under assumptions is the Moore machine
(P,Σ,Ω, p0, δm, ω) where P = 2Qa and p0 = {q0} and δm(p, b) = {δ(q, b) |
q ∈ p} ∩ Qa (and Σ, Ω and ω are as before).

Note that ω(p)(sa) is forced to be tt at all states and that the new Moore
machine has fewer states compared to the previous construction.

4.4 Uncertainties

We now extend our approach to tolerate uncertain inputs, where the value of
some input is not known to be true or false. Instead of input alphabet Σ we
consider 2Σ as uncertain input alphabet where each letter encodes which certain
input letters are possible at the current instant. Consider AP = {p, q} and
Σ = 2AP, then input {∅, {p, q}} ∈ 2Σ encodes that it is uncertain if p, q hold but
it is known that they have the same value.

In the recurrent monitor with assumptions (Definition 4) we just extend the
transition function such that from a set of specific states it transitions to all
states which are reachable with one of the possible inputs:

Definition 5 (Recurrent Lola Monitor with Uncertainty and Assump-
tions). Let ϕ = (I, S,E) be a well-defined Lola specification and Tϕ =
(Qϕ, Σ, q0, δ) be the corresponding LNTS. The recurrent Lola monitor under
uncertainty and assumptions for ϕ is the Moore machine (P, 2Σ , Ω, p0, δm, ω)
where P , p0, Ω and ω are as before and δm(p,B) = {δ(q, b) | q ∈ p, b ∈ B}∩Qa.

Note that δm considers all possible inputs, potentially leading to more successors.

120 H. Kallwies et al.

5 Anticipatory Monitoring in Action

We implemented the algorithm for anticipatory Lola monitoring from Sect. 4 in
Scala3. The tool receives a Lola specification, calculates the set of empty states
and then simulates the power set monitor on the fly as described in Sect. 4 with
minor obvious optimizations. It supports assumptions and uncertainty.

We illustrate monitoring of the following TRLTLf formula that includes past
and future operators (encoded linearly):

ϕ = p ∧((¬p); p →(q; p; p; p; (¬q)∗; q))

The formula holds in every position where (1) p is true and (2) if for all
subsequent positions matching (¬p); p, the pattern q; p; p; p; (¬q)∗; q was present
somewhere in the past.

Following Sect. 3 we manually transformed the formula into a Lola specifica-
tion with two input streams, p and q, ten defined streams, seven future references
and one past reference. A traditional universal Lola monitor [12] would only
immediately yield the verdict ff at all positions where there is no p in the trace.
All the locations where ϕ holds would only be reported after the whole trace is
processed, because the part of the formula introduces a future reference, so a
monitoring algorithm without anticipation only resolves these streams once the
end of the trace is reached.

We evaluated our anticipatory monitoring approach on three randomly gen-
erated traces of length 1000. For each position, first q was selected to be true
with a probability of 66%. If q was false then p was set to true, otherwise p was
set to true with a probability of 50%. Consequently there were no positions in
the traces where p and q were simultaneously false.

We ran our monitor for each trace, one time with the additional assumption
(p ∨ q) in the specification and one time without. Further we executed the
monitor under presence of the assumption, but total uncertain information about
p (i.e. p = ? was sent to the monitor at all instants). The numbers of tt resp. ff
verdicts are depicted in the following table:

Trace Offline Monitor Rec. Ant. Monitor + Assumption + Uncertainty
tt ff tt ff tt ff tt ff

1 650 350 644 349 646 349 311 0
2 651 349 647 339 649 339 307 0
3 659 341 655 337 656 337 286 0

The first column shows the number of positions where ϕ is satisfied, which
corresponds to the output an offline monitor with full knowledge of the whole

3 Tool and example are available on https://gitlab.isp.uni-luebeck.de/public_repos/
anticipatory-recurrent-artifact.

https://gitlab.isp.uni-luebeck.de/public_repos/anticipatory-recurrent-artifact
https://gitlab.isp.uni-luebeck.de/public_repos/anticipatory-recurrent-artifact

Anticipatory Monitoring for Temporal Logics on Finite Traces 121

trace would yield. The recurrent anticipatory monitor is able to cast final verdicts
as soon as it detects a sequence q; p; p; p; (¬q)∗; q in the trace, because from then
on (q; p; p; p; (¬q)∗; q) and thus ((¬p); p →(q; p; p; p; (¬q)∗; q)) is satisfied.
Hence the monitor only reports a few ? verdicts at the beginning of the trace.

When the assumption(p∨q) is present, the recurrent monitor already yields
final verdicts after receiving the sequence q; p; p; p, because from this moment on
it can conclude that whenever the premises of the implication inside the globally
operator, (¬p); p, holds, then there is a (¬p) in the trace and consequently q holds
at this position. This however implies that the trace also contains a sequence
matching q; p; p; p; (¬q)∗; q. This is why the recurrent monitor with assumption
yields a slightly higher number of certain verdicts.

If p is fully uncertain, the monitor can not directly check anymore whether
q; p; p; p is contained in the trace. Yet, again using the assumption it can conclude
that if q; (¬q); (¬q); (¬q) holds somewhere in the trace, then also q; p; p; p holds
there and thus ((¬p); p → (q; p; p; p; (¬q)∗; q)) is satisfied from that instant
on. Hence, from that position on, the monitor is able to cast tt whenever q is
false, because at these instants p must be true. However, it cannot give verdicts
at positions where q is true, including all positions where p is false, and thus never
produces ff. Note that a traditional (online or offline) Lola monitor without the
ability of handling assumptions would not be able to cast any certain verdicts
under presence of the mentioned uncertainty.

We ran our examples on a Linux machine with 8GB RAM and Intel Core
i7-8550 U (1.80GHz) CPU. The average time spent for the emptiness check was
2227 ms without assumption and 2156 ms with assumption. The processing time
per event (without I/O handling) was on average, 2.22 ms without assumption,
1.84 ms with assumption and 5.60 ms under additional presence of uncertainty.

6 Final Remarks

Anticipation states that an online monitor should emit a precise verdict as soon
as possible with the information received. This was first introduced for infinite
traces [4,6] for LTL and for timed, event-clock extensions of LTL, and later gen-
eralized to all formalisms definable by Büchi automata in [13]. In [23] anticipation
is made more precise if part of the underlying system is known. All these works
consider only initial monitoring. In [18], recurrent monitoring was studied for
past-only LTL always yielding a verdict for the current position in the trace. A
generalization of the concept for future LTL formulas—but without an explicit
construction—was studied in [19] together with assumption and uncertainties
(meaning imprecise or missing inputs).

In recent years, temporal logics for finite traces have gained importance so it
is a natural question how the concept of recurrent monitoring under uncertainties
and assumptions materializes in the finite setting.

In this paper we addressed this question for the Boolean fragment of the SRV
language Lola, which is a very general formalism encompassing many temporal
logics on finite traces. We showed how many temporal logics on finite traces can

122 H. Kallwies et al.

be linearly translated into TRLTLf , which we then translated into Lola. The
logic TRLTLf introduced here simply takes all operands from RLTL [24] and
LDLf [16]. Since LDLf and RLTLf are both expressive equivalent to regular
languages they are equivalent in terms of expressive power. We are studying
whehter there are linear translations from LDLf to RLTLf and vice-versa, fol-
lowing reductions from [31] in the context of Metric Dynamic Logic (MDL) [2,3].
MDL extends LDLf with intervals and has the same expressive power.

We then presented a recurrent, anticipatory monitoring algorithm for Lola
specifications, extended it to handle uncertainties and assumptions, and pointed
out how to map initial monitoring into recurrent monitoring for Lola.

The approach most closely related to ours is [9], which also considers moni-
toring under uncertainties and assumptions. However, [9] is limited to LTL and
assumptions given as fair Kripke structures only.

We restricted our algorithm to Boolean Lola, so it is a natural question
how to deal with anticipation, assumptions, and uncertainties for specifications
over arbitrary theories. While assumptions and uncertainties for non-Boolean
theories are studied in [20], anticipation is not considered there. A solution for
LTL extended with theories, presented in [10], is based on reduction to bounded
model checking and thus not guaranteed to be perfect and not trace-length
independent.

The problem of anticipatory general Lola monitoring can also be solved eas-
ily if the length of the trace is known a-priori using a bounded-model-checking
approach, by unwinding the specification to the known length and using a sym-
bolic tool (e.g. an SMT solver) to compute definite verdicts with anticipation.
Future work includes anticipatory monitoring algorithms for richer data speci-
fications (like numerical Lola specifications) without assuming a known bound
on the length of the trace.

Future work further comprises an implementation of the translations from
logics to Lola specifications that were described in this paper and a thorough
empirical comparison to other monitoring approaches for these logics and Lola
in practical scenarios.

Acknowledgements. We would like to thank the anonymous reviewers for the thor-
ough analysis of the paper and their useful suggestions and future directions.

References

1. Bartocci, E., Falcone, Y.: Lectures on Runtime Verification - Introductory and
Advanced Topics, LNCS, vol. 10457. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-75632-5

2. Basin, D., Bhatt, B.N., Krstić, S., Traytel, D.: Almost event-rate independent
monitoring. Formal Methods Syst. Design 54, 449–478 (2019). https://doi.org/10.
1007/s10703-018-00328-3

3. Basin, D., Krstić, S., Traytel, D.: Almost event-rate independent monitoring of
metric dynamic logic. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548,
pp. 85–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67531-2_6

https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/s10703-018-00328-3
https://doi.org/10.1007/s10703-018-00328-3
https://doi.org/10.1007/978-3-319-67531-2_6

Anticipatory Monitoring for Temporal Logics on Finite Traces 123

4. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In:
Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272.
Springer, Heidelberg (2006). https://doi.org/10.1007/11944836_25

5. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime veri-
fication. J. Log. Comput. 20(3), 651–674 (2010). https://doi.org/10.1093/logcom/
exn075

6. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14:1-14:64 (2011). https://doi.org/10.
1145/2000799.2000800

7. Baumeister, J., Finkbeiner, B., Schirmer, S., Schwenger, M., Torens, C.: RTLola
cleared for take-off: monitoring autonomous aircraft. In: Lahiri, S.K., Wang, C.
(eds.) CAV 2020. LNCS, vol. 12225, pp. 28–39. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-53291-8_3

8. Bozzelli, L., Sánchez, C.: Foundations of Boolean stream runtime verification.
Theor. Comput. Sci. 631, 118–138 (2016). https://doi.org/10.1016/j.tcs.2016.04.
019

9. Cimatti, A., Tian, C., Tonetta, S.: Assumption-based runtime verification with
partial observability and resets. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019.
LNCS, vol. 11757, pp. 165–184. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-32079-9_10

10. Cimatti, A., Tian, C., Tonetta, S.: Assumption-based runtime verification of
infinite-state systems. In: Feng, L., Fisman, D. (eds.) RV 2021. LNCS, vol. 12974,
pp. 207–227. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88494-
9_11

11. Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M., Thoma, D.:
TeSSLa: temporal stream-based specification language. In: Massoni, T., Mousavi,
M.R. (eds.) SBMF 2018. LNCS, vol. 11254, pp. 144–162. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03044-5_10

12. D’Angelo, B., et al.: LOLA: runtime monitoring of synchronous systems. In: Pro-
ceedings of the 12th International Symposium on Temporal Representation and
Reasoning (TIME 2005), pp. 166–174. IEEE Computer Society (2005). https://
doi.org/10.1109/TIME.2005.26

13. Dong, W., Leucker, M., Schallhart, C.: Impartial anticipation in runtime-
verification. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.)
ATVA 2008. LNCS, vol. 5311, pp. 386–396. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-88387-6_33

14. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.:
Reasoning with temporal logic on truncated paths. In: Hunt, W.A., Somenzi, F.
(eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45069-6_3

15. Faymonville, P., et al.: StreamLAB: stream-based monitoring of cyber-physical
systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 421–431.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4_24

16. Giacomo, G.D., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: Proceedings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI 2013), pp. 854–860. IJCAI/AAAI (2013). http://www.aaai.
org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997

17. Gorostiaga, F., Sánchez, C.: Stream runtime verification of real-time event streams
with the Striver language. Int. J. Softw. Tools Technol. Transf. 23, 157–183 (2021).
https://doi.org/10.1007/s10009-021-00605-3

https://doi.org/10.1007/11944836_25
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1093/logcom/exn075
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1016/j.tcs.2016.04.019
https://doi.org/10.1016/j.tcs.2016.04.019
https://doi.org/10.1007/978-3-030-32079-9_10
https://doi.org/10.1007/978-3-030-32079-9_10
https://doi.org/10.1007/978-3-030-88494-9_11
https://doi.org/10.1007/978-3-030-88494-9_11
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1007/978-3-540-88387-6_33
https://doi.org/10.1007/978-3-540-88387-6_33
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/978-3-030-25540-4_24
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
https://doi.org/10.1007/s10009-021-00605-3

124 H. Kallwies et al.

18. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0_24

19. Kallwies, H., Leucker, M., Sánchez, C., Scheffel, T.: Anticipatory recurrent moni-
toring with uncertainty and assumptions. In: Dang, T., Stolz, V. (eds.) RV 2022.
LNCS, vol. 13498, pp. 181–199. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-17196-3_10

20. Kallwies, H., Leucker, M., Sánchez, C.: Symbolic runtime verification for monitor-
ing under uncertainties and assumptions. In: Bouajjani, A., Holík, L., Wu, Z. (eds.)
ATVA 2022. LNCS, vol. 13505, pp. 117–134. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-19992-9_8

21. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shan-
non, C.E., McCarthy, J. (eds.) Automata Studies, vol. 34, pp. 3–41. Princeton
University Press, Princeton, New Jersey (1956)

22. Leucker, M.: Teaching runtime verification. In: Khurshid, S., Sen, K. (eds.) RV
2011. LNCS, vol. 7186, pp. 34–48. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29860-8_4

23. Leucker, M.: Sliding between model checking and runtime verification. In: Qadeer,
S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 82–87. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35632-2_10

24. Leucker, M., Sánchez, C.: Regular linear temporal logic. In: Jones, C.B., Liu, Z.,
Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 291–305. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-75292-9_20

25. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Algebr.
Progr. 78(5), 293–303 (2009). https://doi.org/10.1016/j.jlap.2008.08.004

26. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems.
Springer, New York (1992). https://doi.org/10.1007/978-1-4612-0931-7

27. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems. Springer-Verlag,
Cham (1995)

28. McNaughton, R.F., Yamada, H.: Regular expressions and state graphs for
automata. IEEE Trans. Electron. Comput. 9, 39–47 (1960). https://doi.org/10.
1109/TEC.1960.5221603

29. Perez, I., Dedden, F., Goodloe, A.: Copilot 3. Technical report, NASA/TM-2020-
220587, NASA Langley Research Center (2020)

30. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE
Symposium on the Foundations of Computer Science (FOCS 1977), pp. 46–57.
IEEE Computer Society Press (1977). https://doi.org/10.1109/SFCS.1977.32

31. Raszyk, M.: Efficient, Expressive, and Verified Temporal Query Evaluation. Ph.D.
thesis, ETH (2022). https://doi.org/10.3929/ethz-b-000553221

32. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer
pairs for system health management of real-time systems. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 357–372. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-642-54862-8_24

33. Sánchez, C.: Online and offline stream runtime verification of synchronous systems.
In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 138–163.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7_9

34. Sánchez, C., Leucker, M.: Regular linear temporal logic with past. In: Barthe, G.,
Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 295–311. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11319-2_22

https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/978-3-031-17196-3_10
https://doi.org/10.1007/978-3-031-17196-3_10
https://doi.org/10.1007/978-3-031-19992-9_8
https://doi.org/10.1007/978-3-031-19992-9_8
https://doi.org/10.1007/978-3-642-29860-8_4
https://doi.org/10.1007/978-3-642-29860-8_4
https://doi.org/10.1007/978-3-642-35632-2_10
https://doi.org/10.1007/978-3-540-75292-9_20
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1109/TEC.1960.5221603
https://doi.org/10.1109/TEC.1960.5221603
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.3929/ethz-b-000553221
https://doi.org/10.1007/978-3-642-54862-8_24
https://doi.org/10.1007/978-3-030-03769-7_9
https://doi.org/10.1007/978-3-642-11319-2_22

Anticipatory Monitoring for Temporal Logics on Finite Traces 125

35. Sánchez, C., Samborski-Forlese, J.: Efficient regular linear temporal logic using
dualization and stratification. In: Proceedings of the 19th International Sympo-
sium on Temporal Representation and Reasoning (TIME 2012), pp. 13–20. IEEE
Computer Society (2012). https://doi.org/10.1109/TIME.2012.25

36. Wolper, P.: Temporal logic can be more expressive. Inf. Control 56, 72–99 (1983).
https://doi.org/10.1016/S0019-9958(83)80051-5

https://doi.org/10.1109/TIME.2012.25
https://doi.org/10.1016/S0019-9958(83)80051-5

Metric First-Order Temporal Logic
with Complex Data Types

Jeniffer Lima Graf, Srđan Krstić(B) , and Joshua Schneider(B)

Institute of Information Security, Department of Computer Science, ETH Zürich,
Zürich, Switzerland

{srdan.krstic,joshua.schneider}@inf.ethz.ch

Abstract. Temporal logics are widely used in runtime verification as
they enable the creation of declarative and compositional specifications.
However, their ability to model complex data is limited. One must resort
to complicated encoding schemes to express properties involving basic
structures such as lists or trees. To avoid this drawback, we extend metric
first-order temporal logic with a minimalistic, yet expressive, functional
programming language. The extension features an expressive collection
of types including function, record, variant, and inductive types, as well
as support for type inference and monitoring.

Our monitor implementation directly parses traces in the JSON for-
mat, based on the user’s type specification, which avoids a separate pre-
processing step. We compare our approach to existing shallow embed-
dings of temporal properties in general-purpose host languages and to
encodings into simple temporal logics. Specifically, our language bene-
fits from a precise semantics and a good support for monitoring-specific
static analysis.

Keywords: Monitoring · Temporal logic · Data types

1 Introduction

Runtime verification (or monitoring) verifies running systems in their opera-
tional environment. Implemented by processes, called monitors, it systematically
validates a specification by searching for counterexamples in a trace of events
recorded during system execution. The specification describes the intended sys-
tem behavior and, if explicitly input to the monitor, it is written in a specification
language. Logical specification languages (e.g., LTL) are widely used due to their
declarative and compositional nature.

First-order language extensions, like metric first-order temporal logic
(MFOTL) can express dependencies between the data values stored in events.
Yet most monitors support only atomic data values making it difficult to write
and maintain many practical specifications. Events may contain structured data
(e.g., JSON or XML objects), which require either a non-trivial pre-processing
step for the trace, or an elaborate encoding scheme for the specification, or
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 126–147, 2023.
https://doi.org/10.1007/978-3-031-44267-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_7&domain=pdf
http://orcid.org/0000-0001-8314-2589
http://orcid.org/0000-0001-8253-4513
https://doi.org/10.1007/978-3-031-44267-4_7

Metric First-Order Temporal Logic with Complex Data Types 127

even both. Understanding and maintaining both such specifications and pre-
processing logic quickly becomes unfeasible, especially as they need to be kept
in sync. For example, small changes in the pre-processing logic, like extracting
event values in a different order, must be reflected in the first-order specifica-
tion, e.g., by swapping the appropriate variables in the predicates. Ideally, trace
pre-processing should not be done both to avoid the processing overhead and
the need to have it in-sync with the specification. If this cannot be achieved,
then pre-processing should be domain-independent—it should not rely on the
meaning of the trace events.

For example, consider a web server execution trace with successful accesses
by clients:

@100 {"url":"/login", "client":"123"}
@113 {"url":"/login", "client":"123", "session":{"id":7, "token":"..."}}
@115 {"url":"/secure", "client":"123", "session":{"id":7, "token":"..."}}
@200 {"url":"/secure", "client":"666"}
@800 {"url":"/secure", "client":"123", "session":{"id":7, "token":"..."}}

where each line contains a JSON object prefixed with a @ddd time-stamp in
seconds.

Suppose that every client accessing the /secure URL must have a valid ses-
sion, not older than 600 seconds, established previously by visiting /login. A
way to monitor this specification is to translate JSON objects to tuples contain-
ing values of atomic data types:

@100 Access("/login", "123", False, -1, "")
@113 Access("/login", "123", True, 7, "...") etc.

The Boolean flag in each tuple indicates if there is a session, otherwise
id and token fields have dummy values. The corresponding MFOTL for-
mula formalizing the specification is Access(/secure, c, s, id, t) → s = True ∧
�[0,600) Access(/login, c,True, id, t).

Such a flat structure makes writing specifications tedious as many variables
must be used consistently and in a correct position. Moreover, changing the pre-
processing (e.g., avoiding the Boolean flag by using separate Access and Session
events) necessitates a non-trivial change in the specification.

In this paper we propose an extension of MFOTL, called CMFOTL, which
supports complex data types. The extension is accompanied by a corresponding
extension of MonPoly [7], an online monitor for MFOTL specifications.

Our presentation of CMFOTL diverges from MFOTL’s standard single-
sorted first-order logic definition [3,5,6,34]. We start by enumerating multiple
primitive types (already supported by MonPoly) and then define a type language
that allows for their combination via function, record, variant, and inductive
type constructors. To use the newly added types, CMFOTL embeds a mini-
malistic, yet expressive, functional programming language. We develop a type
system and a type inference algorithm for CMFOTL. We then present semantics
for well-typed CMFOTL formulas. Finally, we describe a CMFOTL fragment
monitorable using finite relations, which is implemented as a syntactic check in
MonPoly and supported by the CMFOTL monitoring algorithm. While we rely
on standard concepts from programming language theory, our particular design

128 J. Lima Graf et al.

choices (Sect. 2) were heavily motivated by efficient monitoring. In particular,
we make the following contributions:

– We extend MFOTL with complex data types (Sect. 3) to obtain CMFOTL
(Sect. 4).

– We develop a type system for CMFOTL used by its type inference algorithm
(Sect. 5).

– We define the semantics for well-typed CMFOTL formulas (Sect. 6).
– We bridge the gap between the loosely-typed JSON traces and our strongly-

typed language by converting a user-facing signature for JSON events to a
first-order signature with complex types (Sect. 7.1). Our monitoring algorithm
for monitorable CMFOTL formulas directly processes JSON events (Sect.
7.2).

– We exemplify CMFOTL’s expressiveness with multiple specifications and
evaluate the performance of the extended MonPoly monitor (Sect. 8).

To the best of our knowledge this is the first logic-based specification lan-
guage for monitoring that supports complex data types and has precisely defined
semantics. Other approaches (Sect. 9) either rely on trace pre-processing [7,21]
or on domain-specific languages (DSLs) [17,20], which often import unspecified
host programming language semantics.

Our implementation and evaluation is publicly available [25].

2 Design Choices

The language extension we present in this paper is inspired by our work on apply-
ing runtime verification to large and complex distributed systems. In particular,
we used the MonPoly monitor [7] in a previous case study to check properties
of the Internet Computer (IC) [4]. The IC’s execution traces were recorded in
a detailed JSON format, which required us to engineer a non-trivial mapping
from the source data into more abstract events with appropriate parameters.
The parameters had to be atomic data (e.g., integers or strings) for compati-
bility with MonPoly. Writing the specifications representing IC’s properties in
MFOTL was an iterative process. In addition to clarifying and fixing imprecise
versions of the specification, we also had to account for changes in the format and
semantics of the JSON events, which would additionally prompt modifications of
the event pre-processing. Synchronizing it with the actual MFOTL specifications
was a manual and error-prone process, which had to be tested regularly.

To avoid pre-processing while also supporting realistic event sources, our new
language provides record types with labeled fields, which correspond to JSON
objects. Named record types can be defined in the language’s user-facing sig-
nature, whereas unnamed record types can be defined directly within formulas.
As JSON objects may not always conform to a rigid structure (e.g., some fields
may be optional as in the JSON trace in Sect. 1), we also decided to introduce
variant types and the optional type as a special case.

Metric First-Order Temporal Logic with Complex Data Types 129

JSON arrays motivate the need for list types and more broadly inductive
types. We chose to use an iso-recursive [16] over an equi-recursive formalism [27]
for our type system due to its simpler type inference algorithm. As an example
specification, consider the following execution trace of a webshop application
containing information about parcels sent to customers.

@100 {"customer":"Alice", "parcel":{"content":[{"content":[]}]}}
@200 {"customer":"Bob", "parcel":{"content":[{"content":[{},{}]}]}}

One could interpret the objects in the parcel fields as arbitrarily nested
boxes that make up the parcel. A possible specification for this trace could be
that only parcels that consist of up to ten boxes (including all nested boxes) are
allowed. In this example, inductive types are necessary to represent both the box
objects and the array associated with the content field. The user must define the
inductive type for the boxes in the user-facing signature. This has the benefit that
it allows us to use type-specific recursors, which guarantee termination of the
monitor’s computations [19]. As a result, only total functions can be expressed
and our language is not Turing-complete.

We realize the above extensions with a minimal number of syntactic con-
structs in the core language. We also provide syntactic sugar for writing spec-
ifications in a convenient way. Our new language CMFOTL is a many-sorted
strongly-typed logic, unlike the single-sorted logic MFOTL. In practice, the type
system prevents additional sources of errors when formulating specifications. We
believe that the strong type discipline is not a major burden on the user, as we
also provide a type inference algorithm for the new language.

CMFOTL’s syntax and semantics (almost) only extend MFOTL’s terms.
Compared to an alternative design based on higher-order logic, this allows for
efficient monitoring as it requires only simple bottom-up term evaluation. Fur-
thermore, by retaining the well-known MFOTL formula semantics, CMFOTL’s
monitoring algorithm can readily reuse existing optimizations, e.g., for temporal
operators.

3 Complex Data Types

MFOTL is typically presented as a single-sorted logic [6,11], i.e., there is one
domain that variables range over. In principle, it would suffice to extend the
domain and the built-in operations (function symbols) in order to add support
for complex data. However, the benefits of static typing are well-known [29]. We
therefore define a type language that combines standard features that are widely
used in functional programming languages, specifically record (product) types,
variant (sum) types, inductive types, and type classes.

We assume an infinite supply of type variables X and labels l. The latter are
used for record field and variant constructor names. The syntax of types is given
by the following grammar, where A, . . . , A indicates zero or more repetitions of
A.

τ ::= Int |Float |Str | (τ, . . . , τ)⇒ τ | {l : τ, . . . , l : τ} | 〈l : τ, . . . , l : τ〉 | μX. τ |X

130 J. Lima Graf et al.

The symbols Int, Float, and Str represent primitive types for integers, floating-
point numbers, and strings, respectively. The function type (τ1, . . . , τn) ⇒ ρ
describes total functions that map tuples over types τ1, . . . , τn into values of
type ρ.

Record types are denoted by {l1 : τ1, l2 : τ2, . . . , ln : τn}, where l1, l2, . . . , ln is
a possibly empty list of field labels, and τ1, τ2, . . . , τn are the corresponding types.
The order of labels is irrelevant: {l : Int,m : Str} and {m : Str, l : Int} denote
the same type. Intuitively, the values of a record type are tuples that assign a
value to each label. They can be used to describe compound objects. The empty
record type {} serves as the unit type, which has a single value. It is sometimes
convenient to use records with unnamed fields that are instead distinguished by
their order of appearance. We write (τ1, . . . , τn) for such a tuple type, which can
be de-sugared into an equivalent record type with canonical labels.

Variant types 〈l1 : τ1, l2 : τ2, . . . , ln : τn〉 are dual to records. They represent
the choice of one of multiple alternatives, whose order is again irrelevant. Their
values can be thought of as pairs (li, x), where li is one of the constructors and
the value x has type τi. The empty variant 〈〉 represents the empty type, which
does not contain any values. A simple example combining variants and the unit
type is the encoding of Booleans by the 〈true : {}, false : {}〉 type. This type
plays a special role and hence we give it the name Bool.

The expression μX. τ denotes an inductive type. The type variable X must
occur strictly positively in τ , i.e., X must not occur as a free type variable in an
argument type τi of any function type (τ1, . . . , τn) ⇒ ρ within τ [15]. Intuitively,
an inductive type μX. τ is the least fixpoint of the type equation X = τ . The
variable X is bound by μX. τ in τ and is thus subject to α-conversion. As an
example, μX. 〈Nil : {},Cons : {hd : Int, tl : X}〉 represents finite lists of integers.
A type without free type variables is ground.

4 Specification Language

We now present CMFOTL, our specification language that supports complex
data types from Sect. 3. It is based on MFOTL, which has two main syntac-
tic categories: terms and formulas. Terms evaluate to values from the domain,
whereas formulas assign a truth value to every time-point in a given trace. We
primarily extend the term syntax with new constructs. Specifically, we add a
lambda calculus and operations to work with the new data types. We remove
equality and ordering relations from the formula syntax because they can now be
expressed as terms. Such terms can be used within a new, more general type of
atomic formula, assertions, which assert the truth of an arbitrary Boolean-valued
term. To keep the presentation self-contained, we also recap the unmodified parts
of MFOTL. New elements are indicated with a gray background .

Metric First-Order Temporal Logic with Complex Data Types 131

The syntax of terms is given by the following grammar, where c, x, l range
over constants, variables, and labels, respectively.

t ::= c | x | t : τ | λ(x, . . . , x). t | t(t, . . . , t) | {l : t, . . . , l : t} | t.l | mk l(t)

| case(t; l(x)→t, . . . , l(x)→t) | recX.τ (t) | unrecX.τ (t) | foldX.τ (t;x→t)

We provide an intuitive explanation here; the formal semantics is postponed
to Sect. 6 as it depends on the type system. Constants represent operations
that are built into the monitor. We fix the set of available constants in Sect. 6.
The term t : τ denotes a type ascription, which enforces and documents that t
has the type τ . Lambda abstractions λ(x1, . . . , xn). t and function applications
tf (t1, . . . , tn) support multiple arguments.

The term {l1 : t1, . . . , ln : tn} constructs a value of a record type, and t.li is
its projection to label li. Dually, the term mk li(t) constructs a value of a variant
type, and case(t; l1(x1)→t1, . . . , ln(xn)→tn) performs a case distinction on t. If
a constructor li has argument type {}, we typically omit the term in mk li and
the variable in a case branch li→ti. Recursive types μX.τ are constructed and
deconstructed via the terms recX.τ (t) and unrecX.τ (t). Recursive computations
must be expressed as a fold (i.e., a catamorphism) foldX.τ (t1;x→t2), where t1 is
a value of type μX.τ to fold and t2 performs one step of the computation using
the partial result bound to x. The last three constructs are annotated by the
inductive type to facilitate type inference.

Our modified formula syntax is mostly the same as that of MFOTL. For
space reasons we exclude aggregation operators [5] and (non-recursive) let bind-
ings [34], which our implementation also supports. The complete version of
CMFOTL is shown in the extended version of this paper [24]. In the gram-
mar below, P ranges over predicate symbols, and I ranges over non-empty and
possibly unbounded intervals over the natural numbers.

ϕ ::= ↓t | P (t, . . . , t) | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x. ϕ | �I ϕ | �I ϕ | ϕ SI ϕ | ϕ UI ϕ.

The noteworthy change over previous versions of MFOTL is the introduction
of assertions ↓t, which replace and generalize equality (t1 = t2) and inequality
(t1 < t2, t1 ≤ t2) formulas. Atomic predicates P (t1, . . . , tn), Boolean operators,
and existential quantification are as in first-order logic. The past and future tem-
poral operators �I , �I , SI , and UI are as in discrete-time MTL [1]. The interval
subscripts impose bounds on the elapsed time. A missing interval defaults to the
maximal interval [0,∞].

Parentheses can be omitted based on operator precedence. Our convention
is that the scope of binders (lambdas, branches of case, and quantifiers) extends
maximally to the right. Negation has the highest precedence, followed by con-
junction and disjunction, in this order. We always parenthesize temporal opera-
tors for clarity. Additional operators are defined as syntactic sugar, for example
�I ϕ ≡ (↓true SI ϕ) and ♦I ϕ ≡ (↓true UI ϕ).

132 J. Lima Graf et al.

Free variables fv(t) and fv(ϕ) are defined as usual. Arrows → and quantifiers
indicate variable bindings, e.g., l(x)→t and ∃x. ϕ bind x in t and ϕ, respectively.

5 Type System

Not all terms and formulas are meaningful. For instance, it is unclear how to
interpret a projection applied to a lambda term. Therefore, we introduce a type
system for CMFOTL. It is based on a inductively defined typing judgement
relation. Only terms and formulas that are well-typed, i.e., that can be assigned
a type by this relation, have a semantics. Our monitor implementation first
checks well-typedness of a CMFOTL formula before proceeding to monitor it.
Specifically, it performs type inference, which finds the most general type (up to
the names of type variables) for every (sub-)term of the formula. Like any static
type system, ours serves as an additional layer of protection against runtime
errors. In monitoring, such errors may be due to a malformed specification. To
define the typing judgement relation we need to define type classes and type
class constraints.

A type class [33] is a set of types that share a specific common property, e.g.,
the property that addition is defined. Types can be members of multiple type
classes, and type classes are partially ordered by their subset relationship. Type
classes allow for overloading of operations in terms. For example, it should be
possible to use the addition operator + both with integers and floating-point
numbers.

We use the following type classes. The class Eq consists of all types that are
built without function types. We restrict the equality operator to Eq type because
function equality is undecidable in general. The class Ord ⊃ {Int,Float,Str}
consists of all types on which a total ordering ≤ is defined. In addition to the
three primitive types, our implementation considers record and variant types
whose fields or constructor arguments are recursively members of Ord to be
instances of Ord (using a lexicographic ordering). The class Num = {Int,Float}
consists of all numeric types that support the four basic arithmetic operations
and modulo. The classes Proj(l : τ) consists of all record types that contain a
field l : τ , and the classes Ctor(l : τ) consist similarly of all variant types that
have a constructor l : τ . With these classes our type inference (Sect. 5.2) can
incorporate Ohori’s approach [28] for inferring polymorphic record and variant
types. The classes Proj(l : τ) and Ctor(l : τ) are parametric in τ [10] and we do
not require unique field or constructor names across types. Note that the field
and constructor argument types τ are uniquely determined given an instance of
the respective type class. This ensures that type inference yields the expected
most general type without additional type annotations.

A type class constraint C is a (finite, possibly empty) set of type classes. It
is a symbolic representation of the intersection of those classes. We say that the
types in the intersection satisfy the constraint. The empty constraint is satisfied
by all types. We attach type class constraints to type variables to restrict the
types that they can be instantiated with. For bound type variables, we denote
the constraint as part of the binder (e.g., μX : {Num}. τ).

Metric First-Order Temporal Logic with Complex Data Types 133

5.1 Typing Rules

The typing judgement relation Γ � t :: τ for terms is a ternary relation
between variable contexts Γ, terms t, and types τ . A variable context is a finite
mapping from variables to types. The typing judgement is defined as the least
relation closed under the rules shown in Fig. 1a. Each rule consist of a possibly
empty sequence of hypotheses above the line and a conclusion below the line.
There is an implicit condition for all rules: any free type variables must be free
in the conclusion’s context or type, i.e., hidden polymorphism is not allowed.
For terms with a varying number of sub-terms, such as lambda terms, there is a
corresponding sequence of assumptions or variable bindings, which we abbreviate
using an ellipsis (· · ·). The sequence should be extended to the concrete number
of elements in the obvious way when applying the rule. When we write Γ, x : t
it means that the variable context contains the binding x : t, together with zero
or more bindings for other variables as described by Γ. An assumption such
as π ∈ Proj(l : τ) means that the type π must be a member of the type class
Proj(l : τ). Finally, τ [σ/X] denotes the capture-avoiding substitution of σ for all
free occurrences of the type variable X in τ .

Constants may be polymorphic. Therefore, every constant has an associated
type scheme, i.e., a type that may have free type variables. When applying the
Cst rule, these free type variables are substituted for arbitrary types subject to
any type class constraints.

The Fold rule is best explained with an example. Recall that the inductive
type list ≡ μX. 〈Nil : {},Cons : {hd : Int, tl : X}〉 represents lists of integers. The
term

foldlist(x; y→case(y;Nil→0,Cons(z)→plus(1, z.tl)))

computes the length of the list x. Here, the constant plus is a function that takes
two numeric arguments and computes their sum. The derivation shown in Fig. 2
holds under the assumption that x has type list in Γ. It proves that the above
term has type Int. Note that the type of y is equal to part of the list under the
binder μX, except that X has been substituted by Int, which is the result type
of the recursive computation.

The typing judgement for formulas depends on a first-order signature in
addition to the variable context. In MFOTL, the first-order signature defines a
finite set of predicate symbols and their arities, i.e., the number of arguments.
To account for CMFOTL’s type system, a first-order signature Δ additionally
associates a sequence of types τ1, . . . , τn with each predicate symbol of arity n.
Similarly to variable contexts, we write Δ, R : (τ1, . . . , τn) for the first-order
signature that assigns the given types to the symbol R.

Given a first-order signature Δ, a variable context Γ, and a CMFOTL formula
ϕ, the judgement Δ;Γ � ϕ states that ϕ is well-typed formula. Note that formulas
do not have a value (they can only be satisfied or not) and hence we do not assign
a type to them. The rules for formulas are shown in Fig. 1b.

134 J. Lima Graf et al.

Fig. 1. Typing rules for CMFOTL

Metric First-Order Temporal Logic with Complex Data Types 135

Fig. 2. Example type derivation

5.2 Type Inference

We implemented a type inference algorithm based on the Damas–Hindley–Milner
framework [13]. Our handling of type classes is similar to the approach described
by Chen, Hudak, and Odersky [10]. Neither work considers a logical layer like
CMFOTL’s formula language, but the extension to formulas is straightforward.

The algorithm proceeds bottom-up in a syntax-directed fashion while prop-
agating the current knowledge about the variable context and first-order sig-
nature. The signature is initially obtained from the user (see Sect. 7.1). For
compound expressions, the sub-expressions (i.e., terms and/or formulas) are vis-
ited first to obtain their most general types. As is typical for type systems,
there is a unique rule that applies to every syntax construct. We determine the
most general instance of that rule which agrees with the sub-expressions’ types
through unification. A type error is reported whenever unification fails. The
unification procedure must take the type class constraints of type variables into
account. Additional care is required for variable binders such as lambda functions
as bound variables can shadow variables of the same name in the surrounding
context.

Let us revisit the list sum example from the previous subsection. Suppose
that the constant ‘0’ is the first sub-expression to be visited. It is not polymorphic
and hence the type Int is returned immediately. Next, we consider plus(1, z.tl).
This term is in the scope of the variables x, y, and z. Whenever the algorithm
enters a scope of a binder, it adds the variable with a fresh, unrestricted type
variable to the context. Let us call these τx, τy, τz for variables x, y, and z. The
type scheme of plus is declared as (α, α) ⇒ α where α : {Num}. Whenever such
a polymorphic constant is encountered, the algorithm replaces its type variables
with fresh ones, say, τ+ : {Num} in this case. As the type of 1 :: Int must agree
with the first argument of plus, unification results in the substitution τ+ �→ Int.
This substitution is possible because Int satisfies the constraint {Num}. Inferring
the type of z.tl results in a refinement of τz’s constraint in the variable context:
it is now {Proj(tl : Int)}.

136 J. Lima Graf et al.

Table 1. The constants of the base model (abridged)

Constant Type scheme

true , false Bool
eq (τ, τ) ⇒ Bool, τ ∈ Eq
less (τ, τ) ⇒ Bool, τ ∈ Ord
leq (τ, τ) ⇒ Bool, τ ∈ Ord
not (Bool) ⇒ Bool
and (Bool,Bool) ⇒ Bool
or (Bool,Bool) ⇒ Bool

Constant Type scheme

neg (τ) ⇒ τ, τ ∈ Num

plus (τ, τ) ⇒ τ, τ ∈ Num

minus (τ, τ) ⇒ τ, τ ∈ Num

times (τ, τ) ⇒ τ, τ ∈ Num

div (τ, τ) ⇒ τ, τ ∈ Num

mod (Int, Int) ⇒ Int

Unification with the Case rule triggers the substitution τy �→ 〈Nil : ν,Cons :
τz〉. At this point, there is no information about Nil’s argument type. The case
term itself has type Int. The most interesting step happens for the fold: To obtain
a proper instance of its type rule, we unify y’s type with

〈Nil : {},Cons : {hd : Int, tl : X}〉[Int/X] ≡ 〈Nil : {},Cons : {hd : Int, tl : Int}〉.

This results in the substitutions ν �→ {} and τz �→ {hd : Int, tl : Int}, where the
latter satisfies constraint {Proj(tl : Int)} from above. Since fold’s most generic
type is that of its last sub-term (after applying applicable substitutions), we
obtain Int as the overall result.

6 Semantics

We define CMFOTL’s semantics with respect to infinite temporal structures (i.e.,
traces), which associate a first-order structure with every time-point. The intro-
duction of complex data types requires a specific domain that provides the values
of all possible types. Moreover, it makes sense to provide a rigid interpretation
of CMFOTL’s constants so that they can be relied upon in specifications and
implemented directly in the monitor. We call this fixed part of the temporal
structures including the domain the base model. We construct the base model
from a suitable subset of terms that intuitively represent values which cannot
be simplified further by computation. As a consequence, all function values in
the base model are definable and equality over functions is intensional, i.e., it
depends on the functions’ definitions. This is sufficient in practice because in
our monitor implementation, variables of function type are instantiated only
with those functions that occur in the formula or with constants of the base
model; functions in the trace are not supported. Moreover, functions cannot be
compared for equality as they are not part of the Eq class.

All sub-terms and variables (including bound ones) have known types after
the successful completion of type inference. In this section, we use the type ascrip-
tion syntax t : τ both for sub-terms and variable binders to access those types.

Metric First-Order Temporal Logic with Complex Data Types 137

Moreover, we assume that all types are ground to simplify the formal semantics.
This is without loss of generality because all primitive values contained in our
base model are monomorphic.

The base model’s domain Dτ for type τ consists of a subset of terms (i.e.,
values) with type τ . Specifically, values are ground terms built inductively from
constants, record, variant, and rec constructors, as well as lambda abstractions
with an arbitrary term (i.e., not necessarily a value) for the body. Below, we use
D when the type is clear from the context.

Table 1 shows a subset of the constants included in the base model. For the
polymorphic constants, the base model specifically contains all ground instances
separately (e.g., eqBool, eqInt, and so forth). In addition, any integer, floating-
point, or string literal can be used as a constant of the corresponding types. We
also omit some string operations and conversions for lack of space. Note that
the boolean operators not, and, or do not supersede the corresponding opera-
tors in CMFOTL formulas: a term is always evaluated under a concrete assign-
ment to all of its free variables, whereas formulas can generate sets of assign-
ments. We assume that for every ground instance of a function-valued constant
c :: (τ1, . . . , τn) ⇒ ρ, there is a mapping c from Dτ1 × · · · × Dτn to Dρ which
interprets the constant.

Next, we define a small-step operational semantics for well-typed terms, using
call-by-value evaluation as implemented in our monitor. The single-step reduc-
tion relation � is the least relation closed under the rules shown in Fig. 3. Sim-
ilarly as for types, we write t[t′/x] for the capture-avoiding substitution of t′ for
variable x in the term t. Variables that occur only on the right-hand side of � are
assumed to be fresh. The new terms of the form mapfX.τ ;τ ′(t;x→t′) are only used
for the evaluation of folds. Intuitively, they apply the operation foldX.τ ′(u;x→t′)
to those subterms of the value t (which has type τ) that correspond to an occur-
rence of the type variable X. For example, we have for τ ≡ 〈None : {},Some : X〉

foldX.τ (mk Some(recμX.τ (mk None({})));x→0)
� (λ(x). 0)

(
mapfX.τ ;τ (mk Some(recμX.τ (mk None({})));x→0)

)

� (λ(x). 0)
(
mk Some(mapfX.X;τ (recμX.τ (mk None({}));x→0))

)

� (λ(x). 0)
(
mk Some(foldX.X(recμX.τ (mk None({}));x→0))

)

� (λ(x). 0)
(
mk Some((λ(x). 0)(mapfX.τ ;τ (mk None({});x→0)))

)

� (λ(x). 0)
(
mk Some((λ(x). 0)(mk None(mapfX.{};τ ({};x→0))))

)

� (λ(x). 0)
(
mk Some((λ(x). 0)(mk None({})))

)

� (λ(x). 0)
(
mk Some(0)

)
� 0.

The multi-step reduction relation �∗ is the reflexive and transitive closure of
�.

Our type system and term semantics have two important properties: type
soundness [26] and termination. These properties guarantee that our monitor
does not encounter run-time errors due to the policy using undefined operations
(the standard example being trying to add numbers and strings) and that it
always terminates on finite traces. CMFOTL’s term language is an extension of

138 J. Lima Graf et al.

Fig. 3. Small-step semantics for term evaluation

the simply typed lambda calculus and hence the standard technique of logical
relations [29,32] can be used to establish strong normalization into values, which
implies termination and, together with type preservation, soundness. However,
the fold operator and the recursion through functions in inductive types require
some care. We give proofs of the following theorems in the extended version [24].

Theorem 1. �∗ preserves ground types, i.e., � t :: τ and t �∗ t′ imply �
t′ :: τ .

Theorem 2. �∗ is strongly normalizing: For every ground term t such that
� t :: τ , there exists a unique normal form �t� ∈ Dτ such that t �∗ �t� and there
is no u with �t� � u.

A valuation v for a term t is a finite mapping from the term’s free vari-
ables xi : τi to values in the corresponding domains Dτi . Strong normaliza-

Metric First-Order Temporal Logic with Complex Data Types 139

Fig. 4. CMFOTL’s formula semantics

tion allows us to lift the term semantics to an evaluation function �t�(v) =
�t[v(x1)/x1, . . . , v(xn)/xn]� returning values. Observe that for ground terms,
evaluation results directly in the normal form, which justifies this mild abuse
of notation.

The relation v, i |= ϕ (Fig. 4) defines the satisfaction of the formula ϕ for
a given temporal structure, valuation v, and time-point i ∈ N. A temporal
structure is an infinite sequence (Ti,Di)i∈N of finite first-order structures Di

over the signature Δ with associated time-stamps Ti. This means that each Di

assigns to every relation symbol R : (τ1, . . . , τn) ∈ Δ a finite subset of Dτ1 ×
· · · ×Dτn . Time-stamps are natural numbers Ti ∈ N. They need not be unique,
but we require that time-stamps are monotone (∀i. Ti ≤ Ti+1) and unbounded
(∀T. ∃i. T < Ti). Overall, the semantics is the same as MFOTL’s, except for the
addition of assertions.

7 Implementation

Our monitor for CMFOTL is an extension of the MonPoly tool [7], which is
written in OCaml. In particular, we modified MonPoly’s signature and formula
parser, type inference code, and internal representation of domain values. Instead
of MonPoly’s first-order signature, our extension takes as input a user-facing sig-
nature. It allows the specification of nested and recursive structures, which are
used to parse a stream of time-stamped JSON events. The events are subse-
quently mapped to instances of CMFOTL types based on our signature transla-
tion.

7.1 Signature Translation

We introduce the user-facing signature format and develop a translation to a
first-order signature (Sect. 5.1). The user-facing signature serves two purposes:
it defines the CMFOTL types used for type inference and it guides the parsing
of JSON events. The syntax is geared towards usability. It consists of JSON
values representing types that may refer to each other by name. Therefore, the
translation to first-order signature is non-trivial in the presence of circular name
references.

140 J. Lima Graf et al.

The user-facing signature is a sequence of record type definitions. Each defi-
nition consists of a type name followed by a symbolic record type. The definition
may be prefixed by the keyword event, which marks the type as an event type.
Only event types may occur as top-level objects in the JSON event stream. The
field types γi of a symbolic record type must conform to the grammar

γ ::= δ | δ? | [δ] | [δ?]
δ ::= name | {l : γ, . . . , l : γ} | Null | Int | Float | String | Bool

where name refers to any type defined in the user-facing signature, including the
current one. A question mark indicates an optional field and square brackets are
used for arrays.

Each named type defined in the user-facing signature as name {l1 : γ1, . . . , ln :
γn} is translated to a CMFOTL type τname = �{l1 : γ1, . . . , ln : γn}� according
to the rules

�δ?� = 〈None : {}, Some : �δ�〉 �[δ]� = μL. 〈Nil : {},Cons : {hd : �δ�, tl : L}〉
�name� = τname �{l1 : γ1, . . . , ln : γn}� = {l1 : �γ1�, . . . , ln : �γn�} �Null� = {}

�Int� = Int �Float� = Float �String� = Str �Bool� = Bool

However, this translation fails if there is a circular dependency (direct or indirect)
between named types, as this would result in an infinite type expression. A named
type τ1 depends directly on a named type τ2 iff the latter occurs in τ1’s definition.
We use the following algorithm to translate circular dependencies into inductive
types.

1. All direct type dependencies are represented as a directed graph. We compute
the graphs’s strongly connected components. The edges between the strongly
connected components form a tree which is processed from the leaves to the
root.

2. Every component consisting of a single named type that does not refer to
itself can be translated immediately as above.

3. If a component contains multiple nodes or a single component has an edge
pointing to itself, it indicates the presence of one or more inductive types.
We choose one node in the component based on a heuristic. The choice does
not matter for correctness, but it influences the syntactic structure of the
obtained types. If only one node is referenced from other components, it is
selected. Otherwise, the node with the highest number of incoming edges from
other components, or the single event type if it exists, is selected. If there is
a tie, the type declared first in the signature takes precedence.

4. After selecting the node τ , all incoming edges to that node are removed from
the component, and the algorithm is recursively applied to the component’s
subgraph. Any reference to the named type τ is translated as the type variable
Xτ .

5. Finally, τ is translated to μXτ .�{l : γ, . . . }�, where {l : γ, . . . } is the definition
of τ .

Metric First-Order Temporal Logic with Complex Data Types 141

The resulting first-order signature consists of one unary predicate for each
event record type. The predicate ranges over the corresponding translated type.
To continue the example from Sect. 2, the user may specify the signature

event Send {parcel: Box, customer: string?}
Box {content: [Box]}

It is translated to the types τSend = {parcel : τBox, customer : 〈None : {},Some :
Str〉} and τBox = μXBox. {content : μL. 〈Nil : {},Cons : {hd : XBox, tl : L}〉}. The
user may refer to the predicate Send(τSend) in their specifications. For instance,
the formula Send(s) ∧ ↓(s.customer = mk None) detects all Send events without
a customer.

The above algorithm ensures that the translations of mutually dependent
types can be used directly within each other. To illustrate why this is not imme-
diate, consider the type specifications A {x: B?} and B {y: A?}. An intuitive
translation might be τA = μXA. {x : {y : XA?}?} and τB = μXB . {y : {x :
XB?}?} (abbreviating the variant types for optional fields by a question mark).
However, a value b of type τB cannot be used in the field x when constructing
a value of type τA because the types do not match. One has to fold b first to
adjust its type. Our approach yields τA = μXA. {x : μXB . {y : XA?}?} and
τB = μXB . {y : τA?}, which are more complex expressions but do not require
such conversions. The main disadvantage of our approach is that the size of the
translated types has the fairly tight upper bound n2n/3+1, where n is the size of
the user-facing signature (see the extended version of this paper [24] for details).
This severely limits its use for complex recursive signatures. In future work,
we plan to extend the type system and inference algorithm to directly support
mutually recursive types.

7.2 Monitoring Algorithm

Our implementation inherits MonPoly’s approach to monitoring first-order prop-
erties. The fundamental principle is to decompose the formula into sub-formulas
that evaluate to finite relations at every time-point of the event stream. The rela-
tions are then combined from the bottom up along the formula’s tree structure
using a fixed set of operators, each of which corresponds to one or few MFOTL
operators. Not all formulas can be decomposed readily in this way. Therefore,
the monitor supports only a fragment, called the monitorable fragment, of the
specification language. MonPoly’s monitoring algorithm has been described in
detail elsewhere [6] and so we focus on the necessary adjustments for CMFOTL.

Assertions ↓t are considered monitorable on their own only if t simplifies to
a ground term, which must be true or false. Otherwise, assertions must be used
as part of a conjunction ϕ ∧ ↓t such that fv(t) ⊆ fv(ϕ) and ϕ is monitorable.
In this case, ϕ is evaluated first to obtain a finite relation R. Each of R’s tuple
gives rise to a valuation compatible with t, such that t can be evaluated under
this valuation. The tuples for which t is true form the relation computed for
ϕ ∧ ↓t. When monitoring MFOTL using MonPoly, the formula ϕ ∧ (x = t) is
monitorable even if x is not free in ϕ. This is a useful pattern as it can be used

142 J. Lima Graf et al.

to assign computed values to new variables. Therefore, our monitor supports it
as a special case by evaluating only the term t under each of ϕ’s valuations and
assigning the result to x.

We see that it suffices to generalize the evaluation of terms. In MonPoly,
domain values are represented by a single OCaml data type cst, which is a
variant type combining integers, floats, and strings. We maintain this design
and add three constructors to cst: one for records (represented by an association
lists from field labels to cst), one for variant constructors (represented by a pair
of the constructor name and a cst), and one for OCaml function closures of
type cst list -> cst. We build a straightforward interpreter computing a cst
value from a term and a valuation according to term semantics (Fig. 3). Note
that cst does not mark the boundaries of inductive types. Hence, rec and unrec
are ignored during monitoring.

The monitor’s input is a stream of JSON values, each prefixed by a time-
stamp. We parse the JSON value using the Yojson library, which returns a tree-
like representation that we match recursively against the record types declared
as event in the user-facing signature. (We currently only support records as
top-level events.) Once a matching record type τ has been found, we transform
the event to a cst value that is consistent with the type translation from the
user-facing signature. We then create a first-order structure where the relation
for τ is a singleton set containing the transformed value; all other relations are
empty. This structure is processed by the main monitoring loop.

8 Examples and Evaluation

We illustrate CMFOTL with several examples. Some of them can also be
expressed in MFOTL using a pre-processed log, as mentioned in the intro-
duction. We compare the two languages with an earlier encoding approach by
Zumsteg [35]. The encoding approach corresponds essentially to a fragment of
CMFOTL without variant, inductive, and function types. The implementation is
different, however: JSON objects are translated to graphs that can be represented
by ordinary first-order structures. Our qualitative comparison is complemented
by benchmark results using synthetic logs.

The first example session formalizes the property from the introduction
(every client accessing the /secure URL must have a valid session, not older than
600 seconds, established previously by visiting /login), where we have already
shown the pre-processed MFOTL version. A suitable user-facing signature for
the JSON events is

event Access {url: string, client: string, session: Session?}
Session {id: int, token: string}

The session field is optional and hence it will be mapped to an option type.
We must negate and rewrite the CMFOTL formula to make it conform to the

Metric First-Order Temporal Logic with Complex Data Types 143

monitorable fragment:

Access({url : /secure, client : _, session : mk None}) ∨
∃c, s. Access({url : /secure, client : c, session : s}) ∧

¬(
�[0,600) Access({url : /login, client : c, session : s})

)

Here we pattern-match on the Access predicate’s arguments, which helps with
monitorability: ϕ ∧ ¬ψ is monitorable in general only if fv(ψ) ⊆ fv(ϕ) [6].
Specifically, we extract the client and session fields and assign them to vari-
ables. While having well-defined semantics, the pattern matching itself is cur-
rently not supported by the implementation and must be manually translated
to ∃a.Access(a) ∧ ↓(a.url = . . .) ∧

The formula for the encoding approach is similar, except that there is no
option type. We replace it with a Boolean flag in the session record indicating
whether the session exists.

In the logout example, we check that every login is followed by a logout by
the same client and with the same session within 600 seconds. This property is
naturally expressed using a future operator (again showing the negation):

∃c, s. Access({url : /login, client : c, session : s}) ∧
¬(

♦[0,600) Access({url : /logout, client : c, session : s})
)

This corresponds to the negated MFOTL formula Access(/login, c, s, id , t) ∧
¬♦[0,600) Access(/logout, c, s, id , t) for the pre-processed trace.

The last two examples cannot be expressed in MFOTL because they involve
arbitrarily nested records. The boxes formula uses the signature from Sect. 7.1.
It identifies those deliveries for which the total number of all boxes in the parcel
exceeds ten:

Send(s) ∧ ↓(
foldBox(s.parcel; b→foldBox_content(b.content; l→

case(l;Nil→1, Cons(c)→c.hd + c.tl))) > 10
)

We use two nested folds because there are two nested inductive types: the Box
type and the list for the content array. Our implementation provides an abbre-
viation mechanism for inductive types obtained from the user-facing signature.
For example, Box_content refers to the translated type for the content field.

Finally, we demonstrate an application of lambda functions. Assume that the
signature is event D {lst: [int]}. The following is the CMFOTL version of
the standard functional programming example for reversing a list in linear time:

D(d) ∧ ↓(ys = foldD_lst(d.lst; xs→case(xs;Nil→(λ(ys). ys), Cons(c)→
(λ(ys). c.tl(recD_lst(mk Cons({hd : c.hd, tl : ys}))))))

)
(recD_lst(mk Nil))

We use lambdas to pass an additional parameter (the accumulator ys) along
with the fold. The fold essentially computes a function that is applied to the
empty list recD_lst(mk Nil).

144 J. Lima Graf et al.

Table 2. Benchmark results (runtime in seconds, arithmetic mean over three repeti-
tions)

Events session logout boxes reverse
cpx enc ohd proc cpx enc ohd proc cpx cpx

1 × 105 0.89 1.06 19% 0.28 0.84 1.19 42% 0.18 1.46 1.48
2 × 105 2.21 2.69 22% 0.55 2.07 2.87 39% 0.35 4.11 3.78
3 × 105 4.02 4.88 21% 0.81 3.73 5.21 40% 0.53 7.41 7.11
4 × 105 6.19 7.64 23% 1.09 5.86 7.90 35% 0.71 11.91 10.90

We performed small-scale benchmarks using randomly generated traces to get
a first impression of the relative performance of CMFOTL. There are at least two
sources of a potential slowdown: JSON parsing and the fact that the formulas
using complex data types involve additional operations to access individual fields.

Table 2 shows the results, which were obtained on a 2.5GHz CPU (Intel Core
i5-7200U) with turbo-boost disabled. The cpx, enc, and ohd columns display
the runtime in seconds for the CMFOTL, the encoding, and the MFOTL with
pre-processing approaches. The ohd column displays the relative overhead of
enc compared to cpx. We observe that this overhead is approximately constant
relative to the number of events for each of the session and logout examples.
However, monitoring using pre-processed events is faster by a factor between 3
and 8 in our experiments. We point out that our measurements do not include
the pre-processing itself.

9 Related Work

The type system previously used by MonPoly offers simple types and polymor-
phism, with type classes for numeric and ordered types only. This type system
and its inference algorithm have been subsequently formalized and verified [22]
within the VeriMon project [2]. Zumsteg’s BSc thesis [35] added records (i.e.,
product types with named fields) to MonPoly’s type system, but translated them
back to simple types during the monitoring. Computations over inductive types
can also be encoded as computation on simple types if the specification language
supports a general-purpose recursion combinator [34].

BeepBeep 3 [18] is an event stream processing engine that supports multiple
specification languages including the logic LTL-FO+, a first-order extension of
LTL. It also supports traces consisting of arbitrary XML-based events that can
be queried using XPath expressions. Unlike in CMFOTL, quantifiers in LTL-
FO+ range only over the values present in the current event in the trace. There
is also no support for past temporal operators, nor for metric constraints.

The ParTraP [8,9] tool has been developed to monitor medical devices. Par-
TraP’s traces are sequences of JSON objects. Each object must carry its type
and time in a hardcoded format. Our tool does not require type annotations in

Metric First-Order Temporal Logic with Complex Data Types 145

the trace. ParTraP also provides only local quantification over values in JSON
lists that occur in the trace.

Lola [14] and its temporal extension TeSSLa [23] are specification languages
that rely on stream equations for specifying properties. They are designed to
focus on temporal operations on streams, whereas the streams’ data is left under-
specified, possibly assuming arbitrary data types. HLola [17] is a stream runtime
verification tool that uses Lola as its core language and implements support for
arbitrary data types. It supports input streams provided in JSON or CSV for-
mat and relies on code written in Haskell from which it inherits all available
data types to describe the structure of input and output streams. Haskell’s high-
order functions are particularly useful for modularity and abstraction when writ-
ing specifications. However, HLola does not guarantee termination and inherits
Haskell’s complexity when it comes to understanding the semantics of the specifi-
cations. The latter also applies to LogFire [20], Copilot [30] and other DSL-based
tools.

E-ACSL [31] and OpenJML [12] can check C and Java functions at runtime
for compliance against their contracts. Both tools support contract languages
that have rich types (in fact, any type supported by their respective programming
language), but amount to assertions without support for temporal operators.

10 Conclusion

We proposed CMFOTL, a first-order specification language for runtime verifi-
cation that supports complex data types and has simple, yet precise, semantics.
We did so by extending metric first-order temporal logic with function, record,
variant, and inductive types. We developed a type system and semantics for our
new logic as well as a type inference algorithm, and extended MonPoly’s mon-
itoring algorithm to support our new language. Future work includes adding
pattern matching, polymorphic let-bindings for terms, and support for custom
variant types in the user-facing signature.

Acknowledgments. Remo Zumsteg contributed to adding product types to
CMFOTL via an encoding approach. François Hublet and Dmitriy Traytel contributed
to CMFOTL’s type system and semantics. We thank the anonymous reviewers for
helping us improve the presentation of this paper.

References

1. Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. Inf.
Comput. 104(1), 35–77 (1993). https://doi.org/10.1006/inco.1993.1025

2. Basin, D., et al.: VeriMon: a formally verified monitoring tool. In: Seidl, H., Liu, Z.,
Pasareanu, C.S. (eds.) ICTAC 2022. LNCS, vol. 13572, pp. 1–6. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-17715-6_1

3. Basin, D., et al.: A formally verified, optimized monitor for metric first-order
dynamic logic. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS
(LNAI), vol. 12166, pp. 432–453. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51074-9_25

https://doi.org/10.1006/inco.1993.1025
https://doi.org/10.1007/978-3-031-17715-6_1
https://doi.org/10.1007/978-3-030-51074-9_25
https://doi.org/10.1007/978-3-030-51074-9_25

146 J. Lima Graf et al.

4. Basin, D., et al.: Monitoring the internet computer. In: Chechik, M., Katoen,
J.P., Leucker, M. (eds.) FM 2023. LNCS, vol. 14000, pp. 383–402. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-27481-7_22

5. Basin, D., Klaedtke, F., Marinovic, S., Zălinescu, E.: Monitoring of temporal first-
order properties with aggregations. Formal Methods Syst. Des. 46(3), 262–285
(2015). https://doi.org/10.1007/s10703-015-0222-7

6. Basin, D., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric first-order
temporal properties. J. ACM 62(2), 15:1–15:45 (2015). https://doi.org/10.1145/
2699444

7. Basin, D., Klaedtke, F., Zalinescu, E.: The MonPoly monitoring tool. In: Reger,
G., Havelund, K. (eds.) Workshop on Competitions, Usability, Benchmarks, Eval-
uation, and Standardisation for Runtime Verification Tools (RV-CuBES). Kalpa,
vol. 3, pp. 19–28. EasyChair (2017). https://doi.org/10.29007/89hs

8. Blein, Y., Ledru, Y., du Bousquet, L., Groz, R.: Extending specification patterns for
verification of parametric traces. In: Gnesi, S., Plat, N., Spoletini, P., Pelliccione,
P. (eds.) Conference on Formal Methods in Software Engineering (FormaliSE), pp.
10–19. ACM (2018). https://doi.org/10.1145/3193992.3193998

9. Ben Cheikh, A., Blein, Y., Chehida, S., Vega, G., Ledru, Y., du Bousquet, L.: An
environment for the ParTraP trace property language (tool demonstration). In:
Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 437–446. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03769-7_26

10. Chen, K., Hudak, P., Odersky, M.: Parametric type classes. In: White, J.L. (ed.)
Conference on Lisp and Functional Programming (LFP), pp. 170–181. ACM
(1992). https://doi.org/10.1145/141471.141536

11. Chomicki, J.: Efficient checking of temporal integrity constraints using bounded
history encoding. ACM Trans. Database Syst. 20(2), 149–186 (1995). https://doi.
org/10.1145/210197.210200

12. Cok, D.R.: OpenJML: software verification for Java 7 using JML, OpenJDK, and
eclipse. In: Dubois, C., Giannakopoulou, D., Méry, D. (eds.) Workshop on Formal
Integrated Development Environment (F-IDE). EPTCS, vol. 149, pp. 79–92 (2014).
https://doi.org/10.4204/EPTCS.149.8

13. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: DeMillo,
R.A. (ed.) ACM Symposium on Principles of Programming Languages (POPL),
pp. 207–212. ACM Press (1982). https://doi.org/10.1145/582153.582176

14. D’Angelo, B., et al.: LOLA: runtime monitoring of synchronous systems. In: Sym-
posium on Temporal Representation and Reasoning (TIME), pp. 166–174. IEEE
(2005). https://doi.org/10.1109/TIME.2005.26

15. Dybjer, P.: Representing inductively defined sets by wellorderings in Martin-Löf’s
type theory. Theor. Comp. Sci. 176(1–2), 329–335 (1997). https://doi.org/10.1016/
S0304-3975(96)00145-4

16. Gordon, M.J., Milner, A.J., Wadsworth, C.P.: Edinburgh LCF: A Mechanised
Logic of Computation. Springer, Heidelberg (1979). https://doi.org/10.1007/3-
540-09724-4

17. Gorostiaga, F., Sánchez, C.: HLola: a very functional tool for extensible stream
runtime verification. In: TACAS 2021. LNCS, vol. 12652, pp. 349–356. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-72013-1_18

18. Hallé, S., Khoury, R.: Event stream processing with BeepBeep 3. In: Reger, G.,
Havelund, K. (eds.) Workshop on Competitions, Usability, Benchmarks, Evalua-
tion, and Standardisation for Runtime Verification Tools (RV-CuBES). Kalpa, vol.
3, pp. 81–88. EasyChair (2017). https://doi.org/10.29007/4cth

https://doi.org/10.1007/978-3-031-27481-7_22
https://doi.org/10.1007/s10703-015-0222-7
https://doi.org/10.1145/2699444
https://doi.org/10.1145/2699444
https://doi.org/10.29007/89hs
https://doi.org/10.1145/3193992.3193998
https://doi.org/10.1007/978-3-030-03769-7_26
https://doi.org/10.1145/141471.141536
https://doi.org/10.1145/210197.210200
https://doi.org/10.1145/210197.210200
https://doi.org/10.4204/EPTCS.149.8
https://doi.org/10.1145/582153.582176
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1016/S0304-3975(96)00145-4
https://doi.org/10.1016/S0304-3975(96)00145-4
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1007/978-3-030-72013-1_18
https://doi.org/10.29007/4cth

Metric First-Order Temporal Logic with Complex Data Types 147

19. Harper, R.: Practical Foundations for Programming Languages, 2nd edn. Cam-
bridge University Press, Cambridge (2016)

20. Havelund, K.: Rule-based runtime verification revisited. Int. J. Softw. Tools Tech-
nol. Transf. 17(2), 143–170 (2015). https://doi.org/10.1007/s10009-014-0309-2

21. Havelund, K., Peled, D., Ulus, D.: DejaVu: a monitoring tool for first-order tem-
poral logic. In: Workshop on Monitoring and Testing of Cyber-Physical Sys-
tems (MT@CPSWeek), pp. 12–13. IEEE (2018). https://doi.org/10.1109/MT-
CPS.2018.00013

22. Kaletsch, N.: Formalizing typing rules for VeriMon. Bachelor thesis, ETH Zürich
(2021)

23. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Schramm, A.: TeSSLa: runtime
verification of non-synchronized real-time streams. In: Haddad, H.M., Wainwright,
R.L., Chbeir, R. (eds.) ACM Symposium on Applied Computing (SAC), pp. 1925–
1933. ACM (2018). https://doi.org/10.1145/3167132.3167338

24. Lima Graf, J., Krstić, S., Schneider, J.: Metric first-order temporal logic with
complex data types. Technical report, ETH Zürich (2023), https://bitbucket.org/
jshs/monpoly/src/cmfodl2/paper.pdf

25. Lima Graf, J., Krstić, S., Schneider, J.: MonPoly extended with complex data types
(2023). https://bitbucket.org/jshs/monpoly/src/cmfodl2/

26. Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst. Sci.
17(3), 348–375 (1978). https://doi.org/10.1016/0022-0000(78)90014-4

27. Morris Jr, J.H.: Lambda-calculus models of programming languages. Ph.D. thesis,
MIT (1969)

28. Ohori, A.: A polymorphic record calculus and its compilation. ACM Trans. Pro-
gram. Lang. Syst. 17(6), 844–895 (1995). https://doi.org/10.1145/218570.218572

29. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
30. Pike, L., Goodloe, A., Morisset, R., Niller, S.: Copilot: a hard real-time runtime

monitor. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace,
G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 345–
359. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9_26

31. Signoles, J., Kosmatov, N., Vorobyov, K.: E-ACSL, a runtime verification tool for
safety and security of C programs (tool paper). In: Reger, G., Havelund, K. (eds.)
Workshop on Competitions, Usability, Benchmarks, Evaluation, and Standardi-
sation for Runtime Verification Tools (RV-CuBES). Kalpa, vol. 3, pp. 164–173.
EasyChair (2017). https://doi.org/10.29007/fpdh

32. Statman, R.: Logical relations and the typed λ-calculus. Inf. Control 65(2/3), 85–
97 (1985). https://doi.org/10.1016/S0019-9958(85)80001-2

33. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad-hoc. In: Sym-
posium on Principles of Programming Languages (POPL), pp. 60–76. ACM Press
(1989). https://doi.org/10.1145/75277.75283

34. Zingg, S., Krstić, S., Raszyk, M., Schneider, J., Traytel, D.: Verified first-order
monitoring with recursive rules. In: TACAS 2022. LNCS, vol. 13244, pp. 236–253.
Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99527-0_13

35. Zumsteg, R.: Monitoring complex data types. Bachelor thesis, ETH Zürich (2022)

https://doi.org/10.1007/s10009-014-0309-2
https://doi.org/10.1109/MT-CPS.2018.00013
https://doi.org/10.1109/MT-CPS.2018.00013
https://doi.org/10.1145/3167132.3167338
https://bitbucket.org/jshs/monpoly/src/cmfodl2/paper.pdf
https://bitbucket.org/jshs/monpoly/src/cmfodl2/paper.pdf
https://bitbucket.org/jshs/monpoly/src/cmfodl2/
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/218570.218572
https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.29007/fpdh
https://doi.org/10.1016/S0019-9958(85)80001-2
https://doi.org/10.1145/75277.75283
https://doi.org/10.1007/978-3-030-99527-0_13

Runtime Verification Prediction for Traces
with Data

Moran Omer and Doron Peled(B)

Department of Computer Science, Bar Ilan University, Ramat Gan, Israel
doron.peled@gmail.com

Abstract. Runtime verification (RV) can be used for checking the execution of a
system against a formal specification. First-order temporal logic allows express-
ing constraints on the order of occurrence of events and the data that they carry.
We present an algorithm for predicting possible verdicts, within (some paramet-
ric) k events, for online monitoring executions with data against a specification
written in past first-order temporal logic. Such early prediction can allow preven-
tive actions to be taken as soon as possible. Predicting verdicts involves checking
multiple possibilities for extensions of the monitored execution. The calculations
involved in providing the prediction intensify the problem of keeping up with the
speed of occurring events, hence rejecting the naive brute-force solution that is
based on exhaustively checking all the extensions of a certain length. Our method
is based on generating representatives for the possible extension, which guaran-
tee that no potential verdict is missed. In particular, we take advantage of using
BDD representation, which allows efficient construction and representation of
such classes. The method is implemented as an extension of the RV tool DejaVu.

1 Introduction

Runtime verification (RV) allows verifying system executions against a specification,
either online as the traces are generated or offline. Monitoring is often confined to safety
properties, where a failure to satisfy the specification occurs when the inspected prefix
of execution cannot be extended in any way that would satisfy the specification. The
specification is typically expressed using automata or temporal logic. In particular, past
time propositional temporal logic can be used to express safety properties [24], allow-
ing an efficient RV monitoring algorithm [18]. A monitored execution trace may further
consist of events that contain observed data values. To deal with observations with data,
RVmonitoring was extended to use first-order past temporal logic [5,15]. Other RV sys-
tems that monitor sequences of events with data include [1–4,6,11–14,16,19,25,26].

While detecting failures at run time can be used to terminate bad executions, pre-
dicting the possibility of failures before they occur can be used to employ preventing
measures. We present here an algorithm for predicting a potential failure during the
RV monitoring a few steps before it can potentially happen. Our prediction algorithm
involves the computation of possible futures of the next k events.

The research performed by the authors was partially funded by Israeli Science Foundation grant
1464/18: “Efficient Runtime Verification for Systems with Lots of Data and its Applications”.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 148–167, 2023.
https://doi.org/10.1007/978-3-031-44267-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_8&domain=pdf
https://doi.org/10.1007/978-3-031-44267-4_8

Runtime Verification Prediction for Traces with Data 149

In online RV, it is essential to keep the incremental complexity, i.e., the amount of
computation performed between consecutively events, as small as possible so that we
keep up with the speed of reported events. This pace can be smoothened-up to a certain
extent with the help of a buffer, but not for the long run. For predictive RV, the problem
of minimizing the incremental complexity intensifies, as it involves analyzing different
possibilities for the following k events. A straightforward algorithm goes through all
possible event sequences for the next k steps, stopping when a failure occurs. This type
of “brute-force” approach is immediately disqualified because of the incremental time
complexity of O(nk), where n is the number of available possibilities for each event. In
the case of monitoring events with data, n can be huge, or even, in principle, unbounded.

Our approach is based on using equivalence classes between data values that occur
within events, which generate isomorphic extensions to the current observed trace. Then
our algorithm restricts itself to using representatives from these equivalence classes for
extending the current observed trace. This is shown to be sufficient to preserve the cor-
rectness of the prediction. In particular, we show how to take advantage of BDD repre-
sentation, as is used in the DejaVu system [15] to calculate the equivalence classes and
select representatives. We describe the algorithm and its implementation as an exten-
sion of the DejaVu system. We demonstrate the algorithm with experimental results
and show that our method provides a substantial improvement over the straightforward
prediction algorithm.

An early verdict for a finite trace against a propositional temporal specification,
based on the agreement between all of its possible infinite extensions, can be calculated
based on translating the specification into an automaton [21]. We show that for first-
order properties of the form �ϕ, where ϕ is a past first-order temporal logic property,
calculating such a verdict is undecidable. This further motivates our k-step predictive
algorithm as a practical compromise, when an early prediction of failures is required.
This also gives an explanation of the reason why systems like DejaVu [15] and MON-
POLY [5] provide only the immediate true/false verdict per each input prefix against the
past first-order LTL specification ϕ rather than for �ϕ.

Predictive Runtime Verification (PRV), has been proposed as an extension to stan-
dard runtime verification for propositional LTL in [27,28]. There, extensions to the
currently observed trace are proposed based on static analysis or abstraction of the
monitored system. A prediction of runtime verdicts based on assumptions about the
monitored system is described in [10]. This is done using SMT-based model checking.
That work also performs the prediction for a first-order LTL, but this version of the
logic is restricted not to have quantifiers. This approach is orthogonal to ours, where
our approach does not assume any further knowledge that can be used in generating
such extensions; but combining the two approaches, when possible, can be beneficial.
Predictive semantics for propositional LTL was used in [28] based on providing an early
verdict for satisfaction of all extensions or failure to satisfy of all extensions for an LTL
property based a on minimally observed trace. Providing such verdicts is also related
to the notion of monitorability [7], classifying a finite trace based on all of its possible
extensions as good or bad respectively. An algorithm for providing such an early verdict
was given in [21].

150 M. Omer and D. Peled

For a past time LTL ϕ, one can employ an efficient algorithm that returns a true/false
answer per each finite prefix that is monitored. Hence, the outcome can alternate
between these two results. A false answer for a past property ϕ is sufficient to provide
a failure verdict for the safety specification ϕ, albeit using an automata based algorithm
such as [21] could have sometimes predict that failure is unavoidable after a shorter pre-
fix. In [20], anticipatory monitoring is defined to provide the possible future verdicts
after a given trace, which is also the goal of our paper. Anticipatory monitoring allows
providing further information: the shortest distance to a true output and the longest dis-
tance to a false output. That work also includes a decision procedure for calculating
this information for past LTL, based on a DFS on an automaton that is used to per-
form the monitoring. Our goal is to provide predictions for the future verdicts for traces
with data with respect to a specification in first-order past temporal logic. We use here
the unifying term predictive monitoring to refer both to the case that we calculate the
possible verdicts after a bounded number of look-ahead steps as in anticipatory moni-
toring, for which we provide an algorithm for first-order past temporal logic, and to the
case where early verdicts based on all the possible infinite extensions are sought (for an
impossibility result).

2 Preliminaries

2.1 Past Time First-Order Temporal Logic

The QTL logic, used by the DejaVu tool [15,31] and as a core subset of the logic used by
the MONPOLY tool [5], is a specification formalism that allows expressing properties of
executions that include data. The restriction to past time allows interpreting the formulas
on finite traces.

Syntax. The formulas of the QTL logic are defined using the following grammar, where
p stands for a predicate symbol, a is a constant and x is a variable.

For simplicity of the presentation, we define here the QTL logic with unary pred-
icates, but this is not due to a principal restriction, and in fact QTL supports pred-
icates over multiple arguments, including zero arguments, corresponding to proposi-
tions. The DejaVu system, as well as the method presented in this paper and its imple-
mentation [30], fully supports predicates over multiple arguments.

ϕ ::= true | p(a) | p(x) | (ϕ∧ψ) | ¬ϕ | (ϕ S ψ) | �ϕ | ∃x ϕ

Denote by η ∈ sub(ϕ) the fact that η is a subformula of ϕ. A QTL formula can be inter-
preted over multiple types (domains), e.g., natural numbers or strings. Accordingly,
each variable, constant and parameter of predicate is defined over a specific type (such
type declarations can appear external to the QTL formula). Type matching is enforced,
e.g., for p(a) (p(x), respectively), the types of the parameter of p and of a (x, respec-
tively) must be the same. We denote the type of a variable x by type(x).

Propositional past time linear temporal logic is obtained by restricting the predicates
to be parameterless, essentially Boolean propositions; then, no variables, constants and
quantification is needed either.

Runtime Verification Prediction for Traces with Data 151

Semantics. A QTL formula is interpreted over a trace (or observation), which is a finite
sequence of events. Each event consists of a predicate symbol and parameters, e.g.,
p(a), q(7). It is assumed that the parameters belong to particular domains that are asso-
ciated with (places in) the predicates. The events in a trace are separated by dots, e.g.,
p(a).q(7).p(b). A more general semantics can allow each event to consist of a set of
predicates with parameters1. However, this is not allowed in DejaVu and in the context
of this paper; for predictive RV, such generalized events can increase the complexity
dramatically.

QTL subformulas have the following informal meaning: p(a) is true if the last event
in the trace is p(a). The formula p(x), for some variable x, holds if x is bound to a
constant a such that p(a) is the last event in the trace. The formula (ϕ S ψ), which
reads as ϕ since ψ, means that ψ holds in some prefix of the current trace, and for all
prefixes between that one and the current trace, ϕ holds. The since operator is the past
dual of the future time until modality. The property � ϕ means that ϕ is true in the
trace that is obtained from the current one by omitting the last event. This is the past
dual of the future time next modality. The formula ∃x ϕ is true if there exists a value
a such that ϕ is true with x bound to a. We can also define the following additional
derived operators: false= ¬true, (ϕ∨ψ) = ¬(¬ϕ∧¬ψ), (ϕ → ψ) = (¬ϕ∨ψ), � ϕ =
(trueS ϕ) (“previously”), � ϕ = ¬ � ¬ϕ (“always in the past” or “historically”), and
∀x ϕ = ¬∃x ¬ϕ.

Formally, let free(η) be the set of free (i.e., unquantified) variables of a subformula
η. Let γ be an assignment to the variables free(η). We denote by γ[v
→ a] the assignment
that differs from γ only by associating the value a to x; when γ assigns only to the
variable x, we simply write [v
→ a]. Let σ be a trace of events of length |σ| and i a
natural number, where i ≤ |σ|. Then (γ,σ, i) |= η if η holds for the prefix of length i of
σ with the assignment γ.

We denote by γ|free(ϕ) the restriction (projection) of an assignment γ to the free
variables appearing in ϕ. Let ε be an empty assignment. In any of the following cases,
(γ,σ, i) |= ϕ is defined when γ is an assignment over free(ϕ), and i ≥ 1.

– (ε,σ, i) |= true.
– (ε,σ, i) |= p(a) if σ[i] = p(a).
– ([x
→ a],σ, i) |= p(x) if σ[i] = p(a).
– (γ,σ, i) |= (ϕ∧ψ) if (γ|free(ϕ),σ, i) |= ϕ and (γ|free(ψ),σ, i) |= ψ.
– (γ,σ, i) |= ¬ϕ if not (γ,σ, i) |= ϕ.
– (γ,σ, i) |= (ϕ S ψ) if for some 1 ≤ j ≤ i, (γ|free(ψ),σ, j) |= ψ and for all j < k ≤ i,
(γ|free(ϕ),σ,k) |= ϕ.

– (γ,σ, i) |= �ϕ if i > 1 and (γ,σ, i−1) |= ϕ.
– (γ,σ, i) |= ∃x ϕ if there exists a ∈ type(x) such that (γ [x
→ a],σ, i) |= ϕ.

Set Semantics. We define an alternative semantics that is equivalent to the standard
semantics presented above, but it presents the meaning of the formulas from a different
point of view: the standard semantics defines whether a subformula holds given (1) an

1 In the generalized semantics, the condition σ[i] = p(a) in the definition for the p(a) and p(x)
subformulas should be replaces with p(a) ∈ σ[i] and similarly in the subsequent set semantics.

152 M. Omer and D. Peled

assignment of values to the (free) variables appearing in the formula, (2) a trace and (3) a
position in the trace. Instead, set semantics gives the set of assignments that satisfy the
subformula given a trace and a position in it.

Set semantics allows presenting of the RV algorithm for QTL in a similar way
to the RV algorithm for propositional past time temporal logic [15]. Let I[ϕ,σ, i] be
the interpretation function that returns a set of assignments such that (γ,σ, i) |= ϕ iff
γ|free(ϕ) ∈ I[ϕ,σ, i]. The empty set of assignments /0 behaves as the Boolean constant
false and the singleton set {ε}, which contains the empty assignment ε, behaves as the
Boolean constant true. The union

⋃
and intersection

⋂
operators on sets of assignments

are defined, even if they are applied to non-identical sets of variables; in this case, the
assignments are extended to the union of the variables. Thus intersection between two
sets of assignments A1 and A2 is defined like database “join” operator; i.e., it consists of
the assignments whose projection on the common variables agrees with an assignment
in A1 and with an assignment in A2. Union is defined as the dual operator of intersection.

Let A be a set of assignments. We denote by hide(A,x) (for “hiding” the variable
x) the set of assignments obtained from A after removing from each assignment the
mapping from x to a value. In particular, if A is a set of assignments over only the
variable x, then hide(A,x) is {ε} when A is nonempty, and /0 otherwise. Afree(ϕ) is the
set of all possible assignments of values to the variables that appear free in ϕ. For
convenience of the set semantics definition, we add a 0 position for each sequence
σ, where I returns the empty set for each formula. The set semantics is shown in the
following. For all occurrences of i, it is assumed that i ≥ 1.

– I[ϕ,σ,0] = /0.
– I[true,σ, i] = {ε}.
– I[p(a),σ, i] = if σ[i] = p(a) then {ε} else /0.
– I[p(x),σ, i] = {[x
→ a] | σ[i] = p(a)}.
– I[¬ϕ,σ, i] = Afree(ϕ) \ I[ϕ,σ, i].
– I[(ϕ∧ψ),σ, i] = I[ϕ,σ, i]

⋂
I[ψ,σ, i].

– I[�ϕ,σ, i] = I[ϕ,σ, i−1].
– I[(ϕ S ψ),σ, i] = I[ψ,σ, i]

⋃
(I[ϕ,σ, i]

⋂
I[(ϕSψ),σ, i−1]).

– I[∃x ϕ,σ, i] = hide(I[ϕ,σ, i],x).

2.2 Monitoring First-Order Past LTL

We review first the algorithm for monitoring first-order past LTL, implemented as part
of the DejaVu tool [15]. The algorithm is based on calculating a summary for the current
monitored trace. The summary is used, instead of storing and consulting the entire trace,
for providing verdicts, and is updated when new monitored events are reported.

Consider a classical algorithm for past time propositional LTL [18]. There, the sum-
mary consists of two vectors of bits. One vector, pre, keeps the Boolean (truth) value
for each subformula, based on the trace observed so far except the last observed event.
The other vector, now, keeps the Boolean value for each subformula based on that trace
including the last event. Given a new event e consisting of a set of propositions, which
extends the monitored trace, the vector now is calculated based on the vector pre and
the event e. This is summarized below:

Runtime Verification Prediction for Traces with Data 153

– now(true) = True
– now(p) = (p ∈ e)
– now((ϕ∧ψ)) = (now(ϕ)∧now(ψ))
– now(¬ϕ) = ¬now(ϕ)
– now((ϕ S ψ)) = (now(ψ)∨ (now(ϕ)∧pre((ϕ S ψ)))).
– now(� ϕ) = pre(ϕ)

When a new event appears, now becomes pre, and the now values are calculated accord-
ing to the above cases.

The first-order monitoring algorithm replaces the two vectors of bits by two vec-
tors of assignments: pre, for the assignments that satisfy each subformula given the
monitored trace, except the last event, and now that for the assignments that satisfy
the monitored trace. The updates in the first-order case replace, according to the set
semantics, negation with complementations, conjunction with intersection and disjunc-
tion with union. We will describe how sets of assignments or, equivalently, relations,
can be represented as BDDs. Then, complementation, intersection and union between
relations correspond back to negation, conjunction and disjunction, respectively. Thus,
the BDD-based algorithm for monitoring traces with data against a QTL specification
which will be presented after explaining the BDD representation, will look similar to
the RV algorithm for the propositional case without data.

BDD Representation. BDD representation, as used in the DejaVu tool allows an effi-
cient implementation of RV for traces with data against first-order past temporal logic.
We enumerate data values appearing in monitored events, as soon as we first see them.
We represent enumerations as bit-vectors (i.e., Binary) encodings and construct the rela-
tions over this representation rather than over the data values themselves. Bit vectors are
concatenated together to represent a tuple of values. The relations are then represented
as BDDs [8]. BDDs were featured in model checking because of their ability to fre-
quently achieve a highly compact representation of Boolean functions [9,23]. Extensive
research of BDDs allowed implementing optimized public BDD packages, e.g., [29].

In order to deal with unbounded domains (where only a finite number of elements
may appear in a given observed trace) and maintain the ability to perform complemen-
tation, unused enumerations represent the values that have not been seen yet. In fact, it
is sufficient to use one enumeration representing these values per each variable of the
LTL formula. We guarantee that at least one such enumeration exists by reserving for
that purpose the enumeration 11 . . .11. We present here only the basic algorithm. For
versions that allow extending the number of bits used for enumerations and garbage
collection of enumerations, see [17].

When an event p(a) is observed in the monitored execution, matched with p(x)
in the monitored property, a call to the procedure hash(a) checks if this is the first
occurrence of the value a in an event. Then a will be assigned a new enumeration
val(a), which will be stored under the key a. We can use a counter, for each variable x, to
count the number of different values appearing so far for x. When a new value appears,
this counter is incremented and converted to a binary (bit-vector) representation. The
function build(x,val(a)) returns a BDD that represents an assignment for the bit vector
x mapped to the enumeration corresponding to a.

154 M. Omer and D. Peled

For example, assume that the runtime-verifier sees the input events open(“a”),
open(“b”) and that it encodes the argument values with 3 bits. We use x1, x2, and x3
to represent the enumerations, with x1 being the least significant bit. Assume that the
value “a” gets mapped to the enumeration x3x2x1 = 000 and that the value “b” gets
mapped to the enumeration x3x2x1 = 001. Then, the Boolean function representing the
enumerations for {a, b} is (¬x2 ∧¬x3), which returns 1 (true) for 000 and for 001.

Intersection and union of sets of assignments are translated simply into conjunction
and disjunction of their BDD representation, respectively; complementation becomes
BDD negation. We will denote the Boolean BDD operators as and, or and not. To
implement the existential operators ∃x, we use the BDD existential operators over the
Boolean variables x1 . . .xn that represent (the enumerations of) the values of x. Thus, if
Bη is the BDD representing the assignments satisfying the subformula η in the current
state of the monitor, then exists(x,Bη) = ∃x1 . . .∃xkBη is the BDD that represents the
assignments satisfying ∃xη. Finally, BDD(⊥) and BDD(�) are the BDDs that return
always 0 or 1, respectively.

The RV algorithm for a QTL formula ϕ based on BDDs is as follows:

1. Initially, for each η ∈ sub(ϕ) of the specification ϕ, now(η) = BDD(⊥).
2. Observe a new event p(a) as input; hash(a)
3. Let pre := now.
4. Make the following updates for the formulas sub(ϕ), where

if ψ ∈ sub(η) then now(ψ) is updated before now(η).
– now(true) = BDD(�)
– now(p(a)) = if current event is p(a) then BDD(�) else BDD(⊥)
– now(p(x)) = if current event is p(a) then build(x,val(a)) else BDD(⊥)
– now((η∧ψ)) = and(now(η),now(ψ))
– now(¬η) = not(now(η))
– now((η S ψ)) = or(now(ψ),and(now(η),pre((η S ψ))))
– now(� η) = pre(η)
– now(∃x η) = exists(〈x0, . . . ,xk−1〉,now(η))

5. Goto step 2.

For a subformula η of the specification, now(η) is the BDD representation of
I[η,σ, i] according to the set semantics. The output of the algorithm after a given trace
corresponds to the value of now(ϕ). Accordingly, it will be true if this value is BDD(�)
and false if it is BDD(⊥).

2.3 Predictive Runtime Verification

While monitoring an execution of a system against a formal specification, it is some-
times beneficial to be able to predict forthcoming possible results. The RV algorithm
for QTL provides a true/false output for each prefix that is observed. The output can
alternate between these truth values for subsequent prefixes. It is sometimes useful to
be able to predict the possible outputs for extensions of the current trace, e.g., a possible
future false output that corresponds to some potential problem. Then, one may apply
some measures to alleviate such a situation, either by imposing some control on the
system or by performing an abort.

Runtime Verification Prediction for Traces with Data 155

Classical definitions for RV over temporal properties, e.g., [7,21], suggest calculat-
ing a conclusive verdict of success or failure, respectively, when all the extensions of
the current trace into a full execution agree w.r.t. satisfying or not satisfying, respec-
tively, the property. In particular, this can be useful if such a verdict can be decided
based on a minimal prefix. For past temporal logic, a true/false output is given based
on the currently monitored prefix. The outputs can alternate over subsequent prefixes.
Aniticipatory RV [20] generalizes this, and looks at the possible outputs after a given
prefix and the (minimal and maximal) distances to them (including the distance ∞) and
provides an algorithm for the propositional version of the logic. We are interested here
in calculating the possible outputs for all extensions of the current trace, limited to k
additional events, where k is fixed, for the first-order past LTL QTL. We will show in
Sect. 4 that making a prediction about all the extensions of a QTL property, without a
given bound, is undecidable.

A naive k-step prediction algorithm would check, after the currently inspected trace,
the possible extensions of up to k events. For each such extension, the RV algorithm is
applied, continuing from the current prefix, to provide a verdict. Depending on the inter-
pretation, a subsequent false output can mean a failure verdict, which can be sufficient
to stop the generation of longer or further extensions and take some preventing action.
Obviously, this method is impractical: even if the number of possible events extending
a single trace by one step is finite, say n, its time complexity is O(nk). For the proposi-
tional case, this may be feasible when the specification involves only a few propositions
(withm propositions, one can form n= 2m events). However, for the case of events with
data, n can be enormous, or even unbounded.

2.4 Isomorphism over Relations Representing QTL Subformulas

The main challenge in predicting the future outputs for a trace is to restrict the number
of cases one needs to consider when extending it. It can be argued that one can limit the
number of possible events extending a trace by a single step to the values that appeared
so far; in addition, for values that did not appear so far in the trace, a single representa-
tive is enough (but after using that representative in the current event, one needs a fresh
representative for the values not seen so far, and so forth). However, in this case, the
number of relevant events increases as the trace increases (although some clever use of
garbage collection [17] may sometimes decrease the relevant values), which can result
in a large number of values after a long trace.

Our proposed prediction method is based on calculating equivalence relations on
the observed data values that guarantee the following: an extension of the currently
observed trace can be simulated by an extension of the same length and with the same
verdict when replacing in the next observed event an occurring data value with an equiv-
alent one.

Let R ⊆ D = D1 × . . . ×Dn be a relation over multiple (not necessarily distinct)
domains obtained as the set semantics. Recall from sets semantics that if R = I[η,σ, i]
then it represents the assignments that satisfy the specification η at the ith position of
the trace σ. In this context, each tuple in R is an assignment for the free variables of η.
Thus, each component Di is associated with some variable x∈ free(η). Let f x :Di
→Di

be a function over Di, where the ith component of the relation R is associated with the

156 M. Omer and D. Peled

variable x. We abuse notation and denote by f x(τ) also the extension of f x to a tuple
τ ∈D , which changes only the Di component in the tuple according to f x. Furthermore,
denote by f x[R] the application of f x to each tuple in R. We say that R and R′ are
isomorphic with respect to f x if R′ = f x[R] for an injective and surjective function f x.
If R= f x[R], then we say that R is an automorphism with respect to f x.

Lemma 1. If Ri and Ri
′ are isomorphic (automorphic) w.r.t. f x for i ∈ {1, 2}, then also

the following are isomorphic with respect to f x:

– Ri (the complement of Ri),
– R1 ∩R2 and R1

′ ∩R2
′ and

– R1 ∪R2 and R1
′ ∪R2

′.

Denote by f xa↔b the function that replaces a with b and vice versa, and does not
change the other values. Denote by Rx=a the restriction of the relation R to tuples where
their x component has the value a. The following lemma provides a condition for decid-
ing automorphism.

Lemma 2. f xa↔b is an automorphism over R if Rx=a = Rx=b.

Denote by E[η,σ,x] the equivalence relation w.r.t. the variable x ∈ free(η) for a
subformula η of a given specification ϕ, constructed from R = I[η,σ, i] where i = |σ|.
That is,

E[η,σ,x] = {(a,b) | Rx=a = Rx=b}. (1)

Let t be some type of variables allowed in the specification. Then, let

E [σ, t] =
⋂

x∈free(η)∧ type(x)=t∧η∈sub(ϕ)
E[η,σ,x]. (2)

We need to take care of the following special case. Let r(a) appears in the
specification for some constant a. Then a can only be equivalent to itself, since
I[r(a), σ.r(a), i] �= I[r(a), σ.r(b), i] for any b �= a for events r(a) and r(b). (A sim-
ilar argument holds for an event with more arguments, e.g., r(y,a,b).) For simplicity,
the following descriptions will refer to events with a single argument (as we did in the
definition of the syntax of QTL).

Lemma 3. Let (a,b) ∈ E [σ, t] and r is a predicate over a parameter of type t. Then,
f xa↔b is an isomorphism between the relations in the summary after σ.{r(a)} and
σ.{r(b)}.
Proof. By construction, f xa↔b[R] is an automorphism for each relation R = I[σ,η, i]
in the summary. The result is obtained using Lemma 1 by induction on the number
of operators that need to be applied to construct the relations I[σ.r(a),η, i+ 1] and
I[σ.r(b),η, i+ 1] in the subsequent summary, according to the set semantics, from the
relations calculated for σ. Note that because of using different singleton relation for
the event r(a) extending the current trace and a different singleton relation for the event
r(b), the automorphism calculated from the original summary results is an isomorphism
for the subsequently constructed relations rather than an automorphism. ��

Runtime Verification Prediction for Traces with Data 157

Lemma 4. Let (a,b) ∈ E [σ, t]. Then for each finite trace σ.r(a).ρ there exists a trace
σ.r(b).ρ′ such that these traces result in the same verdict, and ρ and ρ′ have the same
length.

Proof.We construct the extension ρ′ as follows: for each term that appears in an event of
ρ, we construct a corresponding term with the same predicate, and with a replaced with
b and vice versa, and other values unchanged. Then the result is obtained by induction
on the length of the considered extensions. The induction step (including the first step
after σ) is obtained using Lemma 3. ��

Consequently, it is redundant to generate two extensions r(a) and r(b) for a trace
σ where (a,b) ∈ E [σ, t]. Applying Lemma 4 repeatedly from σ results in the following
recursive procedure for predicting RV. From every extension of σ up to k events, it
runs on every predicate r and extends it with a single value for every equivalence class
from E [σ, t]. The principle algorithm then appears in Algorithm 1. In this version, the
algorithm stops and produces a failure verdict whenever one of the extensions of the
current trace falsifies the specification ϕ. Other variants can exit upon satisfying ϕ, or
continue to check whether both true and false are attainable.

Algorithm 1. Pseudocode for the prediction algorithm
1: procedure PREDICT(σ,k)
2: for each type t in the specification do
3: E ← E [σ, t]
4: while E �= /0 do
5: let [a] ∈ E � [a] is the eq. class containing a.
6: for each predicate r over parameter of type t do
7: generate an event r(a)
8: apply RV to update summary from σ to σ.r(a)
9: if RV output is false then
10: exit(“failure verdict”)
11: if k > 1 then
12: PREDICT(σ.r(a),k−1)

13: E ← E \ [a]

An (implemented) extension of the described algorithm allows the predicates to
have multiple parameters as follows. Equivalence classes are calculated independently
for each parameter, and each event includes a representative for each corresponding
equivalence class. Hence, in write(f , d), we select a representative for f and a repre-
sentative for d, making the number of cases the product of the two equivalence classes
used.

The calculation of E [σ, t] involves intersecting equivalence classes of relations
associated with the assignments for the free variables that satisfy subformulas of ϕ.
Each individual equivalence class is calculated with respect to a free variable with
the type t. Refining the type definitions in the formula can result in checking less
representatives. Consider for example the following property ∀ f ((∃d write(f , d)) →

158 M. Omer and D. Peled

(¬close(f) S open(f))). Both variables f and d can be originally defined with type
strings. However, the f operator corresponds to a file-name, and the d operator corre-
sponds to data. If we duplicate the type string into these two copies, we can achieve a
more efficient prediction, where representatives for the file names observed would be
used solely for f and representatives for the data values observed would be used for d.

Duplicating of types associated with variables, and corresponding also to constants
and parameters of predicates, can be automated. First, rename the variables so that
each quantified variable appears exactly once (this does not change the meaning of the
formula). Now, observe the following principle: all the variables that appear within the
same predicate (and in the same position, if the predicate has multiple parameters),
must have the same type. Now, if the same variable appears (in the same position) in
different predicates and within the same scope of quantification, then forcing variables
to have the same type based on the above principle can diffuse to other occurrences of
these predicates.

A graph algorithm can then be used for automating type duplication. The nodes
of the graph are labeled by either variables or predicates (for predicates with multi-
ple parameters, such a node will include the predicate and the position of the relevant
parameter, respectively). Undirected edges will connect variables with the predicates
(with positions, respectively) in which they occur. Then, all the variables in a maximal
connected subgraph must have the same type, whereas a type that is shared by multiple
such subgraphs can be duplicated in order to refine the calculation of the equivalences.
Consider the following formula (∃x� (q(x)∨ r(x))∧ (∀y∃z(� r(y) →� q(z))∨∃u�
p(u))). Then according to the constructed graph, which appears in Fig. 1, the variables
x, y and z need to be of the same type, but u can have a different type.

x

q r

yz u

p

Fig. 1. Variables/Predicates dependency graph

An Example of Equivalence Class Partitioning. Consider the following property
∃x (� q(x)∧¬� r(x)) and the trace q(1).q(2).r(1).q(3).q(4).q(5).r(2).r(3).r(4).q(6)

Table 1 presents relations that correspond to the subformulas in the summary. The
table shows these relations in now after a trace that includes the first event, the first two
events, all but the last event, and the entire trace. The letter U represents the set of all
possible values for x (this can be, e.g., the natural numbers). The last column presents
the equivalence relations, as defined in Eq. (1), calculated per each relation at the end
of the trace.

The intersection of the equivalence relations that appear in the last column of the
table gives the following equivalence classes:

{{1,2,3,4},{5},{6},U \{1,2,3,4,5,6}}.

Runtime Verification Prediction for Traces with Data 159

Table 1. Calculating relations and equivalence classes for the example property

Subformula Event

q(1) q(2) . . . r(4) q(6) Eq. classes

q(x) {1} {2} /0 {6} {{6},U \{6}}
� q(x) {1} {1,2} {1,2,3,4,5} {1,2,3,4,5,6} {{1,2,3,4,5,6},U \{1,2,3,4,5,6}}
r(x) /0 /0 . . . {4} /0 {U}
� r(x) /0 /0 {1,2,3,4} {1,2,3,4} {{1,2,3,4},U \{1,2,3,4}}
¬� r(x) U U U \{1,2,3,4} U \{1,2,3,4} {{1,2,3,4},U \{1,2,3,4}}
� q(x)∧¬� r(x) {1} {1,2} {5} {5,6} {{5,6},U \{5,6}}

This is the equivalence relation defined in Eq. (2) that is used to select the representa-
tives for extending the trace.

3 Prediction Using BDD Representation

We saw in the previous section how to define equivalence classes on data values that
would lead to extensions of the current trace with the same lengths and verdicts. We
established that it is sufficient to select a single representative from each equivalence
class. Calculating these equivalence classes explicitly can be complex and time consum-
ing. Instead, we show how to take advantage of the BDD representation to calculate the
equivalence classes. We encode these equivalence classes using Boolean formulas that
involve the components of the summary, calculated during the RV algorithm, which are
also BDDs. These formulas can be used to calculate the equivalence classes using a
BDD package. Then, selecting a representative from the equivalence class and updating
the remaining equivalence classes are also implemented using operators on BDDs.

Recall that the RV algorithm described in Sect. 2.2 calculates BDDs that correspond
to the assignments for the subformulas after an inspected trace σ of length i. That is, for
a subformula η, the BDD now(η) represents the relation R = I[η,σ, i] containing the
assignments to the free variables of R that satisfy η at position i = |σ| of the trace σ.
Suppose that R is such a BDD B in the summary, with the bits x1, . . . ,xn representing
(enumeration) values of theDi component of R, and with the bits y1, . . . ,ym representing
the rest of the components.

Implementing the algorithm using BDDs, we start by translating the condition of
Lemma 2 for automorphism into a check that can be automated using BDDs. Let B be
the BDD representation of R = I[η,σ, i], let a1, . . . ,an be the bit vector that represents
the value (enumeration) a, and let b1, . . . ,bn be the bit vector that represents the value
b. Then f xa↔b is an automorphism over R iff the following BDD formula evaluates to
true2:

∀y1 . . .∀ym((B[x1 \a1] . . . [xn \an]) ↔ (B[x1 \b1] . . . [xn \bn])) (3)

2 (η ↔ ψ) is a shorthand for ((η → ψ)∧ (η ← ψ)). Also B[c \ d] denotes the BDD where the
value of the bit c in the BDD is set constantly to d.

160 M. Omer and D. Peled

Next, we generate from a BDD B, representing some relation R = I[η,σ, i] in the
summary, a representation of the equivalence classes of E[η,σ,x]. This is an implemen-
tation of Equation (1) using BDDs. The bit vectors g1, . . . ,gn and h1, . . . ,hn represent
pairs of values g and h for the variable x such that fg↔h is an isomorphism for R. That
is Rx=g = Rx=h for each pair of values g and h. We denote this formula by GH[B,x].

GH[B,x] = ∀y1 . . .∀ym(∃x1 . . .∃xn(B∧ (x1 ↔ g1) . . .∧ (xn ↔ gn)) ↔
∃x1 . . .∃xn(B∧ (x1 ↔ h1) . . .∧ (xn ↔ hn)))

(4)

An alternative and more efficient method for obtaining the BDD GH[B,x] is to
employ the simplified formula, which avoids using the existential quantification.

GH[B,x] = ∀y1 . . .∀ym(B[x1 \g1] . . . [xn \gn] ↔ B[x1 \h1] . . .B[xn \hn]) (5)

Now we can construct a BDD representation for the equivalence classes E [σ, t], as
defined in Eq. (2). We need to take, for each type t the conjunction of all GH[Bη,x], for
η ∈ sub(ϕ), x ∈ free(ϕ) and type(x) = t, and where Bη = now(η) in the summary of the
RV algorithm.

GH =
∧

x∈ f ree(η)∧ type(x)=t∧η∈sub(ϕ)
GH[Bη,x] (6)

4 Undecidability of Unbounded Prediction

We presented an algorithm for calculating the verdicts that can be obtained by extending
the inspected trace, checked against a first-order past LTL specification, by up to k steps.
In this section we will show that making such a prediction without a length restriction
is undecidable3.

The proof is by reduction from the undecidable post correspondence problem
(PCP). An instance of the PCP problem consists of two indexed sets T1 and T2, each
of n > 0 nonempty words from over some finite alphabet Σ. The problem is to decide
whether there is a non-empty finite sequence i1, i2, . . . , ik of indexes, where each
i j ∈ [1..|T1|], such that T1(i1).T1(i2) . . .T1(ik) = T2(i1).T2(i2) . . .T2(ik) (using the con-
catenation operator “.”). That is, whether concatenating words from T1 and from T2,
with possible repeats , according to some common sequence of indexes, gives the same
string.

For example, consider an instance of PCP where T1 = {(aa,1),(abb,2),(aba,3)}
and T2 = {(baa,1),(aab,2),(ab,3)}, where each pair includes a word and its cor-
responding index. Thus, we can write, e.g., T1(2) = abb. For this instance of PCP,
there is a simple solution, where each word appears exactly once; when concatenat-
ing the words with index order 3 2 1, we obtain T1(3).T1(2).T1(1) = aba.abb.aa, and
for T2(3).T2(2).T2(1) = ab.aab.baa, resulting in the same string

abaabbaa. (7)

3 A proof of undecidability of first-order future LTL that includes interpreted and uninterpreted
relation and function symbols is shown in [6]. Note that our logic is far more restrictive than
that.

Runtime Verification Prediction for Traces with Data 161

The reduction constructs from each instance of the PCP problem a past first-order
LTL formula that is satisfiable by a trace if and only if it describes a solution to the prob-
lem. The trace simulates a concatenating of words from T1 and T2. The input includes,
except for the sequence of letters, additional information that allows breaking the string
according to the tokens of T1 and according to the tokens of T2.

Adjacent to each letter in the string, we add two values, from some unbounded
events, which delimit the individual strings for T1 and for T2, correspondingly. For
example, given the delimiting values p, q, r, we obtain from the above concatenated
word in (7) the following sequence of triples, each consisting of a letter from Σ, and
two delimiters, for T1 and T2:

(a, p, p)(b, p, p)(a, p,q)(a,q,q)(b,q,q)(b,q,r)(a,r,r)(a,r,r).

p q r

p q r

T1

T2 (8)

In each triple, the first component is the letter, the second is the delimiting value for
T1 and the third component is the delimiting value for T2.

The delimiting value will appear for both strings in T1 and of T2 in the same order,
to impose the restriction that the same sequence of indexes are used. Thus, in (8), p
appears before q and q appears before r. A delimiting value will not repeat after having
followed the letters for a single appearance of a string from T1, and similarly for T2,
even if the same string repeats in the concatenation. The temporal specification will
enforce that delimiting of a word from T1 and delimiting of a word from T2 with the
same value (e.g., the value q) to words with the same indexes in T1 and T2 respectively.
In the above example, the delimiting value q corresponds to words of T1 and T2 with the
index 2.

Now, to represent such as sequence as an input trace for RV, each of the above triples
will correspond to a successive triple of events, each of the form l(x).t1(v1).t2(v2).
Finally, the trace ends with a single parameterless event e. The predicates in the moni-
tored events have the following roles:

e with no parameters (a proposition). It designates the end of the sequence representing
a solution for the PCP problem.

l(x) This is a letter within the concatenation. Since the two concatenations of words
need to produce the same string, there is only a single l(x) event in each triple.

t1(v1) v1 is a delimiting value for the currently observed word from T1. Similarly,
t2(v2) v2 is a delimiting value for the currently observed word from T2.

Then, the sequence (8) become the following sequence of events:

l(a).t1(p).t2(p). l(b).t1(p).t2(p). l(a).t1(p).t2(q). l(a).t1(q).t2(q).
l(b).t1(q).t2(q). l(b).t1(q).t2(r). l(a).t1(r).t2(r). l(a).t1(r).t2(r). e.

162 M. Omer and D. Peled

Then, we construct a QTL formula ϕ as the concatenation of the following condi-
tions:

– Value v1 (v2, respectively) within the predicates t1 (t2, respectively) can only appear
in adjacent triples. Once this value is replaced by a different value in the next triple,
the old value never returns.

– The order between the v1 values and the v2 values is the same, that is, t1(p) appears
before t1(q) if and only if t2(p) appears before t2(q).

– Each concatenation of letters l(x) from subsequent triples, that is limited by events
of the form t1(p) for some value p forms a word T1(i) for some i. Similarly, the
concatenation of letters l(x) limited by t2(q) forms a word T2(j) for some j. Fur-
thermore, if p= q then i= j.

Now, ϕ is satisfied by a trace σ if σ describes a solution for the PCP instance.
Hence, predicting when there is a true outcome for an extension of the empty trace
is undecidable. The undecidability proof suggests that our algorithm for predicting the
verdict in k steps gives a compromise for this kind of long-term prediction.

Our undecidability proof has several additional consequences. Temporal safety [22]
properties can be written as �ψ (see [24]), where � stands for the standard LTL oper-
ator always, i.e., for each prefix, and ψ contains only past modalities. It follows from
the above construction that the satisfiability of the first-order temporal safety properties
of the form �ψ for a past ψ is undecidable: just take ψ = ¬ϕ with the above con-
structed formula ϕ, which is satisfiable exactly when the instance of the PCP problem
does not have a solution. For propositional LTL, it is useful to conclude a success (fail-
ure, respectively) verdict based on monitoring a minimal prefix of a trace, when all of
its infinite extensions satisfy (does not satisfy, respectively) the property. Such an algo-
rithm appears in [21]. It follows from our construction that this is undecidable for the
first-order case. This also gives some explanation of why RV tools for first-order past
LTL, such as DejaVu and MONPOLY provide a true/false outputs for past properties ψ,
instead of checking �ψ.

5 Experiments

In order to assess the effectiveness and efficiency of our algorithm, which we term iPRV
(isomorphic Predictive RV), we extended DejaVu to incorporate our prediction app-
roach. The experiments were performed on an Apple MacBook Pro laptop with an M1
Core processor, 16 GB RAM, and 512 GB SSD storage, running the macOS Monterey
operating system. We carried out a comparative analysis against the straightforward
brute-force prediction method, which was also integrated into DejaVu. We expressed
properties, four of them are shown in Fig. 2, using DejaVu’s syntax, and evaluated the
tool’s performance based on time, and the number of prediction extensions (we termed
cases orC) used. We repeated experiments with traces of diverse sizes and events order.
To measure performance and the influence of the size of parameter k, we experimented
with different sizes of k. We used two different approaches when conducting experi-
ments: some experiments stopped once the expected verdict false was reached, while
others ran until all possible extensions, either exhaustively, for brute-force, or based on

Runtime Verification Prediction for Traces with Data 163

representatives with our algorithm, were examined (unless a time limit was surpassed).
The unstopped experiments simulated the worst-case scenario when the expected ver-
dict was not found. All the experiments in this section, along with their specifications
and the corresponding traces, including further examples, are available in our GitHub
repository [30].

Fig. 2. Evaluated properties in DejaVu (left) and QTL (right) formalism. (The QTL operators �
and� are denoted in DejaVu as H and P respectively)

Traces. Distinct trace files, τmin, τmed , and τmax, were generated for each property, to
evaluate iPRV approach. Those files contain random traces in which the order of the
events along with their values were set in randomly. Moreover, the min,med, and max
descriptors associated with each file represent the size of the trace. The diversity of
traces enabled us to perform a thorough analysis and comparison of the performance of
iPRV in comparison to the trivial brute-force approach, under different trace sizes and
events order for each property.

The τmin traces consist of small traces with less than 15 events each; they provide
small equivalence classes. The τmed traces consist of up to 150 events, while the τmax
trace can contain up to 1000 events.

For example, for property P4, the traces were created as a random sequence of
events with predicates q and r, with data that was randomly generated within a specified
range. However, a constraint was applied such that the number of all the q events does
not exceed in every prefix of the generated trace the number of r events by more than
5. This guarantees the violation of property P4 for k ≥ 6.

Results. Tables 2 and 3 summarize part of our experiment results. They illustrate the
efficacy of the iPRV, our proposed prediction algorithm, in comparison to the straight-
forward brute-force approach. The use of the ∞ symbol indicates instances where
the prediction process exceeded 1000 seconds. Additionally, C denotes the number of
extensions calculated during a single prediction.

Table 2 displays the results of the experiments where the prediction process was
executed until all possible outcomes were found, which simulates the worst-case sce-
nario when the expected verdict is not found. Table 3 offers a comparative on-the-fly
analysis, where the prediction process stops upon the discovery of a failure. Not sur-
prisingly, as the prediction horizon increases from k = 4 to k = 5, both methods take
more time to complete the executions. The brute-force method, in particular, struggles

164 M. Omer and D. Peled

to complete the executions as complexity rises. From the results, we can conclude that
iPRV is at least a few times faster than the brute-force method.

In few cases, in particular where the trace is short and the prediction horizon is not
large, the speed improvement was not very significant, but still iPRV is faster; whereas
in some comparisons it takes almost the same time. In other cases, it is four times faster
and even much more. For example, in Table 2, for property P1, the iPRV method with
k = 4 and τmed took 0.05 seconds, while in the same configuration, but for the brute-
force method, it took more than 131.54 seconds, which means that iPRV is approxi-
mately 2600 times faster in this case. In other cases, the brute-force method did not
stop within the time frame of 1000 seconds while iPRV managed to stop with a calcu-
lation time that is significantly shorter than the 1000 seconds. In these cases, the speed
improvement is several orders of magnitude (assuming, optimistically, a 1000 seconds
execution time for the brute-force executions). Furthermore, the number of extensions
(denoted in the table byC) required by the iPRVmethod to provide the prediction is sig-
nificantly less than for the brute-force method. The gap between these methods intensi-
fies as the prediction horizon k increases.

Table 2. Comparison where both methods run fully

Property Method Trace τmin Trace τmed Trace τmax
P1 iPRV (k = 4) 0.06 s, 1,280C 0.05 s, 1,168 C 0.10 s, 2,184 C

Brute (k = 4) 0.07 s, 2,416C 131.54 s, 108,496,240C ∞
iPRV (k = 5) 0.21 s, 7,816C 0.15 s, 6,984 C 0.31 s, 13,304C

Brute (k = 5) 0.24 s, 21,568C ∞ ∞
P2 iPRV (k = 4) 0.09 s, 2,240C 0.07 s, 1,856 C 0.12 s, 2,240 C

Brute (k = 4) 0.81 s, 296,631C ∞ ∞
iPRV (k = 5) 0.23 s, 15,292C 0.21 s, 12,672C 0.29 s, 15,296C

Brute (k = 5) 6.62 s, 7,103,366C ∞ ∞
P3 iPRV (k = 4) 0.04 s, 864C 0.03 s, 576C 0.04 s, 864C

Brute (k = 4) 0.05 s, 1,504C 0.64 s, 259,840C ∞
iPRV (k = 5) 0.14 s, 5,184C 0.10 s, 4,352 C 0.17 s, 5,184 C

Brute (k = 5) 0.15 s, 10,736C 1.21 s, 2,538,680C ∞
P4 iPRV (k = 4) 0.12 s, 4,388C 0.14 s, 4,388 C 0.19 s, 4,388 C

Brute (k = 4) 0.50 s, 170,304C ∞ ∞
iPRV (k = 5) 0.40 s, 37,512C 0.45 s, 37,512C 0.69 s, 37,512C

Brute (k = 5) 3.29 s, 3,558,752C ∞ ∞

Runtime Verification Prediction for Traces with Data 165

Table 3. Comparison where both methods stopped at the expected verdict

Prop Method k = 5 k = 10 k = 20 k = 50 k = 100

P1 iPRV 0.02 s, 1C 0.01 s, 1C 0.03 s, 1C 0.03 s, 1 C 0.04 s, 1C

Brute 0.05 s, 1C 0.09 s, 1C 0.14 s, 1C 0.27 s, 1 C 0.39 s, 1C

P2 iPRV 0.29 s, 15,296 C ∞ ∞ ∞ ∞
Brute ∞ ∞ ∞ ∞ ∞

P3 iPRV 0.02 s, 3C 0.03 s, 3C 0.08 s, 3C 0.05 s, 3 C 0.08 s, 3C

Brute 1.31 s, 819 C 1.51 s, 819 C 2.29 s, 819 C 5.19 s, 819 C 10.22 s, 819 C

P4 iPRV 0.62 s, 37,512 C 4.24 s, 446,857 C 6.10 s, 668,869 C 6.87 s, 668,869 C 6.58 s, 668,869 C

Brute ∞ ∞ ∞ ∞ ∞

6 Conclusion

In this work, we presented an algorithm for predicting the possible future outputs dur-
ing RV of executions with data; the specification is written in past time first-order linear
temporal logic QTL and the prediction is limited to the next (parametric) k events. This
can be used for preventive actions to be taken before an unrecoverable situation occurs.
For efficiency, our algorithm calculates equivalence classes of values that produce iso-
morphic extensions to the currently observed trace. This allows exploring only represen-
tative extensions in order to perform predictions, avoiding the inefficient naive method
that checks all the possible event sequences for the next k steps. We demonstrated how
to leverage from the BDDs representations for efficient construction and representation
of these equivalence classes. The algorithm was implemented as an extension of the RV
tool DejaVu.

We have shown that, unlike propositional temporal logic, prediction for past first-
order temporal specification without a fixed length limit is an undecidable problem.
This was proved using a reduction from the post correspondence problem (PCP). This
makes the k-step prediction a decidable compromise.

The experimental results indicate that our proposed algorithm significantly outper-
forms the brute-force method in terms of time and the number of prediction cases calcu-
lated during the prediction process; in certain cases, our prediction method successfully
concluded its prediction, while the brute-force approach persisted in running without
attaining completion within a reasonable time frame.

Although our experimental results show that the speed of our algorithm is far bet-
ter than the brute-force approach, prediction can still be a significant time consum-
ing task. Whereas the incremental processing after each event in DejaVu takes typ-
ically microseconds [15], the incremental complexity for prediction for, e.g., k = 4
can take a significant fraction of a second, and for a larger prediction horizon it can
further grow. This of course depends on the property and the observed trace. Thus, a
naive use of the prediction algorithm with a not so large prediction horizon should be
able, in principle, to online monitor traces with the arrival speed of a few events per
second. We propose that prediction should be used in combination with other meth-
ods that allow restricting the future executions of the observed system, e.g., when an
approximated model of the system is available or is obtained using learning techniques

166 M. Omer and D. Peled

(see, e.g., [27,28]). Moreover, prediction should be delegated to a concurrent task, so
that normal (prediction-less) monitoring would not be delayed, in case of a quick burst
of newly observed events.

Acknowledgements. The authors would like to thank Panagiotis Katsaros for insightful com-
ments on a preliminary draft of the paper.

References

1. Allan, C., et al.: Adding trace matching with free variables to AspectJ. In: OOPSLA 2005,
SIGPLAN Notices, vol. 40, no. 10, pp. 345–364. ACM (2005)

2. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verification. In: Stef-
fen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24622-0 5

3. Barringer, H., Havelund, K.: TRACECONTRACT: a scala DSL for trace analysis. In: Butler,
M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 57–72. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21437-0 7

4. Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for run-time monitoring: from
EAGLE to RULER. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp. 111–
125. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77395-5 10

5. Basin, D.A., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric first-order temporal
properties. J. ACM 62(2), 45 (2015)

6. Bauer, A., Küster, J.-C., Vegliach, G.: From propositional to first-order monitoring. In:
Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 59–75. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40787-1 4

7. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how ugly is
ugly? In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp. 126–138. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-77395-5 11

8. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM
Comput. Surv. 24(3), 293–318 (1992)

9. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model check-
ing: 1020 states and beyond. In: LICS, pp. 428–439 (1990)

10. Cimatti, A., Tian, C., Tonetta, S.: Assumption-based runtime verification of infinite-state
systems. In: Feng, L., Fisman, D. (eds.) RV 2021. LNCS, vol. 12974, pp. 207–227. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-88494-9 11

11. Colombo, C., Pace, G.J., Schneider, G.: LARVA - safer monitoring of real-time java pro-
grams (tool paper). In: SEFM 2009, pp. 33–37. IEEE Computer Society (2009)

12. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories. J. Softw. Tools Technol.
Transf. 18(2), 205–225 (2016)

13. D’Angelo, B., et al: LOLA: runtime monitoring of synchronous systems. In: TIME 2005,
pp. 166–174 (2005)

14. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts with data.
IEEE Trans. Serv. Comput. 5(2), 192–206 (2012)

15. Havelund, K., Peled, D., Ulus, D.: First-order temporal logic monitoring with BDDs. In:
FMCAD 2017, pp. 116–123 (2017)

16. Goubault-Larrecq, J., Olivain, J.: A smell of ORCHIDS. In: Leucker, M. (ed.) RV 2008.
LNCS, vol. 5289, pp. 1–20. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
89247-2 1

https://doi.org/10.1007/978-3-540-24622-0_5
https://doi.org/10.1007/978-3-642-21437-0_7
https://doi.org/10.1007/978-3-540-77395-5_10
https://doi.org/10.1007/978-3-642-40787-1_4
https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1007/978-3-030-88494-9_11
https://doi.org/10.1007/978-3-540-89247-2_1
https://doi.org/10.1007/978-3-540-89247-2_1

Runtime Verification Prediction for Traces with Data 167

17. Havelund, K., Peled, D.: BDDs on the run. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018.
LNCS, vol. 11247, pp. 58–69. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03427-6 8

18. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen, J.-P.,
Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-46002-0 24

19. Havelund, K., Reger, G., Thoma, D., Zălinescu, E.: Monitoring events that carry data. In:
Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp.
61–102. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5 3

20. Kallwies, H., Leucker, M., Sánchez, C., Scheffel, T.: Anticipatory recurrent monitoring with
uncertainty and assumptions. In: Dang, T., Stolz, V. (eds.) RV 2022. LNCS, vol. 13498, pp.
181–199. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17196-3 10

21. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods Syst.
Design 19(3), 291–314 (2001)

22. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng.
3(2), 125–143 (1977)

23. McMillan, K.L.: Symbolic Model Checking: An Approach to the State Explosion Problem.
Kluwer Academic Publishers (1993)

24. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems - Specifi-
cation, pp. I–XIV, 1–427. Springer, New York (1992). https://doi.org/10.1007/978-1-4612-
0931-7. ISBN 978-3-540-97664-6

25. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An overview of the MOP runtime
verification framework. J. Softw. Tools Technol. Transf. 14, 249–289 (2011). https://doi.org/
10.1007/s10009-011-0198-6

26. Reger, G., Cruz, H.C., Rydeheard, D.: MARQ: monitoring at runtime with QEA. In: Baier,
C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 596–610. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46681-0 55

27. Yu, K., Chen, Z., Dong, W.: A predictive runtime verification framework for cyber-physical
systems. In: SERE (Companion), pp. 223–227 (2014)

28. Zhang, X., Leucker, M., Dong, W.: Runtime verification with predictive semantics. In: Good-
loe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 418–432. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28891-3 37

29. JavaBDD. https://javabdd.sourceforge.net
30. iPRV DejaVu tool source code. https://github.com/moraneus/iPRV-DejaVu
31. DejaVu tool source code. https://github.com/havelund/dejavu

https://doi.org/10.1007/978-3-030-03427-6_8
https://doi.org/10.1007/978-3-030-03427-6_8
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/978-3-319-75632-5_3
https://doi.org/10.1007/978-3-031-17196-3_10
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/s10009-011-0198-6
https://doi.org/10.1007/s10009-011-0198-6
https://doi.org/10.1007/978-3-662-46681-0_55
https://doi.org/10.1007/978-3-642-28891-3_37
https://javabdd.sourceforge.net
https://github.com/moraneus/iPRV-DejaVu
https://github.com/havelund/dejavu

Monitoring Hyperproperties with Prefix
Transducers

Marek Chalupa(B) and Thomas A. Henzinger

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
marek.chalupa@ist.ac.at

Abstract. Hyperproperties are properties that relate multiple execu-
tion traces. Previous work on monitoring hyperproperties focused on syn-
chronous hyperproperties, usually specified in HyperLTL. When monitor-
ing synchronous hyperproperties, all traces are assumed to proceed at the
same speed. We introduce (multi-trace) prefix transducers and show how
to use them for monitoring synchronous as well as, for the first time, asyn-
chronous hyperproperties. Prefix transducers map multiple input traces
into one or more output traces by incrementally matching prefixes of the
input traces against expressions similar to regular expressions. The pre-
fixes of different traces which are consumed by a single matching step of
the monitor may have different lengths. The deterministic and executable
nature of prefix transducers makes them more suitable as an intermedi-
ate formalism for runtime verification than logical specifications, which
tend to be highly non-deterministic, especially in the case of asynchronous
hyperproperties. We report on a set of experiments about monitoring
asynchronous version of observational determinism.

1 Introduction

Hyperproperties [20] are properties that relate multiple execution traces of a
system to each other. One of the most prominent examples of hyperproperties
nowadays are the information-flow security policies [33]. Runtime monitoring [1]
is a lightweight formal method for analyzing the behavior of a system by checking
dynamic execution traces against a specification. For hyperproperties, a moni-
tor must check relations between multiple traces. While many hyperproperties
cannot be monitored in general [3,13,25], the monitoring of hyperproperties can
still yield useful results, as we may detect their violations [24].

Previous work on monitoring hyperproperties focused on HyperLTL specifi-
cations [3,13], or other synchronous hyperlogics [2]. Synchronous specifications
model processes that progress at the same speed in lockstep, one event on each
trace per step. The synchronous time model has been found overly restrictive
for specifying hyperproperties of asynchronous processes, which may proceed at
varying speeds [7,9,12,27]. A more general, asynchronous time model allows mul-
tiple traces to proceed at different speeds, independently of each other, in order
to wait for each other only at certain synchronization events. As far as we know,
there has been no previous work on the runtime monitoring of asynchronous
hyperproperties.
c© The Author(s) 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 168–190, 2023.
https://doi.org/10.1007/978-3-031-44267-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_9&domain=pdf
http://orcid.org/0000-0003-1132-5516
http://orcid.org/0000-0002-2985-7724
https://doi.org/10.1007/978-3-031-44267-4_9

Monitoring Hyperproperties with Prefix Transducers 169

Fig. 1. Traces of abstract events. The event I(x, v) signals an input of value v into
variable x; and O(x, v) signals an output of value v from variable x. The event Dbg(b)
indicates whether the debugging mode is turned on or off.

The important class of k-safety hyperproperties [20,22] can be monitored
by processing k-tuples of traces [3,22]. In this work, we develop and evaluate
a framework for monitoring k-safety hyperproperties under both, synchronous
and asynchronous time models. For this purpose, we introduce (multi-trace)
prefix transducers, which map multiple (but fixed) input traces into one or more
output traces by incrementally matching prefixes of the input traces against
expressions similar to regular expressions. The prefixes of different traces which
are consumed by a single matching step of the transducer may have different
lengths, which allows to proceed on the traces asynchronously. By instantiating
prefix transducers for different combinations of input traces, we can monitor k-
safety hyperproperties instead of monitoring only a set of fixed input traces. The
deterministic and executable nature of prefix transducers gives rise to natural
monitors. This is in contrast with monitors synthesized from logical specifications
which are often highly non-deterministic, especially in the case of asynchronous
(hyper)properties.

We illustrate prefix transducers on the classical example of observational
determinism [37]. Informally, observational determinism (OD) states that when-
ever two execution traces agree on low (publicly visible) inputs, they must agree
also on low outputs, thus not leaking any information about high (secret) inputs.
Consider, for example, the traces t1 and t2 in Fig. 1. These two traces satisfy OD,
because they have the same low inputs (events I(l, ·)) and produce the same
low outputs (events O(l, ·)). All other events in the traces are irrelevant to OD.
The two traces even satisfy synchronous OD, as the input and output events
appear at the same positions in both traces, and thus they can be analysed by
synchronous-time monitors (such as those based on HyperLTL [3,13,24]), or by
the following prefix transducer:

q0 q1q2

τ1 : _�(Il + Ol)e1

τ2 : _�(Il + Ol)e2

[τ1[e1] = τ2[e2]]
� τo �→ �

τ1 : _�(Ol)e1

τ2 : _�(Ol)e2

[τ1[e1] �= τ2[e2]]
� τo �→ ⊥

τ1 : _�(Il)e1

τ2 : _�(Il)e2

[τ1[e1] �= τ2[e2]]
� τo �→ �

170 M. Chalupa and T. A. Henzinger

The transducer reads two traces τ1 and τ2 that are instantiated with actual
traces, e.g., t1 and t2. It starts in the initial state q0 and either repeatedly takes
the self-loop transition, or goes into one of the states q1 or q2 where it gets
stuck. The self-loop transition matches the shortest prefix of τ1 that contains
any events until a low input or output is found. This is represented by the prefix
expression _�(Il + Ol), where we use Il (resp. Ol) to represent any low input
(resp. output) event, and _ stands for any event that does not match the right-
hand side of �. The same pattern is independently matched by this transition
also against the prefix of τ2. Moreover, the low input or output events found
on traces τ1 and τ2 are labeled by e1 and e2, resp. The self-loop transition is
taken if the prefixes of τ1 and τ2 match the expressions and, additionally, the
condition τ1[e1] = τ2[e2] is fulfilled. The term τ [e] denotes the sequence of events
in trace τ on the position(s) labeled by e. Therefore, the condition τ1[e1] = τ2[e2]
asserts that the matched input or output events must be the same (both in terms
of type and values). If the transducer takes the self-loop transition, it outputs
(appends) the symbol � to the output trace τo (as stated by the right-hand side
of �). Then, the matched prefixes are consumed from the input traces and the
transducer continues with matching the rest of the traces. The other two edges
are processed analogously.

It is not hard to see that the transducer decides if OD holds for two syn-
chronous input traces. State q0 represents the situation when OD holds but may
still be violated in the future. If the self-loop transition over q0 cannot be taken,
then (since we now assume synchronised traces), the matched prefixes must end
either with different low input or different low output events. In the first case,
OD is satisfied by the two traces and the transducer goes to state q2 where it
gets stuck (we could, of course, make the transducer total to avoid getting stuck,
but in this example we are interested only in its output). In the second case,
OD is violated and before the transducer changes the state to q1, it appends ⊥
to the output trace τo. OD is satisfied if τo does not contain (end with) ⊥ after
finishing reading (or getting stuck on) the input traces.

The transducer above works also for monitoring asynchronous OD, where the
low input and output events are misaligned by “padding” events (but it requires
that there is the same number and order of low input and output events on
the input traces – they are just misaligned and possibly carry different values;
the general setup where the traces can be arbitrary is discussed in Sect. 5). The
transducer works for asynchronous OD because the prefix expressions for τ1 and
τ2 are matched independently, and thus they can match prefixes of different
lengths. For example, for τ1 = t1 and τ2 = t3, the run consumes the traces in
the following steps:

t1 : I(l, 1) I(h, 1) O(l, 1) O(l, 1)

t3 : I(l, 1) Dbg(1) I(h, 2) O(l, 1) O(l, 1)

step 1 step 2 step 3

Monitoring Hyperproperties with Prefix Transducers 171

Hitherto, we have used the output of prefix transducers to decide OD for
the given two traces, i.e., to perform the monitoring task. We can also define a
prefix transducer that, instead of monitoring OD for the two traces, transforms
the asynchronous traces τ1 and τ2 into a pair of synchronous traces τ ′

1 and τ ′
2 by

filtering out “padding” events:

q0τ1 : _�(Il + Ol)e1 � τ ′
1 �→ τ1[e1] τ2 : _�(Il + Ol)e2 � τ ′

2 �→ τ2[e2]

In this example, the transducer appends every event labeled by ei to the
output trace τ ′

i , and so it filters out all events except low inputs and outputs.
It reads and filters both of the input traces independently of each other. The
output traces from the transducer can then be forwarded to, e.g., a HyperLTL
monitor1.

Contributions. This paper makes the following contributions:

– We introduce multi-trace prefix expressions and transducers (Sect. 2 and
Sect. 3). These are formalisms that can efficiently and incrementally process
words (traces) either fully synchronously, or asynchronously with synchro-
nization points.

– We suggest that prefix transducers are a natural formalism for specifying
many synchronous and asynchronous k-safety hyperproperties, such as obser-
vational determinism.

– We design an algorithm for monitoring synchronous and asynchronous k-
safety hyperproperties using prefix transducers (Sect. 4).

– We provide some experiments to show how our monitors perform (Sect. 5).

2 Prefix Expressions

In this section, we define prefix expressions – a formalism similar to regular
expressions designed to deterministically and unambiguously match prefixes of
words.

2.1 Preliminaries

We model sequences of events as words over finite non-empty alphabets. Given
an alphabet Σ, the set of finite words over this alphabet is denoted as Σ∗. For
two words u = u0...ul ∈ Σ∗

1 and v = v0...vm ∈ Σ∗
2 , their concatenation u · v, also

written uv if there is no confusion, is the word u0...ulv0...vm ∈ (Σ1 ∪ Σ2)∗. If
1 One more step is needed before we can use a HyperLTL monitor, namely, to trans-

form the trace of abstract events from the example into a trace of sets of atomic
propositions. This can be also done by a prefix transducer.

172 M. Chalupa and T. A. Henzinger

w = uv, we say that u is a prefix of w, written u ≤ w, and v is a suffix of w. If
u ≤ w and u �= w, we say that u is a proper prefix of w.

For a word w = w0...wk−1 ∈ Σ∗, we denote |w| = k its length, w[i] = wi

for 0 ≤ i < k its i-th element, w[s..e] = wsws+1...we the sub-word beginning at
index s and ending at index e, and w[s..] = wsws+1...wk−1 its suffix starting at
index s.

Given a function f : A → B, we denote Dom(f) = A its domain. Partial
functions with domain A and codomain B are written as A ↪→ B. Functions
with a small domain are sometimes given extensionally by listing the mapping,
e.g., {x �→ 1, y �→ 2}. Given a function f , f [x �→ c] is the function that coincides
with f on all elements except on x where it is c.

2.2 Syntax of Prefix Expressions

Let L be a non-empty set of labels (names) and Σ a finite non-empty alphabet.
The syntax of prefix expressions (PE) is defined by the following grammar:

α ::= ε | a | (α.α) | (α + α) | (α�β) | (α)l

β ::= a | (β + β) | (β)l

where a ∈ Σ and l ∈ L. Many parenthesis can be elided if we let ’�’ (iteration)
take precedence before ’.’ (concatenation), which takes precedence before ’+’
(disjunction, plus). We write a.b as ab where there is no confusion. In the rest
of the paper, we assume that a set of labels L is implicitly given, and that L
always has „enough” labels. We denote the set of all prefix expressions over the
alphabet Σ (and any set of labels L) as PE(Σ), and PE(Σ, L) if we want to
stress that the expressions use labels from L.

The semantics of PEs (defined later) is similar to the semantics of regular
expressions with the difference that a PE is not matched against a whole word
but it matches only its prefix, and this prefix is the shortest one possible (and
non-empty – if not explicitly specified). For this reason, we do not use the classi-
cal Kleene’s iteration as it would introduce ambiguity in matching. For instance,
the regular expression a∗ matches all the prefixes of the word aaa. And even if
we specify that we should pick the shortest one, the result would be ε, which is
usually not desirable, because that means no progress in reading the word. Pick-
ing the shortest non-empty prefix would be a reasonable solution in many cases,
but the problem with ambiguity persists. For example, the regular expression
(ab)∗(a + b)∗ matches the word ab in two different ways, which introduces non-
determinism in the process of associating the labels with the matched positions.

To avoid the problems with Kleene’s iteration, we use a binary iteration
operator that is similar to the until operator in LTL in that it requires some
letter to appear eventually. The expression α�β could be roughly defined as
β + αβ + α2β + . . . where we evaluate it from left to right and β must match
exactly one letter. The restriction on β is important to tackle ambiguity, but it
also helps efficiently evaluate the expression – it is enough to look at a single
letter to decide whether to continue matching whatever follows the iteration, or

Monitoring Hyperproperties with Prefix Transducers 173

whether to match the left-hand side of the expression. Allowing β to match a
sequence of letters would require a look-ahead or backtracking and it is a subject
of future extensions. With our iteration operator, expressions like (ab)�(a + b)�

and a� are malformed and forbidden already on the level of syntax.
Sub-expressions of a PE can be labeled and the matching procedure described

later returns a list of positions in the word that were matched for each of the
labels. We assume that every label is used maximally once, that is, no two sub-
expressions have the same label. Labels in PEs are useful for identifying the
sub-word that matched particular sub-expressions, which will be important in
the next section when we use logical formulae that relate sub-words from different
words (traces). Two examples of PEs and their informal evaluation are:

– (a + b)l
�

a – match a or b, associating them to l, until you see a. Because
whenever the word contains a, the right-hand side of the iteration matches,
the left part of the iteration never matches a and a is redundant in the left-
hand side sub-expression. For the word bbbaba, the expression matches the
prefix bbba and l is associated with the list of position ranges (0, 0), (1, 1), (2, 2)
that corresponds to the positions of b that were matched by the sub-expression
(a + b).

– (a�b)l1((b + c)�(a + d))l2 – match a until b is met and call this part l1; then
match b or c until a or d and call that part l2. For the word aabbbada, the
expression matches the prefix aabbba. The label l1 is associated with the range
of positions (0, 2) containing the sub-word aab, and l2 with the range (3, 5)
containing the sub-word bba.

2.3 Semantics of Prefix Expressions

We first define m-strings before we get to the formal semantics of PEs. An m-
string is a sequence of pairs of numbers or a special symbol ⊥. Intuitively, (p, ⊥)
represents the beginning of a match at position p in the analyzed word, (⊥, p)
the end of a match at position p, and (s, e) is a match on positions from s to e.
The concatenation of m-strings reflects opening and closing the matches.

Definition 1 (M-strings). M-strings are words over the alphabet M = (N ∪
{⊥}) × (N ∪ {⊥}) with the partial concatenation function
 : M∗ × M ↪→ M∗

defined as

α
 (c, d) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(c, d) if α = ε ∧ c �= ⊥
α · (c, d) if α = α′ · (a, b) ∧ b �= ⊥
α′ · (a, d) if α = α′ · (a, b) ∧ b = ⊥ ∧ c = ⊥
α′ · (c, d) if α = α′ · (a, b) ∧ b = ⊥ ∧ c �= ⊥

Every m-string is built up from the empty string ε by repeatedly concate-
nating (p, ⊥) or (⊥, p) or (p, p). The concatenation
 is only a partial function
(e.g., ε
 (⊥, ⊥) is undefined), but we will use only the defined fragment of
the domain. It works as standard concatenation if the last match was closed

174 M. Chalupa and T. A. Henzinger

(e.g., (0, 4)
 (7, ⊥) = (0, 4)(7, ⊥)), but it overwrites the last match if we start a
new match without closing the old one (e.g., (0, ⊥)
 (2, ⊥) = (2, ⊥)). Overwrit-
ing the last match in this situation is valid, because labels are assumed to be
unique and opening a new match before the last match was closed means that
the old match failed.

We extend
 to work with m-strings on the right-hand side:

α
 w =
{

α if w = ε

(α
 x)
 w′ if w = x · w′

While evaluating a PE, we keep one m-string per label used in the PE. To
do so we use m-maps, partial mappings from labels to m-strings.

Definition 2 (M-map). Let L be a set of labels and M = (N∪{⊥})×(N∪{⊥})
be the alphabet of m-strings. An m-map is a partial function m : L ↪→ M∗. Given
two m-maps m1, m2 : L ↪→ M∗, we define their concatenation m1
 m2 by

(m1
 m2)(l) = σ1
 σ2

for all l ∈ Dom(m1) ∪ Dom(m2) where σi = ε if mi(l) is not defined and
σi = mi(l) otherwise.

We denote the set of all m-maps L ↪→ M∗ for the set of labels L as ML.
The evaluation of a PE over a word w is defined as an iterative application

of a set of rewriting rules that are inspired by language derivatives [5,14]. For
the purposes of evaluation, we introduce two new prefix expressions: ⊥2 and
[α]l. PE ⊥ represents a failed match and [α]l is a ongoing match of a labeled
sub-expressions (α)l. Further, for a PE α, we define inductively that ε ∈ α iff

– α = ε, or
– α is one of (α0 +α1) or (α0 + α1)l or [α0 + α1]l and it holds that (ε ∈ α0∨ε ∈

α1).

For the rest of this section, let us fix a set of labels L, an alphabet Σ,
and denote E = PE(Σ, L) the set of all prefix expressions over this alphabet
and this set of labels. The core of evaluation of PEs is the one-step relation
a,p=⇒⊆ (E×ML)×(E×ML) defined for each letter a and natural number p, whose
defining rules are depicted in Fig. 2. We assume that the rules are evaluated
modulo the equalities ε · α = α · ε = α, and we say that α′ is a derivation of α if
α

a,p=⇒ α′ for some a and p.
The first seven rules in Fig. 2 are rather standard. Rules for disjunction are

non-standard in the way that whenever an operand of a disjunction is evaluated
to ε, the whole disjunction is evaluated to ε (rule Or-end) in order to obtain
the shortest match. Also, after rewriting a disjunction, operands that evaluated

2 Because PEs and m-strings never interact together, we use the symbol ⊥ in both,
but formally they are different symbols.

Monitoring Hyperproperties with Prefix Transducers 175

Fig. 2. One-step relation for evaluating prefix expressions. The rules are evaluated
modulo the equalities ε · α = α · ε = α.

to ⊥ are dropped (unless the last one if we should drop all operands). The only
non-shortening rule is Iter that unrolls α if β was not matched in α�β. Thus,
evaluating α�β can first prolong the expression and then eventually end up again
in α�β after a finite number of steps. This does not introduce any problems as
the set of derivations remains bounded [16].

There are four rules for handling labellings. Rule L-ltr handles one-letter
matches. Rule L-start handles the beginning of a match where the expression
(α)l gets rewritten to [α]l so that we know we are currently matching label l in
the next steps. Rules L-cont and L-end continue and finish the match once
the labeled expression evaluates to ε. Concatenating m-maps in the rules works
well because of the assumption that no two sub-expressions have the same label.
Therefore, there are no collisions and we always concatenate information from
processing the same sub-expression.

The one-step relation is deterministic, i.e., there is always at most one rule
that can be applied and thus every PE has a unique single derivation for a fixed
letter a and position p.

176 M. Chalupa and T. A. Henzinger

Theorem 1 (Determinism of a,p=⇒). For an arbitrary PE α over alphabet Σ,
and any a ∈ Σ and p ∈ N, there exist at most one α′ such that α

a,p=⇒ α′ (that
is, there is at most one defining rule of a,p=⇒ that can be applied to α).

Proof (Sketch). Multiple rules could be applied only if they match the same
structure of α (e.g., that α is a disjunction). But for such rules, the premises are
pairwise unsatisfiable together.

Having the deterministic one-step relation, we can define the evaluation func-
tion on words δ : E×Σ∗ → E×ML that returns the rewritten PE and the m-map
resulting from evaluating the one-step relation for each single letter of the word:
δ(α, w) = δ(α, w, 0, ∅) where

δ(α, w, p, M) =
{

(α, M) if w = ε

δ(α′, w′, p + 1, M ′) if w = aw′ ∧ (α, M) a,p=⇒ (α′, M ′)

We also define the decomposition function ρ : E×Σ∗ → (Σ∗×ML×Σ∗)∪{⊥}
that decomposes a word w ∈ Σ∗ into the matched prefix with the resulting m-
map, and the rest of w:

ρ(α, w) =
{

(u, m, v) if w = uv ∧ δ(α, u) = (ε, m)
⊥ otherwise

Function ρ is well-defined as there is at most one u for which δ(α, u) = (ε, _).
This follows from the determinism of the one-step relation. Function ρ is going
to be important in the next section.

Before we end this section, let us remark that thanks to the determinism of
the one-step relation and the fact that there is only a finite number of derivations
of any PE α, the evaluation function for a fixed PE can be represented as a
finite transducer [16]. Given the transducer for PE α and w ∈ Σ∗ s.t. (u, m, v) =
ρ(α, w), u is the prefix of w that leads the transducer to the accepting state and
the transducer outputs a sequence m0, ..., mk such that m0
 ...
 mk = m. As
a result, we have an efficient and incremental way of evaluating PEs. Moreover,
it suggests how to compose and perform other operations with PEs.

3 Multi-trace Prefix Expressions and Transducers

In this section, we define multi-trace prefix expressions and multi-trace prefix
transducers.

3.1 Multi-trace Prefix Expressions

A multi-trace prefix expression (MPE) matches prefixes of multiple words. Every
MPE consists of prefix expressions associated with input words and a condition
which is a logical formula that must be satisfied by the matched prefixes.

Monitoring Hyperproperties with Prefix Transducers 177

Definition 3 (Multi-trace prefix expression). Multi-trace prefix expression
(MPE) over trace variables Vτ and alphabet Σ is a list of pairs together with a
formula:

(τ0, e0), . . . , (τk, ek)[ϕ]

where τi ∈ Vτ are trace variables and ei are PEs over the alphabet Σ. The
formula ϕ is called the condition of MPE. We require that for all i �= j, labels in
ei and ej are distinct.

If the space allows, we typeset MPEs over multiple lines as can be seen in
the examples of prefix transducers throughout the paper.

MPE conditions are logical formulae over m-strings and input words3. Terms
of MPE conditions are l1 = l2, τ1[l1] = τ2[l2], and τ1[l1] = w for labels or m-
string constants l1, l2, trace variables τ1, τ2 ∈ Vτ , and (constant) words w over
arbitrary alphabet. Labels are evaluated to the m-strings associated with them
by a given m-map, τ [l] is the concatenation of sub-words of the word associated
with τ on positions specified by the m-string for l, and constants evaluate to
themselves. For example, if label l evaluates to (0, 1)(3, 4) for a given m-map,
then τ [l] evaluates to abba if τ is mapped to abcba. A well-formed MPE condition
is a boolean formula built up from the terms.

The satisfaction relation of MPE conditions is defined w.r.t an m-map M ,
and a trace assignment σ : Vτ → Σ∗ which is a map from a set of trace variables
Vτ into words. We write σ, M |= ϕ when σ and M satisfy condition ϕ. Because
of the space restrictions, we refer to the extended version of this paper [16] for
formal definition of the satisfaction relation for MPE conditions. Nonetheless,
we believe that MPE conditions are intuitive enough from the examples.

Given an MPE α, we denote as α(τ) the PE associated with trace variable τ
and if we want to highlight that α has the condition ϕ, we write α[ϕ]. We denote
the set of all MPEs over trace variables Vτ and alphabet Σ as MPE(Vτ , Σ). An
MPE α[ϕ] over trace variables VI = {τ1, ..., τk} satisfies a trace assignment σ,
written σ |= α, iff ∀τ ∈ VI : ρ(α(τ), σ(τ)) = (uτ , Mτ , vτ) and σ, Mτ1
...
Mτk

|=
ϕ. That is, σ |= α if every prefix expression of α has matched a prefix on its
trace and the condition ϕ is satisfied.

3.2 Multi-trace Prefix Transducers

Multi-trace prefix transducers (MPT) are finite transducers [36] with MPEs as
guards on the transitions. If a transition is taken, one or more symbols are
appended to one or more output words, the state is changed to the target state
of the transition and the matched prefixes of input words are consumed. The
evaluation then continues matching new prefixes of the shortened input words.

3 The conditions can be almost arbitrary formulae, depending on how much we are
willing to pay for their evaluation. They could even contain nested MPEs. As we will
see later, MPE conditions are evaluated only after matching the prefixes which gives
us a lot of freedom in choosing the logic. For the purposes of this work, however, we
use only simple conditions that we need in our examples and evaluation.

178 M. Chalupa and T. A. Henzinger

Fig. 3. The MPT from Example 1 and a demonstration of its two runs. Colored regions
show parts of words as they are matched by the transitions, the sequence of passed
states is shown above the traces.

Combining MPEs with finite state transducers allows to read input words asyn-
chronously (evaluating MPEs) while having synchronization points and finite
memory (states of the transducer).

Definition 4 (Multi-trace prefix transducer). A multi-trace prefix expres-
sion transducer (MPT) is a tuple (VI , VO, ΣI , ΣO, Q, q0, Δ) where

– VI is a finite set of input trace variables
– VO is a finite set of output trace variables
– ΣI is an input alphabet
– ΣO is an output alphabet
– Q is a finite non-empty set of states
– q0 ∈ Q is the initial state
– Δ : Q × MPE(VI , ΣI) × (VO ↪→ Σ∗

O) × Q is the transition relation; we call
the partial mappings (VO ↪→ Σ∗

O) output assignments.

A run of an MPT (VI , VO, ΣI , ΣO, L, Q, q0, Δ) on trace assignment σ0 is a
sequence π = (q0, σ0) ν0−→ (q1, σ1) ν1−→ . . .

νk−1−−−→ (qk, σk) of alternating states
and trace assignments (qi, σi) with output assignments νi, such that for each
(qi, σi)

νi−→ (qi+1, σi+1) there is a transition (qi, α, νi, qi+1) ∈ Δ such that σi |= α
and ∀τ ∈ VI : σi+1(τ) = vτ where (_, _, vτ) = ρ(α(τ), σi(τ)). That is, taking a
transition in an MPT is conditioned by satisfying its MPE and its effect is that
every matched prefix is removed from its word and the output assignment is put
to output.

The output O(π) of the run π is the concatenation of the output assignments
ν0 · ν1 · ... · νk−1, where a missing assignment to a trace is considered to be ε.
Formally, for any t ∈ VO, νi · νj takes the value

(νi · νj)(t) =

⎧
⎪⎨

⎪⎩

νi(t) · νj(t) if νi(t) and νj(t) are defined
νi(t) if νi(t) is defined and νj(t) is undefined
νj(t) if νi(t) is undefined and νj(t) is defined

Monitoring Hyperproperties with Prefix Transducers 179

Example 1. Consider the MPT in Fig. 3 and words t1 = ababcaba and t2 =
babacbab and the assignment σ = {τ1 �→ t1, τ2 �→ t2}. The run on this assignment
is depicted in the same figure on the bottom left. The output of the MPT on σ is
⊥���. For any words that are entirely consumed by the MPT without getting
stuck, it holds that τ1 starts with a sequence of ab’s and τ2 with a sequence of
ba’s of the same length. Then there is one c on both words and the words end
with a sequence of a or b but such that when there is a in one word, there must
be b in the other word and vice versa.

Now assume that the words are t1 = abababcaba and t2 = babacbab with
the same assignment. The situation changes as now the expression on trace t1
matches the prefix (ab)3 while on t2 the prefix (ba)2. Thus l1 = (0, 6) �= (0, 4) = l2
and the match fails. Finally, assume that we remove the condition [l1 = l2] from
the first transition. Then for the new words the MPT matches again and the
match is depicted on the bottom right in Fig. 3.

In the next section, we work with deterministic MPTs. We say that an MPT
is deterministic if it can take at most one transition in any situation.

Definition 5 (Deterministic MPT). Let T = (VI , VO, ΣI , ΣO, Q, q0, Δ) be
an MPT. We say that T is deterministic (DMPT) if for any state q ∈ Q, and
an arbitrary trace assignment σ : VI → Σ∗

I , if there are multiple transitions
(q, α1, ν1, q1), ..., (q, αk, νk, qk) such that ∀i : σ |= αi, it holds that there exists a
proper prefix η of σ, (i.e., ∀τ ∈ VI : η(τ) ≤ σ(τ) and for some τ ′ it holds that
η(τ ′) < σ(τ ′)), and there exist i such that η |= αi and ∀j �= i : η �|= αj.

Intuitively, an MPT is DMPT if whenever there is a trace assignment that
satisfies more than one transition from a state, one of the transitions matches
“earlier” than any other of those transitions.

4 Hypertrace Transformations

A hyperproperty is a set of sets of infinite traces. In this section, we discuss an
algorithm for monitoring k-safetyhyperproperties, which are those whose viola-
tion can be witnessed by at most k finite traces:

Definition 6 (k-safety hyperproperty). A hyperproperty S is k-safety hyper-
property iff

∀T ⊆ Σ
ω : T �∈ S =⇒ ∃M ⊆ Σ

∗ : M ≤ T ∧ |M | ≤ k ∧ (∀T
′ ⊆ Σ

ω : M ≤ T
′ =⇒ T

′ �∈ S)

where Σω is the set of infinite words over alphabet Σ, and M ≤ T means that
each word in M is a (finite) prefix of a word in T .

We assume unbounded parallel input model [25], where there may be arbi-
trary many traces digested in parallel, and new traces may be announced at
any time. Our algorithm is basically the combinatorial algorithm for monitor-
ing hyperproperties of Finkbeiner et al. [23,28] where we exchange automata
generated from HyperLTL specifications with MPTs. That is, to monitor a k-
safety hyperproperty, we instantiate an MPT for every k-tuple of input traces.
An advantage of using MPTs instead of monitor automata in the algorithm of

180 M. Chalupa and T. A. Henzinger

Finkbeiner et al. is that we automatically get a monitoring solution for asyn-
chronous hyperproperties. A disadvantage is that we cannot automatically use
some of the optimizations designed for HyperLTL monitors that are based on
the structure (e.g., symmetry) of the HyperLTL formula [24].

The presented version of our algorithm assumes that the input is DMPT as
it is preferable to have deterministic monitors. Deciding whether a given MPT is
deterministic depends a lot on the chosen logic used for MPE constraints. In the
rest of the paper, we assume that the used MPTs are known to be DMPTs (which
is also the case of MPTs used in our evaluation). We make the remark that in
cases where the input MPT is not known to be deterministic and/or a check is
impractical, one may resort to a way how to resolve possible non-determinism
instead, such as using priorities on the edges. This is a completely valid solution
and it is easy to modify our algorithm to work this way. In fact, the algorithm
works also with non-deterministic MPTs with a small modification.

4.1 Algorithm for Online Monitoring of k-safety Hyperproperties

Our algorithm is depicted in Algorithm 1 and Algorithm 2 (auxiliary proce-
dures). In essence, the algorithm maintains a set of configurations where one
configuration corresponds to the state of evaluation of one edge of an DMPT
instance. Whenever the algorithm may make a progress in some configuration,
it does so and acts according to whether matching the edge succeeds, fails, or
needs more events.

Now we discuss functioning of the algorithm in more detail. The input
is an DMPT ({VI , {τO}, ΣI , {⊥, �}, Q, q0, Δ}). W.l.o.g we assume that VI =
{τ1, ..., τk}. The DMPT outputs a sequence of verdicts {�, ⊥}∗. A violation of
the property is represented by ⊥, so whenever ⊥ appears on the output, the
algorithm terminates and reports the violation.

A configuration is a 4-tuple (σ, (p1, ..., pk), M, e) where σ is a function that
maps trace variables to traces, the vector (p1, ..., pk) keeps track of reading posi-
tions in the input traces, M is the current m-map gathered while evaluating the
MPE of e, and e is the edge that is being evaluated. More precisely, e is the
edge that still needs to be evaluated in the future as its MPE gets repeatedly
rewritten during the run of the algorithm. If the edge has MPE E, we write
E[τ �→ ξ] for the MPE created from E by setting the PE for τ to ξ.

The algorithm uses three global variables. Variable workbag stores configu-
rations to be processed. Variable traces is a map that remembers the so-far-seen
contents of all traces. Whenever a new event arrives on a trace t, we append it
to traces(t). Traces on which a new event may still arrive are stored in variable
onlinetraces. Note that to follow the spirit of online monitoring setup, in this
section, we treat traces as opaque objects that we query for next events.

In each iteration of the main loop (line 5), the algorithm first calls the pro-
cedure update_traces (line 6, the procedure is defined in Algorithm 2). This
procedure adds new traces to onlinetraces and updates workbag with new con-
figurations if there are any new traces, and extends traces in traces with new
events. The core of the algorithm are lines 9–39 that take all configuration sets
and update them with unprocessed events.

Monitoring Hyperproperties with Prefix Transducers 181

Algorithm 1: Online algorithm for monitoring hyperproperties with
MPTs
Input: an DMPT ({{τ1, ..., τk}, {τO}, ΣI , {⊥, �}, Q, q0, Δ})
Output: false + witness if an DMPT instance outputs ⊥, true if no DMPT instance

outputs ⊥ and there are finitely many traces. The algorithm does not
terminate otherwise.

1 traces ← ∅ // Stored contents of all traces
2 onlinetraces ← ∅ // Traces that are still being extended
3 workbag ← ∅ // Sets of configurations to process
4
5 while true do
6 update_traces (workbag, onlinetraces, traces)
7 workbag′ ← ∅ // The new contents of workbag
8
9 foreach C ∈ workbag do

10 C′ ← ∅ // The rewritten set of configurations
11
12 // Try to move each configuration in the set of configurations

13 foreach c = (σ, (p1, ..., pk), M, q
E[ϕ]�ν−−−−−→ q′)) ∈ C do

14 E′, M ′ ← E, M
15 (p′

1, ..., p′
k) ← (p1, ..., pk)

16 // Progress on each trace where possible
17 foreach 1 ≤ i ≤ k s.t. pi < |traces(σ(τi))| ∧ E(τi)
= ε do
18 E′ ← E′[τi �→ ξ] where E(τi), M ′ traces(σ(τi))[pi],pi=============⇒ ξ, M ′′
19 M ′ ← M ′′
20 p′

i ← p′
i + 1

21 if ξ = ⊥ then // Configuration failed
22 continue with next configuration (line 13)
23 if ∀j.E′(τj) = ε then // All prefix expressions matched
24 if σ, M ′ |= ϕ then // The condition is satisfied
25 // Compare p′

1, ..., p′
k against positions in other

configurations from this set to see if this must be
the shortest match

26 if (p′
1, ..., p′

k) < (p′′
1 , ..., p′′

k) for all (p′′
1 , ..., p′′

k) of c′ ∈ C, c′
= c

then
27 if ⊥ ∈ ν then // Violation found
28 return false + σ
29 // Edge is matched, no violation found, queue

successor edges
30 workbag′ ←

workbag′ ∪ {cfgs(q′, (σ(τ1), ..., σ(τk)), (p′
1, ..., p′

k))}
31 // This set of configurations is done
32 continue outer-most loop (line 9)
33 else
34 continue with next configuration (line 13)
35 // If the configuration has matched or it can still make a

progress, put it back (modified) to the set
36 if E′ has matched or

¬ (∀1 ≤ i ≤ k : σ(τi)
∈ onlinetraces ∧ pi = |traces(σ(τi))|) then

37 C′ ← C′ ∪ {(σ, (p′
1, ..., p′

k), M ′, q
E′[ϕ]�ν−−−−−−→ q′)}

38 if C′
= ∅ then
39 workbag′ ← workbag′ ∪ {C′} // Queue the modified set of

configurations
40
41 workbag ← workbag′
42 if workbag = ∅ and no new trace will appear then
43 return true

182 M. Chalupa and T. A. Henzinger

Algorithm 2: Auxiliary procedures for Algorithm 1
1 // Auxiliary procedure that returns a set of configurations for

outgoing edges of q
2 Procedure cfgs(q, (t1, ..., tk), (p1, ..., pk))
3 σ ← {τi �→ ti | 1 ≤ i ≤ k}
4 return {(σ, (p1, ..., pk), (0, ..., 0), ∅, e) | e is an outgoing edge from q }
5
6 // Auxiliary procedure to add new traces and update the current

ones
7 Procedure update_traces(workbag, onlinetraces, traces)
8 if there is a new trace t then // Update traces and workbag with the

new trace
9 onlinetraces ← onlinetraces ∪ {t}

10 traces ← traces[t �→ ε]
11 tuples ← {(t1, ..., tk) | tj ∈ Dom(traces), t = ti for some i}
12 workbag ← workbag ∪ {cfgs(q0, (t1, ..., tk), (0, ..., 0)) | (t1, ..., tk) ∈

tuples}
13
14 foreach t ∈ onlinetraces that has a new event e do // Update traces

with new events
15 traces(t) = traces(t) · e
16 if e was the last event on t then // Remove finished traces from

onlinetraces
17 onlinetraces ← onlinetraces \ {t}

The algorithm goes over every set of configurations from workbag (line 9) and
attempts to make a progress on every configuration in the set (line 13). For each
trace where a progress can be made in the current configuration (line 17), i.e.,
there is an unprocessed event on the trace τi (pi < |traces(σ(τi))|), and the corre-
sponding PE on the edge still has not matched (E(τi) �= ε), we do a step on this
PE (line 18). The new state of the configuration is aggregated into the primed
temporary variables (E′, M ′, ...). If the MPE matches (lines 23 and 24), we check
if other configurations from the set have progressed enough for us to be sure that
this configuration has matched the shortest prefix (line 26). That is, we compare
p′
1, ..., p′

k against positions p′′
1 , ..., p′′

k from each other configuration in C if it is
strictly smaller (i.e., p′

i ≤ p′′
i for all i and there is j s.t., p′

j < p′′
j). If this is true, we

can be sure that there is no other edge that can match a shorter prefix and that
has not matched it yet because it was waiting for events. If this configuration is
the shortest match, the output of the edge is checked if it contains ⊥ (line 27) and
if so, false with the counterexample is returned on line 28 because the monitored
property is violated. Else, the code falls-through to line 30 that queues new con-
figurations for successor edges as the current edge has been successfully matched
and then continues with a new iteration of the outer-most loop (line 32). The con-
tinue statement has the effect that all other configurations derived from the same
state (other edges) are dropped and therefore progress is made only on the con-
figuration (edge) that matched. If any progress on the MPE can be made in the
future, or it has already matched but we do not know if it is the shortest match yet,

Monitoring Hyperproperties with Prefix Transducers 183

the modified configuration is pushed into the set of configurations instead of the
original one (line 37). If not all the configurations from C were dropped because
they could not proceed, line 39 pushes the modified set of configurations back to
workbag and a new iteration starts.

4.2 Discussion

To see that the algorithm is correct, let us follow the evolution of the set of con-
figurations for a single instance of the DMPT on traces t1, ..., tk. The initial set
of configurations corresponding to outgoing edges from the initial state is created
and put to workbag exactly once on line 12 in Algorithm 2. When it is later taken
from workbag on line 9 (we are back in Algorithm 1), every configuration (edge) is
updated – a step is taken on every PE from the edge’s MPE (lines 17–18) where a
step can be made. If matching the MPE fails, the configuration is discarded due
to the jump on line 22 or line 34. If matching the MPE has neither failed nor
succeeded (and no violation has been found, in which case the algorithm would
immediately terminate), the updated configuration is pushed back to workbag and
revisited in later iterations. If the MPE has been successfully matched and it is
not known to be the shortest match, it is put back to workbag and revisited later
when other configurations may have proceeded and we may again check if it is the
shortest match or not. If it is the shortest match, its successor edges are queued
to workbag on line 30 (if no violation is found). Note that the check for the short-
est match may fail because of some configuration that has failed in the current
iteration but is still in C. Such configurations, however, will get discarded in the
current iteration and in the next iteration the shortest match is checked again
without these. This way we incrementally first match the first edge on the run of
the DMPT (or find out that no edge matches), then the second edge after it gets
queued into workbag on line 30, and so on.

The algorithm terminates if the number of traces is bounded. If it has not
terminated because of finding a violation on line 28, it will terminate on line 43.
To see that the condition on line 42 will eventually get true if the number of traces
is bounded, it is enough to realize that unless a configuration gets matched or
failed, it is discarded at latest when failing the condition on line 36 after reading
entirely (finite) input traces. Otherwise, if a configuration fails, the set is never
put back to workbag and if it gets matched, it can get back to workbag repeatedly
only until the shortest match is identified. But if every event comes in finite time,
some of the configurations in the set will eventually be identified as the shortest
match (because the MPT is deterministic), and the set of configurations will be
done. Therefore, workbag will eventually become empty.

Worth remark is that if we give up on checking if the matched MPE is
the shortest match on line 26 (we set the condition to true) and on line 32,
we continue with the loop on line 13 instead of with the outer-most loop, i.e.,
we do not discard the set of configurations upon a successfully taken edge, the
algorithm will work also for generic non-deterministic MPTs.

Even though this algorithm is very close to the algorithm of
Finkbeiner et al. [23,25,28] where we replace monitoring automata with pre-
fix transducers, there is an important difference. In our algorithm, we assume

184 M. Chalupa and T. A. Henzinger

that existing traces may be extended at any time until the last event has been
seen. This is also the reason why we need the explicit check whether a matched
configuration is the shortest match. The algorithm of Finkbeiner et al. assumes
that when a new trace appears, its contents is entirely known. So their algorithm
is incremental on the level of traces, while our algorithm is incremental on the
level of traces and events.

The monitor templates in the algorithm of Finkbeiner et al. are automata
whose edges match propositions on different traces. Therefore, they can be seen as
trivial DMPTs where each prefix expression is a single letter or ε. Realizing this,
we could say that our monitoring algorithm is an asynchronous extension of the
algorithm of Finkbeiner et al. where we allow to read multiple letters on edges,
or, alternatively, that in the context of monitoring hyperproperties, DMPTs are
a generalization of HyperLTL template automata to asynchronous settings.

5 Empirical Evaluation

We conducted a set of experiments about monitoring asynchronous version of
OD on random and semi-random traces. The traces contain input and output
events I(t, n) and O(t, n) with t ∈ {l, h}, and n a 64-bit unsigned number.
Further, a trace can contain the event E without parameters that abstracts any
event that have occurred in the system, but that is irrelevant to OD.

Fig. 4. The DMPT used for monitoring asynchronous OD in the experiments.

The DMPT used for monitoring OD is a modified version of the DMPT for
monitoring OD from Sect. 1, and is shown in Fig. 4. The modification makes the
DMPT handle also traces with different number and order of input and output
events. The letter $ represents the end of trace and is automatically appended to
the input traces. We abuse the notation and write τ1[e1] = Ol for the expression
that would be formally a disjunction comparing τ1[e1] to all possible constants
represented by Ol. However, in the implementation, this is a simple constant-
time check of the type of the event, identical to checking that an event matches
Ol when evaluating prefix expressions. The term τi[ei] �∈ {Ol, $} is just a shortcut
for τi[ei] �= Ol ∧ τi[ei] �= $.

The self-loop transition in the DMPT in Fig. 4 has no output and we enabled
the algorithm to stop processing traces whenever � is detected on the output of
the transducer because that means that OD holds for the input traces. Also, we
used the reduction of traces [24] – because OD is symmetric and reflexive, then

Monitoring Hyperproperties with Prefix Transducers 185

Fig. 5. CPU time and maximal memory consumption of monitoring asynchronous OD
on random traces with approx. 10% of low input events and 10% of low output events.
Values are the average of 10 runs.

if we evaluate it on the tuple of traces (t1, t2), we do not have to evaluate it for
(t2, t1) and (ti, ti).

Monitors were implemented in C++ with the help of the framework
Vamos [17]. The experiments were run on a machine with AMD EPYC CPU
with the frequency 3.1 GHz. An artifact with the implementation of the algo-
rithm and scripts to reproduce the experiments can be found on Zenodo4.

Experiments on Random Traces. In this experiment, input traces of different
lengths were generated such that approx. 10% were low input and 10% low
output events. These events always carried the value 0 or 1 to increase the
chance that some traces coincide on inputs and outputs.

Results of this experiment are depicted in Fig. 5. The left plot shows that
the monitor is capable of processing hundreds of traces in a short time and seem
to scale well with the number of traces, irrespective of the length of traces. The
memory consumption is depending more on the length of traces as shown in
the middle plot. This is expected as all the input traces are stored in memory.
Finally, the maximal size of the workbag grows linearly with the number of traces
but not with the length of traces, as the right plot shows.

Experiments on Periodic Traces. In this experiment, we generated a single
trace that contains low input and output events periodically with fixed distances.
Multiple instances of this trace were used as the input traces. The goal of the
experiment is to see how the monitor performs on traces that must be processed
to the very end and if the performance is affected by the layout of events.

The plots in Fig. 6 show that the monitor scales worse than on random traces
as it has to always process the traces to their end. For the same reason, the
performance of the monitor depends more on the length of the traces. Still, it
can process hundreds of traces in a reasonable time. The data do not provide
a clear hint on how the distances between events change the runtime, but they
do not affect it significantly. The memory consumption remains unaffected by
distances.

4 https://doi.org/10.5281/zenodo.8191723.

https://doi.org/10.5281/zenodo.8191723

186 M. Chalupa and T. A. Henzinger

Fig. 6. The plot shows CPU time and memory consumption of monitoring asyn-
chronous OD on instances of the same trace with low input and output events laid
out periodically with fixed distances.

6 Related Work

In this section, we review the most closely related work. More exhaustive review
can be found in the extended version of this paper [16].
Logics for Hyperproperties. Logics for hyperproperties are typically cre-
ated by extending a logic for trace properties. Hyperlogics HyperLTL [19] and
HyperCTL∗ [19] extend LTL and CTL∗, resp., with explicit quantification over
traces. The logic FO[<,E] [26] and S1S[E] [21] are first- and second- order logics
with successors extended with the equal level predicate that relates the same time
points on different traces.

All of the hitherto mentioned logics use synchronous time model. Asyn-
chronous HyperLTL [9], Stuttering HyperLTL [12], and Context HyperLTL [12]
are extensions of HyperLTL to asynchronous time model. Gutsfeld et al. [27]
introduce Multi-tape Alternating Asynchronous Word Automata (AAWA) and
the temporal fixpoint calculus Hμ for the specification and analysis of asyn-
chronous hyperproperties. AAWAs are so far the only automata-based formal-
ism for specification of asynchronous hyperproperties. Beutner et al. define
HyperATL∗ [11], an extension of the logic ATL∗ [4] that can capture asyn-
chronous hyperproperties via quantification over strategies of a scheduler. Hyper-
node automata [8] introduced by Bartocci et al. combine finite-state automata
with the hypertrace logic which allows to describe properties that have multi-
ple „phases”. The hypertrace logic ignores stuttering and prefixing to enable
asynchronous time model.
Runtime Monitoring of Hyperproperties. The first paper on runtime mon-
itoring of hyperproperties is due to Agrawal and Bonakdarpur [3]. They con-
sider monitoring k-safety hyperproperties specified with HyperLTL. In general,
monitoring algorithms for hyperproperties can be classified as combinatorial or
constraint-based [28]. Combinatorial algorithms [23,24,28] construct multiple
instances of an monitoring automaton and therefore our algorithm fall into this
category. Constraint-based algorithms [2,13,28,29] translate the monitoring task
into a set of constraints (e.g., SMT formulae) and apply rewriting and solving
of the constraints to monitor a given hyperproperty.

Monitoring Hyperproperties with Prefix Transducers 187

Stream runtime verification (SRV) [35] specifies monitoring as transformation
of streams of data, which makes SRV also related to transducers. It is common
that there are multiple input and output streams in an SRV specification, and
languages like TeSSLa [32] support asynchronous time model. So far as we know,
no one has used SRV languages in the context of hyperproperties yet.

Automata and Regular Expressions. Automata and transducers [36] are the
basis of MPTs and are well explored. Multi-track automata [15] are automata
that read n-tuples of letters. They commonly use also a special letter λ for a
gap (no letter) and thus can describe asynchronous reading of words. Regular
expressions (RE) are an ubiquitous formalism with many uses and many restric-
tions/extensions. Prefixed regular expressions (PRE) [6] are a subset of REs
with some properties similar to PEs. Semantically, prefix-free REs [30] are closer
to PEs than PREs, because PEs give raise to prefix-free languages as follows
from [31, Lemma 1] and the fact that a PE corresponds to a prefix-free trans-
ducer [16]. REs with the shortest-match semantics [18] are very close to PEs,
however, unlike PEs, they can be ambiguous. MPTs with a single input word
could be seen as a modification of expression automata [31], which are automata
with REs on edges.

Backreferences in regular expressions refer to parts of the word that were
already matched [34]. They can be even named [10], raising more similarities to
our labels. In REs, backreferences bring a great power as they allow non-regular
languages to be matched [10]. PEs can also recognize some non-regular patterns,
however, labels are much weaker than backreferences because MPE constraints
are evaluated only a posteriori, while backreferences modify the way how REs
are matched.

7 Conclusion and Future Work

We introduced prefix expressions and multi-trace prefix transducers, a formal-
ism that we see as a natural executable specification for the monitoring of syn-
chronous and asynchronous hyperproperties. Prefix expressions are similar to
regular expressions, but match only prefixes of words. The reason why we prefer
prefix expressions over regular expressions (that could also be used to match pre-
fixes) is that our prefix expressions are deterministic and unambiguous. These
properties make evaluating prefix expressions efficient. The matched prefixes,
more precisely their parts that were explicitly labeled, can be then reasoned
about using logical formulae, which are a part of multi-trace prefix expressions
that extend prefix expressions to multiple words. Multi-trace prefix expressions
are used as guards on edges in multi-trace prefix transducers, which incremen-
tally match and consume prefixes of input words and transform them into output
words. Combining prefix expressions with finite state transducers allows us to
read input words asynchronously (matching prefix expressions) with synchroni-
sation points (states of the transducer).

We use prefix transducers to monitor synchronous and asynchronous k-safety
hyperproperties. Our experimental evaluation of monitoring asynchronous obser-

188 M. Chalupa and T. A. Henzinger

vational determinism shows that a prefix-transducer-based monitoring algorithm
can scale to thousands of traces.

Prefix transducers provide a flexible formalism for optimizing monitoring
algorithms. We currently implement an asynchronous monitoring algorithm that
uses prefix transducers to summarize the seen traces, similar to the constraint-
based algorithms for monitoring synchronous hyperproperties [28]. We also want
to analyze the transducers to avoid instantiating them on redundant tuples of
traces, similar to the optimizations for HyperLTL monitors [24]. Furthermore,
the evaluation of prefix transducers provides many opportunities for paralleliza-
tion, ranging from parallelizing the workbag in Algorithm 1 to evaluating prefix
expressions for different traces in parallel. Finally, we work on compiling pre-
fix transducers from a high-level logical specification languages for asynchronous
hyperproperties, namely [8]. All our implementation work is carried out to extend
the Vamos [17] software infrastructure for monitoring.

Acknowledgements. This work was supported in part by the ERC-2020-AdG
101020093. The authors would like to thank Ana Oliveira da Costa for commenting on
a draft of the paper.

References
1. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification - Introductory

and Advanced Topics. LNCS, vol. 10457. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-75632-5

2. Aceto, L., Achilleos, A., Anastasiadi, E., Francalanza, A.: Monitoring hyperprop-
erties with circuits. In: Mousavi, M.R., Philippou, A. (eds.) FORTE 2022. LNCS,
vol. 13273, pp. 1–10. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
08679-3_1

3. Agrawal, S., Bonakdarpour, B.: Runtime verification of k-safety hyperproperties
in HyperLTL. In: CSF 2016, pp. 239–252. IEEE (2016). https://doi.org/10.1109/
CSF.2016.24

4. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002). https://doi.org/10.1145/585265.585270

5. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. Theor. Comput. Sci. 155(2), 291–319 (1996). https://doi.org/10.
1016/0304-3975(95)00182-4

6. Baeza-Yates, R.A., Gonnet, G.H.: Fast text searching for regular expressions or
automaton searching on tries. J. ACM 43(6), 915–936 (1996). https://doi.org/10.
1145/235809.235810

7. Bartocci, E., Ferrère, T., Henzinger, T.A., Nickovic, D., da Costa, A.O.: Flavors
of sequential information flow. In: Finkbeiner, B., Wies, T. (eds.) VMCAI 2022.
LNCS, vol. 13182, pp. 1–19. Springer, Cham (2022). https://doi.org/10.1007/978-
3-030-94583-1_1

8. Bartocci, E., Henzinger, T.A., Nickovic, D., da Costa, A.O.: Hypernode automata
(2023). https://doi.org/10.48550/arXiv.2305.02836

9. Baumeister, J., Coenen, N., Bonakdarpour, B., Finkbeiner, B., Sánchez, C.: A
temporal logic for asynchronous hyperproperties. In: Silva, A., Leino, K.R.M. (eds.)
CAV 2021. LNCS, vol. 12759, pp. 694–717. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-81685-8_33

https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/978-3-031-08679-3_1
https://doi.org/10.1007/978-3-031-08679-3_1
https://doi.org/10.1109/CSF.2016.24
https://doi.org/10.1109/CSF.2016.24
https://doi.org/10.1145/585265.585270
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1145/235809.235810
https://doi.org/10.1145/235809.235810
https://doi.org/10.1007/978-3-030-94583-1_1
https://doi.org/10.1007/978-3-030-94583-1_1
https://doi.org/10.48550/arXiv.2305.02836
https://doi.org/10.1007/978-3-030-81685-8_33
https://doi.org/10.1007/978-3-030-81685-8_33

Monitoring Hyperproperties with Prefix Transducers 189

10. Berglund, M., van der Merwe, B.: Regular expressions with backreferences re-
examined. In: Stringology Conference 2017, pp. 30–41. Czech Technical University
in Prague (2017). http://www.stringology.org/event/2017/p04.html

11. Beutner, R., Finkbeiner, B.: A temporal logic for strategic hyperproperties. In:
CONCUR 2021. LIPIcs, vol. 203, pp. 24:1–24:19. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.CONCUR.2021.24

12. Bozzelli, L., Peron, A., Sánchez, C.: Asynchronous extensions of HyperLTL.
In: LICS 2021, pp. 1–13. IEEE (2021). https://doi.org/10.1109/LICS52264.2021.
9470583

13. Brett, N., Siddique, U., Bonakdarpour, B.: Rewriting-based runtime verification for
alternation-free HyperLTL. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS,
vol. 10206, pp. 77–93. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54580-5_5

14. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494
(1964). https://doi.org/10.1145/321239.321249

15. Bultan, T., Yu, F., Alkhalaf, M., Aydin, A.: Relational string analysis. In: Bultan,
T., Yu, F., Alkhalaf, M., Aydin, A. (eds.) String Analysis for Software Verification
and Security, pp. 57–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-68670-7_5

16. Chalupa, M., Henzinger, T.A.: Monitoring hyperproperties with prefix transducers
(2023). https://doi.org/10.48550/arXiv.2308.03626

17. Chalupa, M., Muehlboeck, F., Lei, S.M., Henzinger, T.A.: VAMOS: middleware for
best-effort third-party monitoring. In: Lambers, L., Uchitel, S. (eds.) FASE 2023.
LNCS, vol. 13991, pp. 260–281. Springer, Cham (2023). https://doi.org/10.1007/
978-3-031-30826-0_15

18. Clarke, C.L.A., Cormack, G.V.: On the use of regular expressions for searching
text. ACM Trans. Program. Lang. Syst. 19(3), 413–426 (1997). https://doi.org/
10.1145/256167.256174

19. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8_15

20. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010). https://doi.org/10.3233/JCS-2009-0393

21. Coenen, N., Finkbeiner, B., Hahn, C., Hofmann, J.: The hierarchy of hyperlogics.
In: LICS 2019, pp. 1–13. IEEE (2019). https://doi.org/10.1109/LICS.2019.8785713

22. Finkbeiner, B., Haas, L., Torfah, H.: Canonical representations of k-safety hyper-
properties. In: CSF 2019, pp. 17–31. IEEE (2019). https://doi.org/10.1109/CSF.
2019.00009

23. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Monitoring hyperproperties.
In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 190–207. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67531-2_12

24. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: RVHyper: a runtime verifica-
tion tool for temporal hyperproperties. In: Beyer, D., Huisman, M. (eds.) TACAS
2018. LNCS, vol. 10806, pp. 194–200. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89963-3_11

25. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Monitoring hyperproper-
ties. Formal Methods Syst. Des. 54(3), 336–363 (2019). https://doi.org/10.1007/
s10703-019-00334-z

http://www.stringology.org/event/2017/p04.html
https://doi.org/10.4230/LIPIcs.CONCUR.2021.24
https://doi.org/10.1109/LICS52264.2021.9470583
https://doi.org/10.1109/LICS52264.2021.9470583
https://doi.org/10.1007/978-3-662-54580-5_5
https://doi.org/10.1007/978-3-662-54580-5_5
https://doi.org/10.1145/321239.321249
https://doi.org/10.1007/978-3-319-68670-7_5
https://doi.org/10.1007/978-3-319-68670-7_5
https://doi.org/10.48550/arXiv.2308.03626
https://doi.org/10.1007/978-3-031-30826-0_15
https://doi.org/10.1007/978-3-031-30826-0_15
https://doi.org/10.1145/256167.256174
https://doi.org/10.1145/256167.256174
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1109/LICS.2019.8785713
https://doi.org/10.1109/CSF.2019.00009
https://doi.org/10.1109/CSF.2019.00009
https://doi.org/10.1007/978-3-319-67531-2_12
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/s10703-019-00334-z

190 M. Chalupa and T. A. Henzinger

26. Finkbeiner, B., Zimmermann, M.: The first-order logic of hyperproperties. In:
STACS 2017. LIPIcs, vol. 66, pp. 30:1–30:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2017). https://doi.org/10.4230/LIPIcs.STACS.2017.30

27. Gutsfeld, J.O., Müller-Olm, M., Ohrem, C.: Automata and fixpoints for asyn-
chronous hyperproperties. In: POPL 2021, pp. 1–29 (2021). https://doi.org/10.
1145/3434319

28. Hahn, C.: Algorithms for monitoring hyperproperties. In: Finkbeiner, B., Mariani,
L. (eds.) RV 2019. LNCS, vol. 11757, pp. 70–90. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-32079-9_5

29. Hahn, C., Stenger, M., Tentrup, L.: Constraint-based monitoring of hyperproper-
ties. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 115–131.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1_7

30. Han, Y.-S., Wang, Y., Wood, D.: Prefix-free regular-expression matching. In: Apos-
tolico, A., Crochemore, M., Park, K. (eds.) CPM 2005. LNCS, vol. 3537, pp. 298–
309. Springer, Heidelberg (2005). https://doi.org/10.1007/11496656_26

31. Han, Y.-S., Wood, D.: The generalization of generalized automata: expression
automata. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA
2004. LNCS, vol. 3317, pp. 156–166. Springer, Heidelberg (2005). https://doi.org/
10.1007/978-3-540-30500-2_15

32. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Schramm, A.: TeSSLa: runtime
verification of non-synchronized real-time streams. In: SAC 2018, pp. 1925–1933.
ACM (2018). https://doi.org/10.1145/3167132.3167338

33. McLean, J.: Security models and information flow. In: SP 1990, pp. 180–189. IEEE
(1990). https://doi.org/10.1109/RISP.1990.63849

34. Penna, G.D., Intrigila, B., Tronci, E., Zilli, M.V.: Synchronized regular expressions.
Acta Informatica 39(1), 31–70 (2003). https://doi.org/10.1007/s00236-002-0099-
y

35. Sánchez, C.: Synchronous and asynchronous stream runtime verification. In: VOR-
TEX 2021, pp. 5–7. ACM (2021). https://doi.org/10.1145/3464974.3468453

36. Veanes, M., Hooimeijer, P., Livshits, B., Molnar, D., Bjørner, N.S.: Symbolic finite
state transducers: algorithms and applications. In: POPL 2012, pp. 137–150. ACM
(2012). https://doi.org/10.1145/2103656.2103674

37. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: CSFW 2003, p. 29. IEEE (2003). https://doi.org/10.1109/CSFW.2003.
1212703

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.4230/LIPIcs.STACS.2017.30
https://doi.org/10.1145/3434319
https://doi.org/10.1145/3434319
https://doi.org/10.1007/978-3-030-32079-9_5
https://doi.org/10.1007/978-3-030-32079-9_5
https://doi.org/10.1007/978-3-030-17465-1_7
https://doi.org/10.1007/11496656_26
https://doi.org/10.1007/978-3-540-30500-2_15
https://doi.org/10.1007/978-3-540-30500-2_15
https://doi.org/10.1145/3167132.3167338
https://doi.org/10.1109/RISP.1990.63849
https://doi.org/10.1007/s00236-002-0099-y
https://doi.org/10.1007/s00236-002-0099-y
https://doi.org/10.1145/3464974.3468453
https://doi.org/10.1145/2103656.2103674
https://doi.org/10.1109/CSFW.2003.1212703
https://doi.org/10.1109/CSFW.2003.1212703
http://creativecommons.org/licenses/by/4.0/

Compositional Simulation-Based Analysis
of AI-Based Autonomous Systems

for Markovian Specifications

Beyazit Yalcinkaya1(B), Hazem Torfah1, Daniel J. Fremont2,
and Sanjit A. Seshia1

1 University of California, Berkeley, CA, USA
{beyazit,torfah,sseshia}@berkeley.edu

2 University of California, Santa Cruz, CA, USA
dfremont@ucsc.edu

Abstract. We present a framework for the compositional simulation-
based analysis of AI-based autonomous systems for Markovian safety
specifications. Our compositional approach allows us to cut down the
cost of executing a large number of long-running simulations, by decom-
posing a simulation-based analysis task into several shorter and more
efficient ones. Results obtained from the individual analyses are then
stitched together to generate a result for the overall simulation-based
task. Our approach is based on a decomposition of scenarios formalized
as concurrent hierarchical probabilistic extended state machines that
describe sequential and parallel compositions of scenarios. We present
two instantiations of our framework for falsification and statistical ver-
ification. Using case studies from the autonomous driving domain, we
demonstrate the scalability of our compositional approach in compari-
son to a monolithic analysis approach.

Keywords: Simulation-based analysis · AI-based autonomous
systems · Compositional scenarios

1 Introduction

Artificial intelligence (AI) and machine learning (ML) are starting to be used
more widely in autonomous systems, in tasks that span perception, prediction,
planning, and control. However, there is a growing concern about how to assure
the safety of systems that use AI/ML-based components. Formal methods can
play a key role in assuring the safety of AI systems [23]. However, due to the
high complexity of these components, verification and testing methods must
often handle them as black-box components rather than using classic model-
based approaches. Simulation-based formal analysis has become commonplace

This work is partially supported by NSF grants 1545126 (VeHICaL, including an NSF-
TiH grant) and 1837132, by DARPA contracts FA8750-18-C-0101 (AA), FA8750-20-C-
0156 (SDCPS), and FA8750-23-C-0080 (ANSR), by Berkeley Deep Drive, by C3DTI,
and by Toyota under the iCyPhy center.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 191–212, 2023.
https://doi.org/10.1007/978-3-031-44267-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_10&domain=pdf
https://doi.org/10.1007/978-3-031-44267-4_10

192 B. Yalcinkaya et al.

for assessing the correctness of AI-based autonomous systems. The correctness
of the system is evaluated against a specification, defining the safety conditions,
by searching through its behaviors in a number of simulations.

Obtaining meaningful and high-confidence verification results requires the
execution of a large number of long-running simulations, which remains an inten-
sive and costly process. This is a consequence of the high dimensionality of the
simulation feature spaces induced by the complex environments in which the
systems are executed. In many cases, however, simulation models, also called
scenarios, are composed of several smaller scenarios in which a system is tested.
For a better and more efficient simulation-based analysis process, we need to take
advantage of this composition, transforming a large monolithic analysis process
into several easier analysis tasks.

In this paper, we present a compositional approach to simulation-based anal-
ysis of autonomous systems. Our approach is based on a decomposition of sce-
narios where sub-scenarios can be either composed sequentially, representing
the different stages of the simulation, or in parallel, representing different pos-
sibilities for a stage of the simulation. In this way, a simulation-based analysis
problem is decomposed into several smaller problems, each on the sub-scenario
level. Results obtained from each sub-analysis problem are stitched together to
form a result for the bigger problem. Our framework assumes that the specifica-
tions are Markovian (memoryless). In practice, most specifications encountered
in AI-based autonomous systems are Markovian, e.g., the absence of collisions,
obeying traffic lights, keeping a safe distance between agents.

We present a formalization of compositional scenarios based on concurrent
hierarchical probabilistic extended state machines, where each of the states of
a machine represents one of the sub-scenarios. A scenario is defined in terms of
a Markov decision process, representing the agents’ behavior and distributions
over the feature space of the environment model that the scenario represents.
Based on this formalization, we present a framework that can be instantiated
to a compositional algorithm for simulation-based analysis tasks of Markovian
safety specifications provided there is an aggregation function that allows us to
correctly stitch together the individual result to a global one. In general, it is
not straightforward to do compositional statistical analysis when the interface
specifications are not given. Our formalization and framework define a systematic
way to solve this problem via constructing the interface specifications on the fly
by computing the post-conditions of the sub-scenarios in each iteration.

We show how we can use our framework to define compositional algorithms
for the tasks of falsification and statistical model checking. We evaluate our
approach by applying the instantiated algorithms for these problems on bench-
marks from the domain of autonomous driving. Our results show that using the
compositional algorithms results in a speed up in solving the tasks in compari-
son to a monolithic approach. In particular, for falsification, the compositional
algorithm improves by more than 50% over the monolithic approach in terms
of the number of simulation steps needed to find a falsifying example. For sta-
tistical verification, in one case study, our approach outperforms the monolithic
one using, on average, only half the number of simulation steps. In another case

Compositional Simulation-Based Analysis for Markovian Specifications 193

study, the compositional approach converges after a small number of steps, while
the monolithic one exceeds a timeout threshold of 100 simulation runs.

To summarize, our main contributions are: (i) a formalization of composi-
tional scenarios based on concurrent hierarchical probabilistic extended state
machines and Markov-decision processes, (ii) a generic framework for the com-
positional analysis of AI-based autonomous systems, and (iii) experimental eval-
uation on two instantiations of the framework for falsification and statistical
verification, showing its efficacy and scalability in comparison to monolithic
simulation-based analysis methods.

Fig. 1. A snippet of a compositional scenario where individual sub-scenarios are defined
using a Scenic program.

2 Motivating Example

Consider an autonomous driving task with two cars, Leader and Follower,
where the former drives around the city and, at an intersection, turns left, right,
or goes straight uniformly at random, and the latter follows Leader while keeping
a safe distance. We analyze this system using the compositional scenario given
in Fig. 1. The individual scenarios are defined using Scenic [11], a probabilistic
scenario-description language, which we will use in our experiments as a way
to define scenarios.1 The program defines a monolithic scenario scenario com-
posed of four sub-scenarios, subScenario1, subScenario2L, subScenario2S,
and subScenario2R. The scenario begins with the sub-scenario subScenario1,
then composes it sequentially with a uniform choice among subScenario2L,
subScenario2S, and subScenario2R to simulate the system in a turn left, go
straight, or turn right sub-scenario at an intersection.

subScenario1 creates the cars, Leader and Follower, where Follower is
defined as the ego vehicle. Then, it defines a distribution over possible initial
position and orientation values for both cars. subScenario2L creates a box (an
obstacle) after the left turn and defines position and color distributions for it.
Similarly, subScenario2S and subScenario2R do the same for their own cases.
1 For the full syntax of Scenic, see [11].

194 B. Yalcinkaya et al.

Assume that the controllers of the two cars are equipped with AI-based com-
ponents for lane keeping and car following. Our goal is to analyze the system
composed of the two cars against a system-level specification that requires the
two cars to remain within a safe distance from each other that is not larger than
15 m and not smaller than 5. The analysis can be done in two ways, using fal-
sification [8], capturing cases where the specification is violated, and statistical
verification [16], providing statistical guarantees on to what extent the system
satisfies the specification. The falsification process searches for counterexamples
by simulating the system and sampling initial conditions and actions for the envi-
ronment. On the other hand, the statistical verification process aims to gather
an adequate number of executions of the system in its environment to provide a
statistical guarantee for the correctness of the system.

The traditional approach to simulation-based analysis samples initial con-
ditions for the environment and rolls out its entire trajectory. For the sce-
nario in Fig. 1, this translates to interpreting it monolithically, i.e., running
scenario. Simulating a system using scenario implies that, for each simu-
lation, Scenic samples a sub-scenario among subScenario2L, subScenario2S,
and subScenario2R, composes it with the initial sub-scenario subScenario1,
and samples conditions for the environment from this composition. Then, we run
the simulation with the sampled conditions and continue simulating the system
in this way until a termination condition is satisfied. However, this monolithic
approach does not exploit the inherent compositional structure of the program.
Therefore, it suffers from long simulation runs, requires a large number of execu-
tions for statistical guarantees, and does not always provide information about
the intermediate behaviors of the system during its execution.

In this paper, we propose to leverage the compositional structure. Our
method uses the Scenic program in Fig. 1 at the sub-scenario level. Specifically,
both for falsification and statistical verification, we first simulate the system
using subScenario1 until the cars arrive at the intersection and save the post-
condition resulting from this execution. We simulate the system in this manner
until the saved post-conditions converge to a stable distribution. We refer to this
distribution as the output distribution of subScenario1. We then use this output
distribution to analyze subScenario2L, subScenario2S, and subScenario2R by
sampling initial conditions for these sub-scenarios. Observe that this approach
is inherently more efficient than the monolithic approach as it divides the over-
all analysis task into smaller ones and solves them in isolation while avoiding
redundant computation: e.g., we analyze subScenario1 only once and reuse its
output distribution for the other three sub-scenarios.

3 Preliminaries

3.1 Executions and Specifications

Let S be a system defined over a set of system variables V over the domain of
real numbers R. Let �V � denote the set of valuations of V . An execution of a

Compositional Simulation-Based Analysis for Markovian Specifications 195

system is a sequence σ of valuations of the variables V , i.e., σ ∈ �V �∗, where for
some alphabet Σ, the set Σ∗ defines the set of all finite words over Σ.

For a set of system variables V , we define a specification as a set ϕ ⊆ �V �∗.
A specification thus defines a valid set of executions. In our work, we are partic-
ularly interested in Markovian safety specifications, also known as memoryless
safety specifications, whose satisfaction on an execution can be determined based
on the current valuation of system variables independent of the valuations of the
variables in previous steps of the execution. Formally, a Markovian safety speci-
fication ϕ can be defined in terms of a set ϕ′ ⊆ �V � such that for every execution
σ = σ1 . . . σm ∈ �V �∗ for any m ∈ N

+, σ ∈ ϕ if and only if for all i ≤ m, it
holds that σi ∈ ϕ′. In the rest of the paper, a specification will always refer to a
Markovian safety specification.

3.2 Markov Decision Processes

For a countable set X, let Distr(X) ⊂ (X → [0, 1]) define the set of all dis-
tributions over X, i.e., for d ∈ Distr(X) it holds that Σx∈Xd(x) = 1. For
d ∈ Distr(X), let the support of d be defined by Supp(d) = {x | d(x) > 0}.
A Markov Decision Process (MDP) is a tuple M = (Q,Act ,P, ι,X, L) where
Q is a set of states, Act is a finite set of actions, P : Q × Act → Distr(Q)
is the transition probability function such that

∑
q′∈Q P(q, a)(q′) ∈ {0, 1} for

every q ∈ Q and a ∈ Act , ι ∈ Distr(Q) is the initial distribution such that∑
q∈Q ι(q) = 1, X is a finite set of variables and L : S → �X� is a labeling

function that assigns each state a valuation of the variables in X. For a state
q ∈ Q, we define AvAct(q) = {a | P(q, a) �= ⊥}, where ⊥ is the empty dis-
tribution. W.l.o.g., |AvAct(q)| ≥ 1. If |AvAct(q)| = 1 for all q ∈ Q, we refer
to M as a Markov chain (MC). A finite path in the MDP M is a sequence
π = q0a0q1 . . . qn ∈ Q × (

Act × Q
)∗ such that for every 0 ≤ i < n it holds that

P(qi, ai)(qi+1) > 0 and ι(q0) > 0. We denote the set of finite paths of M by ΠM .
We use π↓ to denote the last state in π. A policy for the MDP M is a function
σ : ΠM → Distr(Act) with Supp(σ(π)) ⊆ AvAct(π↓) for every π ∈ ΠM . A policy
σ of M induces a Markov chain �M�σ. We denote the set of policies of M by
Policies(M).

4 Compositional Scenarios

A scenario represents a model of an environment in which we want to deploy
and analyze a system. This model is defined as a distribution over spatial and
temporal configurations of the environment, including those of all objects and
agents. The underlying semantics of a scenario can therefore be defined by an
MDP, where the nondeterministic actions capture the nondeterministic behavior
of the agents and simulator, and the probabilistic behavior reflects the distri-
butions over the feature space and probabilistic actions of agents. For example,
each of the Scenic sub-scenarios in Fig. 1, defines an MDP. A compositional sce-
nario is a collection of scenarios that are composed sequentially and in parallel.

196 B. Yalcinkaya et al.

A compositional scenario is therefore best modeled as a concurrent hierarchical
probabilistic extended state machine (CHPESM). Concurrent, because scenar-
ios can be executed concurrently; hierarchical, because a compositional scenario
can be composed of other compositional scenarios; probabilistic because switch-
ing to the next scenario can be done probabilisticly and, also, at any time the
choice of attributes and actions is done based on an underlying probability dis-
tribution over valuations of the environment’s feature space. The semantics of a
compositional scenario is then defined by an infinite-state MDP. In the following
sections, we give an overview of the CHPESM model and show how the MDP
of a compositional scenario can be obtained by computing the flattening of its
CHPESM.

4.1 Concurrent Hierarchical Probabilistic Extended State Machines

We define a probabilistic extended state machine (PESM) as a tuple M =
(Q, ι, V, F, P) where Q is a set of states, ι ∈ Distr(Q) is an initial distribu-
tion over states, V is a finite set of real-valued variables, F is a set of exit states,
and P : Q×G(V) → Distr(Q) is a probabilistic transition relation, where G(V)
defines the set of boolean constraints of the form x ∼ c, so-called guards, for
x ∈ V and ∼∈ {<,≤,=, >,≥}. Given a state and a guard, P returns a distri-
bution over states. A transition (q, g, d) ∈ P is enabled for a valuation v ∈ �V �
if and only if g(v) is true.

Hierarchical probabilistic extended state machines (HPESMs) are probabilis-
tic extended state machines whose states are themselves PESMs or HPESMs
[20,25]. Formally, HPESMs are defined inductively as follows. Let M be a set of
HPESMs over variables V . A HPESM H = (Q, ι, V, F, P,M, μ), where Q, ι, V, F
and P are a set of states, an initial distribution over states, a set of variables,
a set of exit states, and a probabilistic transition relation as in any probabilis-
tic extended state machine. Further, μ : Q → M is a mapping that associates
each state q ∈ Q with an HPESM from M. For example, in Fig. 1, scenario
is an HPESM with one state mapped to a PESM with states subScenario2L,
subScenario2S, and subScenario2R, and subScenario1.

An HPESM H provides a compact notation for a corresponding PESM,
denoted by flat(H) [25]. The machine flat(H) is defined inductively as follows.
If H is a PESM then flat(H) = H. If H is not a PESM, then flat(H) =
(Q′, ι′, V, F ′, P ′), defined as follows. Q′ =

⋃
q∈Q states(flat(μ(q))), with states(.)

being a function that returns the set of states of any PESM. For all q ∈ Q and
for all q′ ∈ states(flat(μ(q))), ι′(q′) = ι(q).init(flat(μ(q)))(q′) with init return-
ing the initial distribution of a state machine. P ′ = {τ = (q1, g, d) | ∃q ∈
Q. τ ∈ transitions(flat(q)) or ∃(q, g′, d′) ∈ P. q1 ∈ exit(flat(μ(q)))∧∀q′ ∈ Q.∀q2 ∈
states(flat(μ(q′))). d(q2) = d′(q′) · init(flat(μ(q′))) (q2)}, with transitions and exit
functions returning the transition relation and exit states.

A concurrent hierarchical probabilistic extended finite state machine
(CHPESM) [25] is defined inductively as follows. Every PESM is a CHPESM.
For the inductive step, we distinguish two cases: (1) a CHPESM C is either a
hierarchical composition of other CHPESMs, as previously defined for HPESMs,

Compositional Simulation-Based Analysis for Markovian Specifications 197

or (2) it is a parallel composition of CHPESMs, i.e., C = C1 ‖ · · · ‖ Cn for
CHPESMs C1, . . . , Cn.

Every CHPESM C is associated with a corresponding PESM defined again
inductively as follows. If C is a basic PESM, then flat(C) = C. If C is a
hierarchical composition then flat(C) is defined as in the case of HPESMs.
If C = C1 ‖ · · · ‖ Cn for CHPESMs C1, . . . Cn over a set of variables V ,
then flat(C) = (Q, ι, V, F, P) where Q = states(flat(C1)) × . . . states(flat(Cn)),
ι = init(flat(Cn)) · · · · · init(flat(Cn))), F = exit(flat(Cn)) × · · · × exit(flat(Cn)),
and P a probabilistic transition relation where ((q1, . . . , qn),

∧
i≤n gi, d) ∈ P iff

there is a transition (qi, gi, d
′
i) ∈ transitions(flat(Ci)) for some i ∈ {1, . . . , n} and

where d((q′
1, . . . , q

′
n)) = Πj s.t. qj �=q′

j
dj(q′

j). We note that we choose a product
based on self-composition, i.e., transitions represent the execution actions from
different CHPESMs that can execute in parallel, in contrast to the usual syn-
chronous product used in [25]. This is necessary as individual processes in our
setting may evolve at their own pace.

4.2 Abstract Syntax and Semantics of Compositional Scenarios

Let S be a set of compositional scenarios. A compositional scenario is abstractly
defined as a CHPESM P = (S, ι, V, F, T,S, μ). Each state s ∈ S represents
a compositional scenario from S. Each of the basic (i.e., non-decomposable)
scenarios s ∈ S is defined over the feature space V .

The semantics of a compositional scenario P is defined by a (infinite-state)
Markov decision process �P� = (Q,Act ,P, ι,X, L) , obtained by first computing
the flattening of the CHPESM and then refining the states of the resulting PESM
to the MDPs they represent. A concrete scenario of P is a pair (v, π) for some v ∈
�V � and π ∈ Policies(�P�), inducing a Markov chain �P�v,π = (Q,P′, ι′,X, L)
where ι′(q) = 1 if q = (v,−) and ι(q) > 0. For any other q′ ∈ Q \ {q}, ι′(q′) = 0.
An execution of P is a path of a Markov chain �P�v,π obtained for an initial
sampled valuation v ∈ �V � and a policy π ∈ Policies(�P�).

5 Compositional Simulation-Based Analysis

In this section, we present a generic compositional simulation-based analysis
framework that can be instantiated to concrete algorithms for solving specific
simulation-based analysis tasks. The framework assumes a compositional sce-
nario structure, given by a CHPESM. Working on the PESM defining the flat-
tening of the CHPESM, the algorithm decomposes a general simulation-based
analysis task into smaller tasks, one for each state of the PESM, thus, executing
analysis tasks on the sub-scenario level. Results obtained from the individual
simulation-based analyses are stitched together providing a result for the over-
all analysis task. We first introduce the generic framework and then show two
instantiations of the algorithm for falsification and statistical verification.

198 B. Yalcinkaya et al.

5.1 Generic Framework

We introduce a generic compositional simulation-based analysis framework in
Algorithm 1. An instantiation of the framework is an algorithm that operates on
an PESM M = (S, ι, V, F, P), defining a flattening of a compositional scenario.
Such an instantiation is obtained by implementing three key procedures: evalu-
ate, terminate, and finalize. The algorithm then iterates over all sub-scenarios
defined by the states of M , starting with an initial state that is in the support
of ι and following the transition relation P . For each sub-scenario, an algorithm
executes a simulation-based analysis task implemented by the procedure evalu-
ate. This process is repeated until a termination condition is satisfied, checked
by the procedure terminate. Termination is decided based on the change in the
outcomes of the evaluation processes at each sub-scenario. If the termination
condition is satisfied, then the procedure finalize is called to compute a final
result. This result is computed by stitching together the results computed by
the evaluation process for the sub-scenario. If the termination condition is not
satisfied, the algorithm continues by evaluating other sub-scenarios. In the fol-
lowing, we elaborate on the workflow of the framework by providing more details
on the functionalities of procedures evaluate, terminate, and finalize.

Evaluation. An instantiation of our compositional approach executes
simulation-based analysis tasks at the sub-scenario level starting with states from
the initial distribution ι (line 2). The set W represents a working set including
all sub-scenarios for which a task should be executed next. For each sub-scenario
s ∈ W (line 4), the procedure evaluate is invoked (line 5), which implements a
specific simulation-based analysis process for a given task of interest (e.g., falsifi-
cation, statistical verification, etc.). The evaluate procedure is provided with an
input distribution ds

in on the input sample space of s, and output distribution
ds

out on the output space of s, which is to be updated by the evaluation proce-
dure. We represent ds

in and ds
out as multisets, so the distributions are extended

by adding new elements to these multisets. Notice that other representations for
these distributions are also possible depending on the specific needs of the task
under consideration. Finally, while termination of evaluate may depend on the
simulation-based analysis task at hand, it can also be stopped after a simulation
budget c has been exhausted, i.e., a number of simulation steps c is reached as
a sum of steps taken over all simulation runs performed by evaluate. The bud-
get can also be unlimited, i.e., c = −. In this case, the termination of evaluate
solely depends on the termination condition of the analysis task given by the
underlying implementation of evaluate.

Compositional Simulation-Based Analysis for Markovian Specifications 199

Algorithm 1. Compositional Simulation-based Analysis
Input: .

Probabilistic state machine M = (S, ι, V, F, P) /* Flattening of a CHPESM*/
Local simulation budget c ∈ N ∪ {−}

1: initialize({ds
in}s∈S , {ds

out}s∈S , r, {Ds
out}s∈S , R)

2: W := Supp(ι), W ′ := ∅
3: while True do
4: for s ∈ W do
5: ds

out, r(s) := evaluate(s, ds
out, ds

in, c)
6: R(s) := append(R(s), r(s))
7: Ds

out := append(Ds
out, ds

out)
8: if terminate({Ds

out}s∈S , R) then
9: return finalize(M, r)
10: for (s, g, d) ∈ P do
11: for s′ ∈ Supp(d) do
12: W ′ := W ′ ∪ {s′}
13: ds′

in := ds′
in + ds

out
14: if W ′ �= ∅ then
15: W := W ′

16: W ′ := ∅
17: else
18: W = Supp(ι)

The outcome of evaluate is a distribution ds
out on the outputs reached by the

simulation process of evaluate, and a result of the analysis process that updates
a mapping r for the specific sub-scenario s. For example, if evaluate implements
a falsification task for some specification ϕ, then r(s) is assigned to a valuation
v ∈ �V �, and a policy π ∈ Policies(s), that falsify ϕ. If evaluate implements a
statistical verification method, then r(s) stores an estimate of the probability
of satisfying a given specification in s. The history of results obtained for each
sub-scenario, as well as the history of output distributions are stored in a list of
mappings R, and a list of distributions Ds

out for each sub-scenario s ∈ S (lines 6
and 7). For this we assume that the input and output distributions ds

in, and ds
out,

the mapping r, as well as the lists Ds
out and R are initialized at the beginning

of the algorithm (line 1). These lists are necessary for checking termination and
are forwarded to the procedure terminate.

Termination. Termination of Algorithm 1 is checked after every evaluation
process, and is done executing an implementation of the procedure terminate
(line 8). Termination is decided based on the history of results stored in R,
and obtained using evaluate at each sub-scenario, as well as the history of out-
put distributions Ds

out for each sub-scenario s (collected in lines 7 and 6). For
example, in the case of falsification, terminate is implemented as the procedure
that returns True if a falsifying valuation is found at any sub-scenario s, or, if
such valuation is not found, then it might return True after observing a stabi-
lization in the output distribution computed for each sub-scenario. The latter
stabilization condition can also be used as a termination condition for statistical
verification (More details in the next sections). If terminate returns False, then
Algorithm 1 continues by applying the evaluate procedure on other scenarios in
the working set W that have not been processed so far. As long as termination
is not satisfied, after each evaluation process, a new working set of sub-scenarios

200 B. Yalcinkaya et al.

is computed that will be processed in the next iteration of the algorithm (lines
10 - 13). Here, successor sub-scenarios s′ of a currently evaluated sub-scenario
s, following the transition relation P , are added to the new working set W ′.
Furthermore, the input distribution ds′

in of a state s′ is updated with the output
distribution ds

out of its predecessor s (line 13). Once all states in W have been
processed, and the algorithm has not terminated, the set W is replaced with the
set W ′ (line 15) and the evaluation process is repeated for the new working set.
In case no new sub-scenarios are added, i.e., we reached and processed all exist
scenarios F of M , and the termination condition has not been satisfied yet, the
evaluation is restarted by re-initializing the set W with the set of initial states
(line 18). When it finally comes to a termination of the algorithm, as a last step,
the procedure finalize computes a final result for the overall simulation-based
analysis task, using the results stored in r. We discuss some instantiations of the
finalize procedure next.

Finalization. If the termination condition defined by the procedure terminate
is satisfied, a last procedure finalize is applied on the PESM M and the computed
mapping r. Executing an implementation of finalize stitches the results stored
in r, which were obtained from evaluating each sub-scenario, to a general result
for the general simulation-based analysis task. For example, in the case of a
falsification task for a specification ϕ, finalize will return a valuation satisfying
the input distributions of one of initial scenarios s0 ∈ Supp(ι), and for which there
is policy that leads to falsifying ϕ at s0, or a later scenario, reachable via P from
s0. In the case of statistical verification, a satisfaction probability is computed by
computing the minimum/maximum reachability probability computed over all
probabilities and distributions computed for the sub-scenarios and with respect
to the transition relation of M .

In the rest of the paper we refer to Algorithm 1 as the procedure comp.
An instantiation of Algorithm 1, for an evaluation, termination, and finalization
procedures λev, λter, and λfin, respectively, is denoted by comp(λev, λter, λfin).

5.2 Compositional Simulation-Based Falsification

In falsification we are interested in finding an evaluation of the feature space
that falsifies a given property. Given a flattening of a compositional scenario
M = (S, ι, V, F, P) and a system-level specification ϕ ⊆ �V �∗, find v ∈ �V �
and π ∈ Policies(�M�) such that �M�v,π �|= ϕ. In this section, we show how we
can define a compositional falsification approach by instantiating the procedures
evaluate, terminate, and finalize.

– evaluate: we instantiate evaluate with a procedure λϕ
ev that for a given sce-

nario s, an input distribution ds
in, output distribution ds

out, and a simulation
budget c, simulates s sampling initial inputs from the distribution ds

in, and
evaluates a simulation run based on a function λ : 2�V �∗ ×2�V �∗ → B, that for
a specification ϕ ⊆ �V �∗ and a set of simulation runs, returns True if and only
if a simulation run τ is a falsifying example for ϕ. i.e., τ �|= ϕ. Simulations

Compositional Simulation-Based Analysis for Markovian Specifications 201

are restarted as long as no falsifying example is found or until the simulation
budget is exhausted. If a falsifying examples is detected, the falsification pro-
cess returns the initial valuation of inputs sampled at that simulation and a
simulation trace.

– terminate: termination is implemented by λter returning True once a falsifying
example is found at any sub-scenario. If no such example is found, the process
terminates using the stabilization condition defined over the list of output
distributions.

– finalize: The finalization procedure is implemented by λfin that chooses an
initial valuation of the feature space and a path in M such that it leads to
a non-empty r in one of the scenarios reachable via the path if they exist,
otherwise it returns False.

Theorem 1. For a compositional scenario M , a specification ϕ, and a falsifi-
cation method λ, it is the case that comp(λϕ

ev, λter, λfin)(M, c) = λ(ϕ,M).

Proof (Sketch). The correctness of this instantiation follows from the fact that
once a sub-scenario has been falsified, then there is a valuation from its input dis-
tribution and a policy, inducing traces falsifying the specification. Since the input
distribution is the union of output distributions of predecessor sub-scenarios,
then we can find a valuation from the input distribution of that scenario and
a policy that lead to the violation. We can extend this argument to reach a
valuation from one of the initial sub-scenarios and build a policy that induces a
trace, violating the specification. �

5.3 Compositional Simulation-Based Statistical Verification

Statistical verification is a method that allows estimating the correctness of a
system for a given property by simulating the system for a number of runs and
using methods from the area of statistical theory to provide guarantees on the
correctness up to a statistical error [16]. We show that for a given statistical ver-
ification method, we can instantiate Algorithm 1 to an algorithm that performs
the statistical verification compositionally, preserving the guarantees obtained
by the statistical verification method.

Let M = (S, ι, V, F, P) be the flattening of a compositional scenario, ϕ ⊆
�V �∗ a specification we are interested in verifying, and λ a statistical verification
procedure that for M and ϕ, estimates the probability of M satisfying ϕ up to a
statistical error. A compositional algorithm for solving the statistical verification
problem can be achieved by using the following implementations of evaluate,
terminate, and finalize.

– evaluate: we implement evaluate as a procedure λϕ
ev that applies λ at each

sub-scenario s ∈ S for the specification ϕ. Simulation runs created by λϕ
ev

start from the input distribution ds
in, using a simulation budget c.

– terminate: a termination procedure λter can be implemented in several ways
[16]. In general, the termination condition for a statistical verification pro-
cess λ can be applied also over the sequence of results and post-conditions

202 B. Yalcinkaya et al.

computed by the individual statistical verification processes. One prominent
example that we will use in our experiments, is a stabilization condition based
on the convergence of the standard error of the mean of the simulation post-
conditions [13].

– finalize: The finalization procedure λfin computes a probability based on the
probabilities computed for each sub-scenario. It aggregates the probabilities
starting from the exit states to the initial states. Specifically, the probability
for a sub-scenario s, is computed as f(s,g,d)∈P

∑
s′∈S r(s′).d(s′) where f is an

aggregation over probabilities (e.g., max, min, etc.).

Theorem 2. For a compositional scenario M , a specification ϕ, and an sta-
tistical verification method λ, it is the case that comp(λϕ

ev, λter, λfin)(M, c) =
λ(ϕ,M).

Proof (Sketch). The correctness follows from the fact that the statistical verifi-
cation processes have been performed independently and based on independent
output distributions computed at each sub-scenario. The overall result is thus
statistically correct up to the same statistical error for each sub-scenario. �

6 Experimental Evaluation2

In this section, we present an experimental evaluation of the proposed method on
two case studies from the autonomous driving domain. We first provide a high-
level description of the autonomous driving tasks. Then, we present the details
of the simulator setup, the controller implementations, and the system-level
specification. We also explain the evaluation metrics and our baseline. Finally,
we present compositional scenarios used for evaluation, details of their feature
spaces, and the evaluation results.

6.1 An Autonomous Driving Task

The environment consists of several straight and curved road segments along
with two intersections and obstacles (see Fig. 2). We have two cars: Leader (the
black car) and Follower (the red car). They are tasked with following each other
while maintaining a safe distance. Leader follows the yellow line in the middle
of the road. At an intersection, it chooses to go left, straight, or right uniformly
at random. After an intersection, Leader continues to follow the yellow line all
while trying to avoid obstacles. Follower must follow the lead car while keeping
a safe distance.

We use the Webots, an open-source 3D robot simulator widely used in indus-
try, education, and research [17,24]. Both cars are modeled as a BMW X5
equipped with a camera facing the road. Using its camera input, Leader’s com-
puter vision component uses a standard image processing technique to estimate
the car’s angle to the yellow line. This estimate is then used as an input to a
2 Available at https://github.com/BerkeleyLearnVerify/compositional-analysis.

https://github.com/BerkeleyLearnVerify/compositional-analysis

Compositional Simulation-Based Analysis for Markovian Specifications 203

Fig. 2. Snapshots of the sub-scenarios of both case studies.

PID controller which controls the steering. Follower estimates its angle to the
Leader by processing its camera inputs in a similar way, and it also performs
image segmentation for estimating the distance to Leader. Additionally, Leader
uses a Sick LMS 291 LiDAR sensor for collision avoidance. Both cars set a target
speed of 40 km/h, but Follower changes its speed by braking or speeding up
to maintain a safe distance from Leader. The system-level specification formal-
izes the safe and specified distance between the cars with the Metric Temporal
Logic (MTL) [14] property � (distance ≥ 5 ∧ distance ≤ 15), where distance
denotes the distance between the cars. Specifically, the property defines the
notion of safety as keeping a distance between the cars that is not less than 5 m
and not more than 15 m throughout the entire trajectory.

6.2 Evaluation Details

We evaluate our method by performing both compositional falsification and com-
positional statistical verification on two different compositional scenarios for the
presented task. In compositional falsification, terminate (see line 8 in Algorithm
1) is designed to terminate the counter-example search either as soon as a fal-
sifying example is found or until the output distributions of each sub-scenario
stabilizes (the notion of stabilization will be defined precisely). In compositional
statistical verification, the terminate method halts the process once the out-
put distribution of each sub-scenario stabilizes. The notion of stabilization for
each sub-scenario’s output distribution is defined by the convergence of the stan-
dard error of the mean (SEM) of the simulation post-conditions. Specifically, at
the end of each sub-scenario, we get a point in a 6D space consisting of the
x-y coordinates and the orientations of both Leader and Follower. The post-
conditions of sub-scenarios form a distribution, which we try to approximate

204 B. Yalcinkaya et al.

through simulations. We stop generating more samples for a sub-scenario once
the change in the SEM of the post-conditions drops down a threshold value Δ,
i.e., the SEM converges to a stable value. The SEM σμ̄ is defined as σμ̄ = σ̄√

n
,

where σ̄ =
√

1
n−1

∑n
i=1 (xi − μ̄)2 is the unbiased estimator of standard devia-

tion, {x1, x2 . . . , xn} is the set of n samples, and μ̄ is the sample mean. The
stability of the SEM can be used as an indicator of a robust and reliable esti-
mate of the population mean [13]. One can also calculate confidence intervals
for the true population mean using SEM, e.g., a 95% confidence interval can be
calculated as μ̄ ± 1.96 × σμ̄.

A nuance between the theory and the practical implementation of the pro-
posed method is that for compositional falsification, to find counter-examples
earlier, we implement our method in batched mode. Specifically, given a batch
size, we run each sub-scenario in batches and interleave the falsification process
of each sub-scenario until either all sub-scenarios satisfy their convergence con-
dition or a counter-example is found. This way we avoid redundantly waiting
for the convergence of the output distributions of sub-scenarios that cannot be
falsified to find counter-examples faster.

In our evaluation, we use two different sampling strategies, uniform sampling
and Halton sampling [12], for both compositional falsification and compositional
statistical verification. We leverage VerifAI [8,9], a toolkit for the formal design
and analysis of AI/ML systems, to sample scenes from Scenic programs accord-
ing to uniform and Halton sampling. These sampling strategies are used by the
evaluate method (see line 5 of Algorithm 1) for sampling initial conditions to
simulate trajectories. Observe that both uniform and Halton sampling are pas-
sive sampling strategies. The usage of passive sampling strategies provides a
simpler implementation for the batched execution of compositional falsification
since we initialize a new sampler for each batch. One can use active sampling
strategies like cross-entropy, simulated annealing, Bayesian optimization, etc. by
saving the sampler state so that the sampler state would be preserved between
the interleavings of different falsification processes. Another way to use active
samplers is to run the falsification process of each sub-scenario either concur-
rently or in parallel instead of running them in batched mode. However, these
implementations are outside the scope of this work as they require diligent engi-
neering efforts.

Baseline. The baseline for our evaluation is the monolithic simulation-based
analysis approach that is currently supported by Scenic and VerifAI. Specifi-
cally, this approach treats the Scenic program as a black-box sampler and does
not leverage the compositional structure of the program. It samples initial condi-
tions for the entire scenario and rolls out the entire trajectory until the end. The
termination condition for the baseline is defined in a similar way to our method,
i.e., for statistical falsification, the search ends either when a counter-example
is found or when the output distribution of the entire Scenic program stabi-
lizes, and for statistical verification, we run simulations, again, until the output
distribution stabilizes.

Compositional Simulation-Based Analysis for Markovian Specifications 205

Metrics for Evaluation. To demonstrate the efficacy of our method compared
to the monolithic baseline, we focus on the total number of simulator steps and
the estimated specification satisfaction probability. For falsification, we analyze
the number of simulator steps taken until the falsification process ends. Due
to the inherent randomness of both statistical methods, we run the falsification
process with 10 different random seeds and analyze the mean and the standard
deviation of the number of simulator steps. For verification, we again focus on
the number of simulator steps taken until convergence, and, we compare the
estimated specification satisfaction probability of both methods.

6.3 Case Study 1

We use the compositional Scenic program from Fig. 1 to test this system
against the system-level specification. The program defines four sub-scenarios:
subScenario1, subScenario2L, subScenario2S, and subScenario2R.
subScenario1 is a sub-scenario starting at the straight road segment and ending
at the intersection (see Fig. 2a). This sub-scenario defines possible initial posi-
tions and orientations for both cars. Once subScenario1 is over, the next sub-
scenario is sampled uniformly at random from the other three. subScenario2L
defines the sub-scenario where Leader turns left (see Fig. 2b), subScenario2S
is the sub-scenario for going straight at the intersection (see Fig. 2c), and
subScenario2R is the case for turning right (see Fig. 2d). All sub-scenarios at
the intersection have an adversarial obstacle to trick the image processing and
segmentation performed by Follower. Specifically, they all sample positions and
colors for a box that can potentially cause Follower to violate the safety speci-
fication by mixing Leader with the obstacle. The space of possible positions for
the obstacle, in each sub-scenario, is defined to be either on the right-most or
the left-most lanes so that the yellow line and the inner lanes are not blocked for
Leader. However, if the Leader takes the turn too wide, it could still collide with
the obstacle, which would cause a specification violation. The color space for the
obstacle consists of nine different colors, only one of which can fool Follower. If
the obstacle is black and visible from Follower, it could corrupt the angle and
the distance estimates and therefore potentially cause a specification violation.
Notice that in our implementation, we manually decomposed sub-scenario defi-
nitions of the monolithic Scenic program since Scenic’s current Webots interface
does not allow the usage of sub-scenarios.

Falsification. To understand the performance gains of our method compared
to the monolithic baseline, we run both our method and the monolithic base-
line with 10 different random seeds. We run our method in batched mode with
a batch size of 5. Figure 3a presents the results of the experiments for both
uniform and Halton sampling strategies. Both methods find counter-examples
before converging to a stable distribution. However, the compositional method
finds counter-examples by taking fewer simulator steps on average. Moreover, the
standard deviation of the total number of simulator steps is much smaller com-
pared to the monolithic baseline. An important detail to note here is that when
we compare the sampling strategies, we see that Halton finds counter-examples

206 B. Yalcinkaya et al.

earlier compared to the uniform sampling strategy. This result is aligned with
the intuition that Halton sampling provides a more uniform coverage compared
to uniform sampling which uses pseudorandom number generators.

Statistical Verification. For comparing the performances of both methods
for statistical verification, we run both until convergence, i.e., until their output
distributions stabilize w.r.t. to the stabilization metric given in Sect. 6.2. For this
experiment, we set the threshold for convergence to Δ = 0.001 and run both
methods until the change in their SEM values drops down to this threshold.
Figure 3b presents a comparison between the total number of simulator steps
taken by each method before converging to a stable output distribution. With
uniform sampling, the compositional method provides a 3.85× speed up, and
with Halton sampling, our method is 4.18× faster. Notice that with Halton
sampling, both methods take slightly more simulator steps compared to the
uniform sampling strategy. This is due to the fact that the coverage provided by
Halton sampling makes the convergence of the output distributions harder.

We also compare the estimated probabilities output by the methods. Table 1
presents these results for both sampling strategies. The probability for the com-
positional method is calculated by combining the results from sub-scenarios.
Since we sample among subScenario2L, subScenario2S, and subScenario2R
uniformly at random, their probabilities are averaged, and since subScenario1
precedes the other three, its estimated probability is multiplied by the calculated
average. Table 1 shows that both methods converge to similar specification sat-
isfaction probabilities with minor differences. However, the compositional app-
roach uses fewer simulations to converge to this value. Moreover, the average
simulation length (i.e., the average number of simulator steps) taken by our
method is significantly less than the monolithic approach. For the compositional
method, the average simulation length is calculated by summing the number
of simulation steps of all sub-scenarios and dividing it by the total number of
simulation runs, i.e., 383. Notice that compared to the monolithic approach, our
compositional method provides more information about the safety of the system
in different sub-scenarios. For example, we see that the system does not violate
the system-level specification in subScenario1, along with the individual spec-
ification satisfaction probabilities for each sub-scenario, whereas the monolithic
approach does not provide any insight into the system behavior across different
sub-scenarios. We conclude by noting that on a Quad-Core Intel i7 processor
clocked at 2.3 GHz and a 32 GB main memory, our compositional statistical ver-
ification method took a little over 2 h to converge for both uniform and Halton
sampling, whereas the monolithic baseline took 6 h for uniform sampling and a
little over 8 h for Halton sampling to converge.

6.4 Case Study 2

We build on top of the first case study by adding two uniformly sampled sub-
scenarios before the first sub-scenario: subScenario0W and subScenario0B.
Both of these sub-scenarios start at the straight road segment connecting to

Compositional Simulation-Based Analysis for Markovian Specifications 207

Fig. 3. Experiment results for falsification and statistical verification of Case Study 1.

Table 1. Estimated specification satisfaction probabilities.

Uniform Sampling Halton Sampling

Estimated Number Mean Sim Estimated Number Mean Sim

Probability of Sim Length Probability of Sim Length

subScenario1 1.00 76 1100.07 1.00 72 1100.08

subScenario2L 0.91 187 657.04 0.90 188 657.23

subScenario2S 0.90 70 685.97 0.93 68 688.71

subScenario2R 0.88 50 868.22 0.90 58 869.48

Compositional 0.90 383 777.81 0.91 386 777.27

Monolithic 0.88 639 1796.28 0.89 698 1796.90

the road segment of subScenario1. subScenario0W samples a position for a
wall that blocks half of the road (Fig. 2e), and subScenario0B (Fig. 2f) samples
positions for three oil barrels. Both of these sub-scenarios can potentially cause
a specification violation if either Leader or Follower cannot perform the nec-
essary maneuver on time to avoid a collision with these obstacles. Specifically,
Leader’s controller uses its LiDAR sensor to sense surrounding obstacles and
attempts to avoid them while still following the yellow line whereas Follower
does not implement any obstacle avoidance procedure, so to avoid obstacles, its
needs to follow the maneuvers of Leader precisely.

Falsification. Similar to the previous case study, we run both methods with
10 different random seeds, and our method is, again, run in the batched mode
with a batch size of 5. Figure 4a presents the results for falsification. Similar to
the previous case study, both methods find counter-examples before their output
distributions stabilize. Figure 4a shows that our method finds counter-examples
significantly faster than the baseline, and its standard deviation is more stable.
Between uniform and Halton sampling strategies, we observe a similar pattern to
that observed in 6.3, i.e., due to its uniform coverage property, Halton sampling
finds counter-examples slightly faster. Notice that the simulator steps in these
experiments are smaller than the previous one since the new initial sub-scenarios
can also potentially cause a specification violation, whereas in the previous case

208 B. Yalcinkaya et al.

study, we have not observed any specification violation in the first sub-scenario;
therefore, we find counter-examples earlier in this case study.

Statistical Verification. To compare the compositional statistical verification
with the monolithic baseline, we run both until their output distributions stabi-
lize. However, for this experiment, we set the convergence threshold to a larger
value, i.e., Δ = 0.005, and we also set an upper bound of 100 simulations for the
number of simulations performed. Specifically, the statistical verification process
terminates either when the output distributions converge or when the process
reaches 100 simulations. The motivation for this decision is to understand how
the proposed method compares when fewer simulations are performed, which
causes output distributions to be less accurate for each sub-scenario. With the
given threshold value, i.e., Δ = 0.005, the compositional approach stabilizes
before reaching 100 simulation runs whereas the monolithic baseline reaches
the upper bound of 100 simulations before its output distribution converges.
Figure 4b presents the results for this experiment. We observe that the proposed
approach performs better than the baseline, and we also see a slight increase in
the total number of simulator steps due to Halton sampling. Since the baseline
cannot converge to a stable output distribution before 100 simulations, its results
are statistically less reliable than the results for the compositional method, and
its total number of simulator steps is upper-bounded by 100 simulations, not the
reliability of its output distribution.

Table 2 presents the comparison between the specification satisfaction prob-
abilities output by both methods. The estimated probability for the compo-
sitional method is calculated by combining the results for each sub-scenario.
Table 2 shows that even with a less accurate output distribution approximation,
probabilities estimated by both methods are close to each other. Moreover, even
though the number of simulations performed by the compositional method is
more than the monolithic baseline (which is due to the fact that the baseline
reaches the upper bound for the number of simulations), the average simulation
length (i.e., the average number of simulator steps) is much smaller than the
baseline since the compositional approach performs shorter simulations at the
sub-scenario level. The average simulation length for the compositional method is
calculated by combining the results from all sub-scenarios. Note that our method
also provides more insight into the system behavior. For example, in Table 2, we
observe that subScenario0W has the smallest specification satisfaction probabil-
ity, which implies that the system does not perform well in the presence of large
obstacles blocking half of the road. We conclude by noting that on the same
hardware as the previous case study, our compositional statistical verification
method took a little over 1 h to converge for both uniform and Halton sampling,
whereas the monolithic baseline took 1.5 h to reach the simulation limit for both
sampling strategies.

Compositional Simulation-Based Analysis for Markovian Specifications 209

Fig. 4. Experiment results for falsification and statistical verification of Case Study 2.

Table 2. Estimated Specification Satisfaction Probabilities for Case Study 2.

Uniform Sampling Halton Sampling

Estimated Number Mean Sim Estimated Number Mean Sim

Probability of Sim Length Probability of Sim Length

subScenario0W 0.63 41 924.49 0.55 53 861.08

subScenario0B 0.94 31 1235.32 0.90 30 1159.70

subScenario1 1.00 8 1122.75 1.00 25 1122.92

subScenario2L 0.92 63 656.05 0.94 62 660.84

subScenario2S 0.92 26 687.88 0.88 26 683.46

subScenario2R 0.94 16 885.44 0.93 15 895.73

Compositional 0.73 185 857.10 0.66 211 856.30

Monolithic 0.69 Timeout Timeout 0.61 Timeout Timeout

7 Related Work

Compositional Analysis Methods. Formal compositional analysis techniques have
a long history in the design and verification of systems [3–6,8,10,15,18]. Many of
these methods are based on assume-guarantee reasoning. These include methods
concerned with compositional reasoning for properties expressed in temporal
logics [3,5], approaches with a focus on compositional verification for models
such as interface and I/O automata [10,15], and those for the contract-based
design of systems [2,18]. With the rise of ML-based components, approaches
for the compositional verification of systems with black-box components have
been investigated. For example, an approach for the compositional falsification
of systems with DNN components was introduced in [8]. An initial investigation
of compositional verification for these types of systems was introduced in [19]. In
contrast to these approaches, our introduced framework provides a compositional
approach from a simulation-based, not model-based, analysis perspective, with
the goal of increasing the scalability of simulation-based methods.

210 B. Yalcinkaya et al.

Statistical Analysis Methods. The increasing complexity of cyber-physical sys-
tems, making combinatorial methods infeasible, has increased the interest in
investigating statistical analysis methods [1,21,27–30]. Coined by the term sta-
tistical model checking [16], many scalable simulation-based methods have been
introduced in the literature that can give formal statistical guarantees on the
correctness of a system relying on different statistical methods. For example,
Zuliani et al. show how a statistical model approach based on Bayesian statis-
tics can be used to solve the probabilistic model checking problem for temporal
properties and for system models given by Stateflow-style hybrid systems with
probabilistic transitions [30]. Younes and Simmons [29] use hypothesis testing
and discrete-event simulation to perform probabilistic verification of continuous-
time stochastic processes. David et al. [7] present an approach based on statistical
model checking to check the correctness of timed systems. In addition to han-
dling systems with large state spaces, a significant benefit of using statistical
model checking is that it can handle systems whose implementation models are
unknown. For example, Sen et al. [22] present a statistical approach for the ver-
ification of stochastic systems based on Monte Carlo simulation and statistical
hypothesis testing, with no knowledge of a formal model for the system. An
improved algorithm is provided by Younes [26]. Our framework can be instanti-
ated with all the methods mentioned above, allowing for a compositional app-
roach to applying these statistical model-checking methods.

8 Conclusion

We presented a framework for the compositional simulation-based analysis of
AI-based autonomous systems. Given a simulation-based analysis task, our app-
roach decomposes the task into several smaller simulation-based analysis tasks
avoiding the execution of expensive long-running simulations. Results for the
overall tasks are computed by stitching together the results obtained from the
smaller analysis tasks. We show how our framework can be used to generate
compositional algorithms for falsification and statistical verification. Our exper-
imental results show the scalability and efficacy of our approach in comparison
to monolithic simulation-based analysis methods.

References

1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. 28(1), 1–39 (2018)

2. Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis, C.:
Multiple viewpoint contract-based specification and design. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp.
200–225. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92188-
2 9

3. Bhaduri, P., Ramesh, S.: Interface synthesis and protocol conversion. Form. Asp.
Comput. 20(2), 205–224 (2008)

https://doi.org/10.1007/978-3-540-92188-2_9
https://doi.org/10.1007/978-3-540-92188-2_9

Compositional Simulation-Based Analysis for Markovian Specifications 211

4. Chilton, C., Jonsson, B., Kwiatkowska, M.Z.: Compositional assume-guarantee rea-
soning for input/output component theories. Sci. Comput. Program. 91, 115–137
(2014)

5. Clarke, E.M., Long, D.E., McMillan, K.L.: Compositional model checking. In: Pro-
ceedings of the Fourth Annual Symposium on Logic in Computer Science (LICS
1989), Pacific Grove, California, USA, 5–8 June 1989, pp. 353–362. IEEE Computer
Society (1989)

6. Cobleigh, J.M., Giannakopoulou, D., PĂsĂreanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X 24

7. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical
model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22110-1 27

8. Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical
systems with machine learning components. J. Autom. Reason. 63(4), 1031–1053
(2019)

9. Dreossi, T., et al.: VerifAI: a toolkit for the formal design and analysis of artificial
intelligence-based systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 432–442. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 25

10. Emmi, M., Giannakopoulou, D., Păsăreanu, C.S.: Assume-guarantee verification
for interface automata. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008.
LNCS, vol. 5014, pp. 116–131. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-68237-0 10

11. Fremont, D.J., et al.: Scenic: a language for scenario specification and data gener-
ation. Mach. Learn. 112, 3805–3849 (2023)

12. Halton, J.H.: On the efficiency of certain quasi-random sequences of points in
evaluating multi-dimensional integrals. Numer. Math. 2, 84–90 (1960)

13. Hastie, T., Tibshirani, R., Friedman, J.H., Friedman, J.H.: The Elements of Sta-
tistical Learning: Data Mining, Inference, and Prediction, vol. 2. Springer, New
York (2009). https://doi.org/10.1007/978-0-387-21606-5

14. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

15. Larsen, K.G., Nyman, U., W ↪asowski, A.: Interface input/output automata. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 82–97.
Springer, Heidelberg (2006). https://doi.org/10.1007/11813040 7

16. Legay, A., Lukina, A., Traonouez, L.M., Yang, J., Smolka, S.A., Grosu, R.: Statis-
tical model checking. In: Steffen, B., Woeginger, G. (eds.) Computing and Software
Science. LNCS, vol. 10000, pp. 478–504. Springer, Cham (2019). https://doi.org/
10.1007/978-3-319-91908-9 23

17. Michel, O.: Webots: professional mobile robot simulation. J. Adv. Robot. Syst.
1(1), 39–42 (2004)

18. Nuzzo, P., Li, J., Sangiovanni-Vincentelli, A.L., Xi, Y., Li, D.: Stochastic assume-
guarantee contracts for cyber-physical system design. ACM Trans. Embed. Com-
put. Syst., 18(1), 2:1–2:26 (2019)

19. Pasareanu, C.S., Gopinath, D., Yu, H.: Compositional verification for autonomous
systems with deep learning components. CoRR, abs/1810.08303 (2018)

https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1007/978-3-642-22110-1_27
https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.1007/978-3-540-68237-0_10
https://doi.org/10.1007/978-3-540-68237-0_10
https://doi.org/10.1007/978-0-387-21606-5
https://doi.org/10.1007/11813040_7
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-319-91908-9_23

212 B. Yalcinkaya et al.

20. Saikrishna, V., Ray, S.: MML inference of hierarchical probabilistic finite state
machine. In: 2019 Cybersecurity and Cyberforensics Conference (CCC), pp. 78–84
(2019)

21. Sen, K., Viswanathan, M., Agha, G.: VESTA: a statistical model-checker and ana-
lyzer for probabilistic systems. In: Second International Conference on the Quan-
titative Evaluation of Systems (QEST 2005), pp. 251–252 (2005)

22. Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box prob-
abilistic systems. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
202–215. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-
9 16

23. Seshia, S.A., Sadigh, D., Sastry, S.S.: Toward verified artificial intelligence. Com-
mun. ACM 65(7), 46–55 (2022)

24. Webots. http://www.cyberbotics.com Open-source Mobile Robot Simulation Soft-
ware

25. Yannakakis, M.: Hierarchical state machines. In: van Leeuwen, J., Watanabe, O.,
Hagiya, M., Mosses, P.D., Ito, T. (eds.) TCS 2000. LNCS, vol. 1872, pp. 315–330.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44929-9 24

26. Younes, H.L.S.: Probabilistic verification for “black-box” systems. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 253–265. Springer,
Heidelberg (2005). https://doi.org/10.1007/11513988 25

27. Younes, H.L.S.: Ymer: a statistical model checker. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005).
https://doi.org/10.1007/11513988 43

28. Younes, H.L., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical
probabilistic model checking. Int. J. Softw. Tools Technol. Transf. 8(3), 216–228
(2006)

29. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a
focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)

30. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to Stateflow/simulink verification. Formal Meth. Syst. Des. 43(2), 338–
367 (2013)

https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16
http://www.cyberbotics.com
https://doi.org/10.1007/3-540-44929-9_24
https://doi.org/10.1007/11513988_25
https://doi.org/10.1007/11513988_43

Decentralized Predicate Detection
Over Partially Synchronous
Continuous-Time Signals

Charles Koll1 , Anik Momtaz2 , Borzoo Bonakdarpour2 ,
and Houssam Abbas1(B)

1 Oregon State University, Corvallis, USA
{kollch,houssam.abbas}@oregonstate.edu

2 Michigan State University, East Lansing, USA
{momtazan,borzoo}@msu.edu

Abstract. We present the first decentralized algorithm for detecting
predicates over continuous-time signals under partial synchrony. A dis-
tributed cyber-physical system (CPS) consists of a network of agents,
each of which measures (or computes) a continuous-time signal. Exam-
ples include distributed industrial controllers connected over wireless net-
works and connected vehicles in traffic. The safety requirements of such
CPS, expressed as logical predicates, must be monitored at runtime. This
monitoring faces three challenges: first, every agent only knows its own
signal, whereas the safety requirement is global and carries over mul-
tiple signals. Second, the agents’ local clocks drift from each other, so
they do not even agree on the time. Thus, it is not clear which signal
values are actually synchronous to evaluate the safety predicate. Third,
CPS signals are continuous-time so there are potentially uncountably
many safety violations to be reported. In this paper, we present the first
decentralized algorithm for detecting conjunctive predicates in this setup.
Our algorithm returns all possible violations of the predicate, which is
important for eliminating bugs from distributed systems regardless of
actual clock drift. We prove that this detection algorithm is in the same
complexity class as the detector for discrete systems. We implement our
detector and validate it experimentally.

Keywords: Predicate detection · Distributed systems · Partial
synchrony · Cyber-physical systems

1 Introduction: Detecting All Errors in Distributed CPS

This paper studies the problem of detecting all property violations in a dis-
tributed cyber-physical systems (CPS). A distributed CPS consists of a net-
work of communicating agents. Together, the agents must accomplish a com-
mon task and preserve certain properties. For example, a network of actuators

Supported by NSF SHF awards 2118179 and 2118356.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 213–230, 2023.
https://doi.org/10.1007/978-3-031-44267-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_11&domain=pdf
http://orcid.org/0000-0001-5941-250X
http://orcid.org/0000-0002-4739-1032
http://orcid.org/0000-0003-1800-5419
http://orcid.org/0000-0002-8096-2618
https://doi.org/10.1007/978-3-031-44267-4_11

214 C. Koll et al.

in an industrial control system must maintain a set point, or a swarm of drones
must maintain a certain geometric formation. In these examples, we have N
agents generating N continuous-time and real-valued signals xn, 1 ≤ n ≤ N ,
and a global property of all these signals must be maintained, such as the prop-
erty (x1 > 0) ∧ . . . (xN > 0). At runtime, an algorithm continuously monitors
whether the property holds.

These systems share the following characteristics: first, CPS signals are ana-
log (continuous-time, real-valued), and the global properties are continuous-time
properties. From a distributed computing perspective, this means that every
moment in continuous-time is an event, yielding uncountably many events. Exist-
ing reasoning techniques from the discrete time settings, by contrast, depend on
there being at the most countably many events.

Second, each agent in these CPS has a local clock that drifts from other agents’
clocks: so if agent 1 reports x1(3) = 5 and agent 2 reports that x2(3) = −10,
these are actually not necessarily synchronous measurements. So we must re-
define property satisfaction to account for unknown drift between clocks. For
example, if the local clocks drift by at most 1 s, then the monitor must actually
check whether any value combination of x1(t), x2(s) violates the global property,
with |t − s| ≤ 1. We want to identify any scenario where the system execution
possibly [5] violates the global property; the actual unknown execution may or
may not do so.

Clock drift raises a third issue: the designers of distributed systems want
to know all the ways in which an error state could occur. E.g., suppose again
that the clock drift is at most 1, and the designer observes that the values
(x1(1), x2(1.1)) violate the specification, and eliminates this bug. But when she
reruns the system, the actual drift is 0.15 and the values (x1(1), x2(1.15)) also
violate the spec. Therefore all errors, resulting from all possible clock drifts
within the bound, must be returned to the designers. This way the designers can
guarantee the absence of failures regardless of the actual drift amount. When the
error state is captured in a predicate, this means that all possible satisfactions
of the predicate must be returned. This is known as the predicate detection
problem. We distinguish it from predicate monitoring, which requires finding
only one such satisfaction, not all.

Finally, in a distributed system, a central monitor which receives all signals is
a single point of failure: if the monitor fails, predicate detection fails. Therefore,
ideally, the detection would happen in decentralized fashion.

In this work, we solve the problem of decentralized predicate detection for
distributed CPS with drifting clocks under partial synchrony.

Related Work. There is a rich literature dealing with decentralized predicate
detection in the discrete-time setting : e.g. [4] detects regular discrete-time pred-
icates, while [7] detects lattice-linear predicates over discrete states, and [18]
performs detection on a regular subset of Computation Tree Logic (CTL). We
refer the reader to the books by Garg [6] and Singhal [10] for more references. By
contrast, we are concerned with continuous-time signals, which have uncountably

Decentralized Continuous-Time Predicate Detection 215

many events and necessitate new techniques. For instance, one cannot directly
iterate through events as done in the discrete setting.

Fig. 1. An example of a continuous-time distributed signal with 3 agents. Three time-
lines are shown, one per agent. The signals xn are also shown, and the local time inter-
vals over which they are non-negative are solid black. The skew ε is 1. The Happened-
before relation is illustrated with solid arrows, e.g. between e11 → e22, and e43 → e52.
These are not message transmission events, rather they follow from Definition 3. Some
satisfying cuts for the predicate φ = (x1 ≥ 0)∧(x2 ≥ 0)∧(x3 ≥ 0) are shown as dashed
arcs, and the extremal cuts as solid arcs. All extremal cuts contain root events, and
leftmost cut A also contains non-root events.

The recent works [14,15] do monitoring of temporal formulas over partially
synchronous analog distributed systems - i.e., they only find one satisfaction,
not all. Moreover, their solution is centralized.

More generally, one finds much work on monitoring temporal logic properties,
especially Linear Temporal Logic (LTL) and Metric Temporal Logic (MTL), but
they either do monitoring or work in discrete-time. Notably, [1] used a three-
valued MTL for monitoring in the presence of failures and non-FIFO commu-
nication channels. [3] monitors satisfaction of an LTL formula. [16] considered
a three-valued LTL for distributed systems with asynchronous properties. [2]
addressed the problem with a tableau technique for three-valued LTL. Finally,
[19] considered a past-time distributed temporal logic which emphasizes dis-
tributed properties over time.

Illustrative Example. It is helpful to overview our algorithm and key notions
via an example before delving into the technical details. An example is shown
in Fig. 1. Three agents produce three signals x1, x2, x3. The decentralized detec-
tor consists of three local detectors D1,D2,D3, one on each agent. Each xn is
observed by the corresponding Dn. The predicate φ = (x1 ≥ 0)∧(x2 ≥ 0)∧(x3 ≥
0) is being detected. It is possibly true over the intervals shown with solid black
bars; their endpoints are measured on the local clocks. The detector only knows
that the maximal clock skew is ε = 1, but not the actual value, which might be
time-varying.

Because of clock skew, any two local times within ε of each other must be
considered as potentially concurrent, i.e. they might be measured at a truly

216 C. Koll et al.

synchronous moment. For example, the triple of local times [4, 4.5, 3.6] might
have been measured at the global time 4, in which case the true skews were 0,
0.5, and −0.4 respectively. Such a triple is (loosely speaking) called a consistent
cut (Definition 4). The detector’s task is to find all consistent cuts that satisfy
the predicate. In continuous time, there can be uncountably many, as in Fig. 1;
the dashed lines show two satisfying consistent cuts, or satcuts for short.

In this example, our detector outputs two satcuts, [1.5, 2, 2.5] and [4, 5, 4],
shown as thin solid lines. These two have the special property (shown in this
paper) that every satcut lies between them, and every cut between them is a
satcut. For this reason we call them extremal satcuts (Definition 6). Thus these
two satcuts are a finite representation of the uncountable set of satcuts, and
encode all the ways in which the predicate might be satisfied.

We note three further things: the extremal satcuts are not just the endpoints
of the intervals, and simply inflating each interval by ε and intersecting them does
not yield the satcuts. Each local detector must somehow learn of the relevant
events (and only those) on other agents, to determine whether they constitute
extremal satcuts.

Contributions. In this paper, we present the first decentralized predicate detector
for distributed CPS, thus enhancing the rigor of distributed CPS design.

– Our solution is fully decentralized: each agent only ever accesses its own
signal, and exchanges a limited amount of information with the other agents.

– It is an online algorithm, running simultaneously with the agents’ tasks.
– It applies to an important class of global properties that are conjunctions of

local propositions.
– We introduce a new notion of clock, the physical vector clock, which might

be of independent interest. A physical vector clock orders continuous-time
events in a distributed computation without a shared clock.

– Our algorithm can be deployed on top of existing infrastructure. Specifically,
our algorithm includes a modified version of the classical detector of [4], and
so can be deployed on top of existing infrastructure which already supports
that detector.

Organization. In Sect. 2, we give necessary definitions and define the problem.
In Sect. 3 we establish fundamental properties of the uncountable set of events
SE satisfying the predicate. Our detector is made of two processes: a decen-
tralized abstractor presented in Sect. 4, and a decentralized slicer presented in
Sect. 5. Together, they compute a finite representation of the uncountable SE .
The complexity of the algorithm is also analyzed in Sect. 5. Section 6 demon-
strates an implementation of the detector, and Sect. 7 concludes. All proofs are
in the report [9].

2 Preliminaries and Problem Definition

We first set some notation. The set of reals is R, the set of non-negative reals is
R≥0. The integer set {1, . . . , N} is abbreviated as [N]. Global time values (kept by

Decentralized Continuous-Time Predicate Detection 217

an imaginary global clock) are denoted by χ, χ′, χ1, χ2, etc., while the symbols t,
t′, t1, t2, s, s′, s1, s2, etc. denote local clock values specific to given agents which
will always be clear from the context. A lattice is a set S equipped with a partial
order relation � s.t. every 2 elements have a supremum, or join, and an infimum,
or meet. An increasing function f is one s.t. t < t′ =⇒ f(t) < f(t′). Notation
(xn)n indicates a sequence (x1, . . . , xN) where N is always clear from context.

2.1 The Continuous-Time Setup

This section defines the setup of this study. It generalizes the classical discrete-
time setup, and follows closely the setup in [15]. We assume a loosely coupled
system with asynchronous message passing between agent monitors. Specifi-
cally, the system consists of N reliable agents that do not fail, denoted by
{A1, A2, . . . , AN}, without any shared memory or global clock. The output sig-
nal of agent An is denoted by xn, for 1 ≤ n ≤ N . Agents can communicate via
FIFO lossless channels. There are no bounds on message transmission times.

In the discrete-time setting, an event is a value change in an agent’s variables.
The following definition generalizes this to the continuous-time setting.

Definition 1 (Output signal and events). An output signal (of some agent)
is a function x : R≥0 → R, which is right-continuous (i.e., lims→t+ x(s) = x(t)
at every t), and left-limited (i.e., lims→t− |x(s)| < ∞ for all t).

In an agent An, an event is a pair (t, xn(t)), where t is the local time kept
by the agent’s local clock. This will often be abbreviated as et

n to follow standard
notation from the discrete-time literature.

Note that an output signal can contain discontinuities.

Definition 2 (Left and right roots). A root is an event et
n where

xn(t) = 0 or a discontinuity at which the signal changes sign: sgn(xn(t)) 	=
sgn(lims→t− xn(s)). A left root et

n is a root preceded by negative values: there
exists a positive real δ s.t. xn(t − α) < 0 for all 0 < α ≤ δ. A right root et

n is a
root followed by negative values: xn(t + α) < 0 for all 0 < α ≤ δ.

In Fig. 1, the only left root of x2 is e22 = (2, x2(2)) = (2, 0). The single right root
of x2 is e5.5

2 . Notice that intervals where the signal is identically 0 are allowed,
as in x2.

We will need to refer to a global clock which acts as a ‘real’ time-keeper. This
global clock is a theoretical object used in definitions and theorems, and is not
available to the agents. We make these assumptions:

Assumption 1.(a) (Partial synchrony) The local clock of an agent An is an
increasing function cn : R≥0 → R≥0, where cn(χ) is the value of the local
clock at global time χ. For any two agents An and Am, we have:

∀χ ∈ R≥0 : |cn(χ) − cm(χ)| < ε

with ε > 0 being the maximum clock skew. The value ε is known by the
detector in the rest of this paper. In the sequel, we make it explicit when we
refer to ‘local’ or ‘global’ time.

218 C. Koll et al.

(b) (Starvation-freedom and non-Zeno) Every signal xn has infinitely many roots
in R≥0, with a finite number of them occurring in any bounded interval.

Remark 1. Our detection algorithm can trivially handle multi-dimensional out-
put signals xn. We skip this generalization for clarity of exposition.

Remark 2. In distributed systems, agents typically exchange messages as part
of normal operation. These messages help establish an ordering between events
(a Send occurs before the corresponding Receive). This extra order information
can be incorporated in our detection algorithm with extra bookkeeping.
We do not assume that the clock drift is constant - it can vary with time. It is
assumed to be uniformly bounded by ε, which can be achieved by using a clock
synchronization algorithm, like NTP [13].

A distributed signal is modeled as a set of events partially ordered by Lam-
port’s happened-before relation [11], adapted to the continuous-time setting.

Definition 3 (Analog Distributed signal). A distributed signal on N
agents is a tuple (E,→), in which E is a set of events

E = {et
n | n ∈ [N], t ∈ R≥0}

such that for all t ∈ R≥0, n ∈ [N], there exists an event et
n in E, and t is local

time in agent An. The happened-before relation →⊆ E × E between events is
such that:

(a) In every agent An, all events are totally ordered, that is,

∀t, t′ ∈ R≥0 : (t < t′) =⇒ (et
n → et′

n).

(b) For any two events et
n, et′

m ∈ E, if t + ε ≤ t′, then et
n → et′

m.
(c) If e → f and f → g, then e → g.

We denote E[n] the subset of events that occur on An, i.e. E[n] := {et
n ∈ E}

The happened-before relation, →, captures what can be known about event
ordering in the absence of perfect synchrony. Namely, events on the same agent
can be linearly ordered, and at least an ε of time must elapse between events on
different agents for us to say that one happened before the other. Events from
different agents closer than an ε apart are said to be concurrent.

Conjunctive Predicates. This paper focuses on specifications expressible as con-
junctive predicates φ, which are conjunctions of N linear inequalities.

φ := (x1 ≥ 0) ∧ (x2 ≥ 0) ∧ . . . ∧ (xN ≥ 0). (1)

These predicates model the simultaneous co-occurrence, in global time, of events
of interest, like ‘all drones are dangerously close to each other’. Equation (1) also
captures the cases where some conjuncts are of the form xn ≤ 0 and xn = 0. If

Decentralized Continuous-Time Predicate Detection 219

N numbers (an) satisfy predicate φ (i.e., are all non-negative), we write this as
(a1, . . . , aN) |= φ. Henceforth, we say ‘predicate’ to mean a conjunctive predicate.
Note that the restriction to linear inequalities does not significantly limit our
ability to model specifications. If an agent n has some signal xn with which
we want to check f(xn) ≥ 0 for some arbitrary function f , then the agent can
generate an auxiliary signal yn := f(xn) so that we can consider the linear
inequality yn ≥ 0.

What does it mean to say that a distributed signal satisfies φ? And at what
moment in time? In the ideal case of perfect synchrony (ε = 0) we’d simply
say that E satisfies φ at χ whenever (x1(χ), . . . , xN (χ)) |= φ. We call such
a synchronous tuple (xn(χ))n a global state. But because the agents are only
synchronized to within an ε > 0, it is not possible to guarantee evaluation of
the predicate at true global states. The conservative thing is to treat concurrent
events, whose local times differ by less than ε, as being simultaneous on the
global clock. E.g., if N = 2 and ε = 1 then (x1(1), x2(1.5)) is treated as a
possible global state. The notion of consistent cut, adopted from discrete-time
distributed systems [8], formalizes this intuition.

Definition 4 (Consistent Cut). Given a distributed signal (E,→), a subset
of events C ⊂ E is said to form a consistent cut if and only if when C contains
an event e, then it contains all events that happened-before e. Formally,

∀e ∈ E : (e ∈ C) ∧ (f → e) =⇒ f ∈ C. (2)

We write C[n] for the cut’s local events produced on An, and Cτ [n] := {t | et
n ∈

C[n]} for the timestamps of a cut’s local events.

From this and Definition 3 (c) it follows that if et′
m is in C, then C also contains

every event et
n such that t + ε ≤ t′. Thus to avoid trivialities, we may assume

that C contains at least one event from every agent.
A consistent cut C is represented by its frontier front(C) =

(
et1
1 , . . . , etN

N

)
, in

which each etn
n is the last event of agent An appearing in C. Formally:

∀n ∈ [N], tn := supCτ [n] = sup{t ∈ R≥0 | et
n ∈ C[n]}.

Henceforth, we simply say ‘cut’ to mean a consistent cut, and we denote a
frontier by (etn

n)n. We highlight some easy yet important consequences of the
definition: on a given agent An, et

n ∈ C for all t < tn, so the timestamps of
the cut’s local events, Cτ [n], form a left-closed interval of the form [0, a], [0, a)
or [0,∞). Moreover, either Cτ [n] = [0,∞) for all n, in which case C = E, or
every Cτ [n] is bounded, in which case every tn is finite and |tn − tm| ≤ ε for all
n,m. Thus the frontier of a cut is a possible global state. This then justifies the
following definition of distributed satisfaction.

Definition 5. (Distributed Satisfaction; SE) Given a predicate φ, a dis-
tributed signal (E,→) over N agents, and a consistent cut C of E with frontier

front(C) =
(

(t1, x1(t1)), . . . , (tN , xN (tN))
)

220 C. Koll et al.

we say that C satisfies φ iff
(
x1(t1), x2(t2), . . . , xN (tN)

) |= φ. We write this as
C |= φ, and say that C is a satcut. The set of all satcuts in E is written SE.

2.2 Problem Definition: Decentralized Predicate Detection

The detector seeks to find all possible global states that satisfy a given predicate,
i.e. all satcuts in SE . In general, SE is uncountable.

Architecture. The system consists of N agents with partially synchronous
clocks with drift bounded by a known ε, generating a continuous-time distributed
signal (E,→). Agents communicate in a FIFO manner, where messages sent from
an agent A1 to an agent A2 are received in the order that they were sent.

Problem Statement. Given (E,→) and a conjunctive predicate φ, find a
decentralized detection algorithm that computes a finite representation of SE .
The detector is decentralized, meaning that it consists of N local detectors, one
on each agent, with access only to the local signal xn (measured against the local
clock), and to messages received from other agents’ detectors.

By computing a representation of all of SE (and not some subset), we account
for asynchrony and the unknown orderings of events within ε of each other. One
might be tempted to propose something like the following algorithm: detect all
roots on all agents, then see if any N of them are within ε of each other. This
quickly runs into difficulties: first, a satisfying cut is not necessarily made up
of roots; some or all of its events can be interior to the intervals where xn’s
are positive (see Fig. 2). Second, the relation between roots and satcuts must
be established: it is not clear, for example, whether even satcuts made of only
roots are enough to characterize all satcuts (it turns out, they’re not). Third,
we must carefully control how much information is shared between agents, to
avoid the detector degenerating into a centralized solution where everyone shares
everything with everyone else.

3 The Structure of Satisfying Cuts

We establish fundamental properties of satcuts. In the rest of this paper we
exclude the trivial case C = E. Proposition 1 mirrors a discrete-time result [4].

Proposition 1. The set of satcuts for a conjunctive predicate is a lattice where
the join and meet are the union and intersection operations, respectively.

We show that the set of satcuts is characterized by special elements, which
we call the leftmost and rightmost cuts.

Definition 6 (Extremal cuts). Let SE be the set of all satcuts in a given
distributed signal (E,→). For an arbitrary C ∈ SE with frontier (etn

n)n and
positive real α, define C − α to be the set of cuts whose frontiers are given by

(et1−δ1
1 , et2−δ2

2 , . . . , etN−δN
N) s.t. for all n : 0 ≤ δn ≤ α and for some n. δn > 0

Decentralized Continuous-Time Predicate Detection 221

Fig. 2. Two satcuts for a pair of agents A1 and A2, shown by the solid lines (s, t′) and
(s′, t). Their intersection is (s, t), shown by a dashed arc, and their union is (s′, t′),
shown by a dotted arc. For a conjunctive predicate φ, the intersection and union are
also satcuts, forming a lattice of satcuts.

A leftmost satcut is a satcut C ∈ SE for which there exists a positive real α s.t.
C − α and SE do not intersect. The set C + α is similarly defined. A rightmost
cut C (not necessarily sat) is one for which there exists a positive real α s.t.
C + α and SE do not intersect, and C − α ⊂ SE. We refer to leftmost and
rightmost (sat)cuts as extremal cuts.

Intuitively, C −α (C +α) is the set of all cuts one obtains by slightly moving the
frontier of C to the left (right) by amounts less than α. If doing so always yields
non-satisfying cuts, then C is a leftmost satcut. If moving C slightly to the right
always yields unsatisfying cuts, but moving it slightly left yields satcuts, then
C is a rightmost cut. The reason we don’t speak of rightmost satcuts is that
we only require signals to be left-limited, not continuous. If signals xn are all
continuous, then rightmost cuts are all satisfying as well.

In a signal, there are multiple extremal cuts. Figure 2 suggests, and Lemma 1
proves, that all satcuts live between a leftmost satcut and rightmost cut.

Lemma 1 (Satcut intervals). Every satcut of a conjunctive predicate lies
in-between a leftmost satcut and rightmost cut, and there are no non-satisfying
cuts between a leftmost satcut and the first rightmost cut that is greater than it
in the lattice order.

Thus we may visualize satcuts as forming N -dimensional intervals with end-
points given by the extremal cuts. The main result of this section states that
there are finitely many extremal satcuts in any bounded time interval, so the
extremal satcuts are the finite representation we seek for SE .

Theorem 1. A distributed signal has finitely many extremal satcuts in any
bounded time interval.

Therefore, it is conceivably possible to recover algorithmically the extremal cuts,
and therefore all satcuts by Lemma 1. The rest of this paper shows how.

4 The Abstractor Process

Having captured the structure of satcuts, we now define the distributed abstrac-
tor process that will turn our continuous-time problem into a discrete-time one,

222 C. Koll et al.

amenable to further processing by our modified version of the slicer algorithm
of [4]. This abstractor also has the task of creating a happened-before relation.
We first note a few complicating factors. First, this will not simply be a matter
of sampling the roots of each signal. That is because extremal cuts can contain
non-root events, as shown in Fig. 1. Thus the abstractor must somehow find and
sample these non-root events as part of its operation. Second, as in the discrete
case, we need a kind of clock that allows the local detector to know the happened-
before relation between events. The local timestamp of an event, and existing
clock notions, are not adequate for this. Third, to establish the happened-before
relation, there is a need to exchange event information between the processes,
without degenerating everything into a centralized process (by sharing every-
thing with everyone). This complicates the operation of the local abstractors,
but allows us to cut the number of messages in half.

4.1 Physical Vector Clocks

We first define Physical Vector Clocks (PVCs), which generalize vector clocks [12]
from countable to uncountable sets of events. They are used by the abstractor
process (next section) to track the happened-before relation. A PVC captures
one agent’s knowledge, at appropriate local times, of events at other agents.

Definition 7 (Physical Vector Clock). Given a distributed signal (E,→) on
N agents, a Physical Vector Clock, or PVC, is a set of N -dimensional timestamp
vectors vt

n ∈ R
N
≥0, where vector vt

n is defined by the following:

(1) Initialization: v0
n[i] = 0, ∀i ∈ {1, . . . , N}

(2) Timestamps store the local time of their agent: vt
n[n] = t for all t > 0.

(3) Timestamps keep a consistent view of time: Let V t
n be the set of all timestamps

vs
m s.t. es

m happened-before et
n in E. Then:

vt
n[i] = max

vs
m∈V t

n

(vs
m[i]), ∀i ∈ [N] \ {n}, t > 0

PVCs are partially ordered: vt
n < vt′

m iff vt
n 	= vt′

m and vt
n[i] ≤ vt′

m[i] ∀i ∈ [N].

We say vt
n is assigned to et

n. The detection algorithm can now know the
happened-before relation by comparing PVCs.

Theorem 2. Given a distributed signal (E,→), let V be the corresponding set
of PVC timestamps. Then (V,<) and (E,→) are order isomorphic, i.e., there is
a bijective mapping between V and E s.t. et

n → et′
m iff vt

n < vt′
m.

Definition 7 is not quite a constructive definition. We need a way to actually
compute PVCs. This is enabled by the next theorem.

Theorem 3. The assignment

vt
n =

{
[0, . . . , 0, t, 0, . . . , 0], t < ε

[t − ε, . . . , t − ε, t, t − ε, . . . , t − ε], t ≥ ε

where the t is in the nth position in both cases, satisfies the conditions of PVC
in Definition 7.

Decentralized Continuous-Time Predicate Detection 223

Fig. 3. A distributed signal of two agents (top) and the output of the abstractor (bot-
tom). The abstractor marks zero-crossings as discrete root events and creates new
events (dark circles) to maintain consistency.

4.2 Abstractor Description

The abstractor is described in Algorithm 1 on page 224. Its output is a stream
of discrete-time events, their correct PVC values, and the relation → between
them - i.e., a discrete-time distributed signal. This signal is processed by the
local slicer processes as it is being produced by the abstractor.

The abstractor runs as follows. It is decentralized, meaning that there is a
local abstractor running on each agent. Agent An’s local abstractor maintains
a buffer of discrete events, and consists of two trigger processes. The first is
triggered when a root is detected (by a local zero-finding algorithm; line 1). It
stores the root’s information in a local buffer (for future processing). If it is a
right root, it also sends it to the other agents. The second trigger process (line
6) is triggered when the agent receives a right root information from some other
process, at which point it does three things: it creates a local discrete event and
a corresponding relation � between events (Lines 8-9), it updates events in its
local buffer to see which ones can be sent to the local slicer process (described
in Sect. 5), and then it sends them. It is clear, by construction, that � is a
happened-before relation: it is the subset of → needed for detection purposes.

Before an event et
n is sent to the slicer, it must have a PVC that correctly

reflects the happened-before relation. This means that all events that happened-
before et

n must be known to agent n, which uses them to update the PVC
timestamps. This happens when events have reached agent An from every other
agent, with timestamps that place them after et

n (line 11). This is guaranteed to
happen by the starvation-free assumption 1.(b).

The output of a local abstractor is a stream of discrete events, so that the
output of the decentralized abstractor as a whole is a distributed discrete-time
signal. See Fig. 3.

224 C. Koll et al.

Algorithm 1: Local abstractor for agent An

Data: Signal of agent An

Result: A stream of discrete events which are roots or ε-offset from roots

1 trigger found a root etn at local time t:
2 add etn info (n, t, PVC, left or right root) to local buffer
3 if etn is right root:
4 for each agent m �= n:
5 send etn info to agent m

6 trigger received message about right root etm from agent Am:
7 Set t′ := t + ε, where ε is the maximum clock skew

8 create local event et
′
n

9 create relation etm � et
′
n (setting the PVC for et

′
n appropriately)

/* Info for created event includes that it came from a right

root etm, not necessarily that it is a root */

10 add et
′
n info (n, t′, PVC, from right root) to local buffer

/* Ready events are those whose PVCs will not be updated

anymore. See text for details. */

11 if An received at least one message about a right root e
tk
k from every other

agent Ak such that tk ≥ t:
/* Visit events in the buffer, forwarding ones that are

ready to the slicer. */

12 for each event esn in the local buffer :
13 Set vs

n[n] = s and vs
n[k] = s − ε for all k �= n

14 Remove esn from buffer and send it to local slicer

Given that all right roots are assigned discrete events by the first trigger, and
given that ε-offset events are also created from them by the second trigger (line
8), we have the following.

Theorem 4. All events in rightmost cuts are generated by the abstractor. More-
over, a rightmost cut of E is also a cut of the discrete signal returned by the
abstractor.

Thus the slicer process, described in the following section, can find the right-
most cuts when it processes the discrete signal. What about the leftmost satcuts?
These will be handled by the slicer using the PVCs, as will be shown in the next
section. Doing it this way relieves the abstractor from having to communicate
the left roots between processes, thus saving on messages and their wait times.

5 The Slicer Process for Detecting Predicates

The second process in our detector is a decentralized slicer process, so-called
to keep with the common terminology in discrete distributed systems [6]. The

Decentralized Continuous-Time Predicate Detection 225

slicer is decentralized: it consists of N local slicers Sn, one per agent. The slicer
runs in parallel with the abstractor and processes the abstractor’s output as it
is produced. Recall that the abstractor’s output consists of a stream of discrete
events, coming from the N agents. These events are either roots or ε-offset from
roots. If an event is a left root or ε-offset from a left root, we will call it a left
event. We define right events similarly. We will write Fn for those events, output
by the abstractor, that occurred on An.

Every slicer Sn maintains a token Tn, which is a constant-size data structure
to keep track of satcuts that contain An events. Specifically, for every event et

n

in Fn, the token Tn is forwarded between the agents, collecting information to
determine whether there exists a satcut that contains et

n. We say the slicer is
trying to complete et

n. The token’s updates are such that it will find that satcut
if it exists, or determines that none exists; either way, it is then reset and sent
back to its parent process An to handle the next event in Fn.

Let et
n be an event that the slicer is currently trying to complete. The token’s

updates vary, depending on whether it is currently completing a left event, or a
right event. If Tn is completing a right event, the token is updated as follows.
The token currently has a cut whose frontier contains et

n, which is either a satcut
or not. If it is, the token has successfully completed the event and is returned
to An to handle the next event in Fn. If not, then by the property of regular
predicates [4], there exists a forbidden event es

m on the frontier of the cut which
either prevents the cut from being consistent or from satisfying the predicate. Tn

is sent to the process Am containing this forbidden event. Tn’s so-called target
event, whose inclusion may give Tn a satcut, is the event on Am following the
forbidden es

m. If the token does not find a next event following es
m, then the

token is kept by Sm until it receives the next event from the abstractor (which
is guaranteed to happen under the starvation-free assumption). After the token
retrieves the next event, the updates to the token and progression of Sn then
follow the CGNM slicer [4]. Space limitations make it impossible to describe the
CGNM slicer here, and we refer the reader to the detailed description in [4].

If handling a left event, the token is updated as follows. First, as before, Tn is
sent to the process Am which generates the forbidden es

m – i.e., which prevents Tn

from completing et
n. Tn’s target event may not be the next event on that process

following es
m: that’s because if et

n is a left root, there may exist a left event et−ε
m

on Am which is part of a continuous-time leftmost satcut (by Definition 3), but
which was not created by the abstractor. In this case, if the token were to follow
the updates for a right event, it would skip a potential satcut. Instead, the slicer
Sm will create this event: namely, if Sm sees a new event es′

m where s′ > t − ε,
it knows that et−ε

m has not and will not show up (will not be produced by the
abstractor) because messages are FIFO. The slicer at this point creates the new
event et−ε

m . This is valid since in continuous-time, by definition, every moment
has a corresponding event on every agent. Once the token retrieves this created
et−ε
m as its new target, the updates to the token and progression of Sn follow the

CGNM slicer [4], similarly to the right event scenario.

226 C. Koll et al.

Fig. 4. Example of Subsect. 5.1. Bold intervals are where the local signals are non-
negative. The happened-before relation is illustrated with solid arrows. The predicate
is φ = (x1 ≥ 0) ∧ (x2 ≥ 0). Solid circles represent discrete events returned by the
abstractor; hollow circles are those created by the slicers. The leftmost satcut of this
example is [3.5 − ε, 3.5] and the rightmost is [6, 5.8].

Correctness of S. We will show that all extremal cuts of the continuous-time
signal are included in the discrete lattice of satcuts of the discrete signal. Since
the CGNM slicer computes the discrete lattice, this means in particular that
it computes the extremal cuts that are in it. From these extremal cuts, we can
then recover the continuous-time satcuts by Lemma 1.

Theorem 5. Our slicer returns all extremal cuts.

We give the space and time complexity of the overall detector. Since this is
an online detector which runs forever (as long as the system is alive), we must
fix a time interval for the analysis.

Theorem 6. The time complexity for each agent is O(2RN), where R is the
number of right roots in the given analysis interval. The detector consumes
O(N3) memory to store the tokens. If roots are uniformly distributed, then the
local buffers of the abstractor and slicer grow at the most to size O(N2).

Finally, there is no bound on detection delay, since we don’t assume any bounds
on message transmission time. Assuming some bound on transmission delay
yields a corresponding bound on detection delay.

5.1 Worked-Out Example

We now work through an example execution of the detector on Fig. 4. We
focus on agent A2, its abstractor A2, slicer S2 and its token T2.

1. Agent A2 encounters a left root in the signal at local time 3.5. This informa-
tion is forwarded to the abstractor.

2. The abstractor A2 adds the new root to its buffer with a PVC =[3.5− ε, 3.5].
3. A2 finds a right root in the signal at local time 5.8 and forwards it to A2.
4. The abstractor sends the root information to agent A1. It then adds this root

to its buffer with a PVC timestamp of [5.8 − ε, 5.8].
5. Abstractor A2 receives a message from A1 about a right root at A1’s local

time 6. Note that this is the first knowledge A2 has about anything that is
occurring on A1, even though A1 has already found a left root.

Decentralized Continuous-Time Predicate Detection 227

6. A2 uses A1’s message to create a new local event at 6+ ε with PVC [6, 6+ ε].
7. A2 also adds this new local event to its buffer. Since all messages are FIFO,

A2 knows that there will be no new messages which will create events before
6 + ε. Thus, it can remove both of the events 3.5 and 5.8 from the buffer and
forward them to its local slicer S2. At this point both of A1’s events have
been forwarded to its slicer, although A2 has no knowledge of this.

8. The slicer S2 receives an event with a PVC [3.5 − ε, 3.5]. Token T2 is waiting
for the next event, so it adds this event to its potential cut.

9. The token is processed with its new potential cut. The cut is found to be
inconsistent since T2 has no information about any A1 events.

10. The token’s target is set to be 3.5 − ε on A1 and the token is sent to A1.
11. A1 receives T2. It walks through its local events 2 and 6 and determines that

T2’s target event is between the two.
12. S1 creates a new event e3.5−ε

1 and notes that x1(3.5 − ε) ≥ 0.
13. Token T2 incorporates the new event to its potential cut. The new potential

cut is consistent and satisfies the predicate. It is then sent back to A2.
14. A2 receives T2. T2 indicates a satisfying cut, which the agent outputs as a

result. It then advances T2 to its next event at time 5.8.
15. T2 has the current cut of [3.5 − ε, 5.8]. This is not consistent, so it is given

the target 5.8 − ε on A1. It is then sent to A1.
16. A1 receives the token. S1 walks through its local events and finds that the

token’s target is between the left root and the right root.
17. S1 creates a new event at 5.8 − ε and notes that x1(5.8 − ε) ≥ 0.
18. The token adds the event to its potential cut. It finds that its new potential

cut is consistent and satisfies the predicate. It is then sent back to A2.
19. A2 receives T2 and outputs the satcut. The algorithm then continues with

new events as they occur.

Through this example, agent A2 discovered the satcuts [3.5 − ε, 3.5] and [5.8 −
ε, 5.8]. The first is the leftmost satcut of the interval of satcuts. A1 discovered an
additional satcut [6, 6 − ε]. Joining this satcut with A2’s second satcut returns a
result of [6, 5.8], which is the rightmost satcut of the interval of satcuts.

6 Case Studies and Evaluation

We implemented our detection algorithm and ran experiments to 1) illustrate
its operation, and 2) observe runtime scaling with number of agents and with
average rate of events. The detector was implemented in Julia for ease of proto-
typing, but future versions will be in C for speed. All experiments are replicated
to exhibit 95% confidence interval. Experiments were run on a single thread of
an Ubuntu machine powered by an AMD Ryzen 7 5800X CPU @ 3.80GHz. Code
can be found at https://github.com/sabotagelab/phryctoria.

We consider two sources of data: the first is a set of N synthetically generated
signals, N = 1...6. Each signal has a 5s duration, and is generated randomly
while ensuring an average root rate of μn. That is, on average, μn roots exist in
every second of signal xn. For the second source of data, we use the Fly-by-Logic

https://github.com/sabotagelab/phryctoria

228 C. Koll et al.

toolbox [17] to control up to 6 simulated UAVs (i.e., drones) performing various
reach-avoid missions. Their 3-dimensional trajectories are recorded over 6 s. We
monitor the predicate “All UAVs are at a height of at least 10m simultaneously”.
Maximum clock skew ε is set to 0.05 s.

Fig. 5. Runtime vs root rate and N on synthetic data.

Effect of root rate (μn) on runtime. We use 4 synthetic signals of 5s
duration, and measure the detection runtime as the root rate for all signals is
varied between 10roots/s and 50roots/s. Figure 5a shows the results. Naturally,
as μn increases, so does the runtime due to having to process more tokens.

Online detection. We want to identify when it is possible for us to per-
form online detection with the Julia implementation, i.e. such that the detector
finishes before the end of the signal being processed. To this end, we use the
synthetic signals of duration 5 s and vary both root rate and number of agents.
Figure 5b shows the results: all combinations of root rates and number of agents
with runtimes under the threshold of 5 s can be performed online with the hard-
ware setup used for these experiments.

Effect of number of agents on runtime. Fig. 6 shows the effect of number
of agents N on runtime. As expected, the runtime increases with N .

Decentralized Continuous-Time Predicate Detection 229

Fig. 6. Runtime vs number of agents.

7 Conclusion

We have defined the first decentralized algorithm for continuous-time predicate
detection in partially synchronous distributed CPS. To do so we analyzed the
structure of satisfying consistent cuts for conjunctive predicates, introduced a
new notion of clock, and modified a classical discrete-time predicate detector.

References

1. Basin, D., Klaedtke, F., Zălinescu, E.: Failure-aware runtime verification of dis-
tributed systems. In: 35th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2015), vol. 45, pp. 590–
603. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2015)

2. Bataineh, O., Rosenblum, D.S., Reynolds, M.: Efficient decentralized LTL mon-
itoring framework using tableau technique. ACM Trans. Embed. Comput. Syst.
(TECS) 18(5s), 1–21 (2019)

3. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. Formal Meth. Syst. Des.
48, 46–93 (2016)

4. Chauhan, H., Garg, V.K., Natarajan, A., Mittal, N.: A distributed abstraction algo-
rithm for online predicate detection. In: 2013 IEEE 32nd International Symposium
on Reliable Distributed Systems, pp. 101–110. IEEE, Braga, Portugal (2013)

5. Cooper, R., Marzullo, K.: Consistent detection of global predicates. ACM SIG-
PLAN Not. 26(12), 167–174 (1991)

6. Garg, V.: Elements of Distributed Computing. Wiley, Hoboken (2002)
7. Garg, V.K.: Predicate detection to solve combinatorial optimization problems. In:

Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Archi-
tectures, pp. 235–245 (2020)

8. Garg, V.K., Mittal, N.: On slicing a distributed computation. In: Proceedings of the
21st International Conference on Distributed Computing Systems (ICDCS 2001),
Phoenix, Arizona, USA, 16–19 April 2001, pp. 322–329. IEEE Computer Society
(2001). https://doi.org/10.1109/ICDSC.2001.918962

https://doi.org/10.1109/ICDSC.2001.918962

230 C. Koll et al.

9. Koll, C., Momtaz, A., Bonakdarpour, B., Abbas, H.: Decentralized predicate detec-
tion over partially synchronous continuous-time signals. Technical report, Oregon
State University (2023). https://www.houssamabbas.com/wp-content/uploads/
2023/08/RV 23 DMon-1.pdf

10. Kshemkalyani, A., Singhal, M.: Distributed Computing: Principles, Algorithms,
and Systems. Cambridge University Press, Cambridge (2011)

11. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978). https://doi.org/10.1145/359545.359563

12. Mattern, F., et al.: Virtual time and global states of distributed systems. Univ.,
Department of Computer Science, D 6750 Kaiserslautern, Germany (1989)

13. Mills, D., Martin, J., Burbank, J., Kasch, W.: Network time protocol version 4:
Protocol and algorithms specification. Technical report, Internet Engineering Task
Force (2010)

14. Momtaz, A., Abbas, H., Bonakdarpour, B.: Monitoring signal temporal logic in
distributed cyber-physical systems. In: Proceedings of the ACM/IEEE 14th Inter-
national Conference on Cyber-Physical Systems (with CPS-IoT Week 2023), pp.
154–165. ICCPS 2023, Association for Computing Machinery, New York, NY, USA
(2023). https://doi.org/10.1145/3576841.3585937

15. Momtaz, A., Basnet, N., Abbas, H., Bonakdarpour, B.: Predicate monitoring in
distributed cyber-physical systems. In: Feng, L., Fisman, D. (eds.) RV 2021. LNCS,
vol. 12974, pp. 3–22. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
88494-9 1

16. Mostafa, M., Bonakdarpour, B.: Decentralized runtime verification of LTL spec-
ifications in distributed systems. In: 2015 IEEE International Parallel and Dis-
tributed Processing Symposium, pp. 494–503. IEEE (2015)

17. Pant, Y.V., Abbas, H., Mangharam, R.: Smooth operator: control using the smooth
robustness of temporal logic. In: 2017 IEEE Conference on Control Technology and
Applications (CCTA), pp. 1235–1240. IEEE (2017)

18. Sen, A., Garg, V.K.: Detecting temporal logic predicates in distributed programs
using computation slicing. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003.
LNCS, vol. 3144, pp. 171–183. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-27860-3 17

19. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Efficient decentralized monitoring of
safety in distributed systems. In: Proceedings. 26th International Conference on
Software Engineering, pp. 418–427. IEEE (2004)

https://www.houssamabbas.com/wp-content/uploads/2023/08/RV_23_DMon-1.pdf
https://www.houssamabbas.com/wp-content/uploads/2023/08/RV_23_DMon-1.pdf
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/3576841.3585937
https://doi.org/10.1007/978-3-030-88494-9_1
https://doi.org/10.1007/978-3-030-88494-9_1
https://doi.org/10.1007/978-3-540-27860-3_17
https://doi.org/10.1007/978-3-540-27860-3_17

Flexible Runtime Security Enforcement
with Tagged C

Sean Anderson(B) , Allison Naaktgeboren , and Andrew Tolmach

Portland State University, Portland, OR, USA
{ander28,naak,tolmach}@pdx.edu

Abstract. We introduce Tagged C, a novel C variant with built-in tag-
based reference monitoring that can be enforced by hardware mecha-
nisms such as the PIPE (Processor Interlocks for Policy Enforcement)
processor extension. Tagged C expresses security policies at the level of C
source code. It is designed to express a variety of dynamic security poli-
cies, individually or in combination, and enforce them with compiler and
hardware support. Tagged C supports multiple approaches to security
and varying levels of strictness. We demonstrate this range by providing
examples of memory safety, compartmentalization, and secure informa-
tion flow policies. We also give a full formalized semantics and a reference
interpreter for Tagged C.

1 Introduction

Many essential technologies rely on new and old C code. Operating systems
(Linux, Windows, OSX, BSD), databases (Oracle, sqlite3), the internet (Apache,
NGNIX, NetBSD, Cisco IOS), and the embedded devices that run our homes
and hospitals are built in and on C. The safety of these technologies depends
on the security of their underlying C codebases. Insecurity can arise from C
undefined behavior (UB) such as memory errors (e.g. buffer overflows, use-after-
free, double-free), logic errors (e.g. SQL injection, input-sanitization flaws), or
larger-scale architectural flaws (e.g. over-provisioning access rights).

Although static analyses can detect and mitigate many C insecurities, a last
line of defense against undetected or unfixable vulnerabilities is runtime enforce-
ment of security policies using a reference monitor [1]. In particular, many useful
policies can be specified in terms of flow constraints on metadata tags, which aug-
ment the underlying data with information like type, provenance, ownership, or
security classification. A tag-based policy takes the form of a set of rules that
check and update the metadata tags at key points during execution; if a rule
violation is encountered, the program failstops. Although monitoring based on
metadata tags is less flexible and powerful than monitoring based on the under-
lying data values, it can still enforce many useful security properties, including
both low-level concerns such as memory safety and high-level properties such as
secure information flow [13] or mandatory access control [20].

Tag-based policies are especially well-suited for efficient hardware enforce-
ment, using processor extensions such as ARM MTE [2], STAR [17], and PIPE.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 231–250, 2023.
https://doi.org/10.1007/978-3-031-44267-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_12&domain=pdf
http://orcid.org/0009-0006-7681-3683
http://orcid.org/0009-0004-0405-9306
http://orcid.org/0000-0002-0748-2044
https://doi.org/10.1007/978-3-031-44267-4_12

232 S. Anderson et al.

PIPE1 (Processor Interlocks for Policy Enforcement) [4,5], the specific motivator
for our work, is a programmable hardware mechanism that supports monitoring
at the granularity of individual instructions. Each value in memory and regis-
ters is extended with a metadata tag. Before executing each instruction, PIPE
checks the opcode and the tags on its operands to see if the operation should be
permitted according to a tag rule, and if so, what tags should be assigned to the
result. PIPE is highly flexible: it supports arbitrary software-defined tag rules
over large (word-sized) tags with arbitrary structure, which enables fine-grained
policies and composition of multiple policies. This flexibility is useful because
security needs may differ among codebases, and even within a codebase. A con-
servative, one-size-fits-all policy might be too strong, causing failstops during
normal execution. Sensitive code might call for specialized protection.

But PIPE policies can be difficult for a C engineer to write: their tags and
rules are defined in terms of individual machine instructions and ISA-level con-
cepts, and in practice they depend on reverse engineering the behavior of specific
compilers. Moreover, some security policies can only be expressed in terms of
high-level code features that are not preserved at machine level, such as function
arguments, structured types, and structured control flow.

To address these problems, we introduce a source-level specification frame-
work, Tagged C, which allows engineers to describe policies in terms of familiar
C-level concepts, with tags attached to C functions, variables and data values,
and rules triggered at control points that correspond to significant execution
events, such as function calls, expression evaluation, and pointer-based memory
accesses. Control points resemble “join points” in aspect-oriented programming,
but the “advice” in this case can only take the form of manipulating tags, not
data. In previous work on the Tagine project [10], we outlined such a framework
for a toy source language and showed how high-level policies could be compiled
to ISA-level policies and enforced using PIPE-like hardware. Here we extend this
approach to handle the full, real C language, by giving a detailed design for the
necessary control points and showing how they are integrated into C’s dynamic
semantics. Although motivated by PIPE, Tagged C is not tied to any particular
enforcement mechanism. We currently implement it using a modified C inter-
preter rather than a compiler. We validate the design of Tagged C by using it to
specify a range of interesting security policies, including compartmentalization,
memory protection, and secure information flow.

Formally, Tagged C is defined as a variant C semantics that instruments
ordinary execution with control points. At each control point, a user-defined set
of tag rules is consulted to propagate tags and potentially halt execution. In
the limiting case where no tag rules are defined, the semantics is similar to that
of ordinary C, except that the memory model is very concrete; data pointers
are just integers, and all globals, dynamically-allocated objects, and address-
taken objects are allocated in the same integer-addressed memory space. Memory
behaviors that would be undefined in standard C are given a definition consistent

1 Variants of PIPE have been called PUMP [15] or SDMP [27] and marketed commer-
cially under the names Dover CoreGuard and Draper Inherently Secure Processor.

Flexible Runtime Security Enforcement with Tagged C 233

with the behavior of a typical compiler. We build the Tagged C semantics on
top of the CompCert C semantics, which is formalized as part of the CompCert
verified compiler [22,23]. For prototyping and executing example policies, we
provide a reference interpreter2, also based on that of CompCert, written in the
Gallina functional language of the Coq Proof Assistant [12]. Tag types and rules
are also written directly in Gallina.

The choice of control points and their associations with tag rules, as well
as the tag rules’ signatures, form the essence of Tagged C’s design. We have
validated this design on the three classes of policies explored in this paper, and,
outside of a few known limitations related to malloc (Sect. 4.2), we believe it
is sufficiently expressive to describe most other flow-based policies, although
further experience is needed to confirm this.

Contributions. In summary, we offer the following contributions:

– The design of a comprehensive set of control points at which the C language
interfaces with a tag-based policy. These expand on prior work by encom-
passing the full C language while being powerful enough to enable a range of
policies even in the presence of C’s more challenging constructs (e.g., goto,
conditional expressions, etc.).

– Tagged C policies enforcing: (1) compartmentalization, including a novel com-
partmentalization policy with separate public and private memory; (2) mem-
ory safety, with realistic memory models that support varying kinds of low-
level idioms; and (3) secure information flow.

– A full formal semantic definition for Tagged C, formalized in Coq, describing
how the control points interact with programs, and an interpreter, imple-
mented and verified against the semantics in Coq and extracted to OCaml.

The paper is organized as follows. Section 2 gives a high-level introduction
of metadata tagging by example. Section 3 summarizes the Tagged C language
as a whole and its control points. Section 4 describes three example policies and
how their needs inform our choices of control points. Section 5 describes the Coq-
based implementation of Tagged C. Section 6 discusses related work, and Sect. 7
describes future work.

2 Metadata Tags and Policies, by Example

Consider a straightforward security requirement for a program that handles sen-
sitive passkeys: “do not leak passkeys on insecure channels.” This is an instance
of a broad class of secure information flow (SIF) policies. Suppose the code on
the left in Fig. 1a is part of such a system, where psk is expected to be a passkey
and printi prints an integer to an insecure channel, so f indirectly performs a
leak via the local variable x. We now explain how a monitor specified in Tagged
C could detect such a leak. (Of course, this particular leak could also be easily
found using static analysis.)
2 Available at https://github.com/SNoAnd/Tagged-C.

https://github.com/SNoAnd/Tagged-C

234 S. Anderson et al.

Fig. 1. Tag Rules and Instantiation (Color figure online)

In Tagged C, all values carry a metadata tag. Whenever execution reaches
a control point, it consults an associated tag rule, to check whether the next
execution step should be allowed to continue and if so, to update the tags. A
policy consists of a tag type definition and instantiations of the tag rules for
every control point. For a simple SIF policy like this one, the tag type is an
enumeration containing h (high security) and l (low security). In this case, the
input psk arrives in f with the tag h. This tag will be propagated along with
the value through variable accesses, assignments, and arithmetic, according to
generic rules that are not specific to this program. Finally, a program-specific
argument-handling rule for printi will check that the tag is l; since it is not,
the rule will cause a failstop.

To explain the mechanics of Tagged C, we first show in Fig. 1a the policy-
independent framework under which tag rules are triggered in this program: the
initial tag on psk (vt0) passes through the ArgT tag rule, is combined with the
tag on the constant 5 via the BinopT tag rule, and then is passed to ArgT
again on the call to obtain the tag on the parameter inside printi (here called
a). Figure 1a maps three points in the execution of f to descriptions of the corre-
sponding program states, with the input value and all tags treated symbolically.
In each state, the first column (white) shows the active function, the second
(gray) gives the symbolic values and tags of variables in the local environment,
and the third (blue) shows the rules that produce those tags. Throughout the
paper, we highlight tag-related metavariables, rules, etc. in blue. We write v@vt
for value v tagged with vt . Tags that are derived from identifiers are subscripted
with the identifier namespace, e.g. ffun is the tag associated with the function
name f. undef denotes an uninitialized value.

The SIF policy described informally above is implemented by instantiating
the tag rules as shown in Fig. 1b. The resulting behavior is best understood
by mentally “weaving” together the two figures. Suppose f is called with an
argument value i@h. This first invocation of ArgT simply passes the h tag on
to the output vt1 , because the name of the function being called does not match
printi. In tag rules, the assignment operator := denotes an assignment to the

Flexible Runtime Security Enforcement with Tagged C 235

Fig. 2. Second example showing tag rules and tag propagation.

named tag-rule output, by convention written as primed metavariables t ′. The
initial tag vt2 on local variable x and the tag vt3 on the constant 5 come from
ConstT, which tags all constants as l. The result of the addition on line 2 is
tagged by BinopT as the higher of the two inputs, so vt4 is h. Finally, upon
entry into printi, ArgT is invoked again; this time it failstops. Note that in this
policy, ArgT is code-specific (it checks for a particular function name printi)
whereas the other rules are generic.3

As a second example, Fig. 2 steps through the execution of a function g
that adds two new wrinkles: we need to keep track of metadata associated with
addresses and with the program’s control-flow state. We suppose mm is a memory-
mapped device register that can be read from outside the program, so we want
to avoid storing the passkey there; therefore we need a way to monitor stores to
memory. Furthermore, although this code does not leak the passkey directly, it
does so indirectly: since the store to mm is conditional on testing psk, an outside
observer of mm can deduce one bit of the key (an implicit flow [13]).

In addition to tags on values, Tagged C attaches tags to memory locations
(location tags, ranged over by lt) and tracks a special global tag called the PC
tag (ranged over by P, and attached to the function name in our diagrams).
Tagged C initializes the tags on mm with the GlobalT rule. The PC tag at the
point of call, P0 , is fed to CallT to determine a new PC tag inside of g. And the
if-statement consults the SplitT rule to update the PC tag inside of its branch
based on the value-tag of the expression psk < 0. Once inside the conditional,
when the program assigns to mm, it must consult the StoreT rule.

Figure 3 shows an instantiation of these rules that extend our previous SIF
policy. The rule for globals initializes the location tag of mm to l, as a low-security
output channel, and marks all other addresses h. CallT sets the PC tag to l
on entry to each function. Whenever execution branches on a high-tagged value,
the PC tag will be set to h. We modify the previous rules so that all expressions

3 For simplicity, we omit showing tag rules that play no interesting role in this exam-
ple: AccessT and AssignT, which are triggered each time a variable is read and
assigned, respectively, and CallT, which is triggered by the call itself.

236 S. Anderson et al.

Fig. 3. Tag rule instantiations for secure information flow (pt. 2)

propagate the higher of the PC tag and the relevant value tag(s). This is shown
for the updated BinopT in Fig. 3; the ArgT rule needs a similar adjustment.
When an assignment is to a memory location, the store rule will check the tag on
that location against the value being written, and failstop if a high value would
be written to a low location. For this program, SplitT will set the PC tag to
h, as it branches on a value derived from psk; then, at the write to mm, StoreT
will fail rather than write to a low address in a high context.

3 The Tagged C Language: Syntax and Semantics

Tagged C contains almost all features of full ISO C 99.4 Its semantics is based
on that of CompCert C [22], a formalization of the C standard into a small-step
reduction semantics. Tagged C’s semantics differs from CompCert C’s in two
key respects: tag support and memory model.

Tags. Tagged C’s values and states are annotated with metadata tags, and
its reductions contain control points, which are hooks within the operational
semantics at which the tag policy is consulted and either tags are updated, or
the system failstops. Tagged C relies on a fixed number of predefined control
points, which we keep small in order to simplify and organize the task of the
policy designer. A control point consists of the name of a tag rule and the bindings
of its inputs and outputs. For example, consider the expression step reduction
for binary operations:

v1 〈⊕〉 v2 = v′

e = Ebinop ⊕ v1 v2
m, e ⇒rh m, v′

v1 〈⊕〉 v2 = v′ vt ′ ← BinopT(⊕,P, vt1 , vt2)
e = Ebinop ⊕ v1@vt1 v2@vt2
P,m, te, e ⇒rh P,m, te, v′@vt ′

On the left, the ordinary “tagless” version of the rule reduces a binary oper-
ation on two inputs to a single value. On the right, the Tagged C version adds
tags to the operands and tags the result based on the BinopT rule.

4 It inherits the limitations of CompCert C, primarily that setjump and longjump
may not work, and variable-length arrays are not supported.

Flexible Runtime Security Enforcement with Tagged C 237

Table 1. Full list of tag-rule signatures and control points.

Rule Name Inputs Outputs Control Points

CallT P, pt P ′ Update PC tag at call

ArgT P, vt , ffun , xarg P ′, vt ′ Per argument at call

RetT PCLE ,PCLR, vt P ′, vt ′ Handle PC tag, return value

LoadT P, pt , vt , lt vt ′ Memory

StoreT P, pt , vt , lt P ′, vt ′, lt ′ Memory stores

AccessT P, vt vt ′ Variable accesses

AssignT P, vt1 , vt2 P ′, vt ′ Variable assignments

UnopT �,P, vt vt ′ Unary operation

BinopT ⊕,P, vt1 , vt2 vt ′ Binary operation

ConstT P vt ′ Applied to constants/literals

InitT P vt ′ Applied to fresh variables

SplitT P, vt , Llbl P ′ Statement control split points

LabelT P, Llbl P ′ Labels/arbitrary code points

ExprSplitT P, vt P ′ Expression control split points

ExprJoinT P, vt P ′, vt ′ Join points in expressions

GlobalT xglb , tytyp pt ′, vt ′, lt ′ Program initialization

LocalT P, tytyp P ′, pt ′, lt ′ Stack allocation (per local)

DeallocT P, tytyp P ′, vt ′, lt ′ Stack deallocation (per local)

ExtCallT P, pt , vt P ′ Call to linked code

MallocT P, pt , vt P ′, pt ′, vt ′, lt ′ Call to malloc

FreeT P, pt , vt P ′, vt ′, lt ′ Call to free

FieldT P, pt , tytyp , xglb pt ′ Structure/union field access

PICastT P, pt , lt , tytyp vt ′ Cast from pointer to scalar

IPCastT P, vt , lt , tytyp pt ′ Cast from scalar to pointer

PPCastT P, pt1 , pt2 , lt1 , lt2 , tytyp pt ′ Cast between pointers

IICastT P, vt1 , tytyp pt ′ Cast between scalars

The tag rule itself is instantiated as a partial function; if a policy leaves a
tag rule undefined on some inputs, then those inputs violate the policy, send-
ing execution into a special failstop state. The names and signatures of all the
tag rules, and their corresponding control points, are listed in Table 1. In these
signatures, we use the metavariable P to denote the PC tag, pt for tags that
will be attached to pointer values, vt for tags that will be attached to values
in general, and lt for tags that are associated with specific addresses in mem-
ory. We also range over different classes of identifiers with the metavariables:
ffun , function identifiers; xarg , function arguments; xglb , global variable names;
Llbl , labels; and tytyp , types. We briefly summarize the rules below, and give
motivating examples of their use in Sect. 4.

Memory. Unlike CompCert C, Tagged C has no memory-related UB. Comp-
Cert C models memory as a collection of disjoint blocks, and treats each vari-

238 S. Anderson et al.

able as having its own block. Pointers are described by a (block, offset) pair,
and invalid pointer accesses (out-of-bounds, use after free, etc.) produce UB.
Tagged C instead separates variables into public and private data. Public data
(all heap data, globals, arrays, structs, and address-taken locals) share a single
flat address space (possibly with holes), and pointers are offsets into this space.
Pointer accesses outside of this space cause an explicit failstop, rather than UB.
Private data (non-address-taken locals, parameters) live in a separate, abstract
environment. Program-specified stores, e.g. writes through pointers, can cause
arbitrary damage to public data, but do not affect private data. This model is
strong enough to support a reasonable notion of semantics-preserving compila-
tion, without making any commitment about fine-grained memory safety, which
is intentionally left for explicit tag policies to specify (see Sect. 4.1). In an imple-
mentation that compiles to PIPE, the private data can be protected by a small
number of “built-in” tags.

Control Points. In our scheme, pure expressions take as arguments the PC tag
P and any operand tags, and produce a tag for the result of the expression
(ConstT for constants, UnopT and BinopT for operations, FieldT for struct
and union fields, and AccessT and LoadT as described below). Impure expres-
sions additionally produce a new PC tag (AssignT, StoreT, and ExprSplitT).

The distinction between AccessT and LoadT, and between AssignT and
StoreT, corresponds to private (non-address-taken) and public (allocated in
public memory) variables. All reads of variables invoke AccessT, and all assign-
ments invoke AssignT, so that the behavior of the variable itself is independent
of where it is stored. Public variables additionally use the LoadT and StoreT
rules to add restrictions to how variables in memory are accessed.

The ExprSplitT tag rule updates the PC tag when an expression branches
based on a value; it is paired with ExprJoinT, which updates the PC tag
again when the branches have rejoined. Similarly, SplitT updates the PC during
branching statements. The LabelT rule can changes the PC tag at any labeled
point in execution, and handles join points following branch statements.

CallT and RetT update the PC tag on entry and exit from a function.
CallT is parameterized by the function pointer being called and the PC tag.
RetT is parameterized by both the caller’s PC tag (PCLR) and the callee’s
(PCLE); it can also update the return value’s tag. ArgT updates tags on any
arguments, based on the function and argument names.

Newly initialized variables are tagged according to the InitT rule, as well as
LocalT if they are public locals; the lt′ tag returned by the latter is used to tag
the memory occupied by the variable. Similarly, global variables are initialized
before runtime based on the GlobalT rule. DeallocT returns an lt′ tag used
to re-tags the memory of deallocated locals.

The heap equivalents of LocalT and DeallocT are MallocT and FreeT.
Again, the lt′ tags returned by these functions are used to tag and re-tag the
allocated memory. Other library functions have the tags of their results tagged
by the ExtCallT tag rule.

Flexible Runtime Security Enforcement with Tagged C 239

The cast rules are specialized based on whether the original type or the new
type is a pointer, or both, because casts to and from pointers can make use of
the location tags at their targets. This enables our PNVI memory safety policy
(Sect. 4.1), and more generally policies that keep track of the correspondence
between pointers and their targets.

There is always the chance that new policies might arise for which our cur-
rent set of control points proves to be inadequate. There is no conceptual reason
why control points cannot be added or given modified signatures as needed, but
extending the interpreter and (eventually) the compiler would be non-trivial.
Care needs to be taken in designing control points that are amenable to compi-
lation for PIPE: tag rule evaluation has a complicated interaction with compiler
optimization [10], and some potentially useful tag rule signatures (such as updat-
ing tags on operation inputs to enforce non-aliasing of pointers) would require
the compiler to generate extra instructions to work around limitations of the
PIPE hardware.

Combining Policies. Multiple policies can be enforced in parallel. If policy A
has tag type τA and policy B has τB , then policy A × B should have tag type
τ = τA × τB . Its tag rules should apply the rules of A to the left projection of
all inputs and the rules of B to the right projection to generate the components
of the new tag. If either side failstops, the entire rule should failstop.

This process can be applied to any number of different policies, allowing, for
instance, a combination of a baseline memory safety policy with several more
targeted information-flow policies. Alternatively, a policy can delegate to tag
rules from other, related policies, as illustrated in Sect. 4.2, below.

4 Example Policies

In this section, we discuss concrete policy implementations and how they moti-
vate Tagged C’s control point design. Memory safety policies inform our require-
ments for memory tags and type casts. Compartmentalization policies depend on
the call- and return-related control points, to keep track of the active compart-
ment. Secure information flow policies expose the many places where the user
may need to reference identifiers from their program in the policy itself. Taken
together, these example policies illustrate Tagged C’s breadth of application.

4.1 Memory Safety

Tagged C can be used to enforce memory safety with respect to different mem-
ory models—formal or informal descriptions of how C should handle memory.
Here we discuss the CompCert C memory model and two models proposed by
Memarian et al. [24] for the purposes of supporting low-level idioms in the pres-
ence of compiler optimization, focusing in particular on how they handle casts
from pointers to integers and back.

240 S. Anderson et al.

While the idea of a valid pointer may seem obvious, the precise definition can
vary. The C standard does not support arbitrary arithmetic on pointers or their
integer casts. In practice, it is common for programs to violate the C standard
to various degrees; see Fig. 4. For example, if objects are known to be aligned
to 2n-byte boundaries, the low-order n bits of pointers can be “borrowed” to
store other data [25]. The possible presence of these low-level idioms means that
there is no one-size-fits all memory safety policy. CompCert C’s definition of a
valid pointer allows the pointer to be cast into an integer and back, but only if
its value does not change in the interim. This is very strict! Programs that use
low-level idioms would failstop if run under a policy that enforces this.

Memarian et al.’s first memory model, provenance via integer (PVI), treats
memory as a flat address space, and pointers as integers with additional prove-
nance information associating them to their objects. Pointers maintain this
provenance even through casts to integers and the application of arithmetic
operations. When cast back, the pointers will still be associated with the same
object. This enables many low-level idioms, while still forbidding memory-safety
violations like buffer overflows.

On the other hand, their second model, provenance not via integer (PNVI),
clears the provenance of a pointer when it is cast to an integer. When an integer
is cast to a pointer (whether or not it was previously derived from a pointer),
it takes on the provenance of whatever it points to at that time. The security
properties of this memory model are questionable, but it is a realistic option for
a compiler to choose and can support idioms that PVI cannot.

Implementation. The basic idea for enforcing any of the above memory safety
variants is a “lock and key” approach [5,11]. When an object is allocated, it
is assigned a unique “color,” and its memory locations as well as its pointer
are tagged with that color, written clr(c). The default tag n indicates a non-
pointer or non-allocated location. The PC tag will also be clr(c), tracking the
next available color for new allocations. These rules are given in Figs. 5 and 6.
Operations that are valid on pointers in a given memory model maintain the
pointer’s color, and loads and stores are legal if it matches the target memory
location tag. (The assert command failstops if its argument does not hold.)

The specific memory models (Fig. 6) behave differently when pointers are
cast to integers and back. The CompCert C variant marks that the integer has
been cast from a valid pointer, and restores that provenance when cast back.
But BinopT will failstop if the integer is actually modified between the casts.
PVI simply keeps the provenance and allows all operations between casts. PNVI
accesses the memory pointed to by the cast pointer and takes its location tag.

Memory safety considerations also inform the design of control points related
to allocating, deallocating, and accessing memory. Drawing from CompCert C,
Tagged C abstracts over “external” functions like malloc and free, rather than
treat their implementation as ordinary code. In a concrete system, these would be
replaced by their library equivalents. ExtCallT models the desired tag behavior
of general external functions in the Tagged C semantics, but MallocT(P, pt , vt)
and FreeT(P, pt , vt) are special cases because they also need to retag memory;
the location tag lt returned by each of them is copied across the allocated region.

Flexible Runtime Security Enforcement with Tagged C 241

Fig. 4. Memory safety and pointer casts, tracing y, q, and r. (Assume int and pointers
are 32 bits.) Line (5) is always legal, (6) is illegal in CompCert C due to bitwise arith-
metic not preserving provenance, (7) is also illegal in PVI due to combining provenance
of multiple objects, and (8) is illegal in all models.

Fig. 5. Generic Memory Safety Rules

Temporal Memory Safety. The tag rules described so far only enforce spatial
memory safety, but Tagged C can also enforce temporal safety. A full memory
safety policy prevents use-after-free and double-free errors by either retagging
a deallocated region, or using the PC tag to track the set of live objects and
revoking permissions on an object as soon as it is freed.

4.2 Compartmentalization

In principle, the monitoring techniques in the previous section could be used
to detect all unintended memory safety violations (albeit only at run time) and
ultimately to fix them. But in reality, the cost and risk of regressions may make
it undesirable to fix bugs in older code [7]. A compartmentalization policy can
isolate potentially risky code, such as code with unfixed (or intentional) UB,
from safety-critical code, and enforce the principle of least privilege. Even in the
absence of language-level errors, compartmentalization can usefully restrict how
code in one compartment may interact with another. External libraries are effec-
tively required for most software to function yet represent a supply-chain threat;
isolating them prevents vulnerabilities in the library from compromising critical
code, and limits the tools available to attackers in the event of a compromise.

Assume we have been given a compartmentalization policy, with at least two
compartments, to add to the system after development. The compartments and
what belongs in them are represented in the policy by a set of compartment
identifiers, ranged over by C, and a map from function and global identifiers to
compartments, written as comp(id).

242 S. Anderson et al.

Fig. 6. Specialized Memory Safety Rules

Fig. 7. Simple Compartmentalization Policy

Implementation. Compartmentalization requires the policy to keep track of the
active compartment, which means keeping track of function pointers. In Tagged
C, function pointers are the exception to the concrete memory model. They
carry symbolic values that refer uniquely to their target functions. If f is located
at the symbolic address α, then the expression &f evaluates to α@ffun . When
the function pointer is called, Tagged C invokes CallT(P, pt), where pt is the
function pointer’s tag, to update the PC tag. On return, in addition to handling
the return value (if any), RetT(PCLE ,PCLR, vt) determines a new PC tag based
on the one before the call (PCLR) and the one at the time of return (PCLE). In
our compartmentalization policy (Fig. 7), we define a tag to be a compartment
identifier or the default n tag. The PC tag always carries the compartment of
the active function, kept up to date by the CallT and RetT rules.

Once the policy knows which compartment is active, it must ensure that
compartments do not interfere with one another’s memory. A simple means of
doing so is given in Fig. 7: any object allocated by a given compartment, whether
on the stack or via malloc, is tagged with that compartment’s identity, and
can only be accessed while that compartment is active. This is very limiting,

Flexible Runtime Security Enforcement with Tagged C 243

Fig. 8. Selected rules for Compartmentalization with Shared Capabilities, combining
Compartmentalization rules (subscript C, Fig. 7) with Memory Safety rules (subscript
MS , Fig. 5)

however! In practice, compartments need to be able to share memory, such as in
the common case where libraries have separate compartments from application
code. One solution is to allow compartments to share selected objects by passing
their pointers, treating them as capabilities—unforgeable tokens of privilege.

Distinguishing shareable memory from memory that is local to a compart-
ment is difficult without modifying source code. In order to be minimally intru-
sive, we create a variant identifier for malloc, malloc_share, which maps to the
same address (i.e., it still calls the same function) but has a different name tag
and can therefore be used to specialize the tag rule. An engineer might manually
select which allocations are shareable, or perhaps rely on some form of escape
analysis to detect shareable allocations automatically.

The policy in Fig. 8 essentially combines the simple compartmentalization
policy and a memory safety policy. The PC tag carries both the current com-
partment color, for tagging unshared allocations, and the next free color, for
tagging shared allocations. MallocT applies a color tag to shareable alloca-
tions, and n to local ones. During loads and stores, the location tag of the target
address determines which parent property applies.

Compartmentalization Variants. Using program-specific tags for globals and
functions, a policy like the one above can be extended with a Mandatory Access
Control (MAC) policy [20]. Here, a table explicitly identifies which compart-
ments may call one another’s functions, which global variables they can access,
and with which other compartments they can share memory.

Malloc Limitations. The way Tagged C currently handles malloc is unsatisfac-
tory. First, as noted above, there is no easy way to distinguish different static
malloc call locations; our use of variant names is something of a hack. A more
principled solution might draw on pointcuts to identify specific calls to malloc.
Further, malloc does not get access to type information; it takes just a size and
returns a void *, which the caller must cast to a pointer of the desired type (at
an arbitrary future point). Therefore, Tagged C cannot easily enforce substruc-
tural memory safety (i.e. protecting fields within a single struct from overflowing
into each other) or other properties that call for allocated regions to be tagged

244 S. Anderson et al.

Fig. 9. Not an Implicit Flow

according to their types. This is a well-known impediment to improving C mem-
ory safety; previous work (e.g. [26]) has often adopted non-standard versions
of malloc that take more informative parameters. This is not satisfactory for
protecting legacy code, but we do not yet see a good alternative.

4.3 Secure Information Flow

Finally, we return to the family of secure information flow (SIF) [14] policies
introduced in Sect. 2. SIF deals with enforcing higher-level security concerns, so
it useful even in code with no language-level errors.

In Fig. 9, the program checks the format of the passkey psk, which is tagged
h, and uses a switch statement to perform operations on it based on the result.
As in Fig. 2, this means that the policy should “raise” the PC tag to h to indicated
that the program’s control-flow depends on psk. But after control reaches label
J, the PC tag can be lowered again, because code execution from this point on
no longer depends on psk. J is a join point: the point in a control-flow graph
where all possible routes from the split to a return have re-converged, which can
be identified statically as the immediate post-dominator of the split point [14].

In order to support policies that reason about splits and joins, we introduce
the SplitT and LabelT tag rules. Every transition that tests a value as part of
a conditional or loop contains a control point that invokes SplitT, passing the
label for the corresponding joint point. (This label argument is optional, both
because some policies may not care about join points.) This way, the policy can
react when execution reaches that label via the LabelT rule.

In the full SIF policy, we keep track of the pending join points within the
PC tag, and lower the PC tag when execution reaches the join point. (A similar
approach applies to conditional expressions, but we omit the details here.) In
addition to l and h, the SIF policy tracks a PC tag written using the constructor

Flexible Runtime Security Enforcement with Tagged C 245

Fig. 10. SIF Conditionals

pc, which carries a set of label identifiers to record the join points of tainted
statement scopes. Initially, the PC tag is pc ffun∅, which corresponds to “low”
security. The join operator, ·� ·, takes the higher of its arguments after reducing
a PC tag into either h or l (Fig. 10).

In order to use this version of SIF, the program must undergo a minor auto-
matic transformation by the compiler or interpreter, introducing explicit labels
at all join points that don’t already have one. In the example, J becomes an
explicit label in the code. The internal syntactic form of each conditional state-
ment (if, switch, while, do-while, and for) carries this label (optionally, since
there might not be a join point if all arms of the conditional execute an explicit
return). If the conditional branches on a high value, SplitT adds the label to
the set in the PC tag. Later, when execution reaches a label, LabelT deletes
it from the set. If the set is non-empty, there is at least one high split point
that has not yet reached its join point, so we treat the PC tag as high. When
execution reaches the last join point and the set is empty, the PC tag is treated
as low, because it is no longer possible to deduce which path was taken.

SIF Variants. SIF can cover many different policies. We have shown an instance
of a confidentiality policy, but SIF can also support integrity (“insecure inputs
do not affect secure data”), intransive policies (“data can flow from A to B and
B to C, but not from A to C”), and policies with more than two security levels.

To give a couple of more realistic examples, an intransitive integrity policy
can be used to protect against SQL injections by requiring unsafe inputs to pass
through a sanitizer before they can be appended to a query. Similarly, a more
complex SIF policy could ensure that data at rest is always encrypted, by setting
a low security level to the outputs of an encryption routine and a high level to
the outputs of its corresponding decryption routine.

5 Implementation

Our current Coq-based implementation of Tagged C consists of a formal seman-
tics and a matching interpreter written in Coq’s Gallina language (similar to
functional languages such as OCaml or Haskell). These are based on the Csem
and Cexec modules from the CompCert compiler (version 3.10) [21]. The inter-
preter can be extracted to a stand-alone OCaml program that can then be further
compiled to machine code.

246 S. Anderson et al.

To adapt CompCert, we replace the standard block-offset memory with a
concrete one, leaving the block-based system to handle only function pointers.
We rework global environments to separate (symbolic) function pointers from
other (concrete) pointers. We also add a temporary environment to contain non-
memory variables, and semantic rules to deal with them. Most importantly, we
thread the PC tag into the state, and add control points to the relevant seman-
tic rules. These changes appear in both the semantics and the corresponding
interpreter code. To extend the existing CompCert proof that the interpreter is
correct with respect to the semantics requires updating the proof automation to
handle concrete memory and tags.

The semantics and interpreter are parameterized by a Coq module type
Policy, which specifies the type signatures of the tag rules. A policy is written
directly in Gallina as a module that instantiates Policy by defining the type of
tags and the body of each tag rule. A full policy fits into 70 lines of Gallina. To
illustrate, Fig. 11 shows fragments of the Policy signature, its instantiation in
the PVI memory safety policy, and its use in the Coq semantics.

PIPE, Tag Sizes, and Policy States. Ultimately, we wish to compile Tagged
C to run efficiently on PIPE-equipped hardware, which raises some issues that
are not currently visible at the level of the Coq interpreter. For example, the
Coq model of Tagged C allows unbounded tags. In reality, PIPE tags are large,
but bounded. This means that, for instance, the naïve implementation of PVI
memory safety described here runs the risk of overflowing the number of possi-
ble colors. Enforcement of temporal safety will not be feasible in long-running
programs that regularly allocate memory, even if their total memory footprint
is bounded, unless the policy can reclaim the tags on previously freed objects.

Also, the Coq model assumes that all tag rules are pure functions of the tag
inputs; any state carried by the policy must be encoded in the PC tag. In practice,
PIPE allows tag rules to be implemented by arbitrary code, which can persist
private state (separate from the application being monitored) over multiple rule
invocations; this approach may support more efficient policy designs.

6 Related Work

Like many monitoring systems, Tagged C can be seen as a species of aspect-
oriented programming (AOP) [19]. An AOP language distributes join points5
throughout its semantics, and the programmer separately writes advice in the
form of additional code that should execute before or after various join points
according to a pointcut specification. The compiler or runtime weaves the advice
together with the main code. Our control points are a kind of join point, and our
tag rules combine the roles of pointcuts and advice; weaving is done at runtime
according to the tagged semantics. Unlike advice in most AOP systems, our tag
rules are constrained to inspect only tags, not arbitrary parts of program state,
which limits their expressiveness. Also, tag rules are evaluated separately from
5 Not to be confused with the control-flow graph join points discussed in Sect. 4.3.

Flexible Runtime Security Enforcement with Tagged C 247

Fig. 11. Fragments of Coq implementation.

the system being monitored and so cannot be used to “correct” bad behavior;
all they can do is cause a failstop. These limitations follow from our goal of
implementing Tagged C using efficient PIPE hardware.

Many AOP-like systems for C runtime verification treat join points as events
in a trace, and specify valid traces using a formalism such as state machines (e.g.
Rmor [18] and SLIC [6]) or temporal logics (e.g. [9]). Trace checking of this kind
can be implemented on top of Tagged C, as long as events do not rely on values.
Events are typically coarse-grained (e.g. function entries and exits), although
some systems (e.g. [16]) support very general forms of event definition based on
matching syntactic patterns in code. Tagged C is unusual in that it supports
very low-level and fine-grained events (e.g. individual arithmetic operations and
casts) and because a monitoring action (perhaps a no-op) is specified for every
potential event point.

Numerous systems have targeted information flow, memory safety, and com-
partmentalization in C; we can discuss just a few here. Cassel et al.’s FlowNo-
tations [8] use type annotations to specify “tainted” and “trusted” data, and
statically check a program’s information flow using the C type system. Their
annotation system elegantly connects the C syntax to their enforcement mech-
anism, and would make a good annotation scheme for a Tagged-C SIF policy,

248 S. Anderson et al.

with “tainted” and “trusted” types being transformed into variable-specific tags.
Unlike their static approach, our enforcement is dynamic, meaning that it sacri-
fices flow-sensitivity for permissiveness [28]. Dynamic systems also exist, such as
Faceted Information Flow [3], which takes advantage of concurrency to simulate
multiple simultaneous runs and check directly for leaked data. Faceted IFC has
not been applied at the C level, and for our use cases, would suffer from the
overhead of running multiple executions simultaneously.

The CHERI hardware capability system has been used by Tsampas et al.
for compartmentalization [29], and by Filardo et al. for temporal memory safety
[30]. Like PIPE, CHERI can support a range of security policies, although it
is ill-suited for information-flow-style policies. Despite this, it would be worth
exploring whether a useful subset of Tagged C’s control points could be imple-
mented by a CHERI backend.

7 Conclusion and Future Work

We have introduced a C variant that provides a general mechanism to describe
security policies, exemplified by memory safety, compartmentalization, and
secure-information-flow policies. Each category of policy can be applied flexibly
to meet the security needs of a particular program. From this proof of concept,
we can see several natural extensions to make Tagged C more practical to use.

An interpreter is useful for testing policies, but our main goal has always been
to produce a compiler from Tagged C to machine code for a PIPE-equipped pro-
cessor. The basic strategy for compilation was outlined in the Tagine project [10].
We are currently working to extend the CompCert compiler to handle Tagged
C, with the ultimate goal of also extending CompCert’s semantics preservation
guarantees to cover tagged semantics. Policies are also written in Gallina, the
language embedded in Coq [12]. This is fine for a proof-of-concept, but not satis-
factory for real use by software engineers. We plan to develop a domain-specific
policy language to make it easier to write Tagged C policies.

One reason for prototyping Tagged C in the Coq Proof Assistant is to lay
the groundwork for formal proofs of its properties. We have not yet proven the
correctness of our example policies. For each family of policies that we discuss, we
aim to give a higher-level formal specification (e.g., a non-interference property
for SIF) and prove that it holds on all programs run under that property.

Acknowledgements. We thank the reviewers for their valuable feedback, and
Roberto Blanco for his advice during the writing process. This work was supported
by the National Science Foundation under Grant No. 2048499, Specifying and Verify-
ing Secure Compilation of C Code to Tagged Hardware.

References

1. Anderson, J.P.: Computer security technology planning study. Technical report
ESD-TR-73-51, U.S. Air Force Electronic Systems Division (1972). http://csrc.
nist.gov/publications/history/ande72.pdf

http://csrc.nist.gov/publications/history/ande72.pdf
http://csrc.nist.gov/publications/history/ande72.pdf

Flexible Runtime Security Enforcement with Tagged C 249

2. Armv8.5-a memory tagging extension white paper. https://developer.arm.com/-/
media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_
Extension_Whitepaper.pdf

3. Austin, T.H., Flanagan, C.: Multiple facets for dynamic information flow. In: Pro-
ceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2012, pp. 165–178. Association for Computing
Machinery (2012). https://doi.org/10.1145/2103656.2103677

4. Azevedo de Amorim, A., et al.: A verified information-flow architecture. J. Comput.
Secur. 24(6), 689–734 (2016). https://doi.org/10.3233/JCS-15784

5. Azevedo de Amorim, A., et al.: Micro-policies: formally verified, tag-based security
monitors. In: 2015 IEEE Symposium on Security and Privacy, pp. 813–830 (2015).
https://doi.org/10.1109/SP.2015.55

6. Ball, T., Rajamani, S.: SLIC: a specification language for interface checking (of
C). Technical report MSR-TR-2001-21 (2002). https://www.microsoft.com/en-us/
research/publication/slic-a-specification-language-for-interface-checking-of-c/

7. Bessey, A., et al.: A few billion lines of code later: using static analysis to find bugs
in the real world. Commun. ACM 53(2), 66–75 (2010). https://doi.org/10.1145/
1646353.1646374

8. Cassel, D., Huang, Y., Jia, L.: Uncovering information flow policy violations in
C programs (extended abstract). In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.)
ESORICS 2019. LNCS, vol. 11736, pp. 26–46. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-29962-0_2

9. Chabot, M., Mazet, K., Pierre, L.: Automatic and configurable instrumentation of
C programs with temporal assertion checkers. In: 2015 ACM/IEEE International
Conference on Formal Methods and Models for Codesign (MEMOCODE), pp.
208–217 (2015). https://doi.org/10.1109/MEMCOD.2015.7340488

10. Chhak, C., Tolmach, A., Anderson, S.: Towards formally verified compilation of
tag-based policy enforcement. In: Proceedings of the 10th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs, pp. 137–151 (2021). https://
doi.org/10.1145/3437992.3439929

11. Clause, J., Doudalis, I., Orso, A., Prvulovic, M.: Effective memory protection using
dynamic tainting. In: Proceedings of the 22nd IEEE/ACM International Confer-
ence on Automated Software Engineering, pp. 284–292 (2007). https://doi.org/10.
1145/1321631.1321673

12. Coq Team: The Coq proof assistant. https://coq.inria.fr
13. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),

236–243 (1976). https://doi.org/10.1145/360051.360056
14. Denning, D.E., Denning, P.J.: Certification of programs for secure information flow.

Commun. ACM 20(7), 504–513 (1977). https://doi.org/10.1145/359636.359712
15. Dhawan, U., et al.: Architectural support for software-defined metadata process-

ing. In: Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 487–502 (2015).
https://doi.org/10.1145/2694344.2694383

16. Engler, D.R., Chelf, B., Chou, A., Hallem, S.: Checking system rules using system-
specific, programmer-written compiler extensions. In: OSDI, pp. 1–16 (2000)

17. Gollapudi, R., et al.: Control flow and pointer integrity enforcement in a secure
tagged architecture. In: 2023 IEEE Symposium on Security and Privacy (SP),
pp. 2974–2989 (2023). https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.
00102

https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://doi.org/10.1145/2103656.2103677
https://doi.org/10.3233/JCS-15784
https://doi.org/10.1109/SP.2015.55
https://www.microsoft.com/en-us/research/publication/slic-a-specification-language-for-interface-checking-of-c/
https://www.microsoft.com/en-us/research/publication/slic-a-specification-language-for-interface-checking-of-c/
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1007/978-3-030-29962-0_2
https://doi.org/10.1007/978-3-030-29962-0_2
https://doi.org/10.1109/MEMCOD.2015.7340488
https://doi.org/10.1145/3437992.3439929
https://doi.org/10.1145/3437992.3439929
https://doi.org/10.1145/1321631.1321673
https://doi.org/10.1145/1321631.1321673
https://coq.inria.fr
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/359636.359712
https://doi.org/10.1145/2694344.2694383
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00102
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00102

250 S. Anderson et al.

18. Havelund, K.: Runtime verification of C programs. In: Suzuki, K., Higashino, T.,
Ulrich, A., Hasegawa, T. (eds.) FATES/TestCom -2008. LNCS, vol. 5047, pp. 7–22.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68524-1_3

19. Kiczales, G., et al.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S.
(eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0053381

20. Lampson, B.W.: Protection. SIGOPS Oper. Syst. Rev. 8(1), 18–24 (1974). https://
doi.org/10.1145/775265.775268

21. Leroy, X.: Compcert 3.10. https://github.com/AbsInt/CompCert/releases/tag/v3.
10

22. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009). https://doi.org/10.1145/1538788.1538814

23. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446
(2009). https://doi.org/10.1007/s10817-009-9155-4

24. Memarian, K., et al.: Exploring C semantics and pointer provenance. Proc. ACM
Program. Lang. 3(POPL), 1–32 (2019). https://doi.org/10.1145/3290380

25. Memarian, K., et al.: Into the depths of C: elaborating the de facto standards.
SIGPLAN Not. 51(6), 1–15 (2016). https://doi.org/10.1145/2980983.2908081

26. Michael, A.E., et al.: MSWasm: soundly enforcing memory-safe execution of unsafe
code. Proc. ACM Program. Lang. 7(POPL), 425–454 (2023). https://doi.org/10.
1145/3571208

27. Roessler, N., DeHon, A.: Protecting the stack with metadata policies and tagged
hardware. In: Proceedings of the 2018 IEEE Symposium on Security and Privacy,
SP 2018, pp. 478–495 (2018). https://doi.org/10.1109/SP.2018.00066

28. Russo, A., Sabelfeld, A.: Dynamic vs. static flow-sensitive security analysis. In:
2010 23rd IEEE Computer Security Foundations Symposium, pp. 186–199 (2010).
https://doi.org/10.1109/CSF.2010.20

29. Tsampas, S., El-Korashy, A., Patrignani, M., Devriese, D., Garg, D., Piessens, F.:
Towards automatic compartmentalization of C programs on capability machines
(2017). https://api.semanticscholar.org/CorpusID:32838507

30. Filardo, N.W., et al.: Cornucopia: temporal safety for CHERI heaps. In: 2020 IEEE
Symposium on Security and Privacy (SP), pp. 608–625 (2020). https://doi.org/10.
1109/SP40000.2020.00098

https://doi.org/10.1007/978-3-540-68524-1_3
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1145/775265.775268
https://doi.org/10.1145/775265.775268
https://github.com/AbsInt/CompCert/releases/tag/v3.10
https://github.com/AbsInt/CompCert/releases/tag/v3.10
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1145/3290380
https://doi.org/10.1145/2980983.2908081
https://doi.org/10.1145/3571208
https://doi.org/10.1145/3571208
https://doi.org/10.1109/SP.2018.00066
https://doi.org/10.1109/CSF.2010.20
https://api.semanticscholar.org/CorpusID:32838507
https://doi.org/10.1109/SP40000.2020.00098
https://doi.org/10.1109/SP40000.2020.00098

Pattern Matching for Perception Streams

Jacob Anderson(B) , Georgios Fainekos , Bardh Hoxha ,
Hideki Okamoto , and Danil Prokhorov

Toyota Motor North America, Research and Development, Ann Arbor, MI, USA
{jacob.anderson,georgios.fainekos,bardh.hoxha,hideki.okamoto,

danil.prokhorov}@toyota.com

Abstract. We introduce Spatial Regular Expressions (SpREs) as a novel
querying language for pattern matching over perception streams contain-
ing spatial and temporal data. To highlight the capabilities of SpREs,
we developed the Strem tool as a matching framework that works in
both the offline and online domain. We demonstrate the tool through an
offline example with an AV dataset, an online example through an inte-
gration with the ROS and CARLA simulators, and an initial set of perfor-
mance benchmarks on various SpRE queries. From our designed matching
framework, we are able to find over 20,000 matches within 296 ms making
it highly usable in runtime monitoring applications.

Keywords: Pattern matching · Regular expressions · Spatial logic ·
Computer vision · Runtime monitoring

1 Introduction

Perception systems are utilized across a wide range of applications—from
Autonomous Vehicles (AVs) [20,29,43], to sports media analysis [35,40], to
Closed-Circuit Televisions (CCTVs) [36], and more [14,21,27,37]. These systems
may be composed of various sensor and sensor fusion technologies such as Light
Detecting and Radar (LiDAR), radar, cameras, etc. to support complex Com-
puter Vision (CV) tasks in both the offline and online domain that generate and
require a significant amount of data to effectively operate [5]. To improve upon
these perception systems and further Machine Learning (ML) activities, large
datasets are released for CV tasks in hopes of providing more exposure to these
systems before deployment [13,26]. These perception-based datasets are further
extended to Autonomous Driving System (ADS) applications where the percep-
tion system consists of a suite of sensors. Examples of such datasets include the
popular Waymo Open [34], Woven Planet (“L5”) Perception [22], and NuScenes
[9] along with several others [30,39,42]. Therefore, as these perception systems
become more comprehensive, methods and tools that enable querying of such
stream data for specific scenarios in testing, training, and monitoring become
increasingly important.

For a given perception stream, however, filtering and searching for scenar-
ios of interest is not well-supported nor a ubiquitous process as the size of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 251–270, 2023.
https://doi.org/10.1007/978-3-031-44267-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_13&domain=pdf
http://orcid.org/0000-0002-4491-9399
http://orcid.org/0000-0002-0456-2129
http://orcid.org/0000-0001-6255-7566
http://orcid.org/0009-0009-2533-9581
http://orcid.org/0000-0002-6208-4233
https://doi.org/10.1007/978-3-031-44267-4_13

252 J. Anderson et al.

data, selected schema, and present sensor suite varies. Within the offline set-
ting, perception streams produced by AV companies provide minimal frame-
works to interface and filter data according to a pre-defined schema. As for the
online setting, perception systems streaming data in real-time are not tradition-
ally responsible for identifying scenarios. Therefore, this work aims to address
the problem of querying complex and dynamic perception streams comprised of
spatially- and temporally-aligned data offline and online.

In the work presented in this paper, we introduce Spatial Regular Expressions
(SpREs): a novel querying language for efficient and flexible matching of per-
ception streams. SpREs combine Regular Expressions (REs) [1] with the modal
logic of topology S4u [25]. The language is designed with ease-of-use in mind
by following syntactic similarities of classic RE tools such as grep and egrep [16]
while enabling reasoning over topological relations. The querying language has
been implemented in the Spatio-Temporal Regular Expression Matcher (Strem)
tool to support offline and online searching capabilities. The SpRE queries can
be efficiently solved due to the reduction of the pattern matching problem to the
one for REs, which in turn allows us to utilize well-established libraries [18] for
fast processing. Furthermore, its modular design and compatibility with Linux,
Bash, and any Command Line Interface (CLI) tools make the system more ver-
satile and extendable for use in verification and validation process pipelines. Our
formulation of the SpRE language (Sect. 3) is also general enough to utilize other
branches of logic without major restructuring.

Contributions. From this work, the set of contributions are as follows:

– The RE ×S4u querying language (and associated semantics) for pattern
matching spatio-temporal sequences of events in perception streams.

– The Strem tool for offline and online pattern matching of perception streams
with the novel querying language.

– An offline demonstration of the Strem tool using the Woven Planet (“L5”)
Perception AV dataset.

– An online demonstration of Strem through integration with the Robot Oper-
ating System (ROS) and Car Learning to Act (CARLA) simulator stack.

2 Preliminaries

We let Z be the set of all integers, N, N0 be the set of natural numbers with
and without 0, and R be the set of real numbers. Furthermore, B represents the
set of booleans {�,⊥} where true and false are the boolean constants true and
false, respectively. Furthermore, given a set A, P(A) denotes the powerset of A,
and |A| represents the cardinality of A.

2.1 Perception Stream

We consider a perception stream S = F0,F1,F2,F3, . . . to be a discrete sequence
of frames Fi where i ∈ N0 represents the ith frame of the stream. We use �

Pattern Matching for Perception Streams 253

Fig. 1. An example perception stream S containing the frames F0,F1,F2 of a camera
sensor channel c with pixel space Ic. For each object in a given frame, a classification
and bounding box is minimally assumed to be annotated. In addition, each frame may
be augmented with other sensor data relevant to the system to provide further context
such as GPS, IMU, etc.

to denote the subsequence relation, i.e., S ′ � S where S ′ = (Fi, . . . ,Fj) is a
subsequence of S. For readability, we henceforth refer to a subsequence S ′ of S
as a range of frames using the shorthand notation Fi,j where i ≤ j. For example,
an instance of the subsequence of frames F0,2 from some perception stream S is
provided in Fig. 1.

Each frame Fi in the perception stream is considered a key frame that con-
tains data generated from one or more sensor channels channels. A key frame is
a frame where the timestamp difference between each sample from a sensor in
C is within some threshold εt ∈ R. For example, a frame of an AV affixed with
a front, front-left, front-right, and rear camera sensor channels is a key frame if
and only if the timestamp difference between all samples occur within a period
of 0.001 s. Furthermore, each frame contains a finite set of object annotations
(henceforth, “objects”) O from the entire stream S of objects O consisting of
query-able information. That is, each object o ∈ O may be annotated with a
label (e.g., car, pedestrian, sign, bus, animal, etc.), a unique identifier (“ID”),
2D/3D bounding box, confidence score, segmentation map, LiDAR points, etc.

In the following, we assume that given an object o ∈ O, we have defined
functions that return the required annotation and/or auxiliary data. For exam-
ple, for retrieving qualitative attributes, we define the function A : O × K → A
where K is a set of keys and A is a set of attributes. We will not formally
define the sets K and A since they are dataset dependent, but as an example, we
could have class and color as keys, and bus and green as the corresponding
attributes. When formulating a query, we are searching to find in a frame an
object that satisfies certain attributes, e.g., a green bus. In addition, for retriev-
ing the 2D (axis-aligned) bounding box information of objects, we define the
function Bc : O → P(Ic) where Ic ⊆ N

2 is the set of pixels for a camera sensor
channel c ∈ C; and the function B :→ P(E) returns the 3D rectangular bounding
box of any object o ∈ O in the working environment E ⊆ R

3 of a perception
system. Table 1 presents a detailed layout of Fig. 1 with annotated information
for each object.

254 J. Anderson et al.

Table 1. An example of annotated data from a perception stream. Each object has
some attributes along with some bounding box (“BB”) data. Depending on the appli-
cation, the object IDs may be unique across the stream, unique only in each frame,
or unique to each frame for each class of objects. In addition, each object may be
annotated with additional data such as LiDAR points, color (if applicable), etc.

F0 F1 F2

(bus, red, ID: 1, BB) (bus, red, ID: 1, BB) (bus, red, ID: 1, BB)
(bus, yellow, ID: 2, BB) (pedestrian, child, ID: 2, BB) (pedestrian, child, ID: 2, BB)

(car, sedan, ID: 3, BB)

3 Spatial Regular Expressions

SpRE (pronounced /spri:/) is a querying language designed to capture scenarios
of perception streams. The RE ×S4u language leverages the power of pattern
matching from REs [1] with the topological reasoning of S4u logic [25]. The
practice of merging a formal logic with an RE-based language to produce an
extended, more expressive version has previously been studied in [7,38]. However,
these efforts primarily focus on extending temporal-based logics such as Linear
Temporal Logic (LTL) [31] with REs, whereas current extensions to spatial-
based logics with REs is unheard of to the best of our knowledge—particularly,
the S4u branch of logic. Thus, the SpRE language aims to provide a formal
approach in extending pattern-based constructs with spatial-based formulas.

Within this section, we first introduce the formal syntax of the SpRE lan-
guage followed by its semantics interpreted over perception streams.

Syntax. The SpRE syntax consists of three interdependent grammars joined
to form the complete querying language. The first two grammars (Definitions
1 and 2) are inspired by the S4 and S4u modal logics for topological spaces,
respectively; and the last grammar (Definition 3) is inspired by classic REs
traditionally used in string matching problems.

Spatial Formulas. The syntactic makeup of the spatial logic component of a
SpRE is divided into two grammars: (1) S4+u (“spatial terms”) inspired by S4
[25], and (2) S4+u (“spatial formulas”) inspired by S4u [25]. Although the two
logics (S4+, S4+u) use an identical syntax to their counterparts (S4, S4u), we
re-introduce them here as new semantics for these logics will be defined later.

The spatial terms enable set operations over set based attributes of objects
such as bounding boxes. The motivation behind spatial terms is to enable rep-
resentation of the topological relations between different objects, e.g., the inter-
section of the bounding boxes of a green bus and a yellow car.

Definition 1 (S4+ Syntax). The structure of an S4+ formula τ is inductively
defined by the following grammar:

τ ::= α | τ̄ | τ1 	 τ2 | τ1
 τ2 | I τ | C τ

Pattern Matching for Perception Streams 255

where α is an atomic proposition ranging over sets of attributes P(A); ¯ is the
unary operator for complement; 	 and
 are the binary operators for intersection
and union; and I and C are the interior and closure operators.

Spatial formulas extend spatial terms by enabling emptiness checks and sub-
set relations. For example, we will be able to answer a query which requires an
non-empty intersection between the green bus and the yellow car.

Definition 2 (S4+
u Syntax). Given the spatial terms τ , τ1, and τ2, the struc-

ture of an S4+u formula φ is inductively defined by the following grammar:

φ ::= α | ∃ τ | τ1 � τ2 | ¬ φ | φ ∧ φ | φ ∨ φ

where α is an atomic proposition ranging over sets of attributes P(A); ∃ and
� are the boolean operators for set emptiness and set inclusion; and ¬, ∧, and
∨ are the standard propositional logic operators.

Pattern Constructs. The syntax of a SpRE combines the RE elements with the
previously defined S4+u elements to form a spatial-capable RE. Apart from the
classic RE operators, SpRE patterns operate over symbols from the alphabet Σ
that are resolved through spatial formulas.

Remark 1 (Alphabet). We consider the alphabet Σ = {σ1, σ2, ..., σn} = P(O)
where each symbol represents a possible combination of the objects from the
perception stream S. The main intuition is that for every frame of the stream of
perception data, we would like to match a symbol with only the relevant objects
for the given SpRE query—see Example 1 below.

Example 1. Consider the data presented in Table 1. The alphabet Σ will contain
64 symbols in total. Some examples of symbols from Σ could be:

σ1 = {(bus, red, ID: 1, BB)}
σ2 = {(pedestrian, child, ID: 2, BB), (bus, yellow, ID: 2, BB)}
σ3 = {(bus, red, ID: 1, BB), (car, sedan, ID: 3, BB)}

When we query for bus, we would like our pattern matching algorithm to return
σ1 in the matching strings, but not σ2 or σ3.

Definition 3 (SpRE Syntax). Given the spatial formula φ, the structure of
a SpRE query is inductively defined by the following grammar:

Q ::= φ | Q1 Q2 | Q1 · Q2 | Q∗

where the operators , ·, and ∗ are the standard RE operations alternation, con-
catenation, and Kleene-star, respectively.

256 J. Anderson et al.

Semantics. Pattern matching on perception streams differs from the standard
string pattern matching. When querying perception data, the goal is to identify
annotations represented as abstract objects affixed with some attributes. For
example, a query could be “Find all sequences where a car appears in at least
three consecutive frames”. In such a query, we do not ask for a specific car with
a unique identity (which is not known in advance), but rather for any car. In
addition, there may be multiple cars in a frame which implies that all of them
should be candidates for a pattern match. In other words, even though our
patterns in SpREs are over object attributes, our queries should return strings
where each symbol is a set of corresponding specific objects.

We define the semantics of S4+ expressions through a valuation function
� � : P(O) → P(P(W)) where W is the spatial reasoning space that resolves
to either the camera sensor’s image space Ic (i.e., pixels) or the working envi-
ronment E , P(W) is all possible bounding boxes from the reasoning space, and
P(P(W)) is the set of all possible sets of all bounding boxes. The spatial terms
of S4+ specify set-theoretic operations over bounding boxes of objects from the
perception stream S. We define the semantics of S4+u using a boolean satisfac-
tion relation since our goal is to determine whether certain relations are true or
not over bounding boxes and other object annotations.

Definition 4 (S4+ Semantics). Given a set of objects O ⊆ O, the semantics
of an S4+ formula is inductively defined as follows:

�α�(O) = {B(o) | o ∈ O . ∀a ∈ α . ∃k ∈ K . A(o, k) = a}
�τ̄�(O) = {S̄ | S ∈ �τ�(O)}

�τ1 	 τ2�(O) = {S1 ∩ S2 | Si ∈ �τi�(O)}

Informally, given a set of objects O from a frame, the valuation of the spatial
term α is the set of bounding boxes of all the objects which satisfy all the
attributes in α.

Definition 5 (S4+ Semantics). Given a set of objects O ⊆ O, the semantics
of an S4+u formula is inductively defined as follows:

O � α iff ∃o ∈ O . ∀a ∈ α . ∃k ∈ K . A(o, k) = a

O � ¬ φ iff O �� φ

O � φ1 ∧ φ2 iff O � φ1 and O � φ2

O � ∃ τ iff ∃A ∈ �τ�(O). A �= ∅
O � τ1 � τ2 iff ∃A1 ∈ �τ1�(O). ∃A2 ∈ �τ2�(O). A1 ⊆ A2

Notice that the models (i.e., sets of objects) that satisfy a spatial formula
φ are not minimal. For instance, using the symbols from Example 1, we have
σ1 � bus, but also σ2 � bus and σ3 � bus. In the pattern matching problem, we
typically care more so about the sequence of frames Fi,j that satisfy the pattern
Q rather than which exact objects are part of the pattern.

Pattern Matching for Perception Streams 257

Definition 6 (SpRE Semantics). Given the alphabet Σ, the language
described by a SpRE query Q is inductively defined as follows:

L(φ) = {σ ∈ Σ | σ � φ}
L(Q1 Q2) = L(Q1) ∪ L(Q2)

L(Q1 · Q2) = L(Q1)L(Q2)

L(Q∗) =
⋃∞

i=0
L(Qi)

where Qi denotes the concatenation of pattern Q a total of i times.

One notable difference from the standard language definition for a RE is
that now our base case, i.e., the spatial formulas φ evaluate to sets of symbols
as demonstrated in Example 1. This reflects the observation that at each frame
we may have several matching objects for our query.

4 Perception Stream Matching

In this section, we provide a formulation of the problem of pattern matching
against perception streams in both the offline and online domain. Furthermore,
we introduce the Strem tool as our matching framework that implements the
semantics of SpREs introduced in Sect. 3 to search over perception streams.

4.1 Problem Formulation

Informally, the traditional problem of pattern matching considers a finite word
w and a pattern p from some finite alphabet Σ such that the goal is to find
all non-overlapping subsets of w that contain an exact match of p. From Boyer-
Moore (BM) [8] to Knuth-Morris-Pratt (KMP) [24], many algorithms have been
developed to solve this problem of searching through strings [3]. In this work,
we extend upon this idea with the modification that our search pattern p is
symbolically a SpRE query Q, and our word w is a perception stream S. We
consider this problem in the both offline and online domain.

Offline Matching. We consider pattern matching in the offline domain primar-
ily motivated by the presence of publicly available AV-based perception datasets
[9,22,30,34,42]. These datasets provide a large suite of perception data collected
for and used by ADS applications. However, to our knowledge, the capabilities
and frameworks to search through these datasets for said applications are not
well-supported or require a significant effort to do so. The offline pattern match-
ing problem for perception streams is formalized below in Problem 1.

Problem 1 (Offline Perception Stream Matching). Given a finite perception
stream S and a SpRE query Q, then starting from frame 0, find the set of
all non-overlapping leftmost longest frame subsequences {Fi1,j1 , . . . ,Fin,jn} in
S such that ik ≤ jk, jk ≤ ik+1 and jn ≤ |S| and Fik,jk ∈ L(Q) for all k ≤ n.

258 J. Anderson et al.

Online Matching. We also consider pattern matching in the online domain
to perform filtering and querying of perception streams generated in realtime.
Applications of such use cases include monitoring of AVs deployed, CCTV cam-
era alerts, and any perception-based systems generating data where detection of
scenarios in realtime are of importance.

Regarding the procedure of matching online, the framework is re-run at every
time instance l when a new frame Fl is received and returns the maximal query
matched up to that point Fik,jk with jk = l (or none if no match). The online
pattern matching problem for perception streams is formalized below in Prob-
lem 2.

Problem 2 (Online Perception Stream Matching). Given a perception stream S
and a SpRE query Q, then at every incoming frame Fj of S, find the longest
subsequence of frames Fi,j such that 0 ≤ i ≤ j and Fi,j ∈ L(Q).

4.2 Spatio-Temporal Regular Expression Matcher

Our SpRE matching framework follows the same principles as the classic RE
matching frameworks [2]. Standard string matching approaches translate an RE
to a Deterministic Finite Automata (DFA) D which is then used to process the
strings. Our framework deviates from the established approaches using DFAs
since each frame contains multiple objects which may satisfy different S4+u for-
mulas and all potential matches need to be tracked simultaneously.

Example 2. Consider the data stream in Table 1 and assume that we only care
about the classes and properties, e.g., we want to find two frames where a red bus
appears. If we treat each object in each frame as a symbol of the form (class,
property), then the data stream represents 2×3×2 = 12 strings. Two example
strings from Table 1 are (bus,red)(bus,red)(bus,red) and (bus,red)(car,
sedan)(bus,red). As the length of the data stream increases, the number of
strings that we need to consider increases exponentially in the worst case.

Especially in the case of online query matching, an approach that extracts
strings from a perception stream to match against a DFA quickly becomes
unmanageable. In this work, we take a more pragmatic approach which in prac-
tice works well. We treat each syntactically equivalent S4+u formula as a unique
symbol and translate the SpRE into an RE. Even though we can now use the
standard RE to DFA algorithms, the resulting automaton in execution becomes
nondeterministic. This process can be easily visualized through Example 3 below.

Example 3. In the following, we use the convention that an atomic proposition
(i.e., a set of attributes) is represented as an augmented character class familiar
to grep. For readability, S4+u formulas are also surrounded by brackets. Using
this notation, the formula [<nonempty>([:car:]&[:ped:])] is an S4+u formula
that is only true when a frame contains a car and a pedestrian with interesecting
bounding boxes. Since the operator <nonempty> applies only to spatial terms,

Pattern Matching for Perception Streams 259

Fig. 2. SpRE to DFA.

we know that [:car:]&[:ped:] is an S4+ subformula where & is the operator
for set intersection.

From the previously introduced notation, we provide the following SpRE
pattern written below

[<nonempty>([:car:]&[:ped:])]*([[:truck:]]|[[:car:]])
[[:car:]&[:bus:]][[:bus:]]

that matches zero or more (*) frames where a car and pedestrian overlap, fol-
lowed by (·) a frame with either () a truck or a car, followed by (·) one frame
that contains a car and a bus, and ending with (·) a frame with a bus.

The resulting automaton that accepts perception streams that match the
SpRE above is presented in Fig. 2. Notice that in the resulting automaton, the
transitions between states are labeled by S4+u formulas and, hence, the execution
semantics is that of a Nondeterministic Finite Automata (NFA). That is, in
each state, multiple transitions may be activated. For example, in state q0 if the
current frame contains a truck and a car, then both transitions to q1 and to q2
are activated. In principle, tracking multiple states for an NFA execution scales
better than constructing single-symbol strings from a stream for tracking with
a DFA. In the worst case, the total number of states of the DFA that we need
to keep track off is order of magnitudes smaller than the number of all possible
single symbol strings that we need to consider.

Software Tool. Strem is a CLI tool1 developed with Rust [28] to find scenarios
of interest in perception streams that match a given SpRE query. It functions in
both the offline and online domain to search over perception-based datasets or
realtime streams, respectively. An illustration of its core components is provided
in Fig. 3. As input, the tool accepts a SpRE query and a perception stream.
As output, it incrementally returns the set of matches where each match is a
range of frames from the provided perception stream that matched the pattern.
The five constituent components of the tool are grouped into two functionalities:
the frontend and the backend. The frontend handles all input-/output-related

1 https://crates.io/crates/strem.

https://crates.io/crates/strem

260 J. Anderson et al.

Fig. 3. The architectural design of Strem.

activities pertinent to the usability of the tool; and the backend is concerned
only with the core matching framework and procedures. Henceforth, we focus
on the backend components that support the main contributions of this work:
the Compiler, Matcher, and Monitor modules.

The Compiler is responsible for translating a SpRE into a symbolic-Abstract
Syntax Tree (s-AST)—an Intermediate Representation (IR) form interpretable
by the Monitor and Matcher modules. The Monitor is responsible for evaluating
S4+u formulas against perception stream frames. The Matcher is responsible for
constructing DFAs from s-ASTs and running the matching algorithms.

Spatial Matching Algorithms. The pattern matching procedure involves
both the Matcher and the Monitor—as depicted in Fig. 3. The Matcher receives
from the Monitor which S4+u formulas were satisfied and, then, it takes the
appropriate transitions to the next states. Recall that in our framework multiple
transitions on the DFA may become active. Therefore, the execution semantics
of the DFA in the Matcher are effectively the execution semantics of an NFA.
Nevertheless, our constructions are syntactically DFA and, in the following, we
will still refer to them as DFA.

The algorithm to match against a perception stream given some DFA that
recognizes a valid SpRE query is shown in Algorithm 1. This algorithm is gener-
alized for both offline and online applications and any differences in the assump-
tions and procedures are highlighted in the sections that follow.

Offline Algorithm. The offline matching procedure matches over a finite percep-
tion stream from frame F0 up to frame Fl by utilizing a forward DFA. Notably,
the offline variant assumes that all frames within S are present at the beginning
of the execution of the matching algorithm.

Online Algorithm. The online matching procedure matches over a perception
stream by utilizing a reverse DFA. For each new frame received, the online
algorithm variant is ran. We use a reverse DFA in the online problem as matching
backwards (i.e., from frame Fl down to frame F0) ensures that the matching

Pattern Matching for Perception Streams 261

procedure terminates (in the worst case at frame F0). However, in practice, it
is recommended that the termination of the match be triggered by some finite
horizon (i.e., maximum length) for which the SpRE query will match up to. For
certain queries, we can compute the finite length needed to determine if a match
is possible. The length of an online SpRE query can be computed as follows:

Definition 7 (SpRE Horizon). The horizon H of a SpRE query Q is induc-
tively defined as follows:

H(φ) = 1 H(Q1 Q2) = max(H(Q2),H(Q2))
H(Q∗) = ∞ H(Q1 · Q2) = H(Q1) + H(Q2)

where φ is a spatial formula.

When H(Q) is finite, i.e., there is no Kleene-star operator, then we know that
the online algorithm will only need to use up to H(Q) frames in the past. As an
alternative to the Kleene-star operator, in our implementation, we provide the
range operator to capture bounded-ness (see Sect. 5). If a Kleene-star operator
must be used, then a hard bound on the maximum length should be used to
keep the monitoring time predictable, in the worst case.
Algorithm 1: SpatialMatching
This algorithm represents the offline variant. For the online variant, replace
each line with its corresponding comment to the right.
Input: A perception stream S, an initial frame index i ∈ S.
Output: A range [start, end) corresponding to the indices from S.
Data: A set A of distinct active states from the DFA.

1 start ← i; // end ← |S|
2 end ← start; // start ← end − 1
3 foreach F ∈ S do // S = (S)
4 foreach (σs, σ) do
5 if F�σ then
6 symbols.push(σs)
7 end
8 end
9 foreach σs ∈ symbols do

10 A.insert(δ(σs))
11 end
12 if A contains accepting then
13 end ← F .index ; // start ← F .index
14 else if A all dead then
15 break
16 end
17 end
18 return (start, end)

262 J. Anderson et al.

Complexity. The time complexity depends on the data stream S and the query
Q. Let |S| be the total number of frames in the perception stream, and |Oi| be
the number of objects in the ith frame where Oi is the set of objects in the
frame Fi ∈ S. The query Q is translated into a DFA D with set of states DS

and transition relation DΔ with |DS | denoting the number of states, and |DΔ|
denoting the total number of transitions, respectively. Recall that the transitions
in D are labeled by spatial formulas from Q. That is, the transitions have the
form (s, φk, s′) ∈ DΔ. We denote by |φk| the size of the parse tree (number of
nodes) of φk since evaluating φk will require traversing its parse tree.

We first evaluate the time complexity of the Monitor, followed by the
Matcher, followed by the combination of the two. For the Monitor to evalu-
ate a spatial formula φk against a frame, if the S4+u formula φk contains no
spatial operations, then its evaluation takes linear time in the tree traversal of
φk (number of internal nodes (|φk| − 1)/2) and linear time in the number of
objects |Oi| in a frame for each leaf (number of leaves (|φk| + 1)/2) in order to
find objects with specific attributes. Thus, the complexity of running the mon-
itor is O(|φk| × |Oi|). As a special case, if Q only contains queries about class
labels, then we can use a hash table storing whether an object of some class
appears in a frame or not, giving us O(1) evaluation of the leaves of φk.

The Matcher keeps track of the active states in the DFA and, for each state,
checks all the formulas in the outgoing transitions by calling the Monitor. In the
worst case, |DS | states will be active, which implies that all the transitions in
DΔ must be checked. Thus, there will be O(|DΔ|) calls to the Monitor. Since
the Matcher will be called |S| times, the complexity of the offline algorithm is

O(|S| × |DΔ| × max
k

(|φk|) × max
i

(|Oi|)
)

whereas the online algorithm pays this cost for every new frame that appears
within the perception stream.

If spatial operations are present in the spatial formulas, then the worst-case
time complexity increases. Spatial terms in Definition 4 evaluate to collections of
bounding sets in 2D or 3D. Therefore, the leaf nodes of φk represent collections of
sets, and the internal nodes apply set operations such as union, intersection, com-
plementation, and set difference. The computational cost of the set operations
depends on the set representation (e.g., orthogonal polyhedra, vertex represen-
tation, polytopes, zonotopes, etc.). Here, we will not consider the representation
of the sets explicitly, and refer the reader to [19].

Remark 2 (Best-Case Scenario). Our querying problem can be reduced to stan-
dard regular expression matching when: (1) all S4+u formulas are strictly atomic
propositions, (2) the number of object attributes to search over are few in num-
bers, and (3) the attributes are not quantitative (e.g., no bounding box).

5 Examples and Benchmarks

To demonstrate the application of Strem, we provide two use cases of the tool:
(A) an offline example of searching through the Woven Planet (“L5”) Perception

Pattern Matching for Perception Streams 263

dataset [22] and (B) an online example of monitoring an AV’s perception system
through the CARLA simulator [12] with ROS [32]. Furthermore, we provide an
initial set of performance benchmarks of the tool. For all queries, we use the
Strem implementation-level syntax equivalents in Table 2.

Table 2. SpRE implementation equivalencies

Notation · * ∃ ¬ ∧ ∨ � �
Symbol | * <nonempty> � & | & |

Furthermore, the range meta-operator ({m,n}) is used to support constraint
concatenations. The operational equivalence is shown below:

Q{m,n} ≡
m concatenations︷ ︸︸ ︷
Q · . . . · Q |

m + 1 concatenations︷ ︸︸ ︷
Q · . . . · Q | . . . |

n concatenations︷ ︸︸ ︷
Q · . . . · Q

where 0 ≤ m ≤ n. In addition, the range operator support two other functions:
(1) Q{m} matches Q exactly m times; and (2) Q{m,} = Q{m,∞} matches Q m
or more times.

5.1 Example A: Offline Matching Examples

We demonstrate the offline searching capabilities of the Strem tool on the
Woven Planet (“L5”) Perception dataset: a collection of sensor and ground-truth
labels used in training and evaluation of AV perception systems. The dataset is
comprised of 10 sensor channels, 360 scenes, 9 object classifications, over 300K
frames, and over 1.2M object annotations yielding slightly over 186 GBs of data
to search from.

Example A.1. In ADS applications, it is important to distinguish between
cyclists and pedestrians as the intent and behavior of both differ. Therefore, to
improve the resilience of a perception system against mis-identification, filtering
for scenarios where the two classifications overlap (i.e., potential cases of ambi-
guity) strengthens Deep Neural Networks (DNNs) on such edge cases (Fig. 4).

Query 1. Find all longest sequences of frames where a detected pedestrian over-
laps with a detected cyclist.

[<nonempty>([:pedestrian:]&[:bicycle:])]*

where the SpRE matches zero or more frames (*) where the intersection of a
pedestrian and bicycle bounding box is non-empty.

From the results, a total of 62 unique matches were found where each match
contains a sequence of frames with a pedestrian and cyclist overlapping.

264 J. Anderson et al.

Fig. 4. A selection of three separately matching frames from the Woven Planet (“L5”)
Perception dataset where a pedestrian (blue) overlaps with a cyclist (green).

Example A.2. While queries targeting individual scenarios are useful for sim-
ple matching, more complex queries are needed to capture scenarios that can
not be consolidated to a single frame and represent an evolution of events. For
instance, consider the scenario where a pedestrian is initially occluded by a vehi-
cle, unobstructed, and then occluded again by a vehicle (Fig. 5).

Query 2. Find a sequence of frames where a pedestrian and car occlusion occurs
for one or more frames, followed by an unobstructed pedestrian for one or more
frames, followed by an occlusion of a pedestrian and a car for one or more frames.

[<nonempty>([:pedestrian:]&[:car:])]{1,}
[[:pedestrian:]&�<nonempty>([:pedestrian:]&[:car:])]{1,}

[<nonempty>([:pedestrian:]&[:car:])]{1,}

where the SpRE matches a sequence of scenarios (i.e., sub-scenario) where each
sub-scenario must be at least one frame ({1, }) long. The first sub-scenario
matches the intersection of a pedestrian and car bounding box is non-empty.
The second sub-scenario matches the case where a pedestrian exists and the
intersection of a pedestrian with a car is empty. The last sub-scenario matches
the same as the first sub-scenario.

Fig. 5. The results of running Query 2 through Strem on the Woven Planet (“L5”)
Perception dataset. From left to right, the matching frames include an instance of a
car (red) occluding a pedestrian (blue), a pedestrian, and a car occluding a pedestrian.

From the results, a total of 336 uniques matches of three or more frames were
found that matched the evolution of scenarios as described in the SpRE query.

Pattern Matching for Perception Streams 265

5.2 Example B: Online Matching

To demonstrate the online searching capabilities of Strem, we developed a ROS
package that bridges the CARLA simulator with the Strem tool by using the
standard topics infrastructure provided by ROS. This design allows additional
ROS applications (e.g., robots, AVs, etc.) to easily integrate and subscribe to
the match results published by the Strem tool.

Simulator Setup. For each example, the CARLA server was populated with 50
vehicles (e.g., trucks, sedans, etc.), 20 walkers (i.e., pedestrians), and a single
ego vehicle affixed with a one front-facing camera sensor. From the set of labels
provided by CARLA, we capture bounding box information for the following
actor types: (1) traffic signs, (2) traffic lights, (3) vehicles, and (4) walkers.

For all examples, the experiments were run on a Linux workstation running
Ubuntu 20.04.6 with an AMD Ryzen 7 5800X, an NVIDIA GeForce RTX 3070,
and 16 GBs of RAM with CARLA v0.9.13 at 60Hz and ROS Noetic (Focal).

Example B.1. Within the deployment of AVs, monitoring the perception
stream for critical scenarios is a runtime-centric activity that requires a con-
tinuous analysis of the results of the perception system in order to take decisive
actions quickly. An example of such a critical scenario common to AVs is in the
occlusion of people by other vehicles in the scene. Within this situation, limited
information is available to the system and naturally additional caution should
be taken. However, reporting this information is not an inherent responsibility
of the perception system. As such, the Strem tool provides the capability to
instantaneously report frames in realtime where a pedestrian is occluded by some
other object detected within a scene to allow the ADS to take action.

In this example, we consider the scenario in CARLA where a bounding box
of a pedestrian and a vehicle annotation overlap one another. The formalization
of this pattern is presented in Query 3 below.

Query 3. Report every frame where a pedestrian and vehicle overlap.

[<nonempty>([:pedestrian:]&[:vehicle])]

where the SpRE matches a single frame such that the intersection of the bound-
ing boxes of a pedestrian and a vehicle classification is non-empty.

A illustrative example of some frames reported by Strem during the simu-
lation are showcased in Fig. 6.

Example B.2. Another critical scenario that a perception system may experi-
ence is in an eventual case that information becomes missing (i.e., the presence
of an object disappears from sight).

In this example, we consider the scenario in CARLA where perceived traffic
signs are detected followed by an occlusion of some sign within the frame.

266 J. Anderson et al.

Fig. 6. A series of matching frames with object detections within the CARLA simulator
where a pedestrian and vehicle intersect as expressed in Query 3.

Query 4. Find a traffic sign within the last 200 frames that is eventually
occluded by a vehicle or pedestrian.

[[:sign:]]{1,200}
[<nonempty>(([:vehicle:]|[:pedestrian:])&[:sign:])]

where the SpRE matches at least 1 and at most 200 frames ({1, 200}) initially
that contain a sign annotation, and ends with one frame where the resulting
intersection of the bounding box of a sign with the bounding box of either a
vehicle or pedestrian is non-empty.

A illustrative example of some frames reported by Strem during the simu-
lation are showcased in Fig. 7.

Fig. 7. A series of matching frames with object detections within the CARLA simulator
where a vehicle (red) eventually occludes a traffic sign (pink) in the green circle. (Color
figure online)

5.3 Benchmarks

To evaluate the performance of the Strem tool, we ran several different queries
against the Woven Planet (“L5”) Perception dataset. For each query, the average
running time of 10 samples of the matching algorithm was evaluated against 0 to
150K frames. The results are summarized in Fig. 8. The benchmarks were ran on

Pattern Matching for Perception Streams 267

a Linux workstation running Fedora 37 (6.2.14-200.fc37.x86_64) with an AMD
Ryzen 7 Pro 4750U processor with Radeon Graphics, 32 GBs of RAM, and a
wall clock time of 30 s.

Fig. 8. Running time performance of Strem.

6 Related Work

The problem of querying video/multimedia datasets has a long history. Among
the earliest works, [10] presents a spatio-temporal logic that can encode relation-
ships among objects within image sequences. More recently, the Video Event
Query Language (VEQL) was proposed in [41] (the paper also contains an
exhaustive review of other video query languages). VEQL is a declarative lan-
guage similar to SQL and it is used for monitoring of video data streams. It
supports some ad hoc spatial and topological operators and some basic tempo-
ral relations through the Allen Interval Algebra (AIA) [4]. Besides the obvious
differences of monitoring AIA (AIA can be encoded in LTL [33]) versus RE pat-
tern matching, SpRE fully incorporates S4u and it can foundationally support
other modal logics of space (and time). Beyond queries, Timed Quality Tempo-
ral Logic (TQTL) was proposed in [11] to enable basic sanity checks over video
feeds of automotive systems using object annotations. Furthermore, an online
monitoring algorithm for TQTL was presented in [6].

Typically, perception data streams from automotive applications contain not
only image sequences, but also data from a range of other sensing modalities,
e.g., radar, lidar, infrared, etc. In [19], Spatio-Temporal Perception Logic (STPL)
was introduced which combines TQTL [11] with an extension of the spatial-
temporal logic PTL ×S4u [17] to support reasoning over spatial conditions such
as intersection and distances between bounding boxes. In principle, temporal
logics could be used for pattern matching after some modifications to their mon-
itoring algorithms, but in practice, their syntax is not well suited for describing

268 J. Anderson et al.

patterns. In another line of work, a querying method for sim-to-real applications
is presented in [23] which uses the Scenic probabilistic programming language
[15]. Abstract static scenarios of interest are expressed in Scenic which are then
queried over labeled datasets through a conversion into a Satisfiability Modulo
Theory (SMT) problem. Even though one can envision that the method in [23]
can eventually be extended to temporal queries, right now it is restricted to
static scenes.

7 Conclusion and Future Work

In this paper, we proposed SpRE as a novel querying language for searching
over perception streams using an RE ×S4u design. We demonstrated the appli-
cation of SpREs in the offline and online domain through the development of
the Strem tool alongside examples of matching over an AV dataset and the
ROS and CARLA simulators, respectively. From this, we are able to find up to
20K+ matches in under 296 ms. As future work, we plan to include support for
existential and universal operators in order to support a richer set of behaviors.

References

1. Aho, A.V.: Pattern matching in strings. In: Formal Language Theory, pp. 325–347.
Elsevier (1980)

2. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques
and Tools. Addison-Wesley, Pearson (2020)

3. Alfred, V.: Algorithms for finding patterns in strings. In: Algorithms and Com-
plexity, vol. 1, p. 255 (2014)

4. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM
26(11), 832–843 (1983)

5. Bai, Z., et al.: Cyber mobility mirror: a deep learning-based real-world object
perception platform using roadside LiDAR. IEEE Trans. Intell. Transp. Syst. 24,
9476–9489 (2023)

6. Balakrishnan, A., Deshmukh, J., Hoxha, B., Yamaguchi, T., Fainekos, G.: Perce-
Mon: online monitoring for perception systems. In: Feng, L., Fisman, D. (eds.) RV
2021. LNCS, vol. 12974, pp. 297–308. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-88494-9_18

7. Beer, I., Ben-David, S., Eisner, C., Fisman, D., Gringauze, A., Rodeh, Y.: The
temporal logic sugar. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS,
vol. 2102, pp. 363–367. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44585-4_33

8. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Commun. ACM 20(10),
762–772 (1977)

9. Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 11621–11631 (2020)

10. Del Bimbo, A., Vicario, E., Zingoni, D.: Symbolic description and visual querying
of image sequences using spatio-temporal logic. IEEE Trans. Knowl. Data Eng.
7(4), 609–622 (1995)

https://doi.org/10.1007/978-3-030-88494-9_18
https://doi.org/10.1007/978-3-030-88494-9_18
https://doi.org/10.1007/3-540-44585-4_33
https://doi.org/10.1007/3-540-44585-4_33

Pattern Matching for Perception Streams 269

11. Dokhanchi, A., Amor, H.B., Deshmukh, J.V., Fainekos, G.: Evaluating perception
systems for autonomous vehicles using quality temporal logic. In: Colombo, C.,
Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 409–416. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03769-7_23

12. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open
urban driving simulator. In: Conference on Robot Learning, pp. 1–16. PMLR
(2017)

13. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal
visual object classes (VOC) challenge. Int. J. Comput. Vis. 88, 303–338 (2010)

14. Fang, W., et al.: Computer vision applications in construction safety assurance.
Autom. Constr. 110, 103013 (2020)

15. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L.,
Seshia, S.A.: Scenic: a language for scenario specification and scene generation. In:
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pp. 63–78 (2019)

16. Friedl, J.E.: Mastering Regular Expressions. O’Reilly Media Inc., Sebastopol (2006)
17. Gabelaia, D., Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: Com-

bining spatial and temporal logics: expressiveness vs. complexity. J. Artif. Intell.
Res. 23, 167–243 (2005)

18. Gallant, A.: regex-automata (2023). https://github.com/rust-lang/regex
19. Hekmatnejad, M., Hoxha, B., Deshmukh, J.V., Yang, Y., Fainekos, G.: Formalizing

and evaluating requirements of perception systems for automated vehicles using
spatio-temporal perception logic. arXiv preprint arXiv:2206.14372 (2022)

20. Janai, J., Güney, F., Behl, A., Geiger, A., et al.: Computer vision for autonomous
vehicles: problems, datasets and state of the art. Found. Trends® Comput. Graph.
Vis. 12(1–3), 1–308 (2020)

21. Kapach, K., Barnea, E., Mairon, R., Edan, Y., Ben-Shahar, O.: Computer vision
for fruit harvesting robots-state of the art and challenges ahead. Int. J. Comput.
Vis. Robot. 3(1–2), 4–34 (2012)

22. Kesten, R., et al.: Woven planet perception dataset 2020 (2019). https://woven.
toyota/en/perception-dataset

23. Kim, E., et al.: Querying labelled data with scenario programs for sim-to-real
validation. In: 2022 ACM/IEEE 13th International Conference on Cyber-Physical
Systems (ICCPS), pp. 34–45. IEEE (2022)

24. Knuth, D.E., Morris, J.H., Jr., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

25. Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: Spatial logic+ tem-
poral logic=?. In: Handbook of Spatial Logics, pp. 497–564 (2007)

26. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

27. Lu, D., et al.: CAROM air-vehicle localization and traffic scene reconstruction from
aerial videos. arXiv preprint arXiv:2306.00075 (2023)

28. Matsakis, N.D., Klock, F.S.: The rust language. ACM SIGAda Ada Lett. 34(3),
103–104 (2014)

29. Meng, T., Huang, J., Chew, C.M., Yang, D., Zhong, Z.: Configuration and design
schemes of environmental sensing and vehicle computing systems for automated
driving: a review. IEEE Sens. J. 23, 15305–15320 (2023)

30. Pitropov, M., et al.: Canadian adverse driving conditions dataset. Int. J. Robot.
Res. 40(4–5), 681–690 (2021)

https://doi.org/10.1007/978-3-030-03769-7_23
https://github.com/rust-lang/regex
http://arxiv.org/abs/2206.14372
https://woven.toyota/en/perception-dataset
https://woven.toyota/en/perception-dataset
https://doi.org/10.1007/978-3-319-10602-1_48
http://arxiv.org/abs/2306.00075

270 J. Anderson et al.

31. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (SFCS 1977), pp. 46–57. IEEE (1977)

32. Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Work-
shop on Open Source Software, p. 5. No. 3.2 in 3, Kobe, Japan (2009)

33. Roşu, G., Bensalem, S.: Allen linear (interval) temporal logic – translation to LTL
and monitor synthesis. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 263–277. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963_25

34. Sun, P., et al.: Scalability in perception for autonomous driving: Waymo open
dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 2446–2454 (2020)

35. Thomas, G., Gade, R., Moeslund, T.B., Carr, P., Hilton, A.: Computer vision for
sports: current applications and research topics. Comput. Vis. Image Underst. 159,
3–18 (2017)

36. Turtiainen, H., Costin, A., Lahtinen, T., Sintonen, L., Hamalainen, T.: Towards
large-scale, automated, accurate detection of CCTV camera objects using com-
puter vision. applications and implications for privacy, safety, and cybersecurity.
arXiv preprint arXiv:2006.03870 (2020)

37. Ward, T.M., et al.: Computer vision in surgery. Surgery 169(5), 1253–1256 (2021)
38. Wolper, P.: Temporal logic can be more expressive. Inf. Control 56(1–2), 72–99

(1983)
39. Xiao, P., et al.: PandaSet: advanced sensor suite dataset for autonomous driving. In:

2021 IEEE International Intelligent Transportation Systems Conference (ITSC),
pp. 3095–3101. IEEE (2021)

40. Xu, Z., Julius, A.A.: Census signal temporal logic inference for multiagent group
behavior analysis. IEEE Trans. Autom. Sci. Eng. 15(1), 264–277 (2016)

41. Yadav, P., Curry, E.: VidCEP: complex event processing framework to detect spa-
tiotemporal patterns in video streams. In: 2019 IEEE International conference on
big data (big data), pp. 2513–2522. IEEE (2019)

42. Yu, F., et al.: Bdd100k: a diverse driving dataset for heterogeneous multitask learn-
ing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2636–2645 (2020)

43. Zhang, Y., Carballo, A., Yang, H., Takeda, K.: Perception and sensing for
autonomous vehicles under adverse weather conditions: a survey. ISPRS J. Pho-
togrammetry Remote Sens. 196, 146–177 (2023)

https://doi.org/10.1007/11817963_25
http://arxiv.org/abs/2006.03870

Learning Monitor Ensembles
for Operational Design Domains

Hazem Torfah1(B), Aniruddha Joshi1,2, Shetal Shah2, S. Akshay2,
Supratik Chakraborty2, and Sanjit A. Seshia1

1 University of California, Berkeley, USA
torfah@berkeley.edu

2 Indian Institute of Technology Bombay, Mumbai, India

Abstract. We investigate the role of ensemble methods in learning run-
time monitors for operational design domains of autonomous systems. An
operational design domain (ODD) of a system captures the conditions
under which we can trust the components of the system to maintain its
safety. A runtime monitor of an ODD predicts, based on a sequence of
monitorable observations, whether the system is about to exit the ODD.
For black-box systems, a key challenge in learning an ODD monitor is
obtaining a monitor with a high degree of accuracy. While statistical the-
ories such as that of probably approximate learning (PAC) allow us to
provide guarantees on the accuracy of a learned ODD monitor up to a cer-
tain confidence probability (by bounding the number of needed training
examples), practically, there will always remain a chance, that using such
a one-shot approach will result in monitors with a high misclassification
rate. To address this challenge we consider well-known ensemble learn-
ing algorithms and utilize them for learning ODD ensembles. We derive
theoretical bounds on the estimated misclassification risk of ensembles,
showing that it reduces exponentially with the number of monitors and
linearly with the risk of individual monitors. An empirical evaluation of
the impact of different ensemble learning methods on a case study from
autonomous driving demonstrates the advantage of this approach.

Keywords: Autonomous systems · Operational design domains ·
Ensemble methods

1 Introduction

Autonomous cyber-physical systems increasingly rely on artificial intelligence
(AI) to perform a variety of challenging decision making tasks. Machine learn-
ing (ML) has been the driving force in addressing many of these challenges,
especially in complex tasks such as perception. While indispensable for auton-
omy, ML models, such as deep neural networks, are unpredictable and could,
under unanticipated changes in the environment, produce faulty outcomes that
endanger the safety of a system. It is, therefore, crucial to capture the conditions

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 271–290, 2023.
https://doi.org/10.1007/978-3-031-44267-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_14&domain=pdf
https://doi.org/10.1007/978-3-031-44267-4_14

272 H. Torfah et al.

under which an ML-based system is designed to behave correctly, also known
as its operational design domain (ODD) [20], and construct a runtime moni-
tor that implements the boundaries defined by an ODD and triggers the right
contingency mechanisms when these boundaries are not met.

In this paper, we study the problem of learning runtime monitors for ODDs.
Specifically, we investigate the role of ensemble methods, such as selection algo-
rithms (e.g., expert-selection or multi-armed bandit techniques) or fusion algo-
rithms (e.g., majority voting methods) in learning monitors for ODDs of black-
box systems. Learning a monitor for an ODD requires capturing the relation
between the safety specification and the observable input space of the monitor.
While a system-level safety specification might be defined over any system vari-
ables, some that may not be (immediately) observable at runtime, a monitor
of the ODD is necessarily defined over an observable space of inputs, usually
determined by the sensor interface of the system. This, especially, means that a
direct translation of the system-level specification into an ODD monitor is not
possible, and we, therefore, have to learn the monitor by relating sequences of
the observable input to the corresponding valuation of the system-level speci-
fication. We show that capturing this relation can be done more accurately by
applying ensemble methods to learn the ODD monitors.

Consider, for example, the autonomous vehicle system depicted in Fig. 1. The
autonomous vehicle is equipped with a controller that uses an image-based con-
volutional neural network (CNN) to compute the steering angle of the vehicle.
In this setting, a safety specification of interest might be a specification that
requires the vehicle to never deviate by more than half a meter from the cen-
ter of the lane. The true distance to the centerline of the lane is, however, not
observable at runtime, and, therefore, we cannot synthesize a monitor that val-
idates the system-level property directly at runtime. We can, however, create a
monitor, the ODD monitor, that determines, based on other observable features,
whether the CNN-based controller can be trusted to produce the right steering
angles, or at least values that do not lead to violation of the system-level prop-
erty. The behavior of the CNN may be influenced by many factors. For example,
it may depend on certain weather conditions, lighting conditions, the objects on
the road, certain traffic situations, some road features such as turns, circles, or
intersections, as well as information about the state of the system. An ODD can
then be defined in terms of any subset of the latter factors, which we denote by
the observable features. An ODD monitor receives valuations of these features,
predicts the validity of the system-level specification, and, if necessary, triggers
a switch to a (verified) safe controller.

In general, while statistical learning theories such as probably approximately
correct (PAC) learning [21] allow us to apply a one-shot learning approach with
high confidence in the accuracy of a learned ODD monitor, it comes with two
main drawbacks. First, as we can see from our example in Fig. 1, ODD monitors
are defined over a high-dimensional space of monitoring inputs. To obtain moni-
tors with high confidence in their accuracy, PAC approaches require the creation
of a large training set that makes learning less scalable. Second, even if we can
match the PAC confidence expectations, the accuracy of a monitor depends on

Learning Monitor Ensembles for Operational Design Domains 273

Fig. 1. An autonomous vehicle system with a CNN-based controller integrated into a
ODD monitoring architecture.

the chosen sample set and there is still a risk of obtaining a monitor with a high
misclassification rate. Using ensemble methods we show that we can reduce this
risk. We prove that with every monitor added to the ensemble, the estimated risk
of misclassification decreases exponentially. Furthermore, the individual moni-
tors of the ensemble need not be learned using large training data sets. For a
large enough ensemble of weakly learned monitors (i.e. those learned with lower
confidence, using a lower number of training data), an ensemble method com-
pensates for the weakness of any individual monitor by making use of the results
of multiple monitors.

We present a systematic approach for learning ensembles of ODD monitors
that builds on VerifAI, an open-source toolkit for the formal design and anal-
ysis of systems that include AI or ML components [5]. A good monitor for the
ODD requires choosing the right observable feature space over which the monitor
is defined and creating a diverse set of samples. For the latter, coverage is key,
i.e., when simulating the system, we need to sample from a diverse set of sce-
narios in which we simulate the system, and collect data. To tackle this problem
we rely on a model of the environment given by a probabilistic program. More
specifically, we use Scenic, a probabilistic programming language for modeling
environments [6], where scenarios are defined as distributions over spatial and
temporal configurations of objects and agents. We show the advantage of our
approach using a case study from the domain of autonomous driving. Particu-
larly, we show how ensembles of increasing size allow us to converge to monitors
with improved misclassification rates.

We summarize our contributions as follows:

– We investigate the role of ensemble methods in learning monitors for the
operational design domain of black-box autonomous systems.

– We prove that in comparison to using one-shot PAC-learning methods, ensem-
ble methods provide a tighter bound on the risk of misclassification. Partic-
ularly, we show for fusion methods such as majority voting, and selection

274 H. Torfah et al.

methods such multi-armed bandit, that the estimated risk decreases expo-
nentially with growing ensemble size.

– We present a framework for learning monitor ensembles for ODDs and use
the framework in an empirical study on a benchmark from the domain of
autonomous driving that shows the improvements in misclassification rates.

Outline. In Sect. 2 we formally define monitorable operational design domains,
introduce the problem of learning monitors for ODDs, and discuss certain chal-
lenges in learning ODDs. In Sect. 3 we introduce different ensemble methods
for learning ODDs, and show their advantages over single monitor learning. In
Sect. 4, we present a case study from the domain of autonomous driving and
evaluate the different learning methods for learning ODDs. In Sect. 5 we present
related work, and conclude in Sect. 6.

2 Monitorable Operational Design Domains

In this section, we recap the formal definition of monitorable ODDs, and restate
the problem of learning optimal ODD monitor [26]. We also discuss some the
challenges in learning monitors for ODDs, specifically, why methods based on
PAC-learning might not suitable for learning such monitors. In a Sect. 3, we show
how to use ensemble methods in learning ODD monitors and how these methods
help in overcoming the challenges we discuss in this section.

2.1 Monitorable Operational Design Domains

Let S, ϕ ⊆ V ∗
sys be a system and a safety specification over the system-level

alphabet Vsys . The operational design domain O of S and ϕ is defined by
the tuple OS,ϕ = (Vobs , obs, d), where Vobs defines a set of observable inputs,
obs : V ∗

sys → V ∗
obs defines the relation between sequences of system-level and

observable inputs, and d ∈ N is a prediction horizon. In its most conservative
definition, an operational design domain OS,ϕ defines a set

�OS,ϕ� = {σ ∈ V ∗
obs | ∀τ ∈ V ∗

sys . obs(τ) = σ =⇒ ∀τ ′ ∈ V d
sys . τ · τ ′ �∈ ϕ}.

Here V d
sys refers to words of length d over Vsys , while ϕ is the complement of

ϕ. The ODD OS,ϕ defines a set of traces, σ, over the observable input Vobs ,
that for any system-level trace τ over Vsys which induces σ, i.e., obs(τ) = σ, a
continuation of τ for another d steps, i.e., extending τ with any τ ′ of length d,
will not result in an execution τ ·τ ′ that violates the system-level specification ϕ.
A runtime monitor M for an ODD O over observations Vobs is a program that
implements a function fM : V ∗

obs → B, such that, for every trace σ ∈ V ∗
obs , fM (σ)

if and only if σ ∈ �O�.
The definition of ODDs as given above is, however, in general too strong to

be used in practice. Learning monitors that exactly capture the set of observa-
tions defined by the ODD will result in very conservative monitors. Ambiguities

Learning Monitor Ensembles for Operational Design Domains 275

resulting from mapping several system-level traces to the same observational
trace, may render that trace as violating simply because it can be mapped to a
single violating trace on the system-level. The probability of that system-level
trace happening may be very low. Furthermore, the class of monitors may not
always include a monitor for the exact ODD. Semantically speaking, the mon-
itors within a class typically cover only a subset of monitors over Vobs . To this
end, a more suitable formulation of the problem of learning monitors for ODDs
is a quantitative one where we search for a monitor that is optimal with respect
to a measure over the set of misclassified system-level traces. Particularly, the
measure is applied over two distinct sets of misclassified traces, the set of false
positives and that of false negatives.

For an ODD OS,ϕ = (Vobs , obs , d), the set of false positives describes system-
level traces τ that cannot be extended with a trace τ ′ of length d such that τ · τ ′

violates ϕ, yet the induced observation σ = obs(τ) is rejected by the monitor.
This set can be formally defined as follows. For a language L, let L−d, for d ∈ N,
define the set of trimmed words L−d = {α0α1 . . . αk−d | α0α1 . . . αk ∈ L, k ∈
N s.t. k − d ≥ 0}. Let then Tp = (S ∩ ϕ)−d be the set of traces resulting from
computing the d-trimmings of all traces of S that satisfy ϕ. For a monitor M ,
the set of false positives can then be defined by the set FP = Tp \ obs−1(fM),
where obs−1 is the inverse function of obs. The set of false negatives defines
all system-level traces τ that can be extended by a trace τ ′ of length d such
that τ · τ ′ violates ϕ, yet the induced observation σ = obs(τ) is accepted by the
monitor. For a monitor M , the set of false negatives can be defined by the set
FN = Tn ∩obs−1(fM), where Tn = (S ∩ϕ)−d. Following these definitions of false
positives and false negatives, the ODD monitor learning problem can then be
defined as the following quantitative optimization problem.

Problem 1 (Optimal Monitor Synthesis for ODDs [26])
For an operational design domain OS,ϕ = (Vobs , obs , d) of a system S and
a specification ϕ over V ∗

sys , a class of monitors M over Vobs , a measure
μ : P(V ∗

sys) → R
+, and a bias wfn ∈ R

+, find a monitor M ∈ M, such that,

M ∈ arg min
M ′∈M

μ(Tp \ obs−1(fM ′)) + wfn · μ(Tn ∩ obs−1(fM ′)).

The measure μ over the sets of false positives and negatives resembles a loss
function with respect to system-level traces. An example of such measure is the
rate of false positives and false negatives with respect to entire set (or a sampled
portion) of the set of system traces.

Remark 1. Notice that an ODD is always defined with respect to a system and
the ODD monitor will predict whether that system is about to violate the spec-
ification. This particularly means that responsibility for failure could be any of
the components of the system influencing the validity of the system-level speci-
fication. Implementing a safe contingency component and integrating it into the
system requires careful analysis and is beyond the scope of this paper.

276 H. Torfah et al.

2.2 Challenges in Learning Optimal ODDs

In our ODD monitor learning setting, probably approximate correct learning
methods come with the big advantage of allowing us to learning ODDs with
statistical guarantees on their optimality. For a given confidence parameter δ
and an error margin ε, assuming a class of monitors with a finite VC dimension
(e.g., decision trees, decision diagram, automata), PAC methods determine the
number of i.i.d. samples needed to obtain a monitor close to the optimal monitor
with high confidence [21]. Formally, PAC methods allow for the construction of
a monitor M with Pr(LM −Lopt ≤ ε) ≥ 1−δ, where Lopt and LM are the losses
of the optimal monitor within the class of monitors and the loss of the learned
monitor, respectively.

While, statistically speaking, for very low values of δ and ε we obtain a close-
to optimal monitor with high confidence, practically we are still confronted with
two challenges:

– In a high-dimensional space, such as in the case of the ODD in our
autonomous vehicle example, strong PAC guarantees, i.e., for low values of δ
and ε, require the generation of a very large set of training data, which causes
a scalability problem (especially in the case of symbolic learning algorithms
[25]), in learning the ODD monitor.

– Even if we manage to overcome the scalability problem by learning over large
data sets, the fact that PAC only provides statistical guarantees on the accu-
racy of a learned monitor implies there will always be a chance (of probability
δ) of obtaining a monitor with a high misclassification rate. Indeed, one needs
to apply a PAC learning algorithm several times in order to reduce the risk
of obtaining of a “bad” monitor. Which brings us to the role of ensemble
methods in overcoming this challenge.

In the next section, we show that using the ensemble method we can reduce
the risk of obtaining a bad monitor. In fact we show that with growing ensem-
bles, we can reduce the bounds on this risk exponentially. Furthermore, using
ensembles we can also overcome the problem of having to learn individual mon-
itors with strong PAC guarantees. We show that the change in the confidence
and error margin values of the individual monitors influences the bound on the
risk of the ensemble monitor only linearly. This allows us to learn individual
monitors using weaker PAC guarantees without sacrificing the overall accuracy
of a monitor learned by an ensemble method.

3 Learning Monitor Ensembles for Operational Design
Domains

We now show that an upper bound of the overall risk of an ensemble monitor
reduces exponentially with the count of monitors, and linearly with the risk of
individual monitors. In the following discussion, the input to every (individual
or ensemble) monitor M is assumed to be sampled from a distribution D over

Learning Monitor Ensembles for Operational Design Domains 277

the input space. The risk of M , denoted R(M), is the probability of M returning
an incorrect classification result. If M is PAC-learned, the loss function used for
PAC learning is assumed to be E(x,y)∼D �M (x, y), where x is an input sampled
from the input space, y is the corresponding correct output label, and �M (x, y)
is the 0-1 loss, i.e. �M (x, y) = 0 if M(x) �= y and 1 if M(x) = y. It is easy
to see that R(M) = Ez∼D �M (z). Given an arbitrary ensemble of monitors
Γ = {M1, . . . Mn} and a distribution Q over Γ , the Gibbs monitor MG,Γ,Q is a
special ensemble monitor that randomly chooses an Mi according to distribution
Q and outputs the result of the chosen Mi. For our purposes, the distribution
Q is always the uniform distribution over Γ , and hence we omit mentioning
it in the subscript of MG,Γ,Q. Furthermore, we always choose the ensemble Γ
by independently generating each Mi from a given (PAC-learnable) class M of
monitors using (ε, δ)-PAC learning. Notice that the above way of choosing Γ
implicitly induces a distribution, say D′, on all n-monitor ensembles.

3.1 Using Majority Voting

Our first ensemble monitor outputs a decision based on a majority vote (MV).
Theorem 1 bounds the risk of the majority-vote monitor, making use of the
following well-known result from learning theory.

Lemma 1 (PAC-Bayes Theorem [8,15]). For every ensemble Γ of moni-
tors, let MMV,Γ denote the majority-vote monitor and MG,Γ denote the Gibbs
monitor. Then R(MMV,Γ) ≤ 2 · R(MG,Γ).

Theorem 1. Let Γ = {M1, . . . ,Mn} be an ensemble of monitors obtained by
independently generating each Mi from a class M of monitors using (δ, ε)-PAC
learning. Then the following holds for the majority-vote monitor MMV,Γ :

EΓ∼D′ [R(MMV,Γ)] ≤ min
γ∈[0,1−δ]

2 ·
[
(Lopt + ε + δ + γ) + e−γ2n((1 − γ)(Lopt + ε) + 1)

]

where Lopt is the loss of the optimal monitor in the class M.

Proof. From Lemma 1, we know that R(MMV,Γ) ≤ 2 ·R(MG,Γ). We prove below
an upper bound of R(MG,Γ), thus bounding R(MMV,Γ).

We can characterize each sampled ensemble Γ of size n by the number of
monitors M with L(M)−Lopt ≤ ε. We will call such monitors as “strong” mon-
itors. We denote the set of ensembles with k ≤ n strong monitors by Ωk. Using
this characterization, the estimated risk of a Gibbs monitor over an ensemble of
monitors can be defined as:

EΓ∼D′ [R(MG,Γ)] =
n∑

k=0

∑

Γ∈Ωk

Pr(Γ) · 1
n

∑

Mi∈Γ

E(x,y)∼D[1(Mi(x) �= y)] (1)

where Pr(Γ) is the probability of choosing the ensemble Γ , and the risk R(MG,Γ)
of a Gibbs monitor for a specific ensemble Γ (assuming each Mi ∈ Γ is chosen

278 H. Torfah et al.

uniformly randomly) is 1
n

∑
Mi∈Γ E(x,y)∼D[1(Mi(x) �= y)], with 1 being the indi-

cator function.
The expression E(x,y)∼D[1(Mi(x) �= y)] define the loss L(Mi) of an individual

monitor Mi, and therefore,the estimated risk can be rewritten as:

EΓ∼D′ [R(MG,Γ)] =
n∑

k=0

∑

Γ∈Ωk

Pr(Γ) · 1
n

∑

Mi∈Γ

L(Mi) (2)

The loss L(Mi) depends on the strength of monitor Mi. Recall that Γ has k
strong monitors. If Mi is a strong monitor, then L(Mi) is subject to the guarantee
|L(Mi) − Lopt| ≤ ε. Otherwise, L(Mi) is subject to |L(Mi) − Lopt| > ε. In the
former case, L(Mi) can be bounded from above by Lopt + ε. In the latter case,
we simply bound L(Mi) by 1. The estimated risk can thus be bounded by:

EΓ∼D′ [R(MG,Γ)] ≤
n∑

k=0

∑

Γ∈Ωk

Pr(Γ) · 1
n

(k · (Lopt + ε) + (n − k)) (3)

In remains to show that Pr(Γ) can be bounded in terms of δ, ε and n. To
this end, we use Hoefdding’s Theorem [9] to make the following distinction on
the values of k.

Let Z1, . . . , Zn be independent Bernoulli random variables, such that Zi =
1(L(Mi) − Lopt ≤ ε). Let p = Pr(Zi = 1); notice that using PAC-learning to
choose the Mi’s guarantees that p ≥ 1 − δ. Using Hoefdding’s Theorem, it now
follows that Pr(n · p − ∑

i≤n Zi ≥ t) ≤ e−2 t2
n for any t > 0. We replace t with

t = γ · n for γ ∈ [0, 1 − δ], thus obtaining the inequality Pr(n · p − ∑
i≤n Zi ≥

γ · n) ≤ e−2γ2·n. Given that
∑

i≤n Zi = k for a specific Γ , we rewrite the
summation over k in Eq. 3 by making the following distinction over the values
of k. We distinguish the cases for k < n · p − γ · n and k ≥ n · p − γ · n.

For the case of k < n · p − γ · n, we can derive the following bound. We
can trivially follow that k · (Lopt + ε) < n · (p − γ)(Lopt + ε). We can also
follow that n > n − k > n − n · (p − γ). As a consequence we can infer that
1
n · (k · (Lopt + ε) + (n − k)) < (p − γ) · (Lopt + ε) + 1. Lastly, this implies that

n·p−γ·n−1∑

k=0

∑

Γ∈Ωk

Pr(Γ) · 1
n

(k ·(Lopt+ε)+(n−k)) ≤ e−2γ2·n((p−γ) ·(Lopt+ε)+1)

(4)
For the case of k ≥ n · p − γ · n, we do a similar analysis. It follows that

1
n · (k · (Lopt + ε) + n − k) ≤ Lopt + ε + 1 − p + γ, and in turn

n∑

k=n·p−γ·n

∑

Γ∈Ωk

Pr(Γ) · 1
n

(k · (Lopt + ε) + (n − k)) ≤ Lopt + ε + 1 − p + γ (5)

Combining Eqs. (4) and (5), and because both hold for any value of γ ∈
[0, 1 − δ], our main result follows:

Learning Monitor Ensembles for Operational Design Domains 279

EΓ∼D′ [R(MMV,Γ)] ≤ min
γ∈[0,1−δ]

2 ·
[
(Lopt + ε + δ + γ) + e−γ2n((1 − γ)(Lopt + ε) + 1)

]

. �

Corollary 1. For sufficiently large n, the bound on the estimated risk of the
majority voting monitor is monotonically decreasing.

3.2 Using Multi-armed Bandits

Multi-armed bandits are a class of reinforcement learning problems where one
has n actions and at any given time step, an agent has to choose between these
actions to maximize rewards. This is a classic example of trading off exploration
vs exploitation, which is exactly what we want to do when selecting the output
of one monitor from within an ensemble.

In our context, each action amounts to seeking the output of a (potentially
weak) monitor. At any given time step, the ensemble monitor can choose one of
the monitors, say Mi, and uses the output of Mi as its output for that time step.
The literature on multi-armed bandits indicates that Thompson sampling [19]
is a highly effective strategy for choosing the actions in each time step, and we
follow this approach. Thompson sampling dynamically biases the probabilities
of choosing different monitors in favour of the one with the least risk, based on
the outcomes seen so far. This allows us to dynamically select a monitor as time
evolves. Note that this approach requires us to keep all monitors available when
running the ensemble monitor.

We also used an alternative approach where we used an offline phase to
select the most promising monitor in the ensemble, and used only this monitor
subsequently. The offline phase itself uses Thompson sampling to identify with
high probability the monitor with the least risk.

Theorem 2. Let Γ = {M1, . . . ,Mn} be as in Theorem 1, and let Mmab,Γ be
the monitor with lowest estimated L(Mi) chosen using Thompson sampling in
an offline phase. Then the following holds:

EΓ∼D′ [R(Mmab,Γ)] ≤ min
γ∈[0,1−δ]

e−2nγ2 ·((Lopt+ε)(1−δ−γ)+1)+(Lopt+ε+δ−γ)

Proof. Let Tk denote the event that k out of n monitors in Γ are “strong” (using
terminology from the proof of Theorem 1). Then

EΓ∼D′ [R(Mmab,Γ)] =
n∑

k=0

E[R(Mmab,Γ) | Tk] · Pr[Tk] (6)

Let HTS
k denote the probability of choosing a strong monitor from among k

strong monitors in Γ , when using Thompson sampling (TS) in the offline phase.

280 H. Torfah et al.

Let HUnif
k = k

n denote the same probability when using uniform random sam-
pling in the offline phase. Clearly, HTS

k ≥ HUnif
k = k

n . Since L(Mi) ≤ Lopt +ε for
each strong monitor Mi, it follows that E[R(Mmab,Γ) | Tk] < k

n (Lopt + ε) + n−k
n .

Using the same reasoning as in the proof of Theorem 1, we now choose a
parameter γ ∈ [0, 1−δ) and split the summation in Eq. 6 into two parts: (a) k ≤
n ·(1−δ−γ) and (b) k > n ·(1−δ−γ). In case (a), we use Pr[Tk] ≤ e−2γ2n using
Hoeffding’s Theorem, and E[R(Mmab,Γ)] < (Lopt +ε) · k

n + n−k
n) < (Lopt +ε)(1−

δ−γ)+1. In case (b), we use Pr[Tk] ≤ 1 and E[R(Mmab,Γ)] < (Lopt+ε)+(δ−γ).
Combining parts (a) and (b) gives us the required bound. �

Corollary 2. For sufficiently large n, the bound on the estimated risk of the
multi-armed bandit monitor is monotonically decreasing.

4 Empirical Study

In this section, we use an instance of our motivating example in Fig. 1 to demon-
strate the impact of using ensembles of ODD monitors in comparison to single-
learned ODD monitors. We particularly use the methods of majority voting and
a multi-armed bandit method that incorporates Thompson sampling during the
offline testing phase. Our evaluation is performed over ensembles of growing size,
comparing the rates of false negatives and false positives, especially to the aver-
age of the same rates over the individual monitors of an ensemble. We start with
a description of the experimental setup and framework in Sects. 4.1 and 4.2, and
present our results in Sect. 4.4 and 4.5.

4.1 Case Study

We use the example presented in Fig. 1 providing implementations for the CNN-
based controller and safe controller. The goal is to use ensemble methods to
learn an ODD monitor that implements the switching logic between the two
controllers. The CNN-based controller is composed of a CNN that for a given
image of the road in front of the vehicle returns the cross-track error (CTE), i.e.,
the distance of the vehicle to the center of the lane. The architecture and training
of the CNN are irrelevant to the ODD monitor learning process, and throughout
our entire evaluation process, we assume the entire CNN-based controller is a
black box1. The CTE computed by the CNN is forwarded to a PID controller
that uses this information to compute the steering angle of the car. The safe
controller uses the same PID controller, but the latter is fed with ground truth
values for the CTE.

1 For the interested reader, the CNN had three convolutional layers with 24, 48, 96
filters, respectively, with a 5×5 kernel size, composed with an inner dense layer with
512 units using ReLU activation. The CNN was trained on 99k images collected at
restricted weather and time of the day conditions, and labeled with the correct CTE.

Learning Monitor Ensembles for Operational Design Domains 281

Fig. 2. Extension of VerifAI with ODD ensemble learning

Our monitors are learned for fixed length input windows (fixed length his-
tory of data) of length 15 and a prediction horizon of 10 steps. The training
data used in learning the monitors comprises sequence of values of a number
of features, such as precipitation, cloudiness, sun angle, averaged radar points
(left, front, right), road information (approaching a turn or junction), and the
controls produced by the controllers. The labels of the training data are boolean
labels based on whether a lane invasion or a collision occurred.

4.2 Framework and Implementation

The implementation of our framework builds on VerifAI, a toolkit for the
formal design and analysis of AI/ML-based systems [5]. The general workflow of
VerifAI is depicted in the left part of Fig. 2. Given an executable model of the
system with the black-box (ML) component, a model of the environment in which
the system is to be executed, given as a probabilistic program written in Scenic
[7], from which different simulation can be sampled, we use VerifAI to run
simulations and evaluate them according to a provided system-level specification
i.e., one defining a property of the system (for example, the vehicle should never
exit its lane nor collide with any object).

Each monitor of the ensemble is then generated in the following manner. A
predefined number of simulations are sampled from the Scenic program and
each executed for a given number of simulation steps. The Scenic program
used in our experiments is depicted in Fig. 3. It defines a uniform distribution
over different features such as weather conditions, times of the day, and different
lanes of the world, as well as a point in the center of these lanes. For each
simulation, VerifAI samples an initial value to the various features, as shown
by the snapshots on the right of Fig. 3, and subsequently simulates a run of the
vehicle on the road for the pre-determined number of time-steps, and according

282 H. Torfah et al.

Fig. 3. Scenic program and corresponding sampled scenes

to the behavior EgoBehavior, which defines the implementation of the system
as described in the last section. In our experiments, we particularly use Scenic’s
interface to the open-source Carla driving simulator [4]. Each simulation step is
then evaluated according to the specification.

The evaluated simulations are then forwarded to another component for data
generation. The data generation component performs several operations on top
of the simulation traces, creating the training data by applying certain filters,
transformations, and slicing (see, e.g., [23,26]). Each row in the training data
represents the input to a monitor and is of size equal to the number of features
times the length of the input window and the label is an occurrence of a lane
invasion or collision p time steps in the future, where p is the prediction horizon.

Once the training data is obtained, we can use any model-building algorithm
to build one ODD monitor. In our experiments, we use the Decision Tree Clas-
sifiers from the sklearn Python package. Every monitor learned is forwarded
to the ensemble method to create the ensemble monitor. We learned 100 ODD
monitors and applied the methods of majority voting and multi-armed bandit
varying the number of monitors in an ensemble from 10 to 100 with steps of size
10. For each monitor, we collected data from 50 Scenic simulations, each run
for 500 time steps.

4.3 Evaluation

After computing an ensemble monitor, using one of the ensemble methods, we
evaluate the monitor using the following metrics: percentage of false positives and
percentage of false negatives. An output of the ensemble is a false positive if the
ensemble monitor determines that the safe controller should be used but instead,
if the CNN Controller was used, there would still be no collision or lane invasion.
Similarly, a false negative is one where the ensemble monitor determines that
a CNN Controller should be used but using that results in collision prediction-
horizon many time steps in the future.

The implementation of our tool is in Python and all experiments were con-
ducted on a machine with a 3.5 GHz 10-Core CPU, 64 GB of RAM, and a GPU
with 6 GPCs and a total 3072 cores.

Learning Monitor Ensembles for Operational Design Domains 283

Average FN
Ensemble FN
Average FP
Ensemble FN

Fig. 4. Results for ODD monitors learned using Majority Voting for growing ensemble
sizes. The majority vote threshold is 0.5. In the plot for misclassification rates, the
black dashed line represents the misclassification of the CNN-based controller. The red
plot with ‘x’ symbol and the teal plot with ‘+’ symbol represents the average rate of
false negatives and false positives, respectively, over the monitors of the ensemble for
growing ensemble sizes. The dotted red plot with hollow circles and dotted teal plot
with filled circles represent the false negative and false positive rates, respectively, of
the majority vote for growing ensembles. The delay plot shows the time needed to
compute a prediction for growing ensembles. (Color figure online)

4.4 Experiment: Majority Voting

Figure 4 shows the performance of the ODD ensemble when Majority Voting was
used to determine the output of the ensemble. The performance is determined
by evaluating a monitor over 500 simulation runs, each of length 500 steps.
The number of ODD monitors used in the ensemble is plotted along the X-
axis. In Fig. 4a, the Y-axis gives the misclassification rate. The black dashed
line represents the misclassification of the CNN-based controller, in terms of
violating the system-level specification. The red plot with ‘x’ symbol and the
teal plot with ‘+’ symbol represents the average rate of false negatives and false
positives, respectively, over the monitors of the ensemble for growing ensemble
sizes. The dotted red plot with hollow circles and dotted teal plot with filled
circles represent the false negative and false positive rates, respectively, of the
majority vote for growing ensembles. From Fig. 4a, it is clear that using an
ensemble improves the error classification than using only a single monitor to
govern the use of the CNN controller. Moreover, we can see that as we increase
the number of monitors in the ensemble, both the percentage of false positives
and the percentage of false negatives decrease, reducing the misclassification rate
of the ensemble of ODD monitors, highlighting the need and usefulness of using
an ensemble of ODD monitors.

One aspect of Majority Voting is that each monitor of the ensemble has to be
evaluated to obtain the output of the ensemble. This could be of concern as an
increase in the number of monitors could increase the time taken to determine
the output of the ensemble. Figure 4b shows the time (in milliseconds) needed
to compute a prediction for growing ensembles. As can be seen from the figure,

284 H. Torfah et al.

the time taken to evaluate a monitor is linearly increasing but for 100 monitors
is still small, and does not really result in a significant delay in determining the
output/prediction of the ensemble.

4.5 Experiment: Multi-armed Bandit

In this section, we present our findings from applying a version of the multi-
armed bandit method that uses Thompson sampling. We describe both the
selection procedure and how we evaluated the selected monitors.

Selecting the Best Monitor in Multi-arm Bandit. After the 100 monitors
are learned, we select the best monitor using the well-known Thompson sampling
algorithm [19]. It efficiently balances the exploration and exploitation of monitors
(i.e., arms) to converge at the arm which gives the maximum reward.

For this, we first used the same Scenic program used earlier to generate
data for the selection of the best monitor. For this, the Scenic program with
Carla was run for 100 simulations, each simulation for 500 time-steps to get a
data set, D, containing 46,900 data points (resulting from slicing each simulation
according to a window length 15 and prediction horizon 10 and after removing
a few initialization steps).

We use this data set to determine the best monitor in the following manner.
For each monitor, mi, a Beta distribution with parameters αi > 0, βi > 0
is maintained. Here αi and βi indicate the success and failure of the monitor.
Initially, both αi and βi are assigned 1, and the values are updated whenever the
arm corresponding to the monitor is pulled, i,e, the monitor is tested. An arm
pull is called a round and the selection of the best monitor is done over many
rounds. In each arm pull (round), the following is done:

– We sample from the Beta distribution of each monitor and choose the monitor,
mj (expert for this round) corresponding to the highest sample.

– We then uniformly randomly sample a data point from the data set D and
test the chosen arm on this data point.

– if the prediction of the chosen monitor, mj matches with the label of the data
point, we update the αj else we update βj thus updating the Beta distribution
of mj .

We keep repeating these rounds of arm pulls until convergence. We define a
convergence criterion over a fixed stabilization window (not to be confused with
the input window of the monitor), where, by a window, we mean a number of
consecutive rounds. The convergence criterion is as follows:

– There should be only one monitor with the highest mean in the window.
– This monitor should have a small dispersion index in the window.

The dispersion index for the beta distribution B(α, β) with parameters α and
β is the variance of the distribution divided by its mean, and is given by

Dispersion Index(B(α, β)) =
Var(B(α, β))

Mean(B(α, β))
:=

β

(α + β)(α + β + 1)

Learning Monitor Ensembles for Operational Design Domains 285

Let the bound on the dispersion index be C, and the stabilization window W .
Let α and β be the parameters corresponding to the beta distribution of M .
Then, the convergence criteria is as follows:

– there should be only one monitor M with the highest mean in W .
– Then the dispersion index of M must be at most C for each round in the

window W

Once the convergence criterion is satisfied, the monitor with the highest mean
is chosen as the expert, and we terminate this phase. We show the results for
two different bounds on dispersion index, namely C := 10−4 and C := 10−3 in
Figs. 5b and 5d, respectively. We plot the number of rounds until convergence
on the Y-axis and the number of monitors in the ensemble on the X-axis. The
window length for both the plots is |W | = 103. As expected, we take more rounds
to converge when C := 10−4 than C := 10−3. For example, for 40 monitors, we
take 10087 rounds to converge when C := 10−4 whereas we take 2221 rounds
when C := 10−3.

Results. After selecting the best monitor for the Multi-Armed Bandit strategy,
we next generate the test data to evaluate our ensemble. The test data generated
used a Scenic program which was similar to the program used to generate
training data with small modifications in the parameters of the environment.
The Scenic program for testing was executed 500 times, each simulation 500
time steps long. This data set contains 234,500 rows. As mentioned earlier, we
computed the percentage of false positives and the percentage of false negatives.

We tested the best monitor chosen using Thompson sampling on the gener-
ated data set. The prediction of the best monitor chosen in the selection phase
is considered to be the prediction/output of the ensemble. We present the mis-
classification plots in Figs. 5a and 5c. As before, the black dashed line represents
the misclassification of the CNN-based controller. The red plot with ‘x’ symbols
and the teal plot with ‘+’ symbols represent the average rate of false negatives
and false positives, respectively, over the monitors in the ensemble for growing
ensemble sizes. That is, for each ensemble, it contains the average rate of false
negatives and false positives, respectively, over the ensemble. The dashed red
plot with hollow circles and the dotted teal plot with filled circles represent the
false negative and false positive rates of the best selected monitor for growing
ensembles.

As seen from Figs. 5a and 5c, the misclassification rate using the ensemble
monitor is lower than that of solely using the CNN-based controller. The misclas-
sification rate of best expert is less than the average misclassification rate over
monitors in the ensemble, and hence using the best expert helps us reduce the
overall misclassification rate. Note again that, the misclassification rate is the
sum of false negative and false positive rates. In few rounds, the misclassification
rates were close to the average rates (for monitor 43). Such anomalies may occur
because a non-optimal monitor may get chosen as an expert in the evaluation
phase, due to the probabilistic nature (of the sampling) in the evaluation phase.

286 H. Torfah et al.

Fig. 5. Results for using multi-armed bandit for growing sizes of ensembles up to 100
monitors. Figures a and b represent the results for a bound of 10−4 on the dispersion
index, and a stabilization window of length 103. Figures c and d represent the results for
a bound of 10−3 on the dispersion index, and a stabilization window of length 103. In the
plots for misclassification rates, the black dashed line represents the misclassification of
the CNN-based controller. The red plot with ‘x’ symbols and teal plot with ’+’ symbols
represent the average rate of false negatives and false positives respectively, over the
monitors in the ensemble for growing ensemble sizes. The dashed red plot with hollow
circles and the dotted teal plot with filled circles represent the false negatives and false
positives of the best selected monitor for growing ensemble sizes. The convergence
plots show the number of rounds needed for converging in selection phase. Each point
is labeled with the id of the best selected monitor. (Color figure online)

Also, since the convergence criteria does not consider other monitors, some good
monitors may not get enough iterations for their mean to converge to a high
value. Therefore their mean may remain low with a relatively high variance. To
reduce the chances of such anomalies we have to increase the window length or
decrease the dispersion index bound.

In summary, our experimental results demonstrate that the use of ensembles
helps reduce the overall misclassificationrates and improve the performance of
ODD monitors. We remark that the theoretical analysis in Sect. 3 is a conser-

Learning Monitor Ensembles for Operational Design Domains 287

vative treatment of an upper bound of the misclassification rate under idealized
assumptions. Our experiments however show that the actual misclassification
rates are already lower than the ensemble average even with 10 or 20 monitors.
In the experiments using Thompson sampling, since we pre-select a monitor
using an extensive offline selection phase, the probability that we miss a strong
monitor is low even for small ensemble sizes like 10 or 20. We see the effect of
this by noticing that monitor 11, which was chosen as a strong monitor with only
20 monitors in the ensemble, reappears as a strong monitor with larger number
of monitors in the ensemble as well (see Figs. 5b and 5d). This explains why we
do not see a decline in the misclassification rate for increasing ensemble sizes. In
contrast, in the Majority Voting case there is no pre-selection, and therefore the
reduction in misclassification rate with ensemble size shows more clearly.

5 Related Work

Operational Design Domains. A key aspect in assuring the safety of AI-
based autonomous systems is to clearly understand their capabilities and lim-
itations and therefore establish the operational design domains of the system
[2,13,14]. Several works have been dedicated to investigating ways of describ-
ing ODDs. Some of them are textual and follow a structured natural language
format for describing ODDs [20,27]. Others include a tabular description defin-
ing a checklist of rules and functional requirements that need to be checked to
guarantee a safe operation of the system [22]. A generic taxonomy of the dif-
ferent ODD representation formats is presented in BSI PAS 1883 standard [10].
While the approaches above concentrate on the design of languages for describ-
ing ODDs, many works have concluded that there also is a necessity for ODDs
to be executable, e.g., to enable the construction of monitors that can be used at
runtime [3]. To this end, there has been a focus on developing machine-readable
domain-specific languages for specifying ODDs [11]. Our work builds upon pre-
vious work [24,26] which presents a framework for the automated construction
of monitorable ODDs via a counterexample-guided learning approach.

PAC-Based Learning. There has been considerable work in finding interpre-
tations of machine learning models which are used as black boxes. These include
[1,12,16–18], to name a few. In [25], an algorithm to construct interpretations
of black boxes with PAC guarantees is presented. In [26], the authors show how
run time monitors can be build from black box machine learning models. In this
paper, we draw from the work in [25] and [26] to learn an ensemble of run-time
monitors from black box machine learning models. To the best of our knowledge,
our work is the first to investigate the PAC-learnability of ODD monitors and
how ensemble methods can be used to improve the accuracy of these monitors.

6 Conclusion

In this paper, we developed a new framework for learning monitor ensembles
for ODDs, which allows us to go beyond the PAC guarantees for obtaining a

288 H. Torfah et al.

single ODD monitor. We examine two ensemble approaches in detail, Majority
Voting and Multi-armed Bandit methods, and show theoretical results on how
using these methods reduced the bound on the risk of misclassification. Fur-
ther, we perform a detailed empirical study on a benchmark from the domain
of autonomous driving which show that with larger ensembles we converge to
monitors with improved misclassification rates. As future work, we would like to
explore other ensemble approaches, tighter bounds on the risks of ensembles, as
well as enrich the feature space to obtain even better monitors for the case-study.
Another interesting line of future work is the exploration and study of an ensem-
ble of PAC monitors with a special focus to investigate the extent to which the
individual PAC monitors can be relaxed such that the ensemble achieves similar
misclassification rates as those given by a strong PAC monitor.

Acknowledgments. This work is partially supported by NSF grants 1545126 (VeHI-
CaL, including an NSF-TiH grant) and 1837132, by the DARPA contracts FA8750-18-
C-0101 (AA) and FA8750-20-C-0156 (SDCPS), by Berkeley Deep Drive, by C3DTI,
and by Toyota under the iCyPhy center. Financial support from TiH-IoT, IIT Bom-
bay vide grant TIH-IOT/06-2022/IC/NSF/SL/NIUC-2022-05/001 under TiH-IoT US-
India Collaborative Research Program 2022 is gratefully acknowledged. Funds from the
latter grant were used to partially support Shetal Shah, Aniruddha Joshi, S. Akshay
and Supratik Chakraborty for work reported in the current paper.

References

1. Avellaneda, F.: Efficient inference of optimal decision trees. In: AAAI 2020, pp.
3195–3202. AAAI Press (2020)

2. Blumenthal, M.S., Fraade-Blanar, L., Best, R., Irwin, J.L.: Safe Enough:
Approaches to Assessing Acceptable Safety for Automated Vehicles. RAND Cor-
poration, Santa Monica (2020). https://doi.org/10.7249/RRA569-1

3. Colwell, I., Phan, B., Saleem, S., Salay, R., Czarnecki, K.: An automated vehicle
safety concept based on runtime restriction of the operational design domain. In:
2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1910–1917 (2018). https://
doi.org/10.1109/IVS.2018.8500530

4. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open
urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot
Learning, pp. 1–16 (2017)

5. Dreossi, T., et al.: VerifAI: a toolkit for the formal design and analysis of artificial
intelligence-based systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 432–442. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 25

6. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L.,
Seshia, S.A.: Scenic: a language for scenario specification and scene generation.
In: PLDI, pp. 63–78. ACM (2019)

7. Fremont, D.J., et al.: Scenic: a language for scenario specification and data gener-
ation (2020). https://arxiv.org/abs/1809.09310

8. Germain, P., Lacasse, A., Laviolette, F., Marchand, M., Roy, J.: Risk bounds for
the majority vote: from a PAC-Bayesian analysis to a learning algorithm. CoRR
abs/1503.08329 (2015). http://arxiv.org/abs/1503.08329

https://doi.org/10.7249/RRA569-1
https://doi.org/10.1109/IVS.2018.8500530
https://doi.org/10.1109/IVS.2018.8500530
https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.1007/978-3-030-25540-4_25
https://arxiv.org/abs/1809.09310
http://arxiv.org/abs/1503.08329

Learning Monitor Ensembles for Operational Design Domains 289

9. Hoeffding, W.: Probability inequalities for sums of bounded random variables.
J. Am. Stat. Assoc. 58(301), 13–30 (1963). https://doi.org/10.1080/01621459.
1963.10500830. https://www.tandfonline.com/doi/abs/10.1080/01621459.1963.
10500830

10. The British Standards Institution: Operational design domain (ODD) taxonomy
for an automated driving system (ADS) - specification. BSI PAS 1883 (2020)

11. Irvine, P., Zhang, X., Khastgir, S., Schwalb, E., Jennings, P.: A two-level abstrac-
tion ODDdefinition language: Part i*. In: 2021 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), pp. 2614–2621. IEEE Press (2021).
https://doi.org/10.1109/SMC52423.2021.9658751

12. Jha, S., Sahai, T., Raman, V., Pinto, A., Francis, M.: Explaining AI decisions using
efficient methods for learning sparse boolean formulae. J. Autom. Reason. 63(4),
1055–1075 (2019)

13. Khastgir, S., Birrell, S.A., Dhadyalla, G., Jennings, P.A.: Calibrating trust through
knowledge: introducing the concept of informed safety for automation in vehicles.
Transp. Res. Part C Emerg. Technol. 96, 290–303 (2018)

14. Khastgir, S., Brewerton, S., Thomas, J., Jennings, P.: Systems approach to
creating test scenarios for automated driving systems. Reliab. Eng. Syst. Saf.
215, 107610 (2021). https://doi.org/10.1016/j.ress.2021.107610. https://www.
sciencedirect.com/science/article/pii/S0951832021001551

15. McAllester, D.: Simplified PAC-Bayesian margin bounds. In: Schölkopf, B., War-
muth, M.K. (eds.) COLT-Kernel 2003. LNCS (LNAI), vol. 2777, pp. 203–215.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45167-9 16

16. Narodytska, N., Ignatiev, A., Pereira, F., Marques-Silva, J.: Learning optimal deci-
sion trees with SAT. In: Lang, J. (ed.) International Joint Conference on Artificial
Intelligence, IJCAI 2018. ijcai.org (2018)

17. Pedreschi, D., Giannotti, F., Guidotti, R., Monreale, A., Ruggieri, S., Turini, F.:
Meaningful explanations of black box AI decision systems. In: AAAI (2019)

18. Ribeiro, M.T., Singh, S., Guestrin, C.: “why should i trust you?”: explaining the
predictions of any classifier. In: Knowledge Discovery and Data Mining, KDD 2016.
Association for Computing Machinery (2016)

19. Russo, D.J., Van Roy, B., Kazerouni, A., Osband, I., Wen, Z.: A tutorial on thomp-
son sampling. Found. Trends Mach. Learn. 11(1), 1–96 (2018). https://doi.org/10.
1561/2200000070

20. SAE on-Road Automated Driving Committee and others: SAE J3016. Taxonomy
and definitions for terms related to driving automation systems for on-road motor
vehicles. Technical report

21. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory
to Algorithms. Cambridge University Press, Cambridge (2014)

22. Thorn, E., Kimmel, S.C., Chaka, M.: A framework for automated driving system
testable cases and scenarios (2018)

23. Torfah, H., Junges, S., Fremont, D.J., Seshia, S.A.: Formal analysis of AI-based
autonomy: from modeling to runtime assurance. In: Feng, L., Fisman, D. (eds.)
RV 2021. LNCS, vol. 12974, pp. 311–330. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-88494-9 19

24. Torfah, H., Seshia, S.A.: Runtime monitors for operational design domains of black-
box ML-models. In: NeurIPS ML Safety Workshop (2022). https://openreview.
net/forum?id=6 AtjSBhqx

25. Torfah, H., Shah, S., Chakraborty, S., Akshay, S., Seshia, S.A.: Synthesizing pareto-
optimal interpretations for black-box models. In: Proceedings of the IEEE Interna-

https://doi.org/10.1080/01621459.1963.10500830
https://doi.org/10.1080/01621459.1963.10500830
https://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500830
https://www.tandfonline.com/doi/abs/10.1080/01621459.1963.10500830
https://doi.org/10.1109/SMC52423.2021.9658751
https://doi.org/10.1016/j.ress.2021.107610
https://www.sciencedirect.com/science/article/pii/S0951832021001551
https://www.sciencedirect.com/science/article/pii/S0951832021001551
https://doi.org/10.1007/978-3-540-45167-9_16
https://doi.org/10.1561/2200000070
https://doi.org/10.1561/2200000070
https://doi.org/10.1007/978-3-030-88494-9_19
https://doi.org/10.1007/978-3-030-88494-9_19
https://openreview.net/forum?id=6_AtjSBhqx
https://openreview.net/forum?id=6_AtjSBhqx

290 H. Torfah et al.

tional Conference on Formal Methods in Computer-Aided Design (FMCAD), pp.
153–162. IEEE (2021)

26. Torfah, H., Xie, C., Junges, S., Vazquez-Chanlatte, M., Seshia, S.A.: Learning
monitorable operational design domains for assured autonomy. In: Bouajjani, A.,
Hoĺık, L., Wu, Z. (eds.) ATVA 2022. LNCS, vol. 13505, pp. 3–22. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-19992-9 1

27. Zhang, X., Khastgir, S., Jennings, P.: Scenario description language for automated
driving systems: a two level abstraction approach. In: 2020 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), pp. 973–980 (2020). https://
doi.org/10.1109/SMC42975.2020.9283417

https://doi.org/10.1007/978-3-031-19992-9_1
https://doi.org/10.1109/SMC42975.2020.9283417
https://doi.org/10.1109/SMC42975.2020.9283417

Monitoring Algorithmic Fairness Under
Partial Observations

Thomas A. Henzinger, Konstantin Kueffner, and Kaushik Mallik(B)

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

kaushik.mallik@ist.ac.at

Abstract. As AI and machine-learned software are used increasingly for
making decisions that affect humans, it is imperative that they remain
fair and unbiased in their decisions. To complement design-time bias mit-
igation measures, runtime verification techniques have been introduced
recently to monitor the algorithmic fairness of deployed systems. Previ-
ous monitoring techniques assume full observability of the states of the
(unknown) monitored system. Moreover, they can monitor only fairness
properties that are specified as arithmetic expressions over the proba-
bilities of different events. In this work, we extend fairness monitoring
to systems modeled as partially observed Markov chains (POMC), and
to specifications containing arithmetic expressions over the expected val-
ues of numerical functions on event sequences. The only assumptions we
make are that the underlying POMC is aperiodic and starts in the sta-
tionary distribution, with a bound on its mixing time being known. These
assumptions enable us to estimate a given property for the entire distri-
bution of possible executions of the monitored POMC, by observing only
a single execution. Our monitors observe a long run of the system and,
after each new observation, output updated PAC-estimates of how fair or
biased the system is. The monitors are computationally lightweight and,
using a prototype implementation, we demonstrate their effectiveness on
several real-world examples.

1 Introduction

Runtime verification complements traditional static verification techniques, by
offering lightweight approaches for verifying properties of systems from a sin-
gle long observed execution trace [8]. Recently, runtime verification was used to
monitor biases in machine-learned decision-making softwares [3,28,29]. Decision-
making softwares are being increasingly used for making critical decisions affect-
ing humans; example areas include judiciary [12,17], policing [19,39], and bank-
ing [38]. It is important that these softwares are unbiased towards the pro-
tected attributes of humans, like gender and ethnicity. However, they were shown
to be biased on many occasions in the past [17,36,42,46]. While many offline
approaches were proposed for mitigating such biases [10,11,51,53] runtime ver-
ification introduces a new complementary tool to oversee algorithmic fairness

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 291–311, 2023.
https://doi.org/10.1007/978-3-031-44267-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_15&domain=pdf
https://doi.org/10.1007/978-3-031-44267-4_15

292 T. A. Henzinger et al.

of deployed decision-making systems [3,28,29]. In this work, we extend runtime
verification to monitor algorithmic fairness for a broader class of system models
and a more expressive specification language.

Prior works on monitoring algorithmic fairness assumed that the given system
is modeled as a Markov chain with unknown transition probabilities but with
fully observable states [3,29]. A sequence of states visited by the Markov chain
represents a (randomized) sequence of events generated from the interaction of
the decision-making agent and its environment. The goal is to design a monitor
that will observe one such long sequence of states, and, after observing every
new state in the sequence, will compute an updated PAC-estimate of how fair
or biased the system is.

In the prior works, the PAC guarantee on the output hinges on the full
observability and the Markovian structure of the system [3,28,29]. While this
setup is foundational, it is also very basic, and is not fulfilled by many real-
world examples. Consider a lending scenario where at every step a bank (the
decision-maker) receives the features (e.g., the age, gender, and ethnicity) of a
loan applicant, and decides whether to grant or reject the loan. To model this
system using the existing setup, we would need to assume that the monitor
can observe the full state of the system which includes all the features of every
applicant. In reality, the monitor will often be a third-party system, having only
partial view of the system’s states.

We address the problem of designing monitors when the systems are modeled
using partially observed Markov chains (POMC) with unknown transition prob-
abilities. The difficulty comes from the fact that a random observation sequence
that is visible to the monitor may not follow a Markovian pattern, even though
the underlying state sequence is Markovian. We overcome this by making the
assumption that the POMC starts in the stationary distribution, which in turn
guarantees a certain uniformity in how the observations follow each other. We
argue that the stationarity assumption is fulfilled whenever the system has been
running for a long time, which is suitable for long term monitoring of fair-
ness properties. With the help of a few additional standard assumptions on the
POMC, like aperiodicity and the knowledge of a bound on the mixing time, we
can compute PAC estimates on the degree of algorithmic fairness over the dis-
tribution of all runs of the system from a single monitored observation sequence.

Besides the new system model, we also introduce a richer specification
language—called bounded specification expressions (BSE). BSE-s can express
many common algorithmic fairness properties from the literature, such as demo-
graphic parity [18], equal opportunity [27], and disparate impact [21]. Further-
more, BSE-s can express new fairness properties which were not expressible
using the previous formalism [3,29]. In particular, BSE-s can express quantita-
tive fairness properties, including fair distribution of expected credit scores and
fair distribution of expected wages across different demographic groups of the
population; details can be found, respectively, in Example 5 and 6 in Sect. 3.2.

The building block of a BSE is an atomic function, which is a function that
assigns bounded numerical values to observation sequences of a particular length.

Monitoring Algorithmic Fairness Under Partial Observations 293

Using an atomic function, we can express weighted star-free regular expressions
(every word satisfying the given regular expression has a numerical weight), aver-
age response time-like properties, etc. A BSE can contain many different atomic
functions combined together through a restricted set of arithmetic, relational,
and logical operations. We define two fragments of BSE-s: The first one is called
QuantBSE, which contains only arithmetic expressions over atomic functions,
and whose semantic value is the expected value of the given expression over the
distribution of runs of the POMC. The second one is called QualBSE, which
turns the QuantBSE expressions into boolean expressions through relational
(e.g., whether a QuantBSE expression is greater than zero) and logical opera-
tors (e.g., conjunction of two relational sentences), and whose semantic value is
the expected truth or falsehood of the given expression over the distribution of
runs of the POMC.

For any given BSE, we show how to construct a monitor that observes a
single long observation sequence generated by the given POMC with unknown
transition probabilities, and after each observation outputs an updated numerical
estimate of the actual semantic value of the BSE for the observed system. The
heart of our approach is a PAC estimation algorithm for the semantic values of
the atomic functions. The main difficulty stems from the statistical dependence
between any two consecutive observations, which is a side-effect of the partial
observability of the states of the Markov chain, and prevents us from using
the common PAC bounds that were used in the prior works that assumed full
observability of the POMC states [3,29]. We show how the problem can be
cast as the statistical estimation problem of estimating the expected value of a
function over the states of a POMC which satisfies a certain bounded difference
property. This estimation problem can be solved using a version of McDiarmid’s
concentration inequality [44], for which we need the additional assumptions that
the given POMC is aperiodic and that a bound on its mixing time is known. We
use McDiarmid’s inequality to find the PAC estimate of every individual atomic
function of the given BSE. The individual PAC estimates can then be combined
using known methods to obtain the overall PAC estimate of the given BSE [3].

Our monitors are computationally lightweight, and produce reasonably tight
PAC bounds of the monitored properties. Using a prototype implementation,
we present the effectiveness of our monitors on two different examples. On a
real-world example, we showed how our monitors can check if a bank has been
fair in giving loans to individuals from two different demographic groups in the
population, and on an academic example, we showed how our monitors’ outputs
improve as the known bound on the mixing time gets tighter.

The proofs of the technical claims are omitted due to limitation of space, and
can be found in the longer version of the paper [30].

1.1 Related Work

There are many works in AI and machine-learning which address how to elim-
inate or minimize decision biases in learned models through improved design
principles [10,11,18,27,47,51,53]. In formal methods, too, there are some works

294 T. A. Henzinger et al.

which statically verify absence of biases of learned models [2,6,25,26,34,41,49].
All of these works are static interventions and rely on the availability of the
system model, which may not be always true.

Runtime verification of algorithmic fairness, through continuous monitoring
of decision events, is a relatively new area pioneered by the work of Albargh-
outhi et al. [3]. We further advanced their idea in our other works which appeared
recently [28,29]. In those works, on one hand, we generalized the class of sup-
ported system models to Markov chains and presented the new Bayesian statis-
tical view of the problem [29]. On the other hand, we relaxed the time-invariance
assumption on the system [28]. In this current paper, we limit ourselves to time-
invariant systems but extend the system models to partially observed Markov
chains and consider the broader class of BSE properties, which enables us to
additionally express properties whose values depend on observation sequences.

Traditional runtime verification techniques support mainly temporal proper-
ties and employ finite automata-based monitors [4,7,16,40]. In contrast, runtime
verification of algorithmic fairness requires checking statistical properties, which
is beyond the limit of what automata-based monitors can accomplish. Although
there are some works on quantitative runtime verification using richer types of
monitors (with counters/registers like us) [24,31,32,43], the considered specifica-
tions usually do not extend to statistical properties such as algorithmic fairness.

Among the few works on monitoring statistical properties of systems, a
majority of them only provides asymptotic correctness guarantees [22,50],
whereas we provide anytime guarantees. On the other hand, works on moni-
toring statistical properties with finite-sample (nonasymptotic) guarantees are
rare and are restricted to simple properties, such as probabilities of occurrences
of certain events [9] and properties specified using certain fragments of LTL [45].
Monitoring POMCs (the same modeling formalism as us) were studied before by
Stoller et al. [48], though the setting was a bit different from ours. Firstly, they
only consider LTL properties, and, secondly, they assume the system model to
be known by the monitor. This way the task of the monitor effectively reduces
to a state estimation problem from a given observation sequence.

Technique-wise, there are some similarities between our work and the works
on statistical model-checking [1,13,15,52] in that both compute PAC-guarantees
on satisfaction or violation of a given specification. However, to the best of our
knowledge, the existing statistical model-checking approaches do not consider
algorithmic fairness properties.

2 Preliminaries

2.1 Notation

We write R, R+, N, and N
+ to denote the sets of real numbers, positive real

numbers, natural numbers (including zero), and positive integers, respectively.
Let Σ be a countable alphabet. We write Σ∗ and Σω to denote, respectively,

the set of every finite and infinite word over Σ. Moreover, Σ∞ denotes the set
of finite and infinite words, i.e., Σ∞ := Σ∗ ∪ Σω. We use the convention that

Monitoring Algorithmic Fairness Under Partial Observations 295

symbols with arrow on top will denote words, whereas symbols without arrow
will denote alphabet elements. Let −→s = s1s2 . . . be a word. We write −→s i to
denote the i-th symbol si, and write −→s i..j to denote the subword si . . . sj , for
i < j. We use the convention that the indices of a word begin at 1, so that the
length of a word matches the index of the last symbol.

Let −→s ∈ Σ∗ and any
−→
t ∈ Σ∞ be two words. We denote the concatenation of−→s and

−→
t as −→s −→

t . We generalize this to sets of words: For S ⊆ Σ∗ and T ⊆ Σ∞,
we define the concatenation ST := {−→s −→

t | −→s ∈ S,
−→
t ∈ T}. We say −→s is a prefix

of −→r , written −→s ≺ −→r , if there exists a word
−→
t ∈ Σ∞ such that −→s −→

t = −→r .
Suppose T ⊆ R is a subset of real numbers, v ∈ T

n is a vector of length n over
T, and M ∈ T

n×m is a matrix of dimension n×m over T; here m,n can be infinity.
We use vi to denote the i-th element of v, and Mij to denote the element at the
intersection of the i-th row and the j-th column of M . A probability distribution
over a set S is a vector v ∈ [0, 1]|S|, such that

∑
i∈[1;|S|] vi = 1.

2.2 Randomized Event Generators: Partially Observed Markov
Chains

We use partially observed Markov chains (POMC) as sequential randomized
generators of events. A POMC is a tuple (Q,M, λ,Σ, �), where Q = N

+ is a
countable set of states, M is a stochastic matrix of dimension |Q|×|Q|, called the
transition probability matrix, λ is a probability distribution over Q representing
the initial state distribution, Σ is a countable set of observations, and � : Q → Σ
is a function mapping every state to an observation. All POMCs in this paper
are time-homogeneous, i.e., their transition probabilities do not vary over time.

Semantically, every POMC M induces a probability measure PM(·) over
the generated state and observation sequences. For every finite state sequence−→q = q1q2 . . . qt ∈ Q∗, the probability that −→q is generated by M is given by
PM(−→q) = λq1 · ∏t−1

i=1 Mqiqi+1 . Every finite state sequence −→q ∈ Q∗ for which
PM(−→q) > 0 is called a finite internal path of M; we omit M if it is clear from
the context. The set of every internal path of length n is denoted as Qn(M),
and the set of every finite internal path is denoted as Q∗(M).

Every finite internal path −→q can be extended to a set of infinite internal
paths, which is called the cylinder set induced by −→q , and is defined as Cyl(−→q) :=
{−→r ∈ Qω | −→q ≺ −→r }. The probability measure PM(·) on finite internal paths
induces a pre-measure on the respective cylinder sets, which can be extended to
a unique measure on the infinite internal paths by means of the Carathéodory’s
extension theorem [5, pp. 757]. The probability measure on the set of infinite
internal paths is also denoted using PM(·).

An external observer can only observe the observable part of an internal
path of a POMC. Given an internal path −→q = q1q2 . . . ∈ Q∞, we write �(−→q) to
denote the observation sequence �(q1)�(q2) . . . ∈ Σ∞. For a set of internal paths
S ⊆ Q∞, we write �(S) to denote the respective set of observation sequences
{−→w ∈ Σ∞ | ∃−→q . −→w = �(−→q)}. An observation sequence −→w ∈ Σ∞ is called an
observed path (of M) if there exists an internal path −→q for which �(−→q) = −→w .

296 T. A. Henzinger et al.

As before, we write Σn(M) for the set of every observed path of length n, and
Σ∗(M) for the set of every finite observed path.

We also use the inverse operator of � to map every observed path −→w to the
set of possible internal paths: �−1(−→w) := {−→q ∈ Q∞ | �(−→q) = −→w }. Furthermore,
we extend �−1(·) to operate over sets of observation sequences in the following
way: For any given S ⊆ Σ∞, define �−1(S) := {−→q | ∃−→w ∈ S . �(−→q) = −→w }.

We abuse the notation and use PM(·) to denote the induced probability
measure on the set of observed paths, defined in the following way. Given every
set of finite observed paths S ⊆ Σ∗, we define PM(S) :=

∑
−→q ∈�−1(S) PM(−→q).

When the paths in a given set are infinite, the sum is replaced by integral. We
write

−→
W ∼ M to denote the random variable that represents the distribution

over finite sample observed paths generated by the POMC M.

Example 1. As a running example, we introduce a POMC that models the
sequential interaction between a bank and loan applicants. Suppose there is
a population of loan applicants, where each applicant has a credit score between
1 and 4, and belongs to either an advantaged group A or a disadvantaged group
B. At every step, the bank receives loan application from one applicant, and,
based on some unknown (but non-time-varying) criteria, decides whether to
grant loan or reject the application. We want to monitor, for example, the dif-
ference between loan acceptance probabilities for people belonging to the two
groups.

The underlying POMC M that models the sequence of loan application
events is shown in Fig. 1. A possible internal path is S(A, 1)NS(A, 4)Y SB

Fig. 1. The POMC modeling the sequential interaction between the bank and the loan
applicants. The states S, Y , and N respectively denote the start state, the event that
the loan was granted (“Y ” stands for “Yes”), and the event that the loan was rejected
(“N” stands for “No”). Every middle state (X, i), for X ∈ {A, B} and i ∈ {1, 2, 3, 4},
represents the group (A or B) and the credit score i of the current applicant. The states
S, Y, N are fully observable, i.e., their observation symbols coincide with their state
symbols. The middle states are partially observable, with every (A, i) being assigned
the observation A and every (B, i) being assigned the observation B. The states with
the same observation belong to the same shaded box.

Monitoring Algorithmic Fairness Under Partial Observations 297

(A, 3)N . . ., whose corresponding observed path is SANSAY SBN In our
experiments, we use a more realistic model of the POMC with way more richer
set of features for the individuals.

2.3 Register Monitors

Our register monitors are adapted from the polynomial monitors of Ferrère et
al. [23], and were also used in our previous work (in a more general randomized
form) [29]. Let R be a finite set of integer variables called registers. A function
v : R → N assigning concrete value to every register in R is called a valuation of
R. Let NR denote the set of all valuations of R. Registers can be read and written
according to relations in the signature S = 〈0, 1,+,−,×,÷,≤〉. We consider two
basic operations on registers:

– A test is a conjunction of atomic formulas over S and their negation;
– An update is a mapping from variables to terms over S.

We use Φ(R) and Γ (R) to respectively denote the set of tests and updates over
R. Counters are special registers with a restricted signature S = 〈0, 1,+,−,≤〉.
Definition 1 (Register monitor). A register monitor is a tuple
(Σ,Λ,R, vin, f, T) where Σ is a finite input alphabet, Λ is an output alphabet,
R is a finite set of registers, vin ∈ N

R is the initial valuation of the registers,
f : NR → Λ is an output function, and T : Σ × Φ(R) → Γ (R) is the transition
function such that for every σ ∈ Σ and for every valuation v ∈ N

R, there exists
a unique φ ∈ Φ(R) with v |= φ and T (σ, φ) ∈ Γ (R).

We refer to register monitors simply as monitors, and we fix the output
alphabet Γ as the set of every real interval.

A state of a monitor A is a valuation of its registers v ∈ N
R; the initial

valuation vin is the initial state. The monitor A transitions from state v to
another state v′ on input σ ∈ Σ if there exists φ such that v |= φ, there exists
an update γ = T (σ, φ), and if v′ maps every register x to v′(x) = v(γ(x)). The
transition from v to v′ on input σ is written as v

σ−→ v′. A run of A on a word
w1 . . . wt ∈ Σ∗ is a sequence of transitions v1 = vin

w1−−→ v2
w2−−→ . . .

wt−→ vt+1. The
semantics of the monitor is the function �A� : Σ∗ → Λ that maps every finite
input word to the last output of the monitor on the respective run. For instance,
the semantics of A on the word −→w is �A�(−→w) = f(vt+1). An illustrative example
of register monitors can be found in our earlier work [29, Sec. 2.2].

3 Monitoring Quantitative Algorithmic Fairness
Properties

In our prior work on monitoring algorithmic fairness for fully observable Markov
chains [29], we formalized (quantitative) algorithmic fairness properties using the
so-called Probabilistic Specification Expressions (PSE). A PSE ϕ is an arithmetic

298 T. A. Henzinger et al.

expression over the variables of the form vij , for i, j ∈ Q for a finite set Q. The
semantics of ϕ is interpreted statically over a given Markov chain M with state
space Q, by replacing every vij with the transition probability from the state i
to the state j in M . The algorithmic question we considered is that given a PSE
ϕ, how to construct a monitor that will observe one long path of an unknown
Markov chain, and after each observation will output a PAC estimate of the
value of ϕ with a pre-specified confidence level.

An exact representation of the above problem formulation is not obvious
for POMCs. In particular, while it is reasonable to generalize the semantics of
PSEs to be over the probabilities between observations instead of probabilities
between states, it is unclear how these probabilities will be defined. In the follow-
ing, we use simple examples to illustrate several cruxes of formalizing algorithmic
fairness on POMCs, and motivate the use of the assumptions of stationary distri-
bution, irreducibility, and positive recurrence (formally stated in Assumption 1)
to mitigate the difficulties. These assumptions will later be used to formalize the
algorithmic fairness properties in Sect. 3.2.

In the following, we will write π to denote the stationary distribution of
Markov chains with transition matrix M , i.e., π = Mπ.

3.1 Role of the Stationary Distribution

First, we demonstrate in the following example that POMCs made up of unfair
sub-components may have overall fair behavior in the stationary distribution,
which does not happen for fully observable Markov chains.

Example 2. Suppose there are two coins A and B, where A comes up with heads
with probability 0.9 and B comes up with tails with probability 0.9. We observe
a sequence of coin tosses (i.e., the observations are heads and tails), without
knowing which of the two coins (the state) was tossed. If the choice of the coin
at each step is made uniformly at random, then, intuitively, the system will
produce fair outcomes in the long run, with equal proportions of heads and tails
being observed in expectation. Thus, although each coin was unfair, we can still
observe overall fair outcome, provided the fraction of times each coin was chosen
in the stationary distribution balances out the unfairness in the coins themselves.

To make the above situation more concrete, imagine that the underlying
POMC has two states a, b (e.g., a, b represent the states when A,B are selected
for tossing, respectively) with the same observation (which coin is selected is
unknown to the observer), where the measures of the given fairness condition
(e.g., the biases of the coins A,B) are given by fa, fb. We argue that, intuitively,
the overall fairness of the POMC is given by πafa +πbfb. This type of analysis is
unique to POMCs, whereas for fully observable Markov chains, computation of
fairness is simpler and can be done without involving the stationary distribution.

In the next example, we demonstrate some challenges of monitoring fairness
when we express fairness by weighing in the stationary distribution as above.

Monitoring Algorithmic Fairness Under Partial Observations 299

Example 3. Consider the setting of Example 2, and suppose now only the initial
selection of the coin happens uniformly at random but subsequently the same
coin is used forever. If we consider the underlying POMC, both πa, πb will be 0.5,
because the initial selection of the coin happens uniformly at random. However,
the monitor will observe the toss outcomes of only one of the two coins on a
given trace. It is unclear how the monitor can extrapolate its estimate to the
overall fairness property πafa + πbfb in this case.

To deal with the situations described in Example 2 and Example 3, we will
make the following assumption.

Assumption 1. We assume that the POMCs are irreducible, positively recur-
rent, and are initialized in their stationary distributions.

The irreducibility and positive recurrence guarantees existence of the sta-
tionary distribution. Assumption 1 ensures that, firstly, we will see every state
infinitely many times (ruling out the above corner-case), and, secondly, the pro-
portion of times the POMC will spend in all the states will be the same (given
by the stationary distribution) all the time. While Assumption 1 makes it easier
to formulate and analyze the algorithmic fairness properties over POMCs, mon-
itoring these properties over POMCs still remains a challenging problem due to
the non-Markovian nature of the observed path.

3.2 Bounded Specification Expressions

We introduce bounded specification expressions (BSE) to formalize the fairness
properties that we want to monitor. A BSE assigns values to finite word patterns
of a given alphabet. The main components of a BSE are atomic functions, where
an atomic function fn assigns bounded real values to observation sequences of
length n, for a given n ∈ N

+. An atomic function fn can express quantitative
star-free regular expressions, assigning real values to words of length n.

Following are some examples. Let Σ = {r, g} be an observation alphabet,
where r stands for “request” and g stands for “grant.” A boolean atomic function
f2, with f2(rr) = 0 and f2(−→w) = 1 for every −→w ∈ Σ2 \ {rr}, can express the
property that two requests should not appear consecutively. An integer-valued
atomic function f10, with f10(rrig−→w) = i when i ∈ [0; 8] and −→w ∈ Σ8−i, and
with f10(−→z) = 8 when −→z ∈ Σ10\rrigΣ8−i, assigns to any sub-sequence the total
waiting time between a request and the subsequent grant, while saturating the
waiting time to 8 when it is above 8. The specified word-length n for any atomic
function fn is called the arity of fn. Let P be the set of all atomic functions over
a given observation alphabet.

A BSE may also contain arithmetic and/or logical connectives and relational
operators to express complex value-based properties of an underlying probabilis-
tic generator, like the POMCs. We consider two fragments of BSE-s, expressing
qualitative and quantitative properties, and called, respectively, QualBSE and
QuantBSE in short. The syntaxes of the two types of BSE-s are given as:

300 T. A. Henzinger et al.

(QuantBSE) ϕ ::= κ ∈ R | f ∈ P | ϕ + ϕ | ϕ · ϕ | 1 ÷ ϕ | (ϕ), (1a)
(QualBSE) ψ ::= true | ϕ ≥ 0 | ¬ψ | ψ ∧ ψ. (1b)

The semantics of a QuantBSE ϕ over the alphabet Σ is interpreted over
POMCs satisfying Assumption 1 and with observations Σ. When ϕ is an atomic
function f : Σn → [a, b] for some n ∈ N

+, a, b ∈ R, then, for a given POMC M,
the semantics of ϕ is defined as follows. For every time t ∈ N

+,

ϕ(M) = f(M) :=
∫

Σω

f(−→w t:t+n−1)dPM(−→w). (2)

The definition of f(M) is well-defined, because f(M) will be the same for every
t, since the POMC will remain in the stationary distribution forever (by Assump-
tion 1 and by the property of stationary distributions). Intuitively, the semantics
f(M) represents the expected value of the function f on any sub-word of length
n on any observed path of the POMC, when it is known that the POMC is in
the stationary distribution (Assumption 1).

The arithmetic operators in QuantBSE-s have the usual semantics (“+” for
addition, “−” for difference, “·” for multiplication, and “÷” for division).

On the other hand, the semantics of a QualBSE ψ is boolean, which induc-
tively uses the semantics of the constituent ϕ expressions. For a QualBSE
ψ = ϕ ≥ 0, the semantics of ψ is given by:

ψ(M) :=

{
true if ϕ(M) ≥ 0,

false otherwise.

The semantics of the boolean operators in ψ is the usual semantics of boolean
operators in propositional logic. The following can be added as syntactic sugar:
“ϕ ≥ c” for a constant c denotes “ϕ′ ≥ 0” with ϕ′ := ϕ − c, “ϕ ≤ c” denotes
“−ϕ ≥ −c,” “ϕ = c” denotes “(ϕ ≥ c) ∧ (ϕ ≤ c),” “ϕ > c” denotes “¬(ϕ ≤ c),”
“ϕ < c” denotes “¬(ϕ ≥ c),” and “ψ ∨ ψ” denotes “¬(¬ψ ∧ ¬ψ).”

Fragment of BSE: Probabilistic Specification Expressions (PSEs): In
our prior work [29], we introduced PSEs to model algorithmic fairness prop-
erties of Markov chains with fully observable state space. PSEs are arithmetic
expressions over atomic variables of the form vij , where i, j are the states of the
given Markov chain, and whose semantic value equals the transition probability
from i to j. The semantics of a PSE is then the valuation of the expression
obtained by plugging in the respective transition probabilities. We can express
PSEs using QuantBSE-s as below. For every variable vij appearing in a given
PSE, we use the atomic function f that assigns to every finite word −→w ∈ Σ∗

the ratio of the number of (i, j) transitions to the number of occurrences of i in−→w . We will denote the function f as P (j | i) in this case, and, in general, i, j
can be observation labels for the case of QuantBSE-s. It is straightforward to
show that semantically the two expressions will be the same. On the other hand,
QuantBSE-s are strictly more expressive than PSEs. For instance, unlike PSEs,
QuantBSE-s can specify probability of transitioning from one observation label

Monitoring Algorithmic Fairness Under Partial Observations 301

to another, the average number of times a given state is visited on any finite
path of a Markov chain, etc.

Fragment of BSE: Probabilities of Sequences: We consider a useful frag-
ment that expresses the probability that a sequence from a given set S ⊆ Σ∗ of
finite observation sequences will be observed at any point in time on any observed
path. We assume that the length of every sequence in S is uniformly bounded
by some integer n. Let S ⊆ Σn denote the set of extensions of sequences in S up
to length n, i.e., S := {−→w ∈ Σn | ∃−→u ∈ S . −→u ≺ −→w }. Then the desired property
will be expressed simply using an atomic function with f : Σn → {0, 1} being
the indicator function of the set S, i.e., f(−→w) = 1 iff −→w ∈ S. It is straightforward
to show that, for a given POMC M, the semantics f(M) expresses the desired
property. For a set of finite words S ⊆ Σ∗, we introduce the shorthand notation
P (S) to denote the probability of seeing an observation from the set S at any
given point in time. Furthermore, for a pair of sets of finite words S, T ⊆ Σ∗, we
use the shorthand notation P (S | T) to denote P (TS)/P (T), which represents the
conditional probability of seeing a word in S after we have seen a word in T .

Example 4 (Group fairness). Consider the setting in Example 1. We show how
we can represent various group fairness properties using QuantBSE-s. Demo-
graphic parity [18] quantifies bias as the difference between the probabilities of
individuals from the two demographic groups getting the loan, which can be
expressed as P (Y | A) − P (Y | B). Disparate impact [21] quantifies bias as the
ratio between the probabilities of getting the loan across the two demographic
groups, which can be expressed as P (Y | A) ÷ P (Y | B).

In prior works [3,29], group fairness properties could be expressed on strictly
less richer class of fully observed Markov chain models, where the features of each
individual were required to contain only their group information. An extension
to the model of Example 1 is not straightforward as the confidence interval used
in these works would not be applicable.

Example 5 (Social fairness). Consider the setting in Example 1, except that
now the credit score of each individual will be observable along with their group
memberships, i.e., each observation is a pair of the form (X, i) with X ∈ {A,B}
and i ∈ {1, 2, 3, 4}. There may be other non-sensitive features, such as age,
which may be hidden. We use the social fairness property [28] quantified as the
difference between the expected credit scores of the groups A and B. To express
this property, we use the unary atomic functions fX

1 : Σ → N, for X ∈ {A,B},
such that fX

1 : (Y, i) �→ i if Y = X and is 0 otherwise. The semantics of fX
1 is the

expected credit score of group X scaled by the probability of seeing an individual
from group X. Then social fairness is given by the QuantBSE ϕ = fA

1
P (A) − fB

1
P (B) .

Example 6 (Quantitative group fairness). Consider a sequential hiring scenario
where at each step the salary and a sensitive feature (like gender) of a new recruit
are observed. We denote the pair of observations as (X, i), where X ∈ {A,B}
represents the group information based on the sensitive feature and i represents

302 T. A. Henzinger et al.

the salary. We can express the disparity in expected salary of the two groups
in a similar manner as in Example 5. Define the unary functions fX

1 : Σ → N,
for X ∈ {A,B}, such that fX

1 : (Y, i) �→ i if Y = X and is 0 otherwise. The
semantics of fX

1 is the expected salary of group X scaled by the probability of
seeing an individual from group X. Then the group fairness property is given by
the QuantBSE ϕ = fA

1
P (A) − fB

1
P (B) .

3.3 Problem Statement

Informally, our goal is to build monitors that will observe randomly generated
observed paths of increasing length from a given unknown POMC, and, after
each observation, will generate an updated estimate of how fair or biased the
system was until the current time. Since the monitor’s estimate is based on
statistics collected from a finite path, the output may be incorrect with some
probability. That is, the source of randomness is from the fact that the prefix is
a finite sample of the fixed but unknown POMC.

For a given δ ∈ (0, 1), and a given BSE ϕ, we define a problem instance as
the tuple (ϕ, δ).

Problem 1 (Monitoring QuantBSE-s). Suppose (ϕ, δ) is a problem
instance where ϕ is a QuantBSE. Design a monitor A, with output alphabet
{[l, u] | l, u ∈ R . l < u}, such that for every POMC M satisfying Assumption 1,
we have:

P−→
W∼M

(
ϕ(M) ∈ �A�(

−→
W)

)
≥ 1 − δ. (3)

The estimate [l, u] = �A�(−→w) is called the (1 − δ) · 100% confidence interval
for ϕ(M). The radius, given by ε = 0.5 · (u − l), is called the estimation error,
the quantity δ is called the failure probability, and the quantity 1 − δ is called
the confidence. Intuitively, the monitor outputs the estimated confidence interval
that contains the range of values within which the true semantic value of ϕ falls
with (1 − δ) · 100% probability. The estimate gets more precise as the error gets
smaller, and the confidence gets higher. We will prefer the monitor with the
maximum possible precision, i.e., having the least estimation error for a given δ.

Problem 2 (Monitoring QualBSE-s). Suppose (ϕ, δ) is a problem instance
where ϕ is a QualBSE. Design a monitor A, with output alphabet {true, false},
such that for every POMC M satisfying Assumption 1, we have:

P−→
W∼M

(
ψ(M) | �A�(

−→
W) = true

)
≥ 1 − δ, (4)

P−→
W∼M

(
¬ψ(M) | �A�(

−→
W) = false

)
≥ 1 − δ. (5)

Unlike Problem 1, the monitors addressing Problem 2 do not output an
interval but output a boolean verdict. Intuitively, the output of the monitor for
Problem 2 is either true or false, and it is required that the semantic value of
the property ψ is, respectively, true or false with (1 − δ) · 100% probability.

Monitoring Algorithmic Fairness Under Partial Observations 303

4 Construction of the Monitor

Our overall approach in this work is similar to the prior works [3,28,29]: We
first compute a point estimate of the given BSE from the finite observation
sequence of the POMC, and then compute an interval estimate through known
concentration inequalities. However, the same concentration inequalities as the
prior works cannot be applied, because they required two successive observed
events be independent, which is not true for POMCs. For instance, in Example 3,
if we start the sequence of tosses by first tossing coin A, then we know that the
subsequent tosses are going to be done using A only, thereby implying that the
outcomes of the future tosses will be statistically dependent on the initial random
process that chooses between the two coins at the first step.

We present a novel theory of monitors for BSE-s on POMCs satisfying
Assumption 1, using McDiarmid-style concentration inequalities for hidden
Markov chains. In Sect. 4.1 and 4.2, we first present, respectively, the point esti-
mator and the monitor for an individual atom. In Sect. 4.3, we build the overall
monitor by combining the interval estimates of the individual atoms through
interval arithmetic and union bound.

4.1 A Point Estimator for the Atoms

Consider a BSE atom f . We present a point estimator for f , which computes an
estimated value of f(M) from a finite observed path −→w ∈ Σt, of an arbitrary
length t, of the unknown POMC M. The point estimator f̂(·) is given as:

f̂(−→w) :=
1

t − n + 1

t−n+1∑

i=1

f(−→w i..i+n−1). (6)

In the following proposition, we establish the unbiasedness of the estimator
f̂(·), a desirable property that says that the expected value of the estimator’s
output will coincide with the true value of the property that is being estimated.

Proposition 1. Let M be a POMC satisfying Assumption 1, f : Σn → [a, b] be
a function for fixed n, a, and b, and

−→
W ∼ M be a random observed path of an

arbitrary length |−→W | = t > n. Then E(f̂(
−→
W)) = f(M).

The following corollary establishes the counterpart of Proposition 1 for the
fragment of BSE with probabilities of sequences.

Corollary 1. Let M be a POMC satisfying Assumption 1, Λ ⊂ Σ∗ be a set
of bounded length observation sequences with bound n, f : Σn → {0, 1} be the
indicator function of the set Λ, and

−→
W ∼ M be a random observed path of an

arbitrary length |−→W | > n. Then E(f̂(
−→
W)) = P (Λ).

304 T. A. Henzinger et al.

4.2 The Atomic Monitor

A monitor for each individual atom is called an atomic monitor, which serves as
the building block for the overall monitor. Each atomic monitor is constructed
by computing an interval estimate of the semantic value f(M) for the respective
atom f on the unknown POMC M. For computing the interval estimate, we use
the McDiarmid-style inequality (details are in the longer version [30]) to find a
bound on the width of the interval around the point estimate f̂(·).

Algorithm 1. Monitor (f,δ): Monitor for (f, δ) where f : Σn → [a, b] is an atomic
function of a BSE

1: function Init()
2: t ← 0 �current time
3: y ← 0 �current point

estimate
4: −→w ← ⊥ . . . ⊥

︸ ︷︷ ︸

n times

�a

dummy word of length n,
where ⊥ is the dummy
symbol

5: end function

1: function Next(σ)
2: t ← t + 1 �progress time
3: if t < n then �too short observation sequence
4: −→w t ← σ
5: return ⊥ �inconclusive
6: else
7: −→w 1..n−1 ← −→w 2..n �shift window
8: −→w n ← σ �add the new observation
9: x ← f(−→w) �latest evaluation of f

10: y ← (y ∗ (t − n) + x) /(t − n + 1) �running
av. impl. of Eq. 6

11: ε ←
√

− ln(δ/2) · t·min(t−n+1,n)·9·τmix

2(t−n+1)2
� PAC

bound, see [30]
12: return [y − ε, y + ε] �confidence interval
13: end if
14: end function

McDiarmid’s inequality is a concentration inequality bounding the distance
between the sample value and the expected value of a function satisfying the
bounded difference property when evaluated on independent random variables.
There are several works extending this result to functions evaluated over a
sequence of dependent random variables, including Markov chains [20,35,44].
In order to use McDiarmid’s inequality, we will need the following standard [37]
additional assumption on the underlying POMC.

Assumption 2. We assume that the POMCs are aperiodic, and that the mixing
time of the POMC is bounded by a known constant τmix.

We summarize the algorithmic computation of the atomic monitor in Algo-
rithm 1, and establish its correctness in the following theorem.

Theorem 1 (Solution of Problem 1 for atomic formulas). Let (f, δ) be
a problem instance where f : Σn → [a, b] is an atomic formula for some fixed n,
a, and b. Moreover, suppose the given unknown POMC satisfies Assumption 2.
Then Algorithm1 implements a monitor solving Problem 1 for the given prob-
lem instance. The monitor requires O(n)-space, and, after arrival of each new
observation, computes the updated output in O(n)-time.

Monitoring Algorithmic Fairness Under Partial Observations 305

The confidence intervals generated by McDiarmid-style inequalities for
Markov chains tighten in relation to the mixing time of the Markov chain. This
means the slower a POMC mixes, the longer the monitor needs to watch to be
able to obtain an output interval of the same quality.

4.3 The Complete Monitor

The final monitors for QuantBSE-s and QualBSE-s are presented in Algorithm 3
and Algorithm 2, respectively, where we recursively combine the interval esti-
mates of the constituent sub-expressions using interval arithmetic and the union
bound. Similar idea was used by Albarghouthi et al. [3]. The correctness and
computational complexities of the monitors are formally stated below.

Theorem 2 (Solution of Problem 1). Let (ϕ1 � ϕ2, δ1 + δ2) be a problem
instance where ϕ1, ϕ2 are a pair of QuantBSE-s and � ∈ {+, ·,÷}. Moreover,
suppose the given unknown POMC satisfies Assumption 2. Then Algorithm 3
implements the monitor A solving Problem 1 for the given problem instance. If
the total number of atoms in ϕ1 � ϕ2 is k and if the arity of the largest atom
in ϕ1 � ϕ2 is n, then A requires O(k + n)-space, and, after arrival of each new
observation, computes the updated output in O(k · n)-time.

Theorem 3 (Solution of Problem 2). Let (ψ, δ) be a problem instance where
ψ is a QualBSE. Moreover, suppose the given unknown POMC satisfies Assump-
tion 2. Then Algorithm 2 implements the monitor A solving Problem 2 for the
given problem instance. If the total number of atoms in ψ is k and if the arity
of the largest atom in ψ is n, then A requires O(k + n)-space, and, after arrival
of each new observation, computes the updated output in O(k · n)-time.

Algorithm 2. Monitor (ψ,δ)

1: function Init()
2: if ψ ≡ ϕ ≥ 0 then
3: A ← Monitor (ϕ,δ)

4: A.Init()
5: else if ψ ≡ ¬ψ1 then
6: A ← Monitor (ψ1,δ)

7: A.Init()
8: else if ψ ≡ ψ1 ∧ ψ2 then
9: Choose δ1, δ2 s.t. δ = δ1 + δ2

10: A1 ← Monitor (ψ1,δ1)

11: A2 ← Monitor (ψ2,δ2)

12: A1.Init()
13: A2.Init()
14: end if
15: end function

1: function Next(σ)
2: if ψ ≡ ϕ ≥ 0 then
3: [l, u] ← A.Next(σ)
4: if l ≥ 0 then return true
5: else if u ≤ 0 then return false
6: else return ⊥ �don’t know, we

assume ¬⊥ = ⊥ ∧ true = ⊥ ∧ false = ⊥.
7: end if
8: else if ψ ≡ ¬ψ1 then
9: return ¬ (A.Next(σ))

10: else if ψ ≡ ψ1 ∧ ψ2 then
11: return A1.Next(σ) ∧ A2.Next(σ)
12: end if
13: end function

306 T. A. Henzinger et al.

5 Experiments

We implemented our monitoring algorithm in Python, and applied it to the real-
world lending example [14] described in Example 1 and to an academic example
called hypercube. We ran the experiments on a MacBook Pro (2023) with Apple
M2 Pro processor and 16 GB of RAM.
The Lending Example. The underlying POMC model (unknown to the mon-
itor) of the system is approximately as shown in Fig. 1 with a few differences.
Firstly, we added a low-probability self-loop on the state S to ensure aperiodicity.
Secondly, we considered only two credit score levels.
Thirdly, there are more hidden states
(in total 171 states) in the system, like
the action of the individual (repay-
ing the loan or defaulting), etc. We
monitor demographic parity, defined
as ϕDP := P (Y | A) − P (Y | B), and
an absolute version of it, defined as
ϕTDP := P (AY) − P (BY). While ϕDP

represents the difference in probabili-
ties of giving loans to individuals from
the two groups (A and B), ϕTDP rep-
resents the difference in joint probabil-
ities of selecting and then giving loans
to individuals from the two groups.

Algorithm 3. Monitor (ϕ1	ϕ2,δ1+δ2)

1: function Init()
2: A1 ← Monitor (ϕ1,δ1)

3: A2 ← Monitor (ϕ2,δ2)

4: A1.Init()
5: A2.Init()
6: end function

1: function Next(σ)
2: [l1, u1] ← A1.Next(σ)
3: [l2, u2] ← A2.Next(σ)
4: return [l1, u1] � [l2, u2] �interval

arithmetic
5: end function

None of the two properties can be expressed using the previous formalism [3,29],
because ϕDP requires conditioning on observations, and ϕTDP requires expressing
absolute probabilities, which were not considered before.

After receiving new observations, the monitors for ϕDP and ϕTDP took, respec-
tively, 47µs and 18µs on an average (overall 43µs–0.2 s and 12µs–3.2 s) to
update their outputs, showing that our monitors are fast in practice.

Figure 2 shows the outputs of the monitors for δ = 0.05 (i.e., 95% confidence
interval). For the POMC of the lending example, we used a pessimistic bound
τmix = 170589.78 steps on the mixing time (computation as in [33]), with which
the estimation error ε shrinks rather slowly in both cases. For example, for ϕTDP,
in order to get from the trivial value ε = 1 (the confidence interval spans the
entire range of possible values) down to ε = 0.1, the monitor requires about 4·109

observations. For ϕDP, the monitor requires even more number of observations
(∼1012) to reach the same error level. This is because ϕDP involves conditional
probabilities requiring divisions, which amplify the error when composed using
interval arithmetics. We conclude that a direct division-free estimation of the
conditional probabilities, together with tighter bounds on the mixing time will
significantly improve the long-run accuracy of the monitor.

The Hypercube Example. We considered a second example [37, pp. 63],
whose purpose is to demonstrate that the tightness of our monitors’ outputs is
sensitive to the choice of the bound on the mixing time. The POMC models

Monitoring Algorithmic Fairness Under Partial Observations 307

Fig. 2. Monitoring ϕDP (first, third) and ϕTDP (second, fourth) on the lending (first, sec-
ond) and the hypercube (third, fourth) examples. The first and second plots show the
computed 95%-confidence interval (solid) and the true value of the property (dashed)
for the lending POMC. In reality, the monitor was run for about 7×108 steps until the
point estimate nearly converged, though the confidence interval was trivial at this point
(the whole interval [−1, 1]), owing to the pessimistic bound τmix. In the figure, we have
plotted a projection of how the confidence interval would taper over time, had we kept
the monitor running. The third and fourth plots summarize the monitors’ outputs over
100 executions of the hypercube POMC. The solid lines are the max and min values
of the point estimates, the dashed lines are the boundaries of all the 95%-confidence
intervals (among the 100 executions) with the conservative bound τmix (green) and the
sharper bound τtrue mix (orange) on the mixing time.

a random walk along the edges of a hypercube {0, 1}n, where each vertex of
the hypercube represents a state in the POMC and states starting with 0 and
1 are mapped to the observations a and b, respectively. We fix n to 3 in our
experiments. At every step, the current vertex is chosen with probability 1/2,
and every neighbor is chosen with probability 1/2n. A tight bound on the mixing
time of this POMC is given by τtruemix = n(log n + log 4) steps [37, pp. 63]. We
consider the properties ψDP := P (a | a) − P (b | b) and ψTDP := P (aa) − P (bb).

We empirically evaluated the quality of the confidence intervals computed by
our monitor (for ψDP and ψTDP) over a set of 100 sample runs, and summarize
the findings in the third and fourth plots of Fig. 2. We used τmix = 204.94 steps
and τtruemix = 7.45 steps, and we can observe that in both cases, the output
with τtruemix is significantly tighter than with τmix. Compared to the lending
example, we obtain reasonably tight estimate with significantly smaller number
of observations, which is due to the smaller bounds on the mixing time.

6 Conclusion

We generalized runtime verification of algorithmic fairness to systems modeled
using POMCs and a specification language (BSE) with arithmetic expressions
over numerical functions assigning values to observation sequences. Under the
assumptions of stationary initial distribution, aperiodicity, and the knowledge
of a bound on the mixing time, we presented a runtime monitor, which mon-
itors a long sequence of observations generated by the POMC, and after each
observation outputs an updated PAC estimate of the value of the given BSE.

308 T. A. Henzinger et al.

While the new stationarity assumption is important for defining the seman-
tics of the BSE expressions, the aperiodicity and the knowledge of the bound on
the mixing time allow us to use the known McDiarmid’s inequality for computing
the PAC estimate. In future, we intend to eliminate the latter two assumptions,
enabling us to use our approach for a broader class of systems. Additionally,
eliminating the time-homogeneity assumption would also enable us to monitor
algorithmic fairness of systems with time-varying probability distributions [28].

Acknowledgments. This work is supported by the European Research Council under
Grant No.: ERC-2020-AdG 101020093.

References

1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. (TOMACS) 28(1), 1–39 (2018)

2. Albarghouthi, A., D’Antoni, L., Drews, S., Nori, A.V.: FairSquare: probabilistic
verification of program fairness. Proc. ACM Program. Lang. 1(OOPSLA), 1–30
(2017)

3. Albarghouthi, A., Vinitsky, S.: Fairness-aware programming. In: Proceedings of
the Conference on Fairness, Accountability, and Transparency, pp. 211–219 (2019)

4. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms
for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541
(2003). https://doi.org/10.1109/TSE.2003.1205180

5. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

6. Balunovic, M., Ruoss, A., Vechev, M.: Fair normalizing flows. In: International
Conference on Learning Representations (2021)

7. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a
survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lec-
tures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75632-5 5

8. Bartocci, E., Falcone, Y.: Lectures on Runtime Verification. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-75632-5

9. Bartolo Burlò, C., Francalanza, A., Scalas, A., Trubiani, C., Tuosto, E.: Towards
probabilistic session-type monitoring. In: Damiani, F., Dardha, O. (eds.) COOR-
DINATION 2021. LNCS, vol. 12717, pp. 106–120. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-78142-2 7

10. Bellamy, R.K., et al.: AI fairness 360: an extensible toolkit for detecting and miti-
gating algorithmic bias. IBM J. Res. Dev. 63(4/5), 4–1 (2019)

11. Bird, S., et al.: Fairlearn: a toolkit for assessing and improving fairness in AI.
Microsoft, Technical report. MSR-TR-2020-32 (2020)

12. Chouldechova, A.: Fair prediction with disparate impact: a study of bias in recidi-
vism prediction instruments. Big Data 5(2), 153–163 (2017)

13. Clarke, E.M., Zuliani, P.: Statistical model checking for cyber-physical systems. In:
Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 1–12. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24372-1 1

14. D’Amour, A., Srinivasan, H., Atwood, J., Baljekar, P., Sculley, D., Halpern, Y.:
Fairness is not static: deeper understanding of long term fairness via simulation
studies. In: Proceedings of the 2020 Conference on Fairness, Accountability, and
Transparency, FAT* 2020, pp. 525–534 (2020)

https://doi.org/10.1109/TSE.2003.1205180
https://doi.org/10.1007/978-3-319-75632-5_5
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/978-3-030-78142-2_7
https://doi.org/10.1007/978-3-030-78142-2_7
https://doi.org/10.1007/978-3-642-24372-1_1

Monitoring Algorithmic Fairness Under Partial Observations 309

15. David, A., Du, D., Guldstrand Larsen, K., Legay, A., Mikučionis, M.: Optimizing
control strategy using statistical model checking. In: Brat, G., Rungta, N., Venet,
A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 352–367. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38088-4 24

16. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

17. Dressel, J., Farid, H.: The accuracy, fairness, and limits of predicting recidivism.
Sci. Adv. 4(1), eaao5580 (2018)

18. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through aware-
ness. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Con-
ference, pp. 214–226 (2012)

19. Ensign, D., Friedler, S.A., Neville, S., Scheidegger, C., Venkatasubramanian,
S.: Runaway feedback loops in predictive policing. In: Conference on Fairness,
Accountability and Transparency, pp. 160–171. PMLR (2018)

20. Esposito, A.R., Mondelli, M.: Concentration without independence via information
measures. arXiv preprint arXiv:2303.07245 (2023)

21. Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian,
S.: Certifying and removing disparate impact. In: proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
259–268 (2015)

22. Ferrere, T., Henzinger, T.A., Kragl, B.: Monitoring event frequencies. In: 28th
EACSL Annual Conference on Computer Science Logic, vol. 152 (2020)

23. Ferrère, T., Henzinger, T.A., Saraç, N.E.: A theory of register monitors. In: Pro-
ceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, pp. 394–403 (2018)

24. Finkbeiner, B., Sankaranarayanan, S., Sipma, H.: Collecting statistics over runtime
executions. Electron. Notes Theor. Comput. Sci. 70(4), 36–54 (2002)

25. Ghosh, B., Basu, D., Meel, K.S.: Justicia: a stochastic sat approach to formally
verify fairness. arXiv preprint arXiv:2009.06516 (2020)

26. Ghosh, B., Basu, D., Meel, K.S.: Algorithmic fairness verification with graphical
models. arXiv preprint arXiv:2109.09447 (2021)

27. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning.
In: Advances in Neural Information Processing Systems, vol. 29 (2016)

28. Henzinger, T., Karimi, M., Kueffner, K., Mallik, K.: Runtime monitoring of
dynamic fairness properties. In: Proceedings of the 2023 ACM Conference on Fair-
ness, Accountability, and Transparency, pp. 604–614 (2023)

29. Henzinger, T.A., Karimi, M., Kueffner, K., Mallik, K.: Monitoring algorithmic
fairness. In: Enea, C., Lal, A. (eds.) Computer Aided Verification, pp. 358–382.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-37703-7 17

30. Henzinger, T.A., Kueffner, K., Mallik, K.: Monitoring algorithmic fairness under
partial observations. arXiv preprint arXiv:2308.00341 (2023)

31. Henzinger, T.A., Saraç, N.E.: Monitorability under assumptions. In: Deshmukh, J.,
Ničković, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 3–18. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-60508-7 1

32. Henzinger, T.A., Saraç, N.E.: Quantitative and approximate monitoring. In: 2021
36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp.
1–14. IEEE (2021)

33. Jerison, D.: General mixing time bounds for finite Markov chains via the absolute
spectral gap. arXiv preprint arXiv:1310.8021 (2013)

https://doi.org/10.1007/978-3-642-38088-4_24
https://doi.org/10.1007/978-3-642-15297-9_9
http://arxiv.org/abs/2303.07245
http://arxiv.org/abs/2009.06516
http://arxiv.org/abs/2109.09447
https://doi.org/10.1007/978-3-031-37703-7_17
http://arxiv.org/abs/2308.00341
https://doi.org/10.1007/978-3-030-60508-7_1
http://arxiv.org/abs/1310.8021

310 T. A. Henzinger et al.

34. John, P.G., Vijaykeerthy, D., Saha, D.: Verifying individual fairness in machine
learning models. In: Conference on Uncertainty in Artificial Intelligence, pp. 749–
758. PMLR (2020)

35. Kontorovich, A., Raginsky, M.: Concentration of measure without independence: a
unified approach via the martingale method. In: Carlen, E., Madiman, M., Werner,
E.M. (eds.) Convexity and Concentration. TIVMA, vol. 161, pp. 183–210. Springer,
New York (2017). https://doi.org/10.1007/978-1-4939-7005-6 6

36. Lahoti, P., Gummadi, K.P., Weikum, G.: iFair: learning individually fair data rep-
resentations for algorithmic decision making. In: 2019 IEEE 35th International
Conference on Data Engineering (ICDE), pp. 1334–1345. IEEE (2019)

37. Levin, D.A., Peres, Y.: Markov Chains and Mixing Times, vol. 107. American
Mathematical Society (2017)

38. Liu, L.T., Dean, S., Rolf, E., Simchowitz, M., Hardt, M.: Delayed impact of fair
machine learning. In: International Conference on Machine Learning, pp. 3150–
3158. PMLR (2018)

39. Lum, K., Isaac, W.: To predict and serve? Significance 13(5), 14–19 (2016)
40. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:

Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

41. Meyer, A., Albarghouthi, A., D’Antoni, L.: Certifying robustness to programmable
data bias in decision trees. In: Advances in Neural Information Processing Systems,
vol. 34, 26276–26288 (2021)

42. Obermeyer, Z., Powers, B., Vogeli, C., Mullainathan, S.: Dissecting racial bias in an
algorithm used to manage the health of populations. Science 366(6464), 447–453
(2019)

43. Otop, J., Henzinger, T.A., Chatterjee, K.: Quantitative automata under proba-
bilistic semantics. Logical Methods Comput. Sci. 15 (2019)

44. Paulin, D.: Concentration inequalities for Markov chains by Marton couplings and
spectral methods (2015)

45. Ruchkin, I., Sokolsky, O., Weimer, J., Hedaoo, T., Lee, I.: Compositional prob-
abilistic analysis of temporal properties over stochastic detectors. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 39(11), 3288–3299 (2020)

46. Scheuerman, M.K., Paul, J.M., Brubaker, J.R.: How computers see gender: an
evaluation of gender classification in commercial facial analysis services. Proc. ACM
Hum.-Comput. Interact. 3(CSCW), 1–33 (2019)

47. Sharifi-Malvajerdi, S., Kearns, M., Roth, A.: Average individual fairness: algo-
rithms, generalization and experiments. In: Advances in Neural Information Pro-
cessing Systems, vol. 32 (2019)

48. Stoller, S.D., et al.: Runtime verification with state estimation. In: Khurshid, S.,
Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 193–207. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29860-8 15

49. Sun, B., Sun, J., Dai, T., Zhang, L.: Probabilistic verification of neural networks
against group fairness. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021.
LNCS, vol. 13047, pp. 83–102. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-90870-6 5

50. Waudby-Smith, I., Arbour, D., Sinha, R., Kennedy, E.H., Ramdas, A.: Time-
uniform central limit theory, asymptotic confidence sequences, and anytime-valid
causal inference. arXiv preprint arXiv:2103.06476 (2021)

https://doi.org/10.1007/978-1-4939-7005-6_6
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-642-29860-8_15
https://doi.org/10.1007/978-3-030-90870-6_5
https://doi.org/10.1007/978-3-030-90870-6_5
http://arxiv.org/abs/2103.06476

Monitoring Algorithmic Fairness Under Partial Observations 311

51. Wexler, J., Pushkarna, M., Bolukbasi, T., Wattenberg, M., Viégas, F., Wilson, J.:
The what-if tool: interactive probing of machine learning models. IEEE Trans. Vis.
Comput. Graph. 26(1), 56–65 (2019)

52. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45657-0 17

53. Zemel, R., Wu, Y., Swersky, K., Pitassi, T., Dwork, C.: Learning fair represen-
tations. In: International Conference on Machine Learning, pp. 325–333. PMLR
(2013)

https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0_17

Short and Tool Papers

AMT: A Runtime Verification Tool
of Video Streams

Valentin Besnard1(B) , Mathieu Huet1, Stoyan Bivolarov2,
Nourredine Saadi1, and Guillaume Cornard2

1 ATEME, Vélizy, France
{v.besnard,m.huet,n.saadi}@ateme.com

2 ATEME, Rennes, France
{s.bivolarov,g.cornard}@ateme.com

Abstract. In the domain of video delivery, industrial software systems
that produce multimedia streams are increasingly more complex. To
ensure correctness of their behaviors, there is a strong need for verifi-
cation and validation activities. In particular, formal verification seems
a promising approach for that. However, applying formal verification on
industrial legacy systems is challenging. Their intrinsic complexity, their
interactions, and the complexity of video standards that are constantly
evolving make the task difficult. To face these issues, this paper presents
the ATEME Monitoring Tool (AMT), a runtime verification tool used to
monitor formal properties on output streams of video delivery systems.
This tool can be used all along the product life cycle to make syntac-
tic and semantic verification when analyzing bugs (on live streams or
on captures), developing new features, and doing non-regression checks.
Using the tool, we have successfully found and/or reproduce real issues
violating requirements of systems delivering over-the-top (OTT) streams.

Keywords: Runtime Verification · Monitoring · Linear Temporal
Logic · Video Streaming · Industrial Application

1 Introduction

In video streaming industry, software solutions are made of multiple products
chained together to distribute multimedia streams from television studios to
end-user devices. Each product is a software system with millions of lines of
code that need to evolve according to new standards and client needs. This
increasing complexity makes these software equipment sensible to design issues
and bugs. Therefore, they require verification and validation (V&V) to ensure the
correctness of their output streams. In particular, we are interested in verifying
over-the-top (OTT) streams such as HLS [25] and MPEG-DASH [3] used by
on-demand video platforms and TV channels over internet.

All along the product life cycle, different analysis activities need to be applied:
verifying live streams when developing new features, analyzing issues occurring in

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 315–326, 2023.
https://doi.org/10.1007/978-3-031-44267-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_16&domain=pdf
http://orcid.org/0000-0001-6744-4149
https://doi.org/10.1007/978-3-031-44267-4_16

316 V. Besnard et al.

client ecosystems, and conducting non-regression checks. For all these activities,
runtime verification seems a promising approach to get more confidence in the
correctness of these software systems.

However, at least three main issues remain. (1) Application of formal verifi-
cation techniques to industrial software products is a challenging task. Designing
a formal model of the behavior of each product, that can be used by formal ver-
ification tools (e.g., model-checkers), is too complex and time-consuming. (2) In
the video delivery domain, V&V tools quickly become outdated as new versions
of norms and protocols are constantly released. Adapting to these new standards
with few efforts is the second challenge. (3) The last one is that usually different
tools are used to verify video streams (live or a posteriori on captures) with new
features or bugs and carry out non-regression checks. Using the same tool to
perform all these analysis activities would be helpful to mutualize V&V efforts.

To face these issues, we design the ATEME Monitoring Tool (AMT), a run-
time verification tool that can be used to express and monitor formal properties
on video streams. This work is (at least partially) an industrial application of
the research work done in [9,10] by one of the author. To perform the verifica-
tion task, AMT extracts metadata of video streams using parsers. A modular
verification core, agnostic of the business domain, is then used to define the mon-
itoring status of each property based on these metadata. The tool is based on
the Semantic Transition Relation (STR) interface defined in [9], a generic inter-
face allowing to link the verification core to the business knowledge provided
by the parser (through the domain-specific metadata that have been parsed).
To perform runtime verification, AMT neither uses a formal model of the sys-
tem nor code instrumentation. Our approach relies on monitoring (input(s) and)
output(s) of the product. Verifying the correctness of its output stream bolsters
confidence in the product behavior itself.

Based on this approach, a working prototype of the tool has been imple-
mented in Python. Due to its novelty, its access is currently limited to engineers
of the ATEME company. It can be used to express monitorable properties as
Linear Temporal Logic (LTL) formulas that are formally verified at runtime on
output streams (e.g., OTT streams) of products. We applied AMT to different
case studies by verifying properties corresponding to real requirements checked
by Quality Assurance (QA) engineers. We show in this paper that we successfully
detect and/or reproduce issues found in systems used by clients in production.

The remainder of this paper is organized as follows. Section 2 gives an
overview of the approach. In Sect. 3, we present the language used for prop-
erty specification while in Sect. 4 we detail the software architecture of AMT. In
Sect. 5, we describe some experiments and their corresponding results. Section 6
reviews the state of the art and Sect. 7 finally concludes the paper.

2 Approach Overview

This section presents a theoretical overview of the approach as well as an
overview of the tool architecture and a motivating example used to illustrate
this paper.

AMT: A Runtime Verification Tool of Video Streams 317

Theoretical Overview: Similarly to model-checking, the approach used by
AMT aims at proving that a system satisfies its specifications. Model-checkers
perform an exhaustive state-space exploration of a formal model (defined as an
abstraction of the system) in search of a counterexample that violates a prop-
erty. While the formal model is a model of the system defined in intension, the
explored state-space corresponds to a model of the system defined in extension.

In the domain of video delivery, the source code of software products is
usually too complex such that it would require too much effort to define a formal
model (i.e., the model in intension) to apply exhaustive verification techniques
on it. Instead, AMT only relies on the model defined in extension by observing
inputs and outputs of the system and their changes over time. With this “black-
box approach”, AMT has directly a point of view over the system behavior
by relying on the observable part of the system state-space. Using this partial
model in extension, AMT can verify properties at runtime but in counterpart,
no exhaustive exploration can be performed.

Architecture Overview: Figure 1 gives an overview of the AMT architecture
and of the setup in which it takes place. The Product (to be verified) processes
one or multiple InputStreams to produce an OutputStream. In this project, we
mainly target OTT media content using the HLS [25] or the MPEG-DASH [3]
protocol. To perform formal verification with the AMT, some monitorable Prop-
erties first need to be specified based on the content of the OutputStream and all
the settings, called ServiceConfiguration, used to configure a service (i.e., a TV
channel) on the Product. To formally verify these properties at runtime, AMT
is based on two main components AMTParsing and AMTCore. The former is
in charge of parsing the multimedia stream and of storing the parsed meta-
data in a database, called StreamStorage. The latter is used to perform runtime
verification by checking if the specified Properties hold on the given stream.

Fig. 1. Architecture overview of the AMT.

318 V. Besnard et al.

Motivating Example: To illustrate our approach, a bug named “Empty period
in MPEG-DASH” will be used as a motivating example for the rest of this paper.
This bug has been found in a MPEG-DASH manifest, also called MPD (for
Manifest Presentation Description), produced by an OTT packager. It results in
a period without any video segments. As shown in Fig. 2, the period does not
contain a SegmentTimeline inside the SegmentTemplate. A SegmentTimeline is
an XML attribute of the MPD used to list media segments (i.e., files containing
the media content) when explicit addressing is used. This bug had remained
undetected until now because it occurred only when a request was made within
a span of a few milliseconds. For this motivating example, the requirement (R)
that has to be checked is the following: “All periods of an MPD must contain a
non-empty segment timeline for all streams”.

Fig. 2. Excerpt from MPEG-DASH manifest with empty period bug.

3 Property Specification Using AML

To make runtime verification with AMT, properties need to be specified in
ATEME Monitoring Language (AML). This is an home-made specification lan-
guage that enables to define formal properties based on atomic propositions
(also called atoms). These atoms are boolean expressions written in Python that
depend on stream metadata and on the content of the service configuration. To
access this data, atom predicates can rely on two keywords: current and config.
current is the current state of the stream as given by the parser. Typically, in
the case of an OTT parser, it mainly contains the content of the current manifest
(in MPEG-DASH) or playlist (in HLS) in the form of an abstract syntax tree.
config is the service configuration (defined in JSON or TOML) running on the
product for the stream currently being parsed.

Based on atomic propositions, AML gives the possibility to write formal
properties as LTL formulas. In LTL formulas, atoms are linked together using
first order logic operators (e.g., and, or, not) and temporal modalities of LTL
(e.g., [] means globally). These LTL formulas are then translated into Büchi

AMT: A Runtime Verification Tool of Video Streams 319

automata with SPOT [18] to be used by the AMT. To be formally verified at
runtime, properties defined in AML must belong to the class of monitorable
properties, which includes all safety properties. To be monitorable, properties
must satisfy two constraints: completeness and determinism. AMT checks these
constraints at runtime by ensuring that it is always possible to execute one and
only one step on the property automaton at each time.

Fig. 3. Büchi automaton for empty period detection.

For our motivating example “Empty period in MPEG-DASH”, three atoms
are needed. The hasManifest atom is used to know if the manifest has been
correctly fetched and parsed, noPeriod relays whether the parser found no peri-
ods in the manifest, and emptyPeriod checks that all periods have a non-empty
segment timeline. These atoms are defined in AML as follows:

atom hasManifest = "current.manifest is not None"

atom noPeriod = "len(current.manifest.periods) == 0"

atom emptyPeriod = "for period in current.manifest.periods:

for as in period.adaptation_sets:

for st in as.segment_templates:

if not st.segment_timelines or

not st.segment_timelines [0].Ss:

return True

return False"

Based on these atoms, we can now express in AML the property correspond-
ing to the requirement R of the motivating example:

property P1 = [] (hasManifest && !noPeriod && !emptyPeriod)

Figure 3 gives an illustration of this property as a Büchi automaton. The
automaton stays in the Running state if no empty period have been encountered
yet and goes into the Error state when either no manifest, no period, or an empty
period is found. This last state is an acceptance state of the Büchi automaton,
meaning that the property is violated when this state is reached.

320 V. Besnard et al.

4 Software Architecture

To perform the verification of properties written in AML, the software archi-
tecture of the AMT is based on two components: AMTParsing and AMTCore.
Both components rely on the Semantic Transition Relation (STR) interface to
control the execution of the property automaton and/or the execution of the
multimedia stream, which can also be seen as an automaton (e.g., one state for
each frame). The STR interface has been defined in [9,10]. As a reminder, the
STR interface has three functions: initial that gets the initial state of the
automaton, actions that gets the available execution steps from a given state,
and execute that executes a step from a given state and returns the target state.
With these three functions, the STR interface gives a semantic point of view on
the behavior of the product through its output stream.

Fig. 4. Architecture of AMTParsing.

Figure 4 illustrates the first component of the architecture called AMT-
Parsing. It is responsible for parsing the streams and forwarding metadata to
the StreamStorage database. Currently, four parsers have been integrated into
AMT. For OTT, HLSParser based on https://pypi.org/project/m3u8/ parses
HLS playlists while DASHParser based on https://pypi.org/project/mpegdash/
parses Dynamic Adaptive Streaming over HTTP (MPEG-DASH) manifests.
Two parsers are also available for transport streams (TS): an home-made parser
called TSParser and FFMPEGParser based on FFMPEG [2]. When a stream
has been parsed, metadata of each parser configuration are sent to the Collector
via the STR interface and stored into the StreamStorage database.

The second component of the architecture is AMTCore illustrated on Fig. 5.
The ParserProxy fetches metadata in the StreamStorage database and exposes
it to its STR interface. Meanwhile, LTL2Automata transforms LTL formu-
las into Büchi automata using SPOT [18]. Based on STRs of ParserProxy
and LTL2Automata, the SynchronousComposition synchronously composes the
property automaton with the stream automaton. In other words, the property
automaton observe the execution of the stream automaton and will make one

https://pypi.org/project/m3u8/
https://pypi.org/project/mpegdash/

AMT: A Runtime Verification Tool of Video Streams 321

Fig. 5. Architecture of AMTCore for runtime verification.

step each time the stream automaton makes one step (for more details see [9,10]).
For instance, the stream automaton makes one step each time a new playlist/-
manifest is available for OTT parsers or each time a new video frame is available
for FFMPEGParser. The result of the SynchronousComposition is forwarded to
the AcceptanceAssertion component that outputs the monitoring status of each
property. Finally, the RuntimeExecutionController controls the whole execution
of the AMTCore. It also pushes the explored state-space into the StateSpaceStor-
age database in case a later offline analysis would be needed. For each step, AMT
pushes in this database its whole execution state (i.e., all the stream metadata
and the current state of Büchi automata) in JSON format.

With AMT, it is also possible to perform analysis on captures of client
streams. To make the capture we have developed a tool called OTTDownloader
that fetches and saves every media segment that composes the stream as well as
a copy of the playlist/manifest at regular time intervals. AMT can then request
files from the captured stream as if it were a live source using an HTTP origin
server. This allows AMT to perform analysis on live sources or on captures.

5 Experiments and Results

In this section, we describe some of the most representative experiments of apply-
ing the AMT on different software products of the video streaming industry.

322 V. Besnard et al.

Empty Period Detection in MPEG-DASH Manifests: As presented in
Sect. 2, the “Empty period bug in MPEG-DASH” is a bug in an OTT pack-
ager detected by a client that results in malformed MPEG-DASH manifests. To
reproduce the issue, we setup the packager with the same input stream and a sim-
ilar service configuration. Using the AMT, we monitor the output stream of the
packager by checking the MPEG-DASH manifest structure with the property P1
defined in Sect. 3. After approximately one hour and thousands of requests, we
finally detect the bug. To streamline the process, we employed OTTDownloader
to capture the faulty stream and save the necessary files for further analysis.

After further experiments to fine-tune the property (and reach the version
presented in this paper), we integrate this verification case into our V&V frame-
work as a non-regression check. In parallel, the R&D team has implemented a
fix, which has been validated as successful when the non-regression check using
AMT no longer detects the bug.

XSD Conformance in MPEG-DASH Manifests: Another bug detected
by clients also concerns the structure of MPEG-DASH manifests produced by
an OTT packager. The structure of faulty manifests has been found to be in
violation of the XML Schema Definition (XSD) for MPEG-DASH that dictates
the structure and order of attributes in MPDs. We used AMT to detect the
issue and validate the deployed fix as non-regression check. The property used
for runtime verification is the following: property P2 = []"validate xml()".
In this property, "validate xml()" is an inlined atom that calls the helper
function validate xml(). This helper performs the validation of the manifest
against the XSD using the Python library in [14]. For further investigations,
we changed the input stream of the packager and its service configuration to
increase the coverage and we found that the “UTCTiming” attribute was out of
sequence.

Language Issues in HLS Playlists: Another experiment made with the
AMT has been to check the correctness of HLS playlists delivered by an
OTT packager. In [5], Apple defines a list of constraints to improve inter-
operability and compatibility of HLS streams with Apple devices. From this
list, we select some constraints including the 8.10 requirement defined as “The
LANGUAGE attribute MUST be included in every EXT-X-MEDIA tag that
doesn’t have TYPE=VIDEO”. Based on this requirement, we write the fol-
lowing LTL formula based on two atoms hasPlaylist which checks we get an
HLS playlist and languageIncluded which checks the “LANGUAGE” attribute
in present for each non-video stream: property P3 = [] (hasPlaylist ->
languageIncluded). We verify this property at runtime with different set of
parameters for the packager and we finally found a case where the “LAN-
GUAGE” attribute was missing for an audio stream.

Feedbacks: Regarding performance, even if AMT is written in Python, its
execution speed is mainly limited by the performance of the parser and by the

AMT: A Runtime Verification Tool of Video Streams 323

physical time flow. Contrary to a model-checker that explores a state-space as
fast as possible, AMT parses OTT manifest/playlist or video streams at runtime
and is thus highly dependent on how these elements changes over the time (e.g.,
parsing an OTT manifest/playlist every 6 s is usually sufficient).

Through these experiments, we show that AMT can be applied on real use-
cases to verify OTT streams. This demonstrates the effectiveness of AMT to help
engineers analyzing software issues. However, we also notice some limitations of
our approach that we provide here as additional results to these experiments.
(i) Expression of atomic propositions and properties is challenging for users
as it requires thorough understanding of the metadata returned by the parser
and of the temporal modalities of LTL. (ii) AMT fetches the manifest/playlist
of an OTT stream at regular time intervals and may miss faulty states if this
manifest/playlist has changed more than once during this interval of time.

To mitigate these drawbacks, we improve the AMT with some new func-
tionalities. For (i), we add helper functions in AML that can be used in atomic
propositions to simplify their expressions. For (ii), we introduce a new parame-
ter such that AMT can fetch OTT manifests/playlists as fast as possible (rather
than at regular time intervals). This provides a better coverage of the changes
over the OTT manifest/playlist.

6 Related Work

The work presented in this paper relies on runtime verification to check the
correctness of software products by analyzing their output streams. Multiple
other works provide facilities to apply V&V techniques to multimedia streams.

In the OTT industry, some validators have been developed to check the
correctness of OTT streams such as the conformance tool of Dashif [17] for
MPEG-DASH or the Media Stream Validator [6] for HLS. In the business domain
of video delivery, engineers are also using tools like FFMPEG [2], TSDuck [4], or
DVB Inspector [1] to parse, monitor, and display the content of MPEG transport
streams. In comparison to these tools, AMT has a verification core agnostic of
the business domain. Therefore, its usage is not restricted to a specific set of
protocols or video standards.

Regarding formal verification, another interesting technique is model-
checking. This technique has been applied in different studies for instance to
check peer-to-peer streaming protocols with SPIN [26] and Simulink Design Ver-
ifier [23], and verify a lip-synchronization protocol [11] as well as other media
constraints (e.g., latency) [12] with Uppaal. More recently, the work in [8] shows
how to verify properties on processing pipelines, an implementation technique
widely used in video transcoders. In comparison to AMT, all these works require
a behavioral model of the system (i.e., a model defined in intension) to perform
verification. In lack of such a model for industrial legacy systems, AMT relies on
a black box approach which makes it applicable on these systems. Its efficiency
is however limited to the failure coverage provided by monitorable properties
contrary to model-checking which is exhaustive. Moreover, AMT has some sim-
ilarities with model-checkers like the modularity of its verification core and the

324 V. Besnard et al.

use of the STR interface, which are inspired from model-checkers including OBP2
[13], SPOT [18], and LTSmin [21].

More in relation with monitoring, different works provide the possibility to
check some requirements at runtime. Similarly to our work, the technique used by
[7,19] aims at synthesizing monitors from LTL formulas expressing safety prop-
erties. For Java programs, both the Monitoring-Oriented Programming (MOP)
framework [15] and the Monitoring and Checking (MaC) architecture [22] can
be used to check high-level requirements at runtime. In the UML [24] world,
the work in [20] uses an embedded monitor to visualize the system behavior on
UML diagrams in real-time while the work in [16] presents how to monitor extra
functional properties on UML models. Compared to these tools, AMT is com-
pletely independent of the system to analyze (no instrumentation), not specific
to a programming language (like Java or UML) and it can be easily extended
(just by plugging in a new parser).

7 Conclusion

In this paper, AMT faces the challenge of applying formal verification to some
industrial systems delivering multimedia streams. While formal verification tools
usually require a formal model of the system to operate on, AMT directly mon-
itors formal properties on the output stream of these systems.

Our tool is based on the STR interface that enables verifying formal prop-
erties using a generic verification core agnostic of the business domain. The
architecture of AMT makes it easy to evolve as the required business knowledge
is only used to implement the parser and write properties that need to be veri-
fied. Thanks to its architecture, the applicability of the tool can be extended to
other standards and norms only by adding new parsers to it. In other words, if
a protocol is not supported, we just need to add a parser for this protocol to be
able to express and verify properties about it. In this paper, we also show that
AMT can be used for different activities all along the product life cycle: to ana-
lyze bugs on clients streams, to validate the development of new features, and
to avoid regressions. Using OTTDownloader, we can also easily capture streams
in client ecosystems and make runtime verification a posteriori with AMT.

Through the performed experiments, we demonstrate the practical applica-
tion of the tool on different examples. Using AMT, we detect some issues on
MPEG-DASH manifests and on HLS playlists produced by different OTT pack-
agers running in production. In some cases, AMT helps engineers to detect some
known issues (seen by clients) on reproduction setup while in other cases, it has
been used to find new bugs on software systems. This is in fact the most impor-
tant: AMT has helped engineers to detect software issues and helped to bring
more confidence in the correctness of product’s behavior.

As future work, we plan to extend AMT with additional parsers to support
more video streaming formats. We also aim to improve the verification capa-
bilities of the tool for instance to be able to verify properties about the media
content (e.g., MP4 content) of OTT streams.

AMT: A Runtime Verification Tool of Video Streams 325

References

1. DVB Inspector. https://www.digitalekabeltelevisie.nl/dvb inspector/
2. FFMPEG. https://www.ffmpeg.org/
3. MPEG-DASH. https://www.mpeg.org/standards/MPEG-DASH/
4. TSDuck. https://www.tsduck.io/
5. Apple: HTTP Live Streaming (HLS) Authoring Specification for Apple

Devices. https://www.developer.apple.com/documentation/http-live-streaming/
hls-authoring-specification-for-apple-devices

6. Apple: Media Stream Validator. https://www.developer.apple.com/
documentation/http live streaming/using apple s http live streaming hls tools

7. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 1–64 (2011). https://doi.org/10.1145/
2000799.2000800

8. Bédard, A., Hallé, S.: Model checking of stream processing pipelines. In: Combi,
C., Eder, J., Reynolds, M. (eds.) 28th International Symposium on Temporal
Representation and Reasoning (TIME 2021). Leibniz International Proceedings in
Informatics (LIPIcs), Dagstuhl, Germany, vol. 206, pp. 5:1–5:17. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.TIME.
2021.5

9. Besnard, V.: EMI - Une approche pour unifier l’analyse et l’exécution embarquée
à l’aide d’un interpréteur de modèles pilotable: application aux modèles UML des
systèmes embarqués. Theses, ENSTA Bretagne - École nationale supérieure de
techniques avancées Bretagne (2020)

10. Besnard, V., Teodorov, C., Jouault, F., Brun, M., Dhaussy, P.: Unified verification
and monitoring of executable UML specifications: a transformation-free approach.
Softw. Syst. Model. 20(6), 1825–1855 (2021). https://doi.org/10.1007/s10270-021-
00923-9

11. Bowman, H., Faconti, G., Katoen, J.P., Latella, D., Massink, M.: Automatic ver-
ification of a lip-synchronisation protocol using UPPAAL. Form. Asp. Comput.
10(5), 550–575 (1998). https://doi.org/10.1007/s001650050032

12. Bowman, H., Faconti, G.P., Massink, M.: Specification and verification of media
constraints using UPPAAL. In: Markopoulos, P., Johnson, P. (eds.) Design, Specifi-
cation and Verification of Interactive Systems 1998, pp. 261–277. Springer, Vienna
(1998). https://doi.org/10.1007/978-3-7091-3693-5 17

13. Brumbulli, M., Gaudin, E., Teodorov, C.: Automatic verification of BPMN models.
In: 10th European Congress on Embedded Real Time Software and Systems (ERTS
2020), Toulouse, France (2020)

14. Brunato, D.: xmlschema. https://www.pypi.org/project/xmlschema/
15. Chen, F., D’Amorim, M., Roşu, G.: A formal monitoring-based framework for

software development and analysis. In: Davies, J., Schulte, W., Barnett, M. (eds.)
ICFEM 2004. LNCS, vol. 3308, pp. 357–372. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30482-1 31

16. Ciccozzi, F.: From models to code and back: a round-trip approach for model-driven
engineering of embedded systems. Ph.D. thesis, Mälardalen University, Embedded
Systems (2014)

17. DASH Industry Forum: Dashif Conformance Tool. https://www.conformance.
dashif.org/

18. Duret-Lutz, A., Poitrenaud, D.: SPOT: an extensible model checking library using
transition-based generalized Büchi automata. In: Proceedings of the The IEEE

https://www.digitalekabeltelevisie.nl/dvb_inspector/
https://www.ffmpeg.org/
https://www.mpeg.org/standards/MPEG-DASH/
https://www.tsduck.io/
https://www.developer.apple.com/documentation/http-live-streaming/hls-authoring-specification-for-apple-devices
https://www.developer.apple.com/documentation/http-live-streaming/hls-authoring-specification-for-apple-devices
https://www.developer.apple.com/documentation/http_live_streaming/using_apple_s_http_live_streaming_hls_tools
https://www.developer.apple.com/documentation/http_live_streaming/using_apple_s_http_live_streaming_hls_tools
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.1145/2000799.2000800
https://doi.org/10.4230/LIPIcs.TIME.2021.5
https://doi.org/10.4230/LIPIcs.TIME.2021.5
https://doi.org/10.1007/s10270-021-00923-9
https://doi.org/10.1007/s10270-021-00923-9
https://doi.org/10.1007/s001650050032
https://doi.org/10.1007/978-3-7091-3693-5_17
https://www.pypi.org/project/xmlschema/
https://doi.org/10.1007/978-3-540-30482-1_31
https://doi.org/10.1007/978-3-540-30482-1_31
https://www.conformance.dashif.org/
https://www.conformance.dashif.org/

326 V. Besnard et al.

Computer Society’s 12th Annual International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunications Systems, MASCOTS 2004,
Washington, DC, USA, pp. 76–83. IEEE Computer Society (2004). https://doi.
org/10.1109/MASCOT.2004.1348184

19. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0 24

20. Iyenghar, P., Pulvermueller, E., Westerkamp, C., Wuebbelmann, J., Uelschen, M.:
Model-based debugging of embedded software systems. In: Lettnin, D., Winter-
holer, M. (eds.) Embedded Software Verification and Debugging. ES, pp. 107–132.
Springer, New York (2017). https://doi.org/10.1007/978-1-4614-2266-2 5

21. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46681-0 61

22. Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-MaC: a run-
time assurance approach for Java programs. Formal Methods Syst. Des. 24(2),
129–155 (2004). https://doi.org/10.1023/B:FORM.0000017719.43755.7c

23. Ojo, O.E., Oluwatope, A.O., Ajadi, S.O.: Formal verification of a peer-to-peer
streaming protocol. J. King Saud Univ. Comput. Inf. Sci. 32(6), 730–740 (2020).
https://doi.org/10.1016/j.jksuci.2018.08.008

24. OMG: Unified Modeling Language (2017). https://www.omg.org/spec/UML/2.5.
1/PDF

25. Pantos, R.: HTTP Live Streaming (2023). https://www.datatracker.ietf.org/doc/
html/draft-pantos-hls-rfc8216bis

26. Velipasalar, S., Lin, C., Schlessman, J., Wolf, W.: Design and verification of com-
munication protocols for peer-to-peer multimedia systems. In: 2006 IEEE Interna-
tional Conference on Multimedia and Expo, USA, pp. 1421–1424. IEEE Computer
Society (2006). https://doi.org/10.1109/ICME.2006.262806

https://doi.org/10.1109/MASCOT.2004.1348184
https://doi.org/10.1109/MASCOT.2004.1348184
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/978-1-4614-2266-2_5
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1023/B:FORM.0000017719.43755.7c
https://doi.org/10.1016/j.jksuci.2018.08.008
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.datatracker.ietf.org/doc/html/draft-pantos-hls-rfc8216bis
https://www.datatracker.ietf.org/doc/html/draft-pantos-hls-rfc8216bis
https://doi.org/10.1109/ICME.2006.262806

Bridging the Gap: A Focused DSL
for RV-Oriented Instrumentation with BISM

Chukri Soueidi(B) and Yliès Falcone

Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble, France
{chukri.soueidi,ylies.falcone}@inria.fr

Abstract. We present a novel instrumentation language for BISM, a lightweight
bytecode-level instrumentation tool for JVM languages. The new DSL aims to
simplify the instrumentation process, making it more accessible to a wider user
base. It employs an intuitive syntax, directly mapping to the key requirements
of program instrumentation for runtime verification. It enhances productivity by
eliminating boilerplate code and low-level details, while also supporting code
generation and collaboration. The DSL balances expressiveness, and abstraction,
bridging the gap between domain experts and the complexities of instrumentation
specification.

1 Introduction

Instrumentation is a fundamental aspect of Runtime Verification (RV) [3,7,8]. It entails
modifying the original code within a program to extract events or insert monitors that
analyze its behavior. Instrumentation languages, as well as domain-specific languages
(DSLs) in general, can be primarily classified into two categories: external and inter-
nal [9]. External DSLs are self-contained languages, complete with their own parsers
or compilers, and are not necessarily dependent on any host language. They typically
feature customized syntax designed specifically for the target domain. In contrast, inter-
nal DSLs are implemented as an application programming interface (API) within a host
language. While internal languages offer seamless integration with the host language,
external languages provide a focused syntax for domain-specific concerns, making them
easier to understand and learn by domain experts. From here on, we will refer to internal
languages as APIs and external languages as DSLs.

For runtime verification, a widely popular instrumentation language is AspectJ [10]
which implements aspect-oriented programming (AOP) for Java. It provides both an
API, which extends Java with AOP constructs, and a DSL, known as the AspectJ
pointcut expression language, for defining pointcuts using a domain-specific syntax.
Nonetheless, AspectJ exhibits certain limitations that hinder its effectiveness. One such
limitation is the absence of bytecode coverage, which affects its applicability in mul-
tithreaded programs and low-level monitoring scenarios [15]. Another limitation is
the inability to inline inserted instructions. Lastly, AspectJ is also known to introduce
increased overhead to the base program after instrumentation. More recently, BISM
(Bytecode-Level Instrumentation for Software Monitoring) [16,17] has been presented
as an instrumentation tool for Java programs addressing these limitations. It is oriented
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 327–338, 2023.
https://doi.org/10.1007/978-3-031-44267-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_17&domain=pdf
http://orcid.org/0000-0002-6112-9946
http://orcid.org/0000-0002-0114-0641
https://doi.org/10.1007/978-3-031-44267-4_17

328 C. Soueidi and Y. Falcone

more toward runtime verification and features an expressive and high-level instrumen-
tation language inspired by AOP to facilitate its adoption. It has been used effectively in
monitoring concurrent programs [12,15] and for combining static analysis with runtime
verification [13,14].

At present, BISM employs an effective yet somewhat intricate API-based language
for implementing transformers. This necessitates some degree of familiarity with Java
and the BISM API, which could present challenges for the adoption of BISM as a tool.
To make the process of instrumentation more approachable and user-friendly, we intro-
duce a new DSL for BISM. Designed with user-friendliness in mind, the DSL has an
intuitive syntax that maps directly to the core requirements of program instrumentation
for runtime verification.

Balancing expressiveness and abstraction, our DSL offers comprehensive coverage
of program aspects while reducing the complexity of instrumentation specifications.
This abstraction, similar to fitting puzzle pieces together, streamlines transformer cre-
ation but comes with a moderate cost to performance and flexibility. The DSL elimi-
nates boilerplate code and low-level implementation details, enhancing productivity and
reducing the risk of errors. Its design also simplifies code maintenance, making it user-
friendly for a broad range of expertise levels. The effectiveness of these enhancements
is confirmed through our evaluation.

In our design, we incorporated both code generation and collaboration elements.
The DSL can optionally generate equivalent API-based transformer code for more com-
plex instrumentation tasks. It can also generate monitor interfaces from specifications,
which promotes efficient collaboration between program developers and monitoring
experts. These features not only simplify the instrumentation process but also ensure a
clear separation of roles in runtime verification tasks. Notably, our proposed language
is the only external specification language known to us that can target JVM bytecode
instrumentation covering languages including Java, Scala, Kotlin, and Groovy. In sum-
mary, the new DSL for BISM aims to bridge the gap between domain experts and
the complexities of implementing BISM transformers, streamlining the instrumentation
process for a wide range of users.

2 DSL Design Considerations

In this section, we discuss the main design considerations for the new BISM DSL.

Intuitive Syntax: Instrumenting a program generally involves specifying three key
requirements: (1) program points to capture (joinpoints), (2) the information needed
from these joinpoints, and (3) the consumption of these events. Our DSL addresses
these requirements by providing exactly these three main constructs: (1) pointcuts, (2)
events, and (3) monitors to consume the captured events.

Expressiveness and Abstraction. BISM API offers remarkable expressiveness for cov-
ering all program aspects and extracting information from the executing program. We
designed the DSL to retain this expressiveness while considerably simplifying the spec-
ification and providing a higher abstraction level. However, this abstraction comes with

External DSL for BISM 329

a moderate cost to flexibility in scenarios where fine-grained control over the instru-
mentation process is required. For instance, when some analysis is required within the
instrumentation process which can be achieved with the BISM API.

Efficiency and Performance. Textual specifications for instrumentation often require
parsing and compiling transformations. We optimized the DSL implementation with a
focus on performance, striving to achieve reasonable execution times for parsing and
applying instrumentation compared to using the native BISM API.

Usability Simplification. Crafting a BISM transformer requires implementing a Java
class using the provided instrumentation API. The DSL is tailored to accommodate
users with diverse expertise levels by eliminating boilerplate code and low-level imple-
mentation details, ultimately enhancing productivity, minimizing errors, and simplify-
ing code maintenance.

Code Generation. Our DSL can create API-based transformer code from user-defined
textual specifications, allowing further user customizations for complex instrumenta-
tion. It can also generate monitor interfaces, promoting collaboration between develop-
ers and monitoring experts.

3 BISM Background

BISM (Bytecode-Level Instrumentation for Software Monitoring) [16,17] is a
lightweight instrumentation tool for Java that is designed to provide an expressive and
high-level instrumentation language for runtime verification and enforcement. The tool
is inspired by aspect-oriented programming (AOP) languages, utilizing separate classes
called transformers to encapsulate joinpoint selection and advice inlining. BISM selec-
tors facilitate the selection of joinpoints by associating each selector with a well-defined
region in the bytecode, such as a single bytecode instruction, control-flow branch, or
method call. Listing 1.1 shows the main available selectors.

Before/AfterInstruction OnBasicBlockEnter/Exit
Before/AfterMethodCall OnTrue/FalseBranchEnter
OnFieldSet/Get OnMethodEnter/Exit

Listing 1.1. BISM selectors

Static context objects allow users to extract at joinpoints information derived at
compile time about instructions, basic blocks, methods, and classes. Dynamic context
objects extract values that are only available at runtime, such as instance and static
fields, local variables, method arguments, method results, executing class instances,
and stack values. Additionally, BISM allows the creation of new local variables and
arrays within the scope of a method to pass values required for instrumentation. Advice
methods specify how to extract the desired information, such as invoking methods or
printing. These advice methods enable the extraction of information at the identified
joinpoints, based on the selected selectors and desired information extraction. A distin-
guishing feature of BISM is its ability to insert arbitrary bytecode instructions into the
base program making it suitable for instrumenting inline monitors and enforcers.

330 C. Soueidi and Y. Falcone

public class IteratorTransformer extends Transformer {
public void afterMethodCall(MethodCall mc, DynamicContext dc){

// Filter to only method of interest
if (mc.methodName.equals("iterator") &&

mc.methodOwner.endsWith("List")) {

// Access to dynamic data
DynamicValue list = dc.getMethodTarget();
DynamicValue iterator = dc.getMethodResult();

// Create an ArrayList in the target method
LocalArray la = dc.createLocalArray(mc.ins.basicBlock.method,

Object.class);
dc.addToLocalArray(la,list);
dc.addToLocalArray(la,iterator);

// Invoke the monitor after passing arguments
StaticInvocation sti =

new StaticInvocation("monitors.SafeListMonitor",
"receive");

sti.addParameter("create");
sti.addParameter(la);
invoke(sti);

}
}
}

Listing 1.2. A BISM transformer written in Java that intercepts the creation of an iterator

Users specify the instrumentation by extending a base Transformer type. List-
ing 1.2 presents a fragment of a transformer used in a parametric monitoring setup [1,5]
where we monitor the SafeIterator property1. The BISM transformer, written in Java,
uses the selector afterMethodCall to capture the return of an Iterator created
from a List.iterator() method call. It uses the dynamic context object provided
to retrieve the associated objects with the event. It also creates a local list to push the
objects into it. Then, invokes a monitor passing an event name and the list as arguments.

4 The DSL for BISM

We here present the main abstractions and constructs provided by the DSL to address
the user requirements of runtime verification and instrumentation.

4.1 Pointcuts

Pointcuts enable users to specify the joinpoints to capture from program execution.
They can be denoted as follows: a pointcut name, a BISM selector along with a pat-
tern, and an optional guard. Multiple selectors are chainable using the || operator. The
pattern restricts the scope of the selector to specific methods or fields (for field selec-
tors), applying filters such as types, method signatures, or field names. Matching can
be achieved with wildcards; for example, “* .set*(..)” matches any method that
starts with “set”. The optional guard allows the specification of a condition, essentially

1 The property specifies that a Collection should not be updated when an iterator associated
with it is created and being used.

External DSL for BISM 331

a Boolean expression using static context objects from the joinpoint. The guard condi-
tions may use comparisons of booleans, numerics, and strings, and can be chained with
the conjunction operator (&&) to create complex conditions. In each DSL transformer,
the definition of at least one pointcut is necessary.

pointcut pc1 after MethodCall(* BankAccount.*(..)) with (
getNumberOfArgs = 3 && currentClassName = "Main")

|| after MethodCall(* *.*(..)) with (instruction.
linenumber = 42)

pointcut pc2 before Instruction(* *.*(..))
with (isConditionalJump = true)

Listing 1.3. Example of pointcuts definition.

Listing 1.3 shows a composite pointcut pc1 that uses two selectors. The first selec-
tor captures calls to methods defined by the classBankAccount, but only captures
calls that are invoked from the “Main” class and the called method has exactly three
arguments. The second selector captures any method call occurring at line 42. This sec-
ond guard showcases BISM’s hierarchical context objects and how they can be accessed
using dot notation. Pointcut pc2 captures any instruction that is a conditional jump.

4.2 Events

Events encapsulate the information that needs to be extracted from a pointcut. Each
event must be associated with a single pointcut along with its arguments. Multiple
events can be defined for each pointcut. An event includes a name and zero or more
arguments. Arguments may comprise single values or lists of values, which can include
BISM static or dynamic context objects, string literals, numbers, or lists. Lists are
denoted as sequences of values, separated by commas, and enclosed in brackets.

event e1("call", [getMethodReceiver, getMethodResult]) on pc1

event e2([opcode,getStackValues]) on pc2 to console(List)

Listing 1.4. Example of events definition.

Listing 1.4 shows an event named e1, associated with the pointcut pc1, that is defined
with the string literal “call” and a list of dynamic context objects which extract the
called object and the result of the method. Event e2 is defined with a list of dynamic
context objects (opcode, getStackValues) and is associated with the pointcut
pc2. The DSL also provides a construct to print an event to the console, which is par-
ticularly useful during the debugging or profiling of a program. This event is associated
with the output console(List) which prints the event information to the console.

4.3 Monitors

Monitors listen to the occurrence of one or several events, and they define the extraction
points for these events during program execution. Each monitor is identified by a unique

332 C. Soueidi and Y. Falcone

name, the class name and package locating its implementation, and the events it is set
to listen to. Typically, the events are passed as parameters during the invocation of a
monitor method. Events are mapped to the monitor method name with its argument
types. Multiple monitors can be defined and each event can be listened to by more than
one monitor.

monitor m1{
class: com.MonitorX,
events: [e1 to receive(String, List)]

}

Listing 1.5. Example of a monitor definition.

Listing 1.5 shows a monitor m1 corresponding to a class named com.MonitorX.
Event e1 is mapped to the method receive with the argument types String and
List. The specification can be simplified by directly associating the monitor with the
event. However, this restricts the use of the event to only one monitor. Here is an equiv-
alent specification without the explicit definition of a monitor.

event e1("create",[getMethodReceiver,getMethodResult])
on pc1 to com.MonitorX.receive(String,List)

Listing 1.6. Simple monitor definition.

4.4 Code Generation

We here present the code generation facilities that bridge the gap between new and
expert users of BISM, also the gap between monitoring experts and program developers.

Transformers for Complex Instrumentation Tasks. The Java-based API transform-
ers allow users to write intricate analysis logic within transformers. Equipped with the
full program context provided by BISM and the Java language, the user can write any
piece of analysis code that can guide the instrumentation process. For example, in [14]
such analysis was used to perform residual analysis which entails checking for safe
instructions statically such that they can be ignored from the instrumentation. Start-
ing with a simple text-based DSL specification where events of interest can be iden-
tified, users can gradually move to complex instrumentation logic using a full-fledged
Java transformer. To facilitate this transition, we optionally generate and compile Java
transformers equivalent to the provided textual specification files. Consequently, these
specification files can act as bootstrappers for implementing more complex logic.

Monitor Interfaces. As discussed in Sect. 4.3, the process of creating an instrumen-
tation specification often requires declaring a monitor to listen for events. In collabo-
rative scenarios, a monitoring expert consults the developer to identify relevant events
and their static and runtime context. Subsequently, the programmer creates a specifica-
tion file capable of locating and extracting the necessary events, leaving the monitoring

External DSL for BISM 333

Fig. 1. Added modules on BISM (in blue) to support the external DSL. (Color figure online)

expert solely responsible for implementing the monitors. To optimize this collabora-
tion, our DSL incorporates a feature to generate the monitor interfaces, that need to be
implemented to listen to events. This capability substantially improves interoperabil-
ity between different teams, fostering a more efficient and productive workflow when
addressing complex instrumentation tasks.

package com;
import java.util.List;

public class MonitorX{
public static void receive(String a1, List a2) {
}

}

Listing 1.7. A generated monitor class.

Listing 1.7 shows the generated interface for the monitor in Listing 1.5. The user
can then implement the receive method to perform the desired analysis logic.

5 Implementation

We implemented the DSL as an extension to BISM with 6 KLOC of Java code2. Figure 1
shows the three main modules we added to BISM which handle specification parsing,
transformation application, and code generation. We provide more details on each mod-
ule below.

Specification Processor. This module accepts the user’s textual specification as input
and parses it into a specification object. This object is an intermediate representation
that embodies the desired transformations. The module also performs a series of checks
to ensure the specification’s validity, including the removal of duplicate rules and veri-
fication of well-formedness

2 The tool is available at https://gitlab.inria.fr/bism/bism-dsl.

https://gitlab.inria.fr/bism/bism-dsl

334 C. Soueidi and Y. Falcone

Generic Transformer. This module is in charge of applying user-specified transfor-
mations to the target program. It features a transformer template that extends BISM’s
Transformer type and automatically generates the appropriate transformations.
These transformations are then turned into bytecode instructions by BISM that are then
weaved into the target program.

Artifact Generator. Activated upon a user’s request for code generation, this module
generates an equivalent API-based transformer class utilizing BISM’s API. Addition-
ally, it generates a monitor class that can be implemented and used to monitor the instru-
mented program’s behavior during runtime.

6 Evaluation

In this section, we provide an assessment of the DSL, specifically focusing on the over-
head it introduces and the user experience3.

6.1 Performance Evaluation

To evaluate the performance, we examine the overhead introduced by our DSL in com-
parison with both the BISM API and AspectJ. Our test case is the financial transaction
system as described in [2]. We instrument this system to extract events from all method
calls on Iterator objects, get field operations, and method executions. We test four
distinct methodologies to write identical instrumentation specifications:

– AspectJ DSL: An aspect (.aj) is written using the DSL, requiring approximately
40 lines of code.

– AspectJ API: An API-based aspect (.java) is written, using annotations, requiring
approximately 60 lines of code.

– BISM DSL: A transformer (.spec) is written with our proposed DSL for BISM,
requiring approximately 20 lines of code.

– BISM API: An API-based BISM transformer (.java) is written using the API,
requiring approximately 70 lines of code.

To ensure a fair comparison, we utilized features available across all four
approaches4. Each benchmark was run 20 times, with each run producing 500K events,
and the mean execution times are reported in Fig. 2a. The results showed that BISM
API outperforms the other methods, running 1.14 times faster than BISM DSL, 1.7
times faster than AspectJ API, and 3.25 times faster than AspectJ DSL. This demon-
strates that specifying instrumentation using the API generally leads to faster execution
due to the extra delay incurred in DSL approaches from parsing the specification files.
However, our proposed DSL outperforms AspectJ DSL and is even faster than AspectJ
API, maintaining the effectiveness and efficiency of BISM in the context of software
monitoring and instrumentation.

3 The full details for the experiments can be found at https://gitlab.inria.fr/bism/bism-dsl-
experiments.

4 The experiment utilized AspectJ AJC 1.9.7 and JDK 11.

https://gitlab.inria.fr/bism/bism-dsl-experiments
https://gitlab.inria.fr/bism/bism-dsl-experiments

External DSL for BISM 335

Fig. 2. Performance evaluation results.

6.2 User Experience Evaluation

Experiment Design. We conducted an experiment in which 10 participants, with various
experience levels in Java and runtime verification, were instructed to write transform-
ers for monitoring four different properties sourced from [2] using both methods. The
experiment used a randomized block design. The participants were divided into two
equal groups: Group A and Group B. Group A used the API for Properties 1 and 3 and
the DSL for Properties 2 and 4. In contrast, Group B used the DSL for Properties 1
and 3 and the API for Properties 2 and 4. This design allowed each participant to gain
experience with both methods, enabling a fair comparison between the two techniques
across all properties.

Collected Metrics. For each property, the participants are asked to record the time they
took to write the instrumentation, reported in minutes (Time). They also kept track of
the number of mistakes they made during the process that necessitated recompilation
and another run (Errors). In addition, the number of lines of code written for each
transformer was noted, (Lines). Lastly, participants rated the difficulty of use on a scale
of 1 to 5, where 1 signified very easy and 5 meant very hard, (Difficulty).

Results and Analysis. In Fig. 2b, we report each metric normalized to a 0–1 range
based on their respective minimum and maximum values. Table 1 shows the average
values for each metric. The results indicate a clear advantage of the DSL over the API
for writing BISM transformers. Across all properties tested, the DSL not only needed
significantly less time to implement but also resulted in fewer errors and less code.
Furthermore, participants found the DSL easier to use. The good results of the DSL
can be largely attributed to its concise syntax and straightforward usage. However, it
is important to note that a considerable portion of errors in DSL mode were caused
by improper referencing of the monitor and its package name, and the need for full

336 C. Soueidi and Y. Falcone

specification of return types in patterns. Future iterations of the DSL will address these
pattern specification issues.

Table 1. Average time taken, number of errors, number of lines, and difficulty for each property
and mode.

Metric Property 1 Property 2 Property 3 Property 4

Time (API) 15 13 5 7

Time (DSL) 8 7 2 2

Errors (API) 4 3 2 1

Errors (DSL) 3 3 0 0

Lines (API) 12 16 10 24

Lines (DSL) 7 5 5 9

Difficulty (API) 4 4 3 3

Difficulty (DSL) 3 3 1 1

7 Related Work and Conclusion

In this section, we review some of the relevant frameworks for Java program instru-
mentation and compare them to our proposed DSL for BISM. It is worth noting that
our proposed language is the only external specification language we know of that can
target bytecode instrumentation thereby covering JVM languages including Java, Scala,
Kotlin, and Groovy. API-based frameworks such as ASM [4], BCEL [18], Soot [19],
and Javassist [6] offer a wide range of low-level bytecode transformation capabilities.
However, they demand a significant understanding of bytecode and can be verbose
when implementing simple instrumentation specifications. ASM, in particular, was cho-
sen over Soot for BISM due to its performance and compact size, while Javassist and
BCEL provide better levels of abstraction from bytecode details. On the other end of
the spectrum, aspect-oriented programming (AOP) frameworks like AspectJ [10] pro-
vide a high-level language for specifying instrumentation. However, AspectJ incurs
considerable overhead, and cannot instrument at the bytecode level, limiting its use-
fulness in multithreaded programs and low-level monitoring scenarios. Balancing these
approaches, DiSL [11] offers an extensible API-based instrumentation language with
advanced features eliminating transformation interference. DiSL offers a complex set
of features making it more suitable for dynamic analysis scenarios such as profiling. In
comparison, BISM reduces execution overhead and allows for arbitrary code insertion,
necessary for inlining monitors and enforcers.

Our proposed BISM DSL aims to simplify BISM usage by offering a focused syn-
tax for instrumentation and runtime verification. However, it only supports a subset of
the BISM features and lacks support for inserting arbitrary bytecode instructions. The
potential for DSL and API full integration is currently under investigation. Moreover,
we aim to add enforcement constructs to the DSL, allowing users to specify inlined
enforcers.

External DSL for BISM 337

References

1. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified event
automata: towards expressive and efficient runtime monitors. In: Giannakopoulou, D., Méry,
D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-32759-9_9

2. Bartocci, E., et al.: First international competition on runtime verification: rules, bench-
marks, tools, and final results of CRV 2014. Int. J. Softw. Tools Technol. Transf. 21(1),
31–70 (2019). https://www.gitlab.inria.fr/crv14/benchmarks/

3. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime verification.
In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp.
1–33. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5_1

4. Bruneton, E., Lenglet, R., Coupaye, T.: ASM: a code manipulation tool to implement adapt-
able systems. In: Adaptable and Extensible Component Systems (2002). https://www.asm.
ow2.io

5. Chen, F., Roşu, G.: Parametric trace slicing and monitoring. In: Kowalewski, S., Philippou,
A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 246–261. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00768-2_23

6. Chiba, S.: Load-time structural reflection in Java. In: Bertino, E. (ed.) ECOOP 2000. LNCS,
vol. 1850, pp. 313–336. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45102-
1_16

7. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. In: Broy, M., Peled,
D.A., Kalus, G. (eds.) Engineering Dependable Software Systems. NATO Science for Peace
and Security Series, D: Information and Communication Security, vol. 34, pp. 141–175. IOS
Press (2013). https://doi.org/10.3233/978-1-61499-207-3-141

8. Falcone, Y., Krstic, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime verification
tools. Int. J. Softw. Tools Technol. Transf. 23(2), 255–284 (2021). https://doi.org/10.1007/
s10009-021-00609-z

9. Fowler, M., Parsons, R.: Domain-Specific Languages. Addison-Wesley, Upper Saddle River
(2011)

10. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: Getting started
with AspectJ. Commun. ACM 44(10), 59–65 (2001)

11. Marek, L., Villazón, A., Zheng, Y., Ansaloni, D., Binder, W., Qi, Z.: DiSL: a domain-specific
language for bytecode instrumentation. In: Hirschfeld, R., Tanter, É., Sullivan, K.J., Gabriel,
R.P. (eds.) Proceedings of the 11th International Conference on Aspect-Oriented Software
Development, AOSD, Potsdam, Germany, pp. 239–250. ACM (2012)

12. Soueidi, C., El-Hokayem, A., Falcone, Y.: Opportunistic monitoring of multithreaded pro-
grams. In: Lambers, L., Uchitel, S. (eds.) FASE 2023. LNCS, vol. 13991, pp. 173–194.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30826-0_10

13. Soueidi, C., Falcone, Y.: Capturing program models with BISM. In: Hong, J., Bures, M.,
Park, J.W., Cerný, T. (eds.) SAC 2022: The 37th ACM/SIGAPP Symposium on Applied
Computing, Virtual Event, 25–29 April 2022, pp. 1857–1861. ACM (2022). https://doi.org/
10.1145/3477314.3507239

14. Soueidi, C., Falcone, Y.: Residual runtime verification via reachability analysis. In: Lal, A.,
Tonetta, S. (eds.) VSTTE 2022. LNCS, vol. 13800, pp. 148–1663. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-25803-9_9

15. Soueidi, C., Falcone, Y.: Sound concurrent traces for online monitoring. In: Caltais, G.,
Schilling, C. (eds.) SPIN 2023. LNCS, vol. 13872, pp. 59–80. Springer, Cham (2023). https://
doi.org/10.1007/978-3-031-32157-3_4

https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-642-32759-9_9
https://www.gitlab.inria.fr/crv14/benchmarks/
https://doi.org/10.1007/978-3-319-75632-5_1
https://www.asm.ow2.io
https://www.asm.ow2.io
https://doi.org/10.1007/978-3-642-00768-2_23
https://doi.org/10.1007/978-3-642-00768-2_23
https://doi.org/10.1007/3-540-45102-1_16
https://doi.org/10.1007/3-540-45102-1_16
https://doi.org/10.3233/978-1-61499-207-3-141
https://doi.org/10.1007/s10009-021-00609-z
https://doi.org/10.1007/s10009-021-00609-z
https://doi.org/10.1007/978-3-031-30826-0_10
https://doi.org/10.1145/3477314.3507239
https://doi.org/10.1145/3477314.3507239
https://doi.org/10.1007/978-3-031-25803-9_9
https://doi.org/10.1007/978-3-031-32157-3_4
https://doi.org/10.1007/978-3-031-32157-3_4

338 C. Soueidi and Y. Falcone

16. Soueidi, C., Kassem, A., Falcone, Y.: BISM: bytecode-level instrumentation for software
monitoring. In: Deshmukh, J., Ničković, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 323–
335. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60508-7_18

17. Soueidi, C., Monnier, M., Falcone, Y.: Int. J. Softw. Tools Technol. Transfer 1–27 (2023).
https://doi.org/10.1007/s10009-023-00708-z

18. The Apache Software Foundation: Apache commons. https://www.commons.apache.org.
Accessed 18 June 2020

19. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot - a Java byte-
code optimization framework. In: Proceedings of the 1999 Conference of the Centre for
Advanced Studies on Collaborative Research, CASCON 1999, p. 13. IBM Press (1999)

https://doi.org/10.1007/978-3-030-60508-7_18
https://doi.org/10.1007/s10009-023-00708-z
https://www.commons.apache.org

CCMOP: A Runtime Verification Tool
for C/C++ Programs

Yongchao Xing1,2, Zhenbang Chen1,2(B) , Shibo Xu1,2, and Yufeng Zhang3

1 College of Computer, National University of Defense Technology, Changsha, China
{xingyc0979,zbchen}@nudt.edu.cn

2 Key Laboratory of Software Engineering for Complex Systems, National University
of Defense Technology, Changsha, China

3 College of Computer Science and Electronic Engineering, Hunan University,
Changsha, China

yufengzhang@hnu.edu.cn

Abstract. Runtime verification (RV) is an effective lightweight formal
method for improving software’s reliability at runtime. There exist no
RV tools specially designed for C++ programs. This paper introduces
the first one, i.e., CCMOP, which implements an AOP-based RV app-
roach and supports the RV of general properties for C/C++ program.
CCMOP provides an AOP language specially designed for C++ pro-
gram to define the events in RV. The instrumentation of RV monitor
is done at AST-level, which improves the efficiency of compilation and
the accuracy of RV. CCMOP is implemented based on JavaMOP and
an industrial-strength compiler. The results of extensive experiments on
100 real-world C/C++ programs (5584.3K LOCs in total) indicate that
CCMOP is robust and supports the RV of real-world C/C++ programs.

Keywords: Runtime Verification · C/C++ · Instrumentation · AOP

1 Introduction

Runtime verification (RV) [17] is a lightweight formal method for verifying pro-
gram executions. Different from the traditional formal verification methods, such
as model checking [10] and theorem proving [12,19], which verify the whole
behavior of the program and often face state explosion problem [11] or need
labor-intensive manual efforts, runtime verification only verifies a trace (exe-
cution) of the program. When the program P is running, runtime verification
techniques collect P’s running information and usually abstract the information
into events. A program trace t is an event sequence. Then, the verification is
carried out on the fly for the trace with respect to a formal property ϕ, e.g., a
line-time temporal logic (LTL) property; If t does not satisfy ϕ [24], the runtime

CCMOP is available at https://rv-ccmop.github.io.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 339–350, 2023.
https://doi.org/10.1007/978-3-031-44267-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_18&domain=pdf
http://orcid.org/0000-0002-4066-7892
http://orcid.org/0000-0001-6082-4501
https://rv-ccmop.github.io
https://doi.org/10.1007/978-3-031-44267-4_18

340 Y. Xing et al.

verification will take some efforts, e.g., reporting a warning or error and termi-
nating P in advance. In this way, runtime verification does not suffer from the
scalability problem of traditional formal verification techniques.

Until now, there already exist many runtime verification tools [2] for different
program languages, e.g., RTC [21] and E-ACSL [29] for C programs, JavaMOP
[4] and TraceMatches [1] for Java programs, to name a few. Usually, a runtime
verification tool accepts a program P and a property ϕ. Then, the tool auto-
matically generates a runtime monitor M for ϕ and instruments the monitor
into P. When the instrumented version of P is executed, M will online verify
P’s trace with respect to ϕ. Existing runtime verification tools differ in different
aspects, including the target program’s language, implementation mechanisms
(e.g., instrumentation and VM-based approaches), supported verification prop-
erties (e.g., LTL, FSM, and CFG), etc. These tools are widely applied in different
areas and backgrounds [17], which shows the effectiveness of runtime verification.

However, the RV tools for C++ programs are still in demand. Although
there exist some sanitizer tools [14] of the LLVM platform [18] that instrument
the monitor at the intermediate representation (IR) level, they can only moni-
tor memory-specific properties. Besides, binary-level instrumentation-based RV
tools, in principle, support C++ programs, but they also suffer the problems of
overhead, across-platform, and inaccuracy [26,32]. As far as we know, there does
not exist a runtime verification tool specially designed for C++ programs that
supports general properties and instrument monitors at the source code level.

This paper presents CCMOP, i.e., a runtime verification tool for C/C++
programs following the design of JavaMOP [4]. The runtime monitor of the
property is first generated in an aspect-oriented programming (AOP) language.
We have designed and implemented an AOP platform for C/C++ programs to
support the automatic instrumentation of runtime monitors. Monitors can be
transparently woven into the program during program compilation. The weav-
ing is carried out at the source code level and on the program’s abstract syntax
tree (AST). We have implemented the AOP platform based on Clang [9], i.e.,
an industrial-strength compiler. We have applied CCMOP for 100 real-world
C/C++ programs to evaluate our tool. The results indicate that CCMOP can
support the runtime verification of real-world C/C++ programs for general prop-
erties. The main contributions are as follows.

– We have implemented a runtime verification tool for C/C++ programs that
supports the RV of general properties. As far as we know, CCMOP is the
first source-level instrumentation-based RV tool for C++ programs.

– We have applied CCMOP for 100 real-world C/C++ programs (5584.3K
LOCs in total) with standard C++ language features. The experimental
results indicate that CCMOP supports the RV for large-scale C/C++ pro-
grams. The runtime overhead of CCMOP on C++ programs is 88% for the
use-after-free property.

CCMOP: A Runtime Verification Tool for C/C++ Programs 341

Fig. 1. CCMOP’s framework.

2 Framework

Figure 1 shows the framework and basic workflow of CCMOP. The inputs are
a property ϕ and a program P, and the output is the executable binary of the
program in which monitors are instrumented. The workflow can be divided into
two stages: monitor generation and monitor weaving.

Monitor Generation. CCMOP adopts the RV framework of JavaMOP [4]
that utilizes AOP for property specification and monitor instrumentation. The
property syntax is a variant of JavaMOP’s MOP syntax for C/C++ programs.
A property ϕ is composed of the following two parts.

– The declarations of the events, defined by different AOP pointcuts [16], and
the AOP language is explained in Sect. 3. Besides, we can also specify the
C/C++ code that will be executed when the event is generated. For exam-
ple, the following defines event create for each new statement in the C++
program, and the event create is generated after the execution of the new
statement.

event create after(void* key):expr(new *(...))&&result(key){} (1)

– The formal property defined on the event level, which can be specified by
different formalisms, including a logic (e.g., LTL), an automaton (e.g., FSM),
and a regular expression, etc. The property gives the specification that the
program should satisfy during program execution. If the execution satisfies
or does not satisfy the property, some operations can be carried out. These
operations can be C/C++ statements that are also given in the property.

Based on the property ϕ, CCMOP automatically generates two parts. The
first part is the AOP declarations that are in charge of generating events,

342 Y. Xing et al.

which are generated with respect to ϕ’s event definitions. The second part is
the C/C++ code of the runtime monitor, which is generated with respect to
ϕ’s property. The key idea of generating runtime monitors is to generate an
automaton for runtime verification according to ϕ’s formal property [3]. Besides,
monitor code also contains the event interface methods that interact with system
execution.

Monitor Weaving. The second stage happens at the compilation of P. The
main job is to instrument the event generation code at the appropriate places of
P, accomplished by the Weaver. According to the AOP declarations D gener-
ated at the first stage, Weaver finds the matched P’s statements of the pointcuts
in D on P’s AST. Then, the event generation code is inserted before or after
the statements according to the requirements of the event declarations in ϕ.
Here, the instrumentation is carried out directly on AST. Event generation code
invokes the event interface method in the monitor code to notify the monitor
that an event is generated and the runtime checking needs to be carried out.

For example, the following code shows the source code after weaving the code
for the event create. There exists a statement that the pointer p is assigned with
the address returned by a new statement. After instrumentation, the pointer p
will be passed as the parameter of the event create’s interface method invoca-
tion.

1 int main(){

2 int *p = new int;

3 int *key_1=p;

4 __RVC_UAF_create (key_1);

5 return 0;

6 }

After weaving, the instrumented
AST will be used for compiler optimiza-
tion and code generation in the later
compilation stages. Finally, a binary
that can generate events for RV is gen-
erated. After getting the binary that
can generate events, we need to link the

binary with the monitor binary that does the real verification job. The executable
binary with runtime monitors (denoted by Pm) is finally generated. Then, we
can run Pm with different inputs, and the runtime monitors will carry out the
operations defined in ϕ when ϕ is violated or satisfied.

In principle, our framework provides an online synchronous approach to run-
time verification. The instrumentation for RV is carried out on AST, which
enjoys the advantages including lower-overhead, across-platform, accuracy, etc.

3 Design and Implementation

AOP Language for C/C++. Figure 2 shows the critical parts of the AOP
language for C/C++. The language is based on AspectJ [16], and the figure
only shows the abbreviated version for the sake of brevity, where ε represents
the empty string, 〈ID〉 represents an identity name, 〈IDs〉 represents a comma
dotted 〈ID〉 sequence. The particular syntax elements for C/C++ are as follows.

CCMOP: A Runtime Verification Tool for C/C++ Programs 343

Fig. 2. The core syntax of the AOP language.

– We introduce deref to match the pointer dereferences in C/C++ programs.
Here is an example of the pointcut for matching the dereferences of all string
pointers: deref(std::basic string<char> *).

– To support the namespace and template mechanisms in C++, we introduce
〈ScopedType〉, which is also compatible with matching the functions and types
of C programs. Besides, we also introduce cexpr for matching the object
management statements in C++ programs, including class constructors, new
and delete statements. Furthermore, call(〈FuncDecl〉) also supports the
matching of the operator functions in C++ program (e.g., operator+(...)),
and the details are omitted for the sake of brevity.

Similar to JavaMOP, 〈Advice〉 is used to capture the monitored objects. For
example, the AOP declaration for the event create in (1) is as follows.

advice expr(new *(...))&&result(key) : after(void* key){} (2)

Implementation. CCMOP’s implementation is based on JavaMOP [4] and
Clang [9]. We explain the two gray components in Fig. 1 as follows.

– Monitor Generator. We reused the MOP syntax of JavaMOP and modified
it to enable the usage of our AOP language in Fig. 2 for defining events
and the definitions of C/C++ code in event handlers. Besides, we have also
developed the C++ runtime monitor code generator based on JavaMOP’s
RV-Monitor component. We support two specification languages: extended
regular expression (ERE) and finite state machine (FSM). More specification
languages in RV-Monitor are to be supported in the future.

– Weaver. We implemented the weaver for the AOP language in Fig. 2 based
on Clang. We find the pointcut matched statements by Clang’s AST matching
framework [7]. Besides, the instrumentation defined in the AOP declarations
is also carried out on AST, which is implemented by the AST transforma-
tion mechanism [8] of Clang. There are two advantages of AST-level instru-
mentation: First, compared with the source code text-based approach [6], it

344 Y. Xing et al.

is more precise for the advanced mechanisms in C/C++ programs, such as
#define and typedef, which are widely used in real-world programs; Second,
AST-level instrumentation is carried out just before the IR generation, which
enables just one time of parsing instead of two times needed by the source
code text-based instrumentation method [6].

Limitations. There are following limitations of CCMOP. First, due to
the widespread use of typedef in C/C++, some types are translated
to other types on the AST-level. However, the description of 〈Advice〉
needs to specify the types in ASTs. For example, std::string is
translated to std::basic string<char> in ASTs, and we need to use
std::basic string<char> in 〈Advice〉 specification to capture the objects of
std::string. Second, CCMOP’s event specification is limited and only sup-
ports specific types of events, e.g., method invocations, object constructions and
memory operations. Third, CCMOP does not support multi-threaded C/C++
programs.

4 Evaluation

Basic Usage. CCMOP provides a script wac for compiling a single C/C++ file.
The basic usage is demonstrated as follows, where we are compiling a single C++
file into the executable binary demo, and the RV with respect to the property
will be carried out when running demo.

wac -cxx -mop <a property file> <a CPP file> -o demo

Besides, we also provide a meta-compiling [33] based script for real-world
C/C++ projects with multiple files and employing standard build systems (e.g.,
make and cmake). More details are provided on our tool’s website1.

We evaluate CCMOP for answering the following three research questions.

– Applicability. Can CCMOP support the RV of real-world C/C++ programs
(especially C++ programs) with different scales?

– Overhead. How about the overhead of CCMOP when doing the RV of real-
world C/C++ programs? Here, we only care about time overhead.

– Soundness and Precision. How about the soundness and precision of
CCMOP? Here, soundness means the ability to detect all bugs, and preci-
sion means no false alarms.

Benchmark Programs. To answer the first question, we applied CCMOP to
different scaled benchmarks used in the literature of RV [6,34] and fuzzing [20].
Besides, we also get high-starred C++ projects from GitHub. Table 1 shows
the benchmarks. In total, we have 100 real-world C/C++ programs. Our tool’s
website provides more details of our benchmark programs.
1 https://rv-ccmop.github.io.

https://rv-ccmop.github.io

CCMOP: A Runtime Verification Tool for C/C++ Programs 345

Table 1. C/C++ Benchmark Programs.

Type Benchmark Name Description

C mini-benchmarks in MoveC [5,6] 126 mini-programs (2.6K LOCs in total)

Ferry[34] and FuzzBench [20] 15 programs (2.5∼228.5K LOCs)

High-starred GitHub Projects 35 programs (0.1∼239.5K LOCs)

C++ FuzzBench [20] 6 programs (10.5∼538.6K LOCs)

High-starred GitHub Projects 44 programs (1.0∼675.2K LOCs)

Properties. Table 2 shows the properties used in the evaluation. The two prop-
erties, i.e., use-after-free and memory leak, are used for both C and C++ pro-
grams. However, the event definitions are different. For C programs, we weave
monitors when calling malloc and free; For C++ programs, we weave monitors
to the new and delete statements.

Table 2. C/C++ Benchmark Properties.

Type Property Name Description

C Use-after-free Pointer is dereferenced after freed (free)

Memory leak Memory is allocated (malloc) but not freed

Read-after-close A FILE is read after close

C++ Use-after-free Pointer is dereferenced after freed (delete)

Memory leak Memory is allocated (new) but not freed

Safe Iterator A collection should not be updated when it is being iterated

To answer the second question, we consider the C/C++ benchmarks that
have many statements matching the property’s pointcuts (i.e., with non-
negligible overhead) and provide test cases for demonstration and running. We
compare CCMOP with LLVM’s AddressSanitizer [26], which is widely used for
memory checking of C/C++ programs, and the property is use-after-free2.

To answer the third question, we applied CCMOP to SARD-100 [13] and Toy-
ota ITC [28] benchmarks, in which source code is available. These two bench-
marks focus on the detection of memory-related bugs (e.g., memory leak and
use-after-free). We evaluate CCMOP’s soundness and precision for detecting
memory leak and use-after-free bugs by running the programs with the test
inputs provided by the benchmarks.

All the experiments were carried out on a laptop with a 2.60 GHz CPU and
32G memory, and the operating system is Ubuntu 20.04. The experimental result
values of compilation time and runtime overhead are the averaged values of three
runs’ results.

2 We disable the other checkers in AddressSanitizer with options mentioned in website.

346 Y. Xing et al.

Fig. 3. Compilation time overhead.

Experimental Results. We applied CCMOP to do the RV for each benchmark
program with respect to each property. Our tool can be successfully applied to
126 mini-benchmark programs from MoveC [6]. For the 100 real-world C/C++
programs, our tool can also support the weaving of RV monitors of all the prop-
erties during compilation. Figure 3 shows the result of compilation information.

The X-axis shows the program identities, where the first 50 programs are
C programs, and the last 50 are C++ programs. The Y-axis shows the compi-
lation time overhead compared with the original compilation time (denoted by
CO), i.e., (CRV − CO)/CO, where CRV denotes the compilation time of RV. On
average, the overheads of compilation time for use-after-free, memory leak, and
read-after-close/safe-iterator are 2.01, 1.84, and 1.91, respectively. Due to the
frequent usage of pointer operations, the overhead of use-after-free is usually the
largest. For many programs (78%), the overhead is below 300%. There are nine
small-scale programs whose overhead is over 500%. The reason is that the com-
pilation of monitor code dominates the compilation procedure. For comparison,
we applied LLVM’s AddressSanitizer [26] to each benchmarks, and the average
overhead of compilation time is 0.98.

Figure 4 shows the runtime overhead results for programs with notable
changes.

Fig. 4. Runtime overhead.

The X-axis displays the program
name, and the Y-axis displays the
overhead compared with the origi-
nal program without RV. Each Y-
axis value is calculated as follows:
log10(TRV /To), where To is the time of
original program without RV, and TRV

is the time with RV. The figure shows
that CCMOP’s overhead is compara-
ble with AddressSantinizer. The aver-

CCMOP: A Runtime Verification Tool for C/C++ Programs 347

aged overheads of AddressSantinizer and CCMOP are 81.9% and 88%, respec-
tively. Furthermore, the results of the C benchmark programs (which have many
memory operations) indicate that CCMOP’s overhead is 961.6% on average. The
detailed results are available on CCMOP’s website.

Table 3 shows the results of soundness and precision on the two properties.
For the property of memory leak, there are 5 and 18 test cases in SARD-100 [13]
and Toyota ITC [28], respectively.
Table 3. Bug Detection Results of CCMOP.

Benchmark Name Memory leak Use-after-free

SARD-100 [13] 100%(5/5) 100%(9/9)

Toyota ITC [28] 100%(18/18) 80%(12/15)

Summary 100%(23/23) 87.5%(21/24)

CCMOP detected all bugs. For
the property of use-after-free, there
exist 9 and 15 test cases in SARD-
100 and Toyota ITC, respectively.
The majority of bugs (i.e., 21 out
of 24) can be detected. The reasons
of missing bugs in three test cases
are as follows: 1) in two test cases,

there is no dereference of the freed pointer, but our property of use-after-free
requires the dereference of the pointer; 2) in one case, there are nested pointer
dereferences, on which CCMOP is limited and crashed. Besides, CCMOP does
not produce any false alarms on these two benchmarks.

5 Related Work

There already exist many RV tools developed in different backgrounds. There-
fore, we divide the existing tools according to the implementation level of instru-
mentation.

Source-Level. MoveC [6] is a RV tool for C programs and adopts source-
code level instrumentation. MoveC supports the detection of segment, spatial
and temporal memory errors, which is enabled by its monitoring data struc-
ture called smart status. Like MoveC, RTC [21] also implements the detection
of memory errors and runtime type violations for C programs based on source-
code instrumentation, and the implementation is based on the ROSE compiler
platform [25]. E-ACSL [29] supports the checking of security properties for the C
programs annotated with a formal specification language. Compared with these
three tools, CCMOP supports the RV of C++ programs, and the instrumen-
tation is carried out directly on ASTs. AspectC++ [31] is an AOP framework
designed for C++ language and also instruments at the source-code level. How-
ever, AspectC++ does not support C programs well because the instrumented
programs can only be compiled by a C++ compiler. Compared with AspectC++,
our AOP framework has limited AOP features but supports both C and C++
programs.

IR-Level. There exist some RV tools that instrument monitors at IR-level,
including Google’s sanitizers [26,32], SoftBoundCETS [22,23], and Memsafe[30],

348 Y. Xing et al.

etc. These tools enjoy the benefits of IR-level instrumentation and support mul-
tiple languages. However, all of the mentioned tools can only support detecting
memory-related properties. Besides these tools for C-family languages, we also
classify JavaMOP [4] and Tracematches [1] into this category. Both tools adopt
AOP-based instrumentation for runtime monitors, and the weaving is carried
out directly on Java class files. These two tools inspire our tool, and our imple-
mentation is based on JavaMOP.

Binary-Level. Some runtime monitoring tools adopt binary-level instrumen-
tation of monitors. For example, MemCheck [27] is one of the most widely used
tools for detecting memory errors and employs dynamic binary instrumentation
(DBI) to implement memory runtime checks. Purify [15] is a commercial tool
for detecting memory access-related errors for C/C++ programs and is also
implemented based on DBI.

6 Conclusion and Future Work

This paper introduces CCMOP, a runtime verification tool for C/C++ programs.
Inspired by JavaMOP [4], CCMOP adopts AOP-based monitor instrumentation
and supports automatic monitor code generation and instrumentation. More-
over, CCMOP does instrumentation on the AST level. We have implemented
CCMOP based on JavaMOP and Clang. To evaluate CCMOP, we have applied
it to 100 real-world C/C++ programs, including 50 C++ programs. The experi-
mental results indicate that CCMOP supports the RV of different scaled C/C++
programs and enables a transparent weaving of RV monitors.

The next step includes the following perspectives: 1) Improve the efficiency
of RV by implementing more advanced RV optimization algorithms; 2) Support
multi-threaded C/C++ programs; 3) Support more specification languages (e.g.,
LTL and CFG).

Acknowledgments.. This research was supported by National Key R&D Program of
China (No. 2022YFB4501903) and the NSFC Programs (No. 62172429 and 62002107).

References

1. Allan, C., Avgustinov, P., Christensen, A.S.: Adding trace matching with free vari-
ables to aspectJ. In: Proceedings of the 20th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOP-
SLA 2005, pp. 345–364. ACM (2005)

2. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a
survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lec-
tures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75632-5 5

https://doi.org/10.1007/978-3-319-75632-5_5

CCMOP: A Runtime Verification Tool for C/C++ Programs 349

3. Chen, F., Meredith, P.O., Jin, D., Rosu, G.: Efficient formalism-independent mon-
itoring of parametric properties. In: ASE 2009, 24th IEEE/ACM International
Conference on Automated Software Engineering, Auckland, pp. 383–394. IEEE
Computer Society (2009)

4. Chen, F., Roşu, G.: Java-MOP: a monitoring oriented programming environment
for java. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp.
546–550. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-
1 36

5. Chen, Z., Wang, C., Yan, J.: Runtime detection of memory errors with smart
status. In: ISSTA 2021: 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis, pp. 296–308. ACM (2021)

6. Chen, Z., Yan, J., Kan, S., Qian, J., Xue, J.: Detecting memory errors at runtime
with source-level instrumentation. In: Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2019, pp. 341–
351. ACM (2019)

7. Clang: The AST Matcher Reference. www.clang.llvm.org/docs/LibASTMatchers
Reference.html

8. Clang: The Clang TreeTransform Class Template Reference. www.clang.llvm.org/
doxygen/classclang 1 1TreeTransform.html

9. Clang-15.02: Clang - A C language family frontend for LLVM. www.clang.llvm.
org/

10. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking. In: Proceedings of the
NATO Advanced Study Institute on Deductive Program Design, pp. 305–349
(1996)

11. Clarke, E.M., Klieber, W., Nováček, M., Zuliani, P.: Model checking and the state
explosion problem. In: Meyer, B., Nordio, M. (eds.) LASER 2011. LNCS, vol. 7682,
pp. 1–30. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35746-
6 1

12. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7), 394–397 (1962)

13. Delaitre, A.: Test Suite #100: C test suite for source code analyzer v2 - vulnerable
(2015). www.samate.nist.gov/SRD/view.php?tsID=100

14. Google: sanitizers. www.github.com/google/sanitizers
15. IBM: The Purify Documentation. www.ibm.com/support/pages/tools-purify
16. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An

overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–354. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45337-7 18

17. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algeb.
Methods Program. 78(5), 293–303 (2009)

18. LLVM: The LLVM Compiler Infrastructure Project. www.llvm.org/
19. Loveland, D.W.: Automated theorem proving: a logical basis, Fundamental studies

in computer science, vol. 6. North-Holland (1978)
20. Metzman, J., Szekeres, L., Simon, L.: Fuzzbench: an open fuzzer benchmarking

platform and service. In: ESEC/FSE 2021: 29th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing, pp. 1393–1403. ACM (2021)

21. Milewicz, R., Vanka, R., Tuck, J.: Runtime checking C programs. In: Proceedings
of the 30th Annual ACM Symposium on Applied Computing, pp. 2107–2114. ACM
(2015)

https://doi.org/10.1007/978-3-540-31980-1_36
https://doi.org/10.1007/978-3-540-31980-1_36
www.clang.llvm.org/docs/LibASTMatchersReference.html
www.clang.llvm.org/docs/LibASTMatchersReference.html
www.clang.llvm.org/doxygen/classclang_1_1TreeTransform.html
www.clang.llvm.org/doxygen/classclang_1_1TreeTransform.html
www.clang.llvm.org/
www.clang.llvm.org/
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-35746-6_1
www.samate.nist.gov/SRD/view.php?tsID=100
www.github.com/google/sanitizers
www.ibm.com/support/pages/tools-purify
https://doi.org/10.1007/3-540-45337-7_18
www.llvm.org/

350 Y. Xing et al.

22. Nagarakatte, S., Zhao, J., Martin, M.M.K.: CETS: compiler enforced temporal
safety for C. In: Proceedings of the 9th International Symposium on Memory Man-
agement, ISMM 2010, pp. 31–40. ACM (2010)

23. Nagarakatte, S., Zhao, J., Martin, M.M.K., Zdancewic, S.: SoftBound: highly com-
patible and complete spatial memory safety for C. In: Proceedings of the 2009
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2009, pp. 245–258. ACM (2009)

24. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, Providence, pp. 46–57. IEEE Computer Society
(1977)

25. ROSE: Main Page. www.rosecompiler.org/ROSE HTML Reference/index.html
26. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: AddressSanitizer: a fast

address sanity checker. In: 2012 USENIX Annual Technical Conference, Boston,
pp. 309–318. USENIX Association (2012)

27. Seward, J., Nethercote, N.: Using valgrind to detect undefined value errors with
bit-precision. In: Proceedings of the 2005 USENIX Annual Technical Conference,
pp. 17–30. USENIX (2005)

28. Shiraishi, S., Mohan, V., Marimuthu, H.: Test suites for benchmarks of static
analysis tools. In: 2015 IEEE International Symposium on Software Reliability
Engineering Workshops, ISSRE Workshops, pp. 12–15. IEEE Computer Society
(2015)

29. Signoles, J., Kosmatov, N., Vorobyov, K.: E-ACSL, a runtime verification tool for
safety and security of C programs (tool paper). In: RV-CuBES 2017. An Interna-
tional Workshop on Competitions, Usability, Benchmarks, Evaluation, and Stan-
dardisation for Runtime Verification Tools. Kalpa Publications in Computing, vol.
3, pp. 164–173. EasyChair (2017)

30. Simpson, M.S., Barua, R.: MemSafe: ensuring the spatial and temporal memory
safety of C at runtime. Softw. Pract. Exp. 43(1), 93–128 (2013)

31. Spinczyk, O., Lohmann, D., Urban, M.: AspectC++: an AOP extension for C++.
Softw. Dev. J. 5, 68–76 (2005)

32. Stepanov, E., Serebryany, K.: Memorysanitizer: fast detector of uninitialized mem-
ory use in C++. In: Proceedings of the 13th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO 2015, pp. 46–55. IEEE
Computer Society (2015)

33. WLLVM: The Whole Program LLVM Project. www.github.com/travitch/whole-
program-llvm

34. Zhou, S., Yang, Z., Qiao, D.: Ferry: state-aware symbolic execution for exploring
state-dependent program paths. In: 31st USENIX Security Symposium, USENIX
Security 2022, pp. 4365–4382. USENIX Association (2022)

www.rosecompiler.org/ROSE_HTML_Reference/index.html
www.github.com/travitch/whole-program-llvm
www.github.com/travitch/whole-program-llvm

A Stream Runtime Verification Tool with Nested
and Retroactive Parametrization

Paloma Pedregal1,2(B) , Felipe Gorostiaga1,3(B) , and César Sánchez1

1 IMDEA Software Institute, Madrid, Spain
{paloma.pedregal,felipe.gorostiaga}@imdea.org
2 Universidad Politécnica de Madrid (UPM), Madrid, Spain

3 CIFASIS, Rosario, Argentina

Abstract. In online monitoring, a monitor is synthesized from a formal specifi-
cation, which later runs in tandemwith the system under study. In offline monitor-
ing the trace is logged as the system progresses to later do post-mortem analysis
after the system has finished executing.

In this tool paper we demonstrate the use of retroactive dynamic parametriza-
tion, a technique that allows an online monitor to revisit the past log as it pro-
gresses. This feature enables new monitors to be incorporated into an already
running system and to revisit the past for particular behaviors, based on new infor-
mation discovered. Retroactive parametrization also allows a monitor to lazily
ignore events and revisit and process them later, when the monitor discovers
that it should have processed those events. We showcase the use of retroactive
dynamic parametrization to perform network monitor denial of service attacks.

1 Introduction

Runtime verification (RV) [2,18] is a lightweight formal dynamic verification technique
that analyzes a single trace of execution using a monitor derived from a specification.
The initial specification languages to describe monitors in RV where borrowed from
property languages for static verification, including linear temporal logic (LTL) [23],
adapted to finite traces [3,8,19]. Most RV languages describe a monolithic monitor
that later processes the events received. Dynamic parametrization (also known as para-
metric trace slicing) allows quantifying over objects and spawning new monitors that
follow independently objects as they are discovered, like in Quantified Event Automata
(QEA) [1].

Stream runtime verification [4,11,22] (SRV), pioneered by Lola [7] defines mon-
itors by declaring the dependencies between output streams and input streams. The
initial application domain of Lola was the testing of synchronous hardware. Temporal
testers [24] were later proposed as a monitoring technique for LTL based on Boolean
streams. Copilot [11,21,22] is a DSL similar to Lola, which declares dependencies
between streams in a Haskell-based style, and then generates C monitors. Lola2.0 [9]

This work was funded in part by PRODIGY Project (TED2021-132464B-I00) funded by
MCIN/AEI/10.13039/501100011033/ and the European Union NextGenerationEU/PRTR, and
by a research grant from Nomadic Labs and the Tezos Foundation.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 351–362, 2023.
https://doi.org/10.1007/978-3-031-44267-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_19&domain=pdf
http://orcid.org/0009-0008-5270-6992
http://orcid.org/0000-0002-3478-3408
http://orcid.org/0000-0003-3927-4773
https://doi.org/10.1007/978-3-031-44267-4_19

352 P. Pedregal et al.

extends Lola allowing dynamically parametrized streams, similarly to QEA. Stream
runtime verification has also been extended recently to asynchronous and real-time
systems [6,10,12,17]. HLola [5,13,15] is an implementation of Lola as an embed-
ded DSL in Haskell, which allows borrowing datatypes from Haskell directly as Lola
expressions, and using features like higher-order functions to ease the development of
specifications and the runtime system. In this paper we use HLola and extend it with
capabilities for retroactive dynamic parametrization.

In practice it is common to monitor properties that are defined after the system
starts running, and we cannot or do not wish to stop the system. Therefore, the monitor
will receive online new events after being installed. Then, one can (1) ignore that the
monitor is started in the middle of the computation and pretend that the history starts
after the monitor is installed, (2) encode the lack of knowledge of the monitor in the
specification, or, (3) if the beginning of the trace was stored in an accessible log, allow
the monitor to collaborate with the log to process the missing past events and then
continue to process the future events online. The first option is the most natural and
in many cases an acceptable solution, while the second option has been explored in
[16], but these two options neglect the beginning of the trace which can sometimes
affect the monitoring task. The third option requires a novel combination of offline and
online monitoring offering the possibility of accessing the past of the trace. Moreover,
enriching an SRV monitor with the ability of accessing the past allows the description
of properties that revisit the past exploiting information discovered at a later time.

In this tool paper we demonstrate an extension of the tool HLola1 which enables
a novel dynamic instantiation of monitors called retroactive dynamic parametrization.
The new tool offers dynamic parametrization and extends it with the ability to revisit
the past of a live stream of events, effectively combining online and offline runtime
verification. A longer version of this paper is available at [20].

2 Overview

Preliminaries. Stream Runtime Verification (SRV) generalizes monitoring algorithms
to arbitrary data, by preserving the temporal dependencies and generalizing the
datatypes using multi-sorted data theories. HLola is an extensible implementation of
Lola [7] developed as an embedded DSL in Haskell, from which HLola borrows
datatypes as data theories. HLola also allows the easy implementation of new pow-
erful features as libraries with no changes to the core engine. The tool described in this
paper incorporates retroactive parametrization to HLola.

A Lola specification 〈I,O,E〉 consists of (1) a set of typed input stream variables
I , which correspond to the inputs observed by the monitor; (2) a set of typed output
stream variables O which represent the outputs of the monitor as well as intermediate
observations; and (3) defining equations, which associate every output y ∈ O with a
stream expression Ey that describes declaratively the intended values of y (in terms of
the values of inputs and output streams).

The set of stream expressions of a given type is built from constants and function
symbols as constructors (as usual), and also from offset expressions of the form s[now],

1 Available at https://github.com/imdea-software/hlola/.

https://github.com/imdea-software/hlola/

A Stream Runtime Verification Tool with Nested and Retroactive Parametrization 353

or s[k|d] where s is a stream variable, k is an integer number and d is a value of
the type of s (used as default). For example, altitude[now] represents the value of
stream altitude in the current instant, and altitude[-1|0.0] represents the value of
stream altitude in the previous instant, with 0.0 as the value used at the first instant.
HLola can be efficiently monitored, meaning that (most programs) can be monitored in
constant space and in constant time per event (trace-length independent monitoring [5]).

As a byproduct of its design, HLola allows static parametrization in stream defini-
tions, this is, streams that abstract away some concrete values, which are later instanti-
ated by the compiler. Even though static parametrization is very useful to define libraries
and clean specifications, parameters are expanded at static time before the monitor starts
running, and parametric streams cannot be spawned with a value that is discovered at
runtime. The keystone of the design of HLola is to use datatypes and functions from
Haskell as the data theories of Lola. In turn, HLola also allows using Lola specifica-
tions as datatypes, via the function runSpec that executes a specification over the input
trace and produces a value of the result type. This allows Lola specifications to be used
as data theories within Lola, a feature called nested monitoring [14]. Nested monitors
allow writing functions on streams as SRV specifications, creating and executing these
specifications dynamically. In [14] nested monitors are created and destroyed within an
instant and their final states are lost. Also, nested monitors cannot access the past of the
trace before the beginning of the sub-trace they receive. In this tool paper we introduce
novel features by relaxing these restrictions, gaining the ability to combine offline and
online runtime verification. We allow nested monitors to be created dynamically and
continue executing alongside their parent monitor. The states of the dynamically cre-
ated nested monitors are carried on to the next instant, and they can inspect the full past
of the system.

We introduce the following kinds of nested monitors:
1. Retroactive Nested Monitors, which can access events and trigger a finer anal-

ysis of the past of the trace when necessary. For example, consider monitoring network
traffic, where the monitor receives (1) the source and destination of each IP packet, and
(2) the packets per second in the last hundred instants.

We want to detect whether an address has received too many packets in the last
hundred instants, which can be specified as follows: if the packet flow is low, then there
is no attack, but when the flow rate is above a predefined threshold (threshold_pps) we
have to inspect the last hundred packets and check if a given address is under attack.
We can define a specification which only observes the packets per second in the last
hundred instants, ignoring the source and destination of the IP packets. If the packets per
second exceed threshold_pps, this triggers the creation of a retroactive nested monitor,
which will retrieve the past of the trace using the new keyword withTrace and do the
more expensive analysis of detecting if an address is in fact under attack. Note how this
specification detects an attack at most one hundred instants after it happens. Also note
that the nested monitors in this example are created, executed and destroyed at every
instant.

2. (Forward) Dynamic Parametrization, which let us instantiate a parametric
stream using dynamically discovered values, via the new keyword over. The over oper-
ator takes a parametric stream strm of type S with a parameter of type P, and a stream

354 P. Pedregal et al.

params of sets of values of type P, and creates an expression of type Map P S, whose
keys at any given instant are the values in params[now], and where the value associ-
ated to each key is the instantiation of s over the key. Using the over operator we can
dynamically instantiate a parametric stream over a set of parameters that are discovered
while processing the trace of input.

Consider a scenario where we are monitoring network traffic, and following every
TCP 3-way handshake in which (1) the source sends a packet SYN, then (2) the desti-
nation sends SYN/ACK and then (3) the source sends ACK. We define a parametric stream
which receives a pair of addresses and generates a value, which can be Valid or Error,
depending on whether the handshake is correct or not. We cannot know statically for
which pair of addresses we have to instantiate the parametrized stream, and therefore,
the monitor has as parameter a pairs of addresses to follow. At every instant, the moni-
tor can add a new pair of source and destination addresses. In this manner we can use a
parametric stream over dynamic values using the over operator. Every time a new value
is incorporated to the set of active parameters, we spawn a new monitor parametrized
with the new value. Then, we preserve the state of this monitor between instants in
an auxiliary stream, executing the nested monitor alongside the outer monitor until the
auxiliary monitor is no longer needed, that is, until its associated parameter is removed
from the set.

3. Retroactive Dynamic Parametrization, which allows revisiting the past of a
trace every time the monitor discovers a new parameter to instantiate the parametric
stream. The new parametrized stream continues to monitor in an online manner. The
static parametrization already present in HLola is too limited to implement this feature
because the monitor cannot know the state of a parametric stream over an arbitrary
parameter in the middle of the trace unless the parameter was determined statically.
Using static parametrization to implement dynamic parametrization is only feasible for
small parameter sets, like Booleans or a small enumerated type, but it becomes unfea-
sible when the space of potential parameters is large.

To implement retroactive dynamic parametrization we add a new clause withInit

to the over operator to describe an initializer, which indicates how the nested monitor
can take its state up to the current instant. An initializer will typically call an external
program with the corresponding arguments that indicate how to efficiently retrieve the
elements in the past of the trace that are relevant to the parameter.

Consider the case of monitoring a file system assessing whether every time a file
is read or written, it had been created previously. One way is to use forward dynamic
parametrization following all the files as they are opened. With retroactive monitoring,
we can start following a file id just when it is read or written, and only then (calling an
external program) retrieve the past of the trace for that parameter. The external program
can use an index to efficiently retrieve only the events relevant to a file id or even only
the open events.

3 HLola with Dynamic Parametrization

We have implemented retroactive nested parametrization, forward dynamic
parametrization and retroactive dynamic parametrization in HLola.

A Stream Runtime Verification Tool with Nested and Retroactive Parametrization 355

Dynamically mapping a parametric stream strm with a stream of set of parame-
ters params of type Set P creates an auxiliary stream x_over_params of type Map P
MonitorState that associates, at every instant, each parameter p in paramswith the state
of the nested monitor corresponding to s<p>. The value of x ‘over‘ params is simply
the projection of the parametrized streams in the monitors of x_over_params[now].
There are three possibilities for the behavior of the auxiliary stream for given p:

(1) p ∈ params[-1|∅] \ params[now]: the parameter was in the set in the previous
instant, but it is no longer in the set in the current instant. In this case, p and its
associated value are deleted from the map x_over_params[-1|∅].

(2) p ∈ params[-1|∅]∩ params[now]: the parameter was in the set and it is still in the
set now. In this case, we feed the current event to the monitor associated with p and
let it progress one step. Then, the value of the parametrized stream in the nested
monitor is associated with p in the returned map.

(3) p ∈ params[now] \ params[-1|∅]: the parameter was not in the set, but it is now.
The monitor for p is installed, executing the initializer (possibly revisiting the past)
to get the monitor up to date and ready to continue online. After installing the mon-
itor, the new event is injected, and the value of s<p> is associated to p the returned
map. Note that the past is only revisited when a new parameter is discovered. Once
the stream is instantiated with the parameter, its corresponding nested monitor will
continue executing over the future of the trace online.

Since we want HLola to support initialization from different sources (e.g. a DBMS,
a blockchain node, or plain log files) the initializer of the internal monitors typically
invokes an external program. This external program, called adapter, is in charge of
recovering the trace and formatting it adequately for the monitor.

4 A Network Traffic Case Study and Empirical Evaluation

We report in this section an empirical evaluation of retroactive dynamic parame-
trization, implemented in our tool, that extends HLola [13]. We use our tool to imple-
ment monitors that describe several algorithms for the detection of distributed denial
of service attacks (DDOS). All the experiments were executed on a Linux machine
with 256GB of RAM and 72 virtual cores (Xeon Gold 6154 @3GHz) running Ubuntu
20.04. For conciseness we use RP to refer to retroactive parametrization, and non-
RP to implementations that do not use retroactive parametrization (but use dynamic
parametrization). We evaluate empirically the following hypotheses:

(H1) RP is functionally equivalent to non-RP.
(H2) RP and non-RP run at similar speeds, particularly when most dynamic instantia-

tions turn out to be irrelevant.
(H3) RP consumes significantly less memory than non-RP, particularly when most

instantiations are irrelevant.
(H4) Aggregated RP—where the monitor receives summaries of the trace that indicate

if further processing is necessary—is functionally equivalent to RP.
(H5) Aggregated RP is much more efficient than RP and non-RP without aggregation.

356 P. Pedregal et al.

The datasets for the experiments are (anonymized) samples of real network traffic col-
lected by a Juniper MX408 router that routes the traffic of an academic network used
by several tens of thousand of users (students and researchers) simultaneously, routing
approximately 15Gbps of traffic on average. The sampling ratio provided by the routers
was 1 to 100 flows2. Each flow contains the metadata of the traffic sampled, with infor-
mation such as source and destination ports and addresses, protocols and timestamps,
but does not carry information about the contents of the packets. These flows are stored
in aggregated batches of 5 minutes encoded in the netflow format.

Our monitors implement fourteen known DDOS network attacks detection algo-
rithms. An attack is detected if the volume of connections to a destination address sur-
passes a fixed attack-specific threshold, and those connections come from a sufficiently
large number of different attackers, identified by source IP address. The number of dif-
ferent source addresses communicating with a destination is known as the entropy of the
destination. Each attack is concerned with a different port and protocol and considers a
different entropy as potentially dangerous.

In order to process the network data needed by the monitors, we developed a Python
adapter that uses nfdump, a toolset to collect and process netflow data. The tool nfdump
can be used to obtain all the flows in a batch, optionally applying some simple filters,
or to obtain summarized information about all the flows in the batch. For example,
nfdump can provide all the flows received, filtered by a protocol or address, as well
as the volume of traffic to the IP address that has received the most connections of a
specific kind.

Our empirical evaluation consists of four datasets in which we knew whether each
attack was present:

(D1) A batch of network flows with an attack based on malformed UDP packets (UDP
packets with destination port 0). This batch contains 419938 flows, with less than 1%
malformed UDP packets. The threshold for this attack is 2000 packets per second,
which is surpassed in this batch for one single address, for which the entropy of 5 is
exceeded.

(D2) A batch of network flows with no attack, containing 361867 flows, of which only
66 are malformed UDP packets (roughly, 0.001%).

(D3) A batch of network flows with no attack, but with many origin IP addresses and
100 destination addresses.

(D4) Intervals with several batches, where only one batch has an attack based on mal-
formed UDP packets.

The monitors in our experiments follow the same attack description: In a batch of
5min of flow records, an address is under attack if it receives more than t0 packets per
second or bits per second from more than t1 different source addresses (where t0 and
t1 depend on the attack).

We have implemented our monitors in three different ways3:

2 Most detection systems use a much slower sampling of 1 to 1000 or even less.
3 The specifications for (S1), (S2) and (S3) as well as the instructions and dataset to execute them
are available in a dedicated branch of the repository, at https://github.com/imdea-software/
hlola/tree/RV2023.

https://github.com/imdea-software/hlola/tree/RV2023
https://github.com/imdea-software/hlola/tree/RV2023

A Stream Runtime Verification Tool with Nested and Retroactive Parametrization 357

(S1) Brute force: Using (forward) dynamic parametrization, the monitor calculates
the number of packets and bits per second (which we call “volume”) for all potential
target IP addresses. It also computes the entropy for each potential target address and
for each attack. For every flow, the monitor internally updates the information about the
source address, destination and volume.

1 input String fileId
2 input Flow flow

3 define Int flowCounter = flowCounter[-1|0] + 1
4 define Bool firstFlow = fileId[now] /= fileId [-1|""]
5 define Bool lastFlow = fileId[now] /= fileId[1|""]

6 output [String] attacked_IPs = map detect attacks
7 where detect atk = (attack_detection atk)[now]

8 define String attack_detection <AttackData atk> =
9 if (markerRate atk)[now] > threshold atk then

10 if (ipEntropy atk)[now] > maxEntropy atk then
11 (maxDestAddress atk)[now]
12 else "Over threshold but not entropy"
13 else "No attack"

14 define Int markerRate <AttackData atk> = ...
21 define String maxDestAddress <AttackData atk> = ...

29 define AddrInfo addrInfo <AttackData atk> =
30 insertWith updt destAddr[now] (extractInfo atk flow[now]) prev
31 where
32 prev = if firstFlow[now] then empty else (addrInfo atk) [-1|empty]
33 updt (p,b,ts,te) (p’,b’,ts’,te’) = (p+p’,b+b’,min ts ts’,max te te’)

34 define Histogram attackHist <AttackData atk> = let
35 hist = if firstFlow[now] then empty else (attackHist atk) [-1|empty]
36 in insertWith (+) destAddr[now] 1 hist

The specification uses the flowCounter to perform retroactive dynamic parametriza-
tion. The stream attacked_IPsmaps the parametric stream attack_detection over the
list of attacks. The stream attack_detection checks that the marker (bits per seconds
or packets per second) of the attack and the IP entropy of any address do not exceed the
thresholds. If the thresholds are exceeded, the IP address most accessed (which is cal-
culated in maxDestAddress) is considered to be under attack. The stream markerRate
calculates the bits per seconds or packets per second of an attack, while the stream
maxDestAddress calculates the most accessed address. The stream addrInfo keeps a
map of the packets, bits, start time and endtime per destination address. Similarly, the
stream attackHist keeps a map of the number of accesses per destination address. In
this scenario, we calculate the ipEntropy (not shown in the monitor above) of every
address at all times, and we simply return the size of the set of different origin IP
addresses of the most accessed IP.

(S2) Retroactive: In this implementation, the monitor also analyzes all flows, calcu-
lating the volume of packets for each address, but in this case the monitor lazily avoids
calculating the entropy, using retroactive dynamic parametrization. The monitor only

358 P. Pedregal et al.

calculates the entropy when the volume of traffic for an address surpasses the thresh-
old. The monitor uses the over operator to revisit the past flows of the batch filtered by
that attack, using the Python adapter which produces the subset of the flows required
to compute the entropy. The monitoring then continues calculating the entropy until the
end of the batch. The specification for this implementation is the same as in (S1), but
with a different implementation of the IP entropy calculation:

37 define Int ipEntropy <AttackData atk> =
38 (maybe 0 size . listToMaybe . elems) mset
39 where
40 mset = setSrcForDestAddr atk ‘over‘ maybeAddress atk
41 ‘withInit‘ initer atk fileId[now] flowCounter[now]

42 define (Set String) setSrcForDestAddr <AttackData atk> <String dst> = let
43 prevSet = if firstFlow[now] then empty
44 else (setSrcForDestAddr atk) [-1|empty]
45 in insert srcAddr[now] prevSet

46 define (Set String) maybeAddress <AttackData atk> =
47 if (attack_detection atk)[now] then singleton (maxDestAddress atk)[now]
48 else empty

In this case, we define a parametric stream setSrcForDestAddr that calculates
the set of different origin IPs of a destination address. We define an auxiliary stream
maybeAddress that contains the most accessed address, if it exceeds the threshold. The
definition of ipEntropy will instantiate dynamically the stream setSrcForDestAddr
with the most accessed address once it exceeds the threshold, with an initializer spe-
cific to the suspected attack and address. We compose different functions to retrieve the
values of the map (which is at most one), and get the size of the corresponding set, if it
exists, using 0 as the default value.

(S3) Aggregated: This specification uses retroactive nested monitors with retroac-
tive dynamic parametrization to analyze summaries of batches of flows, executing a
nested specification over the current batch and the suspected attack, when one of the
markers is above a predefined threshold: the monitor receives a summary of a five
minute batch of network data, as a single event containing fourteen attack markers.
The monitor is based on the ability of the backend to pre-process batches using nfdump
to obtain—for each attack and for the whole batch—the maximum volume of traf-
fic for any IP address. If an attack marker is over the threshold, the monitor spawns
a nested monitor which retrieves a subset of the flows for that batch and attack, and
analyzes those flows in a more detailed way. This second nested monitor behaves like
the retroactive parametrization in (S2). The aggregation of data provides a first, coarse
overview serving as a necessary condition to spawn the expensive nested monitor. This
is particularly useful because attacks are infrequent and the ratio of false positives of
the summary detection is relatively low.

There are two great advantages to this implementation, in comparison to the imple-
mentation in (S2): the finer analysis of the flows will only be performed when the aggre-
gated data indicates a possible attack, instead of all the time and for all flows; and when
the nested monitor is triggered, it will be triggered with two parameters, a specific batch
and attack, that will be used to filter the flows before processing them. Being able to

A Stream Runtime Verification Tool with Nested and Retroactive Parametrization 359

filter the flows by the characteristics of a specific attack greatly reduces the amount of
flows of the batch to a small percentage (for example, in the dataset (D1), which is a
batch with an attack, less than 1% of the flows of the batch were part of the attack).

The nested specification flowAnalyzer is triggered by a marker which indicates a
possible attack. This specification analyzes individual flows, and it is exactly the spec-
ification described in (S2), but it will be used to analyze all flows in a batch only if the
aggregated marker is positive.

1 use innerspec flowAnalyzer
2 input String fileId
3 input Int marker <AttackData atk>

4 output [String] attacked_IPs = map detect attacks
5 where detect atk = (attack_detection atk)[now]

6 define String attack_detection <AttackData atk> =
7 if (marker atk)[now] > threshold atk then
8 runSpec (flowAnalyzer atk (flowRetriever atk fileId[now]))
9 else "No attack"

The constant attacks is a list of the attack data of the fourteen different attacks
that the monitor can detect. The nested specification flowAnalyzer analyzes individual
flows, and it can use retroactive dynamic parametrization, or (the less efficient) non-
retroactive dynamic parametrization.

Results: In the first experiment we run the three implementations against dataset
(D4). In this interval of multiple batches, only one of which contains an attack, all three
implementations identify the batch with the attack and correctly detect the kind of attack
and target address. This confirms empirically hypotheses (H1) and (H4).

In the second experiment we run specifications (S1) and (S2) against datasets (D1),
(D2) and (D3). The results are reported in the following table:

(D1) (Attack) (D2) (No Attack) (D3) (No Attack)

(S1) (Brute force) 18m12.146 s 15m51.599 s 16m34.795 s

(S2) (Retroactive) 20m43.921 s 17m19.844 s 19m30.518 s

(S3) (Aggregated) 0m16.208 s 0m2.109 s 0m2.115 s

We can see that the running times for the brute force and retroactive implementations
are similar, while the aggregated implementation is extremely fast in comparison, which
empirically confirms (H2) and (H5). This is because (S3) exploits the summarized
information, and does not find any marker over the threshold for the datasets (D2)
and (D3) so the flows within the batch are never individually processed. For dataset
(D1), a nested monitor will be executed because one of the markers (for the attack with
malformed UDP packets) is over the threshold, but it will only try to detect the attack
corresponding to that marker, and it will only receive a small subset of the flows (less
than 1% of the flows of the batch are relevant for the attack). If all the markers for all
the attacks were over their threshold and all the flows were implicated in the attacks,

360 P. Pedregal et al.

the time required would be closer to the retroactive implementation. The ad-hoc aggre-
gation of data by the external tool is very efficient, as is the verification of this data by
the monitor, so this implementation is especially advantageous when the positives (or
false positives) are expected to be infrequent, and when most of the data can be filtered
out before executing the nested monitor.

Fig. 1.Memory usage of the brute force (a), (b), (c) and retroactive (d), (e), (f).

In a third experiment we run a version of specifications (S1) and (S2)—instrumented
with capabilities to measure memory consumption—on (D1), (D2) and (D3). The
results, reported in Fig. 1, empirically confirm (H3). For the three datasets, the memory
used by the brute force approach increases linearly over time, as it has to keep track
of the volume and IP entropy for every attack and every potential target address. On
the other hand, the memory usage of the retroactive implementation remains close to
constant, with a sudden increase when an attack is detected and the past flows have to
be retrieved and processed.

5 Conclusions

In this paper we have introduced the concept of retroactive dynamic parametrization.
In dynamic parametrization, proposed in QEA and Lola2.0, a new monitor (which is an
instance of a generic monitor) is instantiated the first time a parameter is discovered.
In retroactive dynamic parametrization the decision to instantiate a dynamic paramet-
ric monitor can be taken later in the future, for example when a given parameter is
discovered to be interesting.

Effectively implementing retroactive parametrization requires the ability to revisit
the history of the computation, a task that can be efficiently implemented with a logging

A Stream Runtime Verification Tool with Nested and Retroactive Parametrization 361

system. Therefore, retroactive parametrization allows a fruitful combination of offline
and online monitoring. Retroactive parametrization also allows monitors to be created
in the middle of an execution without requiring to process the whole trace from the
beginning.

We have implemented this technique in HLola and empirically evaluated its effi-
ciency, illustrating that it can efficiently detect distributed denial of service attacks in
realistic network traffic.

References

1. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified event
automata: towards expressive and efficient runtime monitors. In: Giannakopoulou, D., Méry,
D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-32759-9_9

2. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification. LNCS, vol. 10457.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5

3. Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In: Arun-Kumar,
S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272. Springer, Heidelberg
(2006). https://doi.org/10.1007/11944836_25

4. Bozzelli, L., Sánchez, C.: Foundations of Boolean stream runtime verification. Theor. Com-
put. Sci. 631, 118–138 (2016)

5. Ceresa, M., Gorostiaga, F., Sánchez, C.: Declarative stream runtime verification (hLola). In:
Oliveira, B.C.S. (ed.) APLAS 2020. LNCS, vol. 12470, pp. 25–43. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64437-6_2

6. Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M., Thoma, D.: TeSSLa:
temporal stream-based specification language. In: Massoni, T., Mousavi, M.R. (eds.) SBMF
2018. LNCS, vol. 11254, pp. 144–162. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-03044-5_10

7. D’Angelo, B., et al.: LOLA: runtime monitoring of synchronous systems. In: Proceedings of
the 12th International Symposium of Temporal Representation and Reasoning (TIME 2005),
pp. 166–174. IEEE CS Press (2005). https://doi.org/10.1109/TIME.2005.26

8. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.: Reason-
ing with temporal logic on truncated paths. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003.
LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-45069-6_3

9. Faymonville, P., Finkbeiner, B., Schirmer, S., Torfah, H.: A stream-based specification
language for network monitoring. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS,
vol. 10012, pp. 152–168. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46982-
9_10

10. Faymonville, P., Finkbeiner, B., Schwenger, M., Torfah, H.: Real-time stream-based moni-
toring. CoRR abs/1711.03829 (2017)

11. Goodloe, A.E., Pike, L.: Monitoring distributed real-time systems: a survey and future direc-
tions. Technical report, NASA Langley Research Center (2010)

12. Gorostiaga, F., Sánchez, C.: Striver: stream runtime verification for real-time event-streams.
In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 282–298. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03769-7_16

13. Gorostiaga, F., Sánchez, C.: HLola: a very functional tool for extensible stream runtime ver-
ification. In: TACAS 2021. LNCS, vol. 12652, pp. 349–356. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-72013-1_18

https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/11944836_25
https://doi.org/10.1007/978-3-030-64437-6_2
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1007/978-3-030-03044-5_10
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/978-3-540-45069-6_3
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-319-46982-9_10
https://doi.org/10.1007/978-3-030-03769-7_16
https://doi.org/10.1007/978-3-030-72013-1_18
https://doi.org/10.1007/978-3-030-72013-1_18

362 P. Pedregal et al.

14. Gorostiaga, F., Sánchez, C.: Nested monitors: monitors as expressions to build monitors.
In: Feng, L., Fisman, D. (eds.) RV 2021. LNCS, vol. 12974, pp. 164–183. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-88494-9_9

15. Gorostiaga, F., Sánchez, C.: Stream runtime verification of real-time event streams with the
Striver language. Int. J. Softw. Tools Technol. Transfer 23, 157–183 (2021)

16. Gorostiaga, F., Sánchez, C.: Monitorability of expressive verdicts. In: Deshmukh, J.V.,
Havelund, K., Perez, I. (eds.) NASA Formal Methods, pp. 693–712. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-06773-0_37

17. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Schramm, A.: Tessla: runtime veri-
fication of non-synchronized real-time streams. In: Proceedings of the 33rd ACM/SIGAPP
Symposium on Applied Computing (SAC 2017), pp. 1925–1933. ACM Press (2018). https://
doi.org/10.1145/3167132.3167338. https://dl.acm.org/doi/10.1145/3167132.3167338. Track
on Software Verification and Testing Track (SVT)

18. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Algebr. Progr.
78(5), 293–303 (2009)

19. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems. Springer,
New York (1992). https://doi.org/10.1007/978-1-4612-0931-7

20. Pedregal, P., Gorostiaga, F., Sánchez, C.: Retroactive parametrized monitoring (2023).
https://doi.org/10.48550/arXiv.2307.06763

21. Perez, I., Dedden, F., Goodloe, A.: Copilot 3. Technical Report. NASA/TM-2020-220587,
NASA Langley Research Center (2020)

22. Pike, L., Goodloe, A., Morisset, R., Niller, S.: Copilot: a hard real-time runtime monitor. In:
Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 345–359. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16612-9_26

23. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE Symposium
on Foundations of Computer Science (FOCS 1977), pp. 46–67. IEEE CS Press (1977)

24. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In: Misra,
J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586. Springer,
Heidelberg (2006). https://doi.org/10.1007/11813040_38

https://doi.org/10.1007/978-3-030-88494-9_9
https://doi.org/10.1007/978-3-031-06773-0_37
https://doi.org/10.1145/3167132.3167338
https://doi.org/10.1145/3167132.3167338
https://dl.acm.org/doi/10.1145/3167132.3167338
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.48550/arXiv.2307.06763
https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1007/11813040_38

EMOP: A Maven Plugin
for Evolution-Aware Runtime Verification

Ayaka Yorihiro, Pengyue Jiang(B), Valeria Marqués, Benjamin Carleton,
and Owolabi Legunsen

Cornell University, Ithaca, USA
{ay436,pj257,vmm49,bc534,legunsen}@cornell.edu

Abstract. We present eMOP, a tool for incremental runtime verifica-
tion (RV) of test executions during software evolution. We previously used
RV to find hundreds of bugs in open-source projects by monitoring pass-
ing tests against formal specifications of Java APIs. We also proposed
evolution-aware techniques to reduce RV’s runtime overhead and human
time to inspect specification violations. eMOP brings these benefits to
developers in a tool that seamlessly integrates with the Maven build sys-
tem. We describe eMOP’s design, implementation, and usage. We eval-
uate eMOP on 676 versions of 21 projects, including those from our ear-
lier prototypes’ evaluation. eMOP is up to 8.4× faster and shows up to
31.3× fewer violations, compared to running RV from scratch after each
code change. eMOP also does not miss new violations in our evaluation,
and it is open-sourced at https://github.com/SoftEngResearch/emop.

1 Introduction

The prevalence of costly and harmful bugs in deployed software underscores the
need for techniques to help find more bugs during testing. Runtime verification
(RV) [3,13,14,26,30,38,44] is such a technique; it monitors executions against
formal specifications and produces violations if a specification is not satisfied.

We previously used RV to amplify the bug-finding ability of tests [32,34,40].
We found hundreds of bugs by monitoring passing tests in hundreds of open-
source projects against Java API behavioral specifications [31]. Such specifi-
cations should not change as client programs evolve. For example, monitoring
the Collections_SynchronizedCollection specification [7] revealed several bugs,
e.g., [8,9]: possible “non-deterministic behavior” caused by not synchronizing
on iterators over Collection.synchronizedCollection()’s output [27]. Develop-
ers confirmed and fixed these and many other bugs that RV helped us find.

We also found that RV incurs runtime overhead and requires a lot of human
time to inspect violations. To reduce RV costs, we proposed three evolution-aware
techniques that focus RV and its users on code affected by changes [35,37]:

(1) Regression Property Selection (RPS) re-checks, in a new code version,
a subset of specifications that may be violated in code affected by changes.

(2) Violation Message Suppression (VMS) displays new violations—users
are more likely to deal with violations that are related to their changes [41].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 363–375, 2023.
https://doi.org/10.1007/978-3-031-44267-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_20&domain=pdf
https://github.com/SoftEngResearch/emop
https://doi.org/10.1007/978-3-031-44267-4_20

364 A. Yorihiro et al.

(3) Regression Property Prioritization (RPP) monitors important specifi-
cations on developers’ critical path; others are monitored in the background.

These evolution-aware techniques reduce RV costs, but our proof-of-concept pro-
totypes are hard to integrate with open-source projects. Also, these techniques
can be used together but our prototypes do not allow users to easily do so.

We present eMOP, a Maven plugin for incremental RV of tests during soft-
ware evolution. Maven is a popular build system, so eMOP can bring the ben-
efits of RV to a wider audience of developers. eMOP improves RPS and RPP,
re-implements VMS, and allows users to easily combine RPS, VMS, or RPP.

Components in eMOP’s architecture (1) extend Maven’s surefire plugin [48]
to perform analysis before and after monitoring tests; (2) use STARTS [36] to
reason about code changes and find classes affected by changes; (3) re-configure
a JavaMOP [29] Java agent on the fly to select which specifications to monitor
and where to instrument them; and (4) get fine-grained change information from
Git for computing new violations. Once installed, users only need to change few
Maven configuration lines to start using RPS, VMS, RPP, or their combination.

We evaluate eMOP on 676 versions of 21 projects. On the subset of projects
and their versions that we previously used to evaluate our prototypes, eMOP
produces similar results. Overall, on average, eMOP is up to 8.4× faster (aver-
age: 4.0×) and shows up to 31.3× fewer violations (average: 11.8×), compared
to using JavaMOP to perform RV from scratch after each code change.

We defined an evolution-aware RV technique as safe if it finds all new vio-
lations after a change, and precise if it finds only new violations [37]. Also, we
proposed two sets of RPS variants: two variants that are theoretically safe and
ten variants that are not, under the assumptions that we make.

Our prior evaluation [37] showed that all RPS variants (including theoreti-
cally unsafe ones) were empirically safe. But, on projects that we did not pre-
viously evaluate, we initially find that our theoretically unsafe RPS variants are
not empirically safe if 3rd-party libraries change. So, to improve RPS safety, we
rerun RV from scratch when libraries change. We find that RPS with eMOP is
empirically safe in all projects and versions that we evaluate in this paper.

Table 1. eMOP vs. our early prototypes [37].
Feature Prototype eMOP
Maven integration ✗ ✓

Single-module projects ✓ ✓

Multi-module projects ✗ ✓/✗

RPS ✓ ✓

VMS ✓ ✓

RPP ✓ ✓

RPS + VMS ✗ ✓

RPP + VMS ✗ ✓

RPS + RPP 6 variants 12 variants
RPS + RPP + VMS ✗ ✓

Safe w.r.t. CUT ✓ ✓

Safe w.r.t. 3rd-party lib ✗ ✓

Version comparison jDiff jGit
Ease of configuration low high

Comparison with our Previ-
ous Prototypes. Table 1 com-
pares eMOP with our origi-
nal prototypes [37]. ✓ means
“supported”; ✗ means “not sup-
ported”, and ✓/✗ means “par-
tially supported”. Unlike eMOP,
our prototypes (1) do not inte-
grate with Maven or work on
multi-module projects; (2) par-
tially support combining RPS
and RPP, but do not com-
bine RPS or RPP with VMS;

eMOP: A Maven Plugin for Evolution-Aware Runtime Verification 365

(3) are less safe when 3rd-party libraries change; (4) use an external tool to
re-obtain change information that is already in Git; and (5) are hard to config-
ure. eMOP will aid future evolution-aware RV research; it is on GitHub [12], as
are our artifacts [11].

2 EMOP

We summarize evolution-aware RV, and our eMOP implementation. Our origi-
nal paper [37] has theoretical background, examples, definitions, diagrams, etc.

2.1 Evolution-Aware RV Techniques

Regression Property Selection (RPS). The inputs to RPS are the old and
new program versions, and the set of Java API specifications. The outputs are
affected specifications that may be violated in code affected by changes. RPS uses
class-level static change-impact analysis [36] to find impacted classes that tran-
sitively depend on changed code. Then, RPS analyzes impacted classes together
with all available specifications, and outputs specifications involving API meth-
ods that are called in impacted classes.

There are 12 RPS variants that differ in how impacted classes are com-
puted (three options), and where affected specifications are instrumented (four
options) [37]. Let Δ be the set of changed classes. Impacted classes are computed
in three ways—(a) ps3: Δ and its dependents—classes that use or extend those in
Δ; (b) ps2: classes in (a) plus dependees—classes that those in Δ use or extend;
and (c) ps1: classes in (b) plus dependees of Δ’s dependents. Impacted classes are
always instrumented, but there are two Boolean options (and four ways to com-
bine them) for whether to instrument unimpacted classes or 3rd-party libraries.
Theoretically, these variants differ in how much safety they trade off for efficiency.
But, all variants were empirically safe in our original evaluation [37].

Violation Message Suppression (VMS). To reduce human time for inspect-
ing specification violations, VMS aims to show only new violations after code
changes. VMS does not reduce RV runtime overhead. The rationale behind VMS
is that developers are more likely to look at and debug new violations, compared
to looking at all old and new violations at the same time [41]. VMS takes the set
of all violations in the new version, filters out those for which there is evidence
that they are old violations, and presents the rest to the user as new violations.

Regression Property Prioritization (RPP). The goal is to reduce the time
to see important violations, so users may react faster. RPP splits RV into two
phases. Important specifications, defined by the user, are monitored in the critical
phase and any violations of those specifications are reported immediately. The
other specifications are monitored in a background phase that users do not have
to wait for. Users can decide when and how violations from the background
phase are presented or when specifications should be automatically promoted
(demoted) from (to) the background phase.

366 A. Yorihiro et al.

Fig. 1. eMOP’s architecture.

2.2 Implementation

We implement 12 RPS variants, VMS, and RPP in our eMOP Maven plugin. We
choose Maven (1) so users can more easily integrate evolution-aware RV, (2) to
ease evolution-aware RV usage during testing, and (3) because we built Maven
plugins before [21,36]. Future work can add eMOP to other build systems.

Figure 1 shows eMOP’s architecture, and how components map to some
available user commands (see Sect. 3). There, ovals show processes and rectangles
show data. “Old Metadata” and “New Metadata” contain a per-class mapping
from non-debug related bytecode to checksums computed from the old and new
code versions, respectively, the classpath, and checksums for the jars on the
classpath. eMOP uses STARTS [36] to compute these mappings and classpath
information is used to detect changes in 3rd-party libraries. Also “.git” is Git’s
internal database of changes, which eMOP uses to find which violations are
likely new. “CIA” represents our modified change impact analysis in STARTS;
eMOP uses “CIA” to compute impacted classes in three ways (Sect. 2.1). Lastly,
eMOP invokes “JavaMOP” to monitor test executions.

RPS. We invoke the AspectJ compiler, ajc [1], to statically analyze which spec-
ifications are related to impacted classes. JavaMOP specifications are written in
an AspectJ dialect, so our static analysis outputs, as affected, specifications that
ajc compiles into any impacted class. To reduce analysis cost, eMOP invokes
ajc on stripped-down specifications that contain only method-related informa-
tion. Finally, based on ajc’s output, eMOP modifies a JavaMOP agent on the fly
to only monitor affected specifications and instrument them in locations required
by the RPS variant.

VMS. We re-implement VMS on top of JGit [28] (instead of jDiff). JGit provides
an API for extracting fine-grained information from “.git”. By default, eMOP

eMOP: A Maven Plugin for Evolution-Aware Runtime Verification 367

takes the most recent Git commit as the old version and the current working
tree as the new version. So, VMS users can check if code changes introduce
new violations before making a commit. Users can also specify what commit to
compare the working tree against, or the ID of any two commits.

In the first VMS run, all violations are new. Subsequently, VMS analyzes
all violations from the old version against the code change. If a specification is
violated in the same class and on a line that is mapped to the same location in
both versions, VMS filters it out as old; the rest are presented as new violations.
VMS users can choose to write new or old violations to the console, a file on
disk, or both.

RPP. Users can provide a file containing important specifications for RPP to
monitor in the critical phase; the rest are monitored in the background. Users
can also provide a file containing important specifications and a file containing
a disjoint set of specifications to be monitored in the background phase. If users
do not provide a file, RPP uses the following default scheme. The first time,
RPP monitors all specifications in the critical phase. Only specifications that
are violated in the first run are monitored in the critical phase in the second
run; the rest are monitored in the background. Subsequently, a specification
that is violated in the background phase is promoted to the critical phase in
the next run. Users can manually demote specifications from the critical phase.
Future work can add options to let users specify when a specification should be
automatically promoted to or demoted from the critical phase. RPP currently
does not support multi-module projects.

Combinations. eMOP users can combine RPS, VMS, and RPP. When using
all three together, RPS first finds affected specifications, then RPP splits the
monitoring of affected specifications into critical and background phases before
VMS shows new violations from RPP’s critical phase. When using VMS with
RPS or RPP, the other techniques are run first, then VMS shows new violations.
Running RPS with RPP works in the same order as when combining all three.

3 Installation and Usage

Installing eMOP. eMOP can be installed by following the directions in the
“Installation” section of the README.md file on eMOP’s GitHub page [12]. Note
that installing eMOP from sources requires satisfying all prerequisites that are
listed on that GitHub page.

Integrating eMOP. To use eMOP in a Maven project, modify that project’s
configuration file—typically called pom.xml—to add the latest version of eMOP
and the JavaMOP agent argument to the configuration of the Maven surefire
plugin (which runs tests) file. The current way to add the eMOP to a project
is to modify the pom.xml file like so:

368 A. Yorihiro et al.

1 <build><plugins>
2 ...
3 <plugin>
4 <groupId>org.apache.maven.plugins</groupId>
5 <artifactId>maven−surefire−plugin</artifactId>
6 <version>2.20−or−greater</version>
7 <configuration> <argLine>−javaagent:${JavaMOPAgent.jar}</argLine>
8 </configuration>
9 </plugin>

10 <plugin>
11 <groupId>edu.cornell</groupId>
12 <artifactId>emop−maven−plugin</artifactId>
13 <version>${latest_eMOP_version}</version>
14 </plugin>
15 ...
16 </plugins></build>

Using eMOP. These commands allow users to: (1) list impacted classes or
affected specifications, or (2) run RPS, VMS, RPP, and their combinations:

1 $ mvn emop:help # list all goals (commands)
2 $ mvn emop:impacted # list impacted classes
3 $ mvn emop:affected−specs # list affected specifications
4 $ mvn emop:rps # run RPS
5 $ mvn emop:rpp # run RPP
6 $ mvn emop:vms # run VMS
7 $ mvn emop:rps−rpp # run RPS+RPP
8 $ mvn emop:rpp−vms # run RPP+VMS
9 $ mvn emop:rps−vms # run RPS+VMS

10 $ mvn emop:rps−rpp−vms # run RPS+RPP+VMS
11 $ mvn emop:clean # delete all metadata

The emop:help command lists all eMOP commands and what they do; the others
are related to evolution-aware RV. Next, we describe some configuration options.

Running RPS. Three flags choose among RPS variants: (1) closureOption
specifies how to compute impacted classes: PS1, PS2, or PS3 (the default: PS3);
(2) includeLibraries controls whether to instrument 3rd-party libraries (default:
true); and (3) includeNonAffected controls whether non-impacted classes are
instrumented (default: true). For example, this command runs RPS and instru-
ments neither classes that are not impacted nor 3rd-party libraries:

1 $ mvn emop:rps −DincludeLibraries=false −DincludeNonAffected=false

Running VMS. Users can see violations on the console or in a violation-counts
file. By default, only new violations are shown. But, users can view all violations
in the console or in the file via Boolean showAllInConsole and showAllInFile
options, respectively (default: false). Users can specify commit IDs using
lastSha and newSha. For example, this command shows new violations relative
to commit ID abc123 in the console but it still outputs all violations to file:

1 $ mvn emop:vms −DlastSha=abc123 −DshowAllInFile=true

Running RPP. Users can provide specifications to RPP using two options
named criticalSpecsFile and backgroundSpecsFile. If only criticalSpecsFile
is provided, then all other specifications will be monitored in the background. By

eMOP: A Maven Plugin for Evolution-Aware Runtime Verification 369

default, RPP tracks metadata for critical and background phase specifications
as described in Sect. 2.1. But RPP also has a demoteCritical option (default:
false) for demoting previously important specifications that are not violated in
the critical phase of the current run to the background phase for the next run. For
example, this command monitors specifications in critical.txt (respectively,
background.txt) in the critical (respectively, background) phase:

1 $ mvn emop:rpp −DcriticalSpecsFile=critical.txt −DbackgroundSpecsFile=background.txt

Running Combinations. Options in the union of those from combined tech-
niques can be used, e.g., this command runs RPS+RPP using the RPS variant
that instruments neither classes that are not impacted nor 3rd-party libraries,
while also demoting specifications during RPP:

1 $ mvn emop:rps−rpp −DincludeLibraries=false −DincludeNonAffected=false −DdemoteCritical=true

4 Evaluation

Setup. We evaluate eMOP on 21 Maven projects from our previous and ongoing
work on RV and regression testing. They are all single-module Maven projects
(RPP does not yet support multi-module projects). We use between 11 and
50 versions per project, for a total of 676 versions. Table 2 shows project names
(click or hover to see GitHub URL), number of versions that we evaluate (sha#),
sizes (KLOC), number of test classes in the first version (TC), average test time
(test[s]), and average JavaMOP overhead for these versions (mop).

Table 2. Projects that we evaluate.
Project sha# KLOC TC test[s] mop
jgroups-aws 11 0.3 1 3.3 12.5
Yank 17 0.6 18 3.1 7.2
java-configuration-impl 24 1.7 5 3.9 7.0
embedded-jmxtrans 50 3.1 15 4.1 12.3
jbehave-junit-runner 50 1.5 17 4.7 15.2
compile-testing 50 7.0 25 6.2 6.0
javapoet 20 8.1 18 9.1 6.6
exp4j 50 3.5 5 9.3 3.8
joda-time 50 93.3 158 10.8 3.9
jnr-posix 50 11.8 24 11.9 11.9
imglib2 20 33.0 81 13.0 2.5
HTTP-Proxy-Servlet 50 1.0 1 13.3 3.2
smartsheet-java-sdk 21 7.9 51 13.5 4.5
zt-exec 15 2.6 24 14.6 1.9
commons-imaging 20 44.5 107 18.4 4.9
jscep 50 3.2 50 18.9 3.7
commons-lang 20 80.7 172 21.5 3.1
datasketches-java 48 41.9 178 35.8 2.3
commons-dbcp 20 11.4 43 53.0 1.8
stream-lib 20 4.7 28 91.0 6.9
commons-io 20 32.7 114 102.1 4.1

We use the same versions for
projects that we evaluated in our
original paper [37]. To choose
versions for the other projects,
we iterate over the 500 most
recent versions in each project
(most recent first) and terminate
when we have tried all 500 or
found 50 versions that change
at least one Java file, compile,
tests pass, JavaMOP does not
fail, and JavaMOP time is at
least 20 s. The versions that we
evaluate per project are in our
artifact repository [11].

For RPS, we measure the
time and the number of unique
violations per variant. For VMS,
we measure the number of new
and total violations per version.

https://github.com/meltmedia/jgroups-aws
https://github.com/timmolter/Yank
https://github.com/microfocus-idol/java-configuration-impl
https://github.com/jmxtrans/embedded-jmxtrans
https://github.com/valfirst/jbehave-junit-runner
https://github.com/google/compile-testing
https://github.com/square/javapoet
https://github.com/fasseg/exp4j
https://github.com/JodaOrg/joda-time
https://github.com/jnr/jnr-posix
https://github.com/imglib/imglib2
https://github.com/mitre/HTTP-Proxy-Servlet
https://github.com/smartsheet-platform/smartsheet-java-sdk
https://github.com/zeroturnaround/zt-exec
https://github.com/apache/commons-imaging
https://github.com/jscep/jscep
https://github.com/apache/commons-lang
https://github.com/apache/datasketches-java
https://github.com/apache/commons-dbcp
https://github.com/addthis/stream-lib
https://github.com/apache/commons-io

370 A. Yorihiro et al.

Fig. 2. Runtime overheads of, and violations from, JavaMOP and RPS variants in
eMOP for projects and versions in our original evolution-aware RV paper [37].

For RPP, we measure the critical and background phase times. All overheads for
RPS are computed from end-to-end times including time for compilation, anal-
ysis, running tests, and monitoring. RPP overhead is only for the critical phase.
We run eMOP on 193 revisions (7 no longer compile) of 10 projects from our
original paper [37], using the same experimental settings as before. We also run
all eMOP variants on all 21 projects using Amazon EC2 C5.4xlarge instances.

Results: Comparing with Prior Evaluation. Solid bars in Fig. 2 show aver-
age overheads of JavaMOP and RPS variants for the 10 projects in our prior
evaluation [37]. RV overhead is trv/ttest; trv and ttest are times with and with-
out JavaMOP, respectively. Sect. 2 describes ps1, ps2, and ps3; “�” and “c” mean
3rd-party libraries and non-impacted classes, respectively, are not instrumented.

In Fig. 2, all RPS variants reduce the average JavaMOP overhead, which is
7.2× when our evolution-aware techniques are not applied. As expected, based
on how we designed these variants, ps1 incurs the most RPS overhead (5.7×),
while psc�

3 incurs the least overhead (1.8×).
In general, excluding 3rd-party libraries has a significant effect on reducing

RPS overhead, as seen for example in the difference between ps1 (5.7×) and
ps�

1 (3.6×) in Fig. 2. For libraries that do not depend on 3rd-party libraries, or
those that depend on libraries that do not use API methods related to monitored
specifications, library exclusion has negligible effect.

Striped bars in Fig. 2 show average numbers of unique violations per version
across these projects. RPS reduces the number of violations reported, but in the
best case (psc�

3) it still shows an average of 23.4 violations—most of which are
old—after every code change. So, a technique like VMS is needed that reports
only the few new violations. The overheads and violations in Figs. 2 follow the
same trends across RPS variants as in our original paper [37]. So, we are more

eMOP: A Maven Plugin for Evolution-Aware Runtime Verification 371

Fig. 3. Average runtime overheads of all RPS variants in eMOP when run alone, and
when each RPS variant is combined with RPP and VMS.

confident in how we implemented evolution-aware RV in eMOP. Tooling and
Maven overheads likely explain any differences with our old results.

Results on More Subjects and Versions than Prior Work. We discuss
details about how eMOP performs when all three evolution-aware RV techniques
are combined, and then discuss the contribution of each technique.

Striped bars in Fig. 3 show average overheads per project when all RPS vari-
ants are combined with RPP and VMS. The projects in Fig. 3 include some that
were not in Fig. 2, and some in Fig. 2 are not in the figure because of dependency
issues when we moved experiments to the cloud. We show the RPS variants in
Fig. 3 in decreasing order of average overheads.

In terms of total time incurred (not shown in Fig. 3), the best-performing
variant in RPS+RPP+VMS is psc�

3 (it does not instrument 3rd-party libraries
or classes that are not impacted by changes). Comparing the striped mop and
psc�

3 bars shows that, on average across these projects and versions, psc�
3 reduces

RV overhead by roughly 4.0× (a very rough estimate, since we take a mean of
means). The project with the biggest speedup saw a 8.4× reduction in overhead,
from 15.2× with JavaMOP to 1.8× with psc�

3 .

RPP Contributions to the Combination. Solid bars in Fig. 3 show how well
RPS performs on its own. Comparing the mop and psc�

3 bars shows that RPS
reduces RV overhead by 2.4× when used alone. We elide per-project details for
lack of space, but we discuss two observations. First, the project that benefits the
most from using only RPS had a 4.9× overhead reduction (from 6.9× to 1.4×).

372 A. Yorihiro et al.

Table 3. Unique violations from JavaMOP (not
evolution-aware), and VMS.

Project sha# mop VMS mop VMS
(sum) (sum) (avg) (avg)

jgroups-aws 11 12 12 1.1 1.1
Yank 17 22 8 1.3 0.5
java-configuration 24 68 8 2.8 0.3
embedded-jmxtrans 50 627 19 12.5 0.4
jbehave-junit-runner 50 248 9 5.0 0.1
compile-testing 50 541 48 10.8 1
javapoet 20 180 9 9 0.5
exp4j 50 0 0 0 0
joda-time 50 1100 43 22 0.9
jnr-posix 50 1659 72 33.2 1.4
imglib2 20 1540 78 77 3.9
HTTP-Proxy-Servlet 50 929 66 11.6 1.3
smartsheet-java-sdk 21 598 300 28.5 14.3
zt-exec 15 15 2 1 0.1
commons-imaging 20 1064 57 53.2 2.9
jscep 50 1706 213 34.1 4.3
commons-lang 20 1220 61 61.0 3.0
datasketches-java 48 96 34 2 0.7
commons-dbcp 20 40 2 2 0.1
stream-lib 20 300 16 15 0.8
commons-io 20 1795 94 89.8 4.7

Across projects 676 13760 1151 20.2 1.7

Second, the further reduction
of average RV overhead resulting
from combining RPP with RPS
can be seen by comparing the
solid and striped bars in Fig. 3.
Doing so shows that RPP’s crit-
ical phase, plus RPS incurs less
overhead than using RPS alone.

VMS Results. Table 3 shows
VMS results; “sha#” is the num-
ber of versions that we evalu-
ate per project, the “mop” and
“VMS” columns show the sum
and average of violations found
per version. Recall that VMS
does not reduce RV runtime
overhead; rather, it aims to show
only new violations. We find
that using VMS shows much
fewer violations than RPS or
JavaMOP. Specifically, across all
evaluated projects (see “Across
projects” row), VMS shows only

1.7 violations per version, compared to 20.2 violations with JavaMOP—an aver-
age reduction of 11.8×. The project with the most average reduction—31.3×—
is embedded-jmxtrans. Fractional values that are less than 1.0 in the per project
average rows show the number of violations shown every ten versions, on average.
For example, in jbehave-junit-runner, VMS shows an average of one violation
in every ten versions, but JavaMOP shows five violations per version.

Our manual analysis shows that all RPS variants are safe—they do not miss
any new violation that VMS reports. (Like in our original paper, we assume that
VMS reports all new violations.) These results on VMS and safety are in line
with findings from our original paper. So, users will likely feel less swamped by
a deluge of violations that RV shows if run from scratch after every change.

Limitations. eMOP only supports JUnit; it does not yet work for other testing
frameworks, e.g., TestNG. eMOP’s bytecode instrumentation sometimes clashes
with the instrumentation that open-source projects already use for non-RV rea-
sons. Non-trivial engineering is needed to make instrumentation compatible. We
evaluated eMOP on 161 Java API specifications that are commonly used in
RV research. As more specifications are added, more optimizations will likely be
needed. eMOP uses JGit to map lines from old to new versions, so a few old vio-
lations can still be presented as new. More precise change-impact analyses, such
as semantic differencing [20] can be investigated and added as an option in the
future. eMOP’s use of a static change-impact analysis leads to two limitations.
First, eMOP may be unsafe if it does not find classes that are impacted by the

eMOP: A Maven Plugin for Evolution-Aware Runtime Verification 373

changes due to the use of dynamic features like reflection. Second, it is possible
that the set of impacted classes would be more precise if analysis is done at the
method-level instead. eMOP may not work as-is for other kinds of specifications
than the kinds of API-level specifications that we check. Lastly, eMOP does not
yet control for test flakiness [5,42,45,47] or non-determinism.

Related Work. Researchers proposed many other RV tools other than Java-
MOP, e.g., [10,22–25,43]. eMOP is the first to integrate evolution-aware RV
techniques into a popular build system. Evolution-awareness is not unique to
JavaMOP; future work can make other tools evolution aware. Tools for offline
RV exist, e.g., [4]. It is not yet clear how to make offline RV evolution aware. Plu-
gins helped make non-RV techniques easier to use. For example, Evosuite [15,16]
is a test generation technique that seemed to gain more popularity after plug-
ins for Maven, Eclipse, and IntelliJ were developed [2]. Also, after decades of
research on regression test selection (RTS) [6,18,19,33,39,46], RTS plugins that
are integrated with Maven or Ant [17,36] led to recent adoption of RTS tools
among developers and renaissance in RTS research.

5 Conclusions and Future Work

eMOP brings the benefits of evolution-aware RV to Maven. We find that eMOP
reduces RV costs and makes it easier to use RV during regression testing. We
plan to evaluate eMOP on more projects, address some of its limitations, and
implement more features. eMOP is open-sourced; we hope that it will provide
a platform for advancing the research on integrating software testing and RV.

Acknowledgements. We thank the anonymous reviewers for their comments on an
earlier draft of this paper. This work was partially supported by funds from the Google
Cyber NYC Institutional Research Program and the US National Science Foundation
under Grant Nos. 2019277 and 2045596.

References

1. ajc. https://www.eclipse.org/aspectj/doc/next/devguide/ajc-ref.html
2. Arcuri, A., Campos, J., Fraser, J.: Unit test generation during software develop-

ment: Evosuite plugins for Maven, IntelliJ, and Jenkins. In: ICST, pp. 401–408
(2016)

3. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification.
LNCS, vol. 10457, pp. 1–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-75632-5_1

4. Basin, D., Harvan, M., Klaedtke, F., Zălinescu, E.: MONPOLY: monitoring usage-
control policies. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp.
360–364. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-
8_27

5. Bell, J., Legunsen, O., Hilton, M., Eloussi, L., Yung, T., Marinov, D.: DeFlaker:
automatically detecting flaky tests. In: ICSE, pp. 433–444 (2018)

https://www.eclipse.org/aspectj/doc/next/devguide/ajc-ref.html
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-642-29860-8_27
https://doi.org/10.1007/978-3-642-29860-8_27

374 A. Yorihiro et al.

6. Biswas, S., Mall, R., Satpathy, M., Sukumaran, S.: Regression test selection tech-
niques: a survey. Informatica 35(3), 289–321 (2011)

7. Collections_SynchronizedCollection Specification. https://github.com/
owolabileg/property-db/blob/master/annotated-java-api/java/util/
Collections_SynchronizedCollection.mop

8. SuiteHTMLReporter does not synchronize iteration on a synchronized list. https://
github.com/testng-team/testng/pull/931

9. JUnitXMLReporter does not synchronize the two synchronized collections when
iterating. https://github.com/testng-team/testng/pull/830

10. Ellul, J., Pace, G.J.: Runtime verification of ethereum smart contracts. In: EDCC,
pp. 158–163 (2018)

11. eMOP Artifacts. https://github.com/SoftEngResearch/emop-artifacts
12. eMOP GitHub Page. https://github.com/SoftEngResearch/emop
13. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verification. In: EDSS,

pp. 141–175 (2013)
14. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying run-

time verification tools. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol.
11237, pp. 241–262. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03769-7_14

15. Fraser, G., Arcuri, A.: Evosuite: automatic test suite generation for object-oriented
software. In: FSE, pp. 416–419 (2011)

16. Fraser, G., Arcuri, A.: A large-scale evaluation of automated unit test generation
using Evosuite. TOSEM 24(2), 1–42 (2014)

17. Gligoric, M., Eloussi, L., Marinov, D.: Ekstazi: lightweight test selection. In: ICSE
Demo, pp. 713–716 (2015)

18. Gligoric, M., Eloussi, L., Marinov, D.: Practical regression test selection with
dynamic file dependencies. In: ISSTA, pp. 211–222 (2015)

19. Graves, T.L., Harrold, M.J., Kim, J.-M., Porter, A., Rothermel, G.: An empirical
study of regression test selection techniques. TOSEM 10(2), 184–208 (2001)

20. Gyori, A., Lahiri, S.K., Partush, N.: Refining interprocedural change-impact anal-
ysis using equivalence relations. In: ISSTA, pp. 318–328 (2017)

21. Gyori, A., Lambeth, B., Shi, A., Legunsen, O., Marinov, D.: NonDex: a tool for
detecting and debugging wrong assumptions on Java API specifications. In: FSE
Demo, pp. 993–997 (2016)

22. Hallé, S., Khoury, R.: Event stream processing with BeepBeep 3. In: RV-CuBES,
pp. 81–88 (2017)

23. Havelund, K.: Rule-based runtime verification revisited. STTT 17, 143–170 (2015)
24. Havelund, K., Peled, D.: Efficient runtime verification of first-order temporal prop-

erties. In: Gallardo, M.M., Merino, P. (eds.) SPIN 2018. LNCS, vol. 10869, pp.
26–47. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94111-0_2

25. Havelund, K., Peled, D., Ulus, D.: First-order temporal logic monitoring with
BDDs. FMSD 56(1–3), 1–21 (2020)

26. Havelund, K., Roşu, G.: Monitoring programs using rewriting. In: ASE, pp. 135–
143 (2001)

27. java.util.Collections. https://docs.oracle.com/javase/8/docs/api/java/util/
Collections.html

28. JGit. http://www.eclipse.org/jgit
29. Jin, D., Meredith, P.O., Lee, C., Roşu, G.: JavaMOP: efficient parametric runtime

monitoring framework. In: ICSE Demo, pp. 1427–1430 (2012)
30. Kim, M., Kannan, S., Lee, I., Sokolsky, O., Viswanathan, M.: Java-MaC: a run-time

assurance tool for Java programs. In: RV, pp. 218–235 (2001)

https://github.com/owolabileg/property-db/blob/master/annotated-java-api/java/util/Collections
https://github.com/owolabileg/property-db/blob/master/annotated-java-api/java/util/Collections
https://github.com/owolabileg/property-db/blob/master/annotated-java-api/java/util/Collections
https://github.com/testng-team/testng/pull/931
https://github.com/testng-team/testng/pull/931
https://github.com/testng-team/testng/pull/830
https://github.com/SoftEngResearch/emop-artifacts
https://github.com/SoftEngResearch/emop
https://doi.org/10.1007/978-3-030-03769-7_14
https://doi.org/10.1007/978-3-030-03769-7_14
https://doi.org/10.1007/978-3-319-94111-0_2
https://docs.oracle.com/javase/8/docs/api/java/util/Collections.html
https://docs.oracle.com/javase/8/docs/api/java/util/Collections.html
http://www.eclipse.org/jgit

eMOP: A Maven Plugin for Evolution-Aware Runtime Verification 375

31. Lee, C., Jin, D., Meredith, P.O., Roşu, G.: Towards categorizing and formalizing
the JDK API. Computer Science Dept., UIUC, Technical report (2012)

32. Legunsen, O., Al Awar, N., Xu, X., Hassan, W.U., Roşu, G., Marinov, D.: How
effective are existing Java API specifications for finding bugs during runtime veri-
fication? ASEJ 26(4), 795–837 (2019)

33. Legunsen, O., Hariri, F., Shi, A., Lu, Y., Zhang, L., Marinov, D.: An extensive
study of static regression test selection in modern software evolution. In: FSE, pp.
583–594 (2016)

34. Legunsen, O., Hassan, W.U., Xu, X., Roşu, G., Marinov, D.: How good are the
specs? A study of the bug-finding effectiveness of existing Java API specifications.
In: ASE, pp. 602–613 (2016)

35. Legunsen, O., Marinov, D., Rosu, G.: Evolution-aware monitoring-oriented pro-
gramming. In: ICSE NIER, pp. 615–618 (2015)

36. Legunsen, O., Shi, A., Marinov, D.: STARTS: STAtic regression test selection. In:
ASE Demo, pp. 949–954 (2017)

37. Legunsen, O., Zhang, Y., Hadzi-Tanovic, M., Rosu, G., Marinov, D.: Techniques
for evolution-aware runtime verification. In: ICST, pp. 300–311 (2019)

38. Leucker, M., Schallhart, C.: A brief account of runtime verification. In: Formal
Languages and Analysis of Contract-Oriented Software, pp. 293–303 (2007)

39. Liu, Y., Zhang, J., Nie, P., Gligoric, M., Legunsen, O.: More precise regression test
selection via reasoning about semantics-modifying changes. In: ISSTA, pp. 664–676
(2023)

40. Miranda, B., Lima, I., Legunsen, O., d’Amorim, M.: Prioritizing runtime verifica-
tion violations. In: ICST, pp. 297–308 (2020)

41. O’Hearn, P.W.: Continuous reasoning: scaling the impact of formal methods. In:
LICS, pp. 13–25 (2018)

42. Palomba, F., Zaidman, A.: Does refactoring of test smells induce fixing flaky tests?
In: ICSME, pp. 1–12 (2017)

43. Reger, G., Cruz, H.C., Rydeheard, D.: MarQ: monitoring at runtime with QEA.
In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 596–610.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_55

44. Schneider, F.B.: Enforceable security policies. TISSEC 3(1), 30–50 (2000)
45. Shi, A., Gyori, A., Legunsen, O., Marinov, D.: Detecting assumptions on deter-

ministic implementations of non-deterministic specifications. In: ICST, pp. 80–90
(2016)

46. Shi, A., Hadzi-Tanovic, M., Zhang, L., Marinov, D., Legunsen, O.: Reflection-aware
static regression test selection. PACML, 3(OOPSLA), 1–29 (2019)

47. Shi, A., Lam, W., Oei, R., Xie, T., Marinov, D.: iFixFlakies: a framework for
automatically fixing order-dependent flaky tests. In: FSE, pp. 545–555 (2019)

48. About surefire. https://maven.apache.org/surefire

https://doi.org/10.1007/978-3-662-46681-0_55
https://maven.apache.org/surefire

Runtime Monitoring of Accidents
in Driving Recordings with Multi-type

Logic in Empirical Models

Ziyan An , Xia Wang , Taylor T. Johnson , Jonathan Sprinkle ,
and Meiyi Ma(B)

Department of Computer Science, Vanderbilt University, Nashville,
TN 37235, USA

{Ziyan.an,meiyi.ma}@vanderbilt.edu
Ziyan.an@vanderbilt.edu, meiyi.ma@vanderbilt.edu

Abstract. Video capturing devices with limited storage capacity have
become increasingly common in recent years. As a result, there is a grow-
ing demand for techniques that can effectively analyze and understand
these videos. While existing approaches based on data-driven meth-
ods have shown promise, they are often constrained by the availability
of training data. In this paper, we focus on dashboard camera videos
and propose a novel technique for recognizing important events, detect-
ing traffic accidents, and trimming accident video evidence based on
anomaly detection results. By leveraging meaningful high-level time-
series abstraction and logical reasoning methods with state-of-the-art
data-driven techniques, we aim to pinpoint critical evidence of traffic
accidents in driving videos captured under various traffic conditions with
promising accuracy, continuity, and integrity. Our approach highlights
the importance of utilizing a formal system of logic specifications to
deduce the relational features extracted from a sequence of video frames
and meets the practical limitations of real-time deployment.

Keywords: Logic Specifications for Images and Videos · Systems with
Learning-Enabled Components · Runtime Assurance

1 Introduction

Dashboard cameras that are designed to continuously record video footage have
become increasingly popular among vehicle owners [24,25]. However, this design
faces inherent limitations, particularly due to limited device storage capacity. For
example, critical video evidence can be overwritten by continuous loop record-
ing dashcams. Thus, there is a growing need for automated accident detection
mechanisms that can identify relevant incidents captured in these recordings,

Z. An and X. Wang—These authors made equal contributions to the work, and their
order is based on the alphabetical order of their last names.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 376–388, 2023.
https://doi.org/10.1007/978-3-031-44267-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_21&domain=pdf
http://orcid.org/0000-0002-1083-0011
http://orcid.org/0000-0003-0674-3692
http://orcid.org/0000-0001-8021-9923
http://orcid.org/0000-0003-4176-1212
http://orcid.org/0000-0001-6916-8774
https://doi.org/10.1007/978-3-031-44267-4_21

Runtime Monitoring of Accidents in Driving Recordings 377

Fig. 1. Our approach leverages runtime logic verification, data-driven detection, and
contextual information to accurately identify dangerous scenes in driving videos.

such that important evidence can be preserved, while irrelevant sections of longer
recordings can be trimmed and discarded on the fly.

Training a neural network to directly predict the anomaly label of each frame
for accident detection is a potential approach (e.g. [8,16]). However, this method
typically demands a substantial amount of hand-annotated data, which may not
always be practical or feasible to obtain [30]. Furthermore, ensuring that the
dataset is diverse enough to capture the range of accident scenarios adds another
layer of complexity [28].

An additional concern arises when data-driven models produce unrealistic
labels while they are deployed online. For example, the labels may exhibit dis-
continuous behavior, jumping back and forth across consecutive frames. Such
predictions contradict the continuous nature of accidents, which have clear start-
ing and ending points. Ideally, the algorithm should produce consistent and con-
tinuous predictions in line with our understanding of accidents in reality.

Targeting these challenges, we propose a new framework for detecting driv-
ing accidents from dashboard camera recordings that address various accident
scenarios without requiring access to additional privacy-sensitive information.
Our approach is a lightweight framework that combines data-driven techniques
with different types of logical properties, allowing for easy adaptation to different
scenarios during deployment.

More specifically, we first demonstrate that high-level time-series features
exhibit strong associativity with the occurrence of traffic accidents through
supervised learning methods. Additionally, under other conditions being equal,
the extensional experiment exhibits that the vision-based deep learning model
incorporated with the interpretive time-series abstraction could exceed the pure
vision model. From this, we give solid proof that the extracted interpretive con-
textual features have high discriminability for accident detection indeed. To fur-
ther improve the accuracy and usability of the detection results, our proposed
framework incorporates multiple types of logic properties for verification at run-
time. Figure 1 depicts an overview of our proposed approach.

This integration allows our proposed method to demonstrate more stable
and robust performance, based on essential patterns captured from not only
pure vision data but also interpretive time-series abstraction. For example, sig-

378 Z. An et al.

nificant fluctuations in the sizes of bounding boxes can be observed in abnormal
scenes, as compared to normal driving behaviors. Moreover, logic specifications
as such are not limited to specific environments, road types, or times of the day.
Therefore, the proposed method applies to different driving scenarios and does
not require extra training data for each scenario, unlike most existing data-driven
approaches. To summarize, our framework offers the following contributions:

– We propose a two-step system to detect accidents in continuous driving
videos. The system leverages vision-based algorithms, contextual informa-
tion, and runtime supervision with higher-order logic to improve predictions.

– We extract interpretive high-level time-series features which capture impor-
tant patterns and characteristics of abnormal scenes, enabling accurate and
reliable accident detection.

– We further ensure the continuity, robustness, and generalizability of our
framework under various driving scenarios by utilizing knowledge refined from
the abstraction of high-level logic properties.

2 Related Work

Previously, data-driven approaches have demonstrated remarkable performance
in detecting dangerous driving scenes and traffic accidents by leveraging offline-
trained deep models (e.g., Zhao et al. [34], Doshi et al. [14]). However, data-driven
methods for video-based accident detection face the inherent issue of dataset
scarcity [4]. While large-scale vision datasets exist (e.g., Geiger et al. [17]), pub-
licly available traffic anomaly datasets specifically designed for every detection
algorithm’s objective are limited. On the other hand, formal logic has found
widespread application in image-related tasks. For example, Dokhanchi et al. [12]
propose Timed Quality Temporal Logic to assess the quality of object detection
algorithms in terms of spatio-temporal logical relations. Additionally, Balakrish-
nan et al. [2,3] extend this work, enabling the specification and monitoring of
logic to evaluate the results of object detection algorithms with objects appear-
ing at different times.

In recent years, the integration of rules into empirical methods has gained
traction as a strategy to enhance the robustness of data-driven research [15,22,
27]. This approach enables researchers to apply well-established theoretical con-
structs and expert specifications to observational or empirical models, thereby
improving the reliability and validity of their findings [33]. Notable examples of
this research direction include Bakar et al.’s Tsetlin Machine [1], a lightweight
automata learning algorithm utilizing propositional logic, and a recent work by
Hashemi et al. [18] exploring the integration of temporal logic into control sys-
tems, allowing for the leveraging of a more diverse range of domain knowledge.
To the best of our knowledge, this work represents the first investigation into
the utilization of logical reasoning as a verification strategy to enhance overall
detection performance on video-based driving datasets.

Runtime Monitoring of Accidents in Driving Recordings 379

3 Motivating Study

To examine the difficulties of real-time accident detection in long driving videos,
we present two motivating studies in this section. Firstly, we find that time-
series features exhibit a promising ability for anomaly differentiation. Thus, we
incorporate this implicit contextual knowledge into empirical models to enhance
their performance. Secondly, we observe discontinuity issues in the predictions
made by end-to-end algorithms. As a solution, we emphasize the importance of
incorporating logic verification to address this practical concern.

Fig. 2. Each column represents a randomly chosen video, while each row represents
a meaningful high-level time-series feature, displayed sequentially. In row 1, a larger
discrepancy in the L2 norm distance between two adjacent frames indicates an increased
risk. In row 2, a larger pixel area of the car object’s bounding box implies a higher
level of risk. Row 3 shows a shorter distance (the distance feature is extracted from a
thermal map, thus larger value implies a shorter distance) between the detected car
object and the ego vehicle signifies a higher level of risk. Lastly, row 4 shows risky
situations are usually accompanied by a higher number of unknown detected objects.

3.1 Analysis on High-Level Time-Series Abstraction

To demonstrate the distinguishing feature patterns between accident and non-
accident driving video frames, we focus on four crucial high-level time series
features. These features have been identified based on the feature importance
factor of a trained Random Forest (RF) [5] model, as illustrated in Fig. 2.

By combining these observations, we gain a more insightful understanding of
how accident frames can be distinguished from normal scenes. In the figure above,

380 Z. An et al.

we randomly select five videos as columns, where the orange points represent
abnormal (accident) frames, and the blue points represent normal (non-accident)
frames in the driving video sequence. In particular, the first row demonstrates
that large gaps between adjacent frames indicate an elevated risk factor. Consid-
ering an accident as an out-of-control scenario, it is easy to correlate these large
gaps with reasons such as driving too fast or encountering sudden unexpected
situations. The second row shows that a large pixel area of the car object in a
frame, signifying the ego car’s proximity to the leading car, indicates potential
risk. This can be considered in conjunction with the third feature. As depicted
in the third row of the figure, it is evident that a small distance from the car
object to the ego in a frame is associated with a risk factor, and this close prox-
imity beyond the safe boundary projects imminent danger. Finally, an unusually
large number of unknown objects in a frame indicates complexity in the road
environment, serving as a predictive indicator of risky situations.

3.2 Analysis on Discontinuity of Anomaly Detection

In practice, the occurrence of accidents is usually continuous, and the output
of anomaly detection should not jump between normal and abnormal in the
time sequence space within the time of the accident, resulting in discontinuous
anomaly detection and incomplete interception of accident evidence. Although
the high-level time-series features mentioned above can already be employed to
obtain anomaly predictions with relevant good performance, we can intuitively
observe from Fig. 3 that this discontinuity of prediction still has a serious adverse
impact on the availability of the anomaly detection system.

Fig. 3. Discontinious anomaly prediction provided by Random Forest via high-level
time-series abstraction of an accident example video.

4 Proposed Method

Targeting the challenges identified above, our proposed framework (Fig. 1) begins
by capturing frames from each first-person video stream using the small storage
device. We employ pre-trained state-of-the-art vision models to extract multi-
modality scene statistics and gain the differential features between two adjacent

Runtime Monitoring of Accidents in Driving Recordings 381

frames. Simultaneously, our second module extracts environmental features as
time-series data, such as weather and illumination conditions. These two sets of
time-series data are concatenated to generate a high-level time-series abstraction.
The downstream decision-making component provides anomaly prediction by
either utilizing only the abstraction via multiple machine learning models or
by combining the abstraction with pure vision information via deep learning
models. Finally, the decision is calibrated and enhanced by multiple types of
logic specifications and properties.

4.1 High-Level Time-Series Feature Extraction

Object Detection Feature Extraction. As the contextual and surrounding
data of the ego, we extract the following information from each video:

– Object count: We detect 12 transportation-related classes using YOLOv3 and
aggregate the total count for each class in each frame.

– Detection confidence: We gather statistics for the minimum, maximum, and
mean confidence scores associated with each object bounding box.

– Object distance: We measure the distance between the ego vehicle and the
center of each detected bounding box, then record statistics for minimum,
maximum, and mean distances.

– Object size: By calculating the pixel area of each object’s bounding box, we
determine the minimum, maximum, and mean sizes for each class.

Frame Difference Feature Extraction. The frame difference feature is a
commonly used technique in video processing and analysis to detect motion in
a sequence of frames. It involves computing the difference between two adjacent
frames and using this difference as a feature for further analysis. Therefore, in
this work, we incorporate the following frame-by-frame difference features:

– L-2 norm is a common method used to measure the difference between two
frames. It quantifies the average squared difference between the pixel values
of the two frames. Mathematically, the L-2 norm is defined as L2(x1, x2) =
‖x1 − x2‖22. A lower L-2 distance indicates two more similar frames.

– We compute the top 10 eigenvalues of the absolute difference matrix, implying
the most striking features of the difference between two consecutive frames.

Illumination and Weather Feature Extraction. For illumination and
weather prediction tasks, we first perform model selection on part of the
labeled dataset using several deep learning models, including ResNet-50 [19],
MobileNet [20], VGG-19 [29], Xception [9], and DenseNet-201 [21]. For both pre-
diction tasks, DenseNet-201 performs the best. For illumination prediction tasks,
we train the model on a two-class dataset that contains day and night images,
and for weather prediction tasks, we train the model on a hybrid five-class image
dataset containing sunny, cloudy, rainy, snowy, and foggy weather [31]. Further,

382 Z. An et al.

we use pre-trained models to predict illumination and weather labels for dash-
cam driving frames. Finally, we assign the majority of predictions of the entire
driving video as the final illumination and weather label for all frames in a video.

4.2 Empirical Model for Accident Classification

We show that our framework, incorporating a machine learning model based on
only high-level time-series features, together with a deep learning model utiliz-
ing both vision information and high-level time-series abstraction, can provide
feasible anomaly predictions.

As there are multiple time-series features extracted from driving dash cam
video frames, we employ basic machine learning algorithms to examine the corre-
lation between these features and the accident classes. The abstraction comprises
13 dimensions of frame difference features, 120 dimensions of object detection
features, and 2 dimensions of illumination and weather label features, with the
dependent variable being the binary label.

We then design a deep neural network architecture that leverages pre-trained
ResNet-18 weights as the feature extractor and fully connected layers that pro-
cess high-level contextual information to detect the occurrence of accidents. The
structure consists of the following components. Firstly, raw frames from driving
videos are passed through the pre-trained ResNet-18 feature extractor, which
outputs learned image representations from the complex model. After that, a
linear layer is utilized to reduce the dimension of the learned representation.
Then, an additional linear layer equipped with batch normalization and ReLU
activation is employed to learn representations from high-level contextual infor-
mation. The outputs from both the pre-trained ResNet-18 feature extractor and
the additional linear layer with contextual information are concatenated into a
one-dimensional tensor. The concatenated tensor is then fed into a final linear
layer with a Sigmoid activation function that maps the output to a probability
range between 0 and 1. The output from the Sigmoid activation is rounded to
obtain the final class label.

4.3 Logic Calibration and Verification

FOL and HOL Specifications. During the process of deploying machine
learning models with high-level time-series features, we have observed that the
path logic of the decision tree could provide usable anomaly predictions to some
extent. It is familiar that a tree structure could be represented as a tree graph
and several mutually exclusive rules, which could be considered as First Order
Logic (FOL) for further applications. In this case, each rule has a probability
associated with the class based on the majority of labels. However, as discussed
above, this data-driven FOL cannot ensure the accuracy, continuity, and integrity
of the anomaly detection task. Thus, we propose employing Higher Order Logic
(HOL) generated from the FOL.

The design of HOL stems from an idea of simplicity. As mentioned above,
each sample (frame) of the dataset will be assigned to a leaf node of the decision

Runtime Monitoring of Accidents in Driving Recordings 383

tree, thus each sample could apply to one rule, which is the path the sample goes
through from the root node to the leaf node. Plus, this sample could inherit the
probability associated with the leaf node. It is assumed that the final decision
could rely on continuous observation of the sequential frames. Assuming the
observation window size is k, the abnormal impulse, denoted as odds, up to
the current frame i can be defined by dividing the combination of probabilities
that these frames are abnormal by the combination of probabilities that the
frames are normal, as (1). Note the probability of each frame normal is pj0, and
the probability of abnormal is pj1, pj0 + pj1 = 1. Then, when the odds signal is
strong enough, the system recognizes it as the starting point of an accident;
when the odds signal is weak enough, the system recognizes it as the ending
point of an accident, and all continuous frames between the starting point and
the ending point will be judged as abnormal continuously, the process is shown
in Fig. 4. Moreover, the threshold value of the odds signals for the starting and
ending points can be obtained by data-driven method or annotated by experts.

oddsi =

∏i
j=i−(k−1) pj1

∏i
j=i−(k−1) pj0

(1)

Fig. 4. Process of FOL and HOL calibration. In this example, we set the window size
to 5, and we employ an array with dimension 122 to represent context information.

Temporal Logic Specifications. Temporal logic is a powerful tool for express-
ing specifications on time-series data, offering formal symbolism, evaluation
mechanisms, and semantics [13]. In our proposed framework, we utilize Sig-
nal Temporal Logic (STL) to establish verification criteria [23]. This allows us
to consider a range of signal types, such as raw images, extracted time-series
features, and factorized data. These verification criteria can either be provided
by an expert, derived from empirical observations, or learned from data-driven
algorithms. In STL, we represent the temporal range as [a, b] ∈ R≥0, where
a ≤ b. We use the function μ : R

n → {�,⊥} to denote a signal predicate,
such as f(x) ≥ 0, where x ∈ X is the signal variable. The temporal operator

384 Z. An et al.

“always” is denoted by �, and the temporal operator “eventually” is denoted
by ♦. More specifically, �[a,b]ϕ indicates that ϕ should hold at every future
time step within the interval [a, b]. ♦[a,b]ϕ indicates that ϕ should hold at some
future time step within [a, b]. In our framework, specifications such as “the acci-
dent frame should satisfy the property that its maximum bounding box sizes of
the previous and following three frames are greater than 60% of the maximum
bounding box size across all n frames” can be easily specified with the STL for-
mula �[1,n](�[t−3,t+3]max(bbox) ≥ 0.6 · mbox), where t specifies the current
timestamp, n denotes the total number of frames, “bbox” denotes the bounding
box areas of the current frame, and “mbox” denotes the maximum bounding
box size across the video.

5 Evaluation Results

5.1 Evaluation Setup

In this work, we utilized real traffic accident frames obtained from user-uploaded
YouTube videos for our evaluations [32]. To be more specific, we downloaded a
total of 627 lengthy videos from the internet, each of which could be processed
into several hundred frames with corresponding annotations. From these videos,
we selected 29 videos (approximately 5%) to form our testing dataset, with each
video containing complete sequential frames. Out of the remaining 598 videos,
which encompassed a total of 64,563 individual frames, we divided the frames
randomly into a training dataset (80%) and a validation dataset (20%). The
percentage of accident frames in the dataset was 33.89%. The validation dataset
was used for model fine-tuning and model selection processes.

Table 1. Comparison of model performance.

Methods Testing Performance

Accuracy Recall F1 Runtime (s)

XGB [7] 76.36% 37.46% 47.78% 0.012

LR [11] 69.88% 0.44% 0.84% 0.003

DT [6] 63.43% 51.05% 44.64% 0.002

RF [5] 74.98% 44.64% 50.75% 0.071

SVM [10] 70.64% 1.22% 2.34% 12.99

NB [26] 70.64% 1.22% 2.34% 13.12

RF-HOL (Ours) 85.74% 68.29% 73.44% 3.197

ResNet-ft [19] 60.94% 47.73% 41.38% 2.155

ResNet-ts (Ours) 73.48% 50.61% 52.43% 2.125

ResNet-ts-STL (Ours) 67.80% 59.12% 51.47% 0.017

Runtime Monitoring of Accidents in Driving Recordings 385

5.2 Baselines

In this work, all deep learning models were implemented and trained using
PyTorch framework, utilizing an NVIDIA RTX-3070 GPU. We experimented
with two optimization algorithms, namely Stochastic Gradient Descent (SGD)
and Adam, with different learning rates of 1e-2, 1e-3, and 1e-4. The models
with the best performance during the evaluation process were reported. More
specifically, we consider the methods listed below.

1. ResNet18-ft: We employ a pre-trained ResNet18 on ImageNet and freeze the
last two layers for fine-tuning, which solely relies on vision information.

2. ResNet18-ts: This model is proposed in this work, which incorporates both
raw images and contextual information into the accident detection process.

3. Supervised ML models: We implement multiple machine learning models,
such as XGBoost (XGB), Logistic Regression (LR), Decision Tree (DT), Ran-
dom Forest (RF), SVM, and Naive Bayes (NB).

5.3 Evaluation of Model Performance

To evaluate the performance of our proposed algorithm, we consider the following
metrics: accuracy, recall rate, F1 score, and runtime. More specifically, accuracy
is defined as the ratio of correct predictions to the total number of instances.
Recall Rate is defined as the ratio of true positives (TP) to the sum of TP and
false negatives (FN). F1 Score is the harmonic mean of precision and recall.
And precision is the ratio of TP to the sum of TP and false positives (FP). The
performance of our accident detection module is demonstrated in Table 1.

With HOL calibration, the Random Forest model outperforms other mod-
els in terms of accuracy, recall rate, and F1 score. The accuracy of the ResNet
finetuning model, which solely relies on vision information, was enhanced from
60.94% to 73.48% by incorporating the concatenated features of image repre-
sentation and high-level time-series features proposed in this work. Moreover,
when additionally equipped with Signal Temporal Logic (STL), the recall per-
formance of ResNet also improved from 50.61% to 59.13%. It is worth noting that
the post-hoc verification process only required 0.017 s. Additionally, the decision
tree (DT) model demonstrates exceptional runtime effectiveness. In scenarios
where real-time requirements are extremely demanding, the decision tree model
demonstrated acceptable anomaly detection effectiveness.

6 Conclusion

In this paper, we investigate runtime verification for detecting accidents in driv-
ing footage with contextual information and raw dash cam videos. Moreover,
we demonstrate that by integrating the abstraction of high-level time-series fea-
tures, which exhibit distinguishable patterns under supervised learning methods,
the performance of image-based deep learning models for accident detection can
be significantly enhanced. Additionally, our proposed model leverages multiple

386 Z. An et al.

logic specifications to verify and calibrate anomaly predictions. This approach
ensures that the predicted accident labels maintain exceptional accuracy, conti-
nuity, and integrity, while also guaranteeing a stable and robust system across
various accident scenarios.

Acknowledgment. This work was supported, in part, by the National Science Foun-
dation under Grant 2151500, 2028001, and 2220401.

References

1. Bakar, A., Rahman, T., Shafik, R., Kawsar, F., Montanari, A.: Adaptive intelli-
gence for batteryless sensors using software-accelerated tsetlin machines. In: Pro-
ceedings of SenSys (2022)

2. Balakrishnan, A., Deshmukh, J., Hoxha, B., Yamaguchi, T., Fainekos, G.: Perce-
Mon: online monitoring for perception systems. In: Feng, L., Fisman, D. (eds.) RV
2021. LNCS, vol. 12974, pp. 297–308. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-88494-9 18

3. Balakrishnan, A., et al.: Specifying and evaluating quality metrics for vision-based
perception systems. In: 2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 1433–1438. IEEE (2019)

4. Bashetty, S.K., Amor, H.B., Fainekos, G.: Deepcrashtest: turning dashcam videos
into virtual crash tests for automated driving systems. In: 2020 IEEE International
Conference on Robotics and Automation (ICRA), pp. 11353–11360. IEEE (2020)

5. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
6. Breiman, L.: Classification and Regression Trees. Routledge, Milton Park (2017)
7. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 785–794 (2016)

8. Choi, J.G., Kong, C.W., Kim, G., Lim, S.: Car crash detection using ensemble
deep learning and multimodal data from dashboard cameras. Expert Syst. Appl.
183, 115400 (2021)

9. Chollet, F.: Xception: deep learning with depthwise separable convolutions (2017)
10. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)
11. Cox, D.R.: The regression analysis of binary sequences. J. Roy. Stat. Soc. Ser. B:

Stat. Methodol. 20(2), 215–232 (1958)
12. Dokhanchi, A., Amor, H.B., Deshmukh, J.V., Fainekos, G.: Evaluating perception

systems for autonomous vehicles using quality temporal logic. In: Colombo, C.,
Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 409–416. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03769-7 23

13. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

14. Doshi, K., Yilmaz, Y.: An efficient approach for anomaly detection in traffic videos.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4236–4244 (2021)

https://doi.org/10.1007/978-3-030-88494-9_18
https://doi.org/10.1007/978-3-030-88494-9_18
https://doi.org/10.1007/978-3-030-03769-7_23
https://doi.org/10.1007/978-3-642-15297-9_9

Runtime Monitoring of Accidents in Driving Recordings 387

15. Dreossi, T., et al.: VerifAI: a toolkit for the formal design and analysis of artificial
intelligence-based systems. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol.
11561, pp. 432–442. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
25540-4 25

16. Du, Y., Qin, B., Zhao, C., Zhu, Y., Cao, J., Ji, Y.: A novel spatio-temporal synchro-
nization method of roadside asynchronous MMW radar-camera for sensor fusion.
IEEE Trans. Intell. Transp. Syst. 23(11), 22278–22289 (2021)

17. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti
dataset. Int. J. Rob. Res. 32(11), 1231–1237 (2013)

18. Hashemi, N., Hoxha, B., Yamaguchi, T., Prokhorov, D., Fainekos, G., Deshmukh,
J.: A neurosymbolic approach to the verification of temporal logic properties of
learning-enabled control systems. In: Proceedings of the ACM/IEEE 14th Inter-
national Conference on Cyber-Physical Systems (with CPS-IoT Week 2023), pp.
98–109 (2023)

19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition
(2015)

20. Howard, A.G., et al.: MobileNets: Efficient convolutional neural networks for
mobile vision applications (2017)

21. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks (2018)

22. Ma, M., Gao, J., Feng, L., Stankovic, J.: STLnet: signal temporal logic enforced
multivariate recurrent neural networks. Adv. Neural. Inf. Process. Syst. 33, 14604–
14614 (2020)

23. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

24. Rea, R.V., Johnson, C.J., Aitken, D.A., Child, K.N., Hesse, G.: Dash cam videos on
Youtube offer insights into factors related to moose-vehicle collisions. Accid. Anal.
Prevent. 118, 207–213 (2018). https://doi.org/10.1016/j.aap.2018.02.020, www.
sciencedirect.com/science/article/pii/S0001457518300824

25. Richardson, A., Sanborn, K., Sprinkle, J.: Intelligent structuring and semantic
mapping of dash camera footage and can bus data. In: 2022 2nd Workshop on
Data-Driven and Intelligent Cyber-Physical Systems for Smart Cities Workshop
(DI-CPS), pp. 24–30 (2022). https://doi.org/10.1109/DI-CPS56137.2022.00010

26. Rish, I., et al.: An empirical study of the Naive Bayes classifier. In: IJCAI 2001
Workshop on Empirical Methods in Artificial Intelligence, vol. 3, pp. 41–46 (2001)

27. Seshia, S.A., Sadigh, D., Sastry, S.S.: Towards verified artificial intelligence. arXiv
preprint arXiv:1606.08514 (2016)

28. Shah, A.P., Lamare, J.B., Nguyen-Anh, T., Hauptmann, A.: CADP: a novel dataset
for CCTV traffic camera based accident analysis. In: 2018 15th IEEE International
Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–9.
IEEE (2018)

29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition (2015)

30. Štitilis, D., Laurinaitis, M.: Legal regulation of the use of dashboard cameras:
aspects of privacy protection. Comput. Law Secur. Rev. 32(2), 316–326 (2016)

31. Xiao, H., Zhang, F., Shen, Z., Wu, K., Zhang, J.: Classification of weather phe-
nomenon from images by using deep convolutional neural network. Earth Space
Sci. 8(5), e2020EA001604 (2021)

https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1016/j.aap.2018.02.020
www.sciencedirect.com/science/article/pii/S0001457518300824
www.sciencedirect.com/science/article/pii/S0001457518300824
https://doi.org/10.1109/DI-CPS56137.2022.00010
http://arxiv.org/abs/1606.08514

388 Z. An et al.

32. Yao, Y., Wang, X., Xu, M., Pu, Z., Atkins, E., Crandall, D.: When, where, and
what? a new dataset for anomaly detection in driving videos (2020)

33. Zhao, Y., An, Z., Gao, X., Mukhopadhyay, A., Ma, M.: Fairguard: Harness logic-
based fairness rules in smart cities. arXiv preprint arXiv:2302.11137 (2023)

34. Zhao, Y., Wu, W., He, Y., Li, Y., Tan, X., Chen, S.: Good practices and a strong
baseline for traffic anomaly detection. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 3993–4001 (2021)

http://arxiv.org/abs/2302.11137

Safety Monitoring for Pedestrian
Detection in Adverse Conditions

Swapnil Mallick, Shuvam Ghosal(B), Anand Balakrishnan,
and Jyotirmoy Deshmukh

University of Southern California, Los Angeles, CA 90007, USA
{smallick,sghosal,anandbal,jdeshmuk}@usc.edu

Abstract. Pedestrian detection is an important part of the perception
system of autonomous vehicles. Foggy and low-light conditions are quite
challenging for pedestrian detection, and several models have been pro-
posed to increase the robustness of detections under such challenging
conditions. Checking if such a model performs well is largely evaluated
by manually inspecting the results of object detection. We propose a
monitoring technique that uses Timed Quality Temporal Logic (TQTL)
to do differential testing: we first check when an object detector (such
as vanilla YOLO) fails to accurately detect pedestrians using a suitable
TQTL formula on a sequence of images. We then apply a model special-
ized to adverse weather conditions to perform object detection on the
same image sequence. We use Image-Adaptive YOLO (IA-YOLO) for
this purpose. We then check if the new model satisfies the previously
failing specifications. Our method shows the feasibility of using such a
differential testing approach to measure the improvement in quality of
detections when specialized models are used for object detection.

Keywords: Pedestrian Detection · Autonomous Driving · Temporal
Logic

1 Introduction

Convolutional Neural Network (CNN) based models [5,10,14,25,28] have
become widespread in the field of pedestrian detection and have been able to
achieve impressive results when tested on benchmark driving datasets. Some of
these models have also been deployed in autonomous vehicles [29].

According to the California DMV statistics, 627 autonomous vehicle colli-
sion have been reported as of July 25, 2023 despite numerous object detection
models faring well when tested on high-quality images captured in clear weather
conditions [1]. An important question is how these models fare under challenging
lighting conditions such as when it is foggy or dark. Beyond the obvious issues
presented by images being out-of-distribution with respect to the lighting condi-
tions, this problem becomes harder when pedestrians wear black or dark colored
clothes at night.

S. Mallick and S. Ghosal—These authors contributed equally to this work.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 389–399, 2023.
https://doi.org/10.1007/978-3-031-44267-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_22&domain=pdf
https://doi.org/10.1007/978-3-031-44267-4_22

390 S. Mallick et al.

In this case study paper, we have two main objectives. First, we wish to
demonstrate a logic-based metric that can show that pedestrian detection in
low-light conditions suffers in quality without the use of ground-truth annota-
tions. Towards this end, we use the YOLO object detection model [24] trained
on a standard driving dataset, and apply it to videos containing poor lighting
conditions. Our technical idea is to use the quality metric of Timed Quality
Temporal Logic TQTL [4,7]. We show that we can express object consistency
properties in TQTL, and use the PerceMon tool [3] to monitor violations of the
given TQTL specification by the sequence of detections output by YOLO.

We then use a modified object detection framework called IA-YOLO [17].
IA-YOLO has a component that predicts parameters to be used for a differen-
tiable image processing (DIP) module. The DIP module can be thought of as a
way to implement a number of image filters to improve performance of object
detection. We then monitor the detections by IA-YOLO against the same TQTL
specification.

The main conclusions of this study are as follows: (1) The quality of a TQTL
specification on detections using vanilla is poor when pre-trained YOLO is used
on videos with low-light conditions. (2) The quality of TQTL specifications is
significantly improved when IA-YOLO is used for detections.

Related Work. Significant research has been conducted for general pedestrian
detection. However, only a few efforts have been made to detect pedestrians
successfully in adverse lighting and weather conditions. Works like IA-YOLO [17]
and DENet [22] use filters implementing ideas similar to those used in image
processing to preprocess images for object detectors like YOLO, and thereby
improving process. Other works, like the CycleGAN framework presented in [27]
augment existing datasets with generative images that simulate adverse weather
conditions to improve the robustness of an object detector. In a similar light,
the authors of [18] present datasets synthetically generated images that simulate
adverse weather conditions.

Evaluation of multi-object detection models have predominantly used the
mean average precision (mAP) metric, popularized by the PASCAL-VOC
dataset [8]. This metric evaluates the accuracy of object detectors by estimat-
ing the area under the curve of the precision-recall relationship with respect
to a given dataset. Mean average precision(mAP) is the average of the Aver-
age precision(AP) values for each output object class. While other metrics have
been proposed in literature, these aren’t as popular as the mAP evaluation met-
ric [20,21].

The above approaches rely on either augmenting existing datasets to improve
robustness of object detectors, or comparing against ground truth to evaluate
the accuracy of a model. To this light, recent literature has proposed the use of
temporal logics to evaluate perception systems without access to groundtruth
data [4,6,12]. These use TQTL (and its extension Spatio-temporal Quality
Logic) to monitor for incorrect behavior of object detector models. Similarly,

Safety Monitoring for Pedestrian Detection in Adverse Conditions 391

the works in [3] and [2] propose the use of online monitoring techniques to per-
form fault detection at runtime.

2 Preliminaries

Object detection is a computer vision task to check the presence of objects of
a certain class in an image and also obtain a bounding box (in image coordi-
nates) indicating the location of the object within the image. Object detection
algorithms can be broadly categorized into two groups based on how they oper-
ate. Some algorithms propose regions of interest (RoIs) in the image space [9]
and then classify the regions by training neural networks. These algorithms are
called the region proposal-based methods. The other class of algorithms com-
prises single-stage regression based methods [15,16], such as the YOLO series
[23] of algorithms. In algorithms like YOLO, the result of applying object detec-
tion to an image is a list of bounding boxes in image coordinates, and for each
bounding box in this list, we obtain a class label (for the purported object in
the box), and a number in [0, 1] that indicates the confidence of the detector
in the class label. In autonomous driving applications, class labels may include
bicycles, cars, pedestrians, traffic lights, etc.

Usually, images captured in adverse weather or during low-light conditions
do not have the same distribution of low-level features, which leads to poor
detection of some kinds of object classes. Some weather effects like rain or fog
can obscure key features or have the effect of adding noise to the image. In
traditional image processing literature, custom image filters can be designed to
denoise images [30], remove the effects of certain weather phenomena [19,26], or
enhance features required for detection. However, designing custom image filters
is a manual and tedious process. An approach to overcome this problem is to
use an adaptive detection model such as IA-YOLO. Such a model can filter out
weather-specific information and highlight latent information to make detection
easier. We discuss IA-YOLO next.

2.1 IA-YOLO

Fig. 1. The training pipeline of the IA-YOLO framework.

392 S. Mallick et al.

The IA-YOLO pipeline consists of (1) a parameter predictor based on a con-
volutional neural network (CNN), (2) a differentiable image processing module
(DIP), and a (3) detection network. Before applying the IA-YOLO pipeline, we
resize a given image to have 256 × 256 resolution, and then feed to the CNN
parameter predictor. The CNN parameter predictor then tries to predict the
parameters of DIP. Following that, the image filtered by the DIP module is fed
as input to the YOLOv3 [24] detector for the pedestrian detection task.

CNN-Based Parameter Predictor. As shown in Fig. 1, the CNN parameter
predictor module consists of five convolutional blocks followed by two fully-
connected layers. Each convolutional block contains a 3× 3 convolutional layer
with stride 2 and a leaky ReLU activation layer. The module tries to understand
the global content of the image, such as brightness, color and tone and the
degree of fog in order to predict the parameters required by the DIP module. In
order to save computation cost, the input images are downsampled to a lower
resolution of 256× 256 using bilinear interpolation. The output channels of the
five convolutional layers are 16, 32, 32, 32 and 32, respectively. The output of
this module is fed into the DIP module.

DIP Module. The DIP module consists of six differentiable filters with
adjustable hyperparameters, namely Defog, White Balance (WB), Gamma, Con-
trast, Tone and Sharpen. According to Hu et al. [13], the standard color and
tone operators, such as White Balance, Gamma, Contrast and Tone, can be
expressed as pixel-wise filters. Therefore, the filters can be classified into three
categories namely, Pixel-wise, Defog and Sharpen Filters. The Defog filter has
been designed for foggy scenes only.

Pixel-Wise Filters. In pixel-wise filters, an input pixel value Pi = (ri, gi, bi)
is mapped into an output pixel value Po = (ro, go, bo) where (r, g, b) represent
the values of the red, green and blue color channels, respectively. The mapping
functions of the pixel-wise filters have been shown in Table 1.

Table 1. Mapping functions of pixel wise filters.

Filter Parameters Mapping Function

Gamma G: gamma value Po = PG
i

WB Wr, Wg, Wb: factors Po = (Wr.ri, Wg.gi, Wb.bi)

Tone ti: tone params Po = (Ltr (ri), Ltg (gi), Ltb(bi))

Filter α: contrast value Po = α.En(Pi) + (1 − α).Pi

Safety Monitoring for Pedestrian Detection in Adverse Conditions 393

Defog Filter. We used a defog filter designed using the dark channel prior
method by He et al. [11]. The formation of a hazy image can be formulated as
follows:

I(x) = J(x)t(x) + A(1 − t(x)) (1)

where I(x) is the foggy image, J(x) represents the scene radiance (clean image),
A is the global atmospheric light, and t(x) is the medium transmission map.
The atmospheric light A and the transmission map t(x) need to be obtained to
recover the clean image J(x). At first, the dark channel map of the haze image
I(x) has been computed and the top 1000 brightest pixels have been picked.
Then, the average of those 1000 pixels of the corresponding position of the haze
image I(x) has been taken to estimate the value of A.

Sharpen Filter. We use the sharpen filter to enhance the image details. For
sharpening the images, the following equation describes the process:

F (x, λ) = I(x) + λ(I(x) − Gau(I(x))) (2)

where I(x) is the input image, Gau(I(x)) denotes Gaussian filter, and λ is a
positive scaling factor.

Detection Module. We use the single-stage YOLOv3 detection network, with
the same network architecture and loss function as the original YOLOv3 [24].
YOLOv3 contains darknet-53 which has successive 3×3 and 1×1 convolutional
layers based on the idea of ResNet.

2.2 Timed Quality Temporal Logic (TQTL)

Timed Quality Temporal Logic (TQTL) [6,12] is an extension of Timed Propo-
sitional Temporal Logic (TPTL) which incorporates syntax and semantics for
reasoning about data from perception systems specifically. The syntax defines
operators to reason about classes of detected objects and the confidence associ-
ated with the detection outputted by perception systems.

TQTL Syntax. A TQTL formula ϕ over a finite set of predicates P, a finite
set of frame number variables (νt), and a finite set of object ID variables (νid)
can be defined according to the following grammar:

ϕ:: =� | μ | t.ϕ | ∃id@t, ϕ | ∀id@t, ϕ |
t ≤ u + n | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∪ ϕ2

(3)

The time constraint is t ≤ u + n, which implies the timespan starting from u
and spanning across n consecutive frames.

394 S. Mallick et al.

TQTL Semantics. The semantics of TQTL maps a data stream D, which is
a sequence of video frames containing multiple candidate objects in each frame,
a frame number � and a valuation function ν to a real-valued entity. A valu-
ation function in this context is a function that assigns some values to frames
and objects present in the corresponding frames. TQTL mainly deals with the
task that if a particular object is tracked across multiple frames of a video, the
probability of detecting it does not fall below a certain threshold across a cer-
tain number of consecutive frames. The function [[·]] can be defined recursively
as follows:

[[�]](D, τ, ν) = +∞
[[μ]](D, τ, ν) = θ(ν(fμ(t1, ..., tn1 , id1, ..., idn2)), c)

[[t.ϕ]](D, τ, ν) = [[ϕ]](D, τ, ν[t ← τ])
[[∃id@t, ϕ]](D, τ, ν) = max

kεS(Dv(t))
[[ϕ]](D, τ, ν[id ← k])

[[t ≤ u + n]](D, τ, ν) =

{
+∞, if ν(t) ≤ ν(u) + n,

−∞, otherwise.

[[¬ϕ]](D, τ, ν) = −[[ϕ]](D, τ, ν)
[[ϕ1 ∧ ϕ2]](D, τ, ν) = min([[ϕ1]], [[ϕ2]](D, τ, ν))

[[ϕ1 ∪ ϕ2]](D, τ, ν) = max
τ ′≥τ

min
(

[[ϕ2]](D, τ ′, ν),
minτ ′′∈[τ,τ ′)[[ϕ1]](D, τ ′′, ν)

)

3 Our Approach

The pipeline consists of the IA-YOLO model for processing the input frame
and detecting pedestrians along with a TQTL monitor for verifying a given
specification under adverse weather conditions. The CNN parameter predictor
module of the IA-YOLO takes an input frame and outputs the parameters for
the different filters of the DIP module which then generates an enhanced image
containing the latent information. In the second step, a TQTL monitor for a
given specification ϕ monitors the output of the IA-YOLO model, reporting
whether the specification has been satisfied or violated (Fig. 2).

Fig. 2. TQTL Monitoring Pipeline for IA-YOLO

Safety Monitoring for Pedestrian Detection in Adverse Conditions 395

4 Experimental Analysis

In our case, we focus on detecting pedestrians in foggy and night conditions.
We aim to validate the following specification: “If a person is detected with a
confidence score greater than or equal to 0.3 in a particular frame, then in the
next 4 frames, the probability of detecting the same person should never drop
below 0.25.” This specification is represented by the following TQTL expression:

ϕ =
�(x.∀id1@x, (C(x, id1) = Pedestrian ∧ P (x, id1) ≥ 0.3)
→
�(y.((x ≤ y ∧ y ≤ x + 4)

→ C(y, id1) = Pedestrian ∧ P (y, id1) > 0.25))

We have chosen the confidence scores to be 0.3 and 0.25 respectively to account
for the comparatively poorer performance of detection models in adverse condi-
tions as compared to clear weather conditions and to aid the comparison task
between IA-YOLO and vanilla YOLO.

For the purpose of our experimentation, we have created a custom evaluation
dataset containing night and foggy driving videos from dash-cam driving videos
that are publically available on YouTube. In order to create our dataset, we have
taken small clips from these videos where a pedestrian is found be crossing the
road front of the car. Note that while these video clips do not contain any ground
truth annotations, our evaluation metric is based on the quantitative semantics
of TQTL, which do not rely on groundtruth.

To evaluate the models, we compute the robustness of both vanilla YOLO
and IA-YOLO on the videos contained the dataset, with respect to the above
specification ϕ. The results are shown in Table 2, and Fig. 3 and Fig. 4 show some
examples of sequences of images that satisfy or violate the specification ϕ. We

Table 2. Robustness values achieved on custom dataset using Vanilla YOLO and
IA-YOLO models against ϕ.

Weather Condition Robustness ϕ

Vanilla YOLO IA-YOLO

Foggy −0.25 0.31

−0.25 0.36

−0.25 0.29

−0.25 0.51

Night 0.28 0.54

0.10 0.22

−0.25 0.22

0.07 0.3

0.29 0.58

−0.25 0.18

396 S. Mallick et al.

(a)

(b)

Fig. 3. Monitoring results in night conditions.

(b)

Fig. 4. Monitoring results in foggy conditions.

find that vanilla YOLO does not sufficiently satisfy the TQTL specification in
foggy conditions, but detects pedestrians reasonably well night-time conditions.
On the other hand, the IA-YOLO model is found to be able to detect pedestrians
succesfully in both foggy and night conditions.

Safety Monitoring for Pedestrian Detection in Adverse Conditions 397

5 Conclusion

The IA-YOLO model has been able to detect pedestrians satisfactorily in foggy
and night conditions. IA-YOLO performs better as compared to vanilla YOLO
in adverse conditions. However, we found some cases where it fails to detect
pedestrians in one of the consecutive frames with the desired level of confidence.
The robustness of this model has been estimated using TQTL which has been
able to correctly verify the required specification. This quality metric will help in
debugging or improving the existing model and lead to better detection results
in foggy and night conditions in a safety-critical context.

We plan to develop a more robust YOLO model for object detection in low-
light conditions by fine-tuning the current model. We also aim to reduce the
runtime of the entire monitoring process by only applying the DIP module on
the frames where the TQTL monitor fails instead of all the frames. Moreover,
we hope to create a training dataset which will be used to train the CNN-PP
module more efficiently with the images which are flagged as “violated” by the
TQTL monitor.

Acknowledgement. The authors would like to thank the anonymous reviewers for
their feedback. This work was supported by the National Science Foundation through
the following grants: CAREER award (SHF-2048094), CNS-1932620, CNS-2039087,
FMitF-1837131, CCF-SHF-1932620, the Airbus Institute for Engineering Research,
and funding by Toyota R&D and Siemens Corporate Research through the USC Center
for Autonomy and AI.

References

1. Autonomous Vehicle Collision Reports. Technical report, California Depart-
ment of Motor Vehicles (2023). www.dmv.ca.gov/portal/vehicle-industry-services/
autonomous-vehicles/autonomous-vehicle-collision-reports/

2. Antonante, P., Spivak, D.I., Carlone, L.: Monitoring and Diagnosability of Percep-
tion Systems. arXiv:2005.11816 [cs] (2020)

3. Balakrishnan, A., Deshmukh, J., Hoxha, B., Yamaguchi, T., Fainekos, G.: Perce-
Mon: online monitoring for perception systems. In: Feng, L., Fisman, D. (eds.) RV
2021. LNCS, vol. 12974, pp. 297–308. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-88494-9 18

4. Balakrishnan, A., et al.: Specifying and evaluating quality metrics for vision-
based perception systems. In: 2019 Design, Automation Test in Europe Conference
Exhibition (DATE), pp. 1433–1438 (2019). https://doi.org/10.23919/DATE.2019.
8715114

5. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully
convolutional networks. In: Advances in Neural Information Processing Systems,
vol. 29 (2016)

6. Dokhanchi, A., Amor, H.B., Deshmukh, J.V., Fainekos, G.: Evaluating perception
systems for autonomous vehicles using quality temporal logic. In: Colombo, C.,
Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 409–416. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03769-7 23

www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/autonomous-vehicle-collision-reports/
www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/autonomous-vehicle-collision-reports/
http://arxiv.org/abs/2005.11816
https://doi.org/10.1007/978-3-030-88494-9_18
https://doi.org/10.1007/978-3-030-88494-9_18
https://doi.org/10.23919/DATE.2019.8715114
https://doi.org/10.23919/DATE.2019.8715114
https://doi.org/10.1007/978-3-030-03769-7_23

398 S. Mallick et al.

7. Dokhanchi, A., Hoxha, B., Tuncali, C.E., Fainekos, G.: An efficient algorithm for
monitoring practical TPTL specifications. In: 2016 ACM/IEEE International Con-
ference on Formal Methods and Models for System Design (MEMOCODE), pp.
184–193. IEEE (2016)

8. Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisser-
man, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput.
Vision 111(1), 98–136 (2015). https://doi.org/10.1007/s11263-014-0733-5

9. Girshick, R.: Fast R-CNN. In: 2015 IEEE International Conference on Computer
Vision (ICCV), pp. 1440–1448 (2015). https://doi.org/10.1109/ICCV.2015.169

10. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the
IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

11. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior.
IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)

12. Hekmatnejad, M.: Formalizing Safety, Perception, and Mission Requirements for
Testing and Planning in Autonomous Vehicles. Ph.D. thesis, Arizona State Uni-
versity (2021)

13. Hu, Y., He, H., Xu, C., Wang, B., Lin, S.: Exposure: a white-box photo post-
processing framework. ACM Trans. Graph. (TOG) 37(2), 1–17 (2018)

14. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

15. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 2980–2988 (2017)

16. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

17. Liu, W., Ren, G., Yu, R., Guo, S., Zhu, J., Zhang, L.: Image-adaptive YOLO
for object detection in adverse weather conditions. In: Proceedings of the AAAI
Conference on Artificial Intelligence (2022)

18. Michaelis, C., et al.: Benchmarking Robustness in Object Detection: Autonomous
Driving when Winter is Coming (2020). arXiv:1907.07484 [cs, stat]

19. Narasimhan, S.G., Nayar, S.K.: Chromatic framework for vision in bad weather.
In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition.
CVPR 2000 (Cat. No. PR00662), vol. 1, pp. 598–605. IEEE (2000)

20. Padilla, R., Netto, S.L., da Silva, E.A.B.: A survey on performance metrics for
object-detection algorithms. In: 2020 International Conference on Systems, Signals
and Image Processing (IWSSIP), pp. 237–242 (2020). https://doi.org/10.1109/
IWSSIP48289.2020.9145130, iSSN: 2157-8702

21. Padilla, R., Passos, W.L., Dias, T.L.B., Netto, S.L., da Silva, E.A.B.: A compar-
ative analysis of object detection metrics with a companion open-source toolkit.
Electronics 10(3), 279 (2021). https://doi.org/10.3390/electronics10030279

22. Qin, Q., Chang, K., Huang, M., Li, G.: DENet: detection-driven enhancement
network for object detection under adverse weather conditions. In: Proceedings of
the Asian Conference on Computer Vision, pp. 2813–2829 (2022)

23. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified,
real-time object detection. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 779–788 (2016)

24. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint
arXiv:1804.02767 (2018)

https://doi.org/10.1007/s11263-014-0733-5
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/1907.07484
https://doi.org/10.1109/IWSSIP48289.2020.9145130
https://doi.org/10.1109/IWSSIP48289.2020.9145130
https://doi.org/10.3390/electronics10030279
http://arxiv.org/abs/1804.02767

Safety Monitoring for Pedestrian Detection in Adverse Conditions 399

25. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: Advances in Neural Information Pro-
cessing Systems, vol. 28 (2015)

26. Schechner, Y.Y., Narasimhan, S.G., Nayar, S.K.: Instant dehazing of images using
polarization. In: Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, pp. I–I. IEEE
(2001)

27. Teeti, I., Musat, V., Khan, S., Rast, A., Cuzzolin, F., Bradley, A.: Vision in adverse
weather: Augmentation using CycleGANs with various object detectors for robust
perception in autonomous racing (2023). arXiv:2201.03246 [cs]

28. Wu, B., Iandola, F., Jin, P.H., Keutzer, K.: SqueezeDet: unified, small, low power
fully convolutional neural networks for real-time object detection for autonomous
driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pp. 129–137 (2017)

29. Xu, H., Gao, Y., Yu, F., Darrell, T.: End-to-end learning of driving models from
large-scale video datasets. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2174–2182 (2017)

30. Xu, Y., Weaver, J.B., Healy, D.M., Lu, J.: Wavelet transform domain filters: a
spatially selective noise filtration technique. IEEE Trans. Image Process. 3(6),
747–758 (1994)

http://arxiv.org/abs/2201.03246

Tutorials

Instrumentation for RV: From Basic
Monitoring to Advanced Use Cases

Chukri Soueidi(B) and Yliès Falcone(B)

Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble, France
{chukri.soueidi,ylies.falcone}@univ-grenoble-alpes.fr

Abstract. Instrumentation is crucial in Runtime Verification because it
should ensure that monitors are fed with relevant and accurate informa-
tion about the executing program under monitoring. While expressive
instrumentation is desirable to handle any possible monitoring scenario,
instrumentation should also efficiently capture the just-needed informa-
tion and impact the monitoring program as least as possible. This tutorial
comprehensively overviews the instrumentation process and considera-
tions for single and multithreaded programs. We discuss often overlooked
aspects in instrumenting multithreaded programs. We also cover metrics
for evaluating the efficiency and effectiveness of instrumentation. We use
four hands-on use cases to apply the introduced concepts and provide
practical guidance on choosing and applying instrumentation for run-
time verification.

1 Introduction

Ensuring software correctness often necessitates abstracting its behavior into
suitable models and subsequently verifying whether these models adhere to prop-
erties. The predominant approach to modeling software behavior in monitoring
and runtime verification involves observing the software execution and abstract-
ing it into a trace of events. Extracting these events frequently relies on instru-
mentation, a technique that entails transforming the base program. Instrumenta-
tion consists of two main steps: 1) identifying the program points corresponding
to the events of interest, 2) inserting additional code into the base program to
extract information.

Choosing an instrumentation framework is a critical step in the runtime veri-
fication process. For example, bytecode manipulation libraries such as ASM [16],
BCEL [9], and Soot [49] allow for extensive low-level coverage and bytecode
transformations. However, implementing basic instrumentation for runtime veri-
fication with these can be quite verbose and demands a certain level of expertise
from the user. On the other hand, aspect-oriented programming frameworks
like AspectJ [29] provide a high-level language for specifying instrumentation.
However, these frameworks have limited capabilities and introduce significant
overhead. One main limitation is not being able to instrument at the bytecode

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 403–427, 2023.
https://doi.org/10.1007/978-3-031-44267-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_23&domain=pdf
http://orcid.org/0000-0002-6112-9946
http://orcid.org/0000-0002-0114-0641
https://doi.org/10.1007/978-3-031-44267-4_23

404 C. Soueidi and Y. Falcone

level hindering their applicability in multithreaded programs and low-level moni-
toring scenarios. Other tools offer a balance between abstraction and expressive-
ness. For example, DiSL [35] offers advanced features targeting profiling, while
BISM [46], which is tailored towards runtime verification, reduces overhead on
execution and allows for arbitrary code insertion, which is needed for inlining
code.

We cover several factors that influence the selection of an instrumentation
technique in runtime verification encompassing multiple factors such as moni-
toring goals, observation granularity, specification, and trace semantics [24]. For
instance, control-flow integrity monitoring requires low-level details [27], while
typestate property monitoring focuses on high-level values [15,22,27]. Users
can choose appropriate techniques by considering these parameters and oth-
ers related to monitoring concurrent programs. Monitoring single-threaded pro-
grams relies on accurate instrumentation, while concurrent systems face chal-
lenges with event collection from multiple threads and components [12,23].
Ensuring correct event order is vital but may incur overhead. Various tradeoffs
and optimizations help reduce the overhead associated with these challenges.
Furthermore, the specification and parallelism in the monitored program deter-
mine a specific abstraction of the program execution. For single-threaded pro-
grams, a linear trace with totally ordered events suffices. In contrast, multi-
threaded programs often require a partial order of events, necessitating low-level
instrumentation to capture synchronization [45]. Alternative approaches, such as
Opportunistic Monitoring [43], define a 2-level specification of monitors, requir-
ing a different execution abstraction that includes certain assumptions.

We present four use cases demonstrating different instrumentation require-
ments. The first use case, Instrumentation at the Control Flow Level, focuses
on low-level program instrumentation in monitoring the control flow integrity.
The second use case, Residual Runtime Verification, employs static verification
to identify safe execution paths and perform residual runtime verification for
unproven parts. This approach is valuable when seeking to optimize monitor-
ing overhead and reduce resource consumption. The third use case, Concurrent
Traces for Online Monitoring, tackles concurrent program monitoring challenges
with real-time trace collection. This case is essential for efficient monitoring in
multithreaded applications that require a partial order of events and low-level
instrumentation to capture synchronization. Finally, Opportunistic Monitoring
deploys monitors to specific threads that exchange information only at desig-
nated synchronization points. This use case requires specific execution abstrac-
tions and assumptions aiming to reduce overhead and minimize interference with
verdict delay.

2 Understanding Instrumentation

Dynamic analysis and verification techniques such as testing, profiling, and run-
time verification involve examining a program while it’s running. These tech-
niques analyze a behavioral model extracted from the program in order to iden-
tify errors, bugs, or unusual behaviors. In this section, we provide an overview

Instrumentation: From Basic Monitoring to Advanced Use Cases 405

of a crucial component of these techniques: instrumentation. We discuss various
considerations that affect the choice of instrumentation technique. Specifically,
we focus on managed languages, with a particular emphasis on JVM languages.

2.1 Unveiling the Complete Picture

Verification and analysis techniques are designed to focus on certain behavioral
aspects of the system under study. Consequently, they require distinct behavioral
models that accurately encapsulate the specific aspects of the system that are
relevant to their intended reasoning. These models represent the actual behav-
ior of the system suppressing irrelevant details and enabling the application of
automated analysis. The term model is extended here to include any artifact
generated to represent the system’s behavior including logs, traces, automata,
etc. Figure 1 illustrates the typical steps involved in the process of generating
such models.

I.

Identify

II.

Collect

III.

Create

IV.

Validate

V.

Use

Fig. 1. Cyclic process of model generation.

The model generation process begins by identifying elements of inter-
est within the program. This step involves recognizing relevant elements based
on user observation or a systematic analysis, which could include structural
components or specific actions. Following this, the process involves collecting
information from these identified elements. Depending on the data required,
this could be done statically or at runtime, especially when certain required
information, such as the values of variables or program input, is only available
during runtime. Once the necessary information has been gathered, along with
any other assumptions, the next step is creating the model. Typically, the
model is a mathematical object or a structured log, designed to be suitable for
the analysis task. To ensure its accuracy and suitability for the intended analy-
sis, the model may then undergo a validation process. Finally, the model is
used for the intended analysis. It can serve various purposes, such as being
compared with another model in processes like model checking [21] or runtime
verification [12], or it can be used to generate test cases, thereby achieving the
desired analysis results. While steps I and II assume a white-box approach to

406 C. Soueidi and Y. Falcone

model generation, some processes start with execution traces, such as specifica-
tion mining [13,31,38]. Moreover, these steps can overlap, and the cycle can be
reiterated for refinement.

2.2 Observing the Execution

Observation is crucial for the completion of steps I, II, and III of the model
generation process for dynamic techniques. Different methods can be utilized
for observing an executing program, each offering unique capabilities. Some are
beyond the scope of this discussion, such as hardware performance counters and
operating system tracing.

Debugging Interfaces. Managed languages usually feature built-in debugging
interfaces, such as the Java Debug Interface (JDI). Debuggers can use these inter-
faces to manage a range of events, including setting breakpoints and watchpoints,
performing step-by-step execution, controlling threads, handling exceptions, and
inspecting or modifying variables and fields. However, while these debugging
interfaces are powerful for step-by-step program inspection, they are not inher-
ently designed for automated or broad-scale data collection. Manual setting of
breakpoints and data extraction for thousands of events can be impractical,
often leading users to resort to ad-hoc scripting for automation. This requires
proficiency in compatible scripting languages and familiarity with the debug-
ger’s API. Moreover, debugging interfaces are limited to the event types and
information they inherently provide.

Execution Callbacks. Managed languages like Java provide capabilities to
register callbacks for specific execution events via the Java Virtual Machine
Tool Interface (JVMTI). This native interface allows interaction with the JVM’s
internal events, including thread start and end, method entry and exit, field
access and alteration, exception handling, and more. This level of coverage offers
detailed JVM activity monitoring, including monitoring internal environment
events not directly linked to specific program instructions. Nevertheless, JVMTI
presents limitations. Its scope of observation is confined to the event types and
data it provides. Should custom events or additional context information be
needed, the process can be complex and demand substantial platform knowledge.

Instrumentation. Instrumentation involves augmenting a program with addi-
tional code to collect data during its execution, often automated with the help
of instrumentation languages. Unlike other observation techniques, instrumenta-
tion lets the user define events by identifying arbitrary sequences of instructions
in the program, capturing a wide variety of behavioral aspects from fine-grained
events such as local variable assignments to coarse-grained ones like method
executions. While it’s possible to perform instrumentation manually, it becomes
significantly complex and prone to errors for large programs or when only a

Instrumentation: From Basic Monitoring to Advanced Use Cases 407

compiled version of the code is accessible. Compared to other observation meth-
ods, instrumentation is usually more portable, simpler, and performs better.
In JVM, for instance, this added code can be optimized by the JIT compiler,
which can significantly reduce the instrumentation overhead. However, it can’t
observe internal environment-executed events not directly linked to specific pro-
gram instructions, such as Java’s garbage collection. Also, injecting code can
modify program behavior, which can cause issues if the program is already in
production.

2.3 Instrumentation for Runtime Verification

Runtime verification is a field focused on analyzing system executions, typically
to verify if they satisfy or violate a particular property. A property under veri-
fication represents a set of constraints or behaviors that the system is expected
to adhere to, formalized in terms of abstract events drawn from an alphabet
denoted as Σa. This process usually encompasses three stages. First, a moni-
tor is created from the property, referred to as monitor synthesis. This monitor
interprets events from a system and gives outcomes based on the property’s cur-
rent satisfaction. Next, the program is instrumented to generate relevant events
for the monitor, known as system instrumentation. Seen as a generator of con-
crete events, denoted as Σc, the system’s execution should be mapped into a
trace of abstract events, rendering it suitable for runtime analysis. Instrumen-
tation plays a key role in capturing these concrete events and mapping them
into corresponding abstract ones to construct the suitable trace which is the
model needed by the monitor. These concrete events correspond to locations in
the program source code we refer to as shadows and execute at specific points
the in the program we refer to as joinpoints, and the instrumentation process
consists of adding extra code at these locations to capture the concrete events,
we refer to this extra code as advice. Lastly, the system’s execution is analyzed
by the monitor, either in real-time or post-execution from logged events, a phase
termed execution analysis. Instrumentation is particularly suitable for runtime
verification. It provides flexibility in capturing concrete events by pinpointing
arbitrary locations in the source code, as opposed to being limited to specific
events provided by the execution environment.

2.4 Instrumentation Considerations for Runtime Verification

In this section, we go through various considerations for various applications of
instrumentation for runtime verification, depicted in Fig. 2. We will go through
some of these in the following sections and others will be covered in the rest of
the tutorial.

The Program. Various aspects of the program must be taken into considera-
tion when selecting an instrumentation language. Figure 3 depicts some of these
considerations. For concurrent programs, instrumentation should be capable

408 C. Soueidi and Y. Falcone

Instrumentation
for RV

Analysis
Integration

Assumptions

Properties

Language

Expressiveness Abstraction

Model

Program

Sequential

Concurrency

Code

Transformation
time

Observation

Collection

Execution
TraceEfficiency

Applications

ClassicalResidual

Concurrent

Opportunistic

Control-
Flow

Fig. 2. Considerations for RV Instrumentation

of identifying and capturing the program’s synchronization actions. These may
be specified using both low-level concurrency primitives (such as synchro-
nized blocks, volatile variables, lock interfaces, and atomic classes) and high-
level abstractions (such as the fork-join framework and software transactional
memory [26,32]). Other applications may be implemented using message-passing
frameworks such as Akka [3]. Instrumentation may be needed at different stages
of the program deployment. At the source level, it often necessitates compi-
lation facilities and requires access to the application’s source code. Weaving
at the bytecode has several advantages. It is often high-level enough to easily
recognize constructs of the original language, even without direct access to the
source code. Moreover, it is portable across different languages as many lan-
guages compile to the same bytecode such as Java, Scala, Kotlin, and Groovy.
Program transformation (weaving of instrumented code) can occur at different
stages as well. Independent instrumentation is possible anytime resulting in a
new statically instrumented program. However, it is limited to the code pack-
aged within the application itself and may not extend to instrumenting Java
class libraries used by the application. Load-time instrumentation intercepts
class loading and performs instrumentation before a class is linked in the Java
Virtual Machine (JVM). This allows also for targeting the libraries used by the
application.

Instrumentation: From Basic Monitoring to Advanced Use Cases 409

Program

Sequential

Concurrency

Threads

Primitives

Shared
Memory

Code
Source

Binary
Transformation

time

Load-time

Independent

Fig. 3. Program Considerations

Observation

Collection

Sync

Async

Execution
Trace

Events

Data

Timestamps

Order Causality

TotalEfficiency

Overhead

Interference

Fig. 4. Observation Considerations

Observation. In runtime verification, event traces serve as models for
property-based detection and prediction techniques. An event typically captures
an important action or a change in the system’s state that is under observation.
They may represent the program’s state at a specific execution point, or they
can be triggered by a program action. Depending on the analysis aim, data
accompanying events may incorporate values from the program’s memory, and
various time representations like current time. Moreover, if events are tracking
state changes, the observation should retain some memory instead of having to
extract all the values of pertinent variables at each event. Figure 4 depicts some
of the program observation considerations at runtime.

When properties necessitate reasoning about program concurrency, estab-
lishing causality between events is essential during trace collection. Causality
is best represented as a partial order over events, compatible with various for-
malisms for the behavior of concurrent programs like weak memory consistency
models [4,6,34] and Mazurkiewicz traces [25,37]. Collecting the trace of events
can be done either synchronously or asynchronously. Synchronous refers
to processing data simultaneously with its collection, whereas asynchronous
involves receiving events and processing them at a later time. Asynchronous
trace collection is ideal for scenarios where the monitoring overhead cannot be
afforded and a small delay in the verdict can be tolerated. For instance, in real-
time systems where the system is expected to produce a result within a defined
strict deadline [42].

410 C. Soueidi and Y. Falcone

Analysis

Integration

In-process

Out-of-
process

Assumptions

Sequential

Concurrency

Atomic
Regions

Datarace
Freedom

Properties

Syntactic

Soundness

FaithfulnessTrace
Monitor-
ability

Fig. 5. Analysis Considerations

Instrumentation
Language

Expressiveness

Pre-
Instrumentation
Analysis

Bytecode
Coverage

Arbitrary
Code

Insertion

Abstraction

API/DSL

AOP

Model

Shadows

Visibility
Control

Context

Static

Dynamic

Selectors

Transformers

Composition

Collision

Fig. 6. Language Considerations

The Analysis. The execution analysis considerations are depicted in Fig. 5.
Depending on the analysis different properties may be desired. For example, if
the analysis is to check for the occurrence of a specific event, then the instrumen-
tation should be able to capture the event. Other concurrency-related properties
that are concerned with event ordering may be desired such as soundness,
faithfulness, and trace monitorability [45] (see Sect. 7.3). These properties
are affected by the completeness and correctness of the instrumentation. Mon-
itoring techniques generally operate with the assumption of instrumentation
completeness and correctness. Other approaches such as [48] address runtime
verification with incomplete or uncertain information. Some approaches assume
certain concurrency-related properties such as data-race freedom and atomic
regions [43] to reduce the instrumentation points hence overhead and complex-
ity. Moreover, the analysis integration with the program has a direct effect on the
instrumentation. For instance, for out-of-process analysis, the instrumentation
should extract all the necessary information to perform the analysis. Whereas
in in-process analysis, the analysis typically has access to the program’s state
and can extract the necessary information itself.

The Instrumentation Language. An instrumentation language should equip
users to handle three key considerations: identifying relevant program execution
points (joinpoints), where events are extracted, which correspond to program
code elements; specifying the necessary contextual information to be extracted

Instrumentation: From Basic Monitoring to Advanced Use Cases 411

with these events; and defining the destination of these events, detailing how and
where they will be consumed. The instrumentation language considerations are
depicted in Fig. 6. The usability of an instrumentation language is further charac-
terized by two critical aspects: its expressiveness and the level of abstraction.
Expressiveness refers to the language’s ability to extract substantial information
from the bytecode and modify the program’s execution. On the other hand,
abstraction relates to the complexity of low-level details that users must deal
with in order to specify instrumentation.

Identifying joinpoints can be at the bytecode level or the source code level.
At these joinpoints, a language should facilitate the extraction of either static
information (compile-time information) or dynamic information (runtime infor-
mation). Static information refers to information that is available at compile
time, such as the name of a method or the type of a variable. Dynamic informa-
tion refers to information that is only available at runtime, such as the value of
a variable or the current thread. Finally, the instrumentation language should
provide means to consume the extracted information. This can be done by either
adding a hook to a monitor class passing this information or by weaving code to
the program itself. As for the implementation, these languages are typically pro-
vided either as external domain-specific languages or as internal API-Based
languages. External DSLs are often more accessible to domain experts due to the
syntax’s inherent focus on domain-specific concerns. In contrast, internal DSLs
are implemented within a host language and integrate more seamlessly with it,
and are more accessible to developers familiar with the host language.

Applications. In this paper, we examine five use cases that demonstrate differ-
ent applications of instrumentation, which we will discuss further in Sect. 7. Here,
we focus on the considerations relevant to selecting an instrumentation language
for each of these use cases. In control-flow integrity monitoring, the program’s
control flow must not be altered, necessitating the reevaluation of conditional
jumps by a monitor. This use case requires bytecode coverage to extract low-
level details and control flow information. For concurrent and opportunistic mon-
itoring, the instrumentation should be able to capture synchronization events in
the program, which often result from low-level instructions. This also requires
bytecode visibility. Additionally, in some cases, instrumentation advice may need
to be inserted across nonadjacent bytecode instructions, necessitating arbitrary
code insertion. In residual runtime verification, a pre-instrumentation static
analysis is used to identify safe execution paths. The instrumentation must then
extract the results of this analysis to guide its own process. This scenario calls for
pre-instrumentation analysis to pinpoint safe paths. Additionally, it requires
visibility control, which ensures the information is properly relayed to the
instrumentation.

3 Instrumentation Requirements

Correctness and Completeness. Monitoring techniques assume the complete-
ness and correctness of instrumentation in capturing events [12], however, this

412 C. Soueidi and Y. Falcone

assumption is not always valid. For manual instrumentation, it is easy to miss
identifying some locations of interest. Also, automated instrumentation can miss
some events at runtime due to errors and exceptions raised by the runtime. Some
instrumentation techniques wrap the advice with try-catch blocks to avoid sys-
tem crashes. Although this guarantees the stability of the system, it can lead to
missing events without being noticed. It is recommended to disable exception
handling when instrumenting the program for the first time.

Non-interference. Ensuring non-interference is crucial to prevent disturbing the
program’s critical behaviors. Instrumentation should avoid altering aspects such
as parallelism, event order, variable values, control flow, and thread scheduling.
In a study by [28], the authors identify several interference problems, including
deadlocks, state corruption, and JVM crashes, which can be unintended byprod-
ucts of instrumentation.

Memory Depletion. In-process monitoring makes memory management crucial.
Large data storage for analysis risks depleting memory and potentially crashing
the application. Hence, an effective data management strategy should be integral
to information extraction with instrumentation. Efficient data structures can
optimize memory use and prevent interference with memory management. For
example, using integer identifiers for event types instead of string descriptions,
or extracting unique hash IDs rather than retaining full object references, can
be beneficial when applicable.

Environment Compatibility. Bytecode verification failures can occur in the JVM
for instance due to issues such as incorrect bytecode manipulation, invalid stack
or local variable states, control flow problems, or incompatible bytecode versions.
In some cases, turning off bytecode verification can be a viable option, but it is
not recommended as it can lead to unexpected behavior and crashes. Moreover,
Java enforces a 64 KB maximum limit per method, and extensive instrumen-
tation can exceed this limit, leading to compilation errors. These errors can
sometimes be avoided by deferring the event construction to a separate method
and passing the required object references to it.

4 How to Evaluate Instrumentation

Overhead. Evaluating the impact of instrumentation on a program often involves
measuring execution time and memory consumption overheads. For precise mea-
surements, using a dedicated machine and repeating the process multiple times
is recommended. Profilers like [1,2] can yield the most accurate measurements.
Below, we detail some techniques for measuring these overheads. To measure exe-
cution time overhead, compare the execution time of the instrumented program
with the original one. One method involves inserting timers (via instrumentation)
to capture timestamps at the program’s entry and exit points. A nonobtrusive
alternative is using a command-line benchmarking tool such as [41], offering fea-
tures like warmup runs and statistical analysis of results. Memory consumption

Instrumentation: From Basic Monitoring to Advanced Use Cases 413

in the JVM is influenced by multiple factors, including the JVM internals and
garbage collection. A good estimate of memory consumption can be obtained by
calculating the heap and non-heap memory usage after forcing a garbage col-
lection cycle, measured before the program’s exit point. A specialized memory
measurement virtual machine like [33] can also be employed.

Instrumentation Intensity. This synthetic metric provides an understanding of
the extent of the code that has been instrumented. It is a measure of the number
of code instructions that have been adjusted for instrumentation purposes, as
a proportion of total code instructions. If a larger part of the code has been
modified, the instrumentation intensity is higher. This metric is useful for eval-
uating the overall coverage of the instrumentation process and its impact on the
codebase. For instance, when capturing method calls, consider all method calls
invoked at runtime and compare this to the number of those method calls that
have been instrumented.

Instrumentation Code Latency. Instrumentation code latency measures exactly
the time taken for the execution of the added instrumentation code only. Here
the time before and after the advice executes is measured or both timestamps
are extracted with the event and the difference is calculated at the monitor side.
In concurrent programs, this metric provides insight into the extent to which
instrumentation is interfering and affecting the parallelism of the program when
compared to the original program and the overall overhead mentioned above
provided that it also includes extracting such timestamps.

5 Existing Instrumentation Frameworks

5.1 Bytecode Manipulation Libraries

We discuss some bytecode manipulation libraries that have been used in run-
time verification tools. These libraries offer highly expressive languages for byte-
code manipulation and can perform any instrumentation scenario. However, they
require a good understanding of bytecode semantics. They typically provide
mechanisms for program traversal, bytecode manipulation, and bytecode gener-
ation with varying levels of abstraction. ASM [16] for instance is a lightweight
framework that provides two APIs: a visitor-based API that allows efficient
traversal and manipulation of bytecode, and a tree-based API that provides a
higher level of abstraction. BCEL [9] contains various tools like the JustIce byte
code verifier and has been used successfully in numerous applications includ-
ing compilers, optimizers, and code analysis tools. Javassist [20] provides two
levels of API: source level and bytecode level. The former does not require the
developer to understand Java bytecode, making it a suitable choice for those
who prefer working at a higher level of abstraction. CGLIB [40] is a bytecode
generation library that allows developers to extend Java classes and create new
ones at runtime. Soot [49] is a framework for analyzing and transforming Java
and Android applications. It generates several intermediate representations (IRs)

414 C. Soueidi and Y. Falcone

of the program, including Jimple, a Java-specific IR. It provides several built-in
static analyses such as call-graph construction, data-flow analysis, taint analysis,
and points-to analysis.

5.2 Aspect Oriented Languages

AspectJ [29] is a standard aspect-oriented programming (AOP) [30] framework
that is widely used for runtime verification, debugging, and logging. AspectJ
offers a rich pointcut expression language for selecting and capturing joinpoints
including dynamic pointcuts which are runtime conditional expressions that
selectively apply advice based on the state or context of the executing program.
However, AspectJ cannot capture bytecode instructions and basic block join-
points, which limits its usefulness in many instrumentation tasks. DiSL [35] is
a more feature-rich tool covering bytecode-level instrumentation framework and
also following an aspect-oriented approach. DiSL offers an extensible joinpoint
model and provides various advanced features such as dynamic dispatch for inter-
ference avoidance among multiple instrumentations. It is a suitable framework
for instrumentation-heavy dynamic analysis such as profiling.

Both AspectJ and DiSL follow the pointcut/advice model. In this approach,
users can specify advice (actions meant to be executed at joinpoints) using stan-
dard Java syntax. While AspectJ wraps these actions within methods triggered
at the joinpoint, DiSL weaves the advice right into the application, ensuring it’s
directly inlined at the joinpoint. The limitation, however, is that users can only
provide code to be inserted at these joinpoints. They cannot execute or assess
this code during the instrumentation phase.

5.3 The Gap Between Bytecode Libraries and AOP Frameworks

Choosing an appropriate instrumentation language largely depends on the
specifics of each use case, with each requiring a unique set of features. Exist-
ing AOP languages, such as AspectJ and DiSL, simplify the specification of
instrumentation. However, they also limit the user’s control over the traversal of
a program’s bytecode. AspectJ restricts the ability to manipulate code beyond
predefined join points. Consequently, performing tasks like pre-instrumentation
analysis or arbitrary code insertion, that may be needed for performing an instru-
mentation task, can be challenging with AOP languages. They typically require
ad-hoc customizations or a fallback to bytecode manipulation libraries. On the
other hand, most bytecode manipulation libraries provide full control over pro-
gram traversal and allow various manipulations. However, these libraries are
verbose and require a high degree of expertise to use effectively. Therefore, there
is a pressing need for a more comprehensive approach to instrumentation. Ide-
ally, this approach would combine the simplicity of the point-cut/advice model
from AOP languages with the flexibility and control of bytecode manipula-
tion libraries. In the following section, we will introduce BISM (Bytecode-Level
Instrumentation for Software Monitoring) an instrumentation framework that
addresses such a need.

Instrumentation: From Basic Monitoring to Advanced Use Cases 415

6 A Comprehensive Instrumentation Approach: BISM

BISM [46,47], short for Bytecode-Level Instrumentation for Software Monitor-
ing, is a lightweight Java instrumentation tool created for runtime verification
and enforcement. Its design takes inspiration from aspect-oriented programming,
but instead of following the common pointcut/advice model used by tools like
AspectJ and DiSL, BISM introduces its own approach. In BISM, the instru-
mentation requirements are defined using transformers. These transformers are
dedicated classes that handle both the selection of joinpoints and the inlining
of advice. Unlike AspectJ and DiSL where only the advice can be specified and
in plain Java, BISM requires advice to be defined using its instrumentation lan-
guage. Notably, within these transformers, users have the flexibility to execute
code at the time of instrumentation.

6.1 Instrumentation Model

A joinpoint in BISM refers to a specific configuration of the base program dur-
ing its execution, characterized by both static and dynamic context information.
Shadows, on the other hand, are used to demarcate specific bytecode regions
in the program. They are defined as pairs that fundamentally include a byte-
code instruction identifier and a direction, either before or after the instruction.
These shadows are used to specify the precise regions in the bytecode where user-
specified advice will be woven. In essence, joinpoints captured by BISM corre-
spond to these bytecode regions given by shadows. BISM selectors are designed
to match specific subsets of these shadows, enabling users to select desired seg-
ments of the code for instrumentation.

6.2 Instrumentation Language

BISM provides a high-level instrumentation language that allows users to spec-
ify instrumentation directives concisely. Selectors are used to select and capture
joinpoints from the program execution. BISM provides selectors at the instruc-
tion, basic block, method, and class levels. Moreover, it provides control-flow
selectors that allow users to select joinpoints based on the control-flow graph
of the program. This variety of selectors allows users to specify instrumentation
directives at different levels of granularity. Listing 1.1 shows the main available
selectors.

Before/AfterInstruction OnBasicBlockEnter/Exit

Before/AfterMethodCall OnTrue/FalseBranchEnter

OnFieldSet/Get OnMethodEnter/Exit

Listing 1.1. BISM selectors

Within these selectors, filtering the joinpoints can be achieved with the help
of guards and type patterns that support wildcard matching (see example below).
Moreover, pointcuts allow users to combine multiple selectors under a single
name. For contextual information extraction, BISM provides a set of context

416 C. Soueidi and Y. Falcone

objects that can be used to extract the full static and dynamic information from
the program. Moreover, it performs lightweight analysis on the program bytecode
to provide additional out-of-the-box information about the program methods
such as control-flow information and the states of the stack frames. Additionally,
BISM provides advice methods such as method invocation invoke and print
that allow the extraction of this information from the running program and also
an insert method that allows users to inline arbitrary code at the joinpoints.

BISM provides two distinct approaches for implementing transformers: an
API-based and an external DSL approach. With the API approach, users define
transformers in Java classes. This approach provides users with a high degree of
control over the instrumentation process. The DSL approach, on the other hand,
provides a declarative way of specifying instrumentation directives. It provides a
subset of the language constructs available in the API approach, but it is more
concise and easier to use. The tool offers two instrumentation modes: build-time
mode, which allows for instrumenting the compiled classes of the program, and
load-time mode, which acts as a Java Agent that intercepts and instruments
classes before linking, including some of those from the Java class library. It also
includes a visualization module that displays the control-flow graphs and code
changes within instrumented methods.

7 Insrumentation Use Cases

In this section, we present different use cases of instrumentation for runtime
verification, some that require considerations that are often beyond the scope of
existing instrumentation frameworks. We discuss limitations in addressing these
use cases with well-adopted tools and how BISM can be used to address these
challenges.

Fig. 7. A method using Iterators in Java, and its CFG.

Instrumentation: From Basic Monitoring to Advanced Use Cases 417

7.1 Classical Example

Figure 7, shows a Java method along with its control-flow graph (CFG). We
are interested to monitor the SafeIterator property which specifies that a
Collection should not be updated when an iterator associated with it is created
and being used. This scenario can be effectively handled by all instrumentation
frameworks we discuss in this paper. Listing 1.2 shows a fragment of a trans-
former that can be used in a parametric monitoring setup [10,19] to instrument
the program for the SafeIterator property. The BISM transformer, written in
Java, uses the selector afterMethodCall to capture the return of an Iterator
created from a List.iterator() method call. It uses the dynamic context object
provided to retrieve the associated objects with the event, and pushes them into
a list. Then, invokes a monitor passing the extracted information. Listing 1.3
shows an equivalent transformer written with the DSL.

public class IteratorTransformer extends Transformer {

public void afterMethodCall(MethodCall mc, DynamicContext dc){

// Filter to only method of interest

if (mc.methodName.equals("iterator") && mc.methodOwner.endsWith("List")) {

// Access to dynamic data

DynamicValue list = dc.getMethodReceiver();

DynamicValue iterator = dc.getMethodResult();

// Create an ArrayList in the target method

LocalArray la = dc.createLocalArray(mc.method, Object.class);

dc.addToLocalArray(la,list);

dc.addToLocalArray(la,iterator);

// Invoke the monitor after passing arguments

StaticInvocation sti =

new StaticInvocation("monitors.SafeListMonitor", "receive");

sti.addParameter("create");

sti.addParameter(la);

invoke(sti);

}

}

}

Listing 1.2. A BISM transformer written in Java that intercepts the creation of an
iterator

pointcut pc1 after MethodCall (* *. List.iterator ())

event e1(["create" ,[getMethodReceiver ,getMethodResult]]) on pc1

monitor m1{

class: monitors.SafeListMonitor

events: [e1 to receive(String , List)]

}

Listing 1.3. A BISM transformer that intercepts the creation of an iterator.

418 C. Soueidi and Y. Falcone

7.2 Residual Runtime Verification

This use case demonstrates a traditional case of integrating static and runtime
verification, to mitigate the runtime monitoring overhead during the verification
of safety and co-safety properties. Through static verification, the goal of resid-
ual analysis [22] is to identify program elements or paths that always preserve
the desired property. Consequently, these paths can be ignored during runtime
verification and the residual parts are then subjected to runtime verification.
The residual analysis detects a set of program instructions, represented as SP ,
that can be safely excluded from runtime observation without disrupting the
verification process. The aim, thus, is to define a new instrumentation function
residual : instrs∗ → (SP → Σ∗). Let Runs ⊆ instrs∗ denote the set of all possible
runs of the program. The program instrumented with residual should ideally
produce shorter traces than instrument (the regular instrumentation function),
but the monitoring results should remain consistent for both. The condition that
the residual analysis should fulfill can be expressed as follows:

∀r ∈ Runs : |residual(r)| ≤ |instrument(r)|
∧ residual(r) |= ϕ ⇐⇒ instrument(r) |= ϕ

Hence, here the instrumentation tool must incorporate the residual analysis
outcomes when mapping program locations in the program; and this can be
accomplished in various ways. For example, in [15], the AspectJ compiler ajc
was customized to execute a similar static analysis and merge its results with
the AspectJ instrumentation. However, this method requires deep knowledge of
the ajc compiler for customization. In [44], the residual analysis was conducted
entirely by writing BISM transformers. BISM transformers allow for writing
custom logic in Java, thus, a static analyzer can be implemented as a transformer.
This transformer while traversing the program and utilizes BISM control flow
features to construct the control flow graph for each method. Then, it constructs
a CFG automaton that abstracts the method behavior. This constructed model
is needed to over-approximate the set of traces that the method might produce at
runtime. The transformer then conducts a reachability analysis with a property
specified as an automaton and marks the states of the CFG automaton that
are safe to overlook. This first transformer performing the analysis does not
instrument the base program; however, flags the safe shadows as invisible for
other transformers. A second transformer then passes over the program and
instruments the visible shadows that are matched by the specified selector by the
user. Hence for each property, two transformers are written. Figure 8 showcases
a CFG automaton, constructed from Fig. 7. In this figure, the transitions are
labeled with c which denotes the creation of a list-associated iterator by calling
list.iterator(), u denotes an update to the list via list.add(..), and event
n denotes a call to the iterator.next() method on an iterator. States marked
in red correspond to shadows that will remain visible for the instrumenting
transformer.

Instrumentation: From Basic Monitoring to Advanced Use Cases 419

q0 q1

q2 q3

q4 q5 q6 q7u
c

u

c
u

n c u

Fig. 8. Property-violating paths are marked in red, and safe ones are in green. (Color
figure online)

Discussion. This scenario highlights the importance of being able to integrate
static analyzers with instrumentation. Writing static analyzers with AspectJ for
instance is infeasible and requires customizing the compiler such as in [8,14,15].
With DiSL it might be feasible, however, such analysis must be written manually
using a bytecode manipulation library such as ASM in a pre-instrumentation step
that does not support DiSL language. Moreover, without being able to relay
the analysis results to the instrumentation, the user may need to annotate the
unsafe instructions and then write custom markers within DiSL to capture those
annotated shadows. This is not only tedious but also error-prone. BISM’s ability
to have a composition of transformers where transformers can control the
visibility of shadows relaying such analysis results to the instrumentation makes
such analysis feasible.

7.3 Runtime Verification of Concurrent Programs

In this scenario, we focus on the runtime verification of concurrent programs.
In these programs, events may be produced by different execution flows and the
order by which events are captured may not reflect the order by which they are
produced. This is a challenge for runtime verification as it may lead to unsound
monitoring results as shown in [23]. Suppose we want to monitor a precedence
property, which specifies that a resource can only be granted (event g) in response
to a request (event r), and can be expressed in LTL as ¬g W r. Suppose these
events are being produced by two threads, t0 and t1, and the program is not
correctly synchronized to preserve this property.

To handle concurrency, frameworks such as Java-MOP [18], Tracematches [7],
and others [11] have a feature to synchronize the monitor protecting it from
concurrent access and data races. However, a challenge arises when events are
produced in concurrent regions as advice may not always execute atomically with
their actions. Consider the example in Fig. 9a, where the code in yellow depicts
the instrumented advice that notifies the monitor, a context switch might occur
leading to an unsound verdict. There is a need to ensure atomicity between all
executing program actions and their advice.

One way to solve the lack of advice atomicity is to force it by instrumenting
synchronization blocks that wrap the program actions with their advice in mutu-
ally exclusive regions. Figure 9b shows a depiction of such instrumentation. The
code in Listing 1.4 shows a BISM transformer that forces atomicity between a
method call and its advice. The transformer first inserts a call to a static method

420 C. Soueidi and Y. Falcone

t0

t1

t0

t1

(a) Unsound instrumentation.

t0

t1

(b) Forcing atomicity.

Fig. 9. Instrumenting concurrent events.

getLock() in the class Monitor which returns an object that will be as a lock.
Then it duplicates the object on the stack and stores it in a local variable. Then
it inserts a call to MONITORENTER which starts a synchronized block in Java.
After the method call, the transformer inserts the code to emit the event and
then loads the object from the local variable and calls MONITOREXIT to release
the lock. This transformer can be used to instrument the example in Fig. 9b to
force atomicity between the method call and its advice.

public class ForcingAtomicityTransformer extends Transformer {

int lv; // local variable index

public void beforeMethodCall(MethodCall mc, DynamicContext dc) {

lv = ...; // the index in the method can be max local variables + 1

insert(new MethodInsnNode(Opcodes.INVOKESTATIC, "Monitor", "getLock",

"()Ljava/lang/Object;", false)); // retrieve the lock object

insert(new InsnNode(Opcodes.DUP)); // duplicate the lock object on the

stack

insert(new VarInsnNode(Opcodes.ASTORE, lv)); // store one copy in a local

variable

insert(new InsnNode(Opcodes.MONITORENTER)); // start synchronized block

}

public void afterMethodCall(MethodCall mc, DynamicContext dc) {

// ADVICE TO EXTRACT EVENT GOES HERE

insert(new VarInsnNode(Opcodes.ALOAD, lv)); // load the lock object

insert(new InsnNode(Opcodes.MONITOREXIT)); // end synchronized block

}

}

Listing 1.4. A BISM transformer that forces atomicity between a method call and its
advice.

Discussion. An instrumentation language often aims to target specific locations
within a program, to insert code either before or after a particular instruction. It
is important to note that this kind of instrumentation necessitates the capability
for arbitrary code insertion. This is because there is a need to insert related

Instrumentation: From Basic Monitoring to Advanced Use Cases 421

code at nonadjacent locations, both before and after the method call instruction.
However, runtime verification (RV) tools that rely on AspectJ are not suitable
for instrumenting such synchronization blocks. For instance, in the case discussed
in [39], the bytecode manipulation library BCEL was utilized. On the other hand,
BISM offers a straightforward API to insert arbitrary instructions at any point
within the program, using the ASM syntax. This unique feature allows for a
hybrid approach to specifying advice. With BISM within the same transformer,
the event can be extracted using abstractions, as shown in Listing 1.2, while
synchronization blocks can be inserted using the ASM syntax.

Concurrent Traces. Forcing atomicity introduces new problems. First, it
forces a total order between concurrent program actions; interfering with the
parallelism of the program and changing its behavior. One needs to avoid coarse-
grained synchronization. From the monitor side, the verdict will be dependent
on the specific scheduling of the execution. Second, any information about par-
allel actions in the program is lost and one can no longer determine whether two
actions execute concurrently initially in the non-instrumented program. In that
case, it becomes impossible to express properties on the concurrent parts of the
execution. To preserve the inherent concurrency in programs one needs to collect
partial order traces instead of total order ones, capturing the ”happens-before”
relation among the events produced by the program. This provides a more precise
representation of the program’s behavior and enables a richer set of properties to
be specified and checked. Two properties can be used to determine if a trace is a
good representative of an execution: soundness and faithfulness [45]. Sound-
ness holds when the trace does not provide false information about the order of
events. Faithfulness holds when the trace contains all the information about the
order of events.

As the process of observation is sequential with events being passed to a
central observer reestablishing the causality between events is crucial to have
trace soundness. This necessitates additional instrumentation to capture the
synchronization actions from the program. These are actions that synchronize
threads such as fork(t,u) and begin(u) for the initiation of thread u by
thread t, unlock(t,l) and lock(t,l) for the release/acquisition of lock l, and
write(t,x,v) and read(t,x,v) for operations on shared variable x. Then upon
receiving these events inferring the order of events can be done with the help
of a vector clock algorithm such as in [5,17,36,39,45]. To ensure faithfulness,
the instrumentation must be complete in capturing all synchronization actions,
preventing any loss of ordering information from the trace.

However, it’s worth noting that collecting all this information to build a rep-
resentative trace can be quite resource-intensive in terms of time and memory,
especially in an online setup. Therefore, it might be feasible to construct this rep-
resentative trace off the critical path of program execution. In [45], a concurrent
trace collection mechanism that does not block the execution of the program was
presented demonstrating a reduced performance impact on the running program
while still capturing a representative concurrent trace.

422 C. Soueidi and Y. Falcone

Discussion. This scenario requires instrumentation to be capable of identify-
ing various concurrency constructs in the program, hence bytecode coverage.
In our implementation experience, we identified a need to adapt to the diverse
JVM languages, especially when considering higher-level concurrency primitives.
Each JVM language, while converting to bytecode, possesses unique features
and structures. This variance poses challenges for tools primarily designed for
Java, such as AspectJ. Languages like Scala, Clojure, or Kotlin produce byte-
code that reflects their distinct features, from functional programming constructs
and object-oriented variations to pattern matching, destructuring, static method
handling, implicit parameters, and advanced concurrency constructs like corou-
tines. Their specialized naming conventions further add to the complexity. Con-
sequently, this intricacy in bytecode complicates the task for Java-centric instru-
mentation tools requiring more specialized instrumentation tools.

7.4 Opportunistic Monitoring

We proceed in our discourse on instrumentation in the context of concurrent
programs and introduce opportunistic monitoring [43] which is tailored for mul-
tithreaded programs. Monitoring here is deployed at two levels. At the first
level, thread-local monitors are employed to monitor the execution of individual
threads. The second level introduces scope monitors which monitor global prop-
erties shared accross threads. This approach introduces a novel way of instru-
menting multithreaded programs taking advantage of existing synchronization
points in a program to monitor it, rather than introducing additional synchro-
nization points, which might interfere with the program’s behavior and introduce
additional overhead. Scope monitors are evaluated at the end of scope regions
which are assumed to be atomically executing. Hence by assuming the atomicity
of scope regions, we can ensure that the thread-local monitors can accurately
observe and report the state of the thread within the region.

Discussion. The same discussion as in the previous section applies here. Also,
additional work needs to be invested to complete the automatic instrumentation
and integration with monitors. So far, splitting the property over local and scope
monitors is achieved manually. Analyzing the program pre-instrumentation to
find and suggest scopes suitable for splitting and monitoring a given property is
an interesting challenge that can be achieved within BISM.

7.5 Control Flow Integrity

In addition to capturing high-level events like method calls and executions, which
are fundamental for many runtime verification tasks, instrumentation may also
be needed to capture low-level events like bytecode instructions and contexts, like
values on the stack and control flow. This scenario demonstrates the application
of runtime verification to detect a type of control flow integrity violations namely
test inversion attacks, where an attacker modifies the program’s control flow by
inverting conditional tests. By monitoring the execution flow of a program and
logging stack values before conditional jumps, we can spot these attacks.

Instrumentation: From Basic Monitoring to Advanced Use Cases 423

pointcut pc0 before Instruction (* *.*(..)) with (

isConditionalJump = true)

pointcut pc1 on TrueBranchEnter (* *.*(..))

pointcut pc2 on FalseBranchEnter (* *.*(..))

event e0([opcode ,getStackValues]) on pc0 to Mon.recieve(List)

event e1("tt") on pc1 to Mon.recieve(String)

event e2("ff") on pc2 to Mon.recieve(String)

Listing 1.5. A BISM spec that intercepts the creation of an iterator.

Here, a monitor can be created to check the evaluation of the stack values
with the opcode of the conditional jump to detect test inversion attacks [27].
Moreover, as mitigation for this type of attack, one can inline a small monitor
at each branch of the conditional statement that rechecks the evaluation of the
stack values and throws an exception if the evaluation results in a different value
than the one logged by the entered branch. Here the instrumentation is required
to duplicate the stack values and then insert conditional instructions within each
branch.

Discussion. To handle such instrumentation requirements, the instrumentation
tool must first have bytecode coverage to capture low-level events like execu-
tion of bytecode instructions and contexts, like values on the stack and control
flow. Moreover, the instrumentation should be able to identify branching loca-
tions which requires constructing the control flow graph of the program. Finally,
to inline monitors, instrumentation needs to duplicate the stack values and the
conditional statements within each branch. This requires the ability to insert
arbitrary bytecode instructions. Tools like AspectJ and DiSL are incapable
of inserting arbitrary bytecode instructions and thus cannot be used.

Table 1. Comparison of the tools. ✓ - Tool provides the feature, ✗ - Tool does not
provide the feature, ✓ –- Tool partially provides the feature

Feature BCEL ASM CGLIB Javassist Soot DiSL AspectJ BISM

[9] [16] [40] [20] [49] [35] [29] [46]

Bytecode Coverage ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

Bytecode Insertion ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓

No Bytecode Proficiency ✗ ✗ ✓ – ✓ – ✓ ✓ ✓ ✓

Pre-Instrumentation Analysis ✓ ✓ ✓ ✓ ✓ ✓ – ✗ ✓

High-Level Abstraction ✗ ✓ – ✓ – ✓ ✓ ✓ ✓ ✓

AOP Paradigm ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ –

8 Conclusion

In this tutorial, we presented an overview of instrumentation for runtime verifi-
cation. We discussed the main considerations that should be taken into account

424 C. Soueidi and Y. Falcone

when instrumenting a program for runtime verification. We also presented the
main instrumentation techniques and tools that can be used for runtime verifi-
cation. Table 1 shows a comparison between them. We also discussed the main
challenges and pitfalls that can be encountered during the instrumentation pro-
cess. We hope that this tutorial will help researchers and practitioners to better
understand the instrumentation process and to choose the most suitable instru-
mentation technique and tool for their needs.

References

1. JProfiler. www.ej-technologies.com/products/jprofiler/overview.html. Accessed 01
June 2023

2. VisualVM: All-in-one Java troubleshooting tool. www.visualvm.github.io/.
Accessed 30 May 2023

3. Akka documentation (2022). www.akka.io/docs/
4. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: a tutorial. Com-

puter 29(12), 66–76 (1996). https://doi.org/10.1109/2.546611
5. Agarwal, A., Garg, V.K.: Efficient dependency tracking for relevant events in

shared-memory systems. In: Proceedings of the Twenty-Fourth Annual ACM Sym-
posium on Principles of Distributed Computing, pp. 19–28. PODC 2005, Associ-
ation for Computing Machinery, New York, NY, USA (2005). https://doi.org/10.
1145/1073814.1073818

6. Ahamad, M., Neiger, G., Burns, J.E., Kohli, P., Hutto, P.W.: Causal memory: def-
initions, implementation, and programming. Distrib. Comput. 9(1), 37–49 (1995).
https://doi.org/10.1007/BF01784241

7. Allan, C., et al.: Adding trace matching with free variables to AspectJ. In: Pro-
ceedings of the 20th Annual ACM SIGPLAN Conference on Object-oriented Pro-
gramming, Systems, Languages, and Applications, pp. 345–364. OOPSLA 2005,
ACM (2005). https://doi.org/10.1145/1094811.1094839

8. Aotani, T., Masuhara, H.: SCoPE: an AspectJ compiler for supporting user-defined
analysis-based pointcuts. In: Proceedings of the 6th International Conference on
Aspect-Oriented Software Development, pp. 161–172. AOSD 2007, Association
for Computing Machinery, New York, NY, USA (2007). https://doi.org/10.1145/
1218563.1218582

9. Apache Commons: BCEL (byte code engineering library). www.commons.apache.
org/proper/commons-bcel. Accessed 18 June 2020

10. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified
event automata: towards expressive and efficient runtime monitors. In: Gian-
nakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9 9

11. Bartocci, E., Falcone, Y., Bonakdarpour, B., Colombo, C., Decker, N., Havelund,
K., Joshi, Y., Klaedtke, F., Milewicz, R., Reger, G., Rosu, G., Signoles, J., Thoma,
D., Zalinescu, E., Zhang, Y.: First international competition on runtime verifica-
tion: rules, benchmarks, tools, and final results of CRV 2014. Int. J. Softw. Tools
Technol. Transfer (2017). https://doi.org/10.1007/s10009-017-0454-5

12. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification.
LNCS, vol. 10457, pp. 1–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-75632-5 1

www.ej-technologies.com/products/jprofiler/overview.html
www.visualvm.github.io/
www.akka.io/docs/
https://doi.org/10.1109/2.546611
https://doi.org/10.1145/1073814.1073818
https://doi.org/10.1145/1073814.1073818
https://doi.org/10.1007/BF01784241
https://doi.org/10.1145/1094811.1094839
https://doi.org/10.1145/1218563.1218582
https://doi.org/10.1145/1218563.1218582
www.commons.apache.org/proper/commons-bcel
www.commons.apache.org/proper/commons-bcel
https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/s10009-017-0454-5
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1

Instrumentation: From Basic Monitoring to Advanced Use Cases 425

13. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from
samples of their behavior. IEEE Trans. Comput. 21(6), 592–597 (1972). https://
doi.org/10.1109/TC.1972.5009015

14. Bodden, E., Havelund, K.: Racer: effective race detection using AspectJ. In: Pro-
ceedings of the 2008 International Symposium on Software Testing and Analysis,
pp. 155–166. ISSTA 2008, Association for Computing Machinery, New York, NY,
USA (2008). https://doi.org/10.1145/1390630.1390650

15. Bodden, E., Lam, P., Hendren, L.: Clara: a framework for partially evaluating
finite-state runtime monitors ahead of time. In: Barringer, H., et al. (eds.) RV
2010. LNCS, vol. 6418, pp. 183–197. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-16612-9 15

16. Bruneton, E., Lenglet, R., Coupaye, T.: ASM: a code manipulation tool to imple-
ment adaptable systems. In: Adaptable and Extensible Component Systems (2002).
http://www.asm.ow2.io/

17. Cain, H.W., Lipasti, M.H.: Verifying sequential consistency using vector clocks. In:
Proceedings of the Fourteenth Annual ACM Symposium on Parallel Algorithms
and Architectures. p. 153–154. SPAA 2002, Association for Computing Machinery,
New York, NY, USA (2002). https://doi.org/10.1145/564870.564897

18. Chen, F., Roşu, G.: Java-MOP: a monitoring oriented programming environment
for java. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp.
546–550. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31980-
1 36

19. Chen, F., Roşu, G.: Parametric trace slicing and monitoring. In: Kowalewski, S.,
Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 246–261. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-00768-2 23

20. Chiba, S.: Load-time structural reflection in java. In: Bertino, E. (ed.) ECOOP
2000. LNCS, vol. 1850, pp. 313–336. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-45102-1 16

21. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R.: Handbook of Model Checking,
1st edn. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8

22. Dwyer, M.B., Purandare, R.: Residual dynamic typestate analysis exploiting static
analysis, p. 124 (2007)

23. El-Hokayem, A., Falcone, Y.: Can we monitor all multithreaded programs? In:
Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 64–89. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03769-7 6

24. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying run-
time verification tools. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol.
11237, pp. 241–262. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03769-7 14

25. Gastin, P., Kuske, D.: Uniform satisfiability problem for local temporal logics over
Mazurkiewicz traces. Inf. Comput. 208(7), 797–816 (2010). https://doi.org/10.
1016/j.ic.2009.12.003

26. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory transac-
tions. In: Proceedings of the Tenth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pp. 48–60. PPoPP 2005, Association for Com-
puting Machinery, New York, NY, USA (2005). https://doi.org/10.1145/1065944.
1065952

27. Kassem, A., Falcone, Y.: Detecting fault injection attacks with runtime verification.
In: Proceedings of the 3rd ACM Workshop on Software Protection, pp. 65–76.
SPRO 2019, Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3338503.3357724

https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1145/1390630.1390650
https://doi.org/10.1007/978-3-642-16612-9_15
https://doi.org/10.1007/978-3-642-16612-9_15
http://www.asm.ow2.io/
https://doi.org/10.1145/564870.564897
https://doi.org/10.1007/978-3-540-31980-1_36
https://doi.org/10.1007/978-3-540-31980-1_36
https://doi.org/10.1007/978-3-642-00768-2_23
https://doi.org/10.1007/3-540-45102-1_16
https://doi.org/10.1007/3-540-45102-1_16
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-030-03769-7_6
https://doi.org/10.1007/978-3-030-03769-7_14
https://doi.org/10.1007/978-3-030-03769-7_14
https://doi.org/10.1016/j.ic.2009.12.003
https://doi.org/10.1016/j.ic.2009.12.003
https://doi.org/10.1145/1065944.1065952
https://doi.org/10.1145/1065944.1065952
https://doi.org/10.1145/3338503.3357724

426 C. Soueidi and Y. Falcone

28. Kell, S., Ansaloni, D., Binder, W., Marek, L.: The JVM is not observable enough
(and what to do about it). In: Proceedings of the Sixth ACM Workshop on Vir-
tual Machines and Intermediate Languages, pp. 33–38. VMIL 2012, Association
for Computing Machinery, New York, NY, USA (2012). https://doi.org/10.1145/
2414740.2414747

29. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
Getting started with AspectJ. Commun. ACM 44(10), 59–65 (2001)

30. Kiczales, G., et al.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S.
(eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0053381

31. Krka, I., Brun, Y., Medvidovic, N.: Automatic mining of specifications from invo-
cation traces and method invariants. In: Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 178–189.
FSE 2014, Association for Computing Machinery, New York, NY, USA (2014).
https://doi.org/10.1145/2635868.2635890

32. Lea, D.: A java fork/join framework. In: Proceedings of the ACM 2000 Java Grande
Conference, San Francisco, CA, USA, June 3–5, 2000, pp. 36–43 (2000). https://
doi.org/10.1145/337449.337465

33. Lengauer, P., Bitto, V., Mössenböck, H.: Accurate and efficient object tracing for
java applications. In: Proceedings of the 6th ACM/SPEC International Conference
on Performance Engineering, pp. 51–62. ICPE 2015, Association for Computing
Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2668930.2688037

34. Manson, J., Pugh, W., Adve, S.V.: The java memory model. In: Proceedings of the
32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pp. 378–391. POPL 2005, ACM (2005). https://doi.org/10.1145/1040305.
1040336

35. Marek, L., Villazón, A., Zheng, Y., Ansaloni, D., Binder, W., Qi, Z.: DiSL: a
domain-specific language for bytecode instrumentation. In: Hirschfeld, R., Tanter,
É., Sullivan, K.J., Gabriel, R.P. (eds.) Proceedings of the 11th International Con-
ference on Aspect-oriented Software Development, AOSD, Potsdam, Germany, pp.
239–250. ACM (2012)

36. Mathur, U., Viswanathan, M.: Atomicity checking in linear time using vector
clocks, p. 183–199. Association for Computing Machinery, New York, NY, USA
(2020). https://doi.org/10.1145/3373376.3378475

37. Mazurkiewicz, A.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986. LNCS, vol. 255, pp. 278–324. Springer, Heidelberg (1987). https://
doi.org/10.1007/3-540-17906-2 30

38. Ohmann, T., et al.: Behavioral resource-aware model inference. In: Proceedings of
the 29th ACM/IEEE International Conference on Automated Software Engineer-
ing, pp. 19–30. ASE 2014, Association for Computing Machinery, New York, NY,
USA (2014). https://doi.org/10.1145/2642937.2642988

39. Rosu, G., Sen, K.: An instrumentation technique for online analysis of multi-
threaded programs. In: 18th International Parallel and Distributed Processing
Symposium, 2004. Proceedings, pp. 268- (2004). https://doi.org/10.1109/IPDPS.
2004.1303344

40. Berlin, S., et al.: CGLIB (byte code generation library). www.github.com/cglib/
cglib. Accessed 21 May 2021

41. Sharkdp, Contributors: Hyperfine. www.github.com/sharkdp/hyperfine. Accessed
01 June 2023

https://doi.org/10.1145/2414740.2414747
https://doi.org/10.1145/2414740.2414747
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1145/2635868.2635890
https://doi.org/10.1145/337449.337465
https://doi.org/10.1145/337449.337465
https://doi.org/10.1145/2668930.2688037
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/3373376.3378475
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1145/2642937.2642988
https://doi.org/10.1109/IPDPS.2004.1303344
https://doi.org/10.1109/IPDPS.2004.1303344
www.github.com/cglib/cglib
www.github.com/cglib/cglib
www.github.com/sharkdp/hyperfine

Instrumentation: From Basic Monitoring to Advanced Use Cases 427

42. Shin, K., Ramanathan, P.: Real-time computing: a new discipline of computer
science and engineering. Proc. IEEE 82(1), 6–24 (1994). https://doi.org/10.1109/
5.259423

43. Soueidi, C., El-Hokayem, A., Falcone, Y.: Opportunistic monitoring of multi-
threaded programs. In: Lambers, L., Uchitel, S. (eds.) ETAPS 2023. LNCS, vol.
13991, pp. 173–194. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-
30826-0 10

44. Soueidi, C., Falcone, Y.: Residual runtime verification via reachability analysis. In:
Lal, A., Tonetta, S. (eds.) VSTTE 2022. LNCS, vol. 13800, pp. 148–166. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-25803-9 9

45. Soueidi, C., Falcone, Y.: Sound concurrent traces for online monitoring. In: Caltais,
G., Schilling, C. (eds.) SPIN 2023. LNCS, vol. 13872, pp. 59–80. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-32157-3 4

46. Soueidi, C., Kassem, A., Falcone, Y.: BISM: bytecode-level instrumentation for
software monitoring (2020). https://doi.org/10.1007/978-3-030-60508-7 18. www.
gitlab.inria.fr/bism/bism-public/

47. Soueidi, C., Monnier, M., Falcone, Y.: International Journal on Software Tools for
Technology Transfer, pp. 1–27 (2023). https://doi.org/10.1007/s10009-023-00708-
z. www.link.springer.com/article/10.1007/s10009-023-00708-z

48. Taleb, R., Khoury, R., Halle, S.: Runtime verification under access restrictions.
In: 2021 IEEE/ACM 9th International Conference on Formal Methods in Soft-
ware Engineering (FormaliSE), pp. 31–41 (2021). DOI: https://doi.org/10.1109/
FormaliSE52586.2021.00010

49. Vallée-Rai, R. Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot -
a java bytecode optimization framework. In: Proceedings of the 1999 Conference
of the Centre for Advanced Studies on Collaborative Research, pp. 13. CASCON
1999, IBM Press, USA (1999). https://doi.org/10.1145/1925805.1925818

https://doi.org/10.1109/5.259423
https://doi.org/10.1109/5.259423
https://doi.org/10.1007/978-3-031-30826-0_10
https://doi.org/10.1007/978-3-031-30826-0_10
https://doi.org/10.1007/978-3-031-25803-9_9
https://doi.org/10.1007/978-3-031-32157-3_4
https://doi.org/10.1007/978-3-030-60508-7_18
www.gitlab.inria.fr/bism/bism-public/
www.gitlab.inria.fr/bism/bism-public/
https://doi.org/10.1007/s10009-023-00708-z
https://doi.org/10.1007/s10009-023-00708-z
www.springerlink.bibliotecabuap.elogim.com/article/10.1007/s10009-023-00708-z
https://doi.org/10.1109/FormaliSE52586.2021.00010
https://doi.org/10.1109/FormaliSE52586.2021.00010
https://doi.org/10.1145/1925805.1925818

Runtime Monitoring DNN-Based
Perception

(via the Lens of Formal Methods)

Chih-Hong Cheng1(B), Michael Luttenberger1, and Rongjie Yan2

1 Technical University of Munich, Munich, Germany
chih-hong.cheng@tum.de, luttenbe@in.tum.de

2 Institute of Software, Chinese Academy of Sciences, Beijing, China

yrj@ios.ac.cn

Abstract. Deep neural networks (DNNs) are instrumental in realizing
complex perception systems. As many of these applications are safety-
critical by design, engineering rigor is required to ensure that the func-
tional insufficiency of the DNN-based perception is not the source of
harm. In addition to conventional static verification and testing tech-
niques employed during the design phase, there is a need for runtime
verification techniques that can detect critical events, diagnose issues,
and even enforce requirements. This tutorial aims to provide readers with
a glimpse of techniques proposed in the literature. We start with classical
methods proposed in the machine learning community, then highlight a
few techniques proposed by the formal methods community. While we
surely can observe similarities in the design of monitors, how the decision
boundaries are created vary between the two communities. We conclude
by highlighting the need to rigorously design monitors, where data avail-
ability outside the operational domain plays an important role.

Keywords: deep neural networks · perception · runtime verification

1 Introduction

Deep neural networks (DNNs) play a pivotal role in realizing perception, revo-
lutionizing our understanding of how machines can interpret and interact with
the world. DNNs have transformed various fields, including computer vision,
natural language processing, and audio recognition, by learning and extracting
meaningful patterns from vast amounts of data. Apart from applications such
as urban autonomous driving, it is now gaining attention in other domains such
as railways and avionics. For example, the safe.trAIn project1 considered how
DNN-based perception can be used in creating driverless autonomous trains for
regional transportation. Given the input represented in digital formats (RGB
images or lidar point clouds), one can easily apply DNN to perform various tasks
1 https://safetrain-projekt.de/en/.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 428–446, 2023.
https://doi.org/10.1007/978-3-031-44267-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_24&domain=pdf
https://safetrain-projekt.de/en/
https://doi.org/10.1007/978-3-031-44267-4_24

Runtime Monitoring DNN-Based Perception 429

such as classification, 2D or 3D object detection, and semantic segmentation, to
name a few applications.

Nevertheless, the use of DNNs in safety-critical applications such as
autonomous driving necessitates additional care and precautionary measures,
given the potential risks associated with incorrect or unreliable decisions made by
these networks. In such applications, where human lives or important infrastruc-
ture are at stake, the robustness and reliability of deep neural networks become
paramount. One prominent technique to address these concerns is runtime mon-
itoring, which involves continuously monitoring the behavior and outputs of the
network during its operation. Alongside runtime monitoring, other techniques
like formal verification and thorough testing are also employed to ensure the
safety and reliability of deep neural networks in critical domains. Combining
these techniques enhances the trustworthiness and dependability of deep neural
networks in safety-critical applications, providing a vital layer of assurance and
mitigating potential risks.

This tutorial2 aims to offer readers a glimpse into the complex topic of run-
time monitoring DNN-based perception systems, where active research has been
conducted in the machine learning community and has been receiving attention
in the formal methods community. As the topic is very broad, we would like to
constrain the scope by considering the simplified perception system pipeline illus-
trated in Fig. 1. The perception system first performs image formation and stores
the image in a digital format. Then pre-processing methods can be applied before
feeding into neural networks. Commonly used pre-processing methods include
denoising or quantization. Post-processing refers to algorithms such as polishing
the result of the DNN. For example, in object detection, non-max suppression is
used to remove spatially overlapping objects whose output probability is lower.
The tutorial emphasizes the runtime monitoring of DNN and may partly include
the pre-and post-processing. Regarding the monitoring of hardware platforms,
although there exists some confirmation on the hardware faults influencing the
result of prediction [21], in this tutorial, we have decided to neglect them and
relegate the monitoring activities to classical safety engineering paradigms such
as ISO 26262 for dealing with hardware faults.

2 Challenges in Monitoring Perception Systems

Monitoring perception systems poses some unique challenges in contrast to the
standard runtime verification paradigm, which we detail in the following sections.

Specification. In runtime verification, the type of formal specifications of
interest can be state properties (invariance), temporal properties characteriz-
ing trace behaviors utilizing temporal logics, like qualitative linear temporal
logic (LTL) [20] or extensions thereof like signal temporal logic (STL) [7] or

2 All materials for the tutorial are made available at https://sites.google.com/site/
chengchihhong/home/teaching/rv23.

https://sites.google.com/site/chengchihhong/home/teaching/rv23
https://sites.google.com/site/chengchihhong/home/teaching/rv23

430 C.-H. Cheng et al.

metric temporal logic (MTL) [12], and hyper-properties comparing behaviors of
multiple traces. The definition of states is application-specific.

Fig. 1. A typical DNN-based perception system

For learning-based perception systems such as object detection with input
from images (pedestrian, car, bicycle), the undesired situation for the percep-
tion, when considering only the single input than a sequence of inputs, can be
separated into two parts:

– The output can be incorrect in one of the following ways, namely
1. object not detected,
2. detecting ghost objects,
3. incorrect object classification (a pedestrian is detected as a car), or
4. incorrect object size (too big or too small).

– The input can also be “strange” due to not resembling what is commonly
expected as input (e.g., random noise rather than highway road scenes).

In many systems, during the runtime verification process, one can access the
state information and know if a state property is satisfied. The measured state
information offers the “ground truth”. For perception, however, the ground truth
(i.e., whether an object exists) is unavailable for comparison during run-time.
Therefore, the above-mentioned error types can not be directly detected. This
ultimately leads to indirect methods for error detection, with methods including
the following types:

– error detection via redundancy (e.g., comparing the prediction based on addi-
tional sensor modalities),

– error detection via domain knowledge (e.g., utilizing Newton’s law or classical
computer vision methods to filter problematic situations),

– error detection via temporal consistency (e.g., comparing the result of predic-
tion over time), and

– error detection via monitoring the decision mechanism of the DNN.

Runtime Monitoring DNN-Based Perception 431

Fig. 2. An example of multi-layer perceptron

While the first three methods (redundancy, domain knowledge, temporal con-
sistency) can also be applied in any non-learning-based algorithms (e.g., algo-
rithms utilizing classical computer vision algorithms), the latter is unique for
deep neural networks.

Finally, we must admit that a formal specification is usually incomplete.
Thus, only some important and necessary safety aspects might be formalized.
For complex autonomous systems, the “operational design domain (ODD)”, i.e.,
the input domain that the system is expected to operate, is often incompletely
formalized and only implicitly given by means of the collected data set.

Reaction Time. The reaction time between the occurrence of a prediction
error and the error being detected by the monitor is crucial. As a realistic exam-
ple, consider a perception module for autonomous driving operated at 10 FPS.
Assume that the object is continuously not perceived starting at time t, and the
perception error is only detected at time t + Δ where the car performs a full
break. As the vehicle can at least travel during the time interval [t, t + Δ], it
may create dangerous scenarios when Δ is too large where applying maximum
break is insufficient to avoid a collision.

3 Formulation

Throughout the text, for a vector �v, we refer �vi as its i-th component. We
create the simplest formulation of neural networks using multi-layer perceptron.
In our formulation, we also assume that the neural network has been trained,
i.e., the parameters of the network are fixed. The concepts can also be applied
in convolutional neural networks, residual networks, or transformers.

A neural network f is a composition of functions fL ◦ fL−1 ◦ · · · ◦ f2 ◦ f1,
where for l ∈ {1, . . . , L}, f l : R

dl−1 → R
dl is the computational function of

the l-th layer. We refer to d0 as the input dimension and dL as the output

432 C.-H. Cheng et al.

Fig. 3. Forward propagation of a neural network

dimension. At layer l, there are dl neurons, with each neuron indexed i being
a function that takes the output from the previous layer and produces the i-th
output of f l. In other words, f l

i : R
dl−1 → R. Given an input �in ∈ R

d0 , the
output of the neural network equals fL(fL−1(. . . (f2(f1(�in))))). Finally, we use
f1→l(�in) to abbreviate f l(f l−1(. . . (f2(f1(�in))))), i.e., the computation of value
with input being �in, and use f1→l

i (�in) to extract the i-th neuron value. Figure 2
illustrates an example of a neural network of 3 layers, taking a vector (in1, in2,
in3) of 3 numerical values as input and producing 3 outputs. The computation
of a neuron in a multi-layer perception is done by performing a weighted sum,
followed by a non-linear activation function. Figure 3 shows an example of how
the computation is defined, where the ReLU activation function (also simply
ramp function) is defined as follows:

ReLU(x)
def
:= max(0, x) = H(x) · x =

{
x if x > 0
0 otherwise

with H the Heaviside step function. Fixed-point systesm x1 = f1(x)∧ . . .∧xn =
fn(x) (x = (x1, . . . , xn) ∈ R

n, fi : Rn → R) where fi is a composition of linear
forms, max and min have been studied also as abstractions of dynamic systems
before, e.g. as abstractions of programs or turn-based two-player games (see
e.g. [8]).

Finally, let D def
:= {(�in, �label)} be the data set collected from the human-

specified operational domain for training the neural network f , where �in ∈ R
d0

and �label ∈ R
dL . Let Dtrain,Dval,Dtest ⊆ D be the training, validation, and test

set. Commonly, Dtrain ∩ Dval = Dtrain ∩ Dtest = Dtest ∩ Dval = ∅.

4 Techniques

4.1 DNN Monitoring Techniques from the ML Community

This section gives insight into some renowned approaches proposed by the ML
community, intending to identify inputs that are out-of-distribution (OoD),
i.e., input data that are not similar to the data used in training3. We start with

3 This concept is ambiguously defined in the field of machine learning.

Runtime Monitoring DNN-Based Perception 433

Fig. 4. Using an MNIST classifier to predict the output from images in the MNIST
and Fashion-MNIST data set.

the work of Hendrycks and Gimpel that introduces extra components (with a
reconstruction component) and softmax decision [10], followed by the work of
Liang, Li, and Srikant that uses temperature scaling and positively perturbed
examples [15], and conclude the section with the work from Lee et al. utilizing
Mahalanobis distance [14].

Limitations of the Softmax Output. In the case of classification, the final
layer consists of the application of the so-called softmax function which use
the isomorphism from R to R>0 given by the exponentiation followed by the
standard mean to normalize the output to a distribution over the possible classes.
Formally, the i-th output of applying softmax is defined as follows.

σ(�x)i
def
:=

e�xi∑dL

i=1 e�xi

In probability theory, the output of the softmax function can be used to rep-
resent a categorical distribution, i.e., a probability distribution over dL different
possible outcomes.

Unfortunately, the work from Hendrycks and Gimpel [10] discovered that pre-
trained neural networks could be overconfident to out-of-distribution examples,
thereby limiting the usefulness of directly using softmax as the output. To under-
stand this concept, we have trained multiple neural networks on the MNIST data
set [13] for digit recognition. Subsequently, we use the trained neural network
to classify clothing types for the Fashion-MNIST data set [25]. Ideally, we hope
that the output of the softmax function should not generate values close to 1.
Unfortunately, as illustrated in Fig. 4, one can observe that among 10000 images
from the Fashion-MNIST data set, around 4000 examples are predicted by the
MNIST-classifier with a probability between 0.95 and 1.

434 C.-H. Cheng et al.

Fig. 5. The architectural diagram for the OoD detector by Hendrycks and Gimpel [10].
The blue layers (f1, f2, f3, g3) are trained with in-distribution data, and the yellow
layers (h4, f5, h6) are trained with both in-distribution and out-of-distribution data.

Consequently, the authors in [10] trained an additional classifier to detect if
an input is out-of-distribution via the architecture as illustrated in Fig. 5.

– First, train a standard classifier (f
def
:= f3 ◦ f2 ◦ f1) with in-distribution data.

– Next, use the feature extractors of the predictor (f1, f2) to train another
image reconstructor g3, also with in-distribution data.

– Finally, train the OoD detector h6 ◦ h5 ◦ h4 with both in-distribution and
out-of-distribution data, based on three types of inputs, namely

• output of features f2,
• the softmax prediction from the standard classifier f3, and
• the quantity of the reconstruction error.

Intuitively, if an input is out-of-distribution, it may have different features,
or it may not be reconstructed, thereby hinting at the usefulness of these types
of inputs for h4 in Fig. 5.

Temperature Scaling and Gradient Ascent. While the first method is
based on the observation where softmax output can not be directly used as
a means to detect out-of-distribution inputs, the immediate question turns to
be if there exist lightweight methods to avoid training additional components.
The ODIN approach by Liang, Li, Srikant [15] used temperature scaling and
gradient ascent on inputs in-distribution to create better separators between
in-distribution and out-of-distribution input. Temperature scaling, as defined in
Eq. 1, uniformly divide each dimension of �x with a positive constant T whose
value is larger than 1, before performing the standard softmax function. Intu-
itively, it smooths out the large values caused by applying an exponential func-
tion. Figure 6 shows the result of applying the temperature scaling (with different
T values) on the same predictor used in Fig. 4. When T = 3, when we set the

Runtime Monitoring DNN-Based Perception 435

(a) T = 2 (b) T = 3

(c) T = 4 (d) T = 5

Fig. 6. Applying temperature scaling on the same predictor for creating Fig. 4

OoD cutoff threshold to be 0.6 (i.e., if the largest output value is below 0.6, report
OoD; otherwise, return the class that has the largest output value), we can filter
a great part of out-of-distribution samples while maintaining the performance
for in-distribution samples.

σ(�x, T)i
def
:=

e�xi/T∑dL

i=1 e�xi/T
(1)

The second step of the ODIN approach is to create a modified input �in
′

which perturbs the input �in to increase the prediction score of the largest class.
The intuition is that any input in-distribution is more likely to be perturbed
to increase the maximum output probability. This technique needs to compute
the gradient of the largest output over the input (i.e., ∂ fi(�in)

∂ �in
), and take a small

step in the direction suggested by the gradient (thereby calling gradient ascent).
This technique is the dual of adversarial perturbation, which tries to decrease
the prediction score of the largest class.

436 C.-H. Cheng et al.

Mahalanobis Distance. Provided that an input �in is drawn from a probabil-
ity distribution, the value of f1→l

i (�in) also follows a distribution. Consider the
imaginary scenario where f1→l

i (�in) has the Gaussian distribution with mean μ
and variance σ2, as demonstrated in Fig. 7. Based on the interval estimate,
around 99.7% of the values lie within three standard deviations of the mean.
Therefore, one can compute the Z-score (Eq. 2) and use a simple containment
checking if the Z-score falls within a specified interval such as [−3, 3] for charac-
terizing three standards of deviation.

Fig. 7. Using Z-score as a method for rejecting inputs with neuron values deviating
largely from the mean

Fig. 8. A situation where looking at each neuron in isolation is insufficient

z
def
:=

f1→l
i (�in) − μ

σ
(2)

Nevertheless, the method of using Z-values does not capture the interre-
lations among neurons. An example can be observed in Fig. 8, where for the
value f1→l(�inood) is projected onto the plane with the axis on the i1 and i2

Runtime Monitoring DNN-Based Perception 437

neuron values, correspondingly. If we only look at the Gaussian distribution in
each dimension, then both f1→l

1 (�inood) and f1→l
2 (�inood) are considered to be in

the decision boundary, as their values are within the minimum and maximum
possible values when projecting the eclipse to the axis. However, it should be
considered as OoD. The authors in [14] thus considered Mahalanobis distance
(i.e., the distance is measured wrt. the scalar product induced by the inverse
of the positive-definite covariance matrix of the multi-variate Gaussian distribu-
tion, which transforms the covariance ellipsoid back into an unbiased sphere), the
generalization of the Z-score in the multi-variate Gaussian distribution setup, to
characterize the distance measure for rejecting an input.

4.2 DNN Monitoring Techniques from the FM Community

We now detail some of the monitoring techniques rooted in the formal meth-
ods community, where the key differences compared to the work from the ML
community can be understood in one of the following dimensions.

– Use abstraction to decide the decision boundary, to ensure that all encoun-
tered data points within the data set are considered as in-distribution.

– Move beyond convex decision boundaries and embrace non-convex decision
boundaries (via disjunction of sets), to allow more effective filtering of inputs
being out-of-distribution.

Abstraction-Based Monitoring Using Binary Neuron Activation
Patterns. In 2018, Cheng, Nührenberg, and Yasuoka considered the monitoring
problem for detecting abnormal inputs via activation pattern [6]. The motiva-
tion is that abnormal inputs shall enable DNN to create abnormal decisions,
and one natural way of understanding the decision mechanisms is to view the
activation of neurons in a layer as a binary word (feature activation), with each
bit characterizing a particular neuron’s binary on-off activation. Conceptually,
during run-time, when encountering an unseen feature activation pattern, one
may reasonably doubt if the data collection has been insufficient or the input is
OoD.

Precisely, for x ∈ R, define the binary abstraction function bα(x) as follows.
One natural selection of α value is considering α = 0, which matches how a
ReLU activation function performs suppression of its input.

bα(x) =

{
1 if x > α

0 otherwise
(3)

Then given the vector f1→l(�in), the binary word vector bvα(f1→l(�in)) is
defined by element-wise application of bα(·) over f1→l(�in), i.e.,

bvα(f1→l(�in))
def
:= (bα(f1→l

1 (�in)), bα(f1→l
2 (�in)), . . . , bα(f1→l

dl
(�in)))

438 C.-H. Cheng et al.

Given D, the monitor Mbv is simply the set of all binary word vectors as
detailed in Eq. 4. The decision mechanism of the monitor is simple: If there is
an input �in ∈ R

d0 such that bvα(f1→l(�in)) 	∈ Mbv, then consider �in as OoD.

Mbv def
:= {bvα(f1→l(�in)) | (�in, �label) ∈ D} (4)

The question that immediately arises is how the containment checking (i.e.,
whether bvα(f1→l(�in)) ∈ Mbv holds) can be made time-efficient. The authors
in [6] represent the set Mbv using binary decision diagrams (BDDs) [2]. The
containment checking can be done in time linear to the number of monitored
neurons. In order to reduce the size of the BDD and thus the memory footprint,
various heuristics for variable re-ordering4 can be applied before deploying the
monitor.

The second issue is to consider some slight variations in the created binary
word, i.e., instead of rejecting every word not in Mbv, one may relax the con-
straint only to reject if bvα(f1→l(�in)) has a Hamming distance greater than κ
to every word in Mbv. This can be easily realized in BDD by directly building
the set of all words with Hamming distance to any word in Mbv being less or
equal to κ [6].

Finally, one can also create more fine-grained decisions, using two binary
variables to characterize four intervals rather than using one variable that can
only split the domain into two, as detailed in an extension [4]. One limitation of
using more variables for encoding one neuron is that the concept of Hamming
distance can no longer be mapped with physical interpretations.

Binary Word Monitoring Without BDD, and Abstraction on Con-
volutional Layers. The above basic principle on binary word encoding has
been extended, where within the ML community, a joint team of academia and
industry recently uses binary word monitoring to create the state-of-the-art OoD
detectors against other techniques [19]. The key innovation in [19] is to utilize
hardware accelerators such as GPU, where instead of building a BDD that com-
pactly represents the set of binary words, simply store all binary words as 2D
arrays/tensors (via libraries such as np.ndarray for numpy or tf.tensor for
tensorflow). Then the containment checking is done by a hardware-assisted paral-
lelized checking if one of the binary vectors in the tensor matches bvα(f1→l(�in)).
Computing the Hamming distance can be implemented with these libraries by
first applying an XOR operation, followed by counting the number of discrepan-
cies. Another innovation is that the authors apply the binary word generation
on convolutional layers, each of which may contain multiple channels. For exam-
ple, we have one channel for a grayscale image and three channels for a color
image, respectively. The work adopts adaptive pooling for every channel to select

4 BDDs are minimal acyclic finite automata that accept the fixed-length binary rep-
resentation of some finite set wrt. a fixed order on the bits; finding an optimal order
is NP-complete in general.

Runtime Monitoring DNN-Based Perception 439

the most critical features and obtains a vector for all the channels in the con-
volutional layer. Finally, the vector is converted into a binary pattern with an
adaptive activation function, using p-percentile values for the threshold.

Abstraction-Based Monitoring Using the Range of Neuron Values.
Another idea of abstraction-based monitoring is to use the range of each neuron.
This idea occurred independently in two papers around the same time [5,11],
where we detail the underlying idea in [5]. In [5], the boxed abstraction monitor
is introduced due to the need to perform assume-guarantee-based formal verifi-
cation. For formal verification of perception-based deep neural networks where
the input dimension is extremely high (e.g., images or lidar point clouds), one
encounters both scalability and specification challenges. The network can be too
large to be verified. At the same time, we may not be interested in every input
�in ∈ R

d0 but rather the set of inputs characterizing the human-specified opera-
tional domain. As illustrated in Fig. 9, the authors in [5] thus considered building
an abstraction-based monitor Mbox using layer l that ensures to include all input
�in with (�in, �label) ∈ D, the decision mechanism of Mbox shall not view �in as
OoD.

Fig. 9. The role of box abstraction monitors in assume-guarantee-based verification of
neural networks

Precisely, the monitor Mbox def
:= ([m1,M1], . . . , [mdl

,Mdl
]), where for i ∈

{1, . . . , dl}, mi and Mi are defined using Eq. 5, with δ being a small positive
constant that can be tuned.

mi
def
:= min({f1→l

i (�in) | (�in, �label) ∈ D}) − δ

Mi
def
:= max({f1→l

i (�in) | (�in, �label) ∈ D}) + δ
(5)

440 C.-H. Cheng et al.

Then Mbox considers �in to be OoD if ∃i such that f1→l
i (�in) 	∈ [mi,Mi]. In

layman’s words, the monitor is constructed by recording, for each neuron, the
largest and smallest possible valuation (plus adding some buffers) that one can
obtain when using the data set D.

The creation of the monitor Mbox can be used in the assume-guarantee-
based formal neural network verification as follows. Given a set of unsafe output
states Srisk ⊆ R

L, the assume-guarantee-based formal verification first poses the
following safety verification problem:

∃�v = (v1, . . . , vdl
) ∈ R

dl s.t. v1 ∈ [m1,M1] ∧ . . . ∧ vl ∈ [ml,Ml]

∧ fL(fL−1(. . . f l+1(�v))) ∈ Srisk (6)

The verification problem is substantially simpler than a standard DNN formal
verification problem, as it only takes part of the DNN into analysis without
considering high-dimensional inputs and layers f1 to fl. However, the safety
guarantee of no input �in ∈ R

d0 generating an unsafe output is only conditional
to the assumption where ∀i : f1→l

i (�in) ∈ [mi,Mi], which is monitored during
runtime.

(Remark). While one can observe that the boxed-abstraction is highly similar
to the Z-value approach as described in Sect. 4.1, the approach how decision
boundary is created is conceptually different. The abstraction-based monitors
do not assume any distribution on the values of the neuron but demand a full
enclosure for all neuron values from the data set.

Fig. 10. An example where using two boxes is more appropriate

Extensions of Boxed Monitors. In the following, we highlight a few exten-
sions that researchers in the formal method community created.

Boxed abstraction also suffers from the precision problem. Illustrated in
Fig. 10(a), by only recording the minimum and maximum of each neuron value,

Runtime Monitoring DNN-Based Perception 441

Fig. 11. Neuron value distribution before ReLU with data in the same class [26]

using only one box leads to including f1→l(�inood). The authors in [24] thus
consider an extension where unsupervised learning is first applied to perform
clustering, followed by building boxed abstraction monitors for every cluster, as
illustrated in Fig. 10(b). The extension thus allows the set of points in the fea-
ture space to be considered as “in-distribution” to be a non-convex set, similar
to the capabilities of using binary neuron activation patterns.

Towards the concept of non-convex set, the work by Hashemi et al. [9] also
starts with a concept similar to that of the Z-value as specified in Sect. 4.1.

442 C.-H. Cheng et al.

However, instead of directly rejecting an input �in if ∃i such that f1→l
i (�in) 	∈

[μi −κσi, μi +κσi], the method only reports OoD when the number of violations
is larger than a constant α. For instance, α = 2 implies that the monitor can
tolerate the number of neuron range violations by up to two neurons.

In the DNN-based classifiers, the values of some neurons with a class may
always be greater than zero, while the value distribution of other neurons may
be quite different. Inspired by such observation, zero is usually regarded as the
threshold to decide whether a neuron contributes to the pattern of a given
class [27].

Finally, the methods presented are largely generic without detailing what
layer is appropriate to monitor and treatments on neuron activation patterns on
in-distribution but wrongly predicted inputs. Another extension is to consider
the distribution of neuron values before its activation function to select the
candidate neurons for pattern representation [26]. Figure 11 provides three types
of neuron distributions for the samples in the same class. The blue column shows
the number of samples leading to the corresponding values, and the red dot shows
the values from wrong predictions. The method selects the neurons whose values
are always larger than or less than zero for pattern encoding. The pattern of a
class consists of neurons and the upper or lower bound to avoid the influence of
values from wrong predictions in the given training set. Given an input during
run-time, it counts the number of neurons deviating from the specified bounds.
If the number is larger than a given threshold, the input is regarded as abnormal.

4.3 Monitoring Techniques Without Analyzing the DNN

Except for extracting the patterns of DNNs or the distribution of output confi-
dence, some works consider ML-based components as a black box and monitor
abnormal outputs.

Consistency-Based Monitoring. Some works monitor the consistency
between detected objects from image streams. For example, PerceMon [1] adopts
specifications in timed quality temporal logic and its extensions with spa-
tial operators to specify the properties. It monitors whether the data stream
extracted from the ML-based component satisfies the specified property. The
data stream includes the positions, classification, and detection confidence of
objects. The structure of the monitor is similar to an existing online monitor-
ing tool RTAMT [18] for STL specifications. The performance of the monitor
decreases rapidly with the increasing number of objects in a frame.

Another work considers the consistency in image streams and the consistency
with the training data sets [3]. Given the training data set and the associated
labels, it divides an image into various regions, collects the attributes of objects
for every region, and constructs the dictionary. During runtime, if the location
or the size of an object detected in a frame is not in the dictionary, the alarm
is triggered. The consistency between various image frames (temporal relation)
helps to locate abnormalities such as label flips and object loss.

Runtime Monitoring DNN-Based Perception 443

Learning and Monitoring Operational Design Domains (ODD). Using
the training set to estimate the expected distribution of the inputs and/or the
outputs is one form of defining (some aspect of) the operational design domain
the ML-based component is supposed to operate in. A formal description (i.e.,
a specification in some logic) φ′ of the complete (human-defined) ODD is often
not available or infeasible, or only implicitly given by means of the training set
(e.g. pre-classified by a human). That is, in general, we only have an incomplete
specification φ of the ODD, which is an over-approximation (or relaxation) with
|= (φ′ → φ) (as a special case, we have φ = true); further φ might refer to prop-
erties (events) which are not observable in the actual implementation. Different
variants of refining such an initial incomplete specification φ′ using the training
set or the ML-based component have been proposed recently:

For instance, in [22] the authors treat the already trained ML-based system
(e.g. a controller) as a black box containing the ODD specification. By inter-
acting with the black box in an simulated environment (using https://github.
com/BerkeleyLearnVerify/VerifAI), a monitor (in case of [22] a decision tree)
for detecting OoD-behavior is learned. Conformance testing is used to discover
counterexamples which trigger additional simulations. A specification in MTL
for the simulation (which can thus refer to events that are not observable to the
black box and/or which are supposed to be inferred by it) allows to guide the
generation of the traces used for training and checking the monitor.

The authors in [16] propose to train e.g. an LSTM (long short-term memory)
to predict the future extension of the current run (trajectory) up to some finite
horizon, and derive bounds (based on the training and calibration set) on the
quantitative semantics to decide whether a given specification φ will be satisfied
by the future run at least with probability 1−δ as long as the prediction is within
the computed bounds. The specification is assumed to be given in bounded STL
whose quantitative semantics returns a real number measuring how “robust” the
satisfaction is wrt. small changes of the prediction. The requirement that the
specification has to be bounded translates into the existence of a finite horizon
up to which it suffices to predict future behavior.

Somewhat related is the idea to use the human-specified ODD already dur-
ing the actual training. E.g. the authors in [23] study how to avoid in reinforce-
ment learning (RL) that the agent is trained on unsafe or unwanted behavior:
here, one usually unknown part of the ODD is the environment with which the
agent is supposed to interact. The authors therefore use a specification of cen-
tral safety aspects to not only shield the agent from being trained on unsafe
behavior, but also to learn an approximate model of the environment to guide
the exploration of the environment during RL and further improve the shield.
The approximate model itself is obtained by combining learning algorithms for
formal languages and computing optimal strategies for two-player games, similar
to the approach used in formal synthesis. The computed strategy translates into
a Mealy machine, which is then used for shielding the RL.

https://github.com/BerkeleyLearnVerify/VerifAI
https://github.com/BerkeleyLearnVerify/VerifAI

444 C.-H. Cheng et al.

Entropy-Based Monitoring. As the probabilities provided by the softmax
function may be overconfident to out-of-distribution data, some works analyze
the distribution of the probabilities from the softmax layer to separate out-
of-distribution data from in-distribution data. Entropy-based techniques aim
to measure the uncertainty of the probabilities for all the classes. The larger
entropy indicates higher uncertainty. For example, one can compute Shannon
entropy (Eq. 7) to decide whether the prediction is acceptable, where p is the
predictive distribution of the softmax layer.

H(p) = −
∑

j

pj log pj (7)

In addition to Shannon entropy, the generalized entropy can also be applied
to measure the uncertainty of the prediction (Eq. 8) [17].

Gγ(p) =
∑

j

pγ
j (1 − pj)γ (8)

where γ ∈ (0, 1). Lower values of γ are more sensitive to uncertainties in the
predictive distribution. The intuition of the generalized entropy is to amplify
minor derivations of a predictive distribution from the ideal one-hot encoding.

Facing applications with many classifications, the large fraction of very small
predictive probabilities may have a significant impact on the generalized entropy.
In such a case, one can consider the top-M classes to capture small entropy
variations in the top-M classes.

Finally, the score from entropy can be combined with statistics from training
data to improve the performance of out-of-distribution data detection. However,
the performance from the combination of various techniques may not always be
the best due to the variety of data and model architecture.

5 Challenges Ahead

There is no doubt that monitors are instrumental in realizing safety-critical
perception systems. This tutorial outlined the special challenges in monitoring
perception systems, followed by a sketch of some notable monitoring techniques
proposed by the machine learning community and developments from the formal
methods community.

Despite many fruitful results with ongoing technical innovations for DNN-
based perception monitoring, we observe the absence of a rigorous design app-
roach for developing, verifying, and validating OoD detectors. Such design prin-
ciples must be carefully tailored to match the intended functionality and the
specific operational domain they are meant to serve. This includes dimensions
such as principled data collection (a counterexample is the evaluation conducted
in this tutorial; we use Fashion-MNIST as the only OoD examples for MNIST),
using reasonable assumptions (e.g., instead of arbitrarily assuming the neuron
values have a Gaussian distribution and apply the 3σ rule for characterizing

Runtime Monitoring DNN-Based Perception 445

99.7% of the data, use the more conservative Chebyshev’s inequality that is
applicable for arbitrary distribution), or the rigorous design of decision bound-
aries (e.g., consider the joint distribution of the output neurons, use better sta-
tistical methods for estimating their joint distribution; use higher moments than
expected value and variance).

References

1. Balakrishnan, A., Deshmukh, J., Hoxha, B., Yamaguchi, T., Fainekos, G.: Perce-
mon: online monitoring for perception systems. In: International Conference on
Runtime Verification (RV), pp. 297–308 (2021)

2. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv. (CSUR) 24(3), 293–318 (1992)

3. Chen, Y., Cheng, C.-H., Yan, J., Yan, R.: Monitoring object detection abnormal-
ities via data-label and post-algorithm abstractions. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 6688–6693 (2021)

4. Cheng, C.-H.: Provably-robust runtime monitoring of neuron activation patterns.
In: Design, Automation & Test in Europe Conference & Exhibition (DATE), pp.
1310–1313 (2021)

5. Cheng, C.-H., Huang, C.-H., Brunner, T., Hashemi, V.: Towards safety verification
of direct perception neural networks. In: Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 1640–1643 (2020)

6. Cheng, C.-H., Nührenberg, G., Yasuoka, H.: Runtime monitoring neuron activa-
tion patterns. In: Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 300–303 (2019)

7. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS), pp. 92–106 (2010)

8. Gawlitza, T.M., Seidl, H.: Solving systems of rational equations through strategy
iteration. ACM Trans. Program. Lang. Syst. (TOPLAS) 33(3), 11:1–11:48 (2011)

9. Hashemi, V., Křet́ınský, J., Mohr, S., Seferis, E.: Gaussian-based runtime detection
of out-of-distribution inputs for neural networks. In: Feng, L., Fisman, D. (eds.)
RV 2021. LNCS, vol. 12974, pp. 254–264. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-88494-9 14

10. Hendrycks, D.,, Gimpel, K.: A baseline for detecting misclassified and out-of-
distribution examples in neural networks. In: International Conference on Learning
Representations (ICLR) (2017)

11. Henzinger, T.A., Lukina, A., Schilling, C.: Outside the box: abstraction-based mon-
itoring of neural networks. arXiv preprint arXiv:1911.09032 (2019)

12. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

13. LeCun, Y.: The MNIST database of handwritten digits. http://yann.lecun.com/
exdb/most/ (1998)

14. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-
distribution samples and adversarial attacks. In: Conference on Neural Information
Processing Systems (NeurIPS), vol. 31 (2018)

15. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image
detection in neural networks. In: International Conference on Learning Represen-
tations (ICLP) (2018)

https://doi.org/10.1007/978-3-030-88494-9_14
https://doi.org/10.1007/978-3-030-88494-9_14
http://arxiv.org/abs/1911.09032
http://yann.lecun.com/exdb/most/
http://yann.lecun.com/exdb/most/

446 C.-H. Cheng et al.

16. Lindemann, L., Qin, X., Deshmukh, J. V., Pappas, G.J.: Conformal prediction for
STL runtime verification. In: International Conference on Cyber-Physical Systems
(ICCPS), pp. 142–153 (2023)

17. Liu, X., Lochman, Y., Zach, C.: Gen: pushing the limits of softmax-based out-of-
distribution detection. In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 23946–23955 (2023)

18. Ničković, D., Yamaguchi, T.: RTAMT: online robustness monitors from STL. In:
International Symposium on Automated Technology for Verification and Analysis
(ATVA), pp. 564–571 (2020)

19. Olber, B., Radlak, K., Popowicz, A., Szczepankiewicz, M., Chachu�la, K.: Detec-
tion of out-of-distribution samples using binary neuron activation patterns. In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 3378–3387 (2023)

20. Pnueli, A.: The temporal logic of programs. In: Annual Symposium on Foundations
of Computer Science (FOCS), pp. 46–57 (1977)

21. Qutub, S., et al.: Hardware faults that matter: understanding and estimating the
safety impact of hardware faults on object detection dnns. In: International Con-
ference on Computer Safety, Reliability, and Security (SafeComp), pp. 298–318
(2022)

22. Torfah, H., Xie, C., Junges, S., Vazquez-Chanlatte, M., Seshia, S.A.: Learning
monitorable operational design domains for assured autonomy. In: International
Symposium on Automated Technology for Verification and Analysis (ATVA), pp.
3–22 (2022)

23. Waga, M., Castellano, E., Pruekprasert, S., Klikovits, S., Takisaka, T., Hasuo,
I.: Dynamic shielding for reinforcement learning in black-box environments. In:
International Symposium on Automated Technology for Verification and Analysis
(ATVA), pp. 25–41 (2022)

24. Wu, C., Falcone, Y., Bensalem, S.: Customizable reference runtime monitoring of
neural networks using resolution boxes. arXiv preprint arXiv:2104.14435 (2021)

25. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

26. Yan, R., Chen, Y., Gao, H., Yan, J.: Test case prioritization with neuron valuation
based pattern. Sci. Comput. Program. (SCP) 215, 102761 (2022)

27. Zhang, K., Zhang, Y., Zhang, L., Gao, H., Yan, R., Yan, J.: Neuron activation fre-
quency based test case prioritization. In: International Symposium on Theoretical
Aspects of Software Engineering (TASE), pp. 81–88 (2020)

http://arxiv.org/abs/2104.14435
http://arxiv.org/abs/1708.07747

Monitorability for Runtime Verification

Klaud Havelund1 and Doron Peled2(B)

1 Laboratory for Reliable Software, Jet Propulsion Laboratory,
California Institute of Technology, Pasadena, USA

2 Department of Computer Science, Bar Ilan University, Ramat Gan, Israel
doron.peled@gmail.com

Abstract. Runtime verification (RV) facilitates the formal analysis of execution
traces. In particular, it permits monitoring the execution of a system and checking
it against a temporal specification. Online RV observes, at any moment, a prefix of
the complete monitored execution and is required to provide a verdict whether all
the complete executions that share that prefix satisfy or falsify the specification.
Not every property (and for every kind of verdict) lends itself to obtaining such
an early verdict. Monitorability of a temporal property is defined as the ability
to provide positive (success) or negative (failure) verdicts after observing a finite
prefix of the execution. We classify temporal properties based on their monitora-
bility and present related monitoring algorithms. A common practice in runtime
verification is to concentrate on the class of safety properties, where a failure to
satisfy the specification can always be detected in finite time. In the second part of
the paper we concentrate on monitoring safety properties and their place among
the other classes of properties in terms of algorithms and complexity.

1 Introduction

Runtime verification (RV) allows monitoring executions of a system, either online or
offline, checking them against a formal specification. It can be applied to improve the
reliability of critical systems, including safety as well as security aspects, and can more
generally be applied for processing streaming information. RV is not a comprehensive
verification method such as model checking [7,9,23], as it is applied separately to exe-
cutions of the system one at a time. On the other hand, due to its more modest goal,
RV lacks of some of the restrictions of more comprehensive formal methods related to
complexity and applicability.

The specifications, against which the system is checked during RV, are often
expressed in linear temporal logic (LTL) [19]. These properties are traditionally inter-
preted over infinite execution sequences. This corresponds to the case where the number

1 One can of course distinguish the case of terminating executions, or assume some indefinite
padding by an end-of-execution event.

The research performed by Klaus Havelund was carried out at Jet Propulsion Laboratory, Califor-
nia Institute of Technology, under a contract with the National Aeronautics and Space Adminis-
tration. The research performed by Doron Peled was partially funded by Israeli Science Founda-
tion grant 1464/18: “Efficient Runtime Verification for Systems with Lots of Data and its Appli-
cations”.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 447–460, 2023.
https://doi.org/10.1007/978-3-031-44267-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_25&domain=pdf
https://doi.org/10.1007/978-3-031-44267-4_25

448 K. Havelund and D. Peled

of events that the monitored system can emit is unbounded1. Indeed, the input trace is
often a priori not limited to a specific length, and checking it against a given specifica-
tion is supposed to follow it for as long as the monitored system is running. At any time,
only a finite prefix of the system is observed. For runtime verification to be useful, it is
necessary to be able to provide a verdict after observing a finite prefix of an execution
sequence (also referred to as just a prefix).

For example, consider the property �p (for some atomic proposition p), which
asserts that p always holds throughout the execution. A prefix of an execution can be
refuted by a runtime monitor, i.e., demonstrating a failure to satisfy �p, if p does not
hold in some observed event. At this point, no matter how the execution is extended, the
property fail to hold. On the other hand, no finite prefix of an execution can guarantee
a positive verdict that �p holds, since no matter how long we have observed that p has
been holding, it may still stop holding in some future. In a similar way, the property
�p, which asserts that p will eventually happen, cannot be refuted, since even if p has
not happened yet, it may hold at any time in the future; on the other hand, once p holds,
we have established that the property is satisfied, independent on any continuation, and
we can issue a positive (success) verdict. For the property ��p we can never provide a
verdict in finite time, since for a finite prefix p can hold only finitely many times.

The monitorability problem of a temporal property was studied in [5,10,22].
Accordingly, a specification property is considered to be monitorable if after monitor-
ing any finite prefix, we still have a possibility to obtain a positive or a negative verdict
in a finite number of steps. Nevertheless, it is possible that a priori, or after some prefix,
only one type of verdicts is possible.

We follow [21] in classifying temporal properties as an extension of Lamport’s
safety and liveness properties. The class Guarantee was defined to be the dual of safety
in [19], i.e., the negation of a safety property is a guarantee property and vice versa. We
then defined morbidity as the dual of liveness. To complete this classification to cover
all possible temporal specification we added another class that we termed quaestio. In
particular the safety class includes the properties whose failure can be detected after
a finite prefix, and the liveness properties are those where one can never conclude a
failure after a finite prefix.

The second part of the paper focuses on safety properties. In RV, one often expresses
safety properties in the form�ϕ, where ϕ is a past LTL formula. Furthermore, it is often
only the past property ϕ that is monitored, returning a yes/no verdict for the currently
observed prefix. We describe the algorithms for monitoring such safety properties and
compare them to the future LTL monitoring algorithm in terms of complexity. Monitor-
ing propositional past formulas was extended to first order safety properties [3,13]. In
particular, this was focused on monitoring past-time first order LTL properties against
traces that contain data. Although this resulted in quite efficient monitors, we show
some theoretical limitations on monitoring first order LTL properties.

2 Preliminaries

2.1 Runtime Verification

Runtime verification [2,14] refers to the use of rigorous (formal) techniques for pro-
cessing execution traces emitted by a system being observed. In general, the purpose

Monitorability for Runtime Verification 449

of RV is to evaluate the state of the observed system. Since only single executions (or
collections thereof) are analyzed, RV is devoid of some of the complexity and compu-
tational restrictions that some of the more comprehensive formal methods have. But on
the other hand, RV does not provide a comprehensive coverage.

An execution trace is generated by the observed executing system, typically by
instrumenting the system to generate events when important transitions take place.
Instrumentation can be manual, by inserting logging statements in the code, or it can be
automated using instrumentation software, such as aspect-oriented programming frame-
works. Processing of RV can take place online, as the system executes, or offline, by
processing log files produced by the system. In the case of online processing, observa-
tions can be used to control (shield) the monitored system [6].

In specification-based runtime verification, an execution trace is checked against
a property expressed in a formal (often temporal) logic or using automata notation.
More formally, assume a finite prefix of an execution of an observed system up to a
certain point is captured as an execution trace σ = e1.e2.en, which is a sequence
of observed events. Then the RV problem can be formulated as constructing a program,
which when applied to the trace σ, returns some data value in a domain of interest D. In
specification-based RV, the monitor is generated from a formal specification, given e.g.
as a temporal logic formula, a state machine, or a regular expression. The domain of
interest D is often the Boolean domain or some extension of it [4] (in particular adding
a third value “?” for yet unknown) indicating whether the execution trace conforms to
the specification.

The input trace for RV is typically observed one event at a time and the monitoring
algorithm updates a summary that contains enough information to provide given ver-
dicts without observing the previous events. This summary can be, e.g., a state in an
automaton that implements the monitor, or a vector of Boolean values representing the
subformulas of the specification that hold given the observed prefix. Updating the sum-
mary upon seeing a new event needs to be performed efficiently, in particular in online
RV, to keep up with the speed of reported events. The complexity of updating the sum-
mary is called the incremental complexity and needs to be kept minimal. In particular,
this complexity need not depend on the length of the prefixed observed so far, which
can grow arbitrarily.

Monitored execution traces are often unbounded in length, representing the fact that
the observed system “keeps running”, without a known termination point. Hence it is
important that the monitoring program is capable of producing verdicts based on finite
prefixes of the execution trace observed so far. Monitorability focuses on the kind of
verdicts that can be produced based finite prefixes given a specific property.

2.2 Linear Temporal Logic

The classical definition of (future) linear temporal logic is based on future modal oper-
ators [19] with the following syntax:

ϕ::= true | p |(ϕ∧ϕ) |¬ϕ |(ϕUϕ) |�ϕ

where p is a proposition from a finite set of propositions P, with U standing for until,
and � standing for next-time. One can also write false= ¬true, (ϕ∨ψ) = ¬(¬ϕ∧¬ψ),

450 K. Havelund and D. Peled

(ϕ → ψ) = (¬ϕ∨ψ), �ϕ = (trueUϕ) (for eventually ϕ) and �ϕ = ¬�¬ϕ (for always
ϕ).

An event e consists of a subset of the propositions in P. These are the propositions
that were observed to hold or to be true during that event. A trace σ = e1.e2.e3 . . . is
an infinite sequence of events. We denote the event ei in σ by σ(i). LTL formulas are
interpreted over an infinite sequence of events. LTL semantics is defined as follows:

– σ, i |= true.
– σ, i |= p iff p ∈ σ(i).
– σ, i |= ¬ϕ iff not σ, i |= ϕ.
– σ, i |= (ϕ∧ψ) iff σ, i |= ϕ and σ, i |= ψ.
– σ, i |= �ϕ iff σ, i+1 |= ϕ.
– σ, i |= (ϕUψ) iff for some j ≥ i, σ, j |= ψ, and for each k such that i ≤ k < j,

σ,k |= ϕ.

Then define σ |= ϕ when σ,1 |= ϕ.

3 Monitorability

Online runtime verification observes at each point a prefix of the monitored execution
sequence and provides a verdict against a specification. There are three kinds of ver-
dicts:

– failed (or refuted or negative) when the current prefix cannot be extended in any
way into an infinite execution that satisfies the specification. Then the current prefix
is called a bad prefix [5].

– satisfied (or established or positive) when any infinite extension of the current prefix
satisfies the specification. Then the current prefix is called a good prefix [5].

– undecided when the current prefix can be extended into an infinite execution that
satisfies the specification but also extended into an infinite execution that satisfies its
negation.

Undecided prefixes that cannot be extended to either a good or a bad prefix are called
ugly [5], as no further monitoring information will be obtained by continuing the mon-
itoring. As will be shown in Sect. 3.2, at the expense of a more complex algorithm, one
can also decide and report when the current prefix is ugly.

Monitorability of a property ϕ is defined in [5] as the lack of ugly prefixes for
the property ϕ. This requirement means that during monitoring, we never “lose hope”
to obtain a verdict. This definition is consistent with an early definition in [22]. The
definition of monitorability is a bit crude in the sense that it only distinguish between
specifications for which during monitoring one can always still expect a verdict, and
those for which this is not the case. But it lumps together specifications where only a
positive verdict or only a negative verdict can be expected. We study here monitorability
in a wider context, classifying the temporal properties into families according to the
ability to produce particular verdicts.

Monitorability for Runtime Verification 451

3.1 Characterizing Temporal Properties According to Monitorability

Safety and liveness temporal properties were defined informally on infinite execution
sequences by Lamport [18] as something bad cannot happen and something good will
happen. These informal definitions were later formalized by Alpern and Schneider [1].
Guarantee properties where defined by Manna and Pnueli [19]. We add to this classes
the morbidity properties, which is the dual class of liveness properties. This leads us to
the following classical way of describing these four classes of properties.

– safety: A property ϕ is a safety property, if for every execution that does not satisfy
it, there is a finite prefix such that completing it in any possible way into an infinite
sequence would violate ϕ.

– guarantee (co-safety): A property ϕ is a guarantee property if for every execution
satisfying it, there is a finite prefix such that completing it in any possible way into
an infinite sequence satisfies ϕ.

– liveness: A property ϕ is a liveness property if every finite sequence of events can be
extended into an execution that satisfies ϕ.

– morbidity (co-liveness): A property ϕ is amorbidity property if every finite sequence
of events can be extended to an execution that violates ϕ.

Safety, guarantee, liveness and morbidity can be seen as characterizing different
cases related to the monitorability of temporal properties: if a safety property is vio-
lated, there will be a finite bad prefix witnessing it; on the other hand, for a liveness
property, one can never provide such a finite negative evidence. We suggest the fol-
lowing alternative definitions of classes of temporal properties, given in terms of the
verdicts available for the different classes. The adverbs always and never in the def-
initions of the classes below correspond to for all the executions and for none of the
executions, correspondingly. The four classes of properties mentioned above, however,
do not cover the entire set of possible temporal properties, and we need to add two more
classes to complete the classification.

– AFR (safety): Always Finitely Refutable: for each execution where the property
does not hold, refutation can be identified after a finite (bad) prefix, which cannot be
extended to an (infinite) execution that satisfies the property.

– AFS (guarantee): Always Finitely Satisfiable: For each execution in which the prop-
erty is satisfied, satisfaction can be identified after a finite (good) prefix, where each
extension of it will satisfy the property.

– NFR (liveness): Never Finitely Refutable: For no execution, can a bad prefix be
identified after a finite prefix. That is, every finite prefix can be extended into an
(infinite) execution that satisfies the property.

– NFS (morbidity): Never Finitely Satisfiable: For no execution can a good prefix be
identified after a finite prefix. That is, every finite prefix can be extended into an
(infinite) execution that does not satisfy the property.

– SFR: Sometimes Finitely Refutable: for some infinite executions that violate the
property, refutation can be identified after a finite (bad) prefix; for other infinite
executions violating the property, this is not the case.

452 K. Havelund and D. Peled

– SFS: Sometimes Finitely Satisfiable: for some infinite executions that satisfy the
property, satisfaction can be identified after a finite (good) prefix; for other infinite
executions satisfying the property, this is not the case.

Let ϕ be any property expressible in LTL. Then ϕ represents the set of executions
satisfying it. It is clear by definition that ϕ must be either in AFR, SFR or in NFR
(since this covers all possibilities). It also holds that ϕ must be in either AFS, SFS or in
NFS. Every temporal property must belong then to one class of the form XFR, where X
stands for A, S or N, and also to one class of the form XFS, again with X is A, S or N.
The possible intersections between classes is shown in Fig. 1. Below we give examples
for the nine combinations of XFR and XFS, appearing in clockwise order according
to Fig. 1, ending with the intersection SFR∩SFS, termed Quaetio that appears in the
middle.

– SFR ∩ NFS: (�p∧�q)
– AFR ∩ NFS: �p
– AFR ∩ SFS: (p∨�q)
– AFR ∩ AFS: �p
– SFR ∩ AFS: (p∧�q)
– NFR ∩ AFS: �p
– NFR ∩ SFS: (�p∨�q)
– NFR ∩ NFS: ��p
– SFR ∩ SFS: ((p∨��p)∧�q)

Another way to cover all the temporal properties is as the union of safety (AFR),
guarantee (AFS), liveness (NFR), morbidity (NFS) and quaestio (SFR∩SFS). Every
safety property is monitorable. Because guarantee properties are the negations of safety
properties, one obtains using a symmetric argument that every guarantee property is
also monitorable.

The shadowed areas in Fig. 1 in the intersections between the classes of properties
NFS, SFS and the classes NFR, SFR correspond to the cases where monitorability is
not guaranteed. While in NFR∩NFS there are no monitorable properties, in the other
three intersections there are both monitorable and nonmonitorable properties. Examples
for these cases appear in the following table.

Class monitorable example non-monitorable example

SFR ∩ SFS ((�r∨��p)∧�q) ((p∨��p)∧�q)

SFR ∩ NFS (�p∧�q) (��p∧�q)

NFR ∩ SFS (�p∨�q) ((¬pU�(p∧�¬p))∨��p)

3.2 Runtime Verification Algorithms for Monitorability

The following algorithm [8,17] monitors executions and provides success (positive) or
fail (negative) verdict of the checked property whenever a minimal good or a bad prefix
is detected, respectively.

A procedure for detecting the minimal good prefix when monitoring an execution
against the specification ϕ is as follows:

Monitorability for Runtime Verification 453

Fig. 1. Classification of properties according to monitorability: filled space correspond to non-
monitorable properties.

1. Construct a Büchi automaton A¬ϕ for ¬ϕ, e.g., using the translation in [12]. This
automaton is not necessarily deterministic [25].

2. Using DFS, find the states of A¬ϕ from which one cannot reach a cycle that contains
an accepting state and remove these states.

3. On-the-fly subset construction: While monitoring input events, maintain the current
subset of states that the automaton A¬ϕ reaches after observing the current input as
follows:
– Start with the set of initial states of the automaton A¬ϕ.
– Given the current set of successors S and a newly occurring event e ∈ 2P that

extends the monitored prefix, the set of successors S′ contains the successors of
the states in S according to the transition relation Δ of A¬ϕ. That is, S′ = {s′ |s ∈
S∧ (s,e,s′) ∈ Δ}.

– Reaching the empty set of states, the monitored sequence is good and a positive
verdict is issued. This is because the empty subset of states means that follow-
ing the current inputs, the automaton A¬ϕ cannot complete the input into an
accepting execution.

A symmetric procedure constructs Aϕ for detecting minimal bad prefixes. One can
monitor using both A¬ϕ and Aϕ at the same time, providing both failure and success
verdicts. Translating the formula ϕ into a Büchi automaton can result in an automaton

454 K. Havelund and D. Peled

Aϕ of size O(2|ϕ|). The subset construction described above has to keep in each state a
set of states. Thus, the incremental complexity of the RV monitoring algorithm is also
O(2|ϕ|). The subsets of states that are constructed during monitoring form the summary
of the trace observed so far, which is needed to continue the monitoring further.

Instead of the on-the-fly subset construction, one can precalculate, before monitor-
ing, a deterministic automaton B based on the product Aϕ ×A¬ϕ. Each state of the
automaton is a pair of subsets of states, of the two automata, as constructed above.
Then, each state of this automaton can be marked with ⊥ , � or ?, where ⊥ corresponds
to an empty subset of Aϕ states (a failed verdict) and � corresponds to an empty set
of A¬ϕ states (a success verdict). Instead of the on-the-fly updates in the above subset
construction, monitoring can be performed while updating the state of the automaton
based on the automaton B . The size of this automaton is O(22|ϕ|

), but the size of each
state remains O(2|ϕ|), as in the on-the-fly version. Thus, the incremental complexity
remains the same.

An advantage of the preliminary construction of the automaton B over the on-the-
fly subset construction described above is that it can be further used to predict at runtime
the kind of verdicts that can be expected after observing the current prefix. To allow this
prediction, each state of B is annotated, during the preliminary construction, with the
kind of verdicts, � (success), ⊥ (failed) or both, that mark the nodes that are reachable
from the current state. During monitoring, when neither verdicts is reachable anymore,
the current prefix is identified as ugly. When the initial state of B is marked as ugly, the
property is nonmonitorable.

3.3 A Lower Bound Example for LTL Monitoring

We present an example, following [17], to show that monitoring an LTL specification
requires a summary of size exponential in the length of the property.

The specification is a safety property. It asserts about a nonempty and finite
sequence of blocks of 0 and 1 bits of length n. Each block starts with the symbol
#. Then, a final block, separated from the previous one by $ follows. After the last
block, the symbol & repeats indefinitely. The property asserts that if the trace has the
above structure, the last block (the one after the $) is identical to one of the blocks that
appeared before. We denote by �i a sequence of i occurrences of � in an LTL formula.
The formula has length quadratic in n.

(#∧�(((#∨$) → ∧1≤i≤n�i(0∨1))∧ (# → �n+1(#∨$))∧ ($ → �n+1�&))) →
�(#∧∧1≤i≤n((�i0∧�($ → �i0))∨ (�i1∧�($ → �i1)))))

With n bits, one can encode 2n different blocks. During the monitoring, the sum-
mary must remember which subset of blocks we have seen before inspecting the last
block that appears after the $. Encoding the set of blocks that were observed requires
space of size O(2n). With less memory, there will be two prefixes with different sets of
occurring blocks, which have the same memory representation; this means that runtime
verification will not be able to check the execution correctly.

Monitorability for Runtime Verification 455

4 Monitoring Safety Properties

4.1 Past Propositional Temporal Logic

Safety properties are a subset of the (future) LTL properties. One can apply a decision
procedure [24] to check whether an LTL property forms a safety property. However,
there is an alternative way of expressing LTL safety properties, which guarantees syn-
tactically that the given property is safety. This is based on using past operators for LTL,
symmetric to the future operators. Let P be a finite set of propositions. The syntax of
past-time propositional linear time temporal logic PLTL is defined as follows.

ϕ::= true | p |(ϕ∧ϕ) |¬ϕ |(ϕS ϕ) | ϕ

where p ∈ P.
The operator (for previous-time) is the past mirror of the � operator, � is the

past mirror of �, � is the past mirror of � and S (for Since) is the past mirror of U .
We can use the following additional operators: false = ¬true, (ϕ∨ψ) = ¬(¬ϕ∧¬ψ),
(ϕ → ψ) = (¬ϕ∨ψ),� ϕ = (trueS ϕ), � ϕ = ¬� ¬ϕ.

Let σ = e1 . . .en be a finite sequence of events, consisting each of a subset of the
propositions P. We denote the
Semantics. The semantics of a PLTL formula ϕ with respect to a finite trace σ is defined
as follows:

– σ, i |= true.
– σ, i |= p iff p ∈ σ(i).
– σ, i |= (ϕ∧ψ) iff σ, i |= ϕ and σ, i |= ψ.
– σ, i |= ¬ϕ iff not σ, i |= ϕ.
– σ, i |= ϕ iff |σ| > 1 and σ, i−1 |= ϕ.
– σ, i |=(ϕS ψ) iff for some j≤ i, σ, j |=ψ, and for each k such that j< k≤ i, σ,k |=ϕ.

We can combine the past and future definitions of LTL. However, adding the past
operators does not increase the expressive power of (future) LTL [11]. Based on the
combined logic, we define four extensions of PLTL, which consist of a past property
prefixed with one or two future operators from {�, �}. All extensions are interpreted
over infinite sequences:

– �PLTL, which consists of PLTL formulas prefixed with the future � operator.
– �PLTL, which is, similarly, PLTL formulas prefixed by the � operator.
– ��PLTL, which consists of PLTL formulas prefixed with ��.
– ��PLTL, which consists of PLTL formulas prefixed with ��.

Note the duality between the first two classes, �PLTL and �PLTL: for every for-
mula ϕ, ¬�ϕ = �¬ϕ. Thus, the negation of a �PLTL property is a �PLTL property
and vice versa. Similarly, for every ϕ, ¬��ϕ = ��¬ϕ, making the latter two classes
also dual. Thus, the negation of a ��PLTL property is a ��PLTL property.

Manna and Pnueli [19] identified the LTL safety properties with �PLTL and the
guarantee properties with�PLTL. They have also called the properties of��PLTL and

456 K. Havelund and D. Peled

��PLTL recurrence and obligation, respectively. The entire set of LTL properties can
be expressed as Boolean combination of recurrence and obligation properties. Except
for safety and liveness properties, the Manna and Pnueli classification is orthogonal to
the one that we explored here.

4.2 RV for Propositional Past Time LTL

Past properties play an important role in RV. Runtime verification of temporal specifi-
cations concentrates in many cases on the class of properties �PLTL. Further, instead
of checking a property of the form �ϕ, one often checks whether ϕ holds for the trace
observed so far, returning true/false output. When the current trace violates ϕ, then the
fact that �ϕ fails can be concluded.

The RV algorithm for past LTL, presented in [15] is based on the observation that
the semantics of the past time formulas ϕ and (ϕS ψ) in the current state i is defined
in terms of the semantics of its subformula(s) in the previous state i−1. This becomes
clearer when we rewrite the semantic definition of the S operator to a form that is more
applicable for runtime verification.

– (σ, i) |= (ϕS ψ) if (σ, i) |= ψ, or i> 1 and both (σ, i) |= ϕ and (σ, i−1) |= (ϕS ψ).

The semantic definition of past LTL is recursive in both the length of the prefix and
the structure of the property. Thus, subformulas are evaluated based on smaller subfor-
mulas, and the evaluation of subformulas in the previous state. The algorithm shown
below monitors a trace against a past temporal property η. It uses two vectors of values
indexed by subformulas: pre, which summarizes the truth values of the subformulas for
the observed prefix without its last event and now, for the observed prefix including its
last event.

1. Initially, for each subformula ϕ of η, now(ϕ) := false.
2. Observe a new event e (as a set of propositions) as input.
3. Let pre := now.
4. Make the following updates for each subformula. If ϕ is a subformula of ψ then

now(ϕ) is updated before now(ψ).
– now(p) := p ∈ e.
– now(true) := true.
– now((ϕ∧ψ)) := now(ϕ) and now(ψ).
– now(¬ϕ) := not now(ϕ).
– now((ϕS ψ)) := now(ψ) or (now(ϕ) and pre((ϕS ψ))).
– now(ϕ) := pre(ϕ).

5. If now(η) = false then report a violation, otherwise goto step 2.

As opposed to the monitoring algorithm for future LTL, presented in Sect. 3.2,
which uses a summary exponential in the size of the monitored property, this algo-
rithm has a summary and an incremental complexity that is linear in the length of the
specification.

Monitorability for Runtime Verification 457

4.3 From Monitoring Past Property ϕ to Monitoring �ϕ

We present an algorithm for specifications of the form �PLTL. Recall the algorithm
for future propositional LTL presented in Sect. 3.2. It identifies minimal good and bad
prefixes hence provides a success/failed verdicts for the monitored input trace with
respect to the specification.

For the case of �PLTL, a simpler construction can be used. A single determinis-
tic automaton D�ϕ can be constructed for the specification �ϕ. Each state s of this
automaton corresponds to the set of subformulas sf(s) of ϕ that hold after a trace that is
consistent with the inputs on any path that leads from the initial state to s. Calculating
the transition relation is similar to updating the summary in the RV algorithm for past
propositional LTL, as shown at the beginning of Sect. 4.2, using the two vectors pre and

now. Let s
Q→ s′, where Q is the currently inspected set of propositions. Define pre as

follows: for a subformula η of the given specification, pre(η) = true iff η ∈ sf(s). For a
propositional letter p, set now(p) = true iff p ∈ Q. Now, for the subformulas in sub(ϕ)
that do not consist solely of a proposition, calculate now as in Step 4 in the algorithm in
Sect. 4.2. Then, for η ∈ sub(ϕ), η ∈ sf(s′) iff now(η) = true. The initial state consists
of the empty set of subformulas. A state of D�ϕ is accepting if it contains the formula
ϕ itself.

One can use D�ϕ to decide on verdicts when monitoring against the specification
�ϕ. An (infinite) execution satisfies �ϕ if it runs only through accepting states. Note
that the number of states is O(2|ϕ|), but each state can be represented using space linear
of |ϕ|. We mark the states from which all the future successors are accepting by �.
Initially, mark every accepting node by �. Then, repeatedly remove the � marking
from nodes that have a successor that is not marked by �. Keep doing that until there
is no � marking that can be removed2. We mark states where there are no infinite
accepting continuations ⊥. To do that, start by marking the non accepting nodes by ⊥.
Repeatedly, mark by ⊥ nodes whose entire set of successors are already marked by ⊥.
Keep doing this until no new node can be marked3. Finally, nodes that are not marked
by � or ⊥ are marked by ?.

Marking the states of the automaton D�ϕ is done as a preliminary step. Runtime
verification uses the marked automaton D�ϕ to monitor input traces and return the
corresponding verdict. The RV algorithm then needs to keep the current state, and can
figure out the successor state based on the two-vector update. Consequently, the size of
the summary, and the incremental complexity are linear in the size of ϕ. This can be
compared to the automaton-based RV algorithm for future LTL from Sect. 3.2, which
needs to keep a set of states of the constructed automata, hence requiring exponential
space and time for each update.

We need to take the fact that the algorithm for �PLTL has a linear incremental
complexity and a linear summary in the size of the specification with a grain of salt.
The example in Sect. 3.3 shows that the summary for the presented property needs to be
exponential in n. This (safety) property is presented in future LTL with a formula whose

2 This is similar to the model checking algorithm for the CTL property AG� [7].
3 This is similar to the model checking algorithm for the CTL property AF⊥.

458 K. Havelund and D. Peled

size is quadratic in n. But for �ϕ with a past property ϕ, a summary that is only linear
in |ϕ| is sufficient. Unfortunately, this implies that expressing this property in the form
�ϕ requires a formula whose length is exponential in n. A similar reasoning implies
that for a reversed property, where the block of length n that needs to repeat appears at
the beginning rather at the end, the property can be written with past LTL formula of
quadratic size in n, but the future LTL property needs to be of length exponential in n.

Monitoring with respect to a past property ϕ, rather than �ϕ, the verdict can change
between true and falsemultiple times. However, for safety properties we may be mostly
interested in finding the case where the current prefix fails to satisfy ϕ. When the ver-
dict for the current prefix is false, we can issue a fail verdict for �ϕ. However, it is
possible that a prefix σ satisfies ϕ, while �ϕ does not hold for all extensions of this pre-
fix to an infinite execution. Consider as an example the property �(false∨ p),
which becomes false only two events after the first event where ¬p holds (the disjunct
 false is used to rule out failure due to fact that the failing prefix is shorter than two
events). Thus, although�ϕ should return a fail verdict, performing RV on the past prop-
erty ϕ will only reveal that two events later than on the minimal trace. Monitoring �ϕ
using D�ϕ would provide the fail verdict at the minimal trace that cannot be extended
to satisfy �ϕ.

If ϕ holds for some observed prefix σ but �ϕ fails on every infinite extension of σ,
then we will eventually observe an extension σ.ρ of σ, where |ρ| depends on the size
of ϕ and where ϕ does not hold. Thus, if we do not want to use the automaton D�ϕ to
decide when �ϕ already holds, but instead check ϕ after each new event, then there is a
limit to the number of steps that we need to wait until ¬ϕ will fail to hold that depends
on |ϕ|. To see this, consider a finite trace σ where ϕ holds and where all the infinite
extensions of σ have some finite prefix that does not satisfy ϕ. Let n be the number of
states ofD�ϕ, which is known to be bounded by O(2|ϕ|) [16]. Running the deterministic
automaton D�ϕ on σ, we end up in some state s. Suppose, for the contradiction, that
there is a path ρ from s with |ρ| > n, where all of its prefixes satisfy ϕ. Then running
D�ϕ on the input ρ from the state s, one must pass through at least one state of D�ϕ
more than once. This allows constructing (“pumping”) an infinite path on D�ϕ, where
all of its states indicate that the prefix so far satisfies ϕ, a contradiction.

4.4 From Monitoring Propositional to First Order Temporal Logic

Runtime verification was extended to specifications that contain data. In particular, the
tools DejaVu and MonPoly4 allow specification that is based on first-order past LTL.
An event in this case consists of predicates with parameters, i.e., in the form q(3).
DejaVu algorithm is restricted to checking a first order past property ϕ, rather than
checking �ϕ.

For first order RV, the problem of discovering that a finite trace σ cannot be extended
to satisfy �ϕ, although the trace itself still satisfies ϕ intensifies: in some cases, the

4 MonPoly allows a limited use of finite future, but the monitoring is then actually resolved when
that future is reached.

Monitorability for Runtime Verification 459

maximal number of events that are required to extend σ depends to the trace σ itself,
and is not a function of the specification ϕ. Consider the following specification ϕ:

∀x((q(x) → ¬� q(0)∨q(x))∧ (r(x) → (� q(x)∧¬� r(x))))

This property asserts that events of the form q(x) or r(x) can appear only once with the
same parameter each. Further, an r(x) event can occur only if a q(x) event happened
with the same parameter x. Moreover, after a q(0) event, no event of the form q(x) can
happen. Consequently, if the event q(0) has happened, no further q(x) events can occur,
and the only events that can occur are of the form r(x), where q(x) has already occurred
(with the same value x). Therefore, the maximal number of events that can extend the
trace until ϕ becomes false is the number of q(x) events that occurred for which a
matching r(x) event has not happened yet. Thus, once the event q(0) has occurred, the
verdict of �ϕ is fail, although ϕ may still be calculated to true for a long while.

In [20], an algorithm that calculates the possible values of ϕ for extensions up to a
given fixed size k is presented. However, it is shown, by a reduction from the Post Cor-
respondence Problem decision problem, that checking �ϕ for a first order past property
ϕ is undecidable.

References

1. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distrib. Comput. 2(3), 117–126
(1987)

2. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime verification.
In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp.
1–33. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5 1

3. Basin, D.A., Jiménez, C.C., Klaedtke, F., Zalinescu, E.: Deciding safety and liveness in
TPTL. Inf. Process. Lett. 114(12), 680–688 (2014)

4. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how ugly is
ugly? In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp. 126–138. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-77395-5 11

5. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. ACM Trans.
Softw. Eng. Methodol. 20(4): 14:1–14:64 (2011)

6. Bloem, R., Könighofer, B., Könighofer, R., Wang, C.: Shield synthesis: runtime enforcement
for reactive systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 533–
548. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 51

7. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using
branching time temporal logic. In: Kozen, D. (ed.) Logics of Programs Logic of Pro-
grams. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). https://doi.org/10.1007/
BFb0025774

8. Tabakov, D., Rozier, K.Y., Vardi, M.Y.: Optimized temporal monitors for SystemC. Formal
Methods Syst. Des. 41(3), 236–268 (2012)

9. Emerson, E.A., Clarke, E.M.: Characterizing correctness properties of parallel programs
using fixpoints. In: de Bakker, J., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp.
169–181. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10003-2 69

10. Falcone, Y., Fernandez, J.-C., Mounier, L.: What can you verify and enforce at runtime?
STTT 14(3), 349–382 (2012)

https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1007/978-3-662-46681-0_51
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/3-540-10003-2_69

460 K. Havelund and D. Peled

11. Gabbay, D.M., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness. In:
POPL 1980, pp. 163–173 (1980)

12. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of
linear temporal logic. In: Dembiński, P., Średniawa, M. (eds.) PSTV 1995. IAICT, pp. 3–18.
Springer, Boston, MA (1996). https://doi.org/10.1007/978-0-387-34892-6 1

13. Havelund, K., Peled, D., Ulus, D.: First-order temporal logic monitoring with BDDs. In:
FMCAD 2017, pp. 116–123 (2017)

14. Havelund, K., Reger, G., Thoma, D., Zălinescu, E.: Monitoring events that carry data. In:
Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS, vol. 10457, pp.
61–102. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75632-5 3

15. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen, J.-P.,
Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-46002-0 24

16. Kesten, Y., Manna, Z., McGuire, H., Pnueli, A.: A decision algorithm for full propositional
temporal logic. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 97–109. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-56922-7 9

17. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods Syst.
Des. 19(3), 291–314 (2001)

18. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw. Eng.
3(2), 125–143 (1977)

19. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems - Specifi-
cation. Springer, Heidelberg (1992). https://doi.org/10.1007/978-1-4612-0931-7

20. Omer, M., Peled, D.: Runtime Verification Prediction for Traces with Data, RV 2023.
Springer, Thessaloniki (2023)

21. Peled, D., Havelund, K.: Refining the safety–liveness classification of temporal properties
according to monitorability. In: Margaria, T., Graf, S., Larsen, K.G. (eds.) Models, Mindsets,
Meta: The What, the How, and the Why Not? LNCS, vol. 11200, pp. 218–234. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-22348-9 14

22. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In: Misra,
J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586. Springer,
Heidelberg (2006). https://doi.org/10.1007/11813040 38

23. Queille, J.P., Sifakis, J.: Interactive methods for the analysis of Petri nets. In: Girault, C.,
Reisig, W. (eds.) Application and Theory of Petri Nets Informatik-Fachberichte, vol. 52, pp.
161–167. Springer, Heidelberg (1982). https://doi.org/10.1007/978-3-642-68353-4 27

24. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspects Comput. 6(5),
495–512 (1994)

25. Thomas, W.: Automata on Infinite Objects, Handbook of Theoretical Computer Science.
Volume B: Formal Models and Semantics, pp. 133–192 (1990)

https://doi.org/10.1007/978-0-387-34892-6_1
https://doi.org/10.1007/978-3-319-75632-5_3
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/3-540-56922-7_9
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-3-030-22348-9_14
https://doi.org/10.1007/11813040_38
https://doi.org/10.1007/978-3-642-68353-4_27

Learning-Based Approaches to Predictive
Monitoring with Conformal Statistical

Guarantees

Francesca Cairoli1(B) , Luca Bortolussi1 , and Nicola Paoletti2

1 University of Trieste, Trieste, Italy
FRANCESCA.CAIROLI@UNITS.IT

2 King’s College London, London, UK

Abstract. This tutorial focuses on efficient methods to predictive mon-
itoring (PM), the problem of detecting at runtime future violations of a
given requirement from the current state of a system. While performing
model checking at runtime would offer a precise solution to the PM prob-
lem, it is generally computationally expensive. To address this scalabil-
ity issue, several lightweight approaches based on machine learning have
recently been proposed. These approaches work by learning an approxi-
mate yet efficient surrogate (deep learning) model of the expensive model
checker. A key challenge remains to ensure reliable predictions, especially
in safety-critical applications.

We review our recent work on predictive monitoring, one of the first
to propose learning-based approximations for CPS verification of tem-
poral logic specifications and the first in this context to apply conformal
prediction (CP) for rigorous uncertainty quantification. These CP-based
uncertainty estimators offer statistical guarantees regarding the gener-
alization error of the learning model, and they can be used to deter-
mine unreliable predictions that should be rejected. In this tutorial, we
present a general and comprehensive framework summarizing our app-
roach to the predictive monitoring of CPSs, examining in detail several
variants determined by three main dimensions: system dynamics (deter-
ministic, non-deterministic, stochastic), state observability, and seman-
tics of requirements’ satisfaction (Boolean or quantitative).

1 Introduction

Verification of temporal properties for a cyber-physical systems (CPS) is of
paramount importance, especially with CPSs having become ubiquitous in
safety-critical domains, from autonomous vehicles to medical devices [1]. We
focus on predictive monitoring (PM), that is, the problem of predicting, at run-
time, if a safety violation is imminent from the current CPS state. In this con-
text, PM has the advantage, compared to traditional monitoring [9], of detecting
potential safety violations before they occur, in this way enabling preemptive
countermeasures to steer the system back to safety (e.g. switching to a failsafe
mode as done in the Simplex architecture [37]). Thus, effective PM must bal-
ance between prediction accuracy, to avoid errors that can jeopardize safety, and
computational efficiency, to support fast execution at runtime.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 461–487, 2023.
https://doi.org/10.1007/978-3-031-44267-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_26&domain=pdf
http://orcid.org/0000-0002-6994-6553
http://orcid.org/0000-0001-8874-4001
http://orcid.org/0000-0002-4723-5363
https://doi.org/10.1007/978-3-031-44267-4_26

462 F. Cairoli et al.

We focus on correctness specifications given in Signal Temporal Logic
(STL) [29,42], a popular language for formal reasoning about CPS. An advan-
tage of STL is that it admits two semantics, the usual Boolean semantics and a
quantitative (robust) semantics, which quantifies the degree of satisfaction of a
property. When using the latter, we speak of quantitative PM (QPM).

Performing model checking of STL requirements at run-time would provide
a precise solution to the PM problem (precise up to the accuracy of the system’s
model), but such a solution is computationally expensive in general, and thus
infeasible for real-world applications. For this reason, a number of approximate
PM techniques based on machine learning have been recently proposed (see
e.g. [14,17,19,40,43]).

In this paper, we review our work on learning-based methods for PM, devel-
oped under the name of Neural Predictive Monitoring [13]. The core idea is
that when a satisfaction (SAT) oracle is at our disposal, we can approximate it
using deep learning models trained using a set of oracle-labeled examples. The
resulting learning-based model overcomes the scalability issues faced by the orig-
inal oracle: a forward pass of a (reasonably sized) neural network is most often
more efficient than computing satisfaction of an STL property, especially if the
underlying system is non-deterministic or stochastic. However, such a solution is
inherently approximate, and so it becomes essential – especially in safety-critical
domains – to offer assurances regarding the generalization performance of our
approximation. To this purpose, we rely on conformal prediction (CP) [61], a
technique that allows us to complement model predictions with uncertainty esti-
mates that enjoy (finite-sample, i.e., non-asymptotic) statistical guarantees on
the model’s generalization error. CP requires only very mild assumptions on
the data1 and it is flexible enough to be applied on top of most predictors. Fur-
thermore, computing CP-based uncertainty estimates is highly efficient, meaning
that our approach can offer statistical guarantees on the PM predictions without
affecting performance and runtime applicability.

In this tutorial, we present a general and comprehensive framework sum-
marizing several variants of the neural predictive monitoring approach, variants
determined by the following three dimensions:

1. Dynamics: The CPS dynamics can be either deterministic, non-deterministic,
or stochastic, depending on whether the future behavior of the system is
uniquely determined by its current state, is uncertain or exhibits randomness.

2. State Observability : The current CPS state can be fully observable, or we may
only have access to partial and noisy measurements of the state, making it
more challenging to obtain accurate predictions of the CPS evolution.

3. Satisfaction: The type of property satisfaction can be either Boolean or quanti-
tative. In the former case, the PM outcome is a “yes” or “no” answer (the CPS
either satisfies the property or does not). In the latter case, the outcome is a
quantitative degree of satisfaction,whichquantifies the robustness of STL (Boo-
lean) satisfaction to perturbations (in space or time) of the CPS trajectories.

1 The only assumption is exchangeability, a weaker version of the independent and
identically distributed assumption. A collection of N values is exchangeable if the
N ! different orderings are equally likely, i.e. have the same joint probability.

Learning-Based Approaches to Predictive Monitoring 463

By considering the above dimensions, we can design accurate and reliable PM
solutions in a variety of scenarios accounting for a vast majority of CPS models.

Overview of the Paper. This paper is structured as follows. We start by present-
ing the background theory in Sect. 2. Section 3 states rigorous formalizations
of the predictive monitoring problems. Section 4 provides background on meth-
ods used to estimate predictive uncertainty and obtain statistical guarantees.
Section 5 defines the different declinations of learning-based PM approaches.
Related works are discussed in Sect. 6. Conclusions are drawn in Sect. 7.

2 Background

A cyber-physical system (CPS) is a system combining physical and digital com-
ponents. Hybrid systems (HS), whose dynamics exhibit both continuous and dis-
crete dynamics, can well capture the mixed continuous and discrete behaviour
of a CPS. An HS has both flows, described by differential equations, and jumps,
described by a state machine or an automaton. The continuous behaviour
depends on the discrete state and discrete jumps are similarly determined by
the continuous state. The state of an HS is defined by the values of the con-
tinuous variables and by a discrete mode. The continuous flow is permitted as
long as a so-called invariant holds, while discrete transitions can occur as soon
as given jump conditions are satisfied.

Remark 1. The approaches proposed in this paper are applicable to any black-
box system for which a satisfaction (SAT) oracle is available. That said, HS
represent a very useful and expressive class of models for which several SAT
oracles (model checkers) have been developed. Therefore, we will focus on this
class of models for the rest of the paper.

A hybrid automaton (HA) is a formal model that mathematically describes
the evolution in time of an HS.

Definition 1 (Hybrid automaton). A hybrid automaton (HA) is a tuple
M = (Loc, Var , Init ,Flow ,Trans, Inv), where Loc is a finite set of discrete loca-
tions (or modes); Var = {v1, . . . , vn} is a set of continuous variables, evaluated
over a continuous domain Var ⊆ R

n; Init ⊆ S(M) is the set of initial states,
where S(M) = Loc × Var is the state space of M; Flow : Loc → (Var → Var) is
the flow function, defining the continuous dynamics at each location; Trans is the
transition relation, consisting of tuples of the form (l, g, r, l′), where l, l′ ∈ Loc are
source and target locations, respectively, g ⊆ Var is the guard, and r : Var → Var
is the reset; Inv : Loc → 2Var is the invariant at each location.

In general, HA dynamics can be either deterministic, non-deterministic, or
stochastic. Deterministic HAs are a special case where the transition relation
is a function of the source location. On the other hand, when the continuous
flow or the discrete transitions happen according to a certain probability distri-
bution, we have a stochastic HA. In this case, the dynamics is represented as the
combination of continuous stochastic flows probability Flow : (Loc × Var) →

464 F. Cairoli et al.

(Var → [0, 1]) and discrete jump probability Trans : (Loc × 2Var) → ((Loc ×
(Var × Var)) → [0, 1]). In particular, Flow(v′ | l, v) denotes the probability of
a change rate of v′ when in state (l, v) and Trans(r, l′ | l, g) is the probability
of applying reset r and jumping into l′ through a transition starting from l with
guard g. We often prefer to avoid transitions with both non-determinism and
stochasticity and so, for each stochastic HA location, we define its invariant and
guards so that they form a partition of Var .

We define a signal as a function �s : T → V, where T ⊂ R
+ is the time domain,

whereas V determines the nature of the signal. If V = B := {true, false}, we
have a Boolean signal. If V = R, we have a real-valued signal. We consider signals
that are solutions of a given HA. Let τ = {[ti, ti+1]|ti ≤ ti+1, i = 1, 2, . . . } be
a hybrid time trajectory. If τ is infinite the last interval may be open on the
right. Let T denote the set of hybrid time trajectories. Then, for a given τ ∈ T,
a hybrid signal �s : τ → S(M) defined on τ with values in a generic hybrid space
S(M) is a sequence of functions

�s = {�si : [ti, ti+1] → S(M) | [ti, ti+1] ∈ τ}.

In practice, it can be seen as a pair of hybrid signals �v : τ → Var and �l : τ → Loc
with τ ∈ T, such that (�l1(t1), �v1(t1)) ∈ Init , and for any [ti, ti+1] ∈ τ , �li is
constant and there exist g and r such that (li, g, r, li+1) ∈ Trans, �vi(t−i+1) ∈ g,
and �vi+1(ti+1) = r(�vi(t−i+1)). Moreover, for every t ∈ [ti, ti+1], it must hold that
�vi(t) ∈ Inv(li) and

�vi(t) = �vi(ti) +
∫ t

ti

Flow
(
�li(t′), �vi(t′)

)
dt′.

When the HA is stochastic, hybrid signals must have a non-zero prob-
ability, that is, for every piece i of the signal, there exists g, r such that
Trans(r, li+1 | li, g) > 0, �vi(t−i+1) ∈ g, and �vi+1(ti+1) = r(�vi(t−i+1)). More-
over, for every t ∈ [ti, ti+1), it must hold that Flow(�̇vi(t) | li, �vi(t)) > 0, where
�̇vi(t) = limdt→0(�vi(t + dt) − �vi(t))/�vi(t).

Remark 2. We note that HA induces Markovian dynamics, that is, the evolution
of the HA depends only on the current state. We do not see this as a restriction
as most systems of interest are Markovian or can be made so by augmenting the
state space.

2.1 Signal Temporal Logic (STL)

Signal temporal logic (STL) [42] was originally developed in order to specify
and monitor the behaviour of physical systems, including temporal constraints
between events. STL allows the specification of properties of dense-time, real-
valued signals, and the automatic generation of monitors for testing these proper-
ties on individual simulation traces. The rationale of STL is to transform hybrid
signals into Boolean ones, using predicates built on the following STL syntax :

ϕ := true | μ� | μg | ¬ϕ | ϕ ∧ ϕ | ϕ U[a,b]ϕ, (1)

Learning-Based Approaches to Predictive Monitoring 465

where [a, b] ⊆ T is a bounded temporal interval. For a hybrid signal �s[t], μg

denotes atomic predicates over continuous variables, with g : Var → R, whereas
μ� denotes atomic predicates over discrete variables, with � ∈ Loc. From this
essential syntax, it is easy to define other operators, used to abbreviate the syntax
in a STL formula: false := ¬true, ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ), ♦[a,b]ϕ := true U[a,b]ϕ
and �[a,b]ϕ := ¬♦[a,b]¬ϕ.

Boolean semantics. The satisfaction of a formula ϕ by a signal �s at time t is
defined as:

– (�s, t) |= μg ⇐⇒ g(�v[t]) > 0;
– (�s, t) |= μ� ⇐⇒ �l[t] = �;
– (�s, t) |= ϕ1 ∧ ϕ2 ⇐⇒ (�s, t) |= ϕ1 ∧ (�s, t) |= ϕ2;
– (�s, t) |= ¬ϕ ⇐⇒ ¬((�s, t) |= ϕ));
– (�s, t) |= ϕ1U[a,b]ϕ2 ⇐⇒ ∃t′ ∈ [t + a, t + b] s.t.

(�s, t′) |= ϕ2 ∧ ∀t′′ ∈ [t, t′), (�s, t′′) |= ϕ1.
– Eventually: (�s, t) |= ♦[a,b]ϕ ⇐⇒ ∃t′ ∈ [t + a, t + b] s.t. (�s, t′) |= ϕ;
– Always: (�s, t) |= �[a,b]ϕ ⇐⇒ ∀t′ ∈ [t + a, t + b] (�s, t′) |= ϕ.

Given formula ϕ and a signal �s over a bounded time interval, we can define the
Boolean satisfaction signal as χϕ(�s, t) = 1 if (�s, t) |= ϕ and χϕ(�s, t) = 0 other-
wise. Monitoring the satisfaction of a formula is done recursively, by computing
χϕi(�s, ·) for each sub-formula ϕi of ϕ. The recursion is performed by leveraging
the tree structure of the STL formula, where each node represents a sub-formula,
in an incremental fashion, so that the leaves are the atomic propositions and the
root represents the whole formula. Thus the procedure goes bottom-up from
atomic predicated to the top formula.

Quantitative Semantics. The main kind of quantitative STL semantics is space
robustness, which quantifies how much a signal can be perturbed with additive
noise before changing the truth value of a given property ϕ [29]. It is defined as
a function Rϕ such that:

– Rμg
(�s, t) = g(�v[t]);

– R¬ϕ(�s, t) = −Rϕ(�s, t);
– Rϕ1∧ϕ2(�s, t) = min(Rϕ1(�s, t), Rϕ2(�s, t));

– Rϕ1U[a,b]ϕ2(�s, t) = sup
t′∈[t+a,t+b]

(
min

(
Rϕ2(�s, t

′), inf
t′′∈[t,t′]

Rϕ1(�s, t
′′)

))
.

The sign of Rϕ indicates the satisfaction status: Rϕ(�s, t) > 0 ⇒ (�s, t) |= ϕ
and Rϕ(�s, t) < 0 ⇒ (�s, t) |= ϕ. The definition of Rμ�

, i.e., the robustness of
discrete atoms, is arbitrary as long as it returns a non-negative value when μ� is
true and non-positive when μ� is false (a common choice is returning +∞ and
−∞, respectively). As for the Boolean semantics, it is possible to automatically
generate monitors for the quantitative semantics as well. The algorithm follows
a similar bottom-up approach over the syntax tree of the formula.

466 F. Cairoli et al.

Fig. 1. Example of predictive monitoring of a safety property for a deterministic system
(left) and a stochastic system (right). Blue circles denote the obstacles to avoid. (mid-
dle) shows the space robustness over the deterministic system. (Color figure online)

Similarly, time robustness capture the effect on the satisfaction of shifting
events in time. The left and right time robustness of an STL formula ϕ with
respect to a trace �s at time t are defined inductively by letting:

Q−
ϕ (�s, t) = χϕ(�s, t) · max{d ≥ 0 s.t. ∀t′ ∈ [t − dt], χϕ(�s, t′) = χϕ(�s, t)}

Q+
ϕ (�s, t) = χϕ(�s, t) · max{d ≥ 0 s.t. ∀t′ ∈ [t, t + d], χϕ(�s, t′) = χϕ(�s, t)}.

While space and robustness are most common, our PM approach can sup-
port any other kind of STL quantitative semantics, e.g., based on a combined
space-time robustness [29] or resiliency [22]. Hereafter, we represent a generic
STL monitor, encompassing either Boolean or quantitative (spatial or tempo-
ral) satisfaction, as Cϕ ∈ {χϕ, Rϕ, Qϕ}.

Running Example. Let’s consider, as a running example, a point moving at a
constant velocity on a two-dimensional plane (see Fig. 1). Given the system’s
current state s, a controller regulates the yawn angle to avoid obstacles (D1

and D2 in our example). The avoid property can be easily expressed as an
STL formula: ϕ := G ((d(s, o1) > r1) ∧ (d(s, o2) > r2)), where oi, ri denote
respectively the centre and the radius of obstacle i ∈ {1, 2}. Figure 1 (left) shows
the deterministic evolution for three randomly chosen initial states. Figure 1
(middle) shows, for the same deterministic scenario, an intuition of the concept of
spatial STL robustness, i.e. how much we can perturb a trajectory with additive
noise before changing its truth value. Figure 1 (right) shows the evolution of a
stochastic dynamics for three randomly initial states. The dashed lines denote
the upper and lower quantiles of the distribution over the trajectory space.

3 Predictive Monitoring

Predictive monitoring of an HA is concerned with establishing whether given an
initial state s and a desired property ϕ – e.g. always avoid a set of unsafe states
D – the HA admits a trajectory starting from s that violates ϕ. We express such
properties by means of time-bounded STL formulas, e.g. ϕD := G[0,Hf] (s ∈
D). STL monitors automatically check whether an HA signal satisfies an STL
property ϕ over a bounded temporal horizon (Boolean semantics) and possibly
how robust is the satisfaction (quantitative semantics).

Learning-Based Approaches to Predictive Monitoring 467

SAT Oracles. Given an HA M with state space S(M), and an STL requirement
ϕ over a time bound Hf , SAT oracles decide whether a state s ∈ S(M) satisfies
ϕ. This means that, when the system is deterministic, the SAT oracle decides
whether the unique trajectory �s starting from s ∈ S(M) satisfies ϕ, i.e. decide
whether (�s, 0) |= ϕ. This information can be retrieved from STL monitors by
checking whether χϕ(�s, 0) = 1 or equivalently whether Rϕ(�s, 0) > 0. On the
other hand, when the system is nondeterministic, a state s satisfies ϕ if all
trajectories starting from s satisfy ϕ. Similarly, a quantitative SAT oracle returns
the minimal STL robustness value of all trajectories starting from s. For non-
stochastic systems, the SAT oracle can thus be represented as a map Sat :
S(M) → B, where the output space B is either B in the Boolean scenario or R

in the quantitative scenario. On the other hand, oracles for stochastic systems
require a different treatment and we define them later in this section.

SAT Tools. Several tools have been developed for the automated verification of
CPS properties and can thus be used as SAT oracles. The choice of the best
tool depends on the problem at hand. STL monitors such as Breach [28] and
RTAMT [44] allow to automatically check whether realizations of the system
satisfy an STL property. When the system is nondeterministic we need tools
that perform reachability analysis or falsification. Due to the well-known unde-
cidability of HA model checking problem [16,35], none of existing tools are both
sound and complete. Falsification tools like Breach [28], S-Taliro [2], C2E2 [30],
and HyLAA [6] search for counter-example trajectories, i.e., for violations to
the property of interest. A failure in finding a counter-example does not imply
that the property is satisfied (i.e., the outcome is unknown). Conversely, HA
reachability tools like PHAVer [31], SpaceEx [32], Flow*, HyPro/HyDra [56],
Ariadne [10] and JuliaReach [11] rely on computing an over-approximation of
the reachable set, meaning that the outcome is unknown when the computed
reachable set intersects the target set. In order to be conservative, we treat
unknown verdicts in a pessimistic way.

On the other hand, stochastic systems require the use of probabilistic model
checking techniques implemented in tools like PRISM [39] or STORM [34]. Such
tools provide precise numerical/symbolic techniques to determine the satisfac-
tion probability of a formula, but only for a restricted class of systems and with
significant scalability issues. Statistical model checking (SMC) techniques over-
comes these limitations by solving the problem as one of hypothesis testing given
a sample of system trajectories (at the cost of admitting some a priori statistical
errors).

The above list of tools is far from being exhaustive, and we refer the interested
reader to the ARCH-COMP competitions2, where state-of-the-art verification
tools are compared on a set of well-known benchmarks.

In the following, we formulate the predictive monitoring problem for non-
stochastic systems (Problem 1), for partially observable systems (Problem 2),

2 https://cps-vo.org/group/ARCH/FriendlyCompetition.

https://cps-vo.org/group/ARCH/FriendlyCompetition

468 F. Cairoli et al.

and for stochastic systems (Problem 3). We conclude by characterizing the prob-
abilistic guarantees sought for our learning-based monitors (Problem 4).

We aim at deriving a predictive monitor for HA time-bounded satisfaction,
i.e., a function that can predict whether or not the property ϕ is satisfied by
the future evolutions of the system (bounded by time Hf) starting from the
system’s current state. In solving this problem, we assume a distribution S of
HA states and seek the monitor that predicts HA reachability with minimal error
probability w.r.t. S. The choice of S depends on the application at hand and
can include a uniform distribution on a bounded state space or a distribution
reflecting the density of visited states in some HA executions [48].

Problem 1 (Predictive monitoring for HA). Given an HA M with state
space S(M), a distribution S over S(M), a time bound Hf and STL property
ϕ, inducing the satisfaction function Sat, find a function h∗ : S(M) → B that
minimizes the probability

Prs∼S (h∗(s) = Sat(s)) .

A state s ∈ S(M) is called positive w.r.t. a predictor h : S(M) → B if h(s) > 0.
Otherwise, s is called negative.

Any practical solution to the above PM problem must also assume a space of
functions within which to restrict the search for the optimal predictive monitor
h∗, for instance, one can consider functions described by deep neural networks
(DNNs). Finding h∗, i.e., finding a function approximation with minimal error
probability, is indeed a classical supervised learning problem. In particular, in the
Boolean scenario, h∗ is a classifier, i.e., a function mapping HA state inputs s into
one of two classes: 1 (x is positive, property ϕ is satisfied) and 0 (s is negative,
property ϕ is violated). On the other hand, in the quantitative scenario, h∗ is a
regressor aiming at reconstructing the robustness of satisfaction for a state s.

Fig. 2. Generation of the dataset to learn a
PM (Boolean or quantitative) for determin-
istic HS.

Dataset Generation. In supervised
learning, one minimizes a measure of
the empirical prediction error w.r.t.
a training set. In our case, the train-
ing set Z ′ is obtained from a finite
sample S′ of S by labelling the train-
ing inputs s ∈ S′ using some SAT
oracle, that is computing the true
value for Sat(s). Hence, given a sam-
ple S′ of S, the training set is defined
by Z ′ = {(s, Sat(s)) | s ∈ S′} (see
Fig. 2).

Partial Observability. Problem 1 relies on the full observability (FO) assump-
tion, i.e. the assumption of possessing full knowledge about the system’s
state. However, in most practical applications, state information is partial

Learning-Based Approaches to Predictive Monitoring 469

and noisy. Consider a discrete-time deterministic HS3 modeled as a HA M.
The discrete-time deterministic dynamics of the system can be expressed by
vi+1 = Flow(li)(vi), where si = (li, vi) = (l(ti), v(ti)) and ti = t0 + i · Δt. The
measurement process can be modeled as

yi = π(si) + wi, (2)

which produces partial and noisy observations yi ∈ Y by means of an observation
function π : S(M) → Y and additive noise wi ∼ W. Under partial observability
(PO), we only have access to a sequence of past observations yt = (yt−Hp

, . . . , yt)
of the unknown state sequence st = (st−Hp

, . . . , st) (as per (2)). Let Y denote
the distribution over Y Hp , the space of sequences of observations yt induced
by the sequence of states st ∼ SHp and a sequence of i.i.d. noise vectors wt =
(wt−Hp

, . . . , wt) ∼ WHp .

Problem 2 (PM for HS under noise and partial observability). Given
the HA and reachability specification of Problem 1, find a function h∗

po : Y Hp → B
that minimizes

Prst∼S,yt∼Y
(
h∗

po

(
yt

) = Sat(st)
))

.

In other words, h∗
po should predict the satisfaction values given in input only a

sequence of past observations, instead of the true HA state. In particular, we
require a sequence of observations (as opposed to one observation only) for the
sake of identifiability. Indeed, for general non-linear systems, a single observation
does not contain enough information to infer the HS state4. Problem 2 consid-
ers only deterministic systems. Dealing with partial observability and noise in
nondeterministic systems remains an open problem as state identifiability is a
non-trivial issue.

There are two natural learning-based approaches to tackle Problem 2 (Fig. 3):

1. an end-to-end solution that learns a direct mapping from the sequence of
past measurements yt to the satisfaction value in B.

2. a two-step solution that combines steps (a) and (b) below:
(a) learns a state estimator able to reconstruct the history of full states st =

(st−Hp
, . . . , st) from the sequence of measurements yt = (yt−Hp

, . . . , yt);
(b) learns a state classifier/regressor mapping the sequence of states st to the

satisfaction value in B;

Dataset Generation. Given that we consider deterministic dynamics, we can use
simulation, rather than model checking, to label the states as safe (positive),
if Sat(s) > 0, or unsafe (negative) otherwise. Because of the deterministic and
Markovian (see Remark 2) nature of the system, one could retrieve the future
satisfaction of a property at time t from the state of the system at time t alone.
However, one can decide to exploit more information and make a prediction
3 In case of partial observability we restrict our analysis to deterministic systems.
4 Feasibility of state reconstruction is affected by the time lag and the sequence length.

Our focus is to derive the best predictions for fixed lag and sequence length, not to
fine-tune these to improve identifiability.

470 F. Cairoli et al.

based on the previous Hp states. Formally, the generated dataset under FO can
be expressed as Z ′ = {(si

t,Sat(s
i
t))}N

i=1, where si
t = (si

t−Hp
, si

t−Hp+1, . . . , s
i
t).

Under PO, we use the (known) observation function π : S(M) → Y to build a
dataset Z ′′ made of tuples (yt, st, lt), where yt is a sequence of noisy observations
for st, i.e., such that ∀j ∈ {t − Hp, . . . , t} yj = π(sj) + wj and wj ∼ W.

Fig. 3. Diagram of the learning steps under
noise and partial observability.

The distribution of st and
yt is determined by the distri-
bution S of the initial state of
the sequences, st−Hp

. We con-
sider two different distributions:
independent, where the initial
states st−Hp

are sampled indepen-
dently, thus resulting in indepen-
dent state/observation sequences; and sequential, where states come from tem-
porally correlated trajectories in a sliding-window fashion. The latter is more
suitable for real-world runtime applications, where observations are received
in a sequential manner. On the other hand, temporal dependency violates the
exchangeability property, which affects the theoretical validity guarantees of CP,
as we will soon discuss.

Stochastic Dynamics. If the system evolves stochastically, we have a distribu-
tion over the trajectory space rather than a single trajectory that either satisfies
of violates the property. Some realizations will satisfy the property, some oth-
ers will not. Therefore, reasoning about satisfaction gets more complicated. Let
T = {0, 1, . . .} denote a discrete set of time instants and let M be a discrete-
time stochastic HA over state space S(M) and T. Given that the system is
in state s ∼ S at time t ∈ T, the stochastic evolution (bounded by horizon
Hf) of the system starting at s can be described by the conditional distribution
p(�s | �s(t) = s), where �s = (�s(t), . . . , �s(t + Hf)) ∈ SH is the random trajectory
of length Hf starting at time t. We thus introduce a satisfaction function SSat
that inherits the stochasticity of the system’s dynamics. For an STL property ϕ,
we define SSat as a function mapping a state s ∈ S(M) into a random variable
SSat(s) denoting the distribution of satisfaction values over B. In other words,
the satisfaction function transforms the distribution over trajectories into the
distribution over satisfaction values.

The predictive monitoring problem under stochastic dynamics can be framed
as estimating one or more functionals of SSat(s) (e.g., mean, variance, quantiles).
A formal statement of the problem is given below.

Problem 3 (PM for Stochastic HS). Given a discrete-time stochastic HA
M over a state space S(M), temporal horizon Hf , and an STL formula ϕ, we
aim at approximating a functional q of the distributions induced by SSat. We
thus aim at deriving a monitoring function h∗

q that maps any state s ∼ S into
the functional q[SSat(s)] such that

Prs∼S
(
h∗
q(s) = q

[
SSat(s)

])
. (3)

Learning-Based Approaches to Predictive Monitoring 471

We will focus on the case where q is a quantile function, making Problem 3
equivalent to a conditional quantile regression (QR) problem. This boils down
to learning for a generic state s a quantile of the random variable SSat(s).

Dataset Generation. We perform Monte-Carlo simulations of the process in order
to obtain empirical approximations of SSat. In particular, we randomly sample
N states s1, . . . , sN ∼ S. Then, for each state si, we simulate M trajectories of
length Hf , �s1i , . . . , �s

M
i where �sj

i is a realization of p(�s | �s(t) = si), and compute
the satisfaction value Cϕ(�sj

i) of each of these trajectories (Cϕ ∈ {χϕ, Rϕ, Qϕ}).
Note how {Cϕ(�sj

i)}M
j=1 is an empirical approximation of SSat(si). The dataset is

thus defined as

Z ′ =
{(

si,
(
Cϕ(�s1i), . . . , Cϕ(�sM

i)
))

, i = 1, . . . , N
}

. (4)

Fig. 4. Generation of the dataset to learn a PM
for stochastic HS.

Figure 4 shows an overview of
the steps needed to generate
the dataset. The generation of
the test set Z ′

test is very sim-
ilar to that of Z ′. The main
difference is in that the num-
ber of trajectories that we sim-
ulate from each state s is much
larger than M . This allows us
to obtain a highly accurate
empirical approximation of the
distribution induced by SSat,
which we use as the ground-
truth baseline in our experimen-
tal evaluation5. Moreover, since functionals of SSat(s) can not in general be com-
puted exactly, for a choice of ε ∈ (0, 1), we derive the empirical quantile q̂si

ε from
samples Cϕ(�s1i), . . . , Cϕ(�sM

i) and use the generated training set Z ′ to train the
QR hq that learns how to map states s into q̂s

ε .
The predictors, either h, hpo or hq, are approximate solutions and, as such,

they can commit safety-critical prediction errors. The general goal of Problems 1,
2 and 3 is to minimize the risk of making mistakes in predicting the satisfaction
of a property. We are also interested in establishing probabilistic guarantees on
the expected error rate of an unseen (test) state, in the form of prediction regions
guaranteed to include the true satisfaction value with arbitrary probability. We
now introduce some notation to capture all three previously stated scenarios. Let
f be the predictor (either h of Problem 1, hpo of Problem 2 or hq of Problem 3)
and let x ∈ X be the input of predictor f (either a state s or a sequence of past
measurements y). The distribution over the generic input space X is denoted
by X .

5 In the limit of infinite sample size, the empirical approximation approaches the true
distribution.

472 F. Cairoli et al.

Problem 4 (Probabilistic guarantees). Given a system and property ϕ as
in Problems 1, 2 and 3, find a function Γ ε : X → 2B, mapping every input x
into a prediction region for the corresponding satisfaction value, i.e., a region
that satisfies, for any error probability level ε ∈ (0, 1), the validity property below

Prx∼X
(
SAT(x) ∈ Γ ε(x)

)
≥ 1 − ε,

where SAT(·) corresponds to Sat(·) in Problems 1 and 2, and to q[SSat(·)] in
Problem 3.

Among the maps that satisfy validity, we seek the most efficient one, meaning
the one with the smallest, i.e. less conservative, prediction regions.

4 Uncertainty Estimation and Statistical Guarantees

The learning-based solutions of Problems 1, 2 and 3 are approximate and, even
when extremely high accuracies are reached, offer no guarantees over the reli-
ability of the learned predictor, and thus are not applicable in safety-critical
scenarios. In this section, we present techniques for uncertainty estimation, tech-
niques that overcome the above limitation by providing point-wise information
about the reliability of the predictions. In particular, we examine two uncertainty
quantification techniques, based on conformal prediction (CP) and Bayesian
inference, respectively. We focus more on CP as, unlike Bayesian inference, can
provide the desired statistical guarantees stated in Problem 4.

To simplify the presentation, we illustrate the techniques by considering a
generic supervised learning model, as follows. Let X be the input space, T be
the target (output) space, and define Z = X × T . Let Z be the data-generating
distribution, i.e., the distribution of the points (x, t) ∈ Z. We assume that the
target t of a point (x, t) ∈ Z is the result of the application of a function f∗ :
X → T , typically unknown or very expensive to evaluate. Using a finite set of
observations, the goal of a supervised learning algorithm is to find a function
f : X → T that accurately approximates f∗ over the entire input space. For a
generic input x ∈ X, we denote with t the true target value of x and with t̂ the
prediction by f , i.e. t̂ = f(x). Test inputs, whose unknown true target values we
aim to predict, are denoted by x∗.

4.1 Conformal Inference

Conformal Prediction (CP) associates measures of reliability to any traditional
supervised learning problem. It is a very general approach that can be applied
across all existing deterministic classifiers and regressors [8,61]. CP produces
prediction regions with guaranteed validity.

Definition 2 (Prediction region). For significance level ε ∈ (0, 1) and test
input x∗, the ε-prediction region for x∗, Γ ε

∗ ⊆ T , is a set of target values s.t.

Pr
(x∗,t∗)∼Z

(t∗ ∈ Γ ε
∗) = 1 − ε. (5)

Learning-Based Approaches to Predictive Monitoring 473

The idea of CP is to construct the prediction region by “inverting” a suitable
hypothesis test: given a test point x∗ and a tentative target value t′, we exclude t′

from the prediction region only if it is unlikely that t′ is the true value for x∗. The
test statistic is given by a so-called nonconformity function (NCF) δ : Z → R,
which, given a predictor f and a point z = (x, t), measures the deviation between
the true value t and the corresponding prediction f(x). In this sense, δ can
be viewed as a generalized residual function. In other words, CP builds the
prediction region Γ ε

∗ for a test point x∗ by excluding all targets t′ whose NCF
values are unlikely to follow the NCF distribution of the true targets:

Γ ε
∗ =

{
t′ ∈ T | Pr(x,t)∼Z (δ(x∗, t′) ≥ δ(x, t)) > ε

}
. (6)

The probability term in Eq. 6 is often called the p-value. From a practical view-
point, the NCF distribution Pr(x,t)∼Z(δ(x, t)) cannot be derived in an analytical
form, and thus we use an empirical approximation derived using a sample Zc of
Z. This approach is called inductive (or split) CP [45] and Zc is referred to as
calibration set.

Validity and Efficiency. CP performance is measured via two quantities: 1) valid-
ity (or coverage), i.e. the empirical error rate observed on a test sample, which
should be as close as possible to the significance level ε, and 2) efficiency, i.e.
the size of the prediction regions, which should be small. CP-based prediction
regions are automatically valid, whereas the efficiency depends on the size of the
calibration set (leading to high uncertainty when data is scarce), the quality of
the underlying model and the chosen nonconformity function.

Remark 3 (Assumptions and guarantees of inductive CP). Importantly, CP pre-
diction regions have finite-sample validity [8], i.e., they satisfy (5) for any sample
of Z (of reasonable size), and not just asymptotically. On the other hand, CP’s
theoretical guarantees hold under the exchangeability assumption (a “relaxed”
version of iid) by which the joint probability of any sample of Z is invariant to
permutations of the sampled points. Independent observations are exchangeable
but sequential ones are not (due to the temporal dependency). In such scenarios,
some adaptations to conformal inference (see [58,66]) are needed to recover and
preserve validity guarantees.

CP for Classification. In classification, the target space is a discrete set of
possible labels (or classes) T = {t1, . . . , tc}. We represent the classification model
as a function fd : X → [0, 1]c mapping inputs into a vector of class likelihoods,
such that the predicted class is the one with the highest likelihood6.

The inductive CP algorithm for classification is divided into an offline phase,
executed only once, and an online phase, executed for every test point x∗. In the
offline phase (steps 1–3 below), we train the classifier f and construct the cali-
bration distribution, i.e., the empirical approximation of the NCF distribution.
In the online phase (steps 4–5), we derive the prediction region for x∗ using the
computed classifier and distribution.
6 Ties can be resolved by imposing an ordering over the classes.

474 F. Cairoli et al.

1. Draw sample Z ′ of Z. Split Z ′ into training set Zt and calibration set Zc.
2. Train classifier f using Zt. Use fd to define an NCF δ.
3. Construct the calibration distribution by computing, for each zi ∈ Zc, the

NCF score αi = δ(zi).
4. For each label tj ∈ T , compute αj

∗ = δ(x∗, tj), i.e., the NCF score for x∗ and
tj , and the associated p-value pj

∗:

pj
∗ =

|{zi ∈ Zc | αi > αj
∗}|

|Zc| + 1
+ θ

|{zi ∈ Zc | αi = αj
∗}| + 1

|Zc| + 1
, (7)

where θ ∈ U [0, 1] is a tie-breaking random variable.
5. Return the prediction region

Γ ε
∗ = {tj ∈ T | pj

∗ > ε}. (8)

In defining the NCF δ, we should aim to obtain high δ values for wrong pre-
dictions and low δ values for correct ones. Thus, a natural choice in classification
is to define

δ(x, tj) = 1 − f j
d(x), (9)

where f j
d(x) is the likelihood predicted by fd for class tj . Indeed, if tj is the true

target for x and f correctly predicts tj , then f j
d(x) is high (the highest among

all classes) and δ(x, tj) is low; the opposite holds if f does not predict tj .

Prediction Uncertainty. A CP-based prediction region provides a set of plausible
predictions with statistical guarantees, and as such, also captures the uncertainty
about the prediction. Indeed, if CP produces a region Γ ε

∗ with more than one
class, then the prediction for x∗ is ambiguous (i.e., multiple predictions are plau-
sible), and thus, potentially erroneous. Similarly, if Γ ε

∗ is empty, then there are
no plausible predictions at all, and thus, none can be trusted. The only reliable
prediction is the one where Γ ε

∗ contains only one class. In this case, Γ ε
∗ = {t̂∗},

i.e., the region only contains the predicted class, as stated in the following propo-
sition.

Proposition 1. For the NCF function (9), if Γ ε
∗ = {tj1}, then tj1 = f(x∗).

The size of the prediction region is determined by the chosen significance
level ε and by the p-values derived via CP. Specifically, from Equation (8) we
can see that, for levels ε1 ≥ ε2, the corresponding prediction regions are such
that Γ ε1 ⊆ Γ ε2 . It follows that, given a test input x∗, if ε is lower than all its p-
values, i.e. if ε < minj=1,...,c pj

∗, then the region Γ ε
∗ contains all the classes, and

Γ ε
∗ shrinks as ε increases. In particular, Γ ε

∗ is empty when ε ≥ maxj=1,...,c pj
∗.

In the classification scenario, CP introduces two additional point-wise mea-
sures of uncertainty, called confidence and credibility, defined in terms of two
p-values, independently of the significance level ε. The intuition is that these
two p-values identify the range of ε values for which the prediction is reliable,
i.e., |Γ ε

∗ | = 1.

Learning-Based Approaches to Predictive Monitoring 475

Definition 3 (Confidence and credibility). Given a predictor F , the confi-
dence of a point x∗ ∈ X, denoted by 1−γ∗, is defined as 1−γ∗ = sup{1−ε : |Γ ε

∗ | =
1}, and the credibility of x∗, denoted by κ∗, is defined as κ∗ = inf{ε : |Γ ε

∗ | = 0}.
The so-called confidence-credibility interval [γ∗, κ∗) contains all the values of ε
such that |Γ ε

∗ | = 1.

The confidence 1 − γ∗ is the highest probability value for which the corre-
sponding prediction region contains only t̂∗, and thus it measures how likely
(according to the calibration set) our prediction for x∗ is. In particular, γ∗ cor-
responds to the second largest p-value. The credibility κ∗ is the smallest level
for which the prediction region is empty, i.e., no plausible prediction is found by
CP. It corresponds to the highest p-value, i.e., the p-value of the predicted class.

Fig. 5. CP p-values and cor-
responding sizes of prediction
interval. ỹi is the class with the

i-th largest p-value, so p�̃1

∗ = κ∗
and p�̃2

∗ = γ∗.

Figure 5 illustrates CP p-values and correspond-
ing prediction region sizes. In binary classifica-
tion problems, each point x∗ has only two p-
values: κ∗ (p-value of the predicted class) and
γ∗ (p-value of the other class). It follows that
the higher 1 − γ∗ and κ∗ are, the more reli-
able the prediction t̂∗ is, because we have an
expanded range [γ∗, κ∗) of ε values by which
|Γ ε

∗ | = 1. Indeed, in the degenerate case where
κ∗ = 1 and γ∗ = 0, then |Γ ε

∗ | = 1 for any value
of ε < 1. This is why, as we will explain in the
next section, we do not trust predictions with low values of 1−γ∗ and κ∗. Hence,
our CP-based uncertainty measure associates with each input its confidence and
credibility values.

Label-Conditional Approach. The validity property, as stated above, guarantees
an error rate over all possible labels, not on a per-label basis. The latter can
be achieved with a CP variant, called label-conditional CP [33,57,60]. In this
variant, the p-value associated with class tj on a test point x∗ is defined in a
conditional manner as follows:

pj
∗ =

|{zi ∈ Zc : ti = tj , αi > αj
∗}|

|{zi ∈ Zc : ti = tj}| + 1
+ θ

|{zi ∈ Zc : ti = tj , αi = αj
∗}| + 1

|{zi ∈ Zc : ti = tj}| + 1
. (10)

In other words, we consider only the αi corresponding to examples with the same
label tj as the hypothetical label that we are assigning at the test point.

Label-conditional validity is very important when CP is applied to an unbal-
anced dataset, whereby CP regions tend to have larger error rates with the minor-
ity class than with the majority one. The label-conditional approach ensures
that, even for the minority class, the expected error rate will tend to the chosen
significance level ε.

CP for Regression. In regression, we have a continuous target space T ⊆ R
n.

The CP algorithm for regression is similar to the classification one. In particular,
the offline phase of steps 1–3, i.e., training of regression model f and definition
of NCF δ, is the same (with obviously a different kind of f and δ).

476 F. Cairoli et al.

The online phase changes though, because T is a continuous space and thus,
it is not possible to enumerate the target values and compute for each a p-value.
Instead, we proceed in an equivalent manner, that is, identify the critical value
α(ε) of the calibration distribution, i.e., the NCF score corresponding to a p-value
of ε. The resulting ε-prediction region is given by Γ ε

∗ = f(x∗) ± α(ε), where α(ε)

is the (1 − ε)-quantile of the calibration distribution, i.e., the �ε · (|Zc| + 1)�-th
largest calibration score. A natural NCF in regression, and the one used in our
experiments, is the norm of the difference between the real and the predicted
target value, i.e., δ(x, t) = ||t − f(x)||.

Normalized CP. The main limitation of CP for regression, presented above,
is that the size of prediction intervals is identical (2α(ε)) for all test inputs,
making CP non-informative to check how the uncertainty distributes over X.
Normalized Conformal Predictions (NCP) [46,47] tackle this limitation. In order
to get individual, input-conditional bounds for each point xi, we can define
normalized nonconformity scores as follows

α̃c =
{

δ(xi, ti)
u(xi)

∣∣∣ (xi, ti) ∈ Zc

}
, (11)

where u(xi) estimates the difficulty of predicting f(xi). The rationale is that if
two points have the same nonconformity scores using δ, the one expected to be
more accurate, should be stranger (more nonconforming) than the other one.
Hence, we aim at error bounds that are tighter for inputs x that are deemed
easy to predict and vice-versa. Even for locally-weighted residuals, as in (11),
the validity of the conformal methods carries over. As before we compute α̃(ε) as
the (1 − ε)-quantile of the scores α̃c and the coverage guarantees over the error
become:

Pr(x,t)∼Z
(
δ
(
x, t

) ≤ α̃(ε) · u(x)
)

≥ 1 − ε. (12)

Conformalized Quantile Regression. The goal of conformalized quantile regres-
sion (CQR) [53] is to adjust the QR prediction interval (i.e. the interval obtained
by the prediction of two quantiles as in Problem 3) so that it is guaranteed to
contain the (1 − ε) mass of probability. As for CP, we divide the dataset Z ′ in a
training set Zt and a calibration set Zc. We train the QR f over Zt and on Zc

we compute the nonconformity scores as

αc := max{q̂εlo
(xi) − ti, ti − q̂εhi

(xi) | (xi, ti) ∈ Zc}. (13)

In our notation, q̂εlo
(x) and q̂εhi

(x) denotes the two outputs of the pretrained
predictor f evaluated over x7. The conformalized prediction interval is thus
defined as

CPI(x∗) = [q̂εlo
(x∗) − α(ε), q̂εhi

(x∗) + α(ε)],

7 If f outputs more than two quantiles, q̂εlo(x) and q̂εhi(x) denote the predicted quan-
tiles associated respectively with the lowest and highest associated significance level.

Learning-Based Approaches to Predictive Monitoring 477

where α(ε) is the �(1−ε)(1+1/|Zc|)�-th empirical quantile of αc. In the following,
we will abbreviate with PI a (non-calibrated) QR prediction interval and with
CPI a (calibrated) conformalized prediction interval.

Similarly to normalized CP, the above-defined CPI provides individual uncer-
tainty estimates as the size of the interval changes according to the (input-
conditional) quantile predictions.

Remark 4. This nonconformity function, and thus α(ε), can be negative and thus
the conformalized prediction interval can be tighter than the original prediction
interval. This means that the CPI can be more efficient than the PI, where the
efficiency is the average width of the prediction intervals over a test set. The CPI
has guaranteed coverage (the PI does not), i.e. P(x∗,t∗)∼Z(t∗ ∈ CPI(x∗)) ≥ 1−ε.

CP Under Covariate Shift. CP guarantees hold under the assumption that train-
ing, calibration and test data come from the same data distribution Z. However,
there exist CP extensions [20,59] that provide statistical guarantees even in the
presence of covariate shift at test time, meaning that the distribution X over
inputs changes. The core concept is to reweight the nonconformity scores of the
calibration set to account for the distribution shift. Such weights are defined
using the density ratio between the shifted and original distribution, to quantify
the probability of observing a particular calibration input relative to the shifted
distribution.

4.2 Bayesian Inference

In general, a Bayesian inference problem aims at inferring an accurate probabilis-
tic estimate of the unknown function from X to T (as before). In the following,
let f : X → T . The main ingredients of a Bayesian approach are the following:

1. Choose a prior distribution, p(f), over a suitable function space, encapsulat-
ing the beliefs about function f prior to any observations being taken.

2. Determine the functional form of the observation process by defining a suit-
able likelihood function p(Z ′|f) that effectively models how the observations
depend on the input.

3. Leverage Bayes’ theorem to define the posterior distribution over functions
given the observations p(f |Z ′) = p(Z ′|f)p(f)/p(Z ′). Computing p(Z ′) =∫

p(Z ′|f)p(f)df is almost always computationally intractable as we have
non-conjugate prior-likelihood distributions. Therefore, we need algorithms
to accurately approximate such posterior distribution.

4. Evaluate such posterior at points x∗, resulting in a predictive distribution
p(f∗|x∗, Z ′), whose statistics are used to obtain the desired estimate of the
satisfaction probability together with the respective credible interval.

Predictive Uncertainty. Once the empirical approximation of the predictive dis-
tribution p(f∗|x∗, Z ′) is derived, one can extract statistics from it to characterize
predictive uncertainty. We stress that the predictive distribution, and hence its

478 F. Cairoli et al.

statistics, effectively capture prediction uncertainty. For instance, the empirical
mean and variance of the predictive distribution can be used as measures for
Bayesian predictive uncertainty.

Remark 5. The Bayesian quantification of uncertainty, despite being based on
statistically sound operations, offers no guarantees per se as it strongly depends
on the chosen prior and typically relies on approximate inference. However, we
can make predictions based on a functional of the predictive distribution and
exploit the provided quantification of uncertainty as the normalizing function
of an NCP approach, that in turn will provide us with point-specific statistical
guarantees over the error coverage.

In a Bayesian framework two main ingredients are essential to define the
solution strategy to a Bayesian inference problem define above: (i) the proba-
bilistic model chosen to describe the distribution over functions f and (ii) the
approximate inference strategy. We refer to Appendix A of [12] for details on
the possible approaches to Bayesian inference. In particular, we present Gaus-
sian Processes and Bayesian Neural Nets, as alternatives for ingredient (i), and
Variational Inference (VI) and Hamilton Monte Carlo (HMC), as alternatives
for ingredient (ii).

5 Learning-Based PM with Statistical Guarantees

5.1 Monitoring Under Full Observability

Given a fully observable Markovian system with a known SAT oracle, the sys-
tem’s current state st at time t is sufficient information to predict the future
satisfaction of a requirement ϕ. The input space of the Sat function is thus
S(M).

When the system evolves deterministically each state s ∈ S(M) is associ-
ated with a unique satisfaction value (as in Problem 1). If we are interested in
the Boolean satisfaction the output space B of the Sat function is {0, 1} and
the learning problem is a classical binary classification problem, i.e. inferring a
function h : S(M) → {0, 1} that classify a state as positive (if it satisfies the
requirement) or negative (if it violates the requirement). Analogously, if we want
to better quantify how robust is the satisfaction we can leverage the quantitative
STL semantics, either spatial or temporal. In this scenario, the output space B
of the Sat function is R and the learning problem becomes a regression task, i.e.
inferring a function h : S(M) → R that estimates the level of satisfaction of ϕ
for each state in S(M).

The function h, introduced in its general form in Problem 1, can be inferred
either using a deterministic neural network or one of the proposed Bayesian
approaches. CP can be used on top of both approaches to meet the validity
guarantees of Problem 4. In the CP-based version, we apply either CP for classi-
fication or CP for regression to obtain prediction regions with guaranteed cover-
age over the entire state space (see [13] for details). On the other, we can design
either a Bayesian classifier (with Bernoulli likelihood for the Boolean semantics)

Learning-Based Approaches to Predictive Monitoring 479

or a Bayesian regressor (Gaussian likelihood for quantitative semantics). See [14]
for details. In order to meet the desired statistical guarantees we could use CP.
Since Bayesian predictions are probabilistic, whereas CP is defined for determin-
istic predictors, we apply CP to the expectation over the predictive distribution.
Nonetheless, the variance of the latter can be exploited as normalizing constant
in a NCP framework so to obtain state-specific prediction intervals while preserv-
ing the statistical guarantees. Similar reasoning is applied to nondeterministic
systems.

Otherwise, when the system evolves stochastically, each state s ∈ S(M) is
associated with a distribution over the satisfaction values SSat(s) (as discussed
in Problem 3 in Sect. 3). We are not able to extract an analytic expression for
this distribution but we can empirically approximate it via sampling. If we con-
sider the Boolean semantics, SSat(s) is a Binomial distribution centred around
the satisfaction probability in the interval [0, 1]. In such a scenario, we could
either train a deterministic neural regressor that infers the satisfaction proba-
bility in [0, 1] or design a Bayesian framework with Binomial likelihood (see [12]
for details). In order to meet the desired statistical guarantees we could use CP
for regression. Once again, in the Bayesian scenario, CP is applied to the expec-
tation over the predictive distribution. However, the variance of the latter can
be used as normalizing constant in a NCP framework so to obtain state-specific
prediction intervals. On the other hand, the quantitative STL semantics, either
spatial or temporal, results in a distribution over R. We can train neural quantile
regression (QR) that, given a desired confidence level ε, infers some quantiles
of this distribution (e.g. q ε

2
, q0.5 and q ε

2
). A typical loss for the regression of a

quantile qα is the pinball loss Lα(t, q̂α) = α·max(t−q̂α, 0)+(1−α)·max(q̂α−t, 0),
where q̂α is the predicted quantile and t ∈ R denotes an observed output. Once
the QR is trained we can resort to CQR (see Fig. 6) to meet the probabilistic
guarantees, in that the conformal intervals cover with probability at least 1 − ε
the STL robustness values relative to the stochastic evolution of the system. The
rationale is to evaluate the nonconformity scores of the interval

[
q̂ ε
2
(s), q̂

1− ε
2
(s)

]
over the calibration set and extract τ , the �(1 − ε)(1 + 1/|Zc|)�-th empirical
quantile of αc, to recalibrate the prediction interval (see [19] for details).

5.2 Monitoring Under Partial Observability

For ease of discussion, in the PO scenario (outlined in Problem 2), we discuss only
the CP-based setting and not the Bayesian one (see [17] for details). The end-to-

Fig. 6. Overview of conformalized quantile regression.

480 F. Cairoli et al.

end approach is very similar to the FO deterministic one. The main difference
is that instead of the state at time t we map the history of past measurements
yt to the satisfaction value in B, i.e. we infer a function hpo : Y Hp → B. As
before, the output can be either Boolean B = {0, 1} (binary classification task),
or quantitative B = R (regression task). The sequence of past observations is
mapped to a unique satisfaction value in B and CP can be used to enrich the
predictions with guaranteed validity. On the other hand, if we consider a two-
step approach we first estimate the sequence of states st (regression task) and
then we estimate the satisfaction value associated with each sequence which is
either a classification or a regression task (as in the end-to-end approach). The
two steps can be fine-tuned together and conformal inference can be applied to
both steps to obtain statistical guarantees.

5.3 Uncertainty-Aware Error Detection and Active Learning

It is well known that neural networks are universal approximators. However,
such methods cannot completely avoid prediction errors (no supervised learning
method can). Therefore, we have to deal with predictive monitors f that are
prone to prediction errors: when, for a state s ∈ S(M), f(x) = Sat(x). These
errors are respectively denoted by predicates pe(s).

Problem 5 (Uncertainty-based error detection). Given a reachability pre-
dictor f , a distribution X over HA states X, a predictive uncertainty measure
uf : X → U over some uncertainty domain U , and a kind of error pe find an
optimal error detection rule G∗

f,pe : U → {0, 1}, i.e., a function that minimizes
the probability

Prx∼X
(
pe(x) = G∗

f ,pe(uf (x))
)
.

In the above problem, we consider all kinds of prediction errors, but the definition
and approach could be easily adapted to focus on the detection of only e.g., false
positives (the most problematic errors from a safety-critical viewpoint).

In the CP-based setting, a meaningful measure of predictive uncertainty is
given by confidence and credibility. In the Bayesian framework, we can consider
the mean and the variance of the predictive distribution.

As for Problem 1, 2 and 3, we can obtain a sub-optimal solution Gf,pe to
Problem 5 by expressing the latter as a supervised learning problem, where the
inputs are, once again, sampled according to X and labelled using a SAT oracle.
We call validation set the set of labelled observations used to learn Gf,pe. These
observation need to be independent from the above introduced training set Z ′,
i.e., those used to learn the reachability predictor f . The final rejection rule
Rejf,pe for detecting HA states where the satisfaction prediction (given by f)
should not be trusted, and thus rejected, is readily obtained by the composition
of the uncertainty measure and the error detection rule Rejf,pe = Gf,e◦uf : X →
{0, 1}, where Rejf,pe(x) = 1 if the prediction on x is rejected and Rejf,pe(x) = 0
otherwise.

Learning-Based Approaches to Predictive Monitoring 481

This error-detection criterion can be also used as a query strategy in an
uncertainty-aware active learning setting. Active learning should reduce the
overall number of erroneous predictions because it improves the predictor on
the inputs where it is most uncertain.

6 Related Work

A number of methods have been proposed for online reachability analysis
that rely on separating the reachability computation into distinct offline and
online phases. However, these methods are limited to restricted classes of mod-
els [23,63], or require handcrafted optimization of the HA’s derivatives [7], or
are efficient only for low-dimensional systems and simple dynamics [55]. In con-
trast, the approaches presented in this paper are based on learning DNN-based
predictors, are fully automated and have negligible computational cost at run-
time. In [26,54], similar techniques are introduced for neural approximation of
Hamilton-Jacobi (HJ) reachability. However, our methods for prediction rejec-
tion and active learning are independent of the class of systems and the machine-
learning approximation of reachability, and thus can also be applied to neural
approximations of HJ reachability. In [62], Yel and others present a runtime mon-
itoring framework that has similarities with our approach, in that they also learn
neural network-based reachability monitors (for UAV planning applications), but
instead of using, like we do, uncertainty measures to pin down potentially erro-
neous predictions, they apply NN verification techniques [36] to identify input
regions that might produce false negatives. Thus, their approach is complemen-
tary to our uncertainty-based error detection, but, due to the limitations of
the underlying verification algorithms, they can only support deterministic neu-
ral networks with sigmoid activations. On the contrary, our techniques support
any kind of ML-based monitors, including probabilistic ones. The work of [3,4]
addresses the predictive monitoring problem for stochastic black-box systems,
where a Markov model is inferred offline from observed traces and used to con-
struct a predictive runtime monitor for probabilistic reachability checking. In
contrast to our method, this method focuses on discrete-space models, which
allows the predictor to be represented as a look-up table, as opposed to a neural
network. In [49], a method is presented for predictive monitoring of STL specifi-
cations with probabilistic guarantees. These guarantees derive from computing
prediction intervals of ARMA/ARIMA models learned from observed traces.
Similarly, we use CP which also can derive prediction intervals with probabilis-
tic guarantees, with the difference that CP supports any class of prediction
models (including auto-regressive ones). In [27], model predictions are used to
forecast future robustness values of MTL specifications for runtime monitoring.
However, no guarantee, statistical or otherwise, is provided for the predicted
robustness. Deshmukh and others [25] have proposed an interval semantics for
STL over partial traces, where such intervals are guaranteed to include the true
STL robustness value for any bounded continuation of the trace. This app-
roach can be used in the context of predictive monitoring but tends to produce

482 F. Cairoli et al.

over-conservative intervals. Another related approach is smoothed model check-
ing [15], where Gaussian processes [51] are used to approximate the satisfaction
function of stochastic models, i.e., mapping model parameters into the satisfac-
tion probability of a specification. Smoothed model checking leverages Bayesian
statistics to quantify prediction uncertainty, but faces scalability issues as the
dimension of the system increases. These scalability issues are alleviated in [12]
using stochastic variational inference. In contrast, computing our conformal mea-
sure of prediction reliability is very efficient, because it is nearly equivalent to
executing the underlying predictor.

This tutorial builds on the methods presented in [12–14,17–19,48]. In
NPM [13,14], neural networks are used to infer the Boolean satisfaction of a
reachability property and conformal prediction (CP) are used to provide statisti-
cal guarantees. NPM has been extended to support some source of stochasticity
in the system: in [17] they allow partial observability and noisy observations,
in [18] the system dynamics are stochastic but the monitor only evaluates the
Boolean satisfaction of some quantile trajectories, providing a limited under-
standing of the safety level of the current state. Finally in [19] a conformal
quantitative predictive monitor to reliably check the satisfaction of STL require-
ments over evolutions of a stochastic system at runtime is presented. Predictive
monitoring under partial observability is also analysed in [24], where the authors
combine Bayesian state estimation with pre-computed reach sets to reduce the
runtime overhead. While their reachability bounds are certified, no correctness
guarantees can be established for the estimation step.

Various learning-based PM approaches for temporal logic properties [41,43,
50,52,64,65] have been recently proposed. In particular, Ma et al. [41] use uncer-
tainty quantification with Bayesian RNNs to provide confidence guarantees.
However, these models are, by nature, not well-calibrated (i.e., the model uncer-
tainty does not reflect the observed one [38]), making the resulting guarantees not
theoretically valid. In [5] the parameter space of a parametric CTMC is explic-
itly explored, while [21] assumes a probability distribution over the parameters
and proposes a sampling-based approach. In [40] conformal predictions are used
over the expected value of the stochastic process rather than its distribution.

We contribute to the state of the art by presenting a wide variety of learning-
based predictive monitors that offer good scalability, provide statistical guaran-
tees, and support partial observability, stochasticity and rich STL-based require-
ments.

7 Conclusions

We have presented an overview of various learning-based approaches to reliably
monitor the evolution of a CPS at runtime. The proposed methods comple-
ment predictions over the satisfaction of an STL specification with principled
estimates of the prediction uncertainty. These estimates can be used to derive
optimal rejection criteria that identify potentially erroneous predictions with-
out knowing the true satisfaction values. The latter can be exploited as an

Learning-Based Approaches to Predictive Monitoring 483

active learning strategy increasing the accuracy of the satisfaction predictor.
The strength is given by high-reliability and high computational efficiency of
our predicitons. The efficiency is not directly affected by the complexity of the
system under analysis but only by the complexity of the learned predictor. Our
approach overcomes the computational footprint of model checking (infeasible
at runtime) while improving on traditional runtime verification by being able to
detect future violations in a preemptive way. We have devised two alternative
solution methods: a frequentist and a Bayesian approach. Conformal predictions
are used on top of both methods to obtain statistical guarantees.

In future work, we will investigate dynamics-aware approaches to inference.
The aim is to improve the performances by limiting inference only to an estimate
of the system manifold, i.e. the region of the state space that is likely to be visited
by the evolving stochastic process.

Acknowledgments. This work has been partially supported by the PRIN project
“SEDUCE” n. 2017TWRCNB, by the “REXASI-PRO” H-EU project, call HORIZON-
CL4-2021-HUMAN-01-01, Grant agreement ID: 101070028 and by the PNRR project
iNEST (Interconnected North-Est Innovation Ecosystem) funded by the European
Union Next-GenerationEU (Piano Nazionale di Ripresa e Resilienza (PNRR) - Missione
4 Componente 2, Investimento 1.5 - D.D. 1058 23/06/2022, ECS 00000043).

References

1. Alur, R.: Principles of Cyber-Physical Systems. MIT Press, Cambridge (2015)
2. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool

for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19835-9 21

3. Babaee, R., Ganesh, V., Sedwards, S.: Accelerated learning of predictive runtime
monitors for rare failure. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS,
vol. 11757, pp. 111–128. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-32079-9 7

4. Babaee, R., Gurfinkel, A., Fischmeister, S.: Predictive run-time verification of
discrete-time reachability properties in black-box systems using trace-level abstrac-
tion and statistical learning. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS,
vol. 11237, pp. 187–204. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03769-7 11

5. Badings, T.S., Jansen, N., Junges, S., Stoelinga, M., Volk, M.: Sampling-based
verification of CTMCs with uncertain rates. In: Shoham, S., Vizel, Y. (eds.) CAV
2022. LNCS, vol. 13372, pp. 26–47. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-13188-2 2

6. Bak, S., Duggirala, P.S.: HyLAA: a tool for computing simulation-equivalent reach-
ability for linear systems. In: Proceedings of the 20th International Conference on
Hybrid Systems: Computation and Control, pp. 173–178 (2017)

7. Bak, S., Johnson, T.T., Caccamo, M., Sha, L.: Real-time reachability for verified
simplex design. In: Real-Time Systems Symposium (RTSS), 2014 IEEE, pp. 138–
148. IEEE (2014)

https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-030-32079-9_7
https://doi.org/10.1007/978-3-030-32079-9_7
https://doi.org/10.1007/978-3-030-03769-7_11
https://doi.org/10.1007/978-3-030-03769-7_11
https://doi.org/10.1007/978-3-031-13188-2_2
https://doi.org/10.1007/978-3-031-13188-2_2

484 F. Cairoli et al.

8. Balasubramanian, V., Ho, S.S., Vovk, V.: Conformal Prediction for Reliable
Machine Learning: Theory, Adaptations and Applications. Newnes, Oxford (2014)

9. Bartocci, E., et al.: Specification-based monitoring of cyber-physical systems: a
survey on theory, tools and applications. In: Bartocci, E., Falcone, Y. (eds.) Lec-
tures on Runtime Verification. LNCS, vol. 10457, pp. 135–175. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75632-5 5

10. Benvenuti, L., et al.: Reachability computation for hybrid systems with Ariadne.
IFAC Proc. Volumes 41(2), 8960–8965 (2008)

11. Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., Schilling, C.: JuliaReach: a
toolbox for set-based reachability. In: Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, pp. 39–44 (2019)

12. Bortolussi, L., Cairoli, F., Carbone, G., Pulcini, P.: Stochastic variational smoothed
model checking. arXiv preprint arXiv:2205.05398 (2022)

13. Bortolussi, L., Cairoli, F., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural predic-
tive monitoring. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757,
pp. 129–147. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9 8

14. Bortolussi, L., Cairoli, F., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural predic-
tive monitoring and a comparison of frequentist and Bayesian approaches. Int. J.
Softw. Tools Technol. Transfer 23(4), 615–640 (2021)

15. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain
continuous-time Markov chains. Inf. Comput. 247, 235–253 (2016)

16. Brihaye, T., Doyen, L., Geeraerts, G., Ouaknine, J., Raskin, J.-F., Worrell, J.: On
reachability for hybrid automata over bounded time. In: Aceto, L., Henzinger, M.,
Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 416–427. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22012-8 33

17. Cairoli, F., Bortolussi, L., Paoletti, N.: Neural predictive monitoring under partial
observability. In: Feng, L., Fisman, D. (eds.) RV 2021. LNCS, vol. 12974, pp. 121–
141. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88494-9 7

18. Cairoli, F., Paoletti, N., Bortolussi, L.: Neural predictive monitoring for collec-
tive adaptive systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022. LNCS,
vol. 13703, pp. 30–46. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
19759-8 3

19. Cairoli, F., Paoletti, N., Bortolussi, L.: Conformal quantitative predictive monitor-
ing of STL requirements for stochastic processes. In: Proceedings of the 26th ACM
International Conference on Hybrid Systems: Computation and Control, pp. 1–11
(2023)

20. Cauchois, M., Gupta, S., Ali, A., Duchi, J.C.: Robust validation: confident predic-
tions even when distributions shift. arXiv preprint arXiv:2008.04267 (2020)

21. Češka, M., Dannenberg, F., Paoletti, N., Kwiatkowska, M., Brim, L.: Precise
parameter synthesis for stochastic biochemical systems. Acta Informatica 54, 589–
623 (2017)

22. Chen, H., Lin, S., Smolka, S.A., Paoletti, N.: An STL-based formulation of
resilience in cyber-physical systems. In: Bogomolov, S., Parker, D. (eds.) FOR-
MATS 2022. LNCS, vol. 13465, pp. 117–135. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-15839-1 7

23. Chen, X., Sankaranarayanan, S.: Model predictive real-time monitoring of linear
systems. In: Real-Time Systems Symposium (RTSS), 2017 IEEE, pp. 297–306.
IEEE (2017)

24. Chou, Y., Yoon, H., Sankaranarayanan, S.: Predictive runtime monitoring of vehi-
cle models using Bayesian estimation and reachability analysis. In: International
Conference on Intelligent Robots and Systems (IROS) (2020)

https://doi.org/10.1007/978-3-319-75632-5_5
http://arxiv.org/abs/2205.05398
https://doi.org/10.1007/978-3-030-32079-9_8
https://doi.org/10.1007/978-3-642-22012-8_33
https://doi.org/10.1007/978-3-030-88494-9_7
https://doi.org/10.1007/978-3-031-19759-8_3
https://doi.org/10.1007/978-3-031-19759-8_3
http://arxiv.org/abs/2008.04267
https://doi.org/10.1007/978-3-031-15839-1_7
https://doi.org/10.1007/978-3-031-15839-1_7

Learning-Based Approaches to Predictive Monitoring 485

25. Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust
online monitoring of signal temporal logic. Formal Meth. Syst. Des. 51(1), 5–30
(2017)

26. Djeridane, B., Lygeros, J.: Neural approximation of PDE solutions: an application
to reachability computations. In: Proceedings of the 45th IEEE Conference on
Decision and Control, pp. 3034–3039. IEEE (2006)

27. Dokhanchi, A., Hoxha, B., Fainekos, G.: On-line monitoring for temporal logic
robustness. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734,
pp. 231–246. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-
3 19

28. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

29. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals.
In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp.
92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9 9

30. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool
for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035,
pp. 68–82. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0 5

31. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31954-2 17

32. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

33. Gammerman, A., Vovk, V.: Hedging predictions in machine learning. Comput. J.
50(2), 151–163 (2007)

34. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic
model checker storm. Int. J. Softw. Tools Technol. Transfer 24, 589–610 (2021)

35. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about
hybrid automata? In: Proceedings of the Twenty-Seventh Annual ACM Sympo-
sium on Theory of Computing, pp. 373–382 (1995)

36. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: Proceedings of
the 22nd ACM International Conference on Hybrid Systems: Computation and
Control, pp. 169–178 (2019)

37. Johnson, T.T., Bak, S., Caccamo, M., Sha, L.: Real-time reachability for verified
simplex design. ACM Trans. Embed. Comput. Syst. (TECS) 15(2), 1–27 (2016)

38. Kuleshov, V., Fenner, N., Ermon, S.: Accurate uncertainties for deep learning using
calibrated regression. In: International Conference on Machine Learning, pp. 2796–
2804. PMLR (2018)

39. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

40. Lindemann, L., Qin, X., Deshmukh, J.V., Pappas, G.J.: Conformal prediction for
STL runtime verification. In: Proceedings of the ACM/IEEE 14th International
Conference on Cyber-Physical Systems (with CPS-IoT Week 2023), pp. 142–153
(2023)

https://doi.org/10.1007/978-3-319-11164-3_19
https://doi.org/10.1007/978-3-319-11164-3_19
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-15297-9_9
https://doi.org/10.1007/978-3-662-46681-0_5
https://doi.org/10.1007/978-3-662-46681-0_5
https://doi.org/10.1007/978-3-540-31954-2_17
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47

486 F. Cairoli et al.

41. Ma, M., Stankovic, J., Bartocci, E., Feng, L.: Predictive monitoring with logic-
calibrated uncertainty for cyber-physical systems. ACM Trans. Embed. Comput.
Syst. (TECS) 20(5s), 1–25 (2021)

42. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

43. Muthali, A., et al.: Multi-agent reachability calibration with conformal prediction.
arXiv preprint arXiv:2304.00432 (2023)

44. Ničković, D., Yamaguchi, T.: RTAMT: online robustness monitors from STL. In:
Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 564–571.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6 34

45. Papadopoulos, H.: Inductive conformal prediction: theory and application to neural
networks. In: Tools in Artificial Intelligence. InTech (2008)

46. Papadopoulos, H., Haralambous, H.: Reliable prediction intervals with regression
neural networks. Neural Netw.: J. Int. Neural Net. Soc. 24(8), 842–51 (2011)

47. Papadopoulos, H., Vovk, V., Gammerman, A.: Regression conformal prediction
with nearest neighbours. J. Artif. Intell. Res. 40, 815–840 (2014)

48. Phan, D., Paoletti, N., Zhang, T., Grosu, R., Smolka, S.A., Stoller, S.D.: Neural
state classification for hybrid systems. In: Lahiri, S.K., Wang, C. (eds.) ATVA
2018. LNCS, vol. 11138, pp. 422–440. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01090-4 25

49. Qin, X., Deshmukh, J.V.: Predictive monitoring for signal temporal logic with
probabilistic guarantees. In: Proceedings of the 22nd ACM International Confer-
ence on Hybrid Systems: Computation and Control, pp. 266–267. ACM (2019)

50. Qin, X., Deshmukh, J.V.: Clairvoyant monitoring for signal temporal logic. In:
Bertrand, N., Jansen, N. (eds.) FORMATS 2020. LNCS, vol. 12288, pp. 178–195.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57628-8 11

51. Rasmussen, C.E., Williams, C.K.: Gaussian Processes for Machine Learning. vol.
1. MIT Press, Cambridge (2006)

52. Rodionova, A., Lindemann, L., Morari, M., Pappas, G.J.: Time-robust control for
STL specifications. In: 2021 60th IEEE Conference on Decision and Control (CDC),
pp. 572–579. IEEE (2021)

53. Romano, Y., Patterson, E., Candes, E.: Conformalized quantile regression. In:
Advances in Neural Information Processing Systems, vol. 32 (2019)

54. Royo, V.R., Fridovich-Keil, D., Herbert, S., Tomlin, C.J.: Classification-based
approximate reachability with guarantees applied to safe trajectory tracking. arXiv
preprint arXiv:1803.03237 (2018)

55. Sauter, G., Dierks, H., Fränzle, M., Hansen, M.R.: Lightweight hybrid model check-
ing facilitating online prediction of temporal properties. In: Proceedings of the 21st
Nordic Workshop on Programming Theory, pp. 20–22 (2009)

56. Schupp, S., Ábrahám, E., Makhlouf, I.B., Kowalewski, S.: HyPro: A C++ Library
of state set representations for hybrid systems reachability analysis. In: Barrett, C.,
Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 288–294. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57288-8 20

57. Shafer, G., Vovk, V.: A tutorial on conformal prediction. J. Mach. Learn. Res. 9,
371–421 (2008)

58. Stankeviciute, K., Alaa, A.M., van der Schaar, M.: Conformal time-series forecast-
ing. In: Advances in Neural Information Processing Systems, vol. 34, pp. 6216–6228
(2021)

https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
http://arxiv.org/abs/2304.00432
https://doi.org/10.1007/978-3-030-59152-6_34
https://doi.org/10.1007/978-3-030-01090-4_25
https://doi.org/10.1007/978-3-030-01090-4_25
https://doi.org/10.1007/978-3-030-57628-8_11
http://arxiv.org/abs/1803.03237
https://doi.org/10.1007/978-3-319-57288-8_20

Learning-Based Approaches to Predictive Monitoring 487

59. Tibshirani, R.J., Foygel Barber, R., Candes, E., Ramdas, A.: Conformal prediction
under covariate shift. In: Advances in Neural Information Processing Systems, vol.
32 (2019)

60. Toccaceli, P., Gammerman, A.: Combination of inductive Mondrian conformal pre-
dictors. Mach. Learn. 108(3), 489–510 (2019)

61. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World.
Springer, Cham (2005). https://doi.org/10.1007/978-3-031-06649-8

62. Yel, E., et al.: Assured runtime monitoring and planning: toward verification of
neural networks for safe autonomous operations. IEEE Robot. Autom. Mag. 27(2),
102–116 (2020)

63. Yoon, H., Chou, Y., Chen, X., Frew, E., Sankaranarayanan, S.: Predictive runtime
monitoring for linear stochastic systems and applications to geofence enforcement
for UAVs. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp.
349–367. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9 20

64. Yoon, H., Sankaranarayanan, S.: Predictive runtime monitoring for mobile robots
using logic-based Bayesian intent inference. In: 2021 IEEE International Conference
on Robotics and Automation (ICRA), pp. 8565–8571. IEEE (2021)

65. Yu, X., Dong, W., Yin, X., Li, S.: Model predictive monitoring of dynamic systems
for signal temporal logic specifications. arXiv preprint arXiv:2209.12493 (2022)

66. Zaffran, M., Féron, O., Goude, Y., Josse, J., Dieuleveut, A.: Adaptive conformal
predictions for time series. In: International Conference on Machine Learning, pp.
25834–25866. PMLR (2022)

https://doi.org/10.1007/978-3-031-06649-8
https://doi.org/10.1007/978-3-030-32079-9_20
http://arxiv.org/abs/2209.12493

Author Index

A
Abbas, Houssam 213
Aguilar, Edgar A. 86
Akshay, S. 271
An, Ziyan 376
Anderson, Jacob 251
Anderson, Sean 231

B
Balakrishnan, Anand 389
Bartocci, Ezio 86
Bensalem, Saddek 23
Besnard, Valentin 315
Bivolarov, Stoyan 315
Bonakdarpour, Borzoo 213
Bortolussi, Luca 45, 461

C
Cairoli, Francesca 45, 461
Carbone, Ginevra 45
Carleton, Benjamin 363
Chakraborty, Supratik 271
Chalupa, Marek 168
Chen, Zhenbang 339
Cheng, Chih-Hong 428
Cornard, Guillaume 315

D
Deshmukh, Jyotirmoy 389
Dobre, Rares A. 66

F
Fainekos, Georgios 251
Falcone, Yliès 23, 327, 403
Fremont, Daniel J. 191

G
Ghosal, Shuvam 389
Gopinath, Divya 3
Gorostiaga, Felipe 351

H
Havelund, Klaud 447
Henzinger, Thomas A. 168, 291
Hoxha, Bardh 251
Huet, Mathieu 315

J
Jiang, Pengyue 363
Joshi, Aniruddha 271

K
Kallwies, Hannes 106
Koll, Charles 213
Krstić, Sr -dan 126
Kueffner, Konstantin 291

L
Legunsen, Owolabi 363
Leucker, Martin 106
Lima Graf, Jeniffer 126
Luttenberger, Michael 428

M
Ma, Meiyi 376
Mallick, Swapnil 389
Mallik, Kaushik 291
Mangal, Ravi 3
Marqués, Valeria 363
Mateis, Cristinel 86
Momtaz, Anik 213

N
Naaktgeboren, Allison 231
Nesterini, Eleonora 86
Ničković, Dejan 86

O
Okamoto, Hideki 251
Omer, Moran 148

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 489–490, 2023.
https://doi.org/10.1007/978-3-031-44267-4

https://doi.org/10.1007/978-3-031-44267-4

490 Author Index

P
Paoletti, Nicola 461
Păsăreanu, Corina S. 3
Pedregal, Paloma 351
Peled, Doron 148, 447
Pérez, Jorge A. 66
Prokhorov, Danil 251
Pulcini, Paolo 45

S
Saadi, Nourredine 315
Sánchez, César 106, 351
Schneider, Joshua 126
Seshia, Sanjit A. 191, 271
Shah, Shetal 271
Soueidi, Chukri 327, 403
Sprinkle, Jonathan 376

T
T. Johnson, Taylor 376
Tolmach, Andrew 231
Torfah, Hazem 191, 271

V
van den Heuvel, Bas 66

W
Wang, Xia 376
Wu, Changshun 23

X
Xing, Yongchao 339
Xu, Shibo 339

Y
Yalcinkaya, Beyazit 191
Yan, Rongjie 428
Yorihiro, Ayaka 363
Yu, Huafeng 3

Z
Zhang, Yufeng 339

	Preface
	Organization
	Contents
	Invited Papers
	Assumption Generation for Learning-Enabled Autonomous Systems
	1 Introduction
	2 Preliminaries
	3 Compositional Verification of Learning-Enabled Autonomous Systems
	4 The TaxiNet System
	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Customizable Reference Runtime Monitoring of Neural Networks Using Resolution Boxes
	1 Introduction
	2 Preliminaries
	3 Boxes with a Resolution
	4 Runtime Monitoring of NNs Using Resolution Boxes
	4.1 Clustering Parameter Selection Using Coverage
	4.2 Monitor Construction
	4.3 Monitor Execution
	4.4 Dealing with Uncertainty Verdicts

	5 Experimental Evaluation
	5.1 Clustering Coverage Estimation
	5.2 Assessing Monitor Precision
	5.3 Discussion and Lessons Learned

	6 Related and Future Work
	References

	Regular Papers
	Scalable Stochastic Parametric Verification with Stochastic Variational Smoothed Model Checking
	1 Introduction
	2 Background
	2.1 Population Continuous Time Markov Chain
	2.2 Signal Temporal Logic
	2.3 Smoothed Model Checking

	3 Stochastic Variational Smoothed Model Checking
	3.1 Gaussian Processes over Non-Gaussian Likelihoods
	3.2 Bayesian Neural Networks

	4 Experiments
	4.1 Case Studies
	4.2 Experimental Details
	4.3 Experimental Results

	5 Conclusions
	5.1 Statistical Guarantees

	References

	Monitoring Blackbox Implementations of Multiparty Session Protocols
	1 Introduction
	2 Networks of Monitored Blackboxes
	3 Monitors for Blackboxes Synthesized from Global Types
	4 Properties of Correct Monitored Blackboxes
	4.1 Satisfaction
	4.2 Soundness
	4.3 Transparency

	5 Conclusion
	References

	Mining Specification Parameters for Multi-class Classification
	1 Introduction
	2 Preliminaries
	3 Problem Description
	4 Our Approach
	4.1 Binary Satisfaction
	4.2 Different Templates
	4.3 Multiple Classes

	5 Application
	5.1 Aircraft Elevator
	5.2 Naval Surveillance
	5.3 Parking Scenario

	6 Conclusion and Future Work
	References

	General Anticipatory Monitoring for Temporal Logics on Finite Traces
	1 Introduction
	2 Temporal Logics on Finite Traces
	2.1 Temporal Logics and Formalisms on Finite Traces
	2.2 The Stream Runtime Verification Language Lola

	3 Translating TRLTLf to Lola
	4 General Anticipatory Monitoring
	4.1 Recurrent Monitors as Moore Machines
	4.2 An Anticipatory Algorithm
	4.3 Assumptions
	4.4 Uncertainties

	5 Anticipatory Monitoring in Action
	6 Final Remarks
	References

	Metric First-Order Temporal Logic with Complex Data Types
	1 Introduction
	2 Design Choices
	3 Complex Data Types
	4 Specification Language
	5 Type System
	5.1 Typing Rules
	5.2 Type Inference

	6 Semantics
	7 Implementation
	7.1 Signature Translation
	7.2 Monitoring Algorithm

	8 Examples and Evaluation
	9 Related Work
	10 Conclusion
	References

	Runtime Verification Prediction for Traces with Data
	1 Introduction
	2 Preliminaries
	2.1 Past Time First-Order Temporal Logic
	2.2 Monitoring First-Order Past LTL
	2.3 Predictive Runtime Verification
	2.4 Isomorphism over Relations Representing Qtl Subformulas

	3 Prediction Using BDD Representation
	4 Undecidability of Unbounded Prediction
	5 Experiments
	6 Conclusion
	References

	Monitoring Hyperproperties with Prefix Transducers
	1 Introduction
	2 Prefix Expressions
	2.1 Preliminaries
	2.2 Syntax of Prefix Expressions
	2.3 Semantics of Prefix Expressions

	3 Multi-trace Prefix Expressions and Transducers
	3.1 Multi-trace Prefix Expressions
	3.2 Multi-trace Prefix Transducers

	4 Hypertrace Transformations
	4.1 Algorithm for Online Monitoring of k-safety Hyperproperties
	4.2 Discussion

	5 Empirical Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

	Compositional Simulation-Based Analysis of AI-Based Autonomous Systems for Markovian Specifications
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	3.1 Executions and Specifications
	3.2 Markov Decision Processes

	4 Compositional Scenarios
	4.1 Concurrent Hierarchical Probabilistic Extended State Machines
	4.2 Abstract Syntax and Semantics of Compositional Scenarios

	5 Compositional Simulation-Based Analysis
	5.1 Generic Framework
	5.2 Compositional Simulation-Based Falsification
	5.3 Compositional Simulation-Based Statistical Verification

	6 Experimental EvaluationAvailable at https://github.com/BerkeleyLearnVerify/compositional-analysis.
	6.1 An Autonomous Driving Task
	6.2 Evaluation Details
	6.3 Case Study 1
	6.4 Case Study 2

	7 Related Work
	8 Conclusion
	References

	Decentralized Predicate Detection Over Partially Synchronous Continuous-Time Signals
	1 Introduction: Detecting All Errors in Distributed CPS
	2 Preliminaries and Problem Definition
	2.1 The Continuous-Time Setup
	2.2 Problem Definition: Decentralized Predicate Detection

	3 The Structure of Satisfying Cuts
	4 The Abstractor Process
	4.1 Physical Vector Clocks
	4.2 Abstractor Description

	5 The Slicer Process for Detecting Predicates
	5.1 Worked-Out Example

	6 Case Studies and Evaluation
	7 Conclusion
	References

	Flexible Runtime Security Enforcement with Tagged C
	1 Introduction
	2 Metadata Tags and Policies, by Example
	3 The Tagged C Language: Syntax and Semantics
	4 Example Policies
	4.1 Memory Safety
	4.2 Compartmentalization
	4.3 Secure Information Flow

	5 Implementation
	6 Related Work
	7 Conclusion and Future Work
	References

	Pattern Matching for Perception Streams
	1 Introduction
	2 Preliminaries
	2.1 Perception Stream

	3 Spatial Regular Expressions
	4 Perception Stream Matching
	4.1 Problem Formulation
	4.2 Spatio-Temporal Regular Expression Matcher

	5 Examples and Benchmarks
	5.1 Example A: Offline Matching Examples
	5.2 Example B: Online Matching
	5.3 Benchmarks

	6 Related Work
	7 Conclusion and Future Work
	References

	Learning Monitor Ensembles for Operational Design Domains
	1 Introduction
	2 Monitorable Operational Design Domains
	2.1 Monitorable Operational Design Domains
	2.2 Challenges in Learning Optimal ODDs

	3 Learning Monitor Ensembles for Operational Design Domains
	3.1 Using Majority Voting
	3.2 Using Multi-armed Bandits

	4 Empirical Study
	4.1 Case Study
	4.2 Framework and Implementation
	4.3 Evaluation
	4.4 Experiment: Majority Voting
	4.5 Experiment: Multi-armed Bandit

	5 Related Work
	6 Conclusion
	References

	Monitoring Algorithmic Fairness Under Partial Observations
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Randomized Event Generators: Partially Observed Markov Chains
	2.3 Register Monitors

	3 Monitoring Quantitative Algorithmic Fairness Properties
	3.1 Role of the Stationary Distribution
	3.2 Bounded Specification Expressions
	3.3 Problem Statement

	4 Construction of the Monitor
	4.1 A Point Estimator for the Atoms
	4.2 The Atomic Monitor
	4.3 The Complete Monitor

	5 Experiments
	6 Conclusion
	References

	Short and Tool Papers
	AMT: A Runtime Verification Tool of Video Streams
	1 Introduction
	2 Approach Overview
	3 Property Specification Using AML
	4 Software Architecture
	5 Experiments and Results
	6 Related Work
	7 Conclusion
	References

	Bridging the Gap: A Focused DSL for RV-Oriented Instrumentation with BISM
	1 Introduction
	2 DSL Design Considerations
	3 BISM Background
	4 The DSL for BISM
	4.1 Pointcuts
	4.2 Events
	4.3 Monitors
	4.4 Code Generation

	5 Implementation
	6 Evaluation
	6.1 Performance Evaluation
	6.2 User Experience Evaluation

	7 Related Work and Conclusion
	References

	CCMOP: A Runtime Verification Tool for C/C++ Programs
	1 Introduction
	2 Framework
	3 Design and Implementation
	4 Evaluation
	5 Related Work
	6 Conclusion and Future Work
	References

	A Stream Runtime Verification Tool with Nested and Retroactive Parametrization
	1 Introduction
	2 Overview
	3 HLola with Dynamic Parametrization
	4 A Network Traffic Case Study and Empirical Evaluation
	5 Conclusions
	References

	eMOP: A Maven Plugin for Evolution-Aware Runtime Verification
	1 Introduction
	2 eMOP
	2.1 Evolution-Aware RV Techniques
	2.2 Implementation

	3 Installation and Usage
	4 Evaluation
	5 Conclusions and Future Work
	References

	Runtime Monitoring of Accidents in Driving Recordings with Multi-type Logic in Empirical Models
	1 Introduction
	2 Related Work
	3 Motivating Study
	3.1 Analysis on High-Level Time-Series Abstraction
	3.2 Analysis on Discontinuity of Anomaly Detection

	4 Proposed Method
	4.1 High-Level Time-Series Feature Extraction
	4.2 Empirical Model for Accident Classification
	4.3 Logic Calibration and Verification

	5 Evaluation Results
	5.1 Evaluation Setup
	5.2 Baselines
	5.3 Evaluation of Model Performance

	6 Conclusion
	References

	Safety Monitoring for Pedestrian Detection in Adverse Conditions
	1 Introduction
	2 Preliminaries
	2.1 IA-YOLO
	2.2 Timed Quality Temporal Logic (TQTL)

	3 Our Approach
	4 Experimental Analysis
	5 Conclusion
	References

	Tutorials
	Instrumentation for RV: From Basic Monitoring to Advanced Use Cases
	1 Introduction
	2 Understanding Instrumentation
	2.1 Unveiling the Complete Picture
	2.2 Observing the Execution
	2.3 Instrumentation for Runtime Verification
	2.4 Instrumentation Considerations for Runtime Verification

	3 Instrumentation Requirements
	4 How to Evaluate Instrumentation
	5 Existing Instrumentation Frameworks
	5.1 Bytecode Manipulation Libraries
	5.2 Aspect Oriented Languages
	5.3 The Gap Between Bytecode Libraries and AOP Frameworks

	6 A Comprehensive Instrumentation Approach: BISM
	6.1 Instrumentation Model
	6.2 Instrumentation Language

	7 Insrumentation Use Cases
	7.1 Classical Example
	7.2 Residual Runtime Verification
	7.3 Runtime Verification of Concurrent Programs
	7.4 Opportunistic Monitoring
	7.5 Control Flow Integrity

	8 Conclusion
	References

	Runtime Monitoring DNN-Based Perception
	1 Introduction
	2 Challenges in Monitoring Perception Systems
	3 Formulation
	4 Techniques
	4.1 DNN Monitoring Techniques from the ML Community
	4.2 DNN Monitoring Techniques from the FM Community
	4.3 Monitoring Techniques Without Analyzing the DNN

	5 Challenges Ahead
	References

	Monitorability for Runtime Verification
	1 Introduction
	2 Preliminaries
	2.1 Runtime Verification
	2.2 Linear Temporal Logic

	3 Monitorability
	3.1 Characterizing Temporal Properties According to Monitorability
	3.2 Runtime Verification Algorithms for Monitorability
	3.3 A Lower Bound Example for LTL Monitoring

	4 Monitoring Safety Properties
	4.1 Past Propositional Temporal Logic
	4.2 RV for Propositional Past Time LTL
	4.3 From Monitoring Past Property to Monitoring
	4.4 From Monitoring Propositional to First Order Temporal Logic

	References

	Learning-Based Approaches to Predictive Monitoring with Conformal Statistical Guarantees
	1 Introduction
	2 Background
	2.1 Signal Temporal Logic (STL)

	3 Predictive Monitoring
	4 Uncertainty Estimation and Statistical Guarantees
	4.1 Conformal Inference
	4.2 Bayesian Inference

	5 Learning-Based PM with Statistical Guarantees
	5.1 Monitoring Under Full Observability
	5.2 Monitoring Under Partial Observability
	5.3 Uncertainty-Aware Error Detection and Active Learning

	6 Related Work
	7 Conclusions
	References

	Author Index

