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Abstract. Instance segmentation is crucial for insightful analysis in the
increasing use of large-scale electron microscopy (EM) to gain a better
understanding of disease causes or progression. Instance segmentation is
a more granular version of semantic segmentation, as it identifies and
distinguishes individual object instances, whereas semantic segmenta-
tion only identifies object classes. In this study, we introduce a two-stage
unsupervised approach called COFI, which stands for Coarse-Semantic
to Fine-Instance segmentation, for the application of mitochondria seg-
mentation in large-scale 2D EM images. In its first stage, it produces a
rough region mask by clustering image patches and prompting a user to
select the regions of interest. This is followed by a boundary delineation
method based on the brain-inspired COSFIRE filter which is augmented
by an inhibition component that makes it robust to image texture and
noise. The effectiveness of the proposed COFI approach is evaluated
on an EM dataset of the heart muscle of a mouse tissue, which con-
sisted of four tiles of 16384 × 16384 pixels, containing a total of 2287
instances of mitochondria among other subcellular structures. It consis-
tently achieved panoptic quality measures that are substantially superior
to competing supervised methodologies. Besides its elevated effective-
ness, the proposed COFI approach is conceptually simple and sufficiently
versatile as the structure of interest is not intrinsic to the method.
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1 Introduction

Segmentation is an important step in the analysis of electron microscopy (EM)
images in biology. Through segmentation, sub-cellular structures can be identi-
fied and labeled, which improves the biological understanding of the analyzed
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samples. EM is increasingly being employed in large-scale biological initiatives,
whether for volume imaging (3D EM) or large-area mapping (2D EM). In both
methods, the goal to resolve nanoscale features (2–10 nm/pixel) is linked with
the desire to set these findings in a larger context, which could be a large area
or a 3D volume. High-throughput large-scale EM imaging is now possible due to
enhanced automation that generates petabytes of image data [1,2]. Hence, there
is a need for developing automatic tools for EM segmentation.

Large-scale 2D EM or nanotomy1 provides an unbiased analysis of structures
in EM images with the right cellular context [1]. We propose a new methodol-
ogy for instance segmentation of mitochondria in 2D EM. Instance segmentation
involves assigning each pixel to the correct class – mitochondria in this case – and
identifying each component of that class as a separate instance. Figure 1 shows
an example of a cropped region from an EM image with multiple mitochon-
dria and corresponding ground truth maps of semantic, contour, and instance
segmentation. Mitochondria are the primary energy providers for cell activities,
thus essential for metabolism. Results of instance segmentation can be used to
quantify morphological properties of mitochondria, which is not only crucial to
basic research, but also informative to the clinical studies of several diseases.

Fig. 1. Example of expected segmentation. (a) A region with apposing mitochondria,
and the ground truth (b) semantic, (c) contour and (d) instance segmentation maps.

We propose a two-stage unsupervised pipeline. The first stage entails unsu-
pervised semantic segmentation through clustering of overlapping patches using
their feature embeddings encoded by a pre-trained network and prompting a
user to select regions of interest among the resulting clusters. The second stage
involves the COSFIRE filter approach with surround inhibition for edge delin-
eation. It is inspired by simple cells of the mammalian visual cortex, and is
robust to delineating edges and lines in the presence of texture [3].

1 www.nanotomy.org.

www.nanotomy.org
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2 Related Work

Previous methods for mitochondria segmentation have primarily used hand-
crafted features [4] or those derived using supervised learning to encode images
[5,6]. The success of encoder-decoder architectures such as FCN, U-Net, and
DeepLabv3+ for semantic segmentation, has enabled pixel-wise classification of
EM images. Relevant image regions can also be obtained using prior knowledge
of an object’s shape or texture through fragment matching. Due to its adaptabil-
ity to noise and local variations, such methods are, however, more effective for
image denoising and texture synthesis than pixel-based techniques. The work
in [7] investigated a patch processing approach based on region homogeneity,
utilizing CNNs as feature extractors and performing boundary refinement using
watersheds. Boundary-based segmentation is a preferred technique for instance
segmentation due to its ability to provide fine-grained results in combination
with other techniques such as object proposals or region-based segmentation
to improve performance. Instance segmentation of mitochondria was preferred
with semantic region mapping and boundary prediction, in comparison with top-
down approaches, as variability in their appearances, shape, and the presence of
overlapping instances makes the use of object proposal networks impractical [8].

Manually marking ground truth in EM images is tedious, which makes super-
vised methods challenging. This may be addressed by transfer learning, which
takes a supervised model that was pre-trained on a large dataset and fine-tunes
it on a different dataset. Self-supervised learning has emerged as a label-free
alternative to pre-training, utilizing a contrastive loss function to learn mean-
ingful representations. It can achieve high accuracy in various downstream tasks
through fine-tuning with a simple linear classification or an MLP head [9]. Pre-
trained models for unlabeled EM data have become possible with the release of
CEM1.5M, a large and diverse dataset that provides ample cellular context [10].

The brain-inspired COSFIRE filter approach that we use here has proven
to be effective for unsupervised delineation of curvilinear structures in complex
and noisy backgrounds. It achieves orientation selectivity by aggregating the
collective responses of a set of difference-of-Gaussian functions that are linearly
aligned in their areas of support [11]. This approach has demonstrated success in
various applications, such as delineating blood vessels in retinal fundus images,
roads and rivers from aerial images [12,13]. The COSFIRE model has been
extended with push-pull inhibition [14] and surround suppression [3]. The push-
pull inhibition is effective in suppressing high-frequency noise, while surround
suppression inhibits responses in the neighbourhoods of dominant contours.

3 Method

The proposed COFI method comprises two components. First, it uses a pre-
trained network to generate a rough object location map by clustering embed-
dings and selecting regions of interest. Then, the instance-level fine delineation
is performed by the inhibition-augmented COSFIRE filter approach.
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3.1 Dataset Description and Annotation

The proposed pipeline is evaluated on a nanotomy dataset of the heart muscle
of a mouse tissue, which consisted of the four tiles shown in Fig. 2. Manual
annotation of individual instances was a laborious task due to various factors
such as high-resolution noise, image artifacts, surrounding structures with similar
textures, and side-by-side mitochondria. Manual delineating all 2287 instances
of mitochondria, took approximately 8 hours per tile, totaling four working days.
The instance segmentation ground truth masks were obtained using the polygon
tool of ImageJ [15] and were further proofread by biomedical experts.

Fig. 2. EM data set used here. Left: Set of four 2D EM tiles of 16384 × 16384 pixels
each at a resolution of 2.5 nm/pixel. Right: Corresponding ground truth instance maps.

3.2 Coarse Semantic Segmentation

The first stage utilizes feature embeddings of image patches from networks pre-
trained using unsupervised contrastive learning. The contrastive loss function L
compares pairs of image representations to separate representations from differ-
ent images and brings together those from different views of the same image:

L =
1

2N

N∑

i=1

N∑

j=1

[y(i, j) · d(fi, fj) + (1−y(i, j)) · max(margin−d(fi, fj), 0)] (1)

where N is the number of training samples, y(i, j) is a flag indicating whether
the pair of features (fi, fj) is from the same image (y(i, j) = 1) or different
images (y(i, j) = 0), d(fi, fj) is the distance between the features of images i
and j (e.g., Euclidean distance), and margin is a hyperparameter that controls
the distance between features from different images.

We use 128 × 128 pixel-sized patches with 50% overlap to partition a given
2D EM image. These values are chosen as they provide a good tradeoff between
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information content and region homogeneity. The embeddings contain inher-
ent distances that distinguish similar input image patches from dissimilar ones,
which are then clustered using K-means into relevant regions. By using a graph-
ical user interface, a biologist then manually selects the clusters that correspond
to the regions of interest, i.e., those containing mitochondria. The output of this
first component in our pipeline is a binary map that is produced by merging all
patches that belong to the selected clusters2, Fig. 3.

Fig. 3. Coarse semantic segmentation. An encoder extracts features from input image
patches followed by clustering and selection of clusters to produce the coarse mask.

3.3 Fine Instance Segmentation

Fine instance segmentation is achieved by simultaneously processing each con-
nected component in the binary coarse semantic map. This part of our pipeline
consists of the following steps: a) membrane delineation with the inhibition-
augmented COSFIRE filter, b) watershed segmentation, and c) object selection.

A. Inhibition-Augmented COSFIRE Filter. A COSFIRE filter can be
configured to be selective for any given pattern of interest. For this application,
where the goal is to delineate boundaries, we configure a COSFIRE filter to be
selective for lines. It takes input from a linearly aligned set of responses of a
difference-of-Gaussians (DoG) filter. We denote by B a line-selective COSFIRE
filter, which is defined as a set of 3-tuples:

B = {(σi, ρi, φi) | i = 1, . . . , n} (2)

where each tuple i indicates the distance ρi and the polar angle φi of the response
of a DoG filter whose outer standard deviation is σi. The inner standard devia-
tion of the DoG function is set to 0.5σi. The COSFIRE filter’s response rB(x, y)
in a given (x, y) location is the geometric mean of the n DoG responses at
the polar coordinates defined in B, with respect to (x, y). For a more in-depth

2 Effectively, user selection of clusters can be assisted by cluster validity indices, in
that the user gets automatic suggestions of which other clusters are mostly similar
to the already selected ones.
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explanation of the technical details and how COSFIRE filters achieve rotation-
invariance, we refer the reader to [16].

COSFIRE filters can be augmented with surround suppression in the same
way as originally proposed in [17]. This is needed here to accentuate the mem-
branes while ignoring the inner cristae for the delineation of mitochondria. The
surround inhibition term is computed for every (x, y) location by convolving a
normalized center-off DoG function Iγ (γ denotes the standard deviation of the
inner Gaussian function) with the COSFIRE response map rB . Further to [3]
the standard deviation of the outer Gaussian function is set to 4γ. Normalization
of this DoG kernel consists of first applying the Heaviside step function, which
maps all negative values to zero and all positive values to 1. Then all values
of one are L1-normalized such that their sum equals to 1. The final COSFIRE
response map R is then achieved by the linear function:

R = rB − αrIγ
(3)

where α denotes the inhibition strength. Figure 4 shows examples of COSFIRE
response maps for different α values. The inhibition term suppresses responses
to spurious strokes (i.e. cristae) in the surrounding of mitochondria walls.

Fig. 4. Examples of boundary delineations with a COSFIRE filter. (a) A connected
component from the coarse segmentation map, (b) the corresponding EM region, and
COSFIRE response maps for (c) α = 0, (d) α = 1 and (e) α = 2.

The response map R is transformed to a binary contour map by first thinning
R with non-maximum suppression to obtain the ridges and then by applying
hysteresis thresholding, which is characterized by the high th and low tl threshold
values. We keep th as a hyperparameter and set tl = 0.5th.

B. Watershed Segmentation. First, the Euclidean distance map is computed
from the thresholded COSFIRE binary map obtained above and all values below
the mean distance are set to zero. The resulting thresholded distance map is used
to generate the first watershed output (Fig. 5b). In the second stage, the ridges
of the watershed output of the first stage are superimposed on the thresholded
distance map (Fig. 5c) and used to generate the final watershed output (Fig. 5d).
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C. Object Selection. First, the objects that fall outside the coarse semantic
mask are removed. For the remaining components, we compute the contrast from
the gray-level co-occurrence matrix (GLCM) determined from the corresponding
intensity pixels of the input image and keep all objects with a contrast less than
λ standard deviations from the mean.

4 Experiments and Results

We evaluate the performance of the proposed method in three different setups.
The first two, which we denote by UG and US, use (U)nsupervised semantic
segmentation with networks that are pre-trained on the (G)eneral ImageNet
dataset [9] and on the (S)pecific CEM1.5M dataset [10] of EM images with many
instances of mitochondria, respectively. For the third approach, denoted by SS,
we replace the unsupervised stage with the state-of-the-art MitoNet, which is
a (S)upervised ConvNet trained for (S)emantic segmentation of mitochondria.
Finally, we compare the results of these three methods with the (S)supervised
(I)nstance segmentation variant of MitoNet [18], denoted by SI.

Fig. 5. Example of fine instance segmentation from a COSFIRE contour map. (a)
COSFIRE binary map, which is used as input to the (b–d) watershed algorithm followed
by (e) object selection to achieve the final instance segmentation.

Performance Measures. We measure two performance indicators, namely the
global similarity measure Intersection-Over-Union (IoU) and the Panoptic Qual-
ity (PQ), which is a more detailed measure suitable for instance segmentation.
IoU is the intersection between the predicted (PR) and ground truth (GT) masks
divided by the union of the two masks, across all pixels in a given image. PQ
unifies both segmentation and detection, making it a useful metric for cellular
EM segmentation [19]. They are defined as:

IoU =
PR ∩ GT

PR ∪ GT
(4)

PQ =
Σj∈TP IoU(GT j , PRj∗)

|TP |︸ ︷︷ ︸
Segmentation Quality (SQ)

× |TP |
|TP | + 1

2 |FP | + 1
2 |FN |

︸ ︷︷ ︸
Detection Quality (DQ)

(5)



94 A. Aswath et al.

where TP, FP, and FN stand for the number of true positive, false positive,
and false negative objects, respectively. Following the mitochondria instance
segmentation work in [8], we consider a mitochondrium as TP if it has at least
30% IoU overlap with a GT object. The FP and FN objects are the unmatched
segments in PR and GT, respectively. PRj,∗ denotes the object in PR that is
matched with the largest overlapping region (in IoU) with GT j .

Experiments. Pre-trained encoders (ResNet50) of UG and US were applied
to all 128 × 128 sized patches of the four tiles, which represented each of them
with a 2048-element feature vector obtained from the last layer of the encoder.
The vectors were then min-max normalized. Next, we applied truncated SVD to
reduce the dimensions from 2048 to 1000, in order to enhance clustering effec-
tiveness by eliminating noise and irrelevant features. These lower-dimensional
vectors were then clustered using K-Means with (K =) 10 clusters. Finally,
three and four clusters, respectively, were selected for the UG and US methods
by visually inspecting the clustering results.

For the second stage, we applied a grid search to fine-tune three parameters
of the COSFIRE filters, namely σ, α, and tH , which are related to the contour
thickness, inhibition strength, and hysteresis thresholding, respectively, along
with the parameter λ which we used in the object selection step. The fine-tuning
was done on the single component shown in Fig. 4 and Fig. 5, which was randomly
selected from the coarse semantic segmentation in the first stage. The random
selection was constrained to pick a component with 10 to 20 mitochondria. The
determined parameters are: σ = 4, α = 2, tH = 0.6, and λ = 2.5.

Table 1. Comparison of the coarse semantic segmentation outputs using IoU.

Method Tile 1 Tile 2 Tile 3 Tile 4

UG 0.64 0.69 0.67 0.64

US 0.66 0.69 0.69 0.68

SS 0.81 0.84 0.81 0.83

Results. We report two sets of results. Table 1 presents the IoUs of the UG,
US, and SS that measure the quality of the coarse semantic segmentation for
each of the four tiles with respect to GT. The second set of results is illustrated
in Fig. 6 shows PQ – the product of the segmentation quality (SQ) and detection
quality (DQ) – that measures the quality of the final instance segmentation. The
consistently high SQ of the UG, US, and SS methods is attributable to the pre-
cise delineation by the COSFIRE filter, which yields fine instance segmentation
masks. The DQ metric indicates the effectiveness of detecting the right compo-
nents. While our UG and US unsupervised variants achieve modest IoUs in the
first stage due to under-segmentation, their final detection quality outperforms
that of the supervised counterparts. Among them, the US approach achieves
the best performance, which can be attributed to the fact that the underlying
encoder was pre-trained on the dataset CEM1.5 of EM images.
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Fig. 6. Line plots of SQ, DQ, and PQ for all four tiles. The two unsupervised variants
UG and US show consistent superiority over their supervised counterparts SS and SI.

5 Discussion and Conclusion

The results of the instance segmentation indicate that the proposed unsuper-
vised variants, UG and US, of the COFI approach perform substantially better
than the supervised approach despite having very coarse segmentation maps.
This improvement is attributable to the COSFIRE operator, whose inhibition
component makes it particularly effective in delineating the walls of apposing
mitochondria in challenging backgrounds. The initial stage of the COFI method
has the greatest influence on the detection quality (DQ). Any missing compo-
nents from the first stage cannot be recovered by the COSFIRE filter in the
second stage. It is also remarkable that for our images although the UG method
uses an encoder that was pre-trained on ImageNet, it still yields very high results
that come very close to the best results achieved with an encoder that was
pre-trained on the more specific CEM1.5 dataset of EM images (US). To gain
more insight, we augment the COSFIRE delineation operator with a supervised
semantic segmentation approach (SS) based on MitoNet. The results show that
the COSFIRE operator performs equally well as the supervised instance seg-
mentation (SI) on MitoNet-based semantic maps.

The proposed COFI approach is unsupervised and versatile, in that the
structure of interest (mitochondria here) is not an intrinsic component. The
patch-based classification of high-resolution EM images provides the necessary
redundancy to capture semantically important textured regions, which is then
fine-tuned in the second stage by the COSFIRE filter. The COSFIRE filter
with inhibition turned out to be very robust in delineating the mitochondria
walls from the cristae within them. In future work, we will evaluate the pro-
posed COFI approach on bigger datasets, other cellular tissues and different
sub-cellular structures that are important for the study of biological processes.
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