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Abstract. Electroencephalographic (EEG) data is commonly used in
sleep medicine. It consists of a number of cerebral electrical signals mea-
sured from various brain locations, subdivided into segments that must
be manually scored to reflect their sleep stage. These past few years,
multiple implementations aimed at an automation of this scoring pro-
cess have been attempted, with promising results, although they are not
yet accurate enough with respect to each sleep stage to see clinical use.
Our approach relies on the information contained within the covariations
between multiple EEG signals. This is done through temporal sequences
of covariance matrices, analyzed through attention mechanisms at both
the intra- and inter-epoch levels. Evaluation performed on a standard
dataset using an improved methodological framework show that our app-
roach obtains balanced results over all classes, this balancing being char-
acterized by a better MF1 score than the State of the Art.

Keywords: Sleep analysis · EEG · Deep Learning · Attention ·
Symmetric Positive Definite matrices

1 Introduction

To study sleep patterns in the field of sleep medicine, the gold standard is the
polysomnography (PSG) study, which usually includes electroencephalography
(EEG), electrooculography (EOG), electromyography (EMG) and electrocardio-
graphy (ECG) recordings, corresponding to brain, eye, muscle and heart elec-
trical activity, respectively. These signals are derived from the voltage existing

This work has been co-funded by the Normandy Region and the French National
Research Agency (ANR) through a HAISCoDe Ph.D. grant. It was granted access to
the HPC resources of IDRIS under the allocation 2022-AD010613618 made by GENCI,
and to the computing resources of CRIANN (Normandy, France).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
N. Tsapatsoulis et al. (Eds.): CAIP 2023, LNCS 14185, pp. 67–76, 2023.
https://doi.org/10.1007/978-3-031-44240-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44240-7_7&domain=pdf
http://orcid.org/0000-0002-9367-1190
http://orcid.org/0000-0002-8362-7735
http://orcid.org/0000-0002-9441-0187
http://orcid.org/0000-0002-7182-8062
http://orcid.org/0000-0002-1658-0527
http://orcid.org/0000-0003-3661-0233
https://doi.org/10.1007/978-3-031-44240-7_7


68 M. Seraphim et al.

between electrodes over time, often with one being set as a reference. In this
paper, the term “signal” shall refer exclusively to such a voltage.

The set of norms most often used to analyze PSG signals is the one defined by
the American Academy of Sleep Medicine (AASM) [4]. This analysis is done by
subdividing the signals into 30 s epochs, sometimes called “sleep epochs” in this
paper. These may be manually scored (labeled) as being in one of five stages:
wakefulness, rapid eye movement (REM) sleep, and three stages of non-REM
sleep (N1, N2 and N3).

Table 1. Frequency bands that we use for EEG data analysis

Delta Theta Alpha Betalow Betahigh Gamma

Hz [0.5, 4[ [4, 8[ [8, 12[ [12, 22[ [22, 30[ [30, 45[

In this paper, we study the relevance of cerebral functional connectivity as a
tool for the automated classification of sleep stages, through a study of covari-
ations between EEG signals. In particular, we aim to obtain a high level of
class-wise performance. For that purpose, we analyze timeseries of covariance
matrices, computed for various frequency bands (Table 1). We base our analysis
on an existing model architecture [14], itself based on successive Transformer
encoders. After an overview of the existing State of the Art (SOA) in Sect. 2, we
shall explain our method in Sect. 3. Finally, in Sect. 4, we present our results on
a commonly used dataset, including a comparison with SOA methods.

2 State of the Art

Some approaches consider that a single signal contains enough information to
classify sleep epochs [12,14,21]. A common strategy is to combine an EEG and
an EOG signal with the same reference electrode by subtracting them [15–17].
Other approaches use a multitude of input signals, often including EOG or EMG
signals to said input, in addition to EEG. Phan et al. [11] use one signal of each
type (EEG, EOG and EMG) as input, whereas Jia et al. [7,8] use multiple of
each, and additionally include one ECG signal. Given the same dataset, the
latter approaches seem to yield better results.

A common approach in EEG preprocessing pipelines is the extraction of
relevant frequency components, since sleep stages are characterized by events
with specific frequential components [4]. As such, Phan et al. [11,12,14] compute
time-frequency images to use as input of their model.

Manual scoring of a sleep epoch takes into consideration said epoch’s context
- i.e. information contained in neighboring sleep epochs. Similarly, the architec-
tures of models used for this task often include contextual information in the clas-
sification process. Such sequence-based models can be divided into two sections:
intra-epoch (extracting features from each epoch in the input sequence) and
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Fig. 1. Our model. (E1, ..., EL) is the input sequence, with Ej referring to the central
epoch. ŷj is the output classification of the model. Nintra and Ninter refer to the number
of sublayers in our intra- and inter-epoch Transformer encoders.

inter-epoch (combining said features). Convolutional neural networks (CNNs)
can be used at the intra-epoch level, usually followed at the inter-epoch level by
recurrent neural networks (RNNs) [12,15–17]. Phan et al. expand on both the
RNN and attention mechanism approaches. In [11,12], they utilize bi-directional
RNNs at both the intra-epoch and inter-epoch levels, whereas they use Trans-
former encoder-based attention mechanisms [18] in [14]. Similarly, Zhu et al. [21]
use attention blocs inspired by said encoders at both levels, together with con-
volutions and other more classic layers. It has been stated that the performance
of sequence-based State of the Art automatic sleep scoring models is currently
near perfect, with little room for improvement [13]. While we do not dispute
that claim in absolute terms, we have noticed a discrepancy in class-wise perfor-
mance, particularly regarding the N1 stage (see Sect. 4.4). Therefore, our main
focus is to correct for this discrepancy.

Our chosen axis of analysis concerns functional connectivity. In other words,
one may study the connectivity between different brain regions through correla-
tions detected between them, often independently of the structural (i.e. physical)
connectivity between said regions [6]. In the context of sleep studies, it has been
proven that sleep induces a characteristic cerebral response, describable in terms
of functional connectivity [5]. Jia et al. [7,8] explicit these inter-region relation-
ships through graph timeseries. Their intra-epoch section is a graph learning
model, with each node corresponding to an electrode. These graphs are then
convolved both spatially and temporally in the inter-epoch section. Note that
most graph convolution methods do not assign a specific weight to each node,
nor do they use the relative positioning of said nodes. For the proposed graphs,
however, each node corresponds to an electrode, so ignoring node specificity in
such a way might actually be a drawback.

In this paper, we perform an analysis of functional connectivity, estimated
through the covariations of brain signals. For this purpose, we analyze covariance
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matrices computed from multiple simultaneous EEG signals, excluding other sig-
nal types (EOG, EMG...) in order to focus exclusively on brain activity. Covari-
ance matrices are guaranteed to be symmetric positive semi-definite, but tend
to be fully symmetric positive definite (SPD) when computed from real-world
data. The set of all SPD matrices in R

n×n is a Riemannian manifold (metered
curved space), and we postulate that preserving this geometry in our model
would be advantageous to our classification, as similar approaches using SPD
matrices have already been implemented in the field of EEG signal analysis,
most notably in brain-computer interfaces (BCI) [19].

3 Method

3.1 From EEG Signals to Covariance-Derived SPD Matrices

As do Zhu et al. [21], we apply a z-score normalization to our EEG signals, in
order to harmonize their means and standard deviations. Moreover, according to
the AASM [4], the signal components indicative of the current sleep stage have
specific frequential properties. In order to allow the network to more effectively
analyze them, we filter our EEG signals along the six frequency bands presented
in Table 1. This is done through a fourth-order Butterworth bandpass filter.

The discrete events indicative of a sleep epoch’s proper classification are
around one second in length. To capture them, we elected to subdivide our
recordings into one second segments. Each sleep epoch is therefore subdivided
into 30 non-overlapping segments. On each segment, we compute a covariance
matrix between the n electrodes. We verify that the resulting matrices are prop-
erly SPD, and add the matrix In × 10−5 to those who aren’t. This is done on
the unfiltered and filtered signals, resulting in a total of 7 data channels.

Two main families of metrics have been defined on the set of SPD matrices.
The so-called affine invariant metrics [10] are invariant to affine transforma-
tions, but have some drawbacks - for instance, it is impossible to compute an
algebraic mean using such a metric, though algorithmic approximations do exist.
LogEuclidean metrics [2] do not showcase the same invariance properties, but
are significantly easier to work with. The LogEuclidean distance between two
SPD matrices A and B is defined as:

δP
LE(A,B) = ‖log(P−1/2AP−1/2) − log(P−1/2BP−1/2)‖F (1)

This metric relies on the bijection existing between the manifold and its tan-
gent space, the space of symmetric matrices, by way of the matrix logarithm
and exponential functions. The parameter P may be interpreted as a center of
projection onto said space.

Given a covariance matrix, the only mono-signal information stored is the
variance of the signal along the segment. Additional signal-specific features may
be added using Eq. 2, which “augments” a covariance matrix C, preserving its
SPD property while adding a feature vector V (referred to as a “side vector”),
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weighted by a factor α (with Vα = αV ):

M =

⎛
⎜⎜⎝

C + VαV T
α Vα

V T
α 1

⎞
⎟⎟⎠ (2)

Each epoch entering the model is thus represented by 7 channels of 30 SPD
covariance matrices, and their associated side vectors. Multiple side vectors may
be computed per matrix, such as its mean, maximum value, or average power
spectral density (PSD) over the corresponding one second segment.

Being biological, our EEG data is marked by the specificities inherent to
each recording, that are then transferred to our covariance matrices. In order to
reduce said specificities, we compute every recording-wise covariance matrix G,
and use them to apply a whitening operation [20] onto the relevant matrices:

M ′ = G−1/2MG−1/2 (3)

The idea is to operate a “transport” of the data M centered around G to be
centered around In instead. We perform this shift for each recording and compute
distances between centered SPD matrices using Eq. 1, with P = In. If need be,
both M and G are augmented with the relevant side vectors.

3.2 The Model

Our model architecture uses Transformer encoders at the intra- and inter-epoch
levels, as does [14]. It takes as input a timeseries of sleep epochs, composed of a
central epoch and l epochs on either side, for a total of L = 2l+1. These sequences
are constructed with maximum overlap, with classification on the central epoch.
Thus, the first and last l epochs of each recording are not classified.

Our model starts with a vectorization layer. It performs the augmentation
of matrices by their weighted side vectors (Eq. 2), followed by the whitening
operation. The nature of the side vectors V , and the value of their weight α,
are model hyperparameters. Using n electrodes, we project our SPD matrices of
R

(n+1)×(n+1) onto their tangent set (Sect. 3.1), and vectorize the upper trian-
gular of the resulting symmetric matrix onto R

(n+1)(n+2)
2 [2]. These operations

being bijective, all Euclidean operations on these vectors are interpretable as
LogEuclidean operations on the augmented matrices.

These vectors undergo a positional encoding [18]. The channels are then
concatenated and fed to a first, intra-epoch Transformer encoder, composed of
a number of sequential sublayers. The fully connected layers present in each
encoder sublayer allow for a mixing of the elements of each input vector, and
therefore a mixing of the original channels. In order to obtain a single feature vec-
tor per sleep epoch, the output of the intra-epoch encoder layer passes through
an average pooling layer. The resulting L epoch feature vectors are then fed
through another positional encoding layer, followed by an inter-epoch encoder.
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Only the output vector corresponding to the central sleep epoch is preserved,
passing through two fully connected layers, each followed by a ReLU activation
and a dropout layer. A final fully connected “classification” layer reduces the
output to the desired 5 data points (one per class), and this classification is then
fed to a softmax-including cross-entropy loss function.

We optimize this model using the Adam algorithm, with the function param-
eters β1, β2 and ε set to 0.9, 0.999 and 10−7 respectively. The weight decay is a
hyperparameter, and so are the model’s learning rate λ and the corresponding
exponential decay parameter γλ.

Our architecture can be seen in Fig. 1. The number of sublayers and atten-
tion heads of each encoder, the size of parameter tensors for the fully con-
nected layers and the various dropout probabilities are all hyperparameters. Our
hyperparameter-obtaining strategy is described in Sect. 4.2 , and the obtained
values are presented in the annex.

4 Experiments

4.1 Dataset Used

We chose to validate our model on the SS3 subset of the Montreal Archive of
Sleep Studies (MASS) dataset [9], as it is heavily utilized within the SOA and
contains a large number of electrodes to choose from for our analysis. Said subset
is made up of 62 subjects, with a single full-night recording per subject and 20
EEG channels in common. Each EEG signal went through a notch filter at 60 Hz
as well as a lowpass and highpass filter with cutoff frequencies of 0.30 Hz and
100 Hz respectively. This dataset is unbalanced, with the largest and smallest
classes (N2 and N1) respectively containing 50.24% and 8.16% of its sleep epochs.

In order to capture a significant range of signals, and to limit redundancy
between neighboring electrodes, we chose electrodes F3, F4, C3, C4, T3, T4, O1
and O2. This selection has a relatively homogeneous distribution with regards
to the cranium, with inter-hemispheric symmetry to capture relevant variations
along that axis. All of these signals are captured with a common reference elec-
trode, located behind the left ear.

4.2 Model Validation

As is best practice, we subdivide our database into three subsets: training, val-
idation and test. We utilize a k-fold cross-validation scheme, using the same
fold-wise subset separation as Seo et al. [15] in order to facilitate comparisons.
Each of the k = 31 folds are divided into 50, 10 and 2 recordings for each train-
ing, validation and testing set respectively. The 31 folds’ testing sets add up to
the 62 recordings in SS3, with no overlap. We set the parameter l of our network
to 10, as is done in [14]. We rebalance each fold’s training set through oversam-
pling, with each class having as many elements as N2 has. The validation and
test sets aren’t rebalanced, though test sets are further restricted (Sect. 4.3).
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Every hyperparameter research is ran using the Tree-structured Parzen Esti-
mator algorithm [3], as implemented by Optuna [1]. This research is done on
the same randomly selected fold. The best hyperparameters are then utilized
to train the model on all folds. We use the macro-averaged F1 score (MF1) as
our main performance statistic, as it reflects imbalances in class-wise classifi-
cation performance, and is widely used throughout the SOA. All statistics are
summarized over the 31 folds by computing their mean and standard deviation.

Table 2. Ablation study and comparison to the SOA.

Balanced statistics Unbalanced statistics

Method MF1 Macro accuracy General accuracy Kappa

0 SleepTrans. [14] 73.97 ± 3.50 76.37 ± 4.35 81.25 ± 3.54 0.722 ± 0.046

1 IITNet [15] 78.48 ± 3.15 81.88 ± 2.89 83.90 ± 3.03 0.763 ± 0.043

2 DeepSleepNet [16] 78.14 ± 4.12 80.05 ± 3.47 84.81 ± 3.70 0.773 ± 0.052

3 GraphSleepNet [8] 75.58 ± 3.75 79.75 ± 3.41 80.97 ± 4.35 0.724 ± 0.057

4 Our method 79.78 ± 4.56 81.76 ± 4.61 85.05 ± 4.97 0.776 ± 0.069

5 No covariance 77.39 ± 5.82 79.76 ± 4.95 82.61 ± 6.01 0.741 ± 0.081

6 No side vectors 78.14 ± 4.10 80.56 ± 3.95 83.38 ± 4.16 0.753 ± 0.060

Table 3. F1 scores per class.

Method N3 F1 N2 F1 N1 F1 REM F1 Wake F1

0 [14] 74.26 ± 12.36 86.72 ± 3.28 47.60 ± 6.37 83.84 ± 6.99 77.40 ± 8.63

1 [15] 81.97 ± 8.91 88.15 ± 2.84 56.01 ± 6.54 85.14 ± 5.64 81.11 ± 8.49

2 [16] 80.38 ± 9.35 89.25 ± 3.12 53.52 ± 8.24 86.67 ± 5.34 80.86 ± 9.04

3 [8] 74.77 ± 12.12 84.84 ± 4.22 50.80 ± 8.06 85.09 ± 7.38 82.42 ± 7.43

4 Ours 78.17 ± 11.49 88.66 ± 4.59 58.43 ± 6.41 86.91 ± 7.79 86.73 ± 6.42

4.3 Reproducing the State of the Art

In order to compare our results to the State of the Art, we selected four
approaches. hree of those are DeepSleepNet [16], often used as a benchmark,
IITNet [15], whose cross-validation folds we are using, and GraphSleepNet [8],
which also analyses functional connectivity. The fourth, SleepTransformer [14],
shall be discussed subsequently.

All three have their code available on GitHub, and were trained on MASS
SS3 in their respective papers. IITNet, GraphSleepNet and DeepSleepNet use
sequences of epochs as inputs, of size equal to 10, 5 and 25 respectively. Like
us (Sect. 3.2), IITNet and GraphSleepNet use each sequence to classify a sin-
gle epoch, respectively the last and central epoch of the sequence. In contrast,
DeepSleepNet outputs one classification per epoch in their sequences, which are
constructed without overlap. Because of this, for each recording, IITNet won’t
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classify the first 9 epochs, GraphSleepNet will ignore the first and last 2, and
DeepSleepNet might ignore up to 24 epochs at the end.

All three models use a similar results aggregation strategy. For each fold,
the best trained parameters are used to compute predictions on the test set.
Despite originating from different models, these predictions are concatenated,
and statistics are computed over this unified predictions tensor. As the number
of sleep epochs per recording is not homogeneous, neither are the test sets. This
strategy therefore results in an implicit weighting effect, giving more importance
to sets of parameters computed on folds with larger test sets.

In order to better compare these methods to our model, we retrained these
models with our metrics, folds, and results summarizing methods (Sect. 4.2). All
methods were adapted to select their best fold learned parameters through their
validation MF1 score. In the spirit of fairness, we rebalanced GraphSleepNet and
IITNet’s training sets through oversampling. DeepSleepNet already does this
when pretraining its intra-epoch submodel, and its multi-label sequences can’t
be rebalanced in that way. We did not change any of their model architectures,
and used their published hyperparameters.

The fourth SOA method presented is our reimplementation of the original
SleepTransformer model. Compared to our model, this method uses a custom
attention softmax layer instead of our average pooling. We also replicated their
preprocessing using a recombined Fz-Cz signal from MASS SS3. It was trained
with our methodology, including a hyperparameter research.

The obtained results (Tables 2 and 3) differ from those originally published,
which may stem for the aforementioned methodological differences. To harmo-
nize all test sets, we have elected to exclude the classification of the first and last
24 epochs of each recording. The training or validation sets remain, however,
unchanged. This has been applied to all results presented in this paper.

4.4 Analysis of Results

Aside from lines 1, 2 and 3 of Tables 2 and 3, all presented results are preceded
by a hyperparameter research.

Line 0 of Tables 2 and 3 show us the results obtained through our reimplemen-
tation of SleepTransformer. As we can see, they are the lowest of all presented
methods. Due to the similarities between our approaches, one might view these
as the baseline for our architecture’s performance.

As stated in Sect. 3.2, we tested multiple side vector types in our hyperpa-
rameter research. The one that consistently performed the best was the vector
of mean PSDs. The other chosen hyperparameters are described in the annex.

The last 3 lines of Table 2 give an overview of the obtained results. Line 4 cor-
responds to our results, trained on the best hyperparameters mentioned above. A
surprising hyperparameter is the value of α (Sect. 3.1) of 99.53. This implies that
the side vectors have a large impact on the final classification, and thus that our
network favors a signal-specific input (one not obtained through covariance). To
assess the relevance of covariances altogether, we removed all covariance infor-
mation from our data (i.e. the non-diagonal elements of the covariance matrices),
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and reran our model. As seen in line 5 of Table 2, all statistics but Kappa are
lower than the ones of line 4 by about 2%. This is coherent with the literature, as
decent performances have been obtained on MASS without relying on covaria-
tions. We also trained our model on the original covariance matrices themselves,
with no side vector augmentation (as seen in line 6). We obtain similar results to
line 4 and superior results to line 5, thus implying that considering covariations
adds a net benefit.

When it comes to the rest of the reran State of the Art, lines 1 through 4
of Table 2 shows that our model performs better in all measured metrics except
for macro-averaged accuracy, where we are a close second. In addition, Table 3
shows that our method outperforms the others in REM, Wake and N1 sleep
classification. As seen by the scores and standard deviations, though, the quality
of predictions varies much per class, for both the State of the Art and us. In
particular, N1 sleep epochs seem particularly hard to classify, but our method
shows a two points lead over the next best one in that regard. This lead would
explain our ranking in terms of MF1 score (Table 2).

All-in-all, Tables 2 and 3 show that a method based in part on covariance
information provides results either equivalent or superior to the State of the Art
on this problem (relative to the chosen statistics), with notable improvements to
performance on the N1 stage, though it also benefits from signal-specific inputs.

5 Conclusion

We have presented our novel approach for automatic scoring of sleep stages
through an analysis of the covariations between EEG signals. Motivated by the
high imbalance between the classification of said stages, we established a fairer
methodology for training and validating models on this problem. The results
validate our hypothesis on the relevance of such covariations in this context, and
by extension, that of functional connectivity.

Appendix

The hyperparameters corresponding to the best version of our model are:
Side vectors: PSD; α: 99.53; intra-epoch encoder: 5 sublayers, 15 attention heads,
fully connected components of size 1024, dropout of 6.2 × 10−5; intra-epoch
encoder: 6 sublayers, 5 attention heads, fully connected components of size 256,
dropout of 8.1× 10−3; final fully connected layers: of size 2048, dropout of 1.4×
10−3; learning rate (λ): 4.9 × 10−5, γλ at 0.94; weight decay at 1.76 × 10−6.

Many thanks to Huy Phan [11–14] for answering all our questions.
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optimization. In: Advances in Neural Information Processing Systems, vol. 24
(2011)

4. Berry, R.B., et al.: AASM scoring manual updates for 2017 (version 2.4) (2017)
5. Bouchard, M., Lina, J.M., Gaudreault, P.O., Dubé, J., Gosselin, N., Carrier, J.:
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