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Abstract. Light field imaging simultaneously records the position and direction
information of light in scene, as one of the important techniques for digital media.
The amount of light field image (LFI) data is huge, it needs to be effectively
compressed. In this paper, a perceptual LFI coding method with coding tree unit
(CTU) level bit allocation strategy is proposed. To remove angular redundancy,
a hybrid coding framework with joint deep learning reconstruction networks is
constructed. At the encoder side, only four corner sub-aperture images (SAIs)
are compressed with new CTU level bit allocation, a complete SAIs array is
reconstructed by a LFI angular super-resolution network at the decoder side. To
remove perceptual redundancy, we design a CTU level bit allocation strategy with
the assumption of perceptual consistency, considering the characteristics of the
human visual system in the bit allocation process. Experimental results show that
for the proposed method with the designed CTU level bit allocation strategy, an
averageBD-BR savings of 13.676% inY-PPSNRmetric and 2.045% inVSImetric
can be achieved. Compared with the high efficiency video coding (HEVC) intra
coding model, the proposed method can achieve an average BD-BR savings of
over 90%.
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1 Introduction

Light field imaging can simultaneously record the intensity and direction information of
light in a scene [1]. Light field images (LFIs) have many applications, such as refocusing
[2], 3D reconstruction [3], and multi view display [4]. But the rich scene information
makes the data volume of LFIs much larger than 2D images of the same resolution.
Therefore, efficient compression of LFI is crucial for its applications.

Generally, LFI compression methods can be mainly divided into the traditional
encoder based approach and the view synthesis based approach. The former directly
uses or improves existing encoders to compress LFIs, for example, treating LFI’s sub-
aperture images (SAIs) as pseudo video sequence (PVS), and compressing the PVSwith
video encoders [5]. LFI’s spatial and angular redundancies are removed through intra and
inter prediction of the video encoder. Monteiro et al. [6] improved high efficiency video
coding (HEVC) and used a prediction method combining local linear embedding and
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self-similarity for LFI compression. Ahmad et al. [7] proposed a coding method using
themulti-view extension of HEVC to explore the correlation between SAIs. Thesemeth-
ods can remove most of the data redundancy, but encoding all the data results in limited
encoding efficiency.

For the latter (view synthesis based approach), only a subset of SAIs is selected for
encoding, and the rest of SAIs will be synthesized at the decoder side. Bakir et al. [8]
compressed sparsely sampled SAIs, and used the LF Dual Discriminator GAN at the
decoder side to synthesize discarded SAIs. Hedayati et al. [9] used JPEG to compress
the central SAI and designed a deep learning network that includes quality enhancement
and depth estimation to reconstruct the SAIs array. Huang et al. [10] compressed the
selected SAIs and the disparitymaps corresponding to the unselected SAIs, and rendered
the unselectedSAIs at the decoder side. Liu et al. [11] compressed eight selectedSAIs and
constituted multi-disparity geometry to reflect abundant disparity characteristics; then,
synthesizing remaining LFI’s SAIs using the multi-stream view reconstruction network
at the decoder side. Thesemethods improve encoding efficiency through sparse sampling
and view synthesis. However, the selected SAIs are generally coded with video coding
techniques. The intra frame-based coding tree unit (CTU) level bit allocation algorithms
for existing video coders do not fully consider the visual perception characteristics.
This leads to perceptual redundancy in the compressed SAI subset. Due to the fact that
the SAIs in the subset will be used as references at the decoder side, this perceptual
redundancy will be further transmitted to the synthesized SAIs.

Therefore, in this paper, a perceptual LFI coding method with a new CTU level allo-
cation strategy is proposed to improve LFI coding efficiency. The experimental results
show that the effect of bit allocation is maintained in synthesized SAIs. At the same bit
rate, the proposed method achieved better subjective quality and structural consistency
in the salient regions.

2 The Proposed Method

In this paper, a perceptual LFI coding method with new CTU level bit allocation strategy
is proposed, and its framework is shown in Fig. 1. At the encoder side, the original LFI
Lorg is sparsely sampled, and the SAIs at four corner positions are selected to form
a subset of SAIs Ssel , which are arranged into PVS for input into HEVC. At the same
time, the depth map ID and saliency map IS of the central SAI IC are extracted separately
through deep learning networks. Subsequently, IC , ID and IS are input into the proposed
bit allocationmodel to calculate the bit weight for eachCTU.The complete set ofweights
W is input into HEVC to guide the target bit rate allocation at the CTU level. At the
decoder side, the decoded SAIs set S′

sel is input into the LFI angular super-resolution
network to recover the droppedSAIs. Finally, the complete reconstructedLFILrec consist
of a synthesized SAIs set S′

unsel and S′
sel .
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Fig. 1. The framework of the proposed LFI perceptual coding method.

2.1 Designed CTU Level Bit Allocation Strategy with Perceptual Consistency

The Assumption of Perceptual Consistency
There is a high content similarity between SAIs with different angular coordinates.
Taking a 7× 7 SAIs array as an example, Fig. 2 shows the residuals between IC and other
angular positional SAIs of the LFI Fountain_&_Vincent_1. Whether they are far away
or adjacent, the residual between them is small. Therefore, the assumption of perceptual
consistency for SAIs array is proposed, stating that the visual sensitive regions of SAIs
with different angular coordinates are basically the same. Based on this assumption,
each scene only needs to use IC to calculate the weight of bit allocation once, rather
than independently calculating for all selected SAIs. It is very meaningful for improving
encoding speed.

Fig. 2. The residual maps. (a) The residual between the SAIs located at (4,4) and (4,3). (b) The
residual between the SAIs located at (4,4) and (1,1). (Here, pixel values are magnified by 4 times
for visualization).

Calculation and Allocation of CTU Level Bit Weight
Initial Bit Weight Calculation
Compared to flat regions, complex texture regions have more complex prediction modes
and deeper block depth. Generally, complex texture regions require more bit rate con-
sumption to achieve the same quality as flat regions. In addition, studies have shown
that humans pay more attention to complex texture regions than flat regions. Therefore,
texture complexity is used as the initial bit weight for each CTU. CTUs with complex
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textures are given larger initial weights, while flat CTUs are given smaller initial weights.
The initial bit weight for each CTU is calculated as follows:

Ti =
∑M−1

x=1

∑N−1

y=1
Gi(x, y) + c (1)

where Ti is the texture complexity of the i-th CTU and also serves as the initial bit
weight.M and N are the size of the CTU. c is a constant to avoid an initial bit weight of
0. Gi(x, y) is the gradient value of the pixel at (x, y), and calculated as follows:

Gi(x, y) = |pi(x, y) − pi(x + 1, y)| + |pi(x, y) − pi(x, y + 1)| (2)

where Pi(x, y) is the pixel value at (x, y), | · | denotes an absolute value operation. The
calculation is performed on the Y component of the image.

Weight Adjustment of Visual Sensitive Regions
When human eye observes images, the visual sensitivity of different regions varies.
Regions with higher visual sensitivity should be assigned more bits. In the proposed
method, the foreground region and the salient object region are considered as high visual
sensitivity regions, and the bit weights of the CTU in these regions are adjusted. Firstly,
the depth map ID and saliency map IS of IC are obtained using deep learning networks
[12] and [13]. Secondly, ID and IS are binarized to obtain the foregroundmask and salient
object mask. Then, the masks are employed to calculate the foreground density ρD and
salient density ρS of each CTU, respectively. The calculation is expressed as follows:

ρ =
∑

CTU /(M × N ) (3)

where
∑

CTU is the number of pixelswith the value of 1 in the binarymask corresponding
to the CTU, and M × N is the size of the CTU. If ρD > 0.5, the CTU belongs to the
foreground region, and similarly, if ρS > 0.5, the CTU belongs to the salient region.
Finally, the bit weights of visual sensitive regions are adjusted based on the judgment
results, and the calculation is expressed as follows:

Wi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ti, if ρD < 0.5 & ρS < 0.5

Ti × α, if ρD > 0.5 & ρS < 0.5

Ti × β, if ρD < 0.5 & ρS > 0.5

Ti × α × β, if ρD > 0.5 & ρS > 0.5

(4)

where α and β are weight adjustment factors used for the foreground and salient regions,
respectively, to increase the bit weights of CTUs belonging to these regions. Based on
extensive experiments, α and β are taken as 1.1 and 1.5, respectively.Wi is the final bit
weight of the i-th CTU, used for allocating the target bit.

CTU Level Target Bit Allocation
After calculating the bit weights of all CTUs, the target bit is allocated for each CTU,
and the calculation is expressed as follows:

Ri = (Rp − Rh − Rc) × Wi
∑Nc

k=i WK

(5)
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where Ri is the target bit of the i-th CTU, Rp is the total target bits of the current frame,
Rh is the actual consumption bits of frame header information encoding, Rc is the actual
consumption bits of the encoded CTU and Nc is the total number of CTUs in the current
frame. After allocating all the bits, QP is calculated based on R − λ and QP − λ model
[14].

2.2 Decoding and Reconstruction

In the proposed method, only the selected SAIs set Ssel is compressed and transmitted,
while the remaining SAIs are synthesized at the decoder side. The network and pre
trained model in [15] are selected for LFI reconstruction. Specifically, S′

sel is fed into
the angular super-resolution network to reconstruct complete LFI, and represented as:

L′ = f (S′
sel) (6)

where L′ is the LFI output by the network, and it is already a complete SAIs array, and
f (·) denotes the angular super-resolution network.

Finally, the reconstructed LFI Lrec is obtained as follows:

Lrec = S′
sel + S′

unsel,S
′
unsel ∈ L′ (7)

where S′
unsel is the set of SAIs from L′ except for the four corner positions. The SAI at

the four corner positions still uses S′
sel to minimize the reconstruction distortion caused

by the angular super-resolution network.

3 Experimental Results and Analyses

3.1 Experimental Setup

The proposed method is tested on the commonly used EPFL light field database [16],
which provides multiple scenes captured by a Lytro Illum camera. Here, the MATLAB
light field toolbox [17] is adopted to decode the RAW light field data into a SAIs array,
with angular and spatial resolutions are 15 × 15 and 434 × 625, respectively. Figure 3
shows the SAI thumbnails corresponding to the scenes used in this paper. In specific
experiments, the central 7 × 7 SAIs array is selected, and the spatial resolution of each
SAI is cropped to 432× 624 to meet the requirements of the encoder for encoding block
size. In addition, the SAIs in Ssel are arranged into PVS and converted into the format
of 4:2:0 YUV. Due to only comparing intra encoding mode, the arrangement order of
PVS will not affect the final performance.

The proposed bit allocation method is implemented using the HEVC reference soft-
ware (HM16.20). Specifically, the PVS is encoded with All Intra coding structure. The
size of the CTU is set to 64 × 64, and the maximum division depth is set to 4. Rate
Control and LCU Level Rate Control are set to 1. Besides, the target bitrate of each
sequence is collected under the platform of HM16.20 with fixed QPs (i.e., QP = 22, 27,
32, 37, respectively).
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Fig. 3. SAI thumbnails: Caution_Bees, Danger_de_Mort, Fountain_&_Vincent_1,
Stone_Pillars_Outside, Sophie_&_Vincent_on_a_Bench, Sophie_Krios_&_Vincent.

Perceptual Peak Signal to Noise Ratio (PPSNR) [18] and Visual Saliency induced
Index (VSI) [19] are adopted as the perceptual quality metrics. Between them, PPSNR
is a quality metric that only targets salient region, and calculated as follows:

PPSNR = 10 log10 × 2552

1
L×H

L∑
x=1

H∑
y=1

(I(x, y) − I ′(x, y))2 × δ(x, y)

(8)

where δ(x, y) = 1 indicates the salient region, and δ(x, y) = 0 indicates the non-salient
region

Note that it is meaningful to calculate PSNR only for salient regions, as these regions
aremore susceptible to attention andhave agreater impact onperceivedquality.However,
when the total bitrate is fixed, the increase of the bitrate in the salient regionwill inevitably
be accompanied by the decrease of the bitrate in the non-salient region. Therefore, this
paper also adopts VSI to evaluate the global quality of images. VSI considers the visual
saliency and has been validated to be in line with human perception [19].

This paper measures encoding performance by calculating Bjontegaard Delta bitrate
(BD-BR) [20]. A negative BD-BR value indicates that under the same quality, the pro-
posed method can save more bitrate compared to the benchmark method, while con-
versely, it means consuming more bitrate. The bitrate is measured in bit per pixel (bpp)
and calculated as follows:

bpp = RLF

x × y × u × v
(9)

where RLF denotes the size of the bitstream, x × y and u × v are the spatial and angular
resolutions of the LFI, respectively. In addition, the quality of each LFI is represented
by the average quality of all SAIs.

Here, two compressionmethods are used for comparison to evaluate the effectiveness
of the proposed method. The abbreviations for these methods are as follows:

• HM: Encode all SAIs on HM16.20. Except for the target bitrate collected when
encoding 49 SAIs. The other configurations are consistent with the ones described
earlier.

• HM&ASR: It can be seen as a version of the proposed method using HM’s rate
allocation strategy. Specifically, only four corner SAIs are encoded, and the remaining
SAIs are synthesized by an angular super-resolution network.
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3.2 Rate-Distortion Performance

Table 1 gives the Bjontegaard metrics [20] of the proposed method with HM and
HM&ASR as the baselines, respectively. Y-PPSNR indicates to the average PPSNR
metric for all SAIs calculated on the Y component. Compared with theHM method, the
proposed method achieves average BD-BR savings of 90.305% in the Y-PPSNR metric
and 90.825% in the VSI metric, respectively. This is mainly due to the sparse encoding,
which saves a lot of bitrates. Compared to the HM&ASR method, the proposed method
achieves an average BD-BR savings of 13.676% in the Y-PPSNR metric. This indi-
cates that the proposed bit allocation method significantly improves the visual quality of
salient regions. In addition, the proposed bit allocation method effectively balances the
bitrates of non-salient regions, thereby improving the global quality of the image. This
can be reflected in the average BD-BR savings of 2.045% in the VSI metric.

Table 1. The BD-BR comparison of the proposed method with HM and HM&ASR methods as
baselines, respectively.

Scenes Proposed vs HM Proposed vs HM&ASR

BD-BR
(Y-PPSNR)

BD-BR
(VSI)

BD-BR
(Y-PPSNR)

BD-BR
(VSI)

101 –91.494% –90.551% –17.490% –2.477%

102 –91.283% –90.538% –10.982% –0.635%

103 –88.590% –90.152% –14.895% –0.998%

104 –91.728% –91.482% –23.650% –4.545%

105 –88.552% –90.843% –13.245% –3.162%

106 –90.182% –91.381% –1.795% –0.451%

Avg –90.305% –90.825% –13.676% –2.045%

Figure 4 show the visual comparison results of the decoded central SAI, where
the red box is taken from the salient region of the image and the blue box is taken
from non-salient region, and the PSNR values of these regions are given. It can be
found that the proposed method maintains better details in salient regions, such as the
eye details. Correspondingly, the quality of the proposed method has decreased in non-
salient regions. However, this has a small impact on the overall perceived quality, as these
regions have a low level of attention. Moreover, in the proposed method, the central SAI
is not encoded, but synthesized by the decoder side. The experimental results indicate
that the designed bit allocation strategy not only affects Ssel , but also affects S′

unsel ,
thereby generating results with better visual quality.
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Fig. 4. Comparison of the decoded central SAI of Sophie_&_Vincent_on_a_Bench (105). The
number in the sub-figure indicates the PSNR of the region. Here, 0.324bpp for HM methods,
0.026bpp for HM&ASR method and the proposed method.

Fig. 5. Comparison of the EPI consistency of salient regions of Danger_de_Mort (102),
Fountain_&_Vincent_1 (103), Stone_Pillars_Outside (104). Unit: PSNR/bpp.

3.3 Structural Consistency of Reconstruction

The structural consistency of LFIs is considered key to techniques such as refocusing
and depth inference. Epipolar Plane Images (EPIs) contain parallax changes and object
occlusion information, and the continuity of their polar lines canwell reflect the structural
consistency of the LFI. Hence, Fig. 5 shows the EPIs in the salient regions extracted from
the decoded results. It can be observed that the proposed method achieves higher PSNR
and visual quality at lower bitrates. The HM method independently encodes each SAI,
consuming large bitrates while damaging structural consistency, resulting in significant
distortion on theEPI. TheHM&ASRmethod saves bits through sparse encoding, but also
introduces reconstruction distortion generated by deep learning networks. In contrast,
the proposed method increases the bitrates of the salient regions by reallocating the CTU
level bit, thereby improving the quality of the regions, and at the same time enhancing
the structural consistency of the salient regions.



Perceptual Light Field Image Coding with CTU Level Bit Allocation 263

4 Conclusions

This paper presents a perceptual light field image (LFI) coding method with coding tree
unit (CTU) level bit allocation strategy. At the encoder side, the four corner sub-aperture
images (SAIs) are compressed. In order to remove the perceptual redundancy, a CTU
level bit allocation strategy with perceptual consistency is proposed. Firstly, the texture
features of each CTU of central SAI are extracted as the initial bit weight. Then, the
bit weight of CTU belonging to foreground and salient regions are adjusted to obtain
the final bit weight. Finally, the calculated weights are employed to allocate the target
bit of each CTU. At the decoder side, the complete SAIs array is reconstructed by the
LFI angular super-resolution network. The experimental results show that the proposed
method can effectively improve the quality of the salient regions and the overall image
at the same bitrate, while maintaining better structural consistency of the salient regions.
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Grant Nos. 62271276, 62071266 and 61931022, in part by the Natural Science Founda-
tion of Ningbo under Grant No. 202003N4088, and in part by Science and Technology
Innovation 2025 Major Project of Ningbo under Grant No. 2022Z076.

References

1. Xiang, J., Jiang, G., Yu, M., Jiang, Z., Ho, Y.-S.: No-reference light field image quality
assessment using four-dimensional sparse transform. IEEE Trans. Multimedia 25, 457–472
(2023)

2. Yang, N., et al.: Detection method of rice blast based on 4D light field refocusing depth
information fusion. Comput. Electron. Agric. 205, 107614 (2023)

3. Yuan, L., Gao, J., Wang, X. and Cui, H.: Research on 3D reconstruction technology based on
the fusion of polarization imaging and light field depth information. In: 2022 7th International
Conference on Intelligent Computing and Signal Processing (ICSP), pp. 1792–1797. IEEE,
Xi’an, China (2022)

4. Shen, S., Xing, S., Sang, X., Yan, B., Chen, Y.: Virtual stereo content rendering technology
review for light-field display. Displays 76, 102320 (2022)

5. Dai, F., Zhang, J., Ma, Y. and Zhang, Y.: Lenselet image compression scheme based on
subaperture images streaming. In: 2015 IEEE International Conference on Image Processing
(ICIP), pp. 4733–4737. IEEE, Quebec City, QC, Canada (2015)

6. Monteiro, R., Lucas, L., Conti, C., et al.: Light field HEVC-based image coding using locally
linear embedding and self-similarity compensated prediction. In: 2016 IEEE International
Conference on Multimedia & ExpoWorkshops (ICMEW), pp. 1–4. IEEE, Seattle, WA, USA
(2016)

7. Ahmad, W., Olsson, R., Sjöström, M.: Interpreting plenoptic images as multi-view sequences
for improved compression. In: 2017 IEEE International Conference on Image Processing
(ICIP), pp. 4557–4561. IEEE, Beijing, China (2017)

8. Bakir, N., Hamidouche, W., Fezza, S.A., Samrouth, K., Déforges, O.: Light field image
coding using VVC standard and view synthesis based on dual discriminator GAN. IEEE
Trans. Multimedia 23, 2972–2985 (2021)

9. Hedayati, E., Havens, T.C., Bos, J.P.: Light field compression by residual CNN-assisted
JPEG. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–9. IEEE,
Shenzhen, China (2021)



264 P. Jin et al.

10. Huang, X., An, P., Chen, Y., Liu, D., Shen, L.: Low bitrate light field compression with
geometry and content consistency. IEEE Trans. Multimedia 24, 152–165 (2022)

11. Liu, D., Huang, Y., Fang, Y., Zuo, Y., An, P.: Multi-Stream Dense View Reconstruction
Network for Light Field Image Compression. IEEE Transactions onMultimedia, early access
(2022)

12. Miangoleh, S.M.H., Dille, S., Mai, L., Paris, S., Aksoy, Y.: Boosting monocular depth esti-
mation models to high-resolution via content-adaptive multi-resolution merging. In: 2021
IEEE/CVFConference onComputerVision andPatternRecognition (CVPR), pp. 9680–9689.
IEEE, Nashville, TN, USA (2021)

13. Wang, F., Pan, J., Xu, S., Tang, J.: Learning discriminative cross-modality features for RGB-D
saliency detection. IEEE Trans. Image Process. 31, 1285–1297 (2022)

14. Li, B., Li, H., Li, L., Zhang, J.: λ domain rate control algorithm for high efficiency video
coding. IEEE Trans. Image Process. 23(9), 3841–3854 (2014)

15. Wang, Y., et al.: Disentangling light fields for super-resolution and disparity estimation. IEEE
Trans. Pattern Anal. Mach. Intell. 45(1), 425–443 (2023)

16. EPFL dataset. https://www.epfl.ch/labs/mmspg/downloads/epfl-light-field-image-dataset/.
Accessed 28 April 2023

17. Dansereau, D.G., Pizarro, O., Williams, S.B.: Decoding, calibration and rectification for
lenselet-based plenoptic cameras. In: 2013 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1027–1034. IEEE, Portland, OR, USA (2013)

18. Majid, M., Owais, M., Anwar, S.M.: Visual saliency based redundancy allocation in HEVC
compatible multiple description video coding. Multimed. Tools Appl. 77, 20955–20977
(2018)

19. Zhang, L., Shen, Y., Li, H.: VSI: a visual saliency-induced index for perceptual image quality
assessment. IEEE Trans. Image Process. 23(10), 4270–4281 (2014)

20. Bjontegaard, G.: Calculation of average PSNR differences between RD-curves. ITU SG16
Doc. VCEG-M33 (2001)

https://www.epfl.ch/labs/mmspg/downloads/epfl-light-field-image-dataset/

	Perceptual Light Field Image Coding with CTU Level Bit Allocation
	1 Introduction
	2 The Proposed Method
	2.1 Designed CTU Level Bit Allocation Strategy with Perceptual Consistency
	2.2 Decoding and Reconstruction

	3 Experimental Results and Analyses
	3.1 Experimental Setup
	3.2 Rate-Distortion Performance
	3.3 Structural Consistency of Reconstruction

	4 Conclusions
	References




