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Abstract. Detection of alcohol consumption is critical for ensuring fit-
ness for duty (FFD) at workplace. It ensures employee safety and produc-
tivity by reducing accidents and injuries while improving work efficacy.
In this paper, we propose a framework based on teacher-student collab-
orative knowledge distillation for detecting alcohol consumption in NIR
(Near-Infrared) iris images. Specifically, this research focuses on analyz-
ing the impact of alcohol consumption on iris and pupil movements. We
provide interesting experimental analysis and related discussions that
demonstrates suitability of NIR camera based captured iris images for
detecting alcohol consumption. Furthermore, this research can be seen as
a progressive measure towards integrating alcohol detection in iris based
biometric authentication systems.

Keywords: Alcohol detection · Fitness for duty · Knowledge
distillation · Periocular NIR iris images · Vision Transformer

1 Introduction

Nowadays, abuse of intoxication in the workplace is rising proportionately. Work-
ing under the consumption of such substances can lead to a rise in work-related
injuries, especially for laborers and heavy-machinery operators. According to a
study by Pidd et al. [17], 11% of workplace accidents and injuries are caused by
the consumption of alcohol. Companies incur approximately $2 billion per year
in costs related to alcohol-related absenteeism. To overcome hassle, government
of nations such as the UK and Australia have imposed duty of care legisla-
tion [12]. Under this legislation, employers are required to have an unambiguous
policy that outlines acceptable conduct and misconduct. To ensure this fitness
for duty(FFD) [18] is required in work area. To ascertain this few organisations
have installed saliva and breath [8,11] analyzer for detecting alcohol consump-
tion in the workplace. However, there are a few potential drawbacks of breath
and saliva-based alcohol testing in the workplace which includes low accuracy,
sensitivity and vulnerability to external influences such as mouthwash or food.
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Furthermore, these type of systems in the workplace may increase the risk of
COVID-19 transmission due to hygiene and close contact concerns. Henceforth
it is crucial to design new mechanisms that are capable of accurate and resilient
detection of the effects of alcohol on employees, ensuring their fitness for duty.

It has been proved in literature that alcohol consumption can cause dilated
pupils [3]. This motivated us to propose a framework that detects alcohol con-
sumption by analyzing Non-Infrared (NIR) iris images. NIR iris imaging does
not involve any physical contact with the user, unlike other alcohol detection
techniques based on physiological fluids like breath or saliva. In the case of
infectious diseases like COVID-19, iris imaging technique instead of physiolog-
ical fluids thus lowers the likelihood of disease transmission. Furthermore, it is
also quick and efficient that can deliver outcomes in real-time, making it appro-
priate for applications like law enforcement and for ensuring FFD at workplace.

2 Related Works

This section gives a brief summary of earlier research conducted in pertinent
literature, exploring the effects of alcohol intake on changes in the iris and its
impact on an individual’s ability to perform their duties effectively. Amodio
et al. [2] assessed the possibility of creating a system to detect drunk driving
by analyzing changes in a person’s pupillary light reflex (PLR) over time. The
method involves using circular hough transform to obtain the pupil diameter
profile, followed by implementing a polynomial-kernel support vector machine
(SVM) to categorize the subject using the 8 features extracted from the profile.

In another work, Causa et al. [5] used a stream of NIR iris video frames to
estimate behavioral curves. The study concentrated on applying a Criss-Cross
Network (CCNet) to mask the iris and pupil segmentation, enabling the creation
of characteristics based on the differences between the radii of the pupil and
iris. The features produced were used to categorize the subject using a Multi-
Layer-Perceptron (MLP) algorithm with an accuracy rate of 75.8%. In another
notable work Arora et al. [3] studied the effects of alcohol on an iris recognition
system and infer that one in five subjects under alcohol consumption may evade
identification by iris recognition. Very recently, authors [20] have proposed a
framework based on capsule network for detecting alcohol consumption.

3 Research Methodology

Here, in this section we will discuss the dataset used in our experimentation
along with the feature extraction framework. Our proposed framework is based
on teacher-student learning paradigm that relies on a distillation token [21] to
ensure student network learning from the teacher network through a multi-head
attention. An overview of the entire framework is presented in Fig. 1.
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Fig. 1. Comprehensive description of the presented framework which determines fitness
for duty on the basis of NIR iris images

Table 1. Statistical Description of the IAL-I Database

Session Condition Capture Time (min) Images

S0 Pre-Alcohol 0 600

S1 Post-Alcohol 15 600

S2 Post-Alcohol 30 600

S3 Post-Alcohol 45 600

S4 Post-Alcohol 60 600

3.1 Dataset Description

In this study we have used IAL-I database [19]. This database consists of NIR
iris images captured for total 30 subjects (24 males, 6 females) aged between 25
and 50. IAL-I dataset consists of nearly 20 similar periocular NIR iris images
from each subject per session and there are total of 5 sessions. Table 1 illustrates
the distribution of data. For more details kindly refer [19].

3.2 Feature Extractor

Vision Transformers (ViT) [10] can be seen as a de facto standard in the past few
years for image classification tasks. Recently, aggregation of convnets and trans-
formers integrated with self-attention mechanism have illustrated superfluous
results in various domains like image classification [7], image segmentation [22]
and natural language processing [14]. On continuation to this, Touvron et al. [21]
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Fig. 2. (a) Generation of patch embeddings and conceptual overview of Transformer
based Student model wherein CLS refers to classification token (b) Outlining Convnet
based Teacher model architecture

presented a data efficient image transformer (DeiT) which suppresses the depen-
dency of transformer on huge data. Taking inspiration from DeiT, we propose
a novel architecture as depicted in Fig. 2 for detecting alcohol consumption in
NIR iris images. The proposed framework comprises of mainly two parts (i)
transformer based student network and (ii) convnet based teacher network. The
following subsections will discuss aforementioned parts in detail.

Dataset Augmentation. In literature, classification task is mostly performed
on datasets like ImageNet [9], CIFAR-100 [13], NUS-WIDE [6]. All these datasets
consists of huge number of images per class. In contrary to this iris databases
have limited number of images particularly in concern to post alcohol consump-
tion images as evident form Table 1. Thus, to generate supplementary images
for training our network we have used various image augmentation methods as
suggested in [20]. Since, the dataset IAL-I [20] used in our study is collected in
a controlled environment, nominal data augmentation methods can work well.
Figure 3 depicts sample iris image with corresponding augmented images. It
should be noted that image augmentation is carried out for training dataset
only.

Convnet Based Teacher Network: This network takes an input iris image
I ∈RH×W×C , where H, W and C represents image height, width and channel
respectively. Assuming an image classification model f , the output of f is a
label yt ∈ {0...t} where t is the number of classes. This network consists of 9
convolutional layers, with 3 layers in each block as depicted in Fig. 2. Each block
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Fig. 3. Sample iris image with corresponding augmented images

is summarized as:

Input
1×1Conv−−−−−−→ RM −→ ReLU −→ IFM

3×3Conv,−−−−−−−→
MP

RM −→ ReLU −→ IFM

1×1Conv−−−−−−→
MP

RM −→ ReLU −→ FM
(1)

Here in Eq. 1, RM ,IFM , FM and MP stands for response map, intermediate
feature map, feature map and max pooling respectively. The presented architec-
ture was inspired from Regnet based model [15].

Transformer Based Student Network: This network takes input in the
form of patches. The fixed size input iris image I ∈RH×W×C , (where H, W
and C represents image height, width and channel respectively) is decomposed
into 196 patches of size 16 × 16. These patches are linearly projected into 196
tokens as depicted in Fig. 2(a). Each token has a shape of (1,D) where D is 192
for our case. Two additional tokens, namely the classification token (CLS) and
the distillation token of same shape as (1, 192), are added to the patch tokens.
During training, the CLS token is a vector that can be trained and contains
class embeddings. The distillation token is similar to the CLS token in that
it is also trainable, but it is randomly initialized and located in a fixed last
position. The main objective of the distillation token is to allow our proposed
architecture to learn from the output of the teacher network while remaining
equivalent to the class embedding [21]. All 198 tokens, including the CLS (acls)
and distillation token (ad), are assigned positional embeddings to incorporate
spatial information. Further, these tokens are given as an input to a 12 layered
transformer encoder with three Multi-Self Attention (MSA) heads as depicted
in Fig. 2(a). The sequence of tokens input to the encoder is as follows:
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a = [acls,Ja1,Ja2, ...,Jan, ad] + E (2)

where n is 196, J depicts the patch embeddings of periocular NIR images and E
refers to the positional encoding that maintains the images’ spatial structure.

The encoder block employs self-attention (SA) to capture the correlations
among the input tokens, utilizing three types of embeddings: Query (Q), Key
(K), and Value (V). To apprehend this association, the Queries, Q, are multi-
plied by the transpose of Keys, KT , to generate a vector output. This vector
is then divided by the square root of the dimension D to prevent the gradient
from vanishing. The final matrix undergoes a Softmax activation layer multi-
plied by the Values V to attain the resulting Head (H), also represented as
attention(Q,K, V ).

H = attention(Q,K, V ) = Softmax (
Q × KT

√
D

) × V (3)

In the present work, the Scaled Dot-Product Attention mechanism is
employed three times to attain a total of three attention heads (H = 3). After
the self-attention operation is performed, the outputs from all attention heads
are concatenated, and then they are passed through a feed-forward (FF) neu-
ral network, which includes learnable weights (Wlearnable), as represented in the
Eq. 4.

MSA = concat(SA1, SA2, SA3) × Wlearnable (4)

The resultant vector is then layer normalized and passed on to the final
component of the encoder which is Multi-Layer Perceptron (MLP) blocks. These
blocks comprise of fully coupled FF-dense layers with GeLU non-linearity. At
the end of the encoder, the retrieved output tokens are again to be fed through
3 additional FF layers to obtain a context vector Z. Z comprises of 198 output
tokens similar to that fed at the beginning of the encoder. The final context
vector Z can be seen in Eq. 5.

Z = [c0, c1, c2, ..., cN , cd] (5)

After collecting the context vector Z, just the CLS token,c0, and distillation
token,cd, are required for classification, which is then passed to 2 separate linear
layers. c0 and cd tokens each have specific objective functions to learn, named
student loss (LCE) and distillation loss (Lteacher), to be discussed in the subse-
quent section. The average prediction after implication of a softmax activation
function on both linear layers is used to determine whether or not the subject
is fit.

Network Training Strategy: This subsection explores the various strategies
utilized for training the teacher-student synergetic model. The input image is
pre-processed to a shape of (224, 224, 3) for feeding to both the teacher and
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student models. Adam optimizer is used for training with a batch size of 128.
Adam is an adaptive optimization algorithm used in training machine learning
models that combines the benefits of adaptive learning rates and momentum
for efficient convergence. The performance of the model is evaluated using cross-
entropy loss (LCE). A learning rate scheduler is employed with an initial learning
rate of 0.001 to obtain the local minima.

At first, we train the convnet-based teacher model to obtain the final teacher
predictions, yt. These predictions are then treated as the true label while training
the distillation token in the student model. Further on, the transformer-based
student model is trained where the CLS token has a separate loss given as
LCE (ψ (Zs) , y). Here, ψ represents the softmax function applied over logits of
the student Zs utilizing c0 token. Similarly, the cd token is trained by considering
the teacher’s prediction as true label. The objective funtion of cd can be depicted
as LCE (ψ (Zs) , yt). Herein, we also introduce a distillation of 0.5 on teacher
model prediction. A distillation of 0.5 implies that during training, the cd token
is trained on a combination of soft targets (yt) from the teacher model and hard
targets, which is ground truth labels (y), with each target type accounting for
half of the training examples. The complete process mentioned aims to replicate
the teacher’s predicted labels to reduce the cross-entropy loss between the highest
value of the softmax function of the teacher’s labels and the softmax function of
the student. The final cross-entropy loss can be formulated as follows:

LhardDistill =
1
2
LCE (ψ (Zs) , y) +

1
2
LCE (ψ (Zs) , yt) (6)

4 Experimental Analysis

In this section at first, we discuss the training testing protocol and then the
experimental setup and result analysis. In our experimentation, we have ran-
domly chosen 24 subjects (70%) for training and remaining 6 for testing (30%).
This also enables fair comparison with the state-of-the-art approach [20] working
on the same dataset. For training our feature extractor we have used five trials of
random selection of training-testing dataset. The subsequent section will discuss
our experimental setup and results.

4.1 Experimental Setup

The proposed feature extractor based on teacher-student collaborative dis-
tillation knowledge is implemented in Python 3.10 using Pytorch [16] and

Table 2. Calculated Evaluation Metrics for binary classification

Precision Recall F1 score

Pre Alcohol 0.97 0.99 0.98

Post Alcohol 0.99 0.97 0.98
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OpenCV [4] libraries. For training and evaluating the proposed framework, a
PC having Intel(R) Xeon(R) CPU @ 2.00 GHz processor with 32 GB RAM and
NVIDIA GPU P100 accelarator has been used.

4.2 Experimental Results

To validate the effectiveness of the proposed framework we have conducted two
sets of experimentation. In first set of experimentation our goal is to identify
whether the input iris image is captured in pre-alcohol session or post alcohol
session. This set of experimentation can be regarded as a binary class classifica-
tion. In the second set of experimentation our goal is to study the effect of alcohol
on iris after alcohol consumption at different time intervals 15, 30, 45, and 60
min respectively. This set of experimentation can be regarded as a 5 class clas-
sification problem. For analyzing the performance we have employed commonly
used classification task measures such as precision, recall and F1 score.

– Binary Class Classification: It can be inferred from Table 1 that in compar-
ison of post-alcohol images (2400) we have very few instances of pre-alcohol
images (600) in IAL-I dataset. In order to compensate this we have used
randomly selected 800 images from CASIA-V4 [1] dataset for training our
network. It should be noted that testing results are reported for IAL-I dataset
only. Table 2 illustrates the binary class classification results in terms of pre-
cision, recall and F1 score.

– Five Class Classification: Under this experimentation we are trying to
study the behavioral changes of the eye’s CNS after alcohol consumption at 0,
15, 30, 45, and 60 min, respectively. Upon testing the model, our model showed
an accuracy of 96.86% for 0th minute, 90.76% for 15th minute, 92.57% for
30th minute, 93.38% for 45th minute and 91.06% for 60th minute. The overall
accuracy observed during testing phase came out to be 92.94%. Inferring from
the obtained results for behaviour analysis, we can assert that the affect of
consuming alcohol is most prominent at 45 min. Table 3 illustrates the five
class classification results in terms of precision, recall and F1 score.

Comparative Analysis: To validate the effectiveness of the proposed frame-
work we have compared our results with state-of-the-art approach [5,20]. To the
best of our knowledge, [5,20] are the only work that has been conducted on IAL-I
dataset used in our study. Table 4 provides a detailed comparison between the
proposed approach and state-of-the art method. Essentially, the suggested app-
roach achieves higher levels of accuracy in inference when compared to previous
system that have been documented in the literature.
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Table 3. Calculated Evaluation Metrics for five class classification

Session Precision Recall F1 score

Session 0 (0 min) 0.95 0.96 0.96

Session 1 (15 min) 0.91 0.93 0.92

Session 2 (30 min) 0.93 0.93 0.93

Session 3 (45 min) 0.94 0.94 0.94

Session 4 (60 min) 0.93 0.90 0.91

Table 4. Comparison of the proposed method with the state-of-the-art approaches

Algorithm Accuracy

Multi-Layer-Perceptron (MLP) [5] 75.8%

Fused Capsule Network [20] 92.3%

Our Proposed Framework 98.46%

5 Conclusion and Future Works

In this work we propose a framework that utilizes teacher-student learning
paradigm for detecting alcohol consumption in NIR iris images. While we demon-
strated the effectiveness of using transfer learning archetype in case encountered
with small datasets (pre-alcohol iris images in our case). Furthermore, we provide
detail experimental analysis to establish relation between alcohol consumption
and the time elapsed after taking alcohol. Through various experiments, it can
be inferred that the proposed framework outperforms the baseline state-of-the-
art approach. The present work determines the fitness for duty (FFD) only on
the basis of analyzing NIR iris images under the influence of alcohol, in future
we would like to study the effect of drugs, lack of sleep on iris. Furthermore,
we would like to deploy our proposed approach on an edge device for real-time
inference.
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