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Abstract. Epicardial adipose tissue (EAT) located inside the peri-
cardium is a marker for increased risk of many cardiovascular diseases.
Automatic segmentation methods for pericardium or EAT are necessary
to support the otherwise extremely time-consuming manual delineation
in CT scans. Powerful deep learning-based methods have been applied
to such segmentation tasks. However, existing methods primarily rely
on region-based or distribution-based loss functions, such as Dice loss
or cross-entropy loss. Unfortunately, these approaches overlook the infor-
mative anatomical priors, such as the shape of the pericardium. In light
of this, our work introduces an innovative approach by proposing and
comparing a shape-based loss that leverages anatomical priors derived
from Fourier descriptors. By incorporating the anatomical prior, we aim
to enhance the accuracy and effectiveness of pericardium or EAT seg-
mentation. The Fourier descriptor loss can be used individually or as a
regularizer with region-based losses such as the Dice loss for higher accu-
racy and faster convergence. As a regularizer, the proposed loss obtains
the highest mean intersection of union (96.76%), Dice similarity coef-
ficient (98.20%), and sensitivity (98.55%) outperforming the Dice and
cross-entropy loss. We show the effect of the Fourier descriptor loss with
fewer and weighted descriptors. The results show the efficiency and flex-
ibility of the Fourier descriptor loss and its potential for segmenting
shapes.
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1 Introduction

Epicardial adipose tissue (EAT) is the fat inside the pericardium, and recent find-
ings indicate its positive correlation with the risk of coronary artery disease, car-
diovascular disease, etc. [1]. However, due to technical limitations and anatomy
complexity, the manual segmentation of EAT or pericardium in medical images
is time-consuming. Nowadays, deep neural networks have shown great perfor-
mance in many medical image segmentation applications. Most efficient deep
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learning-based methods for pericardium or EAT segmentation [2] are trained
with loss functions such as the Dice loss [3] and the cross-entropy loss [4]. Some
researchers have explored utilizing the shape information in segmentation net-
works to improve or guide deep neural networks for better accuracy [5,6]. A
recent review paper on anatomy-aided deep learning for medical image segmen-
tation [7] indicates many ways to use shape information. For pericardium seg-
mentation, the pericardium shape could be an informative input. To involve that
in segmentation networks, it is needed to find a way to model or represent the
shape information. The Fourier series and Fourier transform are powerful tools
for shape representation in many computer vision applications. By applying
them, shape information could be represented by the Fourier descriptors (FDs)
in the frequency domain for further analysis. Especially, with the Fourier series,
a few descriptors are enough to represent the shape of the pericardium. Thus,
in this paper, we propose a method that uses the shape information represented
by the FDs in the loss function as well as pre-processing with polar coordinate
transformation to improve segmentation performance.

1.1 Related Work

Loss Functions. The most widely used losses for segmentation are distribution-
based losses and region-based losses [5,6]. Distribution-based losses guide the
training process by minimizing the dissimilarity between the ground truth dis-
tribution and the predicted distributions, e.g. the cross-entropy loss [4] and its
variations. Region-based losses guide the training process by minimizing the
false predictions or maximizing the overlap regions between the predicted seg-
mentation and the ground truth region, e.g. the Dice loss [3]. Besides these two
types of losses, boundary-based losses have shown interesting effects on medical
image segmentation. These losses usually work as a regularization term with a
distribution-based or region-based loss [6]. The idea of boundary-based losses is
to reduce the distance between two segmented regions, e.g. the boundary loss [8]
and the Hausdorff distance loss [9]. However, these losses need to be trained with
a region-based loss such as Dice loss to maintain the training stability. There
is more study on minimizing distance or using distance map loss penalty [10].
The boundary-based losses incorporate the boundary information due to their
theoretical concept, while boundary information is not identical to shape infor-
mation. Recently, Kervadec et al. [11] introduced loss functions based on a few
global shape descriptors such as the volume of segmentation, the location of the
centroid, the average distance to the centroid, and the length of the contour.
Their experiments show that simple shape descriptors are effective for segmenta-
tion. Although their shape descriptor loss did not outperform the cross-entropy
loss, it shows the potential.

Fourier Series and Fourier Transformation for Shape Representation.
The Fourier descriptor is widely used to encode shape features and has been
applied to image/shape retrieval [12,13]. It is a contour-based shape descrip-
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tor obtained by representing a closed contour using the Fourier Series. In sig-
nal processing, the Fourier series creates new descriptors to represent the fre-
quency domain knowledge. Some works applied 2D Fourier transform for the
frequency domain analysis of images. Usually, the 2D Fourier transform is used
in 2D images to generate hand-crafted features for further processing. The fre-
quency features could be used for image classification, image registration [14],
and the Fourier domain training framework [15]. Fourier space losses proposed by
Fuoli et al. [16] improve the accuracy in high-frequency content for image super-
resolution by working directly in the frequency domain. Experiments showed that
by combining spatial domain and frequency domain losses, the image quality is
improved. A more integrated way is to apply a frequency domain representation
within the neural network. Han et al. [17] introduced a Fourier convolutional
neural network for image classification. They designed the Fourier convolutional
layers that apply the 2D Fourier transform with small random kernel sizes to
study the frequency domain knowledge. To sum up, the frequency domain knowl-
edge for image analysis and shape analysis is of great significance and has shown
its ability in many applications.

1.2 Contribution

To leverage shape information, we introduce a novel Fourier descriptor loss
(FD loss) that utilizes Fourier descriptors in relation to the Euclidean distance
between boundary points and a point within the boundary. And we validate it on
the pericardium segmentation. To improve the segmentation performance and
simplify FD loss calculation, we apply pre-processing steps including selecting
the region of interest and a polar coordinate transformation. The experimen-
tal results show that the pre-processing leads to better segmentation for all the
tested losses. As an alternative to the commonly-used Dice loss, we investigate
how the FD loss works individually and as a regularizer in combination with
Dice loss. When working individually, FD loss does not outperform the Dice loss
or cross-entropy loss, but it shows visually competitive results. When working
as a regularizer with the Dice loss, the compound loss shows improved segmen-
tation accuracy and higher convergence speed. In addition, as the FDs represent
the frequency domain knowledge, we show the effect of FD loss with fewer FDs
and the effect of FD loss with the weighted frequency content of a contour for
improving its smoothness.

2 Methodology

Let I : Ω ⊂ R
2 → R denotes a training image with spatial domain Ω,

and g : Ω → {0, 1} denotes a binary ground truth of the image. Similarly,
s : Ω → {0, 1} is a binary predicted segmentation of the image. The FD loss
is formulated based on the distance between sample points on the boundary
and the centroid of the segmentation. Thus, with the spatial domain Ω, δG
denotes a representation of the boundary of the ground truth region G and δS
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Fig. 1. Visualizing the computation of distances between boundary sample points and
the centroid for Fourier descriptor loss calculation.

denotes the boundary of the segmentation region defined by the network output.
Figure 1 shows how to compute the distance between the sample points on the
boundary and the centroid. We denote the ground truth map as g(x, y) where
x, y are the Cartesian coordinates of pixels. And we denote the map g̃(r, θ) in
polar coordinates with the centroid origin O(xc, yc) as shown in Fig. 1, where
r(x, y) =

√
(y − yc)2 + (x − xc)2, and θ(x, y) = angle(y − yc, x − xc). Thus, we

have g(x, y) and g̃(r, θ) = 1 if inside the boundary while g(x, y) and g̃(r, θ) = 0
if outside the boundary. Similarly, we have s(x, y) and s̃(r, θ) = 1 if inside the
boundary while s(x, y) and s̃(r, θ) = 0 if outside the boundary. We define the
shape signature of the target by the distance between the sample points on the
boundary and the centroid. Assume we have K sample points on the boundary.
Thus, the distance between the kth sample point on the boundary of the ground
truth and the centroid is defined as: dk(δG) =

∫ r

0
g̃(ρ, k 2π

K )dρ. For calculation,
we approximate it as dk(δG) =

∑
r=0 g̃(r, k 2π

K ). Similarly, for the kth sample
points on the output segmentation: dk(δS) =

∑
r=0 s̃(r, k 2π

K ). Applying this
to all sample points, we obtain sequences of distance measurements D(δG) =
d0(δG), d1(δG), ..., dK−1(δG), and D(δS) = d0(δS), d1(δS), ..., dK−1(δS). With
K sample points, the FDs are defined as the discrete Fourier series of the sequence
of distance measurements:

cn =
K−1∑

k=0

dke−jnk 2π
N (1)

Thus, we obtain N complex FDs from D(δG) and D(δS). In practice, we usually
make N = K for the FD calculation. The FD loss is defined as the L1 norm of
the dissimilarity between the FDs of ground truth and predicted segmentation.

LFD =
N−1∑

n=0

|cG
n − cS

n | (2)
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Due to the limitation of this type of FD, we exclude non-convex shapes with
strong curvatures. One advantage of the Fourier series is that we can always
reconstruct the original shapes with the inverse Fourier transform and miss very
little information about the original shapes. In addition, we could remove some
FDs to capture only the significant features. When training with the FD loss
function, images are transformed into polar coordinates with a fixed origin of the
reference labels. Before applying the polar coordinate transformation, we extract
a region of interest (ROI) in a circular shape from the original 2D image based on
the reference labels. Then, as shown in Fig. 2, polar coordinates transformation
applies to the circular ROI. For better visibility, we enlarge the polar-coordinate-
transformed images to the same size as the original images. With the polar-
coordinate-transformed images, the distance between the sample points on the
boundary and the centroid can be calculated by measuring the number of pixels
inside the boundary along the horizontal axis.

Fig. 2. Demonstration of pre-processing steps, including FD loss calculation and polar
coordinate transformation. Figure (a) shows the original image in Cartesian coordi-
nates, while Figure (b) displays the pre-processed image used for training, validation,
and testing, enabling FD loss computation

3 Experiments

Our experimental objective is threefold: (a) To demonstrate the impact of FD
loss both as an individual loss and as a regularizer. (b) To assess the effective-
ness of the pre-processing steps employed. (c) To investigate the influence of
the number and weights of Fourier descriptors on the performance. All of our
experiments focus on pericardium segmentation in low-dose CT scans.

3.1 Data

Chest computed tomography (CT) scanning from the Risk Or Benefit IN Screen-
ing for CArdiovascular Diseases (ROBINSCA) dataset [18] is used for experi-
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ments in this work. It is performed using a second-generation dual-source com-
puted tomography system. This is a multi-center dataset with CT screening per-
formed at the Gelre Hospital, the Bronovo Hospital, and the University Medical
Center Groningen. The labels of the region inside the pericardium are annotated
by an experienced radiologist using the open-source medical imaging processing
software 3D Slicer [19]. As 2D boundary information is used in the loss calcu-
lation, we process 3D images as a stack of independent 2D images, which are
fed into the network. All the images are resized to 256 × 256 pixels for further
processing. For our experiments, 154 CT scans (11000 slices) were annotated for
further training (9000 slices), validation (1000 slices), and testing (1000 slices).

3.2 Implementation Details

We employed the U-net++ with backbone VGG16 by Zhou et al. [20] as the deep
learning architecture in our experiments. U-net++ is a nested U-net architec-
ture for medical image segmentation that is widely used in related segmentation
tasks. To train our model, we employed the Adam optimizer with a learning
rate of 0.001 and early stopping with patience of 30. And the batch size is 8. For
implementation, we used Keras and TensorFlow and ran the experiments on an
NVIDIA RTX 6000 GPU.

For evaluation, we employed the common Mean Intersection of Union (MIU),
Dice Similarity Coefficient (DSC), and Sensitivity (SEN), which are defined as
follows,

MIU =
1
N

P (Y
⋂

Ŷ )
P (Y

⋃
Ŷ )

,DSC =
1
N

2 · P (Y
⋂

Ŷ )
P (Y ) + P (Ŷ )

, SEN =
1
N

P (Y
⋂

Ŷ )
P (Y )

where N indicates the number of slices, Y denotes the ground truth, Ŷ denotes
the predictions, and P (·) denotes the number of pixels.

3.3 Results

Quantitative Evaluation. To show the effect of the FD loss, we compared
it to two commonly used loss functions, the Dice loss and the cross-entropy
loss, with both original data and pre-processed data. Table 1 lists the results of
the corresponding experiments. Overall, with pre-processing, all the losses show
improved performance. The FD loss individually can not outperform the Dice
loss or cross-entropy loss, but its performance is competitive and convincing
visually as shown in Fig. 3. Boundary-based losses are often used as a regularizer
with distributed-based losses or region-based losses [5], so as the FD loss. We
tested the compound loss with both the Dice loss and the FD loss. As the value
range of the FD loss is larger than that of the Dice loss, a weight of 0.01 is
applied to the FD loss. With the compound loss, we obtained results of MIU:
96.79%, DSC: 98.20%, and SEN: 98.55%, which outperforms both Dice loss and
cross-entropy loss. In addition, the convergence speed of the compound loss
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(converge at the 13th epoch) is much higher than the Dice loss (converge at the
30th epoch). With Fig. 3, we visualize the pericardium segmentation results of
various loss functions in a CT slice. We can see that the manual labeling is not
perfect with noise and mislabelled pixels on the pericardium boundary. In the
example manual label, there are some pixels mislabelled as the region inside the
pericardium around the right boundary. In the segmentation results of the Dice
loss in Fig. 3(c), some pixels in that region still are mislabelled. With the FD
loss, both Fig. 3(d) and Fig. 3(e) have better segmentation results in that region.

Table 1. Performance of losses with U-net++ backbone VGG16.

Pre-processing Loss MIU (%) DSC (%) SEN (%)

No Cross-entropy loss 92.21 95.95 95.42

Dice loss 92.20 95.94 96.38

FD loss 90.21 94.85 94.09

Yes Cross-entropy loss 96.58 97.61 98.28

Dice loss 96.52 98.12 98.24

FD loss 95.56 96.68 97.71

FD+Dice loss 96.76 98.20 98.55

Fig. 3. The figure illustrates the visualization of different segmentation results within
the pericardium region: (a) Manual label, (b) Cross-entropy loss, (c) Dice loss, (d) FD
loss, and (e) Compound loss (FD + Dice).

Effect with Fewer Fourier Descriptors in the Fourier Descriptor Loss.
The key to the FD loss is the shape descriptors. By default, we utilize the same
number of descriptors as sample points on the contour, which is, in our case, 256.
For loss calculation, we use the absolute values of the FDs. Due to the symmetric
relation of the FDs, by default, every shape is represented by 128 real number
FDs. As FDs represent the shape information in the frequency domain, we could
control the shape information in the loss function by controlling descriptors. By
removing high-frequency descriptors, the shape information in small scales which
could be the noise is neglected. In addition, the computation cost is reduced. In
Table 2, we show the experiment results of the FD loss with 128, 64, 32, 16, and
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8 descriptors. The results indicate that more descriptors do not lead to better
segmentation. With our data, 64 descriptors result in the best performance. We
also tested the compound loss of the 64 descriptor loss and the dice loss, which
lead to 96.69% in MIU, 98,15% in DCS, and 98.56% in SEN.

Table 2. Performance of FD loss with fewer FDs.

#descriptors MIU (%) DSC (%) SEN (%)

128 95.56 96.68 97.71

64 95.94 97.50 98.02

32 95.62 97.26 97.90

16 95.12 96.98 97.48

8 94.94 97.03 97.63

Weighing Fourier Descriptors in the Fourier Descriptor Loss. As the
FDs represent shape information in the frequency domain, by weighing the
descriptors we could weigh the shape representations of the corresponding fre-
quency. There may be some shape representations that are more important for
segmentation. As the low-frequency descriptors represent the global shape, we
apply higher weights to them to get the global shape better considered. We
applied Sigmoid-based weights to the FDs cn. The Sigmoid function is define as
σ(x) = 1

1+e−x . Assume we have N FDs, with a selected range of [a, b], for the
nth FD, the corresponding weight is σ(a − a−b

N ∗ n). Thus, the loss becomes

Lσ
FD =

N−1∑

n=0

σ(a − a − b

N
∗ n)|cG

n − cS
n | (3)

With a positive a and a negative b, we apply higher weights to low-frequency
descriptors while lower weights to high-frequency descriptors. As shown in
Table 3, with [a, b] = [4,−4], we obtained better results (MIU: 96.18% [+0.62%],
DSC: 97.40% [+0.72%], SEN: 98.21% [+0.5%]).

Table 3. Performance of FD loss with Sigmoid-weighted Fourier descriptors.

[a, b] MIU(%) DSC(%) SEN (%)

[3,−5] 96.12 97.27 98.21

[4,−4] 96.18 97.40 98.21

[5,−3] 95.07 96.96 97.46

[6,−2] 95.76 97.37 97.91

[7,−1] 95.80 97.48 97.98
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4 Conclusions and Future Work

We have presented a method of FD loss and polar coordinate transformation for
pericardium segmentation. The pre-processing with polar coordinate transforma-
tion overall leads to better segmentation for all losses. A recent work by Alblas et
al. [21] for artery vessel wall segmentation also showed better results with polar
coordinate transformation. Compared to other boundary-based losses such as the
boundary loss [8] and Hausdroff distance loss [9] which need to be trained with a
region-based loss, the FD loss can be trained individually. Although, when work-
ing individually, FD loss can not outperform region-based losses like the Dice
loss and cross-entropy loss. It has shown the potential to improve both the per-
formance and convergence speed when working as a regularizer of the Dice loss.
Due to the physical meaning and invertibility of FDs, our loss has more inter-
pretability. As we worked with medical images, the labels of the pericardium
were annotated manually. There are unavoidable noise and mislabeled pixels
around the boundary in the manual labels. Compared to the manual labels, the
predicted segmentation is smoother with less noise along the boundary.

A main limitation of the method is that it can not apply to non-convex shapes
with strong curvatures. The centroid must locate inside the shape for further
polar coordinate transformation. The cause of the limitation is the application
of the Fourier series to the shape signature along the boundary. There may be
alternative ways to avoid this limitation by using a 2D Fourier transform. In
this work, we focus on 2D CT slices as the manual labels were annotated in 2D
manners.

For future work, it is possible to explore a similar approach in 3D cylinder
coordinates since many medical images are 3D images. Although the Fourier
transforms only apply to 1D or 2D signals, a recent work by Wiesner et al.
[22] shows a similar transform in 3D for encoding the cell shape. All in all,
we have shown the potential of FD loss and polar coordinate transformation
in pericardium segmentation with shape/boundary-based formulation, but the
generalization of this method is an open field for further research.
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