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Preface

CAIP 2023was the 20th in the CAIP series of biennial international conferences devoted
to all aspects of computer vision, image analysis and processing, pattern recognition, and
related fields. Previous conferences were held in Salerno, Ystad, Valletta, York, Seville,
Münster, Vienna, Paris, etc.

The scientific programof the conference consisted of plenary lectures and contributed
papers presented in a single track. A total of 67 papers were submitted andwere reviewed
single blindly by at least two reviewers per paper. A total of 52 papers were accepted.
The program featured the presentation of these papers organized under the following
eight Sessions:

SESSION 1: Deep Learning
SESSION 2: Machine Learning for Image and Pattern Analysis I
SESSION 3: Machine Learning for Image and Pattern Analysis II
SESSION 4: Analysis Object Recognition and Segmentation
SESSION 5: Biometrics/Human Pose Estimation/Action Recognition
SESSION 6: Biomedical Image and Pattern Analysis
SESSION 7: General Vision/AI Applications I
SESSION 8: General Vision/AI Applications II

Furthermore, CAIP 2023 featured a contest on “Pedestrian Attributes Recognition
withMulti-TaskLearning (PARContest 2023)”, organized byAntonioGreco,University
of Salerno, Italy and Bruno Vento, University of Napoli, Italy.

In addition, theCAIP 2023 program included distinguished plenary keynote speakers
from academia and industry who shared their insights and accomplishments as well as
their vision for the future of the field. More specifically:

Keynote Lecture 1: Semiconductor Chips in the Center of Geopolitical Competition
Chrysostomos L. Nikias, Ph. D
President Emeritus and Professor of Electrical Engineering
Malcolm R. Currie Chair in Technology and the Humanities
Director, The Institute for Technology Enabled Higher-Education
University of Southern California

Keynote Lecture 2: Improving Contour Detection by Surround Suppression of Texture
Prof. Nicolai Petkov
Bernoulli Institute of Mathematics, Computer Science and Artificial
Intelligence
University of Groningen, The Netherlands
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Moreover, CAIP 2023 included four tutorials, as follows:

Tutorial 1: A tutorial on multimodal video analysis for understanding human behaviour
Estefanía Talavera Martínez, University of Twente, The Netherlands

Tutorial 2: Stochastic gradient descent (SGD) and variants: Evolution and recent trends
Paul A. Rodriguez, Pontifical Catholic University of Peru, Peru

Tutorial 3: Video Analysis Methods for Recognizing Multiple Human Activities
Marios S. Pattichis, University of New Mexico, USA

Tutorial 4: Using digital tools for health and improving digital skills of health professionals in
oncology - Needs assessment for clinical and non-clinical professionals
Efthyvoulos Kyriacou, Cyprus University of Technology, Cyprus

We want to express our deepest appreciation to all the members of the CAIP 2023
organizing committees and technical program committees, the associate editors, as well
as all the reviewers for their dedication and hard work in creating an excellent scientific
program. We want to thank all the authors who submitted their papers for presentation
at the meeting, and all of you for being here to take part in CAIP 2023 and share your
work.

Moreover, we would like to express our sincere thanks to Easy Conferences per-
sonnel and especially Christos Therapontos for their excellent and continuous support
throughout the course of organizing this conference. In addition,wewould like to express
our sincere thanks to Elena Polycarpou for her excellent secretarial support.

September 2023 Nicolas Tsapatsoulis
Andreas Lanitis
Marios Pattichis

Constantinos S. Pattichis
Christos Kyrkou

Efthyvoulos Kyriacou
Zenonas Theodosiou
Andreas Panayides
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Keynote Lectures



Semiconductor Chips in the Center of Geopolitical
Competition

Chrysostomos L. Nikias

President Emeritus and Professor of Electrical Engineering, Malcolm R. Currie Chair
in Technology and the Humanities, Director, The Institute for Technology Enabled

Higher Education, University of Southern California

Abstract. Semiconductor chips are the “brains” behind everything in
today’s economy. They have become the world’s most critical industry.
The singlemost important factor affecting semiconductors is a “cold war-
type tension” that has slowly developed in recent years between the USA
and China that is rooted in the starkly different systems of governance of
the world’s two largest economies: democracy versus autocracy. We will
address the current geopolitical tensions that are disrupting the crucial
global semiconductor industry even as artificial intelligence applications
and the cloud computing revolution fuel a surge in demand, the com-
plexities and multinational nature of the supply chain, the challenges
with 5G telecommunications hardware, the importance of educating this
industry’s highly skilled workforce, and the role that democratic societies
around the world can play, and make some predictions on what the future
holds.

Short Bio: Dr. Chrysostomos L. Nikias is currently Presi-
dent Emeritus and Life Trustee of the University of South-
ern California (USC), Professor of Electrical Engineering,
and the holder of the Malcolm R. Currie Chair in Technol-
ogy and the Humanities. He has been at USC since 1991,
and in addition to his work as a professor, has served as
research center director, dean of engineering, provost, and
president of the university. Dr. Nikias is a member of the
National Academy of Engineering, a fellow of the Amer-
ican Academy of Arts & Sciences, a charter fellow of the
National Academy of Inventors, an associate member of
the Academy of Athens, a foreign member of the Rus-
sian Academy of Sciences, and a life fellow of the Insti-
tute of Electrical and Electronics Engineers (IEEE). He is
the recipient of the IEEE Simon Ramo Medal for excep-
tional achievement in systems engineering, the Academic
Leadership Award from the Carnegie Corporation of New
York, the Ellis Island Medal of Honor, UNICEF’s Spirit of
Compassion Award, and six honorary doctorates.



Improving Contour Detection by Surround Suppression
of Texture

Nicolai Petkov

Bernoulli Institute of Mathematics, Computer Science and Artificial Intelligence,
University of Groningen, The Netherlands

Abstract. Various effects show that the visual perception of an edge or
line can be influenced by other such stimuli in the surroundings. Such
effects can be related to non-classical receptive field (non-CRF) inhibi-
tion, also called surround suppression, which is found in a majority of the
orientation selective neurons in the primary visual cortex. A mathemati-
cal model of non-CRF inhibition is presented. Non-CRF inhibition acts
as a feature contrast computation for oriented stimuli: the response to an
edge at a given position is suppressed by other edges in the surround.
Consequently, it strongly reduces the responses to texture edges while
scarcely affecting the responses to isolated contours. The biological util-
ity of this neural mechanism might thus be that of improving contour
(vs. texture) detection. The results of computer simulations based on
the proposed model explain perceptual effects, such as orientation con-
trast pop-out, ‘social conformity’ of lines embedded in gratings, reduced
saliency of contours surrounded by textures and decreased visibility of
letters embedded in band-limited noise. The insights into the biologi-
cal role of non-CRF inhibition can be utilised in machine vision. The
proposed model is employed in a contour detection algorithm. Applied
on natural images it outperforms previously known such algorithms in
computer vision.

Short Bio: Nicolai Petkov was full professor of computer
science (chair of Parallel Computing and Intelligent Sys-
tems) at the University of Groningen from 1991 till 2023.
From 1998 till 2009 he was scientific director of the Insti-
tute for Mathematics and Computer Science. He has done
research in parallel computing, pattern recognition, image
processing, computer vision and applied machine learning.
His current research interests as emeritus professor concern
predictive analysis of financial time series.

Chair: Andreas Lanitis, CYENS & Cyprus University
of Technology, Cyprus
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Abstract. An integrated system that provides automated lecture style evaluation,
allowing teachers to get instant feedback related to the goodness of their lecturing
style is presented. The proposed system aims to promote quality improvement of
lecture delivery, that could upgrade the overall learning experience of students.
The proposed application focuses on specific measurable biometric characteris-
tics, such as facial expressions, body activity, speech rate and intonation, hand
movement and facial pose, extracted through video and audio. Measurable bio-
metric features extracted during a lecture are combined to provide teachers with
a score reflecting lecture style quality both at frame rate and by providing quality
metrics for the whole lecture. A pilot evaluation of the application was conducted
with chief education officers, educators and students to obtain feedback on the
proposed application. Initial results indicate that the proposed teacher evaluation
system is innovative, and it has the potential to become an invaluable tool for
educators who wish to maximize the impact of their lectures.

Keywords: Lecture assessment · Lecture style quality · Biometric features

1 Introduction

Automated lecture quality assessment tools can provide objective and timely feedback
on the quality of lecture delivery, leading to an improved learning experience for stu-
dents. In this study, we aim to develop an integrated application that provides automated
lecture delivery quality assessment using measurable biometric characteristics extracted
through video and audio recordings in real time. Although there are some existing tools
that use automated methods to assess lecture quality [11, 18], they have limitations in
terms of the accuracy and range of attributes measured. The proposed application esti-
mates lecture quality based on specific measurable characteristics defined through the
systematic multi-phased process outlined in Fig. 1. Themain steps in the process include
literature review, interviews with stakeholders, the definition of biometric features asso-
ciated with lecture delivery quality, feature extraction from video, and the estimation of
an overall lecture delivery quality score.

Previous approaches for developing lecture evaluation systems include the work of
Zhao & Tang et al. [24] who proposed an automated classroom observation system to

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. The systematic approach for developing a lecture assessment.

evaluate teacher performance based on teacher’s speaking rate, student engagement and
teacher’s body language. Gao et al. [11] analyze lecture videos and extract features such
as the speaker’s posture, movement, eye contact, and facial expressions. In relation to
the works reported above, in our approach we adopt a systematic approach for obtaining
the profile of a good lecturer and then derive an integrated set of features associated with
a good lecture rather than choosing features arbitrarily. Furthermore, the combination
of quality scores from all features both at frame rate, and for the whole lecture, allow
the lecturers to get useful feedback regarding the lecture delivery quality.

In the remainder of the paper, we present a literature review on the topic of educator
performance assessment and present the methodology adopted in our study. In Sect. 4,
we present the measurable characteristics and in Sect. 5 we present the evaluation of an
integrated system. Section 6 includes concluding comments followed by a discussion
and plans for future work.

2 Literature Review

Traditional teacher assessment methods are usually based on the observation of course
delivery by experts during course time something that can be expensive, not accurate
and usually the feedback provided is infrequent and related to the performance and not
on how teachers can enhance their techniques [3]. To overcome this crucial impediment
in teacher development, new technologies could be used to produce high quality and
meaningful automatic feedback for the educators.

Bhatia et al. [7] use IoT systems in classes to collect information regarding stu-
dents and educators in order to identify their progress. Utilizing the Bayesian modelling
approach, the collected information is assessed through a fog-cloud computing device
with the aim to determine a quantitative description of success likelihood. The results
of this method are viewed through the experiments conducted using four datasets and
prove the efficiency of the method. Srivastava et al. [21] also use IoT systems that collect
data during class hours and process them by utilizing Machine Learning (ML) models
and cloud computing.

Jensen et al. [13] propose a method that allows teachers to effortlessly audiotape
the conversations and lectures in a classroom. Then, they utilize voice recognition and
ML algorithms to provide generalized estimations, in the form of scores extracted from
essential aspects of educator speech. In a comparison with human interpreters, they
observed that automatic methods were relatively precise and that voice recognition mis-
takes had little effect on performance. Therefore, they state that actual instructor con-
versation can be captured and evaluated for automated feedback. Jensen et al. [14] also
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address the issue of designing a framework for automatic educator feedback, that neces-
sitates several considerations about data harvesting processes, automatic assessment and
the way feedback is displayed.

Gao et al. [11] use machine learning algorithms and computer vision algorithms
to analyze video recordings of the teacher’s lectures and extract features such as the
speaker’s posture, movement, eye contact, and facial expressions. The extracted fea-
tures are then used to train a machine learning model to predict the performance of
the lecturer. The approach was tested on a dataset of real classroom recordings and the
results showed promising accuracy in predicting teacher performance when compared
to human evaluations. Zhao & Tang [24] use video cameras and audio sensors to collect
data from the classroom environment and ML algorithms to analyze the data and extract
features such as teacher’s speaking rate, student engagement, and teacher’s body lan-
guage. The extracted features are used to generate a quantitative score of the teacher’s
performance. The proposed system was tested in real classroom conditions and showed
promising results in terms of accuracy and objectivity compared to traditional manual
observation methods. In comparison to the aforementioned approaches, in our case we
incorporate feedback from related stakeholders to define the biometric features used for
estimating lecture quality, so that the set of features extracted provide an accurate depic-
tion of lecture quality. Furthermore, apart from quantitative evaluation, the proposed
system was evaluated by relevant stakeholders, to ensure the usefulness of the end-result
to the educational process.

3 Defining a Good Lecture Style Profile

Todefine the profile of good lecture style, a thorough research in the existing bibliography
in combination with information derived from educators, students and chief education
officers was utilized. As a result of the literature review [4, 5, 17, 23] characteristics of
good and bad lecturing styles were gathered. For example, good lecturing styles include
features related to level of commitment [4], interaction and communication skills [8],
promotion of critical thinking, teamwork and creativity [4], giving directions, helping
and giving feedback, avoiding negative words [5], and body gestures [23].

To further refine the profile defined based on the related literature, interviews with
stakeholders were staged. During the interviews, participants watched typical you-tube
videos showing ‘good’ and ‘bad’ examples of lecturing, and they indicated specific
actions regarded as indications of good and bad lecturing styles. Interviews were con-
ducted with two chief education officers, two teachers and two students. The views of all
three categories of participants are highly important as chief education officers perform
the process of educator assessment, while educators and students are directly involved
in the educational process. The total duration for each interview was about 30 min. After
watching each video, participants rated the quality of the lectures they watched, and
respond to questions related to the level of lecture quality, the specific actions observed
that related to good and bad lecturing styles, and they also commented on the body
language, expression, and speech characteristics of the lectures.

Interview data analysis was carried out with the use of codification qualitative tech-
niques [6] in which words, sentences and phrases that had similar conceptual meaning
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and were important for the research, were arranged in groups whereas data of minor
importance were taken apart. This procedure has been repeated to ensure the validity
of the codification. Based on the interview findings, most of the participants expressed
the view that effective teachers are proficient in using technology, exhibit positive body
language (such as facial expressions, head and hand movements), maintain an engaging
tone of voice, actively move around the classroom, provide constructive feedback, moti-
vate students, led by example in terms of their attitudes and behavior (such as refraining
from using their phone, or drinking in class), are well-prepared, and utilize modern
teaching methodologies.

All features defined were assessed with respect to the feasibility of extracting them
from a video captured using a static camera pointed at the lecturer, so that a final set
of features that relate to facial expression, body activity, speech, hand movement and
facial pose was defined. Furthermore, based on findings from the literature and interview
responses, the values corresponding to good and bad lecturing types were defined (See
Table 1). More information about the features extracted are provided in Sect. 4.

Table 1. Lecture quality metrics.

Modality Values for Good Lecture Style Values for Bad Lecture Style

Facial Expressions Happiness, Surprise, Neutral Anger, Fear, Disgust, Sad

Body Activity Attending, Writing, Hand Raising Absent, Telephone Call,
Texting,
Looking Elsewhere

Speech Word Density (35%–55%)
Speaking Speed
(150–250 words per minute)
Speech Intonation (40%–60%)

Word Density (<35%, >55%)
Speaking Speed
(<150, >250 words per
minute)
Speech Intonation (<40%,
>60%)

Hand Movement Moving Stationary

Facial Pose Left, Right, Up, Down and Forward Far-Left, Far-Right, Far-Up,
Far-Down, Backwards

4 Lecture Style Quality Score Estimation.

Following the determination of the key features, dedicated techniques were used for
extracting those features from video recordings and estimating lecture quality metrics,
as shown in Fig. 2, and exemplified in the following subsections.

4.1 Facial Expressions

Expression recognition is performed using a cascade classifier [2] to detect the lecturer’s
face, and a Convolutional Neural Network (CNN) trained using the FER2013 dataset
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to classify seven basics facial expressions (anger, disgust, fear, happiness, neutral, sad,
surprise) [15]. According to Hou et al. [12], anger, disgust, fear and sad are considered
negative emotionswhile happiness, surprise and neutral are considered positive emotions
in relation to the teaching process. When the expressions of happiness, surprise, and
neutral are detected the lecture quality score is increased, whereas the detection of
anger, fear, disgust, and sad expressions leads to a quality score decrease.

Fig. 2. Overview of lecture quality features and feature extraction methods.

4.2 Activity Detection

The proposed system recognizes seven key activities associated with bad/good lecture
styles. In particular the system recognizes the following actions: Absent from the camera
point of view, attending, raising hand(s), writing, telephone call, texting, and looking
elsewhere. The classification of the seven classes was based on a tuned GoogleNet archi-
tecture [9] used for assessing in-class student activity. The proposed system classifies the
activities attending, writing and hand raising as good lecture styles while the activities
absent, telephone call, texting, and looking elsewhere are classified as bad lecture styles
(see Table 1).

4.3 Speech Recognition

Audio characteristics extracted from video segments are used for estimating lecture
quality. The following features are extracted:

(a) Word Density: Non-silent audio intervals in a given speech segment are detected,
and the percentage of non-silent against silent parts is estimated providing in that way
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a metric for Word Density. According to the literature [19], the average word density of
teachers is 35–55%, thus word density values between 35%–55% are associated with
high lecture quality, whereas values outside the recommended range are associated with
low lecture quality.

(b) Speaking Speed: Speaking speed is estimated by dividing the number of words
detected in a speech segment over by the segment duration. The range of normal levels of
human speech is between 150 and 250 words per minute [16], hence the speaking speed
(speed) is considered good if it is within the normal range, otherwise it is associated
with low lecture quality.

(c) Speaking Intonation: Speaking Intonation determines whether the sentence is a
question or a statement [10]. Intonation is estimated as the root mean square (RMS) of
the audiowaveform. If themeanRMS is greater than 0.01, the intonation is classified as a
question; otherwise, it is classified as a statement. The specificvalueof 0.01was chosen as
a threshold based on experimentation after consulting the librosa library documentation1.
This approach allows the estimation of the percentage of questions against statements in
a given audio segment. A percentage of questions among the 40%–60% in each interval
denotes an adequate interaction between the lecturer and the audience hence in that case
the quality of lecture is considered good [1], and otherwise it is considered bad.

Based on the three audio-based metrics extracted (Word Density, Speaking Speed,
Speaking Intonation), a majority-based approach is employed to determine the overall
speech quality. If good prevails, the lecture quality score is incremented. For the proposed
system, the time interval for audio segments was set to three minutes, hence speech
metrics related to the intonation, speed andword density are updated every threeminutes.

4.4 Hand Movement

Hand Detection is performed using Mediapipe Hand Detection [22] and the location of
detected hands is used for estimating the speed and direction of hand movements. Hand
Speed is calculated as the distance between the current center and the previous center of
the hand divided by the number of frames elapsed. If the hands move in a given interval,
hands are classified as “moving” and are considered as a good lecture feature. Otherwise,
hands are classified as “stationary”, and associated as a bad lecture style. The system
analyzes hand movements, incrementing the score by 1 if hand movement is detected
and 0 when no movement is detected (see Table 1).

4.5 Facial Pose Estimation

Facial pose estimation is performed using Mediapipe Face Detection [20] and enables
to determine if the lecturer is looking right, left, up, down, far-left, far-right, far-up,
far-down, forward and backwards. If a face is detected in the current frame, the nose
tip is also located. The position of the nose tip relative to the bounding box around the
face allows the calculation of the direction that the lecturer is looking. In addition, an
eyeCascade detector was used to detect eyes in a video frame. If the algorithm does
not detect eyes, it assumes that the person is not looking towards the audience. If the

1 Https://librosa.org/doc/latest/generated/librosa.feature.rms.html

https://librosa.org/doc/latest/generated/librosa.feature.rms.html
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lecture is looking right, left, up, down and forward are classified as good facial pose as
in that case there is eye-contact between the lecturer and the audience, otherwise the
head direction is associated with a bad lecture (see Table 1).

4.6 Merging Metrics

Overall, the proposed system utilizes fivemodalities (Facial Expressions, BodyActivity,
Speech, Hand Movement, and Facial Pose), and a positive measure for a given modality
increases the total quality score by one. As a result, possible values for the quality score
range between zero to five, where zero means that none of the modalities resulted in a
positive score regarding lecture quality and a score of five indicates that all modalities
produced a positive lecture quality score (see Fig. 3). The total score is calculated by
summing the scores of each frame and dividing by the number of frames, and the total
score is presented on the console providing real-time feedback to the lecturer (see Fig. 4
(left)). Figure 4 (right) shows an illustration of the lecture quality graph for a given
lecture.

Fig. 3. Evaluation of the total quality score, based on modality-specific scores.

Indicative frames classified as good lecture or bad lecture are shown in Fig. 5. The
image frame in Fig. 5(a) is considered to show a good lecture-style because it includes
positive facial expressions (happiness), positive activity detection (hand raising), hand
movements, and facial pose (forward) that ensures eye-contact with the audience. For
that interval speech features were not among the range of acceptable values, hence the
overall score was four out of five. The image frame in Fig. 5(b) is considered to show a
poor lecture-style quality because no positive facial expressionswere detected, a negative
action (looking elsewhere) and facial pose (backward) were detected, and the speech
featureswere not among the range of acceptable values. However, since handmovements
were detected, the score was assigned a score of one out of five. The image frame in
Fig. 5(c) is considered to be an example of poor lecture-style quality because a negative
activity was detected (making a telephone call), while and facial pose (far-right), and the
speech features were not among the range of acceptable values. However, since hand
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movements and a positive facial expression (neutral) was detected, the overall score was
estimated to a value of two out of five.

Fig. 4. Score for each frame (left) and average score (right) for the two-minute video printed on
the console.

Fig. 5. Typical screenshots where good (a) or bad lecture styles (b)–(c) are detected.

5 Evaluation

The extraction of specific features was tested individually, and quantitative results indi-
cate that all features can be extracted with reasonable accuracy. The overall application
operates efficiently in cases where the camera is located at a close distance from the
speaker and the microphone is close to the speaker. In cases, where the speaker is at a far
distance from the camera/microphone, proper detection of the body parts and extraction
of audio features cannot be achieved accurately. Hence, in its current form the proposed
system applies to cases where the lecturer does not move in a class, and the camera
is located at a reasonable distance from the lecturer. The use of suitable microphones
attached on the lecturer is recommended.

To investigate the acceptance of the proposed methodology, a preliminary user eval-
uation using semi-structured interviews has been carried out with two chief education
officers, two teachers and two students. Initially, participants used the application in
real time, and then they answered questions regarding their impressions, about biomet-
ric features, and possible ways to improve the application. The results showed that all
participants consider the system to be an innovative idea as this system can provide real-
time feedback. Participants also stated that features used accurately reflect the lecture
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style quality. Regarding ways to improve, participants mentioned that the camera may
not only focus on the teacher but also on the students so that student feedback is also
considered as part of the evaluation process.

6 Conclusions

A pilot automated system for evaluating the quality of the educators’ lectures, based on
the definition and extraction of a set of biometric features was presented. The proposed
application extracts multiple features such as facial expressions, body activity, speech,
hand movement, and facial pose, which are combined to provide a lecture style quality
score for each frame as well as an overall score for the whole lecture. The acceptance of
the applicationwas evaluated by chief education officers, teachers and students regarding
the functionality, usefulness of the application, and possible improvements. The results
showed that participants found the application novel and useful in providing automated
feedback regarding lecture quality, so that the overall teaching process is benefitted.
In the future, we plan to further refine the metrics considered, and their combination
to produce the total quality score, while the applications will be thoroughly evaluated.
Furthermore, based on the user evaluation comments, additional cameras, and cameras
attached on the lecturer, will be used so that the cases that the lecturer moves in a class
are considered.

Acknowledgements. This project was partially supported by EU’s H2020 Research and Inno-
vation Programme (Grant Agreement No 739578) and the Government of the Republic of
Cyprus.
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Abstract. Highly crowd counting is a rapidly growing field, driven by
the increasing demand for accurate and real-time crowd monitoring.
Within this context, in this paper we formulate the problem in terms
of point detection and we propose a novel training strategy, especially
devised for point detection networks. The baseline architecture we use
is Point to Point Network (P2PNet), that have shown impressing accu-
racy results in both localization and crowd counting task. In order to
be able to deal with both sparse and very dense scenarios, and to well
generalize both indoor and outdoor, we propose a brain-inspired train-
ing strategy based on curriculum learning, combined with a customized
data augmentation technique. The main idea is that the neural network
has to mimic human learning by initially taking into account the easy
samples (sparse scenes) and then moving on to the more challenging
ones (the ones with thousands of persons). The experimentation has
shown impressive results. Indeed, with respect to the baseline solution,
we obtain an improvement of 59%, 62% and 48% over the three indices
we have considered, respectively MAE, MSE and nAP. An example of
the proposed system in action is shown at the following link: https://
youtu.be/yAHe7CI60hE.

Keywords: Highly crowd counting · Point detection · Curriculum
learning

1 Introduction

In recent years, video analytic has emerged as a powerful tool for crowd estima-
tion, enabling real-time monitoring of large crowds starting from the analysis of
the videos acquired by surveillance cameras spread over the territory. However,
accurately estimating crowd density in highly crowded environments is still a
challenging task.

First attempts have been made by approaching the problem with deep
learning-based detection algorithms, especially devoted to detect the presence
of heads or individuals [13]. Anyway, the high level of occlusion (only a part
of the head is often visible), the complex and dynamic nature of crowds, and
the limited resolution of people images (typically only a few dozen pixels are

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
N. Tsapatsoulis et al. (Eds.): CAIP 2023, LNCS 14185, pp. 13–22, 2023.
https://doi.org/10.1007/978-3-031-44240-7_2
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available for each person) cause drop in performance in highly crowded environ-
ments. Furthermore, it is worth to mention that, given the low resolution of the
persons, the ground truth available is typically just a point (instead than the
bounding box of the head or of the individual), thus the bounding boxes need to
be generated automatically by means of properly defined heuristics. As evident,
even if having the advantage of providing in output a direct way for localizing
the person, the automatic ground truth generation may cause confusion during
the training [16].

In order to deal with the low resolution of persons to be counted, combined
with the presence of dense scenes, in recent years there has been a growing inter-
est in video analytic based crowd estimation techniques based on density map
[2,8,10], that can accurately estimate crowd density in highly crowded envi-
ronments by learning a relationship between the crowd density and the image’s
visual features. Basically, starting from the raw image, a new image representing
the density map is computed by a properly designed CNN and the estimated
count is performed by summing over the predicted density map [5]. Anyway,
they share a similar problem with the objects detection method, in the sense
that the ground truth density map is still something automatically generated.

In order to face with this issue, but still exploiting the advantage of object
detection methods able to provide as output the exact position of the persons,
point based detection methods have emerged. The idea is to use directly the
point labels (without any intermediate representation) to supervise the network,
and to generate directly points as output [16].

Despite these advances and the increasing number of proposed papers in the
literature, there are still many open challenges [7]. These include the need for
large amounts of annotated data for training, acquired not in a single environ-
ment but instead in all those real situations we expect the system may work.
Furthermore, there is also a need for robust algorithms that can operate in real-
time, in all those environments detailed before, and both in sparse and dense con-
texts. For this reason, we introduce a real-time system for counting and locating
people in highly crowded situations: we exploit a point based framework, whose
output is the position of each person, identified by a point. We decide to use as
a reference network the Point to Point Network (P2PNet) [16], which has shown
impressive results, ranking in the first positions in most of the benchmarks where
the method have been tested. Starting from P2PNet, we did a preliminary analy-
sis, which has shown a drop in the performance over sparse and night scenarios.
For this reason, we introduce two new features with respect to the baseline
P2PNet: (i) a data augmentation strategy based on the combination of a sliding
window approach with standard pixel-wise data augmentation techniques; (ii)
a bio-inspired training procedure based on curriculum learning. A crowd count-
ing method based on curriculum learning training strategy can offer several key
advantages over traditional training methods, including improved generalization
capabilities, faster convergence, better handling of imbalanced data, and better
handling of noise. These advantages can make curriculum learning a valuable
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approach for developing more robust and accurate crowd counting methods for
use in real-world applications.

This paper is organized as follows. In Sect. 2 the contribution and the novelty
of our approach respect to the state-of-the-art is discussed. Section 3 gives a brief
overview of the considered dataset. The experimental setting and performance
comparison are presented in Sect. 4, before drawing some conclusions in Sect. 5.

2 Proposed Approach

In this paper we design and develop a real-time system for counting and locat-
ing people in highly crowded situations, by automatically analyzing the frames
acquired by video surveillance camera.

We decide to exploit a point based framework, whose output is the position of
each person, identified by a point (instead than a bounding box). In particular,
within this framework, one of the best networks available in the literature is
Point to Point Network (P2PNet) [16], that we decide to use as a reference
network. P2PNet employs VGG16 as a backbone and adds two separate heads,
namely one for points regression and one for score classification, in a multitask
framework. It can be thus used for both counting and localization.

It is important to highlight that, given this formulation of the problem, we do
not need to generate the density maps to be provided as input to the network,
but instead the points manually defined on the images by human annotators
already represent the ground truth to be used for feeding the network at training
stage. This is an important and not negligible feature, since we are avoiding any
potential errors in the ground truth generation due to a wrong a posteriori
generation of the density map.

Even if very promising, some preliminary analysis over P2PNet have shown a
drop in the performance over sparse and night scenarios. Starting from the above
considerations, we introduce in this paper two main novelties with respect to the
baseline P2PNet: (i) a data augmentation strategy based on the combination of a
sliding window approach with standard pixel wise data augmentation techniques;
(ii) a bio-inspired training procedure based on curriculum learning.

In more details, we define a data augmentation strategy in order to create
additional observations based on available ones and thus increase the size of the
training set [9]. The following techniques have been employed: random scaling,
with scale factor in the range [0.7, 1.3]; random cropping; rotation, with angles in
the range [20◦, 60◦]; gaussian blur, with a probability of 0.5; changes of brightness
and contrast; random flipping, with probability of 0.5. Furthermore, in order to
simulate night conditions, given the few images in the dataset related to this
kind of scenario, we also employ a data augmentation based on the conversion
of RGB image into grayscale.

Other than such standard pixel-wise techniques, we also adopt a sliding win-
dow [14] based selection of the patch. The main idea behind this choice is that
most of the sample images depict scattered scenes, and the use of random patches
(as done in P2PNet) leads to an imbalance of the data samples provided as input
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to the network, since it is not possible to control the distribution of the people
inside the patches. Starting from this consideration, for each image we define
a set of patches, obtained by a sliding window, with a random overlap. Given
such set, we select the most crowded and the less crowded patch, and also two
additional randomly chosen patches. In this way, we can ensure to provide to
the network both dense and sparse scenes.

Starting from the augmented dataset, we propose to also explore a brain
inspired training strategy based on curriculum learning (CL) [1]. The rationale
is that humans could learn better while the learning objects are not presented
randomly but sorted by a meaningful order, namely from the most simple to
the most complex one. Imitating this pattern, CL firstly gives every training
sample an index on behalf of its difficulty, and then train models from simple
samples to hard samples. The difficulty of a sample depends on the number
of persons contained in it. The main advantages deriving from the adoption of
the CL training strategy can be summarized as follows [1]: first, it improves
the generalization capability of the network, since the model gradually builds
up its abilities and generalize better to new, unseen data. Also, it has been
demonstrated that starting with easier examples and gradually increasing the
difficulty, CL can help the model to converge faster and with a lower risk of
overfitting. This results in faster training times and improved performance on the
final task. Finally, CL guarantees a better handling of imbalanced data: crowd
counting datasets, given the nature of the problem, are highly imbalanced, with
both sparse and dense frames, namely from empty (no persons at all) and very
crowded (with a high density of people). Typically, the higher is the number
of people, the less number of images we have in the training set. CL can also
help to mitigate this imbalance, by gradually introducing examples with higher
crowd densities, allowing the model to better learn the patterns associated with
high-density crowds.

3 Dataset

In order to validate the proposed system, we use a wide dataset composed by
16,587 images, obtained by combining the datasets available in the literature
with images acquired by our team and manually labeled. From the available
datasets, we discarded those images acquired with a frontal view, only focusing
over images obtainable by surveillance cameras. Table 1 summarizes the datasets
that we used in our experimentation, showing the characteristics for each of
them. As we can see from the table, for each dataset we specified the number of
images that we have finally considered, their resolution, the average count (AC)
of persons inside the image, the maximum count (MaxC) and the minimum
count (MinC). For training our system, we have considered (where available)
the original partition of each dataset into training and test set. At the end, the
number of images used for training are 13,940 (about 84% of the dataset), and
the remaining 2,647 have been instead used for testing. Figure 1 shows some
examples of used images belonging to the previously described datasets.
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Fig. 1. Examples of images from the dataset used in our experimentation. For each
image, we also report the specific dataset to which the image belongs to.

The details for each considered dataset are reported in the following: Mall
[3] has been collected from the surveillance video of a shopping mall. It con-
tains several lighting conditions, occlusions, and severe perspective distortion.
ShangaiTech Part B [20] has been collected from a busy street of a metropoli-
tan area in Shanghai. It presents scale changes and perspective distortion.
Venice [12] has been collected from St. Mark’s Square in Venice; it consid-
ers different points of view. UCF-QNRF [6] has been collected from Flickr,
Web Search and Hajj footage. It has a wider variety of scenes; it considers differ-
ent points of view, densities and lighting variations. SmartCity [19] has been
collected from sidewalk and office entrance. It contains images of indoor and out-
door scenes, aimed to verify the model generalization ability on sparse scenes.
Indeed, the number of persons in the scene varies from 1 to 10. JHU-Crowd
[15] has been collected in several scenarios, where there are resolution issues
and lighting variations due to different environmental and weather conditions.
CrowdSurveillance [18] has been collected from online images and real world
surveillance videos, covering more challenging scenarios with complicated back-
grounds and varying number of people (from 2 up to 1420). NWPU-Crowd
[17] has been composed by the largest density range of annotated objects with
different lighting conditions. Beijing-BRT [4] has been collected from a video
surveillance camera at Beijing bus station. The images contained shadows, glare,
and sunshine interference, and time span was from morning till night.

Furthermore, we also include 172 additional images (Our dataset in the table)
of situations not included in the above mentioned datasets, mainly with low den-
sity in outdoor environments (for example, large squares and university class-
rooms) and poor night-time visibility indoors (for example, subways and fairs).
All the images are annotated with a point (with x-y coordinates), which repre-
sents the position of the heads of the people inside the image.
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Table 1. Datasets available in the literature used in our experimentation. For each
dataset, we report the number of images used in our experimentation, the maximum
image resolution, the average count (AC) of persons, the minimum (MinC) and the
maximum count (MaxC), respectively.

Dataset Years Images Resolution AC MinC MaxC

Mall [3] 2012 2,000 480× 640 31 13 53

ShangaiTech Part B [20] 2016 711 768× 1024 123 9 578

Venice [12] 2019 49 720× 1280 66 50 120

UCF-QNRF [6] 2018 136 2013× 2902 815 49 12865

SmartCity [19] 2018 50 1080× 1920 7 1 10

JHU-Crowd [15] 2019 306 910× 1430 346 0 25791

CrowdSurveillance [18] 2019 11,346 840× 1342 35 2 1420

NWPU-Crowd [17] 2020 703 2191× 3209 418 0 20033

Beijing-BRT [4] 2019 1,114 640× 360 13 2 50

4 Experimental Results

The performance have been evaluated in terms of mean absolute error (MAE),
mean squared error (MSE), and normalized average precision (nPA). This is a
quite common choice for evaluating crowd counting systems.

In more details, the MAE and MSE take only into account the number of
persons located in each image, and can be computed as follows:

MAE =
1
N

·
N∑

i=1

∣∣∣Cpred
i − Cgt

i

∣∣∣ (1)

MSE =

√√√√ 1
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·
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i
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where N is the test images number, Cpred
i and Cgt

i represent respectively the
prediction results (in terms of number of counted people) and the ground-truth
(in terms of number of people inside the image).

In order to evaluate both the localization errors and counting performance,
we also use the normalized Average Precision (nAP) [16]. It is computed as the
Average Precision, that is the area under the Precision-Recall (PR) curve.

Thus, in order to determine if the j− th predicted point p̂j is a True Positive
(TP) or a False Positive (FP), we first sort the predicted points depending on
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their confidence score, from high to low. Then, instead than evaluating the dis-
tance between the predicted point p̂j and the ground truth point pi, we consider
(as in [16]) the density aware criterion, defined as:

1(pi, p̂j) =
{

1 if d(pi, p̂j)/dkNN (pi) < δ
0 otherwise

where d(p̂j , pi) = ||p̂j − pi||2 is the Euclidean distance between p̂j and pi, and
dkNN (pi) is the average distance to the k nearest neighbors of ground truth
point pi. The parameter δ is the threshold used to manage the desired localization
accuracy. In our tests, we used δ = 50%, as suggested in [16]. Finally, a predicted
point p̂j is considered as TP only if it could be associated to certain ground
truth pi (implying that 1(pi, p̂j) = 1), under the assumption that pi has not
been already matched before by any higher-ranked point [11,16].

The proposed system has been implemented in PyTorch, starting from the
original implementation of P2PNet, and the tests have been conducted over
an NVIDIA V100 GPU. The obtained results are reported in Table 2. In more
details, in order to compare with state of the art and also to show the improve-
ments of the proposed training strategies with respect to the considered base-
line, in the table we report MAE, MSE and nAP for the following experiments:
P2PNet Baseline is the original P2PNet proposed by the authors and whose
weights have been made available by the authors itself [16]; Proposed DA only
includes data augmentation and sliding window approach; finally, Proposed CL
adds curriculum learning training strategy to the previous Proposed DA. We can
note that the best performance is obtained by the proposed model trained using
the curriculum learning technique combined with the proposed data augmenta-
tion technique (namely Proposed CL), achieving the best score over the three
metrics. Indeed, it obtains the lowest MAE (5.68 vs 14.00) and MSE (16.05 vs
26.11) and the highest nAP (0.74 vs 0.50), resulting in a final improvement of
59%, 62% and 48% on the MAE, MSE and nAP, respectively, with respect to
the baseline.

It is important to note that this is an impressive result, considering that
P2PNet is among the best performing networks available in the literature for high
crowd counting and localization. In order to evaluate how the proposed system
performs in different real scenarios of interest and potentially understand any
drop in performance in some special conditions, we further partition the test set
according to the following criteria: sparse and dense; indoor and outdoor; night
and day scenes. The obtained results are reported in Table 3.

The first raw of the table reports the results on the entire dataset of the
proposed system. After that, three main sections are identified in the table,
namely Dense vs Sparse, Indoor vs Outdoor and Day vs Night.

Starting from the analysis on the Dense vs Sparse scenarios, we can see a
drop for both MAE and MSE in the dense scenario with respect to the overall
results (MAE: 25.21 vs 5.68; MSE: 40.74 vs 16.05); vice-versa, we can also note
a strong improvement of the sparse scenario with respect to the baseline (MAE:
1.72 vs 5.68; MSE: 6.08 vs 16.05). Anyway, we need to consider that such values
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Table 2. Performance in terms of MAE, MSE and nAP achieved on the test set by
the baseline P2PNet, the proposed system with data augmentation (DA) and the full
proposed system with both data augmentation and curriculum learning (CL) training
strategies.

Model MAE ↓ MSE ↓ nAP ↑
P2PNet [16] 14.00 26.11 0.50

Proposed DA 6.43 16.15 0.67

Proposed CL 5.68 16.05 0.74

Fig. 2. Example of images with overlay (red point) of output of the proposed system
in (a) dense and sparse scenarios, (b) in indoor and outdoor scenarios, and (c) day and
night scenarios. (Color figure online)

have to be considered not in absolute, but instead with respect to the average
number of counted people (AC). Indeed, the AC in the dense scenes (AC = 210)
is much larger than in the sparse scenes (AC = 14). Considering thus MAE and
MSE with respect to AC, we can note that in both the typologies of scenario
the error is about 10%. It is also important to highlight that the performance
achieved on the above two scenarios by the baseline are the following: MAE:
36.21 vs 25.21; MSE: 52.10 vs 40.74 for the dense scenario and MAE: 10.20 vs
1.72; MSE: 18.73 vs 6.08 for the sparse scenario. The above reported results
confirm the improvement of our method on the dense scenario, but above all on
the sparse scenario, where the baseline solution shows some quite poor results.
Indeed, we have to consider that the AC is 14 and that the output of that
network doubles more or less such number.

Looking at the results in Table 3, we can also note that the results are quite
stable in outdoor and indoor scenario, where we have a MAE in the range 3.57–
8.67 and a MSE in the range 10.76–18.35. This could be also related to the
slight difference in the AC, which is 42 and 70 for indoor and outdoor scenarios,
respectively. Finally, we also obtain some interesting results in Day vs Night
scenario. Indeed, we can note that, having more or less the same AC (61 vs
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Table 3. Performance in terms of MAE, MSE and nAP achieved on the test set by the
full proposed system with both sliding window and curriculum learning (CL) training
strategies and the partitions proposed system (i.e., sparse and dense scenes; indoor and
outdoor; night and day) with the same training strategies. For each scenario, we report
the AC, MinC and MaxC values.

Scenario MAE ↓ MSE ↓ nAP ↑ AC MinC MaxC

Proposed CL 5.68 16.05 0.74 52 0 864

Dense 25.21 40.74 0.64 210 31 864

Sparse 1.72 6.08 0.74 14 0 90

Indoor 3.57 10.76 0.78 42 1 804

Outdoor 8.67 18.35 0.68 70 1 864

Day 5.54 9.14 0.69 61 3 289

Night 9.73 25.22 0.64 67 1 864

67), by night we can assist to a strong drop in the performance (MSE of 25.22
vs 16.05). Anyway, if we compare the obtained results with the one obtained
in the same scenario by the baseline (MAE: 18.63; MSE: 41.93), we can say
that we obtain a 65% improvement in terms of MSE and a 90% improvement in
terms of MAE. The obtained results, as a whole but in particular over night and
sparse scenarios, confirm that the proposed approach, including extended data
augmentation and curriculum learning strategy, allows to strongly improve the
baseline. Some examples of our system in action are shown in Fig. 2, where we
can appreciate the high accuracy in both localization and counting.

An example of the proposed system in action is shown at the following link:
https://youtu.be/yAHe7CI60hE.

5 Conclusion

In this paper, we propose a novel training strategy, especially devised for point
detection networks. The baseline architecture we use in this paper is Point to
Point Network (P2PNet), that have shown impressing accuracy results in both
localization and crowd counting task. Starting from that, we propose a brain-
inspired training strategy based on curriculum learning, that we combine with
a customized data augmentation strategy. We evaluate the performance of our
system using a dataset of highly crowded images, taken from various real-world
environments, including night and day scenarios, indoor and outdoor locations,
and finally sparse and very dense scenes. We obtain an impressive improvement
of 59%, 62% and 48% over the three indices we have considered, namely MAE,
MSE and nAP, with respect to the baseline solution. Also, we are able to strongly
improve on the night and sparse scenarios, which have been demonstrated to be
the ones where the baseline solution suffered the most.

https://youtu.be/yAHe7CI60hE
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Abstract. The study of bias in Machine Learning is receiving a lot of
attention in recent years, however, few only papers deal explicitly with
the problem of race bias in face anti-spoofing. In this paper, we present a
systematic study of race bias in face anti-spoofing with three key features:
we focus on the classifier’s bona fide errors, where the most significant
ethical and legal issues lie; we analyse both the scalar responses of the
classifier and its final binary outcomes; the threshold determining the
operating point of the classifier is treated as a variable. We apply the
proposed bias analysis framework on a VQ-VAE-based face anti-spoofing
algorithm. Our main conclusion is that race bias should not necessarily
be attributed to different mean values of the response distributions over
the various demographics. Instead, it can be better understood as the
combined effect of several possible characteristics of these distributions:
different means; different variances; bimodal behaviour; the existence of
outliers.

Keywords: Face presentation attacks · face anti-spoofing · race bias

1 Introduction

Face recognition is the method of choice behind some of the most widely deployed
biometric authentication systems, currently supporting a range of applications,
from passport control at airports to mobile phone or laptop login. A key weakness
of the technology, is its vulnerability to presentation attacks, where imposters
attempt to gain wrongful access by presenting in front of the system’s camera
a photo, or a video, or by wearing a mask resembling a registered person. As
a solution to this problem, algorithms for presentation attack detection (PAD)
are developed, that is, binary classifiers trained to distinguish between the bona
fide samples coming from live subjects, and those coming from imposters.

Here, we deal with the problem of race bias in face anti-spoofing algorithms.
The proposed race bias analysis process has three key characteristics. First, the
focus is on the bona fide error, that is, on genuine people wrongly classified as
imposters. Biases in this type of error have significant ethical, legal and regula-
tory ramifications, and as it has recently pointed out “creates customer annoy-
ance and inconvenience”, [12]. Secondly, we do not analyse just the final binary
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
N. Tsapatsoulis et al. (Eds.): CAIP 2023, LNCS 14185, pp. 23–32, 2023.
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classification outcome, but also the scalar responses of the network prior to
thresholding. Thirdly, we treat the value of the threshold, which determines the
classifier’s operating point on the ROC curve, as a variable. We do not assume it
is fixed by the vendor of the biometric verification system in a black-box process.

We demonstrate the proposed bias analysis approach on a face anti-spoofing
algorithm based on the Vector Quantized Variational Autoencoder (VQ-VAE)
architecture, [20]. The network is trained and validated on the SiW database,
and tested for bona fide racial bias on the SiW and RFW databases. Hypotheses
are tested using the chi-squared test on the binary outcomes, the Mann-Whitney
U test on the scalar responses, and the Hartigan’s Dip for testing bimodality in
the response distributions.

Our main finding is that racial bias can be attributed to several characteris-
tics of the response distributions at the various demographics: different means;
different variances; bimodality; outliers. As a secondary contribution, we also
demonstrate that a database which does not specialise in face anti-spoofing,
such as RFW, can nevertheless be used to analyse face anti-spoofing algorithms.

The rest of the paper is organised as follows. In Sect. 2, we review the relevant
literature. In Sect. 3, we describe the experimental setup. In Sects. 4, and 5 we
present the bias analysis on the SiW and RFW databases, respectively. We briefly
conclude in Sect. 6.

2 Background

We briefly review the area of face anti-spoofing, and then focus on previous
studies of bias in machine learning, and PAD in particular.

2.1 Face Anti-spoofing

The state-of-the-art in face anti-spoofing [5,14,25–28,30,31], is based on vari-
ous forms of deep learning, such as Central Difference Convolutional Networks
(CDCN) [27,28], or transformers [23]. Following some earlier approaches [4,15],
the state-of-the-art may also utilise depth information [22,24,25,30], usually esti-
mated by an independently trained neural network, while the use GAN estimated
Near Infrared (NIR) information was proposed [14].

Regarding the face anti-spoofing databases we use in this paper, our training
dataset is from the SiW database, introduced in [15]. It comprises videos of 165
subjects of four types of ethnicities: 35% of Asian and 35% Caucasian and 23%
Indian, and 7% African American. The bias analysis is performed on SiW with
the subject annotated for ethnicity type by us, and the already annotated RFW
database [21], which is widely used in the bias analysis literature. RFW again
comprises four types of ethnicities: Caucasian, Asian, Indian, and African.
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2.2 Bias in Machine Learning

Because of the ethical, legal, and regulatory issues associated with the problem
of bias within human populations, there is a considerable amount of research on
the subject, especially in face recognition (FR). A recent comprehensive survey
can be found in [17], where the significant sources of bias are categorised and
discussed, and the negative effect of bias on downstream tasks is pointed out.

In one of the earliest studies of bias in FR, predating deep learning, [18]
reported differences in the performance on humans of Caucasian and East Asian
descent between Western and East Asia developed algorithms. In [9], several
deep learning-based FR algorithms are analysed and a small amount of bias is
detected in all of them.

In [10], the authors compute cluster validation measures on the clusters of
the various demographics inside the whole population, aiming at measuring the
algorithm’s potential for bias, rather than actual bias. Their result is negative,
and they argue for the need of more sophisticated clustering approaches. In
[19], the aim is the detection of bias by analysing the activation ratios at the
various layers of the network. Similarly to our work, their target application is
the detection of race bias on a binary classification problem, gender classification
in their case. Their result is positive in that they report a correlation between
the measured activation ratios and bias in the final outcomes of the classifier.
However, it is not clear if their method can be used to measure and assess the
statistical significance of the expected bias.

In Cavazos et al. [6], similarly to our approach, most of the analysis assumes
a one-sided error cost, in their case the false acceptance rate, and the operating
thresholds are treated as user-defined variables. However, the analytical tools
they used, mostly visual inspection of ROC curves, do not allow for a deep
study of the distributions of the similarity scores, while, here, we give a more
in-depth analysis of the response distributions, which is the equivalent of the
similarity scores. In Pereira and Marcel [8], a fairness metric is proposed, which
can be optimised over the decision thresholds, but again, there is no in-depth
statistical analysis of the scores.

The literature on bias in presentation attacks is more sparse. Race bias was
the key theme in the competition of face anti-spoofing algorithms on the CASIA-
SURF CeFA database [13]. Bias was assessed by the performance of the algo-
rithm under a cross-ethnicity validation scenario. Standard performance metrics,
such as APCER, BPCER and ACER we reported. In [2], the standard CNN mod-
els Resnet 50 and VGG16, were compared for gender bias against the debiasing-
VAE proposed in [3], and several performance metrics were reported. A recent
white paper by the ID R&D company presents the results of a large-scale bias
assessment experiment conducted by Bixelab, a NIST accredited independent
laboratory [12]. Similarly to our approach, they focus on bona fide errors, and
their aim is for the BPCER error metric to be below a prespecified threshold
across all demographics. Regarding other biometric identification modalities, [7]
studied gender bias in iris PAD algorithms.
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3 Experimental Setup

We chose the VQ-VAE architecture because of some recently reported impressive
results on various computer vision problems. For a more detailed description of
the classifier, see our Arxiv preprint [1].

3.1 The VQ-VAE Classifier

The encoder consists of two convolutional layers of kernel size 4, stride step 2,
padding 1; followed by a ReLU; one convolutional layer of kernel size 3, stride
step 1, padding 1; followed by two residual blocks implemented as ReLU (3 × 3
conv, ReLU, 1 × 1 conv for each block). It outputs a 16 × 16 grid of vectors
quantized on a codebook of size 512. The decoder is symmetrical to the encoder,
using transposed convolutions. The model was ADAM optimised with learning
rate 1e-3, for 100 epochs, with batch size 16. The weight factor β was set to 0.25.

For face detection we used the Multi-Task Cascade Convolutional Neural Net-
work (MTCNN) [29]. The detected faces were horizontally aligned, and cropped
at 64× 64. As our classifier is based on anomaly detection, the training set con-
sisted of bona fide only data, 124,000 samples. We assessed performance on a
test set of 1,600 samples, 400 samples from each race, with equal split between
bona fide and attack. At an operating threshold of 0.054, corresponding to the
EER value at an independent validation set, we obtained an HTER of 0.169,
which indicates satisfactory performance.

3.2 Overview of the Bias Analysis Process

The bias analysis process is summarised in Fig. 1. The binary outcomes of the
classifiers are analysed with the chi-squared test, and the scalar responses with
the Mann-Whitney U test [16].

Fig. 1. The bias analysis process. The binary outcome analysis is shown in purple and
the scalar response analysis in blue. (Color figure online)
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4 Bias Analysis on SiW

We perform bias analysis on the bona fide samples of SiW test set in Sect. 3.

4.1 Statistical Analysis of the Binary Outcomes

First, we analyse the binary outcomes corresponding to the operating threshold
0.054, which was used in the validation of the classifier in Sect. 3. For each pair
of races, we form the 2 × 2 contingency tables, and apply the chi-squared test,
computing p-values for the hypothesis that samples from the race with the most
misclassifications have higher misclassification probability. The results are sum-
marised in Table 1. In several cases, the p-values are low, meaning that for any
reasonable threshold of statistical significance, the bias hypothesis is accepted.
In other cases, p-values above 0.05 mean that bias has not been detected.

Table 1. p-values of the chi-squared tests for the 0.054 threshold used in Sect. 3.

Af-As Af-Ca Af-In As-Ca As-In Ca-In

0.1158 0.0104 0.0147 0.0000 0.0000 1.0000

Next, we treat the operating threshold as a variable. Figure 2 shows the p-
values as a function of the threshold for the six pairs of races. We notice that,
over the range of all thresholds, there could be several disconnected intervals
corresponding to high bias (low p-values), which means that threshold optimi-
sation for low bias should not assume a unique solution, as it is often implicitly
assumed in the literature.

Fig. 2. For each pair of races, graphs of the p-value as a function of the threshold.
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4.2 Statistical Analysis of the Scalar Responses

For an insight in the behaviour of the graphs in Fig. 2, we analyse the classi-
fier’s scalar responses on the premise that a complex behaviour of their density
fun ctions, will induce complex bias behaviour. Table 2 summarises the statistics
computed on the responses of each race: mean, standard deviation, and Harti-
gan’s Dip value [11]. Figure 3 shows plots of histograms and density functions
for each pair of races.

Table 2. Response means, st. dev., and Hartigan’s dip values for each race in SiW.

Af As Ca In

µ 0.0418 0.0446 0.0438 0.0355

s.d. 0.0142 0.0109 0.0122 0.0096

dip 0.0299 0.0233 0.0366 0.0324

Fig. 3. For each pair of races in SiW, histograms and density functions of the responses.

We tested for statistically different mean responses with the Mann-Whitney
U test, as the Shapiro-Wilk test rejected the normality hypothesis. Table 3 shows
for each pair of races p-values for the hypothesis that randomly selected responses
from the two populations have different values. We note that, for example, the
p-value of the Asian and Indian pair is very low, and the large range of high
bias thresholds in the corresponding U-shaped diagram in Fig. 2 is due to a
statistically significant higher mean response on Asians compared to Indians.
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Table 3. p-values of the Mann-Whitney U test on each pair of races.

Af-As Af-Ca Af-In As-Ca As-In Ca-In

0.0001 0.0078 0.0000 0.1560 0.0000 0.0000

In contrast, the mean response difference between Asians and Caucasians is
not statistically significant. Thus, the bias we can observe in the corresponding
diagram in Fig. 2, which for small threshold values on the left-hand side of the
diagram is statistically significant, is due to different standard deviations.

We checked for bimodality using Hartigan’s Dip Test with 50 bins. For the
200 samples we have from a race, a statistical significance of 95% corresponds to
a critical value of 0.037. We notice that all Dip values are below the significance
threshold, and thus, all populations should be considered unimodal. In partic-
ular, that means that some very high responses on African people should be
treated as outliers. We note that against all the other three races, these outliers
create a second, or third region of high bias thresholds, in which regions samples
from the African population are treated less favourably.

5 Bias Analysis on RFW

Here, we apply the same analysis on a test set from the RFW database, con-
sisting of 200 images from each race. This time the race labels are part of the
database, rather than being annotated by us. As RFW database is not a spe-
cialised face anti-spoofing database, we do not have imposter images and thus we
do not have empirically established operating thresholds, as for example the ones
corresponding to EER values. Instead, in our diagrams we indicate thresholds
corresponding to bona fide error rates of: 1%, 2%, 5%, 10%, 20%.

In Fig. 4, for each race pair, we plot the p-values of the chi-squared test as a
function of the threshold. We observe behaviours similar to those in Sect. 4.

Fig. 4. For each pair of races, graphs of the p-value as a function of the threshold.
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Table 4 shows the means, standard deviations and dip values for each race,
and Table 5 shows the p-values of the Mann-Whitney U test for each race pair.
We note in Table 4 that the Hartigan’s test detects a bimodality in the responses
on Indian people, having a dip value of 0.055, above the significance threshold
of 0.037. This can also be verified by visual inspection of the corresponding his-
tograms and density functions, shown in Figs. 5 for race pairs. We also note that
this bimodality can be detected in the behaviour of the corresponding graphs
of the p-values of the chi-squared test. Indeed, in the three graphs in Fig. 4 cor-
responding to Indian people, we can detect two distinct regions of higher bias,
even though the second one does not reach the level of statistical significance.

Table 4. Response means, st. dev., and Hartigan’s dip values for each race in SiW.

Af As Ca In

µ 0.0509 0.0579 0.0569 0.0579

s.d. 0.0175 0.0220 0.0223 0.0220

dip 0.0114 0.0225 0.0149 0.0550

Table 5. p-values of the Mann-Whitney U test on each pair of races.

Af-As Af-Ca Af-In As-Ca As-In Ca-In

0.0004 0.0058 0.0062 0.2509 0.2743 0.4805

Fig. 5. For each race pair in RFW, histograms and density functions of the responses.
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6 Conclusion

We conducted an empirical study of race bias in face anti-spoofing with the
following characteristics: we analysed the bona fide error; the classifier’s binary
outcomes and scalar responses were both analysed for bias; the threshold deter-
mining the classifier’s operating point was considered a variable.

Our main finding is that the behaviour of race bias depends on several char-
acteristics of the response distributions: different means or different variances
between two demographics; bimodality or existence of outliers in a certain demo-
graphic. The implication is that race bias is cannot always be attributed to dif-
ferent mean responses, a misconception sometimes reinforced by the fact that
in statistics, colloquially, the term bias is often used to describe the component
of the error corresponding to the difference in means. As a practical implica-
tion of our findings, we note that methods for automatically choosing low bias
thresholds should not assume a unique solution to the problem.

In our future work, we would like to conduct a theoretical study of bias,
assuming, for example, that the responses follow log-normal distributions.
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Abstract. Fall detection systems are relevant in our aging society aim-
ing to support efforts towards reducing the impact of accidental falls.
However, current solutions lack the ability to combine low-power con-
sumption, privacy protection, low latency response, and low payload. In
this work, we address this gap through a comparative analysis of the
trade-off between effectiveness and energy consumption by comparing
a Recurrent Spiking Neural Network (RSNN) with a Long Short-Term
Memory (LSTM) and a Convolutional Neural Network (CNN). By lever-
aging two pre-existing RGB datasets and an event-camera simulator, we
generated event data by converting intensity frames into event streams.
Thus, we could harness the salient features of event-based data and ana-
lyze their benefits when combined with RSNNs and LSTMs. The com-
pared approaches are evaluated on two data sets collected from a single
subject; one from a camera attached to the neck (N-data) and the other
one attached to the waist (W-data). Each data set contains 469 video
samples, of which 213 are four types of fall examples, and the rest are nine
types of non-fall daily activities. Compared to the CNN, which operates
on the high-resolution RGB frames, the RSNN requires 200× less train-
able parameters. However, the CNN outperforms the RSNN by 23.7 and
17.1% points for W- and N-data, respectively. Compared to the LSTM,
which operates on event-based input, the RSNN requires 5× less train-
able parameters and 2000× less MAC operations while exhibiting a 1.9
and 8.7% points decrease in accuracy for W- and N-data, respectively.
Overall, our results show that the event-based data preserves enough
information to detect falls. Our work paves the way to the realization of
high-energy efficient fall detection systems.

Keywords: Fall detection · Wearable cameras · Event-based · Deep
learning · RSNN · CNN · LSTM

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
N. Tsapatsoulis et al. (Eds.): CAIP 2023, LNCS 14185, pp. 33–42, 2023.
https://doi.org/10.1007/978-3-031-44240-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44240-7_4&domain=pdf
http://orcid.org/0000-0001-7511-2910
http://orcid.org/0000-0002-5842-5752
http://orcid.org/0000-0001-5918-8990
http://orcid.org/0000-0002-5518-8990
http://orcid.org/0000-0002-8827-2590
http://orcid.org/0000-0001-6552-2596
https://doi.org/10.1007/978-3-031-44240-7_4


34 X. Wang et al.

1 Introduction

Elderly individuals often experience reduced control over their bodies, weaker
bones, and longer recovery times in case of injuries, which increase the risk,
severity, and impact of falls [1]. The act of falling poses a significant threat
to the elderly population as it is considered a factor leading to a decrease in
autonomy, fatalities, and harm [2]. These incidents can result in high healthcare
costs and other related expenses, which can place a strain on both individuals and
healthcare systems [3]. There is, therefore, a growing interest in the development
of more effective, low-power, and privacy-friendly fall detection systems [4].

The aforementioned factors serve as our motivation to develop a fall detection
system that can be embedded in Internet of Things (IoT) or edge computing
with low energy consumption, privacy protection, and low-latency computation
using minimal computational resources. In pursuit of this objective, the current
study introduces a proof-of-concept to detect falls on the edge with IoT devices.
This is achieved by interfacing the output of event cameras – generated via
the conversion of an existing dataset with RGB video clips – with a Spiking
Neural Network (SNN), which requires relatively few parameters and multiply-
accumulate (MAC) operations.

Unlike traditional frame-based cameras, event-based cameras have indepen-
dent pixels which respond only to changes in brightness over time [5]. The pix-
els operate asynchronously and report local brightness changes at the time of
their occurrence. This approach has significant advantages, namely low energy
consumption, high temporal resolution, low-latency event streams, and high
dynamic range.

This work has two main contributions. Firstly, we provide a comparative anal-
ysis between a standard CNN operating on RGB frames along with a RSNN and
a LSTM model trained on simulated event-based data. Secondly, we investigate
the balance between performance and efficiency in relation to model complexity
and energy consumption.

2 Related Works

In the context of fall detection, the types of sensors that have been investigated
can be broadly classified into four distinct types: wearable, fixed visual, ambi-
ent sensors, and sensor fusion [6]. Wearable sensors are popular options due to
their portability and ability to collect data without location limitations. More-
over, they can leverage the physiological variations of the human body. Fixed
visual sensors are particularly useful as they consist of simplified hardware with
good image quality and notable reliability. Different types of fixed visual sensors,
including RGB cameras and RGB-D depth cameras, have been investigated in
this regard [7]. The integration of wearable sensors and visual sensors has led
to the emergence of wearable cameras as a promising alternative for fall detec-
tion. The fusion of various sensors can enhance the resilience of fall detection
systems [6].
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Fig. 1. Mounting of two cameras to the neck and waist of the participant. Left: front
and profile photos of the camera compared to the size of a coin. Right: frame sequences
collected by the wearable cameras from the two perspectives.

Over the past decade, event-based cameras have gained increasing popular-
ity due to the advantages mentioned above. Also, event-based sensing has been
employed to investigate action recognition on third-person view datasets, reflect-
ing the increasing interest in this sensing paradigm [8]. In a recent study [9], the
authors compared the performance of a CNN combined with a LSTM architec-
ture on conventional gray-level frames with corresponding simulated event-based
data with respect to human action recognition. Their results show the plausibil-
ity of using simulated event-based data to classify four different activities.

However, none of the studies mentioned above provide a fall detection solu-
tion, which is portable, low-power, and low-latency. We address these scientific
challenges by investigating an event-based approach. By removing the need for
cloud computing, our event-based method can provide enhanced privacy, speed,
and security by processing data directly on the edge.

3 Methods

3.1 The Data Set

We introduce two new public datasets of 469 RGB video samples each, i.e., more
than previous datasets [10,11], and the corresponding simulated event-based
data. Two small and light-weight wearable cameras of the same type, (measuring
420× 420× 200 mm and 25 g), were used for data collection, one attached to the
neck and the other to the waist, Fig. 1. The two cameras were used to capture
the events at the same time. In this respect, our dataset consists of two subsets
of 469 samples each. For simplicity, the two categories will be referred to as
W-data and N-data. Video recordings include 13 daily activities categorized into
four types of falls (front falls, back falls, downside falls, and lateral falls), and
nine non-fall events (lying, rising, sitting down, bending, stumbling, walking,
standing, squatting, and sitting static). The samples were collected indoors and
outdoors over two days, resulting in 213 falls and 256 non-falls per camera.
The data was collected with a resolution of 1080p and a frame rate of 30 fps.
Hereafter, our comparative analysis focuses on the binary classification task, i.e.,
on discriminating samples between falls and non-falls.
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Fig. 2. Pipeline workflow with an example of a fall event. From RGB frames
(1980 × 1080 pixels) to streams of events ek = (t, x, y, p)k, depicted as time surfaces, via
the event-camera simulator v2e. The final binary representation is achieved via space
downscaling and unfolding, with non-zero values (dark) of downscaled pixels (32 × 32)
representing the occurrence of at least one event in the corresponding time bin.

Data Splitting: We use the same data split across the three models under
investigation, CNN, LSTM, RSNN: 15% of the data is randomly selected as
the test set, and the remaining data is used to generate 10 randomly selected
train/validation splits with a ratio of 85:15.

From Videos to Events (v2e): The v2e simulator [12] was used to gener-
ate simulated event-based data for our experiments1. The tool v2e can pro-
duce highly realistic synthetic events from normal RGB frames. As event-
camera model, we chose the Dynamic Vision Sensor (DVS)2, with a resolution
of 128 × 128 pixels. Figure 2 shows examples of original RGB frames and the
corresponding event-based data for one sample of our dataset. The event data
format consists of the 4-tuple ek = (t, x, y, p)k, where tk, (xk, yk) and pk refer
to the time step, spatial coordinates, and polarity, respectively. An example of
this data format is depicted in Fig. 2 as a time surface [5], with darker pixels
indicating more recent time. Both frame- and event-based data formats are con-
sidered in our study, and processed with two pipelines; one processing the event
time series (Sect. 3.2 A), and the other processing the RGB frame-based data
(Sect. 3.2 B).

Event-Based Data Pre-processing: Before processing the event streams, the
pixel array’s spatial resolution was downscaled to 32× 32 pixels to reduce the
number of network parameters and computational resources needed for training
the RSNN and LSTM. Despite the event-camera output’s asynchronous nature,
the models’ simulation on a CPU requires defining a time binning step for the

1 As a proof-of-concept study, we chose the conversion parameters for the event-camera
model with no background noise, i.e., thresh = 0.2, sigma = 0.02, cutoff hz = 0,
leak rate hz = 0, shot noise rate hz = 0.

2 This choice was driven by ongoing research, which aims to compare current results
with event-camera recordings using an embedded DVS (eDVS) [13].
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Fig. 3. (Left) Event-based data for 3 non-fall and 3 fall samples. (Right) Per-class
distribution of pixels’ mean firing rates across all samples in the dataset.

input event stream, which was set to dt = 10ms. To accommodate different video
clip lengths, we extracted for each sample the time of maximum instantaneous
firing rate T ∗. Then, we cropped each video clip to a time window ΔT = 7sec,
which was centered around the time point t∗ drawn from a uniform distribu-
tion p(t) = 1/(2Δ), with t ∈ [T ∗ − Δ,T ∗ + Δ] and Δ = 500ms. The polarity
information was discarded, and the spatial information was collapsed to a single
dimension, where x and y event coordinates are mapped to a single index. This
dimension corresponds to the number of input neurons nneurons,1 of the RSNN
(and input nodes of the LSTM). The resulting event-based representation has
dimensions: nneurons,1 × (103ΔT )/dt, Fig. 2. Figure 3 displays three randomly
selected samples for each of the two classes, fall and non-fall.

To assess whether the simulated event-based data preserves the relevant infor-
mation for the problem at hand, we first quantified the performance of a stan-
dard classifier, namely a linear Support-Vector Machine (SVM), operating on
“time-collapsed data”, i.e., when the temporal information of the input time
series is removed. In this representation, each video sample is represented by a
1-dimensional vector, where each element is the sum of all events at the corre-
sponding location. Results are illustrated and discussed in Sect. 4.

3.2 Fall Detection Approach

A) Classifiers for the Event-Based Data. This section describes the RSNN
and the LSTM models used to classify the event time series.

Events + RSNN: As the natural interface of event-based sensing is event-
based processing, we assessed the performance of an RSNN for fall detection.
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To this end, we adapted the RSNN model from [14] and trained it using Back-
propagation Through Time (BPTT) with surrogate gradients [15]. Specifically,
the network consists of three layers current-based (CUBA) Leaky Integrate and
Firing (LIF) neurons. Compared to the LIF model, the CUBA LIF integrates
the input spikes into a current variable prior to generating the membrane poten-
tial [16]. The input layer has one-to-one connections with the 32×32 down-scaled
pixel array generated by v2e, Fig. 2. The two downstream layers are fully con-
nected with plastic synapses, and with the output layer consisting of two CUBA
LIF neurons, which encode the network prediction with one-hot encoding. By
leveraging the approximation of the spiking non-linearity with a differentiable
function, surrogate gradients were computed using PyTorch’s differentiation.
The network was trained by minimizing the Negative Log-Likelihood Loss (Lnll).
For each input μ, the network predicted probability pi of class i was computed as
the softmax of the maximum membrane potential of the readout units, Ui[t] for
i ∈ [0, 1], measured across the time window ΔT . When averaged over an input
batch of size N , with M = 2 output classes (fall or nonfall), the Lnll results in:

Lnll =
1
N

N∑

µ

[
−

M∑

i

yilog(pi)

]

µ

, (1)

where yi is the true probability. To constrain the membrane potential fluctua-
tions around Ui = 0, a regularizing term Lreg was formulated as follows:

Lreg = − 1
N

N∑

µ

(
log

(
1 + exp(Uµ)

)
+ log

(
1 + exp(−Uµ)

))
. (2)

The total training loss is defined as Ltot = Lnll + αLreg, where α = 0.5 was
used for the surrogate gradient descent.

The RSNN hyperparameters were determined by means of a Hyper-
Parameters Optimization (HPO) procedure implemented using the Neural Net-
work Intelligence (NNI) toolkit [17]. A total of N = 250 experiments were per-
formed over the ten train/validation splits to find the optimal subset of network
hyperparameters with the Anneal tuner algorithm.

Events + LSTM: An LSTM network was used to process the temporal data.
Specifically, we implemented a three-layer LSTM model following the RSNN
structure, with the first layer comprising LSTM nodes with an input shape of
(1024, 700), Fig. 2, followed by two fully connected layers. The number of hidden
nodes was set equal to the number of neurons in the RSNN hidden layer.
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Fig. 4. Hyper-parameters Optimization. RSNN classification accuracy as a function of
the model hyperparameters.

B) Classifiers for the Frame-Based Data

CNN + LSTM: We extracted 20 evenly-sampled frames from each clip within
the time window [T ∗ − ΔT /2, T ∗ + ΔT /2] chosen for the event-based models.
This data was then fed to the pipeline comprising a ResNet50 CNN, followed by
a downstream LSTM classification head.

4 Experimental Results

Baseline Classifier. We first evaluated the frame-to-event data conversion by
feeding the “time-collapsed” event-based data to a linear SVM. The validation
accuracy, measured over the 10 validation sets, is 81 ± 4% for the N-data and
85 ± 5% for the W-data. Given the time-based nature of the event-based data,
which is inherently removed in the “time-collapsed” representation, we anticipate
that our results are highly dependent on the choice of the specific time window
[T ∗−Δ,T ∗+Δ] used to crop the initial video. However, this preliminary analysis
served only to confirm that the information content needed to address the fall-
detection problem was still preserved after the frame-to-event conversion.

Hyper-Parameter Optimization. Figure 4 shows the results of the HPO
experiments for the RSNN, with the classification accuracy reported as a func-
tion of the optimized hyperparameters, i.e., the membrane time constant of the
hidden and output layers (τmem,2, τmem,3, respectively), the ratio between mem-
brane time constant and synaptic time constant for hidden and output layers
([τmem/τsyn]2, [τmem/τsyn]3, respectively) and the number of neurons in the hid-
den layer (nneurons,2). Each data point is the result of one experiment running
on one randomly selected train/validation split. Note that for both W- and N-
data, the architectures converge to a time constant ratio [τmem/τsyn]2 = 0.5 and
[τmem/τsyn]2 = 2, respectively.

Comparative Analysis. The results of our comparative analysis are shown in
Table 1, which reports all the figures of merit taken into account.

Performance: The performance analysis on the classification accuracy shows that
the CNN operating on the high-resolution RGB frames reaches the best accuracy
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Table 1. Results of fall detection by different data types and methods. The number
of operations are with respect to the inference stage, #Par indicates the number of
trainable parameters, and Nt refers to the number of time steps.

Data Methods Operations # Par∗ Accuracy†

MACs (Nt) ACs (Nt) Waist Neck

events LSTM 5.7 × 106Nt 0 0.5 × 106 0.779(±0.02) 0.897(±0.02)

events RSNN 2.3 × 103Nt 4 × 105Nt 0.1 × 106 0.760(±0.04) 0.810(±0.03)

frames CNN+LSTM 8.3 × 1010 + 1.6 × 105Nt
� 0 2.5 × 107 0.997(±0.01) 0.981(±0.01)

∗ With nneurons,2 = 100 for LSTM and RSNN.
� MACs of the pretrained Resnet50 are accounted once as the model operates on all
input frames at once.
† Reported with the set of hyper-parameters obtained with HPO.

score, with 99.7% accuracy for W-data and 98.1% for N-data, and outperforms
both event-based methods. This, however, comes at the cost of a larger number
of trainable parameters (i.e., 2 orders of magnitude larger). By contrast, the
performance gap of the RSNN model, when compared to the LSTM operating
on the same input resolution, is significantly lower (2% points for W-data and
9% points for N-data).

Computational Cost: We measured the number of trainable parameters, and
the number of computations required per time step in terms of accumulation
(AC) and MAC operations. Given the binary nature of spiking inputs, spikes
transmission in a RSNN can be approximated as ACs operations, which are
less power consuming than MACs [18]. The computation of MACs and ACs
for RSNN and LSTM is based on the theoretical analysis presented in [19],
while the operations count for Resnet50 is calculated using THOP, a tool for
operation counting, validated by previous studies [20]. Compared to the LSTM,
which operates on the same type of event-based input, the RSNN requires 2000×
less MACs in the inference stage.

5 Discussion and Conclusion

We propose a novel high-energy efficient methodology for fall detection. We
performed a comparative analysis of this event-based approach coupled with
two types of classifiers, namely RSNN and LSTM, versus a traditional CNN
approach that operates on full-resolution RGB frames.

Prior to the comparative analysis, we used a linear classifier to assess whether
the information content needed to detect falls is still preserved after the video-
to-event conversion. In spite of the “time-collapsed” representation, the linear
classifier achieved high (validation) accuracy when trained on the event count
collected over the time window ΔT . While this served as a benchmark perfor-
mance for using the event-based data to detect falls, we conjecture that the
performance of such a linear classifier is highly dependent on the specific choice
for the time window ΔT . Moreover, such an approach would not be ideal for
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learning spatio-temporal patterns, such as in fall detection, as it operates on
data gathered over time windows and not on real-time streams of incoming
data [14]. This is in contrast to time-based models, such as RSNNs and LSTMs,
which offer promising candidate solutions to move towards online fall detection
systems.

Hence, we evaluated the effectiveness of combining the event-based data
stream with time-based approaches. Compared to the CNN, both event-based
pipelines exhibit a drop in effectiveness. However, it is noteworthy that the CNN
operates on input RGB frames of size 224×224 pixels as opposed to the 128×128
spatial resolution of the event-based pipeline, which was further downscaled to
32 × 32 pixels. As a result, the CNN approach comes at the cost of 200× more
trainable parameters than the shallow RSNN and far more MACs per step. In
comparison to the LSTM approach, the number of MACs per step of the RSNN
is three orders of magnitude lower based on a comparable shallow topology.
This is however at the cost of a drop in accuracy. In future work, we will do a
systematic analysis on the trade-off with respect to input size vs. accuracy vs.
computational complexity.

In general, our research shows potential for energy-efficient pipelines for fall
detection by using spike-based algorithms. Yet, based on the current experi-
ments, in comparison to standard deep learning methods, the presented solution
comes at the cost of decreased accuracy. To address this gap, in future work,
we will investigate the incorporation of multiple recurrent hidden layers, explore
different learning mechanisms for spike-based algorithms, and utilize Winner-
Takes-All layers for real-time network predictions. To fully leverage the com-
putational efficiency of RSNNs, future studies may focus on deploying them on
specialized neuromorphic hardware that takes advantage of their event-based
nature. Additionally, before deploying on an embedded system, we aim to com-
pare our simulated event-based data with a new dataset collected using an eDVS.

We anticipate that the envisioned end-to-end event-based pipeline for fall
detection can deliver novel embedded solutions for fall detection, with promising
performance vs. energy efficiency trade-offs and enhanced privacy and security
by processing data directly on the edge.
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Abstract. Sleep monitoring has traditionally required expensive equip-
ment and expert assessment. Wearable devices are however becoming
a viable option for monitoring sleep. This study investigates methods
for autonomously identifying sleep segments base on wearable device
data. We employ and evaluate machine and deep learning models on
the benchmark MESA dataset, with results showing that they outper-
form traditional methods in terms of accuracy, F1 score, and Matthews
Correlation Coefficient (MCC). The most accurate model, namely Light
Gradient Boosting Machine, obtained an F1 score of 0.93 and an MCC
of 0.73. Additionally, sleep quality metrics were used to assess the mod-
els. Furthermore, it should be noted that the proposed approach is
device-agnostic, and more accessible and cost-effective than the tradi-
tional polysomnography (PSG) methods.

Keywords: Time series analysis · Deep learning · Machine Learning ·
Health monitoring systems · Wearables · Sleep Segments · Heart Rate ·
Actigraphy

1 Introduction

Sleep is essential for maintaining good health, but a significant proportion of
people - up to 30% - suffer from sleep disorders, which often go unnoticed [6,18].
While polysomnography (PSG) is the standard method for monitoring sleep in
clinical settings [3], it has some limitations. For one, it is not easily accessible, as
it can only be conducted in a laboratory setting. Additionally, PSG equipment is
invasive and may be difficult for patients to tolerate. Wearable devices, such as
actigraphy, can objectively monitor sleep non-invasively [1,22]. However, using
a single sensor to detect sleep periods may not be reliable [2]. Furthermore,
actigraphy has limitations, including a lack of validation studies for different
consumer-grade devices, the absence of standardized methods for identifying
human activities [20], and difficulty classifying wake events during sleep [13,17].
To address these limitations, our research focuses on developing an automated
method for detecting sleep periods using data from wearable devices.
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Most of the existing research in this field focuses on predicting sleep/wake
patterns within a single epoch. However, our research takes a slightly different
path by concentrating on identifying sleep boundaries, a concept that holds
significant importance in understanding sleep architecture. Thus, the primary
objective of our study is to develop an automated method that leverages data
from wearable devices to effectively detect sleep periods. Given the continuous
signals from heart rate and motion continuously captured over the night by a
wearable device, we employed various machine learning (ML) methods to predict
one or more sleep segments over the night period.

2 Related Work

Numerous algorithms were proposed to distinguish between different stages of
sleep and wakefulness. These algorithms utilized participants’ overnight move-
ments as input. Several notable algorithms resulting from this research include
Oakley [28], Scripps Clinic [14], Cole-Kripke [5], Sadeh [23] and Saznov [24] were
developed. Recent advances in Deep Learning (DL) methods have shown promis-
ing outcomes in handling temporal medical data, particularly when applied to
physiological signals [11]. However, the performance of DL is significantly depen-
dent on both the quantity and quality of the input signal data [26]. Although
the use of a large dataset as input can minimize this bias, for sleep tasks, many
studies have used small patient samples.

In [7], Dong et al. extracted features from electroencephalography signals to
feed into a deep neural network for detecting sleep stages. They tested window
sizes ranging from 1 to 8 s to determine the most suitable window width within
this range. Their work was evaluated on a dataset containing 62 healthy subjects.
For sleep stage classification, Zhang et al. [32] employed an unsupervised train-
ing method using a convolutional neural network based on EEG data to classify
sleep stages. The approach was tested on two datasets, one includes 25 people
with sleep difficulties, in addition to another dataset with fewer subjects. The
evaluation metrics included accuracy, sensitivity, specificity, kappa coefficient,
and F1. Zhang et al., utilized supervised learning algorithms to classify sleep
stages [30–32]. The method first extracts signals from raw electroencephalogra-
phy to learn features, then classifies sleep stages based on those features. In [13],
Khademi et al. worked on a dataset with 77 participants who had simultaneous
PSG and actigraphy recordings while sleeping in the sleep laboratory. Khademi
et al. [13] compared the results of actigraphy with PSG by assessing sleep epoch
by epoch. As a result, several recent studies [12,15,16,25,27] have used the data
from these devices versus PSG and actigraphy to increase sleep-tracking perfor-
mance. In [17], Palotti et al. sliced the input signals into small windows of a
fixed size (i.e., 10 min) and extracted features from each window to predict the
binary sleep stage for the center point of the window.

Previous studies utilized supervised learning to model sleep stages, specifi-
cally neural networks to analyze EEG data for sleep stage classification [7,30–32].
Additionally, wearable devices were verified in [9], but the release of commer-
cial products is often quicker than validation studies [4]. Due to the uncertainty
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surrounding the accuracy of new devices, there is a requirement for methods to
be device-agnostic. Recent device-agnostic research has focused on developing
handcrafted features on activity [10] and heart rate (HR) [19] to detect sleep
boundaries. However, to the best of our knowledge, this problem has never been
addressed with a ML approach.

3 Method

3.1 Dataset

This study utilizes data from the MESA Sleep Study1. The publicly available
MESA Sleep Study, part of the Multi-Ethnic Study of Atherosclerosis (MESA),
was conducted in six communities in the United States. MESA is by far the
largest dataset that includes concurrent PSG and actigraphy data. From an
initial group of 2,237 participants, 1,225 subjects were eligible for the study,
while 1,000 subjects were excluded due to lack of concurrent PSG, actigraphy,
and ECG data, insufficient qualified standard data, or data integrity issues. The
data used in our research comes from [29], which compiled data from subjects
with synchronized PSG, ECG, and actigraphy records in 30-second epochs. All
participants wore an actigraphy device for one week and underwent PSG for one
night at the same time.

Figure 1 shows the data from one of the participants used in the experiment,
including activity and HR signals, sleep hypnogram measured by PSG, and the
ground truth (GT) data. A sleep segment is defined by the onset and offset
points. Sleep onset is the transition from awake to sleep after five or more minutes
in the awake stage; and Sleep offset is the transition from any sleep stage to awake
and maintaining the awake stage for at least five minutes. It is worth noting
that we utilize the five-minute rule established by sleep experts to differentiate
between nocturnal arousal and nocturnal awakenings. Nocturnal arousals are
brief periods of wakefulness that occur during sleep, while nocturnal awakenings
are longer periods of wakefulness [8], which we investigated in our study to
enhance our understanding of sleep sessions.

3.2 Problem Modelling

We use a binary classification approach to classify each 30-second epoch as either
within or outside a sleep segment. The point of interest, which is the one we must
assign a label, can either be the central one, or the one at the end of the given
epoch. The end-point prediction simulates a real-time task that only uses past
information to make a prediction. To determine the sleep segments, we extract
features from fixed-size sliding windows of 5, 10, or 20 min, which correspond to
10, 20, and 40 epochs of 30 s each. In our method, we explore three types of data
preparation: centered vs. end-point, size of time window (5, 10, or 20 min), and
raw vs. processed features. Two labeling approaches, centered and end-point, are
1 Available at https://sleepdata.org/datasets/mesa.

https://sleepdata.org/datasets/mesa
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Fig. 1. Activity and HR signals captured from one of the participants over a night.
Ground truth data were extracted from noisy PSG signals. The green bar indicates a
sliding time window of 10 min in this example.

Fig. 2. The architecture of the DL model with different numbers of heads.

compared, and models are trained using either raw HR and activity counts or
137 processed features for each signal, resulting in an input of R137×S for a time
window of size S. The processed features used in this study are listed in Table 1.
Each of the three types of data preparation generates a distinct feature set, and
in total, we experimented with 12 feature sets individually, using both ML and
DL models. Table 2 summarizes the input size and the number of instances when
using either the raw or processed data.

4 Models

We evaluated six ML models, namely logistic regression (LR), linear discriminant
analysis (LDA), random forest (RF), extra tree classifier (ET), and light gradient
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Table 1. An overview of the features extracted from the MESA dataset

Feature Name Description

Continuous Wavelet Transform
(CWT) Coefficients

It calculates a continuous wavelet transform for the Ricker
wavelet. In mathematics, it is a tool that provides an
over-complete representation of a signal by letting the
translation and scale parameter of the wavelets vary
continuously

Number of CWT Peaks It was used to find sharp peaks among noisy data

Sum of Values It was used to calculate the sum over the time series values

Descriptive Statistics on the
Autocorrelation of the Time Series

Autocorrelation is a way of measuring and explaining the
internal association between observations in a time series

Kurtosis It was used to measure the combined weight of the
distribution’s tails relative to the center of the distribution

Skewness It was used to calculate the degree of asymmetry observed in
the probability distribution

Abs Energy It calculates the absolute energy of the time series which is
the sum over the squared values

Absolute Sum of Changes It calculates the sum over the absolute value of consecutive
changes

Mean, Median, Standard Deviation It calculates the average, the number in the middle, and the
standard deviation

Mean Absolute Change It calculates the mean over the absolute differences between
subsequent time series values

Mean Change It calculates the average over time series differences

Percentage of Reoccurring Data
Points to All Data Points

It was used to show the percentage of non-unique data points

Percentage of Reoccurring Values to
All Values

It was used to show the percentage of values that are present
in the time series more than once

Sum of Values, Variance, Variation
Coefficient

It calculates the sum over the time series values and variance.
And the variation coefficient returns the relative value of
variation around the mean)

Evaluate Time Series It was used to determine if they had a large standard
deviation. According to a rule of thumb, the standard
deviation should be a fourth of the range of the values

Variance Larger than Standard
Deviation

It returns a boolean variable denoting if the variance is
greater than its standard deviation

Linear Trend It calculates a linear least-squares regression for values of the
time series

Root Mean Square (RMS) It is one of the most commonly used measures for evaluating
the quality of predictions. It shows how far predictions fall
from measured true values by using the Euclidean distance

Fast Fourier Transform (FFT)
aggregated

It returns the spectral centroid (mean), variance, skew, and
kurtosis of the absolute Fourier transform spectrum

Fast Fourier Transform (FFT)
Coefficient

It calculates the Fourier coefficients of the one-dimensional
discrete Fourier Transform for real input by fast

Fourier Entropy It calculates the binned entropy of the power spectral density
by using Welch’s method
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Table 2. The size of features, training and test sets for the raw and processed data.

Raw Data Processed Data

# Features 2 × window size 2 × 137

# Train Samples 17,202 17,202

# Test Samples 1,188 1,188

boosting machine (LGBM), and DL model, namely CNN-LSTM, which we chose
due to its state-of-the-art performance in applications with similar characteris-
tics. The CNN layer extracts local features, and the LSTM layer finds temporal
patterns in the data. We investigated if Multitask Learning can help regularize
networks in our study. Multitask Learning is a form of inductive transfer that
can improve a model by introducing an inductive bias [21]. We investigate three
variants of the DL model with the same internal layers but different numbers
of heads, namely the One-head, Two-head, and Five-head nets, shown in Fig. 2.
The extra heads are designed to mitigate the challenge of overfitting.

To test ML/DL model performance on unseen data, an 11-fold cross-
validation was used for each of the 6 ML and 3 DL models, and for the 12
preprocessing configurations. For each of the 11 experiments, a random search
was used to fine tune the hyper parameters of the models based on the respec-
tive 10 training partitions. MCC was used as the primary evaluation metric due
to its advantages over F1-score for unbalanced data. The impact of the sleep
segment generation methods on sleep quality metrics was assessed by evaluating
the number of awakenings during the night and sleep latency. The code and
datasets are publicly available2.

5 Evaluation and Results

5.1 Baseline Study

To compare the performance of the ML and DL techniques that we investi-
gate, we begin by employing 10 standard approaches from the existing research,
whose results are shown in Fig. 3. The rescored version of the Scripps Clinic and
Oakley10 algorithms produced the highest MCC, with values of 0.60 and 0.59,
respectively. This is consistent with the findings reported in [17].

5.2 Machine Learning and Deep Learning Models

We compared the performance of six ML with 12 different preprocessing config-
urations described in Sect. 3.2, as shown in Fig. 4, and found that some models
were more sensitive to the preprocessing strategy than others. The LR and LDA
models performed better when using processed features compared to raw sig-
nals. In contrast, LGBM and ET were less affected by the processed features
2 https://github.com/joaopalotti/sleep boundary project.

https://github.com/joaopalotti/sleep_boundary_project
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and were most affected by the predicted epoch’s position within the window.
Our experiments suggest that using processed features with centered windows is
more likely to produce better results, although the effect of window size on the
results is difficult to determine.

We analyzed the combinatory effect of the 12 configuration strategies for DL
models in Fig. 5, and found that the position of the target point (center or end-

Fig. 3. Comparison of 10 baseline models in literature by MCC and accuracy.

Fig. 4. The MCC results of the ML methods for 3 configurations. LGBM achieves the
highest MCC score of 0.73 while using center point prediction, windows of 20 min, and
processed features.
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point), played an important role. Also, MCC improved with additional heads.
Figure 6 presents the results of the CNN-LSTM models. The best outcome was
obtained with a CNN-LSTM model trained with five heads, using processed
features, with a centered window of 40 epochs, which yielded an MCC of 0.696.
Table 3 summarizes the best results obtained by the baseline algorithms, and
by the ML and DL models for our unbalanced dataset. Although all methods

Fig. 5. The MCC results for the DL models for four distinct configurations.

Fig. 6. Comparison of MCC results for DL models with varying configuration settings,
including one, two, and five heads. The highest MCC scores were achieved using pro-
cessed features with a window size larger than 20 epochs and with the target epoch
positioned at the center of the window.
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showed high accuracies above 0.88, the differences in F1 score and MCC are
significant. The top 6 ML models achieved an average MCC of 0.72, while the
top 3 baseline algorithms had an average MCC of 0.59. Figure 7 shows the final
sleep windows for one of the participants traced by both the Rescored Oakley
and Rescored Scripps Clinic algorithms with a comparison to the LGBM with
the following configuration: center point, window of 20 epochs, and processed
features.

6 Clinical Results

This section compares the best sleep boundary algorithm, LGBM, with tradi-
tional algorithms used in the sleep science community to calculate sleep quality
metrics, such as total sleep time, sleep efficiency, and number of awakenings.

Table 3. Top scoring models for each classifier ranked by MCC.

Name Configuration MCC F1 Acc.

Rescored Scripps Clinic [14] - .599 .894 .898

Rescored Oakley 10 [28] - .598 .874 .823

Rescored Cole Kripke [5] - .589 .898 .845

Light Gradient Boosting Machine Processed, Centered, 40 epochs .732 .936 .902

Light Gradient Boosting Machine Processed, Centered, 20 epochs .732 .932 .898

Light Gradient Boosting Machine Raw, Centered, 40 epochs .719 .933 .898

Logistic Regression Processed, Centered, 40 epochs .718 .933 .898

Extreme Gradient Boosting Processed, Centered, 20 epochs .718 .929 .892

Extreme Gradient Boosting Processed, Centered, 40 epochs .717 .934 .898

CNN-LSTM with Five heads Processed, Centered, 40 epochs .696 .886 .890

CNN-LSTM with Two heads Processed, Centered, 40 epochs .689 .883 .888

CNN-LSTM with One head Processed, Centered, 20 epochs .689 .878 .882

Fig. 7. An example of one participant on whom the LGBM method outperforms the
Rescored Oakley and Rescored Scripps Clinic baseline methods.
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As an example, Fig. 7 illustrates the comparison of top two baseline algorithms
versus LGBM for one random participant. There are two awakening events in
the GT signal. While both the Rescored Scripps Clinic and LGBM algorithms
correctly detect the number of awakenings, the Rescored Oakely10 algorithm
only identifies one of the awakenings.

Figure 8 displays the cumulative difference between the registered values of
each algorithm and the GT in terms of number of awakenings. The ML model
has an average error close to 0, while Rescored Oakley10 overestimates the num-
ber of awakenings per night by 1 on average. Also, in terms of sleep latency,
Fig. 8 indicates that both LGBM and Rescored Oakley are the most effective
approaches, with no significant differences between them. These results suggest
that our proposed LGBM algorithm can serve as a valuable alternative to tra-
ditional algorithms for a better assessment of sleep quality.

Fig. 8. Comparison of algorithms for predicting awakenings and sleep latency, with
LGBM outperforming Oakley 10 for awakenings and showing similar results for sleep
latency. Error bars indicate 95% confidence intervals.

7 Conclusion and Future Work

In conclusion, this study employed ML models and a combined CNN-LSTM
DL model to address sleep segment classification in a time series problem. The
proposed approaches demonstrated superior accuracy and MCC compared to
previous methods. The LGBM model achieved the highest MCC using processed
features with a window of 40 epochs, with an accuracy and F1 score of 0.902
and 0.936, respectively. While the study found that ML models outperformed DL
models, the difference could be attributed to the size of the dataset. Limitations
of the study include the exclusion of individuals with sleep disorders and the
use of only nighttime data. Future research should expand on these findings by
testing the models on a 24-hour dataset and exploring advanced neural network
architectures, such as Transformers. Additionally, deploying the best model on
commercial wearable devices would offer insights into its practical limitations.
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Abstract. Properly training LSTMs requires long time and extensive
amount of data. To improve the training of these models, this paper pro-
poses a novel residual and recurrent neural network, Resnet-LSTM, for
spatio-temporal pedestrian action recognition from image sequences. The
model includes a novel layer, called MapGrad, whose goal is improving
stationarity of the feature map sequences processed by the ConvLSTM.
The paper demonstrates the effectiveness of the proposed model and the
MapGrad layer in the spatio-temporal classification of pedestrian actions
through an ablation study and comparison with state-of-the-art meth-
ods. Overall, RLSTM achieves an accuracy value of 88% and an average
precision of 94% on the JAAD dataset, which is a widely used benchmark
in the field. Finally, the paper empirically analyzes the effect of increas-
ing input sequence length on standing action recognition, showing that
the proposed method yields a recall of 93%.

Keywords: Pedestrian action recognition · Time series data · LSTM ·
Spatio-Temporal features

1 Introduction

Autonomous driving (AD) is a rapidly evolving field in computer vision whose
primary focus is to ensure the safety of pedestrians, who often interact with vehi-
cles in complex and unpredictable ways [12,13]. A crucial task for autonomous
vehicles is to recognize whether or not a pedestrian is crossing the road. Pre-
liminary steps to achieve this, involve detecting and tracking pedestrians and
identifying walking and standing actions. The latter task, pedestrian action recog-
nition (PAR), is challenging when using mobile cameras. Indeed, motion blur,
the dynamic background of the street scene, variations in the pedestrians’ visual
appearance, and frequent occlusions complicates the action classification task.
To address the problem, techniques derived from time series analysis are often
employed, which allow for the processing of frame sequences to extract motion
and changes in the scene over time [4–6]. However, meaningful motion patterns
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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are difficult to model due to the complex interference between pedestrians’ and
vehicle’s movements. Indeed, changes in vehicle speed and direction can lead to
changes in the apparent motion of pedestrians. To model such complex tempo-
ral dependencies, Long-Short Term Model (LSTM) [7] is often used with time
series due to its ability to capture both short- and long-term dependencies over
time. ConvLSTM [8] has instead been used to process image sequences. In [13],
LSTMs are used for action recognition despite these models are difficult to train,
in the sense that training requires long time and extensive training data.

In this paper, we propose a novel end-to-end trainable deep architecture that
leverages residual layers [9] and ConvLSTM for PAR. Our architecture takes
advantage of a novel layer, MapGrad, that improves the extraction of temporal
features. MapGrad builds on preprocessing techniques adopted in time series
analysis and, in the context of PAR, helps improve learning of an LSTM and
reduce the negative effect of camera motion on feature maps without increasing
the number of model parameters. To achieve this goal, MapGrad computes the
forward difference of the feature maps extracted over time from a convolutional
network, thus improving the stationarity of that sequence while, at the same
time, highlighting temporal feature changes.

In addition, we emphasize that the length of the input sequence (SL) should
be carefully selected when designing a PAR system, as it directly impacts the
real-time performance of the model and the recall of the standing action.

In summary, our contributions in this paper are:

– A novel residual and recurrent architecture (RLSTM) for PAR;
– A novel layer, MapGrad, that pre-processes feature maps before feeding a

LSTM. Our ablation study shows that, in our experiments, MapGrad con-
tributes to increase the accuracy in classification of more than 17% when
processing input sequences of 7 frames;

– A study on the effect of increasing the SL on the recognition of standing
pedestrians with respect to the real-time constraints of the PAR system.

The plan of the paper is as follows. Section 2 reviews works on action recogni-
tion with mobile cameras. Section 3 describes in detail the proposed architecture
and the MapGrad layer. Section 4 presents experimental results on a public avail-
able benchmark and the comparison to the existing state-of-the-art techniques.
Finally, Sect. 5 summarizes our main findings and describes future works.

2 Related Work

Action recognition is a widely studied field in computer vision that aims to auto-
matically recognize human actions from image sequences. These approaches have
been applied to different domains such as sports analysis [14], surveillance [15]
and AD [16].

In the context of AD, the main challenges to address concern the dynamic
camera motion and the complex motion patterns of pedestrians. Several deep
learning (DL) architectures have been proposed for PAR using mobile cameras,
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including 2D/3D convolutional networks [6], recurrent networks [17], and hybrid
models combining both approaches [5].

To improve pedestrian safety, several studies have investigated different
approaches to detect crossing intention by considering environmental fac-
tors [18,20] and visual cues, which include analyzing the body posture [18,19]
and pedestrians’ motion patterns [21].

Recognizing atomic actions, such as walking and standing, is an important
step towards more complex pedestrian activities recognition. For instance, the
posture and motion features of pedestrians while walking or standing can provide
important cues for inferring their intention to cross the road. Due to the difficulty
in recognizing standing from walking, a limited number of studies [1–3] have
investigated this task. This is because the visual similarity between these two
actions poses a significant obstacle, especially in the presence of motion blur.

Our proposed approach differs from the previous papers as we adopt a resid-
ual and recurrent network to process a sequence of image crops of the detected
pedestrians. Compared to the two-stream CNN used in [2], our approach has a
simpler architecture, which is computationally more efficient. Additionally, our
approach does not require pedestrian pose keypoints, as in [3], making it more
robust to changes in pose and viewpoint. Finally, our use of an LSTM layer
allows for the incorporation of temporal information, which is not possible in
the cropbox-based AlexNet architecture employed in [1].

3 Proposed Method

Given a video acquired by the camera mounted on the vehicle, we assume that
a visual tracking algorithm, for instance DeepSort [10] or Track R-CNN [11],
detects and tracks pedestrians. Our goal is to classify sequences of image crops
to infer the pedestrians’ actions. These action sequences can be modeled as 4D
tensors of size [L ×H ×W × C], with C indicating the number of channels of
the L images with height H and width W .

Our model, which we refer to as Spatio-Temporal Resnet-LSTM (RLSTM),
takes in input action sequences and infers if the pedestrian is walking or standing.

3.1 Spatio-Temporal RLSTM

As shown in Fig. 1, RLSTM combines both spatial and temporal information of
an input sequence to achieve robust PAR. It is composed of two sub-networks.

The first sub-network is the spatial feature extraction module, and focuses
on time-independent spatial features extraction, since it computes convolutional
features on each image crop in the action sequence. The module employs the first
two residual blocks of a pre-trained ResNet50, and two additional convolutional
layers before the output is passed to the temporal feature extraction module.
The second sub-network models behavioral features from the action sequences by
using a ConvLSTM2D layer, and uses them to classify the input action sequence.
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Fig. 1. Our proposed RLSTM model for PAR includes a spatial feature extraction
module from the input action sequences, and a temporal feature extraction module for
modeling behavioral features. Our MapGrad layer is inserted between these modules
to transform the feature maps to be processed by the ConvLSTM layer.

In this module, convolutional and LSTM memory cells learn spatio-temporal
patterns in the input sample.

In between the two modules, the MapGrad layer has the goal of transforming
the extracted spatial features in a way that is suitable for the ConvLSTM2D layer
to learn the pedestrians’ behavioral patterns.

3.2 MapGrad Layer

In AD, the camera moves with the vehicle. Thus, the background of each frame
changes dynamically, making it difficult to accurately model motion patterns
when pedestrians are standing or walking. To address this problem, it is impor-
tant both to extract suitable spatial features and, in the meantime, to take into
account the temporal context in which the pedestrian action develops.

A common preprocessing in time series analysis is called de-meaning, which is
to make the series zero-mean. Inspired by this, we implemented a layer to make
zero-mean the sequences of feature maps that feed our ConvLSTM2D layer. In
our formulation, the mean is computed only over the temporal dimension.

Given a spatial feature map Ft corresponding to the t-th frame, we element-
wise subtract the mean feature map Mt in a temporal window to ensure that fea-
tures are centered around zero, allowing subsequent analysis to focus on relative
changes in pixel values. It helps normalizing the brightness levels and reducing
the impact of lighting variations.

Our experimental results show that this feature map pre-processing con-
tributes to greatly improve the learning of the ConvLSTM2D. Probably, making
the feature maps zero-mean, contributes to reducing the effects of the dynami-
cally changing background, and allows the model to focus on the spatio-temporal
patterns relevant to the classification of pedestrians’ action.

Aside from making the spatial feature maps zero-mean, our MapGrad layer
uses temporal differentiation. This technique is adopted in time series analysis to
improve the stationarity of the series [22]. It consists in computing the forward
difference of the feature maps Ft extracted from consecutive image crops of the
input sequence. In this way, MapGrad highlights the temporal changes between
feature maps, which helps to isolate the pedestrian motion patterns.
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Temporal differencing can be represented as:

Dt = Ft − Ft−1 (1)

where Dt is the difference between the feature maps, and the output of the
MapGrad layer.

Implementation Details. To train our model, we use the ADAM optimizer
with a binary cross-entropy loss function and a batch size of 10. To prevent
overfitting, we incorporate dropout regularization with a rate of 0.5 after each
convolutional layer to enhance the stability and convergence of the training pro-
cess. Furthermore, we lower the initial learning rate of 10−3 to 10−6 for further
optimization. During training, we employ early stopping to prevent overfitting.

4 Experimental Results

This section details the experiments conducted to demonstrate the effectiveness
of our proposed model. We first describe the dataset used in the experiments, the
experimental protocol and the data pre-processing. To highlight the contribution
of our novel MapGrad layer and of the overall model, we conducted ablation
studies. We also trained our model on sequences of varying length. Finally, we
compared our best trade-off with the state-of-the-art.

4.1 Dataset

This work employs Joint Attention in Autonomous Driving (JAAD) dataset [1],
which is widely used in pedestrian behavior recognition research. The dataset
includes 346 short videos (5–20 s long), for a total of 82K frames. Videos are
acquired at 30 frames per second, and each frame is annotated for pedestrian
behaviors. Overall, the dataset contains annotations for 686 pedestrians.

The ground-truth annotations include the pedestrians’ bounding boxes and
behavioral tags like, for instance, actions (i.e., standing and walking) or behav-
ioral attributes (i.e., “cross” and “look”). Only action classes are used in this
study. Each pedestrian may perform multiple actions within a single video,
switching from standing to walking or vice versa.

JAAD dataset suffers from imbalanced classes with 974 standing action
sequences and 2524 walking. Variation in visibility on the road (Fig. 2), weather
conditions, and partial or full occlusions (Fig. 3) between pedestrians or due to
objects in the scene can make accurate recognition of pedestrian actions difficult.

Evaluation Metrics. To provide a comprehensive understanding of our
RLSTM performance, we report several evaluation metrics such as accuracy
value, F1-score, precision, recall, and average precision (AP).

The accuracy value measures the number of correctly classified samples, while
the F1-score, precision, and recall metrics provide a more detailed assessment of
the model’s performance per class. We also report the AP metric, which measures
the area under the precision-recall curve.
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Fig. 2. The figure shows two images captured at different day time. As shown, this
results in changes of the visibility on the road.

Fig. 3. The figure shows images of a pedestrian taken while the vehicle is moving. The
pedestrian is severely occluded, which makes harder recognizing his/her action.

Fig. 4. The figure shows a sequence of images cropped around a walking pedestrian.

Data Preparation. We implemented a data generator to facilitate data aug-
mentation while reducing storage and computational requirements. Our data
generator leverages tracking data (pedestrians’ bounding boxes) and class labels
(walking/standing), to generate a sequence of N image crops to feed our model.
In our experiments, N was set to 7, 10 and 15.

To ensure the quality of the resulting image sequences, samples with full
occlusion are filtered out. To maintain the aspect ratio of the pedestrian detec-
tion, the square crops of the pedestrian images also include a larger area sur-
rounding the pedestrians (Fig. 4). Image crops are then rescaled to a (224× 224)
size. The data generator produces balanced batches of action sequences by uni-
formly sampling over the time dimension. Since our model includes pre-trained
residual blocks, input images were normalized by subtracting the mean RGB
values and scaling the pixel values in the range [−1, 1].

4.2 Ablation Study

Our model includes several components and layers. Table 1 reports the ablation
study conducted to evaluate the impact of each component on PAR.

Each row of the table refers to a different model and all experiments are
conducted by considering a sequence length equals to 7.
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ResLSTM refers to our baseline model including residual blocks from the
pretrained ResNet50, Conv2D layers, and a ConvLSTM.

ResLSTM + BN + D refers to the regularized version of the previous
ResLSTM model by using batch normalization (BN) and dropout layers. In
particular, we adopted a BN layer after each convolutional layer to stabilize
the network and improve learning. We noticed that including a BN just before
the ConvLSTM2D layer was more effective in preserving temporal information,
allowing the network to learn more robust features. Regularization improved the
recall of the standing action.

RConv3D + BN + D refers to a regularized model including residual
blocks from the pretrained ResNet50, Conv2D layers and a Conv3D layer that
handles the time dimension of the feature maps. This experiment serves to high-
light the contribution of the ConvLSTM to the overall accuracy of the model.
As shown in the table, this model achieves similar performance to that of the
regularized ResLSTM suggesting that the ConvLSTM is unable to learn the
dynamics underlying to the input sequence from the extracted spatial features.

RConv3D + MapGrad refers to a model including residual blocks from
the pretrained ResNet50, Conv2D layers and a Conv3D layer. In this case, no
regularization technique is adopted. Instead, between the spatial feature extrac-
tor and the Conv3D layer we include our MapGrad layer. The MapGrad layer
contributes to improve the accuracy value by about the 4.17% compared to the
regularized RConv3D model. While the recall for the walking action increases,
the one for the standing action decreases. This may indicate that the Conv3D
has issues in discriminating between the (dynamic) background and the standing
pedestrian. In our experiments, we noted that, when using the MapGrad layer,
the impact of BN layers is very limited.

Centering Sequence of Maps refers to ResLSTM including centering
the feature maps along the time dimension (i.e., making zero-mean the map
sequence). As Table 1 shows, centering the map sequence improves over the
ResLSTM.

RLSTM (with MapGrad) refers to our proposed model. It is similar to
the ResLSTM model but includes the MapGrad layer between the spatial feature
extractor and the ConvLSTM layer (Fig. 1). As shown in the table, MapGrad
contributes to increase the accuracy in classification of more than 17% compared
to the regularized ResLSTM model, and of about 21.1% compared to the simpler
ResLSTM model. With respect to the RConv3D + MapGrad model, the increase
in the accuracy value is of about 14.7%. While ConvLSTM and Conv3D were
initially getting similar results, after the introduction of MapGrad in the model,
the performance of ConvLSTM is much higher than Conv3D. Therefore, the
preprocessing of feature map sequences to improve the stationarity of the series
appears to have a positive effect on the training of the LSTM layer.

Impact of the Sequence-Length. Table 2 compares the performance achieved
by our model when the SL assumes values 7, 10 and 15. As shown in the table,
increasing the SL improves standing action recognition since the network receives
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Table 1. Ablation studies

Models Accuracy F1-score Precision Recall AP

Standing Walking

ResLSTM (no preprocessing) 71 70.5 72.5 59 83 75

ResLSTM+BN+D 73 72.5 72.5 71 73 80

RConv3D+BN+D 72 71.5 72 73 70 74

RConv3D+MapGrad 75 75.5 75.5 69 82 83

ResLSTM + Centering
Sequence of Maps

84 85 84 85 83 90

RLSTM (with MapGrad)
(ours)

86 87 87.5 90 85 92

Table 2. Results achieved by RLSTM when varying the Sequence-Length

Model Seq. Length Observed Accuracy F1-score Precision Recall AP

(frames) ms

Standing Walking

7 200 86 87 87.5 90 85 92

RLSTM
(Ours)

10 300 88 88.5 88 93 84 94

15 500 90 90.5 90.5 94 87 96

more temporal context, and can capture the nuances of the standing action. The
column Observed ms shows the length in milliseconds of the observed sequences.
While the best performance is obtained when using 15 frames, the observed ms
equals half a second, which may not ensure a quick and accurate decision in the
context of AD. We note that 10-frame sequences are used in previous works [1,2].

4.3 Comparison with the State-of-the-Art

Table 3 reports the comparison of the results achieved by our model and works
at the state-of-the-art on the JAAD dataset.

Our approach outperformed other methods such as the Two-Stream CNN
approach in [2], the AlexNet model in [1], and the recurrent architecture in [3].
We note here that the methods in [2] uses multiple inputs. Similarly, the work
in [3] takes in input also the pedestrian’s pose keypoints. On the contrary, our
method only takes in input sequences of image crops of the pedestrian. Despite
the input of our model is simpler, it achieves superior results in all metrics
with respect to the work in [3], and a comparable accuracy value with respect
to [2]. Whilst it is known that recognizing the standing action is difficult [1], our
approach achieves a 93% of recall value for this action that, at the best of our
knowledge, is the highest value achieved on the JAAD dataset.



RLSTM for Pedestrian Action Classification 63

Table 3. Comparison to the state of the art models

Model Input AP Accuracy Recall

Standing Walking

Rasouli et al. [1] Cropboxs 83 - - -

Marginean et al. [3] Pose keypoints - 77 76 76

Park et al. [2] First frame - 88 72 91

Flow images

Position information

RLSTM (Ours) Cropboxs 94 88 93 84

5 Conclusions and Future Work

In this paper, we proposed RLSTM, a spatio-temporal neural network for the
classification of walking and standing actions in AD. RLSTM includes residual
blocks, convolutional and ConvLSTM layers, and MapGrad, namely a novel fea-
ture map preprocessing layer. Our experiments show that the introduction of
MapGrad to the model improves the learning of ConvLSTM without increas-
ing the number of parameters of the model. On the JAAD dataset, MapGrad
contributes to increase the accuracy in classification of more than 17%. Our
experiments also show that increasing the SL significantly improves our model’s
ability to recognize standing actions in real time, achieving a recall of 93%.

In future work, we plan to explore more information, such as the velocity and
ego-motion of the vehicle, to improve our model performance. Our final goal will
be the recognition of the pedestrians’ crossing intentions and we will study if it
is possible to extend RLSTM to predict the pedestrians’ intentions.
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Abstract. Electroencephalographic (EEG) data is commonly used in
sleep medicine. It consists of a number of cerebral electrical signals mea-
sured from various brain locations, subdivided into segments that must
be manually scored to reflect their sleep stage. These past few years,
multiple implementations aimed at an automation of this scoring pro-
cess have been attempted, with promising results, although they are not
yet accurate enough with respect to each sleep stage to see clinical use.
Our approach relies on the information contained within the covariations
between multiple EEG signals. This is done through temporal sequences
of covariance matrices, analyzed through attention mechanisms at both
the intra- and inter-epoch levels. Evaluation performed on a standard
dataset using an improved methodological framework show that our app-
roach obtains balanced results over all classes, this balancing being char-
acterized by a better MF1 score than the State of the Art.

Keywords: Sleep analysis · EEG · Deep Learning · Attention ·
Symmetric Positive Definite matrices

1 Introduction

To study sleep patterns in the field of sleep medicine, the gold standard is the
polysomnography (PSG) study, which usually includes electroencephalography
(EEG), electrooculography (EOG), electromyography (EMG) and electrocardio-
graphy (ECG) recordings, corresponding to brain, eye, muscle and heart elec-
trical activity, respectively. These signals are derived from the voltage existing
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between electrodes over time, often with one being set as a reference. In this
paper, the term “signal” shall refer exclusively to such a voltage.

The set of norms most often used to analyze PSG signals is the one defined by
the American Academy of Sleep Medicine (AASM) [4]. This analysis is done by
subdividing the signals into 30 s epochs, sometimes called “sleep epochs” in this
paper. These may be manually scored (labeled) as being in one of five stages:
wakefulness, rapid eye movement (REM) sleep, and three stages of non-REM
sleep (N1, N2 and N3).

Table 1. Frequency bands that we use for EEG data analysis

Delta Theta Alpha Betalow Betahigh Gamma

Hz [0.5, 4[ [4, 8[ [8, 12[ [12, 22[ [22, 30[ [30, 45[

In this paper, we study the relevance of cerebral functional connectivity as a
tool for the automated classification of sleep stages, through a study of covari-
ations between EEG signals. In particular, we aim to obtain a high level of
class-wise performance. For that purpose, we analyze timeseries of covariance
matrices, computed for various frequency bands (Table 1). We base our analysis
on an existing model architecture [14], itself based on successive Transformer
encoders. After an overview of the existing State of the Art (SOA) in Sect. 2, we
shall explain our method in Sect. 3. Finally, in Sect. 4, we present our results on
a commonly used dataset, including a comparison with SOA methods.

2 State of the Art

Some approaches consider that a single signal contains enough information to
classify sleep epochs [12,14,21]. A common strategy is to combine an EEG and
an EOG signal with the same reference electrode by subtracting them [15–17].
Other approaches use a multitude of input signals, often including EOG or EMG
signals to said input, in addition to EEG. Phan et al. [11] use one signal of each
type (EEG, EOG and EMG) as input, whereas Jia et al. [7,8] use multiple of
each, and additionally include one ECG signal. Given the same dataset, the
latter approaches seem to yield better results.

A common approach in EEG preprocessing pipelines is the extraction of
relevant frequency components, since sleep stages are characterized by events
with specific frequential components [4]. As such, Phan et al. [11,12,14] compute
time-frequency images to use as input of their model.

Manual scoring of a sleep epoch takes into consideration said epoch’s context
- i.e. information contained in neighboring sleep epochs. Similarly, the architec-
tures of models used for this task often include contextual information in the clas-
sification process. Such sequence-based models can be divided into two sections:
intra-epoch (extracting features from each epoch in the input sequence) and
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Fig. 1. Our model. (E1, ..., EL) is the input sequence, with Ej referring to the central
epoch. ŷj is the output classification of the model. Nintra and Ninter refer to the number
of sublayers in our intra- and inter-epoch Transformer encoders.

inter-epoch (combining said features). Convolutional neural networks (CNNs)
can be used at the intra-epoch level, usually followed at the inter-epoch level by
recurrent neural networks (RNNs) [12,15–17]. Phan et al. expand on both the
RNN and attention mechanism approaches. In [11,12], they utilize bi-directional
RNNs at both the intra-epoch and inter-epoch levels, whereas they use Trans-
former encoder-based attention mechanisms [18] in [14]. Similarly, Zhu et al. [21]
use attention blocs inspired by said encoders at both levels, together with con-
volutions and other more classic layers. It has been stated that the performance
of sequence-based State of the Art automatic sleep scoring models is currently
near perfect, with little room for improvement [13]. While we do not dispute
that claim in absolute terms, we have noticed a discrepancy in class-wise perfor-
mance, particularly regarding the N1 stage (see Sect. 4.4). Therefore, our main
focus is to correct for this discrepancy.

Our chosen axis of analysis concerns functional connectivity. In other words,
one may study the connectivity between different brain regions through correla-
tions detected between them, often independently of the structural (i.e. physical)
connectivity between said regions [6]. In the context of sleep studies, it has been
proven that sleep induces a characteristic cerebral response, describable in terms
of functional connectivity [5]. Jia et al. [7,8] explicit these inter-region relation-
ships through graph timeseries. Their intra-epoch section is a graph learning
model, with each node corresponding to an electrode. These graphs are then
convolved both spatially and temporally in the inter-epoch section. Note that
most graph convolution methods do not assign a specific weight to each node,
nor do they use the relative positioning of said nodes. For the proposed graphs,
however, each node corresponds to an electrode, so ignoring node specificity in
such a way might actually be a drawback.

In this paper, we perform an analysis of functional connectivity, estimated
through the covariations of brain signals. For this purpose, we analyze covariance
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matrices computed from multiple simultaneous EEG signals, excluding other sig-
nal types (EOG, EMG...) in order to focus exclusively on brain activity. Covari-
ance matrices are guaranteed to be symmetric positive semi-definite, but tend
to be fully symmetric positive definite (SPD) when computed from real-world
data. The set of all SPD matrices in R

n×n is a Riemannian manifold (metered
curved space), and we postulate that preserving this geometry in our model
would be advantageous to our classification, as similar approaches using SPD
matrices have already been implemented in the field of EEG signal analysis,
most notably in brain-computer interfaces (BCI) [19].

3 Method

3.1 From EEG Signals to Covariance-Derived SPD Matrices

As do Zhu et al. [21], we apply a z-score normalization to our EEG signals, in
order to harmonize their means and standard deviations. Moreover, according to
the AASM [4], the signal components indicative of the current sleep stage have
specific frequential properties. In order to allow the network to more effectively
analyze them, we filter our EEG signals along the six frequency bands presented
in Table 1. This is done through a fourth-order Butterworth bandpass filter.

The discrete events indicative of a sleep epoch’s proper classification are
around one second in length. To capture them, we elected to subdivide our
recordings into one second segments. Each sleep epoch is therefore subdivided
into 30 non-overlapping segments. On each segment, we compute a covariance
matrix between the n electrodes. We verify that the resulting matrices are prop-
erly SPD, and add the matrix In × 10−5 to those who aren’t. This is done on
the unfiltered and filtered signals, resulting in a total of 7 data channels.

Two main families of metrics have been defined on the set of SPD matrices.
The so-called affine invariant metrics [10] are invariant to affine transforma-
tions, but have some drawbacks - for instance, it is impossible to compute an
algebraic mean using such a metric, though algorithmic approximations do exist.
LogEuclidean metrics [2] do not showcase the same invariance properties, but
are significantly easier to work with. The LogEuclidean distance between two
SPD matrices A and B is defined as:

δP
LE(A,B) = ‖log(P−1/2AP−1/2) − log(P−1/2BP−1/2)‖F (1)

This metric relies on the bijection existing between the manifold and its tan-
gent space, the space of symmetric matrices, by way of the matrix logarithm
and exponential functions. The parameter P may be interpreted as a center of
projection onto said space.

Given a covariance matrix, the only mono-signal information stored is the
variance of the signal along the segment. Additional signal-specific features may
be added using Eq. 2, which “augments” a covariance matrix C, preserving its
SPD property while adding a feature vector V (referred to as a “side vector”),
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weighted by a factor α (with Vα = αV ):

M =

⎛
⎜⎜⎝

C + VαV T
α Vα

V T
α 1

⎞
⎟⎟⎠ (2)

Each epoch entering the model is thus represented by 7 channels of 30 SPD
covariance matrices, and their associated side vectors. Multiple side vectors may
be computed per matrix, such as its mean, maximum value, or average power
spectral density (PSD) over the corresponding one second segment.

Being biological, our EEG data is marked by the specificities inherent to
each recording, that are then transferred to our covariance matrices. In order to
reduce said specificities, we compute every recording-wise covariance matrix G,
and use them to apply a whitening operation [20] onto the relevant matrices:

M ′ = G−1/2MG−1/2 (3)

The idea is to operate a “transport” of the data M centered around G to be
centered around In instead. We perform this shift for each recording and compute
distances between centered SPD matrices using Eq. 1, with P = In. If need be,
both M and G are augmented with the relevant side vectors.

3.2 The Model

Our model architecture uses Transformer encoders at the intra- and inter-epoch
levels, as does [14]. It takes as input a timeseries of sleep epochs, composed of a
central epoch and l epochs on either side, for a total of L = 2l+1. These sequences
are constructed with maximum overlap, with classification on the central epoch.
Thus, the first and last l epochs of each recording are not classified.

Our model starts with a vectorization layer. It performs the augmentation
of matrices by their weighted side vectors (Eq. 2), followed by the whitening
operation. The nature of the side vectors V , and the value of their weight α,
are model hyperparameters. Using n electrodes, we project our SPD matrices of
R

(n+1)×(n+1) onto their tangent set (Sect. 3.1), and vectorize the upper trian-
gular of the resulting symmetric matrix onto R

(n+1)(n+2)
2 [2]. These operations

being bijective, all Euclidean operations on these vectors are interpretable as
LogEuclidean operations on the augmented matrices.

These vectors undergo a positional encoding [18]. The channels are then
concatenated and fed to a first, intra-epoch Transformer encoder, composed of
a number of sequential sublayers. The fully connected layers present in each
encoder sublayer allow for a mixing of the elements of each input vector, and
therefore a mixing of the original channels. In order to obtain a single feature vec-
tor per sleep epoch, the output of the intra-epoch encoder layer passes through
an average pooling layer. The resulting L epoch feature vectors are then fed
through another positional encoding layer, followed by an inter-epoch encoder.
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Only the output vector corresponding to the central sleep epoch is preserved,
passing through two fully connected layers, each followed by a ReLU activation
and a dropout layer. A final fully connected “classification” layer reduces the
output to the desired 5 data points (one per class), and this classification is then
fed to a softmax-including cross-entropy loss function.

We optimize this model using the Adam algorithm, with the function param-
eters β1, β2 and ε set to 0.9, 0.999 and 10−7 respectively. The weight decay is a
hyperparameter, and so are the model’s learning rate λ and the corresponding
exponential decay parameter γλ.

Our architecture can be seen in Fig. 1. The number of sublayers and atten-
tion heads of each encoder, the size of parameter tensors for the fully con-
nected layers and the various dropout probabilities are all hyperparameters. Our
hyperparameter-obtaining strategy is described in Sect. 4.2 , and the obtained
values are presented in the annex.

4 Experiments

4.1 Dataset Used

We chose to validate our model on the SS3 subset of the Montreal Archive of
Sleep Studies (MASS) dataset [9], as it is heavily utilized within the SOA and
contains a large number of electrodes to choose from for our analysis. Said subset
is made up of 62 subjects, with a single full-night recording per subject and 20
EEG channels in common. Each EEG signal went through a notch filter at 60 Hz
as well as a lowpass and highpass filter with cutoff frequencies of 0.30 Hz and
100 Hz respectively. This dataset is unbalanced, with the largest and smallest
classes (N2 and N1) respectively containing 50.24% and 8.16% of its sleep epochs.

In order to capture a significant range of signals, and to limit redundancy
between neighboring electrodes, we chose electrodes F3, F4, C3, C4, T3, T4, O1
and O2. This selection has a relatively homogeneous distribution with regards
to the cranium, with inter-hemispheric symmetry to capture relevant variations
along that axis. All of these signals are captured with a common reference elec-
trode, located behind the left ear.

4.2 Model Validation

As is best practice, we subdivide our database into three subsets: training, val-
idation and test. We utilize a k-fold cross-validation scheme, using the same
fold-wise subset separation as Seo et al. [15] in order to facilitate comparisons.
Each of the k = 31 folds are divided into 50, 10 and 2 recordings for each train-
ing, validation and testing set respectively. The 31 folds’ testing sets add up to
the 62 recordings in SS3, with no overlap. We set the parameter l of our network
to 10, as is done in [14]. We rebalance each fold’s training set through oversam-
pling, with each class having as many elements as N2 has. The validation and
test sets aren’t rebalanced, though test sets are further restricted (Sect. 4.3).
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Every hyperparameter research is ran using the Tree-structured Parzen Esti-
mator algorithm [3], as implemented by Optuna [1]. This research is done on
the same randomly selected fold. The best hyperparameters are then utilized
to train the model on all folds. We use the macro-averaged F1 score (MF1) as
our main performance statistic, as it reflects imbalances in class-wise classifi-
cation performance, and is widely used throughout the SOA. All statistics are
summarized over the 31 folds by computing their mean and standard deviation.

Table 2. Ablation study and comparison to the SOA.

Balanced statistics Unbalanced statistics

Method MF1 Macro accuracy General accuracy Kappa

0 SleepTrans. [14] 73.97 ± 3.50 76.37 ± 4.35 81.25 ± 3.54 0.722 ± 0.046

1 IITNet [15] 78.48 ± 3.15 81.88 ± 2.89 83.90 ± 3.03 0.763 ± 0.043

2 DeepSleepNet [16] 78.14 ± 4.12 80.05 ± 3.47 84.81 ± 3.70 0.773 ± 0.052

3 GraphSleepNet [8] 75.58 ± 3.75 79.75 ± 3.41 80.97 ± 4.35 0.724 ± 0.057

4 Our method 79.78 ± 4.56 81.76 ± 4.61 85.05 ± 4.97 0.776 ± 0.069

5 No covariance 77.39 ± 5.82 79.76 ± 4.95 82.61 ± 6.01 0.741 ± 0.081

6 No side vectors 78.14 ± 4.10 80.56 ± 3.95 83.38 ± 4.16 0.753 ± 0.060

Table 3. F1 scores per class.

Method N3 F1 N2 F1 N1 F1 REM F1 Wake F1

0 [14] 74.26 ± 12.36 86.72 ± 3.28 47.60 ± 6.37 83.84 ± 6.99 77.40 ± 8.63

1 [15] 81.97 ± 8.91 88.15 ± 2.84 56.01 ± 6.54 85.14 ± 5.64 81.11 ± 8.49

2 [16] 80.38 ± 9.35 89.25 ± 3.12 53.52 ± 8.24 86.67 ± 5.34 80.86 ± 9.04

3 [8] 74.77 ± 12.12 84.84 ± 4.22 50.80 ± 8.06 85.09 ± 7.38 82.42 ± 7.43

4 Ours 78.17 ± 11.49 88.66 ± 4.59 58.43 ± 6.41 86.91 ± 7.79 86.73 ± 6.42

4.3 Reproducing the State of the Art

In order to compare our results to the State of the Art, we selected four
approaches. hree of those are DeepSleepNet [16], often used as a benchmark,
IITNet [15], whose cross-validation folds we are using, and GraphSleepNet [8],
which also analyses functional connectivity. The fourth, SleepTransformer [14],
shall be discussed subsequently.

All three have their code available on GitHub, and were trained on MASS
SS3 in their respective papers. IITNet, GraphSleepNet and DeepSleepNet use
sequences of epochs as inputs, of size equal to 10, 5 and 25 respectively. Like
us (Sect. 3.2), IITNet and GraphSleepNet use each sequence to classify a sin-
gle epoch, respectively the last and central epoch of the sequence. In contrast,
DeepSleepNet outputs one classification per epoch in their sequences, which are
constructed without overlap. Because of this, for each recording, IITNet won’t
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classify the first 9 epochs, GraphSleepNet will ignore the first and last 2, and
DeepSleepNet might ignore up to 24 epochs at the end.

All three models use a similar results aggregation strategy. For each fold,
the best trained parameters are used to compute predictions on the test set.
Despite originating from different models, these predictions are concatenated,
and statistics are computed over this unified predictions tensor. As the number
of sleep epochs per recording is not homogeneous, neither are the test sets. This
strategy therefore results in an implicit weighting effect, giving more importance
to sets of parameters computed on folds with larger test sets.

In order to better compare these methods to our model, we retrained these
models with our metrics, folds, and results summarizing methods (Sect. 4.2). All
methods were adapted to select their best fold learned parameters through their
validation MF1 score. In the spirit of fairness, we rebalanced GraphSleepNet and
IITNet’s training sets through oversampling. DeepSleepNet already does this
when pretraining its intra-epoch submodel, and its multi-label sequences can’t
be rebalanced in that way. We did not change any of their model architectures,
and used their published hyperparameters.

The fourth SOA method presented is our reimplementation of the original
SleepTransformer model. Compared to our model, this method uses a custom
attention softmax layer instead of our average pooling. We also replicated their
preprocessing using a recombined Fz-Cz signal from MASS SS3. It was trained
with our methodology, including a hyperparameter research.

The obtained results (Tables 2 and 3) differ from those originally published,
which may stem for the aforementioned methodological differences. To harmo-
nize all test sets, we have elected to exclude the classification of the first and last
24 epochs of each recording. The training or validation sets remain, however,
unchanged. This has been applied to all results presented in this paper.

4.4 Analysis of Results

Aside from lines 1, 2 and 3 of Tables 2 and 3, all presented results are preceded
by a hyperparameter research.

Line 0 of Tables 2 and 3 show us the results obtained through our reimplemen-
tation of SleepTransformer. As we can see, they are the lowest of all presented
methods. Due to the similarities between our approaches, one might view these
as the baseline for our architecture’s performance.

As stated in Sect. 3.2, we tested multiple side vector types in our hyperpa-
rameter research. The one that consistently performed the best was the vector
of mean PSDs. The other chosen hyperparameters are described in the annex.

The last 3 lines of Table 2 give an overview of the obtained results. Line 4 cor-
responds to our results, trained on the best hyperparameters mentioned above. A
surprising hyperparameter is the value of α (Sect. 3.1) of 99.53. This implies that
the side vectors have a large impact on the final classification, and thus that our
network favors a signal-specific input (one not obtained through covariance). To
assess the relevance of covariances altogether, we removed all covariance infor-
mation from our data (i.e. the non-diagonal elements of the covariance matrices),
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and reran our model. As seen in line 5 of Table 2, all statistics but Kappa are
lower than the ones of line 4 by about 2%. This is coherent with the literature, as
decent performances have been obtained on MASS without relying on covaria-
tions. We also trained our model on the original covariance matrices themselves,
with no side vector augmentation (as seen in line 6). We obtain similar results to
line 4 and superior results to line 5, thus implying that considering covariations
adds a net benefit.

When it comes to the rest of the reran State of the Art, lines 1 through 4
of Table 2 shows that our model performs better in all measured metrics except
for macro-averaged accuracy, where we are a close second. In addition, Table 3
shows that our method outperforms the others in REM, Wake and N1 sleep
classification. As seen by the scores and standard deviations, though, the quality
of predictions varies much per class, for both the State of the Art and us. In
particular, N1 sleep epochs seem particularly hard to classify, but our method
shows a two points lead over the next best one in that regard. This lead would
explain our ranking in terms of MF1 score (Table 2).

All-in-all, Tables 2 and 3 show that a method based in part on covariance
information provides results either equivalent or superior to the State of the Art
on this problem (relative to the chosen statistics), with notable improvements to
performance on the N1 stage, though it also benefits from signal-specific inputs.

5 Conclusion

We have presented our novel approach for automatic scoring of sleep stages
through an analysis of the covariations between EEG signals. Motivated by the
high imbalance between the classification of said stages, we established a fairer
methodology for training and validating models on this problem. The results
validate our hypothesis on the relevance of such covariations in this context, and
by extension, that of functional connectivity.

Appendix

The hyperparameters corresponding to the best version of our model are:
Side vectors: PSD; α: 99.53; intra-epoch encoder: 5 sublayers, 15 attention heads,
fully connected components of size 1024, dropout of 6.2 × 10−5; intra-epoch
encoder: 6 sublayers, 5 attention heads, fully connected components of size 256,
dropout of 8.1× 10−3; final fully connected layers: of size 2048, dropout of 1.4×
10−3; learning rate (λ): 4.9 × 10−5, γλ at 0.94; weight decay at 1.76 × 10−6.

Many thanks to Huy Phan [11–14] for answering all our questions.
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Abstract. People living with type 1 diabetes (PwT1D) face multiple
challenges in self-managing their blood glucose levels, including the need
for accurate carbohydrate counting, and the requirements of adjusting
insulin dosage. Our paper aims to alleviate the demands of diabetes self-
management by developing a complete system that employs computer
vision to estimate the carbohydrate content of meals and utilizes rein-
forcement learning to personalize insulin dosing. Our findings demon-
strate that this system results in a significantly greater percentage of
time spent in the target glucose range compared to the combined stan-
dard bolus calculator treatment and carbohydrate counting. This app-
roach could potentially improve glycaemic control for PwT1D and reduce
the burden of carbohydrate and insulin dosage estimations.

Keywords: Diabetes · Computer Vision · Reinforcement Learning ·
Dietary Assessment · Deep Learning

1 Introduction

Diabetes is a chronic metabolic disorder caused by insulin deficiency that is either
absolute (type 1 diabetes - T1D) or relative to the level of insulin resistance
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(type 2 diabetes - T2D). Effective diabetes management is essential to prevent
the risk of both glucose excursions (i.e., hypo- and hyperglycaemia) and long-
term vascular complications (e.g., retinopathy, nephropathy, and cardiovascular
disease events) by controlling the blood glucose (BG) concentration [4].

To manage diabetes and prevent the onset of diabetes-related complications,
people with diabetes (PwD) need to monitor their BG levels carefully and main-
tain them within a target range, which requires estimation of the optimal insulin
dose. The amount of prandial insulin dose depends, among others, on the con-
sumed meal’s carbohydrate (CHO) content [25]. However, the CHO estimation is
challenging even for PwD trained in CHO counting. Previous studies [1,5] showed
that using automated meal estimation systems based on Artificial Intelligence
(AI) improved glycaemic control in PwD. However, no study has introduced a
complete system for insulin adjustment in the case of Multiple Daily Injections
(MDI) therapy using Self-Monitoring Blood Glucose (SMBG) measurements and
an AI-based dietary assessment system for the translation of food images into
CHO content.

Hence, our main contribution is a complete system composed of two AI-based
modules: 1) goFOODTM, for estimating the food’s CHO content based on cap-
tured food images, and 2) Adaptive Basal-Bolus Advisor (ABBA), for the daily,
personalized adjustment of both basal and bolus insulin administration. These
two modules’ previous versions were published in [17,27]. This work improves
the glycaemic control of PwD by utilizing a system that incorporates the food’s
nutrient composition and insulin without relying on the person’s skills in CHO
estimation.

2 Related Work

2.1 Computer Vision in Dietary Assessment

Typically, automatic dietary assessment systems consist of three stages: 1) food
segmentation, 2) food recognition, and 3) food volume estimation and nutri-
ent/ calorie calculation. Convolutional Neural Networks (CNNs) are becoming
more and more popular for the first two steps of the pipeline, i.e., segmentation
[20,31] and recognition [17,19,21] since they outperform classical machine learn-
ing (ML) methods [3,12,22]. A plethora of different approaches can be used for
the volume estimation step. Geometry-based estimation is performed from sin-
gle images if a depth sensor is available [14,20,28] or multiple images, otherwise
[8,17]. Learning-based methods have also been proposed [16,18]. However, gen-
eralization issues usually make them less effective than geometry-based methods.

2.2 Reinforcement Learning in Blood Glucose Control

Over the last few years, several Reinforcement Learning (RL) approaches have
been proposed for the personalized adjustment of insulin intake. Most of them
rely on Continuous Glucose Monitor (CGM) data and pump therapy. For
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instance, Zhu et al. proposed a deep-Q learning agent to predict the basal insulin
value [32] and a DDPG-based Actor-Critic (AC) model for insulin bolus control,
which also supports MDI therapy [33]. In [10], authors proposed a Q-learning
approach to optimize CHO ratios and the basal rate adaptively. Recent work
[15] combined evolutionary, deep-Q learning, AC, and uncertainty estimation
algorithms to modulate insulin sensitivity and Carbohydrate-to-Insulin Ratio
(CIR) for meal boluses and reference basar rate both pump therapy and insulin
pen. Pioneering work [6] proposed an AC method initialized with information
transferred from insulin to glucose signals. Sun et al. [26] extended and further
validated the latter algorithm, while in [27], the authors used SMBG measure-
ments and MDI therapy instead of CGM data and pump therapy.

3 Methodology

3.1 System Outline

The proposed system presented in Fig. 1 combines a computer vision-based mod-
ule for food nutrient estimation and an RL algorithm for personalised insulin
adjustment, respectively named goFOODTM and ABBA. goFOODTM receives
two meal images from different angles, guided by the system, as input and esti-
mates its nutrient content. The pipeline for this module is as follows: 1) seg-
mentation of the different food items, 2) recognition of each food item, and 3)
volume estimation using two food images (and in the case of Android phones, a
reference card placed near the food) and CHO calculation based on open access
food composition databases. For the output of the recognition algorithm, we
choose the ground truth class out of the top-3 predicted classes based on the
assumption that the user could select it. The CHO estimation of goFOODTM is
then used as input for the RL-based algorithm, ABBA, that suggests the insulin
dosage for the PwD. The ABBA algorithm is based on an AC, model-free, self-
learning algorithm that adjusts the CIR and the basal insulin values. The two
modules are described in detail in the next section.

3.2 Computer Vision Module

For the segmentation module, we selected a state-of-the-art segmentation net-
work (Mask R-CNN) [9]. Since large open-source segmentation datasets are
scarce, we trained the network to perform a binary segmentation task of food
items versus background. Segmented food items are then fed into a recogni-
tion network that predicts the food/drink class in three layers: coarse, middle,
and fine (e.g., meat/red meat/meatball). Since the training classification dataset
contains label noise, we selected a noise-robust approach to train the network
and make accurate predictions. For this reason, we used the noisy label learning
method DivideMix [13], which is also proven to work well with food images [21].
The selected classification network architecture is a RegNetY-16GF [23].
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Fig. 1. Complete System Pipeline using Android Technology

The volume estimation module employs the stereo matching process whereby
we use two images, with both the meal and a reference card placed in the field of
view, captured at different angles (90◦ and 75◦), same as in [17]. If equipped with
an iPhone1, users can capture a stereo pair of images without needing a reference
card. The images are rectified based on key points obtained from the detected
reference card and the predicted segmentation mask. Using this method, we
attempt to solve the need for having the food items placed on a plate, a major
limitation in previous works [5,11]. A disparity map is then produced for each
food item which is re-projected to a 3D point cloud, followed by outlier removal.
The food volume and, thus, the nutrient content of the meal is then calculated
based on our nutrient content database, which we aggregated from Nutritionix2

and AcquaCalc3.

3.3 Reinforcement Learning Module

As mentioned, the proposed RL algorithm is an extension of previously published
work [26,27]. The original AC basal-bolus advisor updates the CIR and basal
insulin values at the end of each day, according to the daily glycaemic profile
collected from the previous day. Differently, our approach aims to adjust the
CIR and the basal insulin based on the BG measurement before each meal and
bedtime. Another improvement of our approach consists of training only two
models (i.e., one for basal and bolus) rather than four (i.e., one for basal and for
each meal). Having a generalized bolus predictor enables the PwD to have more
than three main meals with insulin injection.
1 Models with dual camera.
2 https://www.nutritionix.com/natural-demo.
3 https://www.aqua-calc.com/calculate/food-volume-to-weight.

https://www.nutritionix.com/natural-demo
https://www.aqua-calc.com/calculate/food-volume-to-weight
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The state vector contains features computed similarly to [26]. As an exten-
sion, we add the difference between the BG levels of the previous bedtime and
the current morning to the basal state. Furthermore, we add a bias parameter to
the actor parameter vector θ and an additional dimension featuring a unit to the
bolus state. To ensure that the final decision of the policy is safe for the PwD,
we introduced a safety rule such that the basal insulin and CIR rate change
does not exceed ±40% of the initial CIR and basal insulin and ±25% of the
previous CIR and basal insulin. The initial values are defined from the simulator
and are increased by 10% [27]. We also implemented a custom version of the
reward function originally introduced in [32]. We adjusted the thresholds of the
step-like reward function after empirical investigations to improve performance.
We simplify the actor control policy Pe, originally defined in [26], as Pe = Pa+ε,
where ε = 0.05 · ||Fk||2 · N (0, 1) is the exploration and Pa = st · θt is the control
action policy. For the initialization of the policy parameter vector we calculate
the transfer entropy similar in [7].

4 Experimental Setup

4.1 Food-Related Datasets

To train the segmentation network, images from publicly available and in-house
food datasets were collected and segmented as food and non-food (background).
For the training of the classification network, we gathered more than 175,000
web-crawled images or images from publicly available datasets belonging to 18
coarse, 34 middle, and 298 fine categories. Therefore, the classification training
dataset contains natural label noise (i.e., some food labels are incorrect).

To evaluate our complete system, we employed meal images that were pre-
viously collected in a study4 where 50 participants from the general population
had to use the goFOODTMLite app [29] under real-life conditions (e.g., varying
lighting and distance from the food, blurriness, etc.) to record their meals for one
day. We collected approximately 800 meal images, and the involved dietitians
performed the 24-hour recall to estimate the users’ nutrient intake. We refer to
this collection as the Swiss Real Life 2022 dataset (SwissReLi2022 ).

To test the segmentation and recognition modules, we merged the Swiss-
ReLi2022 and part of another dataset [2].

4.2 In Silico Environment

The DMMS.R simulator, which offers multiple in silico subject populations,
including T1D, T2D, and Pre-Diabetes cohorts, was utilized to evaluate the
developed algorithmic approach5. Specifically, we used a T1D cohort of 11 virtual
adults using SMBG measurements and MDI therapy provided by the simulator.
BG levels were measured using the virtual SMBG device, while long-acting and
rapid-acting insulin was used to simulate insulin treatment for insulin pen users.
4 “Nutritional assessment: comparison between an automated tool (goFOODTM) and
conventional methods” - Number: 2020-00419.

5 https://tegvirginia.com/software/dmms-r.

https://tegvirginia.com/software/dmms-r


82 M. Panagiotou et al.

4.3 Scenario

A two-week scenario is designed for testing the complete system. We randomly
selected 24 images from the SwissReLi2022, 6 for each meal tag (breakfast, lunch,
dinner, and snack). We then generated a sequence of meals for two weeks, with
four meals per day. We used the dietitian’s dietary assessment based on 24h-
recall as the reference. However, even though the 24-hour recall is considered
the gold standard, it still can lack accuracy, as it has been shown from previous
studies, where the misestimation of the dietitians was approximately 15 g of
CHO [30]. The meals were announced 5 min before the injection, and the meal
duration was 15 min. In addition, similar to [26,27], we simulate the inter-day
variability of insulin sensitivity (SI) with a uniformly distributed variability of
±25% and the “dawn phenomenon”. We used a bolus advisor (BA) [25] along
with the basal rate provided by the simulator as a baseline method to compare
our RL algorithm.

We tested two versions of goFOODTM. The full version outputs the amount of
the CHO of the meal, and the goFOODTMMini version outputs a label depending
on the CHO size. In particular, the final estimation of goFOODTMMini has five
categorical levels: Extra Small (CHO < 10 g), Small (10 g ≤ CHO ≤ 40 g),
Medium (40 g < CHO < 70 g), Large (70 g ≤ CHO ≤ 100 g), Extra Large
(CHO > 100 g) as suggested by healthcare professionals. The algorithm does
not suggest an insulin dose when the CHO is less than 10 g.

We evaluated six complete systems made of the following modules,
BA or ABBA for insulin advisor and simulated PwT1D misestimations,
goFOODTMMini, or goFOODTM for the CHO estimation, as seen in Table 1.
In particular, for the CHO misestimations of PwT1D, we used a mean abso-
lute percentage error of a 35% based on a study where PwT1D were randomly
selected, without documented CHO counting training [24].

5 Results

5.1 Complete System

To assess the effectiveness of the proposed system and compare it to the baseline
method, we utilized four widely-used glycemic metrics commonly employed in
the diabetes technology community. These metrics are as follows: percentage
time in the glucose target range of 70–180 mg/dL (TIR), percentage time below
70 mg/dL (TBR), percentage time above 180 mg/dL (TAR), and units of Total
Daily Insulin (TDI) Dose. Results are expressed by mean values from the 11
virtual adults.

Table 1 shows the performance of the proposed system on the 11 adult virtual
cohort. We observe that ABBA achieves a higher TIR and lower TBR than BA
in all the cases. Moreover, goFOODTM performs significantly better than both
goFOODTMMini and the simulated PwT1D. The TDI is also lowest when using
both goFOODTM and ABBA, meaning that the PwT1D need to inject less
insulin. To summarize, combining the two proposed modules offers the best BG
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control, high ease-of-use since the PwT1D do not need to manually estimate the
CHO content of their meals.

Table 1. Performance of the proposed system on 11 adult virtual cohort. Statistical
significance (t-test on two related samples) with a p-value less than 0.005 for the TIR
is noted with ∗. (↑)/(↓) higher/lower is better.

Insulin Advisor CHO Estimation TIR (↑) TAR (↓) TBR (↓) TDI (↓)
BA Simulated PwT1D 71.70 11.08 17.35 36.45

ABBA Simulated PwT1D 75.66∗ 15.25 9.09 26.05

BA goFOODTMMini 72.35 17.14 10.5 35.67

ABBA goFOODTMMini 79.88∗ 14.5 5.56 26.03

BA goFOODTM 75.11 15.15 9.76 35.55

ABBA goFOODTM 86.30∗ 11.04 2.67 25.74

5.2 Computer Vision Module

We separately tested the segmentation network on the testing set and the classi-
fication network using the ground truth segmented items. The segmentation net-
work achieved a mean average precision and an intersection over union of 65.15%
and 82.66%, respectively. The classification network achieved a top-1/top-3 accu-
racy of 58.0/70.5%, 70.1/83.7%, and 78.4/88.2% outperforming the model with-
out the noise-label approach that had an accuracy of 56.4/67.8%, 67.5/82.1%,
and 75.6/86.3% for the fine, middle, and coarse categories, accordingly.

Fig. 2. CHO estimations from the dietitians and goFOODTM for the 24 meal images
randomly selected from SwissReLi2022. Breakfast (B), Lunch (L), Snack (S), and Din-
ner (D) are the tags for the meal types.

In addition, we compared the complete dietary assessment pipeline, with the
dietitians’ estimations for the CHO content. Figure 2 shows the estimations for
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the 24 meals used in the scenario described in Sect. 4.1. In general, we observed
that the CHO estimations of goFOODTM are very close to those of the dietitians
achieving a mean absolute error of 13.96 g of CHO. There are few exceptions,
e.g., the 3rd breakfast, where the segmentation module did not separate between
the different bread slices, or the 6th lunch, where the recognition module did
not properly recognize the different ingredients. Therefore, in these cases the
system under-evaluated the volume of the food. Despite these misestimations,
as seen in Table 1, the system consistently outperforms the simulated PwT1D.
The ABBA algorithm, being personalized and adaptive, effectively handles these
misestimations and surpasses the BA algorithm.

6 Conclusion

We present a complete AI-based system that automatically performs CHO esti-
mation based on two meal images followed by insulin suggestion. The results are
promising and show that the combination between the dietary assessment mod-
ule and the automated insulin suggestion algorithm is significantly better than
the baseline method. In future work, we plan to improve the system pipeline by
allowing the user to manually change the predicted volume for the food items
if unsatisfactory. Our framework could enhance the quality of life of PwT1D by
offering personalized BG control and reduced time for CHO estimation and can
potentially decrease therapy costs by reducing the amount of insulin needed.
The proposed approach will be tested in a clinical trial involving adults and
adolescents with T1D and adults with T2D.
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Abstract. Instance segmentation is crucial for insightful analysis in the
increasing use of large-scale electron microscopy (EM) to gain a better
understanding of disease causes or progression. Instance segmentation is
a more granular version of semantic segmentation, as it identifies and
distinguishes individual object instances, whereas semantic segmenta-
tion only identifies object classes. In this study, we introduce a two-stage
unsupervised approach called COFI, which stands for Coarse-Semantic
to Fine-Instance segmentation, for the application of mitochondria seg-
mentation in large-scale 2D EM images. In its first stage, it produces a
rough region mask by clustering image patches and prompting a user to
select the regions of interest. This is followed by a boundary delineation
method based on the brain-inspired COSFIRE filter which is augmented
by an inhibition component that makes it robust to image texture and
noise. The effectiveness of the proposed COFI approach is evaluated
on an EM dataset of the heart muscle of a mouse tissue, which con-
sisted of four tiles of 16384 × 16384 pixels, containing a total of 2287
instances of mitochondria among other subcellular structures. It consis-
tently achieved panoptic quality measures that are substantially superior
to competing supervised methodologies. Besides its elevated effective-
ness, the proposed COFI approach is conceptually simple and sufficiently
versatile as the structure of interest is not intrinsic to the method.

Keywords: Instance segmentation · unsupervised · mitochondria

1 Introduction

Segmentation is an important step in the analysis of electron microscopy (EM)
images in biology. Through segmentation, sub-cellular structures can be identi-
fied and labeled, which improves the biological understanding of the analyzed
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samples. EM is increasingly being employed in large-scale biological initiatives,
whether for volume imaging (3D EM) or large-area mapping (2D EM). In both
methods, the goal to resolve nanoscale features (2–10 nm/pixel) is linked with
the desire to set these findings in a larger context, which could be a large area
or a 3D volume. High-throughput large-scale EM imaging is now possible due to
enhanced automation that generates petabytes of image data [1,2]. Hence, there
is a need for developing automatic tools for EM segmentation.

Large-scale 2D EM or nanotomy1 provides an unbiased analysis of structures
in EM images with the right cellular context [1]. We propose a new methodol-
ogy for instance segmentation of mitochondria in 2D EM. Instance segmentation
involves assigning each pixel to the correct class – mitochondria in this case – and
identifying each component of that class as a separate instance. Figure 1 shows
an example of a cropped region from an EM image with multiple mitochon-
dria and corresponding ground truth maps of semantic, contour, and instance
segmentation. Mitochondria are the primary energy providers for cell activities,
thus essential for metabolism. Results of instance segmentation can be used to
quantify morphological properties of mitochondria, which is not only crucial to
basic research, but also informative to the clinical studies of several diseases.

Fig. 1. Example of expected segmentation. (a) A region with apposing mitochondria,
and the ground truth (b) semantic, (c) contour and (d) instance segmentation maps.

We propose a two-stage unsupervised pipeline. The first stage entails unsu-
pervised semantic segmentation through clustering of overlapping patches using
their feature embeddings encoded by a pre-trained network and prompting a
user to select regions of interest among the resulting clusters. The second stage
involves the COSFIRE filter approach with surround inhibition for edge delin-
eation. It is inspired by simple cells of the mammalian visual cortex, and is
robust to delineating edges and lines in the presence of texture [3].

1 www.nanotomy.org.

www.nanotomy.org


COFI - Unsupervised Coarse-Semantic to Fine-Instance 89

2 Related Work

Previous methods for mitochondria segmentation have primarily used hand-
crafted features [4] or those derived using supervised learning to encode images
[5,6]. The success of encoder-decoder architectures such as FCN, U-Net, and
DeepLabv3+ for semantic segmentation, has enabled pixel-wise classification of
EM images. Relevant image regions can also be obtained using prior knowledge
of an object’s shape or texture through fragment matching. Due to its adaptabil-
ity to noise and local variations, such methods are, however, more effective for
image denoising and texture synthesis than pixel-based techniques. The work
in [7] investigated a patch processing approach based on region homogeneity,
utilizing CNNs as feature extractors and performing boundary refinement using
watersheds. Boundary-based segmentation is a preferred technique for instance
segmentation due to its ability to provide fine-grained results in combination
with other techniques such as object proposals or region-based segmentation
to improve performance. Instance segmentation of mitochondria was preferred
with semantic region mapping and boundary prediction, in comparison with top-
down approaches, as variability in their appearances, shape, and the presence of
overlapping instances makes the use of object proposal networks impractical [8].

Manually marking ground truth in EM images is tedious, which makes super-
vised methods challenging. This may be addressed by transfer learning, which
takes a supervised model that was pre-trained on a large dataset and fine-tunes
it on a different dataset. Self-supervised learning has emerged as a label-free
alternative to pre-training, utilizing a contrastive loss function to learn mean-
ingful representations. It can achieve high accuracy in various downstream tasks
through fine-tuning with a simple linear classification or an MLP head [9]. Pre-
trained models for unlabeled EM data have become possible with the release of
CEM1.5M, a large and diverse dataset that provides ample cellular context [10].

The brain-inspired COSFIRE filter approach that we use here has proven
to be effective for unsupervised delineation of curvilinear structures in complex
and noisy backgrounds. It achieves orientation selectivity by aggregating the
collective responses of a set of difference-of-Gaussian functions that are linearly
aligned in their areas of support [11]. This approach has demonstrated success in
various applications, such as delineating blood vessels in retinal fundus images,
roads and rivers from aerial images [12,13]. The COSFIRE model has been
extended with push-pull inhibition [14] and surround suppression [3]. The push-
pull inhibition is effective in suppressing high-frequency noise, while surround
suppression inhibits responses in the neighbourhoods of dominant contours.

3 Method

The proposed COFI method comprises two components. First, it uses a pre-
trained network to generate a rough object location map by clustering embed-
dings and selecting regions of interest. Then, the instance-level fine delineation
is performed by the inhibition-augmented COSFIRE filter approach.
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3.1 Dataset Description and Annotation

The proposed pipeline is evaluated on a nanotomy dataset of the heart muscle
of a mouse tissue, which consisted of the four tiles shown in Fig. 2. Manual
annotation of individual instances was a laborious task due to various factors
such as high-resolution noise, image artifacts, surrounding structures with similar
textures, and side-by-side mitochondria. Manual delineating all 2287 instances
of mitochondria, took approximately 8 hours per tile, totaling four working days.
The instance segmentation ground truth masks were obtained using the polygon
tool of ImageJ [15] and were further proofread by biomedical experts.

Fig. 2. EM data set used here. Left: Set of four 2D EM tiles of 16384 × 16384 pixels
each at a resolution of 2.5 nm/pixel. Right: Corresponding ground truth instance maps.

3.2 Coarse Semantic Segmentation

The first stage utilizes feature embeddings of image patches from networks pre-
trained using unsupervised contrastive learning. The contrastive loss function L
compares pairs of image representations to separate representations from differ-
ent images and brings together those from different views of the same image:

L =
1

2N

N∑

i=1

N∑

j=1

[y(i, j) · d(fi, fj) + (1−y(i, j)) · max(margin−d(fi, fj), 0)] (1)

where N is the number of training samples, y(i, j) is a flag indicating whether
the pair of features (fi, fj) is from the same image (y(i, j) = 1) or different
images (y(i, j) = 0), d(fi, fj) is the distance between the features of images i
and j (e.g., Euclidean distance), and margin is a hyperparameter that controls
the distance between features from different images.

We use 128 × 128 pixel-sized patches with 50% overlap to partition a given
2D EM image. These values are chosen as they provide a good tradeoff between
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information content and region homogeneity. The embeddings contain inher-
ent distances that distinguish similar input image patches from dissimilar ones,
which are then clustered using K-means into relevant regions. By using a graph-
ical user interface, a biologist then manually selects the clusters that correspond
to the regions of interest, i.e., those containing mitochondria. The output of this
first component in our pipeline is a binary map that is produced by merging all
patches that belong to the selected clusters2, Fig. 3.

Fig. 3. Coarse semantic segmentation. An encoder extracts features from input image
patches followed by clustering and selection of clusters to produce the coarse mask.

3.3 Fine Instance Segmentation

Fine instance segmentation is achieved by simultaneously processing each con-
nected component in the binary coarse semantic map. This part of our pipeline
consists of the following steps: a) membrane delineation with the inhibition-
augmented COSFIRE filter, b) watershed segmentation, and c) object selection.

A. Inhibition-Augmented COSFIRE Filter. A COSFIRE filter can be
configured to be selective for any given pattern of interest. For this application,
where the goal is to delineate boundaries, we configure a COSFIRE filter to be
selective for lines. It takes input from a linearly aligned set of responses of a
difference-of-Gaussians (DoG) filter. We denote by B a line-selective COSFIRE
filter, which is defined as a set of 3-tuples:

B = {(σi, ρi, φi) | i = 1, . . . , n} (2)

where each tuple i indicates the distance ρi and the polar angle φi of the response
of a DoG filter whose outer standard deviation is σi. The inner standard devia-
tion of the DoG function is set to 0.5σi. The COSFIRE filter’s response rB(x, y)
in a given (x, y) location is the geometric mean of the n DoG responses at
the polar coordinates defined in B, with respect to (x, y). For a more in-depth

2 Effectively, user selection of clusters can be assisted by cluster validity indices, in
that the user gets automatic suggestions of which other clusters are mostly similar
to the already selected ones.
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explanation of the technical details and how COSFIRE filters achieve rotation-
invariance, we refer the reader to [16].

COSFIRE filters can be augmented with surround suppression in the same
way as originally proposed in [17]. This is needed here to accentuate the mem-
branes while ignoring the inner cristae for the delineation of mitochondria. The
surround inhibition term is computed for every (x, y) location by convolving a
normalized center-off DoG function Iγ (γ denotes the standard deviation of the
inner Gaussian function) with the COSFIRE response map rB . Further to [3]
the standard deviation of the outer Gaussian function is set to 4γ. Normalization
of this DoG kernel consists of first applying the Heaviside step function, which
maps all negative values to zero and all positive values to 1. Then all values
of one are L1-normalized such that their sum equals to 1. The final COSFIRE
response map R is then achieved by the linear function:

R = rB − αrIγ
(3)

where α denotes the inhibition strength. Figure 4 shows examples of COSFIRE
response maps for different α values. The inhibition term suppresses responses
to spurious strokes (i.e. cristae) in the surrounding of mitochondria walls.

Fig. 4. Examples of boundary delineations with a COSFIRE filter. (a) A connected
component from the coarse segmentation map, (b) the corresponding EM region, and
COSFIRE response maps for (c) α = 0, (d) α = 1 and (e) α = 2.

The response map R is transformed to a binary contour map by first thinning
R with non-maximum suppression to obtain the ridges and then by applying
hysteresis thresholding, which is characterized by the high th and low tl threshold
values. We keep th as a hyperparameter and set tl = 0.5th.

B. Watershed Segmentation. First, the Euclidean distance map is computed
from the thresholded COSFIRE binary map obtained above and all values below
the mean distance are set to zero. The resulting thresholded distance map is used
to generate the first watershed output (Fig. 5b). In the second stage, the ridges
of the watershed output of the first stage are superimposed on the thresholded
distance map (Fig. 5c) and used to generate the final watershed output (Fig. 5d).
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C. Object Selection. First, the objects that fall outside the coarse semantic
mask are removed. For the remaining components, we compute the contrast from
the gray-level co-occurrence matrix (GLCM) determined from the corresponding
intensity pixels of the input image and keep all objects with a contrast less than
λ standard deviations from the mean.

4 Experiments and Results

We evaluate the performance of the proposed method in three different setups.
The first two, which we denote by UG and US, use (U)nsupervised semantic
segmentation with networks that are pre-trained on the (G)eneral ImageNet
dataset [9] and on the (S)pecific CEM1.5M dataset [10] of EM images with many
instances of mitochondria, respectively. For the third approach, denoted by SS,
we replace the unsupervised stage with the state-of-the-art MitoNet, which is
a (S)upervised ConvNet trained for (S)emantic segmentation of mitochondria.
Finally, we compare the results of these three methods with the (S)supervised
(I)nstance segmentation variant of MitoNet [18], denoted by SI.

Fig. 5. Example of fine instance segmentation from a COSFIRE contour map. (a)
COSFIRE binary map, which is used as input to the (b–d) watershed algorithm followed
by (e) object selection to achieve the final instance segmentation.

Performance Measures. We measure two performance indicators, namely the
global similarity measure Intersection-Over-Union (IoU) and the Panoptic Qual-
ity (PQ), which is a more detailed measure suitable for instance segmentation.
IoU is the intersection between the predicted (PR) and ground truth (GT) masks
divided by the union of the two masks, across all pixels in a given image. PQ
unifies both segmentation and detection, making it a useful metric for cellular
EM segmentation [19]. They are defined as:

IoU =
PR ∩ GT

PR ∪ GT
(4)

PQ =
Σj∈TP IoU(GT j , PRj∗)

|TP |︸ ︷︷ ︸
Segmentation Quality (SQ)

× |TP |
|TP | + 1

2 |FP | + 1
2 |FN |

︸ ︷︷ ︸
Detection Quality (DQ)

(5)
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where TP, FP, and FN stand for the number of true positive, false positive,
and false negative objects, respectively. Following the mitochondria instance
segmentation work in [8], we consider a mitochondrium as TP if it has at least
30% IoU overlap with a GT object. The FP and FN objects are the unmatched
segments in PR and GT, respectively. PRj,∗ denotes the object in PR that is
matched with the largest overlapping region (in IoU) with GT j .

Experiments. Pre-trained encoders (ResNet50) of UG and US were applied
to all 128 × 128 sized patches of the four tiles, which represented each of them
with a 2048-element feature vector obtained from the last layer of the encoder.
The vectors were then min-max normalized. Next, we applied truncated SVD to
reduce the dimensions from 2048 to 1000, in order to enhance clustering effec-
tiveness by eliminating noise and irrelevant features. These lower-dimensional
vectors were then clustered using K-Means with (K =) 10 clusters. Finally,
three and four clusters, respectively, were selected for the UG and US methods
by visually inspecting the clustering results.

For the second stage, we applied a grid search to fine-tune three parameters
of the COSFIRE filters, namely σ, α, and tH , which are related to the contour
thickness, inhibition strength, and hysteresis thresholding, respectively, along
with the parameter λ which we used in the object selection step. The fine-tuning
was done on the single component shown in Fig. 4 and Fig. 5, which was randomly
selected from the coarse semantic segmentation in the first stage. The random
selection was constrained to pick a component with 10 to 20 mitochondria. The
determined parameters are: σ = 4, α = 2, tH = 0.6, and λ = 2.5.

Table 1. Comparison of the coarse semantic segmentation outputs using IoU.

Method Tile 1 Tile 2 Tile 3 Tile 4

UG 0.64 0.69 0.67 0.64

US 0.66 0.69 0.69 0.68

SS 0.81 0.84 0.81 0.83

Results. We report two sets of results. Table 1 presents the IoUs of the UG,
US, and SS that measure the quality of the coarse semantic segmentation for
each of the four tiles with respect to GT. The second set of results is illustrated
in Fig. 6 shows PQ – the product of the segmentation quality (SQ) and detection
quality (DQ) – that measures the quality of the final instance segmentation. The
consistently high SQ of the UG, US, and SS methods is attributable to the pre-
cise delineation by the COSFIRE filter, which yields fine instance segmentation
masks. The DQ metric indicates the effectiveness of detecting the right compo-
nents. While our UG and US unsupervised variants achieve modest IoUs in the
first stage due to under-segmentation, their final detection quality outperforms
that of the supervised counterparts. Among them, the US approach achieves
the best performance, which can be attributed to the fact that the underlying
encoder was pre-trained on the dataset CEM1.5 of EM images.
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Fig. 6. Line plots of SQ, DQ, and PQ for all four tiles. The two unsupervised variants
UG and US show consistent superiority over their supervised counterparts SS and SI.

5 Discussion and Conclusion

The results of the instance segmentation indicate that the proposed unsuper-
vised variants, UG and US, of the COFI approach perform substantially better
than the supervised approach despite having very coarse segmentation maps.
This improvement is attributable to the COSFIRE operator, whose inhibition
component makes it particularly effective in delineating the walls of apposing
mitochondria in challenging backgrounds. The initial stage of the COFI method
has the greatest influence on the detection quality (DQ). Any missing compo-
nents from the first stage cannot be recovered by the COSFIRE filter in the
second stage. It is also remarkable that for our images although the UG method
uses an encoder that was pre-trained on ImageNet, it still yields very high results
that come very close to the best results achieved with an encoder that was
pre-trained on the more specific CEM1.5 dataset of EM images (US). To gain
more insight, we augment the COSFIRE delineation operator with a supervised
semantic segmentation approach (SS) based on MitoNet. The results show that
the COSFIRE operator performs equally well as the supervised instance seg-
mentation (SI) on MitoNet-based semantic maps.

The proposed COFI approach is unsupervised and versatile, in that the
structure of interest (mitochondria here) is not an intrinsic component. The
patch-based classification of high-resolution EM images provides the necessary
redundancy to capture semantically important textured regions, which is then
fine-tuned in the second stage by the COSFIRE filter. The COSFIRE filter
with inhibition turned out to be very robust in delineating the mitochondria
walls from the cristae within them. In future work, we will evaluate the pro-
posed COFI approach on bigger datasets, other cellular tissues and different
sub-cellular structures that are important for the study of biological processes.
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Abstract. Automatic and accurate analysis of medical images is a
subject of great importance in our current society. In particular, this
work focuses on gastrointestinal endoscopy images, as the study of these
images helps to detect possible health conditions in those regions. Pub-
lished works on this topic mainly used traditional classification methods
(e.g., Support Vector Machines) or more modern techniques, such as Con-
volutional Neural Networks. However, little attention has been paid to
more recent approaches such as Transformers or, in general, Attention-
based Deep Neural Networks. This work aims to evaluate the perfor-
mance of state-of-the-art attention-based models on the problem of clas-
sification of gastrointestinal endoscopy images. The experimental results
on the challenging Hyper-Kvasir dataset indicate that attention-based
models achieve performance equal to or better than that obtained by
previous models, needing fewer parameters. In addition, a new state of
the art on Hyper-Kvasir (i.e., 0.636 F1-Macro) is obtained by the fusion
of two MobileViT models with only 20M parameters. The source code
will be published here: https://github.com/richardesp/Attention-based-
models-for-Hyper-Kvasir/.

Keywords: Attention · Transformers · Endoscopy · Medical Image

1 Introduction

The analysis of gastrointestinal endoscopy images is of great importance for
the accurate diagnosis and treatment of a wide range of gastrointestinal disor-
ders. Endoscopy images provide clinicians with direct visual access to the inner
surfaces of the gastrointestinal tract, enabling them to identify abnormalities
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Fig. 1. Hyper-Kvasir dataset of annotated endoscopy images. Sample images
belonging to six out of the 23 available classes.

such as ulcers, polyps, and tumors. The timely and accurate diagnosis of these
abnormalities is crucial for effectively treating and preventing complications.
The development of computer vision systems able to support the diagnosis of
medical doctors is currently an important line of research [15].

In recent years, several approaches have addressed the problem of auto-
matic classification of gastrointestinal endoscopy images. There are several works
focused on the classification and segmentation of cancerous artifacts in the diges-
tive tract, including polyps based on the quality of the present mucosa [3,4,14]. In
turn, these types of models can serve as decision support for the timely detection
of various gastric cancers [12]. These works use models mostly based on Convo-
lutional Neural Networks with different levels of complexity, such as ResNet [3],
DenseNet [3,16], MobileNet [9,19] or EfficientNet [10]. Despite these attempts,
the problem of automatic classification of endoscopy images is far from solved.

From the computer vision viewpoint, in recent years, attention mecha-
nisms have shown that image classification accuracy can be improved in several
tasks [7], as they allow the models to focus on the most relevant parts of the
image. In this work, we are interested in, on the one hand, investigating if mod-
els incorporating attention mechanisms are able to improve the classification
performance on endoscopy images. And on the other hand, if it is possible to
find a compact model, in terms of parameters, offering a good trade-off between
accuracy and computational cost.

For this purpose, we have selected four families of state-of-the-art attention-
based models (MobileViT, CoAtNet, CMT and DaViT) and the largest public
dataset of endoscopy images, i.e., Hyper-Kvasir [3]. Then, the main contribution
of this paper is an extensive evaluation of four types of attention-based models,
with different levels of complexity, on the largest public annotated dataset of gas-
trointestinal endoscopy images, Hyper-Kvasir. The results of this study include
a new state of the art on the classification task using a moderated number of
model parameters (i.e., 20M using MobileViT models).

The rest of this paper is organized as follows. Section 2 presents the attention-
based models evaluated in this study. Then, the dataset selected to perform the
experiments is described in Sect. 3. The experimental results are presented in
Sect. 4. And finally, the paper concludes in Sect. 5 including future research lines.

2 Attention-Based Models

Attention-based models initially emerged in the field of Natural Language Pro-
cessing and were popularized by the success of models such as Transformer [17].
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Since then, attention-based models have expanded to other fields, such as Com-
puter Vision and Signal Processing, and have been demonstrated to be highly
effective in various tasks. Attention-based models for vision are Deep Learning
models that use the attention mechanism to process images and videos more
effectively. Unlike traditional neural networks that process the entire image uni-
formly (treating all parts of the input sequence equally), attention-based models
focus on specific parts of the image that are most relevant to the task at hand,
focusing on a few specific aspects at a time and ignoring the rest. They do this
by assigning different weights to each part of the image according to its impor-
tance to that task. This allows larger, more complicated tasks to be reduced
to smaller, more manageable areas of attention to understand and process them
sequentially. In this section, we will present the attention-based models for vision
that have been selected for our experimental study.

2.1 MobileViT Family

MobileVit [13] is a family of computer vision models based on the Transformer
(ViT) architecture [7] and characterized by their computational efficiency and
their ability to process large-scale images. These models use attention blocks to
process images as patches instead of traditional convolution. MobileVit models
have been optimized for implementation on mobile devices, making them lighter
and more efficient in terms of computational resources and memory consump-
tion. Different versions of this architecture have been designed to suit different
performance and size requirements. These models have been demonstrated to
be very effective in various computer vision tasks, such as object detection and
image classification. For the proposed study, two versions of the MobileViT archi-
tecture are used: the XS version of MobileViT, which has 2M of parameters, and
a larger version with 18M of parameters.

2.2 CoAtNet

CoAtNet (Convolutional Attention Network) [5] is a deep neural network model
that combines convolutions with attention mechanisms to take advantage of
both in extracting features from images of different data sizes. The architecture
uses cascaded attention blocks combined with convolutional layers to capture
contextual and spatial features of images efficiently. Specifically, the architecture
comprises parallel contextual attention blocks (CABs) and convolutional blocks.
CAB blocks are responsible for extracting meaningful features from images using
attention. One of the outstanding features of CoAtNet is its adaptive resizing
mechanism, which automatically adjusts the input size to match the size required
by the attention layers. This allows the model to process data of any input size
without additional preprocessing.

2.3 CMT

CMT (CNNs meet Transformers) [11] is a deep neural network model applied
to vision. It is a hybrid architecture incorporating transformer attention blocks
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into a standard convolutional network. The attention blocks are inserted into
different layers of the CNN, allowing the model to capture both local and global
features of the images. Attention is applied in parallel across channels, rows
and columns, allowing the model to capture spatial and channel relationships
at various scales. The idea behind CMT is to take advantage of the ability of
convolutions to capture local patterns and the ability of transformer attention
blocks to model long-distance relationships and nonlinear interactions between
different features. In addition, CMT introduces an attention modulation tech-
nique to adapt attention based on local image features. This allows the model
to adjust attention to specific regions of the image that are more relevant to the
task at hand.

2.4 DaViT

DaViT (Dual Attention Vision Transformers) [6] is a deep learning model based
on Vision Transformers(ViT) that uses two types of attention to improve perfor-
mance in computer vision tasks: spatial attention and channel attention. Spatial
attention refers to the model’s ability to focus on specific regions of the image,
which allows the model to pay more attention to important image features and
ignore irrelevant features. Channel attention refers to the model’s ability to focus
on specific features in different layers of the neural network, which allows the
model to learn to distinguish different types of features in the image. Compared
to the ViT model, DaViT uses a dual-path structure in its architecture, allowing
the model to capture global and local information from the image.

3 Dataset and Metrics

This section presents both the dataset used for performing our experimental
study and the metrics used to compare the selected models (Sect. 2).

3.1 Hyper-Kvasir Dataset

The Hyper-Kvasir dataset [3] is currently the largest public dataset of colono-
scopies in computer vision. It contains a total of 10,662 labeled images represent-
ing 23 different classes. Some example images are shown in Fig. 1. The classes
are structured according to the Gastrointestinal (GI) tract’s location and the
pathological finding type.

The dataset contains images from four high-level categories: (i) Anatomical
landmarks, which are used during the endoscopy process to obtain references
and confirm that all critical areas have been examined, existing in both the
upper and lower GI tracts; (ii) Mucosal quality, where complete visualiza-
tion of the mucosa is crucial for detecting pathological findings, with the Boston
Bowel Preparation Scale (BBPS) used as a classification measure in the colon;
(iii) Pathological findings, which are anomalies that can affect all parts of
the gastrointestinal tract depending on the pathology being treated and are
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often inferred from the intestinal mucosa walls; and, (iv) Therapeutic inter-
ventions, where intervention is required when a lesion or pathological finding
is discovered, such as lifting and resecting a polyp, dilation of a stenosis, or
injection of a bleeding ulcer.

Fig. 2. Green patch removal. Process of removing the green patch broken down
into the different steps carried out.

Data Preprocessing. We have observed the presence of green patches in the
images for certain critical classes. These patches appear in the same location in
the image but vary in position along the y-axis and size. In some cases, these
green patches can occupy a significant portion of the image (around 32% of the
total area). In our opinion, the presence of these patches may bias the training
and resulting model. We have developed a method to remove them automatically.
In particular, contour detection algorithms [2] have been used to subsequently
perform the most precise polygonal adjustment possible to avoid removing too
much information from the original image.

The process involves the following main steps (see Fig. 2): (i) Detection and
thresholding of the green pixels by defining the color interval that includes the
‘green’ hue and masking the values meeting the color condition; and (ii) Contour
detection algorithm, which is a process performed to facilitate the detection of
the contour of the rectangular region on the original image. Finally, a bitwise
logical operation is applied to the mask to remove the defined rectangular region.

3.2 Performance Metrics

Due to the class imbalance present in the dataset, the model’s performance
will be evaluated using micro and macro F1-scores. These performance metrics
are preferred over accuracy [14] and other metrics, providing a more accurate
conclusion about the model’s performance. The equations of the metrics are
shown below:

F1 = 2 · precision · recall
precision + recall

F1macro =
1
N

N∑

i=1

F1i (1)
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F1micro =
2 · ∑N

i=1 TPi

2 · ∑N
i=1 TPi +

∑N
i=1 FPi +

∑N
i=1 FNi

(2)

where TP, FP and FN indicate the True Positives, False Positives and False
Negatives, respectively, and N the number of classes.

A 2-fold evaluation will be carried out using 50% of the stratified data, using
the splits proposed by the Hyper-Kvasir article [3], and the models will be eval-
uated using F1 metrics.

It is worth mentioning that, in this case, improving the macro variant over the
micro variant is considered more relevant since the classes related to cancerous
artifacts in colonoscopies have a very limited number of samples. Therefore, it is
convenient to weigh and average the classes equitably to improve the classifier.

Table 1. Training details. A summary of the model architectures, batch sizes, opti-
mizers, learning rates, and weight decay values used in the experiments.

Model Batch Size Optimizer Learning Rate Weight Decay

MobileViT 64 AdamW 0.0001 0.00001

CoAtNet 16 AdamW 0.0001 0.00001

CMT 32 AdamW 0.001 0.0001

DaViT 16 AdamW 0.001 0.00001

MobileViT Large 16 Adam 0.0001 0.001

4 Experiments and Results

The experiments have been designed to directly compare with the original Hyper-
Kvasir article without applying any additional pre-processing [3], considering
only the removal of green patches to favor the generalization of the model.

To determine the improvements compared to the previous state of the art,
the training has been carried out using the original splits and keeping the green
patches, in order to conclude whether attention-based models and hybrid archi-
tectures improve compared to the previous ones.

4.1 Implementation Details

The purpose of these experiments is to determine whether current attention-
based architectures are interesting compared to the previous state-of-the-art
ones and whether there are significant improvements to be made by opting for
these models for this type of problem. For this analysis, as discussed in Sect. 3,
the green patches have been removed in order to draw conclusions about possible
biases in the model. In turn, training has been conducted both with and without
the green patches, using the splits proposed by the Hyper-Kvasir article [3], to
determine whether these models outperform the previous state-of-the-art ones.
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All models are pre-trained on the ImageNet dataset because they outperform the
previous state-of-the-art ones when pre-trained on sufficiently large datasets [7].
However, we do not freeze any weights. In our early experiments, models without
pre-training were also tested, but the results were lower than the ones obtained
with pre-trained models. The images have been rescaled to a resolution of 224×
224. In our study, we applied several data augmentation techniques, including
random image rotation up to a maximum of 40◦, random width and height
shifts with a maximum range of 20% of the image size, random shearing of up
to 20% to mimic perspective or viewing angle, and a random zoom factor of
up to 20% to simulate different distances between the object and the camera.
Additionally, we allowed horizontal flipping of images, effectively doubling the
amount of available training data and helping models learn symmetries. We have
used third-party libraries for the attention-based models, available online1. All
input and output layers have been adapted to the respective format required by
each of the models.

Table 2. Architecture comparison. Results comparing the pre-processed dataset
removing green patches and using the default dataset with green patches. The results
are obtained using data augmentation and class weighting.

Model Parameters FLOPs Non-green patches Green patches

F1-Macro F1-Micro F1-Macro F1-Micro

MobileViT 2M 1.6 × 1010 0.618 0.890 0.630 0.892

MobileViT Large 18M 11.2 × 1010 0.604 0.892 0.634 0.900

CMT 9M 2.6 × 1010 0.579 0.873 0.605 0.854

CoAtNet 23M 8.3 × 1010 0.619 0.889 0.626 0.895

DaViT 87M 31.1 × 1010 0.598 0.876 0.609 0.878

In order to improve the macro variant, given the class imbalance, we apply
class weighting using the method compute class weight indicated by the Sckit
Learn library [1].

As a preliminary starting point, a Bayesian hyperparameter optimization has
been performed with the purpose of optimizing resources regarding grid-based
search methods [18]. The possible values of the learning rate and weight decay
are in the set {0.00001, 0.0001, 0.001, 0.01}. The set of values for the batch size is
as follows {16, 32, 64, 128, 256}. Adam, AdamW, and AdaDelta have been used
as optimizers. All hyperparameters used for each architecture are provided in
Table 1 to facilitate the training of the models for the proposed problem.

4.2 Comparison of Architectures

After the previously performed hyperparameter optimization, the training of the
models presented in Sect. 2 will be carried out using the preprocessed dataset
indicated in Sect. 3.
1 Base models: https://github.com/leondgarse/keras cv attention models.

https://github.com/leondgarse/keras_cv_attention_models
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As previously commented, given the data imbalance, it has been consid-
ered appropriate to prioritize macro metrics through weighting in those classes
with fewer samples. Therefore, in certain cases, micro metrics worsen slightly in
exchange for very favorable improvements in macro F1 compared to the results
obtained in previous articles [3,14]. The obtained results are summarized in
Table 2. We observe that the MobileViT architectures offer the best average
results, followed by CoAtNet.

4.3 Influence of the Green Patches

As previously mentioned, the original dataset presents green patches on specific
images (see Fig. 2). The results proposed by the Hyper-Kvasir article [3] used
the default dataset without any preprocessing of the green patches. Therefore,
we decided to train the models both with and without the green patches, using
the same hyperparameters and architectures, to compare their influence on the
model results. Note that if we wanted to obtain a classification model able to
deal with endoscopy images from a third-party dataset, we could not assume the
existence of these green landmarks. The obtained results are included in Table 2.

Table 3. State of the art. Our best models (w/o removing green patches) are com-
pared to other published models. The best directly comparable results (same splits and
image resolution; top five rows) are marked in bold.

Model Split Resolution Parameters F1-Macro F1-Micro

MobileViT Large (ours) 2-fold 224 × 224 18M 0.634 0.900

Late fusion (ours)* 2-fold 224 × 224 20M 0.636 0.905

DenseNet-161 [3] 2-fold 224 × 224 28M 0.619 0.907

ResNet-152 [3] 2-fold 224 × 224 60M 0.606 0.906

ResNet-152 & DenseNet-161 [3] 2-fold 224 × 224 88M 0.617 0.910

Teacher-Student(EfficientNetB6) [10] 2-fold 336 × 336 43.3M - 0.886

DenseNet-161 [16] 2-fold 512 × 512 28M 0.635 -

MobileNet-V2 [19] 5-fold 512 × 512 3.4M 0.651 -

ResNet-50x1/BiT-M[8] 5-fold 640 × 512 - - 0.918

MobileNet-V2 [9] 5-fold Unknown 3.4M 0.641 -

(*): Averaged MobileViT Large & MobileViT with α=0.6

We observe that, in general, the results obtained using images without the
green patches are lower than the ones obtained with the unmodified images.
This suggests that those green regions contain information used by the models
(see Fig. 3). This fact may imply that, in those cases, the actual features of the
digestive tract are not properly exploited.

Note that we have also experimented with a training set combining the orig-
inal images and the ones where the green patches were removed. As a reference,
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for the MobileViT-Large the obtained performance values are 0.625 and 0.889,
for F1-macro and F1-micro, respectively.

4.4 Comparison to the State of the Art

Inspired by [3], we perform a late fusion of the two best models obtained in our
previous experiments. Late fusion involves averaging the predictions of the last
softmax layer between models, setting a weighting parameter α that determines
the weight to assign to each model, in this case, to the first model indicated.
The final results are included in Table 3. All model comparisons have been made
with those that used the original 23 classes without any grouping, in order to
have a common starting point despite the differences in experimental conditions
that certain articles present (i.e., different splits and image resolution).

Fig. 3. Extraction of attention on trained models (a) with and (b) without
green patches. Example of bias in the presence of the green patch at classification
time. Brighter areas indicate higher attention. (Color figure online)

Fig. 4. Confusion matrices on Hyper-Kvasir. Obtained from our best model on
the corresponding test splits. Zoom in for details. (View in digital format).

We observe improvement by performing the ensemble of models compared to
their results individually. Our best fusion model, obtained through the ensemble
of MobileViT architectures, has a total of 20M parameters (2M+18M), achieving
an F1-macro value of 0.636. As a reference, the ensemble model described in [3]
has 88M parameters, achieving 0.617 F1-macro performance.
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In the resulting confusion matrices (see Fig. 4) on the original splits in tests
proposed by the Hyper-Kvasir article [3], it is possible to observe the same
classification problem that existed in previously proposed models, where the
classes representing the different degrees of ‘ulcerative colitis’ pose a difficulty
in classifying these instances.

For the sake of completeness, we have included in Table 3 other methods
existing in the literature that present classification results on Hyper-Kvasir. How-
ever, their experimental setup is not directly comparable to ours. For example,
a higher F1-macro value is reported by the recent work of [19], where the image
resolution is twice ours and the number of training samples is larger (5-fold
cross-validation) than ours. Using the same 2-fold split we use, the work in [16]
presents the results obtained using a DenseNet-161 (28M parameters) at a reso-
lution of 512×512 pix. This higher resolution model achieves a similar F1-Macro
compared to our lower resolution MobileViT with only 18M parameters. These
results support the benefit of using attention-based models for this task.

5 Conclusions and Future Work

This work presents an empirical study of attention-based models for classify-
ing gastrointestinal endoscopy images. The selected models were evaluated on
the challenging Hyper-Kvasir dataset [3], achieving state-of-the-art results on
the classification task. The results show that the lightweight models from the
MobileViT family offer very favorable results considering their reduced num-
ber of parameters, and compared to previous non-attention-based models. In
addition, a late fusion approach on two selected models shows a boost in the
classification performance.

This work has also studied the influence on the classification accuracy of
some existing green landmarks in the images of the Hyper-Kvasir dataset. The
experimental results suggest that the presence of those image artifacts may com-
promise the generalization capability of the trained models on this dataset, for
direct use on other endoscopy datasets.

As future work, we plan to study in-depth the image regions attended by
the different models and validate their possible medical relevance in collabora-
tion with medical doctors. In addition, we may consider performing pre-training
with the rest of the unlabeled Hyper-Kvasir dataset using unsupervised learning
techniques (e.g., AutoEncoders or clustering).
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16. Thambawita, V., Strümke, I., Hicks, S.A., Halvorsen, P., et al.: Impact of image res-
olution on deep learning performance in endoscopy image classification: an experi-
mental study using a large dataset of endoscopic images. Diagnostics 11(12), 2183
(2021)

17. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., et al.: Attention is all you
need. In: NeurIPS, vol. 30 (2017)

18. Wu, J., Chen, X.Y., Zhang, H., Xiong, L.D., et al.: Hyperparameter optimization
for machine learning models based on Bayesian optimization. J. Electron. Sci.
Technol. 17(1), 26–40 (2019)

19. Yue, G., Wei, P., Liu, Y., Luo, Y., et al.: Automated endoscopic image classification
via deep neural network with class imbalance loss. IEEE Trans. Instrum. Meas. 72,
1–11 (2023)

https://doi.org/10.1007/978-3-031-20053-3_5
https://doi.org/10.1007/978-3-031-20053-3_5
https://doi.org/10.1007/978-3-030-87240-3_31
https://doi.org/10.1007/978-3-030-87240-3_31


Classification of Breast
Micro-calcifications as Benign

or Malignant Using Subtraction
of Temporally Sequential Digital

Mammograms and Machine Learning

Kosmia Loizidou1(B), Galateia Skouroumouni2, Gabriella Savvidou3,
Anastasia Constantinidou4, Christos Nikolaou4, and Costas Pitris1

1 KIOS Research and Innovation Center of Excellence,
University of Cyprus, Nicosia, Cyprus

cloizi01@ucy.ac.cy
2 Radiology Department, German Oncology Center, Limassol, Cyprus

3 Medical School University of Cyprus and the Bank of Cyprus Oncology Centre,
Nicosia, Cyprus

4 Radiology Department, Limassol General Hospital, Limassol, Cyprus

Abstract. Cancer ranks as the second leading cause of mortality world-
wide with breast cancer accounting for approximately 20% of all new can-
cer cases reported globally. Mammography is the most effective screening
tool for the early diagnosis of breast cancer. However, the current practice
of evaluating mammograms by two radiologists, and a third in case of dis-
agreement, highlights the challenges faced even by experts in identifying
potential abnormalities. To address these challenges, Computer-Aided
Diagnosis (CAD) systems are being developed to assist radiologists in
breast cancer diagnosis. This study proposes a classification approach
for biopsy-confirmed benign and malignant Micro-Calcifications (MCs),
using subtraction of temporally sequential digital mammograms com-
bined with feature-based machine learning. The algorithm’s performance
was evaluated on a dataset retrospectively collected for this work, includ-
ing 128 images from 32 patients, with precisely annotated MC locations
and biopsy confirmations. Several features were extracted and a combi-
nation of feature selection algorithms was employed to identify the most
critical subset of features. Ten classifiers were evaluated using leave-one-
patient-out and k-fold cross-validation (k = 4 and 8). An Artificial Neural
Network (ANN) achieved the highest performance, with 90.63% sensitiv-
ity, and 85.39% accuracy. These findings demonstrate the potential of the
proposed algorithm to be translated into clinical practice as a second-
reading tool for the classification of breast MCs as biopsy-confirmed
benign or malignant.
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digital mammography · temporal subtraction · machine learning
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1 Introduction

Cancer, is the second leading cause of global mortality. According to the Amer-
ican Cancer Society (ACS), in the United States alone approximately 3,200,000
new cancer cases and 904,000 deaths are expected by 2040 [4]. Among these
cases, breast cancer accounts for approximately 20% and ∼30% of all female
cancers [2]. Mammography, the key screening tool for breast cancer diagnosis,
dropped the mortality of the disease by about 42%, and significantly improved
patient prognosis [11]. Current protocols require evaluation by two radiologists,
and the involvement of a third expert, in case of a disagreement. However, when
it comes to dense breast tissue, mammograms exhibit increased intensity and
variations that closely resemble certain abnormalities. Due to this similarity, the
sensitivity of mammography is reduced by approximately 30%, resulting in an
elevated risk of breast cancer [12].

Micro-Calcifications (MCs) inside a mammogram are considered suspicious
signs that warrant further assessment. They appear as bright spots due to the
higher X-ray attenuation coefficient of calcium, compared to surrounding nor-
mal breast tissue [15]. Radiological classification of breast MCs as benign or
suspicious relies on crucial parameters such as shape, texture, and distribution.
Although the majority of MCs are benign and do not need intervention, Micro-
Calcification Clusters (MCCs) are considered precursors to cancer [13]. In the
case of a suspicious finding, a biopsy will confirm whether it is malignant. Accu-
rate classification of benign and malignant MCs remains a challenge due to their
small size, wide morphological variations, and the high intensity of the back-
ground. Computer-Aided Diagnosis (CAD) systems aim to assist radiologists in
the detection and classification of breast MCs by exploiting advanced algorithms
and machine learning techniques [11].

The classification of biopsy-confirmed benign vs. malignant MCs has gained
significant attention in the literature, leading to the development of various
algorithms [11]. However, the vast majority of these studies utilize only the most
recent mammographic view of a patient, neglecting the importance to compare
prior images of the same patient. These comparisons are routinely conducted
by clinicians to identify newly developed abnormalities, or regions displaying
rapid changes between the screenings and are often considered suspicious [16].
Temporal analysis is proposed in the literature for the comparison of sequential
mammograms, and it has been applied for the detection and classification of
breast MCs [11]. However, studies based on temporal analysis offer no advantage
over utilizing only the most recent mammographic view, when the abnormality
is entirely new, with no traces in prior examinations.

In this work, an algorithm that combines subtraction of temporally sequen-
tial mammograms with feature-based machine learning for the classification of
breast MCs as biopsy-confirmed benign or malignant is proposed. Temporal
subtraction, previously introduced by this research group, has shown signifi-
cant advantages in the detection and radiological classification of breast MCs
[9], and masses [10]. A new dataset was collected specifically for this study.
Pre-processing was first applied, and then, image registration along with tem-
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Fig. 1. Dataset example. (A) Recent Mammogram. (B) A closer view of the area
outlined by the red square in (A), showing MCs and a Micro-Calcification Cluster
(MCC). (C) The region in B with precise annotation of MC and MCC locations, as
annotated by two expert radiologists. The green arrows in C indicate benign MCs,
while the red arrow indicates the suspicious MCC.

poral subtraction took place. Following, the detection and segmentation were
performed and subsequently, various features were extracted and ranked using
five feature selection algorithms. The suspicious MCs were classified as biopsy-
confirmed benign or malignant using the most successful methodology.

2 Materials and Methods

2.1 Data Collection and Description

A dataset containing 32 pairs of full-field digital mammograms (from women 38
to 83 years) with both benign and suspicious MCs in their most recent mam-
mographic images, was retrospectively collected from local hospitals. Inclusion
in the study necessitated the availability of a normal, or benign prior mammo-
graphic view, with an average interval of 2 years.

For every participant, two mammographic views, the Cranio-Caudal (CC,
view from above) and Medio-Lateral Oblique (MLO, angled view) were collected.
Two sequential screening rounds were included for every participant, resulting
in a database with a total of 128 images (2 × 2 × 32). An expert radiologist
selected the eligible patients, and along with a second radiologist, assessed the
mammograms to mark the MCs as radiological benign or suspicious. Suspicious
cases were subsequently confirmed as malignant through biopsies, followed by
histopathological analysis. Among the 32 women who underwent biopsies, 21
had biopsy-confirmed benign MCs, 5 had biopsy-confirmed malignant MCs, and
6 were diagnosed with Ductal Carcinoma In Situ (DCIS), which is recognized
as the earliest form of breast cancer. For the purposes of this study, the biopsy-
confirmed malignant cases and the cases diagnosed with DCIS were considered
as 1-class associated with malignancies. This is the first dataset that includes
temporally sequential digital mammograms, along with precise annotations of
each individual MC (Fig. 1).
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Fig. 2. Effect of pre-processing. (A) Original recent image. (B) A closer view of the
area outlined by the red square in A showing an area with MCs. (C) A closer view
of the area outlined by the green square in A, showing an area without MCs. (D)
Image after border removal. (E) Final processed image after gamma correction. (F)
A closer view of the area outlined by the red square in E, showing the same area as
B, after pre-processing. (G) A closer view of the area outlined by the green square in
E, showing the same area as C, after pre-processing.

2.2 MCs Detection and Segmentation

Normalization, border removal, and gamma correction were applied consecu-
tively to both recent and prior mammographic views, to eliminate unnecessary
information. Border removal was employed to effectively eliminate high-intensity
regions connected to the border, including the pectoral muscle in the MLO views
[6]. Subsequently, gamma correction was implemented to enhance the contrast of
the images by suppressing low-intensity regions, producing a new filtered image
with high-intensity areas and thus, possible breast abnormalities [8]. Figure 2
presents an example of the pre-processing steps applied.

Recent and prior mammographic views were then registered to account for
variations in breast compression, changes in breast shape, and potential human
error during screening. Various image registration techniques were developed
specifically for mammograms [11]. Demons registration [14] was selected in this
case, as it effectively tracked the MCs changes over time, without introducing any
errors. After the registration, temporal subtraction was performed by subtracting
the prior-registered mammogram, from the recent one. An example of temporal
subtraction is presented in Fig. 3. To evaluate the effectiveness of the subtraction,
a comparison was conducted between the Contrast Ratio (CR) of the subtracted
image and the CR of the most recent mammogram, without any pre-processing.

The subtracted image underwent further processing using a range filter, to
further enhance the abnormalities and remove any unnecessary areas [1]. Seg-
mentation of Regions of Interest (ROIs) followed, using a three-step procedure:
thresholding, application of morphological operations, and elimination of the
periphery pixels. Initially, the images were converted into binary through thresh-
olding, enabling the elimination of low-intensity regions. The threshold value
was chosen to optimize the global classification rate. Subsequently, the binary
image underwent morphological processing, using erosion and closing. Erosion
was employed with a radius of 1 pixel, which is smaller than the typical radius of
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Fig. 3. Example of temporal subtraction. (A) Most recent mammogram. (B) Prior
mammogram. (C) Subtracted image created after subtracting the registered version
of B from A. (D–F) A closer view of the areas outlined by the red squares in A–C.
The rectangles enclose suspicious MCs, which were not subtracted.

an MC, while closing was applied with a radius of 10 pixels, to identify the con-
stituents of MCCs. In the final step, high-intensity regions that could potentially
lead to areas falsely identified as MCs were eliminated. These regions correspond
to the skin of the breast, which can not contain MCs but may not be entirely
removed during the registration and subtraction process due to misalignment.
For the training of the algorithms, the ground truth provided by the radiologists
was used.

2.3 Feature Extraction and Selection

In total 96 features were extracted from each suspicious MC, taking into consid-
eration the characteristics that are routinely assessed by clinicians to determine
the suspicion level of an MC. These features were divided into four categories:
shape, intensity, First-Order Statistics (FOS), and Gray-Level Co-Occurrence
Matrix (GLCM) features. They included: area, circularity, compactness, convex
area, eccentricity, equivalent diameter, Euler number, extent, filled area, major
and minor axis length, orientation, perimeter, solidity, shape ratio, average, mini-
mum, and maximum intensity, entropy, kurtosis, skewness, smoothness, standard
deviation, variance, contract, correlation, energy, and homogeneity. Each GLCM
feature was extracted at four different angles (0◦, 45◦, 90◦, and 135◦) and the
mean and standard deviation (STD) were calculated, resulting in 24 values for
each offset D. To determine the most suitable offset, three values were tested
(D1 = 5, D2 = 15, and D3 = 25). Consequently, a total of 72 GLCM features
were extracted.
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Table 1. Feature ranking using different feature selection techniques. Selected features
are highlighted in bold.

t-test MRMR Feature Importance Random Forest Feature Importance Extra Trees SelectKBest

Area Area Area Area Area

Major axis length Major axis length Major axis length Major axis length Major axis length

Minor axis length Minor axis length Minor axis length Minor axis length Minor axis length

Eccentricity Eccentricity Eccentricity Eccentricity Eccentricity

Convex area Convex area Convex area Orientation Convex area

Filled area Euler number Filled area Convex area Filled area

Euler number Equivalent diameter Equivalent diameter Filled area Euler number

Equivalent diameter Solidity Solidity Equivalent diameter Equivalent diameter

Solidity Extent Extent Solidity Solidity

Extent Minimum intensity Maximum intensity Extent Extent

Perimeter Contrast STD D3 Skewness Perimeter Perimeter

Circularity Circularity Kurtosis Average intensity Skewness

Compactness Compactness STD Maximum intensity Contrast 90◦ D1

Shape ratio Shape ratio Correlation 0◦ D1 Skewness Contrast 135◦ D1

Correlation 45◦ D1 Kurtosis Contrast mean D1

Correlation 45◦ D2 Correlation 45◦ D2 Contrast 0◦ D2

Correlation 90◦ D3 Correlation 90◦ D3 Contrast 90◦ D2

Circularity Circularity Contrast 135◦ D2

Compactness Compactness Contrast mean D2

Shape ratio Shape ratio Contrast 45◦ D3

Feature selection was necessary to eliminate unnecessary features and
improve the classification performance. A comparison was conducted between
five methods: t-test, Maximum Relevance-Minimum Redundancy (MRMR), fea-
ture importance, using both random forest and extra trees, and, SelectKBest. As
seen in Table 1, each feature selection algorithm produced different feature rank-
ings, since they rely on unique principles. Thus, to identify the most significant
features, the results from all methods were combined by applying a majority
rule (i.e. keep the high-ranked features from all the methods), and a new feature
vector was created (features in bold in Table 1). With this approach, the clas-
sification accuracy was increased, compared to using a single feature selection
technique.

As is often the case in real-life scenarios, this dataset was imbalanced, with
unequal numbers of benign and malignant MCs (229 benign vs. 32 malignant).
To address this issue, Synthetic Minority Oversampling Technique (SMOTE)
was employed, and new instances of the minority class were generated in the
training set [3]. Feature pre-processing was also applied using least squares (l2)
normalization, to scale all the samples and adjust the range of their values.

2.4 Training and Comparison of Classifier Designs

Nine classifiers were evaluated for the classification task, including Linear Dis-
criminant Analysis (LDA), k-Nearest Neighbor (k-NN), Support Vector Machine
(SVM), Naive Bayes (NB), Multi-Layer Perceptron (MLP), AdaBoost (ADA),
Bagging (BAG), Gradient Boosting (GB), and Voting, using Python (v. 3.7.7),
and Scikit-learn (v. 0.23.1). Different Artificial Neural Network (ANN) configu-
rations were also evaluated using Keras (v. 2.3.1). Eleven patients were associ-
ated with biopsy-confirmed malignancies, thus, their correct identification was
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Table 2. Comparison of the classification results in suspicious MCs as biopsy-confirmed
benign or malignant using LOPO CV

Classifier Sensitivity [%] Specificity [%] Accuracy [%] AUC

LDA 75.00 66.38 67.42 0.71

k-NN 78.13 69.36 70.41 0.74

SVM 93.75 64.26 67.79 0.79

NB 81.25 60.43 62.92 0.71

MLP 90.63 68.09 70.79 0.79

ADA 50.00 76.60 73.41 0.63

BAG 43.75 82.98 78.28 0.63

GB 46.88 80.85 76.78 0.64

Voting 87.50 61.70 64.79 0.76

ANN 90.63 84.68 85.39 0.88

crucial since they need immediate attention. Conversely, 21 women underwent
an unnecessary biopsy, as it turned out later, and their suspicious abnormali-
ties were eventually benign. However, it is more important to accurately identify
patients associated with malignancies, thus the classification was shifted towards
the malignant cases.

Regarding the validation approach, Leave-One-Patient-Out (LOPO) Cross-
Validation (CV) was used during training, along with k-fold CV (k = 4 and 8).
This approach was critical, in order to ensure that the algorithm was working
only with unknown patients, thus, to avoid bias from adding images of the same
patient in both the test and training sets. Similarly, in k-fold CV the folds were
created per patient, rather than randomly dividing the MCs. The suspicious MCs
were classified as biopsy-confirmed benign or malignant. The performance was
evaluated by computing sensitivity, specificity, accuracy, and the Area Under the
receiver operating characteristic Curve (AUC).

3 Experimental Results

An average reduction of 65% in image intensity was achieved using image reg-
istration and subtraction, a result of removing structures that have remained
unchanged between screenings. The average CR of the subtracted images was
∼50 times higher compared to the recent mammographic view. The processing
time for these operations was an average of ∼15 min per image pair (Intel®
Core™ i7 2 GHz; Intel Corp., Santa Clara, CA, USA).

Feature selection identified the most important features for the classifica-
tion task (features in bold in Table 1) and those features were added into the
classifiers that were optimized using LOPO CV. The highest classification per-
formance was achieved using an ANN in a LOPO CV scheme, with 90.63%
sensitivity, 84.68% specificity, 85.39% accuracy, and 0.88 AUC (Table 2). For
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Fig. 4. Classification results of the MCs as biopsy-confirmed benign or malignant using
various classifiers and CV methods.

the LDA, the linear discriminant criterion was used, without prior probabili-
ties. As for the k-NN, the number of k nearest neighbors was set to 11, and
the nearest tie-breaking algorithm was selected. SVM was implemented using
a polynomial kernel. NB was implemented using the normal distribution. For
the Ensemble Voting, polynomial SVM, NB, and MLP were combined in a hard
voting scheme. The selected ANN architecture consisted of 1 hidden layer (96)
with 5,714 trainable parameters. ReLU activation function was employed in the
input and hidden layers, and softmax activation function in the output layer.
Adam optimizer was selected, and batch normalization, dropout regularization,
and Gaussian noise regularization were incorporated to enhance the network’s
robustness. The batch size was set to 128, the learning rate was 0.0001, and the
network was trained for 100 epochs. In addition, k-fold CV (k = 4 and 8) was
employed to validate the robustness of the method (Fig. 4).

4 Discussion

An ANN reached 90.63% accuracy using LOPO CV, with an average of 0.6 false
positives per image for the classification of the MCs as biopsy-confirmed benign
or malignant. Although some misclassifications occurred, the clinical impact
would have been minimal if the algorithm was actually implemented. Out of
32 malignant MCs, 3 were misclassified as benign, in 2 patients. However, these
2 patients had other malignancies, thus their care would not have been compro-
mised. To evaluate the robustness of the method, k-fold CV was implemented, in
addition to LOPO CV. In this case, the performance experienced a slight drop
since fewer patients were included in each training round, compared to the 32
patients in the LOPO CV scheme. This drop exemplifies the need for additional
training data, while also demonstrating the algorithm’s potential to accurately
classify new data.

Given that this is the first application of temporal subtraction for this task,
direct comparison with other state-of-the-art techniques is challenging. However,
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Table 3. Comparison of algorithms for the classification of MCs as benign or malignant
using sequential mammograms and feature-based machine learning

Reference Dataset Classifier Validation method Results ACC [%] Results AUC

Hadjiiski et al. (2002) [7] 65 pairs LDA leave-one-out (per patient) – 0.87 temporal 0.81 single

Filev et al. (2008) [5] 261 pairs LDA leave-one-out (per patient) – 0.81 temporal 0.72 single

Proposed 32 pairs ANN LOPO CV (per patient) 85.39 0.88 temporal

the findings of this work are more accurate than those reported in the literature
for the classification of benign vs. malignant MCs using sequential mammograms
(Table 3), in terms of the AUC. Unlike temporal analysis utilized in the literature,
the subtraction of temporally sequential mammograms proposed in this work
can effectively track and classify newly developed abnormalities, or regions that
changed significantly between the screenings.

Despite the promising results, a larger patient population is required to prove
the advantages of combining temporal subtraction with feature-based machine
learning. Ideally, the algorithm should also be verified on an independent external
dataset. Unfortunately, publicly available databases cannot be utilized for the
purposes of this project, since they neither contain sequential mammograms nor
include images annotated at the level of individual MCs as in this study.

5 Conclusion

In this study, an algorithm for the classification of biopsy-confirmed benign and
malignant breast MCs using a combination of subtraction of temporally sequen-
tial digital mammograms, and feature-based machine learning was introduced.
Ninety-six features were extracted and ranked using a majority rule, with five
different feature selection techniques. The most significant features were subse-
quently fed to the classifiers. The highest classification performance was achieved
using an ANN with 85.39% accuracy and 0.88 AUC. Encouraged by the promis-
ing findings, the proposed methodology will be further tested on larger datasets.
Deep learning algorithms will also be evaluated if large volumes of annotated
data that are needed for proper training of such complex algorithms are col-
lected. Furthermore, the algorithm can be applied to other kind of breast abnor-
malities in mammograms. The algorithm also has the potential to be translated
into clinical practice as a breast cancer classification tool, to assist radiologists
in the double reading of mammograms, especially in the Population Screening
Program of Cyprus and in less-developed countries.

Acknowledgment. The publication of this paper is supported by the European
Union’s Horizon 2020 research and innovation programme under grant agreement No
739551 (KIOS CoE) and the Government of the Republic of Cyprus through the Cyprus
Deputy Ministry of Research, Innovation and Digital Policy.



118 K. Loizidou et al.

References

1. Bailey, D.G., Hodgson, R.M.: Range filters: local intensity subrange filters and
their properties. Image Vis. Comput. 3(3), 99–110 (1985)

2. Beura, S.: Development of features and feature reduction techniques for mammo-
gram classification. Ph.D. thesis, Department of Computer Science and Engineering
National Institute of Technology Rourkela (2016)

3. Chawla, N.V., et al.: Smote: synthetic minority over-sampling technique. J. Artif.
Intell. Res. 16, 321–357 (2002)

4. Ferlay, J., et al.: Global cancer observatory: cancer tomorrow. International Agency
for Research on Cancer, Lyon (2022). https://gco.iarc.fr/tomorrow. Accessed 24
Oct 2022

5. Filev, P., et al.: Automated regional registration and characterization of corre-
sponding microcalcification clusters on temporal pairs of mammograms for interval
change analysis. Med. Phys. 35(12), 5340–5350 (2008)

6. Gonzalez, W., Eddins: Digital Image Processing Using MATLAB, 2nd edn. Gates-
mark Publishing (2010)

7. Hadjiiski, L.M., et al.: Computer-aided characterization of malignant and benign
microcalcification clusters based on the analysis of temporal change of mammo-
graphic features. In: Medical Imaging 2002: Image Processing, vol. 4684, pp. 749–
753. International Society for Optics and Photonics (2002)

8. Huang, S.C., et al.: Efficient contrast enhancement using adaptive gamma correc-
tion with weighting distribution. IEEE Trans. Image Process. 22(3), 1032–1041
(2013)

9. Loizidou, K., Skouroumouni, G., Pitris, C., Nikolaou, C.: Digital subtraction of
temporally sequential mammograms for improved detection and classification of
microcalcifications. Eur. Radiol. Exp. 5(1), 1–12 (2021). https://doi.org/10.1186/
s41747-021-00238-w

10. Loizidou, K., et al.: Automatic breast mass segmentation and classification using
subtraction of temporally sequential digital mammograms. IEEE J. Transl. Eng.
Health Med. 10, 1–11 (2022)

11. Loizidou, K., et al.: Computer-aided breast cancer detection and classification in
mammography: a comprehensive review. Comput. Biol. Med. 106554 (2023)

12. Medicine, Y.: Dense breasts - fact sheets - Yale medicine (2022). https://www.
yalemedicine.org. Accessed 24 Oct 2022

13. Oliver, A., et al.: A review of automatic mass detection and segmentation in mam-
mographic images. Med. Image Anal. 14(2), 87–110 (2010)

14. Pennec, X., Cachier, P., Ayache, N.: Understanding the “Demon’s algorithm”:
3D non-rigid registration by gradient descent. In: Taylor, C., Colchester, A. (eds.)
MICCAI 1999. LNCS, vol. 1679, pp. 597–605. Springer, Heidelberg (1999). https://
doi.org/10.1007/10704282 64

15. Rangayyan, R.M., et al.: A review of computer-aided diagnosis of breast cancer:
toward the detection of subtle signs. J. Franklin Inst. 344(3–4), 312–348 (2007)

16. Timp, S., et al.: Computer-aided diagnosis with temporal analysis to improve radi-
ologists’ interpretation of mammographic mass lesions. IEEE Trans. Inf Technol.
Biomed. 14(3), 803–808 (2010)

https://gco.iarc.fr/tomorrow
https://doi.org/10.1186/s41747-021-00238-w
https://doi.org/10.1186/s41747-021-00238-w
https://www.yalemedicine.org
https://www.yalemedicine.org
https://doi.org/10.1007/10704282_64
https://doi.org/10.1007/10704282_64


Fourier Descriptor Loss and Polar
Coordinate Transformation

for Pericardium Segmentation

Lu Liu1(B) , Christoph Brune1 , and Raymond Veldhuis1,2

1 University of Twente, 7511 AE Enschede, The Netherlands
{l.liu-2,c.brune,r.n.j.veldhuis}@utwente.nl

2 Norwegian University of Science and Technology, Gjøvik, Norway

Abstract. Epicardial adipose tissue (EAT) located inside the peri-
cardium is a marker for increased risk of many cardiovascular diseases.
Automatic segmentation methods for pericardium or EAT are necessary
to support the otherwise extremely time-consuming manual delineation
in CT scans. Powerful deep learning-based methods have been applied
to such segmentation tasks. However, existing methods primarily rely
on region-based or distribution-based loss functions, such as Dice loss
or cross-entropy loss. Unfortunately, these approaches overlook the infor-
mative anatomical priors, such as the shape of the pericardium. In light
of this, our work introduces an innovative approach by proposing and
comparing a shape-based loss that leverages anatomical priors derived
from Fourier descriptors. By incorporating the anatomical prior, we aim
to enhance the accuracy and effectiveness of pericardium or EAT seg-
mentation. The Fourier descriptor loss can be used individually or as a
regularizer with region-based losses such as the Dice loss for higher accu-
racy and faster convergence. As a regularizer, the proposed loss obtains
the highest mean intersection of union (96.76%), Dice similarity coef-
ficient (98.20%), and sensitivity (98.55%) outperforming the Dice and
cross-entropy loss. We show the effect of the Fourier descriptor loss with
fewer and weighted descriptors. The results show the efficiency and flex-
ibility of the Fourier descriptor loss and its potential for segmenting
shapes.

Keywords: Fourier descriptors · segmentation neural networks ·
pericardium segmentation · shape-based loss functions

1 Introduction

Epicardial adipose tissue (EAT) is the fat inside the pericardium, and recent find-
ings indicate its positive correlation with the risk of coronary artery disease, car-
diovascular disease, etc. [1]. However, due to technical limitations and anatomy
complexity, the manual segmentation of EAT or pericardium in medical images
is time-consuming. Nowadays, deep neural networks have shown great perfor-
mance in many medical image segmentation applications. Most efficient deep
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learning-based methods for pericardium or EAT segmentation [2] are trained
with loss functions such as the Dice loss [3] and the cross-entropy loss [4]. Some
researchers have explored utilizing the shape information in segmentation net-
works to improve or guide deep neural networks for better accuracy [5,6]. A
recent review paper on anatomy-aided deep learning for medical image segmen-
tation [7] indicates many ways to use shape information. For pericardium seg-
mentation, the pericardium shape could be an informative input. To involve that
in segmentation networks, it is needed to find a way to model or represent the
shape information. The Fourier series and Fourier transform are powerful tools
for shape representation in many computer vision applications. By applying
them, shape information could be represented by the Fourier descriptors (FDs)
in the frequency domain for further analysis. Especially, with the Fourier series,
a few descriptors are enough to represent the shape of the pericardium. Thus,
in this paper, we propose a method that uses the shape information represented
by the FDs in the loss function as well as pre-processing with polar coordinate
transformation to improve segmentation performance.

1.1 Related Work

Loss Functions. The most widely used losses for segmentation are distribution-
based losses and region-based losses [5,6]. Distribution-based losses guide the
training process by minimizing the dissimilarity between the ground truth dis-
tribution and the predicted distributions, e.g. the cross-entropy loss [4] and its
variations. Region-based losses guide the training process by minimizing the
false predictions or maximizing the overlap regions between the predicted seg-
mentation and the ground truth region, e.g. the Dice loss [3]. Besides these two
types of losses, boundary-based losses have shown interesting effects on medical
image segmentation. These losses usually work as a regularization term with a
distribution-based or region-based loss [6]. The idea of boundary-based losses is
to reduce the distance between two segmented regions, e.g. the boundary loss [8]
and the Hausdorff distance loss [9]. However, these losses need to be trained with
a region-based loss such as Dice loss to maintain the training stability. There
is more study on minimizing distance or using distance map loss penalty [10].
The boundary-based losses incorporate the boundary information due to their
theoretical concept, while boundary information is not identical to shape infor-
mation. Recently, Kervadec et al. [11] introduced loss functions based on a few
global shape descriptors such as the volume of segmentation, the location of the
centroid, the average distance to the centroid, and the length of the contour.
Their experiments show that simple shape descriptors are effective for segmenta-
tion. Although their shape descriptor loss did not outperform the cross-entropy
loss, it shows the potential.

Fourier Series and Fourier Transformation for Shape Representation.
The Fourier descriptor is widely used to encode shape features and has been
applied to image/shape retrieval [12,13]. It is a contour-based shape descrip-



Fourier Descriptor Loss and Polar Coordinate Transformation 121

tor obtained by representing a closed contour using the Fourier Series. In sig-
nal processing, the Fourier series creates new descriptors to represent the fre-
quency domain knowledge. Some works applied 2D Fourier transform for the
frequency domain analysis of images. Usually, the 2D Fourier transform is used
in 2D images to generate hand-crafted features for further processing. The fre-
quency features could be used for image classification, image registration [14],
and the Fourier domain training framework [15]. Fourier space losses proposed by
Fuoli et al. [16] improve the accuracy in high-frequency content for image super-
resolution by working directly in the frequency domain. Experiments showed that
by combining spatial domain and frequency domain losses, the image quality is
improved. A more integrated way is to apply a frequency domain representation
within the neural network. Han et al. [17] introduced a Fourier convolutional
neural network for image classification. They designed the Fourier convolutional
layers that apply the 2D Fourier transform with small random kernel sizes to
study the frequency domain knowledge. To sum up, the frequency domain knowl-
edge for image analysis and shape analysis is of great significance and has shown
its ability in many applications.

1.2 Contribution

To leverage shape information, we introduce a novel Fourier descriptor loss
(FD loss) that utilizes Fourier descriptors in relation to the Euclidean distance
between boundary points and a point within the boundary. And we validate it on
the pericardium segmentation. To improve the segmentation performance and
simplify FD loss calculation, we apply pre-processing steps including selecting
the region of interest and a polar coordinate transformation. The experimen-
tal results show that the pre-processing leads to better segmentation for all the
tested losses. As an alternative to the commonly-used Dice loss, we investigate
how the FD loss works individually and as a regularizer in combination with
Dice loss. When working individually, FD loss does not outperform the Dice loss
or cross-entropy loss, but it shows visually competitive results. When working
as a regularizer with the Dice loss, the compound loss shows improved segmen-
tation accuracy and higher convergence speed. In addition, as the FDs represent
the frequency domain knowledge, we show the effect of FD loss with fewer FDs
and the effect of FD loss with the weighted frequency content of a contour for
improving its smoothness.

2 Methodology

Let I : Ω ⊂ R
2 → R denotes a training image with spatial domain Ω,

and g : Ω → {0, 1} denotes a binary ground truth of the image. Similarly,
s : Ω → {0, 1} is a binary predicted segmentation of the image. The FD loss
is formulated based on the distance between sample points on the boundary
and the centroid of the segmentation. Thus, with the spatial domain Ω, δG
denotes a representation of the boundary of the ground truth region G and δS
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Fig. 1. Visualizing the computation of distances between boundary sample points and
the centroid for Fourier descriptor loss calculation.

denotes the boundary of the segmentation region defined by the network output.
Figure 1 shows how to compute the distance between the sample points on the
boundary and the centroid. We denote the ground truth map as g(x, y) where
x, y are the Cartesian coordinates of pixels. And we denote the map g̃(r, θ) in
polar coordinates with the centroid origin O(xc, yc) as shown in Fig. 1, where
r(x, y) =

√
(y − yc)2 + (x − xc)2, and θ(x, y) = angle(y − yc, x − xc). Thus, we

have g(x, y) and g̃(r, θ) = 1 if inside the boundary while g(x, y) and g̃(r, θ) = 0
if outside the boundary. Similarly, we have s(x, y) and s̃(r, θ) = 1 if inside the
boundary while s(x, y) and s̃(r, θ) = 0 if outside the boundary. We define the
shape signature of the target by the distance between the sample points on the
boundary and the centroid. Assume we have K sample points on the boundary.
Thus, the distance between the kth sample point on the boundary of the ground
truth and the centroid is defined as: dk(δG) =

∫ r

0
g̃(ρ, k 2π

K )dρ. For calculation,
we approximate it as dk(δG) =

∑
r=0 g̃(r, k 2π

K ). Similarly, for the kth sample
points on the output segmentation: dk(δS) =

∑
r=0 s̃(r, k 2π

K ). Applying this
to all sample points, we obtain sequences of distance measurements D(δG) =
d0(δG), d1(δG), ..., dK−1(δG), and D(δS) = d0(δS), d1(δS), ..., dK−1(δS). With
K sample points, the FDs are defined as the discrete Fourier series of the sequence
of distance measurements:

cn =
K−1∑

k=0

dke−jnk 2π
N (1)

Thus, we obtain N complex FDs from D(δG) and D(δS). In practice, we usually
make N = K for the FD calculation. The FD loss is defined as the L1 norm of
the dissimilarity between the FDs of ground truth and predicted segmentation.

LFD =
N−1∑

n=0

|cG
n − cS

n | (2)
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Due to the limitation of this type of FD, we exclude non-convex shapes with
strong curvatures. One advantage of the Fourier series is that we can always
reconstruct the original shapes with the inverse Fourier transform and miss very
little information about the original shapes. In addition, we could remove some
FDs to capture only the significant features. When training with the FD loss
function, images are transformed into polar coordinates with a fixed origin of the
reference labels. Before applying the polar coordinate transformation, we extract
a region of interest (ROI) in a circular shape from the original 2D image based on
the reference labels. Then, as shown in Fig. 2, polar coordinates transformation
applies to the circular ROI. For better visibility, we enlarge the polar-coordinate-
transformed images to the same size as the original images. With the polar-
coordinate-transformed images, the distance between the sample points on the
boundary and the centroid can be calculated by measuring the number of pixels
inside the boundary along the horizontal axis.

Fig. 2. Demonstration of pre-processing steps, including FD loss calculation and polar
coordinate transformation. Figure (a) shows the original image in Cartesian coordi-
nates, while Figure (b) displays the pre-processed image used for training, validation,
and testing, enabling FD loss computation

3 Experiments

Our experimental objective is threefold: (a) To demonstrate the impact of FD
loss both as an individual loss and as a regularizer. (b) To assess the effective-
ness of the pre-processing steps employed. (c) To investigate the influence of
the number and weights of Fourier descriptors on the performance. All of our
experiments focus on pericardium segmentation in low-dose CT scans.

3.1 Data

Chest computed tomography (CT) scanning from the Risk Or Benefit IN Screen-
ing for CArdiovascular Diseases (ROBINSCA) dataset [18] is used for experi-
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ments in this work. It is performed using a second-generation dual-source com-
puted tomography system. This is a multi-center dataset with CT screening per-
formed at the Gelre Hospital, the Bronovo Hospital, and the University Medical
Center Groningen. The labels of the region inside the pericardium are annotated
by an experienced radiologist using the open-source medical imaging processing
software 3D Slicer [19]. As 2D boundary information is used in the loss calcu-
lation, we process 3D images as a stack of independent 2D images, which are
fed into the network. All the images are resized to 256 × 256 pixels for further
processing. For our experiments, 154 CT scans (11000 slices) were annotated for
further training (9000 slices), validation (1000 slices), and testing (1000 slices).

3.2 Implementation Details

We employed the U-net++ with backbone VGG16 by Zhou et al. [20] as the deep
learning architecture in our experiments. U-net++ is a nested U-net architec-
ture for medical image segmentation that is widely used in related segmentation
tasks. To train our model, we employed the Adam optimizer with a learning
rate of 0.001 and early stopping with patience of 30. And the batch size is 8. For
implementation, we used Keras and TensorFlow and ran the experiments on an
NVIDIA RTX 6000 GPU.

For evaluation, we employed the common Mean Intersection of Union (MIU),
Dice Similarity Coefficient (DSC), and Sensitivity (SEN), which are defined as
follows,

MIU =
1
N

P (Y
⋂

Ŷ )
P (Y

⋃
Ŷ )

,DSC =
1
N

2 · P (Y
⋂

Ŷ )
P (Y ) + P (Ŷ )

, SEN =
1
N

P (Y
⋂

Ŷ )
P (Y )

where N indicates the number of slices, Y denotes the ground truth, Ŷ denotes
the predictions, and P (·) denotes the number of pixels.

3.3 Results

Quantitative Evaluation. To show the effect of the FD loss, we compared
it to two commonly used loss functions, the Dice loss and the cross-entropy
loss, with both original data and pre-processed data. Table 1 lists the results of
the corresponding experiments. Overall, with pre-processing, all the losses show
improved performance. The FD loss individually can not outperform the Dice
loss or cross-entropy loss, but its performance is competitive and convincing
visually as shown in Fig. 3. Boundary-based losses are often used as a regularizer
with distributed-based losses or region-based losses [5], so as the FD loss. We
tested the compound loss with both the Dice loss and the FD loss. As the value
range of the FD loss is larger than that of the Dice loss, a weight of 0.01 is
applied to the FD loss. With the compound loss, we obtained results of MIU:
96.79%, DSC: 98.20%, and SEN: 98.55%, which outperforms both Dice loss and
cross-entropy loss. In addition, the convergence speed of the compound loss
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(converge at the 13th epoch) is much higher than the Dice loss (converge at the
30th epoch). With Fig. 3, we visualize the pericardium segmentation results of
various loss functions in a CT slice. We can see that the manual labeling is not
perfect with noise and mislabelled pixels on the pericardium boundary. In the
example manual label, there are some pixels mislabelled as the region inside the
pericardium around the right boundary. In the segmentation results of the Dice
loss in Fig. 3(c), some pixels in that region still are mislabelled. With the FD
loss, both Fig. 3(d) and Fig. 3(e) have better segmentation results in that region.

Table 1. Performance of losses with U-net++ backbone VGG16.

Pre-processing Loss MIU (%) DSC (%) SEN (%)

No Cross-entropy loss 92.21 95.95 95.42

Dice loss 92.20 95.94 96.38

FD loss 90.21 94.85 94.09

Yes Cross-entropy loss 96.58 97.61 98.28

Dice loss 96.52 98.12 98.24

FD loss 95.56 96.68 97.71

FD+Dice loss 96.76 98.20 98.55

Fig. 3. The figure illustrates the visualization of different segmentation results within
the pericardium region: (a) Manual label, (b) Cross-entropy loss, (c) Dice loss, (d) FD
loss, and (e) Compound loss (FD + Dice).

Effect with Fewer Fourier Descriptors in the Fourier Descriptor Loss.
The key to the FD loss is the shape descriptors. By default, we utilize the same
number of descriptors as sample points on the contour, which is, in our case, 256.
For loss calculation, we use the absolute values of the FDs. Due to the symmetric
relation of the FDs, by default, every shape is represented by 128 real number
FDs. As FDs represent the shape information in the frequency domain, we could
control the shape information in the loss function by controlling descriptors. By
removing high-frequency descriptors, the shape information in small scales which
could be the noise is neglected. In addition, the computation cost is reduced. In
Table 2, we show the experiment results of the FD loss with 128, 64, 32, 16, and
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8 descriptors. The results indicate that more descriptors do not lead to better
segmentation. With our data, 64 descriptors result in the best performance. We
also tested the compound loss of the 64 descriptor loss and the dice loss, which
lead to 96.69% in MIU, 98,15% in DCS, and 98.56% in SEN.

Table 2. Performance of FD loss with fewer FDs.

#descriptors MIU (%) DSC (%) SEN (%)

128 95.56 96.68 97.71

64 95.94 97.50 98.02

32 95.62 97.26 97.90

16 95.12 96.98 97.48

8 94.94 97.03 97.63

Weighing Fourier Descriptors in the Fourier Descriptor Loss. As the
FDs represent shape information in the frequency domain, by weighing the
descriptors we could weigh the shape representations of the corresponding fre-
quency. There may be some shape representations that are more important for
segmentation. As the low-frequency descriptors represent the global shape, we
apply higher weights to them to get the global shape better considered. We
applied Sigmoid-based weights to the FDs cn. The Sigmoid function is define as
σ(x) = 1

1+e−x . Assume we have N FDs, with a selected range of [a, b], for the
nth FD, the corresponding weight is σ(a − a−b

N ∗ n). Thus, the loss becomes

Lσ
FD =

N−1∑

n=0

σ(a − a − b

N
∗ n)|cG

n − cS
n | (3)

With a positive a and a negative b, we apply higher weights to low-frequency
descriptors while lower weights to high-frequency descriptors. As shown in
Table 3, with [a, b] = [4,−4], we obtained better results (MIU: 96.18% [+0.62%],
DSC: 97.40% [+0.72%], SEN: 98.21% [+0.5%]).

Table 3. Performance of FD loss with Sigmoid-weighted Fourier descriptors.

[a, b] MIU(%) DSC(%) SEN (%)

[3,−5] 96.12 97.27 98.21

[4,−4] 96.18 97.40 98.21

[5,−3] 95.07 96.96 97.46

[6,−2] 95.76 97.37 97.91

[7,−1] 95.80 97.48 97.98
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4 Conclusions and Future Work

We have presented a method of FD loss and polar coordinate transformation for
pericardium segmentation. The pre-processing with polar coordinate transforma-
tion overall leads to better segmentation for all losses. A recent work by Alblas et
al. [21] for artery vessel wall segmentation also showed better results with polar
coordinate transformation. Compared to other boundary-based losses such as the
boundary loss [8] and Hausdroff distance loss [9] which need to be trained with a
region-based loss, the FD loss can be trained individually. Although, when work-
ing individually, FD loss can not outperform region-based losses like the Dice
loss and cross-entropy loss. It has shown the potential to improve both the per-
formance and convergence speed when working as a regularizer of the Dice loss.
Due to the physical meaning and invertibility of FDs, our loss has more inter-
pretability. As we worked with medical images, the labels of the pericardium
were annotated manually. There are unavoidable noise and mislabeled pixels
around the boundary in the manual labels. Compared to the manual labels, the
predicted segmentation is smoother with less noise along the boundary.

A main limitation of the method is that it can not apply to non-convex shapes
with strong curvatures. The centroid must locate inside the shape for further
polar coordinate transformation. The cause of the limitation is the application
of the Fourier series to the shape signature along the boundary. There may be
alternative ways to avoid this limitation by using a 2D Fourier transform. In
this work, we focus on 2D CT slices as the manual labels were annotated in 2D
manners.

For future work, it is possible to explore a similar approach in 3D cylinder
coordinates since many medical images are 3D images. Although the Fourier
transforms only apply to 1D or 2D signals, a recent work by Wiesner et al.
[22] shows a similar transform in 3D for encoding the cell shape. All in all,
we have shown the potential of FD loss and polar coordinate transformation
in pericardium segmentation with shape/boundary-based formulation, but the
generalization of this method is an open field for further research.
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Abstract. Transfer learning (TL) reuses knowledge from real-world objects to
perform faster and accurate image classification tasks in related content. Multi-
ple studies have shown evaluated deep learning (DL) models in atherosclerotic
plaque classification (Asymptomatic, AS, or Symptomatic, SY), using carotid
ultrasound (CUS) images, with only a few studies examining TL in this task. In
this study, we use TL to classify plaques in CUS longitudinal images, upon image
standardization. Overall, 189 images were included (189 patients; 95 SY and 94
AS), which we distributed into training, validation and final evaluation, follow-
ing the 90–10% data split rule. Our image standardization steps included: image
resolution normalization, intensity normalization, and speckle noise removal, fol-
lowed by cropping of the examples to the plaque region of interest (ROI) and
resizing to uniform dimensions. The Xception (Chollet, 2017) and the MobileNet
(Howard et al., 2017) were evaluated in this study, by freezing their backbone
architecture (pre-trained on ImageNet) and adding new dense layers, which we
trained to classify AS and SY cases. The classification accuracy (CA) of Xcep-
tion and MobileNet was found at 85% and 75%, respectively. Xception yielded
an 81.8% and 88.9% precision for the AS and SY cases, respectively. We also
extracted saliency maps (AS or SY), from the best model’s classification layer,
during evaluation, to acquire an intuition for plaque areas that play important role
in model decision. In the future, we plan to repeat this work with a larger stan-
dardized dataset, to also fine-tune layers in model backbones and improve model
classification performance.
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1 Introduction

1.1 Artificial Intelligence-Based Stroke Risk Assessment

Ischemic stroke risk stratification from carotid atherosclerosis can be based on carotid
plaque detection and characteristics, as well as patient clinical data [1]. Carotid B-mode
ultrasound imaging is the most common imaging modality for experts to analyze carotid
plaque features. In previous studies, CUS atherosclerotic plaque components were iden-
tified and classified in AS and SY patients, which enabled a better understanding of their
role in disease prognosis, while they were also used to develop computational models
for stroke risk assessment [2–7]. During the past ten years, there was an increase in the
scientific approaches attempting to automate the process of carotid plaque classifica-
tion, using CUS images and Machine Learning (ML) or DL models, trained either from
scratch or used with TL.

Deep Learning-Based Stroke Risk Assessment. In [8], Lekadir et al. developed a
custom convolutional neural network (CNN), which they trained to differentiate between
lipid, fibrous and calcified plaque examples, reaching a 75 ± 16% mean ± standard
deviation (m ± std) pixel level plaque CA. Shen et al. [9], developed a multi-task
learning model, hosting two associated tasks, one to classify plaques in CUS images
into four types (intimal thickening, weak echo, hybrid echo, strong echo) using a custom
DL model (4 dense blocks similar to DenseNet-161), and one performing regression of
characteristics derived from patient reports, to improve the plaque CA. They reached a
79.82 ± 0.38% CA, over all types.

Later on, Guang et al. [10] designed a DL-system for automatic plaque character-
ization into stable or vulnerable, in contrast-enhanced CUS videos, including interde-
pendent processes for marker symbol removal, blending of B-mode video frames (VFs)
with contrast-enhanced CUS VFs, and plaque region of interest (ROI) detection and
classification. To extract ROI features from all VFs per video, they employed Xception
[11] (with TL), while they fused all extracted features from each video and fed them
into a classifier to decide the plaque type, reporting sensitivity (SE) and specificity (SP)
at 79.2% and 84.4%, respectively. Additionally, Ma et al. [12] proposed a DL multilevel
strip pooling, building on the visual geometry group backbone architecture, to clas-
sify plaque (arbitrarily sized) in CUS images, into echo-reach, echo-intermediate and
echolucent. They reached a 92.1% and 95.6% SE and SP, respectively.

Also, Skandha et al. [13], developed a computational system for carotid plaque
classification in CUS images (AS or SY), consisted of different DL and TL models,
trained with predefined augmented dataset versions and they showed that their best
DL model outperformed their best TL model, yielding 95.66 ± 1.55% and 83.33 ±
3.35% CA, respectively. In an additional study [14], the same group used TL again, for
plaque classification in CUS images, but they trained the models with images from 2
different medical centers (individually or by combining examples). Their results showed
that TL outperformed DL (94.55% versus 93.55% CA, respectively; average from the
2 datasets). The same group also published a study [15], where they investigated the
potential of merging DL and ML models, for stroke risk stratification, trained with CUS
plaque images from 2 different datasets and concluded that a CNN-ML combination
(CNN-decision tree model) yielded the highest CA (99.50 ± 1.47%), on mixed image
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dataset. Finally, to alleviate the problem of arbitrarily sized carotid plaques in CUS
images, Ma et al. [16] developed a DL model, trained with transverse and longitudinal
views, from bilateral CUS images, for stroke risk stratification, which occupied 2 types
of subnetworks, one for feature extraction and one for feature downsampling, with the
latter one hosting different object-specific pooling strategies for feature downsampling.
They achieved a 97.3% CA.

Transfer Learning-Based Stroke Risk Assessment. Apart from the previously men-
tioned studies [13–15], where TL-based carotid plaque classification experiments were
included, there have been only a few studies solely investigating the contribution of TL
in stroke risk stratification, using CUS plaque images (see Table 1). In 2019, Panayides
et al. [17] applied TL using the backbones of popular CNNs (pre-trained on ImageNet),
as CUS plaque ROI image feature extractors (for AS and SY cases), feeding the resulting
features into a logistic regression model for classification and achieved 78% precision
(PR), for ResNet and MobileNet. In 2021, Sanagala et al. [18] (see also Table 1), eval-
uated 10 CNN models for stroke risk assessment, using them with TL and augmented
versions of the same CUS plaque dataset (AS and SY cases). They used the backbone
of each model (trained on ImageNet) as feature extractor and a new set of dense layers,
from which the last one was used for CUS plaque classification. From the 10 TL models
they tested, MobileNet yielded the highest carotid plaque CA at 96.1 ± 3. The rest of
the TL-based carotid plaque classification studies, given in Table 1, have been described
in the previous Section.

Table 1. Summary of the studies examining TL for atherosclerotic plaque classification in CUS
images (only the best TL model from each study is reported in this table).

Year Study N images
AS/SY

CNN
Model

PPR
RN/IN/D

ML
Type

TL
Type

k-fold
CV

Input
Size

CA
m ± std%

PR
%

2019 [17] 1121
108/1013

ResNet50
MobileNet

✓/✓/ × LG FE +ML - NG NG 78a

78a

2020 [13] 346
196/150

VGG16 ✓/✓/ × - FE + NDLs ✓ 2562 83.3 ± 3.4b 85

2021 [14] 346
196/150
160
110/50

VGG19 × /✓/ × - FE + NDLs ✓ 2562 94.6c -

2021 [18] 346
196/150

MobileNet ✓/✓/ × - FE + NDLs ✓ 1282 96.1 ± 3b -

2022 [15] 346
196/150

VGG19 ✓/✓/ × - FE + NDLs ✓ 2562 96.6 ± 1.1d -

2023 This study 189
94/95

Xception ✓/✓/✓ - FE + NDLs - W: 256
H: 128

85d 85.5

AS: Asymptomatic, CA: Classification Accuracy, CV: Cross Validation, D: Despeckled, FE: Fea-
ture extractor, H: Height, IN: Intensity-normalized, LG: Logistic Regression,ML:Machine Learn-
ing, N: Number, NDLs: New Dense Layers, NG: Not given, PPR: Pre-processing, PR: Precision,
RN: Resolution-normalized, SY: Symptomatic, TL: Transfer Learning, W: Width.
aWeighted average of SY and AS resulted precision, bWith Data Augmentation, cOver the mean
of all datasets, dMixed dataset.
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Although there have been noticeable TL-based carotid plaque CA results in previous
studies, the intervention in the plaque CUS image primary size, to support each model’s
input dimensions, has not been fully reported. Resizing of the CUS images changes the
content to an extent, especially when the final dimensions do not closely resemble the
primary plaque ROI dimensions. Also, in many of these studies, where high CAs have
been reached, there has been extensive data augmentation on the images, some of which
includes skewness, that might not represent actual variations met in real carotid plaque
examples. Moreover, in studies where multiple CUS image datasets have been used,
image resolution normalization has not been applied, but statistical analysis has been
followed.

To solve the above-mentioned inconsistencies, in this study we propose a stroke risk
assessment approach, established on TL-based plaque classification (AS versus SY) in
CUS images (from different medical centers), where the examples are first subjected to
standardization, with the model input size decided based on the actual average plaque
ROI dimensions.

2 Materials and Methods

All the methodology steps, followed in this study, are shown in Fig. 1 and explained in
the following sections.

Fig. 1. Holistic view of all steps for CUS image dataset preparation, preprocessing, TL-based
carotid plaque classification and extraction of saliency maps per category, as followed in this
study. AS: Asymptomatic, CNN: Convolutional Neural Network, CUS: Carotid Ultrasound, ROI:
Region of Interest, SY: Symptomatic. *With data shuffling and class balance.
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2.1 Carotid Ultrasound Images and Patient Data

In this study, we included 189 CUS longitudinal images (189 patients; 94 AS and 95
SY), which came from 3 medical centers (in Cyprus, Greece, and United Kingdom).
In all patient cases, the carotid stenosis degree was higher than 50%. Each image was
accompanied by a plaque-specific ROI annotation, manually selected by an experienced
ultrasonographer and vascular surgeon.

2.2 Image Preprocessing

All CUS images were resolution-normalized to 20 pixels/millimeter (with bicubic inter-
polation) as in [18] and intensity-normalized as in [24], while speckle noise removal
was applied with a hybrid-median filter (over the entire image, with a 5 × 5 window
and 2 iterations) using the software in [19]. Then, each image was cropped to the plaque
bounding box area and resized to 256 × 128 pixel size, while the carotid background
surrounding the plaque was removed. It is important to mention that the actual m ± std
deviation for CUS plaque width and height, in the resolution-normalized samples, prior
to the final resizing, was 208 ± 102 and 69 ± 31 pixels, respectively.

2.3 Transfer Learning Models

In this study, we evaluated two deep CNNs, namely the Xception [20] and theMobileNet
[21] (primarily trained on ImageNet), in CUS plaque classification based on TL. We
removed the existingfinal classification layer, attached to the backboneof eachmodel and
inserted new layers (see Table 2 and Fig. 1) to tailor their weights towards atherosclerotic
plaque classification. The final number of filters (128), in the first dense layer we added,
was selected empirically, after trials with less and more neurons.

Table 2. Set of new DL network layers, added at the top of the selected models, in this study.

Layer Type Number of
Neurons

Activation
Function

Rate

Flatten – – –

Dense 128 ReLu –

Dropout – – 0.6

Dense 2 Softmax –

2.4 Model Training Process

Both the Xception and MobileNet were used through Keras/TensorFlow (Python). We
split the datawith the 90–10% rule approximately (155 images for training; 77AS and 78
SY, 14 for validation; 7 AS and 7 SY, and 20 for testing; 10 AS and 10 SY) and shuffled
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them. We trained the added layers given in Table 2, with ‘early stopping’, with 18 and
16 patience (for Xception and MobileNet, respectively), monitoring the validation loss.
The final epochs were 47 and 36 for Xception and MobileNet, respectively. The batch
size was set to 31 for both models. We also used minor (on the fly) augmentation (4
degrees rotation range and horizontal flip).

2.5 Model Carotid Plaque Classification Performance

To assess model CUS plaque classification performance, we calculated the following
metrics, based on true positives (TP) and negatives (TN), and false positives (FP) and neg-
atives (FN): CA (TP+TN/(TP+TN+FP+FN)), PR (TP/(TP+FP)), Recall (TP/(TP+FN)),
and F1-score ((2 × PR × Recall)/(PR+Recall)), as explained in [22].

2.6 Saliency Maps Per Carotid Plaque Category

In order to derive a primary intuition of the carotid plaque areas that the best model
in this study paid more attention to and better understand the plaque subareas (pixel
populations) that mostly contributed to sample classification, we visualized the SMs
(AS or SY, according to the given example) in our evaluated images. The SMs (vanilla
saliency) were extracted from the last dense layer of the best model (trained on the CUS
plaque ROIs) following the process introduced in [23] and developed in [24], where the
‘softmax’ function must be replaced by linear activation. Saliency was computed as the
gradient of the output category with respect to the input example. In essence, the results
are model attention heatmaps.

3 Results

As explained above, for this study we ‘freezed’ the backbone layers in Xception and
MobileNet and trained two new dense layers (see Table 3) for CUS plaque classification.
An initial attempt to continue with ‘unfreezing’ the last convolutional block per model
and update the corresponding weights, led to early overfitting, due to the limited amount
of the available training images.

The CUS plaque classification performance per model, in this study, is given in
Table 3. More specifically, Xception outperformed MobileNet, reaching 82% and 89%
PR, for the ASs and SYs, respectively, and an 85% CA. Overall, both models exhibited
higher PR when distinguishing the SY cases.

As explained in Sect. 2.6, we also generated the SMs, for all the AS and SY CUS
plaque images, evaluated with Xception. Three SMs per carotid plaque category, are
shown in Fig. 2 (in grayscale). Noticeably, Xception seems to have partially relied on
AS and SY plaque areas (ground truth), where pixel intensity exhibits great (abrupt)
differences. These SMs were extracted to provide a primary view on the plaque ROI
components that play important role in plaque classification.
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Table 3. Transfer learning model CUS plaque classification performances, as found in this study.

Model Class N samples Precision Recall F1-Score CA

Xception AS 10 0.82 0.90 0.86 0.85

SY 10 0.89 0.80 0.84

MobileNet AS 10 0.73 0.80 0.76 0.75

SY 10 0.78 0.70 0.73

AS: Asymptomatic, CA: Accuracy, N: Number, SY: Symptomatic. Best results are given in bold.

Fig. 2. Saliency maps for AS and SY Xception-classified (last dense layer) CUS plaque images,
as extracted in this study. AS: Asymptomatic, GT: Ground Truth, SY: Symptomatic.

4 Discussion

In this study, we applied TL on standardized CUS plaque images, for stroke risk strat-
ification. We evaluated Xception and the MobileNet (pre-trained on ImageNet), using
their backbones as feature extractors and merging them with a new set of dense layers,
which we trained for CUS plaque classification.

Data standardization is a crucial step whenML, DL or statistical analysis is involved.
We have noticed that several DL-basedCUSplaque classification studies do not use or do
not report appropriate data standardization strategies. For example, when CUS images
from different medical centers andmachines are used, a uniform image resolution should
be considered. In [14], different image datasets, with different image resolutions were
used. In contrast, in [17], all images were resolution- and intensity-normalized, prior to
utilization in TL, for feature extraction.

A similar notion exists for image intensity normalization, for CUS plaque images
from different medical centers. All studies given in Table 1 have applied a similar image
intensity normalization method, as introduced and developed in [25].

Regarding speckle noise removal, to the best of our knowledge, there has not been a
previous TL-based CUS plaque image classification study applying despeckling, prior
to model training, although it has been found that speckle noise removal (using a hybrid-
median filter) is a process that not only improves the visual perception by experts, but
also gives better texture and video quality metrics [26].

Also, compared to previous relevant studies [13–15] and [18], here we concluded
on the model input size based on the average plaque ROI dimensions as resulted after
image resolution normalization (as reported in Sect. 2.2). This prevents large changes
in the carotid plaque major and minor axes, prior to model training.



Stroke Risk Stratification Using Transfer Learning on Carotid Ultrasound Images 137

Furthermore, it is important to mention that the data augmentation strategies fol-
lowed in cases of limited amount of data, especially when medical images are involved,
should be justified. More specifically, there have been studies ([13–15] and [18]) using
aggressive data augmentation in CUS plaque images without appropriate reporting (such
as shearing of axes; missing the corresponding kernel values). Simple transformations,
such as image flipping (horizontal or vertical), or rotation (to a logical range of degrees)
are not expected to alter the primary label for a given image sample. More complex
approaches, such as shearing (skewness) on the x- or y-axis of a given image might
cause large modifications in a primary image content, and thus point to a different rep-
resented label; especially, in the context of carotid atherosclerosis, where AS and SY
plaques often include componentswith common image features. In this study,we applied
minor data augmentation (a 4 degree rotation range and horizontal flip; on the fly) and
reached an 85% CUS plaque CA.

The main effort of this study is to develop a system to be used for stroke risk
stratification, starting from image standardization. To the best of our knowledge, this
study is the first to evaluate TL-established stroke risk stratification with CUS plaque
images, based on preceding image resolution normalization, intensity normalization and
speckle noise removal. Additionally, in this study we extracted the SMs for all the AS
and SY cases, included in our evaluation data, to acquire a primary visual understanding
of the carotid plaque components that mostly contribute to case classification. Based on
these SMs, in future studies, we will develop an explainable DLmodel to further analyze
and characterize these specific areas with regard to their synthesis, such as calcification
of plaque, lipid core lipid, fibrous or calcified area, as verified and discussed in [27] and
[28].

Finally, as in the current study the CUS plaque ROIs were manually selected by
an experienced vascular surgeon (a time-consuming task), the TL-based stroke risk
stratification methodology we presented here will be repeated, such that the primary
carotid plaque ROIs will be generated automatically by the model we have recently
proposed and evaluated in [29].

Conclusion. Overall, this study showed that the application of proper image prepro-
cessing combined with TL-based CUS plaque image classification, returns reliable CAs
and PRs for both the AS and SY cases. In the future, we will update the current results,
with a larger dataset, where we plan to also update weights in the last convolutional
block layers, per model, under a k-fold cross validation protocol.

Limitations. In this study, we had a limited amount of data available, with regards to
the needs of a TL-based model training process, although they came from 3 different
medical centers and allowed a primary good carotid plaque CA. The lack of data also
did not encouraged the utilization of a k-fold cross validation model training process
or the updating of weights in the last convolutional layers in Xception. We also applied
resizing to our samples, to some extent.

Acknowledgment. This study is part of the two-year ‘AtheroRisk’ Project (Call: “Restart 2016–
2020”, Proposal: EXCELLENCE/0421/0292), funded by the Cyprus Research and Innovation
Foundation.
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Abstract. Multiple Sclerosis (MS) is characterized by complex and heteroge-
neous nature and as a result, there’s currently no cure.Medications can help control
the progression and ease the symptoms of MS. The scientific interest in the field
of explainable artificial intelligence (AI) comes to the surface and aims to assist
computer-aided diagnostic systems to be established in medical use by providing
understandable and transparent information to the experts. The objective of this
study was to present different learning methods of explainable AI models in the
assessment of MS disease based on clinical data and brain magnetic resonance
imaging (MRI) lesion texture features and compare them by focusing on the main
findings. The learning methods used machine learning and argumentation theory
to differentiate subjects with relapsing-remitting MS (RRMS) from progressive
MS (PMS) subjects and provide explanations. The results showed that the different
learning methods achieved a high accuracy of 99% and gave similar explanations
as they extracted the same set of rules. It is hoped that the proposed methodology
could lead to personalized treatment in the management of MS disease.

Keywords: Multiple Sclerosis · Brain MRI · Lesions · Texture Features ·
Clinical Data · Machine Learning · Rule Extraction · Argumentation ·
Explainable AI

1 Introduction

Multiple Sclerosis (MS) is a complex autoimmune disease affecting the central ner-
vous system and is the leading cause of non-traumatic neurological disability in young
adults [1]. Both environmental and genetic factors are believed to contribute to MS
susceptibility. Environmental influences such as smoking, childhood obesity, infectious
mononucleosis, and low serum vitamin D are consistently associated with increasedMS
risk [1, 2]. While it may be possible to assess an individual’s MS susceptibility based
on genetic data and risk factor exposure, the practicality of routinely predicting MS
development faces theoretical and practical challenges [1].
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MS is traditionally seen as having two distinct stages. In the initial stage, there
is inflammation that leads to relapsing-remitting disease (RRMS). In the later stage,
there is neurodegeneration that results in a progressive form of the disease (PMS). This
progression can be defined as either secondary progressive MS or primary progressive
MS, depending on the symptoms and the disability [2]. The hallmark of MS is the
appearance of white matter (WM) lesions that can be seen using Magnetic Resonance
Imaging (MRI) to diagnose the progression of the disease [2].

Recent advancements in artificial intelligence (AI) have led to its widespread use,
demonstrating exceptional performance in numerous tasks through complex machine
learning (ML) systems. However, the increased complexity has made these systems
function like “black boxes,” raising concerns about their operation and decision-making
processes [3]. This lack of transparency has hindered their adoption in healthcare. Conse-
quently, explainable AI has gained significant attention, focusing on developingmethods
that can explain and interpret ML models [3].

The objective of this study was to present the learning method of two different
explainable AI models focused on the assessment of MS disease progression and com-
pare them by discussing their findings. Both learning methods are based on ML and
argumentation theory.

2 Materials

A dataset of 87 MS subjects (34 males, and 53 females) was examined at different
time points. MRI images of 66 RRMS and 21 PMS were obtained using different MRI
scanners and different sequences (T1w, T2w, and FLAIR). The expert neurologist (co-
author, M. Pantzaris) manually segmented the brain MS lesions in a blinded manner
where the segmented areas were intensity normalized between the grayscale values of 0
and 255. Clinical data were also investigated including demographic, and neurological
measurements, such as functional system (FS) scores defining 0: ‘Normal’, 1: ‘Signs
Only’, 2: ‘Mild’, 3: ‘Moderate’, 4: ‘Severe’, and 5: ‘Loss’ [4].

Texture features were extracted from all the segmented MS lesions and were esti-
mated by averaging the correspondingvalues for all lesions of eachpatient. The following
selected group features were extracted [5]: first-order statistics (FOS), spatial grey level
dependence matrix (SGLDM), neighborhood grey tone difference matrix (NGTDM),
and Fourier power spectrum (FPS). Min-max normalization was performed between the
values 0.0 and 1.0, where a fixed number of 3 bins that has the same number of obser-
vations to each bin (quantile strategy) was defined. The bins were encoded using the
ordinal method, where 0 refers to ‘Low’, 1 refers to ‘Medium’ and 2 refers to ‘High’. In
addition, feature selection was applied by computing the analysis of variance (ANOVA)
test. The 5 features with the highest F-value, from both clinical data and texture features,
were selected (see Table 1).

Data were collected from 87 subjects coming from two groups: 66 RRMS (G1) and
21 PMS (G2) (see Table 2). As shown in Table 2, data were oversampled using the
synthetic minority over-sampling technique (SMOTE) which creates new samples for
the minority group of the model (G2) with the same statistical properties [6]. Splitting
using 80% for the training and 20% for the evaluation set and the target class as a stratified
parameter was applied.



142 A. Nicolaou et al.

Table 1. Selected clinical data and brain MRI lesion texture features.

Clinical data

cerebellarFS, slowtongueFS, facialFS, sensoryFS, dysarthriaFS

Brain MRI lesion texture features

contrastNGTDM, varianceFOS, variancesumsquaresSGLDM, sumvarianceSGLDM,
angularsumFPS

FS: Functional Systems, NGTDM: Neighbourhood Grey Tone Difference Matrix, FOS: First-
Order Statistics, SGLDM: Spatial Grey Level Dependence Matrix, FPS: Fourier Power Spectrum.

Table 2. Data distribution of the models.

Data sets Subjects RRMS (G1) PMS (G2)

Initial 87 66 21

Over-sample minority 132 66 66

Training 106 53 53

Evaluation 26 13 13

RRMS: Relapsing-Remitting MS, PMS: Progressive MS.

3 Methods

3.1 Learning Method A

The first learning method utilized ML and argumentation theory. The ML algorithms
random forest (RF), and gradient boosting (GB) were used. During model training, the
grid search method was applied to find the optimal combination of hyper-parameters of
each model [7], based on a stratified 10-fold cross-validation. Rules were extracted on
training using the TE2rules algorithm [8] that converts a tree ensemble (TE) to a rule
list (RL). Then, rule selection was performed selecting the models with high training
accuracy and a minimum sample of rules. Argumentation-based reasoning was applied
usingGorgias’ theory [9], which involves constructing arguments using a basic argument
scheme, connecting a set of premises to the claim of the argument. The extracted rules
were modified as object-level arguments that can support contradictory claims, leading
to arguments attacking one another. Moreover, the use of priority on object-level argu-
ments can express a local preference between arguments and establish relative strength,
tightening the attack relation between them. The performance of the learning method
was based on the average evaluation set performance for 10 runs.

3.2 Learning Method B: ArgEML

The second learning method called ArgEML [10] is an argumentation framework for
explainable machine learning, based on a novel approach that integrates sub-symbolic
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methodswith logicalmethods of argumentation to provide explainable solutions to learn-
ing problems [11]. In the framework of ArgEML argumentation is used both as a target
language for ML and the explanations of the ML predictions. The learning algorithm
generates argumentation theories in the context of Gorgias argumentation framework
[9], by processing a set of data and optionally a list of decision rules that represent some
knowledge of the data (hybrid mode of operation). The ArgEML approach views the
notion of prediction from a different perspective than that of a traditional ML model,
by means of relaxing the requirement of accuracy by distinguishing two notions of def-
inite prediction (single conclusion that can be either correct or wrong) and ambiguity
(multiple conflicting conclusions) recognition. In this perspective, if we cannot uniquely
or definitely predict, but can focus the prediction on a set of alternatives and can give
justifications for the alternatives, then we consider that we still have a valuable output
of learning. For these difficult cases, an argumentation theory will generate a dilemma.
Dilemmas include multiple conflicting conclusions with explanations for each particular
conclusion. A dilemma can be considered neither a correct nor a wrong prediction. For
that reason, dilemmas are included in a new learning assessment (5) metric for evaluat-
ing the performance of a theory. More information on the framework and methodology
can be found in [12]. The ArgEML system: α-version1 is a Java implementation of the
methodology that we can use to learn and evaluate Gorgias’ argumentation theories.

3.3 Evaluation Metrics

The performance of the two learning methods was based on the evaluation set (see
Table 2). The following evaluation metrics were used:

where TP and TN denote the number of true positive and true negative instances that
are correctly identified, and FP and FN indicate the number of false positive and false
negative instances that are incorrectly classified, respectively.

The Learning Assessment (LA) metric, introduced in [12] for the evaluation of
the argumentation theories generated by ArgEML, is a generalization of the standard
classification accuracymetric, that gives a holistic evaluation of an argumentation theory
that balances definite errors and dilemmas:

Learning assessment(LA)

= definite correct predictions(TP + TN ) + dilemmas ∗ wa

total number of predictions(TP + FP + TN + FN )
(5)

where wa corresponds to a weight factor for ambiguity, defined as 1/(number of labels
in target class).

1 https://github.com/nicolepr/argeml

https://github.com/nicolepr/argeml
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4 Results

4.1 Learning Method A

Tables 3 and 4 illustrate the RL generated from the selected RF and GB models, respec-
tively. It is shown that two rules consisting of only one feature can describe the target
group G1 (see Table 3). In addition, some features are strong enough to differentiate
the subjects into two different groups (G1 vs G2) as both RF and GB models extracted
the same feature rules (e.g., cerebellarFS, sensoryFS). It’s worth mentioning that the
contrast from the NGTDM group is the only texture feature observed in the RL.

4.2 Learning Method B: ArgEML

In this work, we used the ArgEML system in hybrid mode to learn an argumentation
theory from the dataset described in Sect. 2. Following the process of “Learning method
A”, we utilized 10 subsets of train/test sets, to train a RFmodel and extract decision rules
using the inTrees algorithm [13]. We used the rules extracted from the best-performing
models on the train and test sets with an Accuracy of 100% to run the ArgEML system,
one time for each set of train/test/rules, and decide/learn the best-performing argumen-
tation theory. ArgEML in hybrid mode processes the decision-rules given as input and
generates an initial theory that contains a compact set of arguments (~rules) that cover
the training data. Table 5 illustrates the compact set of rules extracted from a selected
best-performing RF model and chosen by ArgEML for initialing the argumentation
theory.

4.3 Evaluation of the Learning Methods

According to Tables 3, 4, and 5, it is observed that the different learning methods gave
similar rules. These rules consisted of the clinical data and more specifically, the cere-
bellar and the sensory function systems’ measures. Furthermore, it is highlighted that
the brain MRI lesion texture features can be found in the rules with a length greater than
2 (see Tables 3 and 4). It’s worth mentioning that the ArgEML learning method gave
rules with a length equal to 1, meaning that the theory can differentiate the subjects of
MS (G1 vs G2) with only one feature (see Table 5).

Table 6 summarizes the performance of the learning methods using the evaluation
set based on a stratified 10-fold cross-validation (see Table 2). It is obvious that the
use of the argumentation theory in both learning methods reached a high accuracy of
99%which makes the explainable AI models predict and provide explanations with high
fidelity.
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Table 3. Rules extracted from a selected RF model in learning method A.

Rules Group

IF cerebellarFS = Normal OR SignsOnly OR Mild G1

IF sensoryFS = Normal OR SignsOnly OR Mild G1

IF (cerebellarFS = Moderate OR Severe OR Loss) AND (sensoryFS = Moderate
OR Severe OR Loss)

G2

IF (contrastNGTDM = Medium OR High) AND (dysarthriaFS = SignsOnly OR
Mild OR Moderate OR Severe OR Loss) AND (sensoryFS = Normal OR SignsOnly
OR Mild)

G2

FS: Functional Systems, NGTDM: Neighborhood Grey Tone DifferenceMatrix, G1, G2: Subjects
with RRMS and PMS, respectively.

Table 4. Rules extracted from a selected GB model in learning method A.

Rules Group

IF sensoryFS = Normal OR SignsOnly OR Mild G1

IF cerebellarFS = Normal OR SignsOnly OR Mild G1

IF (cerebellarFS = Moderate OR Severe OR Loss) AND (sensoryFS = Moderate
OR Severe OR Loss) AND slowtongueFS = SignsOnly

G1

IF (cerebellarFS = Moderate OR Severe OR Loss) AND (sensoryFS = Moderate
OR Severe OR Loss)

G2

IF (contrastNGTDM = Medium OR High) AND ( facialFS = Mild OR Moderate
OR Severe OR Loss) AND (sensoryFS = Normal OR SignsOnly OR Mild)

G2

FS: Functional Systems, NGTDM: Neighborhood Grey Tone DifferenceMatrix, G1, G2: Subjects
with RRMS and PMS, respectively.

Table 5. Rules extracted from a selected RFmodel andArgEML(theory initialization) in learning
method B.

Rules Group

IF sensoryFS = Normal OR SignsOnly OR Mild G1

IF cerebellarFS = Normal OR SignsOnly OR Mild G1

IF slowtongueFS = Normal G1

IF sensoryFS = Moderate OR Severe OR Loss G2

IF slowtongueFS = SignsOnly OR Mild OR Moderate OR Severe OR Loss G2

FS: Functional Systems, G1, G2: Subjects with RRMS and PMS, respectively.
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Table 6. Evaluation of the two learning methods.

Learning method Accuracy Precision Recall F1 score

A: RF + ARG 99% 99% 99% 99%

A: GB + ARG 99% 99% 100% 99%

B: ArgEML 99% 99%ª 99%ª 99%

RF: Random Forest, GB: Gradient Boosting, ARG: Argumentation theory.
ªDilemmas were considered both as FP and FN.

5 Discussion

The objective of this study was to compare two learning methods of explainable AI
models in the assessment of MS disease based on clinical data and brain MRI lesion tex-
ture features. Both learning methods used ML and argumentation theory to differentiate
subjects with RRMS from PMS subjects, providing explanations with a high accuracy
of 99%. The main findings showed that:

1) Different learning methods can give the same explanation as long as they extracted
the same rules.

2) Cerebellar and sensory function systems’ rules were strong enough to identify and
explain the type of MS disease. The contrast from the NGTDM group was the only
brain MRI lesion texture feature found in the rules.

A previous study from our group [14] performed rule extraction from brain MRI
lesion texture features using decision trees to assess MS disease progression. The main
findings showed that simple rules including only one texture feature group (e.g. FPS)
without the combination of other feature groups can achieve high accuracy greater than
70%. Another recent study from our group [15] implemented an explainable AI model
with embedded rules in the assessment of brain MRI lesions in MS disease based on
AmplitudeModulation – FrequencyModulation (AM-FM)multi-scale feature sets. Dif-
ferentMLmodelswere used to classify theMS subjectswith a lowdisability and subjects
with a high disability.Argumentation-based reasoningwas performed using the extracted
rules from models with a high accuracy of 98%. It was demonstrated that the proposed
model could differentiate the MS subjects by providing understandable information for
the progression of the disease.

OtherMSstudies investigated explainability using local interpretablemodel-agnostic
explanations (LIME) and Shapley additive explanations (SHAP). More specifically,
Basu et al. [16] developed multivariate ML models to predict MS disease activity using
extreme GB and applied SHAP methods to identify the predictive covariates for early
identification ofMS. A large-scale study was used including demographic, neurological,
and laboratory measures, as well as MRI assessment. The models achieved a balanced
accuracy of 80%. The findings showed that the number of treatment weeks, the new
combined unique active lesion count, the new T1 hypointense lesion count, and the age-
related MS severity score were the top predictive covariates. In addition, Olatunji et al.
[17] used different MLmodels and interpreted them utilizing SHAP and LIMEmethods
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for early screening of MS. The input data of the models included clinical features, such
as demographic and other laboratory measures. The results indicated that Extra Trees
outperformed the rest of the models with an accuracy of 95%. The greatest impact on the
model’s prediction was shown by age, systolic blood pressure, and alkaline phosphatase.

6 Concluding Remarks

In a medical diagnosis system, clarity and transparency are crucial factors for gaining
the trust of medical experts. Since the underlying causes of MS are still not that clear, it
is essential to develop an explainable AI model in the assessment of MS disease. This
study presented two different learning methods of explainable AI models which used
ML and argumentation theory to identify the progression of the disease and explain
its causes. By comparing the two learning methods, it’s concluded that they can give
the same explanation as selected features are strong enough to assess the disability and
differentiate the MS subjects. Further work needs to be carried out using more subjects.
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Abstract. The African clawed frog (Xenopus laevis) is a commonly
used model organism for cell biological, developmental, and biomedical
research. For health monitoring and experimental quality control pur-
poses, it is desirable to identify individual frogs regularly throughout
their life. Current methods for identification are often invasive and asso-
ciated with significant investment costs. Identification based on images
of the biometric pattern on a frog’s back has been implemented in some
laboratories, but so far has been performed manually and therefore is
time-consuming and limited to small group sizes. This work proposes
a novel pipeline for data acquisition, pre-processing, and training of a
classification model based on pattern recognition. The pipeline is struc-
tured around laboratory frog colonies and smartphone usage. In order to
achieve a lightweight system in our evaluation we consider a MobileNet
ConvNet pre-trained on ImageNet. Two feature sets are evaluated on
a new data set of 1,647 image samples collected from 160 frogs: RGB
images, and 3-channel contour maps (i.e. CORF3D). The results indicate
that the CORF3D feature set is favoured over RGB. CORF3D achieved
the best performance of 99.94% average accuracy, while RGB had the
best performance of 98.79%. Analysis of misclassifications shows that bad
predictions are often caused by bad lens focus, light reflections, and posi-
tional inconsistency in pattern extraction, which can be addressed during
data acquisition. The proposed methodology is, therefore, an effective
solution for the recognition of Xenopus laevis.

Keywords: Frog recognition · Biometric analysis · Convolutional
neural networks · Contour maps · CORF3D

1 Introduction

Since the beginning of the 20th century, the African clawed frog (Xenopus laevis)
has been functioning as a powerful model system for cell biological and develop-
mental research questions as well as a human disease model [1]. The animals are
fully aquatic and their well-being benefits from being housed in larger groups
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
N. Tsapatsoulis et al. (Eds.): CAIP 2023, LNCS 14185, pp. 151–161, 2023.
https://doi.org/10.1007/978-3-031-44240-7_15
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instead of individual tanks. The group housing setup constitutes a challenge
for recording the experimental and health history of the individual frogs. Cur-
rently, a variety of marking methods are practised, such as record cards, Visible
Implant Elastomer (VIE), photography, toe clipping, microchips, tattooing, and
branding [2]. These methods can, however, be invasive with negative health con-
sequences for the animal, expensive, and cumbersome. Ideally, a frog should be
able to be identified quickly and easily. Since the African clawed frogs have unique
skin patterns, visual recognition seems to be the obvious non-invasive method
of choice. Needless to say, the task of manually comparing database images with
the frog of interest is laborious and grows more complex with increasing numbers
of frogs in single tanks.

In this paper, we present a complete pipeline including data acquisition, data
pre-processing, and image classification for a colony of African clawed frogs. The
resulting method will enable researchers to take a picture of the frog of interest
with their smartphone and receive the frog’s unique identification as a result.

The rest of the paper is organised as follows. Section 2 covers the background
and related work. Section 3 describes our dataset and recognition methodol-
ogy. Section 4 presents the experiments and their results. Section 5 discusses the
experimental results, followed by the conclusions in Sect. 6.

2 Background and Related Work

At the University of Groningen, a colony of 160 female Xenopus laevis is housed
in support of research into the biochemical regulation of cell division [3]. For
this purpose, individual animals are hormone-stimulated about every three to
six months. Hormone stimulation induces oocyte maturation and ovulation.
The resulting laid eggs are then used for biochemical studies, while the ani-
mal is undergoing a rest period. Egg quality can differ significantly between
different individuals and strongly impact experimental results [4]. However, it is
unclear whether genetic or environmental factors are the main determinants of
egg quality. Insights into the different determinants is largely limited by a lack
of easy-to-implement methods to identify individual animals and link the ID to
experimental and health histories. Invasive labeling methods (e.g. microchips,
toe nail clipping) are discouraged as they are often associated with negative
health impacts. The proposed solution is to automatically identify the frogs by
the coloured pattern on their backs, which is assumed to be a unique biometric
feature for each animal.

A study on localisation and identification of African clawed frogs was con-
ducted in [5]. Their data set consists of top-down images of individual frogs
in an open, white container filled with water. A total of 60 frogs were pho-
tographed, one photo per frog with varied lighting conditions and distances to
the container. Their novel extraction process was highly successful in terms of
stability. It consists of greyscaling, thresholding, morphological closing, calculat-
ing the frog’s barycentre and orientation by maximising the head-tail distance,
extraction, resizing and normalising. The square extraction area was used for
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five feature sets: raw pixels, Gabor filters, granulometry, Histogram of Oriented
Gradients (HoG), and Scale Invariant Feature Transform (SIFT). To investigate
the robustness for each feature set, five additional data sets were created through
data augmentation: rotation, affine transform, scale, blur, and Gaussian noise.
The experiment consisted of comparing the accuracy of all five feature sets on
a nearest neighbour classifier based on L1-norm distance for each data set. The
raw pixel data scored the best on the majority of the augmented data sets.

Recently, the CORF3D feature set was introduced as part of the automatic
recognition of Holstein cattle from their coat pattern based on RGB and infra-
red images [6]. The CORF3D feature set is a stack of three contour maps gen-
erated by the inhibition-augmented CORF operator using different strengths of
the inhibition term for each layer. The inhibition term determines the extent
of suppression in regions with high-frequency noise. The CORF operator has
been found to be very effective in various applications [7–11]. In [12], it was
also demonstrated that a ConvNet classification model trained with CORF con-
tour maps is more robust to high-frequency noise than one that is trained with
RGB images. [6] demonstrated that ConvNets fed with CORF3D feature maps
outperform those that use the original RGB channels. Further analysis showed
that a fusion of both RGB and CORF3D features can achieve the most superior
performance on a Holstein cow recognition problem in a farm with 383 cows.

3 Methodology

The proposed methodology for the problem at hand is inspired by the work
in [6]. It includes (1) data acquisition, (2) a pre-processing step that extracts the
frog from the background, aligns it in a vertical orientation, and crops a square
region from the back of the frog, (3) feature extraction, and (4) classification.

3.1 Data Acquisition

The University of Groningen is housing a colony of 160 female Xenopus lae-
vis in accordance with national animal welfare laws and reviewed by the Ani-
mal Ethics Committee of the Royal Netherlands Academy of Arts and Sciences
(KNAW) under a project license granted by the Central Committee Animal
Experimentation (CCD) of the Dutch government and approved by the Uni-
versity of Groningen (IvD), with project license number AVD 10500202114408.
The colony is divided into groups of ten to twenty individuals in aquatic tanks.
The dataset consists of 1,647 images for 160 classes (i.e. frogs), with an aver-
age of 10.3 images per class. Below we elaborate on the photography setup and
measures for robustness.

Photography Setup. Frogs were photographed individually in an uncovered
transparent container filled with water placed on a white surface. Xenopus lae-
vis rapidly change their pigment intensity – but not their individual pattern
- if housed on different surfaces. The frogs at the University of Groningen are
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Fig. 1. (a) Distribution of samples per frog with the majority of frogs having ten photos
each, and four outliers with 20 or more photos. (b) The number of photos taken per
phone, and (c) the number of different phones used per frog.

normally housed in tanks with dark blue surface and therefore show a darker
pigmentation. However, when housed in transparent boxes on a yellow surface,
their pigment lightens significantly. To account for these changes in pigmen-
tation, frogs were housed in transparent boxes on a yellow surface for approxi-
mately 24 h and pictures were taken throughout this time period. Each container
was marked with a visible number to later associate the pictures to the individ-
ual frog; i.e. for ground truth labelling. Picture acquisition was performed by
using at least four different smartphones per frog. A tripod was placed next to
the container such that a smartphone can be placed straight above the centre
of the container. By photographing the frogs one-by-one, the chance of frogs
overlapping, turbulence in the water, and the additional complexity of localising
multiple frogs in pre-processing is avoided. During experimental procedures and
for health assessments, the frogs were commonly isolated, hence, this imaging
setup is highly compatible with the general workflow of the researchers. The
angle and distance from the mounted camera to the containers were kept fixed.

Robustness Measures. With the aim of making the model more robust, pho-
tos were taken at different times of day, on different days, and with the cameras of
different smartphones. These factors influence the position of the frog in the tank
and characteristics such as the picture’s contrast and sharpness. The sample dis-
tributions are illustrated in Fig. 1. In total, five smartphones were used: Xiaomi
Mi Mix 2, Xiaomi POCO F3, OnePlus X, iPhone SE, and Samsung Galaxy S7.
The first three smartphones were used three times per frog. The iPhone SE and
Samsung Galaxy S7 were used only once per frog, where the former is used only
for the first three tanks, and the latter for all other tanks, due to a technical-
ity with transferring the photos. The cameras of the smartphones that we used
have different resolutions. In landscape orientation, the resolutions are: OnePlus
X: 4160 × 3120 px, iPhone SE and Samsung Galaxy S7: 4032 × 3024 px, and
Xiaomi Mi Mix 2 and Xiaomi POCO F3: 4000 × 3000 px. The distribution of
images taken per smartphone is illustrated in Fig. 1a. Due to miscommunication,
four frogs from tank 3 were also later mistakenly placed in tank 10. As a result,
these four frogs were photographed twice as much, and by five different phones
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instead of four. This is demonstrated in Fig. 1a and Fig. 1c. The filenames have
been updated such that the filenames for the four tank 10 frogs are now their
corresponding tank 3 frogs. The dataset is made publicly available1.

Fig. 2. Example of pattern extraction from a given (a) RGB image, (b) downscaled
green channel, (c) binarisation, (d) morphological closing, (e) extraction of the largest
component and rotation, (f) limb removal with morphological opening, (g) the corre-
sponding region extracted from the RGB image, (h) central square crop, (h) normalised
with histogram equalisation on colour intensity.

3.2 Pattern Extraction

Pattern extraction can be done in two ways; unsupervised or semi-supervised.
The former refers to a fully automatic extraction that relies on thresholding and
morphological operations. The latter expects the user to indicate the tip of the
frog’s head and the tip of its tail.

Unsupervised. Figure 2 illustrates the automated pattern extraction which
begins by taking the green channel from a given RGB image and downsizing it
to 20% relative size to reduce grainy details and speed up the process. The green
channel is the most appropriate for detecting the frogs due to their green and
yellow tint. The green channel is then thresholded by setting to 1 all pixels in
the range [20, 80] and 0 otherwise. Morphological closing with a disk structuring
element of size 20 px is then used to fill in any black holes. The largest region
is identified as the frog and is rotated vertically based on its major axis. By
comparing the areas of the top and bottom halves of the extracted component

1 https://doi.org/10.34894/PYPNU6.

https://doi.org/10.34894/PYPNU6
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Fig. 3. Example of a given (a) RGB image where the head and tail coordinates are
selected manually, marked in red. (b) The points are used to delineate and rotate the
frog in an upright position. Finally the (c) central crop can be extracted from the torso
and (d) normalised with histogram equalisation on colour intensity.

allows us to ensure that the frog is in an upright position. Morphological open-
ing with a disk structuring of 75 px removes the limbs to ensure consistency
in the final extraction area. After identifying the frog’s torso region, the corre-
sponding region is extracted from the original RGB image. The final extraction
step involves cropping the central region of the torso, with the width and height
being 60% of the minor axis. If during any of the previous steps the image has
become completely black, or if 10% of the pixels in the final crop are black, the
extraction is considered to have failed and the sample is discarded. When this
happens, in practice, the system would ask the user to take another photo. In
this work, we remove any photographs from the dataset that fail this extraction
step.

Semi-supervised. As shown in Fig. 3, this approach requires the user to indi-
cate two key points; the tips of the head and tail. These points are used to
delineate and rotate the frog based on the given coordinates. The rest of the
pipeline to obtain a centre crop from the torso is the same as used for the above
approach.

3.3 Contour Delineation

Next, we normalise, resize and delineate the contours of the extracted patterns
as described below.

Normalisation. The square RGB crop is converted to the HSV colour model.
Subsequently, the intensity channel is normalised by histogram equalisation,
which ensures the full range of colour intensity is used. The normalised HSV
image is then converted back to RGB.

Scaling. The images are resized to 224 × 224 px such that every extracted
pattern has the same resolution. The mentioned dimensions are chosen to meet
the requirements of the MobileNet classification model that we use.
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CORF Contour Maps. The CORF3D feature set is extracted by following
the steps outlined in [6]. The feature descriptors use the CORF operator with
push-pull inhibition, which produces better signal-to-noise ratios compared to
other contour detection methods [13]. Four hyper-parameters are available in
push-pull CORF: σ, β, α, and the high threshold tH used for hysteresis thresh-
olding2. As indicated in [6], we create the three contour maps that form the
CORF3D descriptor by applying the CORF operator with different values of α
(α ∈ {0, 1.8, 3.6}, and setting β = 4 and tH = 0.005. In our experiments we
evaluate with different values of σ. Figure 4 illustrates the three CORF contour
maps for a given pattern.

Fig. 4. (a) Extracted pattern in greyscale, and its CORF contour maps with σ = 5.0
and inhibition factors (b) α = 0, (c) α = 1.8, and (d) α = 3.6.

4 Experiments

4.1 Data Set

The data set consists of 160 classes (i.e. frogs) and 1,647 samples (i.e. photos),
for an average of 10.3 samples per class. However, as the distribution in Fig. 1
shows, four frogs with 20 to 21 photos give the distribution a positive skew. Out
of the 160 classes, 151 (94.4%) have exactly 10 samples. In total, two feature
sets are constructed, namely RGB and CORF3D. The RGB feature set consists
of the red, green, and blue channels. The CORF3D feature map consists of three
contour maps of different inhibition factors (α ∈ {0.0, 1.8, 3.6}). Furthermore,
six different standard deviations are evaluated (σ ∈ {2.5, 3.0, 3.5, 4.0, 4.5, 5.0}).

4.2 Experimental Setup

In order to achieve a lightweight solution, we have opted for the MobileNetv1
classification model [14], which has been pre-trained on the ImageNet dataset
and has a forward pass with a computational cost of 0.569GFlops. The model
is evaluated with 5-fold cross-validation with both the RGB and the CORF3D

2 The low threshold is set to 0.5tH .
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feature sets, generated by the unsupervised and semi-supervised approaches.
Due to 25 failed frog extractions, the unsupervised approach is evaluated with
(1,647 − 25 =) 1,622 samples. Both approaches have 1 RGB and 6 CORF3D
with different σ feature sets. This experimental design results in (7 feature sets
× 2 pattern extraction methods =) 14 experiments.

4.3 Results

Table 1 reports the average accuracy, standard deviation, and number of misclas-
sifications for the 14 experiments. The accuracy ranges from 95.07% to 97.60%
for the unsupervised frog extraction method and 98.73% to 99.94% for the semi-
supervised approach. The CORF3D feature set outperforms the RGB counter-
part for all experiments except semi-supervised CORF3D with σ ∈ [3.0, 3.5],
yielding the best average accuracy rate of 99.94%. The last column of Table 1
shows the total number of misclassifications over all five folds. Higher σ (i.e.
finer edges are less likely to appear) appear to positively affect the model’s per-
formance. This is especially apparent in the semi-supervised results, while the
correlation is weaker for the unsupervised results.

Table 1. Average accuracy across the 5-fold cross-validation for the two frog extrac-
tion methods and the two feature sets. The last column shows the total number of
misclassifications across all five folds.

Frog extraction Features Accuracy (%) Misclass. (#)

Out of 1,622 samples

Unsupervised RGB 95.07 ± 1.22 80

CORF3Dσ=2.5 95.93 ± 0.76 66

CORF3Dσ=3.0 96.67 ± 1.02 54

CORF3Dσ=3.5 97.29 ± 0.63 44

CORF3Dσ=4.0 97.60 ± 0.94 39

CORF3Dσ=4.5 97.53 ± 0.96 40

CORF3Dσ=5.0 97.23 ± 0.34 45

Out of 1,647 samples

Semi-supervised RGB 98.79 ± 0.69 20

CORF3Dσ=2.5 99.21 ± 0.31 13

CORF3Dσ=3.0 98.72 ± 1.65 21

CORF3Dσ=3.5 98.73 ± 1.84 21

CORF3Dσ=4.0 99.70 ± 0.27 5

CORF3Dσ=4.5 99.51 ± 0.68 8

CORF3Dσ=5.0 99.94 ± 0.12 1
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5 Discussion

As the results demonstrate, the pipeline that relies on the semi-supervised app-
roach of frog extraction outperforms the unsupervised one for both RGB and
CORF3D feature sets with a maximum accuracy rate of 99.94%. Such a result
means that for every 10,000 images with a colony of 160 frogs six images get
misclassified. This improvement in performance is attributable to the assisted
localisation by user input, yielding better input for the classification model. Nev-
ertheless, the results achieved by the unsupervised approaches are also notable.
The difference in performance is due to the imperfect automatic localisation
and orientation of the frog, which seems to be caused by light reflections on the
water surface, difference in crop area, and blurriness in the images. This study
does not consider steps in pre-processing to correct these issues. The difference
in crop area is caused by imperfect head/tail coordinates from data acquisition,
and bent backs of the frog, as the extraction area assumes the line between head
and tail to be straight. Alternative methods must be considered to ensure the
same area is extracted for all images per frog. Light reflections may be elimi-
nated by modifying the camera setup. Blurriness can be prevented by paying
closer attention to the camera’s focus before taking the picture. We speculate
that a practical way to improve the performance of the unsupervised approach
is to take multiple pictures (e.g. 3) of the same frog from different angles and
the most popular determined label will be assigned to the query frog.

Future work may also consider including data augmentation to create syn-
thetic training samples with the mentioned practical challenges in photography
(e.g. out of focus, blurriness, among others). Moreover, the current data acqui-
sition methodology, which was required to train our system, is labour-intensive,
as it requires the frogs to be placed in individual housing containers for up to
24 h. This is deemed necessary to be able to take photos of individual frogs over
a period to account for changes in pigmentation intensity due to changes in the
housing environment. It would also be worth investigating data augmentation
techniques to mimic changes in light reflections, lens focus, and frog position,
to ease the burden on the data collectors. In [5], the authors demonstrated that
RGB feature sets work well when blur augmentation is applied.

In order to address turnover in the colony of frogs in a lab, one may consider
learning a similarity function, with Siamese networks [15] for instance. With such
an approach, in principle, adding and removing frogs from a colony would not
require relearning the classification model. Adding new frogs would only require
to have a few reference images.

6 Conclusion

In this work, we leverage the skin pattern of the African clawed frogs as a
biometric feature to develop a frog recognition method. By means of experi-
mentation, we demonstrated that the proposed non-invasive approach offers an
effective solution for the problem at hand. We offer two variants of our solution,
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one that is completely automatic (unsupervised) and the other that requires
the user to indicate the tips of the head and tail of the photographed frog
(semi-supervised). The results show a tradeoff between user effort and accu-
racy. Although the unsupervised approach achieves high accuracy rates of up to
97.16%, the semi-supervised approach only requires two user clicks and improves
the results significantly, reaching an accuracy rate of 99.94%.

In particular, the CORF3D feature set substantially outperforms the RGB
feature set in both unsupervised and semi-supervised approaches, which demon-
strates its effectiveness in this application. We limit our evaluation to the
MobileNet classification model as our overarching aim is to have a lightweight
system, which can operate on a smartphone without having to involve a cloud
infrastructure, thus yielding low latency and high resilience.
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Abstract. Detection of alcohol consumption is critical for ensuring fit-
ness for duty (FFD) at workplace. It ensures employee safety and produc-
tivity by reducing accidents and injuries while improving work efficacy.
In this paper, we propose a framework based on teacher-student collab-
orative knowledge distillation for detecting alcohol consumption in NIR
(Near-Infrared) iris images. Specifically, this research focuses on analyz-
ing the impact of alcohol consumption on iris and pupil movements. We
provide interesting experimental analysis and related discussions that
demonstrates suitability of NIR camera based captured iris images for
detecting alcohol consumption. Furthermore, this research can be seen as
a progressive measure towards integrating alcohol detection in iris based
biometric authentication systems.

Keywords: Alcohol detection · Fitness for duty · Knowledge
distillation · Periocular NIR iris images · Vision Transformer

1 Introduction

Nowadays, abuse of intoxication in the workplace is rising proportionately. Work-
ing under the consumption of such substances can lead to a rise in work-related
injuries, especially for laborers and heavy-machinery operators. According to a
study by Pidd et al. [17], 11% of workplace accidents and injuries are caused by
the consumption of alcohol. Companies incur approximately $2 billion per year
in costs related to alcohol-related absenteeism. To overcome hassle, government
of nations such as the UK and Australia have imposed duty of care legisla-
tion [12]. Under this legislation, employers are required to have an unambiguous
policy that outlines acceptable conduct and misconduct. To ensure this fitness
for duty(FFD) [18] is required in work area. To ascertain this few organisations
have installed saliva and breath [8,11] analyzer for detecting alcohol consump-
tion in the workplace. However, there are a few potential drawbacks of breath
and saliva-based alcohol testing in the workplace which includes low accuracy,
sensitivity and vulnerability to external influences such as mouthwash or food.
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Furthermore, these type of systems in the workplace may increase the risk of
COVID-19 transmission due to hygiene and close contact concerns. Henceforth
it is crucial to design new mechanisms that are capable of accurate and resilient
detection of the effects of alcohol on employees, ensuring their fitness for duty.

It has been proved in literature that alcohol consumption can cause dilated
pupils [3]. This motivated us to propose a framework that detects alcohol con-
sumption by analyzing Non-Infrared (NIR) iris images. NIR iris imaging does
not involve any physical contact with the user, unlike other alcohol detection
techniques based on physiological fluids like breath or saliva. In the case of
infectious diseases like COVID-19, iris imaging technique instead of physiolog-
ical fluids thus lowers the likelihood of disease transmission. Furthermore, it is
also quick and efficient that can deliver outcomes in real-time, making it appro-
priate for applications like law enforcement and for ensuring FFD at workplace.

2 Related Works

This section gives a brief summary of earlier research conducted in pertinent
literature, exploring the effects of alcohol intake on changes in the iris and its
impact on an individual’s ability to perform their duties effectively. Amodio
et al. [2] assessed the possibility of creating a system to detect drunk driving
by analyzing changes in a person’s pupillary light reflex (PLR) over time. The
method involves using circular hough transform to obtain the pupil diameter
profile, followed by implementing a polynomial-kernel support vector machine
(SVM) to categorize the subject using the 8 features extracted from the profile.

In another work, Causa et al. [5] used a stream of NIR iris video frames to
estimate behavioral curves. The study concentrated on applying a Criss-Cross
Network (CCNet) to mask the iris and pupil segmentation, enabling the creation
of characteristics based on the differences between the radii of the pupil and
iris. The features produced were used to categorize the subject using a Multi-
Layer-Perceptron (MLP) algorithm with an accuracy rate of 75.8%. In another
notable work Arora et al. [3] studied the effects of alcohol on an iris recognition
system and infer that one in five subjects under alcohol consumption may evade
identification by iris recognition. Very recently, authors [20] have proposed a
framework based on capsule network for detecting alcohol consumption.

3 Research Methodology

Here, in this section we will discuss the dataset used in our experimentation
along with the feature extraction framework. Our proposed framework is based
on teacher-student learning paradigm that relies on a distillation token [21] to
ensure student network learning from the teacher network through a multi-head
attention. An overview of the entire framework is presented in Fig. 1.
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Fig. 1. Comprehensive description of the presented framework which determines fitness
for duty on the basis of NIR iris images

Table 1. Statistical Description of the IAL-I Database

Session Condition Capture Time (min) Images

S0 Pre-Alcohol 0 600

S1 Post-Alcohol 15 600

S2 Post-Alcohol 30 600

S3 Post-Alcohol 45 600

S4 Post-Alcohol 60 600

3.1 Dataset Description

In this study we have used IAL-I database [19]. This database consists of NIR
iris images captured for total 30 subjects (24 males, 6 females) aged between 25
and 50. IAL-I dataset consists of nearly 20 similar periocular NIR iris images
from each subject per session and there are total of 5 sessions. Table 1 illustrates
the distribution of data. For more details kindly refer [19].

3.2 Feature Extractor

Vision Transformers (ViT) [10] can be seen as a de facto standard in the past few
years for image classification tasks. Recently, aggregation of convnets and trans-
formers integrated with self-attention mechanism have illustrated superfluous
results in various domains like image classification [7], image segmentation [22]
and natural language processing [14]. On continuation to this, Touvron et al. [21]
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Fig. 2. (a) Generation of patch embeddings and conceptual overview of Transformer
based Student model wherein CLS refers to classification token (b) Outlining Convnet
based Teacher model architecture

presented a data efficient image transformer (DeiT) which suppresses the depen-
dency of transformer on huge data. Taking inspiration from DeiT, we propose
a novel architecture as depicted in Fig. 2 for detecting alcohol consumption in
NIR iris images. The proposed framework comprises of mainly two parts (i)
transformer based student network and (ii) convnet based teacher network. The
following subsections will discuss aforementioned parts in detail.

Dataset Augmentation. In literature, classification task is mostly performed
on datasets like ImageNet [9], CIFAR-100 [13], NUS-WIDE [6]. All these datasets
consists of huge number of images per class. In contrary to this iris databases
have limited number of images particularly in concern to post alcohol consump-
tion images as evident form Table 1. Thus, to generate supplementary images
for training our network we have used various image augmentation methods as
suggested in [20]. Since, the dataset IAL-I [20] used in our study is collected in
a controlled environment, nominal data augmentation methods can work well.
Figure 3 depicts sample iris image with corresponding augmented images. It
should be noted that image augmentation is carried out for training dataset
only.

Convnet Based Teacher Network: This network takes an input iris image
I ∈RH×W×C , where H, W and C represents image height, width and channel
respectively. Assuming an image classification model f , the output of f is a
label yt ∈ {0...t} where t is the number of classes. This network consists of 9
convolutional layers, with 3 layers in each block as depicted in Fig. 2. Each block
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Fig. 3. Sample iris image with corresponding augmented images

is summarized as:

Input
1×1Conv−−−−−−→ RM −→ ReLU −→ IFM

3×3Conv,−−−−−−−→
MP

RM −→ ReLU −→ IFM

1×1Conv−−−−−−→
MP

RM −→ ReLU −→ FM
(1)

Here in Eq. 1, RM ,IFM , FM and MP stands for response map, intermediate
feature map, feature map and max pooling respectively. The presented architec-
ture was inspired from Regnet based model [15].

Transformer Based Student Network: This network takes input in the
form of patches. The fixed size input iris image I ∈RH×W×C , (where H, W
and C represents image height, width and channel respectively) is decomposed
into 196 patches of size 16 × 16. These patches are linearly projected into 196
tokens as depicted in Fig. 2(a). Each token has a shape of (1,D) where D is 192
for our case. Two additional tokens, namely the classification token (CLS) and
the distillation token of same shape as (1, 192), are added to the patch tokens.
During training, the CLS token is a vector that can be trained and contains
class embeddings. The distillation token is similar to the CLS token in that
it is also trainable, but it is randomly initialized and located in a fixed last
position. The main objective of the distillation token is to allow our proposed
architecture to learn from the output of the teacher network while remaining
equivalent to the class embedding [21]. All 198 tokens, including the CLS (acls)
and distillation token (ad), are assigned positional embeddings to incorporate
spatial information. Further, these tokens are given as an input to a 12 layered
transformer encoder with three Multi-Self Attention (MSA) heads as depicted
in Fig. 2(a). The sequence of tokens input to the encoder is as follows:
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a = [acls,Ja1,Ja2, ...,Jan, ad] + E (2)

where n is 196, J depicts the patch embeddings of periocular NIR images and E
refers to the positional encoding that maintains the images’ spatial structure.

The encoder block employs self-attention (SA) to capture the correlations
among the input tokens, utilizing three types of embeddings: Query (Q), Key
(K), and Value (V). To apprehend this association, the Queries, Q, are multi-
plied by the transpose of Keys, KT , to generate a vector output. This vector
is then divided by the square root of the dimension D to prevent the gradient
from vanishing. The final matrix undergoes a Softmax activation layer multi-
plied by the Values V to attain the resulting Head (H), also represented as
attention(Q,K, V ).

H = attention(Q,K, V ) = Softmax (
Q × KT

√
D

) × V (3)

In the present work, the Scaled Dot-Product Attention mechanism is
employed three times to attain a total of three attention heads (H = 3). After
the self-attention operation is performed, the outputs from all attention heads
are concatenated, and then they are passed through a feed-forward (FF) neu-
ral network, which includes learnable weights (Wlearnable), as represented in the
Eq. 4.

MSA = concat(SA1, SA2, SA3) × Wlearnable (4)

The resultant vector is then layer normalized and passed on to the final
component of the encoder which is Multi-Layer Perceptron (MLP) blocks. These
blocks comprise of fully coupled FF-dense layers with GeLU non-linearity. At
the end of the encoder, the retrieved output tokens are again to be fed through
3 additional FF layers to obtain a context vector Z. Z comprises of 198 output
tokens similar to that fed at the beginning of the encoder. The final context
vector Z can be seen in Eq. 5.

Z = [c0, c1, c2, ..., cN , cd] (5)

After collecting the context vector Z, just the CLS token,c0, and distillation
token,cd, are required for classification, which is then passed to 2 separate linear
layers. c0 and cd tokens each have specific objective functions to learn, named
student loss (LCE) and distillation loss (Lteacher), to be discussed in the subse-
quent section. The average prediction after implication of a softmax activation
function on both linear layers is used to determine whether or not the subject
is fit.

Network Training Strategy: This subsection explores the various strategies
utilized for training the teacher-student synergetic model. The input image is
pre-processed to a shape of (224, 224, 3) for feeding to both the teacher and
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student models. Adam optimizer is used for training with a batch size of 128.
Adam is an adaptive optimization algorithm used in training machine learning
models that combines the benefits of adaptive learning rates and momentum
for efficient convergence. The performance of the model is evaluated using cross-
entropy loss (LCE). A learning rate scheduler is employed with an initial learning
rate of 0.001 to obtain the local minima.

At first, we train the convnet-based teacher model to obtain the final teacher
predictions, yt. These predictions are then treated as the true label while training
the distillation token in the student model. Further on, the transformer-based
student model is trained where the CLS token has a separate loss given as
LCE (ψ (Zs) , y). Here, ψ represents the softmax function applied over logits of
the student Zs utilizing c0 token. Similarly, the cd token is trained by considering
the teacher’s prediction as true label. The objective funtion of cd can be depicted
as LCE (ψ (Zs) , yt). Herein, we also introduce a distillation of 0.5 on teacher
model prediction. A distillation of 0.5 implies that during training, the cd token
is trained on a combination of soft targets (yt) from the teacher model and hard
targets, which is ground truth labels (y), with each target type accounting for
half of the training examples. The complete process mentioned aims to replicate
the teacher’s predicted labels to reduce the cross-entropy loss between the highest
value of the softmax function of the teacher’s labels and the softmax function of
the student. The final cross-entropy loss can be formulated as follows:

LhardDistill =
1
2
LCE (ψ (Zs) , y) +

1
2
LCE (ψ (Zs) , yt) (6)

4 Experimental Analysis

In this section at first, we discuss the training testing protocol and then the
experimental setup and result analysis. In our experimentation, we have ran-
domly chosen 24 subjects (70%) for training and remaining 6 for testing (30%).
This also enables fair comparison with the state-of-the-art approach [20] working
on the same dataset. For training our feature extractor we have used five trials of
random selection of training-testing dataset. The subsequent section will discuss
our experimental setup and results.

4.1 Experimental Setup

The proposed feature extractor based on teacher-student collaborative dis-
tillation knowledge is implemented in Python 3.10 using Pytorch [16] and

Table 2. Calculated Evaluation Metrics for binary classification

Precision Recall F1 score

Pre Alcohol 0.97 0.99 0.98

Post Alcohol 0.99 0.97 0.98
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OpenCV [4] libraries. For training and evaluating the proposed framework, a
PC having Intel(R) Xeon(R) CPU @ 2.00 GHz processor with 32 GB RAM and
NVIDIA GPU P100 accelarator has been used.

4.2 Experimental Results

To validate the effectiveness of the proposed framework we have conducted two
sets of experimentation. In first set of experimentation our goal is to identify
whether the input iris image is captured in pre-alcohol session or post alcohol
session. This set of experimentation can be regarded as a binary class classifica-
tion. In the second set of experimentation our goal is to study the effect of alcohol
on iris after alcohol consumption at different time intervals 15, 30, 45, and 60
min respectively. This set of experimentation can be regarded as a 5 class clas-
sification problem. For analyzing the performance we have employed commonly
used classification task measures such as precision, recall and F1 score.

– Binary Class Classification: It can be inferred from Table 1 that in compar-
ison of post-alcohol images (2400) we have very few instances of pre-alcohol
images (600) in IAL-I dataset. In order to compensate this we have used
randomly selected 800 images from CASIA-V4 [1] dataset for training our
network. It should be noted that testing results are reported for IAL-I dataset
only. Table 2 illustrates the binary class classification results in terms of pre-
cision, recall and F1 score.

– Five Class Classification: Under this experimentation we are trying to
study the behavioral changes of the eye’s CNS after alcohol consumption at 0,
15, 30, 45, and 60 min, respectively. Upon testing the model, our model showed
an accuracy of 96.86% for 0th minute, 90.76% for 15th minute, 92.57% for
30th minute, 93.38% for 45th minute and 91.06% for 60th minute. The overall
accuracy observed during testing phase came out to be 92.94%. Inferring from
the obtained results for behaviour analysis, we can assert that the affect of
consuming alcohol is most prominent at 45 min. Table 3 illustrates the five
class classification results in terms of precision, recall and F1 score.

Comparative Analysis: To validate the effectiveness of the proposed frame-
work we have compared our results with state-of-the-art approach [5,20]. To the
best of our knowledge, [5,20] are the only work that has been conducted on IAL-I
dataset used in our study. Table 4 provides a detailed comparison between the
proposed approach and state-of-the art method. Essentially, the suggested app-
roach achieves higher levels of accuracy in inference when compared to previous
system that have been documented in the literature.
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Table 3. Calculated Evaluation Metrics for five class classification

Session Precision Recall F1 score

Session 0 (0min) 0.95 0.96 0.96

Session 1 (15min) 0.91 0.93 0.92

Session 2 (30min) 0.93 0.93 0.93

Session 3 (45min) 0.94 0.94 0.94

Session 4 (60min) 0.93 0.90 0.91

Table 4. Comparison of the proposed method with the state-of-the-art approaches

Algorithm Accuracy

Multi-Layer-Perceptron (MLP) [5] 75.8%

Fused Capsule Network [20] 92.3%

Our Proposed Framework 98.46%

5 Conclusion and Future Works

In this work we propose a framework that utilizes teacher-student learning
paradigm for detecting alcohol consumption in NIR iris images. While we demon-
strated the effectiveness of using transfer learning archetype in case encountered
with small datasets (pre-alcohol iris images in our case). Furthermore, we provide
detail experimental analysis to establish relation between alcohol consumption
and the time elapsed after taking alcohol. Through various experiments, it can
be inferred that the proposed framework outperforms the baseline state-of-the-
art approach. The present work determines the fitness for duty (FFD) only on
the basis of analyzing NIR iris images under the influence of alcohol, in future
we would like to study the effect of drugs, lack of sleep on iris. Furthermore,
we would like to deploy our proposed approach on an edge device for real-time
inference.
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Abstract. Walking has been widely promoted by various medical insti-
tutions as a major contributor to physical activity that keeps people
healthy. However, pedestrian safety remains a critical concern due to
barriers present on sidewalks, such as bins, poles, and trees. Although
pedestrians are generally cautious, these barriers can pose a significant
risk to vulnerable groups, such as the visually impaired and elderly. To
address this issue, accurate and robust computer vision models can be
used to detect barriers on pedestrian pathways in real-time. In this study,
we assess the performance of fine-tuned egocentric barrier recognition
models under various conditions, such as lighting variations, angles of
view, video frame rates and levels of obstruction. In this context, we
collected a dataset of different barriers, and fine-tuned two representa-
tive image recognition models, assessing their performances on a set of
videos taken from a predefined route. Our findings provide guidelines for
retaining model performance for applications using barrier recognition
models in varying environmental conditions.

Keywords: Pedestrian Safety · Egocentric Dataset · Barrier
Recognition · Deep Learning

1 Introduction

Walking is a popular form of physical exercise, known for its positive impact on
health. Being an aerobic and bone-strengthening activity, it can reduce the risk
of chronic diseases and promote an active lifestyle [13]. Despite the widespread
promotion of the benefits of walking by governments and health organizations,
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pedestrian safety continues to be a major concern, since road accidents encom-
pass a significant safety risk. The well-being of road users is influenced by numer-
ous factors, such as speeding and rule violations by drivers, pedestrian negligence,
and poor road conditions. Such conditions can be particularly hazardous for vul-
nerable groups like the elderly and disabled [6].

Poor road conditions, including inadequate lighting, unfavorable weather con-
ditions, and poorly-maintained road surfaces, are recognized to be some of the
major factors contributing to road accidents in Cyprus [1]. Several researchers
have studied and analyzed the behavior of pedestrians when faced with obstacles
in their path. For example, in a study conducted by Ding et al. [2], the impact
of different obstacle placements on pedestrian evacuation was examined. The
results showed that the presence of obstacles in pedestrian pathways resulted in
a significant delay before pedestrians could maneuver past the obstacles.

Recent advancements in computer vision and mobile computing have paved
the way for various applications aimed at enhancing the safety and well-being
of pedestrians. Egocentric Vision is a novel approach that utilizes data collected
through wearable cameras or smartphones to enable real-time recognition of
obstacles hindering safe walking within urban areas. To develop effective sys-
tems and applications for smartphones, it is crucial to understand how machine
learning models perform under different conditions [18]. This study focuses on
the creation of deep learning models capable of automatically recognizing various
barriers in real-world environments. Specifically, we utilized algorithms based on
Convolutional Neural Networks and Vision Transformers to develop recognition
models for nine distinct barrier types commonly found on the sidewalks of the
city of Nicosia, Cyprus. Our evaluation focused on assessing the models’ perfor-
mance in detecting barriers under different lighting conditions, viewing angles,
video frame rates, levels of obstruction in front of the barriers, and scenarios
involving multiple barriers in the pedestrian’s field of view, thereby simulating
their use in the wild.

The remainder of the paper proceeds with Sect. 2 providing an overview of
the state-of-the-art research in the field of barrier recognition. Section 3 details
the entire process of the training of the recognition models that were utilized in
this study. In Sect. 4, the experimental procedure for evaluating the performances
of these models is illustrated, and the insights obtained from the evaluation are
discussed. Finally, Sect. 5 summarizes our work, highlights its contributions, and
suggests avenues for future enhancements.

2 Literature Survey

Egocentric vision is a perceptual method that involves the use of wearable cam-
eras attached to a person to capture egocentric images or videos [12]. Notably,
there has been a recent surge in egocentric video data collection worldwide, cul-
minating in the Ego4D project [5], which compiled large amounts of day-to-day
activity footage captured through wearable devices from a first-person perspec-
tive. Another such dataset was created using a camera mounted on a student to
record activities such as attending lectures, driving, and eating [10].
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Various technologies have been developed to improve pedestrian safety. One
such technology is an obstacle detection model called ObstacleWatch, designed
by Wang et al. [21], which uses acoustic signals emitted by smartphone speakers
to determine the distance between the user and an obstacle. However, this app-
roach proved to be inefficient due to the noise present in public spaces. Another
application called LookUp was proposed by Jain et al. [8], which uses shoe-
mounted inertial sensors to detect transitions from pedestrian walkways onto
the road to alert texting pedestrians, achieved a detection rate of 90%. Liu
et al. [11] developed a solution named InfraSee, which utilizes infrared sensors
mounted on smartphones to detect hazardous situations and alerts the user.

WalkSafe, developed by Wang et al. [20], is a smartphone-based application
that uses the smartphone’s back camera to detect oncoming vehicles and alerts
the user during active phone calls. The application uses decision trees to classify
images and achieved an efficiency rate of 77%. A similar application, called
Inspector, developed by Tang et al. [15], alerts users when they are approaching
the edge of pedestrian areas. The model uses simple keypoint detection and k-
means clustering for feature extraction and uses Normal Bayes and K-nearest
neighbors models to classify images with an accuracy rate of 92%–99%.

TerraFirma, an application proposed by Jain et al. [9], takes a different app-
roach, choosing to identify the material composition of pedestrian walkways,
instead of obstacles on the walkways themselves, in order to warn pedestrians
when they transition from walkways to the street. Support Vector Machine clas-
sifiers were used to identify various ground surface types with an accuracy rate of
90%. Another application, AutoADAS, proposed by Wei et al. [22], uses smart-
phone cameras to detect objects in the environment and measure their distance
from the user, warning them in case a potential collision is predicted. The appli-
cation utilizes the user’s behavior profile collected from sensors on mobile devices,
making it more personalized to the user. Similarly, Foerster et al. [4] developed
SpareEye, an Android application that detects changes in the background of a
mobile camera’s video stream and notifies the user when the distance between
objects is reduced in each frame.

Hasan et al. [7] presented a comprehensive review of existing pedestrian safety
models, highlighting the limitations and potential areas for further improvement.
One of the issues highlighted was that, although various egocentric datasets are
available, relatively few datasets focusing on pedestrian barrier detection exist.
One of the few such datasets available is that created by Theodosiou et al. [16],
and is comprised of images of barriers captured from a pedestrian’s perspective.
The dataset was utilized to fine-tune a VGG16 model, achieving a training accu-
racy of 65% and validation accuracy of 55%. Subsequently, the fine-tuned VGG16
model was embedded in a smartphone application that aided pedestrians in cap-
turing images of barriers they encountered and report their geographic loca-
tion to the authorities, in order to enhance pedestrian safety [19]. Additionally,
Theodosiou et al. [17] trained an object detection model using the aforemen-
tioned pedestrian-based image dataset and tested it using the Faster Region-
Based CNN and Single Shot MultiBox Detector with InceptionV2, ResNet50,
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Fig. 1. Image examples of each of the nine barrier types.

and MobileNetV2 for feature extraction. The model achieved an average preci-
sion of 88.4% and 75.6% for the Faster R-CNN and SSD models, respectively,
demonstrating its efficacy in detecting barriers on sidewalks.

The use of deep learning is now the dominant approach for analyzing ego-
centric data. Different architectures, including convolutional neural networks,
have been used with great success in egocentric and mobile applications. The
limitations of smartphone devices led to the development of the MobileNetV2
algorithm designed exclusively for this purpose by investing in building mod-
els with small size and low inference time. MobileNetV2 is one of the best CNN
models suitable and efficient in smartphones for image classification. The remark-
able difference in MobileNetV2 is based on its inverted residual structure [14].
The low dimensional features are expanded and the resulting features undergo
dimensionality reduction using a depth-wise convolution. However, demand for
more efficient algorithms has led to the Vision Transformer (ViT) architecture [3]
competing with the hitherto prevailing CNN architecture. The ViT architecture,
which is based on the self-attention mechanism, have recently been used success-
fully in computer vision tasks such as image classification and object recognition.

In this work, we exploit the power of two state-of-the-art algorithms from
the CNN and ViT architectures, namely the MobileNetV2 and ViT-B/16 algo-
rithms, to build robust machine learning models to identify multiple obstacles
that endanger citizens while walking in urban environments. Aiming to create
applications capable of detecting obstacles under different real-world conditions,
we test model performance under different lighting conditions, camera angles,
camera frame rates, as well as the appearance of additional occlusions and the
presence of more than one obstacle in the point of view of pedestrians.

3 Methodology

In this section, we describe the methodology used to conduct our assessment on
the performance of machine learning algorithms in recognizing barriers under
different conditions. Our study was conducted in three phases: data collection,
model training and model assessment.
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Table 1. Size of the evaluation set (in number of frames) per barrier type and lighting
condition (Route 1/Route 2).

Barrier Daylight Cloudy Night Sunrise Sunset Angles

Bench 164/222 262/220 324/489 333/57 270/305 646/697
Bin 159/182 199/285 255/148 311/158 275/225 195/320
Bus Stop 84/141 135/296 161/232 –/– –/– –/–
Large Bin 256/340 241/37 200/210 236/120 151/122 342/242
Light 62/164 259/188 -/152 517/244 293/448 571/1604
Parking Prevention Barrier 1410/702 1001/308 1158/1224 1585/512 343/265 363/653
Tourist Information Sign 92/259 628/75 145/705 168/213 166/189 163/540
Traffic Sign 28/176 103/283 516/58 88/181 –/222 833/1137
Tree 85/9 37/80 31/203 86/– –/– 316/–

3.1 Data Collection

We carefully designed our data collection process to ensure a comprehensive
and diverse dataset while evaluating the performance of obstacle recognition
in the city center of Nicosia under various conditions. To achieve this, we first
determined a predefined route that incorporates a broad spectrum of barriers
commonly encountered by pedestrians in their day-to-day activities.

Two distinct approaches were employed to collect data. Firstly, we obtained
training and validation data by capturing obstacle-oriented videos. Each video
was designed to highlight a single obstacle, allowing us to capture the diversity
of barriers in a well-controlled manner. To facilitate the data collection process,
we employed a simple and low-cost setup, comprising of a mobile phone camera.
This also ensured consistent video quality under varying lighting conditions.

We identified a total of nine barriers along the predefined pedestrian route,
namely: bench, bin, bus stop, large bin, light, parking prevention barrier, tourist
information sign, traffic sign, and tree. Figure 1 depicts an example of each of
the nine barriers. We collected two videos of each barrier, and subsequently we
created an image dataset from the collected videos by extracting 600 frames per
barrier at regular intervals throughout the videos (9 × 600 = 5400 frames in
total). We used a 70%-30% split to generate the final training and validation
sets, respectively.

The second collection approach entails egocentric videos of a pedestrian walk-
ing the predefined urban route under normal walking conditions, in both direc-
tions (these will be referred to as Route 1 and Route 2 ). This approach allowed
us to capture variations in barriers and environment that a pedestrian could
encounter during their daily commute. We also collected videos under different
lighting conditions—daylight, cloudy, night, sunrise, and sunset—to evaluate
the models’ performances. Similarly, we also included videos taken from diverse
angles relative to the barriers as an additional condition in our evaluation experi-
ments. Daylight, cloudy, and night videos were collected at a standard frame rate
of 30 frames per second (FPS). In contrast, videos taken during sunrise, sunset,
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Table 2. Performance of the two fine-tuned models under different lighting conditions
(Route 1 %/Route 2 %).

Model Daylight Cloudy Night

MobileNetV2 38.3/58.6 44.2/45.3 33.1/20.0
ViT-B/16 53.5/58.7 76.1/73.8 63.3/60.0

Table 3. Model performance when using different frame rates - daylight videos were
captured at 30 FPS, while sunrise, sunset and angle variation videos at 60 FPS (Route 1
%/ Route 2 %).

Model Daylight Sunrise Sunset Angles

MobileNetV2 38.3/58.6 45.3/72.4 81.7/74.7 73.5/80.8
ViT-B/16 53.5/58.7 68.0/80.7 85.1/70.9 71.7/82.3

and at various angles were recorded at an increased frame rate of 60 FPS. For
the evaluation videos, we manually annotated each frame with barrier informa-
tion and bounding box details. The bounding box annotation allowed for precise
identification and localization of the immediate barrier within the frame, from a
pedestrian’s viewpoint. Unlike the initial data collection approach where a spe-
cific number of frames per barrier type was extracted, in this second approach
we extracted all frames from the captured videos, resulting in varying numbers
of frames per barrier type, due to differences in video takes and routes. Frames
that did not contain any barriers were omitted. Table 1 shows the size of the
resulting evaluation set for each of the considered conditions.

3.2 Model Training

In our study, we aim to investigate the performance of recognition models under
various conditions. To achieve this, we trained a representative example from
each of two widely used model architectures, namely Convolutional Neural Net-
works (CNNs) and Transformers, using pre-trained models on the ImageNet
dataset. By fine-tuning these pre-trained models on our training and validation
data, we were able to significantly reduce the training time while improving the
models’ performances. During the training process, we also closely monitored
the models’ validation performances to ensure that they were not over-fitting to
the training data. Interestingly, we observed near-perfect validation performance
for both models, which further highlights the effectiveness of image classification
in computer vision research, especially for datasets with non-ambiguous classes.

However, it is important to evaluate how well the models perform in real-
world scenarios. To this end, the following section presents a series of experiments
we performed to assess the models’ performances in diverse environmental con-
ditions, which is crucial for their practical use.
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4 Experimental Results
Our study consists of four experiments aimed at evaluating the performance
of two representative models. In the first experiment, we analyze the obstacle
classification performance of both models under different lighting conditions.
Specifically, we evaluate their performances in three lighting conditions: day-
light, cloudy, and night. These conditions represent the barriers encountered
along the predefined route. The results of this analysis are summarized in
Table 2. It is worth noting that the ViT-B/16 model consistently outperformed
the MobileNetV2 model across all three lighting conditions. This outcome was
expected due to the higher model capacity and complexity of ViT-B/16 com-
pared to MobileNetV2.

Table 4. Model performance when using Bounding Boxes (vs. whole frames, that may
contain multiple barrier types at once) (Route 1 %/Route 2 %).

Model Daylight Cloudy Night Sunrise Sunset Angles

MobileNetV2 38.3/58.6 44.2/45.3 33.1/20.0 45.3/72.4 81.7/74.7 73.5/80.8
MobileNetV2 (BB) 85.4/88.8 52.8/53.9 39.1/28.4 49.6/75.9 88.7/81.7 75.1/79.7
ViT-B/16 53.5/58.7 76.1/73.8 63.3/60.0 68.0/80.7 85.1/70.9 71.7/82.3
ViT-B/16 (BB) 82.0/90.8 76.1/73.8 63.3/60.0 68.4/79.4 89.9/85.3 72.9/84.7

Fig. 2. Example of a barrier image with superimposed obstructions in the form of
human silhouettes, at various sizes (the silhouette cutouts originated from a freely
available dataset [23]).

In the second experiment, our goal is to assess the impact of frame rate on the
inference performance of the models. Specifically, we evaluate the performance of
both models at two video frame rates, 30 FPS and 60 FPS. In this experiment, we
compare the performance of the models on daylight videos with two additional
lighting variations, sunrise and sunset, and angle variations during daylight.
This analysis allows us to understand how different frame rates, which capture
temporal information, affect the models’ ability to accurately classify barriers
during inference. The results of this experiment are summarized in Table 3. We
observe a significant improvement in the performance of both models when the
increased 60 FPS rate is used.
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The third experiment focuses on measuring the performance of both models
in an ideal scenario where only a single barrier type is present in each frame. To
accomplish this, we utilize the Bounding Box (BB) annotations of the videos. The
performances of both models are presented in Table 4. We observe a substantial
improvement in the performance of both models when utilizing bounding box
information.

Fig. 3. Model performance when digital obstructions are superimposed on the valida-
tion set (a 0% height percentage implies no obstructions).

For the fourth experiment, we assess the models’ performances when faced
with digital obstructions in the camera view, specifically people at various
degrees of proximity. This experiment aims to test the models’ ability to han-
dle unexpected obstructions, that may hinder their performance in real-world
settings. We assessed the trained models’ performances under varying levels of
obstruction by digitally superimposing human silhouettes in front of the evalua-
tion frames. We introduced five levels of obstruction, that were calculated based
on the percentage of the silhouettes’ height in comparison to the height of the
frame. The degrees of obstruction ranged from 50% to 90%, with 10% incre-
mental steps, as shown in Fig. 2. The results of this experiment are illustrated in
Fig. 3. We observe a decrease in the performance of both models when increasing
the obstruction size.

5 Conclusion
In this paper, we conducted a comprehensive analysis of fine-tuned barrier recog-
nition models in different conditions. Through experimentation, we gained valu-
able insights into the models’ performances under varying lighting conditions,
frame rates, bounding box accuracy, and the presence of digital obstructions.

Our results consistently demonstrated that the ViT-B/16 model outper-
formed the MobileNetV2 model across all tested conditions. This performance
advantage can be attributed to the ViT-B/16 model’s higher capacity and com-
plexity, which allows for more effective handling of challenging scenarios. How-
ever, it should be noted that utilizing the ViT-B/16 model comes with increased



180 M. Thoma et al.

computational resource requirements that might exceed the capabilities of some
commodity devices. Furthermore, we observed a significant improvement in the
performance of both models when higher video frame rates were used. This find-
ing underscores the importance of capturing clear, low motion-blur egocentric
images to achieve accurate recognition. The inclusion of bounding box informa-
tion proved to be a crucial factor in enhancing the models’ recognition accuracy.
By focusing on the immediate barrier through the utilization of bounding box
annotations, we witnessed notable improvements in performance. This can be
achieved on the application level by constraining the camera’s area of interest
to the immediate barriers in a carrier’s path. However, it is worth noting that
the models encountered challenges when faced with digital obstructions, high-
lighting the need for further advancements in handling unexpected obstacles in
real-world scenarios.

In conclusion, our study provides valuable insights into the performance of
fine-tuned barrier recognition models across different conditions. By considering
our conclusions and recommendations, future research and development efforts
can be directed towards improving the efficiency and reliability of barrier recog-
nition applications in real-world settings.
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Abstract. The digital world is becoming more and more part of our
everyday life. Research groups and industries have been working for
years to find innovative and natural interaction ways to improve users’
satisfaction with the approach to the technology. In particular, Human-
Computer Interaction (HCI) made a great evolutionary leap with accu-
rate sensors and high-computational devices. Moreover, the miniatur-
ization of circuits made modern systems portable and affordable. Also,
advanced algorithmic approaches, e.g., Machine and Deep Learning (ML
and DL), strongly support achieving noticeable results at the price of
potentially long training times and considerable resource requirements.
In this context, we propose a novel system for playing a virtual musi-
cal keyboard exploiting an RGB and a dual-Infrared (IR) sensor. It is
designed for musicians and enthusiasts for multi-purposes, e.g., train-
ing or music production. After a calibration phase, the software can be
executed in real-time with responsive feedback. The main focuses of the
proposal are the portability and the low-computational resources require-
ment. Quantitative and qualitative results highlight the system’s overall
effectiveness, proving that the proposed pipeline could be promising.

Keywords: Computer Vision · Human-Computer Interaction · Hand
tracking · Hand gesture · Virtual musical instrument

1 Introduction

In recent years, technological improvements in hardware and algorithmic solu-
tions provided new frontiers in Human-Computer Interaction (HCI). The evolu-
tion of technology introduced advanced solutions for different application areas,
e.g., Virtual Reality (VR) in rehabilitation [4], multimodal interaction for intel-
ligent environments [2], or gaze recognition for remote controls [24]. Also, princi-
ples related to Augmented Reality (AR) and Extended/Mixed Reality (XR/MR)
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are inspirational approaches for providing novel interaction paradigms [3]. In this
context, Machine Learning (ML) and Deep Learning (DL) played a crucial role in
the efficiency and accuracy of detectors, trackers, and classifiers. Nowadays, ML-
based approaches in HCI [19] are less interesting than the DL-based ones [18].
Moreover, recent methodologies provide promising results even with few samples
in the involved dataset [1]. However, these solutions usually require consistent
resources and often also long training times to be really effective. This fact is
particularly evident in complex tasks, e.g., hand tracking and gesture recogni-
tion. Based on this scenario, we propose a novel pipeline, that combines simple
and already-known algorithms, to perform hand tracking and gesture recognition
applied to a virtual musical instrument. The idea aims to provide a real-time
feedback system with a low computational cost and using only two input sen-
sors, an RGB and a dual-Infrared (IR) camera. It is meant to work with portable
devices and without a training phase. The document is structured as follows: In
Sect. 2, an overview of the hand tracking and gesture recognition focused on
virtual instruments is provided; in Sect. 3, the proposal is described; then, the
conducted experiments and the collected results are shown in Sect. 4; and the
final thoughts are provided in Sect. 5.

2 Related Work

For over 20 years, there have been efforts to develop systems that correctly recog-
nize and detect the human body and its movement [11]. In particular, numerous
researchers have dealt with the problem of hand recognition and gesture detec-
tion, tasks with countless applications [13].

2.1 Non-wearable Hand-Based Interaction

A “wearable” interaction system exploits invasive devices, e.g., gloves, usually
attached to one or both hands [14], supporting accurate tracking but limiting the
comfort for the user. Based on these assumptions, other solutions can substitute
them in hand tracking tasks: the non-wearable systems [5]. A common method is
to use an RGB-D sensor to retrieve accurate depth information directly from the
hardware [15,25]. Unlike RGB-D, RGB sensors can only infer three-dimensional
data, usually with the addition of computational cost [16]; these approaches,
often, compensates for the lack of depth information by training a neural net-
work to perform hand tracking and gesture recognition. In [20], for example, the
authors used a Generative Adversarial Network (GAN) to generate fake hand
images that fed a Convolutional Neural Network (CNN), namely RegNet, for
detecting the hand position in the 3D space. Some other works combine Neural
Networks (NNs) and RGB-D sensors to get the most relevant information from
both streams [21], thus highlighting improved results and inspiring our proposal.

2.2 Natural Virtual Interfaces for Music

Based on the specific task, gesture recognizers are trained differently: gestures
for playing the piano differ from those of American Sign Language (ASL), which
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are the reference hard task in hand gesture recognition. This fact implies that
few research groups developed solutions specifically designed for playing virtual
instruments. In [15], for example, the authors merged RGB-D information with
finger pose/tap detection to create a completely virtual piano. In a similar work
[23], another research group developed a system that exploits the combination of
RGB-D data with information take from a MIDI keyboard alongside a dataset
to detect the correct fingering of piano notes. It was proposed for teaching piano,
and the results shown in the experimental section proved the method’s effective-
ness. In [9], the authors developed a simple virtual instrument using both an
Oculus Rift and a Leap Motion. The instrument is similar to a piano: there are
several buttons that, when touched, reproduce notes. The hands are simulated
inside the 3D environment. When a hand is close enough to a button, it triggers
the touch action. In [7], instead, the authors combined an Oculus Rift with the
Razer Hydra to perform gesture detection and play a virtual instrument in the
3D environment. In [15], the authors proposed a combination of a depth sensor
with Random Forest (RF) regression to detect and mimic the keyboard fingering
on a virtual keyboard. There are also other solutions in which an actual MIDI
keyboard is used, and it is combined with a stream of RGB information [23]. To
the best of our knowledge, any work in literature similar to ours, either makes
use of AI, MIDI keyboards, or both.

3 Proposed Method

The system aims to allow playing in real-time on a virtual keyboard that is
just drawn or printed on a piece of paper. It just requires three components: a
low-end computer, an RGB camera, and a depth sensor. The two devices look
at the scene from the top-view, one of them slightly rotated from the orthogonal
position (see Sect. 4). In Fig. 1, an overview of our architecture is shown. The
pipeline faces the following issues: keyboard detection, hands detection/tracking,
and key-pressed action recognition. Keyboard and hand detection are treated in
the preliminary phase, exploiting well-known computer vision techniques. Hand
tracking and key-presses recognition are mainly analyzed in the real-time phase,
where state-of-the-art algorithms are involved.

3.1 Preliminary Phase

The preliminary phase is made of two modules: the setup and the keyboard
detection phase. However, in this section, we also included the method for sensors
fusion, which is exploited in both the preliminary and the real-time phase.

Setup: In the setup, only the RGB input is exploited. The first operation
consists of background subtraction. Thus, a frame of the background is cap-
tured (Fig. 2a). Then, a frame with the keyboard over the background is taken
(Fig. 2b). The last step provides a background subtraction, comparing the first
frame with the second one according to the Mixture of Gaussian version 2
(MOG2) [6]; the result is shown in Fig. 2c.
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Fig. 1. Architecture of the proposed system. The webcam corresponds to the RGB
input, while the Leap Motion is the depth sensor.

Keyboard Detector: The result of the setup module is given as input to
the proposed keyboard detector. First, an adaptive thresholding operation is
performed: it strongly highlights the drowned keyboard from the background of
the paper, avoiding issues in case of low contrast between them. It is based on
standard binary thresholding [26] with a threshold value of 127. Then, the Canny
edge detection algorithm [8] is used to find the edges of the keyboard (Fig. 2d).
The result feeds a probabilistic Hough Transform procedure [22] to find all the
lines of the keyboard (Fig. 2e). Then, we apply K-means clustering [12] with
k = 3 to fit the lines based on their rotation angles: one cluster is for horizontal
lines, and the other two are for vertical lines. Two groups of vertical lines are
needed due to their different rotation angles (arising from the viewpoint) for
the left and the right side of the keyboard, assuming that the latter is almost
centered in the frame. Given the horizontal lines, these are classified according
to their y coordinate to find the top of the keyboard, where the black keys are
located. Meanwhile, the vertical lines are exploited to find which belongs to
the white keys and which to the black ones. Thus, a cleanup of all the lines is
performed, since Hough Transform could count multiple lines on the same one:
the lines that are closer than a threshold of 5 pixels (px) are merged into the
same element. This threshold has been empirically calculated on an input image
of width 1920 px×1080 px of height. For white keys, we check all the lines above
the starting point of black keys; vice versa for the black keys.

Sensors Fusion: The x, y coordinates of each fingertip can be retrieved from
the input RGB images to recognize the pressed keys. In particular, we assume
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Fig. 2. Preliminary phase pipeline. (a) First frame; (b) Second frame; (c) Background
highlight; (d) Canny edge detection; (e) Hough transformation; (f) Horizontal lines
detection; (g) Borders highlight; (h) White tiles highlight; (i) Black tiles highlight.

that a finger is playing a note when it touches the keyboard. Considering the
semi-orthogonal position of the camera from the keyboard, the closeness of the
fingertip from the paper could be retrieved with depth information, the z coor-
dinate. We firstly used MediaPipe [17] only, a library specifically designed for
body and hand tracking based on a pre-trained and modified version of the Con-
volutional Neural Network (R-CNN). It was one of the best candidates for our
purpose due to the low computational cost for predicting the hand coordinates;
in addition, it could also infer the distance axis. However, empirical tests have
shown that MediaPipe correctly recognized horizontal (x) and vertical (y) trans-
lations, but it is very inaccurate about the distance (z). Thus, we introduced a
sided device for retrieving more accurate depth information. Among all available
options, the Leap Motion sensor seemed an optimal solution due to its dual-IR
camera sensor, which requires low-computational resources for obtaining high-
precision tracking, especially regarding distance data. Then, the RGB and depth
streams from a webcam and the Leap Motion, respectively, were simultaneously
captured. With MediaPipe on the RGB data, x, y coordinates are taken, while
the depth information z comes from the LeapMotion SKD on the dual-IR stream.
However, both libraries are exploited for retrieving hand and finger information,
thus allowing their mappings.
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3.2 Real-Time Phase

The real-time phase is executed after the preliminary one. It is invoked when the
setup is performed and the system is ready to make the user play the keyboard.
The pseudo-code of the procedure is shown in Algorithm 1.

Touch Detection: The sound should be triggered when the finger is close
enough to the keyboard. Thus, we empirically calculated that whenever a fin-
gertip is 3 cm below the center of the palm, we assume that the player wants to
press a key with the related finger. The software also considers if the finger is
inside the keyboard area to ignore false positives.

Note Detection: Each time a touch detection occurs, the system gets the posi-
tion of the fingertip and the key under it. Then, the mapping between each key
and each Musical Instrument Digital Interface (MIDI) protocol ID is executed to
play the correct frequency note (see Section Playing Notes). For simplification,
let us consider white keys only. Assuming all indices start at 0 and supposing
the note that a user plays is the i-th on the keyboard from left, we define an
array that contains each note’s offset in an octave with respect to its MIDI ID:

offsets = [0, 2, 4, 5, 7, 9, 11]. (1)

Then, let us assume that F is the MIDI ID of the lowest note on the keyboard
(e.g., if the lowest note is C4 according to American Standard Pitch Notation,
then F = 60). The formula to find a note’s MIDI ID is:

(� i
7
� · 12) + offsets[i mod 7] + F, (2)

where � i
7� is the number of octaves passed, � i

7� · 12 is the octave offset, and
offsets[i mod 7] is the key offset, within the octave. For the black keys, the
procedure is the same, but the offsets are:

offsets = [1, 3, 5, 8, 10], (3)

and the final formalization becomes:

(� i
5
� · 12) + offsets[i mod 5] + F. (4)

Playing Notes: For each frame t, given N as the set of notes that are currently
playing (i.e., notes that the user started playing at frame t− k, for some k > 0)
and Nt as the set of notes that the user plays at frame t, the Algorithm 2
describes how the system manages which note’s sound should be reproduced:
where N \Nt contains the notes that were previously playing, and that the user
is not playing anymore, at frame t; while Nt \ N contains the notes that were
not previously playing, and that the user has started playing at frame t.



188 D. Avola et al.

Algorithm 1
for each frame do

do hand detection
do depth detection
for each fingertip f do

if (f is touching) ∧ (f is inside the keyboard) then
let n be the note that f is playing
play note n

end if
end for

end for

Algorithm 2
Require: N,Nt

for each note n ∈ N \ Nt do
stop playing note n

end for
for each note n ∈ Nt \ N do

start playing note n
end for

4 Experimental Environment

4.1 Experimental Setup

We exploited a keyboard hand drawn on a sheet of paper. We used a laptop
with an Intel Core i3-8140U CPU, 8 GB of DDR4 RAM, and no dedicated
GPU, for testing the performance on a low-end device. The webcam (Logitech
C920) and the Leap Motion were connected via USB3 ports. The Leap Motion
was orthogonally placed above the keyboard, while the webcam was above the
monitor, pointing down on the keyboard, at an angle slightly below 90◦ (about
75◦). The software was developed in Python exploiting OpenCV, MediaPipe,
and LeapMotion Python SDK.

4.2 Experiments Execution

We executed the preliminary phase with the webcam only, for avoiding inter-
ferences with the Leap Motion during the calibration. In the real-time phase,
we collected each (when and which) pressed key to get quantitative informa-
tion about the performance of the system. Unfortunately, there is no standard
protocol for testing systems like the proposed one; thus, we defined our own
methodology, based on similar state-of-the-art frameworks. For each frame, an
operator observes the actions of the user and manually registers when a touching
action starts, as well as when it stops; this information is our ground truth. The
ground truth is compared to what the program detects. In this way, we were
able to calculate evaluation metrics. Then, we also collected questionnaires for
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retrieving qualitative results asking the participants to fill them out at the end
of the run. In particular, we exploited the Usability Metric for User Experience
(UMUX) questionnaire [10], which is one of the best solutions to this aim.

4.3 Results

Quantitative Results: In Table 1, the results of the executed experiments are
shown. We executed 5 tests, counting for each frame the ones corresponding to
a correctly played note when the fingers touch the keyboard. We also grouped
the scores by different fingers because the Leap Motion is often more reliable
with only some of them, specifically the thumb and the index. As noticeable,
the accuracy is always close to the ground truth; however, the precision behaves
very differently. It seems to be related to depth data of fingertips coordinate
location: even with the Leap Motion, the movement of the fingers is very short,
and the hardware is not fully capable of detecting such tiny translations.

Table 1. Experimental results. The scores are averages among the 5 runs.

Accuracy Precision Recall

All fingers 95.8% 53.6% 98.4%

Only index and thumb 90.6% 56.4% 99.8%

Only index 84.4% 60.6% 100%

Qualitative Results: We also retrieved results about the perceived usability of
our program. We asked 12 participants to play the keyboard with our system for 5
min and to fill out the UMUX questionnaire at the end. Among the participants
that tested the system, there were people with different musical background
knowledge: 6 professional piano players and 6 non-musicians were involved. The
overall average is 79.86%, the minimum is 70.83%, the maximum is 87.5%, and
the standard deviation is 5.6. These results highlight the effectiveness of the
proposal in terms of usability, even if some collected scores underline some room
for improvements, mainly in delay management.

5 Conclusions

In this work, a non-wearable hand-based interaction system for playing a vir-
tual piano has been proposed. It exploits a combination of well-known computer
vision algorithms and state-of-the-art DL-based techniques, paying particular
attention to computational power. In fact, the software is specifically designed
for low-end hardware, involving only two input devices, an RGB and a depth
sensor. The pipeline of the proposed method is made of two steps: a calibration
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and a running phase. The experiments highlight that the system can manage
real-time data flow, providing enough fast and accurate feedback to make the
experience enjoyable for the user. The collected results prove it with a high accu-
racy value and a consistent UMUX score. However, there is room for improve-
ment in terms of precision: the depth information should be more granular and
the response latency of the system should be decreased. These elements will be
deeply investigated in future versions of the system.
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Abstract. The classification of honey pollen grains is performed in order to clas-
sify honey according to its botanical origin, which is of great importance in terms
of marketing. This visual work is currently done by human specialists counting
and classifying the pollen grains in microscopic images. This is a hard, time-
consuming, and subject to observer variability task. Thus, automated methods are
required to overcome the limitations of the conventional procedure. This paper
deals with the automatic classification of honey pollens using five representa-
tive Neural Networks coming from the ImageNet Challenge: VGG16, VGG19,
ResNet50, InceptionV3 andXception. The ground truth is composed of 9983 sam-
ples of 16 different types of pollens corresponding to citrus and rosemary pollens
and its companions. The best result was obtained with the InceptionV3 network,
achieving an accuracy of 98.15%, that outperforms the results obtained in previous
works.

Keywords: Pollen Classification · ImageNet Challenge · Deep Learning ·
Convolutional Neural Networks

1 Introduction

Pollen identification is an important task in several areas, but we focus on the botani-
cal certification of honey. This is performed via visual microscopic examination of the
pollen present in honey; a process called melissopalynology. However, manual exam-
ination of the images is hard, time-consuming and subject to inter and intra observer
variability. Thus, automated methods for pollen identification are required to overcome
the limitations of the conventional procedure [1].

Automated pollen classification started in the later decades of the 20th century. But it
has been in the 21st century where more progress has been made in this field, helped by
the powerful increase in computational capacities. Previous approaches are summarized
in [2] and [3]. They can be divided into image-based and non-image based methods
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[4]. Non-image based methods use alternative characteristics, for example fluorescence,
Fourier-Transform infrared, and Raman spectroscopy. Image-based methods typically
involve defining and extracting discriminant features from pollen images, followed by
sorting via statistical or machine learning classifiers. These image-based methods fall
into three different categories based on the type of used features [4]: visual/geometrical
discriminant features (e.g., shape, symmetry, diameter, etc.); texture-based discrim-
inant features (e.g., grey-level co-occurrence matrices, entropy features etc.); and a
combination of the two approaches.

However, a newapproach has emerged to dealwith image-based pollen classification.
This is Deep Learning, a method that has shown great effectiveness in other areas. This
new approach uses a model that determines and extracts the features itself, rather than
being defined by human specialists.

Works applying this new approach outperform the traditional methods.Most of these
works are summarized in [4] where also a table is provided comparing traditional and
Deep Learning approaches. Concerning the Deep Learning methods, we have several
works like [5] which achieved a 94% of training accuracy on a dataset of 30 pollen
types. Their results are based on the training set and no information is given about how
the model behaves with unseen images. The same occurs with [6] and [7]. In the first
case they achieved 100% of accuracy on 10 very different pollen grains using transfer
learning with the VGG16 network. In the second case they reported 99.8% of accuracy
on 5 different types of pollen. In [3] researchers improved classification of pollen grain
images of the POLEN23E dataset (30 pollen types) by three different applications of
Deep Learning convolutional neural networks achieving a 97% of accuracy. In a recent
work [4] they obtain very good results, 98% of accuracy, on the most complete dataset
until today, 19,000 samples with 46 different types. They used different techniques of
image pre-processing and data augmentation to feed a pre-trained convolutional neural
network, retrained by transfer learning to extract features from one of its deepest layers.
Moreover, these automatically extracted features are used to perform classification with
a linear discriminant classifier. The behaviour of the model is good, giving a 98% of
accuracy in unseen sets of images. Also, in [8], they perform an approach similar in
part to our approach and use pre-existing convolutional neural networks to classify up to
73 different types of pollens with 2523 samples. They achieve the best accuracy results
with the DenseNet-201 (95.7%) and ResNet50 (94.0%) networks. Finally, in a recent
work [9], they use several ImageNet Networks (InceptionV3, Xception, ResNet) in an
ensemble manner to classify the Cretan Pollen Dataset v1, which is a publicly available
dataset comprising images of 4034 pollen grains of 20 plant species. They achieved and
accuracy of 97,5%.

In this paper we use five pre-existing networks that were developed in the context of
the ImageNet Challenge to perform honey pollen classification, specifically on the citrus
and rosemary pollens and its companions. And we achieve better accuracy results than
the mentioned previous works. The ImageNet Challenge has taken place in recent years
and was designed to obtain the best possible results on a database of 1.2 million images
corresponding to 1000 different classes. The challenge is oriented to the use of deep
learning and there have been several networks that have been presented in these years.
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We have chosen five of the most representative: VGG16, VGG19, Inception, Xception
and ResNet50.

2 Materials and Methods

2.1 Ground Truth

The ground truth was own made from microscope images and is composed of 9983
samples taken by our laboratory specialists that also labelled them. These samples cor-
respond to 16 different types of pollens with several samples per type between 70 and
3279, see Table 1. All were samples of Orange Blossom, Rosemary and their compan-
ions (Bottom, Bubble, European Olea N.C., Cistus sp. NC, Starch, Brassicaceae, Citrus
sp., Echium sp., Legumineuses, Onobrychis sp., Prunus dulcis, Quercus sp., Rosmarinus
officinalis, Thymus sp., Taraxacum type, Umbellifers). See Fig. 1.

Fig. 1. Examples of the 16 types of studied Pollens.

It is remarkable that the samples are just like the samples that specialist use manually
in melissopalynology to determine the botanical origin of the honey. They were not
pre-processed and isolated, contrary to what happens in other works [9].
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Table 1. Number of samples per type and percentage regards the total number.

Type Number Percentage Type Number Percentage

Type 0 772 7.73% Type 30 112 1.12%

Type 3 117 1.17% Type 33 306 3.07%

Type 7 722 7.23% Type 36 179 1.79%

Type 8 197 1.97% Type 37 1029 10.31%

Type 9 233 2.33% Type 40 837 8,38%

Type 12 3279 32.85% Type 43 599 6.00%

Type 17 341 3.42% Type 47 70 0.70%

Type 21 372 3.73% Type 50 818 8.19%

2.2 ImageNet Networks

We used up to five pre-existing networks coming from the ImageNet Challenge:
ResNet50, Xception, VGG19, VGG16, InceptionV3.

ResNet50 is a variant of ResNet model which has 48 Convolution layers along
with 1 MaxPool and 1 Average Pool layer [10]. The ResNet50 architecture contains the
following elements: First, an input image of 224× 224 target size. Behind, a convolution
layer (size 64) with a stride of size 2, then a max pooling with also a stride size of 2.
Subsequently, 3 convolution layers repeated 3 times (sizes 64, 64, 256 respectively).
After this we could see 3 convolution layers repeated 4 times (sizes 128, 128, 512
respectively). Then other 3 convolution layers repeated 6 times (sizes 256, 256, 1024
respectively). After those 3 more convolution layers repeated 3 times again (sizes 512,
512, 2048 respectively). Finally, there are an average pool, then a fully connected layer
and at the end a SoftMax function. ResNet50 introduces a new neural network layer, the
residual block, whose aim is to address the degradation problem observed while training
the networks [8]. It gives us a total of 50-layer Deep Convolutional Network.

We used the InceptionV3 network that comes from Google’s Inception Convolu-
tional Neural Network (as a third edition) [11]. It was introduced during the ImageNet
Recognition Challenge. It was committed on allowing deeper networks while also keep-
ing the number of parameters from growing too large. The InceptionV3 architecture
contains the following elements: First, an input image of 299× 299 target size. Behind,
a convolution layer (size 32) with a stride of size 2, a convolution layer (size 32) and a
convolution layer (size 64). Then a MaxPool layer with a stride of size 2. After that, a
convolution layer (size 64) with a stride of size 2, a convolution layer (size 80) and a
convolution layer (size 192). Then, the architecture has three inception modules placed.
The first module carries out convolution on an input using filters (sizes 1× 1, 3× 3, and
3 × 3) followed by MaxPool (same for the others modules). The outputs are concate-
nated and go through to the following inception module. In the second module, a grid
reduction technique is applied whose purpose is to diminish the number of parameters
to become the model computationally less expensive. The process uses 1× n and n× 1
convolutions instead of n× n convolutions. Last inceptionmodule takes after the second,
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it allows expanded the filter bank outputs to promote high dimensional representations.
Finally, we would observe other MaxPool layer with a stride of size 2. Then a fully
connected layer and at the end a SoftMax function.

We have also used the Xception network which is another deep convolutional neural
network architecture that involves depth wise Separable Convolutions [12]. It was devel-
oped by Google researchers. It proposes an advanced deep convolutional neural network
architecture based on Inception network, where Inception modules have been replaced
with deeper separable convolutions. The Xception architecture contains the following
elements: First, an input image of 299 × 299 target size following by operations of
batch normalization and ReLU. After this, the architecture has three blocks in sequence
carrying out convolution, batch normalization, ReLU, and MaxPool operations.

VGG16 and VGG19 are convolutional neural networks models proposed by K.
Simonyan and A. Zisserman from the University of Oxford in [13], which have 16
and 19 layers respectively. A crucial thing about VGG16 and VGG19 is that instead of
having many hyper-parameters they focused on using convolution layers of 3 × 3 filter
with a stride 1 and always used the same padding and a MaxPool layer of 2× 2 filter of
stride 2. It follows this sequence of convolution andMaxPool layers consistently overall
the architecture. In the end it has 2 Fully Connected layers followed by a SoftMax for
output.

3 Experimental Work

All those networks were used with four different image datasets built randomly from the
ground truth in a 4-fold manner, each one with images for training (80% of each pollen
type), validation (10% of each pollen type) and test (10% of each pollen type). Among
the parameters to be highlighted we should mention the number of epochs (30) and
the learning rate (0.005). We performed Transfer Learning and Fine Tuning and trained
all layers because the images of pollens are quite different to those images used in the
ImageNet Challenge (dogs, cats, cars, houses, etc.) but used as the initial coefficients
of the networks those coefficients obtained for the pre-existing networks on ImageNet.
The different networks use different sizes of image, and the pollen samples also have
different image sizes. The size of the pollen images was adjusted to the size of the image
of each network. We also used Data Augmentation (rotation, shift, flip) to expand the
datasets in the training process. The results can be seen on Table 2.

The best accuracy result was achieved by the InceptionV3with an average of 98.15%.
The rest of deep learning neural networks achieved also very good results. TheResNet50,
Xception, VGG19 and VGG16 resulted in an average of 97.41%, 97.70%, 97.26% and
97.63%, respectively. The difference between networks is only in one point and as we
can observe, the VGG16 network achieves a very good result with a difference with
regards to InveptionV3 network of only 0.52 points and yet it is much simpler.

In the following figure we can see the Loss Vs Accuracy of the dataset1 for the corre-
sponding InceptionV3 ImageNet Network. We can appreciate that there is no overfitting
in the training process since the curves of train accuracy and validation accuracy do
not separate more than 15%. This also happens in the rest of the networks and datasets
(Fig. 2).
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Table 2. Accuracy results of the ImageNet Networks.

Dataset1 Dataset2 Dataset3 Dataset4 Average

VGG16 97.33% 97.23% 98.12% 97.83% 97.63%

VGG19 96.84% 97.43% 97.83% 96.94% 97.26%

ResNet50 98.02% 97.23% 96.64% 97.73% 97.41%

Xception 97.63% 97.53% 98.32% 97.33% 97.70%

InceptionV3 97.92% 98.32% 98.42% 97.92% 98.15%

Fig. 2. Loss vs Accuracy for the InceptionV3 Network.

3.1 Results per Types and Multiclass Metrics

In this section we have computed the results of accuracy per types of pollens and net-
works, and we have computed several multi-class metrics in order to compare the good-
ness of the classification. The metrics we have used are the Precision, Recall, and F1-
Score. The latter is the harmonic mean of Precision and Recall. In these cases, a value
near to 1 means a good classification while a value near to 0 means a bad classification.
We also have computed the multi-class version of Matthews Correlation Coefficient
(MCC), which is a metric with possible values between +1 and −1. A coefficient of +
1 represents a perfect prediction, 0 no better than random prediction and −1 indicates
total disagreement between prediction and observation.

We have computed these metrics and results per types for the 4-fold scheme we have
followed in the experiments, that is, we have results for the dataset1, dataset2, dataset3
and dataset4. In Table 3 we show the results of the average of them. We can observe that
the results of metrics are correlated with the accuracy obtained in each network, being
the best the InceptionV3 network. With regards to the results of accuracy per type, in
general, the best results are obtained by the InceptionV3 network. It should be noted
that type 30 obtains low results in all networks and that it is the Xception that gives the
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best result for this type. This happens with other types and other networks, which are
better in some cases than InceptionV3, but in average InceptionV3 responds better.

Table 3. Accuracy results per types and networks, total accuracy and multiclass metrics.

VGG16 VGG19 ResNet50 InceptionV3 Xception

type 0 99.68% 99.68% 99.37% 99.68% 100%

type 36 92.54% 92.55% 92.96% 98.75% 96.25%

type 50 97.63% 96.23% 98.80% 97.96% 95.66%

type 21 95.44% 95.55% 98.65% 96.82% 99.34%

type 37 98.12% 98.30% 96.93% 97.38% 97.38%

type 40 99.12% 97.13% 97.17% 98.26% 97.73%

type 9 100% 100% 99.00% 100% 99.00%

type 8 97.83% 98.81% 98.86% 98.86% 100%

type 47 100% 100% 100% 100% 96.88%

type 7 96.98% 96.28% 95.52% 97.60% 98.26%

type 43 95.93% 96.72% 98.75% 96.84% 95.54%

type 33 92.75% 93.93% 88.93% 96.24% 96.85%

type 3 100% 100% 98.21% 100% 100%

type 12 98.71% 98.86% 99.09% 99.16% 98.71%

type 30 84.44% 76.78% 78.44% 83.92% 88.02%

type 17 93.47% 89.27% 92.72% 94.99% 91.54%

Accuracy 0.9763 0.9726 0.9741 0.9815 0.9770

Precision 0.9750 0.9725 0.9750 0.9800 0.9775

Recall 0.9750 0.9725 0.9750 0.9800 0.9775

F1-score 0.9750 0.9725 0.9750 0.9800 0.9775

MCC 0.9669 0.9678 0.9641 0.9736 0.9701

4 Conclusions and Discussion

We have studied the use of Convolutional Neural Networks to perform the classification
of honey pollens, specifically the rosemary and citrus pollens and its companions, in
total, 16 types or classes of pollens. We have used a ground truth of 9983 samples
corresponding to these types of pollens.

We have used five pre-existing Networks coming from the ImageNet Challenge:
VGG16, VGG19, ResNet50, Xception and InceptionV3. We trained all layers starting
from the original coefficients of ImageNet.We followed a 4-fold scheme for training and
classification and the best result of accuracy was achieved by the network InceptionV3
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(98.15%), but the rest of networks obtained also good results. In fact, theVGG16network
which is significantly simpler that InceptionV3 is only 0.52 percentage points from the
result of the InceptionV3. The result of InceptionV3 outperforms the results obtained in
previous works [9].

We also studied the accuracy results per type of pollen and network. The best average
resultwas achieved by InceptionV3network, but in some types other networks performed
better. Finally, we computed several multi-class metrics: Precision, Recall, F1-Score and
MCC (Matthews Correlation Coefficient). We observed that the results of metrics were
correlated with the accuracy achieved in each network, and the best was once again the
InceptionV3 network.

Future work would include more types of pollens and more networks and also the
development of an own network, simpler than those used in this work.
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Abstract. Though modern microscopes have an autofocusing system
to ensure optimal focus, out-of-focus images can still occur when cells
within the medium are not all in the same focal plane, affecting the
image quality for medical diagnosis and analysis of diseases. We propose
a method that can deblur images as well as synthesize defocus blur. We
train autoencoders with implicit and explicit regularization techniques
to enforce linearity relations among the representations of different blur
levels in the latent space. This allows for the exploration of different blur
levels of an object by linearly interpolating/extrapolating the latent rep-
resentations of images taken at different focal planes. Compared to exist-
ing works, we use a simple architecture to synthesize images with flexible
blur levels, leveraging the linear latent space. Our regularized autoen-
coders can effectively mimic blur and deblur, increasing data variety as
a data augmentation technique and improving the quality of microscopic
images, which would be beneficial for further processing and analysis.
The code is available at https://github.com/nis-research/linear-latent-
blur.

Keywords: Microscope images · Deblurring · Defocus blur synthesis ·
Regularized autoencoders

1 Introduction

Computer vision models have become increasingly popular in biomedical image
processing, particularly with the advancement of deep learning techniques, lead-
ing to improved performance for tasks like cell segmentation and disease clas-
sification [8,12,15]. However, image quality greatly impacts the performance of
computer vision models. In the biomedical field, low-quality microscopy images
can compromise image analysis and diagnosis.

For instance, high-resolution cell images can be obtained using a confocal
microscope. An autofocus component helps find the optimal focal plane for cap-
turing a cell slide [4]. However, this task is often complicated by out-of-focus
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light, as not all cells are on the same focal plane and have thick structures. Thus,
some cell images show less sharp regions due to out-of-focus areas, complicating
the automated biomedical analysis [2].

Fig. 1. A nuclei-labeled cell slide captured at five focal lengths. A z-stack level (ranging
from z0 to z16) indicates the level of blur. We enforce linearity in the latent space among
image representations of different blur levels of one slide.

Several deep-learning deblurring solutions have emerged in recent years to
tackle this problem. They can be categorized into two groups: blur kernel estima-
tion followed by deblurring [13] and kernel-free approaches [6,11,16,17]. Quan
et al. [13] proposed a non-blind deblurring network based on a scale-recurrent
attention module. In [16] and [1], the authors used multiscale U-net architec-
tures for deblurring and image super-resolution tasks. These methods rely on
local or global residual connections, which are useful for recovering information
that may be lost through downsampling, as well as for optimizing the training
process [10]. The authors of [5] proposed a defocus map estimation model. The
defocus map can be used to compute the pixel-wise blur level for blur enhance-
ment and blur kernel estimation for deblurring. Jiang et al. [3] tackled multi-
cause blur and proposed methods to recover sharp images from either motion
or defocus blur. Zhang et al. [17] reported state-of-the-art results for deblurring
microscopic images using a CycleGAN-based model, which learns a reversible
mapping between sharp and out-of-focus images. However, these methods entail
high computational costs from the nature of the complex architectures and lack
the flexibility of removing blur from images with defocus levels different from
those seen during training.

In this paper, we propose a generative model that uses an autoencoder for
both blur synthesis and deblurring. The unknown relation between latent rep-
resentations of blur levels obtained with a vanilla autoencoder does not allow
traversals of the latent space to generate images with lower or higher blur levels.
We thus design training constraints that enforce a certain structure in the latent
space, such as a linearity relation. We use a regular autoencoder as the baseline
model and apply implicit and explicit regularization to enforce linearity among
the image representations of a cell slide captured at different focal planes, such as
those shown in Fig. 1. The autoencoders are trained to synthesize defocus blur.
Leveraging the enforced linearity, we can synthesize a blurry image by linearly
interpolating the latent representations of two images of the same cell slide with
different levels of blur. Further, the linear relation among blur levels enables
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Fig. 2. Given a triplet of inputs {xa, xb, xc}, we generate their corresponding recon-
structions x̃a, x̃b, x̃c and a synthetic blurry image x̃′

b based on the linearly interpolated
representation z′

b. E and D are an encoder and a decoder network.

synthesizing a sharper image by extrapolating representations of blurry images
from the same cell slide.

Our contributions are: 1) A model with a simple network architecture that
serves as a versatile solution for both defocus blur synthesis and deblurring. 2)
Adaptability to different blur levels enabling the recovery of in-focus images,
even when the blur level of the reference images is unknown.

2 Proposed Method

2.1 Imposing Linearity onto Latent Space

We hypothesize that a linear relation among latent representations of images
with different blur levels taken from one cell slide allows us to generate images
with flexible levels of blur. As shown in Fig. 2, given a triplet of images {xa,
xb, xc} captured at different focal lengths from the same cell slide, with an
increasing blur level, we impose that their image representations follow the linear
relationship in the latent space as:

z′
b = α · za + (1 − α) · zc, (1)

where zi = E(xi) is the representation of the image xi computed with an encoder
network E , z′

b is the latent representation interpolated from za and zc and cor-
responds to image xb, and α is the interpolation parameter to control the level
of blur. As α increases from 0 to 1, the level of blur decreases.

With the enforced linearity, we can synthesize the less blurry image x̃′
a, asso-

ciated with xa, by extrapolating the latent representation z′
a from the latent

representations zb and zc of two images xb and xc (xb has a lower level of blur
than that of xc), as shown below:

x̃′
a = D(z′

a) = D(
1
α

· zb − 1 − α

α
· zc), (2)
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where D is a decoder network and z′
a is the extrapolated representation from zb

and zc. To achieve this, we train an autoencoder to reconstruct xa and xc from
za and zc, and xb from z′

b. Extrapolation of latent representations is applied
only in the test phase, and the linearity in the latent space affects directly the
performance of deblurring. We apply indirect and direct regularization in the
latent space to investigate how it affects image quality.

Indirect regularization induces that the linearity is not directly embedded in
the latent space, but is achieved by reconstructing the intermediate image xb

using the interpolated representation of za and zc without using xb as input.
The objective function is:

Li =
1
2

· [Lrct(xa,D(za)) + Lrct(xc,D(zc))] + Lrct(xb,D(z′
b)), (3)

where the first term is the sum of the L1 reconstruction losses of xa and xb using
their corresponding learned latent representations and the second term is the L1

reconstruction loss of the xb decoding from the interpolated representation z′
b.

Direct regularization adds a constraint that minimizes directly the L1 distance
between the interpolated latent representation z′

b and the associated representa-
tion zb of image xb, thus the objective function is:

Ld = Li + ||zb − z′
b||1. (4)

The indirect regularization may result in a latent space where interpolated
latent representations are decoded into images visually similar to the real data,
without forcing the non-interpolated latent codes to be linearly dependent [14].
The direct regularization explicitly ensures linearity in the latent space.

2.2 Evaluation Metrics

The goal of this study is to model a latent space with a linear constraint, such
that we can exploit interpolation and extrapolation to reconstruct images with
flexible levels of blur. We evaluate the geometric properties of the latent space
and image quality for blur synthesis and deblurring.

Linearity in Latent Space. We quantify the degree of linear dependence among
image representations based on two geometric properties. First, given three con-
secutive latent representations in terms of blur level, we measure their linearity
based on the cosine similarity between the distance vectors obtained from each
pair of neighbouring representations zn and zn+1.

We call this the Linear Dependence Score (LDS):

LDS =
1

N − 2

N−2∑

n=1

(zn−1 − zn) · (zn − zn+1)
||zn−1 − zn||2 · ||zn − zn+1||2 , (5)
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where N is the number of blur levels in the dataset, and zn is the latent represen-
tation of an image at blur level n. LDS ranges from −1 to 1, with higher values
indicating a higher degree of compliance with the expected geometric property.

Second, since we traverse the latent space of a cell slide in fixed steps of
N
α , we assess whether the distance between neighbouring latent representations
is equal between a pair of interpolated and a pair of non-interpolated image
representations. To measure this property, we propose a metric called Average
Pairwise Distance (APD):

APD =
1

N − 1

N−2∑

n=0

|d(zn, zn+1) − d(z′
n, z′

n+1)|
|d(z0, zN−1)| , (6)

where zn and zn+1 are latent representations of two consecutive images in terms
of blur level. The score is normalized by the distance between the representations
of the lowest and highest blur levels. APD ranges from 0 to 1 and a lower value
indicates that the latent space approaches the desired structure. Moreover, visual
inspection of the latent space is done by mapping the latent representations to
a 2D space via PCA.

Image Quality. We evaluate image quality using a commonly used metric, Peak
Signal-to-Noise-Ratio (PSNR),

PSNRR
I = 20 · log10

max(I)√
1

mn

∑m−1
i=0

∑n−1
j=0 (I(i, j) − R(i, j))2

. (7)

This measures the similarity between the images I and R. For instance,
PSNRextrd

grd compares the deblurred image using an extrapolated latent represen-
tation to the corresponding ground truth sharp image. PSNRb

grd compares the
reconstructed blurry image with the ground truth blurry image.

3 Experiments and Results

3.1 Dataset

We use the BBBC006v1 collection obtained from the Broad Bioimage Benchmark
Collection [7], which contains 384 cell slides stained with two markers to label
the nuclei and structure of cells respectively. The sets of nuclei and cell structure
images are noted as w1 and w2 sets. Each cell slide is captured at 34 focal lengths.
In total, there are 384 × 2 × 34 images. We only use the images captured above
the optimal focal plane (z-stack = 16) with even z-stack levels for both training
and testing (z-stack ≤ 16). We split it into training, validation, and testing sets,
in a 7:1:2 ratio. All z-stack levels corresponding to one cell slide are assigned
to the same set. We use triplets of one slide captured at different focal lengths
as input for the models. For the training phase, we use the triplets: (za, zb, zc)
where 2b = a+c and a, b and c are even z-stack levels in the dataset. We only use
even z-stack levels since changes between two consecutive blur levels (an even
and an odd z-stack level) do not exhibit significant variation in the data.
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3.2 Architecture and Training

As the baseline model, we design an autoencoder with a simple architecture
but can achieve image reconstruction marginally well. It has five convolutional
layers in the encoder and six transposed convolutional layers in the decoder. Each
convolutional layer consists of a two-strided convolution with a kernel size of 3×3,
followed by batch normalization and Leaky ReLU activation. In the decoder,
the structure is symmetrical, with transposed convolution replacing convolution
operations. The last layer is a convolutional layer with kernel size 3×3, followed
by a Sigmoid activation. The encoder layers have 64, 128, 256, 512, and 1024
filters. The models are trained for 40 epochs, with batch size 40. We use Adam
optimizer with learning rate 10−4. We generate 10 crops of size 128 × 128 from
each image (4 corner crops, 1 center crop, and their corresponding horizontally-
flipped versions). Using the same architecture, the regularized models are trained
with the proposed regularizations. We train models separately on the w1 and
w2 sets, due to the difference in their data distributions.

3.3 Results

Linearity in the Latent Space. We show the 2D projections of latent representa-
tions of a set of images (from the same cell slide but captured at different focal
lengths) in Fig. 3. The direct regularization forces the representations to be more
clustered and arranged along a line. With indirect regularization, the distribu-
tion in the latent space of the representation of images with an increasing blur
level is almost the same as that of the baseline model. We report the results
on the linearity of the learned latent representations in Table 1, for the models
trained on w1 and w2 sets, respectively. Direct regularization leads to substantial
changes in the structure of the latent space. With direct regularization, interpo-
lated or extrapolated latent representations lie closer in the latent space to their
associated representations generated by the encoder. This means that images
decoded from interpolated representations can be more similar to the images
reconstructed from the latent representations of the real images, compared to
those obtained with the other two models.

Fig. 3. 2D latent representations of a cell slide.
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Table 1. Quantitative results of the linear dependence. The arrows indicate whether
a lower or a higher score is desirable.

Data Model Baseline Indirect Direct

w1 set LDS ↑ 0.59 0.62 0.76

APD ↓ 0.036 0.028 0.014

w2 set LDS ↑ 0.52 0.47 0.75

APD ↓ 0.037 0.048 0.031

Fig. 4. (a) Synthesized blur for a nuclei-labeled slide using the baseline, indirectly and
directly regularized models. Each row contains images with the blur level transition-
ing from z-stack 0 (left) to z-stack 16 (right), (b) Zoom-in view of the area within the
frame in (a) highlights the blending effect by the baseline, (c) Example of image deblur-
ring using 3 models. Synthetic sharp images are obtained through linear extrapolation
between representations of two slides with z-stack levels 0 and 2, using different values
for α.

Blur Synthesis. In Table 2, we report the comparison of the quality of
images reconstructed using interpolated representations, against reconstructed
images using the representations associated with ground truth blurry images
(PSNRinterpb

b ) and ground truth blurry images (PSNRinterpb

grd ). We show the syn-
thesized blurry images in Fig. 4a. With the baseline model, reconstructions from
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Table 2. Results of the baseline model, and the directly- and indirectly-regularized
models, on the w1 and w2 sets. Blur synthesis and deblurring are evaluated. The arrows
indicate whether a lower or a higher score is better. The best scores are highlighted.

Experiment Metric Model

Baseline Indirect Direct Baseline Indirect Direct

w1 set w2 set

Blur synthesis PSNRinterpb
b ↑ 31.97 31.77 31.60 32.35 32.48 33.05

PSNR
interpb
grd ↑ 29.09 31.03 28.30 29.78 29.46 29.02

Deblurring PSNR
extrd
d ↑ 23.89 23.02 23.52 22.47 22.22 22.03

PSNR
extrd
grd ↑ 22.55 22.60 21.98 24.00 23.49 24.46

linear traversals of the latent space between two points result in visually similar
images compared with the ground truth blurry images. However, the recon-
structed images show a blending effect between the two source images, rather
than a reliable estimation of defocus blur effect, as shown in Fig. 4b. The visual
quality of the synthetic blur improves with the addition of regularization, which
helps to reduce the blending effect.

Deblurring. We report the results of the quality of the deblurred images
in Table 2. We show examples of deblurred images of a slide in w1 set by the
baseline and regularized models in Fig. 4c. Using two blurry images, we can gen-
erate a sharper image. For the w1 set, the indirectly regularized autoencoder
outperforms the baseline model when we compare the deblurred images with
the reconstructed sharp images (see PSNRextrd

d ). For the w2 set, direct regu-
larization performs the best. We observe that there is a trade-off between the
desired geometric property and the image quality when applying direct regular-
ization. With a better regularized latent space, the reconstructed image fidelity
decreases slightly, while allowing to reconstruct and generate new images with
different levels of blur using linear interpolation and extrapolation of the latent
representations, respectively. To account for the clustering induced by the direct
regularization, we also generate synthetic sharp images with an adjusted value
for α (α = 0.05). We notice that this set of images shows slightly more sharpness
compared to those using α = 0.125. This indicates that the levels of blur are
indeed encoded along the linear direction in the latent space.

With our regularized model, even when the sharp image is generated from
two images with high levels of blur, a considerable level of detail is recovered.
Figure 5 shows how the blur level of input images affects the deblurring process.
We fix one image at z-stack 0 and vary the other one from z-stack 2 to z-stack 14.
These results are in line with those from a similar study [9], where the level of
detail recovered in the deblurred images decreases with an increase in the focal
plane at which slides are captured.
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Fig. 5. Effect of the blur level in the input images on the synthetic sharp image, when
the optimal interpolation parameter α is known, using the indirectly-regularized model.

4 Discussion and Future Work

Our results suggest the feasibility of blur synthesis and deblurring through linear
interpolation and extrapolation in the latent space. Imposing linearity onto the
latent space enables us to control the level of blur in an image by interpolating or
extrapolating representations. With a simple architecture, we achieve a versatile
solution for blur synthesis and deblurring, while other works are usually limited
to one application.

The linear latent space enables the recovery of in-focus images, even when the
blur level of the two reference images is unknown. One can dynamically adjust
the value of α until reaching the optimal point. Besides, given a single blurry
image as input, we can generate a second blurry image on top of it with a blur
kernel, to obtain a deblurred in-focus image.

From the curvilinear trajectory demonstrated in the 2D projections of the
latent representations, we conjecture that there may be two directions in the
latent space, one corresponding to blur levels and the other corresponding to
image content. We suggest future work on disentanglement representation learn-
ing, i.e. the representations of blur levels and image content are disentangled.
This may allow for more precise reconstructions of deblurred images.

5 Conclusions

In this paper, we investigated the feasibility of models for both defocus blur syn-
thesis and deblurring, based on linear interpolation and extrapolation in latent
space. We enforce linearity among the representations of images of the same
cell slide with different levels of blur, by indirect and direct regularization in
the latent space. Therefore, linearly interpolating or extrapolating the represen-
tations of two differently blurred images (from the same cell slide) results in
a meaningful representation that maps to an image with another level of blur.
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Our results show that the regularized models perform well on both blur synthesis
and deblurring. The direct regularization results in a more linear latent space
compared to a regular autoencoder, enabling a more precise mapping between
extrapolated representations and their non-extrapolated versions.
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Call 2020, Faculty of Electrical Engineering, Mathematics and Computer Science, Uni-
versity of Twente.
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Abstract. State representation learning aims to capture latent factors
of an environment. Although some researchers realize the connections
between masked image modeling and contrastive representation learn-
ing, the effort is focused on using masks as an augmentation technique
to represent the latent generative factors better. Partially observable
environments in reinforcement learning have not yet been carefully stud-
ied using unsupervised state representation learning methods.

In this article, we create an unsupervised state representation learn-
ing scheme for partially observable states. We conducted our experi-
ment on a previous Atari 2600 framework designed to evaluate repre-
sentation learning models. A contrastive method called Spatiotemporal
DeepInfomax (ST-DIM) has shown state-of-the-art performance on this
benchmark but remains inferior to its supervised counterpart. Our app-
roach improves ST-DIM when the environment is not fully observable
and achieves higher F1 scores and accuracy scores than the supervised
learning counterpart. The mean accuracy score averaged over categories
of our approach is ∼66%, compared to ∼38% of supervised learning. The
mean F1 score is ∼64% to ∼33%. The code can be found on https://
github.com/mengli11235/MST_DIM.

Keywords: State representation Learning · Contrastive learning

1 Introduction

Deep representation learning is a machine learning (ML) type that focuses on
learning useful data representations. These representations can be learned using
deep neural networks (NNs) and transferred to a variety of downstream computer
vision (CV), and natural language processing (NLP) tasks [7,15]. Deep repre-
sentation learning includes autoencoders [14], generative models [9], contrastive
methods [11,20] and transformer models [6].
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State representation learning (SRL) [1,13,18] is a particular field of repre-
sentation learning where the state observations are commonly seen in the rein-
forcement learning (RL) setup. Agents can interact with the environment, which
itself changes accordingly throughout interactions. RL is a well-established ML
field that solves the Markov decision process (MDP) [21]. Traditional RL meth-
ods such as Q-learning [26] have evolved through adopting NNs [19]. Moreover,
convolutional neural networks (CNNs) are deployed in environments with image
inputs, and RL agents can learn from raw pixels.

Partially observable Markov decision processes (PODMPs) [3,23] are MDPs
where an agent can only observe a limited part of the environment, not the full
state. Recently, there have been some developments in decoupling SRL from RL
[10,16,17,22]. More improvements by using SRL have been reported in partially
observable environments than in fully observable ones. However, it is not clear
how the POMDP state is captured and preserved by representations.

This paper designs an unsupervised representation learning scheme for par-
tially observable environments. This method extends ST-DIM [1] and introduces
an unsupervised pretraining setting suitable to partially observable Atari Games.
Different pretraining hyper-parameter choices are also discussed in our ablation
study. Our contribution is summarized as follows: (1) We propose MST-DIM, a
contrastive method suitable to pretrain data collected in a partially observable
environment. (2) We test our method on the SRL benchmark using 20 Atari
2600 games and compare the results with the ST-DIM and supervised methods.
(3) Should the percentages of the observable parts of states be the same in pre-
training and in probing? Extensive evaluations are conducted to examine what
is needed for SRL in order to let the model accurately predict the ground truth
labels.

2 Related Work

Self-supervised Learning. Self-supervised learning learns useful representa-
tions from unlabeled data, which can be used in various downstream tasks. The
methodology has played an important role in NLP [6] and CV fields. Contrastive
Predictive Coding (CPC) [20] learns predictive representations by capturing the
information that is maximally useful to predict future (spatial or temporal) sam-
ples. SimCLR [4] provides a simple yet effective framework for contrastive learn-
ing. Momentum Contrast (MoCo) keeps dynamic dictionaries for contrastive
learning [11]. Self-supervised Vision Transformers [5] study the usage of ViTs
([8]) on MoCo. SRL benefits from those paradigms by having a low dimensional
state space that can learn a control policy more efficiently [18].

Contrastive Representations for RL. Contrastive Unsupervised Represen-
tations for RL (CURL) [16] is an RL pipeline that extracts high-level features
using an auxiliary contrastive loss, which can be combined with on-policy or off-
policy RL algorithms. Masked Contrastive Representation Learning (M-CURL)
[27] improves the data efficiency in CURL by considering the correlation among
consecutive inputs and using masks to help the transformer module learn to
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reconstruct the features of the ground truth. The loss is defined as a sum of
the RL loss and masked contrastive loss, and the transformer module is dis-
carded during inference. M-CURL reportedly outperforms CURL on 21 out of
26 environments from Atari 2600 Games.

Representation Learning in POMDPs. Predictions of Bootstrapped
Latents (PBL) [10] is an RL algorithm designed for the multitask setting. PBL
is trained by predicting future latent observations from partial histories and
the current states from latent observations. Histories in POMDPs are typically
compressed into a current agent state using NNs [23]. Agents trained with PBL
achieve significantly higher human normalized scores than baseline methods in
the partially observable DMLab 30 environments, but the gap is at most mini-
mal in fully observable environments. Augmented Temporal Contrast (ATC) [22]
associates temporally close pairs of observations and also shows its usefulness in
POMDPs.

3 Method

ST-DIM [1] is a method that captures the latent generative factors through max-
imizing mutual information lower-bound estimate over consecutive observations
xt and xt+1 given a set of cross-episode observations χ = {x1, x2, ..., xn}, origi-
nated from agents interacting with RL environments. It uses infoNCE [20] that
maximizes Eq. 1 as the mutual information estimator between patches as Deep
InfoMax (DIM) [12] does.

INCE({(xi, yi)}N
i=1) =

N∑

i=1

log
exp f(xi, yi)∑N

j=1 exp f(xi, yj)
(1)

For any i, (xi, yi) is called positive examples from the joint distribution p(x, y)
and (xi, yj) from the product of marginals p(x)p(y) is called negative examples
for any i �= j. Meanwhile, f(x, y) is a score function, i.e., a bilinear layer.

ST-DIM utilizes both the global-local (Eq. 2) and local-local objective (Eq. 3).
An illustration of the global-local contrastive task is also shown in Fig. 1. The
difference between the local-local and global-local tasks is that an additional
MLP is used to extract the global features.

LGL =

M∑

m=1

N∑

n=1

−log
exp gm,n(xt, xt+1)∑

xt∗∈Xnext
exp gm,n(xt, xt∗)

(2)

LLL =

M∑

m=1

N∑

n=1

−log
exp fm,n(xt, xt+1)∑

xt∗∈Xnext
exp fm,n(xt, xt∗)

(3)

Here, M and N are the height and width, gm,n(xt, xt+1) =
φ(xt)TWgφm,n(xt+1) and φ(m,n) is the local feature vector produced by con-
volutional layers in the representation encoder φ at the location (m,n). On the
other hand, fm,n(xt, xt+1) = φm,n(xt)TWlφm,n(xt+1). Observations xt and xt+1



Unsupervised State Representation Learning in Games 215

Fig. 1. An illustration of the global-local contrastive task in ST-DIM. For the local-
local contrastive task, we discard the MLP and use the local feature of the anchor.

are temporally adjacent, whereas xt∗ is a randomly sampled observation from
the minibatch.

In order to fit ST-DIM into partially observable environments, we propose
MST-DIM and define random masks kt for each consecutive pair (xt, xt+1) that
is drawn from a binomial distribution K. Therefore, Eq. 2 and Eq. 3 are modified
as Eq. 4 and Eq. 5:

LMGL =

M∑

m=1

N∑

n=1

−log
exp gm,n(xtkt, xt+1)∑

xt∗∈Xnext
exp gm,n(xtkt, xt∗)

(4)

LMLL =
M∑

m=1

N∑

n=1

−log
exp fm,n(xtkt, xt+1)∑

xt∗∈Xnext
exp fm,n(xtkt, xt∗)

(5)

Meanwhile, we can tune the probability of masking in K for both the pre-
training and probing. For example, a masking ratio of 0.4 means that 40% of
the full observation is not visible to the agent. As a result, our method not only
allows pretraining in partially observable environments, but is also capable of
pretraining even though the dataset comes from a different K distribution.

4 Experimental Details

Our experiment is conducted among 20 Atari games of Arcade Learning Envi-
ronment (ALE). Performances are evaluated by probe accuracy and F1 scores
for each game. Because ALE does not directly provide ground truth infor-
mation, ST-DIM has been conducted on the newly designed Atari Annotated
RAM Interface (AtariARI) [1] that exposes the state variables from the source
code [24] in 22 games. State variables are categorized as agent localization
(Agent Loc.), small object localization (Small Loc.), other localization (Other
Loc.), score/clock/lives/display (Score/.../Display), and miscellaneous (Misc.).
Detailed descriptions of states for each game across categories can be found in
the original paper [1]. We also summarize probe accuracy and F1 scores across
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those state categories for each game in our experiment. Not all categories are
available for each game, and we only include results from applicable ones.

Due to practical implementation issues, we exclude Berzerk, Riverraid and
Yars Revenge and include Battle Zone in our experiment, making a total number
of 20 games. Trajectories collected by random agents are used in our experiment,
as ST-DIM [1] suggested it can be a better choice than using trajectories from
PPO agents.

For pretraining, we use different partially observable setups. To verify if the
masking ratio in pretraining can be different from the probing, five types of
pretraining images have been considered in our experiment, as illustrated by
Fig. 2. The images can be original, 20% masked, 40% masked, 60% masked, or
80% masked.

We follow the same probing protocol as ST-DIM and focus on the explicitness,
i.e., how well the latent generative factors can be recovered. This is done by
training a linear classifier that predicts the state variables using the learned
representations. We keep the hyper-parameters the same as ST-DIM to make
our experiment comparable. A short list of hyper-parameters is shown in Table 1.
Setting the entropy threshold removes large objects that have low entropy from
the labels. The encoder architecture is the same as in ST-DIM, as illustrated by
Fig. 3.

Table 1. Parameter Choices

Hyper-parameter Value

Image Size 160 × 210

Batch Size 64
Learning Rate 3e−4
Entropy Threshold 0.6
Pretraining Steps 80000
Probe Training Steps 35000
Probe Testing Steps 10000

(a) Original Image (b) 20% Masked (c) 40% Masked (d) 60% Masked (e) 80% Masked

Fig. 2. The original image is masked by different percentages of random noise.
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Fig. 3. Architecture of the encoder.

Table 2. Probe F1 scores of each game averaged across categories

Games Observable Non-obs. Supervised Pretrain Ratio 0.2 Ratio 0.6 Ratio 0.8

Asteroids 0.46 0.39 0.39 0.45 0.45 0.44 0.44
Battle Zone 0.5 0.29 0.28 0.45 0.39 0.41 0.38
Bowling 0.96 0.29 0.29 0.9 0.72 0.85 0.63
Boxing 0.59 0.11 0.1 0.53 0.38 0.43 0.2
Breakout 0.87 0.37 0.37 0.85 0.83 0.85 0.29
Demon Attack 0.66 0.46 0.45 0.64 0.6 0.63 0.57
Freeway 0.81 0.03 0.03 0.27 0.27 0.1 0.05
Frostbite 0.72 0.33 0.34 0.7 0.65 0.66 0.58
Hero 0.92 0.57 0.58 0.9 0.87 0.88 0.84
Ms Pacman 0.7 0.35 0.36 0.69 0.64 0.68 0.62
Montezuma Revenge 0.77 0.54 0.53 0.75 0.74 0.74 0.71
Pitfall 0.68 0.24 0.25 0.62 0.53 0.6 0.54
Pong 0.81 0.13 0.13 0.71 0.69 0.65 0.42
Private Eye 0.88 0.5 0.49 0.84 0.81 0.82 0.68
Qbert 0.72 0.47 0.47 0.71 0.69 0.71 0.69
Seaquest 0.64 0.38 0.37 0.62 0.59 0.61 0.54
Space Invaders 0.56 0.45 0.44 0.56 0.55 0.57 0.56
Tennis 0.6 0.13 0.13 0.48 0.34 0.4 0.23
Venture 0.55 0.39 0.4 0.54 0.53 0.53 0.52
Video Pinball 0.62 0.29 0.3 0.62 0.57 0.63 0.6
Mean 0.7 0.34 0.33 0.64 0.59 0.61 0.5

5 Results

In this section, we demonstrate the performance of unsupervised representation
learning in the partially observable reinforcement learning environment. Table 2
shows the F1 scores for each game and Table 3 shows the accuracy. “Observable”
represents the setting where the probing is implemented with full observations.
“Non-obs.” is the ST-DIM setting where the pretraining is with full observations,
but the probing are with partial observations. “Supervised” is the setting where
no pretraining is included but the model is trained and tested only in probing
using the supervised manner. “Ratio” indicates the masking ratio in probing,
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Table 3. Probe accuracy scores of each game averaged across categories

Games Observable Non-obs. Supervised Pretrain Ratio 0.2 Ratio 0.6 Ratio 0.8

Asteroids 0.5 0.46 0.46 0.5 0.5 0.5 0.49
Battle Zone 0.52 0.36 0.35 0.48 0.44 0.45 0.44
Bowling 0.96 0.36 0.36 0.91 0.73 0.85 0.66
Boxing 0.59 0.14 0.13 0.54 0.39 0.44 0.22
Breakout 0.88 0.41 0.41 0.86 0.84 0.86 0.37
Demon Attack 0.66 0.47 0.47 0.65 0.6 0.64 0.58
Freeway 0.81 0.06 0.06 0.3 0.3 0.15 0.09
Frostbite 0.73 0.38 0.38 0.7 0.66 0.67 0.59
Hero 0.92 0.59 0.59 0.9 0.88 0.88 0.84
Ms Pacman 0.71 0.4 0.4 0.7 0.66 0.69 0.65
Montezuma Revenge 0.77 0.55 0.54 0.76 0.74 0.74 0.72
Pitfall 0.69 0.3 0.3 0.64 0.55 0.62 0.57
Pong 0.82 0.21 0.21 0.73 0.7 0.67 0.47
Private Eye 0.88 0.52 0.51 0.84 0.81 0.83 0.68
Qbert 0.73 0.51 0.51 0.72 0.7 0.71 0.69
Seaquest 0.66 0.46 0.45 0.63 0.61 0.63 0.57
Space Invaders 0.57 0.48 0.47 0.59 0.57 0.59 0.58
Tennis 0.61 0.22 0.22 0.51 0.39 0.44 0.29
Venture 0.56 0.41 0.42 0.55 0.54 0.54 0.53
Video Pinball 0.63 0.31 0.32 0.62 0.57 0.63 0.61
Mean 0.71 0.38 0.38 0.66 0.61 0.63 0.53

e.g., ratio 0.2 equals that 20% part of each observation in probing is not visible.
By default, the masking ratio in probing is set to 0.4.

It is obvious that the model is capable of predicting the state variables the
most in fully observable environments, as the observations in probing are not
masked by noise. The rest results are all from models trained and tested with
masked observations for probing. The performance deteriorates considerably if
the model still uses ST-DIM and pretrains on full observations. Supervised train-
ing also exhibits the same characteristic and obtains similar results with ST-DIM.
On the other hand, MST-DIM achieves significantly higher accuracy and F1
scores by taking advantage of masked pretraining. Pretraining with a different
masking ratio has also shown improvements over ST-DIM. Using masking ratios
0.2 and 0.6 in pretraining yields slightly inferior results than the default masking
ratio of 0.4. Surprisingly, using a masking ratio of 0.8 still improves the ST-DIM
despite most of the images being masked in this setting.

The mean accuracy score (0.66) and F1 score (0.64) of MST-DIM are slightly
worse than the accuracy score (0.71) and F1 score (0.7) under the fully observable
setup. However, these results considerably exceed those of supervised learning
(0.38 and 0.33) and ST-DIM (0.38 and 0.34) under the same partially observable
setup. For the other three masking ratios, a ratio of 0.6 achieves the highest
accuracy (0.63) and F1 scores (0.61), a ratio of 0.2 achieves slightly lower scores
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Table 4. Probe F1 scores of different ground truth categories averaged across all games

Categories Observable Non-obs. Supervised Pretrain Ratio 0.2 Ratio 0.6 Ratio 0.8

Agent Loc 0.58 0.26 0.26 0.52 0.48 0.5 0.41
Misc. 0.73 0.48 0.48 0.72 0.68 0.7 0.61
Other Loc. 0.64 0.34 0.34 0.59 0.56 0.54 0.47
Score/.../Display 0.9 0.42 0.42 0.86 0.77 0.83 0.7
Small Loc. 0.53 0.21 0.21 0.47 0.42 0.44 0.28

Table 5. Probe accuracy scores of different ground truth categories

Categories Observable Non-obs. Supervised Pretrain Ratio 0.2 Ratio 0.6 Ratio 0.8

Agent Loc 0.59 0.32 0.32 0.54 0.5 0.52 0.44
Misc. 0.74 0.52 0.52 0.73 0.69 0.71 0.64
Other Loc. 0.65 0.38 0.38 0.59 0.58 0.55 0.49
Score/.../Display 0.9 0.44 0.44 0.87 0.78 0.84 0.71
Small Loc. 0.55 0.29 0.29 0.5 0.46 0.47 0.34

(0.61 and 0.59), and a ratio of 0.8 obtains the worst accuracy and F1 scores (0.53
and 0.5).

Meanwhile, Table 4 and Table 5 show the results for each category averaged
over games. It is clear that MST-DIM still performs the best category-wise in
partially observable environments, and achieves scores that is slightly worse than
ST-DIM that is probed under fully observable environments. A different masking
ratio in pretraining still enhances the model’s capability across games in probing
tasks, and even a masking ratio (0.8) that is remote from the probing masking
ratio (0.4) can facilitate achieving better scores for each ground truth category.

6 Discussion

It was found that there was a sizable gap between the performances of ST-DIM
and supervised training by [1]. However, their difference is trivial under our par-
tially observable setting. Meanwhile, MST-DIM has demonstrated better per-
formance than both of them. The reason might be that ST-DIM and supervised
methods do not possess better initializations, and yield similarly deteriorated
results in partially observable environments.

On the other hand, Randomly initialized CNNs can perform reasonably well
in probing tasks. Their scores are only slightly lower than those of generative
methods in [1], because random CNNs are considered a strong prior in Atari
games and can capture the inductive bias [2,25].

Different masking ratios in pretraining have shown to be effective, even for a
large masking ratio that generates visually invisible images. Although the closer
the pretraining masking ratio is, the more accurate the probing prediction can
be, the masking ratio in pretraining is not required to be the same. The results
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indicate that unsupervised pretraining can learn reliable latent generative factors
from a different data distribution. Unlike in fully observable environments, this
is strong evidence that contrastive methods can play a key role in strengthening
model capabilities in partially observable environments for downstream tasks.

The results of small object localization in Tables 4 and 5 are highlighted in
ST-DIM because generative methods typically do not penalize enough for not
modeling the pixels making up small objects. The local-local contrastive task
in ST-DIM is specialized in capturing local representation. In our experiment,
it is clear that the performances of ST-DIM and the supervised method have
dropped significantly in partially observable experiments because small objects
with few pixels can be easily masked out completely. On the other hand, MST-
DIM overcomes this problem by masked pretraining and is close to achieving the
same level of performance (0.47 to 0.53 for F1 scores and 0.5 to 0.55 in accuracy
scores). However, MST-DIM has suffered from pretraining with a masking ratio
of 0.8, which masks most of the image.

In some games, such as boxing, easy-to-learn features might saturate the
objective and let contrastive methods fail. For example, contrastive methods
other than ST-DIM fail to model features besides the clock in boxing [1]. This is
also a problem in partially observable environments and causes ST-DIM, super-
vised method, and MST-DIM with a masking ratio of 0.8 to perform worse. On
the other hand, MST-DIM with a masking ratio close to 0.4 exhibits robustness
as ST-DIM in fully observable environments.

For the study of different masking ratios, we observe that a masking ratio
that is slightly higher than one of the underlying observations obtains the best
accuracy and F1 scores when the original ratio is not available. Thus, it suggests
that a higher masking ratio facilitates unsupervised representation learning in
partially observable environments. If we were to choose between decreasing or
increasing the ratio with the same amount in pretraining, increasing the number
could be a reasonable choice.

7 Conclusion

We propose MST-DIM in this paper to deal with partially observable environ-
ments through pretraining. MST-DIM is a contrastive method based on an esti-
mate of mutual information bound and uses masking in unsupervised pretraining
to ensure the agent can learn reliable latent generative factors. Experiments are
conducted using a benchmark of unsupervised learning on the annotated inter-
face of Atari 2600 games. MST-DIM shows the benefit of using unsupervised
representation learning in partially observable environments by achieving higher
accuracy and F1 scores than ST-DIM and supervised learning.

For future work, it would be interesting to directly apply MST-DIM to RL
environments and evaluate its performance using RL baselines. Designing an
auxiliary contrastive loss in RL is typical, but the implementation details can
vary among different research. Exploiting the weight initialization of pretrained
representation encoders that resembles more to CV probing tasks can also be an
intriguing topic.
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Recognizing small objects can be a challenging task in partially observable
environments. ST-DIM deploys the local-local contrastive task to reliably learn
the representations of small objects. However, it still suffers from information loss
and obtains worse results in partially observable environments. MST-DIM deals
with this issue and achieves scores close to ST-DIM under the fully observable
setup. It still remains to be studied how to recognize small objects where the
environment is almost invisible, and information loss is severe.

Acknowledgements. This work was performed on the [ML node] resource, owned by
the University of Oslo, and operated by the Department for Research Computing at
USIT, the University of Oslo IT-department. http://www.hpc.uio.no/.

References

1. Anand, A., Racah, E., Ozair, S., Bengio, Y., Côté, M.A., Hjelm, R.D.: Unsuper-
vised state representation learning in atari. In: Advances in Neural Information
Processing Systems, vol. 32 (2019)

2. Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T., Efros, A.A.: Large-
scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355 (2018)

3. Cassandra, A.R., Kaelbling, L.P., Littman, M.L.: Acting optimally in partially
observable stochastic domains. In: AAAI, vol. 94, pp. 1023–1028 (1994)

4. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. In: International Conference on Machine
Learning, pp. 1597–1607. PMLR (2020)

5. Chen, X., Xie, S., He, K.: An empirical study of training self-supervised vision
transformers. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 9640–9649 (2021)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805 (2018)

7. Doersch, C., Zisserman, A.: Multi-task self-supervised visual learning. In: Proceed-
ings of the IEEE International Conference on Computer Vision, pp. 2051–2060
(2017)

8. Dosovitskiy, A., et al.: An image is worth 16 × 16 words: transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

9. Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: DRAW: a recur-
rent neural network for image generation. In: International Conference on Machine
Learning, pp. 1462–1471. PMLR (2015)

10. Guo, Z.D., et al.: Bootstrap latent-predictive representations for multitask rein-
forcement learning. In: International Conference on Machine Learning, pp. 3875–
3886. PMLR (2020)

11. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

12. Hjelm, R.D., et al.: Learning deep representations by mutual information estima-
tion and maximization. arXiv preprint arXiv:1808.06670 (2018)

13. Jonschkowski, R., Brock, O.: Learning state representations with robotic priors.
Auton. Robot. 39(3), 407–428 (2015). https://doi.org/10.1007/s10514-015-9459-7

http://www.hpc.uio.no/
http://arxiv.org/abs/1808.04355
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/1808.06670
https://doi.org/10.1007/s10514-015-9459-7


222 L. Meng et al.

14. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114 (2013)

15. Kolesnikov, A., Zhai, X., Beyer, L.: Revisiting self-supervised visual representation
learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 1920–1929 (2019)

16. Laskin, M., Srinivas, A., Abbeel, P.: CURL: contrastive unsupervised representa-
tions for reinforcement learning. In: International Conference on Machine Learning,
pp. 5639–5650. PMLR (2020)

17. Lee, K.H., et al.: Predictive information accelerates learning in RL. Adv. Neural.
Inf. Process. Syst. 33, 11890–11901 (2020)

18. Lesort, T., Díaz-Rodríguez, N., Goudou, J.F., Filliat, D.: State representation
learning for control: an overview. Neural Netw. 108, 379–392 (2018)

19. Mnih, V., et al.: Playing atari with deep reinforcement learning (2013)
20. Oord, A.V.D., Li, Y., Vinyals, O.: Representation learning with contrastive pre-

dictive coding. arXiv preprint arXiv:1807.03748 (2018)
21. Puterman, M.L.: Markov decision processes. Handbooks Oper. Res. Management

Sci. 2, 331–434 (1990)
22. Stooke, A., Lee, K., Abbeel, P., Laskin, M.: Decoupling representation learning

from reinforcement learning. In: International Conference on Machine Learning,
pp. 9870–9879. PMLR (2021)

23. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2018)

24. Taylor, L.N., Whalen, Z.: Playing the Past: History and Nostalgia in Video Games.
JSTOR (2008)

25. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446–9454
(2018)

26. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)
27. Zhu, J., et al.: Masked contrastive representation learning for reinforcement learn-

ing. IEEE Trans. Pattern Anal. Mach. Intell. 45(3), 3421–3433 (2022)

http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1807.03748


Structural Analysis of the Additive Noise
Impact on the α-tree

Baptiste Esteban(B) , Guillaume Tochon , Edwin Carlinet ,
and Didier Verna

EPITA Research Laboratory, 14-16 rue Pasteur, Le Kremlin-Bicêtre, France

baptiste.esteban@lrde.epita.fr

Abstract. Hierarchical representations are very convenient tools when
working with images. Among them, the α-tree is the basis of several
powerful hierarchies used for various applications such as image simplifi-
cation, object detection, or segmentation. However, it has been demon-
strated that these tasks are very sensitive to the presence of noise in
images. While the quality of some α-tree applications has been studied,
including some with noisy images, the noise impact on the whole struc-
ture has been little investigated. Thus, in this paper, we examine the
structure of α-trees built on images in the presence of noise with respect
to the noise level. We compare its effects on constant and natural images,
with different kinds of content, and we demonstrate the relation between
the noise level and the distribution of every α-tree node depth. Further-
more, we extend this study to the node persistence under a given energy
criterion, and we propose a novel energy definition that allows assessing
the robustness of a region to the noise. We finally observe that the choice
of the energy has a great impact on the tree structure.

Keywords: α-tree · noise analysis · persistent hierarchy

1 Introduction

Hierarchical representations are powerful tools for several image processing tasks.
They are divided into two categories [1]: inclusion hierarchies and partition-
ing hierarchies. Inclusion hierarchies, such as the max-tree [2] or the tree of
shapes [3], describe the relation of the connected components of an image. In
another hand, partitioning hierarchies stack different image partitions whose
regions are obtained with a given criterion. They include the α-tree and the
ω-tree [4], the hierarchical watersheds [5], and the binary partition trees [6].
However, despite their division, there exist some links between the different cat-
egories [7]. In this article, we focus on the α-tree, which is used for numerous
tasks such as segmentation, simplification [8], or attribute profiles [9].

To evaluate the quality of these hierarchies, a set of metrics such as the quality
of regions and contours in the context of horizontal and optimal cut, is proposed
and applied to hierarchical watersheds [10]. However, this evaluation does not
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take into account the case where a hierarchy is built on a noisy image. The impact
of the noise on hierarchies applied to attribute profiles is investigated in [11],
where the superiority of inclusion trees and the ω-tree compared to the α-tree
is demonstrated for such applications. Finally, the tree structure is investigate
in [12] to estimate its size and reduce the amount of memory allocation in the
context of an efficient α-tree construction algorithm. Nonetheless, the impact of
the noise on its structure has not been really studied.

Fig. 1: Illustration of the α-tree representation.

Our objective is to study the relation between the level of the noise corrupting
an image and its impact on the structure of the tree. To this aim, we focus on the
evolution of some attributes computed on the α-trees built on images corrupted
by some noise with respect to its level. The first attribute is the depth of every
node in the tree, particularly their statistical distribution. The second attribute
originates from the scale-set theory [13] and yields the notion of persistent nodes
according to a given energy criterion. Using these attributes, we highlight the
relation between the structure of the tree and the noise level, and we propose
a novel energy criterion, relying on the values of a region of the tree and the
gradient at its contour, in order to assert the robustness of a region to the noise.

This article is structured as follows: in Sect. 2, we recall the definition of the
α-tree and explain how to obtain the persistence of a node when constrained
to a particular energy. Then, we study the impact of the noise on the structure
of the tree in Sect. 3. We extend this study to the node persistence in Sect. 4.
Finally, we conclude and give the perspectives of this work in Sect. 5.

2 Hierarchical Representations

2.1 The α-tree Representation

Let f : Ω → I be an image defined on a domain Ω and whose values belong
to I. Two points p, q ∈ Ω are α-connected if there exists a path of m con-
secutive points (p → q) = (x0 = p, ..., xm−1 = q) according to an adjacency rela-
tionship such that for every two consecutive points xi and xi+1 of this path,
w(f(xi), f(xi+1)) ≤ α, with w a dissimilarity measure between two pixel values.
An α-connected component is a connected component composed of α-connected
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points. Thus, a 0-connected component is a flat zone. An α-partition α-P is a par-
tition composed of disjoint α-connected components whose union is Ω. An α-tree
Tα is the tree representation of the hierarchy Hα = (0-P, ..., (m − 1)-P) composed
of m α-partitions. Each node of Tα represents an α-connected component and
its parent represents the fusion of this node with all its siblings. Finally, a cut ζ
is a set of disjoint regions (Rα)i represented by the nodes of Tα whose union
is Ω. A particular case of cut is the horizontal cut at a given level t which results
in an α-partition with α = t.

By applying these notions to graphs, and by the links between different hier-
archical representations on edge-weighted graphs [7], the α-tree is the min-tree [2]
of the minimum spanning tree of a graph, such as an adjacency graph of an image.
This link leads to an efficient construction procedure based on the Kruskal algo-
rithm [14]. Furthermore, there exist more efficient algorithms such as one based
on flooding [12] or a parallel version of the α-tree construction [15].

An example of α-tree is illustrated in Fig. 1. It is built on the image in Fig. 1a
and displayed in Fig. 1b as a dendrogram. In this representation, each pixel is
represented by a leaf of the tree and each inner node represents the fusion of
different sets of pixels. Finally, a partition of the α-tree is given in Fig. 1c.

2.2 Persistent Hierarchies

Each region R of a partitioning hierarchy appears in the tree for a given continu-
ous set of scale values associated with the hierarchy. This set is called interval of
persistence and is defined by Λ(R) = [λ+(R), λ−(R)[, where λ+(R) is the scale
of appearance of R and λ−(R) is its scale of disappearance. Thus, for each region
Rα represented by a node rα of an α-tree Tα, λ+(Rα) is the value α associated
with rα and λ−(Rα) is the value α of the parent of rα. The scale of disappearance
of the root is a particular case where λ−(Ω) = +∞.

There exist several image processing approaches relying on energy minimiza-
tion for different tasks such as segmentation or denoising. Guigues et al. [13]
propose to apply energy minimization to hierarchical representations to obtain
a cut ζ∗, which is optimal according to a separable energy of the form:

Eλ(ζ∗) =
∑

Ri∈ζ∗
D(Ri) + λ

∑

Ri∈ζ∗
C(Ri) (1)

with D(Ri) a data-fidelity term to Ri, C(Ri) a regularization term and λ a
parameter of this energy. When λ is varying from low value to high value, this
produces different cuts whose regions are evolving from fine to coarse. Therefore,
this parameter may be seen as a scale parameter, and it is possible to obtain an
interval of persistence using a functional dynamic programming problem [13] by
subjecting an energy of the form Er = D(r) + λC(r) to a node r. This reveals
some non-persistent nodes, with λ−(r) ≤ λ+(r), which are removed from the
hierarchy, leading to a persistent hierarchy.
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3 Noise Impact on the Tree Structure

In the following, an image corrupted by an additive Gaussian noise is defined
by fσ = f + nσ with nσ the values of the additive noise drawn from a normal
law N (0, σ2) where σ2 is the variance of the noise. A particular case of f is the
constant image fc such that ∀p, fc(p) = c, and its noisy version is denoted by
fc,σ. For all the experiments performed in this paper, the set of pixel values I is
included or equal to �0 − 255�.

Fig. 2: The depth attribute and its representation as histograms for fc,σ. (Color
figure online)

3.1 Study on a Noisy Constant Image

We propose here to evaluate the impact of the noise on a tree T by studying the
depth PT (r) of each node r, defined by

PT (r) =

{
0 if r is the root of T
P(rp) + 1 else

(2)

with rp the parent node of r in T . This attribute is illustrated in Fig. 2a, rep-
resenting a tree whose labels in blue are the depth value of each node. The
depth distribution of T is studied by observing its histogram h, whose values
are defined by h(d) = |{r ∈ T | PT (r) = d}| for a particular d ∈ PT . The mode
m(h) of the distribution h and its empirical mean μ(h) are used throughout
this paper. They are respectively obtained by m(h) = argmaxd∈PT h(d) and
μ(h) = 1

|h|
∑

d∈PT h(d). The depth distributions obtained from the α-trees built
on fσ and fc,σ are respectively denoted by hσ and hc,σ.

In this part, the depth distributions are obtained from α-trees built on images
containing only noise, without any texture information, in order to observe the
evolution of the tree structure in the presence of noise with respect to its level.
To this aim, the distributions hc,σ are built from α-trees constructed on constant
images fc,σ, with c = 127, which have been corrupted with noise whose level σ is
varying from 1 to 150. The resulting distributions hc,σ are displayed in Fig. 2b,
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where they are represented by plots whose color corresponds to the noise level
σ of the image on which the α-tree is built and depicted by the color bar.

By examining these distributions, the evolution of the tree structure related
to the noise level corrupting the image is studied. First, while the noise level
increases, the depth distribution becomes a tailed distribution for nodes with a
low depth. These nodes are α-connected components resulting from the fusion of
another component and a small region, usually of size 1, which have an intensity
significantly different from their surrounding pixel values. Then, the mode of
the distributions increases while the noise level grows up to some high level
(σ ≈ 100), beyond which this mode decreases slowly. This is due to the clipping
of values to the limits of I during the noising process of the image, creating new
flat zones.

Fig. 3: Distributions hσ on different kind of images.

3.2 Comparison with Natural Images

In this section, 150 natural images of size 720 × 540 from the database of Laurent
Condat1 are used to take into account different characteristics likely to be
impacted by the noise such as a high texture or a low brightness. Examples of
images are displayed in Fig. 3a and 3c, with their respective depth distributions
hσ in Fig. 3b and 3d. These distributions are obtained by the same process as
previously described and using the same noise level ranges.

1 https://lcondat.github.io/imagebase.html.

https://lcondat.github.io/imagebase.html
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These distributions have similar behaviors as the ones in Fig. 2b. Their mode
increases up to some noise level, and then decreases slowly. Then, the variance
of each distribution is increasing as the noise level becomes high. However, there
also are several differences between the distributions of tree depth obtained from
fc,σ and fσ, and between the natural images. First, the distribution modes, at
low noise levels, are higher for hσ than for hc,σ. This is due to the content of the
natural images which, conversely to the constant image, has some texture. Con-
sequently, for very small σ values, the image content is still prevailing. Finally,
the distributions hσ in Fig. 3d with high σ values have a higher variance than
the distributions in Fig. 3b. This demonstrates the impact of the noise on α-trees
built on images with low brightness.

The analysis of the noise impact is then extended to the whole image
database. For this purpose, an α-tree is built on each image and the empiri-
cal mean μ(hσ) of the depth distribution hσ is computed. This is performed
N = 10 times to obtain the average M(σ) = 1

N

∑N−1
i=0 μ((hσ)i), with (hσ)i the

ith depth distribution. This process is carried out for several noise levels varying
between 1 and 150, resulting in the plots in Fig. 4. Each dashed plot is related
to a particular image, leading to a total of 150 dashed plots. Furthermore, the
red plot results from the same experiment, but with fc,σ, to compare the noise
impact on the structure of an α-tree built on a pure noisy image and α-trees
built from images with content.

The average M(σ), at low noise levels σ, is much higher for fσ than fc,σ.
This observation is true for a large majority of images in the database on every
noise level. Thus, we deduce that, in spite of the noise corrupting the image,
the image content has still an impact on the depth distribution of the nodes in
the α-tree, as it has been observed previously. Furthermore, for every image, the
values of M(σ) is decreasing starting from a given high noise level. This may
come from the clipping of image values during the noising process, as previously
noted for all kind of images.

Fig. 4: Comparison between hσ from all the images from the base and hc,σ
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4 Impact of the Noise on Nodes Persistence

In this section, the α-trees constructed from noisy images are transformed into
persistent hierarchies using a particular energy criterion. Two different energies
are utilized for this purpose. First, the piecewise constant Mumford-Shah func-
tional [16] is employed since it is widely used in image simplification applications
using hierarchical representations of images. It is defined by

Ems,rα
(λ) =

∑

p∈Rα

(f(p) − f̃(p))2 + λ |∂Rα| (3)

where f̃ is the average intensity of the values in the region Rα and ∂Rα is the set
of elements in the contours of Rα. Besides, we propose to modify the Mumford-
Shah functional to use the sum of gradient values in the contour of Rα instead
of the length of its contour. This functional, denoted by Ecs,rα

, is defined by

Ecs,rα
(λ) =

∑

p∈Rα

(f(p) − f̃(p))2 + λ
∑

p∈∂Rα

g(p) (4)

with g the set of contour values computed using the dissimilarity function w
between two adjacent pixel values of the image from which the α-tree is built.
This change of regularization term is proposed because a region with a small
variance and a high gradient along its contour is most likely to be contrasted
relatively to its adjacent regions, and therefore prone to be less affected by the
noise in the image on which the α-tree is built.

To compare the usage of these functionals, but also to evaluate the impact of
the noise on the persistence of the nodes, the percentages of non-persistent nodes
using these energies Ems,rα

and Ecs,rα
are computed on an α-tree built on the

image in Fig. 3a and are displayed on Fig. 5. These plots have a similar behavior:
when the noise level increases, the amount of non-persistent nodes is growing.
Additionally, a greater amount of non-persistent nodes is observed when Ecs,rα

Fig. 5: Non-persistent nodes percentage related to the noise level σ
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Fig. 6: Evolution of the amount of non-persistent nodes with respect to the noise
level. (Color figure online)

is used as an energy criterion than Ems,rα
, and this difference is twice as large

for Ecs,rα
at high noise levels.

The evolution of the plots of non-persistent nodes percentage is confirmed
on all the images from the database with Ems,rα

and Ecs,rα
in Fig. 6a and 6b

respectively. In this figure, the average percentage of non-persistent nodes is
displayed as the blue plot. Furthermore, the red line represents the percentage
of non-persistent nodes on the constant image fc,σ. On the two figures, the red
plot has a different behavior: with Ems,rα

, the amount of non-persistent nodes is
close to 0%, whereas with Ecs,rα

, it is near 80%. This observation suggests that
using Ecs,rα

as an energy criterion instead of Ems,rα
in the presence of noise

is more relevant. Furthermore, this is enforced due to the fact that when σ is
increasing, the amount of non-persistent nodes on a tree built on fc,σ gets closer
to the average percentage when Ecs,rα

is used.

5 Conclusion and Perspectives

To conclude this article, we have shown that there exists a relationship between
the noise level degrading the image and the distribution of the depth attribute
computed from the α-tree built on the noisy image. Furthermore, on natural
images, we observed that the content of the image has an effect on the depth
distributions: for low noise levels, the impact of noise on the α-tree is negligible,
and at a high noise level, the brightness impacts the variance of the distribution.
Finally, we have noticed that the choice of the functional used to obtain persistent
nodes affects the amount of non-persistent nodes in the hierarchy.

Our work is different from the previous approaches to evaluate the quality
of the hierarchies since our objective is to investigate the relation between the
noise level and the tree structure, but the results obtained here may be used to
develop new methodologies to make such assessments on noisy images, taking
into account the various levels.

We plan to extend this work to other kinds of noise, but also to generalize our
study to different partitioning hierarchies such as the ω-tree, the binary partition
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trees, or the hierarchical watersheds, but also to inclusion hierarchies. Finally,
these results open new perspectives in terms of applications. For example, it
may be convenient to use the resulting relation to measure them. Furthermore,
noise level estimation is not the only perspective this paper opens: segmentations
using optimal cut could be improved in the presence of noise or new denoising
methods could be developed.
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1. Bosilj, P., Kijak, E., Lefèvre, S.: Partition and inclusion hierarchies of images:
a comprehensive survey. J. Imaging 4(2), 33 (2018). https://doi.org/10.3390/
jimaging4020033

2. Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for
image and sequence processing. IEEE Trans. Image Process. 7(4), 555–570 (1998).
https://doi.org/10.1109/83.663500

3. Monasse, P., Guichard, F.: Fast computation of a contrast-invariant image repre-
sentation. IEEE Trans. Image Process. 9(5), 860–872 (2000)

4. Soille, P.: Constrained connectivity for hierarchical image partitioning and simplifi-
cation. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1132–1145 (2008). https://
doi.org/10.1109/TPAMI.2007.70817

5. Cousty, J., Najman, L.: Incremental algorithm for hierarchical minimum spanning
forests and saliency of watershed cuts. In: Soille, P., Pesaresi, M., Ouzounis, G.K.
(eds.) Mathematical Morphology and Its Applications to Image and Signal Pro-
cessing. LNCS, vol. 6671, pp. 272–283. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-21569-8 24

6. Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for
image processing, segmentation, and information retrieval. IEEE Trans. Image
Process. 9(4), 561–576 (2000). https://doi.org/10.1109/83.841934

7. Cousty, J., Najman, L., Perret, B.: Constructive links between some morphological
hierarchies on edge-weighted graphs. In: Hendriks, C.L.L., Borgefors, G., Strand,
R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 86–97. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38294-9 8

8. Perret, B., Cousty, J., Ferzoli Guimarães, S.J., Kenmochi, Y., Najman, L.: Remov-
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Abstract. Indoor localization and navigation is a common problem
mostly in large buildings where multiple floors, rooms and corridors may
generate a struggling experience for the visitor. The complex internal
environment, the composite architectural designs and the interference
of objects and people in crowded areas, make the adoption of generic
solutions hard to implement and apply, while their performance and the
provided user experience do not meet the typical operational require-
ments. Different ways to achieve indoor localization are examined, but
all require either static interventions (QR codes) or installing IoT sensors.
In this work we present an AR Navigation System solution which utilizes
a mobile device’s ability to exploit Augmented Reality (AR) for indoor
localization and mapping. At the core of the system is a hybrid plat-
form (cloud/edge), which enables the generate immersive AR navigation
experiences. Key contribution of this work is the use of the aforemen-
tioned platform for introducing an AR “checkpoint” navigation system
which integrates our algorithms for indoor localization, path planning,
point of interest visualization and device interoperability. A prototype
of the overall solution has already been implemented and it is deployed
at the University of Piraeus for evaluation from students, personnel and
visitors.

Keywords: Augmented Reality · Hybrid Cloud · Computer Vision ·
Indoor Localization

1 Introduction

The evolution of edge and mobile devices and the related technologies, in both
hardware and software level, enables the execution of even heavier Machine
Learning tasks on the edge providing new possibilities for research and innova-
tion. Smartphones are nowadays the mainstream computing paradigm for users
of all types, and their commodity hardware incorporates advanced capabilities
for communication with other systems and interacting with the physical environ-
ment [3]. In parallel, the advancements in Computer Vision and the extensive
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use of Machine Learning technologies create new opportunities in all applica-
tion domains by exploiting the capabilities and the performance of the hard-
ware, especially when the operations are performed locally. Augmented Reality
(AR) is a technological area which benefited from these advancements and in
its recent form, offers to users of smartphones means for interacting with the
physical world by utilizing raw data from a mobile device’s sensors. Use cases
of AR can be found in a variety of scientific fields, from architecture and engi-
neering [2] to health and education [14]. The proposed solution is based on the
extraction of the features of a front scene using pattern recognition to identify
surfaces on which virtual Anchors are placed. After the system is trained, it is
able to discover these Anchors in runtime and translate them to points of interest
which can be used for localization and indoor guidance. AR also supports user
interactivity by creating a series of indoor waypoints to indicate a path, or other
information, introducing an innovative navigation system which can adapted to
support different scenarios and applications [22].

The rest of the paper is structured as follows: Sect. 2 highlights related works
and studies on the field. In Sect. 3, the technological foundation is presented
along with the overview of the system architecture and implementation. Results
from the system in practice are demonstrated in Sect. 4. A discussion of the
evaluation of the system is presented in Sect. 5 while Sect. 6 concludes the work.

2 Related Work

Traditional mobile navigation methods retrieve the position of the device either
by cellular network [16] or via satellite using GPS [7]. While these methods
perform good giving driving, cycling or walking directions, they lose precision
when indoors. To overcome this limitation, solutions utilizing static hardware
attached to a building are introduced. Adam Satan’s system uses Bluetooth
Beacons which emit radio frequency signals identified by the device before using
Dijkstra algorithm to find the shortest path [18]. Following the same concept, but
using WiFi signal instead of Bluetooth, indoor navigation was achieved in COEX
complex in Seoul [6]. An approach was to identify landmarks and create mag-
netic maps for multiple corridors of a floor in a building using a phone’s built-in
magnetometer [5]. All aforementioned examples require modifications and sen-
sor installations in order to produce the desired result. Another proposal, which
does not require any kind of sensor installation, is navigation by estimating steps
using accelerometer and 5G signals [19]. Keeping aligned with the using-onboard-
sensors-only approach, more integrated hardware can be utilized and combined,
such as the device’s camera. At this point the term AR will be introduced.
AR in comparison with Virtual Reality (VR), captures the outside world and
interacts with the area in front by attaching and visualizing augmented infor-
mation [1]. Generic implementation of AR gamification techniques with physical
activity goal and combined with AR navigation can also be found in Nature-
Based solutions [13], where the user is navigated through a park’s attractions.
Target indication in facility maintenance operations is another proof-of-concept
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scenario of AR’s [11] localization ability, along with freight car routing [21]. In
combination with WiFi/Bluetooth Low Energy signals, Jehn-Ruey Jiang et al.
introduced an AR indoor navigation framework [8] which is applicable in both
AR for mobile and VR glasses. The scientific base behind these solutions is a
combination of feature extraction from a series of images with data retrieved
from device sensors, called Simultaneous Localization and Mapping (SLAM).
SLAM is identified as a problem [4] with solutions in robotics [20] and more
recently in combination with AR [17]. The Googles ARCore Library facilitates
indoor space recognition by utilizing SLAM in such a way that enables a device
to identify locations previously recorded by other devices. Features from the
device’s camera feed are recorded, processed and stored to the cloud. Then, they
are retrieved by other devices which compare them to what they are recording
at runtime [15]. Such feature extraction techniques are used by handheld PCs
to identify similar locations in an image database and display location-related
information [10] or used in a simulated physical shopping mall environment by
utilizing the Vuforia engine [9].

3 Design and Implementation

3.1 Background Technologies

For a better understanding of the applied computer vision concepts and tech-
nologies, a brief introduction and description regarding the required terminology
is following:

Augmented Reality: An immersive human-machine-interaction experience is
achieved without the need of additional hardware. By utilizing onboard cam-
era and IMU sensors, the phone’s video feed can be supplemented with addi-
tional augmented information such as labels, images, markers and other kinds
of multimedia. A marker’s position remains attached at the predefined location
regardless of any device movement or environment change. All items attached
to a surface are generally referred to as Anchors in AR terminology. In order
to attach an Anchor to the scene, the area needs to be scanned using specific
software that implements SLAM.

SLAM and Cloud Anchors: Local area identification and localization is
achieved by extracting features of an image feed along with data from device
IMU sensors. At first, the area around the device needs to be slowly and steadily
scanned. While scanning, the SLAM algorithm parses the camera frame feed and
extracts feature points from each frame. SLAM algorithms are optimized to focus
on certain and dense segments of each image to achieve better data processing.
Extracted features are combined with data from the IMU sensors to determine
the exact distance, rotation and orientation of the recorded frames. Segments
of the feed that have a confident amount of features offer the ability to attach
Anchors to the scene, considering that the nearby features of an Anchor can be
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easily recognized once the device reaches that spot. Cloud Anchors functional-
ity gets use of a SLAM output as a base to store Anchor locations for remote
use. Goal of Cloud Anchors is the ability to preview Anchors that were placed
by another device in the past. Hence, feature points in the range of an Anchor
are captured and stored in a cloud database. By providing a camera feed from
the same area and comparing the current extracted features with the database,
the exact position of an Anchor can be precisely estimated. Limitation of the
aforementioned capability is the bounded amount of Cloud Anchors that can
be searched at the same time. ARCore Cloud Anchors implementation, which is
used in the current work, allows up to 20 simultaneous Anchor scans. Needs to
be mentioned, though, that once an Anchor is attached, it is removed from the
scanning stack, allowing for an additional Anchor to be scanned.

3.2 Methodology

To address the requirements of developing an AR navigation system, a set of
algorithms and techniques, aiming at achieving indoor localization, performing
efficient path planning and visualizing the guidance system are designed and
implemented.

Indoor Positioning and Key Anchors: A plausible observation arising from
the Cloud Anchor functionality is the ability to achieve indoor positioning. If
information about a location is related to an Anchor instance, the nearest Anchor
identified by the device leads to the knowledge of the current position. Having
multiple Anchors acting as reference points in a complex space, we can introduce
a new term, Key Anchors. Such Anchors do not contain any visual information
and are rather used to determine the device’s position at the area.

Routing: Apart from identifying the device’s position, Cloud Anchors can be
used for a variety of other use cases. Our proposed system prompts the user
to follow an on-screen visualized path by using Anchors as route checkpoints.
Routing entities are categorized as: ArPaths, ArRooms and ArRoutes. These
entities are referring to relations between Anchors and locations, offering a state-
of-the-art solution to the AR routing problem. An ArPath entity contains a list
of Anchors that lead from a starting point to a gateway point. The order of the
list defines the flow of the navigation. A gateway point is a special Anchor which
includes references to the next ArPaths that begin from there. The ArRoom
entity corresponds to a room of a building and includes ArPaths along with a set
of additional satellite Anchors. Finally, the ArRoute entity acts as a connecting
pole between paths and indicates the final gateway of the route. Once a gateway
is reached it is first checked if this is the final point. Otherwise, the first path
of the ArRoute that is included in this gateway’s next ArPaths is shown. This
naive approach achieves a completely modular functionality which is tested under
real scenarios showing successful results. Following the flow of this algorithm, a
device can be navigated through different rooms, corridors and stories of the
same building with the least required Cloud Anchors downloaded.
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Navigation Elements Placement Algorithm: To overcome the possible long
distance between two checkpoints, a series of helper Anchors is programmatically
placed following our Navigation Elements Placement (NEP) algorithm. NEP
locations are generated by

(a) subtracting the first Anchor’s transformation vector from the second to get
the angle

(b) getting the distance between these vectors
(c) programmatically attaching an Anchor following the line of the subtracted

angle every 0.2m, which is our interval until the distance is reached

3.3 System Overview

The proposed AR indoor navigation system ingrates the aforementioned algo-
rithms, manages their parameters and offers a client application which is acces-
sible by the end-users. The system consists of two main elements:

A. Hybrid AR Platform: A unified framework which includes a client plat-
form and requires integration of a client library. Is responsible for handling AR
related information and consists of three modules: Creator Module, Adminis-
trator Module, Backend Service and a Query Engine.

B. Player Module, a subsystem which can be integrated to any third-party
mobile application.

The users, which have the client application installed into their mobile
devices, are able to reach their selected destination guided by on-screen AR
instructions, without the need of additional hardware interventions. AR compo-
nents are configured to identify the specific area and initialize the routing algo-
rithm. Configuration of the system’s functionality is performed through limited
access applications which are responsible for content creation and management.

3.4 Implementation

Figure 1 highlights the architecture of the proposed system. All applications
follow the object oriented programming design principles and are built using
Flutter, a cross platform development environment. For AR services, ARCore
platform and its Cloud Anchors environment is selected due to its ability of
retrieving and sharing feature maps between both Android and iOS, resulting,
thus, in seamless integration and interoperability.

The key advantage of the Hybrid AR Platform approach is that AR opera-
tions are separated from client applications, and are integrated into them through
a software library.

The platform’s Creator module is an application that hosts Anchors to the
cloud and supplementary manages other system aspects and parameters. Host-
ing functionality is performed by initializing an AR session which allows Anchor
placement at the front scene. Anchors are uploaded to the Cloud and their
references along with other metadata are stored in the database. Additionally,
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Fig. 1. System Architecture

this module modifies an Anchor’s mesh position, location and orientation. An
extended version of the Creator Module, without AR capabilities but with the
ability to upload 3D model files and better manage the related content, is the
Administrator module. This web application creates and manages instances of
routing entities, modifies other administrative parameters that affect the work-
flow of the Query Engine and globally performs changes to all system configura-
tion. A backend in AR applications was introduced to monitor physical activity
via AR exergames [12]. The platform’s Backend service is an extension of the
aforementioned implementation, managing the storage of information regard-
ing Anchors, Routes, Paths, Rooms and the assets related to them. The Query
Engine acts as the interface of the platform. It is retrieving AR information and
producing Localization material which is then transmitted to the Player Module.

The Player module can be integrated into any third-party application. The
integrated Localization Controller searches for nearby Key Anchors and iden-
tifies the user’s current position by communicating with the platform’s Query
Engine. At the same time, the Routing Controller interprets the routing algo-
rithm starting from the current location towards the destination. Each time the
Routing Controller retrieves new Anchors, they are transported to the AR screen
in order to be visualized. In addition, this controller indicates that a user has
either reached at a gateway or at a destination by returning this information to
the Routing Controller.

4 Results

4.1 System in Practice

All previously demonstrated technologies, concepts and algorithms have been
implemented in a state-of-the-art application which is not only a proof-of-concept
prototype, but an end-user product. “UNIPI: AR Experience” application is
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available to download for both Android and iOS1 and the innovative AR inte-
gration is in the initial release phase at the university. When opening the app,
users can select their destination which lies under a 2-level categorization. The
first level refers to the building where the navigation will take place and the
second to the type of destination.

Currently there are two buildings supported, “Central” and “Venentokleio”,
and for each building two types of routes, “Faculty” and “Classrooms” which refer
to directions towards faculty offices and classrooms respectively. An additional
route type called “Erasmus” is available only in “Central” building providing
directions to Erasmus-related rooms. Users have to tap the Category and then
the desired destination.

Fig. 2. System in practice

Starting point can either be selected via the next screen’s list, or the user is
able to scan the area in front, in order for the Key Anchor system to identify his
current location. After a while, arrows are displayed in the user’s screen showing
the direction he has to follow, as demonstrated in Fig. 2. The case of a floor
difference between the route’s endpoints is also covered by navigating the user
to either the elevator or the stairs, and then indicate to them the next floor via
on-screen dialog. While in the navigation phase, additional AR related content
containing localized information may be displayed on the user’s AR screen.

4.2 Experimentation

Most important aspect of such an application is the time required for a device
to first localize itself and then correctly display the desired checkpoints at their
precise locations. We concluded that two metrics are important and attempted
to be optimized: duration of first Anchor identification and Anchor displacement
error. Two Anchor hosting methods were used, Method 1: hosting each Anchor
1 https://unipi-ar-experience.web.app/.

https://unipi-ar-experience.web.app/


240 D. Koulouris et al.

in an individual AR session and Method 2: hosting all Anchors in the same
session. For each test we compared the results to the Anchor hosting method
that was used, using two devices: an iPhone SE 2020 and a Huawei H20 Pro.
Table 1 demonstrates results of the metrics and is clearly indicated why we finally
selected Method 2 for the route recording process. In a single AR session, the
surrounding feature points are more than one time visited and are more precisely
recorded, thus resulting in better SLAM.

Table 1. Session hosting

Device Duration (s) Displacement (cm) Hosting session

iPhone SE 2020 4.32 22.6 Individual
Huawei H20 Pro 6.01 30.1 Individual
iPhone SE 2020 2.99 12.4 Same
Huawei H20 Pro 4.24 21.9 Same

Additionally, 100 tests were performed to find the percentage of successful
navigations for the “Erasmus Office” route using the iPhone SE 2020 device.

Table 2. Success rate per missed Anchors

Anchors missed Tests performed Destination reached

0 58 100% (58)
1 24 83.3% (20)
2 8 25% (6)
3 6 50% (1)
4+ 4 0% (0)

Table 2 indicates the number of successful tests compared to their missing
Anchors. 58% of the tests had no missing Anchors while tests with one, two
or even three Anchors still showed a successful navigation, resulting in the final
85% of successful navigations. Routing algorithm is developed in such a way that
if a checkpoint is not recognized, but the next one is, navigation will proceed to
the next checkpoint overcoming the current.

5 Discussion

A significant limitation of our system is the requirement of ARCore compatible
devices2 Concerning the efficiency of the SLAM, if a corridor or place does
2 ARCore compatible devices: https://developers.google.com/ar/devices.

https://developers.google.com/ar/devices
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not contain any special characteristic rather than plain walls or is filled with
people, localization will take longer to process. Needs to be noted, though, that
the aforementioned limitations are directly bound to the quality of the Anchor
placement procedure.

Low GPS/Cellular coverage or the lack of precision in small displacements
is a deterrent factor of using these technologies while installation of transmit-
ters (sensors) can be expensive and slow down the integration of such a system.
Although existing studies try to follow a SLAM oriented direction, there are
many occurring limitations, obstacles and restrictions this work is overcoming.
Other works are either proof-of-concept prototypes with limited functionality,
have no user-tester friendly experience and do not meet the hardware indepen-
dence standards. The between-checkpoint-distancing problem, which occurred
not only in our development process, but also indicated as an issue in other
published works, is finally solved using our NEP algorithm. Moreover, instead
of using Dijkstra or other shortest path algorithms, the proposed system follows
a multi-floor-centric model with support for all use cases a visitor will create.
Our state-of-the-art routing algorithm introducing the “room to gateway” model
ensures that the correct path will be presented while optimizing the use of AR
resources to the least required.

6 Conclusion

Advancements in Computer Vision technologies along with the evolution of
microprocessors, sensors and cameras form a rich set of assets which facilitate
the implementation of innovative solutions for indoor localization and naviga-
tion. The proposed solution not only improves and expands the AR Anchor
“checkpoint” navigation approach, but also introduces a new routing algorithm,
offers interoperability and platform independence.

Future extensions of this work may include a wider system usage monitoring.
Moreover, other cross platform AR frameworks can be considered (e.g. Unity AR
Foundation) and compared with the current implementation. SLAM’s environ-
mental understanding provides indication of a device’s deviation from a route
path. For people with special needs and particularly the visually impaired, a
voice command module indicating directions and deviations is a possible future
proposal. AR navigation systems can be experimented in other scenarios with
limited signal coverage and short distances between targets (e.g. in a museum or
hospital). Considering the route creation procedure, an extension of the system
is expected to further automate this process, and possibly eliminate completely
the need of an experienced system administrator, either by integrating this func-
tionality to an AI tool which will be integrated into the Creator Module.

The case of “UNIPI: AR Experience” highlights the development process of a
complete functional system with a Hybrid AR Platform and client application,
able to apply in real conditions providing satisfactory results while maintaining
the cost and interventions at the lowest level.
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Abstract. Rapid emergency response and early detection of hazards
caused by natural disasters are critical to preserving the lives of those
in danger. Deep learning can aid emergency response authorities by
automating UAV-based real-time disaster recognition. In this work, we
provide an extended dataset for aerial disaster recognition and present
a comprehensive investigation of popular Convolutional Neural Network
models using transfer learning. In addition, we propose a new lightweight
model, referred to as DiRecNet, that provides the best trade-off between
accuracy and inference speed. We introduce a tunable metric that com-
bines speed and accuracy to choose the best model based on application
requirements. Lastly, we used the Grad-CAM explainability algorithm to
investigate which models focus on human-aligned features. The exper-
imental results show that the proposed model achieves a weighted F1-
Score of 96.15% on four classes in the test set. When utilizing metrics
that consider both inference time and accuracy, our model surpasses
other pre-trained CNNs, offering a more efficient and precise solution for
disaster recognition. This research provides a foundation for developing
more specialized models within the computer vision community.

Keywords: Natural Disasters Recognition · Image Classification ·
UAV (Unmanned Aerial Vehicle) · Deep Learning · Benchmark ·
Grad-CAM

1 Introduction

Natural disasters have been on the rise worldwide in recent years, with ecological
and socioeconomic consequences. According to the United Nations Office for
Disaster Risk Reduction, there were 7,348 disaster incidents between 2000 and
2019, resulting in 1,23 million deaths and US $3 trillion in economic losses [22].
The World Meteorological Organization, claims that over the last 50 years, a
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disaster related to weather, climate, or water hazard has occurred every day,
killing 115 people and inflicting US $202 million in losses [4].

Unmanned Aerial Vehicles (UAVs) such as drones have emerged as effective
tools for the early identification of these disasters due to their low cost, wide
coverage area, and low risk to personnel. However, on-board processing presents
its own set of issues, due to limited computational resources and low-power limits
imposed by UAVs. As a result, the operational performance of the underlying
computer vision algorithm is critical for autonomous UAVs to detect disasters
in real-time. With the combination of Deep Learning, drones can be used for
disaster classification, which can quickly and accurately identify affected areas,
assess damage severity, and prioritize response efforts.

One crucial aspect of the successful implementation of deep learning models is
the availability of a sufficient amount of dataset, which plays a significant role in
their overall performance. However, gathering data, in the event of an emergency,
is time-consuming and expensive, as it frequently involves human data process-
ing and expert evaluation. The potential for evaluating deep learning models in
such situations is constrained by the dearth of comprehensive datasets related
to natural disasters. Furthermore, while there has been considerable research on
algorithms for natural disaster detection in aerial images, explainable AI has
not been extensively investigated for this domain in the existing literature. By
providing an explainable visual representation of the image regions on which the
model is focusing, image explainability algorithms can help emergency respon-
ders quickly identify the location and extent of a natural disaster, allowing them
to respond more effectively and efficiently.

This work addresses these gaps by extending aerial image datasets for disas-
ter recognition, including four classes; normal, earthquakes, floods, and wildfires
encompassing a total of 16,723 images. We propose the DiRecNet CNN model
and compared it to widely known pre-trained models such as EfficientNet-B0
[21], MobileNet-V2 [17] ResNet50 [8], VGG16 [19], DenseNet121 [9], Inception-
ResNetV2 [20] NASNetMobile [23] and Xception [5] using transfer learning. The
proposed CNN achieved a weighted F1-score of 96.15% in the test set and outper-
formed other pre-trained CNNs when considering inference time. In our study,
we also conducted experiments on the explainability of the image using Gradient-
weighted Class Activation (Grad-Cam) technique, with the objective of improv-
ing the explainability of the model. Using Grad-CAM, we better understood
common failures or errors by emphasizing the significant areas of an image that
contribute to a certain prediction. Overall, CNN-based deep learning models
exhibit strong potential for real-time natural disaster detection.

2 Background and Related Work

Several innovative solutions have been developed for visual disaster recognition in
recent years, which can be crucial for rapid response operations. Gadhavi et al. [7]
proposed a model that uses transfer learning to recognize natural disasters using
a video dataset. Aamir et al. [1] developed a binary model to detect the existence



246 D. Shianios et al.

of a disaster and a classification model to identify different types of disasters.
Agrawal and Meleet [2] fine-tuned the ResNet-50 model for disaster recognition
and tested it on real-time and pre-recorded videos. Alam et al. [3] used transfer
learning with various pre-trained CNN models to classify the MEDIC dataset.
Li et al. [14] used YOLOv3 for detection and various neural networks, including
VGG, ResNet, and MobileNet, for classification on the LADI dataset [15].

The current state-of-the-art methods for disaster detection typically focus on
identifying a single type of disaster. Some recent techniques aim for multi-class
disaster detection, but their models are too large and have too many parameters
for effective execution on unmanned aerial vehicles (UAVs) onboard hardware.
Therefore, developing custom models that are tailored to the specific constraints
and requirements of embedded systems on drones is crucial to achieving efficient
and effective disaster recognition. It should be noted that most existing models
may not incorporate explainable AI techniques, which can limit their usefulness
in providing valuable insights to first responders in the field.

Previous studies have suffered from a lack of diversity in their datasets, some
containing limited images or not aligning well with UAV viewpoints. Our work
aims to address these limitations and establish a benchmark. Moreover, the lack
of aerial perspective images in current datasets hinders natural disaster recog-
nition. Some datasets focus exclusively on a single type of disaster, failing to
represent the full spectrum of real-world scenarios. Geographic or temporal bias
can further compromise representativeness, as certain datasets can draw from a
restricted range of locations or events. Our proposed methodology aims to mit-
igate the limitations of biased datasets by incorporating diverse aerial imagery
and promoting transparency in the decision-making process of our models. Fur-
thermore, our model is optimized for deployment in embedded systems, such as
drones, and achieves a favourable balance between speed and accuracy.

3 Proposed Approach

3.1 Dataset for Disaster Recognition Using UAVs

Our aim was to create a benchmark for aerial natural disaster recognition suit-
able for UAV applications. To do so we start initially from the AIDER database
[12,13] which had a similar purpose but a smaller number of images per disaster
class which can result in overfitting, and poor generalization. In addition to these
samples, we extracted images as frames of videos downloaded from YouTube
searched using queries like “aerial” + “disaster”, “flood”, “collapsed building”.

The data collection process involved scanning images to match the visual per-
spective of the UAV, and filtering out any irrelevant images, such as those that
were blurred or not related to the disaster. The mean resolution (width×height)
for each class is; earthquake 667×1018, flood 595×884, normal 553×395, wildfire
1557 × 834. Overall, the images collected belong to commonly occurring natu-
ral disasters, earthquakes/collapsed buildings, floods, and wildfire/fire with an
additional class, the normal case. Normal images do not reflect events, disas-
ters, or any other aspects that could be related to catastrophic events. Figure 1
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Fig. 1. Overview of aerial images from the Database.

Table 1. Proportion of images in each class within the train, validation, and test set.

Earthquakes Floods Wildfire/Fire Normal Total

Train 1927 4063 3509 3900 13399
Validation 239 505 439 487 1670
Test 239 502 436 477 1654
Total 2405 5070 4384 4864 16723

shows samples from the dataset, while the summary of the data is explained in
the Table 1. As a result, our contribution compared to the state-of-the-art is a
newer, larger dataset containing a set of images of natural disasters that are also
suitable for use in UAV applications for aerial disaster recognition.

3.2 Disaster Recognition Network Architecture

To enhance the operation of a UAV in emergency response, it is necessary to have
lightweight algorithms that provide a good trade-off of complexity and accuracy.
To this end and to motivate more work towards this area, we proposed the design
of a custom CNN designed from scratch to be efficient by tailoring the use of
convolutional layers and kernel sizes.

The custom CNN called DiRecNet consists of four main blocks, making it
feasible for the model to learn hierarchical feature representations without reduc-
ing the feature map resolution too much. On the first two blocks, we use normal
convolutional layers to extract richer low level features, while on the last two
blocks we utilized separable convolutions to account for the fact that the chan-
nel size increases and has more efficient computations with a reduced number of
operations and parameters.

In more detail, the model first passes the scaled images onto two consecutive
normal convolutional layers. The former with a kernel size of 7 × 7 pixels and
16 filters, while the latter with 5 × 5 pixels and 16 filters. This follows modern
network trends that apply larger kernels [16]. The smaller channel number is
used to offset the larger kernel size. Batch normalization is applied just after
these convolutions, with a max-pooling operation of stride 2× 2 after that. The
data points are then passed to the next block of two convolutional layers with
kernel size of 3 × 3. The first convolution involves 32 filters, while the second
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has 64 convolution filters. Again, batch normalization is applied before the next
max pooling layer. The third block involves two separable convolutions with 128
and 256 filters respectively and 3 × 3 size, followed by a batch normalization
layer. A max-pooling operation is also applied with a pool size of 2× 2. The last
block is designed with two identical separable convolutions of the 512 filter and
the size 3 × 3. Finally, a global average pooling layer is applied to flatten the
features. These are then passed to a fully connected layer of 1024 neurons, before
a dropout of 0.7. Another fully connected layer is applied with 512 neurons with
a dropout of 0.5. The last layer of the model is a fully connected layer of size 4
as the number of classes. An overview of the model is depicted in Fig. 2.

Fig. 2. Proposed Convolutional Neural Network Architecture.

3.3 Baseline Designs

To provide a useful benchmark for the constructed dataset, we compare the per-
formance of various CNN models. We use transfer learning approach to modify
and fine-tune CNNs trained on the ImageNet large scale dataset [11] to perform
image disaster recognition. The transfer learning CNN models investigated in
this work are: EfficientNet-B0 [21], MobileNet-V2 [17], ResNet-50 [8], VGG-16
[19], DenseNet-121 [9], InceptionResNet-V2 [20], NASNetMobile [23] and Xcep-
tion [5]. These models capture a wide range of architectural design choices.

During the experiments, we freeze some layers of the pre-trained models and
add some others to be trained. Specifically, in our experiments, we remove the
last fully connected (FC) layer of each model and Global Average Pooling (GAP)
was attached. On top of that, we added three fully connected layers with two
dropouts in between. In general, the classification head architecture attached to
the transfer learning models is the same as in the proposed model. For each pre-
trained model, a pre-processing function was implemented using the TensorFlow
library to standardize the input images based on the ImageNet dataset [6].
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3.4 Data Pre-processing and Training Process

The images in our data collection were scaled to 224× 224× 3 and standardized
for DiRecNet therefore to change the distribution to have a mean of zero and a
standard deviation of one. Random augmentations were applied to expand the
diversity of the dataset and combat overfitting. Specifically, we applied rotation,
zoom, horizontal shift, vertical shift, horizontal flip, and shear. We experimented
with different color spaces, but chose RGB for the final experiments. We used
slightly different training regimes for the pre-trained models and the DiRecNet
model. The pre-trained models were frozen until the feature extraction layer,
before attaching the global average pooling layer and fully connected layers.
This implies that the initial layer weights are fixed and cannot be changed so
as to preserve learned features. Then they were fine-tuned for 40 epochs with
a learning rate of 1e − 3 and weight initialization based on ImageNet ILSVRC
Challenge [11]. On the contrary, the proposed DiRecNet was trained from scratch
for 300 epochs, with a reduced learning rate of 1e− 4. The batch size was set to
32, and Adam optimizer was selected for both DiRecNet and pre-trained models.

Table 2. Performance evaluations for disaster predictions.

Models PARAMS
(M)

Weighted
F1 (%)

FPS (1/s) Score 1
Biased
FPS

Score 1
Biased F1

Score 1
Balanced

Score 2

EfficientNet-B0
[21]

5.89 95.82 11.72 0.74 0.82 0.78 819.64

MobileNet-V2
[17]

4.10 93.77 15.37 0.90 0.77 0.84 259.57

ResNet50 [8] 26.21 96.98 6.87 0.47 0.77 0.62 1073.61

VGG16 [19] 15.77 94.50 5.22 0.29 0.55 0.42 146.22

DenseNet121
[9]

8.61 95.07 7.46 0.45 0.65 0.55 310.21

InceptionResNetV2
[20]

56.43 88.09 5.48 0.12 0.11 0.11 1.81

NASNetMobile
[23]

5.88 90.65 12.96 0.66 0.49 0.57 25.18

Xception [5] 23.49 92.44 5.48 0.25 0.42 0.33 36.81

DiRecNet
(Proposed)

1.53 96.15 14.05 0.89 0.91 0.90 1235.12

3.5 Explainability Through Grad-CAM

Understanding how a deep learning model works and why it predicts a specific
classification outcome is highly important for critical applications such as emer-
gency management. Consequently, we move beyond the “black box” of CNN pre-
dictions and acquire a deeper understanding of how these models arrive at their
decisions. This was achieved through experimentation with an explainable AI
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technique, known as Gradient-weighted Class Activation Mapping (Grad-CAM)
[18]. The algorithm creates a coarse localization map that highlights key areas
in the image for class prediction, by using the gradients of each target as they
flow into the final convolutional layer. In this way, we can identify classes that
are more challenging for the different models and understand whether additional
context is needed and whether current state-of-the-art methods are suitable for
the application of disaster recognition.

4 Experimental Evaluation and Results

4.1 Configuration and Evaluation Metrics

The experiments were carried out on the Linux operating system using the Tesla
V100 Graphics Processor Unit, with 64GB RAM and CUDA version 10.2. We
use TensorFlow1 2.4.1 as the deep learning framework along with Python 2

version 3.8.0. To evaluate the performance of the models, we investigated two
key performance indicators. These are the weighted F1 score and frames per
second (FPS). This is particularly important because both performance and
speed are crucial to detect natural disasters in real-time.

We then formulated a parametrizable score function as shown in Eq. 1 in a
way to allow for choosing the trade-off between accuracy and speed. By setting
the λ value, we can identify the model that performs best for a particular set-
ting. In this work, we have chosen λ to be 0.7 to bias towards more accurate
models, and 0.3 to bias towards speed. Additionally, to provide a more extensive
evaluation we benchmark the models using a modified version of the scoring for-
mula proposed in [10] for evaluating the combined effect of speed and accuracy
as shown in Eq. 2, where we set the normalizing constant C to 1e27.

Score1 = λ × F1norm + (1− λ)× FPSnorm (1)

Score2 =
2F1 × FPS

C
(2)

However, prior to this, since the values of FPS and F1 have different ranges,
we normalize them across all models by using the formula in Eq. 3, where values
in x are squeezed into the range [a, b] where a was set to 0.1 and b at 1, thus
making the variables comparable to each other.

xnorm = (b − a)
x − min(x)

max(x)− min(x)
+ a (3)

1 http://www.tensorflow.org.
2 http://www.python.org.

http://www.tensorflow.org
http://www.python.org
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Fig. 3. Results of Grad-Cam algorithm for the different models. The heat-maps show
that the classification’s importance is dominated by the pixels associated with the
disastrous occurrence.

4.2 Disaster Classification Evaluation

The general evaluation of the disaster classification performance of the models
is shown in Table 2. In summary, the models’ weighted F1-Score ranges between
88% and 97%. ResNet-50 demonstrates optimal performance in terms of accu-
racy, while MobileNet-V2 exhibits the highest FPS, rendering it appropriate
for processing multiple streams concurrently. By evaluating the performance of
the models using a balanced approach that considers both speed and accuracy
(λ = 0.5) according to the metric score in Eq. 1, our proposed model surpasses
other models, achieving a score of 0.9, with MobileNet-V2 ranking second at
0.84. When biasing for FPS or F1, the proposed model remains the first or
a very close second. Specifically, when prioritizing FPS (λ = 0.3), MobileNet-
V2 achieves a score of 0.9, while the proposed model reaches 0.89. Conversely,
when emphasizing F1, the proposed model leads with a score of 0.91, followed
by EfficientNET-B0 at 0.82. Additionally, with respect to the metric presented
in Eq. 2, the proposed model demonstrates superior performance compared to
other methods. The proposed model achieves an overall score of 1235.12, while
the second-best performing model, ResNet50, achieves a score of 1073.61. This
shows that the heterogeneous design of mixing normal and separable convolu-
tions provides a well-balanced solution with fewer parameters than other models.

4.3 Gram-CAM Evaluation

We interpret the decision of each model using Grad-CAM. In Fig. 3, all models
predict the right class, and the heat-map produced by Grad-Cam is displayed.
First, comparing the pre-trained models, we observe that the majority create a
coarse grain heat map except for the VGG model. In contrast, while the pro-
posed model correctly predicts the disaster type, it does so with a much sparser
heat map. For example, in the collapsed building image, the region focuses more
on the rubble rather than the building structure, while in the flood image, the
model seems to distinguish the flood class based on the presence of surrounding
buildings. In most pre-trained models, larger regions are emphasized, but for
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fire-related decisions, models exhibit more similar characteristics. The experi-
ment exposed Grad-CAM’s limitations, as highlighted regions may not always
clarify disaster presence, like in collapsed building cases. In collapsed buildings,
highlighting adjacent structures does not effectively explain the disaster’s pres-
ence. We expect that this research can drive more efforts toward specialized
explainability techniques for such applications.

5 Conclusion and Future Work

In this work, we presented a new larger dataset, offering 16,723 images, for
aerial image recognition of disasters. We have explored the direct application
of various existing CNN pre-trained models on this dataset to provide an ini-
tial benchmark. More importantly, we have shown that a heterogeneous CNN
with mixed normal and separable convolutions can provide adequate trade-off
between accuracy and speed and can thus be an optimal choice for these kinds
of applications. Through this process, we have formulated a tunable metric to
evaluate models. Based on the various scoring schemes, the proposed model
still outperforms traditional pre-trained CNNs. Lastly, the gradient-weighted
class activation mapping (Grad-CAM) method was used to visualize the input
regions crucial for class predictions, demonstrating that different models provide
a varying degree of granularity in explanations.

The experimental findings indicate that we were able to obtain classifica-
tion outcomes that offered promising results for real-time disaster recognition
from aerial images. Those initial results are encouraging, but there are still some
challenges. Further, improvements and further investigation on more lightweight
models are possible based on the experiments in this paper. Furthermore, an
approach for multi-task scenarios where classification is combined with segmen-
tation to provide more localized and precise identification of disasters is desired.
Finally, it is worth investigating non-supervised approaches, since data for emer-
gency management applications are scarce and difficult to annotate.
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Abstract. Light field imaging simultaneously records the position and direction
information of light in scene, as one of the important techniques for digital media.
The amount of light field image (LFI) data is huge, it needs to be effectively
compressed. In this paper, a perceptual LFI coding method with coding tree unit
(CTU) level bit allocation strategy is proposed. To remove angular redundancy,
a hybrid coding framework with joint deep learning reconstruction networks is
constructed. At the encoder side, only four corner sub-aperture images (SAIs)
are compressed with new CTU level bit allocation, a complete SAIs array is
reconstructed by a LFI angular super-resolution network at the decoder side. To
remove perceptual redundancy, we design a CTU level bit allocation strategy with
the assumption of perceptual consistency, considering the characteristics of the
human visual system in the bit allocation process. Experimental results show that
for the proposed method with the designed CTU level bit allocation strategy, an
averageBD-BR savings of 13.676% inY-PPSNRmetric and 2.045% inVSImetric
can be achieved. Compared with the high efficiency video coding (HEVC) intra
coding model, the proposed method can achieve an average BD-BR savings of
over 90%.

Keywords: Light Field Image · Perceptual Coding · Light Field Reconstruction

1 Introduction

Light field imaging can simultaneously record the intensity and direction information of
light in a scene [1]. Light field images (LFIs) have many applications, such as refocusing
[2], 3D reconstruction [3], and multi view display [4]. But the rich scene information
makes the data volume of LFIs much larger than 2D images of the same resolution.
Therefore, efficient compression of LFI is crucial for its applications.

Generally, LFI compression methods can be mainly divided into the traditional
encoder based approach and the view synthesis based approach. The former directly
uses or improves existing encoders to compress LFIs, for example, treating LFI’s sub-
aperture images (SAIs) as pseudo video sequence (PVS), and compressing the PVSwith
video encoders [5]. LFI’s spatial and angular redundancies are removed through intra and
inter prediction of the video encoder. Monteiro et al. [6] improved high efficiency video
coding (HEVC) and used a prediction method combining local linear embedding and

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
N. Tsapatsoulis et al. (Eds.): CAIP 2023, LNCS 14185, pp. 255–264, 2023.
https://doi.org/10.1007/978-3-031-44240-7_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44240-7_25&domain=pdf
https://doi.org/10.1007/978-3-031-44240-7_25


256 P. Jin et al.

self-similarity for LFI compression. Ahmad et al. [7] proposed a coding method using
themulti-view extension of HEVC to explore the correlation between SAIs. Thesemeth-
ods can remove most of the data redundancy, but encoding all the data results in limited
encoding efficiency.

For the latter (view synthesis based approach), only a subset of SAIs is selected for
encoding, and the rest of SAIs will be synthesized at the decoder side. Bakir et al. [8]
compressed sparsely sampled SAIs, and used the LF Dual Discriminator GAN at the
decoder side to synthesize discarded SAIs. Hedayati et al. [9] used JPEG to compress
the central SAI and designed a deep learning network that includes quality enhancement
and depth estimation to reconstruct the SAIs array. Huang et al. [10] compressed the
selected SAIs and the disparitymaps corresponding to the unselected SAIs, and rendered
the unselectedSAIs at the decoder side. Liu et al. [11] compressed eight selectedSAIs and
constituted multi-disparity geometry to reflect abundant disparity characteristics; then,
synthesizing remaining LFI’s SAIs using the multi-stream view reconstruction network
at the decoder side. Thesemethods improve encoding efficiency through sparse sampling
and view synthesis. However, the selected SAIs are generally coded with video coding
techniques. The intra frame-based coding tree unit (CTU) level bit allocation algorithms
for existing video coders do not fully consider the visual perception characteristics.
This leads to perceptual redundancy in the compressed SAI subset. Due to the fact that
the SAIs in the subset will be used as references at the decoder side, this perceptual
redundancy will be further transmitted to the synthesized SAIs.

Therefore, in this paper, a perceptual LFI coding method with a new CTU level allo-
cation strategy is proposed to improve LFI coding efficiency. The experimental results
show that the effect of bit allocation is maintained in synthesized SAIs. At the same bit
rate, the proposed method achieved better subjective quality and structural consistency
in the salient regions.

2 The Proposed Method

In this paper, a perceptual LFI coding method with new CTU level bit allocation strategy
is proposed, and its framework is shown in Fig. 1. At the encoder side, the original LFI
Lorg is sparsely sampled, and the SAIs at four corner positions are selected to form
a subset of SAIs Ssel , which are arranged into PVS for input into HEVC. At the same
time, the depth map ID and saliency map IS of the central SAI IC are extracted separately
through deep learning networks. Subsequently, IC , ID and IS are input into the proposed
bit allocationmodel to calculate the bit weight for eachCTU.The complete set ofweights
W is input into HEVC to guide the target bit rate allocation at the CTU level. At the
decoder side, the decoded SAIs set S′

sel is input into the LFI angular super-resolution
network to recover the droppedSAIs. Finally, the complete reconstructedLFILrec consist
of a synthesized SAIs set S′

unsel and S′
sel .
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Fig. 1. The framework of the proposed LFI perceptual coding method.

2.1 Designed CTU Level Bit Allocation Strategy with Perceptual Consistency

The Assumption of Perceptual Consistency
There is a high content similarity between SAIs with different angular coordinates.
Taking a 7× 7 SAIs array as an example, Fig. 2 shows the residuals between IC and other
angular positional SAIs of the LFI Fountain_&_Vincent_1. Whether they are far away
or adjacent, the residual between them is small. Therefore, the assumption of perceptual
consistency for SAIs array is proposed, stating that the visual sensitive regions of SAIs
with different angular coordinates are basically the same. Based on this assumption,
each scene only needs to use IC to calculate the weight of bit allocation once, rather
than independently calculating for all selected SAIs. It is very meaningful for improving
encoding speed.

Fig. 2. The residual maps. (a) The residual between the SAIs located at (4,4) and (4,3). (b) The
residual between the SAIs located at (4,4) and (1,1). (Here, pixel values are magnified by 4 times
for visualization).

Calculation and Allocation of CTU Level Bit Weight
Initial Bit Weight Calculation
Compared to flat regions, complex texture regions have more complex prediction modes
and deeper block depth. Generally, complex texture regions require more bit rate con-
sumption to achieve the same quality as flat regions. In addition, studies have shown
that humans pay more attention to complex texture regions than flat regions. Therefore,
texture complexity is used as the initial bit weight for each CTU. CTUs with complex
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textures are given larger initial weights, while flat CTUs are given smaller initial weights.
The initial bit weight for each CTU is calculated as follows:

Ti =
∑M−1

x=1

∑N−1

y=1
Gi(x, y) + c (1)

where Ti is the texture complexity of the i-th CTU and also serves as the initial bit
weight.M and N are the size of the CTU. c is a constant to avoid an initial bit weight of
0. Gi(x, y) is the gradient value of the pixel at (x, y), and calculated as follows:

Gi(x, y) = |pi(x, y) − pi(x + 1, y)| + |pi(x, y) − pi(x, y + 1)| (2)

where Pi(x, y) is the pixel value at (x, y), | · | denotes an absolute value operation. The
calculation is performed on the Y component of the image.

Weight Adjustment of Visual Sensitive Regions
When human eye observes images, the visual sensitivity of different regions varies.
Regions with higher visual sensitivity should be assigned more bits. In the proposed
method, the foreground region and the salient object region are considered as high visual
sensitivity regions, and the bit weights of the CTU in these regions are adjusted. Firstly,
the depth map ID and saliency map IS of IC are obtained using deep learning networks
[12] and [13]. Secondly, ID and IS are binarized to obtain the foregroundmask and salient
object mask. Then, the masks are employed to calculate the foreground density ρD and
salient density ρS of each CTU, respectively. The calculation is expressed as follows:

ρ =
∑

CTU /(M × N ) (3)

where
∑

CTU is the number of pixelswith the value of 1 in the binarymask corresponding
to the CTU, and M × N is the size of the CTU. If ρD > 0.5, the CTU belongs to the
foreground region, and similarly, if ρS > 0.5, the CTU belongs to the salient region.
Finally, the bit weights of visual sensitive regions are adjusted based on the judgment
results, and the calculation is expressed as follows:

Wi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ti, if ρD < 0.5 & ρS < 0.5

Ti × α, if ρD > 0.5 & ρS < 0.5

Ti × β, if ρD < 0.5 & ρS > 0.5

Ti × α × β, if ρD > 0.5 & ρS > 0.5

(4)

where α and β are weight adjustment factors used for the foreground and salient regions,
respectively, to increase the bit weights of CTUs belonging to these regions. Based on
extensive experiments, α and β are taken as 1.1 and 1.5, respectively.Wi is the final bit
weight of the i-th CTU, used for allocating the target bit.

CTU Level Target Bit Allocation
After calculating the bit weights of all CTUs, the target bit is allocated for each CTU,
and the calculation is expressed as follows:

Ri = (Rp − Rh − Rc) × Wi
∑Nc

k=i WK

(5)
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where Ri is the target bit of the i-th CTU, Rp is the total target bits of the current frame,
Rh is the actual consumption bits of frame header information encoding, Rc is the actual
consumption bits of the encoded CTU and Nc is the total number of CTUs in the current
frame. After allocating all the bits, QP is calculated based on R − λ and QP − λ model
[14].

2.2 Decoding and Reconstruction

In the proposed method, only the selected SAIs set Ssel is compressed and transmitted,
while the remaining SAIs are synthesized at the decoder side. The network and pre
trained model in [15] are selected for LFI reconstruction. Specifically, S′

sel is fed into
the angular super-resolution network to reconstruct complete LFI, and represented as:

L′ = f (S′
sel) (6)

where L′ is the LFI output by the network, and it is already a complete SAIs array, and
f (·) denotes the angular super-resolution network.

Finally, the reconstructed LFI Lrec is obtained as follows:

Lrec = S′
sel + S′

unsel,S
′
unsel ∈ L′ (7)

where S′
unsel is the set of SAIs from L′ except for the four corner positions. The SAI at

the four corner positions still uses S′
sel to minimize the reconstruction distortion caused

by the angular super-resolution network.

3 Experimental Results and Analyses

3.1 Experimental Setup

The proposed method is tested on the commonly used EPFL light field database [16],
which provides multiple scenes captured by a Lytro Illum camera. Here, the MATLAB
light field toolbox [17] is adopted to decode the RAW light field data into a SAIs array,
with angular and spatial resolutions are 15 × 15 and 434 × 625, respectively. Figure 3
shows the SAI thumbnails corresponding to the scenes used in this paper. In specific
experiments, the central 7 × 7 SAIs array is selected, and the spatial resolution of each
SAI is cropped to 432× 624 to meet the requirements of the encoder for encoding block
size. In addition, the SAIs in Ssel are arranged into PVS and converted into the format
of 4:2:0 YUV. Due to only comparing intra encoding mode, the arrangement order of
PVS will not affect the final performance.

The proposed bit allocation method is implemented using the HEVC reference soft-
ware (HM16.20). Specifically, the PVS is encoded with All Intra coding structure. The
size of the CTU is set to 64 × 64, and the maximum division depth is set to 4. Rate
Control and LCU Level Rate Control are set to 1. Besides, the target bitrate of each
sequence is collected under the platform of HM16.20 with fixed QPs (i.e., QP = 22, 27,
32, 37, respectively).
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Fig. 3. SAI thumbnails: Caution_Bees, Danger_de_Mort, Fountain_&_Vincent_1,
Stone_Pillars_Outside, Sophie_&_Vincent_on_a_Bench, Sophie_Krios_&_Vincent.

Perceptual Peak Signal to Noise Ratio (PPSNR) [18] and Visual Saliency induced
Index (VSI) [19] are adopted as the perceptual quality metrics. Between them, PPSNR
is a quality metric that only targets salient region, and calculated as follows:

PPSNR = 10 log10 × 2552

1
L×H

L∑
x=1

H∑
y=1

(I(x, y) − I ′(x, y))2 × δ(x, y)

(8)

where δ(x, y) = 1 indicates the salient region, and δ(x, y) = 0 indicates the non-salient
region

Note that it is meaningful to calculate PSNR only for salient regions, as these regions
aremore susceptible to attention andhave agreater impact onperceivedquality.However,
when the total bitrate is fixed, the increase of the bitrate in the salient regionwill inevitably
be accompanied by the decrease of the bitrate in the non-salient region. Therefore, this
paper also adopts VSI to evaluate the global quality of images. VSI considers the visual
saliency and has been validated to be in line with human perception [19].

This paper measures encoding performance by calculating Bjontegaard Delta bitrate
(BD-BR) [20]. A negative BD-BR value indicates that under the same quality, the pro-
posed method can save more bitrate compared to the benchmark method, while con-
versely, it means consuming more bitrate. The bitrate is measured in bit per pixel (bpp)
and calculated as follows:

bpp = RLF

x × y × u × v
(9)

where RLF denotes the size of the bitstream, x × y and u × v are the spatial and angular
resolutions of the LFI, respectively. In addition, the quality of each LFI is represented
by the average quality of all SAIs.

Here, two compressionmethods are used for comparison to evaluate the effectiveness
of the proposed method. The abbreviations for these methods are as follows:

• HM: Encode all SAIs on HM16.20. Except for the target bitrate collected when
encoding 49 SAIs. The other configurations are consistent with the ones described
earlier.

• HM&ASR: It can be seen as a version of the proposed method using HM’s rate
allocation strategy. Specifically, only four corner SAIs are encoded, and the remaining
SAIs are synthesized by an angular super-resolution network.
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3.2 Rate-Distortion Performance

Table 1 gives the Bjontegaard metrics [20] of the proposed method with HM and
HM&ASR as the baselines, respectively. Y-PPSNR indicates to the average PPSNR
metric for all SAIs calculated on the Y component. Compared with theHM method, the
proposed method achieves average BD-BR savings of 90.305% in the Y-PPSNR metric
and 90.825% in the VSI metric, respectively. This is mainly due to the sparse encoding,
which saves a lot of bitrates. Compared to the HM&ASR method, the proposed method
achieves an average BD-BR savings of 13.676% in the Y-PPSNR metric. This indi-
cates that the proposed bit allocation method significantly improves the visual quality of
salient regions. In addition, the proposed bit allocation method effectively balances the
bitrates of non-salient regions, thereby improving the global quality of the image. This
can be reflected in the average BD-BR savings of 2.045% in the VSI metric.

Table 1. The BD-BR comparison of the proposed method with HM and HM&ASR methods as
baselines, respectively.

Scenes Proposed vs HM Proposed vs HM&ASR

BD-BR
(Y-PPSNR)

BD-BR
(VSI)

BD-BR
(Y-PPSNR)

BD-BR
(VSI)

101 –91.494% –90.551% –17.490% –2.477%

102 –91.283% –90.538% –10.982% –0.635%

103 –88.590% –90.152% –14.895% –0.998%

104 –91.728% –91.482% –23.650% –4.545%

105 –88.552% –90.843% –13.245% –3.162%

106 –90.182% –91.381% –1.795% –0.451%

Avg –90.305% –90.825% –13.676% –2.045%

Figure 4 show the visual comparison results of the decoded central SAI, where
the red box is taken from the salient region of the image and the blue box is taken
from non-salient region, and the PSNR values of these regions are given. It can be
found that the proposed method maintains better details in salient regions, such as the
eye details. Correspondingly, the quality of the proposed method has decreased in non-
salient regions. However, this has a small impact on the overall perceived quality, as these
regions have a low level of attention. Moreover, in the proposed method, the central SAI
is not encoded, but synthesized by the decoder side. The experimental results indicate
that the designed bit allocation strategy not only affects Ssel , but also affects S′

unsel ,
thereby generating results with better visual quality.
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Fig. 4. Comparison of the decoded central SAI of Sophie_&_Vincent_on_a_Bench (105). The
number in the sub-figure indicates the PSNR of the region. Here, 0.324bpp for HM methods,
0.026bpp for HM&ASR method and the proposed method.

Fig. 5. Comparison of the EPI consistency of salient regions of Danger_de_Mort (102),
Fountain_&_Vincent_1 (103), Stone_Pillars_Outside (104). Unit: PSNR/bpp.

3.3 Structural Consistency of Reconstruction

The structural consistency of LFIs is considered key to techniques such as refocusing
and depth inference. Epipolar Plane Images (EPIs) contain parallax changes and object
occlusion information, and the continuity of their polar lines canwell reflect the structural
consistency of the LFI. Hence, Fig. 5 shows the EPIs in the salient regions extracted from
the decoded results. It can be observed that the proposed method achieves higher PSNR
and visual quality at lower bitrates. The HM method independently encodes each SAI,
consuming large bitrates while damaging structural consistency, resulting in significant
distortion on theEPI. TheHM&ASRmethod saves bits through sparse encoding, but also
introduces reconstruction distortion generated by deep learning networks. In contrast,
the proposed method increases the bitrates of the salient regions by reallocating the CTU
level bit, thereby improving the quality of the regions, and at the same time enhancing
the structural consistency of the salient regions.



Perceptual Light Field Image Coding with CTU Level Bit Allocation 263

4 Conclusions

This paper presents a perceptual light field image (LFI) coding method with coding tree
unit (CTU) level bit allocation strategy. At the encoder side, the four corner sub-aperture
images (SAIs) are compressed. In order to remove the perceptual redundancy, a CTU
level bit allocation strategy with perceptual consistency is proposed. Firstly, the texture
features of each CTU of central SAI are extracted as the initial bit weight. Then, the
bit weight of CTU belonging to foreground and salient regions are adjusted to obtain
the final bit weight. Finally, the calculated weights are employed to allocate the target
bit of each CTU. At the decoder side, the complete SAIs array is reconstructed by the
LFI angular super-resolution network. The experimental results show that the proposed
method can effectively improve the quality of the salient regions and the overall image
at the same bitrate, while maintaining better structural consistency of the salient regions.
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Abstract. Video streaming applications have witnessed widespread
adoption over the past decades due to the rising demand for real-time
and on-demand video content across different application domains. As
a result, video streaming has become the dominant source of internet
traffic, while the abundance of video-driven applications will likely lead
to a further increase in the near future, enabled by associated advances
in video devices’ capabilities. In that context, there is a strong need to
develop efficient compression and video delivery algorithms to accom-
modate future growth. To this end, this study presents a comparative
performance evaluation of six different video codecs. More specifically,
we compare the performance of the Versatile Video Coding (VVC) stan-
dard developed by the Joint Video Experts Team (JVET) and the AV1
codec developed by the Alliance for Open Media (AOM). Additionally,
we assess the capacity of the newly released UVG-266 VVC encoder avail-
able from the Ultra Video Group, along with the Essential Video Coding
(EVC) standard’s reference implementation. Finally, we include in our
experiments the most popular High Efficiency Video Coding (HEVC)
implementation, namely x265, together with the VP9 codec. Experimen-
tal evaluation based on three general-purpose video datasets (768× 432
and 3840× 2160 video resolutions) and one ultrasound video dataset
(560× 448 video resolution) demonstrates that VVC outperforms all rival
codecs to date, especially as video resolution increases, followed by AV1.
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1 Introduction

It is estimated that 720,000 h of video are shared online daily [1] with video
traffic significantly surpassing 82% of all internet traffic [2]. High video traffic
demands are both enabled and driven by associated advances in video compres-
sion and wired/ wireless networks achieving significant bandwidth availability.
At the same time, video delivery protocols such as HTTP Adaptive Streaming
(HAS), including Dynamic Adaptive Streaming over HTTP (MPEG-DASH) and
HTTP Live Streaming (HLS), have revolutionized the video streaming industry.
Moreover, high-caliber video rendering devices materialize the notion of any-
where, anytime, and any-device, ubiquitous video streaming. As a result, new
and traditional video sources and applications have seen widespread acceptance
and market penetration. A non-exhaustive list includes mobile gaming, mixed
and extended reality (XR), and healthcare applications, on the one hand, and
teleconferencing and live streaming events, including sports, news, and enter-
tainment, on the other, accounting for a sizeable portion of the most popular
applications [3].

Versatile Video Encoding (VVC)/H.266 standard [4], the successor of the
High Efficiency Video Coding (HEVC)/ H.265 standard, was developed by JVET
to recapture the best encoding efficiency to date, which was previously claimed
by the AV1 of the Alliance of Open Media (AOM) [5,6]. Both codecs target
ultra-high-definition (4K and beyond) video encoding, with a particular inter-
est towards mobile, real-time 360◦ video streaming and mixed/ extended reality
applications [7,8]. However, in this video compression efficiency pursue, com-
plexity is often overlooked resulting in computationally expensive tools that
are not real-time friendly. The latter is especially true for video compression
standards’ reference implementations. To mitigate this phenomenon, optimized,
standards-compliant open-source implementations emerge, that typically pro-
vide a trade-off between complexity and efficiency. Such can be considered the
recently released UVG-266 codec, being a VVC/H.266 standard’s implementa-
tion licensed under 3-clause BSD [9], or the earlier x265 implementation of the
HEVC/ H.265 standard. Moreover, in response to the ever increasing computa-
tional complexity but also the associated intellectual property, Essential Video
Coding (EVC) [10] was developed by the ISO/IEC Moving Picture Experts
Group (MPEG) [11], followed by its open source implementation, namely the
extra-fast Essential Video Encoder (XEVE) [10].

The continuously evolving video codecs development landscape depicted in
Fig. 1, necessitates for a fair and unbiased comparison across the range of under-
lying application scenarios that involve different content, and may impose dif-
ferent limitations and/ or activate (and use) different and often specific video
coding tools. This study aims to provide an objective and reproducible compar-
ative assessment of the currently dominant video compression standards. More
specifically, to provide a fair comparison of the VVC (both its reference imple-
mentation and UVG-266) and AV1 codecs, along with both its predecessors,
namely the x265 implementation [12] and VP9 codec [13], respectively, as well
and the recently released XEVE codec.
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Fig. 1. Video Coding Standards [18]

2 Methodology

In the present section, we describe the methodology used to perform a compara-
tive performance evaluation of the investigated video coding standards and cor-
responding codecs. The video datasets used in this work are first introduced (see
Table 1), followed by the experimental encoding setup (see Table 2). Finally, the
objective video quality assessment (VQA) approach and metrics are provided.

2.1 Video Datasets

Three video datasets were used in the context of the present study as depicted
in Table 1. The first two datasets consist of general-purpose videos, while the
third one includes ultrasound videos of the common carotid artery (CCA). More
specifically, the first one comes from the SJTU 4K Video Sequence Dataset [14]
and consists of five 4K (3840 × 2160) ultra-high definition (UHD) video sequences
at 30 frames per second (fps), out of a total of 15 videos parting the dataset. The
second one is abstracted from the Netflix video dataset [15,16], comprising of 10
selected videos with a video resolution of 768 × 432, of which seven have a frame
rate of 25 fps and three have a frame rate of 50 fps. Finally, the third dataset
consists of ten CCA ultrasound videos with a resolution of 560× 448 and with

Table 1. Video Datasets Characteristics.

Dataset Name No. Videos Video Resolution Frame Rate Duration

SJTU 4K Dataset 5 3840× 2160 30 10

Netflix Dataset I 7 768× 432 25 10

Netflix Dataset II 3 768× 432 50 10

CCA Dataset 10 560× 448 40 10
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Table 2. Video codecs and coding parameters.

Video Codec Version QP Range Preset Profile

VVC 1.8 22,27,32,37 Random Access

x265 3.3 22,27,32,37 placebo

SVT-AV1 1.4.1 27,35,46,55 preset 8

UVG-266 0.4 22,27,32,37 veryslow

VP9 1.13 27,35,46,55 best

XEVE 0.4.3 22,27,32,37 placebo

Fig. 2. (a) Left: Compressed CCA video with x265 codec, Right: Original CCA video
(560× 448), (b) Left: Compressed Netflix video with AV1 codec, Right: Original Netflix
video (768× 432)

a frame rate of 40 fps. All selected videos are 10 s long and are in yuv420p raw
format. A representative sample of the incorporated video content appears in
Fig. 2. Overall, the goal is to investigate low to ultra-high definition video reso-
lutions with varying frame rates and different content, in order to better validate
the examined codecs’ video coding tools capabilities under different setups.

2.2 Experimental Setup

The selected encoding parameters per investigated video codec are depicted in
Table 2. The experimental setup was prepared in accordance with the relevant
literature to enable a fair comparison of the video codecs involved [3,17,18].
Selected quantization parameters for constant quality encoding comprised of 27,
35, 46, 55 for AV1 and VP9 codecs, while matching QPs of 22, 27, 32, 37 were
selected for VVC, UVG-266, XEVE, and x265 codecs. The objective here was to
accommodate a broad spectrum of representative bandwidths as suggested by
the literature. To support random access for VVC, an intra frame was inserted
every 32 frames for 25 fps and 30 fps videos and every 48 frames for 50 fps videos.
Likewise, the same intra-update was used for all the other video codecs. Default
preset parameters for encoding were set at Random Access for VVC, -preset 8
and -best for AV1 and VP9, respectively, -placebo for x265 and -slower for both
UVG-266 and XEVE. The latest reference software versions available on March
2023 were used for each codec (see Table 2).
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2.3 Video Quality Assessment

The importance of objective and subjective video quality assessment and the
approach followed in the current study are detailed next.

1. Objective Video Quality Assessment

Peak to Signal Noise Ratio (PSNR)

Peak Signal to Noise Ratio (PSNR) is still one of the most widely used
VQA metrics, especially for video compression comparison studies, despite
not correlating particularly well with subjective quality. To compensate for
this shortcoming, a popular alternative has prevailed over the past decade,
which favors the luma component (PSNR Y), which captures the intensity
of the monochrome signal over the color ones (PSNR U and PSNR V) [17].
PSNR611 has demonstrated superior correlation to the actual video’s per-
ceptual quality [19]:

PSNR611 =
6 ∗ PSNRY + PSNRU + PSNRV

8
(1)

2. Subjective Video Quality Assessment
Compression is a very sensitive process and therefore subjective VQA must be
employed, to quantify the validity of objective, computerized VQA methods
and verify that the objective scores correlate sufficiently to what the human
eye actually perceives. Various subjective VQA methods exist, including dis-
playing compressed videos randomly, with the original video being rendered
at the beginning of each evaluation session, or even during the session, to try
and minimize biases. Another popular approach, which is typically used to
compare video coding standards performance, is to render videos that were
compressed with the same encoding parameters side by side and ask evalua-
tors to determine which video has the highest quality. Alternative approaches
include rendering together videos that are compressed to the same bitrate or
exhibit similar VQA scores (i.e. PSNR ratings). The latter methods allow
to deduct the superiority of one codec over the other [20]. Examples of such
evaluations are presented in Fig. 2, depicting (a) a CCA video (560 × 448)
compressed using a QP of 27 and the x265 codec and (b) a video abstracted
from the Netflix dataset (768 × 432), compressed using a QP of 55 and the
AV1 codec. The right video in each case corresponds to the original, uncom-
pressed video, to facilitate comparison. As evident is both displayed cases,
the compressed videos suffer from degradation in video quality compared to
the original videos.

3. BD-Rate Bjodegraad Metric
The Bjontegaard Delta (BD-rate) metric [21] is a more formal, numbers-only
analysis, typically used for codec comparisons. The metric essentially com-
putes the bitrate demands reduction for equivalent perceptual quality (mea-
sured in terns of a VQA metric, here PSNR611) of one codec over the other.
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This method creates rate-distortion curves that compute how each technol-
ogy “distorts” at the various data rates while providing a combined score for
luma and chrominance assessment. Rate-distortion curves are produced with
a corresponding number of samples that matches with a third-order polyno-
mial. Then, the distance between the two curves is calculated, capturing the
average bitrate difference for equivalent objective video quality between the
examined codecs.

3 Results

In this section we provide a comprehensive comparative evaluation of the six
investigated video codecs per examined video dataset. The experimental evalua-
tion was performed using a 64-bit Windows 10 (v.22 H2) machine, consisting of
a 12th Gen Intel(R) Core(TM) i9-12900K (16 cores, 3.20 GHz). Objective VQA
was based on PSNR scores that are computed during the encoding process.
In other words, we relied on the integrated PSNR computations implemented
by each investigated video codec, which were then post-processed to compute
the PSNR611. Moreover, BD-Rate results are further given to demonstrate the
bitrate demands reductions for equivalent objective video quality of the more effi-
cient video compression standards compared to their earlier, or less-performing
counterparts.

1. Objective Video Quality Assessment

BD-Rate results for all examined video codecs categorized per investigated
video dataset appear in Table 3 and Table 4. Similarly, the corresponding rate-
distortion curves are given in Fig. 3 and Fig. 4. Here, it is worth noting that the
depicted results are averaged over the entire video dataset(s) taking into con-
sideration all four compression levels depicted in the experimental evaluation
setup. As expected, VVC, the most recent video compression standard, signif-
icantly outperforms all rival video compression standards, including its recent

Table 3. BD-RATE (a) Netflix video dataset I: 768× 432 @25 Hz (b) Netflix video
dataset II: 768× 432 @50 Hz

Bitrate Savings Relative to

SVT- UVG- x265 XEVE VP9

AV1 266

VVC 43,4 44,7 44,9 47,9 62,6

SVT-

AV1
4,1 3,9 8 32,3

UVG-

266
−0,2∗ 2,4 27,6

x265 4,3 28,6

XEVE 25,9

(a)

Bitrate Savings Relative to

SVT- UVG- x265 XEVE VP9

AV1 266

VVC 38,5 34,9 50,2 46,9 59,9

SVT-

AV1
−6,8∗ 16 14,6 33,7

UVG-

266
19,3 17,3 35,3

x265 −1,5∗ 19,9

XEVE 20,9

(b)
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Table 4. BD-Rate (a) SJTU 4K Dataset: 3840× 2160 @30 Hz (b) CCA Dataset:
560× 448 @40 Hz

Bitrate Savings Relative to

SVT- UVG- x265 XEVE VP9

AV1 266

VVC 43,9 40,4 47,6 49,5 49,3

SVT-

AV1
−7,2∗ 3,8 8,9 11,8

UVG-

266
12,1 16,1 17,9

x265 4,1 6,1

XEVE 2,5

(a)

Bitrate Savings Relative to

SVT- UVG- x265 XEVE VP9

AV1 266

VVC 34 35,3 36,3 45,4 58,4

SVT-

AV1
4,2 12,4 16,8 41,9

UVG-

266
12,5 17,9 42,6

x265 4,2 31,9

XEVE 30,5

(b)
∗ Negative numbers indicate that the encoding standard depicted on the
leftmost column demands higher bitrate compared to the encoding stan-
dard depicted on the 2nd row. For example in Table 3 (a) UVG-266 vs
x265 = −0.2, which translates to UVG-266 demanding 0.2% higher bitrate
compared to x265 for equivalent PSNR611 ratings

Fig. 3. Rate-distortion curves (PSNR611 vs log (bitrate)) of mean dataset values of
(a) Netflix Dataset I 768× 432 @25 fps and (b) Netflix Dataset II 768× 432 @50 fps

open-source UVG-266 implementation. Indicatively, VVC achieves bitrate
demands reductions for equivalent PSNR611 quality that extend over 40%
for all compared video codecs and datasets, besides AV1 and UVG for Netflix
dataset II and AV1, UVG, and x265 for CCA ultrasound video dataset. AV1
and UVG-266 are the next best performing codecs, achieving comparable per-
formance between them, interchangeably and marginally outperforming each
other, depending on the underlying dataset’s video content, resolution, and
frame rate. Likewise, the x265 and XEVE codecs are closely ranked, with the
former receiving slightly favorable performance rankings in all scenarios but
the Netflix II video dataset. At the lowest performing end, we can find the
earlier VP9 codec. However, as discussed later, VP9 is an excellent choice
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Fig. 4. Rate-distortion curves (PSNR611 vs log (bitrate)) of mean dataset values of
(a) SJTU 4K Dataset 3840× 2160 @30 fps (b) CCA Dataset 560× 448@40 fps

when considering the trade-off between performance and complexity.
When it comes to comparing how video codecs, and especially how VVC
behaves when lower resolution videos (such as the CCA ultrasound videos)
are involved, compared to higher video resolutions (as for example the SJTU
4K videos), one can observe that VVC gains over AV1, UVG, and x265 are
increased as video resolution increases. This is also true for Netflix dataset I
but not Netflix dataset II, which is more likely attributed to the low num-
ber of videos included in the particular dataset (only 3), that constitute the
dataset content-dependent. Compared to XEVE, the performance gains are
comparable across video resolutions and frame rates, as is with VP9, where
actually less increases are documented for the SJTU dataset.
Clearly, larger-scale comparison studies are needed to draw robust and defini-
tive conclusion, including substantial subjective video quality assessment ses-
sions. However the documented trends in the present paper are aligned with
the collective findings of the recent literature.

2. Encoding Time Assessment

The goal in the present result section is to demonstrate the trade-off between
compression performance and time-efficiency of the investigated video codecs.
Figure 5 shows the encoding time (in seconds) consumed by each video codec to
compress videos parting a dataset using constant quality encoding. In particular,
for VVC, UVG-266, XEVE, and x265 the average encoding time is calculated for
a quantization parameter of 27, while a matching QP of 35 was used for encoders
AV1 and VP9. A key observation emanates from the fact that VVC is excluded
from the depicted graphs. The latter is due to the 10x time requirements of VVC,
which would render the figure axis unbalanced and incomprehensible. Another
important finding relates to the encoding time necessary to encode 4K videos,
as in the case of the SJTU dataset. The significant amount of time compared to
much lower-resolution datasets is depicted in Fig. 5(b) where the SJTU dataset
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Fig. 5. (a) Encoding Time in seconds ∗The encoding time values of the SJTU dataset
are displayed at 50% of their original values, to facilitate all datasets’ results depiction
on the same plot. Likewise, the maximum bound for the encoding time axis was set
to 1000, despite the XEVE value of the SJTU dataset that extends up to 2389 s (b)
Average Encoding Speed in Frames per Second

has the lowest encoding speed in terms of frames per second compared to the
other datasets. In fact, SJTU dataset’s encoding time requirements were divided
by 2 in Fig. 5(a), in order to depict the results more clearly and in the same plot.
For the same reason, the maximum bound for the encoding time axis was set
to 1000 s. Here, it is important to note that the XEVE value for the SJTU
dataset extends up to 2389 s. Overall, SVT-AV1 is the fastest encoder among
the examined ones, achieving orders of magnitude lower encoding times or higher
encoded frames in one second. UVG-266 is the 2nd best performing encoder in
terms of speed for all datasets but the SJTU one, where VP9 demonstrated
better performance. In that sequence, VP9 is better than x265 and XEVE in all
occasions but the Netflix II dataset. XEVE is the worst performing codec, 2nd
only to VVC, which is not depicted here. Clearly, despite the documented trends,
more datasets of diverse video content, resolutions, and frame rates, are required
to unambiguously capture the performance of all video codecs with respect to
the aforementioned video dataset characteristics.

4 Discussion and Concluding Remarks

The present study reinforced the superiority of the VVC encoding standard in
terms of compression efficiency, following a comprehensive comparative evalua-
tion study that examined recent and established video coding standards across
multiple video datasets of different video characteristics and content, including
general-purpose and clinical videos. The latter findings were computed using
both traditional rate-distortion curves, employing PSNR metrics, but also BD-
rate computations. SVT-AV1 and UVG-266 achieved similar compression effi-
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ciency, both outperforming remaining codecs. In terms of encoding time perfor-
mance, SVT-AV1 superiority was unchallenged, indeed the only implementation
that could qualify for real-time performance for all datasets but the SJTU 4K
dataset. On the opposite end, VVC’s reference software implementation is pri-
marily suitable for assessing the performance of the different encoding tools, as
it is significantly slower with respect to all other codecs.

Ongoing work involves expanding the video content, resolution, and frame
rate, of the employed datasets, in an attempt to increase the robustness of the
comparison outcomes. Moreover, to investigate the correlation between subjec-
tive and objective VQA scores, considering additional VQA metrics. Future work
involves performing a large-scale study using 360◦ video datasets.
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