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Preface

CAIP 2023was the 20th in the CAIP series of biennial international conferences devoted
to all aspects of computer vision, image analysis and processing, pattern recognition, and
related fields. Previous conferences were held in Salerno, Ystad, Valletta, York, Seville,
Münster, Vienna, Paris, etc.

The scientific programof the conference consisted of plenary lectures and contributed
papers presented in a single track. A total of 67 papers were submitted andwere reviewed
single blindly by at least two reviewers per paper. A total of 52 papers were accepted.
The program featured the presentation of these papers organized under the following
eight Sessions:

SESSION 1: Deep Learning
SESSION 2: Machine Learning for Image and Pattern Analysis I
SESSION 3: Machine Learning for Image and Pattern Analysis II
SESSION 4: Analysis Object Recognition and Segmentation
SESSION 5: Biometrics/Human Pose Estimation/Action Recognition
SESSION 6: Biomedical Image and Pattern Analysis
SESSION 7: General Vision/AI Applications I
SESSION 8: General Vision/AI Applications II

Furthermore, CAIP 2023 featured a contest on “Pedestrian Attributes Recognition
withMulti-TaskLearning (PARContest 2023)”, organized byAntonioGreco,University
of Salerno, Italy and Bruno Vento, University of Napoli, Italy.

In addition, theCAIP 2023 program included distinguished plenary keynote speakers
from academia and industry who shared their insights and accomplishments as well as
their vision for the future of the field. More specifically:

Keynote Lecture 1: Semiconductor Chips in the Center of Geopolitical Competition
Chrysostomos L. Nikias, Ph. D
President Emeritus and Professor of Electrical Engineering
Malcolm R. Currie Chair in Technology and the Humanities
Director, The Institute for Technology Enabled Higher-Education
University of Southern California

Keynote Lecture 2: Improving Contour Detection by Surround Suppression of Texture
Prof. Nicolai Petkov
Bernoulli Institute of Mathematics, Computer Science and Artificial
Intelligence
University of Groningen, The Netherlands
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Moreover, CAIP 2023 included four tutorials, as follows:

Tutorial 1: A tutorial on multimodal video analysis for understanding human behaviour
Estefanía Talavera Martínez, University of Twente, The Netherlands

Tutorial 2: Stochastic gradient descent (SGD) and variants: Evolution and recent trends
Paul A. Rodriguez, Pontifical Catholic University of Peru, Peru

Tutorial 3: Video Analysis Methods for Recognizing Multiple Human Activities
Marios S. Pattichis, University of New Mexico, USA

Tutorial 4: Using digital tools for health and improving digital skills of health professionals in
oncology - Needs assessment for clinical and non-clinical professionals
Efthyvoulos Kyriacou, Cyprus University of Technology, Cyprus

We want to express our deepest appreciation to all the members of the CAIP 2023
organizing committees and technical program committees, the associate editors, as well
as all the reviewers for their dedication and hard work in creating an excellent scientific
program. We want to thank all the authors who submitted their papers for presentation
at the meeting, and all of you for being here to take part in CAIP 2023 and share your
work.

Moreover, we would like to express our sincere thanks to Easy Conferences per-
sonnel and especially Christos Therapontos for their excellent and continuous support
throughout the course of organizing this conference. In addition,wewould like to express
our sincere thanks to Elena Polycarpou for her excellent secretarial support.

September 2023 Nicolas Tsapatsoulis
Andreas Lanitis
Marios Pattichis

Constantinos S. Pattichis
Christos Kyrkou

Efthyvoulos Kyriacou
Zenonas Theodosiou
Andreas Panayides
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Keynote Lectures



Semiconductor Chips in the Center of Geopolitical
Competition

Chrysostomos L. Nikias

President Emeritus and Professor of Electrical Engineering, Malcolm R. Currie Chair
in Technology and the Humanities, Director, The Institute for Technology Enabled

Higher Education, University of Southern California

Abstract. Semiconductor chips are the “brains” behind everything in
today’s economy. They have become the world’s most critical industry.
The singlemost important factor affecting semiconductors is a “cold war-
type tension” that has slowly developed in recent years between the USA
and China that is rooted in the starkly different systems of governance of
the world’s two largest economies: democracy versus autocracy. We will
address the current geopolitical tensions that are disrupting the crucial
global semiconductor industry even as artificial intelligence applications
and the cloud computing revolution fuel a surge in demand, the com-
plexities and multinational nature of the supply chain, the challenges
with 5G telecommunications hardware, the importance of educating this
industry’s highly skilled workforce, and the role that democratic societies
around the world can play, and make some predictions on what the future
holds.

Short Bio: Dr. Chrysostomos L. Nikias is currently Presi-
dent Emeritus and Life Trustee of the University of South-
ern California (USC), Professor of Electrical Engineering,
and the holder of the Malcolm R. Currie Chair in Technol-
ogy and the Humanities. He has been at USC since 1991,
and in addition to his work as a professor, has served as
research center director, dean of engineering, provost, and
president of the university. Dr. Nikias is a member of the
National Academy of Engineering, a fellow of the Amer-
ican Academy of Arts & Sciences, a charter fellow of the
National Academy of Inventors, an associate member of
the Academy of Athens, a foreign member of the Rus-
sian Academy of Sciences, and a life fellow of the Insti-
tute of Electrical and Electronics Engineers (IEEE). He is
the recipient of the IEEE Simon Ramo Medal for excep-
tional achievement in systems engineering, the Academic
Leadership Award from the Carnegie Corporation of New
York, the Ellis Island Medal of Honor, UNICEF’s Spirit of
Compassion Award, and six honorary doctorates.



Improving Contour Detection by Surround Suppression
of Texture

Nicolai Petkov

Bernoulli Institute of Mathematics, Computer Science and Artificial Intelligence,
University of Groningen, The Netherlands

Abstract. Various effects show that the visual perception of an edge or
line can be influenced by other such stimuli in the surroundings. Such
effects can be related to non-classical receptive field (non-CRF) inhibi-
tion, also called surround suppression, which is found in a majority of the
orientation selective neurons in the primary visual cortex. A mathemati-
cal model of non-CRF inhibition is presented. Non-CRF inhibition acts
as a feature contrast computation for oriented stimuli: the response to an
edge at a given position is suppressed by other edges in the surround.
Consequently, it strongly reduces the responses to texture edges while
scarcely affecting the responses to isolated contours. The biological util-
ity of this neural mechanism might thus be that of improving contour
(vs. texture) detection. The results of computer simulations based on
the proposed model explain perceptual effects, such as orientation con-
trast pop-out, ‘social conformity’ of lines embedded in gratings, reduced
saliency of contours surrounded by textures and decreased visibility of
letters embedded in band-limited noise. The insights into the biologi-
cal role of non-CRF inhibition can be utilised in machine vision. The
proposed model is employed in a contour detection algorithm. Applied
on natural images it outperforms previously known such algorithms in
computer vision.

Short Bio: Nicolai Petkov was full professor of computer
science (chair of Parallel Computing and Intelligent Sys-
tems) at the University of Groningen from 1991 till 2023.
From 1998 till 2009 he was scientific director of the Insti-
tute for Mathematics and Computer Science. He has done
research in parallel computing, pattern recognition, image
processing, computer vision and applied machine learning.
His current research interests as emeritus professor concern
predictive analysis of financial time series.

Chair: Andreas Lanitis, CYENS & Cyprus University
of Technology, Cyprus
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Abstract. PAR Contest 2023 is a competition, organized within CAIP
2023 conference, among methods based on multi-task learning, aimed
at the recognition of binary and multi-class pedestrian attributes from
images. This topic is recently attracting a great interest of various
research groups due to the variety of applications in the field of foren-
sics, digital signage, social robotics, people tracking and multi-camera
person re-identification. Multi-task learning allows to solve the multi-
class recognition problem with a single multi-task neural network, with
a learning procedure that exploits the interdependencies between differ-
ent tasks to produce an efficient and effective model. To this aim, we
make available for the participants the MIVIA PAR Dataset, consisting
of 105,244 pedestrian images, already divided in training and valida-
tion sets, partially annotated with 5 attributes: upper clothes and lower
clothes color, gender, bag, hat. The submitted methods will be evaluated
in terms of mean accuracy over a private test set, including more than
20,000 images without overlaps in terms of subjects and scenarios with
respect to training and validation sets. The baseline results, reported in
this paper, demonstrate that the contest is challenging and that by par-
ticipating to the competition it is possible to advance the state of the
art in pedestrian attributes recognition.

Keywords: Contest · Pedestrian Attributes Recognition · PAR ·
Multi-task Learning

1 Introduction

Pedestrian attributes recognition from images [27] is nowadays a relevant prob-
lem in several real application fields, such as digital signage [16], social robotics
[15], people tracking [8] and multi-camera person re-identification [13]. To this
concern, there is a great interest for simultaneously recognizing several informa-
tion regarding the pedestrian, i.e. the color of its clothes [19], the gender [10],
the presence or absence of bags or hats [18] and so on.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
N. Tsapatsoulis et al. (Eds.): CAIP 2023, LNCS 14184, pp. 3–12, 2023.
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To give a definitive boost to research in this field, following on the success of
GTA Contest in CAIP 2021 [14], we organized the Pedestrian Attribute Recogni-
tion (PAR) Contest 2023, namely a competition among methods for pedestrian
attributes recognition from images. To this aim, we propose the use of a novel
training set, the MIVIA PAR Dataset, including 105,244 partially images anno-
tated with some of the following labels: color of the clothes (top and bottom),
gender (male, female), bag (no/yes), hat (no/yes). Being the dataset partially
annotated, the participants are encouraged to use additional samples or to pro-
duce themselves the missing annotations; this possibility is allowed in the com-
petition only under the constraint that the additional samples and annotations
are made publicly available, so as to give a relevant contribution to the diffusion
of public datasets for pedestrian attributes recognition. After the contest, the
proposed dataset, augmented with additional samples and annotations produced
by the participants, will be made publicly available for the scientific community
and will hopefully become among the biggest datasets of pedestrian attributes
with this set of annotations.

It is worth pointing out that using a single classifier for recognizing in real-
time each of the above-mentioned pedestrian attributes may require prohibitive
computational resources not available on edge devices such as smart cameras [4];
in this scenario, nowadays multi-task learning approaches represent an excellent
solution for achieving remarkable recognition accuracy while maintaining the
processing time unchanged as the number of pedestrian attributes increases [26].
Therefore, we restrict the competition to methods that are based on a multi-task
learning approach. Since not all the training samples may be annotated with all
the labels, the participants could also propose a learning procedure designed for
dealing with missing labels [11].

The performance of the competing methods will be evaluated in terms of
mean accuracy on a private challenging test set composed by images that are
different from the ones available in the training set (Fig. 1).

2 Related Works

Pedestrian attributes recognition (PAR), namely the prediction of various char-
acteristics of a person from an image, is a very challenging task due to different
viewpoints, occlusions, low resolution and quality, variable illumination, motion
blur and unbalanced data distribution [27]. The methods adopted for this pur-
pose are based on multi-task [29] or multi-label [28] learning and must be trained
on the specific dataset to be able to recognize the pedestrian attributes. The set
of attributes of interest, whose number varies from 5 to 69 binary and multi-class
attributes, is not standard and very variable in each PAR dataset; in particu-
lar, we give more details on BAP [2], HAT [24], CAD [5], APiS [30], CRP [17],
PARSE-27K [25], PETA [7], PA-100K [22], Market-1501 [21], DukeMTMC [21]
and RAP v2.0 [20].

BAP [2] samples (2,003 in the training set) are obtained by cropping pedes-
trians from other existing datasets (H3D [3] and PASCAL VOC 2010 [9]) and
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Fig. 1. Examples of images taken from the MIVIA PAR Dataset, whose available
attributes are upper clothes color, lower clothes color, gender, bag and hat.

partially annotating them with 9 binary attributes (or unspecified); the anno-
tations are very reliable since the values are considered stable if at least 4 of 5
annotators agree on the label. HAT [24] consists of 9,344 Flickr images annotated
with 27 attributes regarding pose, age, types of clothes and accessories. CAD [5]
is a dataset with 1,856 pedestrian images collected from Flickr and annotated
with 23 binary (11 for color) and 3 multi-class clothing attributes, whose labels
are considered valid whether at least 6 annotators agree on the value (N/A oth-
erwise). APiS [30] is obtained from other existing datasets (KITTI [12], CBCL
Street Scenes [1], INRIA [6], SVS), by cropping pedestrian samples whose width
is larger than 35 pixels and height greater than 90 pixels. The samples are fully
annotated with 11 binary and 2 multi-class attributes (upper and lower body
color), but some of the annotations are uncertain and labelled as ambiguous.
CRP [17] consists of 27,454 pedestrian images, collected from a moving car and
annotated with 1 binary (gender) and 3 multi-class (age, weight and clothing
type) attributes. PARSE-27K [25] consists of 27,000 outdoor pedestrian samples
partially annotated with 8 binary and 2 multi-class orientation attributes. PETA
[7] includes 19,000 pedestrian samples of 8,705 subjects acquired both outdoor
and indoor and partially annotated with 61 binary and 4 multi-class attributes.
The labels of this dataset are not reliable, since a single sample of a subject
is annotated and, then, the labels are copied for all the other instances of the
same person, even if the attribute is not visible. PA-100K [22] includes 100,000
pedestrian samples collected from 598 outdoor cameras and annotated with 26
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binary attributes, indicating the presence or the absence of the corresponding
characteristics. Market-1501 [21] consists of 32,668 pedestrian samples of 1,501
subjects collected with 6 outdoor cameras. Among the 27 binary attributes, 15
are used for upper and lower body color; moreover, they are annotated at subject
level, so they are considered even if not visible in the image. DukeMTMC [21] is
composed by 34,183 pedestrian samples of 1,812 subjects, collected outdoor and
annotated at identity level with 23 binary attributes. RAP v2.0 [20] consists of
84,928 images of 2,589 subjects collected indoor in the same shopping mall from
25 different cameras. It is annotated with 69 binary and 3 multi-class attributes
regarding whole body and parts, accessories, postures, actions and occlusions.

The analysis of the datasets available in the literature shows that in most
cases they have a limited number of samples. Furthermore, most of them are
acquired only in indoor or outdoor (not in both) environments, so without con-
sidering different environmental and lighting conditions. Moreover, in most cases
the annotations are ambiguous or not totally reliable. The MIVIA PAR Dataset,
proposed for the contest, is larger than any other existing dataset. Furthermore,
it is acquired both indoor and outdoor and its partial annotations are reliable,
as they have been verified by at least two annotators. The variability and the
representativeness of the samples, together with the encouragement to extend
the dataset with new samples and annotations, make the MIVIA PAR Dataset a
relevant contribution to pedestrian attribute recognition. We are confident that
the participants will profitably use the dataset to propose novel multi-task learn-
ing approaches, with global-based, part-based or attention-based training proce-
dures designed to infer discriminative patterns from the body of the pedestrians.
Other contributions may be the adoption of novel multi-task neural networks,
the definition of innovative procedures for dealing with missing labels and the
use of advanced learning procedures for challenging (e.g. curriculum learning)
and unbalanced data (e.g. data centric AI).

3 Contest Dataset and Task

The MIVIA PAR Dataset consists of 105,244 images (93,082 in the training set
and 12,162 in the validation set) annotated with the following labels:

– Color of the clothes: the considered values are black, blue, brown, gray, green,
orange, pink, purple, red, white, and yellow and are represented, in this order,
with the labels [1–11]. We provide the color of the upper part of the body
and of the lower part of the body as two different labels.

– Gender: the considered values are male and female, represented in this order
with the values [0,1].

– Bag: we consider the absence or presence of a bag, representing it with the
values [0,1].

– Hat: we consider the absence or presence of a hat, representing it with the
values [0,1].
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The unavailability of the specific annotation is indicated with the value -1. Part
of the samples of the MIVIA PAR Dataset have been collected from existing
datasets (e.g. PETA, RAP v2.0), by manually annotating the missing attributes;
a substantial additional portion of the dataset consists of private samples, in
which we have manually extracted the image crop of the person and annotated
the considered pedestrian attributes. The labelling was done by a single anno-
tator, but each sample was double-checked by a second annotator. Since the
images are collected in different conditions, the dataset is very heterogeneous in
terms of image size, illumination, pose of the person, distance from the camera.

From the distribution of the samples in the training set, depicted in Fig. 2
(N/A indicates the unavailability of the annotation), we can note that it is
unbalanced, so the participants should define learning procedures able to deal
with this imbalance. In particular, the dataset contains 35,847 samples annotated
with the color of the upper part, 60,759 with the color of the lower part, 85,142
with gender, 65,684 with bag and 78,271 with hat. The training set includes
26,076 fully annotated samples, while all the samples of the validation set are
fully annotated. For the color of the upper part, the imbalance is not so evident,
having available thousands of black (15,195), white (4,828), gray (4,714), blue
(3,225), red (2,728), green (1,381) and brown (1,124) samples; on the other hand,
for the lower part there are several black (36,228), blue (16,752) and gray (4,427)
samples. This imbalance can be also justified by a prior distribution unbalanced
in reality; in fact, it is not common to wear light pants. The training set has also
a majority of male (61,732), No Bag (55,168) and No Hat (68,629) samples.

We made available to the participants two folders with the training and
validation images and a CSV file for each set with the labels of the samples.
The participants can ask to receive training and validation samples together
with the corresponding annotations of the MIVIA PAR dataset by following the
procedure described on the website of the contest1.

The participants can use these training samples and annotations, but they
can also use additional samples and/or add the missing labels, if they make the
additional samples and annotations publicly available. Since the goal of this con-
test is the development of the research on pedestrian attributes recognition, we
encourage participants to use other samples or to add missing labels for train-
ing their models. The diffusion of samples annotated with pedestrian attributes
would make a great contribution to the development of this line of research and
to the realization of real applications in this field.

The participants will receive the instruction to implement the code that
produces the predictions for all the considered pedestrian attributes, by training
a single multi-task neural network. They are free to design novel neural network
architectures or to define novel training procedure and loss functions for multi-
task learning. Particularly welcome are methods dealing with the challenging
issues of missing labels and dataset imbalance.

The submitted methods are then executed on the samples of the test set and
a ranking will be defined according to the rules listed in the next section.

1 https://par2023.unisa.it or https://mivia.unisa.it/par2023/.

https://par2023.unisa.it
https://mivia.unisa.it/par2023/
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Fig. 2. Distribution of the annotations in the training set of the MIVIA PAR Dataset.
The dataset is unbalanced for all the tasks, especially for the recognition of the colors
of the clothes. This is an additional challenge that the participants should consider
when they design the multi-task neural network architecture and the loss function.
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4 Evaluation Metrics

The methods submitted to the contest will be evaluated in terms of mean accu-
racy over all the considered tasks on a private fully annotated test set. Being
pi the prediction of a method on the i − th sample of the test set and gi the
corresponding ground truth, the accuracy A is defined as the ratio between the
number of correct classifications and the total number of test samples K:

A =
∑K

i=1(pi == gi)
K

(1)

Therefore, we will compute the accuracy of the proposed approaches for the
five considered pedestrian attributes:

– Au: accuracy in the recognition of the color of the clothes in the upper part
of the body

– Al: accuracy in the recognition of the color of the clothes in the lower part of
the body

– Ag: gender recognition accuracy
– Ab: bag recognition accuracy
– Ah: hat recognition accuracy

The higher is the accuracy achieved by a method, the higher is its effectiveness
in the recognition of that specific pedestrian attribute.

Finally, we will define the ranking of the contest according to the mean
accuracy (mA), namely the mean of the performance achieved on the recognition
of the various pedestrian attributes:

mA =
Au + Al + Ag + Ab + Ah

5
(2)

The method which achieves the highest mA will be the winner of the PAR
Contest 2023, since it will demonstrate the highest average accuracy in the var-
ious tasks.

5 Baseline Results

To provide a baseline of the achievable results, we performed a baseline experi-
ment on the test set of the competition for all the considered tasks. In particular,
we trained five single-task classifiers based on MobileNetv2 [23] with the images
available in the training set of the MIVIA PAR Dataset. The classifiers for gen-
der, bag and hat are binary, while the two classifiers for the color of the clothes
(upper and lower) are able to recognize 11 classes. The dataset consists of images
of standing pedestrians, so the width to height aspect ratio is between one third
and one quarter. Therefore, we decided to investigate three input sizes with one-
third aspect ratio, i.e. 32 × 96, 64 × 192 and 96 × 288. We used a MobileNetv2
model pre-trained on ImageNet, fine tuning it for 64 epochs with batches of 64
images. We adopted a binary cross-entropy loss function for gender, bag and
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hat, and a categorical cross-entropy loss function for color upper and lower. The
Adam optimizer was initialized with a learning rate equal to 0.005, using a decay
factor of 0.5 every 10 epochs. The parameters were chosen with a grid search on
the validation set, while the best checkpoint of the model has been selected by
taking the one achieving the best validation accuracy. The results of the baseline
experiments are reported in Table 1.

Table 1. Baseline results on the private test set used for PAR Contest 2023. The
methods are ranked with respect to the mean accuracy (mA).

Method Input size Au Al Ag Ab Ah mA

Baseline 32 × 96 0.617 0.794 0.551 0.489 0.699 0.630

64 × 192 0.614 0.800 0.758 0.566 0.786 0.705

96 × 288 0.628 0.724 0.721 0.641 0.832 0.709

The best mA (0.709) is achieved by the baseline 96 × 288, demonstrating
that a larger input size helps to recognize more pedestrian details. The differ-
ence is quite small with the 64 × 192 version (0.705), while it is more evident
than with the 32 × 96 version (0.630). The input size seems to be very relevant
especially for bag (from 0.489 to 0.566) and hat (from 0.699 to 0.832) recog-
nition; this aspect does not surprise us as these attributes can be very small.
Even for gender, it seems that at least an input size of 64× 192 is needed (from
0.551 to 0.758). Regarding the color of the clothes, no substantial differences are
observed in performance as the input size varies; the clothes are quite visible and
the difficulties in recognizing colors do not depend on the receptive field of the
neural network. In general, the analysis of the results suggests that upper clothes
color and bag recognition are the most challenging tasks (maximum accuracy
equal to 0.628 and 0.641, respectively), while hat recognition seems to be easier
(maximum accuracy equal to 0.832); lower clothes color and gender are in the
middle (maximum accuracy equal to 0.800 and 0.758, respectively).

According to these observations, we may conclude that the participants could
benefit from applying their multi-task networks on different portions of the image
depending on the task (for example in the upper part for upper clothes color
and hat or in the lower part for lower clothes color), in order to better exploit
the receptive field; alternatively, they could consider attention in their neural
network architectures to focus on the parts of interest for the specific task.

6 Conclusion

PAR Contest 2023 is a great opportunity to test methods based on multi-task
learning for pedestrian attributes recognition. The MIVIA PAR Dataset, col-
lected in indoor and outdoor scenarios with variations in terms of viewpoints,
occlusions, image resolution, illumination and blur, has a high number of sam-
ples (105,244) representative of the reality of interest; therefore, methods trained
with this dataset, possibly extended with other samples and/or annotations, can
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definitely advance the state of the art in pedestrian attributes recognition. It is
worth mentioning that the extended dataset will be made publicly available, so
that the scientific community can use it to desing new approaches and further
improve existing methods. We are confident that the contest will also be an
inspiration for the proposal of novel multi-task learning methodologies dealing
with missing labels or making use of attention mechanisms or other architec-
tural choices to give more importance to the portions of the image that are most
relevant for the recognition of the specific pedestrian attributes.

Acknowledgements. The research activities behind the organization of the contest
have been partially supported by A.I. Tech srl, Fisciano (SA), Italy.
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Abstract. Pedestrian attribute recognition (PAR) ensures public safety
and security. By automatically detecting attributes such as clothing
color, accessories, and hairstyles, surveillance systems can provide valu-
able information for criminal investigations, aiding in identifying sus-
pects based on their appearances. Additionally, in crowd management
scenarios, PAR enables monitoring of specific groups, such as individ-
uals wearing safety gear at construction sites or identifying potential
threats in sensitive areas. Real-time attribute recognition enhances sit-
uational awareness and facilitates rapid response during emergencies,
thereby contributing to public spaces’ overall safety and security. This
work proposes applying the BLIP-2 Visual Question Answering (VQA)
framework to address the PAR problem. By employing Large Language
Models (LLMs), we have achieved an accuracy rate of 92% in the private
set. This combination of VQA and LLMs makes it possible to effectively
analyze visual information and answer questions related to pedestrian
attributes, improving the accuracy and performance of PAR systems.

Keywords: pedestrian attribute recognition · vision language
models · Visual Question Answering

1 Introduction

PAR is a field that encompasses interdisciplinary approaches to develop solu-
tions for accurately identifying and understanding the attributes of pedestrians.
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This includes recognizing clothing color, accessories, and hairstyles to enhance
situational awareness, manage crowds, and improve public safety and secu-
rity. In PAR, specialized algorithms and models are traditionally customized
to address the unique challenges associated with pedestrian attribute recogni-
tion. By leveraging advanced techniques from computer vision, pattern recog-
nition, and machine learning, PAR aims to automate the analysis of pedes-
trian attributes, eliminating the need for manual intervention in tasks previously
reliant on human intelligence.

In recent years, the rapid progress of Artificial Intelligence (AI) technolo-
gies, specifically deep learning applications, has led to significant advancements
in PAR and garnered widespread recognition. These advancements have been
facilitated by training deep neural networks on huge amounts of data and have
revolutionized fields within the AI domain such as computer vision and natural
language processing. Notably, the rise of LLMs has been exemplified by mile-
stones like GPT-3. LLMs refer to AI systems pre-trained with vast amounts of
textual data, in the order of hundreds of gigabytes or even terabytes of text data,
showcasing unique language understanding, generation competence and the abil-
ity to perform multi-domain tasks without fine-tuning. Prominent LLMs, includ-
ing GPT-3 [3], LaMDA [13], and LLaMA [15], have demonstrated remarkable
capabilities in memorizing and utilizing extensive world knowledge. These LLMs
exhibit emerging abilities such as in-context learning [3] and code generation [10].
Their capacity to harness and apply vast amounts of information represents sig-
nificant advancements in the field. While LLMs have excelled in semantic tasks,
their unimodal training strategy limits their extensive application with other
data sources, such as sensors, cameras, and IoT devices. However, these data
sources are crucial for comprehensive pedestrian attribute recognition, calling
for innovative approaches to leverage the power of LLMs in PAR. Indeed, PAR
is an important task in computer vision with numerous real-world applications.
VQA, a prominent vision-language task, holds great potential in assisting vari-
ous domains [1], including PAR. VQA allows pedestrian and traffic management
centers to better understand their surroundings by providing answers to ques-
tions related to visual information. However, leveraging LLMs for VQA tasks
can be challenging due to the inherent differences between visual and language
inputs and the gap between language modeling and question answering. To over-
come these challenges, a popular approach involves fine-tuning a vision encoder
with a LLM [11]. This technique aligns the visual and linguistic representa-
tion spaces, enabling the model to accurately perform VQA tasks and establish
the connection between visual and language information. By utilizing the pre-
existing knowledge and generalization capabilities of the LLM, the model can
answer questions about visual information without requiring specific training in
the PAR domain.

This paper presents the iROC-ULPGC team’s approach for the PAR Con-
test 2023 [7]. Our proposed pipeline leverages a pre-trained model without the
need for additional training on the provided datasets. While using pre-trained
vision language models for vision tasks is not a new concept, we can refer to the
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recent publication of the WISE Image Search Engine (WISE) [12]. This search
tool utilizes a pre-trained vision language model called OpenCLIP, followed by
a nearest neighbor search in the resulting high-dimensional feature space. The
work by Sridhar et al. builds upon the achievements of Radford et al. [11], who
demonstrated that deep models trained on large datasets containing millions
of image-text pairs can effectively associate visual concepts with their textual
descriptions. Hence, our original plan for the contest was to assess various vision
language models. However, due to time constraints, we could only evaluate the
performance of a fine-tuned BLIP-2 model for the VQA task. Despite this limita-
tion, our contribution lies in adapting VQA techniques to the specific challenge
of PAR. In various domains, including biometrics [5], zero-shot deep learning
models provide the advantage of generalizability and adaptability to new tasks
or domains without the need for explicit training data. In this regard, researchers
have explored zero-shot VQA methods [8], which eliminate the need for ground-
truth question-answer annotations. This approach enables the development of
more generalizable VQA systems that can adapt to new questions and answer
them accurately. Our findings confirm the impressive zero-shot image-to-text
capabilities of the BLIP-2 model, yielding promising results with a mean accu-
racy surpassing 0.92 on the private set.

2 PAR Contest 2023

The PAR contest organizers provided the MIVIA PAR Dataset to partici-
pants [7]. This dataset comprises 105,244 images of cropped individuals, see
Fig. 2, separated into training (93,082) and validation (12,162) samples. Each
sample is completely or partially annotated with numeric labels. The presence
of a negative label for any sample refers to a non-annotated feature. The different
features annotated are the following:

– Color of the upper and lower clothes. Two labels correspond to a single color
associated with upper and lower-body clothes. Eleven possible colors are con-
sidered in the annotations: black (1), blue (2), brown (3), gray (4), green (5),
orange (6), pink (7), purple (8), red (9), white (10), and yellow (11). The label
in the brackets is associated with each color. Other colors are not considered
in the dataset, neither are color combinations.

– Gender of the foreground person. The labels considered are male (0) and
female (1).

– Bag presence. The labels considered are absence (0) and presence (1).
– Hat presence. The labels considered are absence (0) and presence (1).

More details about this dataset can be found in the description published by
the contest organizers [7].
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Language
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Fig. 1. The proposed pipeline for the PAR system. The devised process com-
prises three main modules: the image encoder, the querying transformer, and the large
language model. In the first module, the image is encoded and passed to the second
module, where related queries assist to extract the relevant features. The resulting
tensor acts as an input to the LLM, completing the VQA process.

3 Proposal

3.1 Visual Question Answering

In recent years VQA has attracted the attention of the community, offer-
ing a meeting point for computer vision and natural language processing [2].
Unlike image captioning, where the image semantic information is extracted
and expressed for humans, in VQA the information in the image is compared
with a question or set of questions expressed in natural language. Among the set
of applications identified by Barra et al. for VQA, surveillance and biometrics
are valid real-world scenarios [14].

In our proposal, the adopted strategy uses a pre-trained BLIP-2 language
model [9] trained on a large-scale corpus of text data and fine-tuned for VQA
with the ViT base backbone [4], see Fig. 1. The contribution of the BLIP-2
strategy is to leverage the training procedure. This is done in two bootstrap-
ping stages: 1) the vision-language representation is learned from a frozen image
encoder and 2) the vision-to-language generative model is learned from a frozen
language model.

We have adopted a VQA approach because image captioning could not pro-
vide specific answers for the PAR Contest 2023 five subtasks. To illustrate this,
the reader may launch the online demo1 of the BLIP-2 image captioning model
on the left sample depicted in Fig. 2. We obtained the output ‘A young boy is seen
in this surveillance image’. Below, we utilize a model trained with the VQA v2
dataset [6], which contains more than one million questions about COCO images.

The image captioning output may be helpful or enough for a general task but
not for the particular subtasks requested in the PAR Contest 2023, where the
proposals need to focus on the pedestrian’s upper body and lower body colors,
the gender, and the presence of bags and/or hats.

1 https://huggingface.co/Salesforce/blip-image-captioning-base.

https://huggingface.co/Salesforce/blip-image-captioning-base
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Fig. 2. MIVIA validation set samples with: left) upper body annotation with a single
color, with VQA reporting two colors, center) multiple individuals in the cropped area,
and right) an individual with different jacket and shirt colors.

3.2 Contextual Queries

In PAR, incorporating contextual queries is essential when utilizing a VQA
model. Contextual queries enable a deeper understanding of the visual scene
and contribute to enhanced attribute recognition capabilities. By considering
the surrounding environment, such as the presence of objects, landmarks, or
social cues, the model gains access to additional contextual information that
can provide valuable insights for attribute inference. Contextual queries allow the
VQA model to go beyond analyzing individual pedestrian features and consider
the broader context in which they appear. This holistic approach improves the
model’s ability to accurately identify and interpret various attributes related to
pedestrians, facilitating more robust and comprehensive PAR results. By lever-
aging contextual queries, researchers can unlock the full potential of VQA models
in addressing the challenges of pedestrian attribute recognition in complex real-
world scenarios. After manually iterating with the validation set to increase the
obtained accuracy, the final set of questions contained in the code provided to
organizers is the following:

1. Is the person male or female?
2. What color is the person’s shirt?
3. What color is the person’s trousers?
4. Does the person wear a bag?
5. Does the person wear a hat?
6. Does the person wear a cap?
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7. Does the person wear a jacket?
8. What color is the person’s jacket?

The answers obtained from the model assign numerical labels to the evalu-
ated image, explicitly targeting the resolution of five subtasks outlined in the
contest: gender, upper color, lower color, bag, and hat. Certain answers directly
correspond to specific labels. For instance, the response to question one provides
the answer for the gender subtask. Similarly, a positive response to question four
indicates the presence of a bag or similar item. In contrast, any positive response
to questions five or six triggers a positive answer for the hat subtask.

Only the color subtasks required additional considerations within the scope
of the study. The VQA model occasionally provides color responses that are not
among the 11 colors used for annotation, or it may even provide combinations
of colors. As an example, for the individual depicted in the left sample of Fig. 2,
the model’s response was identified as blue and white. To address colors not
originally included in the annotation, the validation set included alternative
color options such as khaki, tan, plaid, and camouflage. For all such cases, a
mapping to one of the 11 pre-defined colors was performed. In situations where
a color not considered in the mapping appeared during the private evaluation, a
random response was adopted. In cases where the model provided multiple color
answers, the first color in the tuple appearing in the 11-color list was chosen as
the mapping.

Considering these factors, the response to question three is mapped to the
subtask of lower body color. However, for the upper body color, it was observed
during evaluation on the validation set that the answer to question two alone was
insufficient. This is because the VQA model may provide the color of the shirt,
while the annotated color should refer to the jacket when one is being worn,
as illustrated in the relevant sample depicted in Fig. 2. To address this issue, a
rule was devised by combining the responses to questions two, seven, and eight.
This rule enables the determination of the appropriate color assignment for the
individual based on the presence or absence of a jacket:

if person wears a jacket then
color of upper body clothes = jacket color

else
color of upper body clothes = shirt color

endif

4 Results

This section provides firstly a comprehensive summary of the results obtained
from the validation set, which played a crucial role in determining the selection
of questions for inclusion in the VQA procedure. Finally, the results provided by
the organizers for the private set are also summarized.
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Table 1. PAR 23 validation set results

Task Acc. Prec. Rec. F1

Upper color 0.805 0.805 0.805 0.801

Lower color 0.837 0.845 0.837 0.833

Gender 0.909 0.917 0.752 0.826

Bag 0.495 0.295 0.981 0.422

Hat 0.566 0.181 0.989 0.307

4.1 Validation Set

The analysis of the validation set, comprising a total of 12,162 samples, has
yielded encouraging results, as summarized in Table 1. We adopted sklearn to
compute accuracy, precision, recall, and F1 score. For multiple classification
problems, the weighted average is used, given the classes unbalance. The corre-
sponding confusion matrices are shown in Fig. 3.

Notably, these outcomes demonstrate promising performance across the 11
distinct categories encompassing the first two subtasks, specifically regarding
color estimation. However, it is important to acknowledge that the human
observer’s perception of the jean’s color in the images does not always align
perfectly with the provided annotations, especially considering scenarios involv-
ing multiple individuals within the same image, as exemplified by the middle
sample in Fig. 3.

In terms of the binary subtasks, the obtained accuracy rates also display
promising trends. However, it is crucial to highlight a couple of notable obser-
vations. First, the validation set exhibits an inherent imbalance between the
number of males (8,674) and females (3,488), which necessitates careful consid-
eration during analysis. Moreover, the accuracy rates for each class within this
subtask exhibit noticeable variations, as evidenced in the corresponding confu-
sion matrix in Fig. 3.

Lastly, the evaluation of bag and hat presence in the validation set reveals
a high recall rate, indicating successful identification of instances where these
elements are present. However, the corresponding precision values do not reach
equally high levels, implying a significant number of false positives. This obser-
vation, as evidenced by Table 1, suggests that the cropped area provided as
input to the VQA model occasionally lacks sufficient contextual information to
accurately determine the presence of these elements, particularly when they are
positioned near the image boundaries. This limitation highlights the need for
further investigations into methods that can better leverage contextual cues in
such scenarios.

4.2 Private Set

To ensure a rigorous evaluation process, the organizers of the PAR Contest 2023
have employed a mean accuracy metric that takes into account the performance
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Fig. 3. MIVIA validation set confusion matrices.

across all five subtasks in a private set. For every subtask, given the number of
samples K, the accuracy is computed by comparing the ground-truth labels of
sample i-th, represented by gi, with the corresponding predictions, denoted as
pi. This accuracy metric serves as a quantitative measure of the model’s ability
to accurately answer the questions.

A =
∑K

i=1(pi = gi))
K

(1)

This subsection presents a summary of the results obtained from the pri-
vate set, although specific details regarding the dimensions and distribution of
classes across the various sets for the five subtasks are unavailable. Despite this
limitation, the achieved results, as provided by the PAR Contest organizers and
illustrated in Table 2, consistently demonstrate remarkably high rates of success
for our proposed approach. It is crucial to emphasize that these outcomes were
attained using a model that was not explicitly trained for the specific task at
hand.
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Table 2. PAR 23 private set accuracy results

Upper color Lower color Gender Bag Hat Mean

0,9207 0,9081 0,9272 0,9215 0,9279 0,9211

5 Conclusions

Deep learning has brought computer vision forward by leaps and bounds. How-
ever, the optimization of huge networks with hundreds of layers results in com-
plex mathematical models of millions of parameters whose inner workings cannot
be easily understood by human beings. Without this understanding, it is very
difficult for researchers to propose ways to improve their performance, hindering
the progress in the field.

Multimodal networks, capable of achieving semantic understanding of
images, represent a potential paradigm shift. Researchers no longer have to
understand the inner workings of deep learning networks, instead they can con-
centrate on designing the image analysis strategy, planning the features to be
examined and the decision making algorithm.

In this paper, we present a thorough evaluation of a VQA model based on
the BLIP-2 architecture, specifically focusing on its performance within the con-
text of the PAR Contest 2023. The obtained results, following a straightforward
formulation of questions for the five subtasks under consideration, demonstrate
highly promising outcomes. In the validation set, accuracies exceeding 95% were
achieved in three tasks, while the color-related tasks exhibited an accuracy of
84%. Similarly, in the private set, all accuracies exceeded 90%.

These results reinforce the power of vision language models in addressing
complex vision tasks and expand the realm of potential applications within the
field, suggesting that we may be on the verge of very important changes in the
way how computer vision problems will be tackled in the close future.
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Abstract. Neural architecture search (NAS) aims to automate neural
network design process and has shown promising results for image clas-
sification tasks. Owing to combinatorially huge neural network design
spaces coupled with training cost of candidates, NAS is computationally
demanding. Hence, many NAS works focus on efficiency by constraining
the search to only network building blocks (modular search) instead of
searching for the entire architectures (global search), and by approxi-
mating candidates’ performance instead of expensive training. Modular
search, however, offers only partial network discovery and final archi-
tecture configuration such as network’s depth or width requires manual
trial and error. Further, approximating candidates’ performance incur
misleading search directions due to their inaccurate relative rankings. In
this work, we revisit NAS for end to end network discovery and guide the
search using true rankings of candidates by training each from scratch.
However, it is computationally infeasible for existing search strategies
to navigate huge search spaces and determine accurate rankings at the
same time. Therefore, we propose a novel search space and an efficient
search algorithm that offers high accuracy low complexity network dis-
covery with competitive search cost. Our proposed approach is evalu-
ated on the CIFAR-10, yielding an error rate of 4% while the search
cost is just 4.5 GPU days. Moreover, our model is 7.3×, 3.7× and 5.5×
smaller than the smallest models discovered by RL, evolutionary and
gradient-based NAS methods respectively (Code and results available
at: https://github.com/siddikui/TRG-NAS).
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1 Introduction

Neural Architecture Search (NAS) is the task of automating the tedious and
manual neural network design. Early NAS works based on reinforcement learn-
ing (RL) and evolution [4–7] achieve impressive results for image classification
tasks, but hundreds of days of search cost makes practical adaptation of these
methods infeasible. Therefore, follow up research has mostly focused on acceler-
ating NAS by transitioning from global to modular search spaces [9,14], replac-
ing discrete optimization algorithms with continuous search strategies [14,15],
and approximating candidate networks’ performance instead of expensive train-
ing [8,10,14,21,22]. We refer the reader to [20] for more details on how NAS
research has evolved.

The techniques adopted to speed up NAS, collectively, have greatly improved
the search efficiency i.e., from 22400 GPU-days of RL [4] to 4 or less GPU-days of
gradient descent [14,22], but lead to various trade-offs. For instance, NASNet [9]
proposes a cell-based (modular) search space instead of searching for the entire
architecture (global search) and many subsequent works have followed this app-
roach [14,22]. However, once a cell is discovered, the decision of total number of
cells to be stacked up (depth) or channels (width) needs manual trial and error.
This contradicts the original idea of NAS i.e., automatic network discovery for a
given dataset with minimal expert intervention. Moreover, [17] shows that cell-
based search spaces have narrow accuracy ranges such that even a randomly
sampled architecture performs quite well. Such restricted spaces, although guar-
anteeing good and quick results, do not possess performance-wise architectural
diversity and hence do not allow application adaptive network design. Similarly,
continuous search strategies [14,22] are coupled with parameter sharing tech-
niques, which leads to inaccurate search directions as discussed in [20]. There-
fore, we retreat to discrete search strategies for end to end network discovery
using global search spaces.

Searching an architecture for maximizing a given objective, (e.g., test accu-
racy), requires evaluating relative rankings of candidate networks. Relative rank-
ing is defined as how well or worst an architecture performs as compared to oth-
ers on the test dataset. But to determine rankings, networks need to go through
expensive training. Hence, various performance approximations are proposed
instead. For example, [8,10] suggest weight reusing, but it is unclear whether
accuracy improvement is because of better discovered network or because of
inheriting pre-trained weights. Further, various performance predictors have
been proposed to speed up NAS [21], but we argue that guaranteed true rankings
of candidates can only be revealed by training each from scratch and till conver-
gence. However, it is computationally infeasible for existing search strategies to
navigate combinatorially huge search spaces and determine accurate rankings at
the same time. Therefore, to guide the search by true rankings, we propose an
efficient search framework. Our contribution can be summarized as follows:

– A minimal yet powerful search space allowing both macro i.e., depth and
width and fine grain micro i.e., operation and kernel search.
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– A true rank guided search strategy for end to end high accuracy low com-
plexity network discovery with competitive search cost.

On CIFAR-10, our true rank guided NAS (TRG-NAS) discovers a 0.45M param-
eter model with an error rate of 4% and the search cost is just 4.5 days. Our
model is 7.3×, 3.7× and 5.5× smaller than the smallest models discovered by
RL [9], evolutionary [7] and gradient-based [15] NAS methods, respectively.

2 Related Work

Contrary to trending NAS approaches focused on efficiency, our work is more
closely related to early works focused on automating the design process as much
as possible. Naturally, these works use global search spaces and treat NAS as
a black box combinatorial optimization problem. We too have opted to revisit
global search spaces and discrete optimization problem. Therefore, closely related
works in terms of search space and search strategy are those of RL [4,5,10],
evolution [6–8,23], gradient [16] and SMBO [11,18]. Soon after the proposal
of searching in modular search spaces [9], the first work that revisits global
(macro) neural architecture search is that of [13]. More recent work is that of
[22] as it focuses on both micro and macro architecture search but it classifies
micro search as optimal operation within a modular block and macro search as
different choice of blocks, however it still manually stacks up the blocks to decide
the final architecture. The most closely related work that emphasizes end to end
network discovery with minimal human intervention and unconstrained search
is that of [23]. This work proposes automatically generated search spaces from
existing architectures, an evolutionary search algorithm and uses performance
approximations to speed up search. From candidates’ performance evaluation
perspective, NAS is lacking research on the effect of training candidates from
scratch as reported in [20], therefore only very early NAS works [4,5] are known
to have used complete training to evaluate candidates.

3 Methodology

Our approach addresses the main components of NAS; 1) Search Space, 2) Search
Strategy, and 3) Performance Estimation. In this section, we discuss our contri-
bution to each of these NAS components.

3.1 Search Space Design

A search space, or just space from here on, is defined as a set of network vari-
ables from which various network configurations can be sampled. Table 1 shows
that majority of the existing spaces [4,5,10,11] are influenced by the early Conv-
Pool-FC like architecture paradigm [1] and/or residual networks [3]. Moreover,
network depth, width and convolutional kernel size are the most common net-
work variables followed by convolution stride (Strides), skip connections, pooling
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Table 1. Search Space Comparison: The proposed search space focuses on the most
impactful design choices in terms of efficiency.

NAS Method Global Search Space Architectural Variables

Depth
(Layers)

Width
(Channels)

Operations
per Layer

Convolutional
Kernel

Strides Pooling
Layers

Fully
Connected
Layers

Skip Con-
nections

NAS-RL [4] � � � � � �
Meta-QNN [5] � � � � � �
Large-scale Evolution [6] � � � � �
EAS [10] � � � � � �
Genetic Programming CNN [7] � � �
NASH-Net [8] � � � �
NASBOT [11] � � � � � � �
TRG-NAS(Ours) � � � �

layers and fully connected layers. Since, the number of possible network config-
urations grow exponentially with the number of search variables and their value
ranges, we aim to setup the variables such that the resulting space, when coupled
with our search strategy, is combinatorially feasible to explore. However, just to
make the search efficient, we cannot simply drop most of the search variables.
Otherwise, the resulting space cannot posses architecturally diverse networks
in terms of network performance and complexity. Therefore, we aim to strike a
balance between end to end network discovery, search space explorability, and
wide ranged performance/complexity trade-off. Such a space can better adapt to
varying complexity tasks, by offering smaller networks for easier tasks and rela-
tively complex networks for harder ones, hence a step closer to the original idea
of NAS. Next, we discuss the optimisations done to create such search space.

Trimming Search Variables. To start with, we can drop variables arising from
early Conv-Pool-FC like architectures [1] by leveraging FCN like networks [2].
Therefore, fully connected (FC) layers can be replaced by a global pooling layer,
and pooling layers can be replaced by convolutions with stride 2 for reducing
spatial dimensions of an image with a fixed factor. Additionally, we can drop
skip connections since we are not explicitly seeking very deep networks. Hence,
we trim down Fully connected, Pooling layers, and Skip connections from
Table 1.

Channels Search Reduction. Table 1 shows that all methods search for width
(number of channels). This is done for each layer as in [4]. However, we limit
the search to only the initial layer and use a fixed rate of doubling the channels
whenever the spatial dimensions are halved as in [1,14]. This technique further
reduces the search complexity (discussed in the next section), but still allows
variable width architectural diversity. Therefore, we fix stride values of convolu-
tion layers to 1 for normal layers and 2 for when spatial dimensions are halved.
Hence, we further drop Strides from the search space.
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Performance/Complexity Trade-Off. We notice that existing global spaces
do not allow operation search whereas operation type such as separable, dilated
or plain convolution can allow significant architectural diversity and expressive-
ness. Although, we need a compact space but it should still maintain the original
idea of previously unseen architectures. Hence, we allow searching for Opera-
tion type as either separable or plain convolution. Operation choice coupled
with kernel choice of 3, 5 or 7 creates architectural variation for suitable wide
ranged accuracy/parameter-efficiency trade-off.

To this end, we propose a novel search space with depth , width , operations,
and kernels variables, as shown in Table 1. This space is diverse in terms of
performance and network complexity. On CIFAR-10, out of 10 randomly sampled
networks from our space, the worst network achieves an accuracy of 88.7% and
the best 95.8%, as compared to the most widely adopted DARTS’ space, with
worst network achieving 96.18% and the best 97.56% from within 214 sampled
architectures by [17]. This shows that our global search has high variance in terms
of performance as compared to modular search space, hence, better discovered
architectures can be attributed to the superiority of the search strategy and not
to expertly crafted space.

Search Space Complexity. The complexity of the space may vary significantly
depending on search bounds and increases exponentially with depth. For a depth
range of D, width range of W , number of operations O and number of kernels K,
and final discovered depth Df , the maximum possible number of architectures
Narch is given in Eq. 1.

Narch = (O × K)Df × D × W (1)

If we limit the search depth from 4 to 15 layers, the number of channels from
16 to 64 with steps of 16, i.e., D = 12 and W = 4, O = 2 and K = 3, then
assuming Df = 15, the space as described above has approximately 2.25 × 1013

candidate architectures. Alternatively, if we search for channels of each layer, W
will be also be raised to the power of Dmax and the resulting space will have
6.05 × 1021 architectures. The proposed trimmed and enhanced space is still
combinatorially huge but we set up the search variables such that our algorithm
can efficiently navigate it and discover good architectures. With search variables
explained, we can now formally define the search problem.

Search Problem. Let Ltrain and Ltest denote the training and test loss, respec-
tively. These are determined by the network architecture x and its weights θ.
The search goal is to find x∗ that minimizes the test loss Ltest(θ∗, x∗), where
the weights θ∗ associated with the architecture are obtained by minimizing the
training loss θ∗ = arg minθ Ltrain(θ, x∗). This is a bi-level optimization problem
with x as outer-level and θ as inner-level optimization variables:

min
x∈X

Ltest(θ∗(x), x) (2)
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Algorithm 1: TRG-NAS Search Algorithm
Input: Search bounds: Dmin, Dmax, Wmin, Wmax, Wres

Initialization:
L = Dmin, C = Wmax, O = Sep, K = 3 × 3

1. Grow network L ← L + 1 while Acctest improves by L+
acc+

2. Prune network C ← C − Wres while Acctest drops no more than C−
acc−

3. Replace operations Oi ← Conv if improves Acctest

4. Update kernels Ki ← [5 × 5, 7 × 7] if improves Acctest

Return architecture x and its weights θ

s.t. θ∗(x) = arg min
θ

Ltrain(θ, x) (3)

where X = (D,W,O,K) | D ∈ [Dmin,Dmax],W ∈ Wmin + ne | n ∈ N0, e ∈ E,
O ∈ o1, o2,K ∈ k1, k2, k3. D, W , O and K determine network depth, width,
operation type and kernel size, respectively.

Performance Estimation. Solving Eq. 3 is the most expensive component of
NAS, hence many works have used some form of approximation [8,10,14,21].
However, the true Ltrain of an architecture can only be revealed by training
from scratch and till convergence, hence we train each candidate to accurately
reflect its Ltrain and use its Ltest to confidently guide the search.

3.2 Search Algorithm

We introduce our search Algorithm 1 specifically tailored to efficiently navigate
the search space. Details of Algorithm 1 are presented below:

Macro Architecture Search. Since the search complexity increases exponen-
tially with the number of layers, we first search for network depth. With numbers
of channels set to maximum, we let candidate models Grow layers in an attempt
to overfit the training data. Layers are added till they keep increasing accuracy
by L+

acc+(accuracy gain by adding layer). By increasing a layer, if the accuracy
does not drop below L+

acc−(accuracy drop by adding layer), we continue adding
layers. The depth search is terminated if either Dmax (upper bound of layers) is
reached or the accuracy drops below L+

acc− . Once the depth is found, we Prune

the number of channels until the accuracy drops below C−
acc−(accuracy drop by

decreasing channels). We empirically determine the threshold values for L+
acc+ ,

L+
acc− and C−

acc− to be 0.25, 0.15 and 0.5, respectively. This strategy provides
enough flexibility to adjust to target dataset at a macro level, i.e., network depth
and width. Moreover, splitting the search this way effectively reduces the right
term of complexity in Eq. 1 to D′+W ′, where D′ is the number of architectures
evaluated when searching for depth and W ′ for width. At this point, we have an
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Table 2. Effect of different initialization strategies on search.

Initialization Strategy Conv-64-3x3 Conv-64-7x7 Sep-64-3x3 Sep-64-7x7

Accuracy (%) 97.85 97.35 97.96 97.73

Parameters (M) 0.65 0.64 0.23 0.90

architecture with Df and Wf which are the final number of layers and channels
respectively to be used in further search.

Micro Architecture Search. Macro search adapts the architecture to a good
performance point. We subsequently try to fine-tune it with micro search for fine
grain architectural details i.e., operation type and kernel size at each layer. We
simply search operations and kernel sizes for each layer. The idea is to increase
learnable parameters only if it improves accuracy. To achieve this, we Replace
separable convolutions with plain ones and Update kernel sizes. Therefore, we
search for operations by evaluating Df architectures and learn Of i.e., operation
type at each layer, and for kernels by evaluating 2 × Df architectures and learn
Kf i.e., kernel sizes per layer. At this point we have adapted an architecture for
the target dataset by evaluating only Nevaluated = 3×Df +D′+W ′ architectures
instead of the number shown in Eq. 1.

Parameter Efficient Networks. As shown in Algorithm 1, we initialize search
with minimum depth, maximum width, and all layers of separable convolutions
with kernel sizes of 3 × 3. This decision is reached by empirically evaluating
alternative initialization strategies where layers can initially be convolutions or
kernel sizes be 7 × 7, as shown in Table 2. For example, for parameter efficiency,
when kernel size is initialized to 7 × 7, we decrease it to 5 × 5 and 3 × 3 if
the accuracy is retained. Similarly, since plain convolution is less parameter
efficient than separable, we replace it with separable if the accuracy is retained.
To single out the contribution of each strategy and for faster evaluation, we
sample 10 binary sub-datasets from CIFAR-10 instead of using the entire dataset
and record averaged accuracy and number of parameters. In Table 2, we show
that the best strategy is to start with smaller networks and add parameters
only if there is accuracy gain. This strategy significantly beats others in terms
of accuracy/parameter efficiency trade-off.

4 Experiments

4.1 Dataset and Search Details

We use CIFAR-10 for our experiments. It contains 10 classes with 5000 training
and 1000 test images, respectively, for each class. We run search with Dmin = 10,
Dmax = 20, Wmin = 16, Wmax = 72 and Wres = 4. We use standard training set-
tings as in [14,23] and do not take advantage of well-engineered training protocols
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Table 3. Comparison with state-of-the-art NAS architectures for CIFAR-10.

NAS Method Test Err. (%) Params (M) Search Cost (GPU-days) SearchSpace Search Algorithm

NAS-RL [4] 3.65 37.4 22400 Global RL

Meta-QNN [5] 6.92 11.2 100 Global RL

EAS [10] 4.23 23.4 10 Global RL

Large-scale Evolution [6] 5.40 5.4 2600 Global EA

Genetic Programming CNN [7] 5.98 1.7 14.9 Global EA

NASH-Net [8] 5.20 19.7 1 Global EA

Macro-NAS [23] 4.23 6.7 1.03 Global EA

RandGrow [13] 3.38 3.1 6 Global RS

Petridish [16] 2.83 2.2 5 Global Gradient

NASBOT [11] 8.69 N/A 1.7 Global SMBO

NSGA-NET [18] 3.85 3.3 8 Global SMBO

NASNet-A [9] 2.65 3.3 2000 Modular RL

pEvoNAS-C10A [24] 2.48 3.6 1.20 Modular EA

DPP-Net [12] 5.84 0.45 2 Modular SMBO

DARTS [14] 2.76 3.3 4 Modular Gradient

GDAS [15] 2.82 2.5 0.17 Modular Gradient

AGNAS [22] 2.46 3.6 0.4 Modular Gradient

Random (Ours) 6.95±2.18 0.77±0.70 - Global -

TRG-NAS (Ours) 4.00 0.45 4.5 Global Greedy

that hide the contributions of the search strategy or search space [17]. In order
to show the true contributions of the proposed method, we follow NAS best
practices as suggested by [17,19]. During search, we train all candidate models
for 600 epochs using SGD with momentum of 0.9 and weight decay of 3e-4. We
use an initial learning rate of 0.025 annealed down to 0 using a cosine sched-
uler, batch size of 64 and cutout. The search experiments are carried on a single
Nvidia Quadro RTX 8000 GPU and the search cost is 4.5 GPU-days.

4.2 Results

Random Search and Relative Improvement: To show the effectiveness of
our search strategy, we first compare it with 10 Randomly Sampled archi-
tectures. In Table 3, we show that our approach achieves 2.95% less error with
0.25% fewer parameters on average. This clearly singles out the contribution of
our algorithm. Further, we use the Relative Improvement metric (RI) intro-
duced by [17], which is RI = 100 × (Accm − Accr)/Accr, where Accm and Accr

represent the accuracy of search method and average accuracy of randomly sam-
pled architecture, respectively. According to [17], a good search strategy should
achieve an RI > 0 across different runs. Our method consistently achieves an
RI > 2 across 5 different search runs.

Comparison with State-of-the-Art: Although our work is more closely
related to discrete and global NAS methods, for the sake of completeness, we
compare against continuous and modular strategies too, as shown in Table 3.
Our approach achieves a 4% error rate with a small, 0.45M parameters model
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in just 4.5 GPU-days. Given that the network discovery is end to end, and the
discovered architecture does not need further human intervention, the error rate
is competitive with both global and modular search methods. Further, our model
size is equal to that of DPP-Net [12] (0.45M), which is the smallest NAS discov-
ered model for CIFAR-10, but we achieve 1.84% better accuracy. Overall, our
approach offers a balanced trade-off of automatic network design, high accuracy,
low model complexity and practical search cost.

Ablation Studies: To study the effect of operations in search space, we run
search with and without operation variable. We use 10 different seeds for each
scenario and train candidates for 20 epochs for faster search. Searching with
operations, on average, yields 0.79% higher mean accuracy than searching with-
out operations i.e. 89.92% and 89.13%, respectively. This behaviour is expected,
since plain convolution increases learnable parameters as compared to separa-
ble. When searched for 600 epochs, the resulting best model without operations
achieves an accuracy of 95.82% as compared to 96% with operations.

5 Conclusion

In contrast to the prevailing trend of modular search, which provides only par-
tial network discovery, we revisit global NAS and demonstrate that achieving
end-to-end network discovery with an affordable search cost is not only feasi-
ble but can also lead to low-complexity networks. Moreover, instead of attaining
performance gains using expertly crafted modules, our search space offers a wide
range of network architectures with varying performance capabilities. This not
only helps singling out the contribution of the search strategy in unveiling good
architectures but also allows it to potentially adapt to datasets of varying diffi-
culty. Hence, one promising avenue for future research lies in dataset adaptive
neural architecture search.

Acknowledgements. This work has been supported by the European Union’s Hori-
zon 2020 research and innovation program under grant agreement No 739551 (KIOS
CoE - TEAMING) and from the Republic of Cyprus through the Deputy Ministry of
Research, Innovation and Digital Policy.

References

1. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

2. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (2015)

3. He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (2016)

4. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578 (2016)

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1611.01578


34 S. Siddiqui et al.

5. Baker, B., et al.: Designing neural network architectures using reinforcement learn-
ing. arXiv preprint arXiv:1611.02167 (2016)

6. Real, E., et al.: Large-scale evolution of image classifiers. In: International Confer-
ence on Machine Learning. PMLR (2017)

7. Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming approach
to designing convolutional neural network architectures. In: Proceedings of the
Genetic and Evolutionary Computation Conference (2017)

8. Elsken, T., Metzen, J.-H., Hutter, F.: Simple and efficient architecture search for
convolutional neural networks. arXiv preprint arXiv:1711.04528 (2017)

9. Zoph, B., et al.: Learning transferable architectures for scalable image recogni-
tion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2018)

10. Cai, H., et al.: Efficient architecture search by network transformation. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1 (2018)

11. Kandasamy, K., et al.: Neural architecture search with bayesian optimisation and
optimal transport. In: Advances in Neural Information Processing Systems, vol. 31
(2018)

12. Dong, J.-D., et al.: DPP-Net: device-aware progressive search for pareto-optimal
neural architectures. In: Proceedings of the European Conference on Computer
Vision (ECCV) (2018)

13. Hu, H., et al.: Macro neural architecture search revisited. In: 2nd Workshop on
Meta-Learning at NeurIPS (2018)

14. Liu, H., Simonyan, K., Yang, Y.: Darts: differentiable architecture search. arXiv
preprint arXiv:1806.09055 (2018)

15. Dong, X., Yang, Y.: Searching for a robust neural architecture in four GPU hours.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2019)

16. Hu, H., et al.: Efficient forward architecture search. In: Advances in Neural Infor-
mation Processing Systems, vol. 32 (2019)

17. Yang, A., Esperana, P.M., Carlucci, F.M.: NAS evaluation is frustratingly hard.
arXiv preprint arXiv:1912.12522 (2019)

18. Lu, Z., et al.: NSGA-Net: neural architecture search using multi-objective genetic
algorithm. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence (2019)

19. Lindauer, M., Hutter, F.: Best practices for scientific research on neural architec-
ture search. J. Mach. Learn. Res. 21(1), 9820–9837 (2020)

20. Ren, P., et al.: A comprehensive survey of neural architecture search: challenges
and solutions. ACM Comput. Surv. (CSUR) 54(4), 1–34 (2021)

21. White, C., et al.: How powerful are performance predictors in neural architecture
search? In: Advances in Neural Information Processing Systems, vol. 34, pp. 28454–
28469 (2021)

22. Sun, Z., et al.: AGNAS: attention-guided micro and macro-architecture search. In:
International Conference on Machine Learning. PMLR (2022)

23. Lopes, V., Alexandre, L.A.: Towards Less Constrained Macro-Neural Architecture
Search. arXiv preprint arXiv:2203.05508 (2022)

24. Sinha, N., Chen, K.-W.: Neural architecture search using progressive evolution. In:
Proceedings of the Genetic and Evolutionary Computation Conference (2022)

http://arxiv.org/abs/1611.02167
http://arxiv.org/abs/1711.04528
http://arxiv.org/abs/1806.09055
http://arxiv.org/abs/1912.12522
http://arxiv.org/abs/2203.05508


Explainability-Enhanced Neural Network
for Thoracic Diagnosis Improvement

Flavia Costi1(B), Darian M. Onchis1, Codruta Istin2, and Gabriel V. Cozma3

1 Computer Science Department, West University of Timisoara, Timisoara, Romania
{flavia.costi,darian.onchis}@e-uvt.ro

2 Department of Computer and Information Technology,
Politehnica University, Timisoara, Romania

codruta.istin@upt.ro
3 Department of Surgical Semiology I and Thoracic Surgery, Thoracic Surgery

Research Center (CCCTTIM), “Victor Babes” University of Medicine and Pharmacy
of Timisoara, 300041 Timisoara, Romania

gabriel.cozma@umft.ro

Abstract. Thoracic problems are medical conditions that affect the area
behind the sternum and include the heart, lungs, trachea, bronchi, esoph-
agus and other structures of the respiratory and cardiovascular system.
These problems can be caused by a variety of conditions, such as respira-
tory infections, lung conditions, heart conditions, autoimmune diseases,
or anxiety disorders, and can vary in symptoms and severity. In this
paper, we introduce a supervised neural network model that is trained to
predict these problems and to further more increase the level of accuracy
by using explainability methods. We chose to use the attention mecha-
nism to be able to get a higher weight after training the data set. The
accuracy of the trained model reached the value of more than 80%. To
be able to analyze and explain each feature, we use Local Interpretable
Model-Agnostic Explanations, which is a post-hoc model agnostic tech-
nique. Our experiments showed that by using explainability results as
feedback signal, we were able to increase the accuracy of the base model
with more than 20% on a small medical dataset.

Keywords: Deep learning · Thoracic diseases · Explainability ·
Attention Mechanism

1 Introduction

The attention mechanism is a key component of many modern machine learning
algorithms, including neural machine translation, image captioning, and speech
recognition [1]. While attention mechanisms have been primarily used in natural
language processing and computer vision tasks, recent research has shown their
effectiveness in improving the performance of models on tabular datasets as well.

In these contexts, attention mechanisms can be used to help models selec-
tively focus on the most important features in the input data. This can be par-
ticularly useful in cases where the input data contains a large number of features
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
N. Tsapatsoulis et al. (Eds.): CAIP 2023, LNCS 14184, pp. 35–44, 2023.
https://doi.org/10.1007/978-3-031-44237-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44237-7_4&domain=pdf
https://doi.org/10.1007/978-3-031-44237-7_4


36 F. Costi et al.

or where some features may be more important than others for making accurate
predictions. To train the model we used layers of the type: Dense and BatchNor-
malization [2]. A dense layer is often used to compute the attention scores. The
dense layer takes in the input embeddings, which could be the hidden states of
the previous layer or the input features, and applies a set of learnable weights to
compute a score for each embedding. These scores represent the relevance of each
embedding to the current context. The output of the dense layer is then passed
through a Softmax function to obtain a probability distribution over the embed-
dings [3]. This distribution represents the attention weights, which indicate how
much each embedding should be attended to in the next layer.

The attention weights are then used to compute a weighted sum of the input
embeddings, which forms the context vector. The context vector represents the
attended information from the input and is used as the input to the next layer
in the model [1].

On the other hand, LIME algorithm works by approximating the behavior of
the model in a local region around a specific input instance [4]. This generates
an interpretable model that approximates the predictions of the original model,
allowing the user to understand which features were important in making the
prediction.

Attention mechanisms and LIME (Local Interpretable Model-Agnostic
Explanations) can be used together to improve the interpretability of machine
learning models that use attention mechanisms. By using LIME to explain the
behavior of a model in a local region, it can be easier to understand how the
attention mechanism is used to focus on specific parts of the input [5]. After
applying the LIME method to the data set, we could observe the relevant fea-
tures. We retained only the relevant characteristics and applied the attention
mechanism only to them. Thus, we managed to increase the accuracy of the
prediction by a relevant value of 2%, compared to the moment when we did not
apply the method of paying attention to the relevant characteristics.

For the prediction of thoracic problems, we used a data set provided by the
Thoracic Surgery Clinic of the Municipal University Hospital in Timisoara. It is
composed of real data collected from 100 patients, including 55 patients who do
not have chest problems and 45 patients who suffer from chest problems. The
features that are present in the dataset are 19 in number and can be seen in
Fig. 1, where the links between each two entries can be analyzed (see Fig. 1).

2 Theoretical Brief

We briefly describe in this section the basis of the LIME method and the atten-
tion mechanism. We will use these two in correlation in order to improve the
neural network prediction based on the explainability feedback.

The LIME method works for a dataset in a similar way as it works for an
individual prediction. It provides local explanations for individual predictions
by approximating the behavior of the underlying model in a small, interpretable
region of the input space. In this way, it can help humans understand the rea-
soning behind the model’s predictions and identify potential sources of bias or
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Fig. 1. Correlation matrix for the thoracic dataset

errors [6]. Given a machine learning model f, which takes an input x and pro-
duces an output y, the goal of LIME is to explain the behavior of f around a
specific input x. This is done by constructing a simpler, interpretable model g,
which approximates f in the vicinity of x. The first step in the LIME method
is to generate a set of perturbed instances around x, which are similar to x but
differ slightly in some way. These perturbed instances can be generated using
various techniques, such as randomly sampling from a distribution or applying a
specific perturbation function to the input. Next, the model f is applied to each
of the perturbed instances to obtain a set of outputs, which are used to train the
simpler model g. The training data for g consists of the perturbed instances and
their corresponding outputs from f. The type of model used for g depends on
the specific application and the interpretability requirements of the user [7]. In
general, the simpler the model, the more interpretable it is likely to be. Common
choices for g include linear models, decision trees, and rule-based models. Once
the simpler model g is trained, it can be used to explain the behavior of f around
x. Specifically, the coefficients of g can be interpreted as the importance weights
of the input features, indicating which features are most influential in determin-
ing the output of f around x. Finally, the explanations generated by LIME can be
visualized using various techniques, such as heatmaps or bar charts, to highlight
the most important features and their contributions to the prediction [8].
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The attention mechanism is a technique used in deep learning for modeling
relationships between input and output data. At a high level, the attention mech-
anism allows a model to focus on specific parts of the input data at each step
of the processing, by dynamically weighting the importance of different parts of
the input based on their relevance to the current step [9]. Mathematically, the
attention mechanism can be defined as follows: Given a sequence of input vectors
x1, x2, ..., xn and a corresponding sequence of output vectors y1, y2, ..., ym, the
attention mechanism computes a set of attention weights a1, a2, ..., an, where
each ai represents the importance of the i-th input vector for producing the
current output vector yj . The attention weights are typically computed using
a softmax function applied to a learned vector of weights, which is a function
of both the current output vector yj and the entire sequence of input vectors
x1, x2, ..., xn. In practice, the attention mechanism can be implemented using
various neural network architectures. In the transformer model, the attention
mechanism is used to compute both the encoder and decoder outputs, by com-
puting attention weights for each encoder input vector with respect to all the
decoder input vectors, and vice versa. Overall, the attention mechanism is a
powerful tool for improving the accuracy and interpretability of deep learning
models [9].

3 Algorithms and Results

The LIME algorithm behaves like this: first it selects a random subset of
instances from the dataset that it represents the population of interest. Next, it
trains a black-box model, such as a neural network or support vector machine,
on the dataset. This model should be able to make accurate predictions on new,
unseen data. Then, it chooses an instance from the dataset that we want to
explain. It creates a new dataset by sampling instances similar to the instance
we want to explain. This can be done by perturbing the instance, such as adding
noise or dropping features, to create new instances [10]. After we have achieved
this, it follows the training of an interpretable model, in this case a decision tree,
on the newly created dataset. This model should approximate the behavior of the
black-box model in the local region around the instance we want to explain. It
calculates the feature importance scores for the prediction by analyzing the coef-
ficients or decision paths of the interpretable model is a next step. These feature
importance scores explain how each feature contributed to the prediction [11].
The last step is to use the feature importance scores to create an explanation
for the prediction. This explanation can be in the form of a visual or textual
description that highlights the most important features and their contribution
to the prediction. This can help to better understand the dataset and to improve
the performance of the black-box model. We recall below the main steps of the
algorithm:

We assume that the perturbed samples are generated by perturbing the input
instance x using some perturbation method. The kernel fn is a function that com-
putes a similarity score between two data points. The num features parameter
specifies the number of features to select in the local linear model [12].
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Algorithm 1. LIME Algorithm
1: perturbed samples = []
2: for i = 1, . . . , num samples do
3: perturbed sample = generate perturbed sample(x)
4: perturbed samples.append(perturbed sample)
5: end for
6: kernel weights = []
7: for i = 1, . . . , perturbed samples do
8: kernel weight = kernel fn(x, sample)
9: kernel weights.append(kernel weight)

10: end for
11: features, labels = extract features and labels(perturbed samples)
12: model = train local linear model(features, labels, kernel weights, num features)
13: for i = 1, . . . , num features do
14: feature importance weight = compute feature importance weight(model, i)
15: feature importance weights.append(feature importance weight)
16: end for
17: explanation = generate explanation(x, model, feature importance weights, labels)

Specifically, the application of the LIME algorithm consists of the following
computations:

1) Generate num samples perturbed samples by applying a perturbation method
to the input instance x.

2) Compute kernel weights for each perturbed sample using the kernel fn.
3) Train a local linear model using the perturbed samples, kernel weights, and

labels for the black-box model’s predictions.
4) Compute feature importance weights using the local linear model.
5) Generate an explanation of the black-box model’s prediction for the input

instance x using the local linear model and feature importance weights.

We trained a 6-layer deep neural network using our small thoracic dataset
and we evaluated the performances of the model using 4-fold cross-validation.
After training the model, we obtained a prediction of approximately 60% for
the characteristics of the data set. After reaching this accuracy, we were able to
observe which are the relevant and least relevant characteristics for the prediction
of thoracic diseases. In the Fig. 2, it can be observed that the most important
characteristics are: Age, HUavg, Borders, Historie, BronchicalSign, NoNoduls
and Fat. In using the attention mechanism, we only took into account the char-
acteristics listed above, in order to obtain a prediction as relevant as possible for
this data set.

In this study, for training the model, we used 6 layers of the type: Dense and
BatchNormalization. We chose as input shape the value 18, because we excluded
the last feature, and the activation functions used were: Relu and Sigmoid. To
optimize the model, we used the Adam Algorithm, and the number of epochs
chosen was 250.
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Fig. 2. The most important characteristics after applying the LIME algorithm

The main purpose of a dense layer is to learn complex relationships between
the input and output data. The layer applies a linear transformation to the input
data, followed by a non-linear activation function. The output of the layer can
then be fed into another dense layer or a different type of layer in the neural
network. The number of neurons in a dense layer is a hyperparameter that can be
tuned to optimize the performance of the neural network. Increasing the number
of neurons in the layer can increase the capacity of the network to learn complex
patterns in the data, but may also increase the risk of overfitting if the number
of training samples is limited [14,15].

We adapted the general structure of the attention mechanism for our data set
and obtained a very good result. We followed the structure of the base algorithm
as set out below [13]:

Algorithm 2. Attention mechanism
1: for i = 1, . . . , input length do
2: encoder(input sequence[i])
3: end for
4: for i = 1, . . . , output length do
5: prev output = decoder output[i-1]
6: prev hidden = decoder hidden[i-1]
7: attn scores = calculate attention scores(hidden states, prev hidden)
8: attn weights = softmax(attn scores)
9: context vector = weighted sum(hidden states, attn weights)

10: input to decoder = concat(context vector, prev output)
11: decoder output i, decoder hidden i = decoder(input to decoder)
12: end for
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Batch normalization is a technique used in neural networks to normalize the
inputs of a layer. A BatchNormalization layer is a type of layer in a neural
network that performs this normalization operation on the input. The purpose
of batch normalization is to improve the training of deep neural networks by
reducing the internal covariate shift. The internal covariate shift occurs when the
distribution of the input to a layer changes during training, which can make it
difficult for the network to converge to a good solution [16]. Batch normalization
addresses this problem by normalizing the input to each layer to have zero mean
and unit variance. Also, wavelets-based methods could be further employed like
in [19]. Regarding the activation function used, ReLU stands for Rectified Linear
Unit and is a commonly used activation function in neural networks. It is a simple
and efficient non-linear activation function that is widely used in deep learning
models. The ReLU activation function applies the rectification operation to the
input, which simply sets any negative values to zero and leaves the positive
values unchanged [17]. Mathematically, the function can be expressed as:

f(x) = max(0, x), where x is the input to the function. (1)

The sigmoid function is a popular activation function used in artificial neural
networks. It is a smooth, S-shaped function that maps any real-valued number
to a value between 0 and 1. The sigmoid function is defined mathematically as:

f(x) = 1/(1 + ex), where x is the input to the function. (2)

The sigmoid function is often used in the output layer of a neural network to
produce a probability value that can be interpreted as the likelihood of a certain
class [18].

The main idea behind Adam is to adapt the learning rate for each weight
in the neural network based on the average of the first and second moments of
the gradients. The first moment is the mean of the gradients, while the second
moment is the variance of the gradients. The algorithm calculates the adaptive
learning rates for each weight in the network based on the moving averages of the
first and second moments of the gradients. These moving averages are computed
using exponential decay rates, which allows the algorithm to give more weight
to recent gradients and less weight to older ones [20].

We chose to use such a large number of epochs, because the data set was very
small and thus we wanted to learn more the model to correctly predict the result.
Thus, based on the combination of LIME and Attention mechanics, our newly
developed algorithm used to increase the prediction rate could be summarized
as follows:

Thus, after training the data set that includes only the characteristics with
a positive impact (that is relevant), we managed to increase its accuracy by
20%, compared to the moment when we used the entire data set. The accuracy
value obtained following the use of the LIME method and the application of the
attention mechanism on the data set was approximately 80%. All the obtained
results are illustrated with the help of the confusion matrix and the ROC curve
[21], illustrated in Fig. 3. We noticed that after the prediction, the obtained ROC
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Algorithm 3. The explainability-enhancing algorithm
1: Input: Dataset
2: Output: Explainability-enhanced neural network
3: Specify the architecture of the network
4: Perform k-fold cross-validation to evaluate the network
5: Call the LIME explainability method on the network
6: Analyze the explanations from LIME and select the relevant features
7: Activate the attention mechanism in the network
8: Modify the network based on insights gained and retrain the network
9: Return Improved network

curve is ascending and quite linear for such a small volume of data (see Fig. 3).
Therefore, we confirmed the assumption that by extracting only the relevant
information, the model can be trained more correctly and we can get a better
result, closer to reality [22].

Fig. 3. ROC curve obtained following the application of the attention mechanism

4 Conclusions

By using the LIME explainability method for extracting the relevant features
and applying the attention mechanism to them, we managed to increase the
accuracy of the final model with approximately 20% from 60% in the in first
run to above 80% after the explainability refinement. Thus, we highlighted the
importance of extracting only the relevant features from the initial data set. We
managed to apply this mechanism to obtain good predictions, even if the size of
the dataset was very small, of only 100 patients participating in this study.
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Abstract. Super-resolution is an area of Computer Vision compris-
ing various techniques to recover a high-resolution image from a low-
resolution counterpart. These techniques can also be used to enhance
a low-resolution input image without a native high-resolution original.
Single Image Super-Resolution (SISR) techniques aim to do this in a
picture-by-picture fashion. In recent years, deep learning models have
achieved the best performance, using neural networks to find a mapping
between an input low-resolution image and its high-resolution analo-
gous. This work will compare three approaches based on some of the
most notable works in neural-network based super-resolution: SRCNN,
FSRCNN, and ESRGAN. These methods will be used to enhance 3D
computer-generated low-resolution pictures obtained from popular video
games and will be evaluated with respect to the quality of the enhanced
picture and the required computation time. From our study, we can attest
to the superiority of neural network-based methods on the SISR problem
and the benefits of taking a perceptual approach when the quality of the
resulting images.

1 Introduction

Super-resolution is a field of Computer Vision composed of different techniques to
enhance the resolution of pictures or videos. These techniques have seen numer-
ous applications, such as high-quality picture re-scaling, restoring old media
for archival tasks, or 3D computer graphics post-processing, enhancing a low-
resolution image to obtain a high-resolution picture even at a reduced compu-
tational cost. In this work, we will focus on the third task, using footage from
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video games due to the availability of training data and the interest shown by
the industry in recent years (e.g., Nvidia DLSS [4], AMD FSR [1]), as the use
of super-resolution could reduce the hardware requirements on next-gen video
games. Multiple solutions have been proposed for the super-resolution problem;
however, the best results in recent years have been achieved by deep-learning-
based methods. Due to their popularity in recent years, in this work, we will
focus on SRCNN [7], FSRCNN [8], and ESRGAN [15].

The contribution of this work is the following: we have implemented a set of
techniques1 based on some of the most relevant deep-learning-based SISR meth-
ods, and we have studied their suitability for the task of 3D computer-generated
image scaling, both using a content-based (per-pixel) and a perceptual metric;
also, we have compared the performance obtained by training on native high-
resolution and low-resolution picture pairs versus training on high-resolution and
downsampled picture pairs, on a dataset built using footage obtained from a set
of 3 video games with different art styles and graphical complexities. Finally, we
provide a time comparison of the different methods to assess which one would
be more suitable for real-time applications.

The rest of the paper is structured as follows: after briefly presenting some
related works, Sect. 2 will present the different approaches studied in this work,
focusing on the most relevant details to comprehend their workings. Section 3 will
detail the methods used in this work and the results yielded by them. Section 4
will discuss the obtained results. Finally, in Sect. 5, we will extract our conclu-
sions from this work and propose some avenues to be explored in future works.

Related Works: Several surveys on super-resolution techniques have been pub-
lished in the recent times. However, they do not focus on the specific task of
video game super-resolution [14], or they do not even try to compare the listed
methods [16]. On the other hand, novel techniques have been proposed with the
specific task of video game super-resolution [9], but no in-depth comparison with
the previous state of the art is provided, and perceptual metrics are not taken
into account. In this paper, we aim to address such gaps in super-resolution
for video games by creating a new dataset and implementing and evaluating
super-resolution methods in this domain.

2 Studied Approaches

In the course of this work, we have tried different approaches to the SISR prob-
lem based on some of the most notorious works of recent years. This section
summarises the studied methods, focusing on their most relevant features.

2.1 SRCNN

One of the classical approaches to the SISR problem involves constructing dic-
tionaries of low and high-resolution patches from input images; to super-resolve

1 Code available in GitHub: https://github.com/rafabs97/superresolution.

https://github.com/rafabs97/superresolution
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a low-resolution input, it must be encoded using the low-resolution dictionary,
and the resulting coefficients passed to the high-resolution dictionary to obtain
high-resolution patches that will be combined to obtain the final result. In their
pioneer work, Dong et al. [7] present an initial approach to neural network-based
SISR managing to learn a mapping between low-resolution and high-resolution
patches, replicating the described pipeline through the use of a simple convolu-
tional neural network, achieving a high peak signal-to-noise ratio (PSNR) value
and outperforming previous state-of-the-art methods.

The architecture comprises three convolutional layers, taking as hyperparam-
eters the number of filters and the size of these filters. The first layer acts as
a patch extractor and encoder over the original input. The second layer non-
linearly maps the encoding obtained by the first layer to its high-resolution
counterpart. Finally, the last layer combines the predicted features to recon-
struct the output patch. As input, the network takes the original low-resolution
image, upscaled through the use of bicubic interpolation. Aiming to balance
performance and throughput, we have used the SRCNN(9-5-5) configuration
(numbers refer to the kernel size in each layer of the architecture). No padding
is used at the input of each layer: as such, the output from the architecture is the
upscaled version of the center of the image, with a difference of 8 pixels around
the border (i.e., for a 32× 32 input, we get a 48× 48 output instead of a 64× 64
output).

To initialize the weights, we will follow the method proposed by the authors,
sampling values from a Gaussian distribution with a standard deviation of 0.001;
biases are initialized to 0. As loss function, Mean Squared Error (MSE) is used,
as it encourages an improvement in the PSNR metric.

2.2 FSRCNN

Following the success of SRCNN, Dong et al. [8] return to the patch-based app-
roach, trying to improve the throughput of the resulting model to make it suit-
able for real-time applications.

To do so, instead of using an upscaled picture as the input, the model is
applied over the original low-resolution picture, and the entirety of the patch
extraction and mapping phases work over the original width and height, greatly
reducing the number of required operations. The actual spatial upscaling is per-
formed in the end by applying a deconvolution (transposed convolution) over the
extracted feature maps. Shrinking and expanding operations are used to reduce
the number of feature maps after the initial extraction and to increase this num-
ber before the final deconvolution step. The architecture used in this work is
based on the FSRCNN-s variant, which was intended for real-time applications.

For convolutional layers, weights will be initialized with the method presented
by He et al. [10]; for the output layer, weights will be initialized using the method
described for SRCNN layers in Sect. 2.1. As with SRGAN, the authors propose
using MSE as a loss function.
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2.3 ESRGAN

PSNR as a metric does not favor the recovery of high-frequency details, pro-
ducing overly-smooth outputs that do not fare well from the perceptual point
of view [13]. Based on SRGAN [13], Wang et al. [15] present a method that
combines the use of perceptual metrics with a Generative Adversarial Networks
(GAN) approach to achieving more detailed and natural-looking results.

The proposed method acts in two stages: first, a residual convolutional neural
network similar to the one in SRGAN is trained on pairs of low-resolution and
high-resolution patches using a pixel-by-pixel loss function, improving PSNR
and producing “good” initial results to then focus on texture details during the
GAN training. Then, the pre-trained model is optimized with a combination of
content (pixel-wise) loss, perceptual loss, and adversarial loss.

For the generator, we will use a configuration based around dense blocks [11]
instead of using the Residual-in-Residual Dense Blocks (RRDB) presented by
the authors. This results in a deeper architecture than when using Residual
Blocks while being less computationally intensive than using RRDB blocks. An
architecture based on the one proposed in [13] will be used as a discriminator.

Weights will be initialized using the method described in [10], multiplying
by 0.1 as proposed by the authors. In the first stage, we will use MSE instead of
MAE as the loss function (for the sake of consistency between approaches). In the
second stage, for the generator, we will use as the loss function a combination of
VGG loss [13] before activation, adversarial loss (RaGAN loss [12]) and content
loss (we will use MSE). For the discriminator, only RaGAN loss will be used
(without scaling). For the LReLU layers, a negative slope of 0.2 will be used.

3 Experiments and Results

This section will detail the different methods and experiments that comprise this
work and present their results. Note that while some insight into the meaning of
the results will be provided to connect the different subsections, the full in-depth
discussion will appear in Sect. 4.

3.1 Implementation Details

Methods in this work have been implemented using TensorFlow. Models were
trained on a computer with an Intel(R) Core(TM) i7-11700F CPU and an
NVIDIA GeForce RTX 3090(R), and testing was done on a laptop with an AMD
Ryzen(TM) 7 5800HS CPU and an NVIDIA GeForce RTX 3060(R) (6GB, 80W
max. TDP). LPIPS [18] metric computation was done using the PyTorch imple-
mentation in [3] (version 0.1). For brevity, we refer the reader to the public
source code for further implementation details (optimizer, learning rate, etc.).
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3.2 Dataset Construction

To train and test the proposed methods, we have built a dataset of high-
resolution and low-resolution patches obtained from recorded footage of 3 video
games, each one with a different art style and level of graphical complexity.
Those are Phantasy Star Online 2 [5] (PSO2), Grand Theft Auto V [2] (GTAV),
and Shadow of the Tomb Raider [6] (SOTR). These games include a graphical
benchmark : a utility used to assess the performance of a computer on that game
by rendering a predefined sequence of scenes using the game engine and assets.
This acts as a source of repeatable game footage. As graphical settings can be
modified between executions, obtaining recordings of a single sequence of scenes
at different resolutions to find pairs of analogous low and high-resolution pictures
is possible.

For each game we have obtained two recordings: one at a resolution of
1280× 720 (720p) and other at 2560× 1440 (1440p). Each video has been split
into individual frames and then filtered using a simple strategy based on the
Sobel filter, tuned to keep too simple frames (i.e., frames mostly comprised of
“plain” textures) or too complex frames (i.e., similar to pure noise) from enter-
ing the dataset. As a result, we have two sets of frames with a similar number
of items, which are then matched. Once every high-resolution frame has been
assigned a low-resolution frame, we discard duplicates keeping only the pairs of
frames with the lowest MSE. Finally, we sample 1000 pairs of frames (evenly
distributed in the time axis).

From each pair of frames obtained we will extract 50 patches from random
positions in the high-resolution frame, frame and their counterparts from the low-
resolution frame (sizes 64× 64 pixels and 32× 32 pixels, respectively). For each
pair of patches, we will compute their Structural Similarity [17] (SSIM) score,
keeping only those patches with a score greater or equal to 0.8 and resampling
until obtaining the required number of patches. A second dataset is obtained
by downscaling high-resolution patches, to later check for differences against the
dataset built from paired frames. Finally, the part of the dataset corresponding
to each game has been divided into train (32000 patches per game), validation
(8000 patches per game), and test (10000 patches per game) partitions. For the
rest of this work, we will refer to the data coming from each different game as a
different dataset (i.e., GTAV, PSO2 and SOTR datasets), and the combination
of the three as the “full” dataset.

3.3 Dataset Validity Assessment

As described in Sect. 3.2, we have built a dataset containing pairs of high-
resolution and low-resolution patches obtained by capturing video game footage.
Additionally, a second dataset has been built by pairing high-resolution patches
with downscaled versions of themselves by using bicubic downscaling. To deter-
mine which dataset will provide the best results, we will obtain two different
models using the SRCNN-based architecture over the full dataset, one trained on
native patch pairs and the other trained on the dataset obtained by downscaling;
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Table 1. Bicubic downsampling vs native low-resolution capture. Variance
reflects the 95% confidence interval.

Tested on bicubic Tested on native LQ

PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓
SRCNN (bicubic) 47.15 ± 1.07e-01 1.15e-02 ± 1.94e-04 35.33 ± 1.01e-01 6.39e-02 ± 7.48e-04

SRCNN (native) 42.83 ± 9.03e-02 3.82e-02 ± 4.91e-04 35.05 ± 9.50e-02 8.35e-02 ± 8.98e-04

ESRGAN (bicubic) 44.81 ± 8.83e-02 4.33e-03 ± 6.71e-05 34.27 ± 9.66e-02 6.96e-02 ± 7.09e-04

ESRGAN (native) 39.57 ± 1.03e-01 3.68e-02 ± 4.12e-04 33.88 ± 9.66e-02 4.18e-02 ± 5.01e-04

then, each model will be tested on both datasets. In each comparison, we will use
PSNR as a content metric (i.e., how similar are two pictures are in a pixel-by-
pixel fashion) and LPIPS [18] as a perceptual metric (i.e., reflecting human pref-
erence when deciding if two pictures are similar; a lower value means an higher
similarity). To see if this difference also applies when using a more perceptually-
oriented model, we will repeat the experiment using the ESRGAN-based archi-
tecture. Results appear in Table 1.

3.4 Performance Comparison
In this section, we compare the performance of the different models obtained
using the methods in Sect. 2. For each architecture, we have obtained four mod-
els, training over the four datasets in Sect. 3.2; then, we measured the perfor-
mance of every model over the GTAV, PSO2 and SOTR datasets. For each
dataset, we compute both PSNR and LPIPS metrics; results obtained by bicu-
bic interpolation will be provided as a baseline (on imperfect reconstructions, as
its value for an exact match would be infinity). This comparison allows us to find
which architecture performs best in each scenario, and detect additional effects,
such as overfitting and transfer learning. For the GTAV dataset, the comparison
appears in Fig. 1; for the PSO2 dataset, the comparison appears in Fig. 2; finally,
for the SOTR dataset, the comparison appears in Fig. 3. Regarding the quality of

Fig. 1. Performance comparison, testing on the GTAV dataset. Color indicates
the training dataset. Error bars reflect the 95% confidence interval. Best viewed in
digital format. (Color figure online)
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Fig. 2. Performance comparison, testing on the PSO2 dataset. Color indicates
the training dataset. Error bars reflect the 95% confidence interval. Best viewed in
digital format. (Color figure online)

Fig. 3. Performance comparison over the SOTR dataset. Color indicates the
training dataset. Error bars reflect the 95% confidence interval. Best viewed in digital
format. (Color figure online)

the results, in Fig. 4 we compare the performance of the different methods from
a qualitative standpoint. We have used the model trained on the full dataset for
each method, as it yields the best results in every situation (see Sect. 3.4).

3.5 Model Throughput Comparison

Finally, we will measure the time required by each method to upscale an image
from a source resolution of 1280× 720 to a target resolution of 2560× 1440 (2×
upscale). We will upscale the image in a tile-by-tile fashion, using square tiles for
ease of implementation. Please note that for each tile, 2 pixels will be cropped
around the output to prevent border effects; additionally, for the SRCNN-based
approach, the output patch is smaller than 2× (see Sect. 2.1), and thus the input
image must be accordingly padded. The comparison is shown in Table 2.
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Fig. 4. Qualitative comparison. From top to bottom: Grand Theft Auto V, Phan-
tasy Star Online 2, Shadow of the Tomb Raider and Cyberpunk 2077. The area that
best reflects the quality differences appears in detail. Best viewed in digital format.
(Color figure online)

Table 2. Model throughput comparison. Patch size stands for the size of each
processed tile. Mean time measured in miliseconds. A stride of 80 pixels between tiles
will be used, and a batch size of 144.

Padded size Patch size Mean time ↓ FPS ↑
SRCNN 1290 × 730 90 × 90 153.21 6.53

FSRCNN 1282 × 722 82 × 82 48.51 20.61

ESRGAN 1282 × 722 82 × 82 905.76 1.10

4 Discussion

From the results in Sect. 3.3, there seem to be noticeable differences between
using a dataset built from native high-resolution and low-resolution image pairs
versus a dataset built by downscaling the native high-resolution images to obtain
their low-resolution counterpart, both when using a simple architecture such
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as SRCNN or a more complex architecture as the ESRGAN-based one. This
behavior seems to indicate that differences in the data distribution do exist
between the native low-resolution images captured from the game and the ones
obtained by bicubic downscaling. These differences could stem from factors such
as the presence of a certain level of “randomness” between multiple runs of the
benchmark (moving objects, characters, etc.) or other graphical effects present
on the native low-resolution images.

Regarding the performance of the different approaches, it is clear that there
is an improvement from using neural networks to upscale an image instead of a
simple technique such as bicubic interpolation. The main difference lies in per-
ceptual improvement; the perceptual quality (as measured by the LPIPS metric)
achieved by approaches such as the ESRGAN-based or the SRCNN-based one
clearly improves on the baseline established by the simple bicubic interpolation
(this does not seem to apply as much to the FSRCNN-based approach). On the
other hand, it seems that the PSNR metric provides a limited value as a mea-
sure of reconstruction quality: as per the examples in Fig. 4, it seems clear that
the better results from a human standpoint would be the ones obtained by the
ESRGAN-based model, recovering more detail while producing sharper images
with less blur.

On overfitting, training over the full dataset usually delivers better perfor-
mance than overfitting over the part corresponding to a single game; however,
this could be due to the size of our dataset, with models benefitting from having
more data available. About transfer learning, when using the ESRGAN-based
approach, we can see how the model trained on the GTAV dataset ranks just
behind the model trained on the PSO2 dataset when testing over the PSO2
dataset (see Fig. 2), and the model trained on the PSO2 dataset ranks behind
the model trained on the GTAV dataset when testing over the GTAV dataset
(see Fig. 1). This could be due to the complexity and art style of both PSO2 and
GTAV games being relatively “similar”.

Finally, when considering the throughput of the different methods, we see
how the best-performing approach from a quality standpoint, the ESRGAN-
based, has a throughput of a little over a frame per second (see Table 2), making
it completely unsuitable for real-time applications, while simple architectures
like the FSRCNN-based one could be more useful given a suitable task (e.g.,
over the PSO2 dataset, the FSRCNN-based model nearly halves the value for
the LPIPS metric, see Fig. 2).

5 Conclusions and Future Works

In this work, we have compared the performance and throughput of some
of the most relevant approaches to neural-network-based single-image super-
resolution from the last few years when applied to 3D computer-generated
graphics. We have considered two metrics: PSNR, a content-based metric,
and LPIPS, a perceptual metric. Additionally, we have studied the differences
between using a dataset created from pairs of native low-resolution and high-
resolution frames directly captured from three different video games versus using
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a dataset obtained by downsampling native high-resolution frames. Three dif-
ferent approaches have been considered: SRCNN focused on maximizing the
content metric, ESRGAN, which focuses on improving perceptual quality and
FSRCNN, based on SRCNN but trying to reduce the inference time.

From a perceptual standpoint, the best-performing method is the ESRGAN-
based one (clearly seen in Fig. 4). Also, the PSNR metric is not that relevant
when measuring fine-grain reconstruction quality. We argue that it should not
be used when evaluating the output of these methods from a human standpoint.
We have also found differences when using a dataset built from native frames
versus a dataset built by downscaling high-resolution images, possibly due to
effects present in the native low-resolution images that are minimized when
downsampling native high-resolution pictures.

As future works, we propose to explore the viability of a simple architecture
such as the FSRCNN-based one when focusing only on maximizing perceptual
quality. Also, a larger dataset should be built from native low-resolution and
high-resolution image pairs, rendering scenes using a game engine directly to
better manage additional factors affecting the captured footage.
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Abstract. Healthcare workspaces would greatly benefit from the employment
of robotic assistants in both clinical and non-clinical tasks. However, despite
their advantages, a major shortcoming for the deployment of robots limiting their
widespread acceptance by themarket is the fact that existing robotic solutionswere
originally designed for large industrial andwarehouse spaces. These are character-
ized by structured spaces and predictable environments, where robots move along
predefined paths and interaction with humans is typically not required. Herein,
we examine state-of-the-art computer vision methods that enable robots to detect
the presence and identify the type of dynamic obstacles inside their visual field
and adapt their navigation accordingly. To achieve this goal, we trained our robots
using contemporary deep learning methods (namely YOLO-You Only Look Once
architecture and its variations) and obtained promising results in both human
and robot detection. For that purpose, a newly constructed dataset consisting of
robot images was used, complementing the well-known COCO dataset. Overall,
the present study contributes towards the key objective of safe robot navigation in
healthcare spaces and underpins the wider application of studies on Human-Robot
Interaction in less structured environments.

Keywords: Human-Robot Interaction · Convolutional Neural Networks ·
YOLO · Healthcare spaces · Robot navigation

1 Introduction

Human-Robot Interaction (HRI) is the field of study that explores the use of robotic
systems by humans; moreover, it investigates, understands, and evaluates the commu-
nication between robots and humans [1]. As new robotic applications emerge, ranging
from autonomous self-driving cars to drone monitoring and hospital navigation [2],
interest in HRI research is growing too, driven by its ever-increasing social impact. A
key application which has seen widespread utilization over the past decades is robot
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adaptation to large industrial and warehouse spaces [3]. Yet, challenges remain for the
use of robots in hospital and commercial spaces [4], whose less structured environments
require adaptation to crowds and awareness of how to avoid deadlocks [5]. In such com-
plex workspaces the robots should not only be able to conduct human-aware navigation
but also interact with other robots while overcoming challenges related to untrained
healthcare personnel or patients and visitors. Note that a big potential currently exists
for the use of nursing and elderly-care robots [6, 7].

A key step for such applications is the training of robots for the detection of dynamic
obstacles using computer vision methods. This is a non-trivial process, due to the over-
whelming availability of established and emerging deep learning architectures [8]; the
most suitable method needs to adapt to the specific task, producing a robust and accurate
human-aware algorithm. The goal is to train the robots to recognize humans and other
robots in their visual field using embedded or 3rd party camera sensors. This means
that the robots should be able to recognize other robots and humans alike, predict their
motions in real time, and adjust their movement, accordingly, depending on the distance
of the objects in their vicinity. As shown in Fig. 1, robots may vary significantly in
size, from the size of a human to the size of a mobile toy car. Naturally, their perceived
obstacles also change accordingly, depending on their sizes while their perspective on
their environment is different. The latter motivated the construction of a new dataset
consisting of different images of various robots.

Fig. 1. Robots used in healthcare environments should be able to navigate around smaller and
less structured places, even though their size can vary.

Several object detection algorithms exist, with different capabilities. These algo-
rithms are mostly categorized based on how they perform the object detection task. In
this study, we opted for the open-source algorithm of the Deep Learning family YOLO
(You Only Look Once) [9], since it can perform fast and accurate real-time object detec-
tion. Its general architecture (Fig. 2) uses Convolutional Neural Networks (CNNs), but
only requires a single forward propagation through the neural network: YOLO scans the
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video feed as a series of sequential images, and for each one it provides object local-
ization, identification, and classification. More specifically, YOLO splits the image of
interest into an S × S grid, and for each cell in the grid it predicts multiple bounding
boxes per object of interest. Additionally, for each bounding box it predicts confidence
scores and a class probability as well as offset values. The bounding boxes having the
class probability above a threshold value are selected and used to locate the object within
the image. As it is based on regression, the pipeline is quite simple and hence compu-
tationally efficient for real-time performance. YOLO’s appeal lies in offering orders of
magnitude faster object detection (more than 30 frames per second on high-end PCs)
than other algorithms. Its limitation, however, is that it struggles with small objects
within the image; for example, it might have difficulties in detecting a flock of birds,
due to the spatial constraints of the algorithm.

Fig. 2. YOLO general architecture [10].

2 Methodology

2.1 Computer Vision for Human and Object Detection

During recent years, several YOLO models have been developed which differ in their
backbones and heads.Moreover, eachmodel has different versions (e.g., nano, large etc.)
depending on the number of its parameters. To select the appropriate model and version
for our dataset, we compared different versions of YOLOv5, YOLOv7 and YOLOv8
models [11–16]. In all versions, the network utilizes the Leaky RELU and the Sigmoid
function. For optimization, we opted for the SGD function as it outperformed other opti-
mization algorithms, such as ADAM for example. Moreover, the COCO dataset [17]
was used to pre-train the models [18]. Additionally, for fine-tuning our network’s hyper-
parameters and boosting its performance and robustness, we created a custom annotated
dataset which consisted of a total of 172 images of humans and robots. The images were
taken from different angles according to the robot’s viewpoint. Furthermore, the images
were augmented using custom python scripts and labeled using the OpenLabeling tool
[19]; thus, overfitting was avoided during training. We opted for momentum and learn-
ing rate values of 0.9 and 0.01, respectively. After fine-tuning YOLOv5, an appropriate
value for the batch size was found to be 16. The network was trained for 60 epochs as
both training and validation precision plateaued for more epochs, as shown in Fig. 3.
The same behavior was observed in the case of YOLOv7 and YOLOv8.
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Fig. 3. Bar charts showing the variation of recall and precision ofYOLOv5, for a different number
of epochs. In both charts, precision is shown in blue, whereas recall is shown in red. We chose 60
epochs as the performance reached a plateau beyond that number.

2.2 Autonomous Navigation

Beyond real-time object and human detection, as already discussed, the proposed study
is part of a larger objective that targets autonomous mobile robot navigation in less
structured environments. In the context of the RESPECT project [20], simultaneous
localization and mapping (SLAM) needs to take place so that a map of the operating
environment is created,whichwill then the robot use to navigate autonomously following
predefined paths.

The mobile robots used in this study are controlled using the open-source Robot
Operating System (ROS). A Command Manager executable allows the user to send
complex commands on the ROS network using simple string-encoded messages and
read the feedbacks. ROS topics are used for node communication and for publishing
and reading command messages and feedback. To communicate with the robot, we use
the MQTT protocol [21], which is the standard messaging protocol used for Internet
of Things (IoT) setups. A dedicated ROS node provides functionality to bidirectional
bridge between the MQTT and ROS messages.

It was also possible to link ROS network with YOLOv7 for real-time detection, so
that ROS topics are used for node communication and for publishing detection results.
Figure 4 shows the terminals that initiate both theweb camera and theYOLOv7detection.
It also depicts the /yolov7/detections topic in the bottom right console window.
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Fig. 4. Real-time human and object detection with YOLOv7 in an indoor environment, the model
recognises the objects with high accuracy and overlapping objects.

3 Results

To make the results of the three models for our dataset readily comparable, we chose
the same hyperparameters during training. In all cases, the largest version of each model
demonstrated the best results during training. Although all models reached more than
90% precision during training, Yolov8 outperformed the other two models. Moreover,
Yolov8 achieved more than 80% precision already within the first 5 epochs, which is
markedly faster than the other models, as shown in Fig. 5.

Fig. 5. Plots comparing Precision, Recall, andmAP results for YOLOv5, YOLOv7 andYOLOv8.
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Additionally, the overall performance of YOLOv8 was better than that of the other
models during testing. Although YOLOv8 was less accurate in the detection of specific
classes due to the lack of training data, it outperformed the detection accuracy of other
models for humans and robots, as shown in Figs. 6, 7 and 8. Finally, we tested our
network in real time detection videos. The results of both human and robot recognition
reached up to 0.9 precision.

Fig. 6. YOLOv5 detection in an outdoor environment with 25% confidence on robot and 72% on
human.

Fig. 7. YOLOv7 detection in an outdoor environment with 47% confidence on robot and 58% on
human.
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Fig. 8. YOLOv8 detection in an outdoor environment with 88% confidence on robot and 89% on
human.

In order to fine-tune YOLOv8, training sessions were held with different parameters,
with only a few being changed each time. The pre-trained weights, batch size and image
size were the main ones that played an important role in the results.

Figure 9 shows the results of YOLOv8. The code in the legend matches the curves to
the parameters in the Table 1. From the plots it appears that the best parameter set is the
YOLOv8_1. The blue curve outperforms the others on all plots. Training was performed
using Nvidia GeForce GTX 3080, requiring one hour. The basic difference in this run
is the combination between the pre-trained weights, batch size and the image size.

Fig. 9. Plots comparing YOLOv8 precision, recall and mAP results with different parameters.
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Table 1. YOLOv8 parameters that matches the codes in the graph.

YOLOv8 YOLOv8_1 YOLOv8_2 YOLOv8_3 YOLOv8_4 YOLOv8_5 YOLOv8_6

model Yolov8l.pt Yolov8l.pt Yolov8s.pt Yolov8n.pt Yolov8n.pt Yolov8n.pt

data robotCoco2 robotCoco2 robotCoco2 robotCoco2 robotCoco2 robotCoco2

epochs 100 100 100 100 100 100

batchsz 16 32 32 64 64 32

imgsize 640 320 640 640 480 640

4 Conclusions

In this study, a new dataset consisting of different human and robot figures was created.
The dataset was used to compare YOLOv5, YOLOv7 and YOLOv8 architectures. Based
on the experimental setup, YOLOv8 outperformed all prior investigated models, and
was therefore selected for additional fine-tuning, resulting in an accurate and robust
network. The resulting network was further tested for real-time detection in human
and robot populated environments to achieve a detection accuracy of up to 0.9. As
future work, this robotic system will be used in various in-hospital applications to assist
healthcare workers. For this purpose, dedicated datasets will be used and test scenarios
utilizing videos will be implemented specific to indoor healthcare workspaces. This
will emphasize the added value regarding the planned application area. Furthermore,
depending on the application, themodels can be customized to include additional classes
for detection and optimize their accuracy. One of the immediate goals is to run YOLO-
NAS generated by Deci’s Neural Architecture Search Technology, which is expected to
outperform the three versions examined in this study.
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Abstract. Detection and language identification of texts in an uncon-
strained scene image are quintessential processes in the multimedia infor-
mation retrieval domain. Over the years, various approaches have inves-
tigated them by considering detection and language identification as
separate problem statements. To the best of our knowledge, scene text
datasets with minority Indic languages are not yet available. To this end,
we created a scene image dataset called EMBiL containing a combina-
tion of English and Manipuri text. It contains 720 scene images with a
total of over 28500 text instances. The Manipuri language is one of the
official languages of India. To benchmark the performance of EMBiL, we
proposed a single-stage simultaneous detection and language identifica-
tion network called SceneTextYOLO-Net based on YOLOv5. We specif-
ically included the shallow layer characteristics and applied a multi-scale
detection head to improve small target text detection. We also inserted
an attention mechanism between the neck and head structures to con-
centrate on the image’s essential regions. We performed extensive exper-
iments on the proposed dataset using various state-of-the-art techniques.
Furthermore, we performed experimental analysis on ICDAR2015 using
SceneTextYOLO-Net and state-of-the-art methods. EMBiL is available
at: https://github.com/Naosekpam/EMBiL-Dataset.

Keywords: Scene text · language identification · text detection · deep
learning · Indian text · YOLO · script identification

1 Introduction

Multimedia content creation has increased significantly in recent years due to
digital development. As a result, the computer vision field now actively pur-
sues research in information retrieval from text found in various sources. This
information extraction has gradually moved from evaluating texts in digital doc-
ument images [5] to analyzing texts embedded in natural scene images [4]. To
analyze the diverse variety of image content, it is necessary to understand the
semantic information embedded within such images. The goal of text detection
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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[18] is to find the area of the potential text regions. Language identification [3,4]
aims to classify the language of that particular detected text. Text detection
and detection have been explored extensively, mainly for English texts. It is not
yet known how these schemes will perform in other languages or a multi-lingual
environment. These processes are considered the quintessential predecessors of
a multi-lingual text recognition system [16]. They have various possible appli-
cations, such as visual question-answering systems, product reading assistance
for specially-abled people, autonomous driving, etc. Similar applications such
as Google Lens, Text Scanner, Letsenvision, and Microsoft Lens are already
available. However, these applications primarily work well with document and
caption texts.

Over the years, various approaches have investigated them by considering
detection [13] and language identification [17] as separate problem statements. A
few studies have been conducted recently to handle the problem of multi-lingual
detection and language identification jointly [8]. To the best of our knowledge,
the state-of-the-art benchmarks have little to no mention of regional minor-
ity Indian languages. To bridge the research gap of limited data resources, we
curated a bi-lingual scene text detection and language identification dataset
comprising English and Manipuri (also called Meitei Mayek) called the EMBiL
dataset. To benchmark the performance of EMBiL, we proposed a one-stage
scene text detector and language classifier called SceneTextYOLO-Net adapted
from YOLOv5. We found that the aspect ratio of Manipuri text instances is
comparatively smaller than the English text instances. Therefore, we empha-
sized small text target detection with shallow-level features fusion and attention
mechanism to strengthen our model to detect such text instances.

The main contributions of our research are summarized as follows:

– We created EMBiL, the first-of-its-kind bi-lingual scene text dataset con-
taining scene images with text from a minority regional Indian language,
Manipuri, along with English text instances.

– We propose an end-to-end trainable framework for simultaneous text detec-
tion and language identification baseline method called SceneTextYOLO-Net.

– We perform an experimental analysis of EMBiL using SceneTextYOLO-Net.
We also evaluate SceneTextYOLO-Net using ICDAR2015 dataset [7].

2 Related Works

2.1 Text Detection

Scene text detection methods generally follow one of three approaches: 1) Sta-
tistical features-based, 2) Machine learning-based, and 3) Deep learning-based.
More details can be obtained from the survey in [15]. Initially, methods for
scene text detection were based on traditional image features. Stroke Width
Transform (SWT) and Maximally Stable Extremal Regions (MSER) are the
prominent features utilized by statistical features-based methods. The conven-
tional machine learning-based method for detecting scene text takes one of two
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technical paths: Either based on connected components [1] or sliding windows
[18]. These techniques first authenticate the existence of candidate regions using
hand-engineered features. Then they localize the text-containing regions using
a classifier. Under the deep learning paradigm, they are roughly classified into
1) Segmentation based and 2) Regression-based. Segmentation-based [13] meth-
ods regard scene text detection as partitioning images into various segments to
categorize the text regions at the pixel level. The regression-based methods [22]
draw motivation from the object detection frameworks.

2.2 Language Identification

Starting in 2016, the methods for language identification of text from scene
images revolved around deep learning features. In Gomez et al. [4], images are
first divided into patches, followed by convolutional feature extraction. An ele-
mentary weighting strategy uncovers the most discriminative patches per class.
Mei et al. [11] proposed a language identification system by jointly training a
hybrid neural network model consisting of a CNN and an RNN. Ghosh et al. [3]
explored the concept of dark knowledge transfer by making Long Short Term
Memory and deeper CNNs take the role of the teacher model, and shallow CNN
becomes the student model.

2.3 Joint Text Detection and Language Identification

Until recently, text detection and language identification have been considered
separate problems. Very few works have been performed in end-to-end scene text
detection and language identification. Saha et al. [17] proposed an end-to-end
method combining SWT and MSER to produce potential text proposals, suc-
ceeded by proposal refinement via a generative adversarial network. A simple
CNN is then applied to identify the language of the text detected. Rachit et al.
[12] proposed a lightweight scene text detection and language clustering frame-
work by employing the concept of knowledge distillation and channel pruning.
Although many techniques have been developed, there is still room for exploring
datasets and methods representing regional Indic resource constraint languages.

3 EMBiL Dataset

The Manipuri language (called “Meetei Mayek”) is one of India’s scheduled rec-
ognized languages [20]. Statistically, this language is used by only 0.15% (3.6
million out of 1.4 billion) of the country’s (India) total demography. Although
datasets containing Manipuri characters are available in the document and hand-
written images [5], as far as we know, horizontal multi-oriented scene text images
containing English and Manipuri text instances have yet to be available. There-
fore, to fill the research gap, we curated a bi-lingual scene text detection and
language identification benchmark dataset named EMBiL, comprising English
and Manipuri texts embedded in the scene images.
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The dataset includes various naturally occurring visual noises and distortions
collected from diverse scenarios, such as local markets, billboards, navigation and
traffic signs, graffiti, shop banners, etc. Owing to language, culture, and history
differences, scene text images in Manipur have distinctive features that com-
bine English and Meetei Mayek languages. We describe the diversity of EMBiL
in three levels: (1) Image-level diversity; (2) Scene-level diversity; and 3) Text
instance-level diversity. Figure 1 shows some examples of our dataset. Over two
months, we collected, cleaned and labeled data on the acquired images. The first
stage is to evaluate each image thoroughly. We eliminate images that do not
qualify and are too blurry. Afterward, the qualified images are annotated with
a four-point word-level quadrilateral and the corresponding category.

Fig. 1. Examples of EMBiL dataset.

EMBiL contains bi-lingual text images with a total of 720 images. It is divided
as 70% train set, 20% validation, and 10% test set. It contains over 28500 labeled
text targets. English comprises around 22200 text instances, and the rest are
Manipuri instances. Figure 2(b) shows the text instances’ distribution. The plot
shows that the class label distribution is highly skewed. We fixed the resolution
of the image to 640 × 640.

As YOLO uses the central coordinates, height, and width to define the bound-
ing boxes, we added the angle parameters to represent the oriented bounding
box as a rotated rectangle (refer to Fig. 2(a)). So, each text instance bounding is
denoted by six parameters, that is, (category, cx, cy, long − side, short− side, φ)
where long − side and shirt − side refer to the longest and shortest side of the
oriented rectangle, φ ∈ [0, 180) is the angle between the long-side and x-axis
(rotated clockwise) and cx, cy are the central coordinate of the bounding box.
We show the correlation statistics of EMBiL by visualizing the occurrence loca-
tion of the bounding box text instances in Fig. 2(c) and (d), respectively. The (x,
y) plot shows the distribution of centroids of the text instances concerning the
dimension of the images. The distribution shows that most text targets are con-
centrated around the central regions of the images. The (long-side, short-side)
plot depicts the size distribution of the bounding boxes of the targets.

4 Proposed Methodology

We proposed SceneTextYOLO-Net based on one-stage deep CNN as the bench-
mark model of the EMBiL dataset. The architecture is built upon the You Only
Look Once (YOLO) [6] paradigm, particularly the YOLOv5L, and is shown
in Fig. 3. It has three parts: backbone, neck, and head. The backbone is the
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Fig. 2. (a) Oriented box representation; Dataset statistics: (b) Target class distribution;
(c) Target location map; (d) Target size map.

module for feature extraction, consisting of several convolution modules CSP-
NetDarkNet53 for extracting the information from the image at multiple scales
of input height, weight, and channels. CBL is the fundamental component of
the SceneTextYOLO-Net structure, consisting of a convolutional layer, a batch
normalization layer, and a SiLU activation function. We used the output fea-
ture maps from the third, fifth, seventh, and tenth convolutions as input for the
neck. The spatial pyramid pooling-fast (SPPF) module added at the end of the
backbone comprises three 5×5 max-pooling layers connected in a series through
which inputs are passed in succession. Before the CBL operation, a concatena-
tion operation is carried out on the output of the three MaxPool layers. The neck
is a multi-scale feature integration module that combines the feature pyramid
network (FPN) and the pyramid attention network (PAN) to achieve parameter
aggregation of different output feature maps of the backbone. We incorporated
CSP1 and CSP2 modules with the residual structure into the backbone and
neck for further feature enhancement. We design an attention mechanism (refer
Fig. 4) that reduces the information dispersion while simultaneously amplifying
the feature of the global dimension. It is added before the convolution operation
between the head and the neck module.

It consists of three sequential steps:

1. The input tensor F ∈ c × h × w is decomposed into two tensors, the 2D
Average Pool (Favg) and the 2D Max Pool (Fmax) tensor along the channel
axis.

2. The two tensors are concatenated to produce a feature map F1.

F1 = [Favg;Fmax] (1)

where Favg ∈ R
(1×h×w) and Fmax ∈ R

(1×h×w).
3. The feature map F1 is passed as an input to the convolution layer whose

filter (fs) size is 7 × 7 with a sigmoid activation σ(.) function to activate the
visual clues. It outputs a 1-channel tensor. The resultant features map/tensor
Amap(F ) is given by:

Amap(F1) = σ(f (7×7)
s (F1)) (2)

where f
7×7()
s is the convolution operation and Amap(F1) the attention features

with tensor dimension c × h × w with channel (c), height (h) and width (w).
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Fig. 3. Architecture of SceneTextYOLO-Net.

After that, the spatial attention weight map and the input feature map are
multiplied to obtain the final attention feature map.

Fig. 4. Spatial attention module of SceneTextYOLO-Net.

The shallow layer provides high-resolution feature maps and a small recep-
tive field, essential for detecting small text targets. In contrast, higher-layer fea-
tures provide context and semantic information. By integrating these features in
the shallow layer, the model effectively captures both types of features, which
enhances the detection of small text targets. Furthermore, attaching a multi-
scale detection head allows the model to detect small text targets at different
scales, which is vital since small text can appear in different sizes. When feature
maps are upsampled to the size of 80 × 80, we continue to upsample the feature
maps to obtain four downsampling feature maps. At the same time, we fuse the
enlarged 160 × 160 feature maps with the same size feature map of the second
layer in the backbone network to fully use the shallow and deep features. After
multiscale fusion, the four feature scales are obtained as 160×160, 80×80, 40×40,
and 20 × 20. Therefore, twelve anchors are obtained with four detection heads.
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The model’s loss function includes confidence loss, regression loss, classifica-
tion loss, and angle loss. We improve the PIoU [2] method to design the total
loss function for oriented text detection by introducing the angle information of
the rotated object into the calculation. Let r and r

′
denote the predicted and

the ground-truth bounding boxes, respectively. (r, r
′
) is considered positive if

r is based on a positive anchor and r
′

is the ground truth matched with r. A
match happens if the IOU between an anchor and the ground truth is greater
than 0.5. N is used for representing the positive pairs. Regression loss aims to
maximize the PIoU between r and r

′
.

Thus, the regression loss (Lreg) based on angular-PIoU is expressed as:

Lreg =
−∑

r,r′ ∈N ln(
π×|φr−φ

r
′ |

180 × PIOU(r, r
′
))

|N | (3)

The confidence of text is defined as P (Text) × angular − PIOUr
′

r . If the RBB
contains text, then P (Text) = 1, and the confidence will be the angular-PIOU
between the predicted RBB and ground truth. If no text lies in the RBB, the
confidence is set as 0. The angular loss (Lang) is computed using the circular
smooth label (CSL) to deal with angular periodicity, which solves the sudden
hike in loss and boosts the error tolerance between adjacent angles. Details can
be found in [21]. As the area occupied by target classes is lower than the back-
ground class, there may arise a problem of the unbalanced positive and negative
sample distribution. To solve the issue, we used focal loss [9] for classification
(Lcls), confidence (Lconf ) and angular loss (Lang). Our SceneTextYOLO-Net
loss function (LBiTxt) is:

LBiTxt = Lreg + Lconf + Lcls + Lang (4)

5 Experiments

We choose ICDAR2015 [7] in addition to our proposed dataset EMBiL for experi-
mental analysis. To evaluate the network’s performance and validate the network
model’s effectiveness, we adopt mean average precision (mAP), precision, recall,
and F1-score as the metrics. The network is initialized using a pre-trained CSP-
Darknet53 model. We optimize the model using the SGD (stochastic gradient
descent) method. The training epochs are fixed to 300, with a batch size set as
16, an initial learning rate 0.01, a weight decay of 0.0005, and the SGD momen-
tum set to 0.9. We also used the default data augmentation technique used in
YOLOv5. The hyper-parameters settings of data enhancement are: Scale =0.25,
Mosaic = 0.75, Mix up = 0.50, Fliplr = 0.50, Flipud =0.10, Translate = 0.10,
hsv h = 0.01, hsv s = 0.70, and hsv v = 0.40.

We show the performance of SceneTextYOLO-Net on EMBiL in Table 1. To
verify the effectiveness of our improvements algorithm, we conducted a com-
parative experiment with different variants of YOLO and some of the state-
of-the-art approaches. Our proposed model performs better than the variants
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of the YOLOv5 methods. The precision rate improves from 67% in YOLOv5n
to 79% in SceneTextYOLO-Net, and the F-score rises from 62% to 73%. Our
method improves precision, recall, F1-score, and mAP scores by 8%, 2%, 5%,
and 7%, respectively, compared to the highest-performing state-of-the-art meth-
ods. According to these experimental findings, including the four-scale detection
branch plus spatial attention can significantly improve detection accuracy. Shal-
low characteristics successfully address the issue of small-text detection because
they have a better resolution, more location, and comprehensive information.
However, it is simple to lose shallow features as the network’s depth rises. The
fourth detection branch can successfully extract and combine shallow and deep
features. Our model performs better than the works based on pixel-based seg-
mentation tasks such as UtextNet [13] and Zhou et al. [22]. SceneTextYOLO-Net
beats the work by Veronica et al. [14] by a considerable margin regarding recall
value. We show the category-wise performances of the classes of EMBiL in terms
of average precision and average accuracy with SceneTextYOLO-Net and vari-
ants of YOLOv5 in Table 2. The confusion matrix is displayed in Fig. 5(a). The
majority of the targets were predicted correctly (77% for English and 73% for
Manipuri), as shown in the image, demonstrating the model’s strong perfor-
mance. Figure 5(b) shows some qualitative results on EMBiL.

Table 1. Experimental results on EMBiL.

Scheme Precision Recall F1-score mAP@0.5

SceneTextYOLO-Net (Ours) 0.79 0.74 0.75 0.73

YOLOv5n 0.67 0.63 0.64 0.62

YOLOv5s 0.70 0.66 0.68 0.61

YOLOv5l 0.73 0.70 0.71 0.65

Wang et al. [19] 0.71 0.68 0.65 -

UtextNet [13] 0.70 0.72 0.71 -

Veronica et al. [14] 0.68 0.53 0.59 0.52

Zhou et al. [22] 0.72 0.68 0.70 -

Furthermore, we conducted an experiment to validate the performance of
SceneTextYOLO-Net on ICDAR2015, as shown in Table 3. Compared with the
previous methods, SceneTextYOLO-Net achieves state-of-the-art results in sur-
passing the work of Veronica et al. [14] by a huge margin of over 18%, 11%, and
12% in terms of precision, recall, and F1-score, respectively. Our method works
at par with the state-of-the-art methods such as in [19,22], and [10], although
our F1-score is slightly lower than others.
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Table 2. Class-wise evaluation of EMBiL.

Scheme Average precision Average accuracy

English Manipuri English Manipuri

SceneTextYOLO-Net (Ours) 0.75 00.71 0.77 0.73

YOLOv5n 0.61 0.55 0.72 0.55

YOLOv5s 0.62 0.57 0.72 0.65

YOLOv5l 0.68 0.66 0.73 0.65

Fig. 5. (a) Confusion matrix- (b) Qualitative results- of EMBiL using
SceneTextYOLO-Net

Table 3. Experimental results on ICDAR2015.

Scheme Precision Recall F1-score

SceneTextYOLO-Net (Ours) 0.73 0.67 0.70

UtextNet [13] 0.70 0.5 0.5

Veronica et al. [14] 0.54 0.57 0.58

Ma et al. [10] 0.69 0.62 0.75

Zhou et al. [22] 0.67 0.87 0.75

6 Conclusion

In this paper, we created a bi-lingual scene text dataset called EMBiL con-
taining resource constraint regional Indian language comprising around 28500
text instances. We created a baseline model for simultaneous text detection and
language identification called SceneTextYOLO-Net, built upon YOLOv5. The
attention mechanism between the neck and head structures and the employment
of shallow features effectively extracts useful feature information. As can be seen
from the encouraging results achieved, the proposed 2-class detection approach
can outperform the one-class detection approach. It proved that the proposed
approach could yield a better results in multi-language scenarios. Future research
prospects include performance enhancement by adding new language categories
and utilizing multi-modal data by incorporating other forms of data such as
spoken text, etc.
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Abstract. Most recent systems of information extraction (IE) from doc-
uments are regarded as complex models due to the large number of
parameters they need and their resulting high memory footprint. In this
paper, we propose a non complex model that extracts information from
semi-structured documents (SSDs). We focus on the improvement of the
model’s input modelling that provide a low memory consumption and
better performance. The SSD is modelled using graphs to benefit from its
content and layout properties. A Multi-layer Graph Attention network
(Multi-GAT) classifier built on the SSD graph is then used to predict the
text entities. To get rid of the unknown word embeddings in this kind of
document, we provide a simple and efficient method of pre-trained sub-
word embeddings fusion that doesn’t require any additional parameters.
Our strategy for combining the multi-modal features of text, layout, and
image entails concatenating the results of two Dense layers applied to the
word embedding, position encoding and image embedding. Additionally,
the graph adjacency matrix is built in a way to limit the graph dimension
and enhance the classifier performance. All of these techniques improve
the performance of our model while reducing its complexity and input
dimensionality. Our model is evaluated on two artificial invoices datasets
as well as one real dataset (SROIE). For the latter, we obtained a F1
score of 98.22%.

Keywords: Word embedding · Multimodal features · Fusion function

1 Introduction

One of the most important tasks in the field of document analysis is key infor-
mation extraction from business documents. These latter, which are typically
classified as semi-structured documents (SSDs), are subject to specific content
and layout formatting, which is different compared to free text and unstructured
documents. Documents like payslips, invoices and receipts present a significant
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local context for every key information. Each word’s information in the SSD
is frequently surrounded by introductory indicative keywords and located in
a certain semantic area of the page. Therefore, it is not essential to take any
additional far-off words into account when identifying the information entity in
the SSD. Furthermore, these categories of documents might include numerous
words that aren’t understandable in the natural languages, such as some people’s
names, products codes, costumer/employee/company identifiers, and other for-
eign words that are typically found in unique formats made up of a combination
of numbers, characters and special characters. State-of-the-art systems that are
used for the task of key information extraction [2,5,11,16] from documents pro-
pose multi-modal approaches that combine several text features, in particular:
textual, positional, and visual features. The textual features remain the basic
and most fundamental modality. It takes the form of word embedding vectors
which are used in almost all natural language processing (NLP) tasks. It exists
a variety of pre-trained word embedding models that are used for the NLP tasks
where the text could be segmented into characters, subwords or words.

In this paper, we focus on the lowest unit of form and meaning in a lan-
guage, which is the word. Existing word level embedding models mainly rely on
large vocabularies and may create a large number of out-of-vocabulary (OOV)
words when applied to SSDs. Reconstructing the OOVs words vectors using sub-
word embeddings, that requires less memory consumption, is the key to solve
this problem. The word embedding is widely associated to other modality fea-
tures (layout and image) for a more sufficient understanding. The major goal of
our paper is to propose a robust SSD modeling with a corresponding classifier,
all while producing the most efficient multi-modal features and minimizing the
model’s input dimensionality.

In contrast to state-of-the-art methods, which frequently use attention based
transformers and encode the text into a sequence of tokens, we propose a graph
modelling of the SSD’s words and an attention-based node classifier (Multi-GAT)
to extract the information. The graph representation could accurately capture
the significant spatial neighborhood of the SSDs words.

To extract the textual features of the SSDs words, we make use of non con-
textual pre-trained subword embedding models to build the SSDs OOVs words
embedding vectors. A simple average fusion function is used to combine the
subwords vectors and produce a single word vector embedding. This ensure a
low dimension word embedding vectors and doesn’t require additional learnable
parameters. To produce an efficient multimodal word’s features vector, we enrich
the textual features with layout and visual features. A simple and effective fusion
gate made up of two Dense layers is used to this purpose.

Finally, the proposed adjacency matrix is constructed by limiting the number
of nodes in one graph into n max nodes. This proposed technique can reduce
the execution time and increase the model performance.

The paper consists of the following parts: Sect. 2 briefly describes the OOVs
reconstruction methods and the multimodal features combination approaches;
Sect. 3 expands on the proposed approach by describing the components of the
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global architecture; Sect. 4 presents the experiments and results obtained, and
Sect. 5 concludes the paper and shows the global contribution of our system.

2 Related Work

To solve the problem of OOVs generation using pre-trained models, many
approaches were been proposed. FastText model [4] is the reliable reference for
a variety of NLP tasks. It uses the word’s character n-grams in a skip-gram
model. By adding the n-gram vectors of unseen words, it is able to infer their
vectors. However, the FastText models are particularly very large, for instance,
crawl-300d-2M-subword requires roughly 2 Go of memory.

Other methods, such as those described in [6,13,15,20] use characters or
subwords embeddings to determine the unseen words embeddings. For instance,
the BoS (Bag-of-Substring) approach [20] trains an embedding generator by
rebuilding the initial embedding of each word from its bag of characters n-grams.
For each conceivable substring (or character n-gram), they specifically maintain
a vector lookup table. The average of all of its substrings vectors with lengths in
a fixed range is then used to create the word vector. The generator is improved
by Sasaki et al. [15] through combining the vectors of subwords using attention
mechanism. Furthermore, Fukuda et al. [6] combine similar words to improve
this process. Yassine et al. [18] use MultiBPEmb to encode words, and then
combine the resulting embeddings for each word using a BLSTM. They tested
their methods on BPEmb and FastText and the BPEmb model outperformed
FastText in the majority of cases. Zhu et al. [21] put three functions of subword
composition (addition, single-head and multi-head self-attention) to the test in
order to obtain the final representations of the words. Even if the addition treats
each subword with equal weight, ignoring the interactions between the subwords,
it remains more robust than the two proposed attention functions for subword
composition. Jinman et al. [10] also present a vector of words as the sum of all
the subwords that appear in all its possible segmentations. These systems have
demonstrated that employing simple fusion functions like addition and average
is more effective than using attention-based layers.

Combining multimodal features has become a standard technique in docu-
ment analysis, and it has been proven to be successful in information extraction.
At a specific point in all the existing models, all of the modalities must be com-
bined using some chosen techniques in order to provide a single output for each
token. The transformer based LayoutLM [17] sums the token embedding with
the 2D position embeddings to form the transformer’s input. LayoutLM uses two
shared embedding tables (one for each dimension) to form four position embed-
dings that model the token bounding box. In the finetuning stage, it adds to the
model output, the image embedding of the tokens. LayoutLmV2 [16] proposed
by Xu et al. uses the sum of the textual, 1D, 2D position as well as the segment
embedding for each token, and then it adds to the transformer input four visual
tokens of the document summed with positional embedding and a specific seg-
ment embedding. LAMBERT [7] proposed by Garncarek et al. also uses the sum
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of textual, sequential embedding and layout embedding. Garncarek et al. use the
sinusoidal embedding for the layout and add a relative 1D and 2D bias between
the tokens to the attention calculation. StructText [11] suggested by Li et al.
utilizes the sum of text/image embedding with layout embedding and segment
embedding. Li et al. propose an additional cross-modal information fusion layer
at the end that computes a Hadamard product to fuse the textual and visual
segment features. Zhang et al. [19] sum the position embedding to both textual
and visual embedding separately, and then use a gate fusion to combine the
features and form their graph attention network input. By adding it through an
information residual connection, the visual data is made available across graph
attention layers. Cheng et al. [5] apply a normalized layer into the sum of the
textual, positional and visual embeddings.

3 Proposed Method

This section provides a description of our proposed model. The SSD is modeled
as a graph G of the SSD’s words. G is represented by two matrices G = (X,A).
X is the words features vectors matrix and A is the adjacency matrix. After
the graph has been modelled, it is fed into a Multi-GAT to guarantee the graph
nodes classification. We reuse the Multi-GAT proposed by Belhadj et al. [2] and
set the number of layers to four as can be seen in the Fig. 1.

We detail in this section, our proposed method to calculate the OOV words
embedding, the multimodal features combination method as well as the adja-
cency matrix modeling.

3.1 OOV Words Embedding Construction

We create our word embedding model using the pre-trained BPEmb subword
embedding models proposed by Heinzerling et al. [9]. They are subword unit
embeddings based on Byte-Pair Encoding (BPE) that exist in 275 languages.
BPEmb offers multiple vocabulary sizes and vector dimensions that are adapt-
able to use under resources constraints. BPEmb uses the SentencePiece BPE
implementation as a tokenizer and pre-trains embeddings on Wikipedias using
GloVe [12]. Heinzerling et al. provide different vocabulary sizes and multiple vec-
tor dimensions. In this paper, we use the 100 K vocabulary with the embedding
vector of 100 dimensions, which remain sufficiently efficient despite consuming
less memory.

For each OOV word w, whom the segmentation gives S: the resulting set
of subwords. Sw = {si}n1 where n is the number of resulting subwords. The
word embedding vector of w is obtained using a simple Mean function of all
its subwords pre-trained embeddings where Emb is the pre-trained embedding
vector of the subword.

Embw = Mean(Sw) =
1
n

n∑

1

Emb(si) (1)
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Fig. 1. The proposed architecture: the top part of the figure shows the multi-GAT
model with its input and GAT layers, while the bottom part shows the adjacency
matrix modeling (on the left) and the features matrix (on the right).

3.2 Mutlimodal Features Combination

We add to the textual features, the layout and the visual features.

– Layout features: we use the normalized absolute position of the two cor-
ners of the word’s bounding box. Considering the area containing the text
in a SSD page as a coordinate system with the top-left origin. Let the
bounding box coordinates in the new reference be (x0, y0, x1, y1), where
(x0, y0) denotes the top left position of the bounding box and (x1, y1)
denotes the bottom right position. The normalized position is then obtained
by dividing the coordinates by the width and the height of the text area
(x0/width, y0/height, x1/width, y1/height).

– Visual Features: we generate the visual features of the SSD words also using
the ResNet Unet [8,14] network as a backbone. A pre-trained ResNet Unet
encoder receives the SSD image after it has been resized to unify the model
input dimension and output a features map. We extract, for each word, its
region of interest (ROI) using the result features map and the original word’s
bounding box coordinates. Finally, an image embedding vector of a fixed size
is created after flattening the ROI results.

The final word features vector is obtained by combining the three features: tex-
tual, layout and visual. We combine the word embedding vector with the encoded
normalized position using a Dense layer, having a RELU activation function. The
interactions between the different textual dimensions and the position encoding
can be learned using this layer. We pass the visual embedding into another Dense
layer in order to adapt the visual pre-trained features to the classification task
and then we concatenate the outputs of the two layers to form the final features
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vector. We apply the first Dense layer straight on the position encoding without
any former embedding layers which reduces the training parameters.

3.3 Adjacency Matrix Modeling

Each word in the SSD is linked to its n nearest neighbors which are dispersed
across three lines. By calculating the Euclidean distance between the bounding
boxes, we choose the k closest words on the lines above and below as well as the
k closest words on the same line to the left and right of the word if they exist. We
get at most n neighbors n = 4 ∗ k. The indicative keywords that introduce the
information are said to be present in the chosen neighbourhood. The limit for
each graph size is set to n max. This is done by either associating several graphs
of less than n max nodes in the same graph, or dividing a graph having more
than n max nodes into several graphs of less than or equal to n max nodes
each. We make sure to include for each node its first level neighbors. This is
made possible by the limited neighborhood of the nodes. This method avoids
adding non informative padding nodes to fill up the SSD graph in case of SSDs
containing few words and as a result improve the classifier performances while
reducing the training time.

4 Experiments and Results

4.1 Datasets

To evaluate our model, we use the three following datasets:
Gen-Invoices-Fr and Gen-Invoices-En are two generated French and English

invoices datasets by an artificial generator [1,3]. Both of the datasets are splitted
as follows: 1000 invoices for training, 200 for validation and 300 for test. The
invoices contain 28 entity classes to recognize.

SROIE is a public receipt dataset labeled using 4 classes: Company, date,
address, and total. It contains 626 receipts for training and 347 for test.

4.2 Implementation Details

Tensorflow and Keras frameworks have been used to implement our model. The
ResNet-50 [8] Unet is adopted as our visual encoder to construct the image
embedding. All the experiments are performed using a mini-batch size of 4
graphs. The Adam optimizer is used to optimize the multi-GAT. The learning
rate is set to 0.002. The maximum number of epochs is set to 500 and the early
stopping to 50. The n-heads in the Multi-GAT is set to 26 for Gen-Invoices-Fr
and Gen-Invoices-En and to 8 for SROIE.
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Table 1. F1 score obtained on the three datasets using different subwords fusion
methods

Dataset Concatenation [2] Max Sum [4] Mean SoftMax mean

SROIE 97.86 98.14 98.02 98.08 97.95

Gen-Invoices-Fr 96.99 96.99 95.71 97.40 97.22

Gen-Invoices-En 98.44 98.10 98.35 98.44 98.10

4.3 OOV Words Calculation

We test different subword vector fusion methods that don’t require additional
learning parameters on the three datasets. The concatenation takes up to 4
subwords at most, as suggested in [2]. Max calculates the maximum (ele-
ment wise) of all the subwords vectors. Similar to FastText which was demon-
strated in [21] to be successful in comparison to attention-based fusions, the
Sum function calculates the sum of the subwords vectors. Our Mean function
(shown in Eq. 1) computes the simple mean over the subwords vectors, whereas
SoftMax mean =

∑n
1 SoftMax(li)Embi, where li is the length of the subword.

The Mean function shows the best performances, as shown in the Table 1.
This may be explained by the fact that our Mean function, unlike the other
approaches, considers all the subword vectors equally and does not omit any
subwords data. The use of Concatenation and Max may result in some data loss
because Max retains one value per dimension over the subwords vectors whereas
Concatenation may ignore some parts of the word if it’s segmented into more
than four subwords. The Sum and the SoftMax mean are also less effective than
Mean. This demonstrates that the length of the subwords has no impact on
their significance inside the word. We can infer that each subword in the word
embedding has a similar significance and Mean is the function that fuse better
all the subwords vectors in our case.

4.4 Multimodal Features Combination

We compare our fusion method to other methods based on Sum and Concate-
nation fusion functions that have been proposed in state-of-the-art systems such
as [2,7,11,16,17]. Sin is the layout embedding utilized in [7], Emb is the position
embedding suggested in [17] and Enc is our normalized position encoding.

As can be seen in the Table 2, the best result is obtained by concatenating
the outputs of two Dense layers applied to the three multimodal features (text,
layout and image). The simple concatenation is less effective because there is no
interaction between the features. Using a simple sum of text and position is as
well less efficient. This might be explained by the fact that, unlike our suggested
fusion method, the simple sum does not take into consideration the interactions
between the various textual dimensions and position.
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Table 2. F1 score obtained on the three datasets by combining the different features
using different fusion methods.

Fusion method Dim. SROIE Gen-Invoices-Fr Gen-Invoices-En

Concat(Sum(Emb w, Sin(pos)), V isual) 120 97.98 97.16 98.65

Concat(Sum(Emb w,Emb(pos)), V isual) 120 97.25 98.02 98.58

Concat(Emb w, Sin(pos), V isual) 128 97.97 97.82 98.39

Concat(Dense(Emb w||Enc(pos), Dense(V isual)) 128 98.22 98.41 99.16

Table 3. F1 score, epoch steps number and one SSD time processing (in milliseconds)
obtained on Gen-Invoices-En and Gen-Invoices-Fr using different adjacency matrices

Adjacency Matrix Gen-Invoices-En Gen-Invoices-En

Padding adj Our adj 256 Padding adj Our adj 256

F1 score 98.47 99.16 98.21 98.41

Epoch steps 250 190 250 226

Processing time (ms) 431 369 400 373

4.5 Adjacency Matrix

To investigate the effect of the proposed adjacency matrix, we evaluate the model
using two different adjacency matrices on Gen-Invoices-En and Gen-Invoices-Fr
datasets. Padding adj matrix models one document at most, with a maximum
number of nodes set to 512 to fit all the documents in the datasets. Paddings
nodes are used to fill in the graph if the document’s word count is less than 512.
Our adj 256 matrix corresponds to our adjacency matrix with n max = 256
which corresponds to the average number of SSD’s words in the datasets.

The results in the Table 3 show that our suggested adjacency matrix provides
better results while requiring less training epoch steps and processing time. The
proposed adjacency matrix make our model more efficient with fewer memory
resources.

4.6 Overall Results

We compare our system results and complexity with the state-of-the-art models
on the public dataset: SROIE. As can be seen in the Table 4, our proposed
system achieves competitive results compared to the other systems with much
less complexity. We remind that our model is a purely supervised model built
without pre-training step, contrary to the other transformers based systems.
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Table 4. F1 score comparison between our system and the other systems

System LAMBERT [7] LayoutLMV2 [16] StrucText [11] TRIE++ [5] LayoutLM [17] Ours

Params 125M 426M 200M 107M – 343M 113M 41M

F1 score 98.17 97.81 96.25 96.88 98.37 95.24 94.38 98.22

5 Conclusion

In this paper, we presented a low resources multimodal Multi-GAT model. The
SSD is modeled as a graph of words. Each word is connected to its most relevant
neighbors. We proposed a simple method of fusion of pre-trained subwords vec-
tors to reconstruct OOVs words vectors by simply averaging them. This method
doesn’t need additional learnable parameters and allows to take into considera-
tion all the subwords equally. The final multimodal features vector is obtained
using a simple combination method by concatenating the outputs of two Dense
layers applied on textual, positional and visual embedding. Our proposed adja-
cency matrix avoids the non informative padding nodes and allows better per-
formances and fewer resources. Finally our model showed competitive results on
the public SROIE dataset with a F1 score of 98.22% as well as two generated
invoices datasets.
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3. Blanchard, J., Beläıd, Y., Beläıd, A.: Automatic generation of a custom corpora for
invoice analysis and recognition. In: 2019 International Conference on Document
Analysis and Recognition Workshops (ICDARW), vol. 7, p. 1. IEEE (2019)

4. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

5. Cheng, Z., et al.: TRIE++: towards end-to-end information extraction from visu-
ally rich documents. arXiv preprint arXiv:2207.06744 (2022)

6. Fukuda, N., Yoshinaga, N., Kitsuregawa, M.: Robust backed-off estimation of out-
of-vocabulary embeddings. In: Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pp. 4827–4838 (2020)

7. Garncarek, �L, et al.: LAMBERT: layout-aware language modeling for information
extraction. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol.
12821, pp. 532–547. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
86549-8 34

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

https://doi.org/10.1007/978-3-030-86159-9_13
https://doi.org/10.1007/978-3-030-86331-9_55
http://arxiv.org/abs/2207.06744
https://doi.org/10.1007/978-3-030-86549-8_34
https://doi.org/10.1007/978-3-030-86549-8_34


Low-Dimensionality Information Extraction Model for SSDs 85

9. Heinzerling, B., Strube, M.: BPEmb: tokenization-free pre-trained subword embed-
dings in 275 languages. In: Proceedings of the Eleventh International Conference
on Language Resources and Evaluation (LREC) (2018)

10. Jinman, Z., Zhong, S., Zhang, X., Liang, Y.: PBoS: probabilistic bag-of-subwords
for generalizing word embedding. In: Findings of the Association for Computational
Linguistics (EMNLP), pp. 596–611 (2020)

11. Li, Y., et al.: Structext: structured text understanding with multi-modal transform-
ers. In: Proceedings of the 29th ACM International Conference on Multimedia, pp.
1912–1920 (2021)

12. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543 (2014)

13. Pinter, Y., Guthrie, R., Eisenstein, J.: Mimicking word embeddings using subword
RNNs. In: Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pp. 102–112 (2017)

14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

15. Sasaki, S., Suzuki, J., Inui, K.: Subword-based compact reconstruction of word
embeddings. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pp. 3498–3508 (2019)

16. Xu, Y., et al.: LayoutLMv2: multi-modal pre-training for visually-rich document
understanding. arXiv preprint arXiv:2012.14740 (2020)

17. Xu, Y., Li, M., Cui, L., Huang, S., Wei, F., Zhou, M.: LayoutLM: pre-training of
text and layout for document image understanding. In: Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 1192–1200 (2020)

18. Yassine, M., Beauchemin, D., Laviolette, F., Lamontagne, L.: Leveraging subword
embeddings for multinational address parsing. In: 2020 6th IEEE Congress on
Information Science and Technology (CiSt), pp. 353–360. IEEE (2021)

19. Zhang, Z., Ma, J., Du, J., Wang, L., Zhang, J.: Multimodal pre-training based on
graph attention network for document understanding. IEEE Trans. Multimedia
(2022)

20. Zhao, J., Mudgal, S., Liang, Y.: Generalizing word embeddings using bag of sub-
words. In: Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pp. 601–606 (2018)
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Abstract. The limited visual information provided by small objects—
under 32× 32 pixels—makes small object detection a particularly chal-
lenging problem for current detectors. Moreover, standard datasets are
biased towards large objects, limiting the variability of the training set
for the small objects subset. Although new datasets specifically designed
for small object detection have been recently released, the detection pre-
cision is still significantly lower than that of standard object detection.
We propose a data augmentation method based on a Generative Adver-
sarial Network (GAN) to increase the availability of small object samples
at training time, boosting the performance of standard object detectors
in this highly demanding subset. Our Downsampling GAN (DS-GAN)
generates new small objects from larger ones, avoiding the unrealistic
artifacts created by traditional resizing methods. The synthetically gen-
erated objects are inserted in the original dataset images in plausible
positions without causing mismatches between foreground and back-
ground. The proposed method improves the AP

@[.5,.95]
s and AP@.5

s of
a standard object detector in the UVDT small subset by more than 4
and 10 points, respectively.

Keywords: object detection · GAN · data augmentation

1 Introduction

Object detection is a fundamental technique within computer vision, as iden-
tifying objects in images or videos is mandatory for image understanding. The
accuracy of detectors has experienced a lot of progress year on year since the
release of large training datasets and the continuous improvement of convolu-
tional neural networks (CNNs) [6,7].

Small object detection has emerged as a specific problem that has drawn
the attention of the research community [1,11,13]. It plays a fundamental role
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in many applications in which early detection is key, including self-driving cars
or obstacle avoidance on unmanned aerial vehicles (UAVs). Also, solving prob-
lems such as satellite image analysis requires the identification of objects repre-
sented by just a few pixels on the input image. However, the detection precision
of small objects remains a challenging problem, which makes current state-of-
the-art models perform poorly in this field. Moreover, the small object subset
remains underrepresented in standard public datasets such as MS COCO [14] or
ImageNet [19], mainly focused on larger objects.

Previous work has proven the benefits of applying strong data augmentation
to improve the precision of objects detectors [28]. Data augmentation techniques
have also been extensively studied in the image classification field, achieving very
promising results. Therefore, data augmentation has the potential of generally
improving the object detection precision, specially in data-scarce scenarios. Thus,
it may compensate for the lack of small object annotations in most use cases,
avoiding the high costs of manually annotating new data.

The introduction of generative adversarial networks (GANs) [5], brings new
opportunities for more robust data augmentation [9]. The adversarial training
ensures that the generated images contain the same artifacts as those present in
real world images. This is specially relevant for small object data augmentation,
as traditional scaling methods produce unrealistic artifacts [2,20].

For all these reasons, we define a new data augmentation framework based on
GANs to insert synthetic small objects in existing video datasets to alleviate the
fall in precision caused by the lack of objects. The hypothesis is that, synthetic
small objects can be generated by a GAN taking as input a real larger object.
The generator should create a small image, visually similar to the input, free
of unrealistic artifacts that are typical from traditional re-scaling methods. The
main contributions of this paper are:

– Downsampling GAN (DS-GAN), a generative adversarial network architec-
ture that transforms high resolution images containing large objects into low-
resolution images containing small objects.

– An insertion method able to place the synthetic generated objects into plau-
sible positions of the video frames without causing mismatches between back-
ground and foreground.

– Extensive experiments on the public dataset UAVDT [4], analyzing the
improvement of applying our data augmentation method in different data
availability scenarios.

2 Related Work

Small object detection focuses on improving the detection precision of objects
represented by just a few pixels, typically below 32 × 32 pixels [14]. Although the
current trend in object detection is to design deeper models that can extract more
semantic information [7], the limited visual information of small objects fades in
the deeper layers. Therefore, specific solutions such as the Feature Pyramid Net-
work (FPN) [13] or the Region Context Network (RCN) [1] are required in order
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to replicate the same success achieved in general object detection. Moreover, the
most popular datasets are unbalanced towards large objects [14,19]. This issue is
partially addressed by new datasets, specially those focused on videos recorded
from UAVs onboard cameras including UAVDT [4] and VisDrone2019-VID [27].
Also, datasets specifically designed for small object detection evaluation have
been released [1]. Despite efforts to develop new architectures and the compila-
tion of more specific datasets, the detection precision achieved with small objects
remains significantly behind of the results achieved with larger objects [16].

Data augmentation is commonly used to train more general models. Basic
data augmentation techniques for computer vision usually comprise a series of
simple concatenated transformations, such as image mirroring and object-centric
cropping [21]. Following this basic approach, a straightforward solution to aug-
ment the number of small objects would be randomly inserting the objects in
different positions or resizing large objects [11]. However, that does not increase
object variability—the appearance of the object remains invariant—and the con-
text may not be suitable for a specific object—e.g., a car in the sky. The former
issue is addressed in AdaResampling [3] with a prior context map that helps
to insert the objects according to their scale and position. Also, conventional
resizing functions generate artifacts not present in real world images [2,20]. As a
more elaborated alternative, adversarial learning can generate realistic synthetic
objects.

Adversarial learning consists of training two—or more—networks with con-
trasting objectives. A successful use case of adversarial network are GANs [5].
These models are composed of two networks that are trained in an adversar-
ial process: the generator and the discriminator. The role of the generator is
to generate fake images that fool the discriminator, while the discriminator is
trained to differentiate synthetic from real images. Deep Convolutional GANs
(DCGAN) [18] were popularized for the generation of synthetic images. Different
variations of the original architecture have been proposed to solve a wide range
of computer vision problems: image synthesis [25], image super-resolution [12],
or image inpainting [24], among others.

PTGAN [22] addresses the classical problem of domain gap, transferring
instances of persons from one dataset to another keeping the same size. Cycle-
GAN [26] with additional constraints can be used without downsampling.
PTGAN ignores the object positioning problem, not relating object appearance
and the background in the target position. DetectorGAN [15] was proposed to
perform image-to-image translation. This approach does not define an insertion
method either, and it has not been tested for small objects.

Alternatively, we propose to augment the training set with synthetically gen-
erated small objects, downsampling large objects through GANs. Moreover, the
proposed method includes a random component that allows it to generate multi-
ple different synthetic small objects from a single large object. We also define an
object insertion procedure, avoiding inconsistencies between the inserted object
and the background in the target image.
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DS-GAN

Mask R-CNN

Object Integration

HR Object SLR Object

Target Frame

Final Frame

Inpainting

Fig. 1. Overall framework for small data augmentation. DS-GAN downsamples large
HR objects, converting them into small SLR objects. The resulting SLR object is
inserted on the target frame.

3 Method

The proposed data augmentation framework for small objects in video datasets
is described in Fig. 1. The pipeline consists of two fundamental stages: (i) small
object generation and (ii) small object integration. In the first stage, real high-
resolution (HR) objects and their context are transformed into synthetic low-
resolution (SLR) objects. A segmentation mask is also calculated to precisely
remove the context from the generated SLR image. As small object segmentation
is a very challenging task, we propose to calculate this segmentation mask in the
original HR image, and then scale it down to the size of the SLR object (Fig. 1).
Finally, SLR objects are inserted in positions where a real low-resolution (LR)
object exists in the current input frame, or in previous or following frames. The
position selector compares the direction and shape of the original HR object
and the LR objects to select the optimal position for the corresponding SLR
object. This method ensures that the background is adequate for the insertion
of the new object. If necessary, an object inpainting method removes the object
that will be replaced, as shown in Fig. 1. The final augmented dataset facilitates
the training stage of an object detector, improving the small object detection
precision.

3.1 Downsampling GAN

A simple bilinear interpolation or nearest neighbor method suffices to downsam-
ple the original image containing a real HR object by a factor r. The output
image contains an SLR object that can be inserted in new valid positions, aug-
menting the original dataset. However, as the experiments in Sect. 4 show, this
naive approach creates artifacts that make the output image not suitable for
data augmentation. Therefore, we propose a generative adversarial network for
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Fig. 2. DS-GAN architecture overview.

image downsampling (DS-GAN) that transforms HR objects into SLR objects.
The adversarial loss ensures that the generated SLR object has the same feature
distribution as actual LR objects from the original dataset. Thus, the objective of
the generator is to fool the discriminator, making SLR objects indistinguishable
from LR objects.

The main challenge of designing a generative model for image downsampling
in this context is the lack of the corresponding LR object for each HR object,
making it an unpaired problem. The model must generate SLR objects similar
to the corresponding HR input and follow the same feature distribution as real
LR objects. DS-GAN receives images with size W × H × C containing an HR
object and produces images with size W

r × H
r ×C containing an SLR object that

meets these requirements. Thus, the training set for DS-GAN contains real large
(HR) objects and real small (LR) objects.

Figure 2 describes the architecture of DS-GAN in detail. This architecture
consists of two main components: a generator and a discriminator network. The
generator is implemented following an encoder-decoder model with six groups,
each group with two residual blocks of the same dimension with pre-activation
and batch normalization [8]. This network downscales the input image by a
factor of 4, achieved by applying a pooling layer with a 2× 2 kernel after each of
the first four groups and a 2× up-sample deconvolution layer after each of the
last two groups. The discriminator is also composed of the same residual blocks
as the generator—without batch normalization—followed by a fully connected
layer and a sigmoid function. In the discriminator case, there are six residual
blocks with two downsampling pooling layers after each of the last two blocks.

The generator network (G) receives as input an image with an HR object and
a noise vector (z), and the output is an image 4× smaller than the input (r =
4) containing an SLR object. The noise vector z follows a normal distribution
and includes a random component to the input that allows the generation of
multiple SLR objects from the same HR object. Both, the generator network
G and the discriminator network D are alternatively optimized following the
methodology proposed in [5]. As the goal of G is to generate SLR objects based on
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the appearance of the HR input object, the objective function for the adversarial
loss is defined as hinge loss [17]:

lDadv = E
s∼PLR

[min(0, 1 − D(s))] + E
ŝ∼PG

[min(0, 1 + D(ŝ))], (1)

where PLR is the LR subset distribution and PG is the generator distribution to
be learned through the alternative optimization. PG is defined by ŝ = G(b, z) |
b ∈ PHR, where PHR is the HR subset. This equation defines a training goal
for G that consists of generating SLR images that are hard to distinguish from
LR images by D. Hence, the resulting images of the generator are suitable for
data augmentation as D—that was trained to differentiate SLR images from LR
images—cannot identify any pattern in the synthetic generated objects.

The loss function L for G is defined as:

L = lpixel + λlGadv, (2)

where lGadv is the adversarial loss, lpixel is the L2 pixel loss, and λ is a hyperpa-
rameter that balances the influence of each component in the final loss.

The adversarial loss lGadv is defined on the basis of the probabilities of the
discriminator as:

lGadv = − E
b∼PHR

[D(G(b, z))], (3)

where PHR is the HR subset and z is the random noise vector. By including the
LR subset to calculate the adversarial loss, we force the SLR objects to contain
real-world artifacts. Thus, this adversarial loss is computed in an unpaired way.

The lpixel loss is implemented as a L2 distance between the input HR and
the output SLR images:

lpixel =
r2

WH

W
r∑

i=1

H
r∑

j=1

(AvgP (b)i,j − G(b, z)i,j) | b ∈ PHR, (4)

where W and H is the input HR size, r represents the downsampling factor and
AvgP is an average pooling function that transforms the HR input to the output
G(b, z) resolution. Different to the adversarial loss, lpixel is calculated in a paired
way between the SLR object and the corresponding HR object, downsampled
by the average pooling. Adding this term to the loss calculation ensures that
the appearance of the generated SLR image is similar to the original HR object.
Finally, in addition, to solve the stabilization of the discriminator training we
normalize its weights by the spectral normalization technique [17].

4 Experiments

In this section, we evaluate the benefits of augmenting the training set with
synthetic small objects generated by DS-GAN. A state-of-the-art object detector
is optimized with different training sets to assess the detection improvement on
the small objects subset.
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4.1 Experimental Setting

We selected the car category of the UAVDT dataset [4] to evaluate the perfor-
mance of our system. This dataset provides 23,829 training frames and 16,580
test frames belonging to 30 and 20 videos respectively, with a resolution of ≈
1,024 × 540 pixels. Following previous work [14], we consider small objects those
with an area smaller than 32 × 32 pixels. Due to the high redundancy between
consecutive video frames, the training set contains only 10% of the original
frames.

For the construction of the HR subset, we include objects with an area
between 48×48 and 128×128 pixels. To keep a fixed input dimension of 128×128,
we include more context in smaller objects. As the generator of DS-GAN has
a final stride 4×, output downsampled images have a size of 32 × 32 pixels.
The training HR subset for DS-GAN also includes annotations from the Vis-
drone dataset that meet the same requirements. This dataset, as well as the
UVDT dataset, contains urban footage recorded from a UAV onboard camera.
Therefore, images from both datasets are very similar. Overall, the HR subset
for the DS-GAN training contains 5,731 objects while the LR subset contains
5,226 objects. The actual number of real LR objects is higher, but we simulate
a data scarcity scenario by selecting only 25% of the available videos. The test
set contains 316,055 car instances with 274,438 small objects.

For the evaluation of the object detector in the UAVDT test set, we use the
standard Average Precision metrics defined by MS COCO. These include the
AP@.5, in which the overlap between an object detection and the corresponding
ground truth must be greater than 0.5, and the AP@[.5,.95], which averages the
AP for overlap thresholds from 0.5 to 0.95 with increments of 0.05. To effec-
tively assess the improvement of the object detector applying the proposed data
augmentation method, we report the APs, i.e., the AP for the small subset.

4.2 Implementation Details

DS-GAN is trained for 1,000 epochs with an update ratio 1:1 between the dis-
criminator and the generator. The optimizer is Adam [10] with β1 = 0 and β2

= 0.9 and an initial learning rate of 1e-4, with two reductions by a factor of 10
during the training phase. The hyperparameter λ in Eq. 2 is set to 0.01 setting
the influence of the adversarial loss lGadv two orders of magnitude higher than
the pixel loss lpixel. The training data is augmented by applying random image
flipping and the noise vector (z) is randomly sampled from a normal distribution
for each HR input image.

For image inpainting we apply DeepFill to remove the original object when-
ever it is necessary to insert the new SLR object. The DeepFill training process
on the UAVDT dataset uses the hyperparameters defined by [23], setting τ = 40.
The selected object detector is the Faster R-CNN framework with a Feature
Pyramid Network (FPN) [13] as it has proven to be robust against multiple
scale objects, obtaining very competitive results in the small object subsets.
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Table 1. Results of FPN on the small object detection testing subset of UAVDT
training only with 25% of the UAVDT training videos to simulate data scarcity for
small objects.

Data augmentation AP@.5
s AP

@[.5,.95]
s

LR 39.0 17.6

LR + Interp 38.1 16.5

LR + SLR 46.3 20.1

LR + SLR×6 50.9 22.5

4.3 Results

Table 1 reports the AP@.5
s and AP@[.5,.95]

s training the object detector with differ-
ent training sets. The first row of the table (LR) represents the baseline, in which
the detector is only trained with real objects extracted from the same 25% of
videos as the DS-GAN training. Then, we conduct a series of experiments apply-
ing different data augmentation techniques. (LR + Interp.) expands the training
set, duplicating the images and replacing the LR objects in those images with
SLR objects. In this case, these SLR objects are generated by downsampling
original HR objects through bilinear interpolation. Analogously, in the LR +
SLR setting, LR objects are replaced in the duplicated images by SLR objects
generated by DS-GAN. These two experiments include as many SLR objects as
LR in the original training set. The last experiment (LR + SLR×n) explores
the results of inserting n times the number of LR objects. Figure 3b shows a set
of real HR objects and a set of SLR objects generated by DS-GAN.

(a) HR Objects: 128× 128 pixel
(b) SLR Objects: 32 × 32
pixel

Fig. 3. Real large objects, input to DS-GAN (HR objects) and synthetic small objects
generated by DS-GAN (SLR objects).

Results from Table 1 are in line with previous work [2,20], proving that tradi-
tional re-scaling methods generate not visible artifacts that hinder the training
process. On the other hand, DS-GAN produces useful extra training data that
can be leveraged by the object detector to improve the detection precision. Dupli-
cating the training set with SLR objects leads to an improvement of 7.3% AP@.5

s

and 2.5% AP@[.5,.95]
s . Increasing the size of the training set up to 6× the number
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of objects leads to an improvement of 11.9% and 4.9% for AP@.5
s and AP@[.5,.95]

s

respectively.

5 Conclusions

We have proposed a new generative model to augment the training set of a video
dataset with synthetic generated small objects, i.e., objects under 32 × 32 pix-
els. This is crucial as the availability of small objects is limited in most object
detection datasets. Contrary to small objects generated through interpolation
methods, the output of DS-GAN is valuable to significantly improve the perfor-
mance of an object detector by expanding the training set. DS-GAN is designed
on the basis of state-of-the-art super-resolution techniques applied to generate
low-resolution objects from high-resolution objects. The effectiveness of the pro-
posed data augmentation pipeline is specially significant in data scarce scenarios,
improving the detection precision of small objects by a large margin.
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and Manuel González-Hidalgo1,2

1 SCOPIA Research Group, University of the Balearic Islands, 07122 Palma, Spain
{l.talavera,p.bibiloni,manuel.gonzalez}@uib.es

2 Health Research Institute of the Balearic Islands (IdISBa), 07010 Palma, Spain
3 Dermatology Department, Son Espases University Hospital, 07120 Palma, Spain

{aniza.giacaman,luisj.delpozo}@ssib.es
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Abstract. Symmetry is one of the distinguishing features when diag-
nosing the malignancy of skin lesions. In this work, we introduce an
extension of the SymDerm dataset with around 2000 new annotations,
and analyze 1) the effect of different data augmentation techniques on
learning the skin lesion symmetry classification task, and 2) how the
learning of this task is affected when combined with the classification of
its malignancy in a multitask learning environment. We conclude that,
although not all data augmentation techniques improve classification per-
formance, these techniques achieve an increase of approximately 7.7% for
B.Acc and Precision, 8.0% for Recall and F1-score, and 15.08% for the
Kappa score. Moreover, we show that symmetry classification benefits
from the introduction of an auxiliary task by stabilizing the learning
curve and decreasing the train-validation learning gap.

Keywords: Symmetry · Dataset · Multitask deep learning ·
Dermoscopy

1 Introduction

In this work, we present an extension of the SymDerm dataset and carry out
a deeper analysis of the model presented in [9]. Symmetry is one of the distin-
guishing features when diagnosing the malignancy of skin lesions, those with
an irregular shape—asymmetry—are more likely to have a worse prognosis [7].
However, the clinical evaluation of this feature depends on the experience and
subjectivity of the specialist [2], highlighting the need for an automatic and
uniform method capable of classifying the symmetry of lesions.

Nowadays, specialists rely on the evaluation of dermoscopic images to com-
plement their clinical analysis. Its use has been shown to improve diagnostic
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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accuracy by up to 10%–30% [4] compared to clinical observation alone. These
images enable the visualization of specific subsurface structures, shapes, and col-
ors that could not be seen with a simple visual inspection [3]. In this regard, there
is an extensive literature in the computer vision field aimed to assist dermatol-
ogists by automating some of the tasks they perform. In addition, the results
presented by Tschandl et al. [11] showed that human-computer collaboration can
be beneficial in clinical settings. However, only recently the task of skin lesion
symmetry classification has been tackled using deep learning approaches. The
main reason was the data scarcity, as the PH2 dataset was the only publicly
available dataset with information on symmetry for 200 dermoscopic images.
More recently, the SymDerm dataset [9] has introduced 615 labels based on skin
lesion symmetry for publicly available dermoscopic images. In this preliminary
work, it was 1) evaluated the suitability of deep learning techniques for the auto-
matic classification of skin lesion symmetry, 2) demonstrated the superiority of
Convolutional Neural Networks (CNNs) over traditional methods for this task,
and 3) analyzed in which cases the use of transfer learning is beneficial. On this
basis, we consider CNNs as an appropriate classification model for the task at
hand. However, to exploit their potential it is necessary to have access to a con-
siderable amount of data. One way to address this situation is the use of data
augmentation techniques, which slightly changes the input data set during each
epoch. Also, multitask learning has attracted a lot of interest for its ability to
regularise models, and improve prediction accuracy when learning several related
tasks simultaneously. Another of its advantages is the possibility of assessing the
robustness and interpretability of a model through the agreement between the
different outputs.

The contributions of this work are three-fold: 1) We expand the SymDerm
dataset with around 2000 annotations; 2) We analyze the effect of different
data augmentation techniques when learning the task of symmetry classifica-
tion of skin lesions in dermoscopic images using the extended version of the
SymDerm dataset; 3) We analyze how the learning stage of the classification
of skin lesion symmetry is affected when simultaneously learning another task:
classifying lesions according to whether they are “benign” or “malignant”.

The rest of the document is structured as follows. First, in Sect. 2, we describe
the experimental framework, which encompasses the network architecture, the
details of the SymDerm v2.0 dataset, and the details of the learning, imple-
mentation, and evaluation stages. Then, in Sect. 3, we present the experiment
configurations and discuss the obtained results. Finally, in Sect. 4, we provide an
overview of our work and the most relevant conclusions.

2 Experimental Framework

In this section, we establish the experimental framework by describing the
dataset used for the different experiments, the architecture of the single- and
multitask model, its implementation and learning details, and the performance
measures.
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Fig. 1. Architecture of our proposed network.

2.1 Proposed (CNN) Architecture and Learning Details

We see in Fig. 1 that the architecture of the model is based on a simplified
VGG16 network [8], due to the limited amount of data available for the task at
hand. We also found in [9] that increasing the complexity of the network did not
increase its performance either. Thus, the base model consists of ten layers, of
which the input layer, resizes the images to a fixed size of 256×256×3, followed
by three blocks, each of them being a 3 × 3 convolution, and a two-stride 3 × 3
convolution to reduce the spatial resolution, using 8, 16, and 32 filters in each
block, respectively. Then, the number of features is reduced by means of two
dense layers, and finally, a Softmax layer is used to output the final classification
of the lesion symmetry.

In the case of the multitasking experiment, another branch is added after the
three main blocks, which is responsible for learning the specific features for the
task of classifying lesions as “benign” or “malignant”. It consists of two dense
layers and a Softmax layer to obtain the malignancy classification.

2.2 SymDerm v2.0 Dataset

The SymDerm dataset is aimed to serve as a training set for the classification of
the symmetry of skin lesions. It is a dataset exclusively of annotations based on
the symmetry of dermoscopic images selected from various high-quality publicly
available data sources, namely EDRA2002 [1], PH2 [6], ISIC20181, HAM10000
[10], dermIS2, and dermquest3 datasets. Initially, the SymDerm dataset consisted
of a set of 615 expert labels for the symmetry of skin lesions with the following
3-class taxonomy: “fully asymmetric”, “symmetric w.r.t. 1 axis”, or “symmetric
w.r.t. 2 axes”. Now, in order to ease the training of neural networks for automated
symmetry classification of pigmented skin lesions, which is limited by the amount
and variety of available data, we have expanded the SymDerm dataset with
around 2000 new annotations. These have been made by the same three expert
dermatologists that provide us with the first subset of annotations, who have
also followed the same procedure. The final dataset—SymDerm v2.0—, which
we have made available under demand, consists of 2655 annotations obtained
1 www.isic-archive.com.
2 www.dermis.net.
3 Was deactivated on December 31, 2019.

www.isic-archive.com
www.dermis.net
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by the experts’ agreement according to the max voting method. In Table 1,
we describe the annotations of the SymDerm v2.0 dataset according to their
classes and the dataset to which the images belong. We can see how there is
an imbalance between classes “fully asymmetric” and “symmetric w.r.t. 1 axis”,
where the first class stands out with 46% of lesions, and the latter one with 24%
of the samples.

Table 1. Summary of the distribution of the images in the dataset according to their
classes and the dataset to which they belong.

dermis dermquest EDRA PH2 HAM10000 ISIC 2018

Fully asymmetric 42 89 52 52 936 57

Symmetric w.r.t. 1 axis 12 18 11 31 505 56

Symmetric w.r.t. 2 axes 14 27 14 117 559 63

In Fig. 2, we depict the distribution of the annotations of each of the experts
and the resulting max voting labels. Also, we present the confusion matrices
between each expert’s labels and the ones resulting from the max voting method
on the SymDerm v2.0 dataset. As can be seen in Fig. 2d, both expert 1 and
expert 3 tend to annotate lesions as “fully asymmetric”. On the other hand, we
could consider that expert 2 is more cautious in labeling lesions in one of the
two extremes and tends to label them as “symmetric with respect to one axis”.
From Figs. 2a to 2c, we can see that both experts 1 and 3 have agreed on most
of the lesions they have labeled as “fully asymmetric”, while they have differed
quite a bit in the other two classes. In the same way, we can infer that experts
1 and 2 have agreed more in labeling the same lesions as “symmetric w.r.t. 1
axis”, while for the “symmetric w.r.t. 2 axes” class, there has been a greater
consensus between experts 2 and 3.

Dataset for Multitasking Experiments. With our multitasking learning
stage, we expect the model to be able to, given a dermoscopic image, simulta-
neously classify the skin lesion according to its symmetry and malignancy. For
classifying the symmetry of the lesion we have used the SymDerm v2.0 dataset,
presented in the previous Sect. 2.2, which provides 2655 labels. On the other
hand, to train and evaluate the model for the task of classifying lesion malig-
nancy, we gathered 11321 images from publicly available datasets, see Sect. 2.2,
and infer the labels whenever the diagnosis of the lesion was well-defined. In
Table 2, we can see a summary of the distribution of the images in the dataset
used for the classification of the malignancy of the lesion according to its class and
the dataset to which it belongs. As for the correspondence between the labels
that form each of the two classification tasks, “asymmetric” vs. “symmetric”
–for the symmetry of the lesion– and “malignant” vs. “benign” –for the malig-
nancy of the lesion–, 39.6% of lesions labeled as “asymmetric” correspond to
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Fig. 2. Confusion matrices of the agreement between each expert labels and the ones
resulting from the max voting method (a)–(c), and distribution of each expert’s anno-
tations (d) in the SymDerm v2.0 dataset.

“malignant” lesions, while 53% correspond to “benign” lesions, and the remain-
ing 7.4% correspond to lesions whose diagnosis we have not been able to infer.
On the other hand, the majority of lesions labeled either as “symmetric w.r.t.
1 axis” or “symmetric w.r.t. 2 axes” are labeled as “benign”, with 80.4% and
83.6%, respectively. Meanwhile, 8.5% of lesions in the first case, and 3.8% in the
second case, are labeled as malignant. We emphasize that not all samples have
annotations for both tasks and that in this case, the loss of the corresponding
task is set to zero so weights are not affected.

Table 2. Summary of the distribution of the images in the dataset used for the classi-
fication of the malignancy of the lesion according to its class and the dataset to which
it belongs.

dermis dermquest EDRA PH2 HAM10000 ISIC 2018

Benign 0 0 693 160 8061 0

Malignant 43 76 294 40 1954 0

2.3 Implementation and Learning Details

All the experiments were carried out with 2xNVIDIA R© RTX
TM

. We implemented
the proposed architecture using Keras and trained it from scratch following a
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3-fold stratified cross-validation strategy with 1) a batch size of 32; 2) randomly
initialized weights; 3) the Adam optimizer with a learning rate experimentally
set to 10−4; and 4) the Weighted Categorical Cross-Entropy loss function for
each task following an early stopping policy based on monitoring the validation
loss, and restoring the weights of the best epoch.

During experimentation, we split the dataset into 80% for training and vali-
dation, and 20% for the test set, keeping the same proportion of the two classes
in each set. Also, we performed data augmentation in the training phase to study
the ability of these operations to improve the generalizability of the model.

2.4 Evaluation

We carried out a qualitative and quantitative analysis of the results to evaluate
the effect of 1) using different data augmentation techniques, and 2) incorpo-
rating the classification of the malignancy of the lesion as an auxiliary task
to symmetry skin lesion classification. To perform the quantitative evaluation,
we relied on the weighted variants of several performance measures, namely:
Precision (Pr), Recall (R), F1-score. This enables us to take into account the
class imbalance, by calculating the metrics for each class and finding its average
weighted by the number of true instances of each label. We have also computed
the Balanced Accuracy (B.Acc) and the Kappa score, which measures the degree
of agreement between the true values and the predicted values beyond chance
agreements. A high level of agreement—1 means perfect agreement—increases
our confidence that the results are reliable. A low level of agreement—0 corre-
sponds to chance agreement—means that we cannot trust the results. We also
analyze the obtained results from a qualitative point of view, relying on the
Score-Weighted Visual Explanations for Convolutional Neural Networks (Score-
CAM) [12] to visualize which features of an input image contribute the most to
activating neurons in obtaining the final decision of the model.

3 Results and Discussion

In this section, we present the experimental results and reflect on them.
We have used several approaches of data augmentation to compare and assess

whether the artificial increment of data during the training phase is beneficial
when classifying the symmetry of skin lesions in dermoscopic images. We have
restricted these operations to those that do not distort the shape of the lesion, as
we consider this to be an essential feature to take into account when analyzing the
symmetry of the lesion. In particular, we study the effect of using horizontal and
vertical flips (HF+VF); rotations of 90◦ (RR); brightness shifts (RB) within the
range [0.4, 1.1]; contrast adjustments (RC) within the range [0.2, 1.8]; grayscale
transformations (GS); and color constancy correction (CN) based on the Shades
of Gray algorithm [5].

For all experiments, we have considered the problem of lesion symmetry
classification as a binary classification, “asymmetric” vs. “symmetric”. To do
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so, we merge classes “symmetric w.r.t. 1 axis” and “symmetric w.r.t. 2 axes”
into the class “symmetric”. In Table 3, we present the quantitative results of the
experiments that have been carried out to analyze the effect of different data
augmentation techniques when classifying the symmetry of the skin lesions. The
first row, experiment 0, shows the results obtained by the proposed model, using
only the new data provided in SymDerm v2.0. In this case, the model is able to
correctly classify the symmetry with around 63%–64% accuracy in all measures,
except in the case of the Kappa score, where it obtains 0.272. Then, with exper-
iment 1, we can see how the effectiveness of the symmetry classification task
is drastically reduced in all measures, losing between 5.78% and 13.19% in the
performance measures, when introducing all the data augmentation techniques
considered. Therefore, we decided to conduct an exhaustive study—experiments
2 to 6—, to examine how each of these techniques affects the model’s learning.
As can be seen, in Table 3 and Fig. 3, the introduction of brightness shifts, color
constancy correction, and color mode change—grayscale transformation—have a
negative effect on the classification. In general terms, the performance measures
are not affected if they are removed, and some are even improved. Also, they
increase the variability of the model’s predictions.

Table 3. Mean and standard deviation of the symmetry classification results averaged
across the 3 fold of the cross-validation, for the data augmentation experiments. The
best results for the classification experiments are shown in bold.

Exp B.Acc Kappa score weighted-average

Precision (Pr) Recall (R) F1-score

0 no data augmentation 0.637 ± 0.046 0.272 ± 0.093 0.646 ± 0.044 0.634 ± 0.047 0.630 ± 0.049

1 HF+VF+GS+CN+RB+RC+RR 0.571 ± 0.054 0.140 ± 0.106 0.588 ± 0.042 0.570 ± 0.046 0.530 ± 0.104

2 HF+VF+GS+CN+RB+RC 0.535 ± 0.031 0.066 ± 0.059 0.480 ± 0.186 0.523 ± 0.022 0.440 ± 0.090

3 HF+VF+GS+CN+RB+RR 0.515 ± 0.025 0.026 ± 0.046 0.378 ± 0.212 0.503 ±0.021 0.366 ± 0.050

4 HF+VF+GS+CN+RC+RR 0.563 ± 0.049 0.129 ± 0.098 0.646 ± 0.016 0.586 ± 0.040 0.510 ± 0.099

5 HF+VF+GS+RB+RC+RR 0.556 ± 0.097 0.114 ± 0.197 0.375 ± 0.278 0.535 ± 0.125 0.418 ± 0.215

6 HF+VF+CN+RB+RC+RR 0.577 ± 0.072 0.150 ± 0.141 0.521 ± 0.215 0.578 ± 0.055 0.515 ± 0.134

7 HF+VF 0.688 ± 0.006 0.378 ± 0.013 0.692 ± 0.008 0.691 ± 0.007 0.690 ± 0.005

8 HF+VF+GS 0.539 ± 0.037 0.077 ± 0.075 0.501 ± 0.264 0.516 ± 0.071 0.405 ± 0.126

9 HF+VF+CN 0.656 ± 0.028 0.314 ± 0.061 0.675 ± 0.043 0.661 ± 0.037 0.653 ± 0.032

10 HF+VF+RR 0.711 ± 0.010 0.422 ± 0.020 0.715 ± 0.012 0.714± 0.012 0.712 ± 0.011

11 HF+VF+RB 0.673 ± 0.031 0.350 ± 0.064 0.681 ± 0.030 0.680 ± 0.034 0.676 ± 0.036

12 HF+VF+RC 0.665 ± 0.027 0.330 ± 0.052 0.668 ± 0.027 0.667 ± 0.026 0.666 ± 0.027

We also studied the individual effect of each of the data augmentation tech-
niques we considered, maintaining those that improve the results with respect
to experiment 0. We can observe, from the results of experiments 7 to 12, that
it is only when the grayscale images are introduced that the performance of the
model decreases severely with respect to that obtained with the experiment 0
configuration. Similarly, we can see that it is the configuration of experiment
10, which combines horizontal and vertical flips with 90◦ rotations, the one that
obtains the best results. In this case, the gains represent an increase of approxi-
mately 7% for B.Acc and the weighted-average Pr, 8% for the weighted-average
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Fig. 3. Confidence intervals of the F1 score for lesion symmetry classification for both
data augmentation and multitask experiments.

Recall and F1-score, and 15.08% for the Kappa score, reaching a performance
of 71.05%, 71.54%, 71,36%, 71.23% and 0.42, respectively.

From a qualitative point of view, we can see in Fig. 4, some Score-CAMs [12]
of both correctly and misclassified samples, obtained by the model corresponding
to the configuration of experiment 10. These visualizations allow us to determine
which regions contribute the most to obtain the final decision of the model. The
Score-CAMs illustrate how the presence of artifacts such as the black frame and
the presence of hair negatively influence the symmetry classification. Also, we
can see how the model focuses not only on the boundary of the lesion, which
would specify symmetry based on shape but also on the inside of the lesion,
where the dermoscopic structures are located.

Regarding the multitask learning experiment based on the inclusion of the
lesion malignancy classification task, see Table 4, we can say that both tasks
mutually benefit from their combination. Although the performance of the sym-
metry classification task of experiment 10 is not improved, see Table 4, it does
help, as can be seen in Fig. 5, to stabilize the learning curve of the model and
decrease the train-validation gap. On the other hand, the malignancy classifica-
tion performance improves in all metrics, namely 1.62% for the B.Acc, 0.55%
for the weighted-average Pr, 3.71% for the weighted-average R, 3.71% for the
weighted-average F1-score, and 4.65% for the Kappa score.

Table 4. Mean and standard deviation of the results for the multitasking learning
configuration averaged over the 3 folds of the cross-validation.

B.Acc Kappa score weighted-average

Precision (Pr) Recall (R) F1-score

Symmetry 0.699 ± 0.035 0.398 ± 0.073 0.702 ± 0.035 0.699 ± 0.038 0.699 ± 0.038

Malignancy 0.764 ± 0.017 0.407 ± 0.038 0.825 ± 0.009 0.736 ± 0.025 0.757 ± 0.022
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Fig. 4. Score-CAM examples for correct (in bold) and misclassified (in red) predictions
obtained by the model corresponding to experiment 10 configuration. (Color figure
online)

Fig. 5. Evolution plots of the loss function during training of the symmetry classifica-
tion task in experiment 0 (left) and in the multitasking environment (right).

Fig. 6. Study of the relationship of symmetry classifications and lesion malignancy in
the multitasking environment.

One of the advantages of multitask learning is the possibility to evaluate the
effectiveness of our model by checking the agreement between the different cri-
teria taken into account in the multitask environment. From Fig. 6, we observe
that the model is coherent when classifying both malignancy and symmetry, and
has been able to learn the relationship between these classes, as most “malig-
nant” lesions, 72.5%, are also classified as “asymmetric”, and 93.4% of “benign”
lesions are classified as “symmetric”.

4 Conclusions

In this work, we have presented an extension of the SymDerm dataset with
about 2000 new annotations of publicly available images according to skin lesion
symmetry. In addition, we have evaluated how different data augmentation tech-
niques affect the performance of the symmetry classification model. Finally, we
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have studied how the symmetry classification task performs when incorporating
the classification of malignancy of lesions in a multitasking environment.

The relevant findings from Sect. 3 lead to the conclusion that not all data
augmentation techniques are optimal for the task of lesion symmetry classifica-
tion. This is the case of the introduction of brightness shifts, color constancy
correction, and grayscale transformation. This rejects our assumption that the
detection of symmetric textures within the lesion would benefit from grayscale
images. On the other hand, as expected, data augmentation based on the combi-
nation of horizontal and vertical flips, and 90◦ rotations enables to improve the
performance of the model up to approximately 7% for B.Acc and the weighted-
average Pr, 8% for the weighted-average Recall and F1-score, and 15.08% for the
Kappa score, if compared to the same model trained without any data augmen-
tation method. Also, from the multitasking study, we can conclude that although
the task of symmetry classification does not improve its performance measures,
it does benefit from the auxiliary task—classification of the lesion as “benign” to
“malignant”—to regularize the learning of the task during training. Finally, as
for the relationship of the network outputs for the classification tasks in the mul-
titasking environment, we observe how the model learns the constraints inherent
in the taxonomy of tasks, which is an indicator of its reliability.
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Abstract. Adversarial patch attacks have become a primary concern in
recent years as they pose a significant threat to the security and reliability
of deep neural networks. Modifying benign images by introducing adver-
sarial patches comprising localized adversarial pixels alters the salient
features of the image resulting in misclassification. The novelty of our
approach is in the use of image inpainting technique as an adversarial
defence for rectifying the patch region. Adversarial patch is automati-
cally localized using Fast Score Class Activation Map and superseded by
inpainting using Fast Marching Method which efficiently propagates pixel
information from the surrounding areas into the patch region. This app-
roach ensures original image’s structural integrity while simultaneously
inpainting the adversarial pixels. Moreover, at the time of the attack it
is not expected to have prior knowledge about the patch. Therefore, we
propose our novel adversarial defence technique in a black-box setting
assuming no knowledge about the patch location, shape or its size. Fur-
thermore, we do not rely on re-training our victim model on adversarial
examples, indicating its potential usefulness for real-world applications.
Our experimental results show that the proposed approach achieves accu-
racy up to 76.37% on ImageNet100 despite the adversarial patch attack
amounting to a considerable improvement of 76.28% points. Moreover,
on benign images our approach gives decent accuracy of 81.11% thereby
suggesting that our defence pipeline is applicable irrespective of whether
the input image is adversarial or clean.

Keywords: Adversarial Machine Learning · Adversarial Defence ·
Inpainting

1 Introduction

The increasing use of deep neural networks has led to a growing concern regard-
ing adversarial attacks which involve adding small perturbations to the input
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data that may be imperceptible to humans but can significantly alter the pre-
diction of the machine-learning models as shown in Eq. (1).

f(g(x, α)) = t subject to ||x − g(x, α)||p ≤ ε, (1)

where x is the input image, f is the classifier, t is the target class for misclassi-
fication, g is the perturbation function applied on x, α is a parameter and ε is a
threshold.

(a) (b) (c)

Fig. 1. Patch-based attack. (a) Benign image correctly classified as dog (b) Adver-
sarial patch obtained by setting the target class as toaster. (c) Adversarial image gener-
ated by superimposing scaled and rotated (b) on (a) gets misclassified into toaster. Red
and Green boxes signify incorrect and correct predictions, respectively. (Color figure
online)

More recently, patch-based adversarial attacks [3,5,7] have gained the atten-
tion of researchers which occupy only a small region in an image and may not
raise any suspicion amongst humans, however, they pose an equally significant
threat to machine learning models, Fig. 1 illustrates the adversarial patch attack
[1]. Such attacks can also be realized physically by pasting a printed patch on
the target object to be misclassified. Hence, it is crucial to develop an adversarial
defence against them. To the best of our knowledge, the defences proposed to
counter such attacks are in white-box settings which assume complete knowledge
of the patch such as patch size, location and attack type. However, black-box
defence is practical as it allows defenders to respond quickly to new threats
without needing complete knowledge of the patch. Hence, we propose a novel
adversarial defence in the black-box setting.

Determining whether the image is benign or adversarial is the foremost step
in defending against an adversarial patch. For this, several patch detection meth-
ods have been successful in the literature [16,17,19]. However, little attention has
been given to improving the model’s classification accuracy in spite of the adver-
sarial patch attack. Thus, our defence mechanism is designed first to localize
the adversarial patch automatically using Fast Score Class Activation Mapping
(FSCAM) [9], an advanced version of Score Class Activation Mapping (SCAM)
[15] that generates attention maps highlighting the region in an image that may
significantly influence classification decision in turn, localizing the patch. Thus,
enabling accurate localization and defence against potential attacks.
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Further, we utilize a well-established in-painting technique known as Fast
Marching Method (FMM) [14] often used by researchers working in the area
of image restoration for repairing damaged parts of an image [13]. The method
involves inpainting an image’s missing regions using information from the sur-
rounding areas. To the best of our knowledge, researchers have not attempted
the use of inpainting techniques for defending against adversarial attacks. Our
contributions can be summarized in two main areas:

1. We present a novel adversarial defence technique: Auto-Inpainting based on
image inpainting technique.

2. Our defence is devised in black-box setting and does not necessitate re-
training the victim model.

2 Related Work

Patch attacks are a significant concern, enabling attackers to alter images by
arbitrarily modifying their pixels. One such threatening attack is LaVAN [5]
which creates localized visible adversarial noise causing classifiers to misclassify
images to arbitrary labels in the digital domain. However, there are potential
limitations to LaVAN when transferring the noise which may affect its practi-
cality in real-world scenarios. In contrast, the adversarial patch by Brown et al.
[1] is another patch-based attack that creates robust and targeted adversarial
image patches in the physical world using attachable stickers to cause classifiers
to output any target class. These stickers can cause significant harm to vision
systems such as object detection [4] and visual tracking [3]. Hence, in our work,
we consider patch-based attack proposed by Brown et al. [1].

Patch detectors are essential for detecting adversarial patches and have
received much attention recently [10,11,18,20]. Patch detectors are trained on
a dataset of images with adversarial patches, and their accuracy in finding the
patch location is crucial for the security of a machine-learning model. After
the patch is located, creating certified defences that protect against all possi-
ble attacks for a given threat model is essential. For instance, Chiang et al.
[2] developed an adversarial defence against patch attacks using Interval Bound
Propagation (IBP) on MNIST and CIFAR10, but it is challenging to scale it to
ImageNet. Another approach is Derandomized Smoothing (DS) [8], which has
improved accuracy compared to IBP on ImageNet but requires expensive com-
putational resources. Majority of the techniques [16,17] operate under white-box
defence setting requiring prior knowledge of the attack patch size. In comparison,
our approach can defend against robust patch-based attacks of any patch shape
and size without prior knowledge with less computation and without retraining
the model.

3 Proposed Auto-inpainting Method

Figure 2 shows the overview of the Auto-Inpainting approach. Given an image
xin, we generate a heatmap (hmap) of salient features with the help of FSCAM,
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Fig. 2. Overview of the proposed Auto-Inpainting method.

which is then converted into a binary mask (m) with a pre-defined threshold
(εp). Further, the image xin along with the binary mask m are given as input
to our inpainting function. Finally, the inpainted image is fed to the trained
classifier. Note that our approach works in the black box setting, assuming no
knowledge about whether the image is benign or adversarial, the shape and size
of the patch or its location. Furthermore, we do not modify the original classifier
trained on benign images in any way as opposed to adversarial training.

3.1 Adversarial Patch Generation

Suppose x ∈ RH×W×C to be a clean image correctly classified by the model
f(x) = y, where y is the correct class label and H, W and C represent the
image height, width and number of channels, respectively. The adversary aims
to push x to a specific class Ct under a targeted attack or any other class Ci in
an untargeted attack setting. As described by Brown et al. [1], these attacks can
be realized using a patch application operator, denoted as ζ(p, x, l, t), for a given
image x, patch p, patch location l, and patch transformations t. The operator
applies the transformations t to the patch p and then applies the transformed
patch p to the image x at location l to generate perturbed image x′ ∈ RH×W×C .

3.2 Adversarial Defence Using Auto-Inpainting

FSCAM is a promising technique that has not been utilized for patch localization
yet. It outperforms other methods like Grad-Cam and Grad-Cam++ [9] because
it does not rely on gradients and has a more reasonable weight representation.
Using this method, we generate the class activation map (CAM) that highlights
the salient regions in the input image primarily responsible for the prediction.
Let xin be any input image, benign or adversarial, f(xin) = yin, where yin is
the predicted class label. In this case, FSCAM is expected to localize the patch
region in xin that led to the classification.

Further, a binary mask m ∈ RH×W×C is generated by thresholding where
patch pixels are assigned ones (m1) and non-patch pixels are assigned zeros (m0).
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Thus, m1 represents the region that needs to be inpainted in the adversarial
image by the FMM algorithm, a simple yet efficient inpainting technique. FMM
[14] is a well-established technique to fill in missing or damaged portions of an
image with surrounding information, but it has not been explored for adversarial
defence. This has motivated us to propose a novel approach that leverages FMM
for adversarial defence as it retains the features required for correct classification.
Our approach uses the FMM algorithm that first identifies the missing region
with the mask m and estimates the missing pixels’ values using the nearby patch
region in the input image, then uses them in inpainting as in Eq. 3 to get xinpaint.
For notations used in the Eq. 3, refer Algorithm 1

xinpaint =

∑
q∈BΔ(p) w(p, q)(xin(q) + ∇xin(q)(xin(p) − xin(q)))

∑
q∈BΔ(p) w(p, q) (2)

where
w(p, q) = dir(p, q) · dst(p, q) · lev(p, q) (3)

where dir(p, q) ensures a higher contribution of pixels close to the normal direc-
tion at p, dst(p, q) decreases the contribution of pixels geometrically farther from
p and lev(p, q) ensures that pixels close to the contour through p contribute more
than farther pixels.

Algorithm 1: Auto-Inpainting Algorithm
Input: input image (xin), binary mask(m) containing m1, region to be

inpainted
Parameters: threshold (εp), surrounding region outside m1 (BΔ(p))
Output: inpainted image (xinpaint)

1 δmi = Boundary pixels of region m1

2 δm = δmi

3 while (δm not empty) do
4 q = pixel in xin closest to first pixel in δm and ∈ BΔ(p),
5 p = pixel in xin ∈ δm closest to q
6 xinpaint(p) = inpaint(p, q) using the Eq. 3
7 Advance δm into m1 # Marching into m1 region
8 end while
9 return xinpaint

4 Experimental Results

In this section, we outline the necessary experimental setup and define metrics for
evaluating our approach in a black-box setting. We then present a comprehensive
analysis of our defence pipeline’s performance, adjusting various parameters and
discussing both successes and failures.
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4.1 Experimental Setup

We consider the Imagenet dataset, particularly validation data consisting of
5000 images belonging to 100 classes with 50 images per class. Out of the 5000
images, we randomly sampled 3000 images for our experiment. The images in
the dataset are of different sizes, hence we resized them to (224, 224, 3). Also,
we generated our patch by training it on a ResNet50 model (not the victim
model) and then superimposed it at random locations with a scale factor of 0.3,
roughly 7.6% of the image size, to generate our adversarial examples. Further,
we used a pre-trained ResNet50 model trained on the Imagenet dataset, a.k.a
the victim model, to evaluate the robustness of the proposed Auto-Inpainting
method. The class activation maps have been generated using FSCAM GitHub
implementation [6] followed by binarizing the map with a threshold εp set to
0.5. We also experiment with different values of εp to analyze how it affects our
model accuracy.

4.2 Experimental Results and Discussion

In the first set of experiments, we evaluate the vulnerability of the pre-trained
ResNet50 model to the patch-based attacks. Particularly, we report the attack
success rate (ASR) which is the proportion of successful patch-based attacks.
As can be seen from Table 1(a), very high value of (ASR) indicates the urgency
with which these attacks need to be addressed.

Authors of FSCAM observed poor performance at generating correct
heatmaps when softmax is used as an output layer activation function (AF)
[12]. Therefore, While generating activation maps, we have replaced the soft-
max in the output layer with three widely-used AFs namely, linear, relu and
tanh. Table 1(a) shows the results. A small increase can be noticed in the Auto-
Inpainting accuracy when we used tanh as AF at the output layer. Note that
these AFs are used only while generating heatmaps while at the time of classi-
fication softmax AF is retained.

Table 1. Auto-Inpainting accuracy

Output Adversarial Benign

layer ASR εp Accuracy Accuracy

AF

linear 99.91% 0.5 71.57% 67.74%

relu 99.91% 0.5 71.57% 67.84%

tanh 99.91% 0.5 72.39% 65.11%

tanh 99.91% 0.7 76.37% 81.11%

(a) Different AFs at FSCAM output layer

εp Adversarial

Accuracy

0.5 71.54%

0.6 74.74%

0.7 76.34%

0.75 74.68%

(b) Different values
of εp for linear AF



116 S. Sharma et al.

In the second set of experiments, we evaluated the robustness of our Auto-
Inpainting method for patch-based attacks. Table 1(a) shows the Adversarial
Accuracy and Benign Accuracy computed as the proportion of the no. of correctly
classified inpainted images among the total number of tested adversarial images
and benign images, respectively. Black-box adversarial defences are generally
harder to devise than white-box defences owing to no prior knowledge about the
patch size, shape, or location in the original image. However, in the black-box
setting, by fine-tuning the parameters, we are able to achieve an accuracy of
76.34%, refer to Table 1(b). Figure 3 helps visualize how the image looks at each
stage of our pipeline. Moreover, as can be observed from Fig. 3(c), we were able
to detect the salient features of any shape, which makes our approach robust to
patches of different shapes and size as well.

Despite extensive research on white-box defence techniques, there has been
limited progress in developing effective black-box defences. As far as we know,
researchers have not attempted defence techniques with the kind of settings we
have considered. Authors in PatchZero [19] proposed an adversarial defence in
the white-box setting and considered very small patch size, a rectangular box
with 2% pixels of the image size, and achieved the highest accuracy of 76.80%
on the same dataset. On the other hand, the patch size considered in our work
is ≈7.6% of the image size. Moreover, their defence re-trains the victim model,
while our approach does not. This suggests that our defence pipeline is effective in
real-world scenarios where we generally don’t have any prior information about
the patch. It is important to note that there is still much work to be done in
this field, but our findings may be a step in the right direction.

Additionally, since our approach is expected to work in a black-box defence
setting, it should work for benign images in addition to adversarial images.
Therefore, we have also computed the classification accuracy on benign images
in the presence of the Auto-Inpainting defence. Although there is a decrease in
benign accuracy, on fine-tuning the parameters, we could attain an accuracy of
81.11%, refer to Table 1(a). It is worth mentioning that while we are able to
correctly classify the image, a decrease in confidence score was observed.

Effective localization of the patch in the adversarial image is crucial to the
efficacy of our adversarial defence technique. Therefore, in order to evaluate the
effectiveness of patch localization by FSCAM, we computed Intersection over
Union (IoU) between the ground truth and the predicted binary mask. IoU
can be defined as the ratio of the area of the overlapping region to the area of
the union of the two masks. We obtained an IoU score of 0.483 at the threshold
εp = 0.5. As can be observed from Fig. 4 the low IoU suggests that the generated
mask covers the entire patch region as well as the outer region consisting of
benign pixels. This may adversely affect the accuracy of the model. Therefore,
we considered different values of εp from 0.5 to 0.7 and observed considerable
improvement in the accuracy from 71.5% to 76.34% as shown in Table 1(b).
Also, as can be seen from the figure, on increasing εp, the size of the mask region
that we generate shrinks, reducing the area to inpaint in turn resulting in less
information loss during inpainting process.
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Fig. 3. Qualitative results: (Green and Red boxes represent correctly and
incorrectly classified inputs to our victim model, respectively) First two and
last two rows show the results for adversarial examples and benign images, respectively.
Note that the model predicts the class of adversarial images correctly after
Auto-Inpainting . (Color figure online)

Fig. 4. Figure illustrating effect of εp value on the binary mask. (a) Adversarial
examples. (b) Ground truth binary mask. (c) to (f) binary masks corresponding to
different values of εp.

Failure Cases and Limitations. Finally, we present two failure cases of our
method in Fig. 5. First, if the patch appears over the salient regions in the scene,
it becomes even more difficult to restore those pixel values. For instance, in
Fig. 5(a), the patch has been placed on the major part of the object in the image
and the inpainted image loses much of the information resulting in incorrect
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Fig. 5. (a) The adversarial patch covers the main object in the scene making it difficult
to get correct prediction after inpainting. (b) The defence pipeline fails to detect more
than two different patches at once.

classification. The second case is when we apply two different patches, only one
of the patches is localized by the FSCAM method. For instance, in Fig. 5(b) two
patches generated from target classes toaster and cannon have been placed on
the benign image, however, only toaster patch was localized and inpainted by
our approach leading the cannon patch to misclassify the adversarial image.

5 Conclusion and Future Work

In this paper, we proposed a novel adversarial defence technique Auto-Inpainting
motivated by use of image inpainting techniques for image restoration tasks. The
defence is carried out in a black-box setting without assuming the knowledge of
the patch size, shape as well as location. Moreover, the proposed approach works
well for both adversarial as well as benign inputs. Auto-Inpainting detects the
adversarial region using the Fast-Score CAM technique to generate class activa-
tion map and then binarize the heatmap to localize the patch region. Further, the
Fast Marching Method technique used for inpainting restores the patch pixels
using the surrounding pixels. Our approach achieves an accuracy of 76.37% and
81.11% for adversarial and benign cases, respectively. Our future work involves
considering different CNN models and attack variants to test the efficacy of
our approach. Moreover, more sophisticated patch localization and inpainting
techniques can be explored to make the approach even more robust.
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1. Brown, T.B., Mané, D., Roy, A., Abadi, M., Gilmer, J.: Adversarial patch (2018)
2. Chiang, P.Y., Ni, R., Abdelkader, A., Zhu, C., Studer, C., Goldstein, T.: Certified

defenses for adversarial patches (2020)
3. Ding, L., et al.: Towards universal physical attacks on single object tracking. In:

Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 2, pp.
1236–1245 (2021). https://doi.org/10.1609/aaai.v35i2.16211, https://ojs.aaai.org/
index.php/AAAI/article/view/16211

https://doi.org/10.1609/aaai.v35i2.16211
https://ojs.aaai.org/index.php/AAAI/article/view/16211
https://ojs.aaai.org/index.php/AAAI/article/view/16211


Robust Adversarial Defence: Use of Auto-inpainting 119

4. Huang, L., et al.: UPC: learning universal physical camouflage attacks on object
detectors. CoRR abs/1909.04326 (2019). http://arxiv.org/abs/1909.04326

5. Karmon, D., Zoran, D., Goldberg, Y.: LaVAN: localized and visible adversarial
noise (2018)

6. Kubota, Y.: tf-keras-vis (2022). https://keisen.github.io/tf-keras-vis-docs/
7. Lee, M., Kolter, Z.: On physical adversarial patches for object detection (2019)
8. Levine, A., Feizi, S.: (De)randomized smoothing for certifiable defense against

patch attacks (2021)
9. Li, J., Zhang, D., Meng, B., Li, Y., Luo, L.: FIMF score-CAM: fast score-

CAM based on local multi-feature integration for visual interpretation of CNNs.
IET Image Process. 17(3), 761–772 (2023). https://doi.org/10.1049/ipr2.12670,
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/ipr2.12670

10. Liang, B., Li, J., Huang, J.: We can always catch you: detecting adversarial patched
objects with or without signature (2021)

11. Liu, J., Levine, A., Lau, C.P., Chellappa, R., Feizi, S.: Segment and complete:
defending object detectors against adversarial patch attacks with robust patch
detection (2022)

12. Olah, C., Mordvintsev, A., Schubert, L.: Feature visualization. Distill
(2017). https://doi.org/10.23915/distill.00007, https://distill.pub/2017/feature-
visualization

13. Padalkar, M., Joshi, M., Khatri, N.: Digital Heritage Reconstruction Using Super-
resolution and Inpainting. Synthesis Lectures on Visual Computing: Computer
Graphics, Animation, Computational Photography and Imaging. Springer, Heidel-
berg (2022). https://books.google.co.in/books?id=J4FyEAAAQBAJ

14. Telea, A.: An image inpainting technique based on the fast marching method. J.
Graph. Tools 9 (2004). https://doi.org/10.1080/10867651.2004.10487596

15. Wang, H., et al.: Score-CAM: score-weighted visual explanations for convolutional
neural networks (2020)

16. Xiang, C., Bhagoji, A.N., Sehwag, V., Mittal, P.: PatchGuard: a provably
robust defense against adversarial patches via small receptive fields and mask-
ing. In: 30th USENIX Security Symposium (USENIX Security 2021), pp.
2237–2254. USENIX Association (2021). https://www.usenix.org/conference/
usenixsecurity21/presentation/xiang

17. Xiang, C., Mahloujifar, S., Mittal, P.: PatchCleanser: certifiably robust defense
against adversarial patches for any image classifier (2022)

18. Xiang, C., Mittal, P.: DetectorGuard: provably securing object detectors against
localized patch hiding attacks (2021)

19. Xu, K., Xiao, Y., Zheng, Z., Cai, K., Nevatia, R.: PatchZero: defending against
adversarial patch attacks by detecting and zeroing the patch (2022)

20. Zhou, G., et al.: Information distribution based defense against physical attacks
on object detection. 2020 IEEE International Conference on Multimedia & Expo
Workshops (ICMEW), pp. 1–6 (2020)

http://arxiv.org/abs/1909.04326
https://keisen.github.io/tf-keras-vis-docs/
https://doi.org/10.1049/ipr2.12670
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/ipr2.12670
https://doi.org/10.23915/distill.00007
https://distill.pub/2017/feature-visualization
https://distill.pub/2017/feature-visualization
https://books.google.co.in/books?id=J4FyEAAAQBAJ
https://doi.org/10.1080/10867651.2004.10487596
https://www.usenix.org/conference/usenixsecurity21/presentation/xiang
https://www.usenix.org/conference/usenixsecurity21/presentation/xiang


Generalized Median Computation
for Consensus Learning: A Brief Survey

Xiaoyi Jiang1(B) and Andreas Nienkötter2

1 Faculty of Mathematics and Computer Science, University of Münster, Münster,
Germany

xjiang@uni-muenster.de
2 Institute for Disaster Management and Reconstruction, Sichuan

University-Hongkong Polytechnic University, Chengdu, Sichuan, China

Abstract. Computing a consensus object from a set of given objects
is a core problem in machine learning and pattern recognition. A popu-
lar approach is the formulation of generalized median as an optimization
problem. The concept of generalized median has been studied for numer-
ous problem domains with a broad range of applications. Currently, the
research is widely scattered in the literature and no comprehensive survey
is available. This brief survey contributes to closing this gap and system-
atically discusses the relevant issues of generalized median computation.
In particular, we present a taxonomy of computation frameworks and
methods. We also outline a number of future research directions.

1 Introduction

Given a set of objects O = {o1, ..., on} in domain D with an associated distance
function δ : D × D → R

+
0 , a common approach to consensus learning is to find

the so-called Generalized Median (GM):

ō = arg min
o∈D

∑

oi∈O

δ(o, oi) = arg min
o∈D

ΩO(o) (1)

where ΩO(o) is the sum of distance between o and set O. Note that the GM object
is not necessarily part of set O or even unique. Intuitively, the GM represents a
formalized averaging or consensus (prototype) learning. In addition, it can also
be understood as a specific form of ensemble solution.

Generally, GM computation is performed in two ways: 1) Data aggrega-
tion: The input data are aggregated to receive the final result, e.g. image smooth-
ing [40] and atlas construction [45]. 2) Output aggregation: The input data
are first processed to obtain n results. These base results are then aggregated to
obtain the final result. Examples are consensus clustering [3] and image segmen-
tation fusion [22,27] that help to reduce the uncertainty of the initial solutions
for more robustness, e.g. for boosting low precision segmentation models.
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GM computation has found numerous applications in many fields. For
instance, consensus ranking is of common interest to bioinformatics, social sci-
ences, and complex network analysis [39]. Averaging 3D rotations has been inten-
sively studied for computer vision, mixed reality, and computer-assisted surgery
[42]. Averaging quaternions is interesting for astronautics [28]. Ensemble clus-
tering has strong potential for pattern recognition, it is also omnipresent in
computer vision [44], e.g. in bag-of-words models. Biclustering is fundamental
to bioinformatics [46]. Other applications include robust and nonlinear subspace
learning [5] and deep neural network for manifold-valued data [6]. Further exam-
ples can be found in [36]. Generally, GM computation makes the centroid based
clustering algorithms such as K-means applicable to arbitrary domains, thus
contributing to one of the most studied unsupervised machine learning tasks.

Currently, the vast number of research papers are widely scattered in the
literature. While there are a few survey papers on specific topics (e.g. strings
[34], clusterings [3]), no comprehensive discussion is available yet. In this paper
we systematically discuss all relevant issues of GM computation. In particular,
we made substantial efforts to identify common algorithmic design patterns,
which leads to a taxonomy of computation frameworks and methods.

The rest of the paper is structured as follows. We first consider theoretical
aspects of GM computation in Sect. 2. The taxonomy is presented in Sect. 3, fol-
lowed by a detailed discussion of domain-independent computation frameworks
and methods in Sect. 4. We sketch further variants of GM computation in Sect. 5.
Finally, we conclude our paper by future research directions.

2 Theoretical Considerations of GM Computation

A statistical interpretation of GM as maximum-likelihood estimator is shown
recently [36]. In the following we elaborate further important theoretical issues.

Computational Complexity. The efforts needed to compute the GM differ
considerably. In the simplest case, when averaging x1, ..., xn, xi ∈ R (a well-
known concept from statistics), two popular distance functions are: δ(x, y) =
(x − y)p, p = 1, 2. The GM is the arithmetic average of the given numbers
(p = 2) and the median (p = 1). The related computational complexity is O(n)
in both cases. Analytical solutions, e.g. [15], often have low polynomial com-
plexity. Efficient solutions can also be given by favorable convergence behavior
of iterative approaches (e.g. Weiszfeld algorithm [2], see Sect. 4).

Despite the simple definition in Eq. (1), many problem instances of GM
computation turn out to be NP-hard. A number of papers are concerned with
such complexity proofs. Examples include strings using the edit distance [17],
rankings with the popular Kendall-τ distance [4], consensus clustering for many
common distance functions, e.g. the Mirkin-metric [23], as well as graphs [8] and
signed permutations [1] using common distance functions.

Bounds. A lower bound Γ of the sum of distance is a value: 0 ≤ Γ ≤ Ω(ō).
A trivial lower bound is zero, which is however useless. Generally, Γ should be
as tight as possible, ideally equal to Ω(ō).
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Fig. 1. Taxonomy of domain-independent GM computation methods.

Due to the inherent hardness many algorithms for GM computation are of
approximate nature so that there is no guarantee to obtain the optimal solution.
Since the genuine GM is unknown, a practical way to assess the quality of a
computed GM o is given by Δ = (Ω(o)−Γ )/Γ [36]. In particular, if Δ ≈ 0, then
it can be safely claimed that there is hardly room for further improvement. This
can, for instance, be used to stop an iterative search for the GM or performance
evaluation of algorithms. On the other hand, in case of large Δ, we must be
careful in making any claims. The large deviation may be caused by two reasons:
The lower bound is not tight enough in that particular case or the computed
solution o is still far away from the (unknown) optimal solution ō.

A few lower bounds are available in general case of metric spaces. The lower
bound from [20] can be efficiently solved by maximum weight matching. Another
lower bound from [19] is based on linear programming with O(n2) constraints.
Domain-specific lower bounds exist as well, e.g. [14] for consensus clustering using
Merkin distance, which should be more tight than general, domain-independent
lower bounds.

Given the GM solution ō∗ found by some algorithm, an upper bound Γ ∗:
Ω(ō) ≤ Ω(ō∗) ≤ Γ ∗ provides a quality guarantee for ō∗. An example is given
in Sect. 5. Note that the lower bound is a statement for a GM problem instance
while the upper bound is related to a particular algorithm for its solution.

3 Taxonomy of GM Computation

The variety of computational frameworks and algorithms can be viewed from
different perspectives: domain-specific or independent, continuous or discrete
space, requirement of metric space or not, exact or approximate solution. Among
these distinctions, we will distinguish between domain-specific and independent
approaches and focus on the latter one. While touching other issues where appre-
ciate, our discussion will follow common algorithmic design patterns.

The nature of many domain-specific solutions is typically strongly deter-
mined by the domain’s specific characteristics and thus often cannot be easily
transferred to other domains. For instance, [40] is dedicated to fast algorithms
for filtering of signals and images with values on the unit circle based on the arc
distance median. In string space an elegant dynamic programming technique is
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well-known for computing the Levenshtein edit distance. It can be extended to
exactly compute the median string [24]. With O(Ln) (O(L): string length) for
both time and space requirement, however, its applicability is restricted to small
sets and short strings only. If the sum of distances Ω(ô) is guaranteed to lie
under some (relatively small) upper bound, then the computational expense can
be reduced significantly [26], although remaining exponential.

4 Domain-Independent Frameworks and Methods

Most of the domain-independent GM computation methods can be divided into
five categories that are presented in the taxonomy in Fig. 1.

Greedy Methods. The problem-solving heuristic greedy makes the locally opti-
mal decision at each stage. It is particularly easy to apply it, for instance, to
domains D, where the objects have a linear structure and the GM computation
can thus be naturally divided into stages. This is the case in string space. Start-
ing from an empty string, the greedy algorithm [25] constructs an approximate
median string symbol by symbol.

Iterative Refinement. Several strategies of iterative refinement are known.
They mainly differ in the kind of operations that are performed in the iterations.

a) Perturbation methods. Starting from an initial solution, perturbation
methods modify the current solution by using base operations to possibly
obtain an improved one. This perturbation step is repeated until convergence.
A good option to obtain an initial solution is the set median, see Sect. 5. In
string space [32] systematically changes the current string by performing the
edit operations insertion, deletion, and substitution in every position. For
consensus clustering [13] goes through the data items and considers placing
them into a different cluster or creating a new singleton cluster. Each data
item is placed in the cluster that yields the minimum sum of distances Ω(o).
The iterative refinement terminates if there is no move that can improve the
cost.

b) Combination methods. Iterative pairwise averaging is a possible way of
combination. Starting from the input set O, it iteratively replaces two objects
from the current set by their combination. The main differences between exist-
ing methods are the order in which the combinations are performed and the
way they compute a combination (average) of two objects, see discussions in
[38]. The simplest ordering consists in pairwise averaging objects following a
tournament scheme. That is, n/2 average objects are generated in the first
iteration. Then, the next iterations further reduce the number of remain-
ing objects by factor 2 until reaching a singleton set. In this approach, the
averaging method (between two objects) is applied n times.

Mathematical Optimization. The GM computation as formulated in Eq. (1)
can be solved by continuous and discrete mathematical optimization techniques.
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a) Optimization in continuous spaces. For a continuous space D = R
d, the

GM problem becomes a continuous optimization: mino=(x1,...,xd)∈Rd Ω(o). It
either has an analytic solution or has to be solved by some iterative optimiza-
tion method. Both situations occur, for instance, in single rotation averaging
[15], dependent on the choice of distance function.
Care must be taken if the objects of interest do not cover the complete R

d,
but some subspace D∗ ⊂ R

d only. Then, the optimization above needs to
be constrained to D∗. This can range from rather easy computation, e.g. by
means of a suitable representation (e.g. quaternion for 3D rotation [15]), to
very complex manifold handling (e.g. atlas construction in image space [45]).
Other methods exist for optimization in continuous spaces. In [41] consen-
sus clustering is recast into a problem of probabilistic model of consensus
and solved by the EM algorithm. This work is also an interesting case of
transforming a discrete problem (label assignment) into a continuous (prob-
abilistic) one.

b) Optimization in discrete spaces. Numerous GM problems are of discrete
nature. Here different techniques of discrete optimization come into play. For
instance, [16] solves the problem of median string computation based on the
Levenshtein distance by using integer linear programming.

Search Space Exploration. This class of methods perform a search in the
solution space. The different methods mainly vary in the way of candidate gen-
eration. The goodness of solution candidates can be measured by means of Ω.

a) Evolutionary methods. Evolutionary methods are a family of algorithms
for global optimization inspired by biological evolution. They are typically
based on evolving populations of solutions, where operators are applied to
modify members of the population subject to natural selection and mutation
rules. Since not every encoding corresponds to a valid solution in general, the
generated solutions often need to be post-processed to become valid ones. A
genetic algorithm has been designed to compute median graph [20]. Consen-
sus clustering has been tackled using several evolutionary methods, including
genetic algorithm [7], particle swarm optimization [37], and simulated anneal-
ing [43].

b) Constrained search space exploration. The search space for GM com-
putation is huge in general. It thus makes sense to constrain the search as
much as possible by using knowledge, either general or specific to the prob-
lem domain. An example of the former case is the approach in [11]. It uses
a domain-independent lower bound (see Sect. 2) to considerably prune the
search space for candidate generation.

Space Transformation. This class of methods solve the optimization problem
not in the original space D, but in a new space after a suitable transformation.
A key issue here is the inverse transformation back to D.

a) Representation space averaging. This class of methods consist of three
steps: 1) Transform of objects from O in space D into a representation space;
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2) Performing an averaging in the representation space; 3) Determine an
object in space D that fits the average in the representation space well.
The influential work on consensus clustering [12] and its variants (e.g. [30]) are
representative for representation space averaging techniques. A clustering of a
dataset with m data items is described by a m×m matrix C, where C(i, j), 1 ≤
i, j ≤ m, is 1 if the pattern pair (i, j) is assigned to the same cluster and
0 otherwise. Given n clusterings of the dataset with the related matrices
Ck, 1 ≤ k ≤ n, the average co-association matrix is simply C̄ = 1/n

∑n
k=1 Ck.

A final clustering is constructed that corresponds to C̄ or fits C̄ at best. In [12]
this is realized by applying a hierarchical agglomerative clustering algorithm
using C̄ as similarity matrix. This approach can be easily extended to achieve
fuzzy consensus clustering [3]. Given a consensus similarity matrix C̄, the final
clustering can also be generated using graph-based approaches [3].

b) Vector space embedding. The vector space embedding method has
received considerable attention and has been shown to successfully solve a
number of NP-hard consensus learning problem instances with superior per-
formance. It consists of three steps: 1) Embedding of objects from O into
Euclidean vector space; 2) Computation of geometric median by Weiszfeld
algorithm [2]; 3) Reconstruction of approximate median in the original space.
The embedding was initially suggested to be done by means of a number
of selected prototypes p1, ..., pd ∈ O [9]: φ(oi) = (δ(oi, p1), δ(oi, p2), ...,
δ(oi, pd)). This embedding function, however, bears a number of draw-
backs, in particular violating the highly desired distance preservation, i.e.
φe(φ(oi), φ(oj)) = c · δ(oi, oj), ∀ 1 ≤ i, j ≤ n, c > 0, with φe() being the
Euclidean distance. An extensive empirical study [35] demonstrated signifi-
cantly improved quality of GM computation using distance-preserving embed-
ding methods (e.g. Sammon mapping and curvilinear component analysis).
The recent work [36] proposes a novel kernel approach by using an implicit
transformation in terms of kernel functions. It turns out to be possible to
handle the GM computation without knowing the dimension of the embed-
ded space and the concrete embedding.
The last step to transform the Euclidean median from vector space back into
the original space is a special instance of the pre-image problem in machine
learning [18]. Several reconstruction methods can be found in [9].
Representation space averaging and vector space embedding are instances of
space transformation techniques. In the former case the representation space
can be arbitrary and has a natural “semantical” interpretation. In contrast,
the vector space is an abstract space for mathematical mapping only.

c) Kernel-based methods. Although dedicated to consensus clustering, the
method in [43] is in fact generally valid for arbitrary domains. If the distance
function δ is a positive semi-definite kernel, the input objects can be implicitly
mapped to the corresponding reproducing kernel Hilbert space. Then, the GM
results from an inverse transformation of the average object in that space by
solving a pre-image problem. Despite the implicit nature of the mapping, the
kernel trick leads to an optimization problem using the original objects only.
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This optimization task is not trivial and solved by simulated annealing in
[43].

Discussions. The various categories of methods discussed above differ in their
nature. While optimization in continuous space and vector space embedding are
examples of concrete algorithms, many others are algorithmic design frameworks
only and need to be concretized by domain-specific details.

In practice the greedy strategy and iterative refinement can yield subopti-
mal solutions efficiently, but are typically not appropriate for high-quality GM
computation. Perturbation methods may serve as a means of post-processing to
further improve an approximate solution found by more sophisticated methods.
In addition, they can be used for local search to enhance the quality of popula-
tions in evolutionary methods. Techniques of search space exploration and space
transformation are powerful tools in general and have demonstrated their ability
in a variety of highly-complex GM computation problems.

5 Variants of GM Computation

Set Median. This related concept, also known as medoid, results from an opti-
mization of (1) restricting the search space to O instead of the complete domain
D. The set median may serve as an approximative solution for the GM, which is
justified by the fact (upper bound) Ω(o∗) ≤ (2−2/n) ·Ω(ō), where o∗ represents
the set median [34].

A naive computation of set median requires O(n2) distance computations,
which is inappropriate in spaces with high computational cost of each individual
distance (e.g. strings, graphs), especially in case of a large number of objects.
This computational burden can be reduced in metric spaces [21]. For non-metric
spaces an approximate set median can be efficiently estimated [31].

Weighted GM. The definition of GM in (1) can be extended to a weighted
one: ō = arg mino∈D

∑
oi∈O wi · δ(o, oi). The weight wi represents the estimated

merit of object oi. The recent review [47] discusses weighted consensus cluster-
ing including major approaches to determining the weights. An extension of the
linear programming based lower bound [19] to this weighted case is straightfor-
ward.

Center Object. The center object of O = {o1, ..., on} in domain D is an object
ō whose distance δ to all oi is at most r, while r is chosen to be minimal:

min
ō,r

r, subject to δ(oi, ō) ≤ r, ∀oi ∈ O

The particular problem instance in string space, also termed as closest string,
has many applications in computational biology and coding theory. The compu-
tation of the closest string turns out to be NP-hard for many metrics, including
Hamming distance for strings of equal length. The embedding framework has
been adapted to solve this problem [33], not limited to strings.
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6 Future Directions

In this section we sketch some directions for stimulating future research.

Formalization. While numerous works follow the formal definition (1), others
are based on informal approaches. Many of such works, however, can be recast
into this formal framework by a transformation into a representation space. It
will be helpful to identify this recast in as many methods as possible so that
they can benefit from all available theoretical results in this formal framework.

Theoretical Considerations. Although generally applicable, domain-
independent lower bounds may not be tight enough for a particular domain.
There are still very few domain-specific lower bounds yet. The concept of break-
down point from robust statistics [29] is useful for studying robustness for GM
computation in case of outliers. So far only special spaces, e.g. Riemannian mani-
folds [10], have been considered and there is a lack of studies on breakdown point
and further robustness issues in a general setting.

Methodological Development. There is still lot of room for developing addi-
tional general frameworks or methods and also domain-specific solutions. In
addition, algorithmic considerations should also cover aspects that are largely
neglected so far. An example is robust GM computation to tolerate outliers.
Manifold handing is generally challenging [45]. Currently, very few works have
an integrated manifold handling although it may be required in many cases.

Public Domain Resources and Benchmarking. The published methods
typically do not provide their code for public use. There is still very few pub-
licly available software for GM computation. There are hardly any benchmarking
resources available in the community. This is even true for such extensively stud-
ied topics like consensus clustering. Large-scale public datasets are lacking, also
(possibly synthetic) datasets with known ground truth for quantitative perfor-
mance evaluation. Large-scale benchmarking studies, e.g. organized in the form
of contests, will help to obtain a comprehensive overview of the state of the art.

Domain Extensions and Applications. The concept of GM is universal and
can be introduced to a broader range of problem domains. In addition, the
existing methods can be integrated into even more applications.

7 Conclusion

The formal approach (1) to GM computation has many advantages. As soon as
formulated within this framework, one can benefit from all theoretical results and
computation methods available in the literature. This leads to conceptual clarity,
comprehensive understanding of computation, and ease of problem solving. In
this paper we have presented a brief survey of GM computation, which is to our
best knowledge the first one in the literature. Particularly, we have identified
several future research directions. With this survey we contribute to further
development of this fascinating research area with huge potential of theoretical
and algorithmic development as well as applications in virtually all domains.



128 X. Jiang and A. Nienkötter

Acknowledgments. This work was partly supported by the Deutsche For-
schungsgemeinschaft (DFG) - CRC 1450 - 431460824 and the European Union’s Hori-
zon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie
Grant 778602 ULTRACEPT.

References

1. Bader, M.: The transposition median problem is NP-complete. Theoret. Comput.
Sci. 412(12–14), 1099–1110 (2011)

2. Beck, A., Sabach, S.: Weiszfeld’s method: old and new results. J. Optim. Theory
Appl. 164(1), 1–40 (2015)

3. Boongoen, T., Iam-On, N.: Cluster ensembles: a survey of approaches with recent
extensions and applications. Comput. Sci. Rev. 28, 1–25 (2018)

4. Cohen-Boulakia, S., Denise, A., Hamel, S.: Using medians to generate consensus
rankings for biological data. In: Bayard Cushing, J., French, J., Bowers, S. (eds.)
SSDBM 2011. LNCS, vol. 6809, pp. 73–90. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22351-8 5

5. Chakraborty, R., et al.: Intrinsic Grassmann averages for online linear, robust and
nonlinear subspace learning. IEEE-TPAMI 43(11), 3904–3917 (2021)

6. Chakraborty, R., et al.: ManifoldNet: a deep neural network for manifold-valued
data with applications. IEEE-TPAMI 44(2), 799–810 (2022)

7. Chatterjee, S., Mukhopadhyay, A.: Clustering ensemble: a multiobjective genetic
algorithm based approach. In: Proceedings of International Conference on Compu-
tational Intelligence: Modeling, Techniques and Applications, pp. 443–449 (2013)

8. Ferrer, M., et al.: Generalized median graph computation by means of graph
embedding in vector spaces. Pattern Recogn. 43(4), 1642–1655 (2010)

9. Ferrer, M., et al.: A generic framework for median graph computation based on
a recursive embedding approach. Comput. Vis. Image Underst. 115(7), 919–928
(2011)

10. Fletcher, P.T., et al.: The geometric median on Riemannian manifolds with appli-
cation to robust atlas estimation. Neuroimage 45(1), S143–S152 (2009)

11. Franek, L., Jiang, X.: Evolutionary weighted mean based framework for gener-
alized median computation with application to strings. In: Gimel’farb, G., et al.
(eds.) SSPR /SPR 2012. LNCS, vol. 7626, pp. 70–78. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34166-3 8

12. Fred, A.L.N., Jain, A.K.: Combining multiple clusterings using evidence accumu-
lation. IEEE-TPAMI 27(6), 835–850 (2005)

13. Gionis, A., et al.: Clustering aggregation. ACM Trans. Knowl. Discov. Data 1(1),
4 (2007)

14. Goder, A., Filkov, V.: Consensus clustering algorithms: comparison and refinement.
In: Proceedings of 10th Workshop on Algorithm Engineering and Experiments, pp.
109–117 (2008)

15. Hartley, R., et al.: Rotation averaging. Int. J. Comput. Vision 103(3), 267–305
(2013)

16. Hayashida, M., Koyano, H.: Finding median and center strings for a probability
distribution on a set of strings under Levenshtein distance based on integer linear
programming. In: Fred, A., Gamboa, H. (eds.) BIOSTEC 2016. CCIS, vol. 690, pp.
108–121. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54717-6 7

17. de la Higuera, C., Casacuberta, F.: Topology of strings: median string is np-
complete. Theoret. Comput. Sci. 230(1–2), 39–48 (2000)

https://doi.org/10.1007/978-3-642-22351-8_5
https://doi.org/10.1007/978-3-642-22351-8_5
https://doi.org/10.1007/978-3-642-34166-3_8
https://doi.org/10.1007/978-3-319-54717-6_7


Generalized Median Computation for Consensus Learning: A Brief Survey 129

18. Honeine, P., Richard, C.: Preimage problem in kernel-based machine learning.
IEEE Signal Process. Mag. 28(2), 77–88 (2011)

19. Jiang, X., Bunke, H.: Optimal lower bound for generalized median problems in met-
ric space. In: Caelli, T., Amin, A., Duin, R.P.W., de Ridder, D., Kamel, M. (eds.)
SSPR /SPR 2002. LNCS, vol. 2396, pp. 143–151. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-70659-3 14
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Abstract. Brain computer interfaces (BCIs) enable users to interact
with computers via the decoding of their neural activity. In this work,
we seek to show the efficacy of “Inner Speech” as an additional commu-
nication paradigm. In BCIs, Electroencephalography (EEG) signals are
the most regularly used due to their non-invasive nature of collection.
However, a frequent problem plaguing EEG-based systems is the high
noise-to-signal ratio which often results in poorly performing decoding
models. This is further compounded by both intra- and inter-subject
variations with their brain signal domain. In this work, we propose a
novel Siamese variational autoencoder (VAE) network which allows for
unsupervised representation learning to be performed on EEG data. We
further implement a selective framework whereby a contrastive loss can
be used to selectively reject training data which may not match the target
subject’s domain. Finally, by leveraging the lossy compression of the VAE
network, the model may be used as a signal pre-processing step towards
domain generalisation of the training data. Our results obtained classifi-
cation accuracy significantly above previous benchmarks while reducing
the amount of training time needed through selective learning.

Keywords: Domain Generalization · Inner Speech Classification ·
Contrastive Learning · Unsupervised Representation Learning · Data
Selection

1 Introduction

Brain-computer interfaces (BCIs) work through the communication between an
individual’s neural activity and a computer [19]. The computer decodes the
signals, allowing for the users’ signals to be used to perform tasks such as moving
a robotic end effector, neurorehabilitation or as a means for hands-free control of
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remote applications. The most common type of brain signal captured for this is
Electroencephalography (EEG) signals [17]. Recently, inner speech, a new BCI
paradigm which utilizes speech-related brain signals has been introduced as a
means for more fluid communication between computers and humans [9].

However, inner speech decoding presently faces numerous issues that prevent
high accuracy decoding from being developed. Firstly, EEG signals are known
to have high noise-to-signal ratios, which can heavily impact a neural network’s
ability to extract the useful and generalizable features from the signals [6]. Fur-
thermore, this issue is amplified due to the high intra- and inter-subject varia-
tions associated with neural activity [11]. Finally, EEG datasets are often highly
resource intensive to create, especially for individual subjects, leading to a lack
of large consistent datasets that deep neural networks can be trained upon [14].
Deep neural networks require large amounts of data for strong generalized perfor-
mance. Data augmentation, which involves creating synthetic data, is a common
method used to overcome the lack of data [1].

In low-resource environments, the effect of both intra- and inter-subject vari-
ations become more pronounced. This is due to the domain differences from
time-to-time variations, differences in EEG signal collection settings as well as
biophysical differences between subjects [2]. Inter-domain transfer learning [16]
has been employed in various settings to overcome the differences in domain via
finding common features between data. However, this is often a data-intensive
process which may not be applicable towards small datasets.

Thus, we propose a domain generalization variational autoencoder to address
domain differences in inner speech EEG signals. The network aims to reduce vari-
ations in the data to create a homogeneous dataset for a deep learning classifier
network to be trained upon.

2 Related Work

2.1 Variational Autoencoders

Variational autoencoders have long shown their usefulness in performing a myr-
iad of different tasks such as image compression [10], classification [5], feature
extraction [4] and domain adaptation [18]. VAEs operate by using a probabilistic
encoder-decoder pair (Fig. 2), whereby the encoder is responsible for compressing
the input data while the decoder reforms the original data using the compressed
features in the latent space. The encoder is the inference model, qΘ(z|x), which
learns weights and biases θ, and gives the hidden latent features z given an input
x. A decoder model learns weights and biases φ can be represented by a joint
probability pΦ(x, z) = pΦ(x|z)p(z). When training the VAE network, the encoder
and decoder models are simultaneously trained via finding optimal parameters
that seek to reach the likelihood’s variational lower bound pφ(x) =

∫
pφ(x, z)dz.

Overall, the loss of the VAE network is thus given by the reconstruction loss and
regularization loss. The reconstruction loss is given by the model’s difference
between the reconstructed output data against the input data.
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Importantly, VAEs do not rely on data labels, allowing great flexibility in
network application. When applying VAEs towards EEG signals, both the spa-
tial and the temporal domains of the signal have to taken into consideration
for effective learning of the signal representations. In our work, we propose a
simple and compact VAE framework which is inspired by the DeepConvNet net-
work [12], utilizing both spatial and temporal filters to capture the appropriate
domain-related features. We also explore the use of the VAE to perform domain
generalization across the input data.

3 Dataset

We use the Thinking Out Loud EEG dataset prepared by Nieto et al. [9] to
evaluate the proposed framework for low-resource multi-class inner speech clas-
sification. Inner speech as defined by the authors is the internalized process in
which an individual thinks in pure meanings, generally associated with an audi-
tory imagery of own inner “voice”. This differs from imagined and silent speech
[3] in that no phonological properties and turn-taking qualities are retained.

The dataset consists of 10 healthy subjects of an average age of 34. Each
participant performed between 475 and 570 trials of visualized speech, inner
speech and pronounced speech in a single day recording comprising of three
consecutive sessions. For this study, we focus solely on the inner speech condition.
In total, each participant had 200 trials in both the first and the second sessions
and not all participants performed the same number of trials in the third session.
The resultant dataset contains over 9 h of continuous EEG data recording, with
more than 5600 trials across all subjects.

For data acquisition, 128 active EEG channels with a 24 bits resolution and
a sampling rate of 1024 Hz were used. The data were filtered with a zero-phase
bandpass finite impulse response filter. The lower and upper bounds were set
to 0.5 and 100 Hz, respectively. A Notch filter in 50 Hz was also applied. The
data were decimated four times, obtaining a final sampling rate of 254 Hz. Then,
the continuous recorded data were epoched, keeping only the 4.5 s length signals
corresponding to the time window between the beginning of the concentration
interval and the end of the relaxation interval. Finally, Independent Components
Analysis (ICA) [15] was performed on the EEG channels.

4 Methodology

4.1 VAE Network for Selective Learning Using Contrastive Loss

We propose the implementation of a spatiotemporal VAE network architecture
for the extraction of EEG-based signals. This is achieved via the inclusion of
both spatial and temporal convolutional filters within the encoder and decoder
networks. The EEG signals are processed first by the spatial convolutional filters
followed by the temporal filters, as inspired by the DeepConvNet architecture
[12]. To ensure that the features extracted are meaningful, the decoder con-
tains a symmetrical architecture to the encoder network, with transpose spatial
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and temporal filters respectively. The decoder network then aims to utilize the
learned features from the encoder to output a signal that matches the origi-
nal input as close as possible. Since VAEs are lossy autoencoders, best overall
performance across the data is achieved by learning parameters that encode for
generalized features that contains as much information of the entire dataset as
possible. In this manner, it can be surmised that the features from the encoder
are useful if the output is able to retain as much of the original signal as possible
while retaining generalized performance towards other signals.

The proposed EEG-based VAE network architecture learns weights and
biases to compute hidden latent spatial and temporal features that represent
the original input data. The number of latent features can be predetermined,
and in this work, it is set to 16. The VAE network encodes the training data
across all subjects and sessions to minimize the overall loss, encouraging it to
encode for common features. For the inner speech classification task, the com-
mon features learned are the general brain activation patterns for the different
classes. The lossy nature of VAE is further leveraged as certain signal domains
such as subject-specific and session-specific features would not be learnt by the
VAE network since it would result in higher overall reconstruction losses when
trained alongside the other data. Once training is complete, the trained VAE
can then be used on the same training data, resulting in a more generalized
subject- and session-independent signal while retaining important spatiotempo-
ral features relating to the inner speech intentions.

Fig. 1. Contrastive comparison between the target signal of interest against the origi-
nally known training data. The contrastive loss is computed in an unsupervised manner
and focuses on spatial and temporal features.
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In addition to performing domain generalization, we utilize the learnt VAE
model parameters to quantitatively compare the similarity of training data
against the target subject data (Fig. 1). In zero- [20] or few-shot learning [13],
contrastive loss may be used when performing a comparison between two or more
sets of data [7]. We compare the spatial and temporal features of the training
data and the target subject domain using a contrastive loss (shown in Fig. 1).
Each individual training data point is used to compute a contrastive loss based
on its similarity to the target domain, calculated by comparing the spatiotem-
poral latent distribution of the target subject fine-tuning data and the input
training data using the trained VAE latent priors. We keep training samples
with high latent distribution similarity for training the discriminator while dis-
carding the rest. In this study, we use the DeepConvNet [12] and EEGNet [8]
models as baseline classifiers due to their superior EEG decoding capabilities.

High similarity loss against the fine-tune data indicates that the training data
contains spatial or temporal features that would not generalize well towards the
target and should therefore be excluded from the classifier training. If the loss
reaches above a predetermined threshold (Fig. 3), it is considered anomalous
compared to the target domain. By removing anomalous data, we can expect
better classification performance and faster training speeds for the overall clas-
sifier model.

4.2 Domain Generalization

Domain generalization is achieved through using the trained VAE network which
has learnt model parameters that aim to closely represent the majority of the
given data in order to reduce overall reconstruction losses (Fig. 3). Thus, any
input that is given to the VAE network would result in the extraction of spa-
tiotemporal features based on the learnt latent prior that most closely represent
the learnt distribution of data by the network. Subject and session specific fea-
tures would ideally be largely ignored by the VAE network due to the model’s
motivation to learn generalized features. In this manner, domain generalization
across all the data is achieved through maximizing the removal of subject and
session specific features of the input while retaining the generalized features. The
output of the VAE network would thus be the domain generalized form of the
input data.

It is recognized that even after performing domain generalization, some of the
initial training data may contain significant amount of non-related features as
compared to the target domain. This results in poor quality data being produced
by the VAE network which may be detrimental when training the deep learning
classification model. Therefore, the earlier selective step ensures that such data
is removed, while the chosen domain generalized data are kept. After selective
learning and domain generalization have been performed on the training data,
the trained VAE network is retained for the transfer learning step. Therefore,
the final inner speech intent classification network is trained using an efficient
methodology through selectively choosing data and re-using the trained VAE
model for subsequent subject-adaptive transfer learning.
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Fig. 2. (A) Proposed framework for the variational autoencoder. The variational
autoencoder learns parameters that best estimate latent vectors for accurate com-
pression of the original input.

Fig. 3. (B) Selective domain generalization is achieved by first removing data with
poorer generalized features, followed by using the variational autoencoder to perform
domain generalization. The domain generalized data is then used to train the classifier.

4.3 Domain Generalization in Adaptive Transfer Learning

Finally, we examine the effectiveness of performing adaptive transfer learning in
improving the decoding accuracy of the classifier. Adaptive transfer learning is
achieved by fine-tuning the trained classifier network on small amounts of data
belonging to the target. In this case, we utilize 50 trials of labelled target data
to fine-tune the trained network while the remaining unused trials form the test
set. Furthermore, we explore and show that the use of domain generalization in
conjunction with the adaptive framework results in an increase in decoding accu-
racy against the baseline adaptive transfer learning methodology. This is done
by fine-tuning the trained VAE network on the data that is to be used for further
adaptation. When subject-adaptive transfer learning is applied, the pretrained
subject-independent model is further updated with information that is directly
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obtained from the target subject of interest. The VAE network then leverages
upon the previously learned knowledge of the training data while incorporating
the latent representations of the new data to rapidly update the classifier model
parameters to generalize towards the target domain features.

Table 1. Comparison of individual subject and average accuracy (%) on EEG-based
inner speech classification.

Subject Methodology

EEGNet DeepConvNet Proposed Method (EEGNet) Proposed Method (DeepConvNet)

1 27.33 24.67 30.00 30.10

2 21.58 27.89 24.21 27.47

3 32.31 26.15 26.15 33.95

4 26.84 21.05 25.79 27.99

5 20.53 25.26 28.95 27.47

6 30.12 25.30 29.52 27.21

7 26.84 23.16 23.16 25.36

8 28.67 26.67 26.00 29.43

9 27.37 21.58 25.79 33.26

10 25.26 23.68 31.05 27.99

Average 26.68 24.40 27.20 29.92

To reduce adaptation time, network freezing was used where some pretrained
parameters are frozen while the rest are updated. In the target adaptation step,
the first convolutional layer of the DeepConvNet was frozen, reducing trainable
parameters from 305077 to 266002. Zhang et al. [21] found this scheme worked
well for motor imagery adaptation. Freezing earlier layers aims to fine-tune the
model’s ability to capture subject-specific higher-level features, while recognizing
that lower level features are similar across subjects.

5 Results

The results were obtained by comparing the model’s ability to accurately predict
the class of the signal given prior knowledge that there exist four possible classes.
We show that the proposed method works on both baseline classifiers.

From Table 1, we observe that the proposed methodology achieves state-of-
the-art classification performance. Majority of best subject performances (50%)
were achieved by the proposed methodology with the DeepConvNet classifier
architecture. Between the EEGNet (27.20%) and DeepConvNet (29.92%) clas-
sifiers for the proposed framework, the resultant DeepConvNet model achieves
superior classification accuracy despite poorer initial performance in the origi-
nal baseline comparison. Overall, state-of-the-art is achieved while significantly
reducing the amount of time taken to train the network via the removal of EEG
signal data deemed to be below the feature similarity threshold of the target
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subject. Furthermore, domain-generalized subject-adaptive learning is utilized
to achieve higher accuracy using smaller subsections of the target subject data.

The proposed system achieved an overall mean accuracy (29.92%) that is sig-
nificantly above the current state-of-the-art (26.68%) (Table 1). Using the pro-
posed selective learning framework achieved superior model performance with
fewer training samples, indicating the importance of choosing data with suffi-
cient information. This eliminates the need for training deep neural networks
with unnecessarily large amounts of data. Compared to the previously proposed
EEGNet system [8], the proposed system requires fewer labeled data and has
faster training times, making it advantageous in real-world scenarios.

An ablation study (Table 2) was further conducted to examine the various
effects of domain generalization on different sections of the proposed system. The
effects of subject-adaptive transfer learning and the proposed selective learning
framework on the classification accuracy were examined as well.

Table 2. Ablation Study of Proposed Domain Generalized Selective Learning.

Methodology DeepConvNet (%) EEGNet (%)

Proposed Selective Learning with

Efficient Domain Generalization

29.92 27.20

- Domain Generalization in Adaptation 28.25 26.89

- Domain Generalization in Baseline 27.51 27.73

- Domain Generalization 27.09 28.42

- Adaptation 25.53 24.28

- Adaptation, Domain Generalization in

Baseline

23.44 25.17

- Selective Learning 25.50 25.17

Baseline Subject-Independent Model 24.54 26.68

It is observed in Table 2 that although the baseline DeepConvNet model
achieves a lower accuracy (24.54%) as compared to the subject-independent
EEGNet (26.68%), between the DeepConvNet and EEGNet proposed classifica-
tion framework, the DeepConvNet framework was able to achieve a higher mean
accuracy (29.92%) as compared to the best EEGNet model settings (28.42%).
The ablation study (Table 2) illustrates the significance and effectiveness of the
proposed domain generalized selective learning approach in achieving state-of-
the-art classification in EEG-based inner speech. In the DeepConvNet classifica-
tion framework, we observe that whenever domain generalization is removed, the
network faces significant drops in accuracy (27.09%). This is particularly promi-
nent in the domain generalization of the baseline subject-independent model
(27.51%) compared to the target adaptation data (28.25%). This strongly indi-
cates that the VAE network is able to effectively extract generalizable features
while suppressing the undesired noise and features. The DeepConvNet classifier
is thus able to learn from a higher quality dataset resulting in increased accu-
racy. However, this does not appear to have the same effect on the EEGNet
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framework, whereby the absense of domain generalization achieved the highest
accuracy out of all permutations (28.42%).

6 Discussion

Although the addition of performing domain generalization on the baseline train-
ing data and the fine-tuning data allowed for greater improvements to classifi-
cation accuracy, when performed on the validation and test data of the target
subject, the accuracy of the classifier was significantly lower. Domain generaliza-
tion of the test data was likely to have resulted in the class distinctive features
being lost or distorted due to asymmetric effects in domain-generalization.

Overall, all subjects achieved a classification accuracy above chance level,
and the implementation of a selective learning framework alongside domain gen-
eralization allowed for an efficient deep learning neural network framework that
maximized overall classification performance while minimizing training time.
Autoencoder networks were used to extract latent features that best represented
the given data as a distribution, allowing for unsupervised comparison between
unlabelled data through contrastive loss. This concept was applied to EEG-
based inner speech classification by comparing the inferred spatiotemporal fea-
tures of the training subjects against the target subject data. The trained VAE
also served a dual purpose in performing domain generalization on the input
data by learning parameters that achieved the best performance across all the
data, capturing commonly seen features while minimizing the importance of
varied features. Efficient selective learning was executed through the selection of
data below the contrastive loss threshold while performing domain generalization
using the same trained VAE-CNN model.

7 Conclusion

In conclusion, we propose a novel method of using a spatiotemporal VAE net-
work to encode EEG signals for domain generalization and data selection. The
contrastive loss of the VAE is used to compare unseen EEG data with trained
data, and if the loss is higher than the threshold, the data is removed from the
classifier training set. The network is further used to perform domain gener-
alization, achieving state-of-the-art classification accuracy for the inner speech
paradigm.

Further work may be performed to observe if data augmentation can be a
useful tool towards improving classification accuracy since the original dataset
size is small. This may be done using the trained VAE via sampling from the
latent hidden feature space to produce data with similar features while retaining
class consistency.
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Abstract. Despite the notable achievements of deep object detection
models, a major challenge remains to be the need for vast amounts of
training data. The process of acquiring such real-world data is laborious,
prompting the exploration of new research directions such as synthetic
data generation. In this study, we assess the capability of two distinct
synthetic data generating techniques utilising stable diffusion, namely,
(1) Prompt engineering of an established model and (2) Fine-tuning a
pretrained model. As a result, we generate two training datasets, manu-
ally annotate them, and train separate object detection models for test-
ing on a real-world detection dataset. The results demonstrate that both
prompt engineering and fine-tuning exhibit similar performance when
tested on a set of 331 real-world images, in the context of apple detec-
tion in apple orchards. We compared their performance with the baseline
setting where the model was trained on real-world images and witnessed
only a 0.07 and 0.08 average precision deviation from the baseline model.
Qualitative results demonstrate that both models are able to accurately
predict the location of the apples, except in instances of heavy shading.
This study distinguishes itself from prior research by focusing on object
detection instead of image classification. Furthermore, we are the first to
apply diffusion model fine-tuning in the context of dataset generation.
Our findings underscore the potential of synthetic data generation as a
viable alternative to the laborious collection of extensive training data
for object detection models.
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1 Introduction

The field of computer vision has undergone a revolution in the past decade
due to the advent of deep learning. Despite their success, these models require
vast amounts of training data, which remains a significant challenge for many
real-world applications [1,2]. To address this challenge, researchers are exploring
novel methods for generating representative datasets, from using simulators such
as Unity3D [3] to using generative models [4] to create synthetic data.

The field of image synthesis has been an ongoing research topic, with sev-
eral approaches developed over time, including GANs, RNNs, and AEs [5–7].
Recently, newer techniques such as transformers [8] and diffusion models [9]
have emerged and gained popularity in the field [10–13]. In particular, diffusion
models are now considered the state-of-the-art approach for generating images,
surpassing the performance of GANs [14].

This study assesses the effectiveness of two approaches to data genera-
tion using text-to-image diffusion models: (1) engineering carefully thought-out
prompts to generate relevant images using a pretrained diffusion model [12] and
(2) fine-tuning a diffusion model on a small selection of real-world images to
generate real-world alike images [15]. Note that, using the first approach there
is no guarantee of generating images similar to the intended test scenario.

To demonstrate the feasibility of this approach, the study takes on the task
of apple detection, leveraging well-established benchmark datasets [16]. Distin-
guishing ourselves from prior investigations [4] that concentrated on image clas-
sification. Moreover, to the best of our knowledge, we pioneer the examination
of fine-tuning diffusion models for the purpose of dataset generation. Our results
demonstrate the groundbreaking potential of these diffusion models for dataset
generation, particularly for challenging and data-scarce real-world applications.

1.1 Related Work

Text-to-Image Synthesis. The synthesis of images from textual descriptions
has been a subject of interest in the research community since 2015, with early
works employing Recurrent Neural Networks (RNNs) and Auto Encoders (AEs)
[7]. Recent advancements have been made possible by the use of Generative
Adversarial Networks (GANs), such as VQGAN [17], and transformer-based
models [8], such as DALL-E [10]. However, the high computational requirements
of these models can be a limiting factor. Integration of text-to-image synthesis
with diffusion models has also shown potential, as demonstrated by GLIDE [18].
To address the computational limitations, latent diffusion models (LDMs) have
been proposed. Latent diffusion models [12] use a Vector Quantized Variational
Autoencoder (VQ-VAE) [19] to perform diffusion within a compressed latent
space. Stable diffusion is an extension of latent diffusion [20].

Formally, diffusion models [9] use a gradual transformation process to model
a data distribution q(x), x being a random variable. The transformation process
maps q(x) to a noise distribution π(x), typically Gaussian N (0, I), which can
be easily sampled. Subsequently, a function εθ(zt, t) is learnt to predict the noise
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that was added at each gradual step t in order to invert the noising process
and recover the original image distribution q(x). In this process, z is the latent
representation of x, generated by the encoder function of the VQ-VAE. Image
synthesis studies [14,21] use a time-conditional UNet [22] to implement εθ(zt, t)
and train the model using a loss function that is equivalent to the mean squared
of the reconstruction loss. In latent diffusion, the loss function of the model
is modified to account for the use of latent representations, facilitated by an
encoder E and decoder D from the VQ-VAE, as can be seen in Eq. 1.

LLDM := EE(x),ε∼N (0,I),t

[
‖ε − εθ(zt, t)‖2

]
(1)

To achieve text conditioning, the denoising process can be implemented as
εθ(zt, t, y), y being the conditioning text. This can be achieved by adding cross-
attention modules into intermediate layers of the UNet architecture, conditioned
on a vectorised representation of y [12]. A domain-specific encoder τθ such as
CLIP [23] is used to obtain the vectorisation. See Eq. 2 for the associated loss
function.

LLDM := EE(x),ε∼N (0,I),t

[
‖ε − εθ(zt, t, τθ(y))‖2

]
(2)

DreamBooth Fine-Tuning. DreamBooth [15] showcases the potential of fine-
tuning a pretrained text conditional diffusion model to generate new renditions
of a given object by associating it with specific pseudo-words. While this study
shares similarities with textual inversion-based approaches [24] the key difference
is that they embed the subject in the output domain of the model via retraining,
in contrast to merely searching for a similar embedding in the original output
domain. The DreamBooth method involves using a limited set of images X of
the same object, all with the same conditioning text ys. The condition text ys

has a simple format as illustrated in Eq. 3, where the pseudo-word and a coarse
class descriptor of the subject are denoted by [pseudo-word] and [class noun],
respectively1. The model is trained to associate the pseudo word with the object
illustrated in X . The authors also propose a class-specific prior preservation loss
with a regularisation term to prevent language drift and retain the model’s prior
knowledge of the [class noun] [26,27].

ys := “a [pseudo-word] [class noun]” E.g. ys = “a sks tree” (3)

y(pr)
s := “a [class noun]” E.g. y(pr)

s = “a tree” (4)

For prior preservation, the authors generate a second set of images X (pr)

using a frozen version of the pretrained model before any fine-tuning. These
images are generated using a conditioning text y

(pr)
s that is equivalent to ys but

omits the pseudo-word (see Eq. 4). The loss function is defined as described in
1 We opt for using the pseudo-word ‘sks’ as proposed by the diffusers implementation

[25].
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Eq. 5, where x and x(pr) are drawn from the sets X and X (pr), respectively.
Additionally, the variables ε and ε′ are sampled from the normal distribution
N (0, I), and λ controls the weight of the regularisation. The regularisation term
encourages the model to produce output images similar to those of the frozen
network when the pseudo-word is not present. While the DreamBooth paper
focuses on Imagen [13], the described loss function has been reformulated to be
compatible with latent diffusion models.

LDreamBooth := EE(x),E(x(pr)),ε,ε′,t

[
‖ε − εθ(zt, t, τθ(ys))‖2

+λ‖ε′ − εθ(z
(pr)
t , t, τθ(y(pr)))‖2

]
(5)

2 Method

We present an approach for utilising stable diffusion models for training data
generation. Initially, we artificially generate training datasets by either prompt
engineering or DreamBooth fine-tuning. Following this, we manually annotate
the generated images and train a YOLOv5m [28] object detection model with
the generated imagery. Note that the choice of object detector is out of the
scope of this study and any alternative object detector capable of detecting
small objects could be used. For evaluation, we choose the real-world scenario
to be the MinneApple apple detection benchmark dataset [16].

Fig. 1. Sample of the MinneApple dataset reshaped to 768× 768 pixels.

2.1 MinneApple Dataset

MinneApple is a dataset of 1001 tree images captured within an apple orchard.
The images depict both yellow and red apples at a variety of growth stages,
as well as variations in shading, occlusion, and tree shapes. Data was collected
over multiple days to obtain diverse illumination conditions. The image reso-
lution is 1280 × 720 pixels, and the dataset only annotates apples in the fore-
ground while leaving those on the ground and trees in the background unmarked.
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The train set has a distribution of 54 trees with yellow apples and 482 trees with
red apples.

To ensure the independence of the test set, the dataset is divided into 670
training images and 331 testing images, acquired in 2015 and 2016, respectively.
We further divided the training images into a 542-image training set and a 128-
image validation set. In addition, to be consistent with the default output size
of stable diffusion of 768× 768 we applied a centre cropping to create 720× 720
images and reshaped to 768× 768 using pixel interpolation, as depicted in Fig. 1.

2.2 Data Generator

To generate the training set, two methodologies were assessed, namely, prompt
engineering and fine-tuning. The prompt engineering approach aimed to prompt
a pretrained model to produce images that resemble the MinneApple dataset.
In contrast, the fine-tuning approach sought to select an appropriate number of
images from the MinneApple train set that captured sufficient image diversity
for generating closely similar images to the MinneApple dataset. Both method-
ologies utilised the stable diffusion 2.1 base model [29], and the images were
manually annotated with bounding boxes2.

(a) Prompt Engineering

(b) Fine-tuning

Fig. 2. A subset of the images generated by each of our proposed approaches.

2 Both training datasets are made available at https://www.kaggle.com/royvoetman/
datasets.

https://www.kaggle.com/royvoetman/datasets
https://www.kaggle.com/royvoetman/datasets
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Prompt Engineering. To generate high-quality images using stable diffusion,
we employed carefully crafted positive and negative prompts. Negative prompts
were added to stable diffusion [20] as an improvement upon latent diffusion [12]
and work by examining the distinction between the image that has been denoised
to resemble the provided positive prompt and the provided negative prompt. The
objective is then to shift the ultimate image towards the former and away from
the latter.

In our experiments, we used the positive prompt “a photo of a tree standing
in the grass. the tree has many apples, the apples are both red and yellow. beneath
the tree there are a lot of apples. The many apples are a combination of red apples
and yellow apples. volumetric lighting. shadows, hyperrealism, 4k realism, photo-
graph” and the negative prompt “blurry, deformed, cartoon, drawing, treeless” to
synthesise hyperrealistic images of apple trees, as shown in Fig. 2a. The positive
prompt includes several crucial elements, such as the requirement for the image
to feature grass and apples with a specific colour. To simulate realistic lighting
conditions and shaded apples, the terms “volumetric lighting” and “shadows”
were added. Moreover, it is stipulated that the images must include apples both
on the ground and in the trees. As the apples on the ground are not annotated in
the MinneApple dataset, it is crucial for the model to distinguish between apples
located on the ground and those on the trees. Our negative prompt guides the
model to avoid creating drawing-like images and that all objects featured in the
image should not be blurry or deformed.

Fine-Tuning The authors in [15] state that merely 3 to 5 images of the subject
are enough to fine-tune a diffusion model to replicate the subject. Nonetheless,
our findings indicate that to capture the diversity present in the MinneApple
dataset, we required no less than 20 images. We aimed to preserve the same
distribution of apple colours, namely, 54 yellow and 482 red apples. To achieve
this distribution in our generated dataset, we fine-tuned the model twice. The
first fine-tuning was done using 10 yellow apple tree images, while the second
was done using 10 red apple tree images. These 20 images were carefully selected
from the MinneApple train set, with an emphasis on optimising for a diverse
range of samples. During the generation process, we used the yellow apple tree
model 54 times and the red apple tree model 482 times to maintain the original
distribution of red and yellow apple trees in the generated training set.

In relation to the prompts employed during the fine-tuning process, we
defined ys and y

(pr)
s to be equivalent to the example prompts outlined in Eqs. 3

and 4, respectively. Regarding the image data, we defined the set X to be either
10 yellow apple trees or 10 red apple trees sampled from MinneApple. Further-
more, the prior preservation dataset X (pr) consisted of 200 images that were
generated by the model before the fine-tuning process, using the prompt y

(pr)
s .

Figure 2b depicts examples of generated images using this approach.
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2.3 Evaluation Metrics

We assess the performance of our approach using the average precision (AP)
metric. Specifically, we compute AP by varying the Intersection over Union (IoU)
threshold from 0.5 to 0.95 in increments of 0.05 (referred to as AP@0.5:0.95).
In addition, we report AP values at IoU thresholds of 0.5 (AP@0.5) and 0.75
(AP@0.75).

3 Results

Our experimental results, which are presented in Table 1, compare the perfor-
mance of models trained exclusively on the MinneApple train set with those
trained on our generated data. To account for uncertainties, we trained each
model five times, and the table reports the mean and standard deviation of the
average precision (AP) metrics.

As can be seen, the baseline model achieved the highest AP scores. How-
ever, our generated data demonstrated relatively good performance compared
to the MinneApple dataset. Although both approaches underperformed slightly
compared to the baseline, the difference was not large with an AP@0.5:0.95 dif-
ference of only 0.07 and 0.08. In addition, the results indicate that the prompt
engineering and fine-tuning approaches exhibited comparable performance.

However, a significant difference was observed in the AP@75 metric. Prompt
engineering exhibited a gap of 0.09 compared to the baseline while fine-tuning
produced a gap of 0.15. This suggests that prompt engineering leads to more
precise locations of the detected bounding boxes. On the other hand, at an IoU of
0.5, fine-tuning seems to perform better. Generally, the difference between both
approaches is marginal in both scenarios, with the best approach depending on
the IoU threshold used.

Table 1. AP evaluation metrics on the MinneApple test set, using a YOLOv5m model
trained over generated train sets, compared to the model trained over the MinneApple
train set.

Dataset AP@0.5:0.95 AP@0.50 AP@0.75

MinneApple 0.34 ± 0.016 0.69 ± 0.014 0.31 ± 0.029

Prompt Engineering 0.27 ± 0.023 0.58 ± 0.043 0.22 ± 0.019

0.07 0.11 0.09

MinneApple 0.34 ±0.016 0.69 ±0.014 0.31 ±0.029

Fine-tuning 0.26 ±0.005 0.61 ±0.015 0.16 ±0.021

0.08 0.08 0.15

Upon qualitative evaluation of the detectors, it was observed that both the
prompt engineering and fine-tuning approaches yielded comparable results, as



Using Diffusion Models for Dataset Generation 149

(a) Prompt Engineering

(b) Fine-tuning

Fig. 3. The predicted (white) and ground truth (green) bounding boxes, for two models
trained with generated images using (a) Prompt Engineering and (b) Fine-tuning, on
two of the images of the MinneApple test set. (Color figure online)

illustrated in Fig. 3. The detectors demonstrated the ability to predict the pres-
ence of apples in the generated images reasonably well. Nonetheless, a common
weakness was identified in both approaches, whereby they struggled to detect
apples that were heavily occluded or located in regions with high levels of shad-
ing.

4 Discussion and Conclusion

In this research, we proposed two methodologies for generating training images
for apple detection in orchards: using prompt engineering of an established diffu-
sion model and fine-tuning it. A comparison has been made between the proposed
methodologies and also expanded to the comparison with training on the orig-
inal training set. Our findings indicate that the performance of the generative
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approaches is highly comparable. One significant advantage of prompt engineer-
ing is that it eliminates the need for a small collection of real-world images for
fine-tuning. However, it is important to note that prompt engineering is lim-
ited to the text domain in which the stable diffusion model was trained, which
restricts the generation of certain objects. In contrast, fine-tuning has the abil-
ity to generate custom objects by providing the model with specific imagery to
train on, along with their corresponding textual representation. We hypothesise
that fine-tuning will outperform prompt engineering when real-world scenarios
are not present in the original output domain of the diffusion model. Ultimately,
our research shows that for simple tasks, prompt engineering is preferable due
to its needlessness for any additional real-world imagery.

The present study demonstrates the potential of diffusion models in image
generation as a promising research direction but our findings reveal a limitation
inherent in either our data generation or annotation process. Specifically, our
detectors are unable to detect challenging objects such as highly occluded or
shaded objects. It is plausible that our models are incapable of mimicking such
scenarios. In particular, our prompt engineering approach encountered significant
difficulty in producing high levels of shading. As for the fine-tuning approach,
it is conceivable that the limited selection of images used for fine-tuning fails to
provide a sufficiently diverse representation of the real-world. Alternatively, it
is possible that our manual annotation quality falls short of the standards set
by MinneApple, who reported spending up to 30 min annotating a single image
[16]; including in-person reviews to ensure annotation consistency.

Further research endeavours can explore the refinement of the fine-tuning
process by employing a larger or more diverse collection of images for fine-
tuning, aiming to approach the performance level achieved by real-world data.
The results presented in this paper also warrant additional investigation into
text-to-image dataset generation for more complex detection tasks. For instance,
replication of renowned object detection benchmark datasets such as COCO [30]
or Pascal VOC [31] can provide valuable insights into the robustness and scala-
bility of the proposed framework.
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Abstract. Texture classification plays an important role in different
domains of healthcare, agriculture, and industry. In this contribution,
we propose an interpretable and efficient texture classification framework
that considers colour or channel information and does not require much
data to produce accurate results. Therefore, such a classifier can be suit-
able for medical applications and resource-limited hardware. We base our
work on a Generalized Matrix Learning Vector Quantization (GMLVQ)
and introduce a special matrix format for multi-channel images. We com-
pare the performance of different model designs on two data sets empha-
sising the role of the dissimilarity measure used. We demonstrate that
our extension of parametrized angle dissimilarity measure leads to better
model generalization and improved robustness against varying lighting
conditions than its Euclidean counterpart.

Keywords: Colour texture classification · Learning Vector
Quantization · parameterized angle dissimilarity · adaptive dissimilarity

1 Introduction

Texture analysis is a branch of imaging science that aims to identify and quan-
tify spatial patterns of pixels. Its methods are well suited for classification and
segmentation tasks, as they provide unique information about the texture within
the image region [16]. Texture classification is a topic of interest for various areas
such as remote sensing [13], industrial quality control [11], agriculture [5], and
medical imaging [3]. A variety of methods have been developed for texture anal-
ysis including Gabor filtering [4] and co-occurrence matrices [9]. The state-of-
art approaches such as Convolutional Neural Networks (CNN) have remarkable
accuracy [12], however, they typically demand large amounts of data for training,
require substantial computational resources and lack interpretability.

The majority non-NN based texture classification methods are designed to
operate on greyscale images, where the input images are first preprocessed with
one of the standard RGB-to-greyscale transforms fixed for all classes. However,
colour can convey important discriminating information for a particular class,
and having local colour-to-greyscale transformation can result in higher accuracy,
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as shown in [1] with the Colour Image Analysis Learning Vector Quantization
(CIA-LVQ) framework. It bases on prototype learning with adaptive dissimilar-
ities in form of Generalized Matrix LVQ (GMLVQ) and a Gabor filter bank as
a feature extractor. In [7] CIA-LVQ was extended by introducing the adaptive
filter bank, which improved classification results even further. Both works con-
sidered images in the complex Fourier domain. A recent extension proposed a
variation of the algorithm which operates in the spatial domain and learns the
coefficients of Gabor filters, reducing the number of adaptive parameters to only
5 per filter [14]. All existing papers use the parameterized quadratic form in
Euclidean space to measure dissimilarity between filtered patches.

1...
p

1...p

RGB patch

1 n = 3p2...

xi

Fig. 1. Each p × p image patch is decomposed into h (here for RGB h = 3) channels
which are then row-wise flattened and concatenated into one vector xi ∈ R

n.

In this contribution, we adjust the original adaptive dissimilarity measure and
extend CIA-LVQ with a Parametrized Angle-based (PA) dissimilarity. Moreover,
we demonstrate a special case of the transformation matrices on RGB, specifi-
cally designed for multiple intensity channels which reduces the complexity while
improving the generalization ability and explainability of the models. Unlike [1,7]
we consider the images in the spatial domain to facilitate more intuitive inter-
pretation and discard the filtering operation since in contrast to [14], the focus
of this work is the influence of dissimilarity measure and matrix format on the
result. In addition to the VisTex [15] data set used in previous works, we evaluate
our models on the ALOT [2] subset with varying illumination conditions. Our
model outperforms the most recently published CIA-LVQ results and a CNN
while having 226× and 106× fewer trainable parameters, respectively.

2 Methodology

The CIA-LVQ pipeline can be split into input preprocessing and prototype-based
learning. The first stage is the extraction of random non-overlapping patches
from the original images. Without loss of generality, we consider all h channels
and hence a patch of size p × p has the dimensionality of n = p × p × h. For
colour images, h is typically 3 or 4 (e.g. RGB, YMCK), but the extension to
hyperspectral data is possible. The value for p should be selected, such that the
important parts of a given texture are covered. Finally, the patches are vectorized
to form feature vectors (or data points) xi ∈ R

n, as shown in Fig. 1. In contrast
to [1,7] we consider non-complex input in the spatial domain and no Gabor
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filter bank. Hence, this paper analyzes the use of previously introduced Angle
LVQ (ALVQ) [6] for colour texture classification and proposes a block-diagonal
parameterization for multi-channel intensities.

2.1 Colour Image Analysis LVQ for Multi-channel Intensities

Learning Vector Quantization (LVQ) [10] is a supervised algorithm using the
winner-takes-all scheme, in which a data point is classified according to the
label of its closest prototype. Throughout the following, we assume a labelled
training data set {(xi, yi) | xi ∈ R

n, and yi ∈ {1, . . . , C}}N
i=1 and a set of

prototype vectors wj ∈ R
n with labels c(wj) ∈ {1, . . . , C}. In contrast to the

original heuristic prototype update the Generalized LVQ (GLVQ) [17] introduced
a training scheme as minimization of costs:

E =
N∑

i=1

Φ(μi), μi =
dJ

i − dK
i

dJ
i + dK

i

. (1)

With distance measure dJ
i = d(xi,wJ ) to the closest prototype wJ with the

same class label yi = c(wJ ) and the distance dK
i = d(xi,wK) to the closest

prototype with non-matching label yi �= c(wK). Φ is a monotonic function and
we use the identity function in this contribution. The definition of d plays a
central role in LVQ-based classifiers, as it determines the closest prototypes. In
this paper the quadratic form and angle-based dissimilarities are considered1.

Generalized Matrix LVQ [18] (GMLVQ) is an important extension of GLVQ
which makes the distance adaptive by employing a positive semi-definite n × n
matrix Λ, which accounts for the pair-wise correlation between the features.
To ensure positive semi-definiteness Λ can be decomposed as Λ = ΩT Ω with
Ω ∈ R

m×n, with m ≤ n. The corresponding quadratic form (QF) is defined as:

dΩ
QF (x,w) = (x − w)T ΩT Ω(x − w) , (2)

where Ω is learned and updated along with the prototypes, hence the distance
becomes adaptive. Special cases of (2) include the squared Euclidean distance if
the resulting Λ is fixed as identity matrix, and Generalized Relevance LVQ [8]
where it is a diagonal matrix. Rectangular matrices Ω with m < n imply dimen-
sionality reduction by means of linear transformation.

The CIA-LVQ framework [1,7,14] adopts full rectangular matrices Ω with
m = n/3 to obtain a lower-dimensional “quasi-greyscale” representation of the
original 3-channel RGB image patch and have a possibility to interpret Λ as
the correlation matrix of spatio-colour features. Naturally, this concept can be
generalized to data with h intensity channels. In this paper, we use rectangular

1 Our dissimilarity measures are not required to satisfy the triangle inequality and
hence are not necessarily proper metrics. We still refer to these pseudo-metrics as
“distances” and “dissimilarities” throughout this paper for improved readability.
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Ω’s and introduce the new option specifically developed for channel intensity
images (both variants shown in Fig. 2). We term it a block-diagonal matrix:

Ω̂ij =

{
Ω̂ij , if j = i + (k − 1)m with k = 1, . . . , h

0, otherwise .
(3)

Hence, every row Ω̂i contains only contributions from the same pixel from each
of h channels reducing the number of free matrix parameters from m×n to hm,
which can prevent the risk of overfitting. Instead of a global transformation, local
matrices ΩL or Ω̂L attached to each prototype or class can be trained, chang-
ing the piece-wise linear decision boundaries into nonlinear ones. The resulting
number of trainable parameters for classwise matrices is then C(nm + kn) for
full ΩL or C(n+ kn) for block-diagonal Ω̂L with C being the number of classes,
and k being the number of prototypes per class.

Fig. 2. Data vector xi is projected with a full ΩT (a) or block-diagonal (b) ̂ΩT trans-
formation matrix resulting in a lower-dimensional representation ξi. Shading indicates
contributions to the shaded element of ξi and empty cells indicate zero weights.

2.2 Parametrized Angle Dissimilarity

A very recent extension of GMLVQ named Angle LVQ (ALVQ) [6] introduced
a parameterized angle (PA) distance, that demonstrated very robust behaviour
for heterogeneous data and imbalanced classes. The dissimilarity is defined as:

dPA(x,w) = g(bΩ(x,w), β), where g(bΩ , β) =
e−β(b−1) − 1

e2β − 1
, (4)

and bΩ(x,w) =
xT ΩT Ωw
‖x‖Ω‖w‖Ω

, with ‖v‖Ω =
√
vT ΩT Ωv. (5)

The exponential function in (5) transforms the parameterized cosine similarity
bΩ = cos θ ∈ [−1, 1] into a dissimilarity ∈ [0, 1]. The hyperparameter β influences
the slope as shown in Fig. 3 (left panel) weighting the contribution of samples



Towards Robust Colour Texture Classification with Limited Training Data 157

within the receptive field based on their distance to the prototype. For β → 0
the weighting is near-linear, while increasing β non-linearly decreases the con-
tribution of samples further away from the prototype. The angle-based distance
classifies on the hyper-sphere instead of Euclidean space and hence does not con-
sider the magnitude of vectors. This can be beneficial in certain circumstances
as shown in Fig. 3 (right panel).
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Fig. 3. Left: the influence of β on the resulting distance g(b, β) as a function of b = cos θ.
Right: x1 exhibits the same Euclidean distance to w1 and w2, but distinct angles
(magenta). For x2 it is the other way around (violet). (Color figure online)

Optimization of the prototypes and transformation matrices occurs through
minimization of the non-convex cost function E Eq. (1) by gradient methods,
such as stochastic gradient descent or conjugate gradient. The corresponding
partial derivatives for local matrix LVQ using the QF read:

∂dL

∂wL
(x,wL) = −2 · ΩLT ΩL(x − wL) (6)

∂dL

∂ΩL
rc

(x,wL) = 2 · (xc − wL
c )[ΩL(x − wL)]r (7)

with r, c specifying row and column respectively. And for PA distance:

∂dL

∂wL
(x,wL) =

∂g

∂bΩL (bΩL

, β) · xΩLT ΩL||wL||2ΩL − xΩLT ΩLwL · wLΩLT ΩL

‖x‖ΩL‖wL‖3
ΩL

(8)

∂dL

∂ΩL
rc

(x,wL) =
∂g

∂bΩL (bΩL

, β) · xc

∑N
j ΩL

rjw
L
j + wL

c

∑N
j ΩL

rjxj

‖x‖ΩL‖wL‖ΩL

− xΩLT ΩLwL

(
xc

∑N
j ΩL

rjxj

‖x‖ΩL‖3wL‖ΩL

+
wL

c

∑N
j ΩL

rjw
L
j

‖x‖ΩL‖wL‖3
ΩL

)
(9)

with
∂μ

∂dJ
=

2dK

(dK + dJ)2
;

∂μ

∂dK
=

−2dJ

(dK + dJ)2
;

∂g

∂bΩL (bΩL

, β) =
−βe(−βb+β)

e2β − 1
.
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To prevent the algorithm from degeneration, the Ω normalization by enforcing∑n
i=1 Λii = 1 is advised in [18]. In order to avoid oversimplification of the model,

a regularization of a cost function with strength α has been also proposed in [19]:

Ereg = E −
∑

j

α

2
ln(det(ΩjΩjT )). (10)

3 Experiments

For the experimentation we use the same portion of VisTex [15] data set as
in previous CIA-LVQ iterations, to be directly comparable to previous results. It
contains 29 128 × 128 colour images from 4 classes as shown in Fig. 4 (top row).
Furthermore, a limited subset of the ALOT [2] data consisting of 18 images is
used to test performance under varying lighting conditions, where performance
is tested on conditions and camera angles never seen in training. We selected
2 classes with very similar texture and colour palette, that are difficult to dis-
tinguish, even for the human eye (bottom row of Fig. 4). Prior to preprocessing

Fig. 4. Top row: train (left) and test (right) data from VisTex. Bottom: part of train
(left) and test (middle) data from ALOT, and configuration of recording of ALOT
images (right). The cameras and light sources are labelled as {c1, . . . , c4} and {l1, . . . ,
l5}.
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( Sect. 2), ALOT images were cropped to a square and resized to 128 × 128.
Per image, 150 and 200 15 × 15 training patches were extracted for VisTex and
ALOT, respectively.

For both data sets the images used for training and testing do not overlap
and the hyperparameter β is selected based on the training results during model
validation with full matrices. For VisTex and ALOT best training performances
were achieved with β = 4 and β = 0.1, respectively. For model validation we
train 5 models on random sets of patches extracted from the training images
and random initialization of the model parameters. The cost function is opti-
mized using the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm
(L-BFGS-B) [20]. We use class-wise Ωj (j = c(wL)) matrices and 4 (2) pro-
totypes per class for VisTex (ALOT). During the VisTex experiment, we also
investigated different cases in terms of normalization, regularization, their combi-
nation, and block-diagonal Ωj . Both random initialization and training patches
are seeded to be similar for different models, such that they are directly compa-
rable only differing in the dissimilarity measure used, indicated by QF and PA.
We train 5 (3) models for QF and PA metrics for VisTex (ALOT) to validate
the results. Finally, we compare our models to a CNN with 3 hidden layers and
15 × 15 kernels, to achieve closer resemblance with a patch-based CIA-LVQ.

Table 1. Accuracy and standard deviation on the train and test VisTex and ALOT
data sets. T(rue) or F(alse) indicate whether full or block-diagonal class-wise, and
normalized or regularized Ωj were used. Best test results are highlighted in bold.

Data Full Norm Reg QF PA

train test train test

mean (std) mean (std) mean (std) mean (std)

VisTex T F F 95.84 (1.06) 83.85 (2.22) 98.19 (0.34) 88.56 (1.08)

T T F 99.74 (0.17) 78.66 (0.92) 98.59 (0.20) 88.51 (0.80)

T F T 96.13 (0.83) 86.16 (1.72) 98.23 (0.45) 88.25 (1.25)

T T T 99.81 (0.16) 80.22 (1.29) 98.61 (0.23) 88.32 (0.64)

F F F 93.13 (0.38) 91.50 (1.46) 89.73 (0.74) 92.01 (1.08)

ALOT T F F 85.83 (1.83) 51.33 (0.44) 94.03 (0.32) 79.11 (1.04)
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Fig. 5. The β impact on the mean accuracy of PA models. The test standard error is
shown as error bars. The dashed line represents the results of QF models for reference.

4 Discussion and Results

The accuracy and standard deviation for all experiments is summarized in
Table 1. For VisTex data and QF dissimilarity, we can observe that using nor-
malization exhibits more prominent overfitting with a ≈20% difference between
train and test accuracy. At the same time it reduces the standard deviation by a
factor of more than 6 and 2 for train and test data compared to a baseline model
in the first row. Regularization proved to be helpful, as it improves the base-
line test accuracy by 2.31% while lowering the standard deviation. Using the
block-diagonal matrices (indicated by “Full” being false) achieves the highest
test accuracy and least overfitting, outperforming the baseline model by 7.65%.
Moreover, as depicted in the confusion matrix in the top right panel of Fig. 6,
class-wise accuracies for the “difficult” Brick and Fabric classes are improved.

In contrast to the QF dissimilarity, the regularization and normalization has
no significant impact on the test or training performance in models using the
PA distance. Only the standard deviation is slightly lower. The class-wise accu-
racies as shown in confusion matrices in Fig. 6 are more evenly distributed in the
sense that the largest difference is 11% as opposed to 21% (between Bark and
Fabric classes) of QF models. The highest test results can be achieved with block-
diagonal Ω̂’s. We observe that models with PA dissimilarity are more accurate for
all considered cases, though regularization and Ω̂’s achieve comparable results.
Our experiments suggest that the block-diagonal transformation matrix is advan-
tageous regardless of the dissimilarity, as it reduces the number of parameters
and provides better generalization and interpretation. Regarding the comparison
to the previous CIA-LVQ studies with the same VisTex subset, our best model
outperforms the variation with adaptive Gabor filters [14] by 2.81%, despite
having 13500 trainable parameters as opposed to estimated 3051000.

The ALOT experiments indicate that the Euclidean (QF) CIA-LVQ clas-
sifiers are not able to distinguish the classes under varying lighting conditions
and camera positions. We can attribute the success of models with PA distance
mostly to the angle aspect, rather than the nonlinear transformation g. As shown
in the right panel of Fig. 5, small β (approximately linear) achieve the highest
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Fig. 6. Confusion matrices for VisTex test data obtained with full (left) and block-
diagonal matrices. Top row is achieved using QF and bottom PA dissimilarity.

training accuracy with a test error far superior compared to the the random
assignment of QF dissimilarity models. For VisTex the performance improvement
is dependent on the non-linearity of the transformation, as small β gives quite
similar results to the models with QF distance (see left panel of Fig. 5). Finally,
the considered CNN showed worse generalization performance than CIA-LVQ
models on both data sets, given the low amount of training patches and 1441348
trainable parameters. While the training data was classified 100% correctly, the
test accuracy was 69.23% and 61.11% for VisTex and ALOT, respectively. We
note, however, that the rigorous optimization of CNN is beyond the scope of this
contribution.

While the interpretation of the results is not the focus of this contribution,
Fig. 7 visualizes the class-wise spatial correlations between and within colour
channels, in form of Λj , as one way of looking into the learned patterns from the
VisTex data. For example, a lot of strong positive correlations can be observed
within the Red (top left quadrant) and Green (middle quadrant) channels for the
“Brick” class, and negative correlations between those channels. For the “Bark”
class, however, most positive correlations are found within the Green and the
Blue channels, while the correlations between them are mostly negative.
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Fig. 7. Class-wise Λj after PA-based training. The matrices were normalized to a
unit trace after the training, the diagonal elements are set to 0. The quadrants on
the diagonals show within-channel correlations for R, G, B, other quadrants show the
correlations between them.

5 Conclusion and Outlook

In this paper we demonstrate and extend a prototype-based framework for tex-
ture image classification called CIA-LVQ, which aims to learn spatio-colour
patterns in colour images and yields transformation matrices to locally project
colour image patches to a lower-dimensional discriminative intensity space. We
extended CIA-LVQ with a parametric angle (PA) dissimilarity as alternative to
the quadratic form (QF), and proposed a new (block-diagonal form of the trans-
formation matrices, that learn a per channel contribution for each pixel. Experi-
ments on the VisTex data set demonstrate that models trained with PA distance
outperform their QF trained counterparts in terms of accuracy in various scenar-
ios where regularization and normalization were involved. Despite reducing the
complexity, the block-diagonal matrices achieve the best performances in both
PA and QF-based models. Additionally, we tested the framework on a subset
of the ALOT database, where lighting conditions and the angle of view differ
between training and test data. We demonstrate that a small-scale CNN and
models trained with QF distance fail to generalize to unseen lighting conditions
with no better than random performance, while PA-based models achieve 79%.
In future work, a rigorous comparison of our methodology to state-of-the-art
deep learning and conventional texture classification techniques will be done.

Since CIA-LVQ is explainable and does not require large amounts of training
data, future work will include application to medical data, e.g. dermatologi-
cal images. Due to its computational efficiency this framework is interesting for
agricultural applications with hyper-spectral images. Similarly to previous devel-
opments, we will investigate the combination of the CIA-LVQ framework with
morphological filters to achieve adaptive semantic segmentation.

References

1. Bunte, K., Giotis, I., Petkov, N., Biehl, M.: Adaptive matrices for color texture clas-
sification. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch,
W. (eds.) CAIP 2011. LNCS, vol. 6855, pp. 489–497. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23678-5 58

https://doi.org/10.1007/978-3-642-23678-5_58


Towards Robust Colour Texture Classification with Limited Training Data 163

2. Burghouts, G.J., Geusebroek, J.M.: Material-specific adaptation of color invariant
features. Pattern Recog. Lett. 30, 306–313 (2009)

3. Castellano, G., Bonilha, L., Li, L., Cendes, F.: Texture analysis of medical images.
Clin. Radiol. 59(12), 1061–1069 (2004)

4. Fogel, I.Y., Sagi, D.: Gabor filters as texture discriminator. Biol. Cybern. 61, 103–
113 (1989)

5. Gavhale, K.R., Gawande, U., et al.: An overview of the research on plant leaves
disease detection using image processing techniques. IOSR J. Comput. Eng. (IOSR-
JCE) 16(1), 10–16 (2014)

6. Ghosh, S., Tiño, P., Bunte, K.: Visualization and knowledge discovery from inter-
pretable models. In: International Joint Conference on Neural Networks (IJCNN),
Glasgow, UK, pp. 1–8. IEEE (2020)

7. Giotis, I., Bunte, K., Petkov, N., Biehl, M.: Adaptive matrices and filters for color
texture classification (vol 47, pg 79, 2013). J. Math. Image Vision 48, 202 (2014)

8. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization.
Neural Netw.: Off. J. Int. Neural Netw. Soc. 15, 1059–68 (2002)

9. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image clas-
sification. IEEE Trans. Syst. Man Cybern. SMC-3(6), 610–621 (1973)

10. Kohonen, T.: Learning vector quantization. In: Kohonen, T. (ed.) Self-Organizing
Maps. Springer Series in Information Sciences, vol. 30, pp. 175–189. Springer, Hei-
delberg (1995). https://doi.org/10.1007/978-3-642-97610-0 6

11. Kumar, A., Pang, G.: Fabric defect segmentation using multichannel blob detec-
tors. Opt. Eng. - OPT ENG 39, 3176–3190 (2000)

12. Kumar, S., Gupta, A.: Comparative review of machine learning and deep learn-
ing techniques for texture classification. In: Proceedings of the International Con-
ference on Artificial Intelligent Techniques for Electrical Engineering Systems
(AITEES 2022), pp. 95–112. Atlantis Press (2022)

13. Kupidura, P.: The comparison of different methods of texture analysis for their
efficacy for land use classification in satellite imagery. Remote Sens. 11(10), 1233
(2019)

14. Luimstra, G., Bunte, K.: Adaptive Gabor filters for interpretable color texture
classification. In: European Symposium on Artificial Neural Networks (ESANN),
pp. 61–66. ESANN (2022)

15. MIT Vision and Modeling Group. Database vistex of color textures from MIT.
https://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html

16. Nailon, W.: Texture analysis methods for medical image characterisation, pp. 75–
100. IntechOpen (2010)

17. Sato, A., Yamada, K.: Generalized learning vector quantization. In: Touretzky, D.,
Mozer, M., Hasselmo, M. (eds.) NeuIPS, vol. 8. MIT Press (1995)

18. Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in learning
vector quantization. Neural Comput. 21(12), 3532–3561 (2009)

19. Schneider, P., Bunte, K., Stiekema, H., Hammer, B., Villmann, T., Biehl, M.:
Regularization in matrix relevance learning. IEEE Trans. on Neural Netw. 21(5),
831–840 (2010)

20. Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B. ACM Trans.
Math. Softw. 23(4), 550–560 (1997)

https://doi.org/10.1007/978-3-642-97610-0_6
https://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html


Explaining StyleGAN Synthesized
Swimmer Images in Low-Dimensional

Space

Ashkan Mansouri Yarahmadi, Michael Breuß,
and Mohsen Khan Mohammadi(B)

Institute of Mathematics, Brandenburg Technical University, Platz der Deutschen
Einheit 1, 03046 Cottbus, Germany

khanmohammadi@b-tu.de

Abstract. In many existing AI methods, the reasons behind the deci-
sions made by a trained model are not easy to explain. This often leads
to a black-box design that is not interpretable, which makes it a deli-
cate issue to adopt such methods in an application related to safety. We
consider generative adversarial networks that are often used to generate
data for further use in deep learning applications where not much data is
available. In particular, we deal with the StyleGAN approach for gener-
ating synthetic observations of swimmers. This paper provides a pipeline
that can clearly explain the synthesized images after projecting them to
a lower dimensional space. These understood images can later be chosen
to train a swimmer safety observation framework. The main goal of our
paper is to achieve a higher level of abstraction by which one can explain
the variation of synthesized swimmer images in low dimension space. A
standard similarity measure is used to evaluate our pipeline and validate
a low intra-class variation of established swimmer clusters representing
similar swimming style within a low dimensional space.

Keywords: StyleGAN · Explainable AI · Dimension reduction · Deep
learning · t-distributed stochastic neighbor embedding

1 Introduction

In general, deep learning techniques are increasingly used for various tasks as
they represent a flexible tool to fit a non-linear function by optimization of the
underlying network. A deep network typically exhibits multiple solution can-
didates as local minima across a corresponding high dimensional non-convex
learning landscape [2]. The understanding and interpretation of results obtained
by deep learning approaches is therefore a highly non-trivial task. The meaning-
ful construction of a mapping [6] from the highly complex learning landscape to
a more compact, interpretable and low dimensional representation is considered
as a promising research direction within the wider concept of Explainable AI,
surveyed e.g. in [24].
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In our intended future application we plan to frequently deal with crucial
decisions to be made about the safety of swimmers, based on imagery reported by
a flying drone in an outdoor environment. The input images taken by the drone
shall enable another deep learning module to decide if a swimmer has abnormal
movements or poses in water, in order to prevent negative consequences on a
swimmer’s life. Not much-labeled data is available for training a corresponding
deep learning model for identification of such situations, which makes it necessary
to propose an automated data generation model where the labeling is clearly
explainable. In our intended application, training data generated by a black-box
AI model that may label a slightly adversarial image [25] of a perfect swimming
style as abnormal or vice versa, may potentially lead to classification results with
catastrophic consequences.

Also wrongly classifying irrelevant floating objects on water surface, such as
balls or boats, with a high relevance score as swimming persons should be highly
refrained (see e.g. [23]) as it may misguide the supervisory drone to wrongly pay
attention or even fly in a direction far from those who actually may need help.
Finally, relying on a “report safety failures” policy after releasing our pipeline
to real world scenarios, and following a “wait and see” strategy appears to be
not reasonable concerning a swimmer safety system.

In total, we aim to have an Explainable AI pipeline to avoid any probable
harm to people’s lives. To have a reasonable degree of control over all such
variations we opt to synthetically generate our training data based on the state-
of-the-art StyleGAN [16] approach. Let us note that there are some refinements
of it [9,11,12], but StyleGAN suffices our needs namely having low resolution
synthesized images representing different swimming styles respectively typical
swimming poses.

One of the main motivations to consider StyleGAN is its capability to pro-
duce outstanding output images having high visual quality and fidelity across
different applications, see e.g. [8,19,26]. However, as it turns out the adoption
of StyleGAN on swimmer images has its own challenges as we target synthe-
sizing swimmers with dynamic body gestures located within a very deformable
background texture of water, compared to other well known applications of Style-
GAN, such as reported on synthesized high resolution human faces with almost
static geometry [18].

Let us briefly discuss the literature across both the dimension reduction and
StyleGAN fields of research in some more detail. One possible good starting
direction is to obtain the required clarity and explainability by adopting deep
learning based dimension reduction approaches, namely autoencoder [7], provid-
ing the possibility of mapping a dimensionality reduced vector to its correspond-
ing high dimensional image. As an alternative, one may perform the mapping in
reverse direction compared to autoencoder. More specifically, one may interpret
the output images of deep learning models as vectors in lower dimension and
perform an analysis based on the state-of-the-art low dimensional visualisation
approaches [21,22], titled as t-distributed stochastic neighbor embedding (t-SNE)
or Potential of Heat-diffusion for Affinity-based Trajectory Embedding (PHATE),
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respectively. In either of these directions, namely adopting the autoencoder [7]
or (t-SNE) [21], an abstract level of abstract insight is achieved that makes one
capable of explaining the produced outputs by the corresponding deep learning
schemes in a lower dimension space.

The t-SNE [21] method is a non-linear dimension reduction approach that
received a lot of attention across different research disciplines, to name a few,
dimension reduction and visualization of microbiome data [10], computational
fluid dynamics [29] RNA-sequencing [20] and remote sensing [28], and it is
reported to be applied on some popular datasets among the deep learning
research community, namely the Olivetti [27] and the MNIST [17].

On the other hand, the vast application of StyleGANs is achieved by incor-
porating advanced features as part of their architectures, mainly concerning the
latent space disentanglement, mapping function, and adaptive instance normal-
ization (AdIN) [3]. Among them, investigation of StyleGAN latent space, as
further explained in Sect. 3, is of high interest as it sheds light on explainability
of the produced results.

Our Contribution. In a first step we show how to adopt a StyleGAN trained
on a limited set of unlabeled swimmer images [15]. In a second step we perform
unsupervised clustering to investigate and validate that all of the synthesized
StyleGAN images can be well explained by clearly accommodating them within
a set of distinguishable and distinct clusters in a low dimension space. We thus
construct a low dimension space, in contrast to StyleGAN latent space, and
use it as a context to explain the synthesized images created by StyleGAN with
respect to swimming styles as their contents. In total, we successfully show how a
limited dataset of real images captured of swimmers having complex background
can be boosted and also explained by a joint adoption of StyleGAN and t-SNE
as a comprised working pipeline.

2 On T-Distributed Stochastic Neighbor Embedding

Let us assume a set of l-dimensional data points {Xi}1≤i≤n ⊂ R
l with n ∈ N�=0.

As the first step, t-SNE computes a joint probability distribution concerning all
possible pairs {(Xi,Xj)}1≤i�=j≤n, that comprises a symmetric matrix E with its
elements eij ∈ R

n×n such that 1 ≤ i, j ≤ n for i �= j. Note that, ejj = 0,∀j ∈
[1, n]. In case i �= j the joint probabilities are computed as

p (Xj | Xi) = exp ( − ‖Xi − Xj‖2/
(
2κ2

i

)
)/∑

μ�=i exp ( − ‖Xi − Xμ‖2/
(
2κ2

i

)
) (1)

with κi as the perplexity parameter that can be interpreted as a smoothness
measure corresponding to the effective number of Xj neighbors. The performance
of t-SNE is fairly robust to changes in the perplexity with a typical value between
5 and 50 [21]. Next, the elements of the similarity matrix E are found based on
the computed joint probabilities as

eij = p(Xi|Xj)+p(Xj |Xi)/(2n). (2)
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In two dimensional space, we will also have another symmetric matrix F com-
prised of elements fij ∈ R with 1 ≤ i, j ≤ n and fjj = 0. In case i �= j, the
similarity measures among the possible pairs {(Yi,Yj)}1≤i�=j≤n is found as

fij = fji := p (Yj | Yi) = exp(−‖Yi−Yj‖2)/∑
μ�=i exp(−‖Yi−Yμ‖2) (3)

by knowing {Yi}1≤i≤n ⊂ R
2 and letting κi = 1/

√
2.

To this end, t-SNE aims to minimize a Kullback-Leibler divergence

KL (E||F) =
∑

i

∑

j

eij log (eij/fij) (4)

among the probability distribution comprising the E and F matrices in l and 2
dimensional spaces, respectively.

3 StyleGAN

In coming paragraphs, we will start by briefly discussing the building compo-
nents of the basic GAN [4], and later will extend our discussion to the adaptive
instance normalization and latent space as the most relevant architecture aspects
of StyleGAN to our approach.

Basic GAN Architecture. The most basic GAN introduced in [4] comprised
of a pair of differentiable functions G (z, θg) and D (x, θd), called as generator
and discriminator, both realized as multilayer perceptrons, parameterized by θg
and θd.

To train over a set of data samples x, the model opts to learn θd and θg so
that D (x, θd) discerns that x as an input sample to come from the training data
rather than pg, as the generator distribution. More specifically, D is trained to
maximize the probability of assigning the correct label to both training examples
and samples produced by G, as real and fake respectively. The ultimate goal is
the generator distribution’s pg becomes trained leading the entire model to the
equilibrium point, so that discerning the real and fake samples from each other
to be a hard task for D network.

Latent Space Disentanglement. Within the context of the basic GAN [4], z
a latent vector is sampled from a probability distribution pz (z) and fed directly
to G. The distribution pz can be defined as a normal or a uniformed one and
contains factors that determine the type and the style of the final generated
images. Note that, in [4] a spatial version capable of processing 2D images was
also developed based on the basic model by replacing the perceptrons with con-
volutional D and G networks, respectively. However, the model proposed in [4]
has two major drawbacks, (i) lack of control over the styling of the synthesized
images as latent vectors are taken randomly (ii) possibility of producing only low
resolution outputs as [4] reported only on CIFAR [14] and MNIST [17] containing
low resolution samples. The latter limitation was tackled by progressive grow-
ing GAN (ProGAN) [13], though here the latent space was interpolated to vary
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the range of synthesized output images. To interpolate across the latent space
of ProGAN, a latent vector of size 512 was chosen from N (0, 1) and blurred
using a Gaussian with σ = 45 and later normalized to lie as a random sample
point on a hypersphere of 512 dimensions. The interpolation effectively steers
the variation of the final synthesized images reported on CelebAMask [18] at
10242 resolution of celebrities photo-realistic faces that do not exist.

The main disadvantage of both GAN [4] and ProGAN [13] lies on the inter-
linked spatial features that coexist within their latent spaces i.e., beard and
short hair associated with male synthesized sample faces. To resolve this kind
of entanglement, namely synthesis of men images with long hair, StyleGAN [11]
avoids to fed the random latent vector z directly to the generator. Instead, a
standalone mapping network f is adopted to take the z ∈ Z ⊂ R

512 and to
produce a vector w ∈ W ⊂ R

512. It is proven in [16] that W space is more
disentangled than Z. The network f , shown as Fig. 1, is comprised of 8 fully
connected layers which outputs a 512-dimension latent vector similar in length
to its input vector z. In this way, f (z) will be used as part of the StyleGAN [11],
more specifically contributing to the generator, steering the variation of final
synthesised images with lower amount of disentanglement compared to the basic
GAN [4] and also Pro-GAN [13].

z

F
C

:
1
×
1
×
51
2

F
C

:
1
×
1
×
51
2

F
C

:
1
×
1
×
51
2

F
C

:
1
×

1
×
51
2

F
C

:
1
×
1
×
51
2

F
C

:
1
×
1
×
51
2

F
C

:
1
×
1
×
51
2

F
C

:
1
×
1
×

51
2

w

Fig. 1. The mapping network f comprised of 8 fully connected layers (FCs). The final
layer outputs w of the same size with FCS used to contribute to G network in direction
of varying the final synthesized images at fine level.

As a novel feature, and in contrast to ProGAN, both the StyleGAN’s dis-
criminator and generator use bilinear up and down-sampling techniques [30], to
account for aliasing effects appeared in ProGAN.

Adaptive Instance Normalization. The so called AdaIN adopted by Style-
GAN is derived based on the batch normalization technique

AdaIN (ri, y) = ys,i
ri − μ (ri)

σ (ri)
+ yb,i (5)

with the fact that the mean μ and the standard deviation σ operators are taken
only with respect to the ith feature map ri and not the entire set of feature maps.
Similar to BN, the coefficients ys and yb are learned as the coefficients of the
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affine transform “A” during the training and used along with w to specialize the
y style vector, y := (ys, yb)

� controlling the AdaIN operation. The style vector
y contributes to the generator G after each of its convolution layer steering the
final synthesized images by it (Fig. 2).
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Fig. 2. The generative network G designed based on a progressive architecture aiming
to produce a fake image of size 1024 × 1024 by gradually convolving and performing
bilinear up-sampling operators on a very low resolution and constant image of size
4 × 4. The “B” operator adds an uncorrelated Gaussian noise image pixel-wise after
each convolution layer to account for face details that can be stochastically interpreted,
i.e. as face detail. An affine transform “A” controls the AdaIN operation via a style
vector y := (ys, yb)

� as shown in (5), steering the final synthesised images.

4 Synthesized Results in Low-Dimension

Let us start discussing our achieved results by visualising a limited subset of
produced images by StyleGAN shown as Figs. 3, 4 and 5 representing poses of
three different styles of swimming, namely freestyle, backstroke and breaststroke.
We choose a subset of 35, 48 and 34 images of size 64 × 64 corresponding to
each style. The motivation to train the StyleGAN to produce low resolution
images is to achieve a low latency online tracking pipeline of swimmers based
on video streams obtained from DJI Ryze Tello drone with limited processing
resources. Our first impression from the produced images was a high degree of
visual similarity among them, based on human observation as shown in each
of Figs. 3, 4 and 5. Here, one clearly observes that within each swimming style
the shown sample images are almost alike. This motivates us to further explain
the variation of the produced images in a lower dimensional space, and if their
visually observed similarities also leads to well separated clusters, as this should
give a clear indication if the approach is in total discriminative.

Next we augment all 117 images within a two dimension space, as shown in
Fig. 6, by adopting a t-SNE approach with chosen parameters perplexity of 15
and learning rate of 100. Here, three well distinct set of clusters each to represent



170 A. Mansouri Yarahmadi et al.

(a) (b) (c) (d)

Fig. 3. (a), (b), (c) and (d) to represent a subset of synthesized images by StyleGAN
visualising a person performing a freestyle swimming.

(a) (b) (c) (d)

Fig. 4. (a), (b), (c) and (d) to represent a subset of synthesized images by StyleGAN
visualising a person performing a backstroke swimming.

(a) (b) (c) (d)

Fig. 5. (a), (b), (c) and (d) to represent a subset of synthesized images by StyleGAN
visualising a person performing a breaststroke swimming.

a particular swimming style appear. To mathematically justify the visualisation
obtained based on t-SNE, we adopt a K-means clustering [5] on the same 117
images with an Euclidean distance similarity measure to achieve the same three
distinct clusters. In addition, we compute the silhouette values as a similarity
measure of an image to its own cluster in contrast to other clusters to validate
our results concerning both the t-SNE and K-means approaches as shown in
Fig. 7. In general, the silhouette value ranges in [−1,+1], with a higher value
indicating a better match of an image to its own cluster. In Fig. 7, concerning
both K-means and t-SNE we see no negative silhouette value, meaning clusters
contain homogeneous images, with the red vertical dashed line to represent the
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average silhouette among all values. The average value, is computed to be 0.80
and 0.88, with respect to K-means and t-SNE approaches respectively.

5 Summary and Conclusion

Our work provides an extra level of abstraction based on t-SNE, as provided
in [1], so that a better explanation of StyleGAN performance can be provided.

Fig. 6. The two-dimensional representations of synthesized StyleGAN images corre-
sponding to the Figs. 3, 4 and 5, the freestyle, backstroke and breaststroke swimming
styles shown as � in green, × in orange and ◦ in blue within the two t-SNE dimensions.
Though the synthesized images of the person performing the same style swimming,
shown as either of the Figs. 3, 4 and 5, look almost the same but their t-SNE low
dimension representations have meaningful distinctions.

Fig. 7. The computed silhouette values as a similarity measure of an image to its own
cluster in contrast to other clusters, concerning both the K-means and t-SNE methods.
We validate our achieved clusters based on silhouette values that range in [−1,+1] with
a higher value indicating a better match of an image to its own cluster. We obtain no
negative silhouette value, meaning clusters contain homogeneous images, with the red
vertical dashed lines to represent the average silhouette among all values. The average
value, is computed to be 0.80 and 0.88, with respect to K-means and t-SNE approaches
respectively. (Color figure online)
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A distinct feature of our work in contrast to [1] is the projection of synthesized
StyleGAN results to a lower dimension space established using t-SNE rather
than the StyleGAN latent space itself.

Methodically we created a pipeline that yields in an initial step a dataset
of swimmer images using StyleGAN architecture and explains them in a low
dimension space. The latter space acts as an abstract level that further explains
the similarity of synthesized images concerning the swimming style of the cap-
tured pose. The added abstract level will lead us to an insightful use of images
based on their clusters in lower dimension to train another model as a white-box
so that its future made decisions are interpretable by us. As indicated, this is of
importance as we plan to use the trained white-box model to classify different
swimming poses including abnormal poses of swimmers as a module in a swim-
mer safety system. As a future plan, we aim to extend our experiments with
more examples to better understand the varied synthesized swimmer images in
low dimension space.
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Abstract. Interpolating classifiers interpolate all the training data and
thus have zero training error. Recent research shows their fundamental
importance for high-performance ensemble techniques and other advan-
tages. Interpolation kernel machines belong to the class of interpolat-
ing classifiers and do generalize well. They have been demonstrated
to be a good alternative to support vector machines. In this work we
further improve their performance. We propose not to use their inher-
ent multiclass classification capacity, but instead apply them for solving
binary classification instances based on a mutliclass-to-binary reduction.
We experimentally study this ensemble approach in combination with
six reducing multiple-to-binary methods. The experimental results show
that the one-versus-one scheme consistently demonstrates superior per-
formance.

1 Introduction

Kernel-based methods in machine learning have sound mathematical foundation
and provide powerful tools in numerous fields. In addition to classification and
regression [12,21], they also have successfully contributed to other tasks such
as clustering [25], dimensionality reduction (e.g. PCA [16]), consensus learning
[22], computer vision [7], and recently to studying deep neural networks [10].

Interpolation kernel machines [4,15] belong to the class of interpolating clas-
sifiers that interpolate all the training data and thus have zero training error
[27]. Despite zero training error, they generalize well to unseen test data [4] (a
phenomenon also typically observed in over-parametrized deep learning models).
Compared to deep neural networks (DNNs), interpolation kernel machines can
be interpreted as two-layer neural networks. They turned out to be a good alter-
native to DNNs, capable of matching and even surpassing their performance
while utilizing less computational resources in training [15]. The recent work
[29] has shown that interpolation kernel machines are also a good alternative to
support vector machines (SVM).
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Interpolation kernel machines are capable of handling multiclass classification
problems per se. A multiclass classification task, however, can be expected to be
intrinsically more challenging than a binary one in general [20]. This concerns
not only the classification but also performance evaluation [1]. We thus propose
not to use the inherent multiclass classification capacity of interpolation ker-
nel methods, but instead apply them for solving binary classification instances
based on a multiclass-to-binary reduction. We experimentally study an ensem-
ble approach where a multiclass classification problem is reduced to multiple
binary ones. Our experimental results demonstrate that the ensemble approach
is capable of boosting the performance of interpolation kernel machines.

The remainder of the paper is organized as follows. We give a brief discus-
sion of interpolating classifiers and introduce interpolation kernel machines in
Sect. 2. We present various reducing multiclass-to-binary methods in Sect. 3. The
experimental results follow in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Interpolation Kernel Machines

It is commonly believed that perfectly fitting the training data, as in the case
of interpolating classifiers, must inevitably lead to overfitting. Recent research,
however, reveals good reasons to study such classifiers. For instance, the work [27]
provides strong indications that ensemble techniques are particularly successful
if they are built on interpolating classifiers. A prominent example is random
forest. Recently, Belkin [3] emphasizes the importance of interpolation (and its
sibling over-parametrization) to understand the foundations of deep learning.

The so-called kernel machines [4,15] are an instance of interpolating clas-
sifiers. Note that this term has been often used to mean variants of SVM
(e.g. [13,28]). For the sake of clarity we will use the term “interpolation ker-
nel machine” throughout the paper.

Let X = {x1, x2, . . . , xn} ⊂ Ωn be a set of n training samples with their
corresponding targets Y = {y1, y2, . . . , yn} ⊂ T n in the target space. A function
f : Ω → T interpolates this data iif f(xi) = yi,∀i ∈ 1, . . . , n.

Representer Theorem. Let k : Ω×Ω → R be a positive semidefinite kernel for
some domain Ω, X and Y a set of training samples and targets as defined above,
and g : [0,∞) → R a strictly monotonically increasing function for regulation.
We define E as an error function that calculates the loss L of f on the whole
sample set with:

E(X,Y ) = E((x1, y1), ..., (xn, yn)) =
1
n

n∑

i=1

L(f(xi), yi) + g(‖f‖) (1)

Then, the function f∗ = argminf{E(X,Y )} that minimizes the error E has the
form:

f∗(z) =
n∑

i=1

αik(z, xi) with αi ∈ R (2)
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The proof can be found in many textbooks, e.g. [12].
We now can use f∗ from Eq. (2) to interpolate our training data. Note that

the only learnable parameters are α = (α1, . . . , αn), a real-valued vector with
the same length as the number of training samples. Learning α is equivalent to
solving the system of linear equations:

G(α∗
1, ..., α

∗
n)T = (y1, ..., yn)T (3)

where G ∈ R
n×n is the kernel (Gram) matrix. In case of positive definite kernel

k the Gram matrix G is invertible. Therefore, we can find the optimal α∗ to
construct f∗ by:

(α∗
1, ..., α

∗
n)T = G−1(y1, ..., yn)T (4)

After learning, the interpolation kernel machine then uses the interpolating func-
tion from Eq. (2) to make prediction for test samples. Note that solving the
optimal parameters α∗ in (4) in a naive manner requires computation of order
O(n3) and is thus not feasible for large-scale applications. A highly efficient
solver EigenPro has been developed [19] to enable significant speedup for train-
ing on GPUs. Another recent work [26] applies an explainable AI technique for
sample condensation of interpolation kernel machines.

In this work we focus on classification problems. In this case f(z) is encoded
as a one-hot vector f(z) = (f1(z), . . . fc(z)) with c ∈ N being the number of
output classes. This requires c times repeating the learning process above, one
for each component of the one-hot vector. This computation can be formu-
lated as follows. Let Al = (α∗

l1, ..., α
∗
ln) be the parameters to be learned and

Yl = (yl1, ..., yln) target values for each component l = 1, ..., c. The learning of
interpolation kernel machine becomes:

G
(
AT

1 , ..., AT
c

)
︸ ︷︷ ︸

A

=
(
Y T
1 , ..., Y T

c

)
︸ ︷︷ ︸

Y

(5)

with the unique solution:

A = G−1 · Y (6)

which is the extended version of Eq. (4) for c classes and results in zero error on
training data. When predicting a test sample z, the output vector f(z) is not
a probability vector in general. The class which gets the highest output value
is considered as the predicted class. If needed, e.g. for the purpose of classifier
combination, the output vector (z) can also be converted into a probability vector
by applying the softmax function.

3 Reducing Multiple-to-Binary Methods

Different methods have been reported in the literature to reduce multiclass
problems into binary ones [11,18]. Most popular are one-versus-one (OvO), one-
versus-all (OvA), and error-correcting output codes [9]. Such methods are mostly
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applied to cope with classifiers like logistic regression and SVM that are originally
designed for solving binary classification problems only. A few works are con-
cerned with performance comparison of these reduction methods. For instance,
comparisons between using OvO and OvA have shown that OvO is better for
training SVM [2,14] and several other classifiers [11].

On the other hand, it is not a general practice to apply this reduction-based
ensemble approach to classifiers that can handle multiclass classification prob-
lems per se. When (deep) neural networks are used for multiclass classification
problems, the output layer is typically softmax with one output unit for each
class. This is therefore an OvA classification scheme. The work [23] presents an
OvO classification method for deep neural networks and demonstrates its supe-
rior performance over the OvA scheme in some of the experimental settings. In
this work we study the potential of the reduction-based ensemble approach to
boost the performance of interpolation kernel machines.

3.1 OvO Scheme

Given K classes, L = K(K − 1)/2 binary classifiers are generated, each being
responsible to differentiate a pair of classes (i, j), i �= j. Then the output of
these base classifiers is combined to predict the final output class. This method,
however, has a potential disadvantage in case of many classes. Several strategies
have been proposed in [24] to alleviate this drawback of the OvO scheme.

There is a simple trick to avoid training L times, which was also used in [23].
A code matrix Mc of size K × L is constructed to encode all L pairs of classes,
with values 0, −1, or 1. For K = 4, for instance, the code matrix is:

Mc =

⎡

⎢⎢⎣

1 1 1 0 0 0
−1 0 0 1 1 0

0 −1 0 −1 0 1
0 0 −1 0 −1 −1

⎤

⎥⎥⎦

The value 0 means that the output should be indifferent to both classes. Instead
of usual practice of using a one-hot target vector y for a neural network, the train-
ing is done to achieve yMc. For example, the trained neural network should ide-
ally output [0,−1, 0,−1, 0, 1] for class 3 with one-hot target vector y = [0, 0, 1, 0].
Given an output vector ỹ, the corresponding one-hot target vector is computed
by ỹM t

c .
This nice encoding trick unfortunately does not work for interpolation ker-

nel machines. Without using this trick, the output vector f(z) for some test
sample z is given by f(z) = KzG

−1Y according to Eq. (6), where Kz =
(k(z, x1), . . . , k(z, xn)). When we apply the encoding trick above, the interpo-
lation kernel machine intends to achieve Y Mc instead of Y during training.
Accordingly, the reconstructed one-hot target vector for test sample z becomes:

fencoding(z) = (KzG
−1Y Mc) · M t

c = KzG
−1Y · (McM

t
c)
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It can be easily shown that matrix McM
t
c of size K ×K has K-1 on the diagonal

and all non-diagonal elements are −1. Thus, f(z) and fencoding(z) are maxi-
mal at the same position. This proves that the encoding trick is not applicable
to interpolation kernel machines to achieve cost-effective OvO implementation.
Given this fact, we simply use the straightforward pairwise combinations of all
classes.

3.2 OvA Scheme

Here, K binary classifiers are generated, each being responsible to differentiate
one class and the remaining classes. Although the number of base classifiers is
considerably reduced, the inherent complexity of each base classifier becomes
higher compared to OvO. The deduced binary classification problems may even
be not solvable, see [5] for a simple example. Another disadvantage of OvA
scheme is the induced imbalance. Even for balanced training data, the ratio of
data for one class and the remaining classes is 1 : (K−1). This effect is amplified
even more unfavorably for unbalanced training data.

The number of base classifiers can be further reduced from K to one only,
which is briefly mentioned in [6]. It is based on transferring the original feature
matrix of size N ×d for N training samples of dimension d into another matrix of
size NK × dK that basically encodes all K OvA subtasks. We test this strategy
of combining multiple binary subproblems into one, MtO, in our experiments.

3.3 Error-Correcting Output Codes

The error correcting output codes (ECOC) follow the same general idea as in the
encoding trick above. The coding matrix Mc of size K ×L has L columns which
is a parameter. Mc should be carefully designed. Among others, it was suggested
that the class codewords (rows of Mc) must be well separated according to the
Hamming distance [9,18]. In this work we use three variants of ECOC:

– Exhaustive code: Following [9] we use an exhaustive code for K ∈ [3, 11],
otherwise a random code is generated.

– Dense code [2]: 10,000 random codes are generated and the code is chosen
that has the largest ρ (distance between each pair of rows) and does not have
any identical columns.

– Sparse code [2]: The code has 	15 log2(K)
 columns. Each element has pre-
specified probability for all possible values.

4 Experimental Results

Experiments were conducted on 14 UCI datasets (see Table 1 for an overview)
using the following kernels:

– Addictive χ2 kernel: k(x, y) = −
∑m

i=1
(xi−yi)

2

xi+yi
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– χ2 kernel: k(x, y) = exp
(
−γ

∑m
i=1

(xi−yi)
2

xi+yi

)

– Laplacian kernel: k(x, y) = exp(−γ||x − y||)
– RBF kernel: k(x, y) = exp(−γ||x − y||2)
– Polynomial kernel: k(x, y) = (γ < x, y > +c)d

– Sigmoid kernel: k(x, y) = tanh(γ < x, y > +c)

A grid search was performed to optimize the parameters for each kernel. For
each dataset, the optimal values were chosen to achieve the maximal average
performance over all seven methods (standard interpolation kernel machine, six
reducing multiple-to-binary methods).

Table 1. Description of UCI datasets

dataset # instances # features # classes

Acoustic 400 50 4

Balance 625 4 3

Car 1728 21 4

Cee 666 49 4

Dermatology 358 34 6

Ecoli 336 7 8

Glass 214 10 6

Hcv 589 13 5

Leaf 340 14 30

New-thyroid 215 5 3

Segmentation 210 19 7

Vehicle 846 18 4

Yeast 1484 8 10

Zoo 101 16 7

The results on the six kernels are shown in Tables 2, 3, 4, 5, 6 and 7. Over-
all, the OvO scheme turns to be the best-performing variant and shows consis-
tent performance improvement compared to the standard interpolation kernel
machine (without reducing multiple-to-binary). On the other hand, all remain-
ing reducing multiple-to-binary methods are not convincing. In particular, the
three ECOC variants are rather disappointing. Note that in Table 3 the behavior
on dataset Ecoli is somewhat “out of frame”. Except OvO all other variants led
to very low accuracy. We also computed the average performance by excluding
this dataset to enable an “outlier-free” comparison. Even in this setting OvO
behaves favorably. The same can be said to the Polynomial/Sigmoid kernel with
“outlier” dataset leaf in Table 6 and 7.
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Table 2. KM v.s. reducing multiple-to-binary methods (additive χ2 kernel)

Datasets Methods

KM OvO OvA MtO ECOC exhaustive ECOC dense ECOC sparse

Acoustic 44.0 51.9 44.0 45.0 44.0 42.1 43.3

Balance 88.5 86.3 88.5 89.4 88.5 88.5 88.5

Car 77.4 80.9 77.4 77.4 77.4 74.0 74.1

Cee 42.2 43.8 42.2 42.2 42.2 43.1 42.5

Dermatology 97.2 97.8 97.2 96.9 97.2 97.2 97.2

Ecoli 81.1 82.1 81.1 80.5 81.4 79.5 80.7

Glass 86.1 90.0 86.1 85.8 86.1 84.7 76.4

HCV 90.6 92.2 90.6 90.6 90.5 92.5 91.4

Leaf 76.7 88.7 76.7 75.7 69.0 50.3 39.1

New-thyroid 89.8 90.2 89.8 89.3 89.3 89.8 89.8

Segmentation 86.7 79.5 86.7 89.5 86.7 88.1 86.7

Vehicle 75.4 75.9 75.4 75.3 75.4 74.5 74.4

Yeast 57.8 58.6 57.8 57.8 54.5 44.3 53.6

Zoo 97.8 100.0 97.8 96.1 97.8 96.8 92.9

Average 77.9 79.8 77.9 78.0 77.1 74.7 73.6

Table 3. KM v.s. reducing multiple-to-binary methods (χ2 kernel)

Datasets Methods

KM OvO OvA MtO ECOC exhaustive ECOC dense ECOC sparse

Acoustic 80.4 77.4 80.4 76.2 78.9 79.9 77.3

Balance 65.6 71.7 65.6 41.1 68.0 65.6 64.9

Car 83.3 88.6 83.3 78.5 83.5 82.2 82.7

Cee 36.1 35.2 36.1 35.1 31.7 35.9 33.5

Dermatology 97.5 97.5 97.5 96.9 96.9 97.5 96.1

Ecoli 55.6 72.2 55.9 51.7 55.6 59.0 54.9

Glass 90.8 89.4 90.8 85.8 90.4 90.1 90.8

Hcv 96.5 96.0 96.5 95.4 96.5 96.2 96.0

Leaf 87.4 89.1 87.4 86.6 86.8 85.6 86.8

New-thyroid 89.9 90.4 89.9 86.7 90.4 89.9 89.9

Segmentation 85.7 89.0 85.7 85.7 85.7 87.6 87.1

Vehicle 78.4 80.3 78.4 78.4 78.3 75.7 78.9

Yeast 30.2 38.6 30.2 24.3 18.8 17.5 24.3

Zoo 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Average 77.0 79.7 77.0 73.0 75.8 75.9 75.9

Average no Ecoli 78.6 80.2 78.6 74.7 77.4 77.2 77.6
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Table 4. KM v.s. reducing multiple-to-binary methods (Laplacian kernel)

Datasets Methods

KM OvO OvA MtO ECOC exhaustive ECOC dense ECOC sparse

Acoustic 78.8 76.8 78.8 73.8 78.8 77.2 77.6

Balance 67.3 67.0 67.3 42.9 72.0 67.3 65.6

Car 83.3 88.6 83.3 32.9 83.5 82.3 82.0

Cee 36.1 35.2 36.1 27.6 31.7 35.8 34.0

Dermatology 97.2 97.2 97.2 95.2 96.4 97.2 96.6

Ecoli 88.7 89.0 88.7 77.3 87.0 87.8 88.2

Glass 97.7 97.0 97.7 96.9 98.0 97.3 96.9

Hcv 95.7 95.7 95.7 93.7 95.7 95.4 95.6

Leaf 88.5 89.0 88.5 82.7 88.2 87.8 86.2

New-thyroid 94.5 94.0 94.5 88.9 93.1 94.5 94.5

Segmentation 91.9 93.3 91.9 91.9 91.9 90.0 90.5

Vehicle 75.5 75.1 75.5 71.4 75.5 75.7 75.6

Yeast 50.7 51.6 50.7 46.8 48.7 47.6 44.6

Zoo 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Average 81.9 82.1 81.9 73.0 81.5 81.1 80.6

Table 5. KM v.s. reducing multiple-to-binary methods (RBF kernel)

Datasets Methods

KM OvO OvA MtO ECOC exhaustive ECOC dense ECOC sparse

Acoustic 78.3 78.2 78.3 66.1 77.0 77.6 77.1

Balance 58.2 46.8 58.7 42.7 50.3 53.1 52.0

Car 83.3 88.6 83.3 29.3 83.5 84.4 83.9

Cee 36.1 35.2 36.1 27.6 31.7 36.3 35.6

Dermatology 97.5 97.5 97.5 80.8 95.6 97.2 95.0

Ecoli 60.6 71.7 60.6 28.6 60.6 59.7 60.6

Glass 92.9 92.8 92.9 28.0 92.9 91.6 92.2

Hcv 93.9 94.9 93.9 48.0 93.7 93.7 94.0

Leaf 85.0 86.5 85.0 85.0 84.7 83.2 84.9

New-thyroid 81.4 86.1 81.4 56.8 81.4 81.4 80.5

Segmentation 86.2 86.7 86.2 29.0 86.2 85.7 84.3

Vehicle 78.3 79.2 78.3 35.1 77.6 78.4 77.8

Yeast 25.3 37.5 21.5 29.5 23.9 24.4 29.5

Zoo 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Average 75.5 77.3 75.3 49.0 74.2 74.8 74.8
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Table 6. KM v.s. reducing multiple-to-binary methods (Polynomial kernel)

Datasets Methods

KM OvO OvA MtO ECOC exhaustive ECOC dense ECOC sparse

Acoustic 72.0 72.9 72.0 65.3 70.9 73.0 68.8

Balance 89.3 89.1 89.3 49.0 89.5 89.3 87.7

Car 70.0 75.1 70.0 70.0 69.6 70.0 71.3

Cee 43.3 44.4 43.3 34.1 42.1 36.8 40.7

Dermatology 86.6 93.5 86.6 86.6 86.6 86.3 89.4

Ecoli 34.3 56.3 34.3 34.3 18.5 34.3 34.3

Glass 62.8 81.8 62.8 62.8 62.8 61.1 64.1

Hcv 91.4 93.1 91.4 73.4 91.4 91.6 91.6

Leaf 18.0 84.1 18.0 14.1 9.5 10.3 11.3

New-thyroid 88.3 89.3 88.3 80.5 87.4 88.3 88.4

Segmentation 76.7 84.8 76.7 64.8 71.0 68.1 67.1

Vehicle 65.7 70.2 65.7 22.6 65.8 64.7 65.6

Yeast 29.2 30.3 29.2 13.3 29.2 16.3 3.7

Zoo 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Average 66.3 76.1 66.3 55.1 63.9 63.6 63.1

Average no leaf 70.0 75.4 70.0 58.2 68.1 67.7 67.1

Table 7. KM v.s. reducing multiple-to-binary methods (Sigmoid kernel)

Datasets Methods

KM OvO OvA MtO ECOC exhaustive ECOC dense ECOC sparse

Acoustic 69.3 67.5 69.3 64.8 69.3 69.8 69.8

Balance 86.9 86.5 86.9 72.7 86.9 86.9 86.9

Car 74.6 77.1 74.6 21.8 74.6 74.9 69.7

Cee 27.9 32.8 27.9 25.2 28.1 29.1 27.9

Dermatology 90.5 93.0 90.5 69.4 90.5 89.7 91.1

Ecoli 76.3 75.0 76.3 52.3 76.1 73.9 64.7

Glass 72.9 79.1 72.9 49.3 72.9 71.8 70.8

Hcv 82.2 81.3 82.2 80.7 88.3 82.7 81.0

Leaf 33.1 81.6 33.1 35.0 28.9 16.3 17.7

New-thyroid 81.3 81.3 81.3 79.4 80.8 81.3 81.3

Segmentation 48.6 86.2 48.6 64.8 48.6 44.3 47.1

Vehicle 62.6 42.5 62.6 54.3 61.1 62.2 56.1

Yeast 53.0 47.7 53.0 53.0 48.4 46.5 46.5

Zoo 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Average 68.5 73.7 68.5 58.8 68.2 66.4 65.1

Average no leaf 71.2 73.1 71.2 60.6 71.2 70.2 68.7

5 Conclusion

Recently, interpolation kernel machines have been demonstrated to have sev-
eral nice properties. In this work we further improve their classification perfor-
mance. We proposed not to use their inherent multiclass classification capacity,
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but instead apply them for solving binary classification instances based on a
multiclass-to-binary reduction. We have experimentally studied this easy-to-
implement ensemble approach in combination with six reducing multiple-to-
binary methods. The OvO scheme has consistently demonstrated superior per-
formance.

The general idea of solving binary subtasks (reduction-based ensemble app-
roach) in case of multiclass classifiers is not popular yet. We demonstrated its
potential for interpolation kernel machines. The work [23] does the same for deep
neural networks. The limitation of this method is the introduced extra overhead,
making it less practical for real-time or resource-constrained applications. For-
tunately, many real problems do have a small enough number of classes.

The reducing multiple-to-binary methods we studied in this work are rather
standard. Recent research has resulted in more sophisticated methods, e.g. [8,17],
that have additional potential for the general approach we proposed. In addition,
we will also extend the experimental work to other domains like graph data.

Acknowledgments. Jiaqi Zhang is supported by the China Scholarship Council
(CSC). This research has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie grant agree-
ment No 778602 Ultracept.

References

1. Aguilar-Ruiz, J.S., Michalak, M.: Multiclass classification performance curve. IEEE
Access 10, 68915–68921 (2022)

2. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: a unifying
approach for margin classifiers. J. Mach. Learn. Res. 1, 113–141 (2000)

3. Belkin, M.: Fit without fear: remarkable mathematical phenomena of deep learning
through the prism of interpolation. Acta Numer. 30, 203–248 (2021)

4. Belkin, M., Ma, S., Mandal, S.: To understand deep learning we need to understand
kernel learning. In: Proceedings of 35th ICML, pp. 540–548 (2018)
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Abstract. This research targets general-purpose smart computer vision
that eliminates reliance on domain-specific knowledge to reach adaptable
generic models for flexible applications. It proposes a novel approach in
which several deep learning models are trained for each image. Statistical
information of each trained image is then calculated and stored with the
loss values of each model used in the training phase. The stored informa-
tion is finally used to select the appropriate model for each new image
data in the testing phase. To efficiently select the appropriate model, a
kNN (k Nearest Neighbors) strategy is used to select the best model in
the testing phase. The developed framework called KGDL (Knowledge
Guided Deep Learning) was evaluated and tested using two computer
vision benchmarks, 1) ImageNet for image classification, and 2) COCO
for object detection. The results reveal the effectiveness of KGDL in
terms of accuracy and competitiveness of inference runtime. In particu-
lar, it achieved 94% of classification rate in ImageNet, and 92% of inter-
section over union in COCO dataset.

Keywords: Knowledge-based Learning · Ensemble Learning ·
Computer Vision · General-Purpose Artificial Intelligence

1 Introduction

Deep learning has achieved outstanding results in a wide range of applications,
including medical applications [1], and intelligent transportation systems [5]. In
the domain of computer vision deep learning has been inspired by biological
vision in mimicking visual descriptions and learning into computer vision algo-
rithms. However, current deep learning techniques did not yet reach the flexible,
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general-purpose intelligence that biological systems have. Currently, each model
is built using the domain knowledge of the application in question. This moti-
vates researchers and data scientists to investigate this challenging topic. Since
the learner does not have to infer the information from the data, integrating
a priori knowledge into the learning framework is an efficient way to deal with
sparse data. Several solutions have been explored for the domain knowledge in
the learning process. To perform semantic face editing using pretrained Style-
GAN, Hou et al. [7] presented a novel learning framework called GuidedStyle. It
also made it possible for a StyleGAN generator’s attention mechanism to select
a single layer for style alteration in an adaptive manner. Therefore, StyleGAN
may make disentangled and controllable changes to various features, includ-
ing attractiveness, mustache, eyeglasses, smiling, and gender. A cooperatively
boosting framework (CBF) was proposed [10] to combine the knowledge-guided
ontological reasoning module and the data-driven deep learning module. The
DSSN architecture is used by the deep learning module, which integrates the
original image and inferred channels as input. Branching for intra- and extra-
taxonomy reasoning is also included in the module for ontology reasoning. The
intra-taxonomy reasoning corrects the wrong classifications made by the deep
learning module based on domain knowledge. Dash et al. [4] reviewed the exist-
ing solutions that explore domain knowledge. They reported that these solutions
have a major limitation in that each model is made using the knowledge that
is unique to the application in question. To overcome this limitation, we pro-
pose in this paper a novel framework called KGDL (Knowledge Guided for Deep
Learning) as an alternative solution for the current computer vision deep learn-
ing architectures. To the best of our knowledge, this is the first piece of work
that thoroughly examines the information gleaned from the training data to
effectively address computer vision difficulties. The main contributions of this
research work are:

1. We propose a novel framework called KGDL (Knowledge Guided Deep Learn-
ing) that explores the knowledge extracted from the data to efficiently select
the best model for each testing data towards general-purpose learning.

2. We develop an intelligent strategy for the inference step in which the sta-
tistical information of each image in the testing is first calculated, and then
compared with the images of the knowledge base created in the training phase
using kNN to select the best model in the inference phase.

3. We evaluate the proposed KGDL framework on two computer vision bench-
marks, 1) ImageNet for image classification, and 2) COCO for object detec-
tion, using classification accuracy and intersection over union metrics. The
results show that the suggested framework outperforms the baseline solu-
tions in terms of the quality of the outcomes at a reasonable cost in inference
runtime.

2 Related Work

Yin et al. [15] suggested a new model called Domain Knowledge Guided
Recurrent Neural Networks (DG-RNN), which explicitly incorporated domain
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knowledge from the medical knowledge graph into an RNN architecture. The
authors addressed the integration of domain knowledge by dynamically utilizing
complex medical knowledge (such as relations between clinical occurrences). Liu
et al. [12] suggested a prior knowledge-guided deep learning-enabled (PK-DL)
synthesis method that makes use of the conditional deep convolutional generative
adversarial network (cDCGAN) algorithm. Prior information, including famil-
iarity with basic electromagnetic theorems and expertise in antenna design, was
purposefully employed early in the proposed process. By directing the image
production process with a knowledge network, Hou et al. [7] introduced Guided-
Style to perform semantic face editing on pretrained StyleGAN. Additionally, it
enabled a StyleGAN generator’s attention mechanism to adaptively choose a sin-
gle layer for style manipulation. As a result, StyleGAN can execute disentangled
and controllable modifications along various attributes, such as attractiveness,
mustache, eyeglasses, smiling, and gender. Dong et al. [6] suggested a deep HSI
denoiser-based iterative hyperspectral image super-resolution (HSISR) approach
to take advantage of both deep image prior and domain knowledge likelihood.
They demonstrated how to develop an iterative HSISR method into a unique
model-guided deep convolutional network by taking the observation matrix of
HSI into consideration during the end-to-end optimization (MoG-DCN). The
unfolded deep HSISR network may also operate in various HSI scenarios thanks
to the representation of the observation matrix by subnetworks, which increases
the adaptability of MoG-DCN. For the classification of land cover, Li et al.
[11] presented a novel domain knowledge-guided deep collaborative fusion net-
work (DKDFN) with performance-boosting for minority categories. More specif-
ically, a multihead encoder and a multibranch decoder structure are used by the
DKDFN. The encoder’s architecture makes it likely that enough complementary
information may be gleaned from several modalities. The multibranch decoder
performs semantic segmentation and reconstructs multimodal remote sensing
indices to enable land cover categorization in a multitask learning setup. Li
et al. [10] suggested a cooperatively boosting framework (CBF) to iteratively
integrate the knowledge-guided ontology reasoning module and the data-driven
deep learning module. The deep learning module utilizes the DSSN architec-
ture and uses the DSSN’s input to integrate the original image and inferred
channels. The module for ontology reasoning also includes branches for intra-
and extra-taxonomy reasoning. More particularly, the intra-taxonomy reason-
ing which is essential to enhance classification performance, directly corrects
misclassifications made by the deep learning module based on domain knowl-
edge. To replicate the workflow of radiologists, Mingjie et al. [8] suggested an
Auxiliary Signal-Guided Knowledge Encoder Decoder (ASGK). Particularly, the
external linguistic signals assist the decoder in better mastering prior informa-
tion during the pre-training phase, while the auxiliary patches are investigated
to increase the frequently used visual patch features before being provided to the
transformer encoder. Yang et al. [14] suggested the SEmantic Guided Attention
(SEGA) mechanism, in which semantic knowledge is used to direct visual per-
ception top-down regarding which visual cues should be paid attention to when
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separating one category from the others. As a result, the novel class embedding
can be more discriminative even with small sample sizes. To put it more specifi-
cally, a feature extractor is trained to transfer visual prior knowledge from base
classes to a few images of each novel class and integrate them into a visual proto-
type. Then, they developed a network that converted semantic information into
category-specific attention vectors, which will be applied to feature selection to
improve the visual prototypes.

According to this succinct literature analysis, the key problem with the
present deep learning methods is that each model is created using knowledge
specific to the application in question. This requires data scientists to be well
knowledgeable about the particular application domain. The trained model in
this study is created without the assistance of a domain expert, using a general
deep learning approach that explores knowledge of the trained data.

3 KGDL: Knowledge Guided Deep Learning

3.1 Principle

The KGDL framework is illustrated in Fig. 1. It is based on deep learning, kNN,
and relevant knowledge from the training and testing data. The main idea is
that several deep learning models are trained in the training phase, and then
the knowledge base is used to select the best model that will be used in the
inference phase for each testing image. First, the data is extracted from the
various images. Several deep learning architectures are then trained, and the
pertinent data resulting from this training stage is preserved in a knowledge

Fig. 1. KGDL Framework: The deep learning models are first trained. The training
data is maintained in a knowledge base to accurately combine the results across the
trained models. During the inference phase, the model’s suitability for a specific set of
test data is assessed using the kNN approach.



Knowledge Guided Deep Learning 189

base. The combined data is further utilized along with kNN to determine which
model is appropriate for a given test dataset during the inference phase. Detailed
description of the KGDL components is given in the following.

3.2 Training

We consider a set of l images used in the training, say I = {I1, I2...Il}. The
training is performed using the set of n models M = {M1,M2, ...Mn}. Each
image Ii is plugged to each model Mj for the training. The loss value vij is
determined by computing the error between the output of the model, Mj , and
the ground truth associated to the image, Ii. The features of Ii (denoted Fi)
and the loss value, vij , are saved into the knowledge base. The standard back-
propagation is also used to optimize the weights of the models in M. At the end
of this step, the following variables are created and saved:

1. n matrices, each one, say matrix W (i), represents the trained weights of the
model, Mi.

2. The knowledge base KB, which contains l rows. The ith row contains the
relevant information of the image Ii. It contains the features Fi, and the set
of the n loss values {vi1, vi2...vin}.

The loss values will be computed using the loss functions according to the
considered problems. For instance, Binary Cross-Entropy Loss is used for clas-
sification problem as follows:

L(y, y∗) = −y × log(y∗) − (1 − y) × log(1 − y∗), (1)

where y is the ground truth value, y∗ is the predicted value by the model.
Diss loss could be used for segmentation problem, as follows:

L(y, y∗) = 1 − 2 × y × y∗ + 1
y + y∗ + 1

. (2)

1 was appended to the numerator and denominator to prevent the function from
being undefined in extreme cases, such as when y = y∗ = 0.

For the hyperparameter optimization of the n models, we adopt the recent
greedy search algorithm (GHO) [3]. In order to converge to the local optimal
solution with the hope that this decision will result in a global optimal one,
the GHO algorithm optimizes every hyperparameter while holding the others
constant. Up until all of the hyperparameters are optimized, the local solution
for each one is optimized iteratively. Therefore, the greedy algorithm reduces the
exponential computational cost of the hyperparameter optimization.
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3.3 Inference

In the inference stage, the features Fnew of the new image Inew are determined.
The knowledge base KB is then explored to select the best model using kNN
algorithm. It calculates the separations between the features of the new image
and the features of all training images in the knowledge base. Thus, it discovers
the images that resemble the new image the most. A user-specified integer k
determines the neighborhood size. The neighborhood of an image is defined in
the space of the measured distances. The best model can then be chosen to be
utilized, inferring the output of the new image by receiving majority votes or
an average guess of the k nearby neighborhood, which are the k closest images
in terms of distance. We propose a variant of kNN that computes the distances
adjusted to accommodate the image features, as the conventional Euclidean dis-
tance measure would produce inaccurate distances for image data. The primary
explanation is that the data drift problem has resulted in quite varied distri-
butions for images from various classes. Therefore, it is hard to measure the
similarities between images accurately. Instead of using the manually created
similarity measures directly to solve this problem, we suggest an end-to-end
similarity metric learning network. The proposed similarity metric consists of
two modules:

1. Similarity metric network: It is a fully connected neural network that
seeks to determine how similar the features of two images are. To assess the
degree of similarity between the trained images and the new image, we use a
fully connected neural network with a single hidden layer. The inputs of the
subsequent similarity measurement function are the feature vector of the new
image (Fnew) and the feature vector of each trained image (FIi):

S(Fnew, FIi) = 1 − σ(concat([Fnew, FIi ])C), (3)

C is is the coefficient of similarity metric function.
2. Smooth similarity loss learning: Backpropagation optimization of the

similarity metric function is done by measuring the surrogate loss of the simi-
larity network developed in the first step. Synthetic images are captured from
several distributions when training the network. To compute the ground truth
(the similarity value), we determine the similarity between the distributions
of the images at hand.

Finally, the weights of the best model are used to infer the output of the
new image. Indeed, if we assume Mbest will be the best model, and W (best) will
be the weights of the best model, the new input image is fed into the network’s
input layer of Mbest, which passes it through the network layer by layer. Each
layer performs a weighted sum of the inputs by W (best) and applies an activation
function to produce an output using the forward propagation mechanism.
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4 Numerical Results

To evaluate the KGDL framework, intensive simulation have been carried out
using well-known benchmarks to compare it with recent deep learning solutions
in solving computer vision based applications.

Setting Details. We will first go through the details of our experiment in this
section. Then, we will compare our classification, and object detection results to
those of baseline models. ImageNet and COCO are well-known computer vision
benchmarked datasets1,2. We chose these benchmarks and undertake experi-
ments on the ImageNet 2012 ILSVRC challenge classification task and on the
COCO challenge object detection task. We utilize a batch size of 2048 by default
for labeled images, and we decrease the batch size when the model cannot fit in
the memory. We discover that employing 512, 1024, or 2048 batch sizes result
in the same speed. The batch size for labeled images is used to calculate the
number of training epochs and the learning rate. With a dropout rate of 0.5, we
apply dropout to the last layer of our framework and the baseline models.

Baseline Methods. We compare the proposed KGDL framework with the fol-
lowing baseline methods: 1) Classification: We use two recent algorithms for
comparison of the classification task, namely Revised RESNET [2] and MViTv2
[9]. 2) Object Detection: We use two algorithms for comparison regarding the
object detection task, MViTv2 [9] and Improved Yolov5 [13].

Results on Image Classification. Using the previously described ImageNet, the
initial experiments compare the KGDL’s accuracy against SOTA image classi-
fication methods (Revised RESNET, and MViTv2). Figure 2 demonstrates that
KGDL surpasses the two baseline algorithms in terms of classification rate and

Fig. 2. Classification rate and Runtime of the proposed solutions and the SOTA models
for different training samples of the ImageNet.

1 https://www.image-net.org/.
2 https://cocodataset.org/.

https://www.image-net.org/
https://cocodataset.org/
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Fig. 3. Performance of the proposed solutions and the SOTA models for object detec-
tion use case using COCO dataset.

it is very competitive in terms of inference runtime when the percentage of the
number of images used as input is varied from 20% to 100%. Thus, the classi-
fication rate of the KGDL is 93% whereas the baseline methods go below 90%
when the entire ImageNet is processed in the training phase. These results are
obtained thanks to the selective strategy used in the inference step, which explore
the knowledge base to find the best model for each testing image.

Results on Object Detection. Using the previously described COCO dataset, the
next experiments compare the KGDL’s accuracy against SOTA object detection
methods (MViTv2, and Yolov5). Figure 3 demonstrates that KGDL surpasses
the two baseline algorithms in terms of IoU (Intersection over Union) and it is
very competitive in terms of inference runtime. The IoU of the KGDL is 91%
whereas the baseline methods remains below 86% when the entire COCO dataset
is processed in the training phase. These outcomes were again made possible by
the inference step’s selective strategy, which looked through the knowledge base
to identify the most appropriate model for each testing image.

5 Discussion and Future Perspectives

In this section, we go over some current difficulties and major problems with the
built KGDL framework, and by considering such framework as a foundation, we
demonstrate potential future paths for computer vision applications. The first
challenge of the KGDL is to find a smart way for adding human experience and
knowledge to computer vision tasks. By examining the earlier works, we discover
that the majority of studies which integrate the human experience, only concen-
trate on natural language processing. Understanding the causes makes it clear
that adding human experience and knowledge to the model at every stage is diffi-
cult, with the exception of direct labeling. To solve this issue, we plan to integrate
inverse reinforcement learning in the KGDL framework. It entails extrapolating
another agent’s hidden preferences from its observed behavior, avoiding the need
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to manually specify its reward function. Therefore, the interaction between the
environment (human experience in our case), and the agent (KGDL framework in
our case) will be done automatically and without the need to manual assessment.
The second challenge is how to design an evaluation benchmark for knowledge-
guided deep learning. The existing solutions including KGDL framework consider
standard benchmarks such as ImageNet, PASCAL VOC, CIFAR and MNIST.
Creating a useful test benchmark is essential for the community’s development
of knowledge-guided deep learning. In order to effectively explore this research
topic, it is crucial to discover how to create benchmarks and evaluation method-
ologies for knowledge-guided deep learning. We plan to investigate the use of
attention diversification in building benchmarks specified for knowledge-guided
deep learning. It consists to reassign appropriate attention to diverse task-related
features for domain generalization. We will inspire attention diversification for
designing both the training and testing data for evaluating the knowledge-guided
deep learning-based frameworks. The third challenge is to make multi-task learn-
ing into practice. It is difficult to totally tackle a real-world task with just one
categorization because it is complex and usually required intensive computa-
tion and intelligent learning processes. We have seen optimism for a universal
model through human-in-the-loop fine-tuning with the emergence of a unified
large-scale pre-training method. We plan to adopt a suitable method to incor-
porate human knowledge into huge models as existing machine learning models,
in particular, are not as intelligent as humans.

6 Conclusion

This work has addressed the challenges related to establishing general-purpose
and flexible AI using the existing deep learning models and proposed a novel
general-purpose deep learning approach for tackling generic computer vision
applications. For each set of visual data, many deep learning models have first
been trained. Following that, the statistical data for each trained image is com-
puted and stored along with the loss values of each model used during the train-
ing. In the testing step, the right models for each new set of image data are
ultimately chosen using the stored information. A kNN (k Nearest Neighbors)
technique is employed to effectively choose the optimal model during the testing
phase. ImageNet benchmark was used to evaluate the created knowledge-guided
deep learning system. The outcomes presented validated the KGDL framework’s
higher accuracy and strong inference runtime competitiveness compared to the
baseline methods. Since the runtime of the KGDL is critical, in particular for
real-time processing based applications, we plan to improve the knowledge base
exploration by investigating on kNN query processing techniques for finding the
best model in the inference phase.
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Abstract. The paper examines methods for teaching programming
through integrated curricula that build on the underlying mathematics
that the students are familiar with. We present two examples to illustrate
the approach. First, at the most basic level, we describe a successful cur-
riculum for introducing middle-school students to programming through
the use of variables, linear equations, and basic algebraic expressions. We
motivate students to create digital images using NumPy arrays by exper-
imenting with number representations and coordinate systems. The stu-
dents create digital videos by building their video characters and moving
them around from frame to frame. Second, we present an advanced exam-
ple for establishing the convergence of machine learning algorithms based
on fundamental theorems from real analysis. In the second example, we
explain how to select an optimal model through the convergence of the
validation loss sequence. For the results, we present how the students
perceived the integration of Mathematics with Computer Programming.

Keywords: Mathematics and programming · Convergence of Machine
Learning Algorithms

1 Introduction

There is a strong need to teach the fundamentals of computer programming to
the general population. Unfortunately, often, schools allocate very little to no
time for training students how to code. On the other hand, schools are required
to provide training in Mathematics throughout K-12. Furthermore, many of the
skills that are taught in mathematics classes are also essential for understanding
computer programming. As an example, both mathematics and computer sci-
ence encompass foundational concepts and necessitate logical thinking, problem-
solving abilities, and the application of creativity. In this paper, we propose to
teach programming building on its connections to the underlying mathematics.
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By leveraging students’ mathematical knowledge, students, and even teach-
ers, can also save considerable time that would otherwise be spent introducing
each coding concept independently from its mathematical counterpart, such as
the concept of variables. Learning coding in conjunction with mathematics also
enables students to revisit and explore mathematical concepts in greater depth,
creating a reciprocal relationship between mathematics and programming. This
integration facilitates greater accessibility to computer science for students who
may not initially have a natural inclination toward the subject. By embedding
computer science within the context of mathematics, it becomes more appealing
and approachable, capturing the interest and engagement of a wider range of
students. The interconnectedness of mathematics and computer programming
creates a reciprocal learning process: from mathematics to programming, and
back from programming to mathematics. This integrated approach empowers
students to develop knowledge and a versatile skill set that seamlessly bridges the
realms of mathematics and computers, preparing them to thrive in an increas-
ingly digital and technologically-driven world.

We present two examples of our efforts. First, we summarize how the under-
lying middle-school mathematics was used to introduce advanced NumPy pro-
gramming concepts in the Advancing Out-of School Learning in Mathemat-
ics and Engineering (AOLME) project. The successful learning of fundamental
mathematical concepts in the AOLME project has already been documented in
[9,10]. In the current paper, we focus on the coding aspects of the project and
how it is introduced from the underlying middle-school mathematics. Second,
motivated by the success of the AOLME project, we present how the same ideas
can be applied in a graduate course in optimization that uses Real analysis for
selecting an optimal Neural Networks model. For this application, we review how
real analysis can be used to establish convergence of the validation loss sequence
generated during neural network training.

The rest of the paper is organized into 4 sections. In Sect. 2, we review prior
pedagogical efforts to integrate mathematics and computer programming. In
Sect. 3, we describe our methodology. We provide results in Sect. 4 and conclud-
ing remarks in Sect. 5.

2 Background

There was a continuous endeavor to connect computer programming to mathe-
matics [3,4,6,11–13,15,16]. Articles delve into the interplay between mathemat-
ics and computer programming, each offering unique perspectives and ideas.

The article by Feurzeig, Papert, and Lawler [3] explores the use of program-
ming languages as a conceptual framework for teaching mathematics. This work
emphasizes the potential of programming to enhance students’ mathematical
understanding and problem-solving abilities. The authors argue that program-
ming languages provide a unique platform that encourages active engagement,
promotes critical thinking, and facilitates the development of mathematical rea-
soning skills.
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Goldenberg and Carter [5] focus on the use of programming as a language
for young children in elementary grades to explore concepts in the mathematics
classroom. They argue that, when young children engage with programming,
they also connect to the mathematical practices. The authors argue that when
connected to classroom mathematics, programming can be used as a third lan-
guage that decreases barriers and provides young students with the expressive
and creative skills they need. Similarly, Benton and colleagues [1] also designed
curriculum materials and professional development to support mathematical
learning through programming for young children aged between 9 and 11 years.
The authors discovered that by implementing the program, key foundational
concepts become more accessible to students. Solin and Roanes-Lozano [18]
approached computer programming as an effective complement to mathematics
education and they also conclude that computer programming actually provided
more engaging ways to teach mathematical practice standards to students.

In secondary school level, Kaufmann and Stenseth [6] investigated how pro-
gramming can be integrated in mathematics using Processing (Processing is
a Java based tool primarily to learn programme visual effects supported and
distributed by The Processing Foundation). The analysis illustrates students’
reasoning when using Processing to solve mathematical problems. The students
showed a growth in the argumentation ability, going from basic to more compli-
cated arguments.

In undergraduate level, Wilensky [19] explored the use of the Logo pro-
gramming language as a tool to develop undergraduate students’ understanding
of mathematical concepts. He argues that Logo programming offers a unique
opportunity for students to build tangible connections between mathematics
and programming by engaging in hands-on activities. The article emphasizes
the importance of creating meaningful connections between mathematics and
programming to enhance students’ mathematical understanding and problem-
solving skills. Sangwin and O’Toole [17] investigated how much computer pro-
gramming is integrated into the curricula of British undergraduate mathematics
majors. The authors found that whereas computer programming is taught to all
undergraduate mathematics students in 78% of BSc degree courses, in 11% of
mathematics degree programs it is not.

Olteanu [14] suggests several recommended conditions for fostering mathe-
matical reasoning and sense-making through the use of an educational program-
ming tool. These conditions include adequate teacher interventions, the design of
rhizomatic tasks, identification of critical aspects, and the utilization of patterns
of variation. By adhering to these conditions, educators can create an environ-
ment that nurtures students’ mathematical thinking and promotes their ability
to make meaningful connections and discoveries while engaging with educational
programming tools.

Collectively, this body of literature provides valuable insights into the intri-
cate and ever-evolving interplay between mathematics and computer program-
ming. However, despite the knowledge available, a notable gap remains in
the absence of a comprehensive curriculum intentionally designed to connect
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computer programming with mathematics. While the existing literature offers
glimpses into the potential synergy between these disciplines, there is a need for
a cohesive and structured educational framework that purposefully integrates
the two fields. Such a curriculum would not only bridge the gap but also unlock
the full potential of combining mathematics and computer programming in edu-
cational settings.

The authors [10] also explored the experiences of bilingual Latinx co-
facilitators with the new mathematics and computer programming integrated
curriculum. The co-facilitators experienced a shift in their perception of math-
ematics as they utilized computer programming tools in the new curriculum,
resulting in a more relatable and meaningful understanding. Embracing their
role as instructors, they effectively taught computer programming practices and
fostered a positive learning environment. The authors found increases in enjoy-
ment and self-confidence when middle school students took on the co-facilitator
role. The study highlights the potential for middle school students, particu-
larly those who are bilingual, to excel in programming and bilingual teaching
while assuming new roles and goals. The findings from this study indicate that
when middle school students have the opportunity to co-teach mathematics and
computer programming concepts, they solidify their understanding of these con-
cepts. In a recent study, the authors [9] explored the relationship Latinx students
developed with Computer Science (CS) and Mathematics while experiencing the
integrated CS and Mathematics curriculum in an after-school setting. Students
had significant increases in their self-reported enjoyment and knowledge in CS
and Mathematics as they engaged in the program and the program prepared stu-
dents with the foundational knowledge, skills, and practices for future endeavors
in STEM fields.

3 Methods: Teaching Programming with Mathematics

3.1 Middle-School Mathematics and Computer Programming

We summarize our introduction to coding using Mathematics in Table 1. The
table summarizes elements of Level 1 of the AOLME curriculum. In AOLME,
the students worked collaboratively in small groups. Each group was led by an
undergraduate facilitator and a middle-school student co-facilitator. The goal
of the curriculum was to introduce the students to coding by building their
understanding based on middle-school mathematics. The students worked in
Python on the Raspberry Pi.

The first programming assignment was based on the number guessing game.
The students are asked to memorize an integer between 1 and 10. They then
apply basic linear operations to their number (e.g., multiply and add), and then
provide the computer with the result. The computer then guesses their number
by using the inverse operations. To understand the code, the students need to
review variables, basic algebraic operations, and linear equations. Here, we note
that the use of algebra provided an entry point into coding. It enabled the
students to understand variables through Algebra.
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Table 1. The integration of computer programming and middle-school mathematics
during Level 1 of the AOLME curriculum.

Mathematics Computer Programming

Algebraic operations and their
inverses, variables, linear equations

Number guessing game with linear
equations

Binary, decimal, hexadecimal
number systems and conversions
between them

Digital color pixels using
hexadecimals, 3-tuples

Coordinate systems NumPy Arrays, working with
rectangular regions in Python

Coordinate plane grid, shapes
using rectangles, hexadecimals

Digital color image representations
using NumPy arrays and
hexadecimals

Approximate continuous-space
shapes using digital rectangles

Design game characters using color
image representations

Motion, 2D+time Design character movements, video
frames, Python lists, frames per
second

The students also learned about different number representations during
middle-school. This mathematical background allowed us to introduce binary
numbers and hexadecimals and make the connections to their mathematics
lessons. Similarly, coordinate systems served as an entry point to NumPy arrays
and array indexing. Different shapes were constructed by filling rectangular
shapes with different colors.

Initially, the students thought about their video characters as continuous
shapes. They quickly discovered the need to approximate their characters using
rectangular color regions. They then worked on putting together their videos as
characters moving through the videos (see Table 1).

3.2 Fundamentals of Real Analysis Applied to Optimization
for Machine Learning Problems

Training Neural Networks requires a large number of epochs. During training,
the goal is to select an optimal model that minimizes the validation loss error.
Unfortunately, a unique minimum may not be possible. Furthermore, due to
strong non-linearities, the validation loss function may oscillate, increase, or
even diverge to infinity. Fortunately, Real Analysis can be used to study the
convergence of the validation loss function.

Let Li denote the value of the loss function after the i-th epoch. We view the
values of the loss-function after each epoch as a sequence of numbers given by:

L1, L2, L3, L4, . . . .
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A subsequence is then given as a sample over a selected number of epochs:

Ln1 , Ln2 , Ln3 , Ln4 , . . .

where: n1 < n2 < n3 < n4 < . . . represent different epochs (positive integers).
Real analysis can provide some powerful results for understanding this sequence,
without the need to know the specifics of the underlying algorithms. We refer to
the basic theorems listed in Table 2 (see [2,7,8]).

The majority of loss-functions are bounded below by zero. When such a
bound exists, even for infinite sequences, we will always be able to define the
best possible achievable minimum value, defined here as the greatest lower
bound (thm 1). The greatest lower bound provides the optimal validation loss.

When the loss function is bounded above and below, we are guaranteed to
produce a converging subsequence as required by theorem 6. In this powerful
case, it is also easy to see that any algorithm that involves the gradient of
the training loss function will also require that the gradient magnitude of the
subsequence will have to converge to zero. Thus, any gradient-based algorithm
will converge to a minimum value as long as the loss function is bounded.

Theorem 7 makes it clear that convergence requires beyond a certain epoch,
all validation losses will get infinitely close to each other. Here, the emphasis is
on all losses. We note that the standard practice of examining |Li+1−Li| < ε to
terminate an algorithm is not sufficent. Instead, we require that |Ln − Lm| < ε
for some sufficiently large N and n,m > N . The theorem makes it clear that
oscillating sequences are not convergent, unless the amplitude of the oscillation
keeps decreasing to zero. Here, we note that reducing the step-size will hopefully
reduce the oscillation magnitude of the validation loss. If the magnitude remains
large, we are not converging.

Overall, real analysis makes it clear that convergence may not be associated
with achieving an actual minimum. We can get convergence because the loss
function is bounded (thm. 2). As long as we are are reducing the loss function,
that is also bounded below, we will converge to some minimal value (thm 4). On
the other hand, real analysis also makes it clear that we may be able to converge
to a minimum by selecting a decreasing subsequence from a bounded function
(thm 5 + thm 4). Collectively, theorems 1 to 7 provide great insight into the
behavior of an infinite sequence of validation loss function values.

4 Results

We present an example video produced by the middle-school students in Fig. 1.
The students thoroughly enjoyed working on their projects and were very excited
to get them to work. We summarize the students’ reactions from our efforts to
build coding based on the underlying mathematics.

After conducting interviews with middle school students and using thematic
analysis to determine common themes, it became clear that students’ discoveries
on the connections between Mathematics and Computer Science was one of the
most prominent themes as was also presented in [9]. As a result of learning the
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Table 2. Mathematical sequence theorem implications for loss function minimization.

Real Analysis Machine Learning

Thm 1. Every non-empty set that is
bounded below will posses a greatest
lower bound.

Minimization of a loss function
bounded below (e.g. zero) will posses
a greatest lower bound.

Thm 2. Every real, bounded, infinite set
possesses at least one limit point.

After a large number of iterations,
minimization of a bounded loss
function will make the algorithm
produce a limit point.

Thm 3. Every convergent sequence is
bounded.

Loss function convergence implies it is
bounded.

Thm 4. A monotone decreasing
sequence that is bounded below will
converge to a minimum.

If the algorithm is reducing the loss
function, that is also bounded below,
it will converge to a minimum value.

Thm 5. Every sequence has a monotone
subsequence.

We can always select a decreasing or
increasing subsequence of iterations
from an optimization algorithm.

Thm 6. Every bounded sequence has a
convergent subsequence.

Optimization of bounded loss
functions will always converge.

Thm 7. A sequence converges if and
only if it is Cauchy.

An algorithm converges if and only if
all iterations beyond a certain number
get close to each other.

connections between mathematics and computer science, students reported a
rise in their enthusiasm for both subjects [9]. For example, as Jesús, a middle
school student who had taken on the co-facilitator role stated:

They (Computer Science and Mathematics) are connected. I just like com-
puter programming better. . .. It’s.. loops is like multiplication you could
say. Instead of adding a number by itself again and again, you can just
multiply it by how many times you wanted to add it. And then you could
do that . . . we use the loops to do stuff multiple times to get it done faster
and to use less blocks, as we are using blocks of codes.

What is evident from this quote is how the student was able to make sense of
how loops worked by using mathematics to make the algorithms more efficient.
Students also explained their enjoyment of Mathematics and Computer Science
are related. In administering a pre, during, and post implementation question-
naire of the integrated curriculum with the undergraduate student facilitators
and conducting an interview with them, a theme that emerged on the integration
of computer programming and mathematics was related to the content. Several
facilitators mentioned that the middle school student with whom they worked
progressively exhibited a deeper understanding of the curriculum’s core concepts
and the crucial connections between mathematics and computer programming.
We include two selected quotes that reflect this finding:
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Fig. 1. Some video frames produced by middle-school students using hexadecimal val-
ues and NumPy arrays.

I feel like whenever we did the Guessing Game, that’s when they like
understood that if you do like to undo a number, like if you multiplied
it, and then subtracted it, to divide then add, in whichever order, then
they understand the order of operations with the math and how to reverse
them. (Issac - Interview May 15, 2018)

I think with like binary and the hexadecimal and binary conversions, and
then getting to apply that to colors, the RGB, hex, that setup. I think that
helped them make the connection that math gives you colors. (Shelby -
Interview May 15, 2018)

The material on real analysis was introduced in the graduate course on opti-
mization and student researchers. The students were asked to provide short
answer questions on the material to make sure they understood the applica-
tions of the theorems. The larger impact of the approach occurred when the
students were working on training using large datasets for their final projects.
Ultimately, motivated by the strong convergence results, students waited longer
for convergence and they studied the gaps between the training and validation
loss sequences.

5 Conclusion

The paper summarizes the advantages of teaching coding in an integrated cur-
riculum that builds understanding based on the relevant mathematics. The paper
presented two examples. First, at the middle-school level, the students generate
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digital videos by manipulating NumPy arrays while building their understand-
ing based on variables, linear equations, number representations, and coordinate
systems. Second, at the University level, we provide an example of the use of
Real analysis to minimize the validation loss.
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10. LópezLeiva, C.A., Noriega, G., Celedón-Pattichis, S., Pattichis, M.S.: From stu-
dents to cofacilitators: Latinx students’ experiences in mathematics and computer
programming. Teach. Coll. Rec. 124(5), 146–165 (2022)
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Abstract. 2D CNN are main components for Partial Video Copy Detec-
tion (PVCD). 2D CNN features serve for the retrieval and matching of
videos. Robustness is a key property of these features. It is a well-known
problem in the computer vision field but little investigated for PVCD.
The contributions of this paper are twofold: (i) based on a public video
dataset, we provide large-scale experiments with 700 B of comparisons
of 4.4 M feature vectors. We report conclusions for PVCD consistent
with the state-of-the-art. (ii) the regular protocol for performance char-
acterization is misleading for PVCD as it is bounded to the video level.
A method for the characterization of key-frames with 2D CNN features
is proposed. It is based on a goodness criterion and a time series mod-
elling. It provides a fine categorization of key-frames and allows a deeper
characterization of a PVCD problem with 2D CNN features.

Keywords: detection · video copy · 2D CNN · characterization

1 Introduction

Partial Video Copy Detection (PVCD) finds segments of a reference video which
have transformed copies. It is a well-known topic in the computer vision field
[10,21]. 2D CNN are main components to design PVCD systems. The systems
extract 2D CNN features from frames for the retrieval and matching of videos.
The performance characterization of 2D CNN features is a known topic in the
computer vision field. However, it has been little investigated for PVCD.

The contributions of this paper are twofold: (i) based on a public video
dataset, we provide large-scale experiments with 700 B of comparisons of 4.4 M
feature vectors. These experiments report conclusions on the particular PVCD
problem consistent with the state-of-the-art of the computer vision field. (ii) the
regular protocol for performance characterization is misleading for PVCD as it
is bounded to the video level. For a deeper analysis, we propose a method for the
characterization of key-frames. This method applies a goodness criterion and a
time series modelling. It provides a fine categorization of key-frames and allows
a deeper characterization of a PVCD problem.

Section 2 provides a state-of-the-art. Section 3 details our performance char-
acterization work. Conclusions and perspectives are discussed in Sect. 4. Table 1
gives the main symbols and mathematical notations used in the paper.
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Table 1. Main symbols and mathematical notations used in the paper

Symbols Meaning

K, M, B, F, f thousand 103, million 106, billion 109, float and frame/feature vector

x, y, z scalar values

m, n or mi, nj sizes of sets/vectors with i, j = 1, 2, . . .

X = [x1, . . . , xn] , Y X is the feature vector of positive frame (x1, . . . , xn the elements), Y is
negative

X̃, X∗ X̃ � X is the near duplicate of X, X∗ �= X has a different reference

{X1, . . . , Xn} set of feature vectors

||X|| l2-norm of X with ||X|| =
√∑

∀i x2
i

X · Y dot product between X and Y with X · Y =
∑

∀i xiyi

SC(X, Y ) Cosine similarity SC(X, Y ) = X · Y ∈ [−1, 1] with ||X|| = ||Y || = 1

F1 = 2P×R
P+R

F1 score with P the precision and R the recall

φ(X) = SCmin(X, {X̃1, . . . , X̃m}) − SCmax(X, {Y1, . . . , Yn1}, {X∗
1 , . . . , X∗

n2}) the
goodness criterion characterizing the separability with X when φ(X) ≥ 0

t, [z1, . . . , zm+1] observation at t with [z1, z2, . . . , zm+1] the φ(X), φ(X̃1), . . . , φ(X̃m)
criteria

zmin, z, zmax, σ, τ statistics of [z1, . . . , zm+1], with the minimum zmin, mean z and maximum
zmax values, σ the standard deviation and τ the rate of positive values
zk > 0

α, β thresholds for categorization of frames

Z mean of indices with τ = 0 and σ ≤ α for a reference to fix the threshold
β = Z

2 Related Work

2D CNN process images into convolutional layers and classify them using fully
connected layers. When applied to PVCD, a pipeline embedding the 2D CNN
must be defined for video processing Table 2. A first step is to select key-frames
with sampling at fixed FPS. Closed key-frames in the temporal domain have
redundancy. Adaptive methods have been proposed for elimination of 2D CNN
features by K-means clustering or ranked inter-frame distances [1,19].

Key-frames are then processed with pre-trained 2D CNN such as AlexNet,
VGGNet (16 and 19), ResNet (50, 101 and 152) and InceptionNet. They process
input square matrixes ∈ [224; 299] in the RGB colour space. They have different
architectures and are delivered into different versions (1 to 4).

PVCD systems extract features from 2D CNN. These features serve for the
retrieval and matching of videos. The common approach is to extract the features
from the full frames even if a RoI based extraction can be applied [8,22]. The
features can be obtained from (i) the Fully Connected (FC) layers (ii) or the
convolutional ones. In the case (i), the Last FC is commonly used for extraction.
With convolutional layers (ii), standard methods have been established (e.g.
MAC and R-MAC1 [16]) used in several PVCD systems [8,22].

1 Maximum Activations of Convolutions (MAC) and Regional-MAC (R-MAC).
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Table 2. Overview of PVCD systems using 2D CNN

Key-frame selection • Fixed FPS [4,6,7,9–13,15,17,18,21,22]
• Adaptive methods [1,19]

2D CNN • VGGNet [9,11,13,15,18,19,21,22] • ResNet [4,7,8,11,15]
• InceptionNet [1,11,12,17] • AlexNet [1,10,12,21]

Feature extraction • Fully connected layers [1,10–13,18,21]
• Convolutional layers [1,4,7,8,11,12,15,17,19,22]
• Low-dimensional [4,6,18,19] • RoI based features [8,22]

Video matching • Frame matching [7,13,15]
• Global matching [1,4,6–8,15,21]

The videos are then matched from 2D CNN features. A first approach is to
detect the videos from the matching of individual frames [13,15]. The matching
can be made global with a frame-to-frame similarity matrix [1,4,6,8,15]. In both
cases, it is common to apply a l2 normalization to the features [9,11,12,15] and
to match with the cosine similarity or the Euclidean distance. Low-dimensional
approximations can be obtained with pooling [19] or PCA [1,6,18].

Robustness of 2D CNN features is a key property for the PVCD systems.
The performance characterization of 2D CNN features is a known topic in the
computer vision field. As a general trend, features extracted from recent 2D
CNN perform better [5]. The MAC and R-MAC feature extraction methods are
more adapted to the networks having large sizes of convolution layers [2]. The
impact of blurring noise has been characterized in [14]. The ability of 2D CNN
features to characterize particular images is highlighted in [20].

To the best of our knowledge, comparisons of 2D CNN for PVCD have been
addressed only in [11,12,15,17]. The characterization has been done for global
matching only. Datasets with a low-level of scalability (e.g. SVD [9]) [11,12,17]
or unbalanced (VCDB [10]) [15,17] have been used. The fine characterization of
2D CNN features for PVCD has never been investigated.

3 Performance Characterization of 2D CNN Features

PVCD systems extract and match 2D CNN features. These features serve for
the retrieval and matching of videos. Robustness is a key property of these
features. It is a well-known topic in the computer vision field, however, it has been
little investigated for PVCD. We provide in this section large-scale experiments
to address this problem. We will introduce the video dataset and performance
characterization protocol. Performance characterization results are discussed and
conclusions are compared to the state-of-the-art of the computer vision field. A
method for characterization of key-frames is then proposed for a deeper analysis.
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3.1 Dataset and Characterization Protocol

For performance characterization, a dataset must be selected. Several main
PVCD datasets have been proposed, Table 3 gives a comparison. We have
selected the STVD2 dataset [13]. This dataset has several key properties (i)
it is captured from TV and is almost noise-free allowing a fine control of degra-
dations with synthetic methods (ii) it is the largest dataset of the literature with
ten thousand hours of video, 243 references and 1, 688 thousand positive pairs3

(iii) it offers a balance distribution between the negative and positive videos
(iv) it is delivered with an accurate timestamping for video alignment.

Table 3. Datasets for PVCD performance evaluation. The h, s and N/A stand for in
hours, in seconds and not available.

Datasets VCDB SVD STVD VCSL

Paper [10] [9] [13] [7]

Degradation real synthetic synthetic real

Duration (h) 2,030 h 197 h 10,660 h 17,416 h

References 28 1,206 243 122

Positive pairs 9K N/A 1,688 K 281K

Timestamps (s) 1 s N/A 1
30

s 1 s

From the videos and groundtruth of the STVD dataset we have applied a
pipeline4 to extract 458, 750 frames Table 4. These frames have been sampled
from negative videos and copied segments and split into a training and a testing
set. We have processed these frames with the 2D CNN VGG-16, ResNet50-v1 and
Inception-v1 for characterization. These networks are typical for PVCD Table 2.
The three common methods Last FC, MAC and R-MAC have been used for
extraction with a l2 normalization resulting in 9 databases for a total of 4.1 M
of feature vectors (of dimensions 512-F, 1,024-F, 2,048-F and 4,096-F).

Table 4. Dataset for performance characterization

Videos 60% training 40% testing Total

Negative videos 259,050 f 172,700 f 431,750 f

Copied segments 16,200 f 10,800 f 27,000 f

458,750 f

2 http://mathieu.delalandre.free.fr/projects/stvd/pvcd/.
3 A positive pair (vi, vj) is a combination of two partial video copies vi and vj [7,10].
4 Detailed at http://mathieu.delalandre.free.fr/publications/CAIP2023.pdf.

http://mathieu.delalandre.free.fr/projects/stvd/pvcd/
http://mathieu.delalandre.free.fr/publications/CAIP2023.pdf
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For matching, we have compared the feature vectors with the cosine similarity
SC(X,Y ) (with two vectors X and Y ). It is a common measure for matching of
CNN features that is time-efficient and robust [3]. With a unit l2-norm, it can
obtained with a single dot product X · Y . Considering m and n the size of the
training and testing set, the brute-force comparison has a complexity O(mn)
(requiring 50.5 B of matching per feature database with total 455 B). This can
be achieved in some hours with a time-efficient implementation5.

We have applied the characterization protocol of [7,13,15] to evaluate the
individual performance of 2D CNN features. All the extracted frames from the
copied segments have been labelled with the references in the groundtruth. The
negative frames have no label. The performance evaluation has been computed
with the P , R and F1 scores. That is, the maximum cosine similarity will matter
and at least one detected frame is required to detect the video.

3.2 Comparison of 2D CNN Features

Based on the dataset and our protocol, we compare here the accuracy of 2D
CNN features. Figure 1(a) gives the F1 scores, over a threshold on the cosine
similarity, of the different 2D CNN with a common feature extraction method
(Last FC). For clarification, the top F1 scores are reported too in Table 5.

Fig. 1. Comparison of 2D CNN with the Last FC (a) F1 (b) P/R

The separability for the detection is not achieved even if strong scores are
obtained. A maximum of F1 � 0.93 is performed with the ResNet50-v1 network.
The different networks present competitive results with a maximum gap of F1 �
0.03. These results are consistent with previous comparisons of 2D CNN in the
state-of-the-art [5]. For further analysis, Fig. 1(b) provides the P/R plot. All the
2D CNN maintain a strong precision at a high level of recall.
5 Experiments on a GPU RTX 2070 (7 GiB for the features/1 GiB for the programs),

dataset fully loaded, matching with a fast vector multiplication on all the cores.
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Table 5. Comparison of feature extraction methods with the top F1 scores

Last FC MAC R-MAC

ResNet50-v1 0.926 0.828 0.823

Inception-v1 0.923 0.738 0.782

VGG-16 0.894 0.922 0.918

For a comparison of the feature extraction methods, Table 5 gives the top
F1 scores of the different 2D CNN with the Last FC, MAC and R-MAC. For
VGG-16, MAC and R-MAC outperform the Last FC method with a slight gap
of F1 � 0.03. These methods provide a performance degradation for ResNet50-
v1 and Inception-v1 up to a gap of F1 � 0.18. This can be mainly explained
by the larger sizes of convolution layers in the VGG-16 network compared to
ResNet50-v1 and Inception-v1. This leads more accurate localizations with the
MAC and R-MAC features. An equivalent conclusion is also reported in [2].

3.3 Characterization of Key-Frames with 2D CNN Features

The selection of 2D CNN features has a performance impact. However, another
important aspect is the ability of video content to be characterized by these
features. Indeed, the characterization protocol for PVCD [7,13,15] looks for the
maximum cosine similarity between video frames where at least one “good” key-
frame is required to detect a video. However, key-frames Fig. 2 with a high-level
of noise (a), near-constant (b) or almost duplicate (c) could be difficult to detect.
A quantitative analysis of the goodness of key-frames must be established and
the regular metrics (P , R and F1) are misleading on the task. We will investigate
this aspect here by providing a characterization protocol of key-frames with 2D
CNN features. The goal is to evaluate the performance accuracy of 2D CNN
features when facing a large variability of key-frames for PVCD.

Fig. 2. Examples of key-frames (a) blurred (b) near-constant (c) almost-duplicate (d)
foreground/background (e) symmetrical

For the needs of characterization, we propose the goodness criterion of
Eq. (1). This criterion maximizes the intra and interclass similarity. X is the 2D
CNN feature of a positive frame and {X̃1, . . . , X̃m} its corresponding near dupli-
cate. {Y1, . . . , Yn1} is the set of negative 2D CNN features and {X∗

1 , . . . , X∗
n2

} the
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Fig. 3. Modelling with time series

Table 6. Categorization of frames

Category σ zmin zmax τ

Not Consistent (NC) >α ∈ [−1, 1] ∈ [0, 1]

Worst (W ) ≤α ∈ [−1, β[ =0

Not Separable (NS) ∈ [β, 0[

Partially Separable (PS) <0 ≥0 ∈]0, 1[

Fully Separable (FS) ≥0 =1

positive ones obtained from the other references. SCmin and SCmax are opera-
tors to get the minimum and maximum SC between the template X and feature
sets. That is, φ(X) is defined6 ∈ [−1, 1] and φ(X) > 0 guaranties a separability7.

φ(X) = SCmin(X, {X̃1, . . . , X̃m}) − SCmax(X, {Y1, . . . , Yn1}, {X∗
1 , . . . , X∗

n2
}) (1)

Every frame X and its near-duplicates {X̃1, . . . , X̃m} are aligned with a
timestamp t having a precision of 1

30 second Table 3. The overall set of frames can
be modelled with time series Fig. 3. In these series, the z1, . . . , zm+1 values are
derived from φ(X). For a given frame X at t, we have z1 = φ(X), z2 = φ(X̃1),
. . . , zm+1 = φ(X̃m). These values can be characterized with statistics (the mini-
mum zmin, mean z and maximum zmax values of z1, . . . , zm+1 and their standard
deviation σ) and a rate τ accounting the amount of positive criteria.

From statistics (zmin, z, zmax, σ) and rates τ , the frames can be categorized as
detailed in Table 6 and illustrated in Fig. 3. The statistics and rates are compared
to thresholds α, β obtained with automatic methods as detailed thereafter. The

6 The Eq. (1) is defined for SC(X, Y ) ∈ [0, 1] with 2D CNN using a RELU function.
7 No possibility for X to be classified as a false negative (X matched with a negative

frame or assigned to another video reference).
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Table 7. Categorization results of the training set at full FPS= 30

Total indices NC W NS PS FS

50,844 6,966 4,169 33,049 4,881 1,780

100% 13.7% 8.2% 65% 9.6% 3.5%

21.9 % 78.1 %

Fig. 4. (a) distribution of σ (for α) (b) times series with τ = 0 and σ ≤ α (for β)

large variably between the 2D CNN features of a given frame can be detected
when an outlier σ value appears greater than the threshold α. This constitutes
the set of not consistent frames labelled NC. The frames where the separability
cannot be obtained with the 2D CNN features are categorized when zmax < 0
then τ = 0. They are labelled NS. From the NS frames, some worst frames
labelled W can be filtered out such as zmax < β. The frames where a partial or
fully separability could be obtained with the 2D CNN features are categorized
when τ ∈]0, 1[ and τ = 1, respectively. They are labelled FS and PS.

Table 7 reports the results of categorization on the training set Table 3. We
have applied as thresholds α = 0.05 and β ∈ [−0.4, 0] obtained with automatic
methods detailed thereafter. For the experiments, we have extended the number
of positive frames from 16, 200 to 486, 000 with a sampling at the full FPS = 30.
We have used the VGG-16 with the MAC feature extraction method for tradeoff
between a strong detection score F1 � 0.92 Table 5 and the memory constraint.
With m and n the numbers of positive and negative frames, the Eq. (1) has a
complexity8 O(m

(
m+1
2

)
+ mn). This requires � 244 B of matching.

A total of 50, 844 timestamps/indices have been obtained Table 3. � 22% of
frames have been categorized as not consistent NC and worst W . Within the
remaining � 78%, only � 13% fit with the partial PS or full separability FS.
That is, only a very small amount of “good” key-frames appears in the several
videos corresponding to the categories PS and FS. � 87% of key-frames are
hard to detect from their 2D CNN features not consistent or little discriminant.

8 With S(X, X∗) = S(X∗, X), the comparison number of m features is m
(
m+1

2

)
.
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The categorization results of applied thresholds α = 0.05 and β ∈ [−0.4, 0].
They must be selected carefully, we have fixed them with automatic methods
illustrated in Fig. 4. Figure 4(a) plots the cumulative distribution of σ over the
50, 844 indices. The threshold α � 0.05 can be easily obtained with an automatic
elbow detection. For clarification, the cumulative rate of indices with τ = 0 (over
all the indices τ ∈ [0, 1]) is given for σ > α. � 1% of indices have a τ �= 0. The
threshold β has been fixed to detect outliers for indices with τ = 0 and σ ≤ α
reference per reference. Figure 4(b) illustrates the method. For each reference, a
mean Z of indices is computed. This mean serves to fix the threshold β = Z.
The indices with zmax < Z are categorized as worst frames W . Considering the
243 references Table 3, we have obtained a range β ∈ [−0.4, 0].

Figure 2 provides examples of key-frames for the different categories.
Figure 2(d, e) gives key-frames labelled FS containing distinguished shapes (e.g.
background/foreground text). They are easy to detect with 2D CNN features
[20]. However, they are difficult to catch from videos as they constitute only
� 3% of the total amount of key-frames Table 7. Figure 2(b, c) gives key-frames
having a worst label W with a near-constant or an altered visual content (e.g.
inclusion of logos). Even if they constitute a small part of key-frame � 8%
Table 7, they must be carefully avoided for PVCD. Figure 2(a) shows a key-
frame with a high level of blurring labelled NC. Such key-frames have 2D CNN
features with a large variability and little discriminant. They are hard to detect
[14]. At last, � 65% of key-frames are categorized as NS. The 2D CNN features
of these key-frames cannot be detected efficiently.

4 Conclusions and Perspectives

Based on a large-scale video dataset, this paper gives a performance character-
ization of 9 common 2D CNN features used for PVCD. The experiments have
been driven on 4.4 M feature vectors with 700 B of comparisons. The separability
is not achieved on the detection problem even if strong scores are obtained with a
maximum of F1 � 0.93. The different networks present competitive results with
a maximum gap of F1 � 0.03. As a general trend, features extracted from recent
2D CNN such as ResNet50 perform better. A correlation appears between the
feature extraction methods and the 2D CNN architectures (e.g. VGG-16 with
the MAC and R-MAC features). These different conclusions are consistent with
the state-of-the-art in the computer vision field.

From 2D CNN features modelled as time series, a method for categorization
of key-frames is proposed. This method allows a deeper characterization of a
PVCD problem with 2D CNN features. It provides (i) a fine categorization of
key-frames (ii) a characterization of 2D CNN features for separability and con-
sistency (iii) a quantitative analysis of the goodness of key-frames. It highlights
the performance limits of 2D CNN features when facing blurred, near-constant
or almost-equivalent key-frames. In addition, a large part of key-frames (� 87%)
cannot be classified efficiently from 2D CNN features. These limitations will be
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explored in our future works by investigating the robust key-frame selection and
learning of 2D CNN features to further improve the PVCD performance.
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Abstract. A semi-automated method based on a U-Net 3+ network, for the seg-
mentation of brainmetastases (BM) lesions is proposed and evaluated onMagnetic
Resonance (MRI) images from105 patients with brain metastases. We divided the
dataset based on the lesions size as small (S, [2.65, 13.26) mm2), medium (M,
[13.26, 37.11) mm2) and large (L, [37.11, 1152.21) mm2) BM. The proposed
segmentation method was trained and tested separately on each group and to all
aforementioned combinations (7 developed models in total). For each group, 875
image patches with at least one lesion each, were extracted from MRI images,
with 700 patches used for 5-fold cross validation and 175 patches for testing
on a kept-out set using the averaging ensemble of the five trained models. The
segmentation results yielded a Dice Similarity Coefficient (DSC) per patch with
median (interquartile range(IQR)) as follows: 0.67(0.25), 0.81(0.13), 0.89(0.08),
0.75(0.22), 0.85(0.28), 0.85(0.13), 0.81(0.24) for S, M, L, S&M, S&L, M&L, and
S&M&L size groups respectively. The proposed system will form the basis for
a computer-assisted decision and disease follow-up support tool to be used by
medical experts.

Keywords: Magnetic Resonance Imaging · Brain Metastasis Segmentation ·
Tumor Segmentation · U-Net3+

1 Introduction

Brainmetastasis (BM) is themost common intracranial malignant cancer in adults, being
developed from ~20% of cancer patients. It appears with a debilitating symptomatology
and a poor survival prognosis. Around 80% of BMs originate from lung, breast, renal
cell carcinomas, melanoma and gastrointestinal tract adenocarcinomas. Recent studies
suggested that BM patients’ treatment should also be based on the identification of the
primary tumor site, its molecular subtype, the number, location and the size of the BMs
[1]. Therefore, the rationale for this study was the need to develop an integrated system
that automates all steps from BM segmentation to BM tumor characterization and its
primary localization. This study focuses on the development and evaluation of the first
step, namely, the automatic segmentation of BM in a semi-automatic manner according
to the guidance of medical experts.
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N. Tsapatsoulis et al. (Eds.): CAIP 2023, LNCS 14184, pp. 216–226, 2023.
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There were very few other studies identified from the current literature where semi-
automated patch-based methods for the BM segmentation were proposed. G. Gonella
et al. [2] used a Support Vector Machine along with Morphological Operators on 20
patients reporting DSC = 0.66 ± 0.05, 0.88 ± 0.05 on a patch basis for intra, inter case
evaluations respectively. Y. Nomura et al. used a 3D U-Net on 137 patients reporting
DSC = 0.73 ± 0.12 [3]. The majority of the literature methods were fully-automated.
These methods segmented the lesions when trained on portions of MRI patient scans.
They then eventually tested the method on the whole scan by segmenting the scan using
a sliding window of overlapping patches. More specifically, K. Bousabarah et al. [4]
used an ensemble of three original 3D U-Nets (40 patients), with deep supervision of
losses and trained on BMs smaller than 400 mm3. A mean Dice Similarity Coefficient
(DSC) = 0.74 was achieved. J. Rudie et al. [5], used 963-voxel patches and a 3D U-Net
in a bag ensemble of models trained on T1-weighted post contrast (T1c), (T1 – T1c)
images (100 testing patients) and on multiple loss functions. They achieved a median
DSC (interquartile range, IQR) = 0.75(0.16). In another study, C.C. Li et al. [6] trained
an ensemble of 2D whole-slice networks only on BM images and reported a median
DSC(IQR) = 0.86(0.04). X. Shu et al. [7] also used whole-slice training but in a 2.5D
mannerwith 50%/50%BM/non-BM images reporting ameanDSC= 89.6. In the present
study we propose a semi-automated method (see Fig. 1), based on a U-Net 3+ network
[8], for the segmentation of BM lesions of different size groups (small (S), medium (M),
large (L), and their combinations). The method was evaluated on N = 105 patients with
brain metastases and yielded a maximum DSC (IQR) = 0.89(0.08) on L lesions. The
prosed systemmay be utilized in the clinical practice as the basis for a computer-assisted
decision support tool to be used by medical experts.

2 Methodology

2.1 Proposed Method Overview

In the present study, a U-Net 3+ network was trained and validated separately on seven
different groups of 2D image patches of different BM sizes. The overall procedure is
shown below in Fig. 1. First, the areas of all BM cross sections were calculated, which
were split into three quantiles of areas with approximately equal number of BM for each
quantile. The quantiles were selected to correspond to BM size groups and named small
(S, [2.65, 13.26) mm2), medium (M, [13.26, 37.11) mm2) and large (L, [37.11, 1152.21)
mm2). Then, patches of 64 × 64 pixels were randomly cropped containing one or more
BM (see Fig. 1a) and Subsect. 2.3). Groups of patches were created based on the area
of the contained BMs, resulting in S, M, L groups and their combinations (S&L, S&M,
M&L, S&M&L) (see Fig. 1b). For each of the above aforementioned groups, following
was performed: 875 patches were extracted and a 5-fold cross validation was performed
on the 700 patches (NT/NV = 560/140 training and validation patches respectively)
using a 4-level deep U-Net 3+ based on [8] (see Fig. 1c). The resulted five models were
tested on a kept-out set of 175 images using an averaging ensemble of the validation
models (see Fig. 1d). The similarity of the automated segmentation and ground truth
(GT) results were evaluated on an image patch basis with confusion matrix-based and
on a BM basis with surface distance metrics (see Fig. 1e and Subsect. 2.5).
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Fig. 1. Overview of the proposed method for the semi-automated brain metastasis segmentation.
a) Patches of 64 × 64 pixels were randomly cropped around ground truth metastases. b) The
patches were categorized in seven groups (S, M, L, S&M, S&L, M&L, and S&M&L), based on
the size of their contained metastases. c) For each of the above groups, five-fold cross validation
was performed using a 2D U-Net 3+. d) Five different models were evaluated as an averaging
ensemble on a kept-out testing set. e) Segmentation was assessed by evaluation metrics.

2.2 Image Dataset

T1-weighted gradient-echo post-contrast MRI scans of N = 105 patients and their cor-
responding GT BM masks were acquired from the public dataset BrainMetShare [9]
(Stanford University School of Medicine). GT masks were annotated manually by two
neuroradiologists. All original images were resampled to 256 × 256 pixels in the trans-
verse plane and skull-stripped. The transverse and axial plane resolution was 0.94 and
1 mm/pixel, respectively. Each patient had a number of slices ranging from 118 to 286.

2.3 Data Preprocessing

Patches of 64 × 64 pixels were randomly cropped from each MRI image slice, under
the constraint that the patch must contain at least one BM, which is located entirely
inside the patch and consisting of less than 2% of background pixels. From a single
slice, only one patch was extracted (see Table 1). Then, each patch was assigned to a S,
M, or L group if all the contained BMs were of a single size. If a patch contained BMs
of a group OR (∧) another, it was then assigned to the S&M, S&L, M&L, or S&M&L
group accordingly. That is, a patch of the x&y group may contain BMs of only x or only
y or (x and y) sizes. The selected patches were constrained to contain approximately
equal number of BMs from each size (see Table 1). From each group, 875 patches were
randomly selectedwith 80%for thefive-fold cross validation and20%for the testing. The
resulted S/M/L/S&M/S&L/M&L/S&M&Lpatches were from 54/62/49/57/61/63/63 for
the validation sets respectively and 58/61/50/62/67/62/67 for the testing sets respectively
(see Table 1). Notice that the number of patients for each size group experiment do not
add up to N = 105 due to the independent slice-based patch extraction. Moreover, to
better generalize to unseen data, data augmentationwas performed during training.More
specifically, random elastic deformation (α and σ randomly selected from ranges [90,
120] and [9, 11] respectively), and random rotation (range: ±30°) were performed with
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an execution probability of 0.25 and 0.4 per batch respectively [10]. Finally, all images
were undergone zero-score normalization by subtracting the image mean and dividing
by its standard deviation, resulting in (μ, σ) = (0, 1). For all masks, zero and one were
used for non-BM and BM pixels respectively.

Table 1. Brain metastases lesion size groups selected in this study

Experiment. Size group NT/NV/NTs
patches

Extracted from (Number
of patients)

Number of BMs (S/M/L)

1. S 560/140/175 82/54/58 (774/-/-)

2. M 560/140/175 89/62/61 (-/734/-)

3. L 560/140/175 66/49/50 (-/-/724)

4. S&M 560/140/175 86/57/62 (405/400/-)

5. S&L 560/140/175 86/61/67 (381/-/385)

6. M&L 560/140/175 89/63/62 (-/382/387)

7. S&M&L 560/140/175 89/63/67 (275/270/270)

NT/NV/NTs: Number of training/validation/testing patches, S: Small, M: Medium, L: Large
lesions.

2.4 Semi-automated 2D Segmentation Model

The U-Net 3+ architecture used in this study was also proposed in [8] by H. Huang et al.
It was developed as an extension to the well-established U-Net, where apart from the
traditional skip connections between encoder (X i

en) and decoder (X
i
de) featuremaps of the

same i-th level, full-scale skip connections were also used by connecting each decoder
input with all the encoder outputs located at the same or higher level. Additionally,
the decoder feature maps were densely connected to each other (see Fig. 2a). For each
encoder feature map, two blocks of 3× 3 convolution (starting with 32 number of filters,
doubling up to 256), Batch Normalization and activation with a Rectified Linear Unit
(ReLU) were performed in this order. For the downsizing of the feature maps, 2× 2 max
pooling was used, with 64 × 64 as starting image dimensions ending up to 8 × 8. On
the decoder side, each feature map following a full-scale skip connection was resized
to match the destination decoder feature and was passed through a 3 × 3 convolution
of 32 filters. Then, for each network level, the concatenated feature map was passed
through a 3 × 3 convolution with 128 filters, Batch Normalization and ReLU, resulting
in the decoder feature map of that level (see Fig. 2b). For the building of the network,
the keras-unet-collection Python package [11] was used.

For the procedure of training, a batch size of 16 was experimentally selected and
a maximum number of 500 epochs, with early stopping criterion of 30 non-improving
epochs with regards to the validation loss were selected also. The learning rate was set as
0.001 with an exponential decay rate equal to 0.995. For a weight optimizer, Adam was
selected with weight decay equal to 0.0005. For the training loss, the deep supervision
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scheme was selected to enable the network to learn hierarchical representations from
each individual level.

Fig. 2. a) U-Net3+ [8] applied with 4 levels. b) Sup: Deep supervision of individual level losses,
ksize: kernel size, f = number of filters, BN: Batch normalization, ReLU: Rectified linear unit,
Conv(Tr): (Transposed) convolution.

The final loss (L) was set as the weighted sum of the individual losses (Li) as follows:

L =
∑4

i=1
ai · Li, (1)

where a1, a2, a3, a4 = 0.55, 0.25, 0.15, 0.05 respectively as suggested in [12], and i =
1 corresponds to the top level.

Then, each individual loss (Li) was calculated as the sum of the focal binary cross
entropy (LfCE , see Eq. 2) and the focal Tversky losses (LfT , see Eq. 3) [13] on the
automated segmentation masks on that level. The former loss was selected in order
to suppress the contribution of easily and correctly classified pixels (also due to class
imbalance) to the overall loss of the batch (γ = 4/3). The latter loss was selected for
its focal part for the same reason with γ = 4/3 (as suggested in [13]) as well and also
because of the Tversky part in order to enhance the contribution of false negatives over
false positives (α = 0.7).

LfCE =
{−α · (1 − p)γ · log p , y = 1

−(1 − α) · pγ · log(1 − p) , y = 0
(2)

where p: predicted probability for a pixel to be part of a BM, y: ground truth,

LfT =
(
1 − TP

TP + a · FN + (1 − a) · FP
)1/γ

(3)

where the TP/FP/FN: true positive/false positive/false negative BM pixels.
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2.5 Evaluation Metrics

The BM detection efficacy of the proposed segmentation method was evaluated using
a number of evaluation metrics given in Eq. 4–6. The evaluation was carried out on a
2D BM number basis with Sensitivity (SEM) and Positive Predictive Value (PPVM),
and also with number of False Positive BMs (#FPM). The segmentation efficacy was
evaluated considering only patches with at least one overlapping pixel, on a patch
and pixel basis with Sensitivity (SEpx)SE = TP

TP+FN , , Positive Predictive Value

(PPVpx)PPV = TP
TP+FP , Intersection over Union (IoU)IoU = TP

TP+FP+FN , , Dice Sim-

ilarity Coefficient (DSC)DSC = 2TP
2TP+FP+FN , , and normalized Matthews Correlation

Coefficient (nMCC) [14]. Furthermore, to assess the predicted BMboundaries, the Aver-
age Symmetric SurfaceDistance (ASSD) [15] and theHausdorff 95%distancewere used
[15]. These metrics were calculated on a 2D BM basis for each ground truth BM and
for overlaps with at least one pixel. As an important note, there is a case where multiple
GT BMs might overlap with multiple predicted BMs (Merge-Split case). Therefore, to
avoid miscounting predicted BM pixels twice, the pixels of each predicted BM were set
to correspond to the closest GT BM. In that way, different portions of the Merge-Split
predicted BMs will be accounted for the calculation of different GTs [16].

nMCC =
(

TP · TN − FP · FN√
(TP + FP) · (TP + FN ) + (TN + FP) · (TN + FN )

+ 1

)
/2 (4)

ASSD =
∑

x∈X d(x,Y ) + ∑
y∈Y d(y,X )

|X | + |Y | (5)

HD95 = 95thpercentile

{
max
x∈X min

y∈Y d(x, y),max
y∈Y min

x∈X d(x, y)

}
(6)

where X: points of GT surface, Y: points of predicted surface, and TP / FP / FN: true
positive/false positive/false negative pixels.

3 Results

Table 2 presents the segmentation evaluation metrics for all subjects investigated in
this study, which were averaged across all the five validation splits. The segmentation
results yielded a DSC with average median(average IQR) of 0.65(0.22), 0.79(0.12),
0.89(0.10), 0.71(0.24), 0.80(0.30), 0.83(0.16), 0.77(0.26) for S, M, L, S&M, S&L,
M&L, and S&M&L size groups respectively Best evaluation metrics were obtained
for the L lesions. In Table 3 we present the results obtained from the testing sets. The
results yielded amedian(IQR) as follows: 0.67(0.25), 0.81(0.13), 0.89(0.08), 0.75(0.22),
0.85(0.28), 0.85(0.13), 0.81(0.24) for S, M, L, S&M, S&L, M&L, and S&M&L size
groups respectively (see Table 3, and Fig. 4 for segmentation examples). Best evaluation
metrics were obtained for the L lesions. This is also shown in Fig. 3, where boxplots for
the IoU, DSC and nMCC segmentation evaluation metrics are shown for all testing sets.
It is shown that box plots for the large lesions showed smaller variability (smaller IQR)
and achieved higher values.
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Finally in Fig. 4, we illustrate segmentation examples on different testing set images.
It can be observed that both patches of small BMs have relatively good overlap with
their GT masks, whereas their DSC are 0.67 and 0.93 respectively. In contrast, mediocre
vs good segmentations are well depicted by DSC in large BMs (0.76 vs 0.88). The first
S&M&L example have a DSC = 0.79 with a whole small BMmissed, thus showing the
need of BM-wise evaluation with a size-weighted DSC.

Table 2. Segmentation and detection metrics: Average medians (average IQR) from five
validation splits for each size group.

Size
group

SEM
(%)

PPVM
(%)

#FPM ASSD
[mm]

HD95
[mm]

SEpx
(%)

IoU
(%)

DSC
(%)

nMCC
(%)

Detection metrics
(BM-based)

Segmentation
metrics
(BM-based)

Segmentation metrics
(patch- and pixel-based)

S 0.79 0.66 62.80 0.37
(0.21)

0.98
(0.40)

0.79
(0.33)

0.49
(0.24)

0.65
(0.22)

0.84
(0.10)

M 0.89 0.85 24.00 0.40
(0.21)

0.94
(0.47)

0.86
(0.18)

0.66
(0.16)

0.79
(0.12)

0.90
(0.06)

L 0.95 0.94 9.00 0.50
(0.32)

1.33
(0.94)

0.94
(0.10)

0.80
(0.15)

0.89
(0.10)

0.94
(0.04)

S&M 0.79 0.72 51.00 0.41
(0.27)

1.06
(0.66)

0.80
(0.29)

0.55
(0.28)

0.71
(0.24)

0.86
(0.11)

S&L 0.77 0.76 37.60 0.48
(0.33)

1.38
(1.00)

0.87
(0.36)

0.67
(0.39)

0.80
(0.30)

0.90
(0.13)

M&L 0.89 0.86 22.20 0.48
(0.33)

1.31
(0.97)

0.90
(0.20)

0.71
(0.23)

0.83
(0.16)

0.92
(0.07)

S&M&L 0.80 0.74 47.60 0.49
(0.29)

1.33
(0.95)

0.85
(0.31)

0.62
(0.32)

0.77
(0.26)

0.89
(0.12)

S, M, L: Small, medium large size BM lesions.
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Fig. 3. Boxplots for the IoU (solid boxes), DSC (dashed boxes), nMCC (dotted boxes)
segmentation evaluation metrics for all testing datasets.

Table 3. Segmentation and detection metrics: Medians (IQR) from the testing set for each size
group.

Size
group

SEM (%)
[TPM/#BM]

PPVM
(%)

#FPM ASSD
[mm]

HD95
[mm]

SEpx
(%)

IoU
(%)

DSC
(%)

nMCC
(%)

Detection metrics
(BM-based)

Segmentation
metrics
(BM-based)

Segmentation metrics
(patch- and pixel- based)

S 0.77
[151 / 195]

0.83 31 0.36
(0.20)

0.94
(0.29)

0.75
(0.40)

0.50
(0.27)

0.67
(0.25)

0.84
(0.11)

M 0.94
[168 / 179]

0.95 9 0.36
(0.22)

0.94
(0.39)

0.85
(0.21)

0.68
(0.18)

0.81
(0.13)

0.91
(0.06)

L 0.96
[175 / 183]

0.99 1 0.46
(0.28)

1.33
(0.94)

0.92
(0.11)

0.81
(0.13)

0.89
(0.08)

0.95
(0.04)

S&M 0.77
[158 / 204]

0.90 18 0.38
(0.23)

0.94
(0.45)

0.75
(0.36)

0.60
(0.28)

0.75
(0.22)

0.88
(0.10)

S&L 0.77
[147 / 191]

0.94 10 0.46
(0.27)

1.33
(0.94)

0.88
(0.31)

0.73
(0.38)

0.85
(0.28)

0.93
(0.13)

M&L 0.84
[157 / 187]

0.97 5 0.45
(0.36)

1.33
(0.94)

0.88
(0.21)

0.74
(0.19)

0.85
(0.13)

0.93
(0.06)

S&M&L 0.75
[164 / 219]

0.90 18 0.47
(0.30)

1.33
(0.94)

0.87
(0.33)

0.68
(0.32)

0.81
(0.24)

0.91
(0.11)

S, M, L: Small, medium large size BM lesions.
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Fig. 4. Segmentation examples on testing set images. Each row shows onemediocre and one good
result with regards to the DSC metric. First and third columns correspond to MRI images. Second
and fourth columns to MRI images with contour overlays. TP: True positive contour (green), FN:
False negative contour (yellow), FP: False positive contour (red). S: small, M: medium, L: large
size groups. S&M&L: combined dataset. (Color figure online)

4 Discussion

A semi-automated method based on a U-Net 3+ network, for the segmentation of BM
lesions was proposed and evaluated in this study on N = 105 patients. The evaluation
was based on the lesion size (S, M, L) and the results yielded a DSC(IQR) of 0.67(0.25),
0.81(0.13), 0.89(0.08), 0.75(0.22), 0.85(0.28), 0.85(0.13), 0.81(0.24) for S, M, L, S&M,
S&L, M&L, and S&M&L size groups respectively. Best segmentation results were
obtained for the L group followed by theM&L and S&Lgroups. Considering the average
detection and segmentation results (see Table 2) on the validation sets and the final results
on the testing sets (see Table 3), all evaluation metrics were better for the L group, as
expected. Similar findings were also reported in the literature for larger BMs [4–7]. Also,
training and testing solely with small BMs did not achieve satisfactory results in terms
of SEM (0.77). Notice that, for these detected BMs, the DSC was low (DSC(IQR) =
0.67 (0.25)) even if the ground truth and prediction overlaps were visually good whereas
HD95 was very good (around 1.33 mm). In general, it was shown from this study that
the HD95 evaluation metric may be a more representative metric regardless of the size
group experiment, being around the resolution limit (0.94 mm) or the smallest diagonal
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(1.33 mm) (see Table 3). For each size group experiment, comparing the segmentation
and the detection metrics between validation and testing sets, it can be observed that in
testing, false positive BMs were significantly less (31 vs 62.8, 9 vs 24, 1 vs 9) for S, M,
and L size groups and similarly for the other ones (see Table 2 and Table 3). Also, DSC
was similar in S, M, L groups and much better in S&M (0.75 vs 0.71), S&L (0.85 vs
0.80) and S&M&L (0.81 vs 0.77). These can be partly explained by the slice-based split
of image patches in training, validation and testing, thus conveying similar distinctive
patient scan characteristics and patterns across all subsets. Also, the individual metrics
results of the validation splits were obtained using a different subset of NT = 560 training
patches, whereas for the results on each testing set, an averaging ensemble of fivemodels
was used, therefore incorporating training on the whole training/validation subset (700
patches) and at the same time averaging out multiple false positive islands predicted by
individual models.

It should be however noted that further direct comparison with the literature [4–
7] is not entirely possible due the fact that in this study BM areas were used for size
differentiation, whereas in the literature BM volume is mostly used as a basis for the
metrics calculation. However, considering our S&M&L case includes all the possible
cross section slices of a BM, the DSC(IQR) = 0.81(0.24) can be projected to 3D BM
and expected to be in a similar range. Hence, as opposed to literature methods DSC-wise
(0.75 (0.16) [3], 0.86 (0.04) [3]), our method seems to provide promising results.

A limitation is that the method proposed in this work was evaluated only on image
patches containing BMs, thus requiring a priori knowledge of the existence and location
of BMs. In order for the created segmentation models to be tested on unseen data, the
proposed method must be performed in a semi-automated manner. More specifically,
through a graphical user interface program, the user (e.g., medical expert) would be
required to locate areas suspicious for BM and move a square box around the region of
probable appearance of BM, in order for the method to automatically segment BM in
new images. As an additional future step, the proposedmethodwill be tested using larger
patch sizes (96 × 96, 128 × 128, 160 × 160) to better relieve the user from pinpointing
small areas of interest. Also, patient-based dataset split will be performed to further test
the method generalizability.
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Abstract. Clinical cardiovascular disease (CVD), which may increase the risk of
stroke may be evaluated using the common carotid artery’s (CCA), the intima
media thickness (IMT) and textural characteristics extracted from the CCA’s
intima media complex (IMC, the artery wall). Using structural equation mod-
eling (SEM), this study analyzes the relationship between the IMT and textural
features of the IMCof theCCAand the prevalent clinical CVD.The study used 612
longitudinal-section ultrasound images of the left and right CCA from 158 men
and 148 women, 42 of whom had clinical CVD. Images were intensity normalized
and despeckled. For all images, the IMCwas semi-automatically segmented using
an in-house semi-automated segmentation system, and 40 different texture fea-
tures were retrieved. To that purpose, we suggested a novel method for analyzing
the above features and calculating the CVD risk. In this investigation, SEM was
used to create a theoretical model of correlations between eight different elements
(unobserved constructs and observable feature variables). More specifically, six
different IMC texture feature groups, derived from the IMC of the CCA in ultra-
sound images, as well as the IMT, and the CVD were taken into consideration.
The primary conclusions of the study are as follows: (i) The six IMC texture fea-
ture groups (factors) tested in conjunction with IMT fit the conceptual model very
well. (ii) The conceptual model’s seven hypothesized paths for the impact of each
texture feature group on CVD were tested. Six of the selected factors were shown
to have a substantial impact on CVD, two of which with p < 0.05 (Spatial Gray
Level Dependence (SGLDM), IMT) and four with p < 0.10 (90% confidence
level). The findings of this study significantly improved upon those previously
reported because of the very good model fit (e.g., normed fit index (NFI) = 0.94).
They might provide further complementary data for CVD risk modelling.
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1 Introduction

The primary cause of cardiovascular disease (CVD), including myocardial infarction,
heart failure, and stroke, is atherosclerosis [1]. It is frequently followed up with non-
invasive ultrasound imaging techniques [2], such as identifying common carotid artery
(CCA) stenosis and arterial wall thickness (Intima-media thickness – IMT). The IMT
has been traditionally used as a CVD biomarker that has been validated and has been
proven to be ineffective in predicting future CVD events based on conventional risk
variables [1–3].

Alternatively, it was shown that texture features extracted from the intima-media
complex (IMC) of the CCA in ultrasound images may be utilized instead of the IMT,
and may provide additional complementary information for CVD risk assessment as
predictors of future CVD events [2, 4, 5]. In particular, structural equation modeling
(SEM) was the tool employed toward to this end as shown in a recent study [4].

SEM is a set of processes that are generally used to assess theoretical models incor-
porating proposed causal relationships between a set of variables [6]. In this regard, SEM
can be viewed as a confirmatory method for analyzing structural relationships between
variables. Nonetheless, SEM is adaptable enough to include exploratory data analysis. In
the social sciences, the use of SEM is frequently justified by its capacity to indicate links
between unobserved constructs (latent factors) and observable variables [7–9]. SEM is
better suited to study questions that identify systems of relationships rather than those
that fit regression models with a single dependent variable and a group of predictors or
independent variables.

The goal of this study is to investigate on how SEM analysis of ultrasound imaging
measurements of the IMT and texture features extracted from the CCA artery’s wall
(intima-media complex-IMC), might be used to predict the risk of CVD. In particular,
SEM will evaluate the relationship between the IMT as well as textural features of the
IMC of the CCA and the prevalent clinical CVD. It is noted that the IMCwas segmented
semi-automatically using an integrated snake’s segmentation system based on active
contours, as proposed in [3, 5]. It is furthermore noted that that both the left (L) and the
right (R) CCA sides were considered in this study.

Such methodology as also proposed in the current study, has already been recently
used, but the SEM fits were not so good, pointing to the level of reliability of the
results [4]. More specifically, in [4], the IMT was not used as a latent variable but as
an observable variable. Moreover, the previous results reported could not be sufficiently
trustedbecauseof thenot sogoodfit of both themeasurements and theproposed structural
model. It was furthermore suggested that those results could be improved by taking
also into consideration additional measures such as: (i) increasing the sample size, (ii)
increasing the size of the model, (iii) adding hypotheses among latent variables, (iv)
merging certain variables, if possible, and (v) changing the procedure used to transform
the data to Likert style scaling. To the best of our knowledge there are no other studies
reported in the literature, where the IMT and texture features derived from the IMC
were used to evaluate the CVD risk using structural equation modelling. In the current
study, some of the above-mentioned measures have been adopted [4], together with the
IMT used as a latent variable and CVD introduced as an observable variable. The EQS,
a SEM software that provides a simple method for performing the full range of SEM
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analyses, is the tool used herein and provides a highly accurate statistics for multivariate,
not necessarily normally distributed, data [6].

2 Methodology

2.1 Sample, Image Acquisition and Texture Features

A total of 612 (306 L and 306 R) B-mode longitudinal ultrasound images displaying
the vascular wall as a regular pattern associated with anatomical layers, were recorded
from 158 men and 148 women in two mountain villages in Cyprus. Of these, 264 did
not have any clinical CVD, while the remaining 42 did [2, 5]. All scans were performed
using a Philips HDI 5000 duplex scanner (Seattle, WA, USA).

Ultrasound images had their intensity normalized based on the method used in [2–
5, 10] and introduced in [1], with ultrasound tissue comparability facilitated. Then,
algebraic (linear) scaling, image intensity normalization, image resizing to standard
pixel density, brightness readjustment and despeckle filtering were all performed on the
images prior IMT measuring and features extraction [1–3, 5, 10] (see also Fig. 1). For
more details, see also [4].

An expert neurologist manually segmented and measured the IMC of the CCA,
and an IMC integrated segmentation system automatically segmented and measured it
[3, 5]. The investigation comprised both manual (IMT 1–2) and automated (IMT 3–4)
measurements of the L and R CCA sides. Among several texture features retrieved from
the automatic IMC segmented image regions of interest [11–14], where the following
were shown to be related to IMT in [4], as follows:

(i) Statistical Features (SF): items SF 1–2, namely mean.
(ii) Spatial Gray Level Dependence Matrices (SGLDM): items SGLDM 1–6, namely,

sum average, entropy, information measures of correlation (IMOC).
(iii) Gray Level Difference Statistics (GLDS): items GLDS 1–8, namely sum average,

correlation, entropy, information measures of correlation (IMOC).
(iv) Statistical Feature Matrix (SFM): items SFM 1–4, namely coarseness, contrast.
(v) Laws Texture Energy Measures (LTEM): items LTEM 1–2, namely EE- texture

energy from EE-kernel,
(g) Fractal Dimension Texture Analysis (FDTA): items FDTA 1–4, namely Hurst

coefficients HC1, HC2.

For the purposes of SEM, the data were transformed into a seven-point Likert scale,
as opposed to a five-point Likert scale in [4], as follows:

1: corresponds to value v: v ≤ μ – 3σ,
2: corresponds to value v: μ – 3σ < v ≤ μ – 2σ,
3: corresponds to value v: μ – 2σ < v ≤ μ – σ,
4: corresponds to value v: μ – σ < v ≤ μ + σ,
5: corresponds to value v: μ + σ < v ≤ μ + 2σ,
6: corresponds to value v: μ + 2σ < v ≤ μ + 3σ,
7: corresponds to value v: v > μ + 3σ,

where μ is the mean and σ the standard deviation.
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2.2 Model and Hypotheses

All above-mentioned variables were analyzed by SEM using EQS. Figure 1 shows the
conceptual model as proposed in this study, which consists of seven sets of constructs
(or factors), namely SF, SGLDM, GLDS, LTEM, FDTA and IMT (latent variables) and
CVD. The variables were selected using the Wilcoxon matched-pairs rank-sum test,
which determined significant differences (at p< .05) between texture features extracted
from subjectswith orwithout clinical CVD.Only the variables that showed a significance
difference were analyzed by SEM using EQS.

We continued by examining the pre-specified relationships between constructs and
their indicators to ensure construct reliability and validity (see also Table 1). Only ele-
ments (of each texture feature) with suitable standardized loadings (values) were kept
in this regard. The structural model was then evaluated to put the conceptual model’s
hypothesized routes to the test [15] (see Table 3). There are seven major theorized
pathways in all (see also Fig. 1) which are here below presented:

H1: The impact of the texture features group SF will have on the possibility of
cardiovascular disease (CVD).
H2: The impact of the texture features group SGLDM will have on the possibility of
CVD.
H3: The impact of the texture features group GLDS will have on the possibility of CVD.
H4: The impact of the texture features group SMF will have on the possibility of CVD.
H5: The impact of the texture features group LTEMwill have on the possibility of CVD.
H6: The impact of the texture features group FDTAwill have on the possibility of CVD.
H7: The impact of the thickness of the carotid arterywall IMTwill have on the possibility
of CVD.

3 Data Analysis

3.1 Measurement Model

To validate the measurement model, we performed a confirmatory factor analysis on the
model’s constructs, limiting each item to loading on its a priori determined factor while
allowing the underlying factors to correlate [16]. Themeasurement model was estimated
using an elliptical re-weighted least-squares approach, which revealed a very good fit to
the data (see [4, 17]) (χ2 = 1460.37, p = .000, degrees of freedom (df) = 406, normed
fit index (NFI) = .94, non-normed fit index (NNFI) = .95, comparative fit index (CFI)
= .95, root mean square of approximation (RMSEA) = .049) (see also Table 1).

The collected data underwent a purification procedure that included four phases as
follows:

(i) We checked for convergent validity, whichwasmet because the t-value for each item
was always high and significant, and all standard errors of the estimated coefficients
were very low, even though not all average variances extracted (AVE) for each
construct were equal to or greater than 0.50 [15].

(ii) We assessed discriminant validity, which was fulfilled because the confidence inter-
val around the correlation estimated for each pair of items analyzed never contained
1.00 [16], and the squared correlation for each pair of constructs examined never
exceeded their AVE [18] (see also Table 2).
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(iii) We examined construct reliability, which was satisfactory because all but two con-
structs in our conceptual model had Cronbach’s alphas larger than 0.60, and com-
posite reliability, which was likewise satisfactory because all but two coefficients ρ

were larger than 0.60.
(iv) Finally, we looked into the potential of a common method bias. We used the Har-

man’s single-factor test [19], which included all items in a principal component
analysis with varimax rotation. The unrotated factor solution yielded eight distinct
factors with eigenvalues larger than 1.0, explaining 67.9% of the total variance (the
first factor explaining 11.5%). Furthermore, a confirmatory factor technique was
adopted, in which all items in the measurement model were limited to loading on
a single factor [20]. The model fit indices were extremely low, substantially below
frequently accepted cut-off points (i.e., χ2 = 6870.52, p = .000, df = 366; NFI =
.65, NNFI = .64, CFI = .67, RMSEA = .12). Overall, the findings of both tests
show that common technique bias is not a concern in this study.

SF – H1 

SGLDM – H2

GLDS – H3

SFM – H4

H5 – LTEM

H6 – FDTACVD

H7 – IMT

Fig. 1. The proposed conceptual model used in this study; hypotheses H1–H7.

3.2 Structural Model

Table 3 shows the results of the structural model. An elliptical re-weighted least-square
procedure was used to estimate the structural model, revealing a good fit to the data (χ2

= 1715.33, p = .000, df = 427, NFI = .89, NNFI = .90, CFI = .90, RMSEA = .077).
All but one hypotheses are confirmed. Constructs SGLDM, SFM, LTEM and IMT (see
hypotheses H2, H4, H5, H7, all with positive t-values and p< .10) have a positive effect
on CVD, i.e., high SGLDM, SFM, LTEM and IMT values yield high CVD values in
CVD. In particular, SGLDM and IMT had a higher effect on CVD with p < .05. As for
the cases of H1 and H3 (both with negative t-values and p< .10), it turns out that SF and
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Table 1. Measurement model - summary of construct measurements.

Construct/Scale items β T α

ρ

AVE

Mean
S.D

Item mean Item S.D

SF1
SF2

.58

.60
*
8.00

0.51
0.44
0.35

4.16
0.54

4.20
4.12

0.69
0.63

SGLDM1 SGLDM2
SGLDM3 SGLDM4
SGLDM5
SGLDM6

.64

.78

.99

.99

.74

.62

*
11.81
14.19
14.14
11.37
9.77

0.89
0.71
0.65

4.96
0.41

4.09
4.02
4.06
4.06
4.05
4.05

0.63
0.18
0.43
0.44
0.56
0.66

GLDS1
GLDS2
GLDS3
GLDS4
GLDS5
GLDS6
GLDS7
GLDS8

.68

.70

.73

.76

.70

.71

.69

.69

*
10.81
11.18
11.58
10.86
10.94
10.64
10.66

0.89
0.78
0.50

4.03
0.50

4.05
4.04
4.05
4.05
3.96
3.96
4.05
4.04

0.68
0.70
0.62
0.61
0.67
0.68
0.65
0.68

SFM1
SFM2
SFM3
SFM4

.91

.91

.98

.97

*
26.85
35.13
32.93

0.97
0.86
0.89

3.96
0.36

3.95
3.96
3.96
3.97

0.39
0.38
0.37
0.35

LTEM1
LTEM2

.61

.61
*
14.69

0.54
0.47
0.37

3.92
0.55

3.92
3.93

0.65
0.67

FDTA1
FDTA2
FDTA3
FDTA4

.70

.73

.64

.66

*
11.79
10.35
10.74

0.78
0.55
0.47

3.91
0.52

3.97
3.96
3.85
3.88

0.66
0.64
0.68
0.68

IMT1
IMT2
IMT3
IMT4

.67

.65

.75

.72

*
9.72
10.97
10.64

0.79
0.75
0.51

3.93
0.56

3.95
3.89
3.94
3.93

0.74
0.74
0.68
0.68

*Item fixed to set the scale (β = standardized loadings)
Fit statistics of Model: χ2 = 1460.37, p = .000, df = 406, NFI = .94, NNFI = .95, CFI = .95,
RMSEA = .049

GLDS have a negative effect on CVD, i.e., high SF and GLDS values yield low CVD
values. On the other hand, H6 is not confirmed (p > .10), with FDTA having no effect
on CVD.
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Table 2. Correlation matrix of the model factors.

Constructs 1 2 3 4 5 6 7

1. SF .59

2. SGLDM −.46 .81

3. GLDS .39 −.46 .71

4. SFM .33 −.48 .48 .94

5. LTEM −.49 .47 −.27 −.36 .61

6. FDTA .47 −.48 .46 .45 −.44 .69

7. IMT .40 .49 .47 .41 −.41 .47 .71

Note: Correlations greater than |± 0.08| are significant at the .01 level; Correlations greater than
|± 0.05| are significant at the .05 level; Values below the diagonal refer to correlation estimates
among constructs, and values on the diagonal refer to square roots of AVE

Table 3. Structural model - summary of results.

Hypothesized association Stand. Path coefficient t-value p-value Status

H1 SF → CVD −.23 −1.92 .05 Accepted

H2 SGLDM → CVD .13 2.05 .04 Accepted

H3 GLDS → CVD −.13 −1.70 .09 Accepted

H4 SFM → CVD .14 1.80 .07 Accepted

H5 LTEM → CVD .17 1.75 .08 Accepted

H6 FDTA → CVD .07 0.95 .34 Rejected

H7 IMT → CVD .16 2.38 .02 Accepted

Fit statistics of Model: χ2 = 1715.33, p = .000, df = 427, NFI = .89, NNFI = .90, CFI = .90,
RMSEA = .077

4 Discussion

It has been proposed in the literature that the IMT of the CCA, as well as textural features
derived from the IMC of the CCA, could be used to assess prevalent clinical CVDwhich
is associated with the stroke risk [1–5, 10]. The objective of this study was to use SEM
to evaluate the relationship between the IMT and textural features of the IMC of the
CCA and the prevalent clinical CVD. For examining the correlations between IMT and
IMC texture features for CVD risk prediction, the proposed method incorporates image
preprocessing, semi-automated segmentation, texture features extraction, statistical and
correlation analysis, and SEM. The study used 612 longitudinal-section ultrasound pic-
tures of the L and R CCA from 158 men and 148 women, 42 of whom had clinical CVD.
The intensity of the L and R sides of the IMC was adjusted and despeckled. The IMC
was semi-automatically segmented for all photos using a semi-automated segmentation
technique, with 40 different texture features retrieved.
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This study’s findings, which are published for the first time, demonstrate that there is
a correlation between the CVD values and the IMTmeasurements as well as the textural
features extracted from the IMC, as per the proposed structural conceptual equation
model. As a result, the approach suggested in this study could be utilized to predict
future CVD episodes.

The primary findings of this study, as shown in Tables 1, 2, and 3, can be summarized
as follows:

(i) The six IMC texture feature groups (factors) tested in this work in conjunction with
IMT fit the conceptual model very well and suit the suggested conceptual model
well (see also Fig. 1, Table 1 and Table 2).

(ii) The conceptual model’s seven hypothesized paths for the impact of each texture
feature group on CVD were tested. Six of the selected factors were shown to have
a substantial impact on CVD, two of which with p < 0.05 (Spatial Gray Level
Dependence (SGLDM), IMT) and four with p < 0.10 (90% confidence level). The
findings of this study significantly improved upon those previously reported because
of the very good model fit (e.g., normed fit index (NFI)= 0.94). They might provide
further complementary data for CVD risk modelling (see also Table 3).

As stated in [1, 5], a variety of environmental, genetic, and biological variables
can trigger the atherosclerosis process, resulting in textural changes in the artery wall
that represent early modifications. As the frequency of atherosclerotic disease rises, the
intima of the CCA expands, the vasa vasorum proliferates, and the cellular content of
the IMC changes [21].

A number of other studies have been published in the literature that looked into
the relationship between textural features retrieved from the CCA and CVD risk. In
particular, several textural features were recovered from the IMC of CVD participants
in [5] and [22], and their correlations with the CVD were studied. Texture features were
discovered that can be linked to the prevalence of CVD. However, to the best of our
knowledge, SEMwas suggested for the first time in order to estimate the risk of CVD by
studying the association between IMT and textural features retrieved from the IMC of
the CCA in [4]. The current study is a step forward in relation to [4], as CVD enters the
picture, with higher accuracy achieved. In a future study we intend to use combinations
of the features extracted from the IMC, which can be combined with clinical, as well as
other genetic features in order to estimate the CVD risk. Furthermore, the risk for the
male vs female subjects could be investigated as well as how the risk is increased with
increasing age.

5 Conclusion

The results reported in this study constitute a step forward from [4], where the six
texture features were tested against the IMT. The results were not trust-worthy as the fit
indices of the SEM were not high enough. It was thus suggested in [4], that the results
could be improved by taking into consideration additional measures such as:(i) increased
sample size, (ii) increased model size, (iii) adding hypotheses among latent variables,
(iv) merging certain variables, and (v) changing the procedure used to transform the
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data to Likert style scaling. Indeed, adopting measures (ii) (adding construct CVD), (iii)
(having 7 hypotheses instead of 6), and (v) (having a seven-point Likert scale, as opposed
to a five-point Likert scale in [4]), the accuracy of the results has considerably improved
(see fit indices for the measurement and structural models in the current study and in
[4]).

After achieving the aforementioned goal, it can be confidently stated that IMT values
and/or textural features of the IMC can provide further complementary information
for the CVD risk. The proposed approach might potentially be utilized as a predictor
of future CVD occurrences, with the L and R CCA sides being compared. IMT and
textural features retrieved from the arterial wall may thus provide further complementary
information on the presence of clinical CVD and the risk of stroke.

The utility of IMC texture characteristics in predicting future cardiovascular events
should be investigated further in future investigations. One such investigation could be
to use IMT as a moderator (see e.g., [23]) instead of antecedent (latent variable) in the
conceptual model. Moreover, a similar analysis can be performed using other available
textural features, including combinations thereof, selected through a preliminary factor
analysis.
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255850e, Call: “Restart 2016–2020”, Proposal: EXCELLENCE/0421/0292) and funded by the
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Abstract. Acquiring annotated training data for large-scale supermar-
ket product recognition applications is challenging and often infeasible
due to the vast and dynamic product assortments containing tens of thou-
sands of products. To address this problem, we propose a highly scalable
data synthesis pipeline that can automatically produce realistic, domain-
aligned training data for on-shelf product detectors and classifiers. Addi-
tionally, we present three new publicly available synthetic datasets gen-
erated by our pipeline. Among them is the SPS8k dataset, featuring
16,224 shelf images with 1,981,967 instance-level bounding boxes and
GTIN class labels for 8,112 grocery products. Finally, in a comprehen-
sive ablation study, we evaluate the effects of synthetic-to-real domain
translation on model performance, demonstrating its effectiveness.

Keywords: Domain Adaptation · Data Synthesis · Product
Recognition

1 Introduction

Supermarket product recognition enables applications such as self-checkout sys-
tems [17], real-time inventory management [2], planogram compliance [9], or
visual product search [7]. As with generic object recognition, deep learning has
proven effective in the special case of supermarket product recognition. How-
ever, acquiring the amount of annotated data required for training is difficult
due to the vast and dynamic product assortments covering tens of thousands of
products. Moreover, existing large-scale supermarket product datasets, such as
GroZi-3.2k [4] or SKU110k [5] are of limited use in practice as they either lack
the required labels (instance-level bounding box and Global Trade Item Num-
ber (GTIN)) or do not cover the target assortment. Consequently, alternative
data sources must be explored to enable supermarket product recognition on a
large scale in practice. Synthetic data, which can be automatically generated in
large quantities, lends itself as a potential solution [8]. However, existing synthe-
sis methods that rely solely on rendering are often unable to produce realistic
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data due to the lack of domain-matching capabilities. To close the domain gap
between synthetic and real data in the context of supermarket product recogni-
tion, suitable domain adaption methods need to be identified and incorporated
into the synthesis process [13].
To address the data acquisition challenges encountered in real-world, large-scale
supermarket product recognition applications, the following contributions are
made:

• A flexible data synthesis pipeline that combines rendering and domain adap-
tation techniques to produce realistic training data for supermarket product
recognition is proposed. This synthetic data includes product shelf images,
instance-level bounding boxes, and class labels for training on-shelf product
detectors and classifiers.

• Three large synthetic datasets with a combined total of 36k shelf images are
created and made publicly available. The largest dataset, SPS8k, features
instance-level GTIN labels for 8,112 different products, making it the largest
publicly available on-shelf supermarket product recognition dataset to enable
GTIN-based product classification to date (8,112 vs. 109 [3]).

• The effects of synthetic-to-real domain translation on model performance are
investigated by applying state-of-the-art domain adaptation methods to our
synthetic render-only datasets. The resulting domain-translated datasets are
also made publicly available.

2 Related Work

In Wei et al. [18], a comprehensive survey on visual product recognition discusses
challenges and techniques. To investigate the problem of proposal generation
for supermarket product detection, Qiao et al. [12] build a virtual supermarket
based on the Unreal Engine, utilizing 3D product models randomly arranged
on supermarket product shelves. An ablation study combining synthetic shelf
images with the MS COCO dataset [8] for training various detection architec-
tures shows that adding synthetic training data consistently improves detec-
tion performance, demonstrating the potential of synthetic data in supermar-
ket product recognition applications. Similar findings are reported by Follmann
et al. [2], who synthesize training data for supermarket product segmentation
in self-checkout scenarios by randomly recombining segmented products. While
the results in [2,8] are promising, the synthesized data is unlikely to match the
distribution of the target domain (real images) without domain adaptation. A
resulting domain gap, if significant, can prevent model generalization. To address
this problem, Wei et al. [17] propose domain adaptation via synthetic-to-real
image translation using CycleGAN [19]. Leading to a significant improvement
in model accuracy (56.68% vs. 45.60%), this approach is shown to be effective
in closing the domain gap between synthetic and real data. Another work in
this direction by Tonioni et al. [15] applies synthetic-to-real image translation to
single-instance product images to learn domain invariant embeddings.
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Fig. 1. Flow diagram of the proposed data synthesis pipeline.

Taking inspiration from these works, we address the domain gap problem
in our data synthesis pipeline with Contrastive Unpaired Translation (CUT)
[11], which, compared to the methods used in [15,17], possesses superior dis-
tribution matching capabilities and is also faster to train. To the best of our
knowledge, this is the first work on the application of CUT to the problem of
supermarket product recognition. Furthermore, while the method in [8] allows
for the rendering of products from different viewpoints, it relies on 3D product
models which are often unavailable. The approach in [2], on the other hand, is
constrained to 2D space, preventing the synthesis of new viewpoints. We address
both issues by approximating complex product geometries with camera-aligned
semi-transparent billboards in 3D space.

3 Data Synthesis Pipeline

The proposed data synthesis pipeline, shown in Fig. 1, comprises a rendering
and a domain adaptation step. The initial rendering step generates a synthetic
shelf image using automatic 3D modeling and ray tracing-based rendering. In
the subsequent domain adaptations step, the out-of-distribution synthetic image
is translated to the target domain using synthetic-to-real image translation. To
facilitate further experimentation, the full pipeline is made publicly available1.

3.1 Assortment Selection

Before rendering, an assortment of products must be specified. For each prod-
uct, the GTIN (or generic class label), product packaging dimensions (width
and height in mm), and a single front-facing product image (RGBA format
without background) are required. GTINs and product packaging dimensions
are compiled into an assortment list (.csv file) with entries of the form {GTIN,
width, height}, and corresponding product images are named after the conven-
tion “GTIN.png”.
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3.2 Rendering

The rendering process is carried out using Blender, a free and open-source 3D
creation suite. A Python script within Blender automates the synthesis process
as follows:

Shelf Creation. To create a virtual supermarket scene, we start by assembling
an empty shelf using pre-modeled and textured shelf components. The initial
dimensions of the shelf are determined by static parameters such as the number
of shelf levels, depth, width, and the number of products per shelf level. After
a subset of products is selected from the assortment list, the shelf dimensions
are fine-adjusted based on the product dimensions within each level to avoid
clipping artifacts.

Product Placement. Following shelf creation, the shelf is filled with a subset
of products sampled from the assortment list. If GTIN class labels are provided,
products are sampled from the same product family using the Global Product
Classification (GPC) system to prevent unrealistic product combinations within
a given shelf image. Otherwise, random sampling is performed. Each shelf level
is then iteratively filled with products. A 2D plane object with the product’s
dimensions is created at an empty shelf position and the corresponding RGBA
product image is mapped onto it. The plane’s orientation is locked to the camera
position to create a billboard effect and the illusion of 3D geometry, as shown in
Fig. 2. Furthermore, for improved realism, small random rotations are applied
to billboards, product clusters are created through 3D stacking, and synthetic
tags are added to the shelf, as shown in Fig. 2.

Rendering. After the scene has been set up, the lighting conditions and camera
position are randomized. The camera position is selected within a hemisphere
of radius r ∈ [0.5 m, 2 m] in front of the shelf, while its orientation is locked
to the shelf center. A rendering pass is then performed with the Cycles render
using 128 ray-tracing samples. The rendering of a 640× 640 shelf image (and
the generation of labels) takes approximately 5 s on an Nvidia RTX 3090 GPU,
enabling the generation of synthetic datasets on the scale of SKU110k (11,762
images) within a day.

Label Generation. Labels for rendered shelf images are generated by assigning
a unique Blender object ID to each product and performing an object ID pass of
the scene. Minimal bounding boxes for each product are then derived from the
resulting semantic segmentation mask. Image space coordinates are converted
into the normalized YOLO bounding box format [16] and combined with the
corresponding GTIN to form the instance label {GTIN, xc, yc, w, h}. All instance
labels are compiled into a single label file. Rendered shelf images and label files
follow the naming convention i.png and i.txt, respectively, with i being the
incremental frame number.
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3.3 Domain Adaptation

To improve the realism of the out-of-distribution render-only synthetic shelf
images, we perform domain adaptation via synthetic-to-real image translation,
using Contrastive Unpaired Translation (CUT) [11]. For this, a FastCUT model
is trained in advance on datasets representing source and target domains. While
a CUT model would offer superior domain matching capabilities, we find that
the more conservative domain translation of FastCUT leads to better results.
As shown in [11], the aggressive domain translation of CUT can introduce dras-
tic geometric changes, which are undesirable in our application as we want to
preserve product geometry. The source dataset contains synthetic render-only
images from our pipeline, while the target dataset contains real images. As CUT
is an unpaired translation technique, images from the target domain can be eas-
ily sourced from publicly available supermarket product datasets [4,5]. For the
experiments in this work, real images are sourced from GroZi-3.2k and SKU110k.

Fig. 2. From left to right, generated shelf geometry with camera-aligned product bill-
boards, rendered shelf image, and examples of product tags and 3D stacking.

Table 1. Synthetic datasets generated by the proposed data synthesis pipeline.

dataset #images #products #instances labels translation

SG3k 10,000 3,234 851,801 bb, generic class none

SG3kt 10,000 3,234 851,801 bb, generic class GroZi-3.2k

SGI3k 10,000 1,063 838,696 bb, generic class none

SGI3kt 10,000 1,063 838,696 bb, generic class GroZi-3.2k

SPS8k 16,224 8,112 1,981,967 bb, GTIN class none

SPS8kt 16,224 8,112 1,981,967 bb, GTIN class SKU110k
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4 Datasets

To investigate the effects of synthetic-to-real domain translation on model perfor-
mance, we create three synthetic datasets. The characteristics of these datasets
are given in Table 1. Furthermore, to facilitate further research on the synthesis
of training data for supermarket product recognition, all synthetic datasets used
in this work are publicly available1.

SG3k. GroZi-3.2k has been one of the most popular datasets in supermar-
ket product recognition research, including reference images of 3,234 different
“Food” products and 680 test images of product shelves annotated with bound-
ing boxes and generic class labels. However, a significant drawback of GroZi-
3.2k is the lack of training shelf images and instance-level labels, making it
unsuitable for training on-shelf instance-level product detectors [10]. To address
this problem, we utilize the proposed data synthesis pipeline to create the Syn-
thetic GroZi-3.2k (SG3k) dataset, consisting of 10,000 synthetic shelf images
with 851,801 labeled instances of 3,234 original GroZi-3.2k products. Further-
more, we apply synthetic-to-real translation to SG3k, using the test shelf images
from GroZi-3.2k as the target domain, resulting in the translated dataset SG3kt.

SGI3k. To address the lack of instance-level labels in GroZi-3.2k, Osokin et
al. [10] take the original GroZi-3.2k shelf test images and create new and con-
sistent instance-level labels for 1,063 different products. We utilize these labels
to create the Synthetic GroZi-3.2k Instance (SGI3k) dataset, which consists of
10,000 synthetic shelf images, including 838,696 instances of 1,063 GroZi-3.2k
products. We also apply synthetic-to-real translation to SGI3k, using the test
shelf images from GroZi-3.2k as the target domain, resulting in the translated
dataset SG3kt. Example images from SGI3k and SGI3kt are shown in Fig. 3a
and 3b, respectively.

SPS8k. Finally, we create the Synthetic Product Shelves 8k (SPS8k) dataset
to enable GTIN-based product recognition on a large scale. SPS8k comprises
16,224 synthetic shelf images containing 1,981,967 instances of 8,112 supermar-
ket products. We provide instance-level bounding boxes and GTIN class labels
for all product instances. This makes it the largest publicly available on-shelf
supermarket product recognition dataset, enabling GTIN-based product clas-
sification to date (8,112 vs. 109 [3]). Furthermore, we apply synthetic-to-real
translation to SPS8k using SKU110k as the target domain, resulting in SPS8kt.
Example images from SPS8k and SPS8kt are shown in Fig. 3d and 3e, respec-
tively.

1 Datasets, https://zenodo.org/record/7750242.

https://zenodo.org/record/7750242
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(a) SGI3k (b) SGI3kt (c) GroZi-3.2k

(d) SPS8k (e) SPS8kt (f) SKU110k

Fig. 3. Comparison between synthetic shelf images generated by our data synthesis
pipeline and real shelf images from GroZi-3.2k and SKU110k. The first and second
columns show synthetic images from SGI3k and SPS8k before and after domain trans-
lation.

5 Evaluation

The proposed data synthesis pipeline is evaluated in a two-part ablation study.
Firstly, we assess whether domain adaptation via synthetic-to-real translation
with CUT can improve the realism of synthetic images by measuring the simi-
larity between synthetic render-only, domain-translated, and real images, using
similarity metrics developed for generative models. Secondly, the remaining
domain gap and its effect on model performance are quantified. For this, we
train YOLOv7 [16] and EfficientNetV2 [14] models on render-only and domain-
translated synthetic images and measure model performance on real images.

5.1 Metrics

We measure the domain matching capabilities of our FastCUT models using
the Fréchet Inception Distance (FID) [6] and the Kernel Inception Distance
(KID) [1], both being considered standard metrics in generative model research.
While both metrics are used for completeness, we rely on KID measurements
for model selection, as the strong empirical bias of FID makes it an unreliable
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metric [1]. We provide FID and KID measurements for all InceptionV3 feature
layers f ∈ {64, 192, 768, 2048}, denoted as FIDf and KIDf . However, as we
want to perform translation of low-level features while preserving the structure
of products and the scene as a whole (high-level features), we focus on KID mea-
surements in early- and mid-level InceptionV3 layers (i.e., f ∈ {64, 192}). When
domain translation is applied, KID64 and KID192 measurements are expected to
decrease substantially, while KID768 and KID2048 should remain relatively stable.
Furthermore, to evaluate the effect of domain translation on product detection,
classification, and recognition performance, we employ standard metrics such as
classification accuracy (ACC) and the Microsoft COCO mean Average Precision
(mAP) metric [8] with IoU thresholds of 0.5 and 0.5:0.95, denoted as mAP@0.5

and mAP@0.5:0.95.

5.2 Domain Translation

To translate the synthetic render-only datasets SG3k, SGI3k, and SPS8k into
their realistic counterparts SG3kt, SGI3kt, and SPS8kt, we train three Fast-
CUT models FCSG3k, FCSGI3k and FCSPS8k. The training source domains
consist of 1000 images randomly sampled from each render-only dataset. For
FCSG3k and FCSGI3k, the training target domain is represented by 680 test
shelf images from GroZi-3.2k. For FCSPS8k, 1000 images are randomly sam-
pled from SKU110k as the training target domain. All models are trained for
200 epochs using the Adam optimizer and Noise-Contrastive Estimation (NCE)
loss. An image size of 640×640 and a batch size of 1 are used. To find the mod-
els with the best domain-matching capabilities, model checkpoints are saved at
the end of each epoch and the models with the lowest KID64 and KID192 are
selected as FCSG3k, FCSGI3k and FCSPS8k. FID and KID measurements for
FCSG3k, FCSGI3k and FCSPS8k are given in Tables 2 and 3, respectively. Across
all models, a significant reduction in both FID and KID is observed, correspond-
ing to a narrowed domain gap and improved realism. The greatest reductions are
achieved for metrics computed in earlier InceptionV3 layers (i.e., f ∈ 64, 192).
Across all three models, we achieve a mean reduction in core metrics KID64

and KID192 of 82.67% and 89.57%, respectively. Furthermore, when comparing
render-only, domain-translated, and real images as shown in Fig. 3, the enhanced
realism achieved with domain translation is directly visible. Render-only images
exhibit unnatural contrast and sharpness while domain-translated images match
the characteristics of the real target domains more closely.

5.3 Product Detection

To evaluate how synthetic-to-real translation affects detection performance, an
ablation study is conducted using the popular YOLOv7 architecture. Class-
agnostic (i.e., single class “product”) YOLOv7 product detectors are trained
on four datasets: SGI3k, SGI3kt, SPS8k and SPS8kt, with an 8:2 training and
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Table 2. Measured FID between synthetic source and real target domains, before and
after synthetic-to-real translation.

source target transl FID64 FID192 FID768 FID2048

SG3k GroZi-3.2k none 21.33 100.00 2.24 171.51

SG3k GroZi-3.2k FCSG3k 6.65 26.30 1.94 163.05

SGI3k GroZi-3.2k none 21.93 99.24 2.06 162.07

SGI3k GroZi-3.2k FCSGI3k 8.16 27.14 1.59 130.47

SPS8k SKU110k none 3.20 26.19 0.95 97.12

SPS8k SKU110k FCSPS8k 2.37 9.15 0.70 69.20

Table 3. Measured KID (mean± std) between synthetic source domains and real target
domains, before and after synthetic-to-real translation.

source target transl KID64 KID192 KID768 KID2048

SG3k GroZi-3.2k none 142.30± 2.81 453.26± 7.62 0.01± 0.00 0.16± 0.00

SG3k GroZi-3.2k FCSG3k 23.17± 1.01 60.38± 2.20 0.00± 0.00 0.14± 0.00

SGI3k GroZi-3.2k none 146.58± 3.04 450.21± 7.28 0.01± 0.00 0.14± 0.00

SGI3k GroZi-3.2k FCSGI3k 30.67± 1.25 59.91± 2.13 0.00± 0.00 0.10± 0.00

SPS8k SKU110k none 14.61± 0.97 94.39± 3.45 0.00± 0.00 0.08± 0.00

SPS8k SKU110k FCSPS8k 2.16± 0.12 4.39± 0.26 0.00± 0.00 0.05± 0.00

validation split. Their performance is then measured on real data from GroZi-
3.2k and SKU110k. All models are trained from scratch without data augmen-
tation for 100 epochs using the SGD optimizer and YOLO loss. The image size
is 640×640 and the batch size is 32. mAP on the test dataset is measured after
the last training epoch. As given in Table 4, detection performance increases
for all YOLOv7 models when trained on domain-translated data rather than
render-only data. Specifically, mAP@0.5:0.95 increases by 2.7 and 1.5% points
when switching from SGI3k to SGI3kt and from SPS8k to SPS8kt, respectively.

5.4 Product Recognition

To assess how synthetic-to-real translation affects the combined detection and
classification performance, additional YOLOv7 models are trained on a recog-
nition problem with 1,063 classes, using SGI3k and SGI3kt. The same training
procedure and hyperparameters as for our class-agnostic detectors are used. The
results for the recognition models are given in Table 4. Building on the previous
results, we observe improved performance on the recognition task as well. With
domain translation, mAP@0.5:0.95 increases by 2.1% points.
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Table 4. Detection and recognition performances of YOLOv7 models, trained on
render-only (SGI3k, SPS8k) and domain-translated datasets (SGI3kt, SPS8kt). Results
on GroZi-3.2k are reported for the instance-level labels from [10].

training test model #classes P R mAP@0.5 mAP@0.5:0.95

SGI3k GroZi-3.2k YOLOv7 1,063 0.487 0.382 0.339 0.140

SGI3kt GroZi-3.2k YOLOv7 1,063 0.530 0.388 0.366 0.161

SGI3k GroZi-3.2k YOLOv7 1 0.491 0.429 0.365 0.159

SGI3kt GroZi-3.2k YOLOv7 1 0.510 0.468 0.409 0.186

SPS8k SKU110k YOLOv7 1 0.507 0.246 0.215 0.085

SPS8kt SKU110k YOLOv7 1 0.562 0.281 0.254 0.100

5.5 Product Classification

Finally, to examine the problem of product classification in isolation, Efficient-
NetV2 S models are trained on product images extracted from SGI3k and SGI3kt

(8:2 training and validation split) and ACC is measured on product images
extracted from the 680 GroZi-3.2k test shelf images. To ensure sufficient image
resolution for classification, extracted product instances from SGI3k and SGI3kt

that have an image resolution below 64×64 pixels are eliminated, reducing the
number of classes from 1,063 to 894. All EfficientNetV2 S models are trained
for 100 epochs using the Adam optimizer, cross-entropy loss, an image size of
256×256, and a batch size of 32. Again, all models are trained from scratch and
without data augmentation. As shown in Table 5, the most drastic performance
improvements are observed on the isolated classification task. Domain transla-
tion increases the classification accuracy of EfficientNetV2 S models by 76.67%
(or 11.5% points). The corresponding training progress is visualized in Fig. 4,
showing the mean classification accuracies across ten independent runs. Effi-
cientNetV2 S models trained on SGI3kt consistently outperform models trained
on SGI3k. In conclusion, with the application of CUT, substantial quantitative
and qualitative improvements in the realism of synthetic images are seen, demon-
strating its applicability to the problem of supermarket product recognition.

Table 5. Classification accuracies of EfficientNetV2 S models, after training for 100
epochs on product images extracted from SGI3k and SGI3kt.

training test model #classes #runs ACC. (mean± std)

SGI3k GroZi-3.2k EfficientNetV2 S 894 10 0.150± 0.031

SGI3kt GroZi-3.2k EfficientNetV2 S 894 10 0.265± 0.029
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Fig. 4. Mean classification accuracies of EfficientNetV2 S models, trained for 100
epochs on product images extracted from SGI3k and SGI3kt.

6 Conclusion

In this work, we proposed a scalable data synthesis pipeline that can produce
realistic training data for on-shelf supermarket product recognition through the
use of synthetic-to-real domain translation. The pipeline is fast and highly scal-
able as it relies only on industry-standard data available in commercial product
datasets. Using the proposed data synthesis pipeline, we generated three large
synthetic datasets, SG3k, SGI3k, and SPS8k, with instance-level product anno-
tations. SPS8k, in particular, contains GTIN labels for 8,112 products, making
it the largest GTIN-based product recognition dataset to date. Render-only and
domain-translated versions of all datasets used in this work are made publicly
available. An ablation study showed significant improvements in model perfor-
mance for supermarket product detection, classification, and recognition prob-
lems using synthetic-to-real domain translation.
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Abstract. Person search (PS) is a computer vision problem that joins
the two tasks of person detection and person re-identification (ReID).
Previous works handle PS problem with either two-step or one-step
approaches and have attained much attention due to complex challenges
in the scene such as appearance variations, background clutter, and defor-
mation. These approaches achieve significant performance but are still
prone to performance degradation under complex scenes which may jeop-
ardize the accuracy of person search methods. In this paper, we propose
a novel Part-based Signal Modulation module for Person Search (PSM-
PS) within a faster R-CNN-based person search framework. The pro-
posed PSM module transforms the person parts, represented as part
tokens, in a wave-like manner, where amplitude indicates the real part
and phase shows the imaginary part in a complex domain. The pro-
posed PSM module modulates the pedestrian part tokens such that it
enhances the feature representation where the close parts of the person
have a close phase compared to others. The experiments are performed
over the two prominent person search datasets: CUHK-SYSU [23] and
PRW [26]. The extensive experimental study demonstrates the effective-
ness of our method and shows the state-of-the-art performance compared
to other methods.

Keywords: Person Search · Part-based Modulation · Signal
Modulator · Transformer · Self-attention

1 Introduction

Person search is a combination of two computer vision problems including person
detection and person re-identification (Re-ID) [23]. Person detection is defined as
the localization of individuals across visual data, while ReID is the task of identi-
fying a query person in the set of gallery images. Person search is a promising field
due to underlying challenges from both person detection and re-identification.
The complexity of the person search problem relies on the offline joint optimiza-
tion of person detection and re-identification tasks. Although many efforts have
been made in the field, it is still challenging due to various appearance variations,
occlusions, deformation, and background clutter in the complex scenes.
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Previous approaches involving person search are divided into two categories
which are two-step methods [5,9,14] and end-to-end methods [6,18,20]. The ear-
lier two-step methods decouple both the detection and ReID tasks, and perform
them sequentially (i.e., pedestrians are first localized and after that re-identified
using two separate models, respectively). Despite this fact, they require immense
computational cost which makes their practicality limited. Whereas, the latter
one-step or end-to-end approaches perform these two tasks (i.e., detection and
re-identification) jointly in an end-to-end manner. For example, some models
[6,10,11,16,17] are based on a Faster R-CNN framework to perform detection
and extend an additional ReID branch for re-identification. The whole network
is trained in an end-to-end manner using a unified backbone network. Neverthe-
less, these approaches struggle to handle crucial problems such as pose variation,
occlusion, and deformation present in real-world complex scenes.

To handle the above-mentioned issues, we propose an end-to-end part-based
signal modulator person search (PSM-PS) algorithm that strives to dynamically
capture the long-term dependencies in a wave-like manner. Motivated by quan-
tum mechanics where electrons or protons are represented as a combination of
amplitude and phase information in a wave signal [1,2,7]. We propose a part-
based signal modulation (PSM) module which represents the RoI tokens in a
wave, where amplitude indicates the real-part and phase shows the imaginary
part in a complex domain. The proposed PSM module modulates the pedestrian
part tokens such that it enhances the feature representation where the close
parts of the person have close phase compared to others. We perform extensive
experiments on two benchmarks: PRW [26] and CUHK-SYSU [23] datasets. Our
experimental study reveals that the proposed method delivers favorable results
compared to the state-of-the-art (SOTA) methods. We also observe that our
method achieves an absolute gain of 2.1% over the PRW dataset compared to
recently introduced OIMNet++ [16].

2 Method

Motivation: To motivate our approach, we distinguish the desired property
required to design a Faster R-CNN based PS framework to enrich the person
part features in contemplation of handling the occlusions and deformations.

RoI Feature Enrichment Using Part-Aware Feature Modulation. As
discussed earlier, the parts of a person may have varying appearance variations
due to pose variation, occlusion and deformation, and RoI might contain the
background information which may deteriorate the person’s search performance.
Therefore, there a dedicated module is required to modulate the RoI parts such
that it enhances the person parts to obtain robust part features for person search.

2.1 Overall Framework

Figure 1 illustrates the overall framework of the proposed person search frame-
work. It comprises of a backbone network, region proposal network (RPN), part-
based signal modulation (PSM), res5 block, and ProtoNorm. The input I is
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Fig. 1. The overall framework of the proposed Part-based Signal Modulation for Per-
son Search (PSM-PS). The input is passed to a backbone network to produce the stem
features. These stem features are passed to a region proposal network (RPN) to gen-
erate the person proposals. These proposals are passed to the proposed Part-based
Signal Modulation (PSM) module. The focus of the novel PSM module is to enrich
the person part features to handle the occlusions and pose variations using part-aware
token signal modulation. These part-based enhanced features are input to res5 blocks
and forwarded to R-CNN class and R-CNN box losses to learn the person detection.
The output of res5 block is also forwarded to ProtoNorm to learn the re-identification.

passed to backbone to output the stem features. These stem features are input
to RPN to provide the pedestrian proposals which are further input to the novel
proposed PSM module to generate the enhanced part-aware modulated features.
These enhanced features are input to res5 block and forwarded to R-CNN class
and R-CNN box to perform person detection. Moreover, the res5 output fea-
tures are further input to ProtoNorm to learn the person re-identification. The
ProtoNorm calibrates features from pedestrian proposals, while considering a
long-tail distribution of person IDs, enabling L2 normalized person representa-
tions to be discriminative. Next, we present the proposed PSM module.

2.2 Part-Based Signal Modulation Module

In a real-world scenario, a pedestrian may undergo different appearance varia-
tions including occlusion, deformation, pose variation, and background clutter.
Therefore, it is required to learn a model to handle these appearance variations
without any supervision. To this end, we propose a part-based signal modu-
lation (PSM) module (shown in Fig. 2(a)), which comprises two layer norms, a
signal modulator (SM), and a multi-layer perceptron (MLP). The proposed PSM
module strives to capture the long-range dependencies in a wave-like manner. In
quantum mechanics, an entity (such as a photon, or electron) is generally denoted
by a wave signal, which contains both amplitude and phase [1]. This concept is
recently used for computer vision [21]. The amplitude (real part) indicates the
maximum intensity of a wave signal, whereas the phase (imaginary part) mod-
ulates the intensity information at a particular location in a wave period. Moti-
vated by this, we propose an SM where person parts (non-overlapping tokens)
are represented as waves and dynamically capture the long-range dependen-
cies of the pedestrian. The amplitude represents the real-value features of the
tokens whereas the phase modulates the intensity of the location of the tokens.
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Fig. 2. The network structure of the proposed part-based signal modulation (PSM)
module (a). The proposed PSM is composed of layer norms, signal modulator (SM), and
MLP layer. The SM module comprises of two phase modulators (PM) and a channel-
wise fully connected layer (b). The proposed PM (c) modulates the pedestrian parts
such that the parts close to each other enhance each other in a wave. For example, the
input RoI of the pedestrian is partitioned as non-overlapping tokens. These tokens are
represented as a wave with both amplitude and phase information. The amplitude rep-
resents the real-value features of the tokens whereas the phase modulates the intensity
of the location of the tokens. During the token mixing, the pedestrian discriminative
parts have close phases which enhance each other.

During the token mixing, the pedestrian discriminative parts having close phases
enhance each other.

To this end, the input pedestrian RoI is input to layer norm and passes the
output to the proposed SM module to enhance the feature representation using
the phase modulation which dynamically captures long-term dependencies to
handle the different appearance variations. These enhanced features are input
into the layer norm and an MLP layer, respectively. Note that, there is a skip
connection outside the PSM module.

Signal Modulator (SM): The SM module consists of two phase modulator
(PM) and Channel-wise fully connected layer as shown in Fig. 2(b). We per-
form two-phase modulation on the input tokens in both horizontal and vertical
directions to capture the phase information across dimensions.

Phase Modulator (PM): The proposed PM takes a pedestrian RoI and splits
it into n parts as tokens represented in a wave-like complex domain, containing
both amplitude and phase information as shown in Fig. 2(c). Each token ẑj is
represented as wave signals as:

ẑj = |zj | � eiθj , j = 1, 2, 3, ..., n, (1)

where i denotes the imaginary/complex part such that i2 = −1, |.| represents the
absolute value, and � indicates the element-wise multiplication. Here, in Eq. 1,
zj represents the real-part of the wave signal, which contains the content of the
part token, and θj denotes the phase of the wave signal which indicates the posi-
tion of the token in a wave. The eiθj shows the periodic function with unit norm
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of the wave signal. The wave-like tokens represented in the complex domain are
expanded using Euler’s formula into real and imaginary pasts as below:

ẑj = |zj |cos(θj) + i|zj |sin(θj), j = 1, 2, 3, ..., n, (2)

Here, a complex pedestrian part token is represented with two real-value vectors
using both the real and the imaginary components, respectively.

3 Experimental Section

3.1 Datasets

CUHK-SYSU [23]: The dataset holds a total of 18,184 images, 8,432 identities,
and 96,143 pedestrian bounding boxes. The training set contains 11,206 images,
5,532 identities, and 55,272 pedestrians. The testing set contains 6,978 images,
2,900 identities, and 40,871 pedestrians. The default gallery size is 100 and the
gallery size varies in a range from 50 to 4000.

PRW [26]: The dataset contains 43,110 pedestrians and the training set includes
5,704 frames and 482 identities. The test set comprises 6,112 frames and 450
identities with a total of 2,057 query images for those 450 identities.

3.2 Implementation Details

We utilize Resnet50 [13] as a backbone network. Similar to OIMNet++ [16],
we crop RoI proposal feature maps to be 14 × 14. We train our network for 20
epochs for both the CUHK-SYSU [23] and PRW [26] datasets over RTX GPU.
The input size is 900 × 1500 pixels with a batch size of 5 and a learning rate
of 0.003, which is warmed up at the first epoch and reduced by 10 at the 16th
epoch. The model is optimized by Stochastic Gradient Descent (SGD), with a 0.9
momentum and 5× 10−4 weight decay. We utilize Smooth-L1, cross-entropy, and
LOIM losses for box regression, classifications, and re-identification, respectively.
The code implementation is done through PyTorch.

3.3 Evaluation Protocols

We utilize the standard evaluation protocols to evaluate the person search i.e.,
mean Average Precision (mAP) and top-1 accuracy.

3.4 Discussion on CUHK-SYSU and PRW

A comparison between our method and state-of-the-art (SOTA), for both
CUHK-SYSU [23] and PRW [26], is conducted in this section. We compared
our method with two-step methods and end-to-end methods in Table 1.

CUHK-SYSU [23]: A gallery size of 100 is set as a default size to compare
the performance over the CUHK-SYSU dataset. Compared to two-step IGPN [9]
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Table 1. Comparison of our method to state-of-the-art methods on both the CUHK-
SYSU and PRW datasets. The performance is evaluated using mAP and top-1 accuracy.
∗ denotes the backbone is ConvNext-XL [19]. Our method archives scores in terms of
both mAP and top-1. The best values are in bold.

Method CUHK-SYSU PRW

mAP top-1 mAP top-1

Two-step CLSA [15] 87.2 88.5 38.7 65.0

IGPN [9] 90.3 91.4 42.9 70.2

RDLR [12] 93.0 94.2 42.9 70.2

MGTS [5] 83.0 83.7 32.6 72.1

End-to-end OIM [23] 75.5 78.7 21.3 49.9

RCAA [3] 79.3 81.3 - -

NPSM [18] 77.9 81.2 24.2 53.1

IAN [22] 76.3 80.1 23.0 61.9

QEEPS [20] 88.9 89.1 37.1 76.7

CTXGraph [25] 84.1 86.5 33.4 73.6

HOIM [4] 89.7 90.8 39.8 80.4

BINet [8] 90.0 90.7 45.3 81.7

APNet [27] 88.9 89.3 41.2 81.4

AlignPS [24] 93.1 93.4 45.9 81.9

NAE [6] 91.5 92.4 43.3 80.9

NAE+ [6] 92.1 94.7 44.0 81.1

SeqNet [17] 93.8 94.6 46.7 83.4

OIMNet++ [16] 93.1 93.9 46.8 83.9

PSM-PS (Ours) 93.7 94.5 48.7 82.5

PSM-PS* (Ours) 94.4 95.5 50.8 85.2

SeqNet [17] + PSM (Ours) 94.0 94.7 49.0 84.4

and RDLR [12] shows more than 90% in terms of both metrics mAP and top-
1. Compared to these methods, our PSM-PS method shows better performance
and obtains 93.7% mAP and 94.5% top-1. On the other hand, among end-to-end
methods, SeqNet [17], AlignPS [24], NAE [6], and OIMNet++ [16] obtain 93.8%,
93.1%, and 93.1% mAP score, respectively. Our method outperforms the anchor-
free methods such as AlignPS [24] obtains 93.7% mAP and 94.5% top-1. Moreover,
in comparison to Faster-RCNN based methods, our algorithm shows better per-
formance compared to NAE and OIMNet++. Our method achieves comparable
results compared to SeqNet [17], which is a sequential method, which performs
detections sequentially at two stages. Introducing our proposed PSM module into
SeqNet boosts the performance and obtains 94.0% mAP and 94.7% top-1.

Furthermore, we perform additional experiments on the CUHK-SYSU
dataset by adjusting the default gallery size of 100 to select gallery size val-
ues in the range of 50 to 4000. The results of the size variations are shown in
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Fig. 3. Performance of our method with one-step (left) SOTA methods, including
RDLR [12], CLSA [14], and MGTS [5], as well as with end-to-end (right) SOTA meth-
ods, including OIMNet++ [16], NAE+ [6], CTXG [25], RCAA [3], and OIM [23]. The
dashed line represents our method which shows consistent performance improvement
compared to the other methods using different gallery sizes.

Fig. 4. Qualitative comparisons between baseline and ours over PRW [26] (top row)
and CUHK-SYSU [23] (bottom row). The left-most image in every row is the query
person, and the middle image contains the false re-identification by baseline, shown in
red. On the other hand, our method correctly re-identifies the query person (right) as
indicated by the green color in the pose variation and occlusions scenes. (Color figure
online)

Fig. 3 and it can be noted that our method obtains consistent improvement with
varying gallery sizes. The proposed PSM-PS outperforms the performances for
both two-stage and end-to-end SOTA methods with different gallery sizes.

PRW [26]: In contrast to CUHK-SYSU, PRW datset is more challenging due
to the large gallery size. As shown in Table 1, among one-step methods, IGPN
[9] and RDLR [12] obtain 42.9% mAP. However, our method performs better
compared to one-step methods. In contrast, comparison among end-to-end meth-
ods, SeqNet [17] and OIMNet++ [16] achieve better performance. As discussed
earlier, SeqNet is a sequential network and achieves 46.7% mAP. Compared to
these, our method achieves 48.7% mAP. Introducing the proposed PSM module
within SeqNet increases the mAP to 49.0%. Furthermore, we boost the mAP
score by replacing the backbone with ConvNext-XL [19] and achieved 50.8%
mAP. Similarly, our method shows consistent improvement in terms of top-1
and archives 85.2 top-1.
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Table 2. Ablation study over PRW dataset. Our experimental study reveals that phase
modulation with kernel size 3 results in optimal performance. In addition, we observe
that horizontal and vertical phase modulation results in better performance.

Method mAP top-1

Baseline 46.2 82.1

Phase modulation size = 1 48.4 82.3

Phase modulation size = 3 48.7 82.5

Phase modulation size = 5 47.9 83.9

Without phase modulation 47.2 81.3

Horizontal phase modulation 48.0 83.4

Vertical phase modulation 48.4 81.1

Ours 48.7 82.5
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Fig. 5. Comparison of the detection and ReID scores with SOTA methods, over PRW.
The results with * are those using groud-truth (GT) boxes.

3.5 Qualitative Analysis

We present our qualitative results over CUHK-SYSU [23] and PRW [26] in Fig. 4,
where the left-most image of each row shows the query person. The middle
figure shows the false re-identification by baseline. Whereas, our method (right)
successfully re-identifies the query person compared to the baseline.

3.6 Ablation Study

We perform ablation study over PRW dataset and show the improved perfor-
mance compared to the baseline in terms of mAP. As discussed earlier, the
proposed signal modulator (SM) contains two phase modulators (horizontal and
vertical) and a channel FC layer. We perform phase modulations along horizon-
tal and vertical direction using different kernel sizes As shown in Table 2, we first



PSM-PS: Part-Based Signal Modulation for Person Search 259

perform the different experiments using different phase aggregation sizes using
kernel 1, 3, and 5. We note that phase modulation with kernel size 5 gives better
83.9%, however with phase modulation with kernel size 3 outputs better 48.7%
mAP. In addition that, we introduce separate horizontal and vertical phase mod-
ulations in Table 2, which return suboptimal results. Therefore, addition of both
horizontal and vertical phase modulations yeild better 48.7% mAP.

Relationship Between Detection and ReID: We also validate the effective-
ness of our method to capture the detection and ReID subtasks in Fig. 5. We
perform comparison between the predicted detection and target boxes from the
comparison. We compared our method with faster RCNN based methods includ-
ing SeqNet [17], OIMNet++ [16], and NAE [6]. It is evident from the Fig. 5 that
our method PSM-PS shows consistent improvement using the detection score
from the predictions as well as from the groundtruth.

4 Conclusion

This work proposes a novel module that aims to enhance the performance of
person search solutions by modulating person part features, in a wave manner, to
handle deformation and occlusion in the scene. The key element of our design is
the part-aware feature modulation which modulates the pedestrian part tokens
such that it enhances the feature representation where the close parts of the
person have a close phase compared to others. PSM-PS modulates RoI parts
to gain more robust part features so that the model’s performance is less prone
to occlusion, pose variation, and the background information possibly contained
within RoI. A crucial aspect of this module is the ease of its incorporation
in any Faster R-CNN person search model. To test the module, we conducted
experiments over the two commonly used large-scale person search datasets:
CUHK-SYSU and PRW, for which we achieve competitive performance. As well
as, we provide a qualitative analysis that demonstrates that our method can
perform correctly identifies the query person in complex scenarios such as pose
variation and occlusion.
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Abstract. State-of-the-art transformers-based video instance segmen-
tation (VIS) frameworks typically utilize attention-based encoders to
compute multi-scale spatio-temporal features to capture target appear-
ance deformations. However, such an attention computation is computa-
tionally expensive, thereby hampering the inference speed. In this work,
we introduce a VIS framework that utilizes a light-weight recurrent-
CNN encoder to learn multi-scale spatio-temporal features from the stan-
dard attention encoders through knowledge distillation. The light-weight
recurrent encoder effectively learns multi-scale spatio-temporal features
and achieves improved VIS performance by reducing the over-fitting as
well as increasing the inference speed. Our extensive experiments on the
popular Youtube-VIS 2019 benchmark reveal the merits of the proposed
framework over the baseline. Compared to the recent SeqFormer, our
proposed Recurrent SeqFormer improves the inference speed by two-fold
while also improving the VIS performance from 45.1% to 45.8% in terms
of overall average precision. Our code and models are available at https://
github.com/OmkarThawakar/Recurrent-Seqformer

Keywords: video instance segmentation · recurrent neural networks ·
detection · segmentation

1 Introduction

Video instance segmentation (VIS) is a challenging computer vision problem
with numerous real-world applications ranging from intelligent video analytics
to autonomous driving. Within the VIS problem, the task is to automatically
segment and track all instances of objects belonging to a pre-defined set of cate-
gories. The problem is particularly challenging since the objects are desired to be
accurately delineated at the pixel-level despite target appearance deformations
in real-world scenarios.

Recently, transformers-based VIS approaches [11,24,26–28,32] have shown
significant improvement in performance on standard VIS benchmarks. Most
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Fig. 1. Qualitative Comparison between baseline SeqFormer [27] (top row) and our pro-
posed Recurrent SeqFormer (bottom row) on example video frames from the Youtube-
VIS 2019 benchmark val. set. Here, the baseline struggles to capture the object instance
undergoing deformations such as fox in video 1 and shark in video 2 (encircled in white
dotted lines). Our proposed Recurrent SeqFormer method efficiently captures multi-
scale spatio-temporal features, leading to improved video instance mask quality. best
viewed zoomed in.

of these transformers-based VIS approaches are typically built on DETR [5]
or Deformable-DETR [35] architecture, and utilize an encoder-decoder design
with an instance sequence matching and segmentation module to generate
video instance mask predictions. Some of the existing transformers-based VIS
approaches utilize single-scale spatio-temporal features [26] during the attention
computation and process a larger set of input frames (e.g. 36 frames). On the
other hand, some of the other transformers-based VIS approaches employ per-
frame multi-scale features [27] during the attention computation with a smaller
set of input frames to mitigate computational complexity and memory over-
head. However, such an attention computation in the encoders is computation-
ally expensive, thereby hampering the inference speed. Further, this computa-
tional overhead may also lead to over-fitting affecting the video mask instance
prediction performance. In this work, we look into a new scheme to efficiently
compute per-frame multi-scale features as an alternative to the encoder attention
computation for the VIS problem.

To collectively address the issue of efficient and effective capturing of multi-
scale spatio-temporal features in a video, we design a light-weight recurrent-CNN
encoder that gathers relevant instance features along the spatial and temporal
axes, while aiming to preserve the discriminative information. The proposed
light-weight recurrent-based encoder learns the multi-scale spatio-temporal fea-
tures from the standard attention-based encoder through knowledge distilla-
tion. The entire VIS framework is trained in an end-to-end fashion, thereby
efficiently learning multi-scale spatio-temporal features from the teacher (stan-
dard attention-based encoder) to the student (light-weight recurrent-encoder).
The proposed VIS framework relies on a light-weight recurrent encoder and
manages to deliver highly encouraging predictions for video mask instances. To
summarize, we propose a fast VIS framework with the following contributions.

– We introduce a light-weight recurrent-CNN encoder, within the VIS frame-
work, that effectively learns multi-scale spatio-temporal features through
knowledge distillation from the standard attention-based encoder.

– We demonstrate the generalizbility of our recurrent encoder by integrating it
into two existing transformers-based VIS frameworks.
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– We conduct extensive experiments on the popular Youtube-VIS 2019 bench-
mark. Our results reveal the merits of the proposed contributions with con-
sistent improvement in the inference speed over the baseline VIS frameworks.
Compared to the recently introduced baseline SeqFormer [27], our approach,
named Recurrent SeqFormer, achieves 2× speedup while also improving the
mask quality (see Fig. 1).

2 Related Work

Several recent approaches [1,4,15,17,19] have addressed the problem of VIS by
adopting a single-stage detection pipeline, such as FCOS [25]. SipMask [4] intro-
duces a spatial information preservation module based on the single-stage archi-
tecture [25] within the YOLACT framework [3] for generating video instance seg-
mentation masks. By modifying a space-time memory into a set of prototypes
at the instance and frame-levels, PCAN [15] introduces an attention scheme.
Other methods such as [2,8,17] extend an image instance segmentation model
to the VIS task by introducing additional tracking branch. Several clip-level
VIS methods take video clip as input and generate the sequential segmentation
results. STEmSeg [1] utilizes video-clip as spatio-temporal volume and sepa-
rate the object instance by clustering. After the introduction of DETR [5] and
Deformable-DETR [35], transformers-based methods [7,11,13,16,24,26,28] have
gained popularity due to their promising video instance mask segmentation per-
formance. VisTR [26] was the first transformers-based VIS framework utilizing
single-scale features. After the success of Deformable-DETR [35] in generic object
detection, Wu et.al. introduce SeqFormer [27] which uses multi-scale features to
generate the video instance mask predictions.

Knowledge distillation refers to the process of training a smaller network to
imitate the output of a larger network on a given computer vision task. Pre-
vious studies have shown that this can result in promising performance and
faster inference times, when comparing with training a smaller network from the
scratch. Hinton et al. [12] and Romero et al. [23] introduce the soft targets and
concept of fitnets, a type of distillation that involves matching the intermediate
representations of the teacher and student networks. More recent works have also
explored different types of distillation, such as attention-based distillation [33],
adversarial distillation [21], transfers knowledge from a two-stage detector to a
one-stage detector using knowledge distillation [6,14,34] and distillation meth-
ods for semantic segmentation [20,29]. Recently, Rivkind et al. [22] demonstrate
the effective use of recurrent networks using knowledge distillation for real-time
data gathered. To the best of our knowledge, we are the first to explore knowl-
edge distillation from a standard transformers encoder to a recurrent encoder in
a transformers-based framework for the problem of VIS.
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3 Proposed Method

3.1 Baseline VIS Framework

We base our approach on the recently introduced SeqFormer [27], that utilizes
Deformable-DETR [35] as an underlying architecture emplying multi-scale fea-
tures. SeqFormer utilizes the CNN backbone [10], and comprises multi-scale
deformable attention based encoder-decoder and mask head for video mask pre-
diction. Here, a video clip with T frames of size H0 ×W 0 is input to the feature
extractor backbone. Multi-scale features are extracted from the conv3, conv4,
conv5 layers of the backbone. An additional feature is constructed by down-
sampling conv5 feature. These features are then passed through separate con-
volution layers in order to make the same output feature dimension C. The
resulting multi-scale features are processed by transformer encoder containing
multi-scale deformable attention blocks. Further, transformer decoder has series
of self-attention and deformable cross-attention of these multi-scale features with
instance queries to generate the per-frame instance-level features. These instance
level-features are then utilized by mask head to obtain final instance segmenta-
tion masks of the video. We refer to [27] for further details.

As discussed earlier, the recent Seqformer [27] is built on Deformable-
DETR [35] utilizing deformable attention mechanism in encoder to compute
intra-frame multi-scale features. This is computationally expensive when com-
puting multi-scale features in a video and becomes further challenging in case
of constructing joint spatio-temporal deformable attention. Next, we introduce
an approach based on recurrent encoder to efficiently exploit spatio-temporal
context across frames.

3.2 Overall Architecture

As illustrated in Fig. 2, We introduce a VIS framework, named Recurrent Seq-
Former, that consists of a feature extractor backbone (e.g. , ResNet-50 [10]),
transformer encoder, transformer decoder, segmentation head and a student
recurrent-CNN encoder to learn the feature representation from the transformer
encoder. The backbone extracts features from the input video, the transformers
encoder-decoder learns the similarity of pixel-level and instance-level features,
whereas the segmentation head generates the final instance-level segmentation
mask. The focus of our design is the introduction of a recurrent encoder that
is trained using the supervision from transformers encoder with the motiva-
tion of mimicking the original feature representation of transformers encoder.
Through this knowledge-distillation scheme, we are able to utilize the proposed
light-weight student recurrent encoder instead of the standard attention-based
encoder, thereby increasing the inference speed while also achieving promising
segmentation performance. Next, we introduce the recurrent encoder.
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Fig. 2. Overall architecture of Recurrent SeqFormer. It comprises a feature extraction
backbone, a transformers encoder-decoder, a recurrent student encoder and a segmen-
tation block. A video is input to the feature extraction backbone producing latent
feature maps for each scale. The corresponding per-frame multi-scale features are then
input to the transformers encoder that consists of multi-scale deformable attention
blocks. The output from the encoder is multi-scale features of the same size as the
input for each frame. These multi-scale features are then input to the decoder along
with learnable instance query embeddings. The transformers decoder consists of several
self- and cross-attention blocks. The focus of our design is the introduction of a light-
weight recurrent student encoder that learns multi-scale spatio-temporal features from
the aforementioned transformers encoder through knowledge distillation. The recurrent
encoder comprises of convolutional and recurrent layers. Consequently, the output of
the decoder (instance features) are used video instance mask predictions. At inference,
the proposed recurrent encoder is utilized in place of standard transformers encoder,
leading to faster inference.

3.3 Light-Weight Recurrent Encoder for Distilling Knowledge
from Standard Attention Encoder

We introduce a recurrent-CNN encoder, as shown in Fig. 2, which comprises
recurrent connectivity followed by feed-forward connectivity. Our recurrent
encoder uses a combination of convolutional and recurrent layers to extract fea-
tures from video frames. The convolutional layers are responsible for extract-
ing visual features from the video frames, whereas the recurrent layers capture
the temporal relationships between frames. This allows the network to learn the
long-term temporal dynamics in the video and make better predictions about the
instances in the video. Here, the recurrent encoders are designed to be computa-
tionally efficient compared to joint spatio-temporal attention [26] and deformable
multi-scale attention [27], to handle long sequences effectively.

In our proposed model, the recurrent encoder comprises six recurrent student
encoder blocks. Each recurrent student encoder block consists of two modules:
(a) recurrent connectivity and (b) feedforward connectivity. The recurrent con-
nectivity module includes a convolution layer with a kernel size of 3× 3 and 256
output channels, followed by a recurrent long short-term memory (LSTM) layer
to encode the temporal information within the frames. The hidden dimension
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size for both modules is set to 256. Next, we describe the knowledge distillation
scheme.

Knowledge Distillation from Teacher Encoder. To train our recurrent-
CNN encoder, we utilize knowledge-distillation from standard transformer
encoder to recurrent-CNN encoder. As recurrent-CNN are difficult to train and
prone to overfit, the employed training aids the student (recurrent) encoder to
learn more effectively, as it is able to benefit from the knowledge acquired by
the teacher (standard attention) encoder. To make the student encoder learn
to mimic the feature representation of original teacher transformer encoder, the
teacher-student training is introduced after several epochs during training pro-
cedure. We further empirically observe (see Table 1) that improved performance
is achieved from the student encoder compared to training from scratch. The
aforementioned training procedure is then adopted during the VIS framework
training.

Generalizibility of the Light-Weight Recurrent Encoder. The recur-
rent student encoder, presented above, can be incorporated into different
transformers-based VIS frameworks. To this end, we further integrate the recur-
rent student encoder into the VisTR [26] framework. VisTR comprises a feature
extractor backbone [10], a transformer encoder with single-scale joint spatio-
temporal attention, a transformer decoder, and an instance matching and seg-
mentation block. We introduce the recurrent student encoder into the VisTR
pipeline and employ knowledge distillation to enforce the student encoder to
mimic the feature representation learned by the transformer encoder. As in Seq-
Former, we replace the transformer encoder with the light-weight recurrent stu-
dent encoder at inference to achieve faster speed.

4 Experiments

4.1 Dataset and Evaluation Metrics
We evaluate our method on the popular YouTube-VIS 2019 dataset [30]. The
YouTube-VIS 2019 dataset is the first dataset for video instance segmentation,
consisting of 2238 training clips, 302 validation clips, and 343 test clips that
are high-resolution videos from YouTube. The dataset includes 40 different cate-
gories and 131,000 high-quality instance masks. In each video, objects are labeled
every five frames with bounding boxes and masks.

The evaluation of video instance segmentation (VIS) involves measuring the
average precision (AP) and average recall (AR). Unlike image instance segmen-
tation, in which each instance is represented by a single mask, video instances
are made up of a series of masks. To assess the consistency of the predicted mask
sequences in both space and time, the intersection over union (IoU) calculation
is performed in the spatial-temporal domain. This demands that the model not
only achieve precise segmentation and classification results at the pixel-level in
each frame, but also accurately track the instance masks across frames [27].
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4.2 Experimental Setup

Implementation Details: We use Resnet-50 [10] as the feature extractor back-
bone for video instance segmentation, [26,27]. When using VisTR [26] as a base-
line: Following the single-scale settings, we utilize conv5 feature output from
backbone feature extractor [10]. Number of encoder and decoder layers were set
to 6 with hidden dimensions 384. The default video clip length is T=36 and same
hyper-parameters of DETR [5] is used. When using SeqFormer [27] as a baseline:
The multi-scale features are extracted from the conv3, conv4 and conv5 stages.
Final features are obtained by using stride 2 convolution on conv5 stage output.
The resulting multi-scale features are mapped to the same feature dimension of
256 through convolution, as in [35]. Number of encoder and decoder layers were
set to 6 with hidden dimensions 256. The video clip length is T=5.
Training: We follow the same settings as that of utilized in the respective base-
lines. We use MS COCO [18] dataset for stage-1 pre-training of our model and
the VIS benchmark YoutubeVIS-2019 [30] for stage-2 training as done in the
recent state-of-the-art methods. 1. VisTR Baseline: For stage-1, we train our
model on MS COCO for 300 epochs. We freeze our student encoder initially till
50 epochs. After 50 epochs, we train the student encoder with input and output
as that of original transformer encoder. Similarly for stage-2, the model has been
trained for 18 epochs out of which student encoder started learning from 6’th
epoch onwards. 2. SeqFormer Baseline: For stage-1 training, we train our method
for 50 epochs on MS COCO [18] in which till 15 epochs the student encoder is
kept frozen. For stage-2, the training has been performed on Youtube-VIS [30]
for 12 epochs, where student encoder starts training from epochs 5 onwards. We
kept other training settings and hyper-parameters similar to the baselines.
Inference: In our approach, the final inference is performed by replacing trans-
former encoder with the light-weight student encoder. The output is generated
using student encoder features in further stages of the original model. The entire
input video after down sampling to 360p is provided to the model and instance-
level segmentation masks are generated. The results are obtained through online
server evaluation on the val. set.

Fig. 3. Qualitative results of proposed method on example video frames from the
Youtube-VIS 2019 [30] val. set.
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Table 1. Ablation study when integrating our recurrent encoder in place of standard
transformers encoder into the baselines. Compared to the baseline VisTR (row 1), our
final approach (row 4), achieves superior video mask prediction performance in terms
of overall average precision (AP), while also improving the inference speed. Similarly,
when comparing with the baseline SeqFormer (row 5), our final approach (row 8)
improves the overall AP from 45.1 to 45.6, while also achieving a two-fold speedup in
terms of inference speed.

Model Knowledge-Distill Stage-1 Stage-2 AP FPS

VisTR [26] ✗ ✓ ✓ 36.2 30

Recurrent VisTR ✗ ✓ ✓ 33.2 46

Recurrent VisTR ✓ ✗ ✓ 36.5 46

Recurrent VisTR (Final) ✓ ✓ ✓ 37.0 46

SeqFormer [27] ✗ ✓ ✓ 45.1 10

Recurrent SeqFormer ✗ ✓ ✓ 42.8 20

Recurrent SeqFormer ✓ ✓ ✗ 45.3 20

Recurrent SeqFormer (Final) ✓ ✓ ✓ 45.8 20

4.3 Experimental Comparison

Baseline Comparison. Here, we evaluate the effectiveness of our proposed stu-
dent recurrent encoder in Table 1 by progressively integrating it into the different
stages of VIS training. stage-1 is pretraining stage in VIS using MS COCO [18]
dataset, whereas stage-2 is video instance segmentation training using Youtube-
VIS 2019 train data [30]. All the models are evaluated on Youtube-VIS 2019 val.
set by submitting the results to the online server. We first discuss the results
when using VisTR as the baseline. When replacing the standard transformers
encoder in VisTR with our recurrent encoder without any knowledge distilla-
tion (row 2), we observe the resulting model to obtain inferior results over the
baseline (row 1). This is likely to due to over-fitting since the recurrent encoder
is trained from scratch. When replacing the standard transformers encoder with
our recurrent encoder by utilizing the knowledge distillation during only stage-2
training (row 3), we observe a marginal improvement in overall segmentation
performance. Our final approach (row 4) that replaces standard transformers
encoder with the recurrent encoder through knowledge distillation during train-
ing at both stages (similar to the baseline) achieves an overall improvement
in video instance segmentation performance from 36.2% to 37.0%, while also
operating at a faster inference speed.

When using the recent SeqFormer [27] as the base framework (row 5), we
observe a similar trend with inferior performance when using recurrent encoder
without knowledge distillation (row 6). Our final Recurrent SeqFormer (row 8)
improves the overall video instance segmentation performance form 45.1 to 45.8,
while also improving the inference speed from 10 frames-per-second (FPS) to 20
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FPS. Here, for a fair comparison all speed are measured on the machine with a
NVIDIA RTX A-6000 GPU.

Table 2. Comparison with existing methods in literature on the Youtube-VIS 2019
val. set. Our Recurrent SeqFormer achieves overall video instance segmentation perfor-
mance (AP) score of 45.8, thereby performing favorably compared to existing methods.

Model Venue Params AP AP-50 AP-75

MaskTrack R-CNN [9] ICCV-19 58.1M 30.3 51.1 32.6

STEm-Seg [1] ECCV-20 50.5M 30.6 50.7 33.5

SipMask [4] ECCV-20 33.2M 33.7 54.1 35.8

CompFeat [8] AAAI-21 – 35.3 56 38.6

SG-Net [19] CVPR-21 – 34.8 56.1 36.8

PCAN [15] NeurIPS-21 – 36.1 54.9 39.4

CrossVIS [31] ICCV-21 37.5M 36.3 56.8 38.9

VisTR [26] CVPR-21 58.3M 36.2 59.8 36.9

IFC [13] NeurIPS-21 39.3M 41.2 65.1 44.6

SeqFormer [27] ECCV-22 49.3M 45.1 66.9 50.5

Recurrent SeqFormer – 44.8M 45.8 68.5 49.5

State-of-the-Art Comparison. Here, we compare our Recurrent SeqFormer
with state-of-the-art approaches in literature on Youtube-VIS 2019 [30] val. set.
Table 2 presents the comparison. Among existing two-stage methods, MaskTrack
R-CNN achieves overall video instance segmentation performance (AP) of 30.3%.
Among single-stage methods, SipMask obtains overall AP score of 33.7%. The
PCAN approach that is built on top of SipMask obtains improved video instance
segmentation performance with overall AP score of 36.1%. When comparing
with recent transformers-based VIS approaches, the IFC achieves overall AP of
41.2%. SeqFormer obtains overall AP score of 45.1%. Our Recurrent SeqFormer
improves the overall AP score from 45.1% to 45.8% with a reduction in param-
eters (params) along with a two-fold speedup in inference speed, compared to
SeqFormer.

We further conduct a qualitative analysis based on the segmentation results
obtained from our Recurrent SeqFormer in Fig. 3. The qualitative results are
presented from the Youtube-VIS 2019 [30] val. set which contains a diverse set
of videos with complex object interactions. Our method is able to handle such
complex scenarios and produces high-quality instance masks. The qualitative
results show that our method is able to effectively segment and track objects
even in highly cluttered scenes.
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5 Conclusion

In this paper, we present a video instance segmentation (VIS) approach that uti-
lizes a recurrent-CNN encoder with an aim to reduce the computational complex-
ity of the standard transformers encoder at inference, without comprising on the
video instance segmentation performance. To this end, we utilize student-teacher
knowledge distillation scheme to enable our light-weight recurrent encoder to
learn the multi-scale spatio-temporal feature representations from the original
transformers encoder. Our recurrent encoder is generic and we show this gener-
alizibility by integrating it into two transformers-based VIS frameworks: VisTR
and SeqFormer. Our extensive experiments on the popular Youtube-VIS 2019
benchmark reveal the benefits of the proposed approach, leading to a faster
inference speed while maintaining a promising video instance segmentation per-
formance over the baselines.
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Abstract. In this paper we present an adaptation module for feature
matching based Semi-automatic Video Object Segmentation methods
(SVOS). Most current solutions to adapt SVOS methods during infer-
ence are slow or inefficient. Feature matching based methods use affinity
between a set of reference and query features to segment a target in
the current frame based on a reference. We propose an adaptation mod-
ule working solely with the user supplied mask in the first frame of a
video. Our adaptation of the matching module provides more reliable
information to the model for segmentation in all the video frames and
does not significantly increase inference time. The evaluation on both
OVIS and DAVIS 17 datasets shows a significant improvement on the
segmentation (respectively +2.9% and +1% of the Jaccard index). This
demonstrates that our adaptation of the feature space provides a better
matching between query and reference features.

Keywords: Video Segmentation · Feature matching · First frame
adaptation · Context-Aware

1 Introduction

Semi-automatic Video object Segmentation (SVOS) is a specific task in computer
vision where in the first frame the user selects the object to track in the video.
This selection is provided to the system as a binary mask that is automatically
propagated to the next frames in order to segment the selected object. Since
the selection is provided by the user, it does not necessarily belong to a trained
class and it can cover only part of an object. This kind of selection makes it a
very challenging task since the trained model has to provide and exploit generic
semantic features to tackle the diversity of the videos and, at the same time,
it has to leverage specific features that can discriminate the selected object
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from the background. However, the current solutions [12,18] provide semantic
features that are representing the training data and are not optimized for the
specific context of a new video.

This problem is illustrated in Fig. 1 where the first frame of a video is shown
with the object selected by the user (mask in green). In the scene, we can see that
several puppies look very similar while a single dark puppy has been selected
by the user. With the classical solution, the generic features learned on a large
dataset cannot differentiate between the puppies even if one is in the selected
mask and the others are outside this mask. Consequently, the mask is propagated
over all the dark puppies in the given example.

First frame + Object mask

Classical
solution

Frame 50 Frame 100

Our
approach

Fig. 1. Segmentation results with and without adaptation to the specific context. The
provided mask and its propagation are displayed in green. (Color figure online)

The default solution in this case consists of finetuning the deep network
on the new data before testing it. But, this requires annotated data for the new
context as well as extra time for finetuning the pre-trained network. In this paper,
we propose a light solution to adapt a SVOS network to a specific context by
leveraging the only annotation available in this context, i.e., the object selected
by the user in the first frame. The second row of Fig. 1 shows that the proposed
adaptation step provides features that can differentiate between the various dark
puppies and hence avoids the over-propagation of the mask.

Obviously, exploiting a single frame to fine-tune a network can easily lead to
overfitting because of the small amount of annotated data. Hence, the adaptation
step has to be carefully conducted. Recent SVOS solutions [12,18] store features
of the first frames into a memory and leverage these initial features to enrich
features of the current frame. Each feature vector is represented by a key and
a value. The keys are used for comparison between features while the values
are the new features which will be sent to the decoder for reconstructing the
segmentation mask. We argue that the keys have two properties that make them
good candidates for adaptation. First, they play a crucial role in the selection of
the best values. Second, changing the keys does not require to adapt the decoder
since the keys do not feed directly into it. Furthermore, the crucial role of the
key encoder has been emphasized very recently in [21]. Note that fine-tuning the
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decoder is not feasible with the small amount of available annotated data in the
first frame.

Consequently, in this paper, we contribute a solution to adapt the key vectors
of a SVOS network by only using the first frame and the selected object. The key
aspect is to propose a simple adaptation module which can be plugged on any
feature matching based network and can be trained online at inference time. We
show that this fast and simple adaptation helps to extract features that are spe-
cific to each video context and that provide better segmentation results than the
generic features provided by the classical solutions. Next, we will briefly review
recent semi-automatic VOS methods including applicable finetuning approaches.

2 Related Work

Video object segmentation (VOS) can be fully unsupervised [22] if the objects
to be segmented are automatically detected. In our case, we concentrate on
the semi-supervised case, where in the first frame the user selects the object to
segment over the video [5]. We focus our discussion of related work on SVOS
and more specifically, online training.

2.1 Semi-automatic Video Object Segmentation

Work on SVOS follows two main solution approaches: mask propagation and
feature matching. When using mask propagation, the approaches exploit the
mask of the previous frame (starting from the ground-truth mask, in the first
frame) and propagate it to the current frame [3,7,11]. These approaches take
advantage of the fact that the motion is smooth between successive frames. They
can suffer from propagation drift along the video. In the case of feature matching,
the solutions consist of matching features from the current frame with features
from previous frames where masks are available [2,6]. The matched features are
then used to predict the mask in the current frame. When the reference features
are only extracted from the first frame, the results are not robust to variations
of object appearance across frames. This problem can be tackled by methods
that store the features of successive frames in a memory [3,4,12,18]. In our
solution, we make use of the efficient SWIFTNET [18] that updates the memory
only in case of large inter-frame variations and avoids feature redundancies in the
memory by storing only the areas that exhibit the most severe feature variations.

2.2 Online Training

Various methods [2,7,10] leverage the ground-truth of the mask provided in the
first frame of a video. In these methods, heavy data augmentation on the first
frame is used to fine-tune the whole network. However, this finetuning step is
inefficient and causes long delays before the network can predict the segmenta-
tion in the subsequent frames of the video. Consequently, Robinson et al. [16]
proposed a deep architecture with two complementary networks: one light-weight
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network that can be trained fast on a single first frame and that only provides
a coarse segmentation mask, and a second heavy network that is trained off-line
and not fine-tuned. Li et al. resort to a cyclic mechanism that mitigates the
error propagation [20]. Their idea is to check online that the segmentation pro-
vided at the current frame agrees with the segmentation in the previous frames,
and especially in the first frame because of the available ground truth. Hu et
al. [6] exploit the provided ground truth mask of the first frame to obtain a
set of foreground and background features and use them as references to clas-
sify the features extracted from the current frame as foreground or background.
The authors claim that this specific process is general enough such that the
fine-tuning step can be omitted. Since fine-tuning on only the first frame can
lead to over-fitting, Voigtlaender and Leibe [13] propose to update the network
online by selecting training examples from the test frames. Training the network
online is time-consuming and not suitable for real-time segmentation. Finally,
when it comes to optimizing initialization weights and hyper-parameters for a
subsequent fine-tuning, meta-learning is applicable [1,17].

We take inspiration from Li et al. [8] who select a subset of features among the
ones provided by the backbone in order to boost the efficiency of their tracker.
This solution exploits only the first frame of a video and employs novel losses in
order to select important features. But unlike all prior works, we design a novel
loss to efficiently adapt only a small but crucial part of a pre-trained model. Our
approach allows to use any available pre-trained feature matching based network
and to efficiently fine-tune it. We do not require a new complex architecture or
learning process.

3 Our Approach

3.1 Method Overview

Our approach relies on memory based feature matching SVOS architectures such
as STM [12] or SWIFTNET [18]. The principle of these architectures is presented
in Fig. 2. The main branch (query branch) is a standard segmentation oriented
encoder-decoder built upon a feature extraction backbone. Given a query frame,
the query encoder EncQ is computing a H × W × C feature map where H and
W are reduced dimensions of the query frame and C is the feature dimension.
The second branch (reference branch) is composed of a sibling reference encoder
EncR associated with a memory module. The purpose of this branch is to encode
and store information extracted from past frames and their corresponding seg-
mentation masks. At least the first frame with its reference mask is encoded and
stored into the memory. During the processing of the video, additional frames
or individual feature vectors may be added to the memory depending on the
update memory strategy. For clarity, they are not depicted in Fig. 2.

The key component of the architecture is an affinity module operating at the
bottleneck of the query branch. The idea is to enrich information of the query
frame with relevant information from the memory to drive the segmentation.
The affinity module is a non-local module using a key-value encoding principle.
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Fig. 2. Proposed SVOS architecture with our key adaptation module

Specific query and reference key-value encoders are added at the end of the initial
query and reference encoders to compute keys KQ and values VQ, and keys KR

and values VR, respectively. Keys are used to match features between query
and reference and values are used to encode relevant information for segmenting
objects. The dimension of key and value spaces are reduced versions of the
initial feature space. Typically, the dimension of the key space is C/8 and those
of the value space is C/2. For each query frame, the affinity module computes
the affinity of the query keys KQ with all the reference keys KR stored in the
memory (NR feature vectors) and generates a composite value ˜VR computed as
a linear combination of reference values VR weighted by softmax affinity scores.

The principle of our method is to add a light adaptation module to both the
query and the reference key encoders. Our intuition is that key encoders play
a crucial role in the selection of the best values and if they are not adapted to
the current context, incorrect selection can lead to errors in the final output.
Moreover, adapting key encoders is a light adaptation which does not require
to further adapt other parts of the architecture. Practically, the adaptation step
is made independently for each video using only the first frame and the asso-
ciated reference mask. During this step, the first frame is encoded with both,
the query and the reference branch and the two key encoding modules are fine-
tuned through the minimization of a specific adaptation loss Ladapt built upon
the result of the affinity calculation. Once the two key encoders are adapted on
the first frame, they are applied to subsequently process the complete video.
Before presenting the adaptation loss, we focus on the affinity module next.
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3.2 In-Depth Analysis of the Affinity Module

The affinity module takes as input both query and reference keys flattened in
their spatial dimension. In the first frame, the set of key query feature vectors
is KQ = (Ki

Q)i∈{1,...,HW} with Ki
Q ∈ R

C/8 and the set of key reference feature
vectors is KR = (Kj

R)j∈{1,...,NR} with Kj
Q ∈ R

C/8. An affinity matrix of term
Aij is computed as the softmax over j of the dot product between Ki

Q and Kj
R

[12]. Thus we have:

Aij =
1
Zi

exp(Ki
Q ◦ Kj

R) (1)

where ◦ is the dot product and Zi =
∑

j exp(K
i
Q ◦ Kj

R) is the softmax normal-
ization. Then the enriched value ˜V i

Q associated to feature i of the query vector
is obtained by:

˜V i
Q = [V i

Q,
∑

j

AijV
j
R] (2)

where [., .] denotes the concatenation.
Figure 3 presents a visualization of the affinity matrix obtained while pro-

cessing the gold-fish video from DAVIS (cf. Sect. 4.3). The goal is to segment the
largest fish highlighted in green in frame 1 with a fixed memory initialized with
frame 1. Affinity heatmaps are obtained by computing for each query patch i
its total affinity with all memory patches belonging to the object in the mem-
ory. The corresponding heatmap value is thus hi =

∑

j∈object Aij . In frame 1,
high values in the heatmap are mostly concentrated at the actual fish location.
However, some background pixels belonging to other fish also contain large val-
ues but do not result in segmentation errors. In frame 40, more background
pixels on other fish have even large values in the heatmap causing an incorrect
segmentation result.

Frame 1
Frame Affinity Heatmap Segmentation

Frame 40

Fig. 3. Visualization of key matching with the reference frame
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3.3 Adaptation Loss

Figure 3 illustrates the imperfect key encoding already visible in the processing
of frame 1: Some background pixels in the query are similar to the object in
memory. A reversed analysis could show that some object pixels in the query
may be similar to some background pixels in the memory. The purpose of our
adaptation loss is to minimize the sum of affinity values over regions where this
affinity should be null. If mi (resp. mj) denotes a flattened version of the query
object mask (resp. reference object mask), we define object and backgound losses
as:

Lobj =
∑

i (1 − mi)
∑

j mjAij

Lbg =
∑

i mi

∑

j (1 − mj)Aij
(3)

The total loss is defined as Ladapt = αLobj+Lbg where α is adjusted to ensure
that the two losses start from the same value at the beginning of the training. It
avoids that one of the loss dominates the other which can cause the dominated
loss to increase, even though the overall loss decreases. Reducing this total loss
helps avoid confusing object features with background features.

Note that because of the reduced spatial image resolution in the encoder, the
mask is downscaled and mask values are floats.

4 Experiments and Results

Our main goal is to evaluate the performance when a single object is selected
by the user, hence our evaluation is for segmenting a single object in the OVIS
dataset [15]. We regard the OVIS dataset appropriate for evaluating the adap-
tation given the high number of similar objects in each video and the way the
objects strongly interact amongst themselves. As the OVIS dataset was not
initially designed for SVOS, the first frame annotation is not provided in the
test and evaluation set. Hence, we generate the annotation and evaluate on the
whole OVIS training set. Results for every annotated object that appears in
the first frame are reported in Sect. 4.2. Annotated objects that appear only
in later frames are ignored. Single object evaluation will allow us to study the
duality between object and background. For completeness, we will also report
multi-object results on DAVIS in Sect. 4.3.

4.1 Offline Training and Adaptation During Inference

We follow the original authors in training SWIFTNET [18] by pretraining on
COCO [9] and finetuning on YOUTUBE-VOS [19] and DAVIS17 [14].

During inference every layer is frozen except the single convolutional layer of
the two key encoders. During inference, an adaptation is performed at every first
frame initialization to fine-tune the key encoders. The finetuning is performed
for 50 epochs with a learning rate of 1. At the end of the finetuning on the first
frame, the weights of the key encoders are frozen during the segmentation of the
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remaining frames of the video. Because no layers are added to the original model,
except during initialization in the first frame, there is no impact on run time
of our adaptation during the video. Hence, we retain the fast inference speed of
SWIFTNET. The average adaptation time on OVIS is only 0.47 s for a complete
video and hence it has a negligible impact on real-time applications.

Table 1. Jaccard index for single object segmentation in OVIS (training)

Adaptation Static Memory Memory Update

– 48.97 49.70
� 51.87 52.55

Frame 1 Frame 50 Frame 100
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Fig. 4. Visual comparisons of the results with and with-out the adaptation of the keys
at different frames. Both videos are from OVIS

4.2 Results for Single Object Segmentation

We report results for the evaluation of our adaptation using the Jaccard index
(Intersection over Union). As shown in Table 1, the adaptation increases the
Jaccard index independent of the use of memory updates. The improvement
shows that our adaptation can help to bridge the gap between training and
testing data as OVIS data was not used in offline training. Our adaptation
is also able to handle distracting objects with similar appearance as they are
common in OVIS. Figure 4 shows a comparison of qualitative results. The object
of interest is still segmented in frame 50 and 100 in all cases but the adaptation
reduces the incorrect propagation of the mask to the background. Note that
the memory update is still improving the result with and without adaptation.
The memory update is compatible with the adaptation even if the adaptation is
processed only on the first frame. This also shows that the feature space learned
in the first frame is still suitable throughout the video.
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4.3 Multi Object Extension

For completeness, we also report results on multi-object segmentation on DAVIS
2017 in Table 2. To extend our adaptation to multiple objects, we compute the
loss for each object in turn, considering the corresponding single foreground
mask separately. In the end, we sum all losses together and calculate a single
adaptation for the shared encoder. As expected, our first frame adaptation also
improves the results for multi-object segmentation on DAVIS. The improvement
is smaller than for single object segmentation on OVIS (see Sect. 4.2) because
the model was trained partially on DAVIS and hence the domain gap is smaller
to start with. Also, DAVIS does not contain video samples of many very similar
objects where accurate keys are essential. Table 2 contains results for SWIFT-
NET reported by the original authors. As the weights and training code are not
publicly available, we provide results of our own training following the descrip-
tion by Wang et al. [18]. Our own training weights are the baseline for our
adaptation.

Table 2. Results on Multi-Object Segmentation in DAVIS 2017. F is the boundary
accuracy. Online Learning (OL) Mask-Propagation (MP) and Feature Matching (FM).
Results come from original articles.

name OL J&F J F FPS

OnAVOS [13] � − 67.9 64.5 70.5 0.08
OSVOS [10] � − 68.0 64.7 71.3 0.22
RGMP [11] × MP 66.7 64.8 68.9 7.7
SAT [3] × MP 72.3 68.6 76.0 39
STM [12] × FM 81.8 79.2 84.3 6.3
SWIFTNET [18] × FM 81.1 78.3 83.9 25
XMem [18] × FM 87.7 84.0 91.4.9 22.6

SWIFTNET (our training) × FM 78.01 75.39 80.62 25
with adaptation � FM 79.02 76.4 81.64 25

5 Conclusions and Future Work

We have proposed a fast and light adaptation method that can be used in any
matching-based SVOS method without re-training nor changing the network
architecture. We have obtained encouraging results on the challenging OVIS
dataset for the task of segmenting a single object selected by the user. We have
also shown on DAVIS2017 that even on videos closely related to the training,
our adaptation improves segmentation results. In the future, we would like to
extend our efficient adaptation method to additional frames in the video without
requiring additional groundtruth masks.
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Abstract. Intelligent identification of license plates (LPs) is essential
for developing efficient and secure transportation systems. However, rec-
ognizing LPs can present a significant challenge given the numerous
camera angles, lighting situations, and backgrounds. This research sug-
gests a sequence recognition method for identifying LPs to overcome
these difficulties. The formulated approach adjusts the alignment of the
LP using a Spatial Transformer Network (STN) and extracts sequence
features using an enhanced Convolutional Neural Network (CNN). The
extracted features from different CNN layers are combined and given to
a bi-directional recurrent neural network (BRNN) for recognition, elimi-
nating the need for character segmentation and accessing the context for
the entire image during recognition. This offers the advantage of enabling
end-to-end model training on complete LP images. The system was evalu-
ated using a collection of data that includes annotations for a complex set
of LP images from various scenes and acquisition scenarios. The experi-
ment outcome illustrates that, in comparison to current techniques, our
formulated framework achieves adequate recognition accuracy.

Keywords: License Plate (LP) · Long Short-Term Memory (LSTM) ·
Spatial Transformer Network (STN) · YOLOv4

1 Introduction

Automatic license plate recognition (ALPR) has been increasingly embraced
in recent years. [17]. Government agencies can leverage this technology to track
down and identify stolen automobiles and obtain information for enhanced traffic
management. Also, ALPR is used for toll payments, automated ticketing, and
parking lot management [10]. Although ALPR has been extensively researched,
it remains a highly challenging task that often necessitates distinct modeling
for each license plate (LP) arrangement, which varies depending on the region.
The difficulty is caused by the significant variations in the visual characteristics
of text, which can be influenced by a variety of factors such as different fonts,
layouts, environmental elements including lighting, shadows, and obstructions,
as well as image acquisition aspects like motion and focus blurs [10,17].
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To address such challenges, a common approach is to modify Convolutional
Neural Networks (CNN) [5,8,11–13,15,22,25] by restricting them to classify only
one character at a time, thereby transforming the problem into a single-label
classification task. However, this method presents new challenges, such as how
to segment the characters for processing by CNN accurately. Segmentation algo-
rithms are typically highly susceptible to diverse environmental conditions. In
[16], the segmentation of LPs with backgrounds from everyday scenes was car-
ried out using a mix of linked components and projection analyses. A satisfactory
accuracy of 97% was obtained. The LPs with improperly split characters were
automatically regarded as unidentifiable. The segmentation algorithm’s effec-
tiveness notably influences recognition accuracy. However, methods based on
segmentation-free approaches do not require the segmentation of LP characters.

This research treats ALPR as a sequential recognition task in order to bypass
the challenging segmentation process. The characters, letters, and numbers are
all concurrently recognized, and the framework can be comprehensively trained.
The suggested method modifies the orientation of the LP using a spatial trans-
former network (STN), and it extracts sequence information using an improved
ConvNet architecture. A bi-directional recurrent neural network (BRNN) is fed
with the obtained features from various Convnet layers. To decode and recognize
characters in LPs, we utilize BRNN and Connectionist Temporal Classification
(CTC) techniques, eliminating the need for segmentation and the adverse effects
on character recognition. The designed system could locate and recognize LPs in
various test data sets using the same configuration. Publicly available datasets,
including the SSIG Database [6] and the AOLP dataset [8], were used to evaluate
the system designed in this study.

2 Proposed Framework

The system depicted in Fig. 1 comprises three main stages: LP detection, correc-
tion and transformation, and sequential character recognition. To avoid the need
for a strict character segmentation process, the system is approached as a prob-
lem of recognizing a sequence of characters. A uniform end-to-end framework for
recognizing characters and numbers in LPs is presented. Figure 1 provides the
network structure, which is divided into four sections: 1) The custom-tailored
YOLOv4 model [4] identifies the LPs in the input image. 2) The detected LPs
are then cropped and processed by an STN [9] to rectify the images, irrespec-
tive of orientation or surrounding details, resulting in consistent alignment and
insignificant background noise. 3) An enhanced CNN, based on VGGNet [23], is
illustrated to extract sequence features from the rectified image. 4) Afterward,
a bi-directional long-short-term memory (BLSTM) [19] is employed to recog-
nize sequence labels by utilizing the obtained sequence features. The recognition
outcomes are then obtained by decoding the output of the BLSTM using the
Connectionist Temporal Classification (CTC) [7].

a) LP Detection: Selecting a reliable model for LP detection is a crucial step
in the ALPR process. We established the following standards to identify the
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Fig. 1. Proposed system pipeline.

Fig. 2. (a) Instances of LPs detected in the testing dataset. (b) Disoriented LP data
sample.

optimal algorithm: 1) The algorithm’s performance and recall rate must meet
acceptable standards, as even a minor number of unsuccessful identification can
adversely impact the overall LP detection process. 2) The approach must possess
a faster processing rate to ensure dependable real-time detection. 3) Further-
more, the computational expenses should be reasonable to ensure the method
can be employed in practical applications without hindrance. Therefore, given its
cost-effectiveness and high processing speed, we meticulously selected YOLOv4
as our LP detection network. Figure 2(a) illustrates how we adjusted the param-
eters of the YOLOv4 model to meet our specific needs and optimize it for LP
detection. We reduced the number of classes from 80 to 1 since object detection
only requires one class (LP).

b) Spatial Transformer Network: To streamline the classification procedure
and enhance the accuracy of the classification outcomes, the authors of [9] intro-
duced a differentiable and self-contained module called STN. It is integrated
into existing ConvNet architectures. STN is used to increase a model’s ability
to maintain spatial consistency despite non-rigid distortions like scaling, crop-
ping, image rotations, and translations as shown in Fig. 2(b). The trained STN
is employed first to adjust the input LP instances to produce images with a
uniform alignment and minimal distortion. Thus, the suggested approach resists
different camera views and disturbances. The image labeled as Fig. 3 has three
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Fig. 3. STN Architecture [9].

Table 1. Design of LN.

Layer Configuration

Image Input Disoriented LP instance in Grayscale

Type Filter Kernel Stride Padding

Max pooling 1 – 2× 2 2× 2 0× 0

ConvNet2D 1 20 5× 5 1× 1 0× 0

Max pooling 2 – 2× 2 2× 2 0× 0

ConvNet2D 2 20 5× 5 1× 1 0× 0

Max pooling 3 – 2× 2 2× 2 0× 0

ConvNet2D 3 20 5× 5 1× 1 0× 0

FC Units and Activation: 100, tanh

O/P layer Units and Activation: 6, linear output

distinct sections. Firstly, the pertinent features from the input instance (I) are
extracted by the localization network (LN), which is used to calculate the affine
transformation parameter θ. Secondly, considering the input θ, modifying the
initial grid generates a new sampling grid. Finally, a rectified image is produced
by sampling the input image according to the generated grid.

Localization Network: The input to the network is feature map UεRH×W×C

with dimensions height (H), width (W ), and channels (C). The output of the
LN is the transformation parameter (θ) for the operation Tθ operated on U
and the type of transformation being parameterized decides the dimensions in
θ. For instance, six dimensions are considered for an affine transformation in
Eq. 2. To acquire the transformation parameters, the LN function floc() requires
a final regression layer, which can be either fully connected or convolutional.
The system is designed to work on 2D images and a 2D transformation is used
in Eq. 1

[
x′

y′

]
=

[
θ11 θ12
θ21 θ22

] [
x
y

]
+

[
θ13
θ23

]
(1)

Aθ =
[
θ11 θ12 θ13
θ21 θ22 θ23

]
(2)

The design of the LN is outlined in Table 1 and includes a fully connected
(FC) layer with three sets of ConvNets and Max Pool layers, concluding with a
single output layer.

Grid Generation: LP input comprises a vector of coordinates Si = (xi, yi)T for
each image pixel i. The affine transformed vector of coordinates, S′

i = (x′
i, y

′
i)T ,

is obtained by multiplying theta and Si. It is written as

(
x′

i

y′
i

)
= Aθ

⎛
⎝xi

yi

1

⎞
⎠ =

[
θ11 θ12 θ13
θ21 θ22 θ23

]⎛
⎝xi

yi

1

⎞
⎠ (3)

The grid generator’s final output is obtained by setting up the transformed
coordinate vectors as S′ = (S′

1, S
′
2, ..., S

′
i, ..., S

′
W×H). In our experiments, the

values of W and H were 270 and 70, respectively.
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Fig. 4. Proposed Network for Recognition

Sampler: The sampler utilizes the sampling grid K ′ to sample the original
image and produce the rectified image O. This procedure of sampling involves
the use of a differentiable module called bilinear interpolation. To generate the
STN, the image sampler, parameterized grid generator, and LN are assembled.
This module can be integrated into various architectures as a separate entity
and can be trained along with them.

c) LSTM For LP Recognition: Fig. 4 illustrates the proposed architecture
for recognizing LPs. It consists of three steps: feature extraction using CNN,
sequence extraction using LSTM, and final recognition using CTC. According
to Fig. 4, the architecture of CNN is inspired by the Visual Geometry Group
(VGG). The proposed technique creates the convolutional layer components,
which are feature extractors, by considering VGGNet’s [23] ConvNet and Max-
pool layers. All input LP instances are calibrated to a standard dimension of
220× 70 x 1 before being sent to the network. The suggested approach creates
an input image feature map. The series of features from the convolutional layers
are taken from this map. The result of this procedure serves as the recurrent
layer’s input. In the feature map, each column corresponds to a rectangular
region. By using the formulated strategy, the rectangular regions are arranged
next to their corresponding columns from left to right.

The conventional gradient vanishing technique has been shown to be unable
to unravel conditions to forecast the subsequent position [14]. The problem is
addressed by the LSTM [24]. They are a class of specialized NNs that utilizes
contextual information from the past to achieve accurate sequential recognition
rather than handling features separately, as described in Eq. 4. The three well-
form gates (forget, output, and input) that make up the LSTM. Essentially, the
input and output gates are employed to maintain contextual information over an
extended period, while memory cells are operated to hold past contextual infor-
mation. In a similar manner, context information in the cells is cleared using a
forget cell. The suggested approach comprises both forward and backward direc-
tional LSTM as expressed in Eqs. 5 and 6, which takes into account the past
and future context to enhance the process of selecting and extracting features.
Using the softmax layer, the suggested approach converts each character class’s
probability distribution from each BLSTM state. The formulated approach addi-
tionally employs a Connectionist Temporal Classification [20], which eliminates
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Table 2. CNN design configuration

Layer Configuration

Input Image 220× 70× 1 Rectified Image

Type Filters KernelSize StrideSize Padding

Conv2D1 64 3× 3 1× 1 1× 1

Max pool 1 – 2× 2 2× 2 0× 0

Conv2D 2 128 3× 3 1× 1 1× 1

Max pool 2 – 2× 2 2× 2 0× 0

Conv2D 3 256 3× 3 1× 1 1× 1

Conv2D 4 256 3× 3 1× 1 1× 1

Max pooling 3 – 2× 2 2× 2 0× 0

Conv2D 5 512 3× 3 1× 1 1× 1

ReLU 1 – – – –

Conv2D 6 512 3× 3 1× 1 1× 1

Batch norm 5 – – – –

Max pool 4 – 2× 2 2× 2 0× 0

Sequence Map –

BLSTM 256 Hidden Units

BLSTM 256 Hidden Units

Transcription –

the requirement of character segmentation, to convert the probability sequence.
This technique decodes the expected probability as output labels. By merging
the two closest characters that are the same, the suggested approach, for exam-
ple, decodes the label sequence -MH-12-LJ-6-129- as MH12LJ6129 and removes
the empty reference “-”. The suggested strategy selects the candidate with the
highest likelihood of recognition as indicated in Eq. 7.

mt = RNN(xt,mt−1) (4)

In the given equation, m(t) represents the current state of memory, x(t) repre-
sents present i/p, and m(t-1) represents the preceding state.

mf
t = LSTMf (xt,m

f
t−1) (5)

mb
t = LSTMb(xt,m

b
t+1) (6)

where forward and backward LSTM is represented by f and b respectively.

lab = argmaxP (l|s) (7)

Table 2 summarizes the formulated model’s structure and configuration. The
kernel sizes, padding, strides, and channel values are inspired by the VGG [23].
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Table 3. Test data sets employed.

Data Source Angle of LP Image Instances Automobile Dist

OpenALPR (EU) front 104 close view

OpenALPR (BR) front 108 close view

SSIG (test set) front 804 medium,distant

AOLP (Road Patrol) front + skewed 611 close view

Formulated Data skewed 150 Various views

3 Results and Discussion

The suggested ALPR paradigm has been validated for efficacy; the model was
developed leveraging the Tensorflow and Keras frameworks. The setup of our
system for evaluation is as follows: NVIDIA GeForce GTX 1650Ti (4GB), 16GB
of RAM, and Intel Core 9th Gen i7 CPU. The model was also trained using
Apple M1 GPU, which offered accelerated training with Apple Metal.

a) Data Sets Description: According to our research, there is no universal
data set for distorted LP snapshots. The shortage of data poses a challenge in
effectively leveraging advanced deep-learning techniques for the accurate recog-
nition of distorted LPs. As demonstrated in Fig. 2(b), we built a collection of
automobile images with warped LP in various camera views and diverse scenes
in order to successfully train our custom-tailored YOLOv4. The pictures were
gathered from both natural settings and Google Images. To train the algorithm,
we gathered and labeled 3000 photos of vehicles with diverse LP styles.

For training our CNN BLSTM, we randomly choose 2300 photos of LPs, leav-
ing 700 images for validation and testing. However, 2300 snapshots are insuffi-
cient for a deep model to learn effectively as it may lead to overfitting. To
solve this problem, we created 104 synthesized LP images using OpenCV. To
mimic actual images, synthetic ones are distorted with affine transformations,
random rotations, Gaussian blurring, backdrops, and other alterations. Addi-
tionally, real LP photos are simultaneously modified using data augmentation
(DA) techniques such as arbitrary rotation, noise injection, perspective modifi-
cation, and color conversion to produce extra training instances that are four
times that of the original ones.

b) Result Analysis: The purpose is to formulate an approach that performs
exceptionally in various uncontrolled settings while also excellently in settings
under control (such as frontal views, for example). The testing data sets we
evaluated on-SSIG, OpenALPR (BR, EU), and AOLP-cover a variety of circum-
stances, as shown in Table 3. Two factors were considered: the distance between
the vehicle and the camera (close, intermediate, and extended view) and the
angles of the LP (frontal and oblique). While a number of data sets cover a
range of scenarios, a more versatile data set for challenging scenes remains a
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Table 4. Performance Analysis of test data sets

Approach AOLP SSIG OpenALPR Formulated

Test(RP) Test EU BR Data set

Proposed approach 93.16% 85.01% 92.88% 88.61% 73.67%

(Synthetic+Real Data)

Proposed approach 98.11% 88.65% 97.59% 89.71% 89.00%

(Synthetic+Real+DA)

A. Bakshi et al. [3] 96.56% 89.55% 91.35% 92.69% 85.00%

OpenALPR [1] 69.72% 87.44% 96.30% 85.96% 75.32%

Sighthound [2] 83.47% 81.46% 83.33% 94.73% 50.98%

G.S. Hsu el al. [8] 85.70% – – – –

Severo et al. [12] – 85.45% – – –

Shen et al. [15] 83.63% – – – –

Wang et al. [13] 88.38% – – – –

Table 5. YOLOv4 mAP performance comparison

Network mAP

Formulated YoloV4 90%

YOLOv2 [21] 76.8%

YOLOv3 [18] 89%

challenge. To address this, we have curated and annotated a subset of 150 images
that depict a diverse range of difficult settings, which we have added to our col-
lection of images as an extra contribution. The proposed ALPR mechanism’s
experimental analysis and comparison with other methods in use are presented.
The overall efficacy of the model is evaluated by calculating the percentage of
correctly identified LPs (CLP ) from the total number of testing LP snapshots
(TLP ). The accuracy of recognition is provided by A = CLP/TLP .

It should be recalled that the evaluation of all test datasets was conducted
using the same configuration without any further adjustments made to the net-
work for specific datasets. Table 4 shows that the method suggested performs
effectively with a variety of data sets. It outperforms competing solutions on
the OpenALPR (EU) and AOLP (RP) data sets. It has been demonstrated that
synthetic images are essential for lowering over-fitting and that the augmented
images produced by data augmentation approaches can enhance the system’s
performance further. With frontal views and less complex surroundings, our
method has obtained accuracies comparable to those of commercially available
systems portraying controlled scenarios. In both the formulated data set and the
AOLP RP, our method has demonstrated superior performance (Table 5).

The enhanced Yolov4 model’s training performance is shown in Fig. 5. The
model outperformed the Yolov2 and Yolov3 employed in the [18,21], achieving
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Fig. 5. Custom YOLOv4 training performance.

Fig. 6. Train CTC loss and Validation CTC loss plots.

90% mAP with 2800 iterations. Additionally, Fig. 6 shows the train and valida-
tion CTC loss based on the input data. For the formulated approach, a trend of
continuous error reduction is seen.

4 Conclusion

This research presents an extensive study on identifying license plates in chal-
lenging circumstances. Integrating the Spatial Transformer Network aids in con-
sistently aligning the disoriented license plates of varying lighting conditions and
diverse camera angles from real-world capture scenarios. The proposed neural
network architecture utilizes CNN and LSTM to model the feature and label
sequence, incorporating feature learning and label encoding benefits. Results on
several public datasets demonstrate that the proposed approach performs ade-
quately to other existing methods, such as the segmentation-based recognition
systems. These approaches call for character-by-character labeling of the data,
whereas the proposed approach requires a single label for each LP image. This
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saves significant processing time and substantially improves the system’s perfor-
mance in real-time. Our future research aims to enhance the proposed system
to identify multilingual license plates of various countries.
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Abstract. In this paper, we introduce new 3D rotation moment invari-
ants, which are composed of non-separable Appell moments. The Appell
moments can be substituted directly into the 3D rotation invariants
instead of the geometric moments without violating their invariance. We
show that non-separable moments may outperform the separable ones in
terms of recognition power and robustness thanks to a better distribu-
tion of their zero surfaces over the image space. We test the numerical
properties and discrimination power of the proposed invariants on three
real datasets – MRI images of human brain, 3D scans of statues, and
confocal microscope images of worms.

Keywords: 3D recognition · 3D rotation invariants · non-separable
moments · Appell polynomials

1 Introduction

Recognition of 3D objects is particularly important in bio-medical imaging,
where modalities such as CT, MRI, and confocal microscopes yield full 3D vol-
umetric data. Two main approaches to this problem are via “handcrafted” and
“learned” features. While in 2D the convolutional networks and deep learned
features have almost completely replaced traditional handcrafted features, the
situation in 3D recognition is not so clear-cut.

For volumetric data, there are several 2D-inspired architectures operating
on voxels such as convolution networks [15], residual networks [17], U-Net [10],
generative models [4] and transformers [14]. However, one faces many practi-
cal problems when applying neural networks to 3D data. The data size and
dimension imply the demand of large-scale annotated training sets. Such public
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datasets do not exist, unlike for instance ImageNet, that serves as a universal
training set in 2D applications. We can find only few specialized benchmarks for
narrow areas like Kitty (dataset for autonomous driving) [9] and fastMRI [24]
containing knee and brain MRI snaps. These training data can be used in specific
areas, but do not have a potential of pre-training general backbones suitable for
transfer learning. The problem of geometric invariance of the network, widely
investigated in 2D [16], has been studied in a few very recent papers [20,23]. So,
there is still a clear demand to develop efficient handcrafted invariant features.

Among many possible choices, moment invariants were proven to be very
powerful descriptors of 3D bodies, because they provide invariance to the object
pose and scale [8]. 3D moment invariants have been studied much less than their
2D counterparts, which means there are still many open questions concerning
namely numerical stability and ability to represent objects by low-dimensional
vectors. Both these issues are connected with the orthogonality of the moments
(more precisely, with the orthogonality of the corresponding polynomial bases).
Orthogonal moments provide generally better representation, stability and dis-
crimination power than non-orthogonal ones. On the other hand, rotation invari-
ants from OG moments are generally more difficult to construct than those from
standard non-orthogonal moments [18,19]. Two families of popular 3D rota-
tion moment invariants composed of OG moments are those based on Zernike
moments [5] and Gaussian-Hermite moments [22].

Both these systems (and actually all other ones that have been used in object
recognition so far) are separable, which means their basis functions can be factor-
ized as πpqr(x, y, z) = Pp(x)Pq(y)Pr(z). Zernike moments are separable in polar
domain, Gaussian-Hermite moments are separable in Cartesian domain. Sepa-
rability is convenient from computational point of view but results in certain
limitations of the representation ability. The distribution of zeros of separable
functions is constrained such that the zero surfaces fill a rectangular or polar
grid (see Fig. 1). Hence, separable basis functions provide good representation
in the grid directions while the representation in “diagonal” directions may be
worse. It may lead to the drop of discriminability, if characteristic object struc-
tures exhibit a diagonal-like orientation and/or if we employ only a few low-order
basis functions. This has led recently to introducing non-separable bases, how-
ever so far in 2D only.

In 2022, Bedratyuk et al. [3] introduced 2D non-separable Appell moment
invariants. In this paper, we generalize their idea into 3D.

2 Basic Idea Behind 3D Invariants

To design 3D rotation invariants form non-separable moments, we basically need
to find polynomial basis functions that are quasi-monomials, are not separable,
and there exists a stable and fast algorithm for their evaluation. Quasi-monomials
are polynomials, that are transformed under coordinate rotation exactly in the
same way as monomials xpyqzr [1]. This property is crucial for invariant design.
We can simply substitute the quasi-monomial moments into well-known invari-
ants of geometric moments (i.e. moments w.r.t. the monomial basis) [8]. The
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Fig. 1. Slices of 3D polynomials showing the zero distribution: (a) separable Zernike
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(
Z5

15,9

)
, xy plane, (b) separable Gaussian-Hermite G456, xy plane, (c) non-separable

Appell U456, xy plane, (d) non-separable Appell V456, xy plane. The black curves are
the zero sets.

problem is that quasi-monomials are rare. Among all separable polynomials,
Hermite polynomials were proved to be the only quasi-monomials [21]. Among
non-separable polynomials, there is no such necessary and sufficient condition.
Fortunately, Bedratyuk et al. [3] proved, that Appell polynomials [7] are quasi-
monomials in 2D. This key property is preserved in 3D as well. In the next
section, we present 3D Appell polynomials, Appell moments and original recur-
rent relations for their efficient computation.

3 3D Appell Polynomials and Moments

The term Appell polynomials (APs, named after P.E. Appell, a French mathe-
matician) denotes two families of multivariate non-separable polynomials U and
V . Appell polynomials are bi-orthogonal, which means any two polynomials, one
being from U and the other one from V , are orthogonal (with a weight) on a
unit sphere. The definition of Appell polynomials in 3D is the following (for more
details on the APs see [7]).
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(1)

The above formulas are, however, not convenient for numerical evaluation
due to possible overflows. In Appendix, we present recurrent formulas for stable
and fast computation.

The Appell moments M of a 3D image f(x, y, z) are its projections onto the
set of Appell polynomials

M (P )
pqr =

∞∫

−∞

∞∫

−∞

∞∫

−∞
Ppqr(x, y, z)f(x, y, z) dxdy dz , (2)

where P stands either for U or for V . To obtain Appell invariants, these moments
are substituted into geometric moment invariants [2,6,8] (this is possible because
APs are quasi-monomials), so we end up with formulas such as

Φ1 = M200 + M020 + M002,

Φ2 = M2
200 + 2M2

110 + 2M2
101 + M2

020 + 2M2
011 + M2

002.

Using the list from [6], we obtain a complete and independent set of 213 invari-
ants up to the 9th moment order.

4 Experiments

4.1 Human Brain MRI

The aim of the first experiment is to numerically verify the rotation invariance.
We used two MRI measurements of the brain of the same patient (Fig. 2) down-
loaded from [11]. Their original sizes are 192×224×224 and 193×229×193 voxels.
We generated 8 random 3D rotations of each snap with bilinear interpolation
and then computed 77 rotation invariants up to the sixth order. We computed
the Appell moment invariants both of U and V families by recurrence formulas
(4)–(9) and compared them with the invariants from complex moments [19], geo-
metric moments [18], Gaussian-Hermite moments [22] and Zernike moments [5].
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)b()a(

Fig. 2. Brain MRI images used in the experiment: (a) slice 96 (out of 192) of the first
snap, (b) slice 97 (out of 193) of the second snap.

Table 1. ERAs of the rotation invariants in %. The averages over all invariants are
used.

invariants Appell U Appell V Complex Geometric G-H Zernike

brain 1 1.2067 0.9720 2.6408 2.6392 3.4373 1.4609

brain 2 1.4592 1.1898 3.5169 3.5168 3.8445 1.8552

average 1.3329 1.0809 3.0788 3.0780 3.6409 1.6580

As a measure of quality we used the error relative to average (ERA)

ERA =
100%

ni

ni∑

j=1

1
nr

nr∑
i=1

∣∣∣∣I
i
j − 1

nr

nr∑
i=1

Iij

∣∣∣∣

1
ninr

nr∑
i=1

ni∑
j=1

∣∣Iij
∣∣

, (3)

where ni is the number of invariants (ni = 77 for sixth order), nr = 8 is the
number of rotations, and Iij is jth invariant of ith rotation. ERA is similar
to more common mean relative error (MRE), which is, however, unstable for
invariants being close to zero. The average ERAs of all invariants are shown in
Table 1. It is apparent that both Appell U and V invariants actually exhibit the
rotation invariance, even with smaller error than traditional separable invariants.

4.2 The Statues

This experiment demonstrates the ability of the Appell invariants in a simple
object recognition task. We scanned five visually similar small sculptures by a 3D
scanner. The scanner uses 8 scanning directions to create a 3D model (see Fig. 3
(a)–(e) for the models). No texture is covering the models or inserted inside.
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Fig. 3. From (a) to (e) the models of five statues used in the experiment, (f) rotated
and noisy sample to be recognized.

The original models were used as the training samples. Eight random rota-
tions of each statue were classified by the same invariants that were used in the
MRI experiment. We applied a simple nearest-neighbor classifier in the space
of invariants. If there is no noise, all methods classified all statues correctly.
To make the problem more challenging, we added random noise inside the cir-
cumscribed sphere around each test sample (see Fig. 3(f) for an example), that
simulates scanner errors in recovering 3D surface. Noisy objects are more dif-
ficult to recognize and performance differences of individual methods become
apparent, as is documented in Table 2.

We can see that the Appell U moments are the best performing ones, the only
unsatisfactory result is for low order of the moments. Looking at the other results,
it is interesting that good recognition rate does not necessarily correspond with
low ERA value (compare Complex and Geometric invariants).

5 The Worms

In this experiment, we tested recognition via template matching. We used 3D
data from confocal microscope that are publicly available [13]. The dataset was
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Table 2. Success rates and relative errors of various rotation invariants in % for noisy
objects. The first column shows the maximum order of the moments used.

max. order Appell U Appell V Complex Geometric G-H Zernike

2 60 62.2 100 60 93.3 95.6

3 100 91.1 97.8 100 100 100

4 100 100 97.8 100 100 95.6

5 100 88.9 97.8 97.8 80 95.6

6 100 93.3 97.8 100 86.7 95.6

ERA 0.246 0.303 2.675 0.324 2.744 2.506

captured by Leica microscope with 63× oil objective [12] and consists of 28
volumes of worms Caenorhabditis elegans at the larval stage1 and corresponding
stacks of 555 ground-truth annotated cell nuclei, see Fig. 4.

Fig. 4. The worm used in the experiment: (a) cross-section, (b) longitudinal section,
(c) ground-truth nucleus masks in the cross-section, (d) ground-truth nucleus masks
in the longitudinal section.

Now we tried to detect the nuclei via template matching. Ten nuclei were
chosen for training, i.e. we computed their invariants of all kinds up to the sixth
order. Then we passed through the scan of the worm, computed invariants in
the neighborhood of each voxel and compared them with the invariants of the
training set. There is a hypothesis that the nuclei of different cells are very
similar in their shape and appearance but differ from one another by orientation
in 3D space, so rotation invariance of the features is required. We optimized the
radius of the spherical neighborhood for each type of moments individually to
get the best performance (the optimal radius depends on the shape of the basis
functions, so it cannot be the same in all cases).

The voxel is considered to be the center of the nucleus if the two following
conditions are satisfied:

1 The dimension of the chosen volume is 1244 × 140 × 140, the pixel size is 0.122 ×
0.116 × 0.116 µm.
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• The feature distance must be below a user-defined threshold and must form
the local minimum in the 3 × 3 × 3 neighborhood of the voxel in question.

• The detected nucleus cannot overlap the nuclei detected before.

The quality of the detection was evaluated by means of the ground-truth
masks. If the spatial distance between the detected nucleus and the nearest
mask is less than 10 voxels, the detection is considered correct.

The results are summarized in Table 3. Again, Appell U invariants detected
almost all nuclei and won the contest, followed by Complex, Geometric, and
Zernike invariants.

Due to the high computation demand of a pattern matching problem, the
source code was implemented in PyTorch framework allowing us to run the algo-
rithm in parallel on Nvidia A100 GPU. Thanks to this, the task run by several
orders faster than in case of traditional implementation, but still it took about
two hours due to a large number of template positions to be tested. A speed up
via pyramidal search and / or sparse space sampling would definitely be possible
but the runtime was not the issue we were primarily interested in. Therefore, the
invariant calculation in each voxel took about two hours using Nvidia A100 GPU.
The source codes are available at https://github.com/karellat/nuclei.

Table 3. The numbers of correctly detected nuclei out of 545 instances.

Invariants Appell U Appell V Complex Geometric G-H Zernike

# detected nuclei 528 359 473 437 338 414

Radius [voxels] 13 11 11 13 15 17

6 Conclusion

We introduced new 3D rotation moment invariants, which are composed of non-
separable Appell moments. To the best of our knowledge, this is the first appli-
cation of 3D non-separable polynomials in object recognition. The design of the
invariants was possible because the Appell polynomials are quasi-monomials.
At this moment, we are not aware of any other non-separable quasi-monomials.
Furthermore, we proposed recursive formulae for fast and stable computation.

To show the performance of the new Appell invariants in practice, we pre-
sented three experiments of different kind – invariance verification on MRI scans,
object recognition of real 3D objects, and template matching in a volumetric
microscopic images. In all of them, Appell invariants outperformed the com-
petitors. This is mainly due to more even distribution of zeros of the Appell
polynomials over the image space, which leads to a better representation ability
of the Appell moments, especially if only low-order features are used.
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Appendix

In this appendix, we present recurrent relations for fast and stable computation
of 3D Appell polynomials. The polynomials Um,n,o = Um,n,o(x, y, z) satisfy the
recurrences

Um+1,n,o = x(2m + n + o + 1)Um,n,o + moxzUm,n,o−1 + mnxyUm,n−1,o+
+2mnoxyzUm,n−1,o−1 + m((y2 + z2 − 1)m + (y2 + 2z2 − 1)o+
+(2y2 + z2 − 1)n)Um−1,n,o + moz((y2 − 1)(m + o − 1)+
+(3y2 − 1)n)Um−1,n,o−1 + mny((3z2 − 1)o+
+(z2 − 1)(m + n + 1))Um−1,n−1,o − 2mnoyz(m + n + o − 2)Um−1,n−1,o−1

(4)
Um,n+1,o = y(m + 2n + o + 1)Um,n,o + noyzUm,n,o−1 + mnxyUm−1,n,o+

+2mnoxyzUm−1,n,o−1 + n((x2 + z2 − 1)n + (x2 + 2z2 − 1)o+
+(2x2 + z2 − 1)m)Um,n−1,o + noz((x2 − 1)(n + o − 1)+
+(3x2 − 1)m)Um,n−1,o−1 + mnx((3z2 − 1)o+
+(z2 − 1)(m + n − 1))Um−1,n−1,o − 2mnoxz(m + n + o − 2)Um−1,n−1,o−1

(5)
Um,n,o+1 = z(m + n + 2o + 1)Um,n,o + moxzUm−1,n,o + noyzUm,n−1,o+

+2mnoxyzUm−1,n−1,o + o((x2 + y2 − 1)o + (2x2 + y2 − 1)m+
+(x2 + 2y2 − 1)n)Um,n,o−1 + mox((y2 − 1)(m + o − 1)+
+(3y2 − 1)n)Um−1,n,o−1 + noy((x2 − 1)(n + o − 1)+
+(3x2 − 1)m)Um,n−1,o−1 − 2mnoxy(m + n + o − 2)Um−1,n−1,o−1

(6)

and the polynomials Vm,n,o = Vm,n,o(x, y, z) satisfy the recurrences

(2(m + n + o + 1) + 1)xVm,n,o = Vm+1,n,o − n(n − 1)Vm+1,n−2,o−
−o(o − 1)Vm+1,n,o−2 + m(m + 2n + 2o + 2)Vm−1,n,o

(7)

(2(m + n + o + 1) + 1)yVm,n,o = Vm,n+1,o − m(m − 1)Vm−2,n+1,o−
−o(o − 1)Vm,n+1,o−2 + n(2m + n + 2o + 2)Vm,n−1,o

(8)

(2(m + n + o + 1) + 1)zVm,n,o = Vm,n,o+1 − m(m − 1)Vm−2,n,o+1−
−n(n − 1)Vm,n−2,o+1 + o(2m + 2n + o + 2)Vm,n,o−1

(9)

with the initial conditions U0,0,0 = 1, U1,0,0 = x, U0,1,0 = y, U0,0,1 = z, U2,0,0 =
3x2+y2+z2−1, U0,2,0 = x2+3y2+z2−1, U0,0,2 = x2+y2+3z2−1, U1,1,0 = 2xy,
U1,0,1 = 2xz, U0,1,1 = 2yz, V0,0,0 = 1, V1,0,0 = 3x, V0,1,0 = 3y, V0,0,1 = 3z,
V2,0,0 = 3(5x2 − 1), V0,2,0 = 3(5y2 − 1), V0,0,2 = 3(5z2 − 1), V1,1,0 = 15xy,
V1,0,1 = 15xz, V0,1,1 = 15yz.
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