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Abstract. Muilti-scale learning has been demonstrated to be an excel-
lent deblurring approach in image restoration according to recent studies.
It makes the optimization of the function easier to achieve the global opti-
mum. In order to restore an image that is both incomplete and blurry,
we propose a Masked Scale-Recurrent Network (MSRN) in this paper,
a restoration method based on multi-scale learning and an asymmetric
autoencoder. It implements restoration in an end-to-end manner with-
out any prior knowledge or other given conditions. Firstly, we process the
GoPro dataset and obtain a dataset of incomplete images. And then, we
perform a self-supervised reconstruction pre-training on the autoencoder,
with a series of resblocks that increase the quality of the input image
and improve the representation learning in the latent space. Finally,
on the processed data, we train the model and finish the adjustment
of the entire network. Compared with classical multi-scale learning, we
introduce masks to help the model train more efficiently by focusing on
essential regions of the image. It is also shown that MSRN has successful
image restoration capability as well as robustness, as demonstrated in
our experiments.

Keywords: image restoration · masked autoencoder · residual
network · scale-recurrent network · multi-scale learning

1 Introduction

Image restoration technology is a vital component in image processing, where
the input image may contain various interference. In this article, we will pro-
pose a new restoration method for incomplete blurred images. Additionally, this
method can also be applied to blurry images with severe local damage. Extremely
severe image interference is essentially worthless and does not contribute to
image restoration or even worse. Therefore, interference that cannot be recov-
ered by existing methods can be deleted directly and only the blurred images
that can be restored should be retained. All images with irreversible interference
or severe data loss should be converted into incomplete blurred images, unify-
ing the format of the input pictures. When the input formats are unified, the
first section of our task-incomplete blurry image restoration-is to reconstruct the
images.
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Image reconstruction, also known as inpainting, is a classic problem in com-
puter vision. Popular approaches for image inpainting include foreground-aware
image inpainting [2] and pluralistic image completion [4]. However, these meth-
ods have limitations when the missing parts are too large, or there is not enough
labeled data. Recently, Alexey Dosovitskiy et al. [5] applied Transformer [6] from
natural language processing (NLP) to computer vision (CV), opening up new
possibilities for Transformer in this field. Among them, the mask reconstruction
technique represented by MAE [8] (CV) and BEiT [10] (NLP) is a self-supervised
training method that can effectively address the need for labeled data. The image
mask reconstruction model MAE is an autoencoder with ViT [5] as its backbone.
Its training efficiency is significantly higher than a simple ViT model, and its
generalization ability is competitive in image reconstruction tasks.

The second section of the task is deblurring. Researchers in various fields have
been conducting in-depth research to restore blurred or defocused [1] images to
clear images as much as possible. The goal is to recover various details that
should exist in a sharp image and facilitate subsequent picture processing. In
the past five years, some methods, including conditional methods, have achieved
quite remarkable results [3,9,12,15,16,18,20,21,25]. However, blurry images are
usually accompanied by irreversible distortion, large-scale dense interference, and
data loss due to various factors. This means the input image may change from a
simple blurred image to a blurred image with several other interference, and in
the worst case, it may become an incomplete blurred image. Therefore, common
image restoration algorithms may only play a limited role in such circumstances.
Among these algorithms, the multi-scale learning network is easy to expand
and has a simple framework with a comparatively small number of parameters,
making it easier to train. Therefore, we use SRN [3], which is designed based
on scale-recurrent structure, as the backbone of our network and extend SRN
to make the entire network more suitable for the restoration task of incomplete
blurred images.

Based on the analysis above, we propose a new masked scale-recurrent net-
work (MSRN), which is based on MAE and SRN. This network utilizes the visual
representation learning ability of MAE for image reconstruction and exploits
SRN’s multi-scale recurrent network for fuzzy image restoration. On this basis,
to adapt MSRN to new learning tasks, we have made the following three contri-
butions:

Deep MAE. We introduce a deep masked autoencoder (DMAE) which puts
a series of resblocks [22] in front of the autoencoder to preprocess the input
image, resulting in a more accurate latent representation of images. This allows
the autoencoder to reconstruct more valuable information on the missing parts
of images for deblurring.

A New Scaling Method. We propose a new scaling method that adds a new
learning scale and utilizes masks in scaling images. This approach forces the
model to learn more accurate feature representation compared to training with
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complete photos at different scales and ensures that images learned at different
scales do not exhibit pixel distortion.

Shortcut Connection. We build a shortcut connection between DMAE and
SRN, which shares the position of invisible patches with the multi-scale network.
With this connection, SRN learns more about the location of incomplete parts
and achieves better performance in restoring those patches restored by DMAE.

2 Related Work

In this section, we will recap the background of image restoration concisely and
briefly introduce related structures including their basic concepts and character-
istics.

2.1 Image Deblurring

Image blur can be divided into motion blur, defocus blur, Gaussian blur, and
mixed blur. Image deblurring with known fuzzy kernels is called non-blind image
deblurring. The image whose fuzzy kernel is unknown is called blind image
deblurring. The deep learning neural network based deblurring method, which
is also a commonly used approach nowadays, has achieved quite good results
on complex images with multiple unknown fuzzy kernels. After the publication
of using deep learning networks to predict the direction and width of blur for
deblurring [7], Su et al. [11] proposed a deep learning method for video deblur-
ring, which uses an autoencoder with shortcut connections. Furthermore, the
deep multi-scale network proposed by Nah et al. [23] obtained fruitful achieve-
ment in deblurring tasks.

In multi-scale deblurring networks, the scale-recurrent network (SRN) pro-
posed by Tao et al. [3] is simpler and has fewer parameters. Compared to [23],
it is easier to train while achieving better results. SRN is inspired by the very
successful “coarse-to-fine” scheme for single-image deblurring. The input is a
series of images sampled from the original image at different scales and the cor-
responding network outputs a intermediate image according to the given resized
image. Next, the upsampled processed image and the image from the next scale
are given to the network of the next scale. At the same time, there is a chan-
nel between different scales transferring hidden parameters to other scales. It
is used to share implicit state parameters with other scale networks to improve
convergence performance. It is precisely because of this that the total number
of parameters can be significantly reduced. SRN can be described as:

Ii, hi = SRN(Bi, UP (Ii+1), UP (hi+1); θSRN ) (1)

where i represents the index of different scales. Bi and Ii are blurry images and
intermediate images at i scale. hi is hidden state features at the i-th scale. UP
is the operation that upsamples or converts input from i + 1 to i scale. θSRN is
other parameters of SRN.
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Each scale’s network of SRN uses a symmetric CNN architecture with skip-
connections. Similar to U-net [19], the first half of the network gradually converts
the input i-th scale image into latent spatial features with smaller resolution and
multiple channels. The second half of the network gradually restores the features
to the original i-th scale image. Encoder and decoder of the same scale are
connected by a channel, which also can accelerate convergence. Based on [22,23],
SRN employs ResBlocks and adds several ResBlocks between the encoding and
decoding convolution layers. The loss function applied by SRN is the simple
Euclidean loss and has achieved sufficiently good qualitative and quantitative
results.

2.2 Image Inpainting

Image inpainting is to restore the damaged part of the image by algorithms and
keep the restoration as consistent as possible with the original image. Image
inpainting is not only a crucial task in computer vision but also a basic task
for other subsequent processing of images. Classical image inpainting includes
inpainting methods based on partial differential equations [34] and samples [32],
but they usually consume a lot of computing time and have limited recovery
effects. Later, with the success of deep learning in image processing, researchers
tried to introduce different deep networks to achieve inpainting and proposed
a large number of methods for inpainting such as autoencoder, U-Net [19],
GAN [33], and Transformer [6]. Numerous experiments have shown that these
methods have achieved better performance than traditional methods in inpaint-
ing.

2.3 CNN/Transformer for Image Processing

In deep learning networks, as the depth increases, the network becomes more
difficult to train [17]. ResNet [22] makes training for deep networks much easier
than before. It reconstructs the network and learns residual functions with refer-
ence from the output of the former layer during learning. Specifically, it creates
a shortcut from input to output. This simple but effective approach prevents the
model from gradient disappearing when the network is deep.

The masked autoencoder designed by He et al. [8] is a more general denoising
autoencoder [14]. It is self-supervised and has two core innovations on the basis
of ViT-Large/-Huge [5]. The first one is the asymmetric encoder-decoder archi-
tecture. The encoder only encodes visible patches while the decoder can see all
patches. Experiments proved that this lightweight structure not only increases
recovery accuracy but also drastically reduces floating point operations. The sec-
ond core design is to mask the image with a high proportion, in that a small
amount of masking impedes the model’s attempt to acquire worthy knowledge,
which will be no different from simple interpolation algorithms. Results showed
that this design forces the model to learn better representations and the model
achieves the best performance at a mask rate of around 75%.
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Fig. 1. The architecture of our proposed MSRN

3 Approach

Our goal is to design a universal, end-to-end network to complete the learning
of incomplete blurry image restoration. Therefore, relying solely on multi-scale
learning of SRN cannot complete this task. We subsequently introduced MAE
and, to achieve the best recovery effect, image reconstruction should precede
image deblurring. In addition, this task is more complicated than simply deblur-
ring, so it is necessary to enhance the overall learning ability of the network. To
check the effectiveness of our method, we tried to train SRN alone and MAE plus
SRN to recover an incomplete and blurry image. When we were training these
two networks, however, we found that neither using the SRN network alone nor
simply connecting MAE and SRN can achieve good recovery results, introduced
in our experiment. Our proposed MSRN is an image restoration network that
combines mask reconstruction and multi-scale learning. It implements the task
of using a single network to complete reconstruction and deblurring. Figure 1
illustrates the overall structure of our proposed network. It takes an incomplete
blurry image as the input and completes the image inpainting through DMAE.
And the reconstructed image enters the improved SRN network for deblurring.
The output is a corresponding complete and unambiguous picture. Thus, our
network is able to recover in an end-to-end manner. The whole network can be
described as:

Ii =

{
ISRN [C(Mi(B), UP (Ii+1)), UP (hi+1); θ], i �= 1
ISRN [C(B, UP (Ii+1), IB∗), UP (hi+1); θ], i = 1

(2)

where i denotes the scale index. IB∗ represents incomplete and blurry images
after ResBlocks. Ii is the intermediate representation at the i-th scale, with
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i = 1 is the output of MSRN. hi stands for hidden parameters in LSTM [24]
of different scale networks. Operation C is concatenation while M is scaling by
mask. B is the complete blurry image after DMAE and the process in DMAE
can be described as:

IB∗ = Res(IB)
B = MAE(IB∗)

(3)

where IB is the input image.

Conv0 Conv1 Conv0 Conv1

Conv0Conv1Conv0Conv1
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Fig. 2. The ResBlocks in DMAE

3.1 DMAE

Since MAE is a flexible autoencoder that exhibits excellent performance in rep-
resentation learning on images and is suitable for multiple tasks [8], including
image classification, target detection, and image segmentation, it is necessary
to make some improvements on MAE to improve its performance on a single
task. We use DMAE in the first half of MSRN to restore incomplete blurred
images to complete blurred images. During the pre-training, we introduced a
series of ResBlocks before the MAE, as shown in Fig. 1. The whole of these
ResBlocks is a simple pre-trained network that improves the quality of blurry
images, which allows MAE to generate clearer patches on the missing parts. We
only keep the uncovered parts of the result. The structure of ResBlocks is shown
in Fig. 2. Because the model will become increasingly difficult to train if the
network deepens [26,28], we use residual connection [22] in each block, which
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skips one or more layers. It maintains the learning gradient of the network at a
trainable level without additional parameters and computational complexity.

Based on [8], the image is segmented using the method in [5] that divides
the image into patches. Next, we mask 75% of the image by “random sam-
pling” [8] when training MAE. In the encoder, visible patches are mapped to
the latent space through linear projection with position information. The input
of the decoder consists of both visible and invisible patches. The decoder then
restores the information of the incomplete parts.

3.2 Improved SRN

In the scale-recurrent network [3], each scale is composed of a symmetric and
skip-connected autoencoder [27] with an LSTM in the middle of it. The output
of each scale’s network is the feature map learned by this scale network. After
being upsampled, it will be superimposed into the image of the next scale along
the depth direction and they are input to the next scale network. At the same
time, the parameters in the LSTM [24,30] will also be transferred to the LSTM
of the next scale. On this basis, we have made the following improvements.

The first improvement we made in SRN was the application of masks to
scale images, as shown in Fig. 1. In image convolution, images are in the form
of large matrices, while encoders encode discrete patches. Therefore, we have
considered the following two issues when performing masking. The first is that
using random sampling will cause the relative positions between various patches
to be disrupted, which hinders the scaled image from presenting the correct
shape. The network consequently can’t learn valuable image features. The second
is that the image will also exhibit significant distortion when the mask scale is
too large, which can also cause the aforementioned problems. Therefore, we
mask the image by grid-wise sampling [8], with a width of 16 pixels. It reduces
the redundancy of the image while ensuring that the image is recognizable,
allowing the network to learn more content. And this approach has been verified
in subsequent experiments.

In order to improve the overall fitting ability of the network, we put forward
another improvement which is the addition of a scale network. In [3] and our
experiments, it has been confirmed that increasing the number of scales can
improve image restoration performance. However, in our experiments, we found
another issue which is the distortion on restored patches is still very distinct.
We believe the reason is that there is a notable difference between the blurred
portions recovered by DMAE and other blurred portions. In response to this
distortion, we add the output result of ResBlocks in DMAE to the last-scale
network, transferring the location of the missing patch on the original image to
the back-end network. Our experiments have shown that our model with these
modifications is more effective than the baseline.
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3.3 Loss Function

The loss function in DMAE is the mean squared error (MSE) and we only
calculate it on the missing part of the image. In the improved SRN, we use
Euclidean loss [3]. The Euclidean loss on each scale network is

LE =
n∑

i=1

‖Ii − I∗
i ‖22

Ni
(4)

where Ni is the total number of elements in i-th scaled image. Ii and I∗
i are the

output image and sharp image respectively at the i-th scale. In fact, our loss
functions are simple since we learned that the mean square error has sufficient
capability to train a good network during our work.

4 Experiments

The training and testing of MAE, SRN and MSRN were completed on the
GoPro [23] dataset. To reasonably shorten training time and meet MAE input
requirements, we adjusted the resolution of all images from 1280 × 720 to
640 × 640 using bilinear interpolation, and the GPU in the training was RTX
3060 Ti. The incomplete ratio is 0.25. For a fair comparison, the methods in
each experiment were completed under the same training images. In the exper-
iment, we compared MSRN with other methods and tested the performance of
the network under different conditions.

4.1 Dataset

The GoPro dataset is generated by the GOPRO4 Hero Black camera [23]. Blur
images are obtained by averaging several consecutive latent frames and the cor-
responding clear images are the intermediate frames of these consecutive frames.
This dataset is publicly available, with 3214 pairs of blurred and clear images
with a resolution of 1280× 720. There are 1111 pairs of test images, accounting
for about one-third of the total dataset. Both Nah et al. and SRN tested on this
dataset and successively proposed dynamic deblurring SOTA models.

4.2 Model Training

For the pre-training of ResBlocks, we used complete images for training. Because
the purpose of introducing ResBlocks is only to pre-process the input image, we
conducted 400 epochs during training. In the pre-training of MAE, we conduct
self-supervised training for the autoencoder. The size of masks is 16 × 16 and
other settings are the same as the default configuration in [8]. In improved SRN,
the training data are original masked images, images restored by DMAE, and
clear images. We did not change much in parameters. The parameters of Adam
solver [29] are β1 = 0.9, β2 = 0.999 and ε = 1 × 10−8. The variables in our
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model are initialized by Xavier method [28]. The learning rate is exponentially
attenuated, with an initial value of 1 × 10−4. The batch size is 16 while the
training epoch is 3000 and it is enough in that we noticed the models had
already converged very well at around the 2600th epoch.

4.3 Comparisons

To the best of our knowledge, due to the lack of a specific restoration model
for incomplete blurred images in recent work, we mainly compared our methods
with other applications of SRN, which is state-of-the-art in dynamic deblurring.
In addition, we also compared ours with previous state-of-the-art [23] in dynamic
deblurring. The results are shown in Fig. 3. Note that the images in the first row
are from the training set, and the subsequent images are from the testing set.

(a) (b) (c) (d) (e) (f)

Fig. 3. Visual comparison. (a) Input. (b) Results of Nah et al. [24]. (c) Vanilla SRN.
(d) Results of M SRN. (e) Our results. (f) Ground Truth

Initially, we tried to use Vanilla SRN to complete reconstruction and deblur-
ring, but, as shown in Fig. 3, SRN’s learning ability is not enough and the effect of
restoration is limited. Later, we used MAE for image reconstruction after SRN,
but there were very obvious edges around the restored patch which means that
restoration should be in front of deblurring. Based on former experiments, we
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decided to adopt MAE first and SRN next. However, simply connecting these
two models does not have a good recovery effect on the patches restored by
MAE, and even the deblurring effect on the other visible parts becomes poor.
Therefore, our proposed MSRN is based on the experience above. It enhances
the overall learning ability of the model and makes some improvements for the
restoration of incomplete parts. In the test, MSRN achieves good results in both
image deblurring and image reconstruction, as shown in Fig. 3.

Table 1. Quantitative comparison between ours and other state-of-the-art methods of
dynamic scene deblurring on test data.

Methods Metrics

PSNR ↑ SSIM ↑ MS-SSIM ↑ LPIPS ↓ SRER ↑ RMSE ↓
Input 10.5701 0.6696 0.5532 0.5160 52.7439 0.0185

Nah et al. 22.3217 0.7082 0.8347 0.4020 56.2137 0.0048

Vanilla SRN 23.0606 0.7720 0.8306 0.2534 56.0942 0.0049

Mask SRN 23.4083 0.7883 0.8479 0.2538 56.6596 0.0042

SRN M 23.2217 0.7386 0.8682 0.3481 56.6372 0.0043

M SRN 23.7817 0.7924 0.8697 0.2543 57.2761 0.0037

Ours 24.4951 0.8004 0.8637 0.2383 57.2984 0.0037

In order to verify the effectiveness of our model, we have designed a series of
baseline models, among which SRN and the method of Nah et al. are popular
images deblurring models. We use PSNR, SSIM, MS-SSIM [31], LPIPS [13],
Signal to Reconstruction Error Ratio (SRER) and Root-MSE (RMSE) as metrics
to evaluate the quality of image restoration. The results are shown in Table 1.
Mask SRN is the method that scales images by grid mask and the results prove
that the learning ability of SRN with the mask is stronger. SRN M means adding
MAE to the back of the original SRN. It deblurs the mask image first using SRN
and then reconstructs the image using MAE. M SRN is the model in which
MAE is inserted in front of SRN, and the result indicates that the latter method
has a better effect in our experiment. Finally, with the exception of MS-SSIM,
our model achieves the best results. Note that in Fig. 3, we can more clearly
demonstrate the excellent recovery effect of our model for restoring those invisible
patches while deblurring.

4.4 Performance of Different Strategy

To verify that increasing the number of scales in our network can improve the
learning ability of the network, we trained models under different scales. Simi-
larly, we use the same data for training. The results are shown in Table 2 and
they show that increasing the number of scales can improve the performance of
the model. It is worth noting that when the number of scales increases from 2
to 3, the performance of the model still has a significant improvement. However,
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Table 2. Results of different scales.

Number of scales PSNR ↑ SSIM ↑ MS-SSIM ↑ LPIPS ↓ SRER ↑ RMSE ↓
1 Scale 21.3659 0.6547 0.7935 0.4669 55.8059 0.0053

2 Scales 22.1812 0.7120 0.8093 0.3909 56.0156 0.0048

3 Scales 22.7207 0.7639 0.8251 0.3423 56.2244 0.0045

4 Scales 23.3764 0.7693 0.8357 0.3336 56.6743 0.0042

Fig. 4. Performance of MSRN and SRN under different degrees of incompleteness

as the number of scales increases from 3 to 4, the improvement of the model has
become very limited.

We further examine our model in different deficiency conditions. As shown
in Fig. 4, The horizontal axis is the ratio of incompleteness, and the vertical
axis is the PSNR indicator of the test results. In order to explore the recovery
effect of the model under a high rate of incompleteness. Besides the original
25% mask rate, we conducted experiments with mask rates of 50%, 60%, 70%,
and 80% to evaluate the performance of the model under extreme conditions.
When the mask rate gradually increases, our model mainly exhibits a linear
decline. Significantly, when the mask rate is greater than 60%, the gap between
the two gradually widens. And the downward trend of SRN shows a parabolic
decline, while our model still maintains a linear decline. From this point, it shows
that our model still has a certain recovery effect for severely damaged blurred
images, revealing robustness. Furthermore, we have also attempted to change
other parts of the network. For instance, we tried different loss functions for
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training and different activation function in resblocks. However, we have found
that our current MSRN performs best.

5 Conclusion

In this paper, we proposed a novel and robust model, called MSRN, for restoring
incomplete and blurry images without any prior knowledge. MSRN utilizes a new
scaling method and adds a scale to the model to improve the restoration effect of
the missing parts, along with DMAE and a shortcut connection to address the
characteristics of incomplete images. The key feature of MSRN is the “coarse-
to-fine” scheme for image restoration and the use of an asymmetric autoencoder
structure for image reconstruction. Our extensive experiments demonstrate that
MSRN outperforms existing methods, including DeepDeblur [23] and SRN. Fur-
thermore, we confirm that CNN and Transformer can be effectively combined
to provide new solutions for solving novel problems. In future work, we plan to
introduce object detection techniques to further improve our design and achieve
better image restoration on more diverse and practical incomplete and blurry
images.
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