
Improving Generalization of Multi-agent
Reinforcement Learning Through

Domain-Invariant Feature Extraction

Yifan Xu1,2, Zhiqiang Pu1,2(B), Qiang Cai1,2, Feimo Li1, and Xinghua Chai3

1 Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
2 School of Artificial Intelligence, University of Chinese Academy of Sciences,

Beijing 100049, China
zhiqiang.pu@ia.ac.cn

3 The 54th Research Institute of China Electronics Technology Group Corporation,

Beijing, China

Abstract. The limited generalization ability of reinforcement learning
constrains its potential applications, particularly in complex scenarios
such as multi-agent systems. To overcome this limitation and enhance
the generalization capability of MARL algorithms, this paper proposes
a three-stage method that integrates domain randomization and domain
adaptation to extract effective features for policy learning. Specifically,
the first stage samples environments provided for training and testing
in the following stages using domain randomization. The second stage
pretrains a domain-invariant feature extractor (DIFE) which employs
cycle consistency to disentangle domain-invariant and domain-specific
features. The third stage utilizes DIFE for policy learning. Experimental
results in MPE tasks demonstrate that our approach yields better per-
formance and generalization ability. Meanwhile, the features captured by
DIFE are more interpretable for subsequent policy learning in visualiza-
tion analysis.

Keywords: multi-agent reinforcement learning · domain adaptation ·
domain randomization

1 Introduction

As reinforcement learning (RL) continues to achieve success in games [13,18,24],
researchers are currently working on broader applications [14,16,20]. Implemen-
tation of RL in complex tasks like applications in real world demands algorithms
that can adapt to variations, unlike tasks with static environments, for example,
board games [3] and video games [24]. However, traditional RL methods strug-
gle to maintain performance when faced with even slight differences between
training and testing environments, particularly in complex and dynamic multi-
agent settings. To improve agents’ generalization ability, domain randomization
(DR) has emerged as a common method [15,17,21]. DR uses a distribution,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14259, pp. 49–62, 2023.
https://doi.org/10.1007/978-3-031-44223-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44223-0_5&domain=pdf
https://doi.org/10.1007/978-3-031-44223-0_5

50 Y. Xu et al.

rather than fixed parameters, to model environment dynamics, inducing uncer-
tainty during training processes. Ranging from image-based observations [17] to
internal dynamics [14], all accessible parameters are available for randomization.
Tobin [21] and Sadeghi [17] first implement DR in robotics by randomizing visual
variants in input images under simulation where various training environments
improve object detection accuracy when transferring the policy to reality. Peng
[15] randomizes dynamic variations of a robotics arm in push tasks and shows
that memory-based models achieve high performance than memoryless models
through experiments. Chen [2] fills the blank of theoretical analysis in DR by
deriving the upper bound of the gap between optimal policies in simulation and
reality. In the assumptions of [2], obtaining the optimal policy in DR is for-
mulated as solving a latent Markov decision process (LMDP), where an LDMP
contains a series of MDPs. The sample complexity of policy optimization in
LMDP grows exponentially with the number of MDPs in LMDP [9]. Therefore,
sample-efficient algorithms for training policies in DR are in great demand. Ope-
nAI [14] proposes automatic curriculum training to improve sample efficiency.
However, a delicately crafted curriculum evaluation protocol is needed to guar-
antee that algorithms learn progressively according to task difficulty. Mandlerkar
[12] creates an adversary policy to sample environments where current policies
fail. However, the adversarial approach leads to learning pessimistic samples and
the training process is likely to be unstable. In general, optimizing RL policy in
domain randomization remains intractable.

In the context of multi-agent reinforcement learning (MARL), the inherent
uncertainty of the environment is exacerbated due to dynamic multi-agent sys-
tems. The number of agents and agents’ configurations can vary greatly among
different environments, leading to variations in agent interactions and making
policy transfer even more challenging.

In order to improve generalization performance of RL, it is essential that
the optimal policy in the LMDP and the optimal policies in individual MDPs
exhibit similarities [6]. To effectively learn policies in domain randomization,
we introduce domain adaptation (DA) into our methodology, thereby lever-
aging this similarity. Initially used for style migration in image classification
tasks, DA helps to discover shared feature spaces across different image classes
and filter out irrelevant features [10]. Methods in DA contain discrepancy-based
approaches [11,22], adversarial-based approaches [4,7], and reconstruction-based
approaches [1] [5]. The discrepancy-based approaches focus on reducing the dis-
tributional discrepancy between the source and target domains. This discrepancy
is often measured using distance metrics such as the maximum mean discrep-
ancy (MMD) [22], second-order moment, or k-oder moment [19]. However, these
metrics only accurately capture differences under specific assumptions, which
can lead to suboptimal adaptation performance. Besides, labeled target domain
data is required to compute the distance, which is costly in some scenarios. The
adversarial-based approaches learn domain-invariant representations by training
a domain discriminator to distinguish between the source and target domains [4].
The features are extracted in an unsupervised manner, without requiring labeled

Improving Generalization of Multi-agent Reinforcement Learning 51

target domain data [23]. However, training the discriminator to accurately dis-
tinguish between the source and target domains requires lots of data and may
cause unstable training [26]. The reconstruction-based approaches learn domain-
invariant representations by reconstructing the input data from the learned fea-
tures. These methods leverage the idea that a good domain-invariant repre-
sentation should preserve the essential information needed to reconstruct the
input data while removing the domain-specific information. Bousmalis [1] learns
disentangled domain-invariant and domain-specific features through shared and
private encoders, respectively. Xing [25] uses cycle consistency to learn feature
disentanglement in autonomous driving. In RL simulations, it is convenient to
collect a vast amount of unlabeled data, which makes the use of reconstruction
models a promising option for feature extraction.

Therefore, our work proposes a method that uses DA to learn a latent rep-
resentation across a series of randomized environments in multi-agent scenarios.
We train a module called domain-invariant feature extractor (DIFE) in domains
with randomized parameters and use a cycle-consistent variational autoencoder
(cycle-consistent VAE) [8] to disentangle general and specific feature embed-
dings. This allows agents to utilize domain information in downstream policy
learning.

Experiments are conducted in a series of multi-agent coverage tasks with
different parameter configurations. Results show that our approach yields bet-
ter performance and generalization ability. Meanwhile, the features captured
by DIFE are more interpretable for subsequent policy learning in visualization
analysis.

2 Preliminaries

2.1 Multiagent Reinforcement Learning

Multi-agent reinforcement learning is a sub-field of reinforcement learning that
focuses on learning how multiple agents can interact with each other in a
dynamic environment to achieve common goals. This process can be described
by a Markov game (N,S,A, T, r, γ), where N represents the number of agents,
S is the joint state space of agents S = S1 × · · · × Si × · · · × SN , where
Si is the state space of agent i, A is the joint action space of agents A =
A1 ×· · ·×Ai · · ·×AN , where Ai is the action space of agent i, T is the transition
function, T : S × a1 × · · · × ai × · · · × aN × S → [0, 1], where ai is the action
of agent i. ri(st, a1, . . . ai, . . . , aN , s′

t+1) is the reward function for agent i, where
st is the state of agent i at time step t and s′

t+1 is the state of agent i at time
step t + 1. In MARL, each agent perceives an observation of their surrounding
environment ot at time step t. Based on this information, the agents select joint
actions according to policy π. After carrying out the actions, states of the agents
and the environment change based on transition function T . Meanwhile, each
agent receives a reward signal from the environment, which is used to update
the policy.

52 Y. Xu et al.

2.2 Domain Randomization and LMDPs

In this section, we introduce domain randomization (DR) under the framework
of latent Markov decision process (LMDP). An LMDP is composed of a set
of MDPs M and a distribution μ over M. An MDP Ml in M can be sampled
from the distribution μ, and can be represented by (S,A, Tl, Rl, ρl), where S and
A are shared state space and action space in M, Tl is the sampled transition
function, Rl is the sampled reward function, ρl is the sampled initial states in
each episode. The optimal policy in LMDPs is defined as the policy π with the
best expectation performance over μ:

V ∗
M := max

π∈Π

|M|∑

l=1

wlEπ

[
H∑

t=1

rt

]

where V ∗
M is the optimal total value function in M of the optimal policy π∗ in

a policy set Π, ωl is the weight coefficient for Ml, H is the episode horizon for
each MDP.

In DR, similar MDPs of the same task form the MDP set M in LMDP.
Considering two MDPs Mi and Mj in M, Mi and Mj are represented by
(Si, Ai, Ti, Ri, γ) and (Sj , Aj , Tj , Rj , γ), respectively. To guarantee the perfor-
mance of the optimal policy, it is essential that the optimal policy in the LMDP
and the optimal policies in individual MDPs exhibit similarities. Therefore, Mi

and Mj must have similar state space, action space, transition functions and
reward functions, i.e. Si ≈ Sj , Ai ≈ Aj , Ti ≈ Tj , Ri ≈ Rj . The values of
Si, Ai, Ti, Ri for MDP Mi are indirectly determined by the parameters of envi-
ronment in Mi. Therefore, the distribution μ of MDPs in M can be transformed
to a distribution over tunable environmental parameters in M. During training,
an MDP Ml in M is sampled at the start of each episode and remains fixed
throughout the whole episode. Agents interact with Ml without knowing the
identity.

2.3 Domain Adaptation

In this subsection, we introduce domain adaptation (DA) in the framework of
transfer learning. In transfer learning, data is categorized into source domains
and target domains. In reinforcement transfer learning, a domain is viewed as an
MDP. A source domain is defined as Ms and a target domain is defined as Mt.
Transfer learning methods utilize knowledge learned in Ms to facilitate learning
in Mt.

For policy optimization in a single static MDP, the underlying trajectory
distributions of training and testing are the same, i.e. Ms = Mt. However, in
MDPs with dynamic environments, traditional RL algorithms fail due to domain
shift, i.e. Ms �= Mt. DA addresses this issue by extracting shared latent state
representations among the source and target domains, which can be utilized
in multi-domain policy optimization. However, DA does not explicitly consider
action space, dynamics transitions and reward functions. Therefore, to apply

Improving Generalization of Multi-agent Reinforcement Learning 53

DA, the targeted MDPs should have the same action space, similar transitions,
similar reward functions and distinct state spaces, i.e. As = At, Ts ≈ Tt, Rs ≈
Rt, Ss �= St. In our method, we use DA to optimize policies in DR.

3 Method

In this section, we adopt the formulations and expressions presented in Sect. 2. To
improve the generalization ability of MARL algorithms, we first employ domain
randomization to generate an LMDP with various environmental parameter con-
figurations in our method. To optimize policies in this LMDP, we leverage domain
adaptation to discover shared feature space among MDPs and design curricula
for policy training. Finally, our policy is evaluated on a set of MDPs sampled
from distributions in domain randomization. Our method comprises three stages:
1) Environment sampling. 2) Pretraining. 3) Policy learning. Figure 1 shows the
framework of our method.

Fig. 1. The framework of our method

3.1 Environment Sampling

For a given task, the complexity of the task is primarily determined by some
decisive parameters. To create a smooth task space for generalized policy train-
ing, we first reveal the relations of these decisive parameters and build reasonable
distributions for them. Then, we sample environments based on the distributions
to form an environment set.

Consider an LMDP M with K environmental variable parameters vi, i =
1, 2, . . . ,K, each parameter has a predefined value range. Firstly, a base policy

54 Y. Xu et al.

πb is trained in a base environment Eb and evaluated in environment i with
variations in vi compared to Eb. To assess the importance of each parameter,
a performance decrease threshold Pth is defined. After K groups of evaluation,
parameters with performance decrease above Pth are identified as decisive param-
eters. To build a sampling distribution μ over (u, v), regression analysis is per-
formed based on the performance of πb in different environments with varying
values of (u, v). Once we obtain distribution μ through experiments, we use it
to randomly generate E environments and sample S seeds for the initial states
ρl of agents in each environment.

3.2 Pretrain

After collecting E × S environments, we can exploit the mutual information
present within these environments through pretraining, as depicted in Stage 2
of Fig. 1. Specifically, we execute a scripted searching policy in these E environ-
ments (with each environment running S seeds), collect and store E batches of
observations denoted as O1, O2, · · · , OE . Next, we train our domain-invariant
feature extractor (DIFE) module by sampling observations from the stored
batches.

The DIFE module of our method is based on cycle-consistent VAE, a gener-
ative model designed to learn disentangled latent representations of data. The
cycle-consistent VAE is grounded on the concept of cycle consistency, which
asserts that the composition of well-trained forward and reverse transformations,
in any order, should closely approximate an identity function. Cycle consistency
comprises of forward consistency and reverse consistency. In the VAE model, the
encoder is a forward transformation that converts an input image into a latent
feature vector, while the decoder is the reverse transformation that converts the
latent vector back to a reconstructed image. Forward consistency implies that
the newly reconstructed observation should be similar to the original observa-
tion after encoding and decoding the original observation. Reverse consistency
implies that the newly obtained features should be similar to the original fea-
tures after decoding and encoding them. Therefore, to obtain cycle consistency,
we use two reconstruction losses for the forward and backward transformations.
To provide a comprehensive overview of the training process of the DIFE mod-
ule, we discuss a simple scenario involving two domains, where in our work each
domain represents an MDP with a distinct set of environmental parameters.

As depicted in Fig. 2, assuming that two domains of data are provided,
domain i and domain j. Oi and Oj represent the observation sets in domain i and
domain j. oi

1 and oi
2 are two different observations in Oi. oi

3 and oj
4 are random

observations in Oi and Oj , respectively. The encoder function Encθ(·) is parame-
terized by θ and the decoder function Decφ(·) is parameterized by φ . Processed
by the encoder, the observations are mapped into latent feature embeddings
oi
1 → zi

1 =
〈
z̄i
1, ẑ

i
1

〉
, oi

2 → zi
2 =

〈
z̄i
2, ẑ

i
2

〉
, oi

3 → zi
3 =

〈
z̄i
3, ẑ

i
3

〉
, oj

4 → zj
4 =

〈
z̄j
4, ẑ

j
4

〉
,

where zi
1, z

i
2, z

i
3, z

j
4 are latent features of oi

1, o
i
2, o

i
3, o

j
4, z̄i

1, z̄
i
2, z̄

i
3, z̄

j
4 are domain-

invariant features in zi
1, z

i
2, z

i
3, z

j
4 and ẑi

1, ẑ
i
2, ẑ

i
3, ẑ

j
4 are domain-specific features in

zi
1, z

i
2, z

i
3, z

j
4. The loss function of DIFE contains two parts.

Improving Generalization of Multi-agent Reinforcement Learning 55

Fig. 2. Cycle-consistent VAE

Internal Loss. This loss corresponds to forward transformation in cycle con-
sistency and contains both the self-reconstruction loss for VAE and the recon-
struction loss for domain-specific feature extraction. Domain-specific features
exhibit variation across domains but remain constant within a given domain.
Therefore, if two features within the same domain have their domain-specific
components swapped, the reconstructed observations should restore the original
observations, which is oi

1 �= oi
2, z̄

i
1 �= z̄i

2, ẑ
i
1 = ẑi

2. The internal loss contains both
VAE reconstruction loss and domain-specific feature extraction loss.

Linternal = LVAE + k1Lspecific

LVAE = EEncθ(z̄i
1,ẑi

1|oi
1)

[
log Decφ

(
oi
1 | z̄i

1, ẑ
i
1

)]

Lspecific = EEncθ(z̄i
1,ẑi

1|oi
1)·Encθ(z̄i

2,ẑi
2|oi

2)
[
log Decφ

(
oi
1 | z̄i

1, ẑ
i
2

)]

where Linternal represents the internal loss of DIFE, LVAE represents the VAE
loss, Lspecific represents the loss for domain-specific feature extraction, and k1 is
the weight coefficient for LVAE and Lspecific.
External Loss. This loss corresponds to reverse transformation in cycle consis-
tency. Domain-invariant features contain little domain-specific information but
can be reconstructed across all domains. Therefore, if the domain-specific feature
ẑi
3 of the observation oi

3 is replaced by ẑj
4, the embedding of the reconstructed

observation oi′
3 = Decφ

(
z̄i
3, ẑ

j
4

)
can still restore the domain invariant feature z̄i

3.

Lexternal = Ez̄i

[∥∥∥Encθ

(
Decφ

(
z̄i
3, ẑ

j
4

))
− z̄i

3

∥∥∥
1

]

Ltotal = Linternal + k2Lexternal

where Lexternal represents the external loss of DIFE, Ltotal represents the overall
loss of DIFE, and k2 is the weight coefficient for Linternal and Lexternal.

56 Y. Xu et al.

3.3 Policy Learning

Upon completing the pretraining stage, the parameters in the DIFE module are
frozen to aid policy learning, as depicted in Stage 3 of Fig. 1. During this stage,
a batch of environments is randomly sampled from the distribution μ. Initially,
the policy is optimized in a random order of these environments to evaluate its
performance and efficiency. Subsequently, the policy is optimized across these
environments, arranged in ascending order of task difficulty, to enhance its per-
formance in more challenging tasks. Finally, a new batch of environments is
sampled from μ to assess the policy’s generalization ability. Any MARL algo-
rithm can be used as the policy training algorithm.

Our experiments demonstrate that the DIFE module improves policy perfor-
mance in various scenarios and enhances generalization ability. Furthermore, this
module can be used as a plugin in all MARL algorithms to aid policy learning.

4 Experiment

We selected the multi-agent particle environment (MPE) as our test platform
due to its diverse configurations of multi-agent environments. In our previous
work [27], we addressed the challenging problem of cooperative coverage and
connectivity maintenance in MPE by utilizing graph attention networks. This
task encompasses a broader range of environmental configurations compared to
other MPE tasks. The primary experiments are conducted in this task, and more
details can be found in [27]. Agents in this task need to cooperate in a 2D space
to cover targets within their coverage range while maintaining communication
links with other agents within their communication range. The goal of this task is
to cover as many targets as possible while ensuring a connected communication
topology among the agents. The evaluation metrics for this task include training
reward, coverage rate, disconnection rate, and success rate. The coverage rate
is the percentage of covered targets, the disconnection rate is the percentage of
stpng where agents are disconnected, and the success rate is the percentage of
episodes where agents cover 90% of the targets while maintaining connectivity.

To identify the most influential parameters of this task, we first conduct
experiments on a range of parameters. We use MAPPO as our base algorithm.
Our testing results indicate that the size of the arena h and the number of agents
N are the primary factors. Intuitively, if we represent the joint state space as
S = S1×· · ·×Si×· · ·×SN , where Si is the state space of an individual agent i and
N is the number of agents, the arena size h determines the range of individual
state spaces, while the range of joint state space increases exponentially with N .

During the pretraining process, we employ a scripted searching policy to
gather observations from sampled environments. By analyzing the testing per-
formance of our base policy, we establish correlations between h and N , and
determine a sampling distribution of the two parameters. We then randomly
sample 100 environments in this distribution to gather observations.

Improving Generalization of Multi-agent Reinforcement Learning 57

After pretraining, we freeze the encoder layers to generate domain-invariant
features in downstream policy training. We select three representative configu-
rations with different N and h to illustrate the performance of our method in
Fig 3.

(a) N = 3, h = 1.0

(b) N = 5, h = 1.2

(c) N = 10, h = 2.0

Fig. 3. Training curves of MAPPO and DIFE (ours) in 3 representative scenarios.
(Three rows represent three scenarios, respectively. Four columns, from left to right,
represent training reward, coverage rate, disconnection rate, and success rate)

The results of our experiments illustrate that, with similar disconnection
rates, our method consistently outperforms MAPPO in terms of success and
coverage rates, as well as reward. This indicates that our DIFE module is a
highly effective means of improving policy performance.

To improve the policy performance in more complex scenarios, we arrange
the sampled environments in the sequence of increasing values for h and N . The
results indicate that our feature extractor can effectively enhance learning per-
formance as h increases while showing less improvement as N increases. This
is due to the fact that in MARL, the optimization complexity increases expo-
nentially with the number of agents. Learning unified latent feature embeddings
have limited impacts on optimizing policies in such complex scenarios.

We also performed generalization tests by randomly sampling environments
using domain randomization. The policies trained in the base environments were
then evaluated in these sampled environments. We selected 12 representative
environments to demonstrate the generalization ability of our method (Fig. 4).

58 Y. Xu et al.

(a) arena size (b) number of agents

Fig. 4. Curriculum training. (In fig (a), N = 3 remains constant, and the arena size h
is 1.0, 1.5, 2.0. In fig (b), the number of agents N is 5, 7, 10, 12)

Table 1. Coverage rates in generalization tests

3 5

size base ours size base ours

1.0 0.87±0.01 0.92±0.00 1.2 0.68±0.05 0.76±0.03

1.2 0.67±0.02 0.73±0.02 1.5 0.44±0.05 0.46±00.06

1.5 0.40±0.02 0.47±0.01 1.7 0.30±0.02 0.29±0.02

7 10

size base ours size base ours

1.5 0.60±0.05 0.67±0.03 1.5 0.62±0.03 0.67±0.02

1.7 0.43±0.02 0.49±0.02 1.7 0.41±0.04 0.45±0.03

1.9 0.24±0.04 0.29±0.01 1.9 0.24±0.03 0.31±0.04

Table 2. Disconnection rates in generalization tests

3 5

size base ours size base ours

1.0 0.67±0.05 0.33±0.05 1.2 2.33±0.12 0.00±0.00

1.2 4.00±0.08 0.33±0.05 1.5 4.00±0.08 0.00±0.00

1.5 5.00±0.08 0.33±0.05 1.7 3.33±0.09 0.00±0.00

7 10

size base ours size base ours

1.5 1.67±0.12 1.00±0.00 1.5 0.67±0.05 1.0±0.08

1.7 0.67±0.05 0.67±0.05 1.7 0.67±0.09 0.33±0.05

1.9 0.00±0.00 0.00±0.00 1.9 0.33±0.05 0.33±0.05

As illustrated in Tables 1 and Table 2, policy performance tends to deteriorate
as the arena size or the number of agents increases. Nonetheless, our method
exhibits better adaptability with higher coverage rates and lower disconnection
rates than the base policy.

Improving Generalization of Multi-agent Reinforcement Learning 59

To assess the effectiveness of our approach, we visualize the output of both the
attention module in our method and the base policy in Fig. 5. In the first row, it
is evident that the attention map computed by the base policy focuses heavily on
agents 0 and 3, likely due to a preference for maintaining connectivity, resulting
in a conservative and overfitting policy. In contrast, the attention computed by
our method corresponds more closely with the distance map, offering a more
flexible and interpretable approach to deploying agents.

(a) distance map (b) base attention (c) our attention

(d) snapshot (e) base snapshot (f) our snapshot

(g) distance map (h) base attention (i) our attention

Fig. 5. Attention Visualization for N = 5, h = 1.2 in the same episode. (The first row
shows visualization maps at the beginning of the episode. The second row shows the
rendering snapshots. In the snapshots, the red dotted lines with arrows are the highest
attention for each agent. fig (d) shows the snapshot at the beginning of the episode, fig
(e) shows the snapshot of MAPPO at the end of the episode, fig (f) shows the snapshot
of our method at the end of the episode. The third row shows visualization maps at
the end of the episode) (Color figure online)

60 Y. Xu et al.

In the second and third rows, the base policy concentrates its attention almost
exclusively on agents 0 and 3, resulting in overlap between the two agents. Our
method, on the other hand, attends not only to these two agents but also to
agent 2, which is responsible for covering the upper right target and is at risk
of disconnecting from the system. Moreover, it is observed that our method dis-
tributes attention more uniformly across all agents at the end of the episode,
in contrast to the base policy. These results suggest that the observations col-
lected across domains assist in learning a more effective and explainable feature
extractor that captures latent domain-invariant features.

5 Conclusion

In this work, we propose a method that leverages domain randomization and
domain adaptation to improve the training efficiency and generalization perfor-
mance of MARL algorithms. Our approach disentangles the domain-invariant
and domain-specific features across domains by employing cycle consistency and
utilizes the domain-invariant features to facilitate policy learning. Our experi-
ments demonstrate the effectiveness of this approach, and our analysis shows that
DIFE captures more interpretable latent features than the compared method.

Acknowledgments. This work was supported by the Beijing Nova Program under
Grant 20220484077, the National Natural Science Foundation of China under Grant
62073323, the External cooperation key project of Chinese Academy Sciences No.
173211KYSB20200002.

References

1. Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., Dumitru Erhan, D.:
Domain Separation Networks. In: Proceedings of NeurIPS, pp. 343–351. Curran
Associates Inc (2016). ISBN 978-1-5108-3881-9

2. Chen, X., Hu, J., Jin, C., Li, L., Wang, L.: Understanding domain randomization
for sim-to-real transfer. In: ICLR (2022)

3. Hassabis, D., et al.: A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science, 362(6419), 1140–1144 (2018). ISSN 0036–
8075. https://doi.org/10.1126/science.aar6404. Publisher: American Association
for the Advancement of Science

4. Ganin, Y., et al.: Domain-Adversarial Training of Neural Networks. In: Csurka, G.
(ed.) Domain Adaptation in Computer Vision Applications. ACVPR, pp. 189–209.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58347-1 10

5. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D., Li, W.: Deep Reconstruction-
Classification Networks for Unsupervised Domain Adaptation. In: Leibe, B., Matas,
J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 597–613.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0 36

6. Ghosh, D., Rahme, J., Kumar, A., Zhang, A., Adams, R.P., Levine, S.: Why Gen-
eralization in RL is Difficult: Epistemic POMDPs and Implicit Partial Observabil-
ity. In: M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. Wortman
Vaughan, editors, Advances in NeurIPS, vol. 34, pp. 25502–25515. Curran Asso-
ciates Inc (2021)

https://doi.org/10.1126/science.aar6404
https://doi.org/10.1007/978-3-319-58347-1_10
https://doi.org/10.1007/978-3-319-46493-0_36

Improving Generalization of Multi-agent Reinforcement Learning 61

7. Hoffman, J., Tzeng, E., Darrell, T., Saenko, K.: Simultaneous Deep Transfer
Across Domains and Tasks. In: Csurka, G. (ed.) Domain Adaptation in Com-
puter Vision Applications. ACVPR, Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58347-1 9

8. Jha, A.H., Anand, S., Singh, M., Veeravasarapu, V.S.R.: Disentangling Factors of
Variation with Cycle-Consistent Variational Auto-encoders. In: Ferrari, V., Hebert,
M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 829–845.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9 49

9. Kwon, J., Efroni, Y., Caramanis, C., Mannor, S.: RL for Latent MDPs: Regret
Guarantees and a Lower Bound. In: M. Ranzato, A. Beygelzimer, Y. Dauphin,
P. S. Liang, and J. Wortman Vaughan, eds, Advances in NeurIPS, vol. 34, pp.
24523–24534. Curran Associates Inc (2021)

10. Liu, A.H., et al.: A unified feature disentangler for multi-domain image
translation and manipulation. In: Proceedings of NeurIPS, pp. 2595–
2604 (2018). https://papers.nips.cc/paper/7525-a-unified-feature-disentangler-
for-multi-domain-image-translation-and-manipulation

11. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep
adaptation networks. In: Proceedings of ICML, ICML’15, pp. 97–105. JMLR.org
(2015)

12. Mandlekar, A., Zhu, Y., Garg, A., Fei-Fei, L., Savarese, S.: Adversarially robust pol-
icy learning: active construction of physically-plausible perturbations. In: Proceed-
ings of IROS, pp. 3932–3939 (2017). https://doi.org/10.1109/IROS.2017.8206245.
ISSN: 2153-0866

13. OpenAI, Christopher Berner, C., et al.: Dota 2 with large scale deep reinforcement
learning. arXiv:1912.06680 (2019)

14. OpenAI, Akkaya, I., et al.: Solving Rubik’s Cube with a Robot Hand.
arXiv:1910.07113 (2019)

15. Peng, X.B., Andrychowicz, M., Zaremba, W., Abbeel, P.: Sim-to-real transfer of
robotic control with dynamics randomization. In: Proceedings of ICRA, pp. 3803–
3810 (2018). https://doi.org/10.1109/ICRA.2018.8460528. arXiv:1710.06537

16. Reed, S., et al.: A Generalist Agent. arXiv:2205.06175 (2022)
17. Sadeghi F., Levine, S.: CAD2RL: real single-image flight without a single real

image. arxiv.org/abs/1611.04201arXiv:1611.04201 (2017)
18. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree

search. Nature 529(7587), 484–489 (2016). ISSN 1476–4687. https://doi.org/10.
1038/nature16961. Number: 7587 Publisher: Nature Publishing Group

19. Sun, B., Saenko, K.: Deep CORAL: Correlation Alignment for Deep Domain Adap-
tation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8 35

20. Adaptive Agent Team, et al.: Human-timescale adaptation in an open-ended task
space. arXiv:2301.07608 (2023)

21. Tobin, J., et al.: Domain randomization for transferring deep neural networks from
simulation to the real world, arXiv:1703.06907 (2017)

22. Tzeng, E., J., H., Zhang, N., Saenko, K., Trevor Darrell, T.: Deep domain confusion:
maximizing for domain invariance. arXiv:1412.3474 (2014)

23. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain
adaptation. In: Proceedings of CVPR, pp. 2962–2971 (2017). https://doi.org/10.
1109/CVPR.2017.316. ISSN: 1063–6919

https://doi.org/10.1007/978-3-319-58347-1_9
https://doi.org/10.1007/978-3-319-58347-1_9
https://doi.org/10.1007/978-3-030-01219-9_49
https://papers.nips.cc/paper/7525-a-unified-feature-disentangler-for-multi-domain-image-translation-and-manipulation
https://papers.nips.cc/paper/7525-a-unified-feature-disentangler-for-multi-domain-image-translation-and-manipulation
https://doi.org/10.1109/IROS.2017.8206245
http://arxiv.org/abs/1912.06680
http://arxiv.org/abs/1910.07113
https://doi.org/10.1109/ICRA.2018.8460528
http://arxiv.org/abs/1710.06537
http://arxiv.org/abs/2205.06175
http://arxiv.org/1611.04201arXiv:1611.04201
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1007/978-3-319-49409-8_35
http://arxiv.org/abs/2301.07608
http://arxiv.org/abs/1703.06907
http://arxiv.org/abs/1412.3474
https://doi.org/10.1109/CVPR.2017.316
https://doi.org/10.1109/CVPR.2017.316

62 Y. Xu et al.

24. Vinyals, O, et al.: Grandmaster level in StarCraft II using multi-agent rein-
forcement learning. Nature, 575(7782), 350–354 (2019). ISSN 1476–4687. https://
doi.org/10.1038/s41586-019-1724-z. Number: 7782 Publisher: Nature Publishing
Group

25. Xing, J., Nagata, T., Chen, K., Zou, X., Neftci, E., Krichmar, J.L.: Domain adap-
tation in reinforcement learning via latent unified state representation. In: Pro-
ceedings of AAAI, vol. 35, pp. 10452–10459 (2021). https://doi.org/10.1609/aaai.
v35i12.17251

26. Xing, Y., Song, O., Cheng, G.: On the algorithmic stability of adversarial train-
ing. In: M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. Wortman
Vaughan, editors, Advances in NeurIPS, vol. 34, pp. 26523–26535. Curran Asso-
ciates Inc (2021)

27. Yifan Xu, Y., et al.: A double-observation policy learning framework for multi-
target coverage with connectivity maintenance. In: Ren, Z., Wang, M., Hua, Y.,
eds, Proceedings of CCSICC, pp. 1279–1290. Springer Nature Singapore (2023).
https://doi.org/10.1007/978-981-19-3998-3 120

https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1609/aaai.v35i12.17251
https://doi.org/10.1609/aaai.v35i12.17251
https://doi.org/10.1007/978-981-19-3998-3_120

	Improving Generalization of Multi-agent Reinforcement Learning Through Domain-Invariant Feature Extraction
	1 Introduction
	2 Preliminaries
	2.1 Multiagent Reinforcement Learning
	2.2 Domain Randomization and LMDPs
	2.3 Domain Adaptation

	3 Method
	3.1 Environment Sampling
	3.2 Pretrain
	3.3 Policy Learning

	4 Experiment
	5 Conclusion
	References

