
Group-Agent Reinforcement Learning

Kaiyue Wu and Xiao-Jun Zeng(B)

The University of Manchester, Manchester M13 9PL, UK
{kaiyue.wu,x.zeng}@manchester.ac.uk

Abstract. It can largely benefit the reinforcement learning (RL) pro-
cess of each agent if multiple geographically distributed agents perform
their separate RL tasks cooperatively. Different from multi-agent rein-
forcement learning (MARL) where multiple agents are in a common envi-
ronment and should learn to cooperate or compete with each other, in
this case each agent has its separate environment and only communicates
with others to share knowledge without any cooperative or competitive
behaviour as a learning outcome. In fact, this scenario exists widely in
real life whose concept can be utilised in many applications, but is not
well understood yet and not well formulated. As the first effort, we pro-
pose group-agent system for RL as a formulation of this scenario and
the third type of RL system with respect to single-agent and multi-agent
systems. We then propose a distributed RL framework called DDAL
(Decentralised Distributed Asynchronous Learning) designed for group-
agent reinforcement learning (GARL). We show through experiments
that DDAL achieved desirable performance with very stable training
and has good scalability.

Keywords: Group-agent system · Reinforcement learning ·
Distributed learning

1 Introduction

Currently reinforcement learning (RL) problems are considered in two types
of systems, which are single-agent system and multi-agent system. For single-
agent RL problems, there is only one intelligent agent involved in the learning
process. It learns through interacting with its surroundings in order to achieve
the objective of optimal individual behaviour. For multi-agent RL problems,
there are multiple agents involved in the learning process. They can learn not
only through interacting with their surroundings but also through interacting
with each other, with the objective of not only optimal individual behaviour
but also optimal team behaviour of cooperation or equilibrium behaviour of
competition. These two parts of the learning objective are not separable since
cooperative or competitive behaviour is actually an essential part of individual
behaviour in multi-agent reinforcement learning (MARL).

However, there are some real-world RL scenarios which cannot be classified
into either of the two categories and still lack understanding. In existing lit-
erature, there is a lack of understanding for pure cooperative learning and an
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14259, pp. 37–48, 2023.
https://doi.org/10.1007/978-3-031-44223-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44223-0_4&domain=pdf
https://doi.org/10.1007/978-3-031-44223-0_4

38 K. Wu and X.-J. Zeng

ambiguity between cooperative learning and learning to cooperate. In a typi-
cal multi-agent problem, such as robotic soccer playing, all the agents perform
learning activities together in a common environment. For each single agent, the
other agents are part of its environment which becomes non-stationary due to the
continually changing behaviour of those agents [17]. In this case, all agents from
one team are learning together to cooperate with each other to achieve a com-
mon goal. Obviously learning to cooperate often involves cooperative learning
(completely independent learning is also possible) which is the learning process
with knowledge shared among agents, since agents would probably need infor-
mation from others to cooperate with them. But from the other way around,
cooperative learning does not involve learning to cooperate very often. Agents
can be learning with different goals in their own separate environment which
is not affected by others and purely communicating knowledge to benefit each
other’s learning process without any cooperative or competitive behaviour as a
learning outcome. The only cooperation is the communication during learning
process, which is native and not learned behaviour. We name this learning system
a group-agent system that aims at connecting learning agents that are naturally
geographically distributed for the purpose of improving learning behaviour.

This scenario is fundamentally different from MARL since it is doing
pure cooperative learning for the purpose of acquiring only optimal individual
behaviour (potentially diversified and not containing cooperative or competitive
behaviour) faster and better while MARL is learning to cooperate or compete.
And it certainly cannot be categorised as single-agent RL since it involves a group
of agents with separate tasks. In another word, it identifies a gap which has not
been addressed by traditional RL framework. A simple real-life example would be
multiple students study by themselves in different countries through environment
interactions while also communicate with each other online in a “study group” to
share knowledge. These countries are geographically distributed thus not affected
by each other, and Internet serves as the communication channel between them.
We can see from the example that via this pure cooperative learning each agent
is able to learn faster to achieve its goal in its own environment. It can be useful
in many applications, such as autonomous driving and networking, which moti-
vates us to formulate it as group-agent reinforcement learning (GARL) to inspire
dedicated approaches to solve it. In this paper, we propose a cooperative dis-
tributed RL framework called DDAL (Decentralised Distributed Asynchronous
Learning) as a proof-of-concept effort to tackle GARL. The empirical evaluation
shows DDAL achieved good performance with remarkable training stability.

2 Background

RL is a process of learning by trial and error. In this process, there is one
or several intelligent agents interacting with their surroundings from which
they could get feedbacks for the actions they take. In this way, the agents
are able to obtain knowledge on how to behave better and gradually improve
their performance. Single-agent RL is often modeled as a Markov Decision Pro-
cess (MDP) [2]. All the states satisfy the memoryless state transition property

Group-Agent Reinforcement Learning 39

P [St+1|St] = P [St+1|S1, S2, ..., St] where the next state is only relevant to the
current state without being affected by any previous states or we can say that
the current state grabs all necessary information from past states. An MDP is
basically a tuple

< S,A,P,R, γ > (1)

where S is a finite set of environment states, A is a finite set of actions, P is
the state transition probability matrix where Ps,s′ = P [St+1 = s′|St = s] is
the probability of transiting from state s to s′, R is reward function, and γ is
the discount factor used in the Bellman equation formulation of value functions.
For example, the state value function V (s) can be stated as V (s) = E[Rt+1 +
γV (St+1)|St = s]. Given the action selection policy π(a|s) which is a probability
distribution over all possible actions under state s, we can further have P [St+1 =
s′|St = s] =

∑
a P [St+1 = s′|St = s,At = a] · π(a|s).

Multi-agent reinforcement learning is often modeled as a stochastic game
which is a generalisation of MDP to the multi-agent case [3]. It is stated by the
following tuple

< S,A1, · · · ,An,P,R1, · · · ,Rn, γ > (2)

where n is the number of agents, S is a finite set of environment states, Ai, i =
1, · · · , n are the finite sets of actions of every agent, P is the state transition
probability matrix, Ri, i = 1, · · · , n are the reward functions of every agent, and
γ is the discount factor. From this formulation, we can see that all the agents are
in a common environment so that we have only one set of environment states,
and the state transition is the same from every agent’s point of view.

3 Related Work

Methods for single-agent RL can be classified into two broad categories, basic
algorithms and distributed variants (parallelisation) of the basic algorithms. For
basic algorithms, there are the well-known Q-learning introduced by [22] which
maintains and updates a Q-table during training. Replacing the Q tables with
deep neural networks, called Q networks, we have DQN (Deep Q-Network) [12]
which takes raw RGB images as input and is trained to output the Q values for
all possible state-action pairs (s, ai). Other than the value-based methods, we
also have actor-critic track. A2C, short for Advantage Actor-Critic, is a typical
kind of actor-critic method for RL. It has two neural networks for approximating
policy function πθ and state-value function V (s). Another popular actor-critic
method is PPO [18], short for Proximal Policy Optimisation, which introduces
an innovative clipped surrogate loss for the policy function.

For the distributed variants, there are A3C (asynchronous advantage actor-
critic) [11] which is an asynchronous version of distributed A2C, Gorila [13]
which is distributed DQN, and APPO [8] which is asynchronous PPO. A3C
has a central copy of network models asynchronously receiving gradients from
multiple parallel A2C workers and periodically synchronises the workers with
the central copy. Gorila has multiple learner processes training a central Q-
network copy with experiences generated by multiple parallel actor processes

40 K. Wu and X.-J. Zeng

interacting with environment. APPO has a PPO learner paired with multiple
actor processes who generate experiences. The experiences are stored in a circu-
lar buffer and will be discarded after being used in training. These distributed
RL algorithms are single-agent parallelisation and cannot be applied to GARL.
But each agent in GARL should be able to apply any one of the single-agent
algorithms. DDPPO [23], short for decentralised distributed PPO, is another
parallel single-agent algorithm, but is a bit different in that it involves multiple
“agents”, respects the completeness of each “agent” and does not parallelise the
internal processes of an agent such as actor or learner processes as the other
distributed algorithms do. It is completely decentralised without any central
network copy. All the “agents” update their models locally after communicating
gradients directly with each other. However, it does global synchronous control
among the “agents” – the communication and model updates all happen syn-
chronously with all updates that happen at the same time being identical. This
breaks the autonomy of the “agents” and actually makes them worker copies
of one single agent. Hence it is still a single-agent learning system, but when
GARL agents all work on same tasks we can say that GARL is generalisation
of it that additionally respects agent autonomy. We will compare our proposed
method DDAL with the synchronous method behind DDPPO in Sect. 6.

Methods for multi-agent reinforcement learning can be classified into three
broad categories, cooperative algorithms, competitive algorithms and algorithms
for a mix of cooperation and competition. The competition or cooperation here
refers to the interactions between agents which is learned behaviour and the
nature of the problem, in comparison to cooperative learning where the cooper-
ation is only knowledge communication and not learned behaviour. MARL meth-
ods do not apply in GARL due to the inherent difference in problem definition.
To justify more, multi-agent problem can be approached through methods with
only independent learner which optimises its own policy ignoring the other agents
and assuming environment stationarity [5,10]. More approaches would consider
environment non-stationarity and study the joint behaviour of the agents instead
[9,21,24]. For example, [7] considers a centralised critic that takes the states and
actions of all agents and outputs the Q value for each agent, while also maintains
approximated policies of other agents at each agent. In GARL, the agents share
knowledge with each other (thus not independent) only to benefit each other’s
learning (thus joint behaviour optimisation is not necessary). Besides, MARL
happens in a common environment thus the environment state is identical to
every agent at any time point, while in GARL the environment states are varied
(the agents can be at different pace even though with same tasks). Considering
this variousness is an important task of GARL methods. And the multiple geo-
distributed environments in GARL also introduce many issues from the systems
side. In real applications geo-distributed agents would need real communica-
tion and subsequently be managed by a networking protocol, resulting in a real
system rather than just a machine learning algorithm.

We also notice that multi-task learning is trying to learn a single policy that
works across a set of related tasks within the same environment [20]. It can be

Group-Agent Reinforcement Learning 41

studied in either single-agent system or multi-agent system while the nature of
the multi-tasking problem is not affected. An agent learns for a generalised policy
that works across a set of related tasks in its own single environment or within
the common environment [15]. This diverges from our focus of studying the
group learning behaviour where multiple autonomous agents separately learn
in their own environment while communicate with each other to benefit each
other’s learning process that only focuses on its own task, which will result in
different policies with possibly different expertise among the agents.

4 Group-Agent Reinforcement Learning (GARL)

In GARL, there are multiple agents doing RL together in a “study group”,
which is abstracted from a very common real-life behaviour in human intel-
ligence. When we humans study, there are basically two knowledge sources,
learning through trial and error in our environment (RL) and learning coop-
eratively through retrieving available knowledge from other people. Hence we
often study together in groups to benefit the latter process. It does not have to
happen in a single environment, but can rather work across multiple environ-
ments. GARL agents learn through trial and error in their separate environment
while communicating with each other to obtain available knowledge. Each of
these environments is stationary because no one will interfere with others’ envi-
ronment. From another perspective, what GARL does is connecting distributed
autonomous learning agents for them to share knowledge, leveraging the power
of the learning community.

We take autonomous driving as an example application to give further expla-
nation. The training of self-driving cars can well take place with RL [16]. We
describe it through three training stages, where stage 2 is an example of GARL.

– Stage 1: Given a certain city environment, one single self-driving car is doing
RL to obtain driving knowledge in one neighbourhood. Its environment,
namely this neighbourhood, is stationary. Learning only happens through
trial and error.

– Stage 2: Still in the same city environment, there are now multiple self-driving
cars all doing RL simultaneously, each in a different neighbourhood. Each of
their environments, namely the neighbourhoods, is still stationary. The goal
of every agent is to learn to drive in its own neighbourhood environment.
We can see that the goals among the agents are slightly different due to the
difference between the neighbourhoods. However since these neighbourhoods
belong to the same city environment, they share much similarity. Therefore,
it will largely benefit learning if we create communication channels between
the agents for them to exchange their knowledge acquired through environ-
ment exploration. It is very possible that one car is not able to explore its
environment thoroughly and leave out many environment states, but some
other peer car explores them well, so that sound knowledge can be obtained
through communicating with that peer car. In this case, learning happens in
a group-agent setting.

42 K. Wu and X.-J. Zeng

– Stage 3: With the help of GARL, the multiple self-driving cars all learned to
drive in its own environment well and fast. Now some of the cars drive out of
their neighbourhoods to meet other peer cars. In one neighbourhood, there are
several cars on the road. They need to learn to cooperate with each other to
safely co-exist on the road, not causing any car crashes. This neighbourhood
environment becomes non-stationary since each of these cars becomes a part
of the others’ environment and their behaviours are continually evolving. This
turns to be an MARL scenario.

Note that GARL cannot be viewed as a simplified version of MARL with
just the objective of cooperation or competition gotten rid of. In GARL, since
each agent is in a separate environment, they can have different state sets and
diversified individual learning goals. There is inherently much more freedom for
the agents compared to MARL where the agents are very restricted by each
other. We present this more clearly with a formal formulation as follows.

Recall from Sect. 2 that single-agent RL can be modeled as an MDP and
MARL can be modeled as a stochastic game. Here we propose group MDP to
state GARL, in the following tuple

< S1, · · · ,Sn,A1, · · · ,An,P1, · · · ,Pn,R1, · · · ,Rn,

γ1, · · · , γn,K1, · · · ,Kn,K−1, · · · ,K−n >
(3)

where n is the number of agents, Si,Ai,Pi,Ri, γi,Ki,K−i, i = 1, · · · , n are the
sets of environment states, the sets of actions, the state transition probability
matrixes, the reward functions, the discount factors, the sets of knowledge from
local environment interactions and the sets of received knowledge of every agent
in the group. Note that K−i = {K1,i, · · · ,Ki−1,i,Ki+1,i, · · · ,Kn,i} where Ki,i′ ⊆
Ki is the knowledge of agent i shared to agent i′, and for at least one pair of
i, j ∈ {1, . . . , n}, Si ∩ Sj �= ∅. Each agent can send its knowledge to any other
agents arbitrarily and store its received knowledge in local memory for training.
From this formulation, we can see that different from MARL where the state
set and state transition probability matrix are shared among all agents, each
agent in GARL works in its own separate environment so that it has its own set
of environment states, and an agent’s environment is independent of any other
agent’s environment so that it has its own state transition probability matrix.
Every agent has its own set of actions, reward function, discount factor, set of
local knowledge and set of received knowledge. Note that the knowledge shared
among agents can be in various forms, such as raw experiences (state, action,
reward tuple), policy parameters, state/action values, gradients at each update
iteration, etc. With this knowledge sharing, GARL aims to benefit each single
agent’s learning quality and speed. It can be applied to the training of video game
playing and autonomous driving. Besides, we claim that it has great potential in
network routing problems due to the independent environment of each network
node and the natural communication network between them.

Group-Agent Reinforcement Learning 43

5 Decentralised Distributed Asynchronous Learning
(DDAL)

This section introduces DDAL as a proof-of-concept learning framework designed
for GARL. The idea is fourfold:

– Decentralised control: The group-agent system naturally comes in a decen-
tralised manner where every agent is autonomous and can learn indepen-
dently. Artificially having them managed by a central controller can be expen-
sive and sometimes meaningless or unrealistic. Thus we apply decentralised
control.

– Asynchronous communication: To give as much freedom as possible to the
agents and respect their nature of autonomy, we design to let the commu-
nication happen in an asynchronous manner. Synchronous communication
among distributed autonomous agents means that the agents should all agree
to dedicated communication stages when they are all sending or receiving
messages. This can be very difficult in real-world applications since organ-
ising these autonomous agents needs lots of efforts from the perspective of
distributed systems. Thus we apply asynchronous communication where each
agent can send knowledge to other agents or receive knowledge from them at
any convenient time, avoiding the need for a communication protocol.

– Independent learning at beginning stage: To explain this from intuition, we
are probably not able to acquire very accurate knowledge at the beginning
stage of our learning by trial-and-error (due to the inaccurate measurement of
error under insufficient prior knowledge) and sharing of beginners’ mistakes
would have negative effect on others’ learning processes, hence it is good
practice to start group communication after everyone has reached a relatively
stable learning status.

– Weighted gradient average: Here we use gradients as the form of knowledge
among agents and require that all gradients ever generated will be shared
to every other agent (Ki,i′ = Ki, i, i′ = 1, · · · , n). Each piece of gradients
(for one model update) from any agent is accompanied with two extra pieces
of information, the learning experience so far and its relevance to the agent
that it’s going to. For example, the number of training epochs performed by
an agent can represent the learning that the agent has experienced so far,
namely the amount of training so far for the piece of gradients just generated
by this agent. We quantify these two pieces of information with Tj (training
experience) and Rj (relevance) for the j − th piece of gradients represented as
gj in a chunk of received gradient pieces. When agent i is ready to perform a
model update involving received gradients, it retrieves m pieces of gradients
from Ki ∪ K−i and calculates a weighted gradient average according to the
equation g = 1

2 (
∑m

j=1
Tj∑m

j=1 Tj
gj +

∑m
j=1

Rj∑m
j=1 Rj

gj), then perform the update
with g. The average operation allows us to mitigate the influence introduced
by poor experiences and introducing weights lowers the influence of immature
or irrelevant knowledge.

44 K. Wu and X.-J. Zeng

Algorithm 1. DDAL at the i − th agent
Require: Initialise knowledge set Ki and K−i

1: for each epoch do
2: Generate k experiences
3: Compute average loss
4: Compute gradients
5: if epoch < threshold then
6: Update model with the gradients
7: else
8: Append the gradients with weighting information T and R
9: Store the gradients in Ki

10: Send a copy of the gradients to every other agent j (stored in K−j) (j =
1, · · · , i − 1, i + 1, · · · , n)

11: if epoch%minibatch == 0 then
12: Get (and remove) m pieces of gradients from Ki ∪ K−i

13: Compute g of these gradients
14: Update model with g
15: end if
16: end if
17: end for

The algorithm at each agent is shown in Algorithm 1. After being trained for
a number of epochs, the agent starts to send its gradients to other agents and
perform model updates with received gradients every few epochs. The threshold
and minibatch size are hyper parameters. We do not have global organising
mechanism for the agent system thus each agent is basically on its own. In our
implementation, this decentralised control and asynchronous communication is
realised through multiprocessing queues. Every agent has its own queue to hold
the knowledge received from other agents, and these queues are shared among all
agents so that each agent is free to send its knowledge to any other agent’s queue.
The agents are implemented with Salina [4]. We claim that DDAL should not
be restricted by agent type. The single-agent algorithms as discussed in Sect. 3
should all be able to serve as our agent’s brain. Here we discuss a classic A2C
agent.

5.1 Decentralised Distributed Asynchronous Advantage
Actor-Critic (DDA3C)

For a classic A2C agent, with the relation Q(st, at) = A(st, at) + V (st) where
A(st, at) is the advantage value, we have the gradients for policy network as
∇θlogπθ(at|st)A(st, at) = ∇θlogπθ(at|st)(Q(st, at) − V (st)) where Q(st, at) =
r+γV (st+1) (=r, for terminal st+1). With this A2C agent, we name the complete
algorithm as DDA3C.

Group-Agent Reinforcement Learning 45

Fig. 1. DDA3C single-agent vs. group-agent (2 agents)

Fig. 2. DDA3C group-agent (4 agents)

6 Evaluations

In this section, we evaluate DDA3C on a scenario where there is a group of agents
each of whom plays a separate instance of the same computer game while sharing
knowledge with each other. Due to the consistency in learning environments and
goals, every agent’s knowledge is of equal relevance to other agents so that we
set the Rj parameters of gradients all equal to each other. And since all agents
start at the same time, the Tj parameters are also set identical for every piece of
gradients. m is the total number of gradient pieces in Ki ∪K−i at the time. Note
that the result is from a single run but can represent the average performance.
We have run the experiments for quite a number of times and are very confident
about the result. The reason why we did not do real average performance is that
for each single run the big performance fluctuations happen at different time
and doing an average will seriously reduce the significance of the fluctuations.

6.1 DDA3C

We test DDA3C on the task of CartPole-v0 game in OpenAI Gym. In each
epoch, we run one episode of CartPole-v0 with a limitation of maximum 100
steps. CartPole-v0 environment will give a reward of +1 for every timestep that
the pole remains upright and end when terminal states reached. Hence a total
reward of 100 means an optimal policy for a 100-step episode – every move
scores. The epoch minibatch size is set to 100. k is set to 120.

In Fig. 1, we do the training for totally 50k epochs (the x-axis is the epoch
number) and start the knowledge sharing at 20k-th epoch (threshold) for the two-
agent group learning case. Every point of the first model update involving shared
knowledge in Fig. 1, 2, 3 is marked by a dark line. Figure 1a is the single-agent
baseline, in which we can see that the total reward keeps having big fluctuations

46 K. Wu and X.-J. Zeng

Fig. 3. DDA3C group-agent (6 agents)

Fig. 4. Synchronous control: 6 agents (a–f), 2 agents (g–h)

over the entire training process, namely there are quite a few episodes where bad
actions were chosen. The training was unstable and never managed to converge
to a stable optimal policy that can choose good actions all the time. In contrast,
Fig. 1b and Fig. 1c keep very stable at 100 after knowledge sharing starts at 20k-
th epoch, showing that two-agent group learning quickly managed to maintain
a stable optimal policy.

For the game of CartPole-v0, group learning with two agents already has
very good performance. We perform more experiments to test DDA3C’s ability
to scale to more agents. With more agents, we have more experiences that are
diversified and the influence of each single early-stage learning mistake can be
smaller so that we made attempts to start knowledge sharing earlier. For 4 agent
case in Fig. 2, we train for totally 20k epochs and start sharing at 10k-th epoch,
and for 6 agent case in Fig. 3 we train for totally 10k epochs and sharing starts
at 5k-th epoch. They show that we still reached good results. Agent 4 in the
4-agent group has some very small fluctuations after 10k-th epoch as shown in
Fig. 2d, meaning that the training stability is near-optimal. All other three agents
have converged to stable optimal policy with group learning. As shown in Fig. 3c,
agent 3 in the 6-agent group was trapped in a bad state before knowledge sharing
started and not able to get over it in following studies. It happens sometimes
that certain individuals are not doing well, and the probability to see this case
can rise when the number of agents in the group goes up. What’s interesting
is that even in the presence of outliers, others are not affected which shows the
robustness of the group learning system. The majority of agents in this 6-agent
group works well (5 out of 6) – stable optimal policy learned after knowledge
sharing starts at 5k-th epoch.

6.2 Comparison with Synchronous Method

In Fig. 4, we show the reward curve of a 2-“agent” and a 6-“agent” learning
system with A2C agent on CartPole-v0 task under synchronous control. This
synchronous control is realised through Pytorch DDP (Distributed Data Parallel)
library as in DDPPO. We can see that the curves have severe fluctuations during

Group-Agent Reinforcement Learning 47

the entire training period (the more “agents”, the more fluctuations), much
worse than the single-agent baseline in Fig. 1a. As discussed in Sect. 3, these
“agents” are actually worker copies of a single agent and do not form a group
learning system. Their learning errors are accumulated during training leading
to the worse fluctuations, while in our group-agent learning system the agents
took knowledge from peers in an asynchronous manner which gives them the
autonomy to utilise knowledge in their own way that could possibly benefit
themselves the most.

7 Conclusion

GARL describes a very common and important type of real-life learning scenario
– human learning behaviour, which is very promising with regard to application.
Any geographically distributed reinforcement learning agents who want to bene-
fit from remote peer learners could join a study group which can be managed by
a group agent system. Confirmed by social learning theory [1], rather than being
isolated, people learn in a social context with behaviours such as observing and
imitating others. This successful learning behaviour of real intelligence should
inspire us when we try to create artificial intelligence. Joining a group-agent
learning system, an agent will be exposed to senior peers and able to learn from
them through communication. It provides the agents with the social context
that enables them to learn in a more near-human way. There is a body of work
adopting social learning [14] or imitation learning [6,19] in their agents under
single or multi-agent setting. These promising results further reinforce our confi-
dence in the performance that GARL could possibly reach. For future work, we
will investigate more sophisticated approaches that work with different types of
agents or environments within the group.

References

1. Bandura, A., Walters, R.H.: Social Learning Theory, vol. 1. Prentice Hall, Engle-
wood Cliffs (1977)

2. Bellman, R.: A Markovian decision process. J. Math. Mech. 6(5), 679–684 (1957).
http://www.jstor.org/stable/24900506

3. Buşoniu, L., Babuška, R., Schutter, B.D.: Multi-agent reinforcement learning: an
overview. In: Innovations in Multi-Agent Systems and Applications-1, pp. 183–221
(2010)

4. Denoyer, L., de la Fuente, A., Duong, S., Gaya, J.B., Kamienny, P.A., Thomp-
son, D.H.: Salina: sequential learning of agents (2021). https://github.com/
facebookresearch/salina

5. Foerster, J., et al.: Stabilising experience replay for deep multi-agent reinforcement
learning. In: International Conference on Machine Learning, pp. 1146–1155. PMLR
(2017)

6. Guo, X., Chang, S., Yu, M., Tesauro, G., Campbell, M.: Hybrid reinforcement
learning with expert state sequences. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, pp. 3739–3746 (2019)

http://www.jstor.org/stable/24900506
https://github.com/facebookresearch/salina
https://github.com/facebookresearch/salina

48 K. Wu and X.-J. Zeng

7. Lowe, R., Wu, Y.I., Tamar, A., Harb, J., Pieter Abbeel, O., Mordatch, I.: Multi-
agent actor-critic for mixed cooperative-competitive environments. In: Advances
in Neural Information Processing Systems, vol. 30 (2017)

8. Luo, M., Yao, J., Liaw, R., Liang, E., Stoica, I.: Impact: importance weighted
asynchronous architectures with clipped target networks (2020)

9. Ma, X., Yang, Y., Li, C., Lu, Y., Zhao, Q., Jun, Y.: Modeling the interaction
between agents in cooperative multi-agent reinforcement learning. arXiv preprint
arXiv:2102.06042 (2021)

10. Matignon, L., Laurent, G.J., Le Fort-Piat, N.: Independent reinforcement learners
in cooperative Markov games: a survey regarding coordination problems. Knowl.
Eng. Rev. 27(1), 1–31 (2012)

11. Mnih, V., et al.: Asynchronous methods for deep reinforcement learning. In: Inter-
national Conference on Machine Learning, pp. 1928–1937. PMLR (2016)

12. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015). https://doi.org/10.1038/nature14236

13. Nair, A., et al.: Massively parallel methods for deep reinforcement learning (2015)
14. Ndousse, K.K., Eck, D., Levine, S., Jaques, N.: Emergent social learning via multi-

agent reinforcement learning. In: International Conference on Machine Learning,
pp. 7991–8004. PMLR (2021)

15. Omidshafiei, S., Pazis, J., Amato, C., How, J.P., Vian, J.: Deep decentralized
multi-task multi-agent reinforcement learning under partial observability. In: Inter-
national Conference on Machine Learning, pp. 2681–2690. PMLR (2017)

16. Sallab, A.E., Abdou, M., Perot, E., Yogamani, S.: Deep reinforcement learning
framework for autonomous driving. Electron. Imaging 2017(19), 70–76 (2017)

17. Samsami, M.R., Alimadad, H.: Distributed deep reinforcement learning: an
overview. CoRR abs/2011.11012 (2020). arxiv.org/abs/2011.11012

18. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms (2017)

19. Stadie, B.C., Abbeel, P., Sutskever, I.: Third-person imitation learning. arXiv
preprint arXiv:1703.01703 (2017)

20. Vithayathil Varghese, N., Mahmoud, Q.H.: A survey of multi-task deep reinforce-
ment learning. Electronics 9(9), 1363 (2020)

21. Wang, J., Ren, Z., Liu, T., Yu, Y., Zhang, C.: QPLEX: duplex dueling multi-agent
Q-learning. arXiv preprint arXiv:2008.01062 (2020)

22. Watkins, C.J.C.H.: Learning from delayed rewards (1989)
23. Wijmans, E., et al.: DD-PPO: learning near-perfect PointGoal navigators from 2.5

billion frames (2020)
24. Zhang, K., Yang, Z., Basar, T.: Networked multi-agent reinforcement learning in

continuous spaces. In: 2018 IEEE Conference on Decision and Control (CDC), pp.
2771–2776. IEEE (2018)

http://arxiv.org/abs/2102.06042
https://doi.org/10.1038/nature14236
http://arxiv.org/2011.11012
http://arxiv.org/abs/1703.01703
http://arxiv.org/abs/2008.01062

	Group-Agent Reinforcement Learning
	1 Introduction
	2 Background
	3 Related Work
	4 Group-Agent Reinforcement Learning (GARL)
	5 Decentralised Distributed Asynchronous Learning (DDAL)
	5.1 Decentralised Distributed Asynchronous Advantage Actor-Critic (DDA3C)

	6 Evaluations
	6.1 DDA3C
	6.2 Comparison with Synchronous Method

	7 Conclusion
	References

