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Abstract. Over the years, active object tracking has emerged as a
prominent topic in object tracking. However, most of these methods are
unsuitable for tracking ground objects in high-altitude environments.
Therefore, the paper proposes an air-to-ground active object tracking
method based on reinforcement learning for high-altitude environments,
which consists of a state recognition model and a reinforcement learning
module. The state recognition model leverages the correlation between
observed states and image quality (as measured by object recognition
probability) as prior knowledge to guide the training of reinforcement
learning. Then, the reinforcement learning module can actively con-
trol the PTZ camera to achieve stable tracking and successfully recover
tracking after object loss. Additionally, the study introduces a UE-free
simulator that increases the efficiency of the training process by over
nine times. High-altitude experimental results with the proposed method
show significantly enhanced stability and robustness compared to the
PID method. Furthermore, the results also indicate that the proposed
method can significantly improve the image quality of the observation.
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1 Introduction

Object tracking is a subject of interest for decades, with a focus on robotics
and unmanned aerial vehicles (UAV) applications [15]. The purpose of object
tracking is to locate the position of a moving target in a sequence of image
frames and keep it in the image field of view. Object tracking can be categorized
into active object tracking and passive object tracking. The passive method [10]
assumes that the camera is stationary and the object is within the camera’s
field of view. In contrast, the active method requires adjusting the posture of
pan-tilt-zoom (PTZ) cameras to maintain continuous visibility within the image,
which is more practical and challenging.

Active object tracking has been extensively researched across various
fields [4]. However, most studies have focused on ground or low-altitude scenar-
ios, while the research on active object tracking in high-altitude environments is
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limited. In addition, previous methods have taken less account of the interference
caused by the external environment on the controller and the resulting problem
of object disappearance and recovery. However, in high-altitude environments,
atmospheric disturbance and complex ground environments can interfere with
the tracking process and easily lead to object loss.

To address the problem of active object tracking in a complex high-altitude
environment, we propose an air-to-ground (i.e., high-altitude UAV tracks a vehi-
cle on the ground) active object tracking method based on reinforcement learn-
ing. Specifically, we build a state recognition model and introduce it to the rein-
forcement learning training process as prior knowledge, which considers the cor-
relation between the observation states and the quality of the observed images.
Then, we design a reinforcement learning module to achieve stable tracking by
actively controlling and guiding the PTZ camera, and successfully recovering
tracking after object loss.

The results have shown that our proposed active object tracking method is
significantly more stable than the PID control method in all proposed scenarios.
In particular, in the case of object rectilinear motion, the tracking stability of
our model is better than that of the S-curve and random motions. One possible
reason is that our method could predict the object’s motion based on its historical
information and control the camera accordingly in time, especially for rectilinear
motion. Regarding the disturbance, PTZ camera vibration has a certain effect on
tracking stability, while the object-specific disturbance (i.e., the object’s speed
and direction) has less impact. Such a result indicates that it is important to
maintain the stability of the PTZ camera during tracking and that our method
has good adaptability regardless of the object’s movement.

Moreover, our method can significantly improve the accuracy of object recog-
nition by automatically adjusting the magnification, i.e., the image quality of the
observation is improved. Furthermore, we find that the object has a lower chance
of reappearing in the field of view after being lost, even for a short period of
time, while our method can quickly retrieve the object and resume tracking. In
contrast, the conventional PID control method can only recover tracking in the
few cases where the object is still in the field of view after being lost. There-
fore, our method is significantly better than the PID control method in terms of
robustness during tracking.

In summary, our main contributions include the following:

– An air-to-ground active object tracking reinforcement learning method is pro-
posed to achieve tracking in high-altitude environments, and its tracking
stability and robustness outperform the traditional PID method in all the
proposed scenarios, i.e., different object motions and disturbance modes.

– A novel reward function involving the state recognition model is proposed and
the object recognition probability is utilized as a part of the reward function
to effectively guide reinforcement learning to adjust the PTZ camera focus
and improve the input image quality.

– A memory-enabled actor-critic neural network is designed specifically for
active object tracking, and the training efficiency is significantly improved,
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i.e., over nine times compared to the UE simulator, by introducing a UE-free
simulator and optimizing the training strategy.

2 Related Work

The goal of active object tracking is to lock the object by autonomously adjusting
the position and attitude of the camera given a visual observation as input [12].
The method has been applied to a range of platforms, including PTZ cam-
eras [13], vehicles [3], and UAVs [12]. For instance, Kyrkou [5] proposed a real-
time and lightweight C3Net for roadside monitoring. Zhang et al. [16] imple-
mented an end-to-end tracking method for UAVs by introducing GRU into the
reinforcement learning network. However, these methods are not suitable for
tracking tasks in high-altitude environments due to the relatively close distance
between the tracker and the object.

Researchers have studied disturbance factors, including similar objects [12],
occlusion [2], and obstacles [6] to increase the robustness of tracking methods.
Such as Zhong et al. [18] and Yao et al. [14] improved the robustness of models by
introducing occlusion during training. However, they do not consider the distur-
bance of vibration-induced tracker or target loss during active object tracking.

Combining prior knowledge with reinforcement learning can improve tracking
performance, for example, a common approach involves combining PID as a
knowledge module [7,17]. However, the application of the PID is restricted due
to problems such as vibration, object loss, and low image quality in high-altitude
object tracking scenarios. Thus, we propose an active object tracking method
that is well-suited to high-altitude environments and solves such problems.

3 Approach

3.1 Overview

Active object tracking aims to control the motion of a PTZ camera based on
the object’s position in the image. In this paper, we propose an air-to-ground
active object tracking reinforcement learning method, as shown in Fig. 1. The
method includes two main components: the state recognition model and the
reinforcement learning module with the improved Proximal Policy Optimization
(PPO) [11] algorithm. A brief description of each of these modules is given below.

In some scenarios, it is necessary to maintain the highest possible image
quality during the tracking process to obtain additional information from the
observed images, which can further improve tracking performance. For this pur-
pose, we introduce a state recognition model as prior knowledge into reward
shaping, which is proposed to establish a relationship between image quality
(as measured by object recognition probability) and the observed camera states
through supervised learning. The model can guide the motion of PTZ cameras
to further improve the quality of observed images and enhance the object track-
ing performance. Meanwhile, it can also avoid the vast computational burden
caused by direct image processing with the reinforcement learning method.
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Fig. 1. The overall framework

A PPO-based reinforcement learning module is conducted to control the
PTZ camera and, thus, address the high-altitude active object tracking task. To
improve the efficiency of reinforcement learning training, we introduce a UE-
free simulator. The trained model exhibits excellent tracking performance in the
simulator, which is based on the UE engine to create a realistic desert environ-
ment with mild undulating terrain, forests, vehicle and UAVs. The movements
of UAVs and vehicle follows the laws of physics.

3.2 State Recognition Model
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Fig. 2. State recognition model. (together with the observed states)

Figure 2 illustrates the structure of the state recognition model. The model takes
the observed states as the input and the object recognition probability measuring
the image quality as the output, and establishes the relationship between the
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input and output through supervised learning. The observed states consist of
five parameters: [Δdt, ζt, θt, zt, ft], where Δdt represents the distance between
the UAV and the vehicle, ζt illustrates the azimuth angle of the vehicle relative
to the UAV, θt represents the pitch angle of the PTZ camera, zt indicates the
camera magnification (the camera is autofocus). In addition, ft functions as a
status flag to distinguish whether the object is present in the image, assigning a
value of 1 if the object exists and 0 otherwise.

As shown in Fig. 2, the network structure of the state recognition model is com-
prised of three parts: a state encoder, an object encoder and a predictor. The state
encoder processes the observed states through three fully connected layers and
returns a 32-dimensional vector. The object encoder processes the object status
flag in a fully connected layer and outputs a 16-dimensional vector. The predic-
tor joins the two vectors outputted by the state and object encoders, respectively,
and feeds them into three fully connected layers to generate the object recognition
probability. Moreover, both encoders employ the ReLU activation function, while
the predictor applies the softmax activation function. Furthermore, the number
of neurons in each network layer is present in Fig. 2.

Training Process. We collect 24,000 images with the corresponding observed
states from the UE simulator, and train the state recognition model using super-
vised learning based on pre-trained YOLOv4. Specifically, we take the images
as the input and use the object recognition probability p̄ generated by YOLOv4
as the supervision signal, combined with the object recognition probability p
generated by the state recognition model, to form the loss function1.

To improve the stability and convergence speed of the learning process, a
gradient clipping approach with a threshold of 0.5 was conducted to dynamically
adjust the learning rate2. The neural network parameters of the state recognition
model were optimized using the Adam optimizer during the training process, and
the state recognition model showed convergence after 30 iterations.

3.3 Reinforcement Learning Module

Active object tracking keeps the object within the field of view by continuously
controlling the motion of the PTZ cameras. Such a process can be formulated
as a classic reinforcement learning problem, and an improved proximal policy
optimization (PPO) reinforcement learning algorithm is employed as an agent.
The parameterization of the Markov Decision Process (i.e., state space, action
space, and reward shaping) and the network architecture are described below.

The state space st at the moment t can be defined as given below:

st =
[
xt

w
,
yt
h

,
zt

zmax
,

pxt

(w · h)
, ft

]T

1 Loss =
∑N

i=1 |p−p̄|
N

, where N represents the batch size of training.
2 The rule for updating the learning rate: lrepoch = 1

1+0.02×epoch
, where epoch repre-

sents the number of iterations.



18 X. Liu et al.

Image Bounding box
Center
point of
the object

Center point of
the image

Softplus Tanh Softplus Tanh

TanhSoftplusTanhSoftplus Softmax

Softmax

PTZ Camera

State

LSTM
FC

512 512

1024

512 512

1024

FC

FC

FC
FC

FCLSTM

y

x

Value

4×5

1

Pitch

Yaw

Roll

Ya

Actor Network Structure

Critic Network Structure
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where xt and yt donate the coordinates of the object concerning the center of
the field of view, w and h represent the width and the height of the image,
respectively (as shown in Fig. 3). In addition, pxt represents the pixel area of
the object, zt and zmax represent magnification and maximum magnification. In

particular, when the object is lost at the time t, st is set to
[
0, 0, zt

zmax
, 0, 0

]T
. In

this paper, the values of w, h, zmax are 1024, 768 and 400x, respectively.
At the time t, we define the actiont as [pitcht, yawt, rollt, zoomt], where

pitcht, yawt, rollt, and zoomt are integers with values ranging from −2 to 2, and
represent the actions of the PTZ camera’s pitch angle θ, yaw angle ψ, roll angle φ,
and camera magnification z, respectively. When executing the actiont, the cam-
era state at the time t− 1, i.e., [θt−1, ψt−1, φt−1, zt−1], is added with increments
α · [pitcht/zt−1, yawt/zt−1, rollt/zt−1, zoomt · β] to obtain the required camera
state at the time t, and adjust the PTZ camera. The α and β are coefficients.

In the proposed active object tracking process, the shaping of the reward
function involves: 1) the agent should improve the object recognition probability
p by actively performing actions, and 2) the center of the object should be as
close to the center of the image as possible to achieve continuous and stable
object tracking. In particular, the agent gets a time penalty when the object is
out of the image. Therefore, the reward function is obtained by:

rt =

{
mpt − n

√(
xt

w

)2 +
(
yt

h

)2
, ft = 1

−n, ft = 0,

where m, n are the coefficients used to limit the total accumulated reward value.
The actor and critic in PPO are represented as neural networks, with the

structures shown in Fig. 3. In particular, the output layer of the actor network
has four parallel fully-connected networks with five neurons each, corresponding
to the four actions passed through a softmax activation function. The critic
network has a similar structure to the actor network, except that it has only one
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neuron in the output layer that directly outputs the Q value. A Block composed
of softplus and tanh activation functions is used after the second and third layers,
which makes the networks easier to optimize.

Training Process. Reinforcement learning requires iterative optimization
through continuous interaction with mass data in the environment. However,
the simulation environment built with UE engines usually runs slowly, hindering
fast model training. Thus, we propose and construct a UE-free simulator based
on environment abstraction, which can provide crucial parameters involved in
the simulation environment and significantly improve training efficiency.

We propose an improved training procedure for the PPO algorithm (pseu-
docode below) to address the challenge of recovering the tracking process when
the object has been lost for a long time. The core idea is to accumulate the
rewards rt for different moments satisfying certain criteria into a variable rsum
after each interaction between the agent and the environment, i.e., UE-free simu-
lator. Then, the current episode is terminated when the value of rsum falls below
a predefined threshold, and a new round of training is started.

Algorithm 1. Improved PPO Algorithm.
Require: Initialize parameters θ of actor network and φ of critic network, respectively.

for episode = 1,2,... do
Initialize set to store trajectory D ← ∅;
Initialize flag to determine whether to end the episode rsum ← 0;
Randomly initialize state s0;
for step = 1,2,... do

Get the state st from the UE-free simulator;
Run old policy πθ′ to select action actiont;
Execute action actiont, receive rt and obtained status st+1;
if rt > 0 then

rsum ← min ([0.02, rt]) + rsum;
else

rsum ← max ([−0.01, rt]) + rsum;
end if
if rsum < −2.0 then

break;
end if
Collect trajectory D ← D ∪ (st, actiont, rt);
if the data in D reaches mini-batch and step % 50 == 0 then

for Iteration = 1,2 do
Sample a random mini-batch trajectory from buffer D;
Compute advantage estimates Ât with GAE;
Update θ and φ with clipped surrogate objective and value functions loss;

end for
end if

end for
end for
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In the training process, we initialize the actor and critic parameters, interact
with the UE-free simulator to obtain the training data and store it in a replay
buffer. Then, we sample a mini-batch of 256 from the replay buffer as our dataset
and use Adam (the learning rate of actor and critic is 1e − 4 and 2e − 4) to
optimize the network. The generalized advantage estimation (GAE) parameter
λ and clipping ε are set at 0.95 and 0.2. The maximum global episodes and
maximum steps N are 8K and 400. For the reward function, the values of the
γ, m and n are 0.99, 0.1 and 0.1, and the action coefficient α, β are 50 and 5,
respectively. We use TensorFlow as a deep learning framework to train the actor
and critic networks with a PC containing an AMD Ryzen 7-5800H (3.20 GHz
×16) processor, 16 GB of RAM, and an NVIDIA RTX 3050 with 4 GB of VRAM.

4 Experimental Setup and Results Analysis

4.1 Baseline and Evaluation Criteria

As a baseline, we choose the commonly used and effective PID controller to
control the pitch and yaw actions of the PTZ camera. The PID formula under
discrete control is:

uk = Kp · ek + Ki

k∑
j=0

ej + Kd (ek − ek−1) ,

where at time k, uk represents the increment of pitch and yaw actions, and ek
represents the Euclidean distance from the image center to the object centroid.
Moreover, Kp, Ki and Kd are the tuning hyperparameters, which can be set to
−0.005, 0.003 and 0.003, respectively, after multiple experiments. Furthermore,
the magnification in the PID controller is set to 50 times.

The performance evaluation includes the following three criteria:

– Stability. The stability of the tracking process is measured in terms of center
location error, which represents the Euclidean distance (in pixels) between the
object centroid and the image center in a step. Continues smaller values of
center location errors indicate better stability.

– Robustness. Ro is used to evaluating the robustness of the active tracker,
which is the percentage of frames in which the tracker loses the object during
the tracking process. Smaller Ro means better robustness.

– Image quality. Object recognition probability is adopted to measure image
quality. Higher probability indicates better image quality is obtained during
the object tracking process.

4.2 Experiments and Results

To conduct the experiments, we randomly initialized the starting position and
orientation of the vehicle and the UAV, with the vehicle moving at 12 m/s and
the UAV flying at 300 m altitude. Initially, the camera was set at a magnification
of 50x and precisely aimed at the vehicle.
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Stability. We compared the object tracking stability for three different vehicle
motions, i.e., rectilinear, S-curve and random. In addition, we introduced three
disturbance modes, i.e., the vehicle speed and direction, and the PTZ camera
vibration, to further verify the tracking stability. Regarding the vehicle, the
speed changes randomly in the range of 0 to 20 m/s and the direction turns
arbitrarily. For the PTZ camera, we applied a slight vibration by setting random
changes in the pitch and roll angles, which caused the object to vibrate within
the camera viewfinder frame. Moreover, we also compared the results obtained
in each scenario with the tracking performance of the PID control method.

Fig. 4. Comparison of the tracking stability obtained in different scenarios

Figure 4 shows a series of box plots depicting the distribution of center loca-
tion errors of our proposed and PID control methods in 30 episodes (i.e., 12000
steps) for each of the above-mentioned scenarios. According to Fig. 4, the center
location errors of our method are almost two times smaller than those of the
PID control method in all scenarios. To further evaluate the significance of the
difference for each scenario, we calculated the Wilcoxon Signed Rank test [9]
and Cliffs Delta Effect Size [1] on the center location errors of our method and
PID control method. The results of the statistical tests reveal that the difference
between the center location errors of our method and the PID control method
in each scenario is significant (i.e., p-value < 0.05), and with a large effect size3.
Thus, the proposed method is significantly more stable than the PID
control method in object tracking for all proposed scenarios.

To evaluate the significance of different scenarios on the stability of our pro-
posed tracking method, we performed a Scott-Knott effect size difference (ESD)
test to group the different scenarios into statistically distinct ranks based on their
center location errors. Tables 1 and 2 illustrate the ranks of tracking stability for
three object motions and four disturbance modes, respectively. From Table 1, we
found that the three object motions are distributed in two distinct groups, and
in particular, the center location errors of S-curve and random motions (group
#1) are relatively higher than rectilinear motion. Thus, in the case of object

3 The magnitude is assessed using the thresholds provided by Romano et al. [8], |delta|
>0.474 is large.
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Table 1. Ranks of object motions accord-
ing to the Scott-Knott ESD tests

Group Object Motions

1 S-curve, random

2 rectilinear

Table 2. Ranks of disturbance modes
according to the Scott-Knott ESD tests

Group Disturbance Modes

1 PTZ camera vibration

2 object speed and direction

3 normal

rectilinear motion, the tracking stability of our model is better than
that of the S-curve and random motions.

Similarly, Table 2 shows that the four disturbance modes are distributed in
three distinct groups, and the center location errors obtained in the PTZ camera
vibration scenario (group #1) are considerably higher than the other three. In
addition, the center location errors are also significantly higher when adding
disturbance to object speed and direction than in the normal situation. The
results indicate that the disturbance of the PTZ camera has the greatest
impact on the object tracking stability, followed by the object-specific
disturbance.

Image Quality. The object recognition probabilities of 210 episodes obtained
from the above seven scenarios using our method and the PID control method at
the initial PTZ camera magnification (50x), respectively, all have an average of
about 0.123. In other words, both methods have an accuracy of only about 0.123
for object recognition at the initial moment. During the tracking process, our
proposed method improves the object recognition probability close to 1 in a short
time (about 40 steps) and continues until the end of the tracking task by control-
ling the PTZ camera magnification (zoom in to approximately 400x). However,
the PID control method has almost no improvement in the object recognition
probability during the tracking process and ends with an average accuracy of
0.124. Therefore, our method can significantly improve the accuracy of
object recognition by automatically adjusting the magnification, i.e.,
the image quality of the observation is improved.

Robustness. We evaluate the robustness of the proposed method by comparing
the tracking performance after losing the object due to various reasons (e.g.,
interference or occlusion) during the UAV flight with the PID control method.
We set the object vehicle to move randomly within an episode (400 steps) and
to be lost (i.e., no longer receiving the tracking signals) at step 100. After the
loss, the movements of the object vehicle and the UAV remain constant, and
an attempt is made to re-observe and re-track the object at step 120. Since
the object vehicle and the UAV continue to remain in motion, there are two
situations when the object is re-observed at step 120 through the PTZ camera,
1) the object is still in the field of view (inFoV ) and 2) the object is no longer
observed, i.e., out of the field of view (outFoV ).

Table 3 shows the number of occurrences (numbers in parentheses) for inFoV
and outFoV after 50 experiments using our method and the PID control method,
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Table 3. Ro values in different sce-
narios

Scenarios PID Ours

inFoV 0.20% (9) 0.12% (6)

outFoV 95.69% (41) 2.84% (44)

Total 78.50% 2.51%

respectively, and the corresponding average value of Ro, i.e., the percentage of
frames in which the tracker lost the object after step 120. In addition, the “Total”
row represents the average Ro values in a total of 50 experiments. From Table 3,
outFoV has a much higher probability of occurrence than inFoV , which means
the object has a lower chance of reappearing in the field of view after
being lost for a short period of time (e.g., only 20 steps).

Moreover, Table 3 also reveals the lower Ro values for our method, especially
in the outFoV situation. This can be further visualized in Fig. 5, where the violin
plots comparing the change in Ro values for inFoV and outFoV situations can
be visualized for each method. The more elongated the shape of the violin, the
larger the variance in the corresponding group; and the wider the violin plot,
the higher the density. By observing Fig. 5, we note that the Ro values of our
method in the inFoV situation are slightly lower than those of the PID control
method. In stark contrast, the Ro values of our method in the outFoV situation
are surprisingly smaller than those of the PID control method. These results
highlight that our method is significantly better than the PID control
method in terms of robustness during tracking, especially when re-
tracking after object loss.

5 Conclusion

This paper proposes an air-to-ground active object tracking method based on
reinforcement learning for a high-altitude tracking environment. The method
consists of two parts: a state recognition model and an improved PPO algo-
rithm. By incorporating the state recognition model’s output into the reward
function, the proposed reinforcement learning algorithm adjusts the PTZ cam-
era to improve image quality during tracking. Moreover, a UE-free simulator is
introduced to accelerate the training process. The experimental results indicate
that our proposed method offers a higher level of robustness and stability in the
tracking process as compared to PID control method.

However, due to the limitations of experimental conditions, future work will
focus on deploying our method in physical environments and solving more distur-
bance factors in high-altitude environments to further enhance its applicability.
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