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Abstract. The ability to analyze and predict medical time series data is
crucial for enhancing healthcare decision-making and improving patient
outcomes. Currently, the algorithms used for classification and prediction
of medical time series data are limited in their capabilities and may not be
reliable enough to meet the demands of practical applications. The pur-
pose of this paper is to promote the representation learning of complex
data primarily comprised of medical time series, in order to facilitate var-
ious downstream tasks. Under the framework of graph neural networks
(GNN), we present indegree regularized neural message passing to reflect
the dependencies between different sequences. Our approach also lever-
ages representation learning to convert multivariate time series (MTS)
and static features into nodes of GNN. Moreover, we propose a dynamic
loss function to encourage the consistent learning of sensor dependency
graphs across models. Based on these proposals, our method can effec-
tively capture not only the temporal dependencies among variables, but
also the multidimensional dependencies among MTS and static features.
We classify time series on two medical challenge and a human activity
datasets. The results show that our approach can significantly improve
downstream task performance across various metrics. Code is available
at https://github.com/Zzzoptimus/GICG.

Keywords: Graph neural network · Medical time series · Regularized
neural message passing · Time series classification

1 Introduction

The significance of classification and prediction related to multiple medical time
series lies in their ability to assist medical professionals in making informed
decisions about patient care. By analyzing and predicting medical time series
data, healthcare providers can identify patterns and trends that may be indica-
tive of certain conditions or diseases, and take appropriate action to mitigate
or treat those conditions. For example, the early detection of certain diseases
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can allow for timely intervention and improve treatment outcomes. Overall, the
ability to classify and predict medical time series data can lead to more accurate
diagnoses, earlier detection of health issues, and better treatment outcomes for
patients. However, the current state of algorithms utilized for classifying and
predicting medical time series data is limited in terms of its abilities and may
not be dependable enough to fulfill practical application requirements.

The dataset we use mainly consists of medical time series. In medical scenar-
ios, the various physiological indicators of the human body, such as heart rate,
blood pressure, and oxygen saturation, are interdependent time series. Changes
in heart rate can impact blood pressure, while high blood pressure can cause
harm to heart function, elevating the risk of cardiovascular events like myocardial
infarction and stroke in individuals with rapid heartbeat. Additionally, the static
characteristics of the human body, including age and weight, can also influence
these indicators. Moreover, if the influence between two physiological indicators
in the human body changes, it can also indicate that there are problems in cer-
tain parts of the body. The changes in the influence between these sensors can
be represented using message passing in graph neural networks (GNN).

The message passing neural network [5] was proposed in 2017. Each node and
edge in the graph is associated with a learnable feature vector. The network iter-
atively passes messages between the nodes in a graph structure, updating their
feature vectors based on the information received from neighboring nodes. This
iterative process allows the information to be shared and aggregated across the
graph, enabling GNN to model complex relationships and dependencies between
nodes. It have been successfully applied to a wide range of tasks, including
molecule property prediction, social network analysis, and protein structure pre-
diction. They are particularly useful for problems where the input data has
an inherent graph structure and traditional neural networks cannot be directly
applied. We improve the message passing in GNN to make it more suitable for
our task. In summary, the main contributions of this paper are as follows:

– We propose a regularized message passing strategies. A technique is proposed
to apply indegree regularized constraint on the message passing of nodes.

– We propose global graph node representation learning. The static and the time
series features can be kept in a consistent feature space after representation.

– A dynamic loss function is proposed that can promote consistent learning
of sensor dependency graphs by establishing the similarity between two self-
connections graphs.

– We conduct experimental analysis on three public large-scale datasets. The
performance of our proposed model is significantly improved compared to the
other baselines.

2 Related Works

In this chapter, we will demonstrate the relevant work from two perspectives:
the data analysis about multivariate time series (MTS) and the development of
GNN.
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2.1 Multivariate Time Series

MTS are a crucial and ubiquitous type of data that represent multiple time-
varying variables or signals recorded over time. They are widely used in a diverse
range of domains, such as finance to analyze stock prices, meteorology to forecast
weather patterns, medicine to monitor vital signs of patients, and many others.
Irregularity in a multivariate case can create challenges for models that expect
well-aligned and fixed-size inputs. Observations can be misaligned across differ-
ent sensors and the number of observations can also vary considerably across
samples due to a multitude of sampling frequencies and varying time intervals
[24]. These characteristics can further complicate the analysis. An intuitive way
to deal with irregular time series is to impute missing values and process them as
regular time series [4]. However, imputation methods can distort the underlying
distribution and lead to unwanted distribution shifts.

Historically, linear regression [6], random forest [9], and support vector
machines [25] have been widely adopted for modeling and predicting MTS in
academic research. Thanks to the advancement of computing power, state-of-
the-art deep learning architectures have been developed to analyze MTS in vari-
ous domains. In particular, these models have shown remarkable performance in
analyzing and forecasting medical MTS. Recurrent neural networks (RNNs) [2],
auto-encoders (AE) [11], and generative adversarial networks (GANs) [23] have
demonstrated remarkable performance in medical data imputation and predic-
tion, leveraging their powerful learning and generalization capabilities achieved
through complex nonlinear transformations. Recent advancements in the field
have led to the development of models that can directly learn from irregularly
sampled time series. For instance, Che et al. developed a decay mechanism based
on gated recurrent units (GRU-D) [1] and binary masking to capture long-range
temporal dependencies. SeFT [8] takes a set-based approach and transforms
irregularly sampled time series datasets into sets of observations modeled by set
functions insensitive to misalignment. mTAND [16] leverages a multi-time atten-
tion mechanism to learn temporal similarity from non-uniformly collected mea-
surements and produce continuous-time embeddings. IP-Net [14] adopt imputa-
tion to interpolate irregular time series against a set of reference points using a
kernel-based approach.

2.2 Graph Neural Network

GNN are a type of deep learning model that can capture the structural and
relational information of graphs [22,27]. It is an optimizable transformation on
all attributes of the graph (nodes, edges, global-context) that preserves graph
symmetries (permutation invariances) [20]. The graph’s description is in a matrix
format that is permutation invariant. All nodes, edges and global-context can
be represented by vectors. This type of representation can be used for various
applications, such as predicting molecular properties, reasoning with graphs and
relations, and many others.
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Recently, GNN have emerged as a successful approach to model complex
patterns in structured graph data and a variety of improved GNNs have been
reported. Graph convolutional networks (GCN) model node feature representa-
tions by aggregating representations of their one-step neighbors. Building upon
this, graph attention networks (GAT) [19] use attention functions to compute
different weights for different neighbors during aggregation. GNN-based models
have shown success in time-related tasks, such as traffic prediction [21]. Applica-
tions of GNN in recommendation systems [10] and related domains have demon-
strated their effectiveness in modeling large-scale, multi-relational data. Rain-
drop [26] is introduced as a graph-guided network for irregularly sampled time
series and cases where sensor data is missing.

3 Method

In order to efficiently capture the relationships between various types of data and
provide reference for medical decision-making, we propose a novel architecture
named global indegree consistency GNN(GICG), which takes each sample (In
clinical data, a patient’s health status is recorded at irregular time intervals
using different sensors) as input, where each sample is represented as a weighted
directed graph (see Fig. 1). In each graph, nodes are formed by the irregularly
recorded observations of each sensor, while the edge weights of the message
passing between these nodes are learned during training. GICG aims to learn
a fixed-dimensional embedding vector for a given sample and predict relevant
labels based on this vector. Previous research [3,26] has represented MTS as
feature vectors of nodes, and then through message passing, resulted in a global
feature vector for the graph. Then it is concatenated with the static features of
each sample to form a combined feature vector for downstream tasks. However,
this concatenation approach is not a good choice because the processed time
series feature vectors and the static features have undergone different mappings
and transformations, and they reside in different high-dimensional feature spaces
with potentially different data scales. In fact, the static features are similar with
the time series data with little or no temporal variation. Therefore, we have
adopted a consistent approach to process both types of data as time series data
and represent them as different nodes (see Fig. 1 “Static” and “Active”) in GNN.

3.1 Global Graph Node Representation

In order to construct sensor dependency graphs, consider a dataset D =
{(Si, yi) | i = 1, . . . , N} consisting of N labeled samples, where each sample
Si is an irregular MTS with a corresponding label yi ∈ {1, . . . , C}. The label yi
denotes the class membership of the sample Si among C istinct classes. Each
sample contains Ma uniformly sampled sensors and Ms static features, resulting
in M nodes (M = Ma + Ms) denoted as u, v, and so on. Each node is rep-
resented by a time-sorted observation sequence, with static features having a
constant observation value at every timestamp. And dk is denoted as cardinality
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Fig. 1. The overview architecture of our model. Based on observed single value Xt
i,u,

we generates the sensor embedding Zi,u. The “Static” node represents the static feature
representation, while the “Active” nodes represent the original time series data. The
graph is updated through message passing to obtain the feature matrix Di,v of a node
at all timestamps. Finally, the sensor embedding Zi,v is obtained through the attention
mechanism. For simplicity, we have omitted the time information and the layer index
of multi-layer message passing in the graph.

of the set comprising all timestamps included in the time series. For a node u
in sample Si, a single observation is represented as a tuple (t,Xt

i,u), where the
value Xt

i,u ∈ R is recorded for the node u at timestamp t ∈ R
+. For nodes rep-

resenting time series, the observation values are irregularly recorded, meaning
that the time intervals between consecutive observation values may vary across
nodes.

In order to map observations from both active sensors and static features
to a high-dimensional space, we apply a nonlinear transformation. Due to the
possibility of different distributions being followed by recorded values at different
sensors, this is achieved through a trainable weight vector Wu, which depends on
different nodes but is shared across samples and time dimensions. Wu transforms
observations X from different nodes into a fixed-length vector of d, which is then
mapped to a high-dimensional space through a nonlinear transformation using
the following formula:

Dt
i,u = Sigmoid(Xt

i,uWu) (1)

3.2 Regularized Message Passing

Regularized message passing strategies are used to improve the consistent learn-
ing of sensor dependency graphs across different samples. They generate embed-
dings for inactive neighboring sensors, enhancing the quality and robustness of
the learned embeddings. (see Fig. 1 “message passing”). These techniques aim
to promote similarity between two self-connection graphs and ensure that the
learning process remains stable and accurate. Following the previous step shown
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in Eq. (1), we now have fixed-length embeddings for each sensor at every times-
tamp. To update the weights of node v, we consider its dependencies with other
nodes. This approach enables us to provide reasonable values for nodes with
missing data at a particular timestamp, leveraging the inter dependency among
nodes. Let us consider nodes u and v as an example to calculate the proportion
of the information propagated from u to v with the following equation:

P t
i,uv = Sigmoid(Dt

i,uW [ru||pti]T ), (2)

where ru refers to the outdegree vector of node v. It enables the model to learn
different attention weights for distinct edges from various sensors. Moreover,
P t
i ∈ R

+ represents time by mapping the 1-dimensional timestamp t to a multi-
dimensional vector using trigonometric functions. We use P t

i to compute atten-
tion weights that are sensitive to time. And W is a trainable weight matrix that
is used for dimension mapping. The calculation result P t

i,uv ∈ [0, 1] is atten-
tion weight from u to v. Combining all these components, we can compute the
embedding Dt

i,v with the neighbor v of node u as follows:

Dt
i,v = Gelu(Dt

i,uWuW
T
v P t

i,uvci,uv) (3)

The edge weight vector ci,uv is shared across all timestamps. Moreover, it
will be updated in the following sections to achieve more efficiency in regular-
ized message passing. We utilize regularized message passing by updating the
edge weight vector ci,uv. Firstly, we calculate the exponential sum of in-degrees
ci,v of node v: ci,v =

∑M
u=1(e

ci,uv/T ). Then we use an activation function with
distillation temperature to obtain the weight propagated to node v. The formula
is shown as follows:

ci,uv =
eci,uv/T

∑M
u=1(eci,uv/T )

, for u = 1, 2, . . . ,M (4)

In the above equation, T is the distillation temperature [7], which controls
the smoothness of the connections to node v. A higher T leads to a smoother
result. For each outgoing node u and incoming node v, we traverse all M nodes
in the graph and update the weights of all edges connecting them.

3.3 Sensor Embedding

After performing the previous operations, we obtained the high-dimensional vec-
tor Di,v for node v across all timestamps. Utilizing the time attention weights
introduced in this section, we compressed Di,v along its dimensions to obtain
the sensor embedding Si,v(see Fig. 1). It is noteworthy that the impact of differ-
ent timestamps on vector Si,v varies. To be specific, we compute in parallel the
significance of node v at each timestamp using the following formula:

Ai,v = softmax(
Qi,vK

T
i,v√

dk
Ws)Di,v, (5)
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where Qi,v,Ki,v are mapped by the formula: Qi,v = Di,vWQ,Ki,v = Di,vWK . dk
is the dimension of unique timestamps in all time series. The equation is divided
by

√
dk in order to maintain the dimensionality of attention weights within a

more favorable range of numerical values, where Ws ∈ R
d×1 is introduced to

facilitate the dimension reduction operation. We will generate a temporal atten-
tion weight vector instead of self-attention matrix. Subsequently, we perform
residual connections and transformations on the temporal embedding with the
following formula:

Si,u =
t∑

i=1

(At
i||[Wpp

t
i]Wa), (6)

where Wp is a linearly mapped matrix. After the mapping process, we concate-
nate the resulting matrices and At

i to form a single matrix, where Wp and Wa

are two linear projector shared by all samples and sensors.

3.4 Graph Embedding

The values of node embeddings are highly informative to some extent, and the
concatenation of all node vectors results in a vector of only thousands of dimen-
sions. Therefore, there is no need to further compress information, and we can
directly use the concatenated vector Si as the feature vector for the sample i.
Good performance can be achieved by adding a simple fully connected layer.
This approach works perfectly fine when the number of nodes is small, but for
cases with a large number of nodes, it is necessary to use some feature extraction
methods.

3.5 Dynamic Loss Function

In order to promote consistent learning of sensor dependency graphs, we employ
the following loss function: L = LCE + pLs, where LCE is cross entropy loss.
The dissimilarity Ls is computed for identical sensors across different graphs
(samples). Ls is calculated with the following formula:

Ls =

∑N
i=1

∑N
j=1

∑M
v=1 ||Si,v − Sj,v||2

(N − 1)2M
, (7)

where N denotes the total number of samples and M denotes the number of
nodes in each sample. p is calculated with formula: p =

√
M/T/2, where T

is the length of sequences. As the number of samples (N) can be large, Ls is
typically computed only for samples within a batch to improve efficiency.
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4 Experiments

4.1 Datasets

These datasets are all related to healthcare and human activity. The purpose of
them is to enable early disease screening or advance prediction of ICU mortality
in patients. Here, we provide a brief overview of the datasets used in the following
experiments.

(1) P19: PhysioNet Sepsis Early Prediction Challenge 2019. P19 dataset
includes 40,336 patients and each patient contains MTS by 34 irregularly sam-
pled sensors. Each patient has a binary label representing occurrence of sepsis
in the next 6 h. The dataset is imbalanced with 4% positive samples [13].

(2) P12: PhysioNet Predicting Mortality Challenge 2012. P12 dataset con-
tains 12, 000 patients. Each patient contains MTS with 36 sensors. Each sample
has a static vector with 9 elements including age, gender, etc. Each patient is
associated with a binary label indicating length of stay in ICU. P12 is imbalanced
with only 7% negative samples [17].

(3) PAM: PAMAP2 Physical Activity Monitoring. PAM dataset measures
daily living activities of 9 subjects with 3 inertial measurement units. PAM
dataset contains 5, 333 samples. Each sample is measured by 17 sensors and
contains 600 continuous observations. PAM does not include static attributes
and the samples are approximately balanced across all 8 categories [12].

We divide the dataset randomly into training (80%), validation (10%), and
test (10%) sets. We split the dataset in five random ways according to the above
ratio, then we performed five independent experiments.

4.2 Baselines

For comparison, we consider several models including decay mechanism based on
GRU-D and binary masking, SeFT’s set-based modeling, and the transformer-
based method trans-mean. We will also compare our approach to mTAND’s
multi-time attention mechanism, as well as graph-guided network Raindrop.
Additionally, we will evaluate IP-Net imputation-based methods, which interpo-
late irregular time series using kernel-based techniques against a set of reference
points.

4.3 Evaluation Metrics

In binary classification (P19 and P12), we will use classification Accuracy,
AUROC (Area Under the Receiver Operating Characteristic Curve), and
AUPRC (Area Under the Precision-Recall Curve) as evaluation index. AUROC
measures the ability of a model to distinguish between positive and negative
classes by calculating the area under the curve of the receiver operating char-
acteristic (ROC) curve, which plots the true positive rate (sensitivity) against
the false positive rate (1-specificity) at various threshold settings. AUPRC, on
the other hand, measures the trade-off between precision and recall of a model
by calculating the area under the curve of the precision-recall curve, which plots
the precision against the recall at various threshold settings.
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We use both AUROC and AUPRC metrics simultaneously because while
AUROC is useful for binary classification with balanced or imbalanced class
distribution, it may not be optimal for imbalanced datasets. On the other hand,
AUPRC is particularly useful for imbalanced classification problems, but can be
less sensitive to false negatives and challenging to optimize precision and recall
simultaneously.

Fig. 2. The ROC curves and PRC curves of GICG tests on binary classification
datasets, with the P12 dataset on the left and the P19 dataset on the right. On the
PRC curves, average precision (AP) is the area under the curve, and the five curves
represent five independent tests.

As shown in Fig. 2, the AUROC of GICG on the P12 and the P19 datasets
reached 0.84 and 0.88, respectively. The average AUPRC of five experiments on
the P12 and the P19 datasets reached 0.48 and 0.53, respectively.

4.4 Experimental Comparison Results

We conducted experiments on the aforementioned three datasets and identified
optimal experimental settings and hyperparameter optimization for each dataset.
Our experimental results are compared with multiple baselines on all the three
datasets, demonstrating the superiority of our proposed approach.
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Table 1. Comparison with the state-of-the-art methods on the datasets P12 and P19.
It is the average of 5 experiments. Values with bold fonts indicate the best performance
of all results.

Models P12 P19

ACC AUROC AUPRC ACC AUROC AUPRC

GRU-D [1] 0.763 0.672 0.460 0.785 0.839 0.469

Transformer [18] 0.752 0.651 0.429 0.778 0.832 0.476

Trans-mean [15] 0.764 0.668 0.449 0.802 0.841 0.474

SeFT [8] 0.719 0.668 0.361 0.786 0.787 0.311

mTAND [16] 0.731 0.653 0.403 0.780 0.804 0.324

Raindrop [26] 0.759 0.722 0.453 0.831 0.862 0.516

IP-Net [14] 0.765 0.725 0.441 0.813 0.846 0.381

GICG 0.795 0.836 0.485 0.868 0.876 0.525

In accordance with Table 1, our method GICG has achieved the highest per-
formance on the binary classification datasets P12 and P19. This indicates that
GICG can better capture the interrelationships between different variables and
has stronger capabilities to aggregate information over the time dimension. To
further substantiate our idea, We conducted further experiments on the eight-
class classification dataset PAM.

Table 2. Comparison with the state-of-the-art methods on the PAM dataset. For every
value, its left-hand side displays the average of 5 experiments, while its right-hand side
represents the standard deviation.

PAM Accuracy Precision Recall F1 score

GRU-D [1] 0.833 ± 0.02 0.846 ± 0.01 0.852 ± 0.02 0.848 ± 0.01

Transformer [18] 0.835 ± 0.02 0.848 ± 0.02 0.860 ± 0.01 0.850 ± 0.01

Trans-mean [15] 0.837 ± 0.02 0.849 ± 0.03 0.864 ± 0.02 0.851 ± 0.02

SeFT [8] 0.671 ± 0.02 0.700 ± 0.02 0.682 ± 0.02 0.685 ± 0.02

mTAND [16] 0.746 ± 0.04 0.743 ± 0.04 0.795 ± 0.03 0.768 ± 0.03

Raindrop [26] 0.870 ± 0.01 0.889 ± 0.02 0.886 ± 0.02 0.886 ± 0.01

IP-Net [14] 0.843 ± 0.04 0.756 ± 0.02 0.779 ± 0.02 0.766 ± 0.03

GICG 0.889 ± 0.01 0.902 ± 0.01 0.906 ± 0.01 0.903 ± 0.01

As show in Table 2, We compare the performance of different models for
the classification of irregularly sampled time series, and provide a summary of
the average accuracy, precision, recall, and F1 score across five experiments.
GICG has demonstrated the best performance on all evaluation measures. The
performance has the lowest standard deviation from the average value, as implies
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high stability of the performance. Therefore, our approach can be regarded as
the better choice for irregularly sampled time series classification tasks.

5 Conclusion

In this paper, we propose GICG, an improved approach based on GNN for han-
dling medical MTS data. GICG utilizes representation learning to capture the
temporal and multidimensional dependencies in medical MTS data and static
features with time-invariant properties. This is achieved through the integration
of global regularized message passing. GICG provides a flexible and robust solu-
tion for various downstream tasks of complex time series data. We demonstrate
the effectiveness of our approach through experiments on two healthcare and a
human activity datasets, showing significant improvements in downstream task
performance across various metrics. This can lead to better performance and
more reliable results in a wide range of applications.
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