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Abstract. Since neural networks play an increasingly important role in
critical sectors, explaining network predictions has become a key research
topic. Counterfactual explanations can help to understand why classi-
fier models decide for particular class assignments and, moreover, how
the respective input samples would have to be modified such that the
class prediction changes. Previous approaches mainly focus on image and
tabular data. In this work we propose SPARCE, a generative adversar-
ial network (GAN) architecture that generates SPARse Counterfactual
Explanations for multivariate time series. Our approach provides a cus-
tom sparsity layer and regularizes the counterfactual loss function in
terms of similarity, sparsity, and smoothness of trajectories. We evaluate
our approach on real-world human motion datasets as well as a synthetic
time series interpretability benchmark. Although we make significantly
sparser modifications than other approaches, we achieve comparable or
better performance on all metrics. Moreover, we demonstrate that our
approach predominantly modifies salient time steps and features, leaving
non-salient inputs untouched.

Keywords: Explainable Artificial Intelligence · Counterfactual
Explanations · Multivariate Time Series · Generative Adversarial
Networks · Long Short-Term Memorys

1 Introduction

With the advent of machine learning for decision making in critical sectors
like healthcare, predictive maintenance, or traffic, serious concerns have been
raised about the trustworthiness of these algorithms. In recent years, the field of
explainable artificial intelligence (XAI) has therefore gained increasing popular-
ity. While manifold techniques for explaining tabular data and image classifiers
have been proposed, temporal data has largely been neglected. In contrast to
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Fig. 1. Counterfactuals generated using a state-of-the-art approach [16] and our app-
roach for a multivariate time series. Columns represent features and rows represent
time steps. The curves arranged right to the boxes depict respective sequences for one
of the center features.

image data, time series interpretability poses manifold challenges, including the
presence of distinct time and space dimensions and an increased difficulty of visu-
alizing information in a meaningful way. Recent work has raised strong concerns
about the adaptability of prevalent XAI methods to multivariate time series [7].

Counterfactual Explanations. Derived from philosophical reasoning, counterfac-
tual explanations try to find modifications to an input query so that the classifi-
cation changes to a desired class [18]. Features of the input query can be mutable,
i.e. the values can and may be modified, or immutable. A valid counterfactual
should only modify mutable input features [8]. Meaningful counterfactual expla-
nations can guide users towards a better understanding of decisions made by a
system. If a classifier predicts a certain disease risk based on a patient’s medical
record, it is helpful to understand not only what factors led to the decision, but
also what factors would have to change and in which way to minimize the risk.

1.1 Objectives for Counterfactual Explanations

Precision, Similarity & Realism. A valuable counterfactual explanation is close
to the original data point, looks plausible and realistic and suggests actionable
modifications [2,9]. The choice of distance functions to measure the actionability
of a counterfactual has been a topic of discussion. The original approach by [18]
iteratively minimizes the distance between the predicted class for the counter-
factual and the target class (via L2 norm) as well as the distance between query
and counterfactual (via L1 norm) using gradient descent. [2] additionally assess
realism of the generated counterfactual by measuring how likely it is that the
counterfactual stems from the observed data distribution.

Sparsity. [2] implement sparsity as the L0 norm between query and counterfac-
tual, that measures how many features were changed to go from the original data
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point to the counterfactual. [14] do not include sparsity into the loss function,
but modify the generated counterfactuals post-hoc using a greedy algorithm to
set increasingly more features with smaller modifications zero until the predic-
tion changes. In contrast, [9] define a rigid threshold for sparsity stating that
a good counterfactual for tabular data may only modify up to two features.
Adapting this paradigm to time series, [3] only allow for modification of one
single contiguous section of the time series. Others only ensure feature sparsity,
while modifying all time steps of the sequence [1].

Similarity vs. Sparsity. Figure 1 demonstrates why similarity alone does not
guarantee actionability. The counterfactual generated by our approach makes
sparse, but more substantial modifications, while the counterfactual generated
using a state-of-the-art approach makes minor changes in all time steps and
features. If solely regularized by the L1 norm (i.e. the similarity constraint), the
latter would be preferred. Taking the actionability of the counterfactual into
account, one would most likely prefer the counterfactual generated by SPARCE
despite the higher L1 loss. As a consequence, sparsity plays a central role in our
approach.

1.2 Generative Approaches

To generate more realistic and plausible counterfactuals, while overcoming high
computational costs of iterative optimization methods, generative adversarial
networks (GANs) have recently been introduced for the generation of counter-
factual explanations [16,17]. GANs have become popular for generating realistic
looking fake images by training a generator to create fake samples that a discrim-
inator would erroneously perceive as real samples [4]. GAN-based architectures
for counterfactual search add a classifier to the standard GAN approach. In this
way, the generator learns to produce realistic looking counterfactuals that change
the classifier’s prediction to a target class.

While [16] only evaluate their model on image and tabular data, [17] also
assess their approach on univariate time series. Both approaches use L1 or L2

norms as regularization terms that act on the generator’s loss function. Par-
ticularly for multivariate time series, this formulation is problematic, since it
creates proximate, but not sparse counterfactuals. Indeed, sample counterfac-
tuals generated by [17] modify every single time step of the query sequence.
In some domains, this might be necessary. However, it is questionable whether
such a counterfactual explanation would have any explanatory power. Besides,
it is unclear whether these modifications could actually be acted upon in reality.
Our approach is thus designed to create truly sparse counterfactual explanations
for multivariate time series without compromising other important objectives of
counterfactuals, including realism, similarity, and plausibility.

2 Method

Motivated by the insufficient adaptation of counterfactual approaches to multi-
variate time series, we propose SPARCE: a novel framework to efficiently gener-
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ate SPARse Counterfactual Explanations for multivariate time series data. Our
approach aims to change the class label of an original time series to a target class
(precision). Generated counterfactuals should be within the distribution of the
original data points (realism) and stay as close as possible to the query sequence
(similarity). In contrast to related approaches for multivariate time series, we
postulate that counterfactuals are time- and feature-sparse, i.e. that only a sub-
set of features and time steps is modified (sparsity). Finally, for applications
where time series evolve smoothly over time, we aim to modify the original data
point in a temporally plausible manner (smoothness).

2.1 Generating Counterfactual Explanations

Basing our approach on a generator-discriminator architecture, we ensure real-
ism of the generated samples. In line with [16] we define a modified generator
G which learns to generate residuals δ = G(xq) from the input sample xq. In
contrast to standard GANs, the generator does not use a random seed, but real
samples as inputs. Thus, original samples are first divided into queries xq and
targets xt. Targets are samples labeled as the target class ct and are used as real
examples for the discriminator D. The query subset contains all other samples
and is presented as inputs to the generator G. Residuals created by the gen-
erator are added to the query to produce a counterfactual (xcf = xq + δ). A
pre-trained classifier C determines the class prediction for the generated counter-
factual. At the same time, the counterfactual is presented to the discriminator
as a fake sample. In combination with real target samples, the discriminator
tries to distinguish between real and fake (i.e. generated) samples. The real-
ism of the generated counterfactual examples increases as the generator learns
to fool the discriminator. The classifier prevents the generator from producing
zero-residuals, i.e. from learning the identity function (Fig. 2).

Ladv = − log(D(xq + G(xq))) (1)
Lcls = −ct log(C(xq + G(xq))) (2)

Lsim = ‖xq − xcf‖1 (3)
Lsparse = ‖xq − xcf‖0 (4)

Ljerk =
T−1∑

t=0

‖δt+1 − δt‖2 (5)

LG = Exq

[
λ1Ladv + λ2Lcls + λ3Lsim + λ4Lsparse + λ5Ljerk

]
(6)

LD =
1
2
Exq

[− log(D(xq))] − Exq
[log(1 − (D(xq + G(xq))))] (7)

Generator. The generator is realized with a many-to-many sequence prediction
model trained to generate modifications to a query sequence. To capture tempo-
ral dependencies in the input, different types of sequence models can be chosen,
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Fig. 2. Schematic illustration of our GAN-based approach for counterfactual search.
Inputs are divided into query and target time series (displayed as heatmaps) according
to the desired target class. A recurrent generator with sparsity activation generates
residuals for each query. Residuals are added to the corresponding query to create a
counterfactual explanation. A pretrained sequence classifier predicts the class label of
the counterfactual. A recurrent discriminator tries to distinguish counterfactuals from
real targets.

including long short-term memories (LSTMs), gated recurrent units, or tempo-
ral convolutional neural networks. Input and output of the generator are of the
same shape. Loss functions for generator and discriminator derive from the mini-
max loss suggested by [4]. The generator maximizes the discriminator’s estimate
that the counterfactual is real (Eq. 1). One important aspect of the generator is
the subtractive dual ReLU [15] output in the sparsity layer. Instead of a single
linear output the two contrastive outputs allow the network to produce posi-
tive and negative residuals while it is still easy to generate exact zero-residuals
(δ = ReLU(δpos) − ReLU(δneg)).

Immutable Features. In case of immutable features in the original dataset, the
generator only produces residuals for all mutable features. In this specific case,
the input to the generator is larger than its output. Generated residuals for the
mutable features are then likewise added to the respective mutable features in the
query sequence. All immutable features of the query instance remain untouched.

Discriminator. The discriminator takes on the role of distinguishing between real
samples (i.e. samples from the original dataset) and fake samples (i.e. generated
counterfactuals). It aims to maximize its estimate that the counterfactual is
fake and the query is real (Eq. 7). It is implemented as a binary many-to-one
sequence classification model with sigmoid activation that takes in a multivariate
time series and produces a probability between 0 and 1, indicating whether the
given sample looks like a real or fake sample. As the counterfactuals begin to
look more realistic, the discriminator’s accuracy drops towards 50% (chance).

Classifier. Unlike vanilla GANs, a counterfactual GAN needs a third neural net-
work, the classifier. In our approach the classifier is realized with a many-to-one
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sequence classification model. The classifier is pretrained on the original dataset
and learns to classify the label of a sequence. In contrast to [16], our classifier
does not only distinguish between samples which belong and samples that do
not belong to the target class. Instead, we train a full classifier which learns to
distinguish all classes in the original dataset. That said, our classifier can either
be binary (with sigmoid activation) or multi-class (with softmax activation) in
case of two or multiple original class labels, respectively. This property allows us
to flexibly alter the desired target class for the generated counterfactuals with-
out retraining the classifier. Moreover, our approach could also simultaneously
be trained on all target classes. In this case, generating counterfactuals for dif-
ferent target classes would not require retraining of any network element of our
approach.

Regularization. The combination of adversarial loss Ladv and classification loss
Lcls loss ensures that the generated counterfactual changes the class label, while
resembling a sample from the original data distribution. The classification loss
between the predicted class for the counterfactual and the target class is derived
from the cross-entropy loss (Eq. 2). In line with other counterfactual approaches,
we apply the L1 norm as a similarity regularization term Lsim on the generator
loss (Eq. 3). Importantly, we also use the L0 norm as a real sparsity constraint
Lsparse which ensures that the number of modifications stays low (Eq. 4). It was
shown that L0 regularization effectively fosters sparse hidden state updates in
RNNs [5]. To address the sequentiality of time series, we introduce another reg-
ularization term, the jerk constraint Ljerk. This term ensures that changes are
evenly distributed over time by penalizing large differences between modifica-
tions in consecutive time steps (Eq. 5). Additional weighting factors λ1−5 allow
each component of the generator loss to be switched on or off to meet the spe-
cific needs of individual datasets. A more fine-grained weighting with weighting
factors between 0 and 1 enables a direct influence on the loss balance (Eq. 6).

On the Sparsity of Generated Counterfactuals. One key difference of our
model in comparison with other counterfactual approaches is the clear distinc-
tion between similarity and sparsity. The combination of the sparsity constraint
Lsparse and the sparsity layer as part of the generator architecture produces
truly sparse counterfactuals with zero-residuals in a number of time steps and
features. Importantly, we let the system inherently learn the trade-off between
realism, precision, similarity, sparsity and smoothness during the training pro-
cess. As a consequence, unlike other counterfactual approaches for time series,
there is no need to define a fixed number of time steps and features that which
may be changed. On the same lines, there is not only one specific section of the
series which can be modified. Instead, we demonstrate that our approach iden-
tifies and modifies salient time steps and features while leaving most non-salient
time steps and features untouched.
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3 Experiments

Our approach is evaluated on three different multivariate time series datasets
in comparison with three related counterfactual methods. The evaluated tasks
comprise two movement datasets for multi-class classification and one synthetic
time series interpretability benchmark for binary classification. Human motion
datasets are anonymized and cannot be mapped back to individual subjects.

3.1 Datasets

MotionSense: The human motion dataset MotionSense [13] (Open Database
License ODbL) provides multivariate time series collected by accelerometer and
gyroscope sensors of a smartphone stored in a subject’s pocket as they perform
different actions. Actions include walking downstairs, walking upstairs, sitting,
standing, walking and jogging. For this work, we only used active movement
sequences and thus excluded sitting and standing trials which yielded a total
number of 11194 samples. Each time series was truncated to a length of 100
time steps. All twelve features describing attitude, gravity, rotation and user
acceleration are treated as mutable.

Catching: The Catching dataset [11] (provided by personal permission) con-
tains multivariate two-dimensional movement trajectories of healthy and patho-
logical ball catching trials over 60 time steps. At each time step, 20 features
capture the catcher’s arm position as well as the position of the ball. Each of
the 1975 catching trials is assigned a label indicating the subject’s disease sta-
tus: healthy control, patient with Autism Spectrum Disorder or patient with
Spinocerebellar Ataxia. All features specifying the catcher’s body posture are
defined as mutable features, while the two features describing the ball position
are treated as immutable.

Moving Box: The synthetic Moving Box dataset was introduced to bench-
mark interpretability in time series predictions [7]. It portrays a wide range of
temporal and spatial properties commonly found in multivariate time series.
Each time series spans 50 time steps and 50 features of which only a subset is
salient. Samples are assigned a binary label (0: negative class, 1: positive class)
and have a defined start and end point of salient time steps and features per
sample. In this dataset, all features are mutable. We used a representative subset
containing 13950 samples with boxes of different sizes and at varying positions
as well as a variety of generating time series processes.

3.2 Approaches

ICS: We loosely follow [18] for an implementation of an iterative counterfactual
search algorithm. Each counterfactual is initialized with a random uniform dis-
tribution between the minimum and maximum values of the query sequence. The
class of the generated counterfactual is predicted using a pretrained classifier.
We use the L2 distance to measure the classification loss and the unweighted L1

norm to enforce similarity.
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All following approaches are based on GANs combined with a pretrained
classifier. To account for temporal dependencies in the data, generator and dis-
criminator are implemented as bidirectional LSTMs [6]. The generator is a two-
layer many-to-many bidirectional LSTM with 256 hidden neuron and dropout
of 0.4. The discriminator is built up as a one-layer many-to-one bidirectional
LSTM with 16 hidden neurons, sigmoid output activation and dropout of 0.4.
For both networks, the final LSTM layer is followed by a fully-connected output
layer.

GAN: This approach consists of a counterfactual LSTM-GAN producing
complete counterfactuals based on query sequences. The fully-connected output
layer of the generator is followed by a tanh activation. The generator loss is
regularized using the L1 norm to optimize the distance between counterfactual
and query.

CounteRGAN: This approach is a time series specific implementation of
[16] and implements an LSTM generator that produces residuals based on query
sequences. All other aspects of the implementation are equal to the GAN app-
roach.

SPARCE: Our approach likewise generates residuals instead of complete
counterfactuals. In comparison to CounteRGAN, we additionally regularize the
generator loss via sparsity and smoothness constraints (cf. Section 2.1). More-
over, we add weighting factors λ1−5 to enable the (de-)activation of single regu-
larization constraints if required. Most importantly, the LSTM generator imple-
mented in our approach does not conclude with a linear or tanh activation layer,
but instead uses a custom sparsity layer of two interoperating ReLU activations
(cf. Section 2.1).

3.3 Evaluation Metrics

Realism: In line with [19], we use t-distributed stochastic neighbor embedding
(t-SNE ) for a visual assessment of the in-distributionness of the generated coun-
terfactuals [12]. We separately plot query and target samples of the original
dataset along with the counterfactuals generated by each approach to determine
whether the generated counterfactuals rather resemble queries or targets.

Precision: Classification error of generated counterfactuals is measured by
the L2 norm between the classifier’s prediction for a counterfactual sequence and
the target class. The metric is indicated as the average distance across all test
samples. The lower the metric, the higher the precision of the counterfactual
approach. A precision value of 0.0 means that all generated counterfactuals were
correctly classified as the target class.

Similarity: The L1 distance between each query and the corresponding
counterfactual is used to assess similarity. The metric is averaged over all test
samples and normalized using the number of time steps and features in the
dataset. Lower values indicate higher mean proximity of the generated counter-
factuals to the corresponding queries.

Sparsity: Generated counterfactuals of each approach are evaluated on the
number of modified time steps and features to transform the query into the coun-
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Table 1. Quantitative results for all datasets

Dataset Measure ICS GAN CounteRGAN SPARCE (Ours)

Catching Precision 0.24 ± .05 0.00 ± .00 0.00 ± .00 0.01 ± .01

Similarity 1.66 ± .04 0.22 ± .02 0.12 ± .01 0.09 ± .04

Sparsity 1.00 ± .00 1.00 ± .00 1.00 ± .00 0.27 ± .10

Smoothness 0.55 ± .01 0.07 ± .01 0.01 ± .01 0.01 ± .01

MotionSense Precision 0.37 ± .07 0.00 ± .00 0.00 ± .01 0.04 ± .06

Similarity 1.32 ± .01 0.71 ± .21 0.33 ± .09 0.22 ± .13

Sparsity 1.00 ± .00 1.00 ± .00 1.00 ± .00 0.22 ± .14

Smoothness 0.58 ± .00 0.09 ± .01 0.03 ± .02 0.04 ± .03

Moving Box Precision 0.99 ± .00 0.00 ± .00 0.01 ± .01 0.00 ± .00

Similarity 1.32 ± .00 0.87 ± .17 0.59 ± .05 0.40 ± .06

Sparsity 1.00 ± .00 1.00 ± .00 1.00 ± .00 0.30 ± .05

Smoothness 0.29 ± .00 0.12 ± .01 0.03 ± .00 0.02 ± .00

terfactual using the L0 norm between queries and corresponding counterfactual
examples. Values are averaged and normalized in the same way as the similarity
metric. Here lower values represent higher average sparsity, i.e. fewer modifica-
tions in the time and feature dimensions. In the case of immutable features in
the dataset, the sparsity metric is only computed on all mutable features. As a
consequence, the maximum sparsity value equals 1.0 indicating that all features
in all time steps have been modified in each counterfactual.

Smoothness: This time series specific metric is assessed with the L2 dis-
tance between modifications of consecutive time steps. High values indicate large
differences between modifications in subsequent steps. Lower values represent
modifications that are more smoothly distributed over the course of the sequence.
This metric is likewise averaged across all samples and normalized using the
number of time steps and features.

4 Results

4.1 Quantitative Evaluation

All results are reported on the held-out subsets for testing (20% of each dataset).
Unless otherwise stated, results are averaged over five repetitions with random
seeds. The target class for counterfactuals is healthy control for Catching, walking
upstairs for MotionSense and class 1 for Moving Box. ICS is performed for
100 steps (λinit = 1.0, max. λ steps = 10). The loss is minimized with Adam
[10] optimization (lr = 0.4, β1 = 0.9, β2 = 0.999). All GAN-based approaches
are trained for 100 epochs in batches of 32 samples using Adam optimization
(lr = 0.0002, β1 = 0.5, β2 = 0.999). For all quantitative metrics, lower values
represent better performance. The best value for each metric is printed in bold
numbers.
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Fig. 3. t-SNE plots for Moving Box dataset. Queries are plotted in red, targets in green
and generated counterfactuals in blue. (Color figure online)

Fig. 4. Predefined salient inputs vs. counterfactual modifications for the Moving Box
dataset.

Considering the Catching dataset, GAN and CounteRGAN achieve a pre-
cision of 100%, however closely followed by our approach (Table 1). SPARCE
outperforms ICS, GAN and CounteRGAN on the similarity and sparsity of gen-
erated counterfactuals and shares the best smoothness value with the CounteR-
GAN approach. It can be seen that no tested approach besides ours can gener-
ate sparse counterfactuals. This observation also holds for the MotionSense and
Moving Box datasets. SPARCE reaches the best or second-best performance on
each metric in spite of making considerably sparser modifications than the other
approaches.

4.2 Realism

We qualitatively assess the in-distributionness of generated counterfactuals for
the synthetic Moving Box dataset via t-SNE visualization (components = 2,
perplexity = 4.4, iterations = 300). In Fig. 3, the first subplot illustrates the
distribution of queries and targets in the original dataset. The remaining subplots
additionally show the distribution of counterfactuals generated by the respective
approaches. While counterfactuals generated by ICS lie within but also largely
out of the original distribution, those generated by GAN form separate groups
next to queries and targets. Since the task of counterfactual search is to find
samples that modify a query sample to look like a target, counterfactuals gen-
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erated by CounteRGAN and SPARCE show the most promising distributions.
Indeed, counterfactuals of both approaches modify queries in a way that the
resulting sequences approximate and even overlap with target samples.

4.3 Saliency

Since salient features and time steps are known upfront for the synthetic Moving
Box dataset, we compare the overlap with time steps modified by each approach.
A perfect counterfactual would only modify salient inputs. We first visually com-
pare modifications for queries with boxes of different sizes and positions (Fig. 4).
In all heatmaps, the x-axis represents the feature axis and time is on the y-axis.
In the second column, the salient features and time steps corresponding to each
query are shown in color. All remaining sub-figures demonstrate the modifica-
tions to the queries. White spaces are zero-residuals (i.e. sparse time steps and
features without modifications). Darker colors indicate stronger modifications.

ICS largely fails to identify salient points in the input. All GAN-based meth-
ods detect the position of most salient inputs. However, GAN and CounteRGAN
additionally modify non-salient inputs. In contrast, SPARCE modifies far fewer
inputs overall and focuses on salient inputs. For this dataset, the performance
of our approach can be further improved by switching off λ4,5, i.e. sparsity and
jerk regularization. This shows that sparsity is primarily induced by the sparsity
layer. It also demonstrates that the application of the jerk constraint depends on
the problem. Here, a clear value increase marks the transition from non-salient
to salient inputs. In human motion datasets, in contrast, smooth movements are
natural and desired.

We furthermore assess the salience overlap in a quantitative manner via the
receiver operating characteristic (ROC) curve in combination with the area under
the curve (AUC) score. Higher AUC scores indicate better discrimination per-
formance between salient and non-salient inputs. Figure 5 visualizes mean ROC
curves over five repetitions for both target classes. In both cases, we see that
our approach produces counterfactuals that show a substantially higher overlap
with predefined salient inputs than other approaches. Visual and quantitative
evaluation therefore demonstrates that our approach creates sparse counterfac-
tual explanations and is also suitable for the identification of salient inputs in
multivariate time series.

4.4 Geometric Plausibility

To assess geometric plausibility of the Catching dataset, we compute the
Euclidean distances between body parts for the original dataset and the gen-
erated counterfactuals (Fig. 6). ICS is excluded from the figure, since the corre-
sponding values lie outside of the displayed area. Counterfactuals generated by
our approach most closely resemble the body-part distances found in the original
data. This can indicate higher geometric plausibility of our generated counter-
factuals. In order to fully inspect geometric plausibility, however, the angles at
which the joints are positioned in relation to one another would also have to be
examined.
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Fig. 5. Mean ROC curve measuring the overlap between predefined salient inputs and
counterfactual modifications for the Moving Box dataset. Shaded areas describe one
standard deviation of the mean ROC.

Fig. 6. Measured distances between body parts for originals and counterfactuals for the
Catching dataset. Orange horizontal lines denote the median distance. Boxes contain
all values between lower and upper quartiles. (Color figure online)

5 Conclusions

We proposed GAN architecture for generating time- and feature-sparse counter-
factual explanations for multivariate time series. Our approach extends previous
methods by a custom sparsity layer and additional loss regularization for spar-
sity and smoothness. In extensive experiments, we demonstrate that in spite
of making substantially sparser modifications SPARCE achieves comparable or
superior performance on common metrics for counterfactual search. Benchmark-
ing our approach on a synthetic interpretability dataset, we show that it can also
be used for feature attribution. The application to real-world human motion
datasets demonstrates that our approach generates sparser and more plausible
counterfactuals than related approaches.

The design of our approach allows for a flexible change of the desired tar-
get class, as well as an easy adaptation of the counterfactual value function
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catering to the needs of other applications. Future extensions can consider other
applications (e.g. weather, stocks) and domain-specific regularization terms. In
critical sectors such as healthcare, misinterpretation of systems can have severe
consequences. XAI systems should thus always be validated by human experts.
To enhance the understandability of generated counterfactuals, further work
can investigate the visualization of explanations for end-users (e.g. in textual or
visual form).
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