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Abstract. A multilayer perceptron (MLP), a feedforward neural net-
work with one hidden layer, is called reducible if a hidden unit can
be removed without changing the input–output function. In the MLP’s
search space, the MLP is reducible in some regions, and some regions
in the reducible regions have zero gradients, where learning stagnates.
Nonetheless, some methods have been proposed to leverage such regions.
A reducible region of an MLP with J hidden units can be generated from
an MLP with J − 1 hidden units. To begin learning from a reducible
region guarantees a monotonically decreasing training error as the num-
ber of hidden units increases. The evaluation experiments reveal that the
methods using reducible regions stably determine better solutions than
existing methods. In addition, methods using reducible regions can stably
obtain high-quality solutions not only for MLPs, but also for complex-
valued MLPs, and radial basis function networks. In this study, we show
that the search space of a recurrent neural network also has reducible
regions. In addition, we propose a method that utilizes reducible regions
to obtain higher quality solutions in a stable manner, as compared to
existing methods with randomly set initial weights.

Keywords: Recurrent neural network · Reducibility · Reducible
region · Hessian matrix · Eigenvector

1 Introduction

Reducibility is a crucial characteristic of multilayer perceptrons (MLPs), feedfor-
ward neural networks with one hidden layer [5,24]. In several regions, reducible
MLPs exist in the parameter space (referred to as reducible regions in this study).
A reducible region of an MLP may contain a continuous region with zero gradi-
ent, where learning stagnates. However, methods utilizing such regions have been
proposed [18,19], where a reducible MLP with J hidden units is generated from
an MLP solution with J − 1 hidden units, and learning is started from there. As
these methods use reducible regions and start learning by increasing the number
of hidden units in succession, the training error decreases monotonically as the
number of hidden units increases. Previous experiments in the literature have
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obtained solutions suitable for the number of hidden units, which were of better
quality than those obtained from existing methods that randomly initialize the
weights.

Complex-valued MLPs, whose parameters are all complex-valued, also have
reducibility [10,11,16,17]. Methods using reducible regions of a complex-valued
MLP have also been proposed, and like real-valued MLPs, they exhibit better
solutions than those obtained using existing methods that randomly initialize the
weights [20,21]. Similarly, radial basis function networks also have reducibility,
and a method using reducible regions outperformed existing methods [22]. Fur-
ther, research on the reducibility of quaternionic and hyperbolic neural networks
has also been performed [12,13].

Recurrent neural networks (RNNs) are used in a variety of fields, including
time series forecasting, speech recognition, and human action recognition [1,6,
7]. Several methods have been proposed as RNN learning methods [3,9,25,27].
Previous studies showed that a quasi-Newton method tends to outperform a
steepest descent method. However, the quasi-Newton method may not obtain
reasonable quality solutions depending on the initial weights.

The present study shows that reducible regions also exist in an RNN param-
eter space. In addition, a learning method using reducible regions for an RNN is
proposed herein. This method monotonically decreases the training error as the
number of hidden units increases. Further, an experiment is conducted to demon-
strate that better quality solutions can be stably obtained using the proposed
method than those obtained using existing methods that randomly initialize the
weights.

This study is organized as follows. Section 2 describes basic definitions.
Section 3 shows that reducible regions exist in an RNN parameter space.
Section 4 proposes a new learning method using reducible regions. Section 5 eval-
uates the proposed method. Finally, Sect. 6 concludes the study and discusses
future work.

2 Basic Definitions

Among the various models of RNNs, Elman RNNs are considered herein [14,23,
26]. Let K be the number of input units, J be the number of hidden units, and
I be the number of output units. We use the following notation.

w
(J)
j Weights

(
w

(J)
0,j , ..., w

(J)
K,j

)tr

from all input units to the jth hidden unit,

where w
(J)
0,j is the bias, and atr denotes the transpose of a vector a.

W (J) Weights
(
w

(J)
1 , ...,w

(J)
J

)
from all input units to all hidden units.

v
(J)
i Weights

(
v
(J)
0,i , ..., v

(J)
J,i

)tr

from all hidden units to the ith output unit,

where v
(J)
0,i is the bias term.

V (J) Weights
(
v
(J)
1 , ...,v

(J)
I

)
from all hidden units to all output units.
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r
(J)
j Recurrent weights

(
r
(J)
1,j , ..., r

(J)
J,j

)tr

from all hidden units to the jth hidden
unit.

R(J) Recurrent weights
(
r
(J)
1 , ..., r

(J)
J

)
from all hidden units to all hidden

units.
θ(J) A vector of all weights W (J), V (J), and R(J).

x(t) Input signals
(
1, x

(t)
1 , ..., x

(t)
K

)tr

at time t.

Xt0,t1 Input signals
(
x(t0), ...,x(t1)

)
from time t0 to t1(≥ t0).

Given input signals Xt0,t1 , the output of the jth hidden unit is

zj

(
Xt0,t1 ;θ

(J)
)
=

⎧
⎨
⎩

σ
(
w

(J)
j

tr
x(t1)

)
, if t0 = t1;

σ
(
w

(J)
j

tr
x(t1) + r

(J)
j

tr
z
(
Xt0,t1−1;θ(J)

))
, if t0 < t1,

(1)

where z
(
Xt0,t1 ;θ

(J)
)≡

(
z1

(
Xt0,t1 ;θ

(J)
)
, ..., zJ

(
Xt0,t1 ;θ

(J)
))tr

, and we con-

sider a sigmoid function σ(x) = 1/(1 + e−x) as the activation function. As
hidden units have recurrent weights, the outputs typically depend on the values
of x(t0), ...,x(t1), not just x(t1).

Herein, an identity function is considered as the activation function of output
units. The output of the ith output unit is

fi

(
Xt0,t1 ;θ

(J)
)
= v

(J)
i

tr
z̃
(
Xt0,t1 ;θ

(J)
)
, (2)

where z̃
(
Xt0,t1 ;θ

(J)
)≡

(
1, z1

(
Xt0,t1 ;θ

(J)
)
, ..., zJ

(
Xt0,t1 ;θ

(J)
))tr

. Using

weights V (J), the outputs f
(
Xt0,t1 ;θ

(J)
) ≡ (

f1
(
Xt0,t1 ;θ

(J)
)
, ...,

fI

(
Xt0,t1 ;θ

(J)
))tr of the 1st to Ith output units can be calculated as:

f
(
Xt0,t1 ;θ

(J)
)
= V (J)trz̃

(
Xt0,t1 ;θ

(J)
)
. (3)

3 Reducible Regions

An RNN is considered reducible when a hidden unit can be removed such that
the RNN’s input-output function does not change. This Section considers the
regions of a reducible RNN, referred to as reducible regions.

First, consider a solution for an RNN with J − 1 hidden units. Here all
weights of such a solution are denoted by symbols with hats, such as ŵ

(J−1)
K,1 ,

v̂
(J−1)
i , R̂

(J−1)
, and θ̂

(J−1)
.
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Next, consider the following region.

Θ̂
(J)

γj
=

{
θ(J)

∣∣∣W (J) =
(

Ŵ
(J−1)

, ŵ
(J−1)
j

)
, v

(J)
0,i = v̂

(J−1)
0,i , v

(J)
j′,i = v̂

(J−1)
j′,i ,

v
(J)
j,i = piv̂

(J−1)
j,i , v

(J)
J,i = (1 − pi)v̂

(J−1)
j,i , r

(J)
j′,j′′ = r̂

(J−1)
j′,j′′ , r

(J)
j′,J = r̂

(J−1)
j′,j ,

r
(J)
j,j′′ = qj′′ r̂

(J−1)
j,j′′ , r

(J)
J,j′′ = (1 − qj′′)r̂(J−1)

j,j′′ , r
(J)
J,J = (1 − qJ)r̂(J−1)

j,j ,

r
(J)
j,J = qJ r̂

(J−1)
j,j , j′∈{1, ..., J−1}\{j}, j′′∈{1, ..., J−1}, i∈{1, ..., I}

}
,(4)

where j ∈ {1, ..., J − 1}, and p1, ..., pI , q1, ..., qJ are all arbitrary real numbers.

Figure 1 shows an example of a region Θ̂
(J)

γj
. A region Θ̂

(J)

γj
is a reducible region

because it satisfies the following theorem, the proof of which can be found in the
appendix.

Theorem 1. f
(
Xt0,t1 ;θ

(J)
)
= f

(
Xt0,t1 ; θ̂

(J−1))
where θ(J) ∈ Θ̂

(J)

γj
, and t0 ≤

t1.

For MLPs, three types to generate reducible MLPs are known [5,24]. As
for RNNs, other types, in addition to the aforementioned, may also generate
reducible RNNs; however, the proposed method uses only the aforementioned
type.

Fig. 1. Example of a region ̂Θ
(J)

γj
when K = 2, I = 2, j = 2, and J = 3. The left side

is the solution for an RNN with J − 1 hidden units, whereas the right side is an RNN

with J hidden units in the region ̂Θ
(J)

γj
. Weights across an ellipse on the right are the

same as those on the left. A weight marked with a diamond on the right is the same
as one marked with a diamond on the left. The sum of weights that touch a triangle is
the same as one marked with a triangle on the left.
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4 Reducible Region Descent

This section proposes reducible region descent (RRD), a method to start learn-
ing an RNN from a reducible region. When learning begins from a reducible
region, the training error for an RNN with J hidden units becomes smaller than
that of the solution with J −1 hidden units. Therefore, the training error mono-
tonically decreases with increasing number of hidden units. This section explains
the descent from a reducible region and the proposed method’s processing flow.

4.1 Descent from a Reducible Region

Previous studies have proven that several reducible regions exist in the MLP
parameter space and continuous regions with zero gradients exist in the reducible
regions [5]. Similarly, points or regions with zero gradients may be in a reducible

region Θ̂
(J)

γj
. If the gradient is zero, learning cannot begin by a gradient-based

method from the region. Therefore, herein, the eigenvalues and eigenvectors of
the Hessian matrix were used, similar to the method of using reducible regions
of an MLP [18]. Even if the gradient is zero, if a negative eigenvalue exists in
the Hessian matrix, learning can be started in the direction of the eigenvector
corresponding to the negative eigenvalue. Hence, herein, negative eigenvalues and
their corresponding eigenvectors of Hessian matrices were used in the proposed
method.

4.2 Procedure of the Proposed Method

Algorithm 1 shows the procedure of RRD. In addition, Fig. 2 shows a concep-
tual diagram of the RRD flow. In Step 1 of Algorithm 1, the initial values of
the weights were randomly selected from the interval (−1, 1), and the num-
ber of learning trials was set to 10 in the experiment performed herein. Fur-
ther, Broyden–Fletcher–Goldfarb–Shanno (BFGS) [4], a type of quasi-Newton

Algorithm 1. RRD
1: Randomly initialize the weights of an RNN with one hidden unit and perform

learning several times
2: Select a solution with the smallest training error and let the solution be denoted

by ̂θ
(1)

3: for J = 2, ..., Jmax do

4: Generate reducible regions ̂Θ
(J)

γ1 , ..., ̂Θ
(J)

γJ−1 from ̂θ
(J−1)

and select several points
on the reducible regions

5: Calculate the Hessian matrices at the selected points and calculate the eigenval-
ues and eigenvectors

6: Perform learning in the directions and the opposite directions of the eigenvectors
corresponding to negative eigenvalues in the calculated eigenvalues

7: Let a solution with the smallest training error be ̂θ
(J)

8: end for
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Fig. 2. Conceptual diagram of the RRD flow.

method, was used as the learning method. In BFGS, a line search was used
where the initial value of the step length was set to 1. If the training error did
not decrease, the step length was repeatedly halved. Learning by BFGS was
stopped when the number of weight updates reached 1,000 or the step length for
the line search became less than 10−16. In Step 3, the maximum number Jmax

of hidden units was set to 20.
In Step 4, it is necessary to determine which points on the reducible regions

will be used. In the experiment, the points where p1 = · · · = pI = q1 = · · · =
qJ = 0.5 and points where p1 = · · · = pI = q1 = · · · = qJ = 1.5 were selected.
Note that at 0.5, the signs of pair weights are the same, and at 1.5, the signs of
pair weights are different. These points were selected for each j ∈ {1, ..., J − 1}.
Therefore, the number of points used in Step 4 was 2 × (J − 1).

The learning trials in Step 6 can be very time-consuming if numerous negative
eigenvalues exist and learning trials are started in the directions of eigenvectors
corresponding to all negative eigenvalues. Hence, herein, the eigenvalues were
selected in order, starting with the smallest eigenvalue, and the upper limit of
the number of learning trials was set to 10. In Step 6, BFGS was used after the
weights were updated once in the direction (or in the opposite direction) of an
eigenvector. In BFGS, the exact line search and stopping criteria were used as
in Step 1.

5 Experiment

To evaluate the proposed method, an experiment was performed to predict
the Lorenz attractor [15]. A computer with Ryzen 9, 3950X, and 64 GB RAM
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was used. Further, Julia Version 1.8.5, with DifferentialEquations Version 7.7.0,
Zygote Version 0.6.55, Statistics, LinearAlgebra, and Random packages, was
used as the programming language.

5.1 Settings

Fig. 3. Trajectory of the Lorenz
attractor.

The Lorenz equations are da
dt = α(b − a),

db
dt = a(ρ − c) − b, and dc

dt = ab − βc. We
set ρ, α, and β to 28, 10, and 8/3, respec-
tively, and set the initial values of a, b,
and c to –10, –10, and 30, respectively.
Figure 3 shows the trajectory of the a, b
and c at t = 0,Δt, · · · , 499Δt. Here, Δt
was set to 0.05 and Tsit5 solver was used
to generate the trajectory by setting the
tolerance option as reltol = abstol = 10−6.

Given inputs at, bt, and ct, an RNN
predicts one point ahead (Δt ahead)
at+Δt, bt+Δt, and ct+Δt. Herein, 300 points were used as training data, as follows.
((a0, b0, c0), (aΔt, bΔt, cΔt), ..., (a299Δt, b299Δt, c299Δt)):

X
(train)
1,299 =

(
(1, a0, b0, c0)tr, (1, aΔt, bΔt, cΔt)tr, ...,

(1, a298Δt, b298Δt, c298Δt)tr
)
, (5)

Y
(train)
1,299 =

(
(1, aΔt, bΔt, cΔt)tr, (1, a2Δt, b2Δt, c2Δt)tr, ...,

(1, a299Δt, b299Δt, c299Δt)tr
)
. (6)

Further, 200 points were used as test data, as follows. ((a300Δt, b300Δt, c300Δt),
(a301Δt, b301Δt, c301Δt), ..., (a499Δt, b499Δt, c499Δt)):

X
(test)
1,199 =

(
(1, a300Δt, b300Δt, c300Δt)tr, (1, a301Δt, b301Δt, c301Δt)tr, ...,

(1, a498Δt, b498Δt, c498Δt)tr
)
, (7)

Y
(test)
1,199 =

(
(1, a301Δt, b301Δt, c301Δt)tr, (1, a302Δt, b302Δt, c302Δt)tr, ...,

(1, a499Δt, b499Δt, c499Δt)tr
)
. (8)

In forecasting time series data, interests are often only in predicting the
future. Hence, herein, the many-to-one architecture [2,8] was used, and the fol-
lowing equation was considered as the objective function of the many-to-one
model.

Emany−to−one(X1,T ,Y 1,T ) =
T∑

τ1=h

e
(
Xτ1−h+1,τ1 ,yτ1 ;θ

(J)
)
, (9)

where e
(
Xτ0,τ1 ,yτ1 ;θ

(J)
)≡

(
f

(
Xτ0,τ1 ;θ

(J)
)−yτ1

)tr(
f

(
Xτ0,τ1 ;θ

(J)
)−yτ1

)
,

and h is an integer greater than or equal to 1 and indicates the num-
ber of previous inputs that are reflected. In the experiment, h was set to
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10. Here, we define Etr ≡ Emany−to−one

(
X

(train)
1,299 ,Y

(train)
1,299

)
, and Etest ≡

Emany−to−one

(
X

(test)
1,199 ,Y

(test)
1,199

)
.

Moreover, steepest descent (SD) and BFGS with random initial weights
were used as existing methods. Here, these two methods are called random
initialization-SD (RI-SD) and RI-BFGS, respectively. In RI-SD and RI-BFGS,
the initial values of the weights were randomly selected from the interval (−1, 1).
The exact line search and stopping criteria used in RRD were also used. Addi-
tionally, the range of hidden units was set to 1–20 in both RI-SD and RI-BFGS.
Furthermore, the number of trials was set to 10 for each number of hidden units,
matching the settings in RRD.

5.2 Results

Figures 4 and 5 show each method’s smallest training and test errors for each
number of hidden units.

Although the training error obtained by RI-BFGS was significantly smaller
than RI-SD, the training error did not monotonically decrease with increas-
ing number of hidden units. By contrast, the training error obtained by RRD
decreased monotonically with increasing number of hidden units and was smaller
than that obtained by RI-BFGS. The test error obtained by RRD was also the
smallest.

Fig. 4. Training error. Fig. 5. Test error.

Further, the total processing times of the RI-SD, RI-BFGD, and RRD meth-
ods were 144, 51, and 65 min, respectively. RRD took more time compared with
RI-BFGS, partly because RRD requires the calculation of the Hessian matrices
on reducible regions. RI-SD took the longest time because the line search took
a long time.

5.3 More Weight Updates for RI-BFGS

Since a solution with J − 1 hidden units is used for learning an RNN with J
hidden units in RRD, it can be interpreted that the number of weight updates
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Fig. 6. Training errors when J = 20. Fig. 7. Test errors when J = 20.

is accumulated, and the total number of weight updates is 1000×J . Thus, RRD
was compared with RI-BFGS, where the upper limit of weight updates was set
to 1000 × J . Here, this method is called RI-BFGS(1000 × J). All other settings
remained unchanged, consistent with those described in Sect. 5.1.

Figures 6 and 7 show the training and test errors when J = 20.
In RI-BFGS(1000 × J), the training error decreased with increasing num-

ber of weight updates; however, the smallest training error was still larger than
an RRD training error. Interestingly, most of the test errors obtained by RI-
BFGS(1000 × J) increased with increasing number of weight updates. By con-
trast, RRD enabled determining solutions with small training and test errors in a
stable manner. The mean and standard deviation of the ten test errors obtained
by RI-BFGS(1000×J) when J = 20 were 1.39×104 and 1.35×104, respectively,
whereas those obtained by RRD were 0.0242 and 6.93 × 10−4, respectively.

6 Conclusion

This study shows that reducible regions exist in an RNN parameter space. In
addition, a new learning method called RRD, which uses reducible regions gener-
ated from a solution, was proposed. Further, an evaluation experiment was con-
ducted to predict the Lorenz attractor, wherein RRD stably determined quality
solutions, thereby outperforming existing methods.

In the future, we plan to evaluate RRD using various datasets. We also plan
to investigate the structure of reducible regions in the parameter space used
in the procedure of RRD, in particular whether continuous regions exist where
the gradient is zero. In addition, we plan to investigate other types to generate
reducible regions.

Acknowledgements. This paper is based on results obtained from a project com-
missioned by the New Energy and Industrial Technology Development Organization
(NEDO).
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Appendix

First, we define, zj′′
(
Xt0,t1 ; θ̂

(J−1))≡ ẑ
(J−1)
j′′ (Xt0,t1), zj′′

(
Xt0,t1 ;θ

(J)
)≡

z
(J)
j′′ (Xt0,t1) where θ(J) ∈ Θ̂

(J)

γj
. Next, the following lemma can be derived.

Lemma 1. z
(J)
j′′ (Xt0,t1) = ẑ

(J−1)
j′′ (Xt0,t1), z

(J)
J

(
Xt0,t1

)
= ẑ

(J−1)
j (Xt0,t1) where

j′′ ∈ {1, ..., J − 1}.
This lemma suggests that all outputs of the 1st to J − 1th hidden units are

the same as those of the solution θ̂
(J−1)

, and the output of the Jth hidden unit

is the same as that of the jth hidden unit of the solution θ̂
(J−1)

.

Proof. Using mathematical induction, this lemme can be proven. More specif-
ically, first, let us show that the outputs of hidden units are the same for
t1 = t0 + 1. Next, assuming that the outputs are the same when t1 = t0 + h, let
us show that the outputs are the same when t1 = t0 + h + 1.

To show that the outputs are the same when t1 = t0 + 1, consider the
case when t1 = t0. From ŵ

(J−1)
j′′ = w

(J)
j′′ , j′′ ∈ {1, ..., J − 1}, and ŵ

(J−1)
j =

w
(J)
J , ẑ

(J−1)
j′′ (Xt0,t0) = z

(J)
j′′ (Xt0,t0), j

′′ ∈ {1, ..., J − 1}, and ẑ
(J−1)
j (Xt0,t0) =

zJ(Xt0,t0).
When t1 = t0 + 1, the following is noted.

ẑ
(J−1)
j′′ (Xt0,t0+1) = σ

(
ŵ

(J−1)tr

j′′ x(t) +
J−1∑
j′=1

r̂
(J−1)
j′,j′′ ẑ

(J−1)
j′ (Xt0,t0)

)

= σ

(
ŵ

(J−1)tr

j′′ x(t) +
∑

j′∈{1,...,J−1}\{j}
r̂
(J−1)
j′,j′′ ẑ

(J−1)
j′ (Xt0,t0)

+bj′′ r̂
(J−1)
j,j′′ ẑ

(J−1)
j (Xt0,t0) + (1 − bj′′)r̂(J−1)

j,j′′ ẑ
(J−1)
j (Xt0,t0)

)

= σ

(
w

(J)tr

j′′ x(t) +
∑

j′∈{1,...,J−1}\{j}
r
(J)
j′,j′′z

(J)
j′ (Xt0,t0)

+r
(J)
j,j′′z

(J)
j (Xt0,t0) + r

(J)
J,j′′z

(J)
J (Xt0,t0)

)

= z
(J)
j′′ (Xt0,t0+1), (10)

where j′′ ∈ {1, ..., J − 1}. Moreover,

ẑ
(J−1)
j (Xt0,t0+1) = σ

(
ŵ

(J−1)tr

j x(t) +
J−1∑
j′=1

r̂
(J−1)
j′,j ẑ

(J−1)
j′ (Xt0,t0)

)

= σ

(
ŵ

(J−1)tr

j x(t) +
∑

j′∈{1,...,J−1}\{j}
r̂
(J−1)
j′,j′′ ẑ

(J−1)
j′ (Xt0,t0)
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+bJ r̂
(J−1)
j,j ẑ

(J−1)
j (Xt0,t0) + (1 − bJ )r̂(J−1)

j,j ẑ
(J−1)
j (Xt0,t0)

)

= σ

(
w

(J)tr

J x(t) +
∑

j′∈{1,...,J−1}\{j}
r
(J)
j′,Jz

(J)
j′ (Xt0,t0)

+r
(J)
j,J z

(J)
j (Xt0,t0) + r

(J)
J,Jz

(J)
J (Xt0,t0)

)

= z
(J)
J (Xt0,t0+1). (11)

Next, let us assume that ẑ
(J−1)
j′′ (Xt0,t0+h) = z

(J)
j′′ (Xt0,t0+h), j′′ ∈ {1, ..., J −

1}, ẑ
(J−1)
j (Xt0,t0+h) = z

(J)
J (Xt0,t0+h), and consider the case when t1 = t0+h+1.

If the equations are transformed in the same manner as Eqs. (10) and (11), the
following is obtained.

ẑ
(J−1)
j′′ (Xt0,t0+h+1) = z

(J)
j′′ (Xt0,t0+h+1), (12)

ẑ
(J−1)
j (Xt0,t0+h+1) = z

(J)
J (Xt0,t0+h+1), (13)

where j′′ ∈ {1, ..., J − 1}. From Eqs. (10), (11), (12), and (13), we obtain:

ẑ
(J−1)
j′′ (Xt0,t1) = z

(J)
j′′ (Xt0,t1), ẑ

(J−1)
j (Xt0,t1) = z

(J)
J (Xt0,t1), (14)

where j′′ ∈ {1, ..., J − 1}, and t1 ≥ t0. �
Now, let us return to the proof of Theorem 1.

Proof. From Lemma 1, we obtain the following.

fi

(
Xt0,t1 ;θ

(J)
)
= v̂

(J−1)
0,i +

J−1∑
j′′=1

v̂
(J−1)
j′′,i ẑ

(J−1)
j′′ (Xt0,t1)

= v̂
(J−1)
0,i +

∑
j′′∈{1,...,J−1}\{j}

v̂
(J−1)
j′′,i ẑ

(J−1)
j′′ (Xt0,t1)

+piv̂
(J−1)
j,i ẑ

(J−1)
j (Xt0,t1) + (1 − pi)v̂

(J−1)
j,i ẑ

(J−1)
j (Xt0,t1)

= v
(J)
0,i +

∑
j′′∈{1,...,J−1}\{j}

v
(J)
j′′,iz

(J)
j′′ (Xt0,t1)

+v
(J)
j,i z

(J)
j (Xt0,t1) + v

(J)
J,i z

(J)
J (Xt0,t1)

= fi

(
Xt0,t1 ; θ̂

(J−1))
(15)

where i ∈ {1, ..., I}. �
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