
One-Class Intrusion Detection
with Dynamic Graphs

Aleksei Liuliakov(B) , Alexander Schulz , Luca Hermes ,
and Barbara Hammer

Machine Learning Group, Bielefeld University, Bielefeld, Germany
{aliuliakov,aschulz,lhermes,bhammer}@techfak.uni-bielefeld.de

Abstract. With the growing digitalization all over the globe, the rel-
evance of network security becomes increasingly important. Machine
learning-based intrusion detection constitutes a promising approach for
improving security, but it bears several challenges. These include the
requirement to detect novel and unseen network events, as well as spe-
cific data properties, such as events over time together with the inherent
graph structure of network communication.

In this work, we propose a novel intrusion detection method, TGN-
SVDD, which builds upon modern dynamic graph modelling and deep
anomaly detection. We demonstrate its superiority over several baselines
for realistic intrusion detection data and suggest a more challenging vari-
ant of the latter.

Keywords: Temporal dynamic graph · One class classification ·
Intrusion detection

1 Introduction

The field of anomaly detection deals with detecting rare observations, sometimes
also referred to as outliers or novelties, that differ substantially from the majority
of samples. This is approached (mostly) in a fully unsupervised fashion with only
regular samples being available. The interest in this problem has been increas-
ing in recent years due to a growing potential impact in different areas, such
as security, medicine or finance. A variety of successful models for this problem
has been proposed, ranging from shallow approaches like the One-Class Support
Vector Machine (OCSVM), the Support Vector Data Description (SVDD), Iso-
lation Forest (IF) or Local Outlier Factor (LOF) [2,7,16,19], over deep methods
like Deep SVDD or Deep OCSVM [3,15], to graph based ones like the Temporal
Hierarchical One-Class (THOC) network or Event2Graph [18,22]. Several more
have been discussed in survey articles focusing on specific aspects, such as deep
or graph based models [6,9,14]. This field has been investigated from different
areas, including automated machine learning based approaches [8].

We gratefully acknowledge funding by the BMBF within the project HAIP, grant num-
ber 16KIS1212.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14257, pp. 537–549, 2023.
https://doi.org/10.1007/978-3-031-44216-2_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44216-2_44&domain=pdf
http://orcid.org/0000-0003-4676-9272
http://orcid.org/0000-0002-0739-612X
http://orcid.org/0000-0002-7568-7981
http://orcid.org/0000-0002-0935-5591
https://doi.org/10.1007/978-3-031-44216-2_44


538 A. Liuliakov et al.

In the present work we want to focus on the subfield of intrusion detection
in computer networks. Specifically, we aim to detect abnormal network traffic
that constitutes an attack by an intruder. This is a relevant topic, because the
size and abundance of computer networks keeps increasing. Accordingly, the
dependence of the public and the private sector on the former is ever-growing.
This makes the potential danger and costs of attacks on such networks, such
as network intrusion attacks, evident. In this domain, specific properties of the
data are present that are not necessarily typical for classical anomaly detection:
First, network communication appears sequentially over time, making dynamical
data structures promising candidates; second, communication has the structure
of a sender, a recipient and a communication message [17], which can be most
naturally represented as graphs. For this purpose, Dynamic Graph Neural Net-
works are a promising model class, including the approaches [5,13,20,21,23]. In
a recent study [12], the Temporal Graph Network (TGN) [13], has shown to be
particularly successful in modelling dynamical network data. However, empiri-
cally, the TGN is not sufficient for intrusion detection. Hence, we propose an
extension of this model and evaluate it in the context of intrusion detection.

Our contributions are the following:

– We propose a new fully unsupervised end-to-end trainable intrusion detection
model, that we call TGN-SVDD, which utilizes dynamic graph modelling and
combines the two approaches TGN and Deep SVDD.

– We demonstrate that the vanilla TGN is not sufficient for intrusion detection
in realistic benchmark data [17], while performing better than shallow models.
Both are outperformed by our proposed TGN-SVDD.

– We analyze the dataset [17] in depth and detect a potential easy workaround
that could be used by models for intrusion detection. We suggest a solution to
this problem making the dataset more challenging and show that our proposed
method still achieves a high performance level.

2 Fundamentals

Network traffic and more specifically internet traffic refers to the collective flow
of data packets transmitted, received, and routed between interconnected devices
and systems. This traffic encompasses various data types, including text, multi-
media, and control information exchanged through a diverse set of application-
layer protocols such as HTTP, FTP, SMTP, etc. Internet traffic can be repre-
sented as a set of network flows, where each is a sequence of data packets that
share common attributes, such as the source IP address, destination IP address,
source port, destination port, and protocol. It can be further conceptualized
as dynamic temporal graphs. In this representation, source and destination are
represented as nodes and identified by their respective IP address and the con-
nections between these nodes, defined by network flows, act as the edges or
links. Note that each edge is associated with a timestamp that reflects when
that particular network flow appeared.



One-Class Intrusion Detection with Dynamic Graphs 539

2.1 Continuous-Time Dynamic Graphs (CTDG)

Continuous-time dynamic graphs (CTDG) are represented as timed event lists,
including edge or node addition/deletion and feature transformations. Temporal
(multi-)graphs are sequences of time-stamped events G = {x(t1), x(t2), ...}, with
events x(t) adding/changing nodes or interactions. There are two event types:
1) node-wise events vi(t) such as creating a node i or updating its features, and
2) interaction events in the form of directed temporal edges eij(t).

Denote V (T ) = {i : ∃vi(t) ∈ G, t ∈ T} and E(T ) = {(i, j) : ∃ eij(t) ∈ G, t ∈
T} as temporal vertex and edge sets, and Ni(T ) = {j : (i, j) ∈ E(T )} as node i’s
neighborhood in time interval T . N ν

i (T ) is the ν-hop neighborhood. A snapshot
of graph G at time t is the (multi-)graph G(t) = (V ([0, t]), E([0, t])).

2.2 Temporal Graph Network (TGN)

One popular framework to model dynamic graphs is the TGN [13]. TGN model
with graph attention mechanism consists of an encoder-decoder pair for dynamic
graph analysis. The TGN encoder for continuous-time dynamic graphs generates
node embeddings that capture long-term dependencies. The decoder uses the
embeddings to make task-specific predictions.

The model maintains a vector for each node as memory which represents the
compressed history. Messages are computed for each node participating in the
event. Separate message functions for source, target, and node-wise changes are
used. After each event node memory is updated by means of a learnable mem-
ory function (e.g. GRU) with messages and previous memory states as inputs
respectively. This enables the model to capture long-term dependencies.

In a given interaction event between nodes i and j at time step t, a Temporal
Graph Attention Module effectively incorporates the historical events of either
node. For node i, the module retrieves its current representation along with its
previous interactions with other nodes. These past interactions are then weighted
according to the attention mechanism and subsequently aggregated to provide
a representation of the node’s temporal dynamics. The output of this module
results in an embedding vector for a particular node i in time t.

To define the model we use the same notation as above for CTDG. G =
{x(t1), ..., x(tD)} is a sequences of time-stamped and time-ordered interaction
events x(t), where D is the number of events in the data. For every tk with
k ∈ {1, ..,D}, we have certain source and destination nodes pairs (i, j) ∈ E(tk),
and corresponding event feature vectors eij(tk). We denote a TGN memory
state si(t−k ) of the node i at the time t−k < tk, which gets updated every time
when node i appears in an event. We denote TGN encoder functional module
z(i, si(t−k ),Ni(tk),W), which provides a vector representation of the node i in
embedding space F ⊆ R

p with respect to the past temporal events at time t−k ,
the history of this node si(t−k ) and with respect to its temporal neighborhood
Ni(tk). W are TGN’s encoder model parameters.

In the original work, a multi-layer perceptron (MLP) decoder is employed by
the authors for self-supervised next edge (event) prediction task. In our work we



540 A. Liuliakov et al.

only utilize TGN’s encoder part to obtain node embeddings that we complement
with a decoder specialized for one-class classification (s. Sect. 3).

2.3 Deep Support Vector Data Description (Deep SVDD)

One-Class classification focuses on learning the target class representation to
identify novel or outlier instances. Traditional shallow methods like OCSVM and
SVDD [16,19] face scalability issues and struggle in complex high-dimensional
scenarios. Deep SVDD [15] addresses these limitations by learning a feature space
representation in an end-to-end setting with a deep network. It also improves per-
formance and scalability in one-class classification and anomaly detection tasks.
Deep SVDD can be integrated with various deep learning encoder architectures,
leveraging recent successes in deep representation learning.

For a given input space X ⊆ R
d and output space F ⊆ R

p, let φ(·;W) :
X → F represent a deep neural network with parameters W. For any test point
x ∈ X , an anomaly score s is defined by calculating the squared distance between
the point and the center of a hypersphere c. This can be expressed as:

s(x) = ‖φ(x;W) − c ‖2 (1)

The training data is represented as Dμ = {x1, . . . ,xμ}, where xi ∈ X ,∀i ∈
{1, . . . , μ}. Where μ ∈ N is a number of data points. The objective of Deep
SVDD can be formulated as following:

min
W,c

1
μ

μ∑

i=1

‖ φ(xi;W) − c ‖2 + λ ‖W ‖2, (2)

aims to minimize the sum of the squared distances between the network represen-
tations of input data points φ(xi;W) and the center c ∈ F of the hypersphere,
along with a weight decay regularizer term for model parameters W, which is
controlled by the hyperparameter λ. Note that c is optimized jointly with the
network parameters.

3 Our Proposed Model: TGN-SVDD

In the application case of cybersecurity and Network Intrusion Detection Sys-
tems (NIDS) usually only normal/benign data is available. At the same time
attacks exhibit a wide range of characteristics and new attack types may be
found. Thus, training data cannot be assumed to cover all possible attacks. This
makes standard supervised Machine Learning techniques suboptimal for such
data and applications. We introduce a novel end-to-end trainable unsupervised
approach which is best suited for, but not limited to, cybersecurity and NIDS
applications.

For the TGN encoder functional module, from Sect. 2.2, we will use the nota-
tion zi(tk,W) for brevity. The rest of the notation remains unchanged.



One-Class Intrusion Detection with Dynamic Graphs 541

We apply a modified Deep SVDD decoder to compute an anomaly score for
each given interaction event x(tk) as follows:

s(x(tk)) = ‖ (zi(tk,W) ⊕ zj(tk,W)) − c ‖2, (3)

where zi and zj are the temporal node embeddings of nodes i and j that par-
ticipate in event x(tk), ⊕ denotes concatenation, and, as in Deep SVDD, c is
a trainable vector that points to the center of a hypersphere. At initialization
time, the node’s memory states are set to zero-vectors. The end-to-end training
objective is defined as

min
W,c

1
D

D∑

k=1

‖ (zi(tk,W) ⊕ zj(tk,W)) − c ‖2 + λ‖W ‖2, (4)

which aims to minimize the sum of the squared distances between the concate-
nated TGN encoder representations of source node i and destination node j
and the center c ∈ R

2×p of the hypersphere, along with a weight regulariza-
tion term for TGN encoder model parameters W, and corresponding trade-off
hyperparameter λ.

4 Experiment

In the following, we describe our performed experimentation, including the setup,
the utilized data and pre-processing as well as the final results.

4.1 Dataset and Experimental Setup

Dataset. To evaluate our proposed model, we employed the CIC-IDS2017
dataset [17], which was created by the University of New Brunswick. This pub-
licly available dataset offers realistic intrusion detection scenarios for evaluation.
The dataset was generated by designing two separate networks: the Victim-
Network and the Attack-Network. The authors proposed a B-profile system to
replicate background traffic, capturing the abstract behavior of 25 users based
on HTTP, HTTPS, FTP, SSH, and email protocols for normal traffic. The attack
traffic incorporates six attack profiles, including Brute Force, Heartbleed, Bot-
net, DoS, DDoS, Web, and Infiltration attacks. Data collection encompasses data
gathering over five working days Monday to Friday, with Monday featuring only
benign traffic and the other days containing various attacks.

To format the raw PCAP files provided by the authors for compatibility
with the model, we pre-processed the data. As dynamic temporal graphs require
a sequence of timestamped events as input data, it is common to use a temporal
adjacency list table format. This table includes columns for source node ID,
destination node ID, timestamp, and a vector of features corresponding to the
event. If applicable, an additional column for event labels may be included.
We choose Network Flows (NetFlow) as source of the timestamped sequence of
events, with source and destination IP addresses as unique node IDs.



542 A. Liuliakov et al.

Table 1. Statistics of the resulting data for the days that includes attacks.

Name Events Nodes Features

Tuesday 572087 12972 61

Wednesday 597202 13595 61

Thursday 614336 13611 61

Friday 753468 13314 61

To convert raw traffic into an adjacency list of timestamped NetFlow events,
we utilised the NFStream framework [1]. This allows us to extract a list of
timestamped NetFlows along with 61 custom statistical ‘core’ and ‘postmortem’
features. Raw IP addresses are enumerated to unique IDs, and the timestamp is
set to the first appearance of the first flow’s packet. All continuous features are
scaled to the [0, 1] interval. We labeled the data according to the attacker IP,
victim IP, and time frame during which each attack was conducted, resulting in
timestamped NetFlow event lists for each working day of the experiment.

Our model requires a strict sequential order, with normal data streams occur-
ring earlier in the training phase and actual attacks appearing later in the testing
phase. To accomplish this, we modified the data as follows. Since Monday only
included normal traffic activities, we concatenated Monday’s event list with one
of the other working days (Tuesday, Wednesday, Thursday, or Friday) while
respecting the timestamps. This resulted in four temporal dynamic graphs, each
starting with Monday’s events and continuing with malicious traffic from one of
the subsequent working days.

We subtracted the largest timestamp from every event’s timestamp in both
parts of each data day-pair and added the largest timestamp from the first
part (Monday) to the second part (one of the malicious days). This eliminates
temporal discontinuity in the data (night gap between working days activity),
and results in timestamps starting at 0 and monotonically increasing up to the
end of the dataset. This modification is considered valid without significantly
affecting the data pattern, as we are interested in intraday activity rather than
intra -week, -month, or -year scales. We assume that events within days are
similarly distributed over time. Details about the data are provided in Table 1.

In this study, we partitioned the data into train, validation, and test subsets
for each day, adhering to a consistent split criterion across all four datasets. The
train subset comprises the initial 200,000 events, while the validation subset
encompasses the subsequent 70,000 events. The remaining events constitute the
test subset. The data splitting was conducted with respect to the timeline to
ensure that the train and validation subsets contain only normal events, with all
attacks appearing only in the test set.

Experimental Setup. The proposed model was implemented in Python 3.9
using the Pytorch [10] and PyG [4] packages.



One-Class Intrusion Detection with Dynamic Graphs 543

The baselines LOF and IF are provided in the sckit-learn package [11], the
vanilla TGN baseline algorithm by the PyG package example implementations.

For our model implementation we use the TGN’s encoder part from PyG,
with the following parameters: time embedding dimension 200, memory and node
embedding dimensions both 200. The remaining parameters are chosen as they
were provided by the default model. TGN-SVDD was trained over 25 epochs.

The number of neighbors in LOF was 20, the remaining parameters default.
For IF default parameters are employed. We ran a vanilla TGN model as an
additional baseline using the default parameters provided in PyG.

4.2 Results

In this section, we present the evaluation results of our TGN-SVDD model and
the baseline models: Vanilla TGN, LOF (novelty), LOF (outlier) and IF. The
evaluation metrics, including precision, recall, F1-score and ROC AUC, are pro-
vided in the Table 2; Figs. 1 and 2 illustrate the performance of our model.

We conducted the evaluation under two different scenarios. In the first sce-
nario, we used temporal event data with features as input for our TGN-SVDD
model and the baseline vanilla TGN model. In the second scenario, we set all
event-related features to 0, which is equivalent to the case without features at
all. In this scenario TGN-SVDD and vanilla TGN rely solely on the temporal
graph dynamics of the data.

The other baseline models, LOF (novelty), LOF (outlier), and Isolation For-
est, were evaluated on the exact same data, including source/destination node
IDs and timestamps, both with and without features. The LOF (novelty) model,
as a novelty detector, was trained on the training data, and inference was per-
formed on the testing data. LOF (outlier) and Isolation Forest, as outlier detec-
tors, were evaluated directly on the testing data. The contamination parameter
was computed from the data as the ratio of inliers and outliers and explicitly
passed to both models.

For LOF (novelty), LOF (outlier), and Isolation Forest, we used default infer-
ence settings from the scikit-learn library. For the TGN-SVDD model and the
baseline vanilla TGN model, we applied a 0.99 percentile threshold obtained on
the training set and used this threshold to infer labels on the test set.

ROC AUC metrics require the model to output scores for inference. For LOF
(novelty), LOF (outlier), and Isolation Forest, we used local outlier factor and
Isolation Forest anomaly score as measures of data point anomaly. As TGN-
SVDD directly computes anomaly scores, we were able to compute ROC AUC
directly. For the baseline vanilla TGN model, we chose score = 1 − p, where p
is the probability of the event to occur, meaning the higher this score, the more
likely the event is an outlier.

Results are shown in the Table 2. Proposed TGN-SVDD model outperforms
all baseline models in both scenarios and on all datasets. In the scenario with
features, Isolation Forest performed remarkably close to our method in terms of
ROC AUC metric on the Wednesday dataset. LOF (novelty) for Friday showed
the second-best result, significantly outperforming other baseline models. In the



544 A. Liuliakov et al.

Fig. 1. Tuesday working hours. Illustration of TGN-SVDD performance. Left: On the
y-axis, the anomaly score is depicted as it described in the model description. The two
vertical lines imply the separation between training, validation and testing data. The
red line shows the 99th percentile from the train set as a threshold. Right: Density
estimation. (Color figure online)

scenario without features, remarkable second-best ROC AUC results were shown
by LOF (novelty) on Friday and Isolation Forest on Monday and Thursday.

The Attack class in the CIC-IDS2017 dataset comprises multiple specific
attacks. To demonstrate the performance of our model across different Attack
classes, we present the confusion matrix in Table 3. Given that TGN-SVDD is a
novelty detector, it only predicts ‘Normal’ or ‘Attack’ classes for each network
event. As evident from the table, the model accurately predicts the majority of
Attacks, with the exceptions of ’Bot’ on Friday and ’Infiltration’ on Thursday.

4.3 Deeper Dive into Data

The dataset is structured such that the majority of malicious activities originate
from a single source IP, often targeting the same destination IP - these nodes ids
are 32 and 11, respectively, in our dataset’s nodes enumeration. Upon further
investigation, it was found that while node 11 participated in numerous normal
events, node 32 was exclusively present during the testing phase, potentially
serving as a strong feature that could lead the model to a trivial solution.

To examine this potentially trivial model behavior, we modified the dataset
to include node 32 during training while mapping events with node 32 as normal.
We randomly selected 500 events from the training set with the source node 31
and created 500 additional identical events, replacing the normal source node 31
with our suspicious node 32. These 500 modified events were then injected into
the training data. If this alteration does not significantly reduce performance
or produce significantly different results, while simultaneously mapping injected
events closely to the enclosed ball centre in the training phase, our hypothesis
regarding the undesirable trivial model behavior would be refused.



One-Class Intrusion Detection with Dynamic Graphs 545

Fig. 2. Thursday working hours. Illustration of TGN-SVDD performance. Left: On the
y-axis, the anomaly score is depicted as it described in the model description. The two
vertical lines imply the separation between training, validation and testing data. The
red line shows the 99th percentile from the train set as a threshold. Right: Density
estimation. (Color figure online)

As illustrated in Fig. 3 (left), the model successfully learned to map injected
events indistinguishably from the remaining normal activities, maintaining a
good performance, as shown in Table 4.

Fig. 3. Friday dataset. Left: TGN-SVDD with additional 500 events with the node 31
as a source injected in train data and labeled with orange. Right: Vanilla TGN with
1-p on the y-axis, where p is the probability of the event to occur. (Color figure online)

Similarly to TGN-SVDD we provide visualisation of vanilla TGN in the Fig. 3
(right). The results look noisy with many events assigned to a low probability.
This does not allow to properly distinguish attack events from normal ones. One
possible explanation is the strong assumption over negative sampling, which
is made originally at random in the TGN paper and may lead to suboptimal
solutions. More discussions about that can be found in the article [12].



546 A. Liuliakov et al.

Table 2. Resulting performance evaluated on several different metrics. Results are for
data with event features (left) and without (right).

with features without features

Precision Recall F1-score ROC AUC F1-score ROC AUC

Tuesday

TGN-SVDD 0.783 1.000 0.878 0.999 0.931 0.999

LOF (novelty) 0.023 1.000 0.045 0.484 0.045 0.484

LOF (outlier) 0.044 0.044 0.044 0.615 0.044 0.615

Isolation Forest 0.000 0.000 0.000 0.760 0.000 0.701

TGN 0.000 0.000 0.000 0.690 0.000 0.173

Wednesday

TGN-SVDD 0.930 1.000 0.964 0.999 0.967 0.999

LOF (novelty) 0.072 1.000 0.134 0.354 0.134 0.354

LOF (outlier) 0.027 0.027 0.027 0.346 0.031 0.347

Isolation Forest 0.588 0.588 0.588 0.946 0.000 0.167

TGN 0.000 0.000 0.000 0.268 0.000 0.390

Thursday

TGN-SVDD 0.035 0.997 0.068 0.994 0.056 0.992

LOF (novelty) 0.005 1.000 0.011 0.209 0.011 0.209

LOF (outlier) 0.000 0.000 0.000 0.680 0.000 0.679

Isolation Forest 0.006 0.006 0.006 0.626 0.000 0.796

TGN 0.000 0.000 0.000 0.459 0.000 0.072

Friday

TGN-SVDD 0.992 0.993 0.993 0.995 0.991 0.994

LOF (novelty) 0.424 1.000 0.596 0.813 0.596 0.813

LOF (outlier) 0.291 0.291 0.291 0.449 0.244 0.411

Isolation Forest 0.237 0.237 0.237 0.222 0.006 0.005

TGN 0.000 0.000 0.000 0.613 0.000 0.295



One-Class Intrusion Detection with Dynamic Graphs 547

Table 3. The confusion matrix for all attack classes is presented, corresponding to
the same experimental setup as previously described. To threshold the scores from
TGN-SVDD, we selected the 99th percentile from the training set.

True Class

Wednesday

Normal Golden Eye Hulk Heartbleed Slowloris Slow http test

P
re

d
ic

te
d

C
la

ss

Normal 301788 0 0 0 0 0

Attack 1764 2996 1 4217 3898 12538

Friday Tuesday

Normal Bot DDoS PortScan Normal ssh/ftp-Patator

Normal 276697 1247 0 0 293213 0

Attack 1471 0 44927 159126 1920 6954

Thursday

Normal Brute Force XSS SQL Injection Infiltration

Normal 287108 0 0 0 6

Attack 55184 1365 661 12 0

Table 4. Friday working hours. With additional 500 events with the node 31 as a
source in train data. In the table established TGN-SVDD performance applying simple
99 percentile from train set on test set.

Friday Precision Recall F1-score ROC AUC %

TGN-SVDD 0.995 0.999 0.997 0.999

5 Conclusion

In this contribution, we presented a novel unsupervised model for intrusion detec-
tion, TGN-SVDD, making explicit use of the dynamic graph based behaviour of
the data, by modelling network communications as a temporal dynamic graph.

For the evaluation, we pre-processed the public CIC-2017 dataset, which con-
sists of 4 different attack days which we treated as different datasets and various
modern attacks. We demonstrated that our method significantly outperforms
classical techniques, as well as the vanilla TGN model. We demonstrated that
our model can accurately identify the majority of specific attacks present in the
datasets, while maintaining a moderate level of false positives.

In our experiments, we investigate potential limitations of the utilised dataset
and suggest a possible remedy by including the attacker IP in the normal dataset,
making the dataset more challenging. Our proposed model, however, still obtains
high performance values as measured by our metrics. Future work includes the



548 A. Liuliakov et al.

evaluation of data from other domains of anomaly detection. Also, investigat-
ing a semi-supervised approach such as the Deep semi-supervised SVDD, is a
promising direction.

References

1. Aouini, Z., Pekar, A.: NFStream: a flexible network data analysis framework. Com-
put. Netw. 204, 108719 (2022). https://doi.org/10.1016/j.comnet.2021.108719.
https://www.sciencedirect.com/science/article/pii/S1389128621005739

2. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LoF: identifying density-based
local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference
on Management of Data, pp. 93–104 (2000)

3. Erfani, S.M., Rajasegarar, S., Karunasekera, S., Leckie, C.: High-dimensional and
large-scale anomaly detection using a linear one-class SVM with deep learning.
Pattern Recogn. 58, 121–134 (2016)

4. Fey, M., Lenssen, J.E.: Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428 (2019)

5. Kumar, S., Zhang, X., Leskovec, J.: Predicting dynamic embedding trajectory in
temporal interaction networks. In: Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, pp. 1269–1278 (2019)

6. Kwon, D., Kim, H., Kim, J., Suh, S.C., Kim, I., Kim, K.J.: A survey of deep
learning-based network anomaly detection. Clust. Comput. 22, 949–961 (2019)

7. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE Interna-
tional Conference on Data Mining, pp. 413–422. IEEE (2008)

8. Liuliakov, A., Hermes, L., Hammer, B.: AutoML technologies for the identification
of sparse classification and outlier detection models. Appl. Soft Comput. 133,
109942 (2023)

9. Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection:
a review. ACM Comput. Surv. (CSUR) 54(2), 1–38 (2021)

10. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

11. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

12. Poursafaei, F., Huang, S., Pelrine, K., Rabbany, R.: Towards better evaluation for
dynamic link prediction (2022)

13. Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti, F., Bronstein, M.:
Temporal graph networks for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637 (2020)

14. Ruff, L., et al.: A unifying review of deep and shallow anomaly detection. Proc.
IEEE 109(5), 756–795 (2021)

15. Ruff, L., et al.: Deep one-class classification. In: International Conference on
Machine Learning, pp. 4393–4402. PMLR (2018)

16. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Esti-
mating the support of a high-dimensional distribution. Neural Comput. 13(7),
1443–1471 (2001)

17. Sharafaldin, I., Lashkari, A.H., Ghorbani, A.: Toward generating a new intrusion
detection dataset and intrusion traffic characterization. In: ICISSP (2018)

18. Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchi-
cal one-class network. Adv. Neural. Inf. Process. Syst. 33, 13016–13026 (2020)

https://doi.org/10.1016/j.comnet.2021.108719
https://www.sciencedirect.com/science/article/pii/S1389128621005739
http://arxiv.org/abs/1903.02428
http://arxiv.org/abs/2006.10637


One-Class Intrusion Detection with Dynamic Graphs 549

19. Tax, D.M., Duin, R.P.: Support vector data description. Mach. Learn. 54, 45–66
(2004)

20. Trivedi, R., Farajtabar, M., Biswal, P., Zha, H.: Dyrep: learning representations
over dynamic graphs. In: International Conference on Learning Representations
(2019)

21. Wang, Y., Chang, Y.Y., Liu, Y., Leskovec, J., Li, P.: Inductive representa-
tion learning in temporal networks via causal anonymous walks. arXiv preprint
arXiv:2101.05974 (2021)

22. Wu, Y., Gu, M., Wang, L., Lin, Y., Wang, F., Yang, H.: Event2graph: event-driven
bipartite graph for multivariate time-series anomaly detection. arXiv preprint
arXiv:2108.06783 (2021)

23. Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., Achan, K.: Inductive representation
learning on temporal graphs. arXiv preprint arXiv:2002.07962 (2020)

http://arxiv.org/abs/2101.05974
http://arxiv.org/abs/2108.06783
http://arxiv.org/abs/2002.07962

	One-Class Intrusion Detection with Dynamic Graphs
	1 Introduction
	2 Fundamentals
	2.1 Continuous-Time Dynamic Graphs (CTDG)
	2.2 Temporal Graph Network (TGN)
	2.3 Deep Support Vector Data Description (Deep SVDD)

	3 Our Proposed Model: TGN-SVDD
	4 Experiment
	4.1 Dataset and Experimental Setup
	4.2 Results
	4.3 Deeper Dive into Data

	5 Conclusion
	References




