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Abstract. Spoken language understanding (SLU) primarily entailing
slot filling and intent detection has been studied for many years with
achieving significant results. However, in Chinese SLU tasks, Some mod-
els fail to take word-level information into account, and there is insuffi-
cient interaction between slot information and intent information. To
address the aforementioned issues, we propose a novel bi-directional
interaction graph framework with filter gate mechanism (BIG-FG) for
Chinese spoken language understanding, which can make a fine-grained
interaction directly with slot information and intent information, while
also effectively fusing character-word semantic information. The model
consists of two core modules: (1) bi-directional interaction graph (BIG),
which is based on a multi-layer graph attention network with the bi-
directional connections between intent information, slot information, and
adjacent slot information, fully considering the correlation between slot
filling and intent detection; (2) filter gate (FG), which enhances fusion
performance by solving the problem of semantic ambiguity brought by
direct fusion of character-word semantic information. Experiments on
two datasets demonstrate that our model outperforms the best bench-
mark model by 0.39% and 2.65% in the Overall(Acc) evaluation metric,
respectively, and accomplishes the state-of-the-arts performance.

Keywords: Chinese Spoken Language Understanding · Bi-directional
Interaction Graph · Filter Gate · Graph Attention Network

1 Introduction

In intelligent dialogue systems, spoken language understanding (SLU) is critical,
which typically includes two main subtasks: intent detection and slot filling [1].
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Given an utterance for example, “play music on youtube”, the intent label is
“PlayMusic”, and the slots are labeled in order {O, O, O, B-service}.

In the past, researchers focused mostly on English SLU and proposed different
methods including gate-based methods [2–4], attention-based methods [5,6] and
GATs-based methods [7,8]. In contrast to English SLU, Chinese SLU faces the
difficulty of word segmentation. When there is an error in the word segmentation
in Chinese SLU, it leads to error propagation, and, as a result, a slot filling error.
To avoid this problem, [9] established a new collaborative memory network model
based on the character to avoid the introduction of word segmentation. [10]
introduced a two-stage modeling approach at the character level, exploiting the
crossover effects between intent and slot information. However, it is commonly
understood that Chinese word segmentation is critical for interpreting slots in
an utterance. Given the utterance “我/想/听/稻香 (I want to listen to Rice
Fragrance)” as an example, we use “/” to split the words in an utterance. If
the model is based on character level, it is likely to wrongly predict the slot of
“稻 (rice)” as “Rice name”. However, by using the information of “稻香 (rice
fragrance)” in the word segmentation, the model can easily predict “稻香 (rice
fragrance)” slot as “Song”. To inject the word information into the Chinese SLU,
[11] introduced a word adapter to combine information about characters and
words. However, they did not consider the influence of redundant information
in the word adapter. For example, in the example utterance mentioned above,
the single word “稻香 (song)” and the single character “稻 (rice name)” are
semantically different, which causes semantic ambiguity when injecting word
information, and the model lacks the guidance of slot information on intent
detection.

To address these issues, we propose a unique bi-directional interaction graph
framework to jointly model slot filling and intent detection, taking into account
the correlation between slot information and intent information in Chinese SLU
as well as alleviating the redundant information caused by the direct fusion of
character-word semantic information: (1) bi-directional interaction graph, which
uses slot information and intent information as feature nodes and creates bi-
directionally connected edges between slot and intent information, and interacts
via a multi-layer graph attention network; (2) filter gate. To fuse character-word
semantic information efficiently, the redundant information caused by direct
fusion is eliminated utilizing a filter gate fusion mechanism which can control
the propagation of effective semantic information.

In summary, the following is the contributions of this work:

– We propose a bi-directional interaction graph for interacting with slot and
intent information that takes into account the reciprocal facilitation of slot
filling and intent detection.

– We propose a filter gate to limit the impact of redundant information owing
to directly fusing character-word semantic information.

– Experiments on CAIS and SMP-ECDT datasets demonstrate that our model
outperforms the best benchmark model and accomplishes the state-of-the-arts
performance.
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2 Related Works

Slot Filling and Intent Detection. The researchers proposed many implicit
joint models considering the relationship between slot filling and intent detection
tasks [6,12–14]. Essentially, they fail to make an explicit relationship between
the two tasks. Later, some of researchers started to explore intent-augmented
joint models and proposed many execellent approaches [2,3,11,15–17]. Never-
theless, these models do not account for the guiding role of slot information in
intent detection. Recently, researchers have begun to explore models in which
two tasks guide each other [4,10,18–21].

Graph Neural Networks. Currently, graph neural networks are performing
very well in many fields. [22] applied graph attention networks to short text
classification. [23] improved the performance of aspect-level sentiment classifica-
tion by clarifying the dependencies between words through graph attention net-
works. Due to some limitations of GCN, the researcher proposed new approaches
[24,25]. In SLU, [7,8] improved model performance by building effective inter-
action graphs. In our BIG-FG, a bi-directional interaction graph is built based
on a multi-layer graph attention network to explicitly model the relationship
between the two tasks, fully considering the mutual facilitation between intent
detection and slot filling to enhance the performance of the model.

3 Approach

This work contributes to implementing slot filling and intent detection for Chi-
nese SLU. In this section, the proposed approach will be introduced in detail.
The overall framework of the model is shown in Fig. 1 (a). Firstly, the text
encoding layer is introduced to realize the vectorized representation of charac-
ters and words in an utterance. Secondly, we propose the adaptive fusion module
to obtain the slot and intent information. Next, the intent nodes and slot nodes
are learned through an interrelated connection fusion using the bi-directional
interaction graph. Finally, through a cooperative learning schema, slot filling
and intent detection are optimized concurrently.

3.1 Text Encoding Layer

Following [11], we utilize a novel text encoding structure to obtain character-
word information representation, which consists primarily of an embedding
encoder, a self-attention, and a Bi-LSTM.

Character Encoding. Given a Chinese utterance X = {x1, x2, x3, · · · , xT }
, T denotes the number of characters. Firstly, each character is transformed
into a character vector Ec = {ec

1,e
c
2, · · · ,ec

T }, and secondly, high-level semantic
information is obtained by self-attention and Bi-LSTM, respectively.
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Fig. 1. The overall architecture of our proposed bi-directional interaction graph frame-
work with filter gate fusion mechanism, where Cat denotes the concatenation operation.
The internal structure of adaptive fusion module is shown in (b).

The self-attention [26] captures the features of the context of the characters
in the utterance and the Bi-LSTM portrays the sequence from two directions,
which can express more semantic information. We feed the characters vector Ec

into self-attention and Bi-LSTM, respectively. The output vectors are HA =
{hA

1 ,hA
2 , · · · ,hA

T } and HL = {hL
1 ,hL

2 , · · · ,hL
T }, respectively.

Finally, the semantic information hc
t = [hA

t ,hL
t ] is obtained by concatenat-

ing self-attention and Bi-LSTM. The final output sequence of the character-level
semantic information is Hc = {hc

1,h
c
2, · · · ,hc

T }.

Word Encoding. We use an external CWS (Chinese Word Segmentation) sys-
tem. Given the Chinese utterance X, we obtain the word sequences Ew =
{ew

1 ,ew
2 , · · · ,ew

M}(M � T ) by word segmentation and vectorization. The rest
of the encoding part is the same as the character encoding, and the final word-
level semantic encoding output is denoted as Hw = {hw

1 ,hw
2 , · · · ,hw

M}.

3.2 Adaptive Fusion Module

Fusion Module. Figure 1(b) represents the structure diagram of the adaptive
fusion layer module. As one of the contribution points of this work, a filter
gate mechanism is proposed based on bilinear fusion to reduce the impact of
redundant information brought by character-word fusion. Following [11], with
the word vector vw ∈ R

d and character vector vc ∈ R
d as inputs, we obtain

the normalized word and character vectors aw, ac by Tanh activation func-
tion. After that, the weights are calculated using a bilinear function, and then
they are weighted and summed to obtain vwc. The procedure for calculating is
as follows:
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aw = tanh(W awv
w + baw) (1)

ac = tanh(W acv
c + bac) (2)

λ = sigmoid(vcW λv
w + bλ) (3)

vwc = (1 − λ)ac + λaw (4)

where W aw, W ac, W λ are the trainable matrix weights and baw, bac, bλ are
the bias values of the linear transformation.

Considering the potential redundant information, we propose a filter gate to
specifically utilize fusion feature. When the fusion feature vwc is advantageous,
the filter gate will combine both the fusion and original features, and obtain
explicit slot boundary information. The calculation process is as follows:

fc = W fc[ac,vwc] + bfc (5)

fw = W fw[aw,vwc] + bfw (6)

fg = sigmoid(W g[f c,fw] + bwc) (7)

v = fg ∗ tanh(W vv
wc + bg) (8)

where W fc, W fw, W g, W v are the trainable matrix weights; bfc, bfw, bwc,
and bg are the bias values of the linear transformation, [, ] represents the con-
catenation operation, and v is the final fusion output. The above formula for the
adaptive fusion layer can be abbreviated as v = AFM(vc,vw).

Intent Fusion. We employ MLP attention to obtain an informative representa-
tion of the entire utterance hmc ∈ R

d. Similarly, we can also obtain the word-level
representation of the information of the whole utterance hmw ∈ R

d and get the
fused intent information representation hI through the adaptive fusion layer.

hI = AFM(hmc,hmw) (9)

Slot Fusion. By unidirectional LSTM, we can obtain more appropriate slot
information hsc

t , hsw
t . Then, through the adaptive fusion layer, the fused slot

information is obtained, denoted as hS
t
1.

hS
t = AFM(hsc

t ,hsw
falign(t,w )) (10)

3.3 Bi-directional Interaction Graph Module

Another contribution point of this work is to carry out the interaction of slot
information and intent information. We propose a bi-directional interaction
graph module, as shown in Fig. 1. By constructing different edges and feature
nodes, a multi-layer graph attention network is utilized to fully interact with the
information between the intent and slot.
1 Given a word sequence w={“打”,“开”,“相机”}, falign(t,w) provides the index

of the word that goes with the t-th character in w (e.g.,falign(1,w)=1,falign
(3,w)=3,falign(4,w)=3).
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Graph Attention Network. The GAT is a crucial network structure in the
domain of deep learning which utilizes the attention mechanism to perform adap-
tive weighting of various neighboring edges, significantly enhancing the expres-
sive capability. Given a series of feature nodes Z = {z1,z2, · · · ,zN }, N is the
total number of nodes. The graph attention network generates new node features,
Z′ = {z′

1,z
′
2, · · · ,z′

N} as the output.

αij =
exp(f(aT [W zzi,W zzj ]))∑

k′∈Ni
exp(f(aT [W zzi,W zzk′ ]))

(11)

z′
i =

K

‖
k=1

σ(
∑

j∈Ni

αk
ijW

k
zzj) (12)

where αk
ij denotes the attention weight at k-th head, W k

z denotes the k-th train-
able matrix weight, and ‖ denotes the concatenation operation. In this work, the
multi-headed graph attention layer is directly adopted to the bi-directional inter-
action graph.

Bi-directional Interaction Graph. The correlation between intent and slot
is quite essential in SLU. The slot is a reflection of character-level information
and the intent is a reflection of sentence-level information.

For the feature nodes of the bi-directional interaction graph, we concate-
nate the intent hidden layer representation hI obtained from the intent fusion
layer and the slot hidden layer representation hS

t obtained from the slot
fusion layer to be the nodes of the bi-directional interaction graph H [l]

g =

{hI,[l],h
S,[l]
1 ,h

S,[l]
2 , · · · ,h

S,[l]
T }. hI,[l] denotes the intent hidden layer feature of

the l-th layer and h
S,[l]
t denotes the slot hidden layer feature of the l-th layer.

For the edges of the bi-directional interaction graph, we establish a bi-
directio- nal connection between the each slot and intent node, and due to
a correlation between contexts, bi-directional connections are also established
between slot and slot at adjacent location.

In order to fully interact with the feature between the intent and slot, a multi-
layer bi-directional interaction graph is constructed. For a bi-direction graph
with (l + 1) layers of interaction, a hidden layer feature of the bi-direction inter-
action graph at (l + 1)-th layer can be obtained, and this hidden layer feature is
used as the final output.

H [l+1]
g = multi-headGAT [l](H [l]

g ) (13)

hfI ,hfs
t = hI,[l+1],h

S,[l+1]
t (14)

where multi-headGAT [l] represents the multi-head graph attention network at
l-th layer, hI,[l+1] and h

S,[l+1]
t are the intent feature and slot feature at (l+1)-th

layer, respectively, hfI is the output of the intent feature, and hfs
t represents

the output of the slot feature.
Through the linear layer, hfI and hfs

t are used for intent detection and
slot filling, respectively. yI = softmax(W fIh

fI) and yS
t = softmax(W fsh

fs
t ),
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where W fI and W fs are trainable parameters. OI = argmax(yI) is the pre-
dicted intent tags and OS

t = argmax(yS
t ) is the predicted slot labels in an

utterance.

3.4 Loss Function

In this work, cross-entropy is employed as the loss function. The training objec-
tive for combining intent and slot loss is to reduce the value of the following loss
function:

Lθ = −μ

NI∑

i=1

ŷI
i log(yI

i ) − (1 − μ)
T∑

t=1

NS∑

i=1

ŷS,i
t log(yS,i

t ) (15)

where NI indicates the number of intent labels, T indicates the number of char-
acters in an utterance, NS indicates the number of slot labels, μ is a hyperpa-
rameter, ŷI and ŷS indicate the true tags of the intent and the true tags of the
slot, respectively.

4 Experiment

4.1 Datasets and Evaluation Metrics

To verify the feasibility of the approach, two openly accessible Chinese datasets
CAIS [9] and SMP-ECDT2 [11] are selected to conduct experiments. The CAIS
dataset contains 7995 training sets, 994 validation sets, and 1024 test sets. There
are 1655 training sets, 413 validation sets, and 508 test sets in the SMP-ECDT
dataset. Following [2,16], we assess the effectiveness of Chinese SLU intent pre-
diction using precision, slot filling using F1 score, and utterance-level semantic
frame parsing using overall precision. In this work, the Chinese natural language
processing system (Language Technology Platform, LTP) is adopted to acquire
Chinese word segmentation3.

4.2 Implementation Details

We conduct experiments with the GPU of Tesla A100 and PyTorch framework.
All of the model weights begin with a uniform distribution as the initialization.
The dropout rate is 0.5. The number of layers of graph attention network is 2,
and the hidden layer dimension of each layer is 128, using 8 heads. 1.0 is chosen
as the value for the maximum norm of gradient clipping. The L2 norm coefficient
is 10−6. The Adam uses a learning rate of 5 × 10−4 to update all parameters.

2 https://conference.cipsc.org.cn/smp2019/evaluation.html.
3 http://ltp.ai/.

https://conference.cipsc.org.cn/smp2019/evaluation.html
http://ltp.ai/
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Table 1. Main results on CAIS and SMP-ECDT.

Models CAIS SMP-ECDT

Slot (F1) Intent (Acc) Overall (Acc) Slot (F1) Intent (Acc) Overall (Acc)

Slot-Gated Full Atten [2] 81.13 94.37 80.83 60.91 86.02 53.75

SF-ID Network [19] 84.85 94.27 82.41 63.90 88.85 55.67

CM-Net [9] 86.16 94.56 - - - -

Stack-propagation [16] 87.64 94.37 84.68 71.32 91.06 63.75

MLWA [11] 88.61 95.16 86.17 75.26 94.22 67.58

GAIR [10] 88.92 95.45 86.86 76.08 94.56 68.58

BIG-FG 89.83 95.65 87.25 76.56 95.72 71.23

4.3 Baseline Models

In order to compare with other researchers’ models, some meaningful baseline
models are selected including Slot-Gated [2], CM-Net [9], SF-ID Network [19],
MLWA [11], Stack-Propagation [16] and GAIR [10]. We take advantage of these
models’ published performance data from the literature [11] on the CAIS dataset.
On the SMP-ECDT dataset, we execute the published code of the comparative
models utilizing the split test set, with the exception of CM-Net [9] that fails to
share codes.

4.4 Main Results

Table 1 shows the primary results and some comparative baselines of the pro-
posed model on the CAIS and SMP-ECDT datasets. From the results, we
can notice that the GAIR model without injecting word information performs
somewhat better than the MLWA model with injecting word information on
all metrics. This result occurs since the GAIR model is two-stage and takes
into account the bi-directional correlation between intent and slot information,
whereas MLWA just takes into account the influence of intent information on
slots, despite the addition of word information. Our proposed BIG-FG model is
compared with the GAIR model. On the CAIS dataset, we accomplish a 0.91%
increase in Slot (F1), a 0.20% increase in Intent (Acc), and a 0.39% increase
in Overall (Acc). On the SMP-ECDT dataset, we accomplish improvements of
0.48% on Slot (F1), 1.16% on Intent (Acc), and 2.65% on Overall (Acc). From
the results, we observe that our model performs better than the top baseline
model and achieves state-of-the-art performance. We attribute the improvement
to the following reasons: (1) Our model in this work introduces word informa-
tion while using character information, which solves the problem of ambiguous
word boundary; (2) Considering the mutual facilitation between slot filling and
intent detection, effective interaction is carried out through the BIG module to
achieve mutual communication between the two tasks and enhance the model
performance; (3) The filter gate based on bilinear fusion reduces redundant infor-
mation, resulting in enhanced model performance. However, the MLWA model
fails to consider the influence of redundant information and the guiding role of
slot information on intent detection, and the GAIR model ignores the influence
of Chinese word segmentation.



312 W. Zhang et al.

Table 2. Ablation study on CAIS and SMP-ECDT datasets.

Models CAIS SMP-ECDT

Slot (F1) Intent (Acc) Overall (Acc) Slot (F1) Intent (Acc) Overall (Acc)

w/o intent fusion 87.13 94.37 85.83 73.91 94.42 67.75

w/o slot fusion 86.85 95.27 86.01 74.91 95.55 68.67

w/o filter gate 89.80 95.45 86.75 76.36 94.97 69.84

w/o BIG 88.60 94.46 85.37 75.39 95.23 69.09

BIG-FG 89.83 95.65 87.25 76.56 95.72 71.23

4.5 Analysis

To investigate the effect of the components in the proposed model, ablation
experiments are carried out to verify the effectiveness. Table 2 shows the results
of the ablation experiments. In addtion, We also explore the effect of the number
of BIG layers and different word segmentors on the performance of the model.

Effect of Intent Fusion Layer. To explore whether the intent fusion layer
plays a role in the model, the intent fusion layer is removed in this experiment,
meaning that the intent information provided by the characters and words is
utilized directly, which is named as w/o intent fusion. From the results in w/o
intent fusion row in Table 2, we can observe 1.28% and 1.30% drops on Intent
(Acc) on the CAIS and SMP-ECDT datasets, respectively, and other evaluation
metrics also decrease, which demonstrates that the intent fusion layer can effi-
ciently fuse the intent information provided by the characters and words, and
achieve improved semantic features for intent detection.

Effect of Slot Fusion Layer. Similarly, we remove the slot fusion layer to
investigate whether the slot fusion layer enriches semantic knowledge of slot,
which is named as w/o slot fusion. The experimental results are shown in w/o
slot fusion row in Table 2. Slot (F1) decreases by 2.98% on the CAIS dataset
and by 1.65% on the SMP-ECDT dataset. This indicates that directly fusing the
slot information provided by characters and words is not effective, and the slot
fusion layer in our model can improve the information representation of slot.

Effect of Filter Gate. The filter gate reduces the redundant information that
would be produced by the direct fusion of character-word semantic information.
To investigate the specific effect of the filter gate in our model, we remove the
filter gate and directly fuse character-word semantic information with bilinear-
ity, which is named as w/o filter gate. The w/o filter gate row in Table 2 shows
that the Slot (F1), Intent (Acc), and Overall (Acc) decrease on both CAIS and
SMP-ECDT datasets, indicating that bilinear fusion is not effective when there
is no filter gate, and the filter gate plays an important role in the BIG-FG model.
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Fig. 2. Effect of the number of BIG layers
and the horizontal axis indicates the num-
ber of layers of the BIG.

Fig. 3. Effect of word segmentors and
the horizontal axis indicates the different
word segmentors.

Effect of Bi-directional Interaction Graph. To explore the effect of the
proposed bi-directional interaction graph module, we remove the bi-directional
interaction graph module and directly use LSTM as the decoder. The intent
detection and slot filling are modeled independently. It is named as w/o BIG in
this experiment. The w/o BIG row in Table 2 shows that the evaluation metrics
on two datasets drop more, which indicates that the independent modeling of
intent and slot information is worse than the explicit joint modeling of intent
and slot information and the BIG fully interacts with the features of intent and
slot, thus enhancing the overall performance.

Effect of the Number of BIG Layers. To investigate the influence of the
number of BIG layers, we plot the relationship between the Overall (Acc) and
the number of layers of BIG, as shown in Fig. 2. It can be clearly seen from
the figure that the model performance improves with the number of layers of
the BIG, and the best performance on the CAIS and SMP-ECDT datasets is
achieved when the number of layers of the BIG is 2, after which it decreases
to gradually stabilize. The reason is that when there are too many layers, the
model tends to exhibit excessive smoothing, resulting in the inclusion of redun-
dant information. In general, choosing the optimal number of layers of BIG can
improve the performance of the model.

Effect of Different Word Segmentors. We choose five different word segmen-
tors for our experiments to investigate the impact of different word segmentors
on the performance of our model, including Jieba4, LTP, PKUSeg5, HanLp6, and
Stanford7. Furthermore, we add an additional set of experiments without word
segmentation information to validate the benefits of adding word segmentation
information. Figure 3 shows the results of the experiments. We use Overall (Acc)
as evaluation indice, and we can see that different word segmentation methods

4 https://github.com/fxsjy/jieba.
5 https://github.com/lancopku/PKUSeg-python.
6 https://github.com/hankcs/HanLP.
7 https://stanfordnlp.github.io/CoreNLP/.

https://github.com/fxsjy/jieba
https://github.com/lancopku/PKUSeg-python
https://github.com/hankcs/HanLP
https://stanfordnlp.github.io/CoreNLP/
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perform differently. However, in our model, the LTP method has the best word
segmentation effect. It is noteworthy that the model with the addition of word
information has better effect than model without the addition of word informa-
tion, which indicates the effectiveness of word segmentation.

5 Conclusion and Future Work

In this work, we proposed a novel bi-directional interaction graph framework
with a filter gate mechanism for Chinese SLU. While reducing redundant infor-
mation, we effectively fused the semantic information provided at the character
level as well as word level. Furthermore, we took advantage of the correlation
between intent and slot feature to enrich the semantic representations of intent
and slot, thus improving the model performance. Experiments on SMP-ECDT
and CAIS datasets showed that our model achieved the best performance. In
the future, we will consider adding some prior knowledge and exploring a new
fusion mechanism to fully fuse word information to enhance the performance of
Chinese spoken language understanding tasks.
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References

1. Tur, G., De Mori, R.: Spoken Language Understanding: Systems for Extracting
Semantic Information from Speech. Wiley, Hoboken (2011)

2. Goo, C.W., et al.: Slot-gated modeling for joint slot filling and intent prediction.
In: Proc. NAACL, pp. 753–757 (2018)

3. Li, C., Li, L., Qi, J.: A self-attentive model with gate mechanism for spoken lan-
guage understanding. In: Proceedings of EMNLP, pp. 3824–3833 (2018)

4. Sun, C., Lv, L., Liu, T., Li, T.: A joint model based on interactive gate mechanism
for spoken language understanding. Appl. Intell. 52, 6057–6064 (2022)

5. Chen, M., Zeng, J., Lou, J.: A self-attention joint model for spoken language under-
standing in situational dialog applications. arXiv preprint arXiv:1905.11393 (2019)

6. Liu, B., Lane, I.: Attention-based recurrent neural network models for joint intent
detection and slot filling. In: Proceedings of Interspeech, pp. 685–689 (2016)

7. Ding, Z., Yang, Z., Lin, H., Wang, J.: Focus on interaction: a novel dynamic graph
model for joint multiple intent detection and slot filling. In: Proceedings of IJCAI,
pp. 3801–3807 (2021)

8. Qin, L., Wei, F., Xie, T., Xu, X., Che, W., Liu, T.: GL-GIN: fast and accurate
non-autoregressive model for joint multiple intent detection and slot filling. In:
Proceedings of ACL-IJCNLP, pp. 178–188 (2021)

9. Liu, Y., Meng, F., Zhang, J., Zhou, J., Chen, Y., Xu, J.: CM-Net: a novel col-
laborative memory network for spoken language understanding. In: Proceedings of
EMNLP-IJCNLP, pp. 1051–1060 (2019)

http://arxiv.org/abs/1905.11393


BIG-FG: A BIG Framework with FG Mechanism for Chinese SLU 315

10. Zhu, Z., Huang, P., Huang, H., Liu, S., Lao, L.: A graph attention interactive
refine framework with contextual regularization for jointing intent detection and
slot filling. In: Proceedings of ICASSP, pp. 7617–7621 (2022)

11. Teng, D., Qin, L., Che, W., Zhao, S., Liu, T.: Injecting word information with
multi-level word adapter for Chinese spoken language understanding. In: Proceed-
ings of ICASSP, pp. 8188–8192 (2021)

12. Guo, D., Tur, G., Yih, W.t., Zweig, G.: Joint semantic utterance classification and
slot filling with recursive neural networks. In: Proceedings of SLT, pp. 554–559
(2014)

13. Hakkani-Tür, D., et al.: Multi-domain joint semantic frame parsing using bi-
directional RNN-LSTM. In: Proceedings of Interspeech, pp. 715–719 (2016)

14. Xu, P., Sarikaya, R.: Convolutional neural network based triangular CRF for joint
intent detection and slot filling. In: Proceedings of ASRU. pp. 78–83 (2013)

15. Ma, Z., Sun, B., Li, S.: A two-stage selective fusion framework for joint intent
detection and slot filling. IEEE Trans. Neural Netw. Learn. Syst. 1–12 (2022)

16. Qin, L., Che, W., Li, Y., Wen, H., Liu, T.: A stack-propagation framework with
token-level intent detection for spoken language understanding. In: Proceedings of
EMNLP-IJCNLP, pp. 2078–2087 (2019)

17. Zhou, B., Zhang, Y., Sui, X., Song, K., Yuan, X.: Multi-grained label refinement
network with dependency structures for joint intent detection and slot filling. arXiv
preprint arXiv:2209.04156 (2022)

18. Chen, D., Huang, Z., Wu, X., Ge, S., Zou, Y.: Towards joint intent detection and
slot filling via higher-order attention. In: Proceedings of IJCAI, pp. 4072–4078
(2022)

19. Haihong, E., Niu, P., Chen, Z., Song, M.: A novel bi-directional interrelated model
for joint intent detection and slot filling. In: Proceedings of ACL, pp. 5467–5471
(2019)

20. Wang, J., Wei, K., Radfar, M., Zhang, W., Chung, C.: Encoding syntactic knowl-
edge in transformer encoder for intent detection and slot filling. In: Proceedings of
AAAI, vol. 35, pp. 13943–13951 (2021)

21. Zhang, C., Li, Y., Du, N., Fan, W., Yu, P.: Joint slot filling and intent detection
via capsule neural networks. In: Proceedings of ACL, pp. 5259–5267 (2019)

22. Linmei, H., Yang, T., Shi, C., Ji, H., Li, X.: Heterogeneous graph attention net-
works for semi-supervised short text classification. In: Proceedings of EMNLP-
IJCNLP, pp. 4821–4830 (2019)

23. Huang, B., Carley, K.: Syntax-aware aspect level sentiment classification with
graph attention networks. In: Proceedings of EMNLP-IJCNLP, pp. 5469–5477
(2019)

24. Wang, S., Wu, Z., Chen, Y., Chen, Y.: Beyond graph convolutional network:
an interpretable regularizer-centered optimization framework. arXiv preprint
arXiv:2301.04318 (2023)

25. Chen, M., Wei, Z., Huang, Z., Ding, B., Li, Y.: Simple and deep graph convolutional
networks. In: Proceedings of ICML, pp. 1725–1735 (2020)

26. Vaswani, A., et al.: Attention is all you need. In: Proceedings of NeurIPS, pp.
6000–6010 (2017)

http://arxiv.org/abs/2209.04156
http://arxiv.org/abs/2301.04318

	BIG-FG: A Bi-directional Interaction Graph Framework with Filter Gate Mechanism for Chinese Spoken Language Understanding
	1 Introduction
	2 Related Works
	3 Approach
	3.1 Text Encoding Layer
	3.2 Adaptive Fusion Module
	3.3 Bi-directional Interaction Graph Module
	3.4 Loss Function

	4 Experiment
	4.1 Datasets and Evaluation Metrics
	4.2 Implementation Details
	4.3 Baseline Models
	4.4 Main Results
	4.5 Analysis

	5 Conclusion and Future Work
	References




