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Abstract. Multi-view clustering, which integrates information from dif-
ferent views for better performance, has gained widespread attention.
However, the existing clustering methods cannot represent the uncer-
tainty and imprecision in cluster assignment caused by the tendency of
clusters to overlap and the diversity among views. To surmount this
issue, in this paper, we propose an adaptive weighted multi-view evi-
dential clustering (WMVWC) method based on the framework of belief
functions. The proposed WMVEC can be viewed as a multi-view version
of conventional evidential c-means clustering. We construct the objec-
tive function of WMVEC by integrating the learning of view weights
and credal partition into a unified framework, and design an optimiza-
tion scheme to obtain the optimal results of WMVEC. Specifically, the
view weight can measure the contribution of each view in clustering. The
credal partition can provide a deeper understanding of the data struc-
ture by allowing samples to belong not only to singleton clusters, but
also to a union of different singleton clusters, called meta-cluster. Exper-
iment results demonstrate the effectiveness of the proposed WMVEC
with respect to other state-of-the-art methods on real-world datasets.
The code can be available at link.

Keywords: Evidential clustering · multi-view learning · belief
functions · credal partition

1 Introduction

Clustering, as a core paradigm of unsupervised learning, has been widely used
in various domains owing to its powerful capacity in data preprocessing [13].
Many representative clustering methods like k-means and fuzzy c-means (FCM)
have been invented for single-view data [10]. With the prompt development of
information technology, however, single-view data can no longer meet the actual
needs, and we are often faced with multi-view data represented by different
sources or features. For example, an image can be expressed by multiple feature
descriptors, such as LBP, SIFT and HOG. In such situations, the aforementioned
classical clustering methods will no longer be applicable.
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To counter this flaw and explore multi-view data, a load of derivatives of
multi-view clustering methods have been emerged. One of the most representa-
tive is hard partition-based [2,3,6,15]. For example, Cai et al. [2] suggested a �2,1

norm-based multi-view k-means clustering, called RMVKM, to learn the weight
of each view. Later, Chen et al. [3] developed a two-level variable-weighted k-
means (TW-k-means) clustering for multi-view data by introducing two entropy
regularizations to adjust the importance of the weights. Based on collabora-
tive learning, Zhang et al. [15] presented a two-level weighted collaborative k-
means (TW-Co-k-means) clustering to consider the weight of views and features.
However, these multi-view clustering methods all consider that the relationship
between objects and clusters is distinct, i.e., an object can only belong to a
cluster completely or not.

Unlike hard partition-based clustering methods, fuzzy clustering describes
the uncertainty by assigning each object to various singleton clusters with dif-
ferent memberships [11]. Many multi-view methods based on the idea of fuzzy
clustering have been developed [4,5,7,14]. Cleuziou et al. [4] proposed collabo-
rative fuzzy clustering for multi-view data, named Co-FKM, whereas it equally
considers the contribution of each view. Jiang et al. [7] proposed a weighted view
collaborative fuzzy c-means clustering to identify the contributions of different
views. Recently, Yang and Sinaga [14] suggested a feature-weighted multi-view
FCM based on collaborative learning (Co-FW-MVFCM), which can automati-
cally identify the contribution of each view and feature. Although these meth-
ods have achieved reasonable results to some extent, they cannot represent the
imprecision in the result. In fact, uncertain and imprecise cluster structure is
very ubiquitous in applications, that is, the cluster information of some objects
is difficult to distinguish.

To address such issue, a new concept of credal partition based on the theory of
belief functions is introduced [8,9]. Credal partition extends the concepts of hard,
fuzzy and possibilistic partitions by assigning the objects, not only to singleton
clusters, but also to the union of several singleton clusters (called meta-cluster)
with different masses of belief. To date, some evidential clustering methods have
been developed in the framework of belief functions [9,12]. Evidential c-means
(ECM) clustering [9], as the evidential counterpart of FCM, can well characterize
uncertain and imprecise cluster structures and derive effective clustering results.
Unfortunately, ECM is built upon the assumption of access to single-view data.
Hence, how to characterize the uncertainty and imprecision of multi-view data
in cluster assignment and improve the clustering performance is an open issue.

In this paper, we propose a new adaptive weighted multi-view evidential
clustering (WMVEC) method. Specifically, we introduce view weights to cap-
ture the different contributions of each view in clustering and employ entropy
regularization to regulate the distribution of view weights.

The main contributions are summarized as follows:

1. Inspired by the theory of belief functions, we propose a novel WMVEC
method, which can characterize the uncertainty and imprecision in clustering
results.
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2. We design the objective function of WMVEC and obtain the weight vec-
tor, cluster prototype matrix and credal partition matrix in an alternating
optimization way.

3. We conduct extensive experiments on several real-world datasets to verify the
superiority of WMVEC with respect to other state-of-the-art methods.

The remainder of this paper is organized as follows. Section 2 proposes the
WMVEC method and illustrates its optimization process. In Sect. 3, the effec-
tiveness and practicability of the proposed WMVEC method are analyzed using
real-world datasets. Finally, we make a brief conclusion in Sect. 4.

2 Multi-view Evidential Clustering

As mentioned earlier, many real-world applications are currently crowded with
multi-view data. However, how to characterize the uncertainty and imprecision in
clustering results on such data is still a challenging task. Conventional evidential
clustering is no longer adequate for the situations we encounter today.

In this section, we propose a novel adaptive weighted multi-view evidential
clustering (WMVEC) method to simultaneously learn the consensus credal par-
tition and the importance of each view.

2.1 Formulation

Given a dataset X = {X1,X2, · · · ,XH} and h-th view is expressed as Xh =
{x1,h,x2,h, · · · ,xn,h} ∈ R

n×Ph . The objective function of WMVEC can be rep-
resented as follows:

JWMV EC(M,V, r) =
H∑

h=1

rh

⎛

⎜⎜⎝
n∑

i=1

∑

Aj⊆Ω
Aj �=∅

|Aj |αmβ
ij‖xi,h − v̄j,h‖2 +

n∑

i=1

δ2hmβ
i∅

⎞

⎟⎟⎠ (1)

+ λ
H∑

h=1

rh ln rh

s.t.
∑

Aj⊆Ω,Aj �=∅
mij + mi∅ = 1, i = 1, 2, · · ·, n;

H∑

h=1

rh = 1 (2)

with
v̄j,h =

1
|Aj |

∑

ωk∈Aj

vk,h (3)

where rh is the view weight of h-th view, mij is the (i, j)-th element of credal
partition matrix M ∈ R

n×2c

and denotes the mass of belief of i-th object associ-
ated to cluster Aj . v̄j,h is the j-th cluster prototype of h-th view. The parameter
λ is used to adjust the distribution of view weights, and parameters α, β and δ
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are the same as in ECM. The objective function JMV EC consists of two parts,
the first part is similar to ECM and computes the sum of intra-cluster weighted
distances in each view by assigning weights to the views. The second part is a
negative weight entropy, which regulates the effect of view weight.

2.2 Optimization

In this subsection, we provide an efficient iterative method to minimize (2). More
specifically, we employ the Lagrange optimization method to alternately update
one variable while leaving others fixed.

Updating. M With V and r fixed, M is computed by Theorem 1.

Theorem 1. Suppose V = V∗ and r = r∗ are fixed, JWMV EC(M,V∗, r∗) is
minimized iff:

mij =

( H∑
h=1

|Aj |αrh‖xi,h − v̄j,h‖2
)− 1

β−1

(
∑

Az �=∅

H∑
h=1

|Aj |αrh‖xi,h − v̄z,h‖2
)− 1

β−1

+
( H∑

h=1

rhδ2h

)− 1
β−1

(4)

mi∅ = 1 −
∑

Aj �=∅
mij (5)

Proof. We employ Lagrange multipliers τi to solve the constrained minimization
problem with respect to M. The objective function (2) can be rewritten as:

J (M, τi) = JWMV EC(M,V, r) −
n∑

i=1

τi

⎛

⎜⎜⎝
∑

Aj⊆Ω
Aj �=∅

mij + mi∅ − 1

⎞

⎟⎟⎠ (6)

By differentiating the Lagrangian with respect to the mij , mi∅, and τi and
setting the derivatives to zero, we obtain:

∂J
∂mij

= βm
(β−1)
ij

H∑

h=1

|Aj |αrh‖xi,h − v̄j,h‖2 − τi = 0 (7)

∂J
∂mi∅

=
H∑

h=1

βrhδ2hm
(β−1)
i∅ − τi = 0 (8)

∂J
∂τi

=
∑

Aj⊆Ω,Aj �=∅
mij + mi∅ − 1 = 0 (9)
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We thus have from (7):

mij =
(

τi

β

) 1
β−1

⎛

⎜⎜⎜⎝
1

H∑
h=1

|Aj |αrh‖xi,h − v̄j,h‖2

⎞

⎟⎟⎟⎠

1
β−1

(10)

mi∅ =
(

τi

β

) 1
β−1

⎛

⎜⎜⎜⎝
1

H∑
h=1

rhδ2h

⎞

⎟⎟⎟⎠

1
β−1

(11)

Using (9)–(11), we can obtain the updating (4)–(5).

Updating. r With M and V fixed, r is computed by Theorem 2.

Theorem 2. Suppose M = M∗ and V = V∗ are fixed, JWMV EC(M∗,V∗, r)
is minimized iff:

rh =

exp

⎛

⎜⎜⎜⎝

−
n∑

i=1

∑

Aj⊆Ω
Aj �=∅

|Aj |αmβ
ij‖xi,h−v̄j,h‖2+

n∑

i=1
δ2

hmβ
i∅

λ

⎞

⎟⎟⎟⎠

H∑
g=1

exp

⎛

⎜⎜⎜⎝

−
n∑

i=1

∑

Aj⊆Ω
Aj �=∅

|Aj |αmβ
ij‖xi,g−v̄j,g‖2+

n∑

i=1
δ2

gmβ
i∅

λ

⎞

⎟⎟⎟⎠

(12)

Proof. Lagrange multiplier σ is used to solve the constrained minimization prob-
lem with respect to r. The objective function (2) becomes:

J (r, σ) = JWMV EC(M,V, r) − σ

( H∑

h=1

rh − 1

)
(13)

By differentiating the Lagrangian with respect to the rh and σ setting the
derivatives to zero, we obtain:

∂J
∂rh

=
n∑

i=1

∑

Aj⊆Ω
Aj �=∅

|Aj |αmβ
ij‖xi,h − v̄j,h‖2 +

n∑

i=1

δ2hmβ
i∅ + λ (1 + ln rh) − σ = 0

(14)
∂J
∂σ

=
H∑

h=1

rh − 1 = 0 (15)
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We thus have from (14):

rh = exp
(

σ − λ

λ

)
exp

⎛

⎜⎜⎜⎜⎜⎝

−
n∑

i=1

∑
Aj⊆Ω
Aj �=∅

|Aj |αmβ
ij‖xi,h − v̄j,h‖2 +

n∑
i=1

δ2hmβ
i∅

λ

⎞

⎟⎟⎟⎟⎟⎠

(16)
Using (15)–(16), we can obtain the updating (12).

Updating. V while fixing M and r With M and r fixed, V is computed by
Theorem 3.

Theorem 3. Suppose M = M∗ and r = r∗ are fixed, JWMV EC(M∗,V, r∗) is
minimized iff:

Blq,h �
n∑

i=1

xiq,h

∑

Aj	ωl

|Aj |α−1mβ
ij , ∀ l = 1, c, ∀ q = 1,Ph (17)

Hlk,h �
n∑

i=1

∑

Aj⊇{ωk,ωl}
|Aj |α−2mβ

ij , ∀ k, l = 1, c (18)

HhVh = Bh (19)

where Blq,h (resp. Hlk,h) is the l, q-th (resp. l, k-th) element of the matrix Bh ∈
R

c×Ph (resp. Hh ∈ R
c×c).

Proof. The partial derivatives of JWMV EC with respect to the cluster centers
are given by:

∂J
∂vl,h

=
n∑

i=1

∑

Aj �=∅
|Aj |αrhmβ

ij

∂D2
ij,h

∂vl,h
(20)

∂D2
ij,h

∂vl,h
= − 2

|Aj |

⎛

⎝xi,h − 1
|Aj |

∑

Aj	ωl

vl,h

⎞

⎠ (21)

where
D2

ij,h = ‖xi,h − v̄j,h‖2 (22)

Setting these derivatives to zero gives c linear equations that can be written as:

n∑

i=1

xi,h

∑

Aj	ωl

|Aj |α−1rhmβ
ij =

c∑

k=1

vk,h

N∑

i=1

∑

Aj⊇{ωk,ωl}
|Aj |α−2rhmβ

ij (23)

The system of linear equations can be equally represented by (17) and (18).

For the convenience of implementation, the proposed WMVEC method is
outlined in Algorithm 1.



Adaptive Weighted Multi-view Evidential Clustering 271

Algorithm 1: Weighted Multi-View Evidential Clustering
Input: Multi-view data X = {X1, · · · , XH}, Xh ∈ R

Ph×n, number of clusters c,
and parameters α, β, λ, δ

Output: The optimal M, V, r
1 Initialize V0, and r0;
2 while not converge do
3 Compute the prototypes of meta-clusters utilizing (3);
4 Update the credal partition matrix M utilizing (4)-(5);
5 Update the view weight vector r utilizing (12);
6 Compute matrices B and H utilizing (17)-(18);
7 Update the cluster prototype matrix V utilizing (19);

8 end

2.3 Computational Complexity

The computational complexity of ECM is O(tn2c), where t is the number of
iterations, n and c represent the number of objects and clusters respectively.
WMVEC is an extension of ECM in multi-view scenarios by introducing view
weights. Therefore, the computational complexity of WMVEC is O(tHn2c), and
H is the number of views. It is worth noting that the number of clusters grows
exponentially with the computational complexity, and the assignment of objects
to high-cardinality meta-clusters is challenging to interpret in practice. There-
fore, we can consider imposing constraints to limit the number of focal elements
in the meta-cluster, for example, like in ECM, to keep only the meta-cluster con-
taining two clusters. For higher cluster datasets, we can restrict the framework
of discernment to consist of only singleton clusters, empty set, and Ω. By doing
so, the computational complexity of WMVEC can be reduced to O(tHnc2) and
O(tHn(c + 2)).

3 Experiments

3.1 Experiment on Iris Dataset

In this experiment, we demonstrate the ability of credal partition in WMVEC
on the Iris1 dataset. The Iris dataset contains 150 objects with 3 clusters, where
each object consists of four features (Sepal.Length, Sepal.Width, Petal.Length
and Petal.Width). We split the Iris dataset into three views by different features,
as shown in Fig. 1(a), (e), (i). We can see that {ω1} is clearly distinguished from
{ω2} and {ω3}, whereas {ω2} and {ω3} are partially overlapped, and view 3 is
much easier to distinguish between {ω2} and {ω3} than the other two views.

From Fig. 1(b)–(d), (f)–(h), (j)–(l), we can observe that WMVEC can clearly
characterize the imprecision and uncertainty of cluster assignment. It carefully
assigned indistinguishable objects to relevant meta-cluster (i.e. {ω2, ω3}). What

1 https://archive.ics.uci.edu/ml/datasets/Iris/.

https://archive.ics.uci.edu/ml/datasets/Iris/
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is more, the parameter α determines the size of the meta-cluster. A large α
tends to correspond to lower imprecision and higher error, and vice versa. In
applications, α should be adjusted according to the specific situation or user
preferences. In the following experiments, we take α = 2, as suggested in [9].

Fig. 1. Clustering results of Iris dataset.

3.2 Experiments on Real-World Multi-view Datasets

To verify the validity of the proposed method with respect to other meth-
ods, we constructed experiments on eight public multi-view datasets, including
WebKB2, Multiple features3, Prokaryotic Phyla [1], SensIT Vehicle4, HumanEva
3D Motion [1] and MSRCv1 [14]. Table 1 shows the basic information of the
2 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/.
3 https://archive.ics.uci.edu/ml/datasets/Multiple+Features.
4 https://www.csie.ntu.edu.tw/$sim$cjlin/libsvmtools/datasets/.

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
https://archive.ics.uci.edu/ml/datasets/Multiple+Features
https://www.csie.ntu.edu.tw/$sim$cjlin/libsvmtools/datasets/
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used multi-view datasets, including the numbers of objects, clusters, views and
features.

Table 1. The details of the used real-world datasets

Dataset Objects Clusters Views Views name Features

WebKB (WebKB) 203 4 3 The text on web pages 1703

The anchor text in hyperlinks 203

The text in the title 203

Multiple features

(MF)

2000 10 6 Fourier coefficients 76

Profile correlations 216

Karhunen-Love coefficients 64

Pixel averages 240

Zernike moments 47

Morphological features 6

Prokaryotic Phyla

(ProP)

551 4 3 Gabor 393

Wavelet moments 3

CENTRIST 438

SensIT Vehicle

(SensIT)

300 3 2 Acoustic 50

Seismic 50

HumanEva 3D

Motion (Motion)

5000 5 2 X1 person 48

X2 person 48

MSRCv1 (MSRCv1) 210 7 4 Color moment 24

GIST 512

LBP 256

CENTRIST 254

We compare the performance of the proposed WMVEC method with respect
to a number of related methods, which are shown as follows: FCM [11], ECM [9],
Co-FKM [4], RMVKM [2], TW-k-means [3], SMVF [6], TW-Co-k-means [15],
Co-FW-MVFCM [14] and MVASM [5]. Among them, FCM and ECM are two
classical single-view clustering methods, RMVKM, TW-k-means, SMVF and
TW-Co-k-means are representative multi-view clustering methods based on hard
partition, Co-FKM, Co-FW-MVFCM and MVASM are state-of-art methods
based on fuzzy partition. In order to fully evaluate the performance of the above
mentioned methods, we applied two popular performance metrics5, namely Accu-
racy (ACC) and Rand Index (RI). Note that the larger values of ACC and RI
correspond to better clustering performance.

Table 2 and Table 3 show the clustering results of WMVEC and other meth-
ods on real-world datasets. Specifically, several points can be drawn from the
observation.

5 For credal partition, we can obtain a hard or fuzzy partition by Pignistic probability
transformation [9].
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1. Compared with single-view clustering methods (i.e. FCM and ECM),
WMVEC generally has obvious advantages, which indicates that it is not
appropriate to use single-view clustering methods to deal with multi-view
data. Besides, we can see that on the second view of the Prop dataset, FCM
and ECM both achieve relatively good results, however, these results are
physically meaningless.

2. Compared with the multi-view clustering method, the proposed WMVEC
achieves better performance compared to other methods. In particular, the
clustering methods considering view weights can often obtain better results,
which further demonstrates the rationality of introducing view weights.

3. More importantly, the advantage of WMVEC is not only that it can be trans-
formed into hard or fuzzy partition to obtain outstanding performance, but
WMVEC with credal partition can also offer deeper insight into the data. It
can effectively characterize the uncertainty and imprecision in cluster assign-
ment and avoid the risk of misassignment, which is very valuable in some
cautious decision-making applications.

Table 2. Clustering results with various multi-view datasets on ACC

Method Dataset

WebKB MF ProP SensIT Motion MSRCv1

FCM(1) 0.5110 0.2005 0.4781 0.4699 0.6785 0.2877

FCM(2) 0.4923 0.1971 0.5448 0.3687 0.4246 0.2912

FCM(3) 0.7340 0.2859 0.3354 - - 0.3798

FCM(4) - 0.6643 - - - 0.3310

FCM(5) - 0.2027 - - - -

FCM(6) - 0.2006 - - - -

ECM(1) 0.6124 0.3402 0.5384 0.5097 0.4855 0.2861

ECM(2) 0.5312 0.2766 0.5783 0.3720 0.4832 0.4204

ECM(3) 0.6158 0.3429 0.5515 - - 0.3692

ECM(4) - 0.3564 - - - 0.3418

ECM(5) - 0.3623 - - - -

ECM(6) - 0.3190 - - - -

Co-FKM 0.4709 0.5240 0.4773 0.4567 0.5288 0.4440

RMVKM 0.5418 0.7926 0.5235 0.4769 0.7994 0.5437

TW-k-means 0.5387 0.7609 0.5576 0.4902 0.6959 0.6052

SWVF 0.5468 0.7745 0.5620 0.5075 0.7056 0.6121

TW-Co-k-means 0.6109 0.8188 0.5661 0.5139 0.7124 0.6335

Co-FW-MVFCM 0.6946 0.7410 0.5408 0.5133 0.6870 0.5857

MVASM 0.7161 0.6310 0.4993 0.4796 0.7347 0.5381

WMVEC 0.7586 0.8300 0.5789 0.5667 0.8952 0.7619
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3.3 Parameter Study

Finally, we also tested the parameter sensitivity of WMVEC. The ACC and RI
results with different parameters β and λ are shown in Fig. 2 and Fig. 3. We
take β that varies in {1.1, 1.2, · · · , 2.0} and λ that varies in {e0, e1, · · · , e10}.
It can be seen that the values of β and λ have a significant impact on the
performance of the WMVEC. For each dataset, the WMVEC can gain better
results if appropriate β and λ can be selected. In addition, we can clearly see
that the WMVEC can often obtain better results with smaller β and larger λ.

Table 3. Clustering results with various multi-view datasets on RI

Method Dataset

WebKB MF ProP SensIT Motion MSRCv1

FCM(1) 0.6206 0.5733 0.5709 0.5279 0.8217 0.6566

FCM(2) 0.5110 0.5527 0.6360 0.5121 0.6301 0.5539

FCM(3) 0.6872 0.6921 0.5449 - - 0.7573

FCM(4) - 0.9144 - - - 0.7591

FCM(5) - 0.5718 - - - -

FCM(6) - 0.5519 - - - -

ECM(1) 0.5483 0.7265 0.4242 0.5924 0.6702 0.6327

ECM(2) 0.4042 0.5622 0.6442 0.5287 0.6639 0.6993

ECM(3) 0.5398 0.7271 0.4121 - - 0.6961

ECM(4) - 0.7584 - - - 0.6882

ECM(5) - 0.7701 - - - -

ECM(6) - 0.7368 - - - -

Co-FKM 0.6174 0.8714 0.6041 0.5781 0.7667 0.7879

RMVKM 0.6678 0.9499 0.6151 0.5879 0.8969 0.8305

TW-k-means 0.4131 0.9453 0.6356 0.5516 0.8453 0.8500

SWVF 0.4078 0.9347 0.5411 0.5776 0.8420 0.8490

TW-Co-k-means 0.5464 0.9590 0.6374 0.5689 0.8592 0.8608

Co-FW-MVFCM 0.6410 0.9231 0.6280 0.5873 0.8313 0.8535

MVASM 0.7097 0.9059 0.5832 0.5494 0.8482 0.8345

WMVEC 0.7361 0.9560 0.6414 0.6029 0.9282 0.8929
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Fig. 2. Clustering results of multi-view datasets in terms of ACC.

Fig. 3. Clustering results of multi-view datasets in terms of RI.

4 Conclusion

In this paper, we propose an adaptive weighted multi-view evidential clustering
(WMVEC) based on the framework of belief functions. As such, WMVEC is able
to handle the uncertainty and imprecision of multi-view data clustering, and pro-
vides a credal partition, which extends the fuzzy, possibilistic and rough ones,
allowing the representation of the imprecision and uncertainty about the assign-
ment of objects to clusters. What is more, WMVEC can automatically learn the
importance of views. Experimental results on several real-world datasets illus-
trate the potential and superiority of our proposed method. In future studies,
we intend to extend the proposed method to deal with mixed types of data as
well as incomplete data.
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