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Abstract. As a proactive network security protection scheme, network
intrusion detection system (NIDS) has become a powerful tool for early
warning of computer and communication systems attacks. However, tra-
ditional machine learning methods struggle to pay attention to both
spatial and temporal features of network traffic simultaneously, result-
ing in poor detection performance. In this paper, we propose SR-IDS,
an Intrusion Detection System based on Self-taught learning and Rep-
resentation learning, which consists of one-dimensional stacked convolu-
tional autoencoders (1D-SCAE) and bidirectional gated recurrent units
(BiGRU). SR-IDS can extract spatial features through 1D-SCAE and
abstract temporal features via BIGRU. It uses self-taught learning and
representation learning to simultaneously focus on the spatial and tempo-
ral characteristics of network traffic, overcoming the challenges of tradi-
tional methods in feature extraction. Experiments show that our SR-IDS
model can distinguish the network traffic with 98.90% accuracy on the
UNSW-NB15 dataset.

Keywords: Convolutional autoencoders * Feature extraction -
Recurrent neural networks - Traffic intrusion detection

1 Introduction

Network intrusion detection system (NIDS) monitors all traffic in the network
and detects each data packet passing through the web. Many researchers have
begun studying intrusion detection techniques to deal with network attacks effec-
tively. In classification problems, machine learning algorithms perform feature
extraction to identify malicious behaviors in network traffic [8]. However, the sta-
tistical characteristics of traffic have changed considerably in terms of network
architectures and applications today. Traditional machine learning methods have
been powerless to efficiently and accurately abstract spatial and temporal fea-
tures of abnormal traffic.

Self-taught learning is a typical machine learning framework for using unla-
beled data in supervised classification tasks [22]. The method does not require
the assumption that unlabeled data follows the same distribution as labeled data.
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Besides, representation learning analyzes the characteristic of data that makes
it easier to extract helpful information when building predictors [5]. Inspired by
the above ideas, we develop a noval network intrusion detection system based
on self-taught learning and representation learning.

General traffic features can be divided into two categories: spatial features,
such as data packet features, and temporal features, such as network flow fea-
tures. NIDS often struggles to broaden the horizon and jump out of the local
optimum solution when using only spatial or temporal features [27]. In this paper,
we design one-dimensional stacked convolutional autoencoders (1D-SCAE), an
excellent self-taught learning model which abstracts spatial features by reducing
the dimensionality of complex data signals. Besides, bidirectional gated recur-
rent units (BiGRU) can extract temporal features of traffic sequences in repre-
sentation learning. Therefore, we propose a deep neural network model based
on 1D-SCAE and BiGRU, which can accurately extract spatial and temporal
features and enhance the performance of malicious traffic detection. The main
contributions of the proposed work include the following:

— We design 1D-SCAE—an improved network traffic spatial feature extraction
model, which uses sparse regularization to reduce overfitting by invalidating
a certain part of active neurons. The greedy layer-wise strategy is adopted to
achieve the best detection performance.

— We propose a BiGRU-based temporal feature extraction model that utilizes
TimeseriesGenerator to generate and model traffic time series. It can acquire
both memories from history and information from the future.

— We develop SR-IDS, a network intrusion detection system that simultaneously
focuses on network traffic’s spatial and temporal characteristics. Experiments
show that the accuracy of SR-IDS on the UNSW-NB15 dataset can reach
98.90%.

— We discuss different hyperparameters to determine the optimal model archi-
tecture. Furthermore, we compare the detection performance of different RNN
variants.

The rest of the paper is organized as follows. The related work on NIDS is
reviewed in Sect. 2. Then we present the details of the proposed SR-IDS in Sect. 3.
The accuracy and the efficiency of SR-IDS are verified in Sect. 4 by comparing it
with several state-of-the-art IDS algorithms. Finally, we provide our conclusions
and discuss the future work in Sect. 5.

2 Related Work

NIDS is a necessary foundation and premise for dealing with complex network
attacks and identifying malicious traffic behavior. The deep learning models cur-
rently applied to network anomaly detection include two categories: generative
intrusion detection model and discriminative intrusion detection model.
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2.1 Generative Intrusion Detection Model

Generative models often adopt an advanced hierarchical learning method to
establish a multi-level model, which can flexibly analyze and restore joint prob-
ability distribution. The current famous generative model architecture mainly
includes autoencoder and its variants [18].

Amir et al. [4] designed a new lightweight architecture that considers fea-
ture separation and uses surrounding information of a single value in the feature
vector. The accuracy is improved while reducing the memory footprint and the
need for processing power. Iliyasu et al. [12] achieved a few-shot learning intru-
sion detection, which uses the feature extraction model in the few-shot learning
stage to fit a classifier with a small number of novel attack samples. Long et
al. [17] proposed a network intrusion detection model based on an integrated
autoencoder. It uses recursive feature addition to select the optimal subset of
features, which can significantly reduce the training time and improve the intru-
sion detection performance.

2.2 Discriminative Intrusion Detection Model

Discriminative models are usually based on the excellent classification of hetero-
geneous data to achieve the best recognition. The common discriminative model
structures mainly include recurrent neural networks and convolutional neural
networks [2].

Imrana et al. [14] proposed a novel feature-driven intrusion detection system.
The model first utilizes a statistical model to rank all the features, then uses best-
first-search algorithm to search for the best subset, and finally classifies testing
data based on the best subset. Sahu et al. [23] proposed a multi-classification
intrusion detection method based on LSTM and fully connected networks. This
method accurately classifies the imbalanced intrusion data. Imrana et al. [13]
used an improved RNN model for network intrusion detection, which can be
associated with the feature knowledge and accurately classify unknown data.

Several works sought to propose ML-based solutions with consideration of
as many essential features as possible, and the approaches managed to obtain
interesting results. However, there are still some challenges in extracting both
spatial and temporal traffic features. Inspired by existing research progress, we
propose SR-IDS—a new intrusion detection system with the advantages of gen-
erative models and discriminative models. Moreover, it can serially extract the
spatial and temporal features of network traffic accurately.

3 The Proposed Model

In this section, we introduce how SR-IDS works. SR-IDS first preprocesses the
UNSW-NBI15 dataset, including one-hot encoding and normalization. Afterward,
SR-IDS uses 1D-SCAE to extract spatial features of network traffic, and the
greedy layer-wise strategy is adopted to pre-train the neural network. Finally,
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Fig. 1. The framework of our proposed SR-IDS model. 1D-SCAE (marked in blue)
extracts spatial features through encoding and decoding. The output of the last encod-
ing layer of 1D-SCAE is the input of BiGRU (marked in green). BiGRU extracts
temporal features by generating time series. (Color figure online)

SR-IDS uses BiGRU to extract temporal features of network traffic. BIGRU
accepts input from pre-trained 1D-SCAE and outputs to the binary classifier.
Figure 1 describes the framework of our proposed SR~-IDS model.

3.1 Data Preprocessing

In general, machine learning models can only process meaningful numerical data,
but the actual data differs from what we expected. In order to enable machine
learning models to process and analyze traffic data, assigning numerical meaning
to features is necessary. One-hot encoding is a commonly used feature encoding
method.

One-hot encoding expresses a specific type of different values in binary vec-
tors. The N values used for encoding correspond to the states of IV registers
one by one. Only one bit in any form is activated, and the rest of the registers
are inactive. The specific representation is generally v; = {0,1,0,...0,0}, and
the dimension of the vector is equal to the number of possible values N of the
eigenvalues to be encoded.

After encoding, we use the min-max method to standardize network traffic
samples. With a fixed output range, the min-max method performs a linear oper-
ation on the sequence {z1,zs,...,z,}. After transformation, the new sequence
{y1,¥2,---,yn} € (0,1) are dimensionless:

€Tr; — minlgign{l‘j}

maxi<i<p{%;} — mini<i<n{z;}

(1)

Yi =

It can be found that min-max forces the original input data to distribute in
[0, 1], and the normalized scale transformation is only related to extreme values.
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3.2 Spatial Feature Extraction

Spatial features of network traffic refer to feature sets related to packets, for
example, packet size and number. We design a 1D-SCAE for spontaneously learn-
ing spatial feature representation, and Fig. 2 describes the architecture. In each
layer, the autoencoder convolves the features of the lower layers to produce a
high-level representation. The whole methodology is shown as follows:

ah= FOS T b)) 2)
ieM;

where M represents the input feature map, ! represents the l-th layer in 1D-
SCAE, and k is the convolution kernel. f represents the activation function, and
bé» is the bias vector.
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Fig. 2. The structure of proposed 1D-SCAE model

The 1D-SCAE consists of three convolutional autoencoders, and their
encoder layers are stacked in the model construction process to build the com-
plete 1D-SCAE model. After the training is completed, we discard the decoders
and connect the last encoder layer to the subsequent temporal extraction model,
which will be explained in the next subsection. MSE Loss is used to evaluate the
effect of feature extraction and input reconstruction as follows:

J= =3 (@ —a))? 3)

i=1

where 7 is the sample index, z; is the original input data, and 2} is the recon-
structed data after dimensionality reduction by 1D-SCAE.

We also add a custom regularization term in 1D-SCAE to improve the gener-
alization performance of the model. The principle is that different inputs cause
different neurons to be activated, making neurons better dependent on data. In



SR-IDS: A Novel Network Intrusion Detection System 559

general, the constant p is the proportion of activated neurons, which is used to
measure the average activity p of the activation degree of neurons:

1 N
p= NZQW) (4)

where IV is the number of neurons in the hidden layer, @ is the corresponding
neuron transformation. In the field of machine learning, forward KL divergence
is often used as the training cost to measure the difference between two prob-
ability distributions. Forward KL divergence makes sure p close to p, and the
regularization term punishs the deviation between p and p:

N p 1—p
KL(pllp) = plog = + (1 — p)log — (5)
p 1-p
If p is equal to p, the KL divergence is 0; otherwise, it will gradually increase
as the difference between p and p increases. Therefore, the error function J in
the sparse autoencoder is shown as follows:

N
J =T +u> KL(plp) (6)

j=1

where J is the error when no sparse item is added, and p is the impact factor
used to balance the weight of KL divergence in the entire loss function.

3.3 Temporal Feature Extraction

In this work, we group traffic records by timestep and link the context with their
labels. Our proposed SR-IDS can accurately reflect the time characteristics of
network traffic and significantly reduce the false positive rate.

SR-IDS takes the output from the spatial feature extraction model as input
and uses TimeseriesGenerator—a time series generator to convert isolated sam-
ples into a sequence. After serialization, the processed traffic is input into the
BiGRU. The principle of BiGRU is to split the neurons of a regular GRU into
two directions, one for positive time direction and another for negative time
direction.

Assume that the current input vector is z¢, the last step activation vector is
ri—1, W and U are weight matrices used to represent the connection strength
between neurons, and b is the bias vector. o, represents the sigmoid activation
function, the update gate vector z; and the reset gate vector r; are shown as
follows:

Zt = O'g(szt + Uzht—l + bz)

7
Tt :O'g<Wrxt+Urht71 +br) ( )

The candidate activation vector h; is obtained through the Hadamard product
of r; and hy_1, where ¢ represents the hyperbolic tangent function:

hi = pn(Whae + Un(re © hy—1) + by) (8)
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Fig. 3. Classification model based on 1D-SCAE and BiGRU

Finally, update the activation output vector of the hidden unit h; at time ¢:

ht = (1 — Zt) ® htfl +2: ® ]Alt (9)

When the 1D-SCAE model is completely trained, we connect it with the
subsequent BiGRU network, as shown in Fig. 3. We optimize the free parameters
in BiGRU to achieve the global optimum. The binary cross entropy loss function
in the final binary classification is adopted to evaluate the model as follows:

N
€=~ D yiTos(p(y) + (1~ y:) los(1 — ply) (10)
i=1

where 7 is the sample index, N is the number of samples, y; is the binary label
of the i-th sample, and p(y;) is the probability that the output belongs to the y;
label. For the case where the label y; is 1, if the predicted value p(y;) approaches

1, then the loss approaches 0. Conversely, if the predicted value p(y;) approaches
0, the loss should be tremendous.

4 Experiments

In this section, a series of experiments are conducted to verify the efficiency and
accuracy of the proposed SR-IDS. Specifically, we first present the experimental
settings and some details. Then we analyze some critical parameters to find the

optimal solution. Lastly, we evaluate SR-IDS’s performance and compare it with
some state-of-the-art methods.

4.1 Dataset

The UNSW-NB15 dataset simulates a modern representation of network traffic
[19]. Each instance in the dataset is a network flow that summarizes the activ-
ity of a sequence of unidirectional packets with contextual features. Additional
features are introduced into the dataset, totaling 49 features.
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Table 1. Model hierarchy and some parameters

Layers | Types Input size Output size
1 ConvlD None, 200, 1 | None, 200, 8
2 MaxPooling1D None, 200, 8 | None, 100, 8
3 ConvlD None, 100, 8 | None, 100, 16
4 MaxPooling1D None, 100, 16 | None, 50, 16
5 Conv1D None, 50, 16 | None, 50, 32
6 MaxPooling1D None, 50, 32 | None, 25, 32
7 Flatten None, 25, 32 | None, 800
8 Dense None, 800 None, 32
9 TimeseriesGenerator | None, 32 None, 8, 32
10 BiGRU None, 8, 32 None, 8, 48
11 BiGRU None, 8, 48 None, 8, 24
12 Dense None, 8, 24 None, 6
13 Dense None, 6 None, 1
098
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Fig. 4. Training loss and accuracy of different RNN variants

4.2 Model Hierarchy

SR-IDS inputs the preprocessed data into three independent one-dimensional
convolutional autoencoders and trains them separately through a greedy layer-
wise strategy. Three autoencoders’ encoder layers are stacked after training by
the weight-sharing method and then connects to the time series generator to
produce traffic groups with contextual features. Afterwards, we use BiGRU to
extract temporal feature and output the type judgment of the testing set. The
complete model hierarchy and some significant parameters are shown in Table 1.
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4.3 Parameters Analysis

We compare and test the influence of different learning rate and dropout ratio
on convolutional layer and dense layer, as shown in Table2. We find that the
convergence speed of the entire neural network is extremely slow when the initial
learning rate of the dense layer is less than 0.0001. It means the time overhead
significantly increases, and the effect improvement is negligible, so we do not
adopt the lower initial learning rate scheme.

Table 2. Comparison of different learning rate and dropout ratio

Layers | Learning rate | Dropout | Accuracy | FAR F1 score
ConvlD | 0.005 0.05 0.9310 0.0700 | 0.9184
0.1 0.9358 0.0693 | 0.9300
0.3 0.9187 0.0869 |0.9226
0.001 0.05 0.9398 0.0626 |0.9301
0.1 0.9439 | 0.0537|0.9355
0.3 0.9106 0.0574 | 0.9280
0.0005 0.05 0.9317 0.0604 | 0.9208
0.1 0.9324 0.0586 | 0.9245
0.3 0.9289 0.0654 | 0.9177
Dense |0.001 0.05 0.9401 0.0593 | 0.9353
0.1 0.9439 0.0537 | 0.9355
0.3 0.9422 0.0540 |0.9320
0.0005 0.05 0.9471 0.0569 | 0.9273
0.1 0.9488 0.0525 | 0.9392
0.3 0.9306 0.0528 | 0.9394
0.0001 0.05 0.9533 0.0505 | 0.9314
0.1 0.9556 | 0.0499 | 0.9403
0.3 0.9485 0.0613 | 0.9345

We also compare the loss and accuracy of different RNN models during train-
ing iterations. Figure 4 shows the detailed performance of training loss and accu-
racy for attack detection. It can be seen that loss and accuracy hardly change
when the epoch reaches 50, and BiGRU can achieve better performance than
the other three RNN variants.

4.4 Evaluation

We compare the proposed method’s performance with some state-of-the-art
methods, as shown in Table 3. Additionally, we test our model on KDD CUP
99 [26] and CIC-IDS-2017 dataset [24], which also shows well performance. In
summary, our proposed SR-IDS method can achieve excellent performance in
network traffic anomaly detection.
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Table 3. Comparison with other machine learning algorithms

Dataset Model Accuracy | Precision | Recall | F1 score
UNSW-NB15 | DT 3] 88.30% |94.59% | 77.78% |85.37%
SVM [28] 89.63% |- - -
GBT [30] 93.13% ]92.38% |92.84% |92.61%
GAN [7] 92.39% |91.46% | 94.03% | 94.39%
CNN [6] 86.25% |86.92% |86.25% | 86.59%
Our SR-IDS | 98.90% |98.90% | 98.90% | 98.90%
KDD CUP 99 | DT [20] 94.46% |96.67% | — -
SVM |[21] 96.61% |98.04% |95.31% |96.66%
GBT [25] 91.82% | 86.51% |- -
GAN [1] - 86.76% | 86.94% |85.71%
CNN [29] 94.11% |- 93.22% |-
Our SR-IDS |98.15% |97.26% | 99.01% 98.13%
CIC-IDS-2017 | DT [10] 94.48% 96.67% | — -
SVM [11] 93.75% |- 94.73% |-
GBT [9] 97.83% |— - -
GAN [16] - 98.17% |90.57% |88.42%
CNN [15] 97.39% |- 82.12% |-
Our SR-IDS |96.16% |95.42% |97.15% | 96.28%

5 Conclusion

In this paper, we propose SR-IDS, an intrusion detection system for network
traffic based on self-taught learning and representation learning, which simul-
taneously focuses on traffic’s spatial and temporal characteristics. Specifically,
it utilizes 1ID-SCAE to extract spatial features and BiGRU to extract tempo-
ral features. The greedy layer-wise strategy is adopted in the training process
of 1D-SCAE, and sparse regularization is applied to reduce overfitting. BIGRU
generates time series through TimeseriesGenerator to extract advanced time fea-
tures. Multiple experiments have proved that BiGRU can achieve the best score
among RNN variants. The accuracy rate of our proposed SR-IDS model in clas-
sifying network traffic on UNSW-NB15 dataset can reach 98.90%, which is more
efficient than other current IDS methods.

In future research, we can consider online operations to improve robust-
ness and stability. Furthermore, defense against attack techniques targeting deep
learning models is also a research direction in the future.
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