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Abstract. Recently, several works have paid attention to view synthe-
sis by neural radiance fields (NeRF) to improve camera pose estima-
tion. Among them, LENS and Direct-PoseNet synthesize novel views
from pre-trained NeRF and then train the pose regression convolutional
network using real observations and the augmented synthetic views for
better localization. Therefore, the performance depends on the three-
dimensional (3D) consistency and the image quality of novel views. Espe-
cially, localization tends to fail if a diverse and high-quality training set
is unavailable. To solve this issue, we tackle the problem of learning
camera pose regressor from the viewpoint-biased and limited training
set. We propose augmenting the regressor’s training set using a few-shot
NeRF instead of an original NeRF, which is employed in the previous
frameworks. We can render high-quality novel views with a consistent 3D
structure for stable training of the regressor. The experiments show that
few-shot NeRF is an effective data augmenter for camera pose estimation
under the viewpoint-biased limited training set.
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1 Introduction

Camera pose estimation, the task of regressing a camera’s relative position and
rotation to an object in a given image, is a fundamental problem in computer
vision and robotics. Given RGB or RGB-D images [13], we can estimate the cam-
era parameters by reconstructing the target scene using SfM [12], regressing the
camera pose [3], or iteratively optimizing the camera parameters [6]. Recently,
many researchers have paid attention to the use of view synthesis by neural
radiance fields (NeRF) [8] to improve camera pose estimation. Among them,
LENS [9] and Direct-PoseNet [1] are practical and sophisticated approaches that
utilize novel views from pre-trained NeRF for localization. Concretely, LENS uti-
lizes the novel view rendered from the original NeRF [8] as data augmentation
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to train the camera pose regressor, PoseNet [3], which directly estimates cam-
era parameters from a given single image using a convolutional neural network.
Direct-PoseNet has a similar approach. However, if a diverse and abundant set
of multiview images is unavailable during the training of NeRF, it may not effec-
tively render novel views. These novel views are crucial for training the camera
pose regressor. In such circumstances, the quality of novel views could degrade,
leading to suboptimal performance in camera localization.

Hence, in this paper, we tackle the problem of learning the pose regressor
from the viewpoint-biased and limited training set. Because the training of NeRF
tends to fail in such a situation, we propose augmenting the regressor’s training
set using a few-shot NeRF instead of an original NeRF, which is employed in the
previous frameworks. Concretely, we adopt DietNeRF [2] as a few-shot NeRF
for data augmentation. Using DietNeRF, we can render high-quality novel views
with a consistent 3D structure for stable training of the regressor. In the training
phase of the regressor, we learn the regressor to make it more stable using actual
observed data and extended views rendered from the pre-trained DietNeRF.

In the experiments, to validate the effectiveness of the proposed method, we
compared DietNeRF with the original NeRF using training data with a small
number of shots and viewpoint bias. Our experiments demonstrated that the
novel views by the DietNeRF further improve the camera pose estimation per-
formance compared to the original NeRF.

2 Related Work

2.1 Neural Radiance Fields

Mildenhall et al. proposed neural radiance fields (NeRF) [8] for learning a multi-
layer perceptron (MLP) that represents the three-dimensional (3D) space of a
target scene from multi-view images with camera pose. The learned 3D repre-
sentation can be utilized to generate an unobserved scene.

While NeRF can learn the consistent 3D structure and generate realistic
novel views, training NeRFs requires multi-view images with camera parame-
ters, which is laborious. Moreover, when the training data is small or when the
viewpoints are biased, the training tends to fail the training and generate poor-
quality rendering images. Therefore, several studies have been proposed to reduce
the number of training data [2,4,15]. pixelNeRF [15] is a method for learning
NeRFs from a single image by conditioning the color and density of the 3D coor-
dinates on the features extracted by the trained CNN. InfoNeRF [4] learns to
minimize the density of sampling points on the ray except for high-density points
where an object exists, thereby suppressing the effect of noise and improving the
quality of the image generation. DietNeRF [2] is a method that uses CLIP [10]
for training to prevent training collapse and improve the generation quality when
the amount of training data is small. This is because CLIP’s image encoder can
extract semantic features to make the semantic features similar between view-
points in the 3D space during training so that unobserved regions that do not
appear in the training data can be made semantically consistent. As a result,
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even when the training data is small or the training viewpoints are biased, it is
possible to learn so that unobserved regions are complemented plausibly.

DietNeRF. In this section, we describe the training phase of DietNeRF in
detail. The DietNeRF model takes 3D coordinates x and view direction d as
input and outputs the density σ and color c of the 3D coordinates. This mapping
function is modeled by a multi-layer perceptron (MLP). Next, to calculate the
pixel value, we sample a ray r on 3D space based on camera pose, aggregate
these properties (σ, c) for each ray through the MLP, and then calculate the
pixel value C(r) based on a volume rendering approach. The MLP’s trainable
parameters are optimized by minimizing the following photometric loss function,

LMSE(R) =
1
N

∑

r∈R
||C(r) − Ĉ(r)||22, (1)

where C(r) is a ground truth color and R is a set of N rays.
To hallucinate unseen regions, DietNeRF introduces the auxiliary semantic

loss function, which aims to minimize the semantic distance between feature
vectors of ground truth image I and synthesized image Î. These feature vectors
are extracted from CLIP’s [10] image encoder φ. This process is formulated as

Lsc(I, Î) = φ(I)φ(̂I)�. (2)

The total loss function for training DietNeRF is described as

Ltotal = λMSELMSE + λscLsc, (3)

where λMSE and λsc are hyperparameters that balance these loss function. Before
training the pose regressor, we train DietNeRF according to the final loss func-
tion (Eq. (3)).

2.2 Camera Pose Estimation

Camera pose estimation is a key component for various applications. To achieve
this task, several approaches have been proposed. Among them, absolute pose
regression learns to regress the camera parameter from a given image by convo-
lutional neural networks (CNN) from a pair of target scenes and the correspond-
ing camera pose. PoseNet is one of the representative works. PoseNet regresses
the parameters using MobileNet-V2 [11], enabling fast inference. However, since
PoseNet is based on CNN, it easily overfits the training data and the camera dis-
tribution, resulting in poor performance. In addition, overfitting can be apparent
when large-scale and diverse training data is unavailable.

For better estimation, many researchers have paid attention to the use of
novel view synthesis techniques using NeRF [8]. LENS [9] augments the unseen
views using NeRF-W [7] to enhance the pose regressor training. LENS generates
a 3D grid based on density information obtained from NeRF-W and selects
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Fig. 1. Overview of the proposed method (a) Training DietNeRF from a small amount
of training data. (b) Generating synthetic data for PoseNet using DietNeRF. (c) Train-
ing PoseNet using synthetic data and a small amount of real training data.

a viewpoint that is not too close to the object’s location. The camera poses
generated from the nearest camera pose from the selected viewpoint, and the
camera pose generated from that viewpoint using NeRF-W are added to the
training of the pose regressor. Direct-PoseNet [1] also uses pre-trained NeRF
photometric errors for training. This has the advantage that unlabeled images
can be used to train Pose Regressor.

However, the property of CNN-based regressors like PoseNet heavily depends
on the view quality and the viewpoint distributions. In addition, building a train-
ing set for both the regressor and NeRF model is laborious. Therefore, in this
paper, we use a few-shot NeRF, which can generate plausible unobserved views
from the limited dataset, to augment training data for boosting the regressor’s
generalization ability.

3 Proposed Method

In this paper, we introduce an improved pipeline for few-shot and viewpoint-
based camera pose estimation. As shown in the Fig. 1, the proposed method
consists of three steps: training DietNeRF [2] as a view augmenter (Sect. 2.1
and Sect. 3.1), generating synthetic data for PoseNet [3] (Sect. 3.2), and training
PoseNet for camera pose estimation (Sect. 3.3).

3.1 The Training of DietNeRF

To generate novel views for the pose regressor as shown in Fig. 1(a), we first
train DietNeRF [2] from a given small dataset using the procedure in (Sect. 2.1).

3.2 View Synthesis for Data Augmentation

The camera pose regressor like PoseNet [3] has a problem of overfitting the
training data when the limited and biased training data, results in poor per-
formance for camera pose estimation. To solve this problem, our strategy is to
utilize the novel views rendered by DietNeRF [2] as additional training data. The
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augmented data set consists of the image from the unseen viewpoint, and the
corresponding camera poses because we can obtain the pairs from DietNeRF.

To sample viewpoints for training data augmentation, we assume that we are
observing the target object from a hemispherical plane with a constant distance.
Typically, such viewpoint distribution is based on a von Mises distribution in the
directional statistic. The distribution changes depending on the parameters of
the mean and concentration relative to the mean. When the concentration is zero,
the von Mises distribution returns to a uniform distribution. Since the viewpoint
of the composite data should have a viewpoint that captures a wide range of the
target scene as in the uniform distribution, the azimuth and elevation angles
are sampled from the von Mises distribution with mean 0 and concentration
0, and the 3D coordinates are determined. Following this sampling strategy,
we sample N viewpoints consisting of azimuth and elevation angles from the
von Mises distribution. Given sampled viewpoints, we generate additional view
images from DietNeRF, as shown in Fig. 1(b).

3.3 The Training of Camera Pose Regressor

Finally, we train PoseNet [3] using real multi-view images with camera pose and
synthetic additional images generated from DietNeRF [2] (Sect. 3.2), as shown
in Fig. 1. The camera extrinsic parameters for camera pose estimation consist
of the rotation and translation matrix. The following loss functions Lpose are
defined based on the predicted camera pose P̂ and the ground-truth P of the
training data.

Lpose =
1
|P| ||P − P̂||22. (4)

4 Evaluation

We perform experiments from two perspectives: (i) we quantitatively and qual-
itatively evaluate a novel view quality of the original NeRF and DietNeRF for
view augmentation in a viewpoint-biased setting, (ii) we quantitatively compare
our model with previous work for camera pose estimation task.

4.1 Evaluation Setting

Dataset. We used NeRF synthetic dataset proposed in the original NeRF
paper [8]. This dataset is rendered from a high-quality 3D model using Blender.
Because we aim to improve the performance of the few-shot and viewpoint-
biased settings in the experiments, we created subsets of 10 images as a training
set from NeRF synthetic for training models. Following Sect. 3.2, we sampled
augmented unseen viewpoints from a von Mises distribution with a concentra-
tion of 0. To evaluate our model in a viewpoint-based setting, we controlled the
mean parameter of the von Mises distribution. The viewpoint-biased data we
created are categorized into three types: random, side, and front. These view-
point distributions cover the hemisphere, the target object from the side, and the
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Fig. 2. low, middle, and high-concentrated viewpoint distribution for evaluation in
the viewpoint-biased setting

Table 1. Number of training successes
of random

Scene Model Successes rate

Lego NeRF 2/5

DietNeRF 5/5

Hotdog NeRF 0/5

DietNeRF 5/5

Drums NeRF 5/5

DietNeRF 5/5

Table 2. Number of training successes
of side/front

Scene Model Successes rate

Lego NeRF 1/5 / 2/5

DietNeRF 5/5 / 5/5

Hotdog NeRF 2/5 / 1/5

DietNeRF 5/5 / 5/5

Drums NeRF 5/5 / 5/5

DietNeRF 5/5 / 5/5

target object from the front, respectively. Therefore, because side and front
include largely invisible regions due to self-occlusion, we investigated variations
of the side and front viewpoints. By controlling the azimuth of von Mises
distribution, we additionally created high, middle, and low concentrated view-
point datasets for side and front viewpoints. These high, middle, and low
concentrated viewpoints differ in the degree of observation regions, as shown in
Fig. 2.

Evaluation Metrics. We quantitatively evaluated the image completion qual-
ity in an invisible region using Peak Signal to Noise Ratio (PSNR), Struc-
tural Similarity (SSIM) [14], and Learned Perceptual Image Patch Similarity
(LPIPS) [16]. To quantitatively evaluate the camera pose estimation, we used
translation error and rotation error as metrics. The translation error indicates
the error of the camera position and is calculated from the mean-squared error
of the translation matrix between the ground truth and prediction. On the other
hand, the rotation error indicates the mean-squared error of the rotation angle
between the ground truth and prediction.

Network Details. We optimized the trainable parameters of DietNeRF using
Adam [5], where the batch size is 1,024 and the initial learning rate is set to
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Table 3. Rendering quality for random

Scene Viewpoint Model PSNR SSIM LPIPS

Lego low NeRF 15.72 .688 .304

DietNeRF 24.10 .866 .109

Hotdog NeRF 20.14 .837 .179

DietNeRF 26.94 .928 .066

Drums NeRF 19.17 .812 .161

DietNeRF 19.66 .830 .124

Table 4. Rendering quality for side/front

Scene Viewpoint Model PSNR SSIM LPIPS

Lego low NeRF 19.23/22.07 .800/.837 .178/.132

DietNeRF 22.27/22.02 .836/.841 .114/.117

middle NeRF 26.83/25.45 .917/.903 .064/.073

DietNeRF 27.21/25.26 .916/.900 .061/.076

high NeRF 28.89/27.23 .945/.936 .043/.048

DietNeRF 29.33/27.04 .946/.931 .042/.055

Hotdog low NeRF 24.02/23.63 .882/.877 .113/.123

DietNeRF 20.47/25.55 .858/.902 .122/.087

middle NeRF 32.18/30.00 .957/.941 .041/.057

DietNeRF 29.48/30.12 .942/.945 .056/.053

high NeRF 35.01/32.50 .974/.965 .025/.033

DietNeRF 33.16/32.37 .966/.965 .035/.036

Drums low NeRF 18.34/18.07 .809/.811 .171/.179

DietNeRF 19.41/19.84 .827/.833 .124/.120

middle NeRF 21.14/21.55 .862/.861 .115/.119

DietNeRF 21.62/22.02 .873/.871 .089/.090

high NeRF 22.56/22.95 .891/.886 .088/.094

DietNeRF 23.13/23.14 .900/.892 .069/.076

0.0005. For stability training, we applied an exponentially decreasing sched-
uler, increasing the learning rate by 0.1 over 250,000 iterations. Following the
paper [2], we minimized Eq. (3) until 200,000 iterations and then minimized
Eq. (1) from 200,000 to 250,000 iterations for better generalization.

4.2 The Completion Performance of DietNeRF

Quantitative Comparison. Quantitative completion results for NeRF and
DietNeRF and the number of successful studies are shown in Table 1, 2, 3 and
4. From the random distribution results as shown in Table 3, we confirmed that
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Fig. 3. Visual comparison between NeRF and DietNeRF. NeRF produces artifacts in
an unseen viewpoint when the training dataset is small

DietNeRF did not tend to overfit training data, and the rendering quality was
slightly better than that of NeRF. Especially, for the HotDog target, DietNeRF
outperformed NeRF in terms of rendering quality and training stability. These
results are similar to those reported in the DietNeRF paper [2] and indicate
that DietNeRF’s generalization ability is superior to the vanilla NeRF model.
On the other hand, when the training viewpoint distribution is biased to side,
the PSNR scores of NeRF and DietNeRF for Hotdog target were 24.02 and 20.47,
respectively. In the case of front, the PSNR was 23.63 and 25.55, the opposite
results. From these comparison results in the viewpoint-biased settings, we found
that the rendering performance of DietNeRF tends to depend on the training
viewpoint distribution and target object.

Visual Results of random. We closely looked at the rendering quality of NeRF
and DietNeRF for boosting camera pose estimation performance. The rendering
images of NeRF in the viewpoint-based setting are shown in Fig. 3. The figure
clearly showed that while NeRF’s PSNR score was partially competitive to Diet-
NeRF, the rendering results in unseen viewpoints collapsed and had artifacts.
On the other hand, DietNeRF can complete the unseen region even if the scene
was not observed in the training phase. This is because CLIP’s semantic feature
enhances the viewpoint generalization of DietNeRF.

Visual Results of side and front. Figures 4 and 5 show the rendering results
of side and front settings, respectively. Interestingly, we found that DietNeRF’s
completion ability depends on not only the training viewpoint distribution but
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Fig. 4. Rendering results outside of Side’s training viewpoint

Fig. 5. Rendering results outside of front’s training viewpoint

also the symmetric property of the target object. Specifically, we found that
DietNeRF tends to be able to complement invisible regions when the object has a
symmetrical structure (Lego, Drums, and Hotdog) and the learning perspective
captures one side of the symmetry.

When the training viewpoints are biased (side and front) and when Diet-
NeRF is superior to NeRF, NeRF is sometimes superior to DietNeRF in the
quality of the validation data (middle and high) for the vicinity of the training
viewpoint. This indicates that while DietNeRF performs well in complementing
unseen regions, it may not be as good as NeRF in producing quality for visible
regions.

4.3 The Performance of Camera Pose Estimation

Quantitative Comparison. The results of camera pose estimation in the
random, side, and front are shown in Tables 5 and 6, respectively. These scores
were obtained from the PoseNet trained on real data and synthetic data by
NeRF and DietNeRF. When training data was sampled from random distribu-
tion, DietNeRF was able to generate more high-quality novel views than NeRF,
and the rendering images could enhance PoseNet’s generalization, as shown in
Table 5. When the training view was biased to side or front, Among NeRF
and DietNeRF, higher generation quality had better camera pose estimation
accuracy.

The Effect of Viewpoint Augmentation Scale. Figure 6 shows the results
when changing the number of additional data generated by Blender, NeRF, and
DietNeRF. From the figure, we found that the performance was significantly
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Table 5. Camera pose estimation result of random.

Scene Viewpoint Synthetic data Translation error [m] Rotational error [◦]

Lego low None 2.1019 31.34

NeRF 1.1960 15.77

DietNeRF 0.3682 3.37

Hotdog None 1.9318 26.14

NeRF 0.8784 10.15

DietNeRF 0.4227 4.04

Drums None 2.3129 40.71

NeRF 0.5479 4.46

DietNeRF 0.4777 4.78

Table 6. Camera pose estimation results of side/front

Scene Viewpoint Synthetic data Translation error [m] Rotational error [◦]

Lego low None 3.0805/3.2724 88.07/86.82

NeRF 1.5110/0.7490 33.35/10.55

DietNeRF 1.1234/0.8608 20.92/13.14

middle None 1.8646/2.2959 36.59/47.11

NeRF 0.2384/0.2710 3.91/4.44

DietNeRF 0.2564/0.2919 4.31/5.32

high None 1.5803/1.9970 22.07/29.79

NeRF 0.1524/0.2050 2.64/3.57

DietNeRF 0.1795/0.1828 3.10/3.18

Hotdog low None 3.2312/2.9927 93.55/81.33

NeRF 1.3533/1.3833 15.41/20.09

DietNeRF 1.4252/0.8760 17.54/10.28

middle None 2.0696/1.7145 38.40/39.13

NeRF 0.3128/0.4053 3.86/5.06

DietNeRF 0.3399/0.3543 4.19/4.32

high None 1.8319/1.3600 24.10/21.76

NeRF 0.1518/0.2698 1.90/3.19

DietNeRF 0.1648/0.2645 2.05/3.11

Drums low None 2.9115/3.0163 83.87/84.22

NeRF 1.4975/1.7794 28.62/38.94

DietNeRF 1.1673/1.2222 17.62/18.02

middle None 2.1315/2.0425 38.18/44.91

NeRF 0.4134/0.6202 6.00/11.24

DietNeRF 0.3774/0.5446 5.80/8.64

high None 1.9176/1.7196 24.15/26.76

NeRF 0.2350/0.2865 3.06/4.49

DietNeRF 0.2480/0.3323 3.69/4.94
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Fig. 6. Error of camera pose estimation when the scale of synthetic data is changing.
Blue: camera pose estimation error of PoseNet trained on DietNeRF synthetic images,
orange: NeRF synthetic images, green: ground truth images rendered by Blender.
(Color figure online)

improved by DietNeRF, and increasing the number of additional data resulted in
the improvement of camera pose estimation in all synthesizers (Blender, NeRF,
and DietNeRF). When the number of synthetic data was set to the number
of images that minimized the error of camera pose estimation using DietNeRF
trained with 10 real images, we confirmed that the error of camera pose estima-
tion was equivalent to PoseNet trained with 100 images generated by Blender
for the translation error and 150 images generated by Blender for the rotation
error.

5 Conclusion

In this paper, we proposed a view augmentation technique for learning a cam-
era pose estimation model, PoseNet, from a small amount of training data. The
proposed method improves the performance of camera pose estimation by gen-
erating synthetic data from DietNeRF trained with a small amount of data by
generating new viewpoint images and training PoseNet using the synthetic data
and a small amount of training data. In addition, we validated the improvement
of camera pose estimation by increasing the number of synthetic data and con-
firmed that the performance improves by augmenting training data. In future
work, it is necessary to verify whether the proposed method is effective in more
realistic scenes.
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