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Abstract. Few-shot learning can alleviate the issue of sample scarcity,
however, there remains a certain degree of overfitting. There have been
solutions for this problem by combining contrastive learning with few-
shot learning. In previous works, sample pairs are usually constructed
with traditional data augmentation. The fitting of traditional data aug-
mentation methods to real sample distributions poses difficulties. In this
paper, our method employs Lie group transformations for data augmen-
tation, resulting in the model learning more discriminative feature rep-
resentations. Otherwise, we consider the congruence between contrastive
learning and few-shot learning with respect to classification objectives.
We also incorporate an attention mechanism into the model. Utilizing
the attention module obtained through contrastive learning, the perfor-
mance of few-shot learning can be improved. Inspired by the loss function
of contrastive learning, we incorporate a penalty term into the loss func-
tion for few-shot classification. This penalty term serves to regulate the
similarity between classes and non-classes. We conduct experiments with
two different feature extraction networks on the standard few-shot image
classification benchmark datasets, namely miniImageNet and tieredIm-
ageNet. The experimental results show that the proposed method effec-
tively improves the performance of the few-shot classification.
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1 Introduction

In recent years, deep neural networks perform satisfactorily with the support of
large amounts of data. However, acquiring large amounts of labeled data requires
too many human and financial resources. And, in many sample-sparse domains,
obtaining enough samples for deep neural network training is impossible. Under
such circumstances, deep learning often fails to demonstrate its full efficacy. As
a result of these challenges, there has been significant interest in the field of
few-shot learning [5,7,12,22,24,25].

Few-shot learning allows the model to adapt to a task with a very small num-
ber of labeled samples. Meta-learning [5,7,22,24,25] is a popular class of methods
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used in few-shot learning. We usually divide meta-learning into two general direc-
tions: optimization-based [7] and metric-based [22]. Specifically, metric learning
is used to classify samples by learning transferable feature extraction capabilities
on the training set. It learns the feature representation capabilities specific to
that task from a small number of samples during the testing phase and constructs
a feature space to classify the samples by the metric. In meta-learning, feature
extraction networks also suffer from overfitting problems due to sample sparsity.
Unsupervised learning is proposed to address the problem of labeled sample
scarcity. Contrastive learning is a class of methods for unsupervised learning.
Networks trained by contrastive learning exhibit strong generalizations and are
commonly used in diverse downstream tasks.

Inspired by the generalization capability of contrastive learning across diverse
tasks, we propose a method that combines contrastive learning and meta-
learning, aiming to endow meta-learning with enhanced generalization ability.
Specifically, we divided the model training into two phases, the contrastive train-
ing phase and the meta-training phase. In the contrastive learning phase, we
improve the data augmentation method for constructing sample pairs. Typically,
traditional image augmentation, such as cropping, flipping, and color distortion,
is commonly employed in contrastive learning. Recent works combining con-
trastive learning and few-shot learning have shown exceptional performance but
have relied on traditional image augmentation methods. More powerful image
augmentation can facilitate the creation of more diverse sample pairs. More
diverse sample pairs enable the model to learn more discriminative expressions.
We introduce Lie group transformations in the comparative learning stage to con-
struct more diverse sample pairs. Specifically, we utilize the SO3 group, which
conforms to the structure of Lie groups, to implement an image augmentation
module. We refer to this module as the Lie transformation. Meanwhile, we incor-
porated an attention module in the contrastive learning phase. In meta-training
phase, we will transfer the attention module trained in the contrastive learning
phase. This transfer will enable the sample features to exhibit diverse expressive
abilities in the channel dimension. Moreover, we formulate a penalty term based
on contrastive learning in the meta-training phase. This penalty term imple-
ments inter-class constraints on samples by constructing positive and negative
sample pairs based on the support set. The contributions of this paper are as
follows:

• · Using the Lie group transformation method, we improve the image augmen-
tation module in contrastive learning. By integrating it with meta-learning,
we enhance the sample representation capability of meta-learning.

• · We introduce an attention module and add a penalty term to the meta-
learning loss function to correct the deviation of prototype points in the
sample space.

• · The result of our experiments on two popular few-shot classification bench-
mark datasets – miniImagenet and tieredImagenet, demonstrate that our
algorithm outperforms state-of-the-art methods significantly on both 1-shot
and 5-shot tasks.
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2 Related Work

2.1 Few-Shot Learning

We can divide few-shot learning into two categories: initialization-based method
and metric-based method. The main idea of initialization-based few-shot learn-
ing methods is to find an optimal set of initialization parameters for the model
through training on different tasks. These initialization parameters can be
trained with a small amount of data and quickly adapt to new tasks to achieve
good results. Chelsea Finn et al. proposed a classic model [7] in 2017, pioneer-
ing the field of initialization-based few-shot learning methods. The main idea of
metric-based few-shot learning methods is to acquire prior knowledge through
training the model with a large number of tasks, map the samples to a reasonable
space using the prior knowledge, and classify the samples using a predetermined
metric method. Prototypical Networks [22], Matching Network [25], and Siamese
Network [5] are classic models in metric learning. Many subsequent works are
based on the idea of these models and have made improvements. The current
metric-based few-shot learning shows excellent performance.

2.2 Contrativate Learning

The two mainstream methods of unsupervised learning currently are contrastive
learning and masked image modeling [10,13]. Contrastive learning is an unsu-
pervised learning method that learns representations by contrasting positive and
negative data pairs. The goal of contrastive learning is to make the representa-
tions of positive pairs similar while making the representations of negative pairs
dissimilar. Contrastive learning recently gains a lot of attention in deep learning
due to its impressive performance in various computer vision tasks, such as image
recognition and object detection. Inst Disc [27] pushes the class discrimination
task to the extreme and proposes for the first time an instance discrimination
method that achieves remarkable performance in the unsupervised domain. In
the unsupervised domain, a large number of contrastive learning works [2,9]
emerge and make rapid progress. In our work, we exploit the powerful general-
ization of contrastive learning to improve the performance of few-shot learning.

2.3 Lie Group Machine Learning

Recent years, Lie groups plays an important role in driving the development of
machine learning research. In [28], Lie algebra is used to perform unsupervised
augmentation of unlabeled samples and improve the performance of the model
using an expanded dataset. In [29], the intrinsic mean of Lie groups is introduced
to describe remote sensing images, which better reflects the commonalities of
objects and the relationship between feature expressions, thereby achieving bet-
ter results. In order to preserve shallow features and enhance local features, Lie
groups are introduced in [30] to achieve satisfactory results. In our work, we also
apply Lie groups to contrastive learning to improve the performance of few-shot
learning.
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3 Method

In this section, we introduce two parts in detail. In the first part, we introduce the
improvement of contrastive learning through Lie group transformations in the
contrastive learning phase. And the second part, we present the combination
of meta-learning and contrastive learning, which is integrated with attention
mechanisms and loss penalty terms.

Fig. 1. Original Image means the image that has not been augmented. Traditional is
the image augmented with traditional cropping, flipping, and color transformation. Lie
Mean is the image augmented with Lie transformation module and blank filled with
image mean. Lie Original is the image augmented with Lie transformation module and
blank filled with the original image.

We adopt a traditional few-shot learning setup to evaluate our method. In
meta-learning, we usually divide samples into a training set Dt = {(xi, yi) ; i = 1
· · · Nt} and a validation set Dv = {(xi, yi) ; i = 1 · · · Nv} (Dt ∩ Dv = ∅). Follow-
ing the N-way K-shot few-shot learning task setting, we draw N categories from
the dataset, with K +Q samples per category. Of these, N ×K samples are used
as the support set Ds = {(xi,j , yi); i = 1 · · · N, j = 1 · · · K}, with their category
labels are visible to the model. Where N × Q samples are used as the query set
Dq = {(xi,j , yi); i = 1 · · · N, j = 1 · · · Q} and their category labels are not visible
to the model.

3.1 Lie Contrative Learning

A Lie group is a mathematical object that simultaneously possesses a group
structure and a smooth manifold structure. Firstly, we provide a formal definition
for the structure of a Lie group. (G, •) is a group if it satisfies the following
conditions:

1. a • b ∈ G,∀a, b ∈ G
2. (a • b) • c = a • (b • c) ,∀a, b, c ∈ G
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3. ∃e ∈ G,∀a ∈ G, e • a = a • e = a
4. ∀a ∈ G,∃a−1, a−1 • a = a • a−1 = e

When a group structure satisfies the above conditions and it is also a differ-
entiable manifold with the property that the group operations are compatible
with the smooth structure, we call it a Lie group. It is commonly understood
that matrix multiplication groups consisting of non-singular matrices can form
Lie groups.

We define a new image augmentation operator as r : R3 → R3. We demand
that the operator satisfies the following conditions:

1. ‖r (v) ‖ =
√〈r (v) , r (v)〉 =

√〈v, v〉 = ‖v‖,∀v ∈ R3

2. 〈r (v) , r (w)〉 = 〈v, w〉 = ‖v‖‖w‖ cos α,∀v, w ∈ R3

3. u × v = w ←→ r (u) × r (v) = r (w)

Based on the above properties, we can define:

SO (3) : {r : R3 → R3∀v, w ∈ R3, ‖r (v) ‖ = ‖v‖, r (v) × r (w) = r (v × w)}

Thus, we have obtained a transformation method, denoted by r, for an image in
Euclidean space. Specifically, we can obtain a decomposed representation of the
operator r by performing a decomposition on it:

r = Rx (α) • Ry (β) • Rz (γ)

By decomposing its expression, we can construct a specific operator r based on
three parameters α, β and γ:

Rx (α) =

⎡

⎣
1 0 0
0 cos α − sin α
0 sin α cos α

⎤

⎦Ry (β) =

⎡

⎣
cos β 0 sin β

0 1 0
− sin β 0 cos β

⎤

⎦Rz (γ) =

⎡

⎣
cos γ − sin γ 0
sin γ cos γ 0

0 0 1

⎤

⎦

All possible operators that exist in r form a group structure known as SO3.
For the sake of brevity in our exposition, we shall denote this process as r (x).
In Fig. 1, we compare the commonly used augmentation methods in contrastive
learning and our two augmentation methods.

In contrastive learning phase, we put the samples in the training set through
two traditional data augmentations and the random operator r to obtain the
augmented samples {(rl (xi) , rr (xi)) ;xi ∈ Dt, i = 1 · · · Nt} after two different
data augmentation methods. We treat two augmentations from the same sample
as positive pairs, and one of the augmentations with two augmentations from
the other sample as negative pairs. We expect more similarity between positive
sample pairs and more variability between negative pairs, and have following
loss function:

L = − log
exp(rl (xi) · rr (xi) /T )

∑
i�=j exp (r (xi) · r (xj) /T )
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3.2 Attention and Penalty Items

It can be readily comprehended that the loss has a similar geometric meaning as
the prototype network loss. In Fig. 2, it is evident that in contrastive learning,
the positive sample pairs exhibit a closer distance in the corresponding metric
space, whereas the negative sample pairs are farther apart. In prototypical net-
works, instances of the same class exhibit clustering, while instances of different
classes demonstrate dispersion. Due to similar optimization objectives for the
loss function, we can enhance the expressive ability of feature channels in meta-
learning by training an attention module during the contrastive learning phase.
This attention module assigns distinct weights to the embeddings of sample fea-
tures in different channels. In the meta-learning phase, we transfer this attention
module to the meta-learning model to improve the channel-wise representation
capability of features in meta-learning.

Fig. 2. The figure shows the spatial distribution of samples obtained from compara-
tive learning and the spatial distribution characteristics of samples in the prototypical
network (few-shot learning).

In the meta-training phase, we construct a penalty term by defining positive
and negative pairs in the support set. Specifically, we consider samples within the
support set belonging to the same class as positive pairs, and construct negative
pairs from different classes. Therefore, our penalty term can be formulated as:

Lc =
∑N

i=1 d (xip, xiq)
∑N

j,k=1

∑K
m,n=1 d (xjm, xkn)

The d function here represents the measurement method. After adding a penalty
term, the meta-training loss can be uniformly expressed as: L = LCE + tLc. The
t serves as a hyperparameter that balances the penalty term and cross-entropy
loss function.
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Fig. 3. The overall process framework of our method.

In Fig. 3, we present the overall workflow of the proposed method. Our
method divides the training process into two stages: contrastive learning phase
and meta-training phase. In the contrastive learning phase, we subject the input
samples to two augmentations using a Lie transformation module, and obtain
a pair of augmented samples. These augmented samples are first input into
a feature extraction network. Then, the output is fed into an attention mod-
ule, before being processed through two fully connected layers to obtain the
sample feature representation. Following the conventional setup of instance dis-
crimination tasks, InfoNCE is computed using sample feature representations to
optimize the network. We incorporated attention modules following the feature
extraction network in the meta-training phase. We shared the parameters of both
the feature extraction network and attention modules trained in the contrastive
learning phase, and then optimize the model by incorporating a meta-training
loss function with a penalty term.

4 Experiments

In this section, we verify the method’s performance through extensive experi-
ments.

4.1 Datasets

We test our method on two public few-shot learning datasets with the 5way-5shot
and 5way-1shot tasks, respectively.

MiniImageNetMiniImageNetMiniImageNet [25]: The miniImageNet dataset is selected from the sizeable
visual dataset ImageNet. It contains 100 categories, 600 samples per category,
and a total of 60,000 color images. Each image’s resolution is set to 84×84. It is
partitioned into a training set of 64 categories, a validation set of 16 categories,
and a test set of 20 categories.
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TieredImageNetTieredImageNetTieredImageNet [19]: The tieredImageNet dataset, as a subset of the Ima-
geNet dataset, is richer in categories than miniImageNet. There are 608 cat-
egories, split into 351, 97 and 160 for the training, validation, and test sets,
respectively.

4.2 Implementation Details

For a fair comparison, we used ResNet18 and ResNet12 as the backbones com-
monly used in few-shot learning.

Contrastive Learning PhaseContrastive Learning PhaseContrastive Learning Phase: In the contrastive learning phase, we used the
adam [6] optimiser to optimise the model. We seted the initial learning rate to
0.001, the decay factor to 0.1 ,the weight decay was 0.00006 and the momentum
to the default value of 0.9. Our batch size was set to 64 and trained through
200 epochs. In the image augmentation phase, we used cropping, flipping, colour
transformation and Lie transformation to generate sample pairs. We seted the
three randomly generated variables α, β, and γ in the Lie transformation to
range between −0.5 and 0.5. We seted the temperature parameter to 0.5 in the
loss function of the contrastive learning phase.

Meta-Training PhaseMeta-Training PhaseMeta-Training Phase: In the meta-training phase, we used the adam [6] opti-
miser to optimise the model. The optimiser parameters were the same as those
used in the comparative learning phase. In the loss function, we seted the tem-
perature parameter t of the penalty term to 0.5. In the 5way-5shot task, we
randomly selected 5 categories in the training set. Each category had 5 samples
to form the support set and 16 to form the query set. Each task consisted of
105 samples. In the 5way-1shot task, we randomly selected 5 categories in the
training set, with 1 sample from each category formed the support set and 16
samples formed the query set. Each task consisted of 85 samples. In 1-shot tasks,
the limited number of samples precludes the calculation of penalty terms. We
employed Lie transformations to generate auxiliary samples for penalty term
computation to address this issue. Each batch contained one task in both the
5shot and 1shot tasks, and there were 100 batches in each epoch, and 400 epochs
were used for training.

Evaluation MetricEvaluation MetricEvaluation Metric: For the sake of fairness, we followed the assessment
scheme unchanged. We evaluate our method with 1000 tasks and report the
average accuracy with 95% confidence intervals.

4.3 Results

Following the standard setting, we conducted experiments using ResNet18 as
the backbone, employing the original image and mean padding methods to fill
the image’s blank spaces. We conducted experiments on both miniImagenet
and tieredImageNet, and the results are shown in Table 1. The state-of-the-art
comparative methods were categorized into Baselines, Optimization-based and
Metric-based. As our approach is metric-based, we selected more metric-based
models for comparative analysis. We use the Prototypical Network [22] as the
baseline, which we re-implemented using ResNet18 as the backbone, and test it
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Table 1. FEW-SHOT LEARNING CLASSIFICATION OF RESNET-18 ACCURA-
CIES ON MINI-IMAGENET AND TIERED-IMAGENET UNDER THE SETTING
OF 5-WAY 1-SHOT AND 5-WAY 5-SHOT WITH 95% CONFIDENCE INTERVAL.
(‘-’ NOT REPORTED)

Model Backbone mini-ImageNet tiered-ImageNet

1-shot 5-shot 1-shot 5-shot

Optimization-based

MAML [7] Resnet-18 49.68± 0.84 65.73± 0.83 - -

LEO [20] WRN-28-10 61.76± 0.08 77.59± 0.12 66.33± 0.05 81.44± 0.09

Metrics-based

Matching network [25] Resnet-18 52.92± 0.81 68.93± 0.65 - -

Relation network [24] Resnet-18 52.19± 0.83 70.20± 0.66 54.48± 0.93 71.32± 0.78

SimpleShot [26] Resnet-18 62.92± 0.83 79.07± 0.70 69.09± 0.22 84.58± 0.16

Neg-Cosine [15] Resnet-18 62.31± 0.81 80.97± 0.55 - -

TEAM [17] Resnet-18 60.10± 0.24 75.94± 0.23 - -

CTM [14] Resnet-18 64.12± 0.28 80.51± 0.86 68.41± 0.39 84.28± 1.73

TADAM [16] Resnet-18 58.50± 0.60 76.70± 0.45 - -

PFA [18] Resnet-18 59.60± 0.49 73.74± 0.36 - -

CC+rot [8] WRN-28-10 62.93± 0.45 79.87± 0.33 62.93± 0.45 79.87± 0.33

PSST [4] WRN-28-10 64.16± 0.44 80.64± 0.32 - -

Baseline Resnet-18 61.18± 0.74 79.58± 0.64 66.82± 0.12 80.82± 0.53

Ours:LieOrigin Resnet-18 62.68± 0.49 80.41± 0.54 67.22± 0.42 82.16± 0.61

Ours:LieMean Resnet-18 64.92± 0.52 82.63± 0.62 69.23± 0.34 84.92± 0.63

using the same settings. By observation, our method shows excellent advantages
compared to the baseline. Our method also shows better performance compared
to optimization-based methods. Compared with the metric-based methods of
the same category, [22,24,25] only focus on existing samples and do not solve
the problem of sample scarcity, whereas our method expands the sample set and
solves the problem to some extent. Our approach exploits the similarity between
contrastive learning and metric learning by acquiring a channel attention mod-
ule during training, enabling it to develop a more discriminative feature. Our
method shows better performance in similar methods that exploit the attention
mechanism [14,16]. In methods [4,8], which are similar to ours, we use the lie
group approach to expand the image set and introduce channel attention to
obtain more discriminative features to achieve a more competitive result.

We compare using ResNet-12 as the backbone in the same experimental
setup, as shown in Table 2. By observation, our method shows equally compet-
itive experimental results under ResNet-12.

4.4 Ablation Study

This section verifies the effectiveness of the proposed Lie group image augmenta-
tion method and attention module through ablation experiments. We used only
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Table 2. FEW-SHOT LEARNING CLASSIFICATION OF RESNET-12 ACCURA-
CIES ON MINI-IMAGENET AND TIERED-IMAGENET UNDER THE SETTING
OF 5-WAY 1-SHOT AND 5-WAY 5-SHOT WITH 95% CONFIDENCE INTERVAL.

Model Backbone mini-ImageNet tiered-ImageNet

1-shot 5-shot 1-shot 5-shot

MAML [7] ConvNet-4 47.78± 1.75 64.31± 1.1 52.07± 0.91 71.10± 1.67

Prototypical Network [22] Resnet-12 60.76± 0.39 78.44± 0.21 66.25± 0.34 80.11± 0.91

Cosine Classifier [1] Resnet-12 55.43± 0.81 77.18± 0.61 61.49± 0.91 82.37± 0.67

MTL [23] Resnet-12 61.20± 1.80 75.50± 0.80 65.62± 1.80 80.61± 0.90

TapNet [31] Resnet-12 61.65± 0.15 76.36± 0.10 63.08± 0.15 80.26± 0.12

Meta-Baseline [3] Resnet-12 63.17± 0.23 79.26± 0.17 68.62± 0.27 83.29± 0.18

DSN-MR [21] Resnet-12 64.60± 0.72 79.51± 0.50 67.39± 0.82 82.85± 0.56

MetaOptNet [11] Resnet-12 62.64± 0.61 78.63± 0.46 65.99± 0.72 81.56± 0.63

Ours:LieMean Resnet-12 64.94± 0.62 80.22± 0.68 68.78± 0.64 83.48± 0.58

ResNet-18 as the feature extractor and the same experimental settings as in the
comparison experiments section.

We conducted separate ablation experiments on the mean padding and orig-
inal image padding Lie group augmentation methods and the attention module
employed in the approach. Table 3 shows that the mean padding effect signifi-
cantly outperforms the original image padding. This may be due to the fact that
the positive pairs filled with the original image have a large number of identical
features, and the network model found a classification shortcut. This method
further improves the model effect and enhances the sample feature represen-
tation ability by adding an attention module. Figure 4 shows the Grad-CAM
visualization results obtained by our method and prototypical network on the
miniImageNet. In the Grad-CAM visualization, our proposed approach demon-
strates a stronger capability to focus on the object of interest that requires
classification in the image.

Table 3. ABLATION EXPERIMENTS ON MODULE. (‘�’ WITH; ‘-’ WITHOUT)

Lie Group mini-ImageNet

Mean Origin AT 1-shot 5-shot

(I) - - - 61.18 79.58

(II) � - - 63.28 82.52

(III) - � - 62.32 80.21

(VII) - � � 62.68 80.41

(IV) � - � 64.92 82.63
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Fig. 4. Grad-CAM visualization of prototypical network and our method sampled ran-
domly from mini-ImageNet.

5 Conclusion

In this paper, we propose a method of few-shot learning based on Lie group
contrastive method. Specifically, we are inspired by contrastive learning’s strong
generalization and use Lie group to improve it. We apply it to few-shot learn-
ing to enhance its generalization capabilities. In addition, we use an attention
mechanism and a loss penalty term in our approach. They optimize the model
regarding sample channels and sample space distribution, respectively. Experi-
mental results show that our method performs significantly on popular few-shot
classification benchmark datasets.
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