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Abstract. Traffic signs support road safety and managing the flow of
traffic, hence are an integral part of any vision system for autonomous
driving. While the use of deep learning is well-known in traffic signs clas-
sification due to the high accuracy results obtained using convolutional
neural networks (CNNs) (state of the art is 99.46%), little is known about
binarized neural networks (BNNs). Compared to CNNs, BNNs reduce the
model size and simplify convolution operations and have shown promis-
ing results in computationally limited and energy-constrained devices
which appear in the context of autonomous driving.

This work presents a bottom-up approach for architecturing BNNs
by studying characteristics of the constituent layers. These constituent
layers (binarized convolutional layers, max pooling, batch normalization,
fully connected layers) are studied in various combinations and with dif-
ferent values of kernel size, number of filters and of neurons by using the
German Traffic Sign Recognition Benchmark (GTSRB) for training. As a
result, we propose BNNs architectures which achieve an accuracy of more
than 90% for GTSRB (the maximum is 96.45%) and an average greater
than 80% (the maximum is 88.99%) considering also the Belgian and
Chinese datasets for testing. The number of parameters of these archi-
tectures varies from 100k to less than 2M. The accompanying material
of this paper is publicly available at https://github.com/apostovan21/
BinarizedNeuralNetwork.

Keywords: binarized neural networks - XNOR architectures - traffic
sign classification - GTSRB

1 Introduction

Traffic signs are important both in city and highway driving for supporting
road safety and managing the flow of traffic. Therefore, traffic sign classification
(recognition) is an integral part of any vision system for autonomous driving. It
consists of: a) isolating the traffic sign in a bounding box, and b) classifying the
sign into a specific traffic class. This work focuses on the second task.
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Building a traffic sign classifier is challenging as it needs to cope with com-
plex real-world traffic scenes. A well-know problem of the classifiers is the lack
of robustness to adversarial examples [29] and to occlusions [30]. Adversarial
examples are traffic signs taken as input which produce erroneous outputs and,
together with occlusions, they naturally occur because the traffic scenes are
unique in terms of weather conditions, lighting, aging.

One way to alleviate the lack of robustness is to formally verify that the
trained classifier is robust to adversarial and occluded examples. For construct-
ing the trained model, binary neural networks (BNNs) have shown promis-
ing results [14] even in computationally limited and energy-constrained devices
which appear in the context of autonomous driving. BNNs are neural networks
(NNs) with weights and/or activations binarized and constrained to +1. Com-
pared to NNs, they reduce the model size and simplify convolution operations
utilized in image recognition task.

Our long term goal, which also motivated this work, is to give formal guar-
antees of properties (e.g. robustness) which are true for a trained classifier. The
formal verification problem is formulated as follows: given a trained model and
a property to be verified for the model, does the property hold for that model?
To do so, the model and the property are translated into a constrained satis-
faction problem and use, in principle, existing tools to solve the problem [22].
However, the problem is NP-complete [17], so experimentally beyond the reach
of general-purpose tool.

This work makes an attempt to arrive at BNN architectures specifically for
traffic signs recognition by making an extensive study of variation in accuracy,
model size and number of parameters of the produced architectures. In particu-
lar, we are interested in BNNs architectures with high accuracy and small model
size in order to be suitable in computationally limited and energy-constrained
devices but, at the same time, reduced number of parameters in order to make
the verification task easier. A bottom-up approach is adopted to design the archi-
tectures by studying characteristics of the constituent layers of internal blocks.
These constituent layers are studied in various combinations and with differ-
ent values of kernel size, number of filters and of neurons by using the German
Traffic Sign Recognition Benchmark (GTSRB) for training. For testing, similar
images from GTSRB, as well as from Belgian and Chinese datasets were used.

As a result of this study, we propose the network architectures (see Sect.6)
which achieve an accuracy of more than 90% for GTSRB [13] and an average
greater than 80% considering also the Belgian [1] and Chinese [3] datasets, and
for which the number of parameters varies from 100k to 2M.

2 Related Work

Traffic Sign Recognition Using CNNs. Traffic sign recognition (TSR) consists in
predicting a label for the input based on a series of features learned by the trained
classifier. CNNs were used in traffic sign classification since long time ago [8,27].
These works used GTSRB [13] which is maintained and used on a large scale also
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nowadays. Paper [8] obtained an accuracy of 99.46% on the test images which
is better than the human performance of 98.84%, while [27] with 98.31% was
very close. These accuracies were obtained either modifying traditional models
for image recognition (e.g. ResNet [27]) or coming up with new ones (e.g. multi-
column deep neural network [8]). The architecture from [8] (see Fig.1) contains
a number of parameters much higher than those of the models trained by us
and it is not amenable for verification although the convolutional layers would
be quantized. The work of [8] is still state of the art for TSR using CNNs.

Fig. 1. Architecture for recognizing traffic signs [8]. Image sz: 48 X 48 (px X px)

Binarized Neural Networks Architectures. Quantized neural networks (QNNs)
are neural networks that represent their weights and activations using low-bit
integer variables. There are two main strategies for training QNNs: post-training
quantization and quantization-aware training [18] (QAT). The drawback of the
post-training quantization is that it typically results in a drop in the accuracy of
the network with a magnitude that depends on the specific dataset and network
architecture. In our work, we use the second approach which is implemented in
Larq library [11]. In QAT, the imprecision of the low-bit fixed-point arithmetic
is modeled already during the training process, i.e., the network can adapt to
a quantized computation during training. The challenge for QNNs is that they
can not be trained directly with stochastic gradient descent (SGD) like classical
NNs. This was solved by using the straight-through gradient estimator (STE)
approach [15] which, in the forward pass of a training step, applies rounding oper-
ations to computations involved in the QNN (i.e. weights, biases, and arithmetic
operations) and in the backward pass, the rounding operations are removed such
that the error can backpropagate through the network.

BinaryConnect [9] is one of the first works which uses 1-bit quantization
of weights during forward and backward propagation, but not during parameter
update to maintain accurate gradient calculation during SGD. As an observation,
the models used in conjuction with BinaryConnect use only linear layers which is
sufficient for MNIST [20] dataset, but convolutional layers for CIFAR-10 [19] and
SVHN [24]. Paper [14] binarizes the activations as well. Similarly, for MNIST
dataset they use linear layers, while for CIFAR-10, SVHN and ImageNet [10]
they use variants of ConvNet, inspired by VGG [28], with the binarization of the
activations.

In XNOR-Net [25], both the weights and the inputs to the convolutional
and fully connected layers are approximated with binary values which allows an
efficient way of implementing convolutional operations. The paper uses ImageNet
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dataset in experiments. We use XNOR-Net architectures in our work but for a
new dataset, namely traffic signs.

Research on BNNs for traffic sign detection and recognition is scarce.
Paper [7] uses the binarization of RetinaNet [21] and ITA [6] for traffic sign
detection, in the first phase, and then recognition. Differently, we focus only on
recognition, hence the architectures used have different underlying principles.
Verification of Neural Networks. Properties of neural networks are subject to
verification. In the latest verification competition there are various benchmarks
subject to verification [2], however, there is none involving traffic signs. We
believe that this is because a model with reasonable accuracy for classification
task must contain convolutional layers which leads to an increase of number of
parameters. To the best of our knowledge there is only one paper which deals
with traffic signs datasets [12] that is GTSRB. However, they considered only
subsets of the dataset and their trained models consist of only fully connected
layers with ReLU activation functions ranging from 70 to 1300. They do not
mention the accuracy of their trained models. BNNs [5,23] are also subject to
verification but we did not find works involving traffic signs datasets.

3 Binarized Neural Networks

A BNN [14] is a feedforward network where weights and activations are mainly
binary. [23] describes BNNs as sequential composition of blocks, each block con-
sisting of linear and non-linear transformations. One could distinguish between
internal and output blocks.

There are typically several internal blocks. The layers of the blocks are chosen
in such a way that the resulting architecture fulfills the requirements of accuracy,
model size, number of parameters, for example. Typical layers in an internal
block are: 1) linear transformation (LIN), 2) binarization (BIN), 3) max pooling
(MP), 4) batch normalization (BN). A linear transformation of the input vector
can be based on a fully connected layer or a convolutional layer. In our case
is a convolution layer since our experiments have shown that a fully connected
layer can not synthesize well the features of traffic signs, therefore, the accuracy
is low. The linear transformation is followed either by a binarization or a max
pooling operation. Max pooling helps in reducing the number of parameters. One
can swap binarization with max pooling, the result would be the same. We use
this sequence as Larq [11], the library we used in our experiments, implements
convolution and binarization in the same function. Finally, scaling is performed
with a batch normalization operation [16].

There is one output block which produces the predictions for a given image.
It consists of a dense layer that maps its input to a vector of integers, one for
each output label class. It is followed by function which outputs the index of the
largest entry in this vector as the predicted label.

We make the observation that, if the MP and BN layers are omitted, then
the input and output of the internal blocks are binary, in which case, also the
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input to the output block. The input of the first block is never binarized as it
drops down drastically the accuracy.

4 Datasets and Experimental Setting

We use GTSRB [4] for training and testing purposes of various architectures of
BNNs. These architectures were also tested with the Belgian data set [1] and
the Chinese [3].

GTSRB is a multi-class, single-image dataset. The dataset consists of images
of German road signs in 43 classes, ranging in size from 25 x 25 to 243 x
225, and not all of them are square. Each class comprises 210 to 2250 images
including prohibitory signs, danger signs, and mandatory signs. The training
folder contains 39209 images; the remaining 12630 images are selected as the
testing set. For training and validation the ratio 80:20 was applied to the images
in the train dataset. GTSRB is a challenging dataset even for humans, due to
perspective change, shade, color degradation, lighting conditions, just to name
a few.

The Belgium Traffic Signs dataset is divided into two folders, training and
testing, comprising in total 7095 images of 62 classes out of which only 23 match
the ones from GTSRB. Testing folder contains few images for each remaining
classes, hence, we have used only the images from the training folder which are
4533 in total. The Chinese Traffic Signs dataset contains 5998 traffic sign images
for testing of 58 classes out of which only 15 match the ones from GTSRB. For
our experiments, we performed the following pre-processing steps on the Belgium
and Chinese datasets, otherwise the accuracy of the trained model would be very
low: 1) we relabeled the classes from the Belgium, respectively Chinese, datasets
such that their common classes with GTSRB have the same label, and 2) we
eliminated the classes not appearing in GTSRB.

In the end, for testing, we have used 1818 images from the Belgium dataset
and 1590 from the Chinese dataset.

For this study, the following points are taken into consideration.

1. Training of network is done on Intel Iris Plus Graphics 650 GPU using Keras
v2.10.0, Tensorflow v2.10.0 and Larq v0.12.2.

2. From the open-source Python library Larq [11], we used the function
QuantConv2D in order to binarize the convolutional layers except the first.
Subsequently, we denote it by QConv. The bias is set to False as we observed
that does not influence negatively the accuracy but it reduces the number of
parameters.

3. Input shape is fixed either to 30 x 30, 48 x 48, or 64 x 64 (px X px). Due
to lack of space, most of the experimental results included are for 30 x 30,
however all the results are available at https://github.com/apostovan21/
BinarizedNeuralNetwork.

4. Unless otherwise stated, the number of epochs used in training is 30.

5. Throughout the paper, for max pooling, the kernel is fixed to non-overlapping
2 x 2 dimension.


https://github.com/apostovan21/BinarizedNeuralNetwork
https://github.com/apostovan21/BinarizedNeuralNetwork

92 A. Postovan and M. Eragcu

6. Accuracy is measured with variation in the number of layers, kernel size, the
number of filters and of neurons of the internal dense layer. Various combi-
nation of the following values considered are: (a) Number of blocks: 2,3, 4;
(b) Kernel size: 2,3,5; (¢) Number of filters: 16, 32,64, 128, 256; (d) Number
of neurons of the internal dense layer: 0,64, 128,256,512, 1024.

7. ADAM is chosen as the default optimizer for this study. For initial training
of deep learning networks, ADAM is the best overall choice [26].

Following section discusses the systematic progress of the study.

5 Proposed Methodology

We recall that the goal of our work is to obtain a set of architectures for BNNs
with high accuracy but at the same time with small number of parameters
for the scalability of the formal verification. At this aim, we proceed in two
steps. First, we propose two simple two internal blocks XNOR architectures’
(Sect.5.1). We train them on a set of images from GTSRB dataset and test
them on similar images from the same dataset. We learned that MP reduces
drastically the accuracy while the composition of a convolutional and binary
layers (QConv) learns well the features of traffic signs images. In Sect.5.2.1, we
restore the accuracy lost by adding a BN layer after the MP one. At the same
time, we try to increase the accuracy of the architecture composed by blocks of
the QConv layer only by adding a BN layer after it.

Second, based on the learnings from Sects.5.1 and 5.2.1, as well as on the
fact that a higher number of internal layers typically increases the accuracy,
we propose several architectures (Sect.5.2.2). Notable are those with accuracy
greater than 90% for GTSRB and an average greater than 80% considering also
the Belgian and Chinese datasets, and for which the number of parameters varies
from 100k to 2M.

5.1 XNOR Architectures

We consider the two XNOR architectures from Fig. 2. Each is composed of two
internal blocks and an output dense (fully connected) layer. Note that, these
architectures have only binary parameters. For the GTSRB, the results are in
Table 1. One could observe that a simple XNOR architecture gives accuracy of at
least 70% as long as MP layers are not present but the number of parameters and
the model size are high. We can conclude that QConv synthesizes the features
well. However, MP layers reduce the accuracy tremendously.

5.2 Binarized Neural Architectures
5.2.1 Two Internal Blocks

As of Table 1, the number of parameters for an architecture with MP layers is at
least 15 times less than in a one without, while the size of the binarized models

! An XNOR architecture [25] is a deep neural network where both the weights and
the inputs to the convolutional and fully connected layers are approximated with
binary values.
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Fig. 2. XNOR architectures

Table 1. XNOR(QConV) and XNOR(QCoNv, MP) architectures. Image size: 30px
x 30px. Dataset for train and test: GTSRB.

#Binary | Model Size (in KiB)
Params | Binary Float-32

Model description Acc

QConv(32, 3x3),
QConv(64, 2x2), 77.91| 2015264 | 246.5 7874.56
D(43)

QConv(32, 3x3), MP(2x2),
QConv(64, 2x2), MP(2x2), | 5.46 | 108128 13.2 422.38
D(43)
QConv(64, 3x3),
QConv (128, 2x2), 70.05 | 4046912 495.01 15810.56
D(43)

QConv(64, 3x3), MP(2x2),
QConv(128, 2x2), MP(2x2) | 10.98 | 232640 28.4 908.75
D(43)
QConv(16, 3x3),
QConv(32, 2x2), 81.54 | 1005584 122.75 3932.16
D(43)

QConv(16, 3x3), MP(2x2),
QConv(32, 2x2), MP(2x2), | 1.42 | 52016 6.35 203.19
D(43)

is approx. 30 times less than the 32 bits equivalent. Hence, to benefit from these
two sweet spots, we propose a new architecture (see Fig. 3b) which adds a BN
layer in the second block of the XNOR architecture from Fig. 2b. The increase in
accuracy is considerable (see Table 2)?. However, a BN layer following a binarized
convolution (see Fig. 3a) typically leads to a decrease in accuracy (see Table 3).
The BN layer introduces few real parameters in the model as well as a slight
increase in the model size. This is because only one BN layer was added. Note
that the architectures from Fig. 3 are not XNOR architectures.

5.2.2 Several Internal Blocks

Based on the results obtained in Sects. 5.1 and 5.2.1, firstly, we trained an archi-
tecture where each internal block contains a BN layer only after the MP (see
Fig. 4a). This is based on the results from Tables 2 (the BN layer is crucial after
MP for accuracy) and 3 (BN layer after QConv degrades the accuracy). There
is an additional internal dense layer for which the number of neurons varies in
the set {64,128,256,512,1028}. The results are in Table4. One could observe
that the conclusions drawn from the 2 blocks architecture do not persist. Hence,
motivated also by [14] we propose the architecture from Fig. 4b.

2 A BN layer following MP is also obtained by composing two blocks of XNOR-Net
proposed by [25].
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Table 2. XNOR(QCoNv, MP) enhanced. Image size: 30px x30px. Dataset for train
and test: GTSRB.

Model description Acc i #Params I\/I.odel Size (in KiB)
Binary | Real | Total | Binary Float-32

QConv (32, 3x3), MP(2x2),

QConv (64, 2x2), MP(2x2), BN, |50.87 | 108128 | 128 | 108256 | 13.7 422.88

D(43)

QConv (64, 3x3), MP(2x2),

QConv(128, 2x2), MP(2x2), BN, | 36.96 | 232640 | 256 | 232896 | 29.4 909.75

D(43)

QConv (16, 3x3), MP(2x2),

QConv(32, 2x2), MP(2x2), BN, |39.55 52016 | 64 | 52080 6.6 203.44

D(43)
B s A 82 s I 6
(a) 4-blocks Binarized Neural Architec- (b) Accuracy-efficient Binarized Neural
ture Architectures

Fig. 4. Binarized Neural Architectures

6 Experimental Results and Discussion

The best accuracy for GTSRB and Belgium datasets is 96,45 and 88,17, respec-
tively, and was obtained for the architecture from Fig. 5, with input size 64 x 64
(see Table5). The number of parameters is almost 2M and the model size
225,67 KiB (for the binary model) and 6932,48 KiB (for the Float-32 equiva-
lent). There is no surprise the same architecture gave the best results for GTSRB
and Belgium since they belong to the European area. The best accuracy for Chi-
nese dataset (83,9%) is obtained by another architecture, namely from Fig. 6,
with input size 48 x 48 (see Table 6). This architecture is more efficient from the
point of view of computationally limited devices and formal verification having
900k parameters and 113,64 KiB (for the binary model) and 3532,8 KiB (for
the Float-32 equivalent). Also, the second architecture gave the best average
accuracy and the decrease in accuracy for GTSRB and Belgium is small, namely
1,17% and 0, 39%, respectively.

If we investigate both architectures based on confusion matrix results, for
GTSRB we observe that the model failed to predict, for example, the End of
speed limit 80 and Bicycle Crossing. The first was confused the most with Speed
limit (80 km/h), the second with Children crossing. One reason for the first confu-
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Table 3. XNOR(QCoNV) modified. Image size: 30px X 30px. Dataset for train and
test: GTSRB.

Model description Acc #Params Model Size (in KiB)

Binary | Real | Total | Binary Float-32

QConv(32, 3x3),

QConv(64, 2x2), BN, 82.01 | 2015264 | 128 | 2015392 246.5 7874.56

D(43)

QConv(64, 3x3),

QConv(128, 2x2), BN, | 69.12 | 4046912 | 256 | 4047168 | 495.01 15810.56

D(43)

QConv(16, 3x3),

QConv(32, 2x2), BN, 73.11 | 1005584 64 1005648 123 3932.16

D(43)

Table 4. Results for the architecture from the column Model Description. Image size:
30px x30px. Dataset for train and test: GTSRB.

Model Description #Neur | #Ep | Acc #Params Model size (in KiB)
Binary | Real | Total | Binary Float-32
0 30 41.17 101472 192 | 101664 13.14 397.12
100 | 52.17
64 13000 45;978 109600 192 | 109792 14.13 428.88
QConv(32, 5x5), MP(2x2), BN, 30 = 63
QConv(64, 5x5), MP(2x2), BN, 128 00 5'70 128736 192 | 128928 | 16.46 503.62
QConv(64, 3x3), 30 lé 13
D(#Neur), 256 - 167008 192 | 167200 | 21.14 653.12
100 8.48
D(3) 30 19.82
512 . 243552 192 | 243744 | 30.48 952.12
100 | 32.13
1024 30 46.05 396640 192 | 396832 | 49.17 1546.24
100 | 50.91

QConv(64,
MP(2x2)

3 Flatten
o > |22 — ]
&

Fig. 5. Accuracy Efficient Architecture for GTSRB and Belgium dataset

QConv(32,
5x5)
MP(2x2)
QConv(s4,
5x5)
BN
D(1024)

sion could be that End of speed limit (80 km/h) might be considered the occluded
version of Speed limit (80 km/h).

For Belgium test set, the worst results were obtained, for example, for Bicycle
crossing and Wild animals crossing because the images differ a lot from the
images on GTSRB training set (see Fig. 7a). Another bad prediction is for Double
Curve which was equally confused with Slippery road and Children crossing.

In the Chinese test set, the Traffic signals failed to be predicted at all by
the model proposed by us and was assimilated with the General Caution class
from the GTSRB, however General Caution is not a class in the Chinese test set
(see Fig. 7b, top). Another bad prediction is for Speed limit (80 km/h) which was
equally confused with Speed limit (30km/h), Speed limit (50km/h) and Speed
limit (60km/h) but not with Speed limit (70km/h). One reason could be the
quality of the training images compared to the test ones (see Fig. 7b, bottom).
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Table 5. Results for the architecture from Fig. 5. Dataset for train: GTSRB.

. Accuracy #Params Model Size (in KiB)
Input size | #Neur . _ _ .
German | China | Belgium | Binary | Real | Total | Binary Float-32
0 93.83 77.86 79.75 159264 320 159584 20.69 623.38
64 94.43 75.09 82.39 195616 | 448 | 196064 25.63 765.88
128 95.42 74.71 83.44 300768 576 301344 38.96 1177.60
64px X 64px
256 94.75 80.37 81.40 511072 832 511904 65.64 1996.80
512 95.65 78.49 85.64 931680 | 1344 | 933024 118.98 3645.44
1024 96.45 81.50 88.17 1772896 | 2368 | 1775264 | 225.67 6932.48

=4

nv(64,

5x5)

g Flatten

3
N £

D(43)

Fig. 6. Accuracy Efficient Architecture for Chinese dataset

Table 6. Results for the architecture from Fig. 6. Dataset for train: GTSRB.

. Accuracy #Params Model Size (in KiB)
Input size #Neur . - - .
German | China | Belgium | Binary | Real | Total | Binary Float-32
0 94.67 82.13 83.16 225312 320 | 225632 28.75 881.38
64 94.56 82.38 85.75 293920 | 448 | 294368 37.63 1146.88
128 95.02 81.50 87.45 497376 | 576 | 497952 62.96 1945.60
48px X 48px
256 95.28 83.90 87.78 904288 | 832 905120 | 113.64 3532.80
512 95.90 76.22 87.34 1718112 | 1344 | 1719456 | 214.98 6717.44
1024 95.37 81.76 86.74 3345760 | 2368 | 3348128 | 417.67 13076.48

(a) Difference between Belgium (left)
and GRSRB (right) dataset

Fig. 7. Differences between traffic sign in the datasets

(b) Difference between Chinese (left) and
GRSRB (right) dataset
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In conclusion, there are few cases when the prediction failures can be

explained, however the need for formal verification guarantees of the results
is urgent which we will be performed as future work.
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