
A Policy for Early Sequence Classification

Alexander Cao1(B), Jean Utke2, and Diego Klabjan1

1 Department of Industrial Engineering and Management Sciences,
Northwestern University, Evanston, IL, USA

a-cao@u.northwestern.edu, d-klabjan@northwestern.edu
2 Data, Discovery and Decision Science, Allstate Insurance Company,

Northbrook, IL, USA

jutke@allstate.com

Abstract. Sequences are often not received in their entirety at once,
but instead, received incrementally over time, element by element. Early
predictions yielding a higher benefit, one aims to classify a sequence
as accurately as possible, as soon as possible, without having to wait
for the last element. For this early sequence classification, we introduce
our novel classifier-induced stopping. While previous methods depend
on exploration during training to learn when to stop and classify, ours
is a more direct, supervised approach. Our classifier-induced stopping
achieves an average Pareto frontier AUC increase of 11.8% over multiple
experiments.

Keywords: Early classification · Sequence classification

1 Introduction

Practical use cases for early sequence classification exist in many domains. Hold-
ing your smartphone’s microphone up to a speaker, in seconds a music recogni-
tion app can tell which song is being played. There are two competing objectives
with respect to the app making a real-time classification from audio. On one
hand, a longer sequence from the song may yield a more accurate classification.
On the other hand, the user may not have the patience to wait very long.

Generally, we are interested in scenarios in which a classifier receives elements
of a sequence over time. This kind of ongoing flow of data immediately suggests
a need for a real-time ability to stop waiting for new elements and classify given
the received elements at this point in time at sufficient accuracy. We call this
early classifying to differentiate from classification after a ‘complete’ sequence
or a pre-set number of sequence elements is received. Optimally deciding when
one has received enough data, and then making an accurate classification from
that data, is the crux of the problem we are investigating.

To this end, we introduce our novel classifier-induced stopping (CIS) in this
paper. Previous methods depend on exploration during training (when there
is access to the entire sequence) to learn (i) a policy to decide when to stop
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14254, pp. 50–61, 2023.
https://doi.org/10.1007/978-3-031-44207-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44207-0_5&domain=pdf
https://doi.org/10.1007/978-3-031-44207-0_5

A Policy for Early Sequence Classification 51

waiting for new elements and classify and (ii) the classifier itself. Exploration,
in an early sequence classification context, means the policy affects how much
of the sequence is ingested or used to learn. In contrast, CIS learns both pol-
icy and classifier in a more direct, supervised approach inspired by imitation
learning [1]. CIS learns to classify as accurately as possible at every time step,
after receiving a new element. Concurrently, it learns to stop and classify at
the optimal time (based off a reward) induced from its own classifications at
each time step. CIS removes notions of exploration and learns to follow the ideal
decision-making based off its own classification predictions; hence, we call it
classifier-induced. The main contributions of our work are as follows. We intro-
duce a novel, supervised framework to learn a stopping time for early classifiers
that avoids exploration. Instead, it learns when to stop from its own classifica-
tions. We demonstrate that CIS outperforms benchmarks in terms of a Pareto
frontier AUC measure across diverse experiments.

Our paper is structured as follows. In Sect. 2, we establish notation and review
related work, specifically the two benchmark methods used in experiments. Fol-
lowing in Sect. 3, we discuss CIS in detail. Section 4 presents results from three
sets of experiments on a variety of problems and data. Section 5 gives a summary.

2 Related Work

2.1 Problem Setup Notation

The framework of early classification we consider here is as follows. The set of
training data X comprises sequences x(i) paired with one-hot encoded labels
y(i) ∈ {0, 1}C for C classes, where x(i) =

(
x
(i)
1 , x

(i)
2 , ..., x

(i)
Tend

)
is a sequence of

tensors. At time t ≤ Tend, its state is given by s
(i)
t =

(
x
(i)
1 , x

(i)
2 , ..., x

(i)
t

)
.

A classifier neural network fα (st) = ŷα (·|st) parameterized by α takes st

as input1 and outputs predicted class distribution vector ŷα (·|st) at time t. A
policy neural network gβ (st) = πβ (·|st) parameterized by β takes st as input
and outputs policy distribution vector πβ (·|st) over two actions (‘wait’ and ‘stop
and classify’) at time t.

At each time step t, we take an action at according to policy πβ (·|st). This is
done stochastically via sampling or deterministically via taking the most likely
action. We keep waiting another time step and receive new element xt+1 until
we decide to stop. Once we decide to stop and classify, we make a classification
according to ŷα (·|st). To encourage a model to early classify as accurately as
possible, as quickly as possible, we use the following reward function at each
time step t

Rα
t (st, at)

=

{
−μ if at = ‘wait’
−μ − CE (y, ŷα (·|st)) if at = ‘stop and classify’ or t = Tend

(1)

1 We omit the (i) indices unless needed.

52 A. Cao et al.

where μ is a time penalty parameter and CE is cross-entropy. At each time step,
a constant penalty of −μ is incurred. Early classification is completed once the
model decides to stop and classify at a time T . The problem is to solve

max
α,β

EX
∑

t

Rα
t (st, at (β)) . (2)

Maximizing the cumulative reward is equivalent to classifying as accurately as
possible (so that the cross entropy is low), as quickly as possible (so that the
sum of time penalties is low). The time penalty parameter μ controls how much
waiting another time step is penalized. If μ is large, we may sacrifice more
accuracy for an earlier classification, and vice-versa.

The problem has two challenges. When a policy decides to stop, it never
directly learns what would happen if it waited longer. In essence, the ability to
look forward and learn from information after the stopping time is important.
Second, and more subtly, the policy and classifier need to be cohesively learned
together as the time penalty relates the two.

2.2 Early Classification via Reinforcement Learning

Several papers treat early classification as a standard reinforcement learning
problem. [5] ingests text sentence-by-sentence and answers given questions (via
classification) when the model decides enough information has been read. [2]
applies a very similar methodology to obtain early diagnoses from healthcare
vital signs like EEGs. It is important to note that [2,5] still train their models
with the REINFORCE algorithm [10], a standard policy gradient method. They
compare against full-sequence-length classifiers or utilize a fixed threshold on
each time step’s classification as a stopping rule. We choose the Proximal Pol-
icy Optimization (PPO) algorithm [7] as our standard reinforcement learning
benchmark to compare against CIS; details are in Sect. 2.3.

2.3 PPO

Policy gradient methods work by first creating episodes

(s1, a1, R
α
1), (s2, a2, R

α
2), ..., (sT , aT , Rα

T)

with actions determined by the current policy. The policy is then updated in
gradient ascent direction so that actions leading to greater future rewards become
more probable. PPO, following [7], maximizes the clipped surrogate objective

LPPO

= EX ,t

[
min

{
πβ (at|st)

πβold (at|st)
Âα

t , clip
(

πβ (at|st)
πβold (at|st)

, 1 − ε, 1 + ε

)
Âα

t

}]
.

(3)

The estimated advantage Âα
t is given by Âα

t =
∑T

t′=t γt′−tRα
t′ −V (st) where γ is

a discount factor and V (st) is a learned state-value function. PPO’s exploration

A Policy for Early Sequence Classification 53

hindrance is evident as any information after time T is not used in learning.
Keeping in line with previous work relying on exploration, we opt to keep the
policy stochastic during inference [2,4,7].

Policy gradient reinforcement learning methods are, by nature, trial and
error-based. They cannot take advantage of the fact that stopping and clas-
sifying later for a given sample would have been better. Put differently, they do
not utilize the entire sequence during training.

2.4 LARM

Length Adaptive Recurrent Model (LARM) [4] and CIS remedy this inability to
look forward in the sequence. LARM takes a more probabilistic interpretation
to early classification. Let AT = (a1 = ‘wait’, a2 = ‘wait’, ..., aT−1 = ‘wait’,
aT = ‘stop and classify’) be a decision sequence where the policy decided to
wait the first T − 1 time steps and stopped to classify at time T . Given AT and
πβ (·|st), we can explicitly factor the probability of sequence AT as

P (AT |sT) =
T∏

t=1

πβ (at|st) . (4)

With respect to this stopping time probability, LARM seeks to maximize the
expected cumulative reward in (2) with the objective

max
α,β

EX

[
−CE

(
y,

Tend∑
T=1

(ŷα|sT)P (AT |sT)

)
− μ

Tend∑
T=1

T · P (AT |sT)

]
.

The first term is a micro-averaged cross-entropy loss and the second term is the
expected stopping time.

Because P (AT |sT) is a product whose value may exponentially decrease,
LARM takes special care to prevent this. During training, the factors
πβ (at = ‘wait’|st) are set to 1 with probability ρ. This forces the model to wait
for more elements in the sequence and not get stuck stopping too soon. In terms
of early classification, waiting is tantamount to ingesting more information and
so ρ is a parameter controlling this aspect. Even so, there is an exploration
drawback here in that learning accurate classifications at low probability stop-
ping times is difficult. For inference, LARM opts for stochastic policy rollout
with deterministic classification.

3 Classifier-Induced Stopping

As previously stated, early classification can be framed as maximizing the cumu-
lative reward given in (2). We can recast this quantity as a function r depending
on label y, classification prediction ŷα (·|sT), and classification time T given by
r (y, ŷ, T) = −CE (y, ŷ)−μT . Note, for a fixed ŷ and y this is a univariate function
of time T . With this in mind, we aim to learn (i) when to stop and classify and (ii)

54 A. Cao et al.

what classification to make in a more direct, supervised manner. First, CIS seeks
to make the most accurate classification prediction at every single time step. Sec-
ond and simultaneously, CIS learns the corresponding policy which yields the
resulting optimal classification time. In this way, our policy learns the ideal pol-
icy based off of its own classifications. Hence, we name it classifier-induced. The
loss function is given by minα,β LCIS = minα,β EX [Lŷ + λ · Lπ] where

Lŷ =
1

Tend

Tend∑
t=1

CE (y, ŷα (·|st)) , Lπ =
1

Tend

Tend∑
t=1

CE (π̃α (·|x, t) , πβ (·|st))

(5)

π̃α (·|x, t) =

{
(1, 0) ift < T̃α (x, y)
(0, 1) if t ≥ T̃α (x, y) ,

T̃α (x, y) = arg max
t

r (y, ŷα (·|st) , t) .

(6)

We write (1, 0) to mean ‘wait’ with probability 1 and (0, 1) as ‘stop and classify’
with probability 1. There is hyperparameter λ. Figure 1 below offers an intuitive
visual walkthrough of CIS.

Fig. 1. (Left) Lŷ is increasing cumulative reward r at each time step. (Right) Concur-
rently, for the rendered reward curve, there exists an optimal time to stop and classify
˜Tα that maximizes r and therefore an optimal policy π̃α (·|x, t). Lπ aims to learn this
policy.

Unlike PPO and LARM, our novel CIS does not rely on any notion of explo-
ration. The entire sequence is wholly used in training and we are able to directly
learn the optimal classification time in a supervised manner. During training
π̃α (·|x, t) and T̃α are treated as fixed labels in minibatch updates. Since there is
no exploration in CIS, the policy does not have an exploratory nature; hence, in
inference we simply take the argmax action.

A Policy for Early Sequence Classification 55

4 Experimental Results

4.1 Datasets and Pareto Metric

Our first experiment is with the IMDB movie reviews sentiment analysis dataset
[6]. We do not need to ingest the entire review to classify its sentiment. Instead,
we read word by word and classify the review after ingesting a minima number of
words. The dataset comprises 50,000 movie reviews; half the reviews are positive
and the other half negative. We reserve a random 15% of samples to be the hold-
out validation set, separate from the training set. We set Tend = 236, which is
the mean training review length, and pad up or truncate down all reviews to
this length.

The second experiment uses Electrocardiography (ECG) waveforms of mul-
tiple cardiovascular diagnoses from PTB-XL [9]. ECGs record electrical signals
from the heart and help to assess cardiac clinical status of patients. Instead of a
diagnostic tool alone, early classification aids in continuous monitoring for heart
conditions. The sooner an early classifier can detect a heart attack, the sooner
medical attention can be given. Here we early classify ECG signals by ingest-
ing small segments sequentially. After following [8] and filtering out some ECGs
(those with uncertain diagnoses, for instance), we are left with 17,221 samples in
the dataset. There are five classes which are reasonably balanced. We reserve a
random 10% of samples to be the validation set, again separate from the training
set. Each ECG length is 10 s, sampled at 100 Hz. Consistent with the procedure
in [11], the network input is the log spectrogram of each ECG (using a Tukey
window of length 32 with 50% overlap). In essence, spectrograms are consecutive
fragments of a signal in Fourier space to represent frequencies varying over time.
Therefore our early classifier, in effect, receives each ECG in consecutive 0.16 s
fragments in Fourier space.

Our third and final experiment is motivated by European call options. They
give the holder the right to buy a stock at a specified strike price only on a
given expiration date (betting the stock will go up). However, after buying the
option, if the option holder could predict that the stock price will not be above
the strike price on the option expiration date, then the holder could attempt to
sell the option in the secondary market to recoup the original cost of the option.
To be clear, in this problem context we are concerned only with the prediction
aspect and not the option sale.

From [3], it is reasonable to assume a strike price equal to the stock price
on the option origination purchase date. With this in mind, we simulate 1-
month European call options in the following way. Samples are generated from
65 current S&P 500 technology stocks based on daily data ranging from 1962
to 2017. For the training set, we divide each technology stock into disjoint 30-
day stock price samples, through 2016. We consider a binary classification of
whether the stock closing price on day 30 is greater than or less than the stock
closing price on day 1 (proxying strike price). Thus, stopping to classify is akin
to committing on day T to exercise the option or not upon expiration. This
process yields 9,313 training samples with 59% of these options as profitable to

56 A. Cao et al.

exercise. For validation, we wish to roll out the early classifier more organically
and continuously. Accordingly, we take the remaining year 2017 after the training
set from each stock for validation. The assumption is that we will have year-long
stock price sequence to continually roll out early classifiers and ‘purchase’ new
options the day after stopping and deciding what to do with the current one.
Table 1 summarizes daily technical indicators used along with the standard open,
high, low, and close prices plus volume to form the daily features.

Table 1. Stock price sequence technical indicators, using standard parameters

Feature Description

Exponential moving average Measures trend direction,

(open, high, low, close, volume) heavier weighting on more recent days

Bollinger Bands Relative highs and lows of price movement

On-balance volume Measures buying and selling of stock

Accumulation/distribution Gauges supply and demand

Average directional Measures trend strength

Aroon oscillator Indicates uptrend or downtrend

Moving average Measures momentum

convergence/divergence

Relative strength Measures speed of price changes

Stochastic oscillator Measures momentum

In all experiments, we holistically compare early classifiers from PPO, LARM,
and CIS by their Pareto frontiers. This allows us to examine the entire perfor-
mance spectrum of their accuracy-timeliness tradeoffs. Our procedure for con-
structing a Pareto frontier is as follows. For a given μ value, we roll out the
early classifier over the validation set and compute the mean classification time
and accuracy after each training epoch. This is repeated for varying μ to get the
entire collection of such accuracy-timeliness tradeoff points. Finally, all domi-
nated points are removed which yields the Pareto frontier. The Pareto frontier
(piecewise-constant) AUC is a holistic measure of accuracy-timeliness tradeoff
efficacy. We treat μ as a hyperparameter, controlling the dichotomous balance
between accuracy and timeliness, and sweep multiple values to trace the Pareto
frontier. In a real-world use case, extrinsic factors from the problem itself should
guide which Pareto point is optimal.

4.2 Implementation

Before describing network design and hyperparameters, we modify PPO’s objec-
tive. Learning a state-value baseline function leads to more unstable training and
ultimately poorer results. So in our case we remove it, and the advantage reduces
to the sum of future rewards Âα

t =
∑T

t′=t γt′−tRα
t′ . In addition to PPO’s main

A Policy for Early Sequence Classification 57

objective, we add a classification term to help directly teach the classifier. The
combined objective is then

min
α,β

(
EX ,t [CE (y, ŷα (·|st))] − LPPO

)
.

While the policy and classifier can be disjoint networks, in practice it is
common to have them as two heads of the same body network [4]. We choose
this for our implementations of PPO, LARM, and CIS, with the body network
being an LSTM. Elements of sequential data (or embeddings) are inputs to the
LSTM. The recurrent hidden states are in turn inputs to separate, feed-forward
networks: one for the policy and one for the classifier. Each of these feed-forward
heads is composed of a single hidden-layer with ReLU activation and softmax
output. Next, we explicate all of the hyperparameters used in our experiments.

For all three experiments, we sweep μ ∈ {0.001, 0.003, 0.005, 0.007, 0.01,
0.03, 0.05, 0.07, 0.1}. We keep the standard PPO clip value of ε = 0.2 and a
discount factor γ = 1 yields the best results (and does not scale the cumula-
tive reward). To further aid PPO waiting longer and ingesting more information
initially, yielding better results, we initialize the policy head’s final layer’s bias
to (10, 0). For CIS, we set the scaling constant λ = 1. The training set is opti-
mized by using Adam with batch size 128 until validation accuracies and mean
classification times plateau.

For the IMDB experiment specifically, the word embedding dimension is 32.
For the network size, the LSTM hidden state is of dimension 64 and the two FFN
hidden layers are of dimension 32. Learning rates for PPO and LARM are 10−4

and 10−3 for CIS. Following [4], we keep LARM’s waiting parameter ρ = 0.9.
For the ECG experiment specifically, the hidden vector of the LSTM is of

dimension 128 and the two FFN hidden layers are of dimension 64. All three
learning rates are set to 10−4. Again, we keep LARM’s ρ = 0.9.

Finally, for the stock option experiment specifically, we implement a chrono-
logical rolling normalization so that all features are scaled in range [0, 1]. The
network dimensions are 32, 16, and 16. All three learning rates are set to 10−4. In
this experiment, LARM performs poorly with ρ = 0.9 and lowering it to ρ = 0.6
lead to significantly better performance.2

4.3 IMDB Experiment

Figure 2 displays the Pareto frontiers for the IMDB experiment. CIS’s AUC
is 17.7% greater than PPO’s AUC and 2.4% greater than LARM’s AUC. CIS
outperforms PPO and LARM, and we stress this is due to the forward-looking,
supervised nature of the algorithm.

While CIS and LARM performs well globally, they are also coherent on an
individual review level. Let us consider each early classifier at a mean T of about
40 words (red circles in Fig. 2). In Fig. 3 we present their respective outputs for
a very stark negative movie review. For this review, CIS and LARM are able to

2 Code is available at this repository: https://github.com/alexcao828/cis..

https://github.com/alexcao828/cis.

58 A. Cao et al.

Fig. 2. Pareto frontiers for the IMDB experiment.

quickly and correctly stop soon after ‘a really awful movie’ while PPO continues
to wait. Additionally, in Fig. 3 we also show CIS and LARM’s abilities to early
classify a long-winded, positive movie review. The first 20 words in this review
are not actually about the movie itself. It is not until ‘i loved it then and i
love it now’ that the models sense the review’s sentiment and act and classify
accordingly. Again PPO seems to need more information. These two didactic
examples indicate the discerning patience and linguistic understanding of CIS
and LARM over PPO, contributing to the gap in accuracies.

Fig. 3. Early classifer performances on an example (left) stark negative and (right)
long-winded positive IMDB movie review.

4.4 ECG Experiment

Figure 4 (left) displays the Pareto frontiers for the ECG experiment. CIS holis-
tically outperforms PPO and LARM. CIS’s AUC is 35.3% greater than PPO’s

A Policy for Early Sequence Classification 59

AUC and 2.9% greater than LARM’s AUC. Although it is worthwhile to note
that CIS performs worst for mean T below 0.3 s. This is due to those Pareto
points coming from early, un-converged epochs.

To be sure, there is significant nuance in differentiating ECGs. To again
highlight CIS’s discerning patience, we investigate the distribution of stopping
times for each diagnosis compared to LARM. Figure 4 (right) shows just this
using CIS and LARM at 68% accuracy (red circles in Fig. 4 (left)). We can see
that CIS (i) on average stops sooner for NORM and MI diagnoses and (ii) has
smaller interquartile ranges for all diagnoses.

Fig. 4. (Left) Pareto frontiers for the ECG experiment. (Right) Box plots showing
distribution of CIS and LARM classification times T for each ground truth ECG diag-
nosis. For HYP, CIS’s first quartile coincides with the median because of repeating
values. Similarly for STTC, CIS’s third quartile coincides with the median.

4.5 Stock Option Experiment

For our stock option experiment, we construct two Pareto frontier comparisons,
shown in Fig. 5. On the left, are the standard accuracy-time Pareto frontiers.
However, in the financial scenario inspiring this experiment, dollars and profit is
a more apt axis. So on the right, we also present profit-classification time Pareto
frontiers. Here, we take a perfect hindsight definition of profit to include potential
money gained and lost by not exercising the option. Since in this experiment we
roll out the early classifiers continuously, the stochastic policies of PPO and
LARM affect the future options (or samples). Accordingly, each Pareto frontier
point is the average of 100 trials. One hundred trials is sufficient as the maximum
ratio of standard error to mean is 2.7% across all points’ mean accuracies, profits,
and classification times.

Again, our CIS holistically outperforms the benchmarks. In the accuracy
sense, CIS’s AUC is 6.5% greater than PPO’s AUC and 5.4% greater than
LARM’s AUC. Turning to profit, CIS’s AUC is 10.3% greater than PPO’s AUC
and 18.4% greater than LARM’s AUC.

60 A. Cao et al.

Fig. 5. Accuracy (left) and profit (right) Pareto frontiers for the options experiment.

Fig. 6. (Left plots) Five options with their daily percent change in closing price com-
pared to day 1 exceeding ±10%, marked with black dashed lines in the upper panel. We
also mark 0.5 in the lower panel. (Right plots) Similar to left, except note the percent
changes within ±10% for these options.

While stock price movements are complex random walks, CIS is able to dis-
cern recognizable patterns better than LARM and PPO. If a stock displays
strong and consistent growth or loss in the early days (drift in a random walk),
one is more likely able to extrapolate a trend sooner. Similarly, if a stock contin-
uously fluctuates around the first day’s price, waiting longer becomes necessary
to observe a trend, if any exist. Figure 6 demonstrates this hypothesis on an indi-
vidual sample level using each early classifier at around 84% mean accuracy (red
circles in Fig. 5 (left)). CIS stops much sooner for stock price movements with
strong positive or negative drift. LARM consistently classifies around 25 days
and PPO waits until the end (very low time penalty).

A Policy for Early Sequence Classification 61

5 Conclusion

From our experiments, we stress CIS performs holistically better than state-
of-the-art PPO and LARM in terms of a Pareto frontier AUC measure. On
average, CIS is 3.6% more accurate than LARM, and 19.8% more accurate than
PPO, given the same stopping time. Directly learning when to stop from its own
classifications provides a better framework than exploration.

References

1. Attia, A., Dayan, S.: Global overview of imitation learning. arXiv preprint
arXiv:1801.06503 (2018)

2. Hartvigsen, T., Sen, C., Kong, X., Rundensteiner, E.: Adaptive-halting policy net-
work for early classification. In: Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, pp. 101–110 (2019)

3. Huang, J.Z., Wu, L.: Specification analysis of option pricing models based on time-
changed lévy processes. J. Finance 59(3), 1405–1439 (2004)

4. Huang, Z., Ye, Z., Li, S., Pan, R.: Length adaptive recurrent model for text clas-
sification. In: Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, pp. 1019–1027 (2017)

5. Liu, X., Mou, L., Cui, H., Lu, Z., Song, S.: Finding decision jumps in text classifi-
cation. Neurocomputing 371, 177–187 (2020)

6. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning
word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies,
pp. 142–150. Association for Computational Linguistics, Portland, Oregon, USA
(June 2011), http://www.aclweb.org/anthology/P11-1015

7. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

8. Śmigiel, S., Pa�lczyński, K., Ledziński, D.: ECG signal classification using deep
learning techniques based on the ptb-xl dataset. Entropy 23(9), 1121 (2021)

9. Wagner, P., et al.: Ptb-xl, a large publicly available electrocardiography dataset.
Scientific Data 7(1), 154 (2020)

10. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Mach. Learn. 8(3), 229–256 (1992)

11. Zihlmann, M., Perekrestenko, D., Tschannen, M.: Convolutional recurrent neural
networks for electrocardiogram classification. In: 2017 Computing in Cardiology
(CinC), pp. 1–4. IEEE (2017)

http://arxiv.org/abs/1801.06503
http://www.aclweb.org/anthology/P11-1015
http://arxiv.org/abs/1707.06347

	A Policy for Early Sequence Classification
	1 Introduction
	2 Related Work
	2.1 Problem Setup Notation
	2.2 Early Classification via Reinforcement Learning
	2.3 PPO
	2.4 LARM

	3 Classifier-Induced Stopping
	4 Experimental Results
	4.1 Datasets and Pareto Metric
	4.2 Implementation
	4.3 IMDB Experiment
	4.4 ECG Experiment
	4.5 Stock Option Experiment

	5 Conclusion
	References

