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Abstract. We present self-organizing control principles for simulated
robots actuated by synthetic muscles. Muscles correspond to linear
motors exerting force only when contracting, but not when expanding,
with joints being actuated by pairs of antagonistic muscles. Individually,
muscles are connected to a controller composed of a single neuron with
a dynamical threshold that generates target positions for the respective
muscle. A stable limit cycle is generated when the embodied feedback
loop is closed, giving rise to regular locomotive patterns. In the absence
of direct couplings between neurons, we show that force-mediated intra-
and inter-leg couplings between muscles suffice to generate stable gaits.
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1 Muscle-Driven Robots

A substantial effort is devoted to the development of robotic artificial muscles
[9], with possible applications ranging from interactive soft robotics [7] to the re-
creation of human walking via compliant legs [2]. In comparison, only a somewhat
limited number of studies have been devoted to the study of robotic control
principles for synthetic muscles [1,4]. Here we examine control principles based
on embodied self-organization that have been developed previously for robots
driven by rotating actuators (motors) [3,6]. For pairs of antagonistic muscles that
are controlled independently, viz without cross-control, we find spontaneous anti-
synchronization due to the indirect coupling via the moving limb. Our studies
are carried out using Webots, an open-source mobile robot simulation software
developed by Cyberbotics Ltd [8].

The core processing unit of our controller is a single neuron with membrane
potential x(t) and a variable threshold b(t). The neuron receives two types of
inputs via constant synaptic weights, ws and wy, as illustrated in Fig. 1. The
first, ws transmits information about the current status s = s(t) of the actuator,
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with the second, wy, corresponding to an excitatory self-coupling:

τxẋ = −x + wssrel + wyy, srel =
s − smin

smax − smin
, (1)

τbḃ = y − yb, y =
1

1 + ea(b−x)
(2)

where the neuronal activity y ∈ [0, 1] is determined by a sigmoidal with gain a
and threshold b. The time constants for the evolutions of membrane potential and
threshold are respectively τx and τb. The position s of the actuator is bounded
by physical constraints, such that s ∈ [smin, smax]. Using the relative position
srel ∈ [0, 1] as an input to the membrane potential, as done in (1), allows to
directly compare the sizes of ws and wy. Entering (2) is the desired steady-state
value yb for the neural activity y. It is reached however only if activities would
cease altogether.
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Fig. 1. Left: Six-legged robot driven by 24 muscles. Each leg is controlled by two pairs
of antagonistic muscles, enabling movement both in up-down and forwards-backwards
direction. Simulations were performed using the Webots open-source robot simulation
software by Cyberbotics Ltd [8]. Right: Schematics of the single neuron controller. The
neuron takes the current actuator position s and its own activation y as inputs, weighted
respectively with synaptic weights ws and wy. The target position st determines via
(3) the actuating force F [Link to the video]

The one-neuron controller acts by generating a target position st ∈
[smin, smax] for the actuator, which in turn is translated to a force F via

F = −γṡ + Ks
st − s

smax − smin
, st = smin + (smax − smin)y (3)

where Ks is the coefficient for proportional control and γ a phenomenological
damping constant. The results presented are for critical damping. We assume
with (3), that the target position st for the actuator is directly proportional to
the neuronal activity y = y(t). As a result, one has a sensori-motor feedback
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loop [3,6], with the actuator trying to reach a continuously updated target posi-
tion. Biologically, muscles may exert force only when contracting, but not when
expanding. This corresponds to the substitution F → F

[
1 − θ(F )

]
, where we

use the Heaviside step function θ(x) to set the force to zero when st > s, viz
when the length s would be increased.

Fig. 2. The angle (in radians) of the legs of the robot shown in Fig. 1, viewed from the
left side of the robot walking to the right after the initial synchronization phase. The
dots show the position of the respective leg at the last time step, showcasing a tripod
gait with the middle legs being in opposite phases to the front and back legs. The blue
trajectory of the left legs can hardly be seen because the left/right trajectories align
almost perfectly

Attractoring. The autonomous system, attained by setting ws = 0 in (1),
shows a super-critical Hopf transition at

wy =
4
a

+
τx
τb

, (4)

which holds for yb = 1/2. When wy and/or a is large, the system oscillates
spontaneously, acting as a central pattern generator (CPG). In this regime, the
additional feedback wssrel corresponds to a modulator. Here we concentrate on
the case that the isolated neuron does not oscillate on its own, viz that wy and/or
a is too small for (4) to be fulfilled. Locomotion is generated consequently only
when the feedback from the actuator is strong enough for an embodied limit
cycle to emerge. We call this regime ‘attractoring’, which has been found to
allow for increased behavioural flexibility [6]. Locomotion is embodied in the
sense that the phase space of the resulting limit cycle contains the degrees of
freedom of the body in addition to x(t) and b(t). We note in this context that
it is important to use force signals for both real-world and simulated actuators,
as the respective default PID controllers tend to be stiff.
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Force Mediated Inter-muscle Coupling. The desired movement for a leg
with two pairs of antagonstic muscles (up-down; left-right) is up-forwards-down-
backwards. For this we expand (3) as

st,1 = smin + (smax − smin) · ((1 − α)y1 + αy2), α ∈ [0, 1] (5)

which corresponds to an embodied coupling via force superposition. The activity
y2 of a second neuron of the same leg influences the target position (and hence
the force) generated by the first neuron, but not the first neuron directly. The
order of coupling between the four muscles of a single leg is taken to be circular.
The same principle is used for (indirect) inter-leg coupling,

st,1 = smin + (smax − smin) · ((1 − α − β)y1 + αy2 + βy3), α + β ≤ 1 , (6)

where y3 is now the activity of a neuron from another leg. For the six-legged
robot shown in Fig. 1, the contralateral pairs of legs are coupled via the up-down
muscles for producing steps, while the inter-leg phase blocking is mediated solely
via the upper muscles. We call this coupling principle ’force-mediated’ coupling.

2 Results

For parameters in the attractoring regime, we present in Fig. 2 the time evolution
of the positions of the six legs. One observes a stable tripod gait [Link to the
video], which emerges without the direct coupling of the controlling neurons. A
conceptually similar result has also been achieved by using pressure sensors and
motors [5], albeit relying on CPGs for controlling the individual legs. Note that
here oscillations would not be generated without feedback from the body and
no forces are exerted when the muscles relax, so in this sense the locomotion is
fully self-organized.
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