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Abstract. Models of sensory processing and learning in physical sub-
strates (such as the cortex) need to efficiently assign credit to synapses in
all areas. In deep learning, a well-established solution is error backpropa-
gation; this however carries several biologically implausible requirements,
such as weight transport from feed-forward to feedback paths. We present
Phaseless Alignment Learning (PAL), a biologically plausible approach
for learning efficient feedback weights in layered cortical hierarchies. Our
dynamical system enables the simultaneous learning of all weights with
always-on plasticity, and exclusively utilizes information locally avail-
able at the synapses. PAL is entirely phase-free, avoiding the need for
forward and backward passes or phased learning, and enables efficient
error propagation across multi-layer cortical hierarchies, while maintain-
ing bio-physically plausible signal transport and learning.
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1 Summary

Neural activity is modulated through learning, i.e., long-term adaptation of
synaptic weights. However, it remains unresolved how weights are adapted across
the cortex to effectively solve a given task. A key question is how to assign credit
to synapses that are situated deep within a hierarchical network. In deep learn-
ing, backpropagation (BP) is the current state-of-the-art for solving this issue,
and may potentially serve as an inspiration for neuroscience. Application of BP
to cortical processing is however non-trivial, due to several biologically implau-
sible requirements it entails. For example, it requires information to be buffered
for use at different stages of processing. Additionally, error propagation occurs
through weights that must be mirrored at synapses in different layers, resulting
in the weight transport problem. Furthermore, artificial neural networks (ANNs)
operate in separate forward and backward phases, with inference and learning
alternating strictly.
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We introduce Phaseless Alignment Learning (PAL) [4], a biologically plausi-
ble technique for learning effective top-down weights across layers in cortical hier-
archies. We propose that cortical networks can learn useful backward weights by
utilizing a ubiquitous resource of the brain: noise. Despite being usually treated
as a disruptive factor, noise can be leveraged by the feedback pathway as an
additional carrier of information for synaptic plasticity.

PAL describes a fully dynamic system that effectively addresses all of the
aforementioned problems: it models the dynamics of biophysical substrates, and
all computations are carried out using information locally available at the
synapses; learning occurs in a completely phase-less manner; plasticity is
always-on for all synapses, both forward and backward, at all times. Our app-
roach is consistent with biological observations and facilitates efficient learning
without the need for wake-sleep phases or other forms of phased plasticity found
in many other models of cortical learning.

PAL can be applied to a broad range of models and represents an improve-
ment over previously known biologically plausible methods of credit assignment.
For instance, when compared to feedback alignment (FA), PAL can solve com-
plex tasks with fewer neurons and more effectively learn useful latent representa-
tions. We illustrate this by conducting experiments on various classification tasks
using a cortical dendrite microcircuit model [7], which leverages the complexity
of neuronal morphology and is capable of prospective coding [2].

2 Theory

PAL utilises the noise found in physical neurons, as information is sent across the
cortical hierarchy, see Fig. 1 (a). Neuronal dynamics are described in a rate-based
coding scheme of a network with £ = 1 ... N layers,

T =—tp+ Wy 1ri—1 +e+ &, (1)

with bottom-up input W ,_17,_1, and noise §,; the local error signal e, is used
to update forward weights through W,y o< e;r}_,. Errors are passed down
from higher layers through top-down synapses By 11 via e = ¢’ - By g1 €o41.

As suggested in [7], the different terms in Eq. (1) correspond to the differ-
ent compartments of a pyramidal neuron, and the error is transported as the
difference in firing rates of pairs of pyramidal and interneurons.

PAL learns from the noise £, accumulated on top of a stimulus signal as it
passes through the network. Backprojections are learned using high-pass-filtered
rates 7y, 1 through the rule

. ~ T
By <& (Foy1) —aBryg (2)

By exploiting the autocorrelation properties of neuronal noise, this learning
rule dynamically achieves approximate alignment By ¢1 || WZTHZ for all lay-
ers simultaneously, and without interrupting the learning of forward weights
(see Fig. 1 (b,c)). This allows networks which implement PAL to efficiently learn
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Fig. 1. PAL aligns weight updates with backpropagation in hierarchical cor-
tical networks. (a) Cortical pyramidal cells as functional units of sensory processing
and credit assignment. Bottom-up (W41,¢) and top-down (By,¢4+1) projections pref-
erentially target different dendrites. Due to stochastic dynamics of individual neurons,
noise is added to the signal. (b) We train the backward projections in a deep, den-
dritic microcircuit network of multi-compartment neurons with layer sizes [5-20-10-20-
5] using our method PAL. All backward weights By (41 are learned simultaneously,
while forward weights are fixed. Forward weights are initialised s.t. neurons are acti-
vated in their linear regime. (c) Same as b, but with weights initialised in non-linear
regime. (d) In a simple teacher-student task with a neuron chain [1-1-1] of dendritic
microcircuits, PAL is able to flip the sign of backwards weights, which is crucial for suc-
cessful reproduction of the teaching signal. (e) PAL solves teacher-student task, where
feedback alignment fails. The teaching signal (red dashed) requires positive forward
weights, whereas all student networks are initialised with negative W . Note that
PAL only learns the correct forward weights once the backwards weights have flipped
sign (at epoch ~ 500). (f-h) PAL learns useful latent representations on the MNIST
autoencoder task, whereas FA leads to poor feature separation. We train a network
[784-200-2-200-784] using leaky-integrator neurons on the MNIST autoencoder task:
(f) Shown are the activations after training in the two-neuron layer for all samples
in the test set; colors encode the corresponding label. BP and PAL show improved
feature separation compared to FA. (g) Linear separability of latent activation. (h)
Alignment angle of top-down weights to all layers for networks trained with PAL. PAL
is able adapt top-down weights while forward weights are learned at the same time.
All curves show mean and standard deviation over 5 seeds.
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all weights (feedforward and feedback) without phases, as opposed to many
bio-inspired learning rules found in the literature (e.g., Difference Target Prop-
agation and variants [1,3], AGREL [5,6], Equilibrium Propagation [8]).

3 Results

We have evaluated PAL on varius tasks: for an excerpt of results, see Fig. 1 (b-h).
Additionally, we benchmark PAL using standard tests such as the MNIST digit
classification task, where the dendritic microcircuit model (of network size: [784-
100-10]) achieves a final test error 3.9 + 0.2 % using PAL and 4.7 £ 0.1 % with
microcircuits with FA. We emphasize that our results were achieved through
simulation of a fully dynamic, recurrent system that is biologically plausible.
Weight and voltage updates were applied at every time step, and populations of
multi-compartment neurons were used as a bio-plausible error transport mech-
anism. Our findings demonstrate that PAL can efficiently learn all weights and
outperforms FA on tasks involving classification and latent space separation.

We argue that PAL can be realized both in biological and, more generally,
physical components. Specifically, it capitalizes on the inherent noise present in
physical systems and leverages simple filtering techniques to distinguish between
signal and noise where necessary. A realization of PAL (or a variant) in physical
form, whether in the cortex or on neuromorphic systems, constitutes an elegant
solution to the weight transport problem, while enabling efficient learning with
purely local computations.
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