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Abstract. We motivate and test a new adversarial attack algorithm
that measures input perturbation size in a relative componentwise man-
ner. The algorithm can be implemented by solving a sequence of linearly-
constrained linear least-squares problems, for which high quality software
is available. In the image classification context, as a special case the algo-
rithm may be applied to artificial neural networks that classify printed or
handwritten text—we show that it is possible to generate hard-to-spot
perturbations that cause misclassification by perturbing only the “ink”
and hence leaving the background intact. Such examples are relevant to
application areas in defence, business, law and finance.
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1 Motivation

It is well known that deep learning image classification tools can be vulnerable
to adversarial attacks. In particular, a carefully chosen perturbation to an image
that is imperceptible to the human eye may cause an unwanted change in the
predicted class [7,15]. The fact that automated classification tools may be fooled
in this way raises concerns around their deployment in high stakes application
areas, including medical imaging, transport, defence and finance [11]. Over the
past decade, there has been growing interest in the development of algorithms
that construct attacks, and strategies that defend against them [1,6,10,12,13].
Amidst the background of this war of attrition, there has also been “bigger
picture” theoretical research into the existence, computability and inevitability
of adversarial perturbations [2,5,14,16,17].

In this work, we contribute to the algorithm development side of the adver-
sarial attack literature. We focus on the manner in which perturbation size is
measured. Figure 1 illustrates the benefits of our new algorithm. On the left, we
show the image of a handwritten digit from the MNIST data set [9]. A trained
neural network (accuracy 97%) correctly classified this image as a digit 8. In
the middle of Fig.1 we show a perturbed image produced by the widely used
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DeepFool algorithm [12]. This perturbed image is classified as a 2 by the net-
work. On the right in Fig. 1 we show another perturbed image, produced by our
new algorithm. This new image is also classified as a 2. The Deepfool algorithm
looks for a perturbation of minimal Euclidean norm, treating all pixels equally.
In this case, we can see that although the perturbed image is close to the orig-
inal, there are tell-tale smudges to the white background. Our new algorithm
seeks a perturbation that causes a minimal componentwise relative change; and
in this context it will not make any change to zero-valued pixels. We argue that
the perturbation produced is less noticeable to the human eye, being consistent
with a streaky pen, rough paper, or irregular handwriting pressure.

Fig. 1. Showcasing the capabilities of our new algorithm, which seeks a perturbation
that causes minimal componentwise relative change. Left: image from the MNIST data
set [9], correctly classified as an 8 by a neural network. Middle: perturbed image pro-
duced by Deepfool [12], classified as a 2. Right: perturbed image produced by new
componentwise algorithm, also classified as a 2. The componentwise algorithm does
not change the background, where pixel values are zero. In the notation of Sect. 2,
the relative Euclidean norm perturbation size, ||Ax||2/]|z||2, is 0.09 for Deepfool and
0.23 for the componentwise algorithm. This reflects the fact that Deepfool looks for
the smallest Euclidean norm perturbation whereas the componentwise algorithm has
a different objective.

2 Overview of Algorithm

We will focus on image classification, assuming that there are ¢ possible classes.
Regarding an image as a normalized vector in € R", a classifier takes the form
of a map F : [0,1]™ — R, where we assume that output class is determined by
the largest component of F'(z).

Suppose F(z) = y and we wish to perturb the image to  + Ax with F(z +
Az) = g, where the desired output g produces a different classification, so 3 has
a maximum component in a different position to the maximum component of .
In the untargeted case, §¥ may be any such vector. In the targeted case, we wish
to specify which component of ¥ is maximum.
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Because we seek a small perturbation, we will use the linearization F(x +
Azx)—F(z) =~ AAz, where A € R°*™ is the Jacobian of F' at x, and F is assumed
to be differentiable in a neighbourhood of . Then, motivated by the connection
to (norm-based) backward error developed in [4] and also by the concept of
componentwise backward error introduced in [8], we consider the optimization
problem

min{e: AAx =y —vy, |Az|;<ef; for 1<i<n}. (1)

Here f > 0 € R" is a given tolerance vector, and we note that choosing f; = |z;]
forces zero pixels to remain unperturbed. Following the approach in [8] it is
then useful to write Az = Dv, where D = diag(f) and v € R™ so that our
optimization becomes

min{||v|| e : ADv =7 — y}. (2)

In practice, we found that the problem (2) encourages all components of v to
achieve the maximum ||v||«, leading to adversarial perturbations that were quite
noticeable. We found more success after replacing (2) by

min{||Dvl|2 : ADv =7 — y}. (3)

Because Az = Dwv, in this formulation we retain the masking effect where zero
values in the tolerance vector f force the corresponding pixels to remain unper-
turbed. We found that minimizing || Dv||z rather than ||v|| produced perturba-
tions that appeared less obvious, and this was the approach used for Fig. 1.

It can be shown that the underlying optimization task arising from this app-
roach may be formulated as a linearly-constrained linear least-squares problem.
To derive an effective algorithm, various additional practical steps were intro-
duced; notably, (a) projecting to ensure that perturbations do not send pixels
out of range, and (b) regarding each optimization problem as a means to gen-
erate a direction in which to take a small step within a more general iterative
method.

In our presentation, we will show computational results on a range of data
sets that illustrate the performance of the algorithm and compare results with
state-of-the-art norm-based attack algorithms. We will also explain how a rele-
vant componentwise condition number for the classification map gives a useful
warning about vulnerability to this type of attack.

For full details we refer to [3].
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