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Abstract. We motivate and test a new adversarial attack algorithm
that measures input perturbation size in a relative componentwise man-
ner. The algorithm can be implemented by solving a sequence of linearly-
constrained linear least-squares problems, for which high quality software
is available. In the image classification context, as a special case the algo-
rithm may be applied to artificial neural networks that classify printed or
handwritten text—we show that it is possible to generate hard-to-spot
perturbations that cause misclassification by perturbing only the “ink”
and hence leaving the background intact. Such examples are relevant to
application areas in defence, business, law and finance.
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1 Motivation

It is well known that deep learning image classification tools can be vulnerable
to adversarial attacks. In particular, a carefully chosen perturbation to an image
that is imperceptible to the human eye may cause an unwanted change in the
predicted class [7,15]. The fact that automated classification tools may be fooled
in this way raises concerns around their deployment in high stakes application
areas, including medical imaging, transport, defence and finance [11]. Over the
past decade, there has been growing interest in the development of algorithms
that construct attacks, and strategies that defend against them [1,6,10,12,13].
Amidst the background of this war of attrition, there has also been “bigger
picture” theoretical research into the existence, computability and inevitability
of adversarial perturbations [2,5,14,16,17].

In this work, we contribute to the algorithm development side of the adver-
sarial attack literature. We focus on the manner in which perturbation size is
measured. Figure 1 illustrates the benefits of our new algorithm. On the left, we
show the image of a handwritten digit from the MNIST data set [9]. A trained
neural network (accuracy 97%) correctly classified this image as a digit 8. In
the middle of Fig. 1 we show a perturbed image produced by the widely used
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DeepFool algorithm [12]. This perturbed image is classified as a 2 by the net-
work. On the right in Fig. 1 we show another perturbed image, produced by our
new algorithm. This new image is also classified as a 2. The Deepfool algorithm
looks for a perturbation of minimal Euclidean norm, treating all pixels equally.
In this case, we can see that although the perturbed image is close to the orig-
inal, there are tell-tale smudges to the white background. Our new algorithm
seeks a perturbation that causes a minimal componentwise relative change; and
in this context it will not make any change to zero-valued pixels. We argue that
the perturbation produced is less noticeable to the human eye, being consistent
with a streaky pen, rough paper, or irregular handwriting pressure.

Fig. 1. Showcasing the capabilities of our new algorithm, which seeks a perturbation
that causes minimal componentwise relative change. Left: image from the MNIST data
set [9], correctly classified as an 8 by a neural network. Middle: perturbed image pro-
duced by Deepfool [12], classified as a 2. Right: perturbed image produced by new
componentwise algorithm, also classified as a 2. The componentwise algorithm does
not change the background, where pixel values are zero. In the notation of Sect. 2,
the relative Euclidean norm perturbation size, ‖Δx‖2/‖x‖2, is 0.09 for Deepfool and
0.23 for the componentwise algorithm. This reflects the fact that Deepfool looks for
the smallest Euclidean norm perturbation whereas the componentwise algorithm has
a different objective.

2 Overview of Algorithm

We will focus on image classification, assuming that there are c possible classes.
Regarding an image as a normalized vector in x ∈ R

n, a classifier takes the form
of a map F : [0, 1]n → R

c, where we assume that output class is determined by
the largest component of F (x).

Suppose F (x) = y and we wish to perturb the image to x + Δx with F (x +
Δx) = ŷ, where the desired output ŷ produces a different classification, so ŷ has
a maximum component in a different position to the maximum component of y.
In the untargeted case, ŷ may be any such vector. In the targeted case, we wish
to specify which component of ŷ is maximum.
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Because we seek a small perturbation, we will use the linearization F (x +
Δx)−F (x) ≈ AΔx, where A ∈ R

c×n is the Jacobian of F at x, and F is assumed
to be differentiable in a neighbourhood of x. Then, motivated by the connection
to (norm-based) backward error developed in [4] and also by the concept of
componentwise backward error introduced in [8], we consider the optimization
problem

min{ε : AΔx = ŷ − y, |Δx|i ≤ εfi for 1 ≤ i ≤ n}. (1)

Here f ≥ 0 ∈ R
n is a given tolerance vector, and we note that choosing fi = |xi|

forces zero pixels to remain unperturbed. Following the approach in [8] it is
then useful to write Δx = Dv, where D = diag(f) and v ∈ R

n so that our
optimization becomes

min{‖v‖∞ : ADv = ŷ − y}. (2)

In practice, we found that the problem (2) encourages all components of v to
achieve the maximum ‖v‖∞, leading to adversarial perturbations that were quite
noticeable. We found more success after replacing (2) by

min{‖Dv‖2 : ADv = ŷ − y}. (3)

Because Δx = Dv, in this formulation we retain the masking effect where zero
values in the tolerance vector f force the corresponding pixels to remain unper-
turbed. We found that minimizing ‖Dv‖2 rather than ‖v‖∞ produced perturba-
tions that appeared less obvious, and this was the approach used for Fig. 1.

It can be shown that the underlying optimization task arising from this app-
roach may be formulated as a linearly-constrained linear least-squares problem.
To derive an effective algorithm, various additional practical steps were intro-
duced; notably, (a) projecting to ensure that perturbations do not send pixels
out of range, and (b) regarding each optimization problem as a means to gen-
erate a direction in which to take a small step within a more general iterative
method.

In our presentation, we will show computational results on a range of data
sets that illustrate the performance of the algorithm and compare results with
state-of-the-art norm-based attack algorithms. We will also explain how a rele-
vant componentwise condition number for the classification map gives a useful
warning about vulnerability to this type of attack.

For full details we refer to [3].
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