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Abstract. High dimensional data can have a surprising property: pairs
of data points may be easily separated from each other, or even from
arbitrary subsets, with high probability using just simple linear classi-
fiers. However, this is more of a rule of thumb than a reliable property as
high dimensionality alone is neither necessary nor sufficient for successful
learning. Here, we introduce a new notion of the intrinsic dimension of a
data distribution, which precisely captures the separability properties of
the data. For this intrinsic dimension, the rule of thumb above becomes
a law: high intrinsic dimension guarantees highly separable data. We
extend this notion to that of the relative intrinsic dimension of two data
distributions, which we show provides both upper and lower bounds on
the probability of successfully learning and generalising in a binary clas-
sification problem.

Keywords: Intrinsic dimensionality · Classification problems · High
dimensional data

1 Introduction

A blessing of dimensionality often ascribed to data sampled from genuinely high
dimensional probability distributions is that pairs (and even arbitrary compact
subsets) of points may be easily separated from one another with high proba-
bility [2,4–7,9,13]. Such a property is naturally highly appealing for Machine
Learning and Artificial Intelligence, since it suggests that if sufficiently many
attributes can be obtained for each data point, then classification is a signifi-
cantly easier task.

However, although this provides a useful rule of thumb, it is far from a com-
plete description of the behaviour which may be expected of high dimensional
data, and a simple experiment shows that the precise relationship between data
dimension and classification performance is more subtle (see also [8], Theorem 5
and Corollary 2). Suppose that data are sampled from two classes, each described
by a uniform distribution in a unit ball in R

d, and that the centres of these balls
are at distance ε ≥ 0 from one another, as shown in Fig. 1. The classifier which
offers the optimal (balanced) accuracy in this case is given by the hyperplane
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Fig. 1. Two unit balls separated by distance epsilon, and the optimal classifier (dotted)
separating the two.

which is normal to the vector connecting the two centres and positioned half way
between them. In Fig. 2 we plot the accuracy of this classifier as a function of the
distance separating the two centres for data sampled from various different ambi-
ent dimensions d. The insight behind the blessing of dimensionality described
above is immediately clear: when the data is sampled in high dimensions, for
values of ε greater than some threshold value ε0(d) depending on the ambient
dimension d, the accuracy of this simple linear classifier is virtually 100%. Yet,
what this simplified viewpoint misses is that, for ε < ε0(d) the probability of
correctly classifying a given point sharply drops to close to 50%, demonstrating
that raw dimensionality alone is no panacea for data classification1. On the other
hand, data sampled even in 1 dimension may be accurately classified when the
centre separation ε is sufficiently large: for ε ≥ 2 (when the two unit balls are
disjoint), the two data sets are fully separable in any dimension.

What this simple thought experiment demonstrates is a fact which is not
taken into account by previous work, such as [12]:

Determining whether data distributions are separable from each other must
depend on a relative property of the two, and even genuine high dimensionality2

alone is neither a necessary nor sufficient condition for data separability.
To lay the foundations of our approach, we propose the new concept of the

intrinsic dimension of a data distribution, based directly on the separability
properties of sampled data points.

Definition 1 (Intrinsic dimension). We say that data sampled from a dis-
tribution D on R

d has intrinsic dimension n(D) ∈ R with respect to a centre
c ∈ R

d if

P (x, y ∼ D : (x − y, y − c) ≥ 0) =
1

2n(D)+1
. (1)

This definition is designed in such a way that the rule of thumb in the blessing
of dimensionality described above becomes a law of high intrinsic dimension:
1 Moreover, standard dimensionality reduction techniques, such as Principle Compo-

nents Analysis, would not have any effect here since the data are uniformly sampled
from d-dimensional balls.

2 In the sense that dimensionality reduction techniques cannot be applied to find an
equivalent lower dimensional representation of the data.
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Fig. 2. Accuracy of the best linear classifier separating data uniformly sampled from
two balls with unit radius and centres in R

n separated by distance ε for different
dimensions n.

points sampled from a distribution with high intrinsic dimension are highly sep-
arable. The definition is calibrated so that the uniform distribution U(Bd) on
a d-dimensional unit ball Bd satisfies n(U(Bd)) = d (see Theorem 1), although
alternative normalisations are possible, and by symmetry n(D) ≥ 0 for all dis-
tributions D. For c = 0, the expression (x − y, y − c) ≥ 0 in the left-hand side
of (1) is simply a statement that x and y are Fisher-separable [8].

Based on the same principle, we further introduce the concept of the relative
intrinsic dimension of two data distributions, which directly describes the ease
of separating data distributions.

Definition 2 (Relative intrinsic dimension). We say that data sampled
from a distribution D on R

d has relative intrinsic dimension n(D,D′) ∈ R to
data sampled from a distribution D′ on R

d, with respect to a centre c ∈ R
d, if

P (x ∼ D′, y ∼ D : (x − y, y − c) ≥ 0) =
1

2n(D,D′)+1
. (2)

The relative intrinsic dimension is not symmetric, and satisfies n(D,D′) ≥
−1, with negative values indicating that D has lower intrinsic dimension than D′,
and data distributions with a low relative intrinsic dimension may be separated
from distributions with a high relative intrinsic dimension.

To illustrate this, consider our previous experiment as an example and let
X = U(B1) and Y = U(B2), where B1 = Bd(1, c1) ⊂ R

d and B2 = Bd(1, c2) ⊂
R

d are the unit balls centered at c1 and c2 respectively, and pick the centre c = c1.
When ε = ‖c1 − c2‖ ≥ 2 (the case when the data distributions are completely
separable), we have n(Y,X) = ∞. This implies that points y sampled from
Y can be separated from points sampled from points x sampled from X with
certainty. The relative intrinsic dimension n(X,Y ) is an increasing function of the
dimension of the ambient space in which the data is sampled with n(X,Y ) = 0
in 1 dimension, implying that it becomes easier to separate points in X from
points in Y as the dimension increases. These values of the relative intrinsic
dimensions suggest that points from Y can easily be separated from points in
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X by hyperplanes normal to y − c1, while hyperplanes normal to x − c1 do not
separate X from Y .

Although the asymmetry may be slightly surprising at first, it is simply
reflecting the asymmetric choice of centre c = c1, which is located at the heart
of the X distribution. The relative intrinsic dimensions described above would
be reversed for c = c2 and would be equal for c = 1

2 (c1 + c2). A justification
for this definition of relative intrinsic dimension is given by Theorem 2, where
it is shown (in a slightly generalised setting) that these concepts of intrinsic
dimension provide upper and lower bounds on classifier accuracy, indicating
that it is indeed necessary and sufficient for learning.

There is a rich history of alternative charaterisations of the dimension of
a data set, with each contribution typically aimed to solve a particular prob-
lem. For example, conventional Principle Components Analysis aims to detect
the number of independent attributes which are actually required to represent
the data, leading to compressed representations of the same data. However, as
discussed above, the representational dimension of a data set does not necessar-
ily give an indication of how easy it is to learn from. Several other notions of
dimensionality are captured in the scikit-dimension library [3]. Perhaps the
most similar notion of dimension to that which we propose here is the Fisher
Separability Dimension [1], which is also based on the separability properties
of data yet first requires a whitening step to normalise the data covariance to
an identity matrix. This whitening step has both advantages and disadvantages:
although it brings invariance to the choice and scaling of the basis, it disrupts the
intrinsic geometry of the data. The Fisher Separability Dimension also does not
address the important question of the relative dimension of data distributions
and samples, which we argue is a concept fundamental to learning.

Our approach may appear reminiscent of Kernel Embeddings, through which
nonlinear kernels are used to embed families of data distributions into a Hilbert
space structure [11]. Although Kernel Embeddings and our work are motivated
by very different classes problems, the common fundamental focus is on under-
standing the properties of a data distribution through the evaluation of (nonlin-
ear) functionals of the distribution. Here we demonstrate how a single, targeted,
property appears to encode important information about the separability prop-
erties of data.

An interesting question which arises from this work is how well the (relative)
intrinsic dimension can be estimated from data samples directly. If it can be,
then this could provide a new tool for selecting appropriate feature mappings
for data and shine a new light on the training of neural networks. We briefly
investigate this in Sect. 4, where we show that high order polynomial feature
maps can actually be detrimental to the separability of data.

2 Separability of Uniformly Distributed Data

We investigate the separability properties of data sampled from a uniform dis-
tribution in the unit ball in various dimensions. This provides the basis for our
definition of intrinsic dimension.
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To simplify the presentation of our results, we introduce the following geo-
metric quantities related to spheres in high dimensions. The volume of a ball
with radius r in d dimensions is denoted by

V ball
d (r) =

πd/2rd

Γ(d
2 + 1)

,

and the surface area of the same ball is denoted by

Sball
d (r) =

dπd/2rd−1

Γ(d
2 + 1)

.

Similarly, the volume of the spherical cap with height h of the same sphere (i.e.
the set of points {x ∈ R

d : ‖x‖ ≤ r and x0 ≥ r − h}) is given by V cap
d (r, h) =

V ball
d (r)W cap

d (r, h), where

W cap
d (r, h) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for h ≤ 0,
1
2I(2rh−h2)/r2(d+1

2 , 1
2 ) for 0 < h ≤ r,

1 − W cap
d (r, 2r − h) for r < h ≤ 2r,

1 for 2r < h,

represents the fraction of the volume of the unit ball contained in the spherical
cap. The function Ix(a, b) = B(a, b)−1

∫ x

0
ta−1(1−t)b−1dt denotes the regularised

incomplete beta function, where B(a, b) = B(1; a, b) = Γ(a)Γ(b)
Γ(a+b) is the standard

beta function.
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Fig. 3. The behaviour of fθ(d), formally extended to non-integer values of d, for various
values of θ. The function is only invertible for −1 ≤ θ ≤ 0, and we note the asymptote
of 1

2
as d → 0 when θ = 0 and as d → ∞ when θ = −1

Theorem 1 (Separability of uniformly sampled points). Let θ ∈ R, let d
be a positive integer and suppose that x, y ∼ U(Bd(1, c)), define

Rθ(t) = max
{ t2

4
− θ, 0

} 1
2
, aθ(t) =

1 − R2
θ(t)

t
− t

4
, (3)
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and
bθ(t) = 1 − aθ(t) − t

2
, (4)

and let

fθ(d) =
∫ 1

0

dtd−1
(
W cap

d (1, bθ(t)) + Rd
θ(t)W cap

d (Rθ(t), Rθ(t) + aθ(t))
)
dt. (5)

Then
P (x, y : (y − x, x − c) ≥ θ) = fθ(d), (6)

and, in particular,

P (x, y : (y − x, x − c) ≥ 0) =
1

2d+1
. (7)

Furthermore, fθ may be simplified in the following cases as

fθ(d) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 for θ ≤ −2,
1

2d+1 for θ = 0,
∫ 1

2θ1/2 dtd−1
(

t2

4 − θ
)d/2

dt for 0 < θ < 1
4 ,

0 for 1
4 ≤ θ.

(8)

and fθ(d) ≥ 1
2 for θ ≤ −1.

y
O

p

q

y
2

R

1

a b

Fig. 4. The shaded area is the volume computed in the proof of Theorem 1. The two
different shading colours indicate the two spherical caps used in the proof.

Proof. Without loss of generality, we suppose that c = 0, and consider points
x, y ∼ U(Bd). Rearranging terms, we observe that

(y − x, x) =
1
4
‖y‖2 − ‖x − y

2
‖2,
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and therefore, for fixed y, the set of x satisfying (y−x, x−c) ≥ θ may be similarly
described as those points x contained within the ball

‖x − y

2
‖2 ≤ R(‖y‖) = max

{1
4
‖y‖2 − θ, 0

}
.

Combining this with the condition that x ∼ Bd(1, 0), we find that x belongs to
the intersection of the balls

{x ∈ R
d : ‖x‖ ≤ 1} ∩

{
x ∈ R

d : ‖x − y

2
‖2 ≤ Rθ(‖y‖)

}
. (9)

This may be expressed as the union of two spherical caps, as depicted in Fig. 4.
Comparing the triangles O, p, q and y

2 , p, q shows that the lengths a and b in
the Figure are exactly those defined in (3) with t = ‖y‖. Since y only appears
through its norm, we deduce that

P (x : (y − x, x) ≥ θ | ‖y‖) = P (x : (y − x, x) ≥ θ | y)

=
V cap

d (Rθ(‖y‖), Rθ(‖y‖) + aθ(‖y‖)) + V cap
d (1, bθ(‖y‖))

V ball
d (1)

,

The result (6) follows by applying the law of total probability, which implies

P (x, y : (y − x, x) ≥ θ) =
∫ 1

0

P (x : (y − x, x) ≥ θ | ‖y‖ = t)p‖y‖(t)dt,

where p‖y‖(t) = Sball
d (t)

V ball
d (1)

is the density associated with ‖y‖ for y ∼ U(Bd).
When θ ≥ 0, the ball centered at y

2 is entirely contained within Bd, and so

P (x, y : (y − x, x) ≥ θ) =
∫ 1

0

Sball
d (t)V ball

d (Rθ(t))
(V ball

d (1))2
dt

=
∫ 1

0

dtd−1 max
{ t2

4
− θ, 0

}d/2

dt.

Since the integrand is zero for t ≤ 2θ1/2, for θ ∈ (0, 1
4 ) we have

P (x, y : (y − x, x) ≥ θ) =
∫ 1

2θ1/2
dtd−1

( t2

4
− θ

)d/2

dt.

Moreover, P (x, y : (y − x, x) ≥ θ) = 0 for θ ≥ 1
4 , and in the simplest case of

θ = 0

P (x, y : (y − x, x) ≥ 0) =
d

2d

∫ 1

0

t2d−1dt =
1

2d+1
.

On the other hand, for θ ≤ −2 we have
√

Rθ(t) ≥ 1 + 1
2 t for all t, implying

that the intersection (9) is the entirity of Bd, and hence

P
(
x, y : (y − x, x) ≥ θ

)
= 1.


�
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The behaviour of fθ(d) is illustrated in Fig. 3 for various values of the sepa-
ration threshold θ. Heuristically, we observe the following limiting behaviour:

lim
d→∞

fθ(d) =

⎧
⎪⎨

⎪⎩

1 for θ < −1,
1
2 for θ = −1,

0 for θ > −1,

which may be explained by the fact that when θ = −1, the surfaces of the ball Bd

and the ball centered at y
2 meet exactly at an equator of Bd. The phenomenon

of waist concentration (see [10], for example) implies that in high dimensions
the volume of Bd is concentrated around its surface and around this equator,
implying that this is the threshold value of θ at which the intersection of the
two balls contains slightly more than half the volume of Bd.

What these results suggest is that for any value of θ ∈ [−1, 0], the function
fθ(d) is an invertible function of d, and hence could be used as the basis of a
definition of intrinsic dimension. In Definition 1 we use the behaviour at θ = 0
to define our indicative notion of intrinsic dimension simply because it obviates
the need to couple the scaling of the support of the distribution and the scaling
of θ.

3 Few Shot Learning Is Dependent on Separability

We now consider the scenario of standard binary data classification, and show
that the probability of successfully learning to classify data is intrinsically linked
to the notion of relative intrinsic dimension. We focus on the case of learning
from small data sets, as in this case the link is particularly clear to demonstrate.

Mathematically, we suppose that X and Y are (unknown) probability dis-
tributions on an d-dimensional vector space R

d, and we have a sample {yi}k
i=1

of k training points sampled from Y and a sample {xi}m
i=1 of m training points

sampled from X.
Since the problem setup is symmetric in the roles of X and Y , we only analyse

the influence of training data sampled from Y . The role of the data sampled
from X (alongside any possible prior knowledge of the data distributions) is
incorporated through an arbitrary but fixed point c ∈ R

d in the data space.
We consider the following linear classifier to assign the label �X to data

sampled from X and the label �Y to data sampled from Y :

Fθ(z) =

{
�Y if L(z) ≥ θ,

�X otherwise,
(10)

where L(z) = 1
k

∑k
i=1(z − yi, yi − c). In practice, the value of the threshold θ to

be used in the classifier may be determined from the training data {yi}k
i=1 and

{xi}m
i=1, although here we consider it to be a free parameter of the classifier.
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Remark 1 (Comparison with similar classifiers). The classifier (10) may
be equivalently be expressed in the form of the common Fisher discriminant with
a slightly different threshold, viz.

Fθ(z) =

{
�Y if (z − μ, μ − c) ≥ θ + Θ,

�X otherwise,

where μ = 1
k

∑k
i=1 yi and Θ = 1

k

∑k
i=1 ‖yi‖2 − ‖μ‖2. Since the offset Θ to the

threshold θ depends only on the same training data as θ, it is clear that the clas-
sifier we study is simply a Fisher discriminant. However, we choose to write the
classifier in the form (10) because it simplifies some of the forthcoming analysis.

This classifier will successfully learn to classify the training data when both

P (Fθ(y) = �Y ) = P (L(y) ≥ θ)

is large (where the probability is taken with respect to the evaluation point
y ∼ Y and the training data {yi ∼ Y }k

i=1), and

P (Fθ(x) = �X) = P (L(x) < θ)

is also large (where the probability is taken with respect to the evaluation point
x ∼ X and the training data {yi ∼ Y }k

i=1). We now show that both of these
probabilities can be bounded from above and below by the probability of being
able to separate pairs of data points by margin θ. Corollary 1 to this theorem
then shows how this simply reduces to upper and lower bounds dependent on
the (relative) intrinsic dimension of Y and X when θ = 0.

Theorem 2 (Pairwise separability and learning). Let θ ∈ R and define

pθ(Y,X) = P (x ∼ X, y ∼ Y : (x − y, y − c) ≥ θ),

and let pθ(Y ) = pθ(Y, Y ). Then, the probability (with respect to the training
sample {yi ∼ Y }k

i=1 and the evaluation point y ∼ Y ) of successfully learning the
class Y is bounded by

pk
θ(Y ) ≤ P (Fθ(y) = �Y ) ≤ 1 − (1 − pθ(Y ))k, (11)

and the probability (with respect to the training sample {yi ∼ Y }k
i=1 and the

evaluation point x ∼ X) of successfully learning the class X is bounded by

(1 − pθ(Y,X))k ≤ P (Fθ(x) = �X) ≤ 1 − pk
θ(Y,X). (12)

Proof. Let E be the event that Fθ(y) = �Y for y ∼ Y . By definition, this
occurs when y and {yi}k

i=1 are such that
∑k

i=1(y − yi, yi − c) ≥ kθ. For each
1 ≤ i ≤ k, let Ai denote the event that (y − yi, yi − c) ≥ θ. Then,

∧k
i=1 Ai ⇒ E

and so P (E) ≥ P (
∧k

i=1 Ai). We may further expand this using the law of total
probability as

P
( k∧

i=1

Ai

)
=

∫

Rd

P
( k∧

i=1

(y − yi, yi − c) ≥ θ | y
)
p(y)dy. (13)
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Since the {yi}k
i=1 are independently sampled and identically distributed, it fol-

lows that the conditional probability satisfies

P
(
{yi ∼ Y }k

i=1 :
k∧

i=1

(y − yi, yi − c) ≥ θ | y
)

=P (y′ ∼ Y : (y − y′, y′ − c) ≥ θ | y)k.

Substituting this into (13) shows that P
( ∧k

i=1 Ai

)
= EY

[(
P (y′ ∼ Y : (y −

y′, y′ − c) ≥ θ | y)
)k]

, where the expectation is taken with respect to y. For a
random variable X and a convex function g, Jensen’s inequality asserts that
E[g(X)] ≥ g(E[X]). Applying this here (since the function g(x) = xk is convex
for k ≥ 1), we find that

P
( k∧

i=1

Ai

)
≥ (

EY [P (y′ : (y − y′, y′ − c) ≥ θ | y)]
)k

=
(
P (y, y′ : (y − y′, y′ − c) ≥ θ)

)k
.

Consequently, we deduce the lower bound of (11). The upper bound follows
by arguing similarly and using the fact that

∧k
i=1 not Ai ⇒ not E, from which

it follows that P (E) ≤ 1 − P (
∧k

i=1 not Ai). An analogous argument shows the
result (12). 
�

An immediate consequence of this theorem is that when θ = 0, the probability
of successfully learning can be bounded from both above and below using the
(relative) intrinsic dimension of the data distributions.

Corollary 1 (Intrinsic dimension and learning). The probability (with
respect to the training sample {yi ∼ Y }k

i=1 and the evaluation point y ∼ Y )
of successfully learning the class Y is bounded by

1
2k(n(Y )+1)

≤ P (F0(y) = �Y ) ≤ 1 −
(
1 − 1

2n(Y )+1

)k

, (14)

and the probability (with respect to the training sample {yi ∼ Y }k
i=1 and the

evaluation point x ∼ X) of successfully learning the class X is bounded by

1 −
(
1 − 1

2n(Y,X)+1

)k

≤ P (F0(x) = �X) ≤ 1
2k(n(Y,X)+1)

We note that the best lower bound which can be shown by (14) is 1
2 , due

to the fact that the classifier with θ = 0 will pass through the centre of the Y
distribution. Despite this, Corollary 1 shows that the intrinsic dimension of Y
is sufficient to know whether the probability of correctly learning the class Y is
less than 1

2 . Arguing symmetricaly, a more refined analysis taking more account
of the training set {xi}m

i=1 could instead show a version of the bound (14) which
depends on the relative intrinsic dimension n(X,Y ).

These bounds are tuned to the case when the size k of the training set sampled
from Y is small, and the upper and lower bounds separate from each other as
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k grows, and alternative arguments would be required to get sharp bounds in
the case of large k. However, even for large values of k, if the (relative) intrinsic
dimension of the data distributions is sufficiently large or small, the bounds
above will provide tight guarantees on the success of learning.

4 Learning with Polynomial Kernels

As an application of our proposed notion of intrinsic dimension, we use it to find
the optimal polynomial kernel for a classification problem — i.e. the degree of
the polynomial feature map in which two data sets become easiest to separate.

For fixed bias b > 1 and polynomial degree k ≥ 0, let the polynomial kernel
κ : Rd × R

d → R be given by

κ(x, y) = (b2 + x · y)k. (15)

There exists a polynomial feature map φ : Rd → R
N , where N =

(
d+k

k

)
, such

that κ(x, y) = (φ(x), φ(y)) (see [12], for example, for details).
Consider

P (x, y,∼ U(Bd) : (φ(x) − φ(y), φ(y) − c) ≥ θ),

where c = 1
V ball
d (1)

∫

Bd
φ(z)dz is the empirical mean of the data in feature space.

Then, expanding the inner product,

(φ(x) − φ(y), φ(y) − c) = k(x, y) − k(y, y) +
∫

Bd

k(y, z) − k(x, z)
V ball

d (1)
dz

= (b2 + x · y)k − (b2 + ‖y‖2)k +
∫

Bd

(b2 + y · z)k − (b2 + x · z)k

V ball
d (1)

dz.

Exploiting the spherical symmetry of U(Bd), we have

1
V ball

d (1)

∫

Bd

(b2 + x · z)kdz =
∫ 1

−1

V ball
d−1 ((1 − t2)1/2)

V ball
d (1)

(b2 + t‖x‖)kdt = q(‖x‖),

for b ≥ 1, where q : [0, 1] → R is given by q(‖x‖) := b2k
2F1

(
1−k
2 ,−k

2 ; d
2 +1; ‖x‖2

b4

)
,

with 2F1 denoting the hypergeometric function. Therefore (φ(x) − φ(y), φ(y) −
c) ≥ θ if and only if

cos(β(x, y)) ≥ Q(‖x‖, ‖y‖)

where β(x, y) = arccos( (x,y)
‖x‖‖y‖ ) denotes the angle between x and y, and

Q(s, t) := (st)−1
((

θ + (b2 + t2)k + q(s) − q(t)
)1/k − b2

)
.

Geometric arguments show that for any α ∈ [−1, 1],

P (x, y ∼ U(Bd) : cos(β(x, y)) ≥ α | ‖x‖, ‖y‖) = T cap
d (α)
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where T cap
d (α) denotes the proportion of the surface area of a unit sphere which

falls within a spherical cap with opening angle arccos(α), given for d > 1 by

T cap
d (α) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, α > 1,
1
2I(sin(arccos(α)))2

(
d−1
2 , 1

2

)
, α ∈ [0, 1],

1 − T cap
d (−α), α ∈ (−1, 0),

1, α ≤ −1,

where Ix(a, b) is the regulalised incomplete beta function, and for d = 1 by

T cap
1 (α) =

{

0 for α > 1; 1
2 for α ∈ (−1, 1]; 1 for α ≤ −1

Let E be the event that x, y ∼ U(Bd) are such that cos(β) ≥ Q(‖x‖, ‖y‖). Then,
by the law of total probability,

P (E) =
∫ 1

0

∫ 1

0

P (E | ‖x‖ = s, ‖y‖ = t)p̂(s)p̂(t)dsdt,

where p̂(t) = Sball
d (t)

V ball
d (1)

= dtd−1 denotes the density associated with ‖z‖ for z ∼
U(Bd).

The arguments above therefore prove the following theorem, from which The-
orem 1 arises as a simplified special case when k = 1

Theorem 3 (Separability in polynomial feature space). Let k > 0, let d
be a fixed positive integer, and let φ denote the feature map associated with the
polynomial kernel (15) with degree k in dimension d. Then, for θ ∈ R,

P (x, y ∼ U(Bd) : (φ(x) − φ(y), φ(y) − c) ≥ θ)

= d2

∫ 1

0

∫ 1

0

T cap
d (Q(s, t))sd−1td−1dsdt.

Figure 5 shows how the intrinsic dimension of the unit ball in various dimen-
sions is affected by applying a polynomial feature mapping. Since the degree k
polynomial feature map φ : Rd → R

N , where N =
(
d+k

k

)
, increases the appar-

ent dimension of the space as k increases, the rule of thumb encapsulated by
the blessing of dimensionality would lead us to expect that high order polyno-
mial kernels should make the data more separable. However, this is not what
we observe. Instead, the intrinsic dimension reveals that there is an ‘optimal’
polynomial degree, for which the data is most separable, and increasing the
polynomial degree further beyond the point can actually have the detrimental
effect of making the data less separable.
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Fig. 5. The intrinsic dimension of the image of U(Bd) under a polynomial feature map,
for different polynomial degrees and data space dimensions d.

5 Conclusion

We have introduced a new notion of the intrinsic dimension of a data distribu-
tion, based on the pairwise separability properties of data points sampled from
this distribution. Alongside this, we have also introduced a notion of the rela-
tive intrinsic dimension of a data distribution relative to another distribution.
Theorem 2 shows how these notions of intrinsic dimension occupy a fundamen-
tal position in the theory of learning, as they directly provide upper and lower
bounds on the probability of successfully learning in a generalisable fashion.

Many open questions remain, however, such as how to accurately determine
the intrinsic dimension of a data distribution using just sampled data from that
distribution, and how best to utilise these insights to improve neural network
learning. This work also opens to door to generalising the concept beyond just
simple linear functionals of the data distribution to notions of intrinsic dimen-
sionality based around other more interesting models. The idea also generalises
beyond examining individual points sampled from distributions, to studying the
collective behaviour of groups, or ‘granules’ of sampled data.
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