
Improving Neural Network Verification
Efficiency Through Perturbation

Refinement

Minal Suresh Patil(B) and Kary Främling

Ume̊a universitet, UNIVERSITETSTORGET 4, Ume̊a, Sweden
{minal.patil,kary.framling}@umu.se

Abstract. This paper presents a novel approach to efficient neural net-
work verification through the use of adversarial attacks and symbolic
interval propagation. The proposed method leverages low-cost adversar-
ial attacks to quickly obtain a rough estimate of the first set of bounds,
and then utilizes symbolic interval propagation to compute tighter
bounds. We demonstrate the effectiveness of our proposed method on
the popular MNIST dataset, which contains hand-written digit images.
The results show that the proposed method achieves state-of-the-art ver-
ification accuracy with significantly reduced computational cost, making
it a promising approach for practical neural network verification.

Keywords: Perturbation Refinement · Neural Network Verification ·
Adversarial Robustness

1 Introduction

Deep neural networks (DNNs) are widely used today. Their ability to generalise
and thus work well even on previously unknown inputs is a key factor in their
widespread use. Although this has many useful advantages, it could occasionally
render DNNs unreliable. This dearth of dependability can actually come at a ter-
rible price in applications that are either safety- or business-critical. Evidently,
a trained network’s instability is primarily caused by its inability to withstand
input perturbations, or the fact that even minor changes to some inputs can
significantly alter the network’s output. In a lot of application domains, this is
not ideal. Consider, for instance, a network that has been taught to alert air-
craft to change their paths in response to approaching intruder aircraft. It is
reasonable to anticipate that such a network will be capable of making sound
decisions, meaning that the advice given in two situations that are strikingly
similar should not diverge greatly. However, if that is not the case, then showing
the network’s lack of resilience through adversarial inputs can aid in both net-
work improvement and determining when the network should hand over control
to a more dependable entity.

When a network and an input are provided, an adversarial input is one that
is very similar to the input but the outputs of the network for the two inputs
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14254, pp. 504–515, 2023.
https://doi.org/10.1007/978-3-031-44207-0_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44207-0_42&domain=pdf
https://doi.org/10.1007/978-3-031-44207-0_42

Improving Neural Network Verification Efficiency Through Perturbation 505

are very distinct. Finding adversarial sources has been the subject of extensive
research in the past [3,7,9,17]. Depending on whether they take into account
the architecture of the network during the study or not, these approaches can
be categorised as black-box or white-box techniques. Both of these groups have
produced a wide range of techniques, from the creation of random attacks [14]
and gradient-based approaches [1] to symbolic execution [18,22,26], fault local-
ization [24], coverage-guided testing, SMT, and ILP solving [10,23].

Interval analysis is a method that’s used to verify the safety and robustness
of neural networks by estimating their output ranges for a given input. This is
achieved by calculating both the upper and lower bounds of the output using
interval arithmetic, as described in the literature [11]. To improve the accuracy of
this approach, researchers have proposed a related technique known as symbolic
interval analysis [22]. This involves approximating the output range of a neural
network by computing the upper and lower bounds using symbolic mathemat-
ical expressions, which can result in tighter bounds and improved verification
outcomes.

Robustness verification of neural networks is essential to ensure that they
behave correctly and reliably in the presence of adversarial attacks or unex-
pected inputs. However, the verification process can be computationally expen-
sive, especially for large and complex neural networks. Therefore, accelerating
robustness verification of neural networks is crucial to make it feasible for practi-
cal applications. Numerous techniques have been proposed to utilize abstraction
to achieve robustness [5,13]. Since ReLU activation function is commonly used
in neural networks, it is more practical to investigate the problem of verifying
robustness [15]. As ReLU networks have a piecewise-linear structure, the problem
of verifying robustness can be transformed into a standard Mixed-Integer Linear
Programming (MILP) problem, which can be tackled using branch-and-bound
methods [6]. However, for large-scale ReLU networks, solving MILP problems for
verifying robustness is still challenging. The difficulty of systematically searching
the high dimensional and continuous input space makes it challenging to ensure
that an adversarial example can be found, even if it exists. Therefore, machine
learning models that appear robust to existing attacks may still have security
weaknesses in practice. Off-the-shelf MILP solvers cannot make use of solutions
gathered at a low cost via gradient-based adversarial attacks to quicken up its
search. To tackle this issue, we propose warm-starting and bounds tightening
techniques by integrate symbolic interval analysis to obtain tighter bounds for
a gradient-based adversarial example which is formulated as MILP formulation.
This can reduce the number of iterations required to converge to the optimal
solution, and hence the computation time. The contribution is summed up as
follow:

– An approach called warm-starting has been proposed to incorporate cheap
solutions obtained from adversarial attacks, with the goal of reducing the
search space that a MILP solver would otherwise have to explore. Addition-
ally, a technique called bound tightening has been introduced to tighten the

506 M. S. Patil and K. Främling

bounds on the neurons, which can further improve the accuracy and efficiency
of the MILP solver.

– A framework verifier for generating adversarial examples has demonstrated
superior performance and has been validated on the MNIST dataset using
three distinct neural network architectures and three different verification
methods.

2 Related Work

Our work is connected to prior studies on attacking and defending deep neu-
ral networks, which encompass topics such as verification, testing, and creating
adversarial examples. The existing research on neural verification can be catego-
rized into two types based on constraint solving: methods based on Satisfiability
Modulo Theories (SMT) problems [8,13] and methods based on Linear Program-
ming (LP) [2,4]. These techniques are generally sound and complete i.e., no false
negatives and no false positive respectively. But owing to the computational com-
plexity, they have little capacity to scale. There are two methods, namely approx-
imation and abstraction, that can be employed to achieve better scalability when
verifying robustness. These techniques are known to be effective in achieving
this objective [12,25]. Furthermore, there are numerous efforts aimed at either
attacking deep neural networks (DNNs) or enhancing their resilience through the
creation of adversarial examples. L-BFGS [19] was the earliest method developed
for producing adversarial examples, while FGSM [9] utilizes gradient updates to
create such examples. FGSM is capable of generating an adversarial example
from an input with just one update, making it a relatively efficient technique. In
our work, we employ FGSM attack to produce the rough set of bounds for the
neurons before formulating into a LP problem.

3 Background

3.1 Robustness Against Adversarial Perturbations

The characteristics of a neural network can be inferred from the meaning and
context of its specification. Typically, these characteristics are input-output (IO)
properties that specify a particular relationship between the input and output
of the network. One of the earliest IO properties that has been investigated is
robustness, which requires the model’s output to remain consistent even when
minor modifications are made to the input value [7,16].

3.2 Gradient-Based Adversarial Attack

A small change made to the input to deceive the classifier’s prediction is called an
adversarial attack. If a neural network can withstand such attacks, it is probable
that it can also handle other types of changes. However, this is not guaranteed,
and therefore it is necessary to formally test the network’s robustness against

Improving Neural Network Verification Efficiency Through Perturbation 507

all potential alterations. In our work, the purpose of the finding adversarial
examples is to reduce the search space by obtaining the perturbation bounds of
the adversarial example before encoding it to a MILP solver. Numerous methods
exist for creating adversarial attacks, which can be classified into two categories
based on the attacker’s objective: targeted attacks and untargeted attacks.

– Targeted attack : A targeted attack aims to cause the input sample to be
misclassified to a specific target class, rather than just away from its original
class.

– Untargeted attack : An untargeted attack does not have a specific desired
output class, but rather aims to cause the input sample to be misclassified
from its original class, regardless of what new output class it ends up being
classified as.

Fast Gradient Sign Method. To create boundaries for the perturbations, we
use the Fast Gradient Sign Method for the adversarial attack [9].
To produce a modified version of an original sample represented by x, we intro-
duce a slight perturbation ε to each of its components through either addition
or subtraction.

The technique involves analyzing the sign of the gradient of the loss function,
which is denoted as ∇xL(x, y):

– If the gradient ∇xL(x, y) is positive, it indicates that an increase in x results
in an increase in the loss function L.

– Conversely, if the gradient ∇xL(x, y) is negative, it implies that an increase
in x leads to a decrease in the loss function L.

3.3 Symbolic Interval Analysis for Bound Tightening

Interval analysis is a method utilized in the verification of neural networks to
study their behavior and ensure their safety and robustness. The process involves
an estimation of the output range of a neural network for a given input through
computing the upper and lower bounds of the output using interval arithmetic.
In interval analysis, each neuron in the network is treated as a function that
takes an input and gives an output. The input and output are both represented
as intervals that express a range of possible values. Interval arithmetic operations
are then used to propagate the input intervals through the network, resulting
in the output intervals. The calculated output intervals are compared to the
desired output range to determine whether the network is safe and robust. If
the output intervals include the desired output range, then the network is con-
sidered safe; otherwise, it may be potentially unsafe, requiring further analysis.
Interval analysis is a robust technique for verifying neural networks as it can
handle non-linear activation functions and multiple layers. However, it may be
computationally demanding and not scalable to larger networks.

The given Fig. 1(a), depicts a Naive Interval analysis of a three-layer Deep
Neural Network (DNN) with weights assigned to edges, and bias vectors contain-
ing all elements as 0. Assuming the input intervals to the first layer to be [2, 4]

508 M. S. Patil and K. Främling

and [3, 6], the output interval obtained after performing scalar operations over
intervals layer-wise, is [−5, 7]. However, here the output bound includes certain
specific values that are infeasible in practical scenarios due to overestimation.
For example, the value of −5 can only be achieved when neuron n3 outputs 13
and neuron n4 outputs 8. But to output 10 for n3, the neurons n1 and n2 must
output 4 and 5 simultaneously, and to output 8 for n4, the neurons n1 and n2

should output 1 and 2 at the same time which also referred to as the dependency
problem.

Fig. 1. Naive Interval Propagation vs. Symbolic Interval Propagation.

Symbolic interval analysis [22] or Symbolic Interval Propagation (SIP) is an app-
roach utilized in the verification of neural networks to ensure their safety and
robustness. This method involves approximating the output range of a neural
network by calculating the upper and lower bounds of the output through the
use of symbolic mathematical expressions. Symbolic interval analysis employs
interval arithmetic to generate a group of mathematical expressions that repre-
sent the output range of the neural network. These expressions can be utilized
to calculate the output range of the network for a given input and compare it to
the desired output range to determine the safety and robustness of the network.
Symbolic interval analysis is a powerful technique for verifying neural networks
as it enables the analysis of intricate networks with non-linear activation func-
tions and multiple layers. It is particularly effective for analyzing networks with
piece-wise linear activation functions such as ReLU, as these networks can be
challenging to evaluate using other verification methods. Figure 1(b), represents
a symbolic approach to address the dependency problem. For neurons n1 and
n2, let x and y represent the input variables. For neurons n3 and n4 can be
symbolically represented as 2x + y and x + 2y correspondingly and greater than
zero since x ∈ [1, 3] and y ∈ [2, 4]. Therefore, the symbolic interval for n3 and
n4 is [2x + y, 2x + y] and [x + 2y, x + 2y] correspondingly and, similarly, the

Improving Neural Network Verification Efficiency Through Perturbation 509

symbolic interval for n5 is [−x + y]. Hence, for x ∈ [1, 3] and y ∈ [2, 4], the
output interval is [−1, 3] which is computed as a tighter bound as compared to
the naive approach of [−5, 7].

3.4 Mixed-Integer Linear Programming

Unstable Neurons. The non-linearity of activation functions A is a significant
obstacle in the process of verification. Specifically, the ReLU activation function
A

(
z
(i)
j

)
= ReLU

(
z
(i)
j

)
= max

(
0, z

(i)
j

)
introduces complexities that must be

addressed during verification. To tackle this issue, we define intermediate layer
bounds l(i)j ≤ z

(i)
j ≤ u(i)

j that constrain the input of each ReLU neuron for a
given input x ∈ C. With these bounds, we can categorize the activation space of
each ReLU neuron.

– Active and Inactive: When the bounds of an intermediate layer for a ReLU
neuron satisfy the condition l(i)j ≥ 0 or u(i)

j ≤ 0, it indicates that the ReLU
neuron lies in either the linear active region where its output is equal to its
input (ẑ(i)j = z

(i)
j) or the inactive region where its output is zero (ẑ(i)j = 0).

– Unstable: If l(i)j ≤ 0 ≤ u(i)
j , we call this ReLU neuron as an unstable neuron,

this circumstance frequently presents challenges to the process of certification.

We follow the MILP-based reformulation of ReLU networks [20], to encode
the unstable neuron. We formulate a ReLU activation function as:

z0 = x

ẑk+1 = W k+1zk + bk+1,∀k = 0, 1, . . . ,K − 1
zk = max (ẑk, 0) , ∀k = 1, . . . , K

ŷx = WKzK + bK ,

(1)

where the variable K denotes the number of layers. Each layer is determined
by a weight matrix W k and a bias vector bk. The size of the weight matrix is
[Nk+1×Nk], while the size of the bias vector is [Nk+1×1]. Here, Nk refers to the
number of neurons in the kth layer. The specifications that define the encoding
of the neuron are as follows:

zk = max (ẑk, 0) ⇒

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

zk ≤ ẑk − ẑmin
k (1 − bk)

zk ≥ ẑk

zk ≤ ẑmax
k bk

zk ≥ 0
bk ∈ {0, 1}Nk .

(2)

where bk is a binary variable.

4 The Perturbation Refinement Verification Framework

The methodology we have adopted involves the combination of gradient attack
and symbolic interval analysis with the MILP-based method. The use of adver-
sarial example from an attack aids in the provision of rough perturbation values,

510 M. S. Patil and K. Främling

which we then utilize to establish the primary bounds. Following this, we lever-
age SIP to obtain more precise bounds for the hidden neurons. The application
of tighter bounds results in decreased activation search space in the verification
problem, thereby enhancing verification efficiency.

Algorithm 1: Perturbation Refinement
Input: DNN N , input x, perturbation threshold ε
Output: Robust

1 ε̂ := FGSM attack(x); // Initial adversarial perturbation

2 SymbolicBounds := SymbolicBoundpPropogation(x, ε̂)
3 MIPFormulation := MIPModel(N , x, ε̂, symbolic bounds)

4 ̂solver := Constraint&Objective(MIP formulation)

5 output := optimise(̂solver)
6 if UNSAT then
7 return Robust N ; // returns a robust network

8 end
9 else

10 x′ :=get adversarial(̂solver);
// returns an adversarial example

11 return x′;
12 end

Algorithm 1 displays an outline of our approach. Given an neural network N ,
an input x ∈ R

n and a perturbation threshold ε. The FGSM attack is responsible
for creating the initial boundaries for the adversarial example in line 1. In line
2, the SIP is utilized to establish tighter boundaries for the neurons than those
from the original adversarial example. Between lines 3-6, an MILP problem is
formulated that takes into account the input, N , ε̂, and the symbolic boundaries
from line 2. The problem returns UNSAT if no adversarial example can be found,
but it returns an adversarial example between lines 7-12.

FGSM Attack. In our method, we first compute a rough estimate ε using
adversarial examples generated by the FGSM attack. This value is typically
very close to the optimal robust radius, which helps to establish more precise
input bounds. By having tighter input bounds, the number of binary variables is
reduced, which in turn reduces the activation search space. Further, we constraint
the adversarial attack that limits the magnitude of the perturbation that can be
added to the input features of the neuron using the L-∞ norm. Mathematically,
we can represent it as:

‖δ‖∞ = max (|δ1| , |δ2| , . . . , |δn|) (3)

where δi is the perturbation added to the i−th neuron, and n is the total number
of neurons. First, we define the L-∞ norm as the maximum absolute deviation

Improving Neural Network Verification Efficiency Through Perturbation 511

between the original input and the perturbed input as shown in 3. Next we define
the ε from the attack as the maximum allowable deviation between the original
input and the perturbed input. Next, we set the bounds for each neuron in the
network by taking into account both the L-∞ norm and ε. For example, if the
L-∞ norm is 0.1 and ε is 0.05, the bounds for a neuron would be [−0.05, 0.05],
since any perturbation greater than 0.05 in either direction would violate both
the L-∞ norm and ε. This ensures that the perturbed input stays within the
allowable range.

By constraining the L-∞ norm of the perturbation added to the input of the
neuron, the FGSM attack ensures that the resulting adversarial example remains
within a certain “perceptual distance” of the original input, or that the output
of the neuron remains close to its original output for small perturbations.

Epsilon-Robustness ε. Epsilon perturbation or epsilon-robustness is employed
to represent the perturbation limits, ε, for a neuron x. Epsilon perturbation
involves adding a small perturbation to the input of the neuron such that the
output remains approximately the same. The procedure to encode perturbation
bounds ε for a neuron x using ε perturbation:

– Determine the range of values that x can take. For example, if x is a pixel in
an image, it might take values between 0 and 255.

– Choose a value for ε (this is obtained from the FGSM attack). This is the
maximum amount of perturbation that is allowed for x.

– Scale epsilon to the same range as x. For example, if x takes values between
0 and 255 you can allow a maximum perturbation of 10%, you would scale
epsilon to 25.5.

– Add or subtract the scaled epsilon value to x to create two new values:
x min = x − ε and x max = x + ε

– Use x min and x max as the new input values for the neuron x. This ensures
that the output of the neuron will remain within a certain range, even if the
input is perturbed.

By using ε perturbation to encode perturbation bounds for a neuron x, we can
ensure that the neuron is robust to small perturbations in its input. This is
useful in speeding up the verification process because since it provides low-cost
solutions or information gathered via a gradient-based adversarial attack.

MILP Formulation. To formulate the bounded neurons bounded by ε into
MILP solver12, we follow the following steps:

1. The binary decision variables: We define binary decision variables for each
neuron in the network, where the variable takes a value of 1 if the neuron is
active and 0 otherwise.

1 We use the Gurobi solver to tackle the MILP problem.
2 https://www.gurobi.com/resources/chapter-1-why-mixed-integer-programming-

mip/.

512 M. S. Patil and K. Främling

2. The objective function: The objective function can be defined to minimize
the distance between the original input and the perturbed input subject to
the constraints that we define in the following steps.

3. Define the constraints for the epsilon value: We can formulate the epsilon value
constraint as a set of linear constraints that ensure that the perturbation of
each neuron is within a specified bound. For each neuron, we can define two
linear constraints to enforce the upper and lower bounds on the perturbation
of the neuron obtained from the FGSM attack.

4. Solve the MILP: Once the MILP is formulated, we can solve it using an
optimization solver to find the input that minimizes the distance between
the original input and the perturbed input subject to the constraints that we
have defined.

By formulating bounded neurons bounded by epsilon into MILP, we can find
adversarial examples that are constrained by the epsilon value while preserving
the behavior of the neural network.

5 Experimentation, Dataset and Evaluation

We compare our verification procedure’s implementation with three existing ver-
ifiers, namely Venus [4], Neurify [21], and MIPVerify [20]. Venus Verifier is a soft-
ware tool for verifying neural network models using a combination of abstract
interpretation and SMT-based techniques. It is based on a novel approach that
combines interval arithmetic and constraint propagation with SMT-based tech-
niques such as CEGAR and IC3. Neurify is a software tool for verifying neural
network models using abstract interpretation. It is based on the ReluVal algo-
rithm, which is an abstract interpretation-based approach for analyzing ReLU
neural networks. MIPVerify is a software tool for verifying neural network mod-
els using mixed-integer programming (MIP). It is a verification framework that
is based on solving a sequence of MIP problems, where each problem checks if
the output of the neural network model is within a certain range. In this work,
we evaluate the effectiveness of our verification algorithm on the MNIST dataset,
which contains handwritten digits ranging from 0 to 9. To ensure consistency,
the images are preprocessed to have a size of 28 × 28 pixels and are normalized
and centered. Each pixel of the image has a value between 0 and 255, with 0
representing black, 255 representing white, and intermediate values representing
different shades of gray.

Table 1 displays the verification results on the first 100 instances using four
different neural architectures and three different verifiers, with an epsilon value
of 0.05. The metrics used to evaluate the verifiers are Vt(sec) (total verification
time), #Adv (number of adversarial examples computed), #SAT (number of
instances verified as satisfied), and #UNK (number of instances for which veri-
fication was inconclusive). The experiments were conducted on a Linux worksta-
tion equipped with a Dual Xeon E5-2673 v3 (24 cores) and 64GB of memory. A
time-limit was set to 120 min for each instance and an overall limit of 720 min. To
minimize experimental errors resulting from parallel tasks, each verification task

Improving Neural Network Verification Efficiency Through Perturbation 513

Table 1. Verification on the MNIST dataset.

Method(N1)〈784, 24, 24, 10〉ε = 0.05 Vt(sec) #Adv #SAT #UNK

Ours 101.43 49 2 0

Venus 24.32 47 2 0

Neurify 398.42 47 2 0

MIPVerify 723.48 49 2 0

Method(N2) 〈784, 40, 20, 10〉 ε = 0.05 Vt(sec) #Adv #SAT #UNK

Ours 282.36 43 7 0

Venus 34.55 44 7 0

Neurify timelimit - - -

MIPVerify 1130.45 43 7 0

Method(N3) 〈784, 512, 512, 10〉 ε = 0.05 Vt(sec) #Adv #SAT #UNK

Ours 12335.32 41 7 0

Venus 2515.86 44 7 1

Neurify memlimit - - -

MIPVerify 34525.35 44 7 1

Method(N4) 〈784, 500, 10〉 ε = 0.05 Vt(sec) #Adv #SAT #UNK

Ours 513.43 2 46 0

Venus 18188.76 6 45 5

Neurify timelimit - - -

MIPVerify 18187.76 4 46 0

was run five times. The average of these results was then used as the experimen-
tal outcome. Our verifier performs better than the other verification methods
on all four neural architectures. Additionally, we notice that Neurify reaches a
time limit for the second and third architectures, denoted as N2 and N3, respec-
tively, and a memory limit for the fourth architecture, denoted as N4. Venus,
however, failed on N4 but outperformed on N1, N2, N3. On N4, Venus returns
five #UNK case whereas our verifier returns zero #UNK thus ensuring com-
pleteness is achieved by always providing a solution to the MILP problem.

6 Conclusion

In conclusion, our paper has successfully demonstrated the potential of low-cost
solutions derived from adversarial attacks to reduce the search space and stream-
line the verification process, while still maintaining high levels of accuracy. Future
work in this area will involve comparing our approach with different adversarial
attacks to further optimize the effectiveness of our method. By leveraging the
insights gained from this study, we hope to contribute to the ongoing efforts
to enhance the security and robustness of machine learning systems. In future

514 M. S. Patil and K. Främling

work, we focus on robust optimization i.e., variability in the data or parame-
ters of the problem, can lead to sub-optimal or even infeasible solutions. One
way to address this is the objective function and constraints are reformulated to
explicitly account for the worst-case scenarios of the uncertain data. Adversarial
attacks can be seen as a way of generating such worst-case scenarios, and hence
the adversarial solutions can be used as inputs to the robust optimization formu-
lation. This can lead to more robust and reliable MILP solutions that perform
well under various scenarios.

References

1. Alparslan, Y., Alparslan, K., Keim-Shenk, J., Khade, S., Greenstadt, R.: Adver-
sarial attacks on convolutional neural networks in facial recognition domain. arXiv
preprint arXiv:2001.11137 (2020)

2. Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., Vielma, J.P.: Strong
mixed-integer programming formulations for trained neural networks. Math. Pro-
gram. 183(1–2), 3–39 (2020)

3. Biggio, B., et al.: Evasion attacks against machine learning at test time. In: Bloc-
keel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS
(LNAI), vol. 8190, pp. 387–402. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40994-3 25

4. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient ver-
ification of ReLU-based neural networks via dependency analysis. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3291–3299 (2020)

5. Bunel, R., Mudigonda, P., Turkaslan, I., Torr, P., Lu, J., Kohli, P.: Branch
and bound for piecewise linear neural network verification. J. Mach. Learn. Res.
21(2020) (2020)

6. Bunel, R.R., Turkaslan, I., Torr, P., Kohli, P., Mudigonda, P.K.: A unified view
of piecewise linear neural network verification. Adv. Neural Inf. Process. Syst. 31
(2018)

7. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

8. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

9. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

10. Gopinath, D., Pasareanu, C.S., Wang, K., Zhang, M., Khurshid, S.: Symbolic exe-
cution for attribution and attack synthesis in neural networks. In: 2019 IEEE/ACM
41st International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), pp. 282–283. IEEE (2019)

11. Hernandez, C., Espf, J., Nakayama, K., Fernandez, M.: Interval arithmetic back-
propagation. In: Proceedings of 1993 International Conference on Neural Networks
(IJCNN-93-Nagoya, Japan), vol. 1, pp. 375–378. IEEE (1993)

12. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

http://arxiv.org/abs/2001.11137
https://doi.org/10.1007/978-3-642-40994-3_25
https://doi.org/10.1007/978-3-642-40994-3_25
https://doi.org/10.1007/978-3-319-68167-2_19
http://arxiv.org/abs/1412.6572
https://doi.org/10.1007/978-3-319-63387-9_1

Improving Neural Network Verification Efficiency Through Perturbation 515

13. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

14. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical
world. In: Artificial Intelligence Safety and Security, pp. 99–112. Chapman and
Hall/CRC (2018)

15. Lin, W., et al.: Robustness verification of classification deep neural networks via
linear programming. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11418–11427 (2019)

16. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

17. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: 2016 IEEE European Sym-
posium on Security and Privacy (EuroS&P), pp. 372–387. IEEE (2016)

18. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proc. ACM Program. Lang. 3(POPL), 1–30 (2019)

19. Szegedy, C., et al.: Intriguing properties of neural networks. corr abs/1312.6199,
arXiv preprint arXiv:1312.6199 (2013)

20. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. arXiv preprint arXiv:1711.07356 (2017)

21. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: Advances in neural information processing systems, vol. 31
(2018)

22. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: 27th {USENIX} Security Symposium
({USENIX} Security 18), pp. 1599–1614 (2018)

23. Wang, S., Su, Z.: Metamorphic testing for object detection systems. arXiv preprint
arXiv:1912.12162 (2019)

24. Wardat, M., Le, W., Rajan, H.: Deeplocalize: fault localization for deep neural
networks. In: 2021 IEEE/ACM 43rd International Conference on Software Engi-
neering (ICSE), pp. 251–262. IEEE (2021)

25. Weng, L., et al.: Towards fast computation of certified robustness for ReLU net-
works. In: International Conference on Machine Learning, pp. 5276–5285. PMLR
(2018)

26. Yang, P., et al.: Enhancing robustness verification for deep neural networks via
symbolic propagation. Formal Aspects Comput. 33(3), 407–435 (2021)

https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1711.07356
http://arxiv.org/abs/1912.12162

	Improving Neural Network Verification Efficiency Through Perturbation Refinement
	1 Introduction
	2 Related Work
	3 Background
	3.1 Robustness Against Adversarial Perturbations
	3.2 Gradient-Based Adversarial Attack
	3.3 Symbolic Interval Analysis for Bound Tightening
	3.4 Mixed-Integer Linear Programming

	4 The Perturbation Refinement Verification Framework
	5 Experimentation, Dataset and Evaluation
	6 Conclusion
	References

