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Abstract. The ImageNet-1k dataset has been a major contributor to
the development of novel CNN-based image classification architectures
over the past 10 years. This has led to the advent of a number of models,
pre-trained on this dataset, that form a popular basis for creating custom
image classifiers by means of transfer learning. A corollary of this process
is that whatever weaknesses and biases the original model possesses, the
derived model will also have. Some of these have already been extensively
covered, but color sensitivity has so far been understudied. This paper
explores the prediction stability of several popular CNN architectures
when input images are subjected to hue or saturation shifts. We show
that even small shifts in image hue can alter a model’s initial prediction,
with larger shifts introducing changes up to 60% and 40% of the time for
AlexNet and VGG16 respectively. For all models considered, saturation
changes have less impact. To illustrate the issue being inherited by mod-
els obtained through transfer learning, we confirm that EmoNet, a model
derived from AlexNet, exhibits similar behavior. By further comparing
a same architecture trained separately on ImageNet-1k, Places365 and
Stylized ImageNet, we confirm that the issue is shared across datasets.
Finally, we propose a new preprocessing data augmentation to alleviate
this problem.
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1 Introduction

ImageNet1 [2] is a large, publicly available, image dataset (14M+ images). Its
images are organized according to the WordNet hierarchy, making it especially
useful for image classification tasks, as target labels are readily available. In
2010, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [12]
introduced a particular subset of images from 1000 different categories known as
the ImageNet-1k dataset, with an accompanying image classification challenge.

In 2012, a Convolutional Neural Network (CNN) now widely known as
AlexNet [9] convincingly won this competition. This result led to quick and
widespreak adoption of CNNs to solve image classification and recognition tasks;
while AlexNet was the only CNN submitted in 2012, by the next year the major-
ity of submissions were CNN-based. Other popular architectures that were either
submitted to ILSVRC or trained on the ImageNet-1k dataset, and that will
be evaluated in this paper, are VGG16 [13], ResNet18 and ResNet50 [5], and
DenseNet161 [7].

Despite their popularity and successes, these architectures also have weak-
nesses, both ethical [1,14,16] and technical. The most famous in this latter cate-
gory are arguably adversarial attacks [15]: tiny alterations to an original image,
imperceptible to the human eye, that fool the network into misclassifying the
image. Also visible alterations such as blurring, pixelation, addition of several
types of noise, etc., severly impact model performance [6]. In summary, these
networks tend to perform very well on the type of data they are trained on, but
fail to generalize beyond that.

Within this context, this paper focuses on a type of alteration that seems
understudied, namely color changes. Moreover, existing work, such as [3,11],
focuses on comparison between the human vision system and CNNs. Both stud-
ies use models trained on ImageNet-1k—the former VGG-M and the latter
AlexNet, VGG16 and VGG19—to investigate the color sensitivity and selec-
tivity of unique CNN filters and layers. Their interest lies in decyphering how
these CNNs encode color, and to what extent this overlaps with biological sys-
tems. The results obtained in [3] state that overall, the models they studied are
more sensitive to changes in hue than in saturation, and that both affect model
accuracy. Both results will be discussed and compared to our results below.
Our focus lies solely on how color affects model robustness and performance.
Although complete color invariance is not desireable, neither should a useful
CNN model alter its predictions when small color shifts, that would not fool
humans, are applied to images. An example of undesireable behavior is depicted
in Fig. 1, which shows AlexNet misclassifying an originally correctly classified
image when it is subjected to modest hue shifts. In this context, it is interest-
ing to note that the original AlexNet paper [9] describes a data augmentation
scheme that (last paragraph Sect. 5.1):

1 https://www.image-net.org/.

https://www.image-net.org/
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[...] approximately captures an important property of natural images,
namely, that object identity is invariant to changes in the intensity and
color of the illumination.

For some reason, this specific augmentation disappeared from later implemen-
tations, e.g., the PyTorch implementation we use.

Fig. 1. Example of AlexNet sensitivity to hue shifts, expressed in degrees.

We start by investigating the effect of applying hue and saturation shifts to
ImageNet-1k images on ImageNet-1k trained models, both in terms of prediction
robustness—i.e., does a prediction for an altered image differ from that of the
original image, regardless of the correctness of that original prediction?—and
accuracy. Next, we turn our attention to EmoNet [8], an image classification
model obtained by taking AlexNet trained on ImageNet-1k, replacing its last
layer with a 20 node linear layer and training only this new layer on a custom
dataset of 137k images annotated with one of 20 emotion labels representing the
emotion elicited by the images in an observer. The question we want to answer
is to what extent this model obtained by means of transfer learning inherits
its parent’s properties. EmoNet forms an interesting case, because elicited emo-
tions form a dimension that can also reasonably be assumed to be independent
of moderate color changes; a few degrees of hue shift shall not make a puppy less
cute. Following this, we look at some of the earlier mentioned CNNs, but trained
from scratch on different large datasets. In particular, we consider Stylized Ima-
geNet [4], a dataset derived from ImageNet-1k by means of style transfer, and
Places365 [17], a dataset of millions of images annotated with one of 365 scene
classes. By comparing the effect of color-related changes on a same architecture
trained on different datasets, we determine if this effect is an inherent property
of the architecture or a consequence of the training data. Stylized ImageNet is of
particular interest, as its authors specifically constructed the dataset to obtain
models that use more global (“style”) rather than local (“texture”) features.

Finally, we propose two image preprocessing steps, one related to hue, the
other to saturation, to augment a model’s robustness with regards to alterations
in these dimensions. To demonstrate the effectiveness of these preprocessors, we
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focus on ImageNet-1k and show that one can simply continue training a pre-
trained model using these additional preprocessors to achieve the desired effect;
there is no need to train a model from scratch. All our code and models are
available through our GitLab page [10].

The remainder of this paper is organized as follows: in Sect. 2 we explain the
methodology used to test model robustness to hue and saturation changes, fol-
lowed by a discussion of obtained results in Sect. 3. Section 4 deals with retraining
pretrained models using additional preprocessing steps in order to increase model
robustness to hue and saturation changes. The paper concludes with Sect. 5.

2 Exploring Color Robustness: Implementation

We perform experiments with a number of models that were trained by others on
specific training sets. In our experiments, we test performance using a number
of existing validation sets. Table 1 shows an overview of the model-training-
validation combinations we consider. The ImageNet-1k train and validation sets
consist of 1,281,167 and 50,000 images respectively. For Places365, the mod-
els were trained using 8,000,000 images, with the corresponding validation set
containing 36,500 images. Our code is Python-based, using PyTorch2 as deep
learning framework and Pillow3, often referred to as PIL, as image processing
package. All ImageNet-1k models are standard PyTorch implementations. The
SIN and Places365 models were obtained through their respective public Git
repositories. EmoNet is officially released as a MatLab model, and was ported
by one of the current authors to PyTorch4.

Table 1. Overview of training and validation data per model. “〈ModelName〉” is a
placeholder for a valid architecture, “IN-1k” = ImageNet-1k, “SIN” = Stylized Ima-
geNet, “train” = train data, “val” = validation data.

Model Trained on Validated on

AlexNet, VGG16, ResNet18/50, DenseNet161 IN-1k train IN-1k val

〈ModelName〉-SIN SIN IN-1k val

〈ModelName〉-P365 Places365 train Places365 val

EmoNet IN-1k train + EmoNet IN-1k val

2.1 Applying Hue Changes

For a given pre-trained model M and corresponding validation data V , we apply
hue shifts with degrees d ∈ [0, 10, 20, . . . , 350] to obtain shifted data sets Vd. Note
that V = Vd=0.
2 https://pytorch.org/.
3 https://pillow.readthedocs.io/en/stable/.
4 This port is available at https://gitlab.com/EAVISE/lme/emonet.

https://pytorch.org/
https://pillow.readthedocs.io/en/stable/
https://gitlab.com/EAVISE/lme/emonet
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To apply the hue shifts, we first load the images as PIL images, then trans-
form them to tensors using PyTorch. These tensors, which encode RGB infor-
mation, are then converted to HSV5. Following this, the H-dimension is shifted
by the required amount of degrees, and the image converted back to RGB.

2.2 Applying Saturation Changes

To change the saturation level of an image, we use the enhance(g) method of
the PIL.ImageEnhance.Color class, with g ∈ [0,+∞[. Using color gain g = 1
returns the original image, g = 0 returns a black-and-white copy, values 0 < g <
1 produce desaturated images and g > 1 saturates the image. Starting again
from validation data V , we produce data sets Vg using the described approach
with g ∈ [0.00, 0.05, . . . , 1.95, 2.00], where V = Vg=1. The upper limit value of 2
was chosen heuristically by visual inspection.

2.3 Assessing Model Robustness

For a given model M , we determine its reference predictions, defined as its
predictions for V = Vd=0 = Vg=1. We then let M process all other data sets
Vd�=0 and Vg �=1, and check what percentage of predictions remain unchanged.
For each data set, we also compute the accuracy and look at what percentage of
originally correct and wrong predictions were left unchanged. In other words, this
tells us whether the internal model representation of correctly classified images
is more stable than that of wrongly classified images.

3 Exploring Color Robustness: Results

A graphical representation of the evolution of model performance with hue and
saturation shifts for AlexNet-based models is depicted in Fig. 2. Due to space
limitations, we do not include plots for the other models, but instead make those
available on our GitLab page [10]. Just as the symmetricity of the hue shift plot
can be explained by the hue shift being controlled by a 360-degree parameter,
the non-symmetricity of the saturation shift plot follows from the g parameter
being only lower bound, and non-symmetric around 1. Statistics for all models
are shown in Table 2. Besides the familiar Top1 accuracy, this table also includes
the following metrics:

– Equal predictions (Equal): for a given hue shift d �= 0 or saturation shift
g �= 1, this represents the fraction of images for which the predicted label
remains the same as the original prediction (d = 0, g = 1), regardless of the
correctness of the original prediction.

– OverLap+ (OL+): the fraction of originally correctly classified images whose
predicted label did not change.

5 We use the code available at https://github.com/limacv/RGB HSV HSL for this.

https://github.com/limacv/RGB_HSV_HSL
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– OverLap− (OL−): the fraction of originally wrongly classified images whose
predicted label did not change.

– Original Position (O.P.): the position of the label predicted for the shifted
image in the list [l0, l1, . . . , ln] of labels ordered by their likelihood as predicted
for the original image. That is, if O.P. = 0, the shift did not change the
prediction, but if O.P. is, e.g., 2, this means that the label predicted for the
shifted image was originally the third most likely label. The result tables show
averages that were computed taking only non-zero values into account.

Fig. 2. Fraction of identically classified images compared to the reference prediction
(d = 0, g = 1) for increasing hue and saturation shifts for AlexNet-based models.

For the Equal metric, we observe very similar results for the same archi-
tectures trained on different datasets. EmoNet does appear to perform slightly
better than other AlexNet-based models wrt. larger hue shifts, but given that it
only has 20 output nodes compared to 365 and 1000 for the other models, sug-
gesting that larger perturbations are needed to switch output nodes, the overall
similarities are remarkable. For saturation shifts, the differences are negligible.
The slightly better AlexNet-SIN performance compared to AlexNet for satura-
tion shifts is puzzling, given that both VGG16 and ResNet50 show the opposite
behavior. Overall, the fact that SIN-trained models appear to be less robust wrt.
both hue and saturation shifts than the ImageNet-1k models is intruiging, given
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that the aim of the SIN dataset is to create models that focus more on “global”
than “local” features. Since hue and saturation shifts are global transformations,
one would have expected the opposite. Our results confirm and expand on the
findings of [3] that hue sensitivity is higher than saturation sensitivity6, apparent
from the much lower values for Equal dall than for Equal gall.

Turning to the OverLap metrics, it is noteworthy that images that are origi-
nally correctly classified consistently have a lesser probability of being misclassi-
fied after applying hue/saturation changes. This suggests that the internal model
representations for these images are inherently more robust, although it is not
clear at first sight why this is the case. The magnitude of the gaps between the
OL+ and OL− metrics is striking. Even more so is the fact that, despite all
models being less sensitive to saturation changes, the corresponding OL+/OL−
gap lies considerably higher than for hue changes.

Finally, the O.P. results are in line with the previous results. As the number
of output nodes diminishes, so does the O.P. Furthermore, for hue changes, the
O.P. is higher than for saturation changes. For smaller perturbations (|d| ≤ 30,
g ∈ ]0.5, 1.5[\{1}), the O.P. is markedly smaller than when considering dall or
gall. As the size of the perturbation increases, so does the erraticness of the
change in predicted label. This is specifically apparent in the very large gap in
standard deviations between both regimes.

Concerning overall model performance, the top panel in Fig. 2 suggests that,
for AlexNet and EmoNet, this more or less linearly decreases until it plateaus
at around an 80◦ hue shift in either direction. Similar behavior can be observed
for the other models, with the exception of ResNet50, for which the perfor-
mance shows a slight bump around the 170◦–180◦ region. In their paper, [3]
report an average drop in performance of 31.6% over hue shifts, averaged over
VGG16, VGG19 and AlexNet performance, with 42% for AlexNet alone. This
matches our 41.5% for AlexNet7. In a non-reported experiment, we obtained
28.9% for VGG19, which combined with the 22.9% for VGG16 derivable from
Table 2 amounts to a 30.9% average, closely matching their result. The slight dif-
ferences can be explained by the useage of different pretrained models, namely
CAFFE vs. PyTorch implementations. Turning to grayscale (corresponding to
g = 0) vs. original images, they report average drops of 25% across all three net-
works, and 33% for AlexNet, compared to 25.5% and 40.2% for us respectively,
18.8% for VGG16. Although the average across networks matches, we can only
speculate as to the larger implied individual differences indicated by the AlexNet
mismatch.

6 Note that [3] use “chroma” instead of “saturation”, but given the similarity between
both, our conclusion still stands.

7 Divide “Top1 dall” by “Top1 d0, g1” to compute this number.
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4 Increasing Color Robustness by Adding Extra
Preprocessing Steps

4.1 Training of Models

For this experiment, we focused on the AlexNet, VGG16 and ResNet18
ImageNet-1k models. To increase their robustness to changes in hue and sat-
uration, we apply random hue and saturation changes to input images during
the training phase, on top of the standard ImageNet-1k preprocessing steps. The
image processing is done as explained in Sects.2.1 and 2.2. The difference is that
this time, the magnitude of the change is chosen randomly whenever an image
is loaded. The number of degrees of the hue shift is sampled from a normal
distribution N (μ = 0, σ = 30), while the gain factor for the saturation shift is
sampled from a normal distribution N (μ = 1, σ = 0.5). The choice for these
particular distributions is heuristic. For hue changes, σ = 30 was chosen as this
range coincides with a steep descent in model performance and comprises hue
changes that, as illustrated in Fig. 1, are not too extreme. For saturation changes,
given the reduced model sensitivity, we opted to have 2σ span the entire covered
spectrum.

The hue and saturation changes are applied right before normalizing the
image. Model validation is performed on the original validation set.

As a starting point, we take the pretrained PyTorch implementations of the
aformentioned models, available through the torchvision library. We then con-
tinue training these models using the ImageNet-1k train data, CrossEntropyLoss,
dropout = 0.25, Adam optimizer with weight decay = 10−6, batch size 64 for
VGG16 and 256 for Alexnet and ResNet18, and the learning update rule:

lre =
lr0√

(e//2) + 1
, (1)

with lre the learning rate at epoch e and the initial learning rate lr0 = 10−5.
By virtue of the floor division (//), this means we update the learning rate once
every 2 epochs. Training stops when either the best loss or the best weighted
F1 score on the validation set lies 6 epochs behind the current epoch, with the
model corresponding to this best epoch put forward as the final trained model.

Models were trained using hue (+h), and hue + saturation (+hs) preprocess-
ing. Given the increased model sensitivity to hue changes, we opted not to train
models using only saturation preprocessing. To check the effect of only retraining
a CNN’s classifier (class.; i.e., the final linear layers following the convolution
layers) instead of the entire model, we also retrained the AlexNet classifier, con-
sisting of the final 3 linear layers including the output layer, while keeping the
convolution layers fixed.

4.2 Results

Metrics for our retrained models are depicted in Table 3. Plots depicting model
performance are made available through out GitLab page [10]. Noteworthy is the
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fact that our retrained models retain the Top1 performance of the original mod-
els, but manifest clearly improved robustness to hue and saturation alterations.
This means that separate sets of CNN filters achieve the same accuracy on the
same dataset, but nonetheless show vastly different behavior when performing a
specific transformation on the input images. Although the “AlexNet class.” mod-
els already show a significant improvement in robustness compared to AlexNet,
the fact that the full retrained models perform even better confirms the intuition
that CNN filters are the crucial ingredient in obtaining robust models, rather
than the linear classification layers. For all models, the additional preprocessing
does not seem to alter the gap between OL+ and OL− for hue changes, i.e., they
are both affected similarly, but additional saturation preprocessing has a clear
positive effect for its corresponding gap. More striking is the large decrease in
O.P., specifically for hue. For saturation, the effect is less pronounced8, arguably
in part because there is less room for improvement to begin with. Moreover,
additional hue preprocessing tends to negatively influence O.P. for saturation
changes, but using both hue and saturation preprocessing benefits the O.P. for
both types of changes. All this suggests that these preprocessing steps contribute
to creating more robust internal model representations.

5 Conclusion

This paper explores the prediction stability of the popular CNN architectures
AlexNet, VGG16, ResNet18 and 50, and DenseNet161. We show that all mod-
els alter their predictions when input images have their hue shifted, with larger
shifts increasing alteration frequency. Averaged over all hue shifts, relative model
performance experiences a drop of 41.5%, 22.9%, 21.4%, 11.3% and 14.3% respec-
tively for the aforementioned models, resulting in an average drop of 22.28% over
all models; larger models show less sensitivity. The largest drops are observed
within up to 30◦ shifts from reference, with performance stabilizing around the
80◦ mark. Moreover, models trained on ImageNet-1k, Stylized ImageNet and
Places365 are compared, showing the training data has little to no effect on
this issue. EmoNet, a model derived from AlexNet, is shown to inherit essen-
tially the same behavior as its parent. Saturation shifts elicit similar but more
restrained behavior, with an average performance drop of only 4.0% over all
models. Importantly, for both hue and saturation alterations, the prediction for
images originally correctly predicted tends to be more robust than for images
originally wrongly predicted. We propose to include two additional preprocessing
steps in the training process, namely random hue shifts and saturation changes,
which, when used to retrain existing models, are shown to improve average pre-
diction stability for hue shifts on ImageNet-1k with 19%, 13% and 12% for
AlexNet, VGG16 and ResNet18 respectively. For saturation changes, 11%, 6%
and 6% improvements are obtained, in the last two cases lifting stability up to
94% and 93%. Interestingly, these retrained models retain the original model’s
ImageNet-1k performance, leading to the question: How exactly can several sets
8 We compare 〈ModelName〉 to 〈ModelName〉 +hs.
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of convolution filters result in the same ImageNet-1k accuracy, yet show markedly
different behavior when subjected to particular image transformations? We hope
to address this question in future work.
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