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Abstract. As collaborative robots (cobots) continue to gain popu-
larity in industrial manufacturing, effective human-robot collaboration
becomes crucial. Cobots should be able to recognize human actions
to assist with assembly tasks and act autonomously. To achieve this,
skeleton-based approaches are often used due to their ability to gen-
eralize across various people and environments. Although body skele-
ton approaches are widely used for action recognition, they may not
be accurate enough for assembly actions where the worker’s fingers and
hands play a significant role. To address this limitation, we propose a
method in which less detailed body skeletons are combined with highly
detailed hand skeletons. We investigate CNNs and transformers, the lat-
ter of which are particularly adept at extracting and combining impor-
tant information from both skeleton types using attention. This paper
demonstrates the effectiveness of our proposed approach in enhancing
action recognition in assembly scenarios.

Keywords: Action Recognition · Skeleton-based · Fusion · Body
Skeletons · Hand Skeletons · 3D/2D Skeletons · Assembly · Deep
Learning

1 Introduction

Collaborative robots are playing an increasingly important role in the course
of Industry 4.0 [9]. In order for the robot to collaborate with a human worker
and assist in assembly processes, it first needs to visually perceive its environ-
ment, the current assembly state, and human actions [6,15,18]. For human action
recognition, often RGB-based approaches are utilized in the state of the art, as
they achieve the best results. However, RGB-based approaches face major diffi-
culties when the target scenario deviates from the training scenario. They tend
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to overfit to the environment and the persons seen, especially when the train-
ing dataset lacks diversity [15]. This limitation frequently applies to assembly
datasets [2,3], which are often small and recorded at only a few locations. In
contrast, skeleton-based approaches do not face these limitations, as they only
process skeletons and, thus, can generalize much better to different environments.

Fig. 1. We combine body skeletons with hand skeletons for human action recognition.
Some actions can be recognized primarily by the movement of the hands. The encoding
of the skeleton sequences to images is explained in Sect. 4.1. Example frames from [2].

However, as shown in Fig. 1, some actions are difficult to recognize by the
body skeleton alone. For example, the action of attaching a small object is mainly
characterized by the object movement, as utilized in [1], and how the worker’s
hands interact with it. For this assembly step, it is therefore also useful to uti-
lize finer hand skeletons. This is already done for other assembly datasets such
as Meccano [12] or Assembly101 [14], which are recorded in first-person view.
However, using hand skeletons alone might not be sufficient for actions such as
turning, rotating or pushing of workpieces. During these actions, the fingers are
mostly rigid, and most of the movement takes place in the upper body.

Therefore, in this paper, we want to investigate how highly detailed hand
skeletons can be combined with less detailed body skeletons to enhance the
recognition of assembly actions on the ATTACH [2] and IKEA ASM [3] datasets.
By doing so, we aim to recognize both types of actions.

Our study examines both 2D and 3D body skeletons. While 3D skeletons
offer a more comprehensive representation of the person’s actions, 2D skeletons
are more widely available in practical applications. In this paper, we demonstrate
how 2D and 3D hand skeletons can be integrated with various body skeletons.
One of the key challenges is that the hands are often occluded, either partially
or entirely, which can complicate the estimation of hand positions and the fusion
with body skeletons. We also explore the challenges associated with differently
detailed skeletons. Specifically, a body skeleton typically has 18–32 joints, while
two hand skeletons have most often 42 joints. Although, there are typically
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more hand joints than body joints, the latter contains significantly more crucial
information for many assembly actions. Therefore, in this paper, we describe
how to address this dimension imbalance. Our contributions are as follows:

1. We investigate the use of hands in conjunction with body skeletons in both
2D and 3D to improve action recognition for assembly tasks.

2. We predict hand skeletons on the ATTACH and the IKEA ASM datasets and
employ a selection process to identify the appropriate hands.

3. To the best of our knowledge, we are the first to employ the SwinV2 trans-
former [10] for skeleton-based action recognition.

2 Related Work

In the following, we first present the state of the art of action recognition with
skeleton sequences, before going into more detail about differences between hand
and body skeleton action recognition and possibilities of fusing skeletons.

2.1 Methods for Skeleton-Based Action Recognition

Human action recognition encompasses various subfields, but in this paper, we
focus on the action classification task of pre-trimmed video clips of human skele-
ton sequences, as this task serves as a foundation for other related problems, such
as action segmentation or action detection. For skeleton-based action recogni-
tion, recently, 2D convolutional neural networks (CNNs) such as VA-CNN [20],
3D CNNs like PoseConv3D [5], graph convolution networks (GCNs) , and trans-
formers like AcT [11] have been used.

In our paper, we adopt the skeleton encoding of [4] and use it like VA-
CNN, which employs a ResNet50 backbone, as it has demonstrated superior or
comparable results on the ATTACH Dataset [2] compared to GCN methods.
In this approach, the skeleton sequence is encoded as an image so that typical
image based classifiers can be used. The image encoding also provides the ability
to weight the different skeletons based on their occupied image space which will
be explained in Sect. 4.

Moreover, we are able to replace the CNN backbone with the SwinV2-T
transformer [10], which has demonstrated excellent results in image-based pat-
tern recognition.

2.2 Hand and Body Skeleton-Based Action Recognition

The idea of fusing less detailed body skeletons with highly detailed hand skele-
tons for action recognition has only been briefly addressed in the literature, and
is still a new area of research. For instance, in NTU-X [17] body skeletons from
NTU-RGBD 60/120 were extended to include highly detailed hand skeletons and
facial features. In [16] a model was trained for every skeleton type to build an
ensemble for classifying actions. It was demonstrated in [16,17] that additional
hand skeletons from the NTU dataset for everyday and domestic actions (such
as eating or blowing one’s nose) are helpful to the classification task.
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In contrast, during assembly, the hand is often occluded by the object being
worked on, and the quality of the estimated hand skeletons varies significantly.
Typically, the state of the art for action recognition with hands focuses on ges-
ture recognition, where the hands are usually unoccluded. For action recognition
during assembly, hand skeletons have only been used in fine motor assembly
(e.g., Meccano [12], Assembly101 [14]), where cameras are mounted either on
the worker’s head or above the table and focus on the worker’s arms and hands.
For instance, in the application scenario of fine-motor toy assembly, which is
similar to ours, [14] demonstrated that estimated hand skeletons can be utilized
for action recognition. This indicates that our approach of fusing body skeletons
with hand skeletons shows promise for action recognition in general assembly
tasks. Such tasks involve a combination of coarse actions, where the movement
of the body is relevant, and fine motor actions (as in Fig. 1), where hand skele-
tons are primarily important. Therefore, in this paper, our goal is to explore how
these differently detailed body and hand skeletons can be combined optimally.

3 Hand and Body Skeleton Dataset Preparation

Below, we first present the datasets we used. Afterwards, we explain how we
estimated the hand skeletons and what to consider when processing them.

3.1 Datasets

To show our approach, we utilize two datasets that contain both small-grained
assembly actions that can be mainly recognized by the hands movement as well
as coarse assembly actions that involve the whole body, namely the ATTACH [2]
and the IKEA ASM [3] datasets. Both datasets are captured from multiple views
(three) and consist of assembly actions, where IKEA furniture are assembled.
The action names for the action recognition task are composed of verb-object
pairs. Below, we shortly discuss each dataset characteristics in detail.

ATTACH. The ATTACH dataset [2] provides different training splits, we focus
on the person split in this paper as it is the most commonly used split for
action recognition. Skeleton data are available in 3D from the Azure Kinect
framework. Since the state of the art typically deals with 2D skeletons, we have
also transformed the 3D skeletons into the 2D frame of the RGB camera. In our
experiments, we consider both 3D and 2D body skeletons for combination with
hand skeletons.

It is worth noting that actions are labeled for each hand independently.
Moreover, some actions involve the use of tools such as wrenches, hammers or
screwdrivers, where most of the movement occurs in the hand and fingers. Intu-
itively, this suggests that incorporating additional hand skeletons could poten-
tially enhance the performance of skeleton-based action recognition methods.

IKEA ASM. We use the official splits provided in [3]. The dataset provides
2D skeletons for all views estimated by Keypoint R-CNN [8]. Unlike the Kinect
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skeleton, Keypoint R-CNN only predict one single wrist joint per hand. There-
fore, incorporating additional hand skeletons might also be useful for action
recognition on the IKEA ASM dataset.

However, it should be noted that some actions are difficult to recognize even
with hand skeletons. For example, actions such as pick up back panel, pick up
front panel, and pick up side panel can only be distinguished by the object
used [1], which is not present in the skeleton data.

3.2 Hand Skeleton Estimation
For estimating hand skeletons, the hands need to be clearly visible in the current
frame. However, due to their small size in the IKEA ASM dataset, we first
cropped a 300×300 patch of the RGB image around the wrist joint of the body
skeleton. For the ATTACH dataset, we can skip this first step.

Fig. 2. Overview of our different fusion approaches. (a) As a baseline we train models
with only the body skeleton. H is the height of the input image. (b) As a simple way
of fusing both skeleton types we merge them into a single image while investigating
different ratios between body and hand skeletons. Nh is the number of hand joints (42
in our case) and s is a scaling factor. (c) We treat both skeletons types as different
modalities and apply them as distinct input images.

To detect hands and estimate hand skeletons, we used MediaPipe [19]. How-
ever, since the predictions can be rather noisy, we filtered the hands by discarding
all hands where the distance between the wrist joints of the predicted hand skele-
ton and the body skeleton exceeded a certain threshold. We kept at most two
hands per image. In cases where hand skeletons were missing, we simply took
skeletons from past frames to attribute for the missing data.

MediaPipe predicts both 2D and 3D hand skeletons with 21 joints each. While
2D hand skeletons are represented in the image plane, the 3D hand skeletons are
represented in a metric space, where the origin is located on the surface of each
hand. Therefore, when working with 3D data, we transformed the 3D hands into
the frame of the 3D body skeletons.

4 Approach

In the following, we describe our approach to action recognition of pre-trimmed
skeleton sequences. In Sect. 4.1, we first present our baseline with body skeletons,
before discussing different variations for incorporating hand skeletons in Sect.
4.2.
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4.1 Baseline: Body Skeleton Approach

For our baseline, we only use the body skeleton, without incorporating addi-
tional hand skeletons1. For this, we encode the skeletons from a trimmed action
sequence into one single RGB image, similar to [4,20]. One column of the image
represents one frame, where the skeleton joints are stacked in a fixed order. To
transform a joint to RGB, the XYZ coordinates are normalized and scaled.2

For 2D skeleton data, we have just two channels. These images (see Fig. 1 for
a visualization) can then be used as input to typical image-based classification
architectures such as ResNet50 (ResNet).

Furthermore, while ResNet is typically used in the state of the art [2,20], we
additionally use a SwinV2-T transformer (Swin) [10] for the first time to classify
skeleton sequences. Moreover, Swin offers another possibility for fusing hand and
body skeleton data, which we will describe in the following.

4.2 Approaches for Fusing Hand and Body Skeletons

For incorporating additional hand skeleton data, we experiment with different
methods, as illustrated in Fig. 2. Figure 2a serves as a schematic representation of
our baseline approach. In the following, we describe two approaches for encoding
the sequence of body skeletons with additional hand skeletons. The first approach
involves encoding the hand and body skeletons in a single image, while the second
approach creates multiple images that are then combined in the network, similar
to multimodal networks that integrate color data with depth data [7,13].

Single Image Fusion. Figure 2b illustrates our single image fusion approach.
Naively, the hand skeleton joints could be appended below the body skeleton
joints in the skeleton encoded image. For example, for a Kinect Azure skeleton
and MediaPipe hands, the first 32 rows would contain the body skeleton, followed
by the right hand and the left hand, each with 21 rows. In this way, however, the
body skeleton would account for just under 43% of the input, while the hands
would account for the remaining 57%. Such a division, in which the number of
hand joints of both hands is predominant, is typical for the relevant skeletons
used in the state of the art. This example is shown on the left side of Fig. 2b.

However, for recognizing assembly actions, the body skeleton provides more
relevant information than the fine hand skeletons, which should only serve as
support. With such a naive partitioning of the image, the classifier is given a
bias by devoting a larger input space to the hand skeletons.

To address this issue, we investigate another option to fuse the skeletons
into one image, which is shown on the right side of Fig. 2b. Here, we keep the
original scaling resolution of the body skeleton as in the baseline (see Fig. 2a).

1
Our preliminary experiments on the ATTACH dataset using hand skeletons solely showed far
inferior results compared to body skeletons solely and are thus not investigated further.

2
For ResNet, the image is resized to 224×224 with pixel values ranging from 0–255. For Swin, we
use a resolution of 256×256 with pixel values from 0-1.
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The body skeleton is scaled up to the original input resolution of the classi-
fier, and subsequently, another image with upscaled hand skeletons is stacked
below. We investigate scaling factors s ∈ [1, 8], where we scale the height of the
encoded hand skeleton images (i.e., Nh = 42 for MediaPipe skeletons), where
s=8 resembles the scaling of the body skeleton image.

Multiple Image Input. As an alternative to the previous approach, the skele-
ton data can be split into different images, and the resulting features can be
fused in the network. Recent work on the EMSAFormer [7] has shown that the
SwinV2 transformer is particularly suitable for multimodal processing. In their
study, the Swin transformer was extended in such a way that RGB and depth
images of a scene are fed into the same Swin network as two different images.

We propose a similar approach for processing the encoded body skeleton
images and the encoded hand skeleton images. Figure 2c (left) shows how we
create two images, one for the body skeleton and one for both hands. The first
image is encoded on the first 64 channels of the feature map in the patch embed-
ding, and the second image is encoded on the last 32 channels. After the first
attention block, the network combines the information and passes it on to the
subsequent blocks, whereby the Swin architecture was not changed.

Alternatively, we can split the skeletons into three images, as shown in Fig. 2c
(right). In this case, three images are created, and each is embedded on 32
channels and given to the respective attention head. With this approach, the
network itself can decide how to further use the combined information.

5 Experiments

Below we present the results of our experiments on fusing body skeletons with
hand skeletons. In Sect. 5.2, we show experiments with 3D body skeletons, before
moving on to 2D body skeletons in Sect. 5.3. First, we describe our training setup.

5.1 Setup

Our networks were trained for 100 epochs using the Adam optimizer and a
one cycle learning rate scheduler with 10% of epochs as warmup and several
maximum learning rates ranging from 5 · 10−3 to 5 · 10−5. We validated after
each epoch and chose the best epoch for testing. The performances of our trained
networks are evaluated using mean class accuracy (mAcc) and top-1 accuracy
(top1), two widely used metrics in action recognition literature [2,12,14,17].

Our networks are initialized with ImageNet weights, which improves perfor-
mance, although the encoded images generated from skeleton data differ a lot
from real images. However, performance is still fluctuating, which is why we
trained with at least five well-functioning learning rates and repeated training
three times for each setup. We present our result using box plots, where each
box plots summarizes at least 15 trainings.
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5.2 Experiments with 3D Body Skeletons

In the following, we present results solely on the ATTACH dataset [2]. While
the IKEA ASM dataset [3] also includes 3D skeletons, they are only available
for one camera perspective and captured at a very low frame rate, which makes
them rather unsuitable for skeleton-based action recognition.

Baseline – 3D Body Skeletons This subsection serves as a benchmark for
our experiments with fused inputs, as we optimize hyperparameters to create a
strong baseline using body skeletons solely. On the left side of Fig. 3, we present
the results of the baseline experiments with 3D body skeletons on the ATTACH
dataset. We compare the performance of two models with similar complexity,
namely the SwinV2-T transformer (Swin) and the ResNet50 CNN (ResNet).
Our results demonstrate that Swin outperforms ResNet, with a median improve-
ment of more than six percentage points and a maximum improvement of more
than four percentage points. Even the worst performing Swin model performs
better than the best ResNet model, indicating that Swin is a suitable model for
processing skeleton sequences encoded as images.

Fig. 3. Results using 3D body skeletons on the ATTACH dataset for our baseline
models as in Fig. 2a and our different fusion methods: Naive concatenation as in Fig. 2b
left, image concatenation with scaling of encoded hand skeleton image as in Fig. 2b
right, multi image input as in Fig. 2c. Best results are listed in Table 1.

However, we want to emphasize that training with Swin is significantly more
challenging than with ResNet, which is usually very robust regarding hyperpa-
rameters. With Swin, it is crucial to select an appropriate learning rate schedule,
as training can fail with even slightly too high learning rates. Conversely, slightly
too low learning rates do not produce significant improvements over ResNet. We
found that the best results were achieved with learning rates only marginally
smaller than the ones that caused training to fail.

Fusion of Hand Skeletons with 3D Body Skeletons Figure 3 illustrates
the results of our fusion experiments using our transformed 3D hand skeletons
from MediaPipe in the middle, and 2D hand skeletons on the right.
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3D Hands: Overall, an improvement of the median and variance can be observed
when using the single image fusion approach with the correct scaling factor.
While no improvement of the maximum for ResNet is observable, for Swin the
incorporation of 3D hands increased performance by about one percentage point.
This shows that there is relevant information in the hand skeletons that helps
making the training more consistent or even improves the general quality of
the models. Moreover, it shows that Swin is significantly better at combining
the relevant information from the estimated hand skeletons with the full body
skeletons. However, since the 3D hand skeletons in MediaPipe are estimated on
2D color images, a poor estimation of the hand joints may have led to only slight
improvements. Therefore, we explore to combine the 3D body skeleton with 2D
hand skeletons in the following.

2D Hands: The results of fusing 2D hand skeletons with 3D body skeletons
are shown in the right half of Fig. 3. First and foremost, this fusion can be
challenging due to the different frames of reference. The 3D skeletons exist in a
metric space while the 2D skeletons are given in image coordinates. This means
that the different parts of the input image for the single image fusion approach
need to be normalized independently.

For ResNet, using the 2D hands results in similar performance compared to
3D hand skeletons. On the other hand, Swin demonstrates that this fusion works
very well, and in some cases, it performs even better than the fusion with 3D
hands. In fact, the maximum improvement over the baseline is more than one
percentage point. This highlights Swin’s ability to handle the challenges of using
disparate input spaces.

These results also confirm our assumption that the estimated 3D hand skele-
tons from MediaPipe are less accurate than the 2D hand skeletons.

Fusion Variations: When comparing the different fusion approaches that we
examined, both ResNet and Swin yielded similar results. The naive approach,
which involves stacking the hand and body skeleton joints and then scale the
encoded skeleton image (Fig. 2b left), produced inferior results compared to
stacking the encoded images for hand and body skeleton joints (Fig. 2b right).
This highlights the importance of scaling up the body skeleton image with a
higher upscaling factor, similar to the body skeleton baseline (Fig. 2a).

However, we observed different results when comparing how much the hand
skeleton joints need to be upscaled. Swin performed better with a smaller scale
factor, while ResNet achieved better results with a larger scale factor. This could
possibly be attributed to the different convolutions in the first layer of the respec-
tive networks - ResNet uses a 7×7 convolution with stride 2, while Swin’s patch
embedder is a 4×4 convolution with stride 4.

We also compared single image fusion approaches to multiple image
approaches in the Swin transformer. Unfortunately, the multiple image
approaches were inferior to all other approaches. The median and maximum
results were significantly worse, and the variance was much larger. This suggests
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that this approach for multimodal input to a Swin network cannot be easily
applied.

The lower performance of the multiple image approaches in Swin could poten-
tially be attributed to the patch embedding process. This involves splitting the
convolutions to different images to obtain the feature maps with the needed
channel sizes. Furthermore, we experimented with larger patch embeddings as
in [7], where the body skeleton image is processed into 96 channels of the fea-
ture map and the hands into 32 or both into 64. Although this improved the
models and made them perform similarly to the single image approaches, it sig-
nificantly increased the needed computational power and training time. In [7], it
was shown that appropriate pre-training can be crucial. However skeleton-based
pre-training is not typical in literature and also not the focus of this paper.

5.3 Experiments with 2D Body Skeletons

Most datasets and state-of-the-art approaches utilize 2D skeletons. Therefore,
we also experiment with 2D skeletons and show results on the ATTACH [2] and
the IKEA ASM [3] dataset. First, we present results of our body only baseline
and afterwards the fusion with hand skeletons.

Fig. 4. Results using 2D body skeletons on the ATTACH and IKEA ASM datasets for
our baseline models as in Fig. 2a and our different fusion methods: Naive concatenation
as in Fig. 2b left, image concatenation with scaling of encoded hand skeleton image as
in Fig. 2b right, multi image input as in Fig. 2c. Best results are listed in Table 1.

Baseline – 2D Body Skeletons In Fig. 4, we present the results of the baseline
experiments with 2D body skeletons for each dataset. Firstly, it is important to
note that the 2D body skeleton baseline results are worse compared to the 3D
skeleton baseline results. This can be attributed to the loss of depth information
when using 2D skeletons.

As observed in the previous section on using 3D skeletons, Swin outperforms
ResNet on both datasets. However, as explained in Sect. 3.1 the skeleton-based
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action recognition problem is very challenging on IKEA ASM due to a differen-
tiation of actions by objects, which are not encoded in skeleton data. This could
explain the smaller improvement in accuracy on IKEA ASM than on ATTACH.

Fusion of Hand Skeletons with 2D Body Skeletons Right to the respective
baseline results in Fig. 4, we present the results of the fusion experiments with 2D
hand and body skeletons. The comparison between the 2D body skeleton base-
line and the fusion approaches reveals a notable improvement in classification
performance for both the ATTACH and IKEA ASM datasets. Thus, the inclu-
sion of hand skeletons in addition to body skeletons emerges as a highly effective
strategy to elevate the accuracy of action recognition in assembly applications.
Below, we go into more detail on the results for each dataset individually.

ATTACH: A closer look on the results on the ATTACH dataset and the compar-
ison with 3D body skeletons reveals that hand skeletons are crucial for achiev-
ing improved performance with 2D body skeletons, as indicated by the greater
improvement over the corresponding baseline. This holds true for both Swin and
ResNet models, highlighting the significance of hand skeletons in mitigating the
loss of depth information when only 2D body skeletons are available.

IKEA ASM: The results on the IKEA ASM dataset are less conclusive. Although
the addition of hand skeletons generally leads to better medians and smaller
variances, the improvement is not as clear as on the ATTACH dataset. Specifi-
cally, while the Swin and EMSAFormer models show clear improvement with the
addition of hand skeletons, the ResNet only shows improvement in median. One
possible explanation for this difference is that predicting hand skeletons on the
IKEA ASM dataset is more challenging due to the small size of the hands, which
often results in missing hand skeleton estimations. The attention mechanisms in
the Swin transformer may be better suited to handle this issue of jumps in the
temporal sequence, while the ResNet struggles with it and therefore processes
the information contained in the hand skeletons less effectively.

Table 1. Best results of our experiments. We report the mean class accuracy mAcc and
in parentheses the top-1 accuracy for the ATTACH [2] and IKEA ASM [3] datasets.

ATTACH IKEA ASM

3D Body (Baseline) 3D Body 3D Hand 3D Body 2D Hand 2D Body(Baseline) 2D Body 2D Hand 2D Body (Baseline) 2D Body 2D Hand

ResNet50 48.2 (56.5) 48.2 (55.7) 48.3 (55.9) 43.7 (52.3) 46.3 (54.6) 37.7 (70.3) 37.2 (72.6)

SwinV2-T 52.8 (60.3) 53.6 (61.0) 54.1 (61.7) 48.1 (56.0) 51.5 (58.9) 39.1 (72.6) 39.9 (73.9)

6 Conclusion

Our work demonstrates a successful fusion of hand and body skeletons, which
improves assembly action recognition notably. While hand skeletons contain
important information, they are often prone to noise and misinformation due
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to difficulties in estimation, such as occlusion or object/tool manipulation. To
avoid this issue, our approach specifically handles the importance of the body
skeletons to prevent the hand skeletons from dominating the input representa-
tion.

Furthermore, our approach demonstrates improved action recognition for two
state-of-the-art assembly datasets, not only with 3D body skeletons but also with
more commonly available 2D body skeletons. We have demonstrated a success-
ful approach for preparing hand skeletons for action recognition and provided
guidance on the key considerations for successful training with the Swin trans-
former. Overall, our work makes an important contribution to the field of action
recognition in mobile robotics and collaborative robots.
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