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Abstract. Online kernel learning is an efficient way when dealing with
nonlinearly large-scale data. The training speed of online kernel learn-
ing is improved by Fourier online gradient descent (FOGD). However,
FOGD has a high space complexity when the number of features is rel-
atively high because FOGD lacks of sparsity. In this paper, we propose
a new sparse online kernel classification algorithm for large-scale data,
called Fourier follow-the-regularized-leader (FFTRL). Existing budget
(sparse) online kernel learning methods attempt to bound the number of
support vectors through some budget maintenance strategies; however,
budget maintenance strategies are unsuitable for FOGD. By introducing
the proximal algorithm, follow-the-regularized-leader, FFTRL achieves
sparsity in a different way. By applying random Fourier features as the
kernel approximation schemes, FFTRL finds the optimal sparse solution
in a linear manner. The regret bound analysis shows the feasibility of
FFTRL in theory. Comprehensive experiments were carried out on public
datasets to compare the performance of FFTRL with related online ker-
nel algorithms. Promising results show that our proposed method enjoys
both high accuracy and time efficiency and still produces sparse models,
opening a window for obtaining sparsity in online kernel learning.

Keywords: Online learning · Kernel approximation · Sparsity ·
Online graident descent

1 Introduction

It has been proven that online learning is successful for building accurate and
reliable models from a sequence of data elements efficiently. Different from reg-
ular batch machine learning algorithms that suffer from massive training time
and memory consumption, online learning models often enjoy the properties of
fast construction, highly scalable and memory saving. Due to these advantages,
online learning algorithms have been successfully used in many real-world appli-
cations, such as online advertising [14], weather condition prediction [11], and
computational finance [10].
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Various algorithms have been developed to tackle online binary classification
tasks, which can be simply divided into two types: linear and kernel methods.
The linear methods are able to construct linear predictive models at an amazing
speed. Some well-known examples include online gradient descent (OGD) [18],
forward backward splitting (FOBOS) [7], regularized dual averaging (RDA) [19]
and follow-the-regularized-leader (FTRL) [13,14]. However, linear models are
not always the right choice. Linear online algorithms may fail to produce effec-
tive outcomes when faced with linearly non-separable inputs, which is more
common in real-world applications. To overcome this issue, researchers invited
kernel functions into online learning methods and came up with field of online
kernel learning. Kernel-based estimators avoid the non-separable property in
the input space by mapping the instances to a high dimensional feature space
implicitly. One key limitation of classical online kernel methods is that the func-
tional representation of the produced estimator will become more complex as
the observations grows. To be more specific, the learner is asked to maintain a
support vector (SV) set during the online learning process. Whenever a newly
arrived instance is misclassified, it will be added to the SV set immediately. Thus
the complexity of the estimator and memory resource it demands will increase
linearly over time, causing memory overflow for a potentially infinite input data
sequence.

Several approaches have been proposed to handle the extension issues of
online kernel learning. One interesting aspect, which is usually referred to as
“budget online kernel learning” [5], tries to bound the number of SVs within a
fixed size during the training process. Two major wildly acknowledged budget
maintenance strategies are removal and projection. The former simply evicts a
selected SV when the number of SVs overflows. It is adopted by many algo-
rithms, such as Forgetron [6], randomized budget perceptron (RBP) [3], and
naive online Rreg minimisation algorithm (NORMA) [9]. The latter further
projects the selected SV onto the remaining ones, which is explored in algo-
rithms like Projectron [15] and online manifold regularization (OMR) [2], Budget
strategies do release the pressure to some extent, but the existing budget online
kernel methods are either too simple to achieve promising results or just too
slow to perform. The other promising aspect is to use the functional approxima-
tion scheme [20]. Unlike the budget maintenance strategy, this kind of scheme
tackles the problem in a mathematically elegant way. A certain explicit map-
ping can be derived by approximating a kernel function, making it possible to
project data from the input space to a computable highly dimensional feature
space. Combining with linear online learning algorithms like OGD, nonlinear
kernel-based algorithms are then trained in an efficient linear manner. As far
as we known, Fourier online gradient descent (FOGD) has achieved a success
in reducing time cost following this idea [12]. To reduce the required memory,
the final model should be stored sparsely, or the number of non-zero coefficients
in the final model parameter should be small. However, even employing the L1

penalty, FOGD can hardly produce sparse models. Similarly, it may cause the
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memory usage problem when the dimension of the feature space becomes too
high.

In order to take the advantages of linear online models and produce spar-
sity simultaneously, we propose a Fourier follow-the-regularized-leader (FFTRL)
algorithm in this paper. FFTRL adopts the random Fourier feature technique
to approximate shift-invariant kernels and introduces sparsity using the FTRL
algorithm. Theoretical analysis and experiments on FFTRL are also provided in
this paper.

The rest of the paper is organized as follows. Section 2 details the proposed
method. Experimental results and analysis are presented in Sect. 3 and the con-
clusion is given in Sect. 4.

2 Proposed Method

2.1 Algorithm Description

The proposed FFTRL is a online kernel learning method for binary classification
tasks. The goal of FFTRL is to learn a final mapping or hypothesis f : R

n → R

from a sequence of data elements {(x1, y1), (x2, y2), . . . , (xT , yT )}, where xt ∈
R

n is the tth training instance, and yt ∈ {+1,−1} is the corresponding class
label, n and T are the number of features and samples, respectively. Generally,
a convex loss function l(f(x), y) : R × R → R is used to penalize the deviation
of the estimation f(x) from the exact class label y. Further, we assume Hk is a
reproducing kernel Hilbert space (RKHS). Thus, the function k(·, ·) : R

n ×R
n →

R is defined as the reproducing kernel of Hk if and only if it implements the inner
product 〈·, ·〉 such that

1. k(x, ·) ∈ Hk for ∀x ∈ R
n;

2. 〈f, k(x, ·)〉 = f(x) for ∀x ∈ R
n and ∀f ∈ Hk.

In classical online kernel learning, the computation of kernel functions
improves the complexity of algorithms. Inspired by FOGD, FFTRL represents
a kernel mapping in a linear manner. Namely,

k(xj ,xm) ≈ z(xj)Tz(xm), (1)

where the superscript T means the operation of a vector or matrix transpose,
xj and xm are arbitrary instances in the sequence, and z(xj) is an approximate
image of xj in the feature space.

Let f(x) = wTz(x), where w is the weight vector. Then the loss function
can be represented as l(w, z(x), y). To find z(x) related to k(·, ·), we introduce
random Fourier features [16], which is a kernel functional approximation tech-
nique that works for shift-invariant kernels like Gaussian and Laplacian kernels.
Such kernels have the form of k(xj ,xm) = k(Δx), where Δx = xj − xm is the
divergence between the two instances. Bochner’s theorem implies that a positive
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definite kernel function k(Δx) is the Fourier transform of a proper probability
density function p(u) with a random variable u ∈ R

n [17]. Namely,

k(Δx) =
∫

p(u)eiuTΔx du, (2)

where i is the imaginary unit. By contrary, assume we have the right kernel here.
By calculating the inverse Fourier transform of the kernel k(Δx), we can obtain

p(u) =
(

1
2π

)n ∫
e−iuT(Δx)k(Δx) d(Δx). (3)

For example, given a Gaussian kernel k(xj ,xm) = exp(−‖xj − xm‖22/2σ2)
with the kernel parameter σ > 0, we have the corresponding distribution
p(u) = N (0, σ−2I) with the identify matrix I. According to (2), we can see
that the kernel function can be expressed as the expectation of u drawn from
the distribution p(u). In other words, we have

∫
p(u)eiuTΔx du = Eu[eiuTxje−iuTxm ], (4)

where the function Eu[·] is to find the expectation of u. Using Euler’s formula,
we can rewrite (4) as

Eu[cos(uTxj) cos(uTxm) + sin(uTxj) sin(uTxm)]

=Eu

[
[sin(uTxj), cos(uTxj)][sin(uTxm), cos(uTxm)]T

]
. (5)

According to (5), we can make z(x) = [sin(uTx), cos(uTx)]T that is a new
representation (image) of instance x. Since the kernel function k(Δx) equals
the expectation of inner productor of z(xj) and z(xm), we can draw D samples
u1, . . . ,uD independently from the distribution p and construct the image of x
as

z(x) =
[
sin(uT

1x), cos(uT
1x), . . . , sin(uT

Dx), cos(uT
Dx)

]T ∈ R
2D. (6)

Now, we can ignore the computation of kernel function because we get the
explicit images in the high-dimensional feature space that is induced by the
corresponding kernel function. If the number of samples D is large enough, the
error brought by approximation can be omitted reasonably. Thus, the online
kernel learning in the original space is transformed into the linear online learning
in a high dimensional feature space.

To produce sparsity in the online process, we introduce FTRL that compre-
hensively considers the differences between FOBOS and RDA on regularization
terms and model parameter w. In the tth round, FFTRL performs the update
of the weight vector wt+1 as follows:

wt+1 = arg min
w

{
wT

(
t∑

s=1

gs

)
+

1
2

t∑
s=1

‖√
σs 	 (w − ws)‖22 + λ‖w‖1

}
, (7)
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where gs = ∇ws
l(ws, z(xs), ys) is the gradient in the sth iteration, 	 is the

element-wise multiplication operator, σs = [σs,1, . . . , σs,2D]T ∈ R
2D is the

parameter related to the current learning rate, and λ is a positive regularization
parameter. We discuss σs later.

The basic idea behind FTRL is to minimize the loss cumulated in the online
training process, which will get a low-regret solution in the current round. There-
fore, FFTRL uses a cumulative gradient to approximately estimate the cumula-
tive loss, or the first term of (7). The second term in (7) works as a stabilization
penalty to avoid w from vibrating extensively in iterations, while the third term
is an L1 penalty. With λ > 0, FFTRL does an excellent job in producing sparsity.

Moreover, we thought that if a feature variable varies more rapidly than the
other, then it is reasonable that the learning rate on this feature variable should
decline faster. Thus, FFTRL uses the per-coordinate learning rate instead of
a global learning rate like setting ηt = 1√

t
(t > 0) for all features. In other

words, the learning rate is calculated independently for each feature. Let ηt =
[ηt,1, . . . , ηt,2D] ∈ R

2D be the learning rate used in FFTRL. We reflect the rate
of change using the gradient component in a certain dimension. Without loss of
generality, let gt,h be the hth entry in gt. Then, the corresponding learning rate
in the hth dimension can be expressed as

ηt,h =
α

β +
√∑t

s=1 g2s,h

(8)

for t > 0, where both α > 0 and β > 0 are two parameters needed to be tuned
for good performance. When t = 0, gs,t = 0. Then, η0,h = α/β for all h. For σs ,
its hth component can be defined as

σs,h =
1

ηt,h
− 1

ηt−1,h
. (9)

The detail algorithm description of FFTRL is summarized in Algorithm 1.
For training data arriving sequentially, we first construct the new representation
of an instance using the explicit mapping z(x) in (6) and then perform a sparse
linear online learning using FTRL. The overall time complexity of FTRL in one
update round is O(D).

2.2 Theoretical Analysis

We further analyze the theoretical property of our proposed method. For the
purpose of simplicity, lt(f) represents l(f(xt), yt), and lt(w) is lt(wt, z(xt), yt).
In the following, we show that the regret of our algorithm is sub-linear, which
indicates the effectiveness of FFTRL .

Theorem 1. Assume that the original data is contained by a ball in R
n of diam-

eter R̃. Let k(x,x′) = k(Δx) be a positive definite and shift-invariant kernel, and
l(f(x), y) : R × R → R be a convex loss function that is Lipschitz continuous
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Algorithm 1 Training process of FFTRL.
Input: Kernel function k(·, ·), parameters α, β, and λ, and the number of samples D.
Initialize: w1 = 0; mh = 0, qh = 0 (∀h ∈ {1, 2, . . . , 2D}).

Calculate p(u) of kernel k(·, ·) using (3);
Draw D independent and identically distributed samples u1, . . . ,uD from p(u);
for t = 1, 2, . . . , T do

Receive (xt, yt);
Construct the new representation z(xt) using (6);
Predict ŷt = sgn(wT

t z(xt));
Calculate gt = ∇wt l(wt, z(xt), yt);
for h = 1, 2, . . . , 2D do

σt,h = 1
α

√

qh + g2
t,h − √

qh; // which is equivalent to (9).

qh ← qh + g2
t,h;

mh ← mh + gt,h − σt,hwt,h;

wt+1,h =

{

0 if |mh| < λ,
α

β+
√

qh
(λ sgn(mh) − mh) otherwise.

end for
end for

with Lipschitz constant L. Assume that w1, . . . ,wT is the sequence of model
parameters generated by FFTRL (Algorithm 1) under the mild condition that
the learning rate ηt,h = ηt for every dimension in the same iteration, where

‖wt‖2 ≤ R. With probability at least 1 − 28( ςpR̃
ε )2 exp( −Dε2

4(n+2) ), the following
inequality

T∑
t=1

lt(wt) −
T∑

t=1

lt(f∗) ≤ (1 + ε)‖f∗‖21
2ηT

+ L2
T∑

t=1

ηt +
3R2

2ηT
+

√
2DλR + εLT‖f∗‖1

holds true for any f∗(x) =
∑T

t=1 α∗
t k(xt,x), where ‖f∗‖1 =

∑T
t=1 |α∗

t |, ς2p =
Ep[uTu] is the second moment of the Fourier transform of the kernel function
k(·, ·) given that p(u) is the probability density function calculated by (3), and ε
is a small positive constant.

Proof. Given f∗(x) =
∑T

t=1 α∗
t k(xt,x) as the optimal solution of FFTRL, we

have the corresponding linear model w∗ =
∑T

t=1 α∗
t z(xt). First of all, we have to

bound the regret of the sequence w1, . . . ,wT learned by FFTRL with respect to
the optimal linear model w∗ in the new feature space. According to the regret
analysis of the FTRL algorithm with strongly convex regularizers (Lemma 2.3.)
[18], we have:

T∑
t=1

(lt(wt) − lt(w∗)) ≤ L2
T∑

t=1

ηt + r1:T (w∗) + ψ(w∗), (10)
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where r1:T (w∗) =
∑T

t=1 rt(w∗). Let rt(w) = σt

2 ‖w − wt‖22 and ψ(w) = λ‖w‖1.
Then, the cumulative sum of regularizers becomes

r1:T (w∗) + ψ(w∗) =
1
2

T∑
t=1

σt‖w∗ − wt‖22 + λ‖w∗‖1, (11)

which is exactly the same as the regularization term in (7).
For r1:T (w∗), we can infer that

r1:T (w∗) =
1
2

T∑
t=1

σt‖w∗ − wt‖22

≤ 1
2

T∑
t=1

σt(‖w∗‖22 − 2〈w∗,wt〉 + ‖wt‖22)

≤ 1
2

T∑
t=1

σt(‖w∗‖22 + 3R2) =
1

2ηT
(‖w∗‖22 + 3R2). (12)

For ψ(w∗), it is upper-bounded by
√

2DλR according to the arithmetic-
geometric mean inequality (AGMI). The regret bound (10) now becomes

T∑
t=1

(lt(wt) − lt(w∗)) ≤ L2
T∑

t=1

ηt +
‖w∗‖22 + 3R2

2ηT
+

√
2DλR (13)

Next, we examine the difference between
∑T

t=1 lt(w∗) and
∑T

t=1 lt(f∗).
According to the uniform convergence of random Fourier features (Claim 1 in
[16]), with probability at least 1 − 28( ςpR̃

ε )2 exp( −Dε2

4(n+2) ), we have

∀j,m, |z(xj)Tz(xm) − k(xj ,xm)| < ε. (14)

In other words, the more we sample, the smaller the probability that the dif-
ference between approximated kernel value and real kernel value is greater than
the constant ε we will get. We further assume k(xj ,xm) ≤ 1, then we have
z(xj)Tz(xm) ≤ 1 + ε that leads to

‖w∗‖22 ≤ (1 + ε)‖f∗‖21. (15)

With (14), we have:∣∣∣∣∣
T∑

t=1

lt(w∗) −
T∑

t=1

lt(f∗)

∣∣∣∣∣ ≤
T∑

t=1

|lt(w∗) − lt(f∗)|

≤ L

T∑
t=1

T∑
j=1

|α∗
j ||z(xj)Tz(xt) − k(xj ,xt)|

≤ εL

T∑
t=1

T∑
j=1

∣∣α∗
j

∣∣ = εLT‖f∗‖1. (16)

Combing (13), (15) and (16) leads to the completion of the proof.



202 C. Su et al.

Table 1. Information of eight publicly available datasets used in experiments.

Datasets #Instances #Features

Titanic 2201 3

Spambase 4597 57

Banana 5300 2

Phoneme 5404 5

Coil2000 9822 85

W7a 24,692 300

A7a 32,561 123

Ijcnn1 141,691 22

3 Experiments

3.1 Description of Data and Algorithms Involved

To validate the performance of our proposed algorithm, we conducted extensive
experiments on the tasks of online binary classification. We first introduced
the datasets used in our experiments and then described the algorithms for
comparison.

Table 1 shows the details of eight publicly available datasets where the first
five datasets can be downloaded from KEEL dataset repository [1] and the rest
three are available at LIBSVM website [4]. We followed the common setting
of online binary classification tasks that each dataset should be divided into
training and test sets. We adopted the original splits of training and test sets for
datasets downloaded from the LIBSVM website. For KEEL datasets, a random
split of 4 : 1 training–test was performed.

In experiments, our proposed method was first compared with NORMA and
ACCOSVM for regular online kernel classification, which are solved in primal
and dual spaces, respectively.

– “NORMA” [9]: Online gradient descent for kernel SVM without budget.
– “ACCOSVM” [8]: An accelerator for online SVM combing quadratic pro-

gramming and window techniques.

Further, we invited three state-of-the-art budget online kernel learning algo-
rithms to compare with FFTRL. Namely,

– “BNORMA” [9]: The budgeted version of NORMA using removal strategy.
– “Forgetron” [6]: Budget perceptron using the removal strategy.
– “Projectron” [15]: Budget perceptron using the projection strategy.

Finally, we introduced an algorithm sharing the similar idea with our proposed
method:

– “FOGD” [12]: Online gradient descent using random Fourier features for ker-
nel approximation.
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3.2 Experimental Setting

All the experiments were carried out in Python 3.6 on a PC running Windows
10 with a 2.9GHz Intel Core i7 processor and 16 GB RAM. To make a fair
comparison, all algorithms adopted the following same setups. The Gaussian
kernel was used as the kernel function k(·, ·), and the hinge loss was taken as the
convex loss function. Since the hinge loss is a non-smooth function, subgradient
was adopted instead of gradient, which counts only when yf(x) < 1.

The budget size in budget online learning algorithms and the number of
samples in FOGD and our proposed method were set to 100 and 200, respec-
tively, following the same setups in [12]. The learning rate related parameter
β in our algorithm was set to 1 according to the instruction from [14]. Other
hyper-parameters were selected by a standard 5-fold cross validation on the
training set, including the kernel bandwidth σ, the learning rate related param-
eter α for FFTRL, the regularization parameter λ for FFTRL, NORMA and
BNORMA, the initial learning rate η0 for FGD, NORMA, and BNORMA, and
C for ACCOSVM. Then, the training set was refitted using the best model five
times, where at each run the instances were shuffled differently. The mean and
standard deviation of mistake rate on the training set, training time, accuracy
on the test set, and test time were reported as the final results.

3.3 Results and Analysis

Table 2 summarizes the evaluation results on the eight datasets, where the best
results are in bold. Note that the test process of NORMA on the Ijcnn1 dataset
was early stopped after 10,000 s, and the instances being tested at the time of
early stopping was reported in italic. From Table 2, we can draw the following
conclusions.

First, we found that budget online kernel classification algorithms run much
faster than the regular ones (say, NORMA and ACCOSVM) in both training and
test process. That means scalable online kernel methods are more practical in
terms of time efficiency. However, budget online kernel classification algorithms
generally make more mistakes on the training set and then get lower accuracy
on the test set. Potentional loss of information is occurred when adopting bud-
get strategies, validating the importance of exploring effective techniques for
budget online kernel learning algorithms. The same phenomenon happens inside
the family of budget online algorithms too. We notice that Projectron takes
more time in training and test but obtains more promising results than both
BNORMA and Forgetron in five out of eight datasets since the projection strat-
egy is more complex than just simply remove an SV. The trade-offs between
accuracy and time efficiency should be analyzed in specific situations.

Second, we compared the two kernel approximation methods (FOGD and
FFTRL) with the budget online kernel classification algorithms. As is listed
in Table 2, FOGD takes the least time in training, and our proposed method
FFTRL shows competitive results too. Both algorithms achieve amazing speed
in training, far exceeding any budget online kernel algorithms. We inferred that
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Table 2. Comparison of online kernel algorithms on 8 benchmark binary classification
datasets.

Algorithm Titanic Spambase

Mistake Rate (%) Train (s) Accuracy (%) Test (s) Mistake Rate (%) Train (s) Accuracy (%) Test (s)

NORMA 22.54 ± 0.57 10.97 ± 0.02 77.65 ± 1.22 5.47 ± 0.02 12.96 ± 0.51 49.44 ± 0.44 91.10 ± 0.81 24.54 ± 0.29

ACCOSVM 23.33 ± 0.50 137.56 ± 0.54 78.67 ± 1.00 6.36 ± 0.04 12.05 ± 0.88 150.47 ± 3.03 91.80 ± 0.39 17.68 ± 0.27

BNORMA 22.86 ± 0.40 1.34 ± 0.01 76.65 ± 1.26 0.33 ± 0.00 18.76 ± 0.33 2.78 ± 0.05 83.77 ± 2.98 0.67 ± 0.01

Forgetron 31.13 ± 0.34 1.78 ± 0.01 76.83 ± 2.77 0.35 ± 0.00 17.19 ± 0.54 3.17 ± 0.04 83.47 ± 1.62 0.70 ± 0.00

Projectron 30.14 ± 0.54 0.24 ± 0.01 77.69 ± 1.62 0.05 ± 0.00 15.44 ± 0.43 10.67 ± 0.44 87.21 ± 1.44 3.94 ± 0.11

FGD 25.03 ± 0.55 0.02 ± 0.00 78.15 ± 1.80 0.01 ± 0.00 11.75 ± 0.24 0.06 ± 0.00 90.08 ± 1.20 0.01 ± 0.00

FFTRL 22.56 ± 0.29 1.76 ± 0.10 79.03 ± 1.05 0.01 ± 0.00 11.21 ± 0.41 5.63 ± 0.03 91.56 ± 0.49 0.01 ± 0.00

Algorithm Banana Phoneme

Mistake Rate (%) Train (s) Accuracy (%) Test (s) Mistake Rate (%) Train (s) Accuracy (%) Test (s)

NORMA 11.62 ± 0.36 65.46 ± 0.27 89.08 ± 0.58 34.52 ± 3.74 23.67 ± 0.33 67.29 ± 1.06 77.28 ± 0.91 33.66 ± 0.37

ACCOSVM 11.11 ± 0.24 134.27 ± 4.69 89.23 ± 0.62 11.86 ± 0.30 16.44 ± 0.27 412.58 ± 17.45 85.75 ± 0.65 19.26 ± 0.18

BNORMA 15.89 ± 0.27 3.33 ± 0.11 83.06 ± 1.70 0.80 ± 0.03 23.74 ± 0.39 3.32 ± 0.06 77.17 ± 0.92 0.79 ± 0.01

Forgetron 18.64 ± 0.49 3.67 ± 0.05 80.38 ± 2.23 0.79 ± 0.01 25.80 ± 0.14 4.14 ± 0.07 73.61 ± 2.34 0.82 ± 0.01

Projectron 14.56 ± 0.33 13.14 ± 2.97 85.38 ± 1.82 4.37 ± 0.59 20.38 ± 0.21 11.34 ± 0.46 80.94 ± 2.05 3.46 ± 0.09

FOGD 15.48 0.34 0.06 0.00 85.08 1g.13 0.01 0.00 18.02 0.23 0.07 0.01 83.62 0.57 0.01 0.00

FFTRL 11.92 0.20 5.26 0.15 89.81 0.39 0.01 0.00 17.48 0.23 6.68 0.29 84.70 0.53 0.01 0.00

Algorithm Coil2000 W7a

Mistake Rate (%) Train (s) Accuracy (%) Test (s) Mistake Rate (%) Train (s) Accuracy (%) Test (s)

NORMA 7.68 ± 0.17 231.33 ± 1.39 91.81 ± 1.05 114.43 ± 0.20 2.95 ± 0.02 2021.10 ± 248.08 97.14 ± 0.05 4003.87 ± 477.64

ACCOSVM 7.13 ± 0.09 2592.71 ± 59.48 92.89 ± 0.17 118.06 ± 0.74 2.03 ± 0.02 4927.57 ± 318.12 98.48 ± 0.01 1770.59 ± 78.54

BNORMA 7.59 ± 0.11 5.94 ± 0.03 91.19 ± 1.52 1.41 ± 0.01 4.27 ± 0.11 21.40 ± 1.34 96.11 ± 0.69 22.63 ± 1.34

Forgetron 11.19 ± 0.15 6.42 ± 0.04 92.34 ± 1.73 1.52 ± 0.01 4.36 ± 0.06 13.98 ± 1.04 96.69 ± 0.67 13.25 ± 0.07

Projectron 10.75 ± 0.16 25.96 ± 0.30 91.67 ± 2.14 10.53 ± 0.17 2.74 ± 0.03 45.78 ± 1.08 98.33 ± 0.10 64.99 ± 1.46

FOGD 7.27 ± 0.04 0.11 ± 0.00 92.80 ± 0.12 0.02 ± 0.00 3.47 ± 0.08 0.37 ± 0.01 96.67 ± 0.04 0.29 ± 0.02

FFTRL 6.90 ± 0.06 10.59 ± 10.4 93.55 ± 0.93 0.02 ± 0.01 3.36 ± 0.05 25.86 ± 0.29 96.92 ± 0.01 0.27 ± 0.01

Algorithm A7a Ijcnn1

Mistake Rate (%) Train (s) Accuracy (%) Test (s) Mistake Rate (%) Train (s) Accuracy (%) Test (s)

NORMA 17.99 ± 0.22 951.63 ± 18.63 82.42 ± 0.02 1958.85 ± 48.16 9.67 ± 0.16 4558.52 ± 104.74 90.26 ± 0.01 48542.60

ACCOSVM 16.34 ± 0.15 4473.56 ± 192.07 83.63 ± 0.05 1172.24 ± 24.88 6.15 ± 0.01 3382.09 ± 338.19 94.63 ± 0.05 2997.05 ± 50.54

BNORMA 20.54 ± 0.20 12.82 ± 0.40 80.91 ± 0.48 12.51 ± 0.40 13.03 ± 0.05 45.91 ± 1.22 87.07 ± 2.34 16.86 ± 0.85

Forgetron 24.57 ± 0.22 16.97 ± 0.86 78.23 ± 0.45 13.51 ± 0.27 16.60 ± 0.14 20.22 ± 0.25 86.96 ± 3.68 44.39 ± 0.96

Projectron 20.51 ± 0.37 366.03 ± 15.12 80.47 ± 0.92 372.86 ± 3.45 7.64 ± 0.07 162.50 ± 1.63 94.31 ± 0.90 454.11 ± 2.73

FOGD 18.77 ± 0.14 0.23 ± 0.01 82.48 ± 1.04 0.16 ± 0.00 9.33 ± 0.02 0.43 ± 0.01 91.46 ± 0.40 0.77 ± 0.01

FFTRL 16.84 ± 0.13 25.12 ± 0.49 84.15 ± 0.19 0.15 ± 0.00 9.35 ± 0.02 49.27 ± 0.44 91.90 ± 0.20 0.75 ± 0.01

the extraordinary time efficiency of kernel approximation methods should be
attributed to the linear online learning framework. Moreover, both FOGD and
FFTRL also show better mistake rate and accuracy in most cases, which demon-
strates that kernel approximation scheme is suitable for large scale online learn-
ing.

Finally, we analyzed the performance of FFTRL. It seems surprising to find
that FFTRL gets the lowest mistake rate or highest accuracy, even outperforms
NORMA in some datasets (such as, Spambase, Coil2000, A7a and Ijcnn1). The
reasons may lie in two aspects. The first reason is the appropriate choice of
sample number D. According to the conclusions from [12], choosing a too large
value of D will result in under-fitting for small datasets, and choosing a too small
value of D will result in over-fitting. The second reason is the well-designed per-
coordinate learning rate. Except from FFTRL, all the gradient-based algorithms
adopt the global learning rate schedule. However, we need to use the learning
rate to reflect our confidence of each dimension in online setting, which indicates
the global learning rate schedule is not the optimal choice. Besides, FFTRL also
produces a sparser model than FOGD as expected. Unfortunately, the benefits
of sparsity brought to FFTRL are largely obscured by the efficiency of linear
learning framework since the test time of FOGD and FFTRL are generally the
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Table 3. Sparsity promotion of FFTRL against FOGD.

Titanic Spambase Banana Phoneme

FOGD Baseline Baseline Baseline Baseline

FFTRL +272.80 +176.40 +193.40 +118.60

Coil2000 W7a A7a Ijcnn1

FOGD Baseline Baseline Baseline Baseline

FFTRL +143.00 +203.40 +76.40 +102.20

same. To validate the advantage of our proposed method over FOGD, we listed
the number of zero components in the weight vector w in Table 3, where the
number of zero coefficients in FOGD is taken as the baseline. From Table 3, we
can obviously see that the model generated by FFTRL is much sparser than
that of FOGD.

4 Conclusion

In this paper, we present a novel sparse algorithm FFTRL for solving large-scale
online kernel binary classification tasks. The basic idea of FFTRL is to approxi-
mate a kernel function via functional approximation technique, which enables us
to transform the original online kernel learning task into an approximate linear
online learning task. Random Fourier features are used as the kernel approxima-
tion scheme, and then a new high dimensional feature space is induced in this
process. We further adopt FTRL to find a sparse solution in the new feature
space. In theory, we analyze the regret bound of our proposed algorithm.

We performed extensive experiments to evaluate the performance of FFTRL
and other state-of-the-art online kernel learning methods. Our promising results
show that FFTRL enjoys both time efficiency and accuracy. Moreover, the spar-
sity produced by FFTRL fits the need of high dimensional and large-scale data
scenarios, making FFTRL suitable for real-world applications. In future work, we
plan to extend our work by exploring the field of multi-label online classification
tasks.
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