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Abstract. Machine learning and deep learning classification models are
data-driven, and the model and the data jointly determine their classi-
fication performance. It is biased to evaluate the model’s performance
only based on the classifier accuracy while ignoring the data separabil-
ity. Sometimes, the model exhibits excellent accuracy, which might be
attributed to its testing on highly separable data. Most of the current
studies on data separability measures are defined based on the distance
between sample points, but this has been demonstrated to fail in several
circumstances. In this paper, we propose a new separability measure–
the rate of separability (RS), which is based on the data coding rate. We
validate its effectiveness as a supplement to the separability measure by
comparing it to four other distance-based measures on synthetic dataset.
Then, we discover the positive correlation between the proposed measure
and recognition accuracy in a multi-task scenario constructed from a real
dataset. Finally, we discuss the methods for evaluating the classification
performance of machine learning and deep learning models considering
data separability.

Keywords: Machine learning · Classification accuracy · Data
separability · Classification difficulty · Performance evaluation

1 Introduction

As an important branch in data mining, classification aims to construct a clas-
sification model to learn a mapping regularity from existing data to class labels.
The research of model is essential, yet data also determines the performance [2].
A specific example is the impact of spectral separability on classification accu-
racy [17]. Numerous classification models have been proposed, including KNN,
SVM, logistic regression, neural networks, etc., but studies on data separabil-
ity are substantially fewer. A recent study in hyperspectral image classification
has argued that insufficient data may limit the assessment capability of existing
accuracy indexes [9]. That leads to the problem of whether a model performs
best on a classification case is unclear or inconclusive [15]. It is acknowledged
that a good classification model provides greater generalization potential, which
means finding rules consistent with available data that apply widely to predict
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the class of unknown data [20]. Yet the criteria for assessing the model’s general-
ization ability remain debated. To simplify the performance evaluation process,
researchers generally tend to adopt measures based on the confusion matrix [7],
like accuracy, precision, kappa statistic, and F-score. Each measure is represented
with a single score number, making it straightforward to compare and analyze
classification models quantitatively. Although the result is intuitive, its compa-
rability is invalid when confronted with a multi-task classification situation more
representative of the real-world environment.

A contradictory example is that a classifier reaches the highest accuracy
in one task but the lowest in another. What causes the problem is that such
classifier-oriented measures treat the different instances of a dataset as statisti-
cal objects and ignore the classification difficulty of each instance. For the above
issue, Yu et al. [18] proposed an instance-oriented measure but only apply to data
with few samples due to the computational complexity of classification difficulty
for each instance. Therefore, we require a measure to statistically characterize
the classification difficulty of datasets. Fortunately, previous research has estab-
lished that separability is an intrinsic characteristic of a dataset [4] to describe
how instances belonging to different classes mix. Measuring the data quality is
critical for estimating the problem’s difficulty in advance since a classification
model’s accuracy strongly depends on the data quality [1]. Obviously, the more
separable the dataset, the simpler the classification. Eventually, we consider data
separability as a metric of classification difficulty.

There are several measures of data separability that can quantify classifica-
tion difficulty. The Fisher discriminant ratio [8] has been used in many studies,
which measures the data separability using the mean and standard deviation of
each class, but it fails in some cases like a two-class circle data. A more effective
issue is data complexity which measures the distance of intra classes as well as
the inter class. Ho and Basu [6] conducted a groundbreaking review of data com-
plexity measures. Recently, Lorena et al. [11] summarized existing methods for
the measurement of classification complexity, showing that some of those may
have large time cost.

As an alternative to the distance-based criterion, we consider explaining data
separability from the perspective of probability theory. Inspired by Cover and
Thomas [3], the process of minimizing the data rate distortion is equivalent to
the process of solving the optimal solution of the likelihood function, i.e., the
data coding rate has strong consistency with the parameter estimation perfor-
mance [13]. That means if the data can be fitted with better distribution model
after segmentation, then the data should be effectively encoded in relation to
such model. Ma et al. [12] argued that the coding rate (subject to a distortion)
provides a natural measure of the goodness of segmentation for real-valued mixed
data.

Since there is no research verifying the feasibility of using coding rate as a
measure of data separability, this is the first study to construct a separability
measure based on rate-distortion theory called the rate of separability (RS). The
main contributions of this paper are summarized as follows.
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1) We propose a data separability measure based on rate-distortion theory,
and verify its effectiveness in theory and experiments.

2) We find a positive correlation between classification accuracy and data
separability in a multi-task noisy environment.

3) In a multi-task noisy environment, we design a task-oriented classifier
performance evaluation method considering data separability as the task dif-
ficulty. Unlike the classification accuracy changing with different tasks, this
method obtains classifier ability as the classifier’s inherent property under cer-
tain assumptions.

4) We build a modular classifier performance evaluation model to explain the
function of deep learning convolutional blocks using data separability.

The rest of this paper is structured as follows. Section 2 introduces the
method of constructing coding-rate-based measure. Section 3 provides experi-
mental methods for validating measure validity and evaluates the classification
model performance; results and analysis are also given in this section. Finally,
we conclude in Sect. 4.

2 Data Separability Measure

In this section, we apply rate-distortion theory in constructing a new data sep-
arability measure.

2.1 Coding-Rate Based Data Separability Measure

Given a data X = [x1, ...,xm] ∈ R
d×m with m samples of d dimension and a

encoding precision ε > 0, let Π = {Πj ∈ R
m×m}k

j=1 be the label matrix of
the X in the k classes, and Πj(i, i) is the label of xi belonging to class j, our
proposed data separability measure based on rate-distortion is:

RS(X) =
RC(X, ε|Π)

R(X, ε)
. (1)

In Eq. (1), the RC(X, ε|Π) and R(X, ε) denote the local and global coding
rate of the data, respectively. Unlike Yu et al. [19], who utilized ΔR(X) =
R(X, ε)−RC(X, ε|Π) as the optimization problem’s objective function subjecting
to

∥
∥Xj

∥
∥
2

F
= tr(Πj), here we discard the constraint and adopt a ratio form

between R(X, ε|Π) and R(X, ε), resulting in a data separability measure RS(X)
in the range of [0,1] with low values indicating high separability. It means that
the smaller the RC(X, ε|Π), the more clustered the samples within the class,
and the larger the R(X, ε), the more dispersed the samples between classes.
Next we introduce the definition of the coding rate and explain how the measure
we proposed reflects the data intrinsic separability.
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2.2 Definition and Computation of the Coding Rate

According to Cover and Thomas’ [3] definition of rate-distortion: the rate-
distortion R(X, ε) is the minimal number of binary bits needed to encode X
and the expected decoding error is less than ε. The actual estimation coding
rate of X with zero mean is as follows:

R(X, ε) =
m

2
log det(I +

d

mε2
XXT ). (2)

Furthermore, suppose X has k-class samples, then X = X1 ∪ X2 ∪ ... ∪ Xk .
the data Xj in each class j also occupy a certain volume in its low dimensional
subspace. For each subset, the above coding rate (2) is applied, then RC(X, ε|Π)
is given by

RC(X, ε|Π) =
k∑

j=1

tr(Πj)
2

log det
(

I +
d

tr(Πj)ε2
XΠjXT

)

(3)

The equation for the coding rate in Eq. (2) is for the scenario where the mean
value of the given data is zero mean. More generally, when X = [x1, ...,xm] ∈
R

d×m is not zero mean, we have the mean μ = 1
m

m∑

i=1

xi ∈ R
d and the zero mean

part of the data X̄, thus the total coding rate of X with non-zero mean is:

R(X) =
m

2
log det(I +

d

mε2
X̄X̄T ) +

d

2
log2

(

1 +
μT μ

ε2

)

. (4)

2.3 Correlation Between RS and Data Separability

This section discusses the connection between RS and data separability. Under
the condition that the data follows a Gaussian distribution, we prove Theorem 1.
Theorem 1 gives the lower bound of the data coding rate and the necessary and
sufficient conditions for it to reach the lower bound. This condition illustrates
that if and only if every class X has the same distribution, the total coding rate
of X is identical to the sum of Xj ’s coding rate.

Theorem 1. For any
{

Xj ∈ R
d×mj

}k

j=1
and any ε > 0, let X = [x1, ...,xm] =

[

X1, · · ·Xk
] ∈ R

d×m with m =
k∑

j=1

mj and μ = 1
m

m∑

i=1

xi ∈ R
d, then we define

the zero mean part X̄ = X − μ · 11×m. Let Xj = [xj
1, ...,x

j
mj

] ∈ R
d×mj with

μj = 1
mj

mj∑

i=1

xj
i ∈ R

d and X̄j = Xj −μj ·11×mj
. We have R(X, ε) ≥ RC(X, ε|Π),

m

2
log det(I +

d

mε2
X̄X̄T ) +

d

2
log2

(

1 +
μT μ

ε2

)

≥
k∑

j=1

mj

2
log det(I +

d

mjε2
X̄j(X̄j)

T
) +

d

2k
log2

(

1 +
(μj)T

μj

ε2

)

.

(5)
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where the equality holds if and only if

X̄1(X̄1)T

m1
=

X̄2(X̄2)T

m2
= · · · =

X̄k(X̄k)T

mk
=

X̄(X̄)T

m

μ1 = μ2 = · · · = μk = μ. (6)

The Proof of Theorem 1 is based on the concave property of the log det(·)
and log(·) functions, and they satisfy Jensen’s inequality.

Proof. Since log det(·) and log(·) is strictly concave, The Jensen’s inequality is
satisfied. We have

f(
k∑

j=1

βjSj) ≥
k∑

j=1

βjf(Sj). (7)

for all {βj > 0}k
j=1 ,

k∑

j=1

βj = 1 and
{

Sj ∈ S
n
++

}k

j=1
, where equality holds if and

only if S1 = S2 = · · · = Sk .
For function log det(·), take βj = mj

m and Sj = I + d
mjε2 X̄j(X̄j)T , we get

log det(I +
d

mε2
X̄X̄T ) ≥

k∑

j=1

mj

m
log det(I +

d

mjε2
X̄j(X̄j)

T
). (8)

with equality holds if and only if X̄1(X̄1)
T

m1
= X̄2(X̄2)

T

m2
= · · · = X̄k(X̄k)

T

mk
= X̄(X̄)T

m .
For function log(·), take βj = 1

k and Sj = 1 + d
ε2 (μj)T μj , we get

log(1 +
μT μ

ε2
) ≥

k∑

j=1

1
k

log(1 +
(μj)T

μj

ε2
). (9)

with equality holds if and only if μ1 = μ2 = · · · = μk = μ, and the last equality

is from
k∑

j=1

mjμ
j = mμ. From formula (8) and (9), Theorem 1 can be proved.

From Theorem 1, we can conclude that the sum of the various classes of data
coding rate is a lower bound on the overall data coding rate. When the overall
data coding rate reaches the lower bound, its necessary and sufficient condition
indicate: for the Gaussian distributed data, each category of data has the same
distribution, which also means that the feature vectors of each class have a high
degree of coincidence, corresponding to the most inseparable situation.

3 Experiments

3.1 Validation on Two-Class Synthetic Datasets

We first verify the proposed measure RS’s effectiveness using a two-class syn-
thetic dataset1 with adjustable separability, and contrast its separability evalua-
1 The datasets are created by the Samples Generator in sklearn.datasets https://

scikit-learn.org/stable/modules/classes.html#samples-generator.

https://scikit-learn.org/stable/modules/classes.html#samples-generator
https://scikit-learn.org/stable/modules/classes.html#samples-generator
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tion results with distance-based measures [5] (e.g., DSI, N2, LSC, Density). We
experiment on the data following a Gaussian distribution, the region of feature
overlap can be adjusted by changing the feature standard deviation (SD). We set
the SD parameter from 1 to 9. Four instances are depicted in Fig. 1, the results
are presented in Fig. 2.

Fig. 1. The data with different cluster
standard deviations (SD). A high SD
value denotes a significant overlap area

Fig. 2. Comparison of data separa-
bility evaluation results with varying
degrees of feature overlap. For mea-
sures, a high value on the y-axis indi-
cates low separability

In this condition, both N2 and LSC fail to assess the data separability. Among
them, LSC can only distinguish the case of features with or without overlap
and is not sensitive to the change of feature overlap area. At the same time,
N2 fluctuates with the deterioration of data separability, suggesting a lower
evaluation precision. Besides, RS, DSI, and Density can correctly reflect the
trend of data separability, i.e., a high SD value corresponds to a high measure
value. Furthermore, both DSI and RS have an extensive dynamic change range.

3.2 Correlation Between Classification Accuracy and Data
Separability

After verifying the validity of RS as a measure of data separability, we character-
ize the data separability using RS values. This section discusses the experimen-
tal procedures used to investigate the correlation between classification accuracy
and data separability. The experiment framework is shown in Fig. 3.

Step I is to add Gaussian white noise with a specific variance to the original
data to create a test set with a signal-to-noise ratio (SNR) of 5–20 dB.

In Step II, we deploy four standard machine learning classifiers. Nonlinear
classifiers such as K-Nearest Neighbor (KNN) and Support Vector Machine with
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Fig. 3. Experiment procedure to ver-
ify the correlation between classifica-
tion accuracy and data separability

Fig. 4. Analysis results to verify the
correlation between classification accu-
racy and data separability

Radial Basis Function (SVM with RBF) can generate nonlinear decision bound-
aries. Linear classifiers include linear SVM and logistic regression (LR). The Iris
data from UCI repository [10] are utilized in the experiment.

In step III, the T-SNE tool is used to visualize the influence of noise on data
separability. And in step IV, we compute noisy data’s RS value and analyze the
classification accuracy correlation. Here we apply the Monte Carlo simulation to
average the randomness of the results due to noise.

The analysis results on the Iris data are shown in Fig. 4. When the SNR is
lower than 5 dB, the test data separability becomes extremely poor relative to the
training data. And when the SNR is high as 20dB, its separability is equivalent
to the training data. Referring to the separability evaluation and correlation
analysis, as SNR grows, the separability of test data gradually improves, and the
classification accuracy increases along with it. Thus we can conclude a positive
correlation between data separability and recognition accuracy.

3.3 Classifier’s Ability Evaluated by Classification Accuracy Under
Data Separability

In this section, we evaluate the classifier’s generalization ability in the group
of tasks constricted in Sect. 3.2. Specifically, as shown in Fig. 4, for the dataset
Iris, the classification accuracy of SVM (RBF) is consistently higher than other
classifiers at SNR = 20 dB, but the lowest at SNR = 5 dB. Since the 5 dB task
is more difficult than the 20 dB one, we can’t conclude whether the classifier
performance is good or not. At this point, how could the classifier’s performance
be measured?

The simple idea is to assign a certain weight W ∈ R
n to the recognition

accuracy Pacc ∈ R
n of the classifier on that group of tasks according to the
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difficulty of the recognition task, and n is the number of tasks. The classification
ability θ on these tasks is defined as

θ = WT Pacc. (10)

W is determined by the difficulty of the recognition task. The more difficult
the task, the higher the weight value. According to the prior experiment, the
task difficulty depends to some extent on the data separability. Thus, W as
a mapping matrix is parameterized by the separability RS. To quantify this
mapping relationship, we seek a functional form f(·) of the mapping matrix W.

θ = f(Pacc;RS) (11)

f(·) needs to be obtained by fitting a given Pacc and θ. Pacc can be derived
directly from the classification results, whereas θ is uncertain. Therefore, it is
first necessary to construct the known θ based on the following assumptions.

1) For different difficulty tasks, homogeneous classifiers with fixed parameters
exhibit different recognition accuracies.

2) For the same dataset, homogeneous classifiers with fixed parameters
exhibit consistent recognition ability values.

3) For homogeneous classifiers with different parameter settings, their relative
ability value can be inferred from the recognition accuracy.

Fig. 5. The map of Pacc and θ. Here, k = 30, n = 15. Each column of Pacc records the
classification accuracy of an SVM model on 16 tasks associated with the same color
point column in Figure (a). Each row of Pacc records the classification accuracy of 30
SVM models on a single task. The row values are sequentially concatenated to obtain
the task curve shown in Figure (b)

Based on the assumptions stated above, we choose the SVM (Linear) model
on the Iris dataset to perform the anti-noise experiment depicted in Fig. 3. k
SVMs with relative ability values θ were obtained by adjusting the regular
parameter C. θ ∈ R

k take k values evenly from 0 to 1. Each SVM tests on n noisy



A Classification Performance Evaluation Measure Considering Data 9

tasks, and get Pj
acc ∈ R

n(j = 1, 2, ..., k). k-group Pj
acc is sorted from small to

large according to its largest element, and we have Pacc = [P1
acc,P

2
acc, ...,P

k
acc] ∈

R
n×k. Figure 5 shows the mapping of Pacc and θ.

Observe that the shape of the curve in Fig. 5(b) is more consistent with that
of the Sigmoid function, but the upper and lower bounds of the task curve are
variable; thus, Eq. (12) is adopted as the fitting function.

Pacc =
u − l

1 + exp(−a ∗ (θ − b))
+ u (12)

Plotting the curve of Eq. (12) in Fig. 6, we explore the properties of this
function.

Fig. 6. Fitting function plot Fig. 7. The fitting task curves and the
mapping points

The parameters u, l, a, and b reflect the function properties as follows.
1) u and l can represent the classifier’s upper and lower bounds of recognition

accuracy on a set of recognition tasks, respectively.
2) (u − l) ∗ a reflects the slope of the function. The flatter the function, the

harder the task and the lower the recognition accuracy.
3) b affects the right shift rate of the function. The larger the right shift

magnitude, the more difficult the task is, and the less accurate the classifier is.
Then we employ the polynomial fitting approach, with a and b represented

by RS

fa(RS) = h0 + h1RS + h2R
2
S

fb(RS) = p0 + p1RS + p2R
2
S. (13)

The mapping function f−1(·) from classification accuracy to classifier ability
with separability RS as a parameter is now obtained.
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Pacc = f−1(θ;RS) =
u − l

1 + exp(−fa(RS) ∗ (θ − fb(RS)))
+ u (14)

To examine the validity of this mapping function, we need to substitute
the recognition accuracy of another classifier into the Eq. (14) to ensure the
uniqueness of its recognition ability value, demonstrating that the recognition
ability value exists as an inherent property of the classifier.

Figure 7 shows the results of fitting the task curve with the SVM model as
a reference and an evaluation of the LR (with adjusted parameter α) models’
recognition ability on this curve.

This evaluation method has a high assessment accuracy in the middle of the
task curve. The evaluation of the LR model ability values for α = 0.01 and
α = 0.1 are distributed over a small interval, and a set of recognition accuracies
essentially map to a unique recognition ability value. Whereas at the two ends of
the curve, a slight change in recognition accuracy may bring about a significant
deviation in recognition ability due to the presence of the saturation zone.

3.4 CNN Layers’ Performance Evaluated by Data Separability

As an extension of machine learning classifiers, deep learning classifiers have
greatly improved recognition performance but are not satisfactory in model inter-
pretability. The convolution module, for example, is widely believed to play the
role of feature extraction, enabling the final output data to be more separable,
but how do we measure this function? In this section, we design a modular clas-
sifier recognition performance evaluation method to evaluate the performance of
each convolutional component of the CNN.

Effective separability indices are invaluable for the performance evaluation
of radar signal classification algorithms [14]. Since radar image is more difficult
to identify the classes to which they belong after their semantic features are
extracted by the convolutional layer, we use the typical radar image MSTAR2

as the experimental data. The evaluation method proposed is to insert a fea-
ture separability analysis module after each convolutional block to monitor its
performance, and the separability measure used is RS.

On the MSTAR dataset, we evaluate the performance of some convolutional
blocks of CNN provided by Chen et al. [16]. And to reduce the computational
effort of RS, we apply a 2 * 2 average pooling to the feature map. The network
structure and the feature separability analysis module are shown in Fig. 8.

After 100 epochs of training, the convergence of recognition accuracy on the
test set and the variation of feature separability extracted by each convolutional
block are set out in Fig. 9.

The most striking result from Fig. 9 is that the separability of features
extracted by each convolutional block keeps step with the final classification
accuracy. When classification accuracy improves dramatically, the RS value falls

2 The URL for downloading the dataset: https://www.sdms.afrl.af.mil/datasets/
mstar/.

https://www.sdms.afrl.af.mil/datasets/mstar/
https://www.sdms.afrl.af.mil/datasets/mstar/
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Fig. 8. Network architecture and fea-
ture separability analysis module

Fig. 9. Classification accuracy and fea-
ture separability analysis results

precipitously. And when the classification accuracy converges, the RS value
becomes steady. Furthermore, we also find that the convolutional block in a
deeper network has a more significant function in extracting a more separa-
ble feature with a lower RS value (RS1 > RS2 > RS3 > RS4). And the deeper
feature map exhibits a wider dynamic range of RS value (ΔRS1 < ΔRS2 <
ΔRS3 < ΔRS4).

4 Conclusion

Data separability quantification provides some basis for analyzing, understand-
ing, and enhancing model performance. In this paper, we validate the effec-
tiveness of the proposed measure on a typical synthetic two-class dataset and
confirm its positive correlation with the classification accuracy in a series of noisy
tasks constructed from real datasets. Then we designed machine learning and
deep learning classifier model evaluation methods based on the above two basic
argumentation experiments. We build a functional mapping model for machine
learning classifiers from classification accuracy to classifier ability. In the model,
the task difficulty is characterized by the measure, and the classification accu-
racy assesses the classifiers’ capability value as its inherent properties with a
separability measure as a parameter. For deep learning classifiers, we use a mod-
ular evaluation approach. Each convolutional block’s ability to extract separable
features is assessed using the proposed measure. Finally, we explain why neural
networks work effectively from the perspective of feature separability.

In fact, the separability measure can also be applied to evaluate clustering
results, understand the demerit of each feature, provide a theory for building
multi-classifier decisions, or reduce data complexity as a loss function. In general,
explaining and improving classification performance by exploiting data separa-
bility still deserves further study.
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