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Preface

The European Neural Network Society (ENNS) is an association of scientists, engineers
and students, conducting research on the modelling of behavioral and brain processes,
andon the development of neural algorithms.The core of these efforts is the applicationof
neuralmodelling to several diverse domains. According to itsmission statement ENNS is
the European non-profit federation of professionals that aims at achieving a worldwide
professional and socially responsible development and application of artificial neural
technologies.

The flagship event of ENNS is ICANN (the International Conference on Artifi-
cial Neural Networks) at which contributed research papers are presented after passing
through a rigorous review process. ICANN is a dual-track conference, featuring tracks
in brain-inspired computing on the one hand, and machine learning on the other, with
strong crossdisciplinary interactions and applications.

The response of the international scientific community to the ICANN 2023 call for
papers was more than satisfactory. In total, 947 research papers on the aforementioned
research areaswere submitted and 426 (45%) of themwere finally accepted as full papers
after a peer review process. Additionally, 19 extended abstracts were submitted and 9 of
them were selected to be included in the front matter of ICANN 2023 proceedings. Due
to their high academic and scientific importance, 22 short papers were also accepted.

All papers were peer reviewed by at least two independent academic referees.Where
needed, a third or a fourth referee was consulted to resolve any potential conflicts. Three
workshops focusing on specific research areas, namely Advances in Spiking Neural Net-
works (ASNN),Neurorobotics (NRR), and the challenge ofErrors, Stability, Robustness,
and Accuracy in Deep Neural Networks (ESRA in DNN), were organized.

The 10-volume set of LNCS 14254, 14255, 14256, 14257, 14258, 14259, 14260,
14261, 14262 and 14263 constitutes the proceedings of the 32nd International Confer-
ence on Artificial Neural Networks, ICANN 2023, held in Heraklion city, Crete, Greece,
on September 26–29, 2023.

The accepted papers are related to the following topics:

Machine Learning: Deep Learning; Neural Network Theory; Neural Network Models;
Graphical Models; Bayesian Networks; Kernel Methods; Generative Models; Infor-
mation Theoretic Learning; Reinforcement Learning; Relational Learning; Dynamical
Models; Recurrent Networks; and Ethics of AI.

Brain-Inspired Computing: Cognitive Models; Computational Neuroscience; Self-
Organization; Neural Control and Planning; Hybrid Neural-Symbolic Architectures;
Neural Dynamics; Cognitive Neuroscience; Brain Informatics; Perception and Action;
and Spiking Neural Networks.
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Neural applications in Bioinformatics; Biomedicine; Intelligent Robotics; Neuro-
robotics; Language Processing; Speech Processing; Image Processing; Sensor Fusion;
Pattern Recognition; Data Mining; Neural Agents; Brain-Computer Interaction; Neuro-
morphic Computing and Edge AI; and Evolutionary Neural Networks.
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Growing theoretical and experimental research on action and language processing and on
number learning and gestures clearly demonstrates the role of embodiment in cognition
and language processing. In psychology and neuroscience, this evidence constitutes the
basis of embodied cognition, also known as grounded cognition (Pezzulo et al. 2012).
In robotics and AI, these studies have important implications for the design of linguistic
capabilities in cognitive agents and robots for human-robot collaboration, and have
led to the new interdisciplinary approach of Developmental Robotics, as part of the
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experimental results from iCub experiments on the embodiment biases in early word
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2019, 2021). The implications for the use of such embodied approaches for embodied
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discussed.
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Smart products and AI components are increasingly available in industrial applications
and everyday life. This offers great opportunities for cognitive automation and intelligent
human-machine cooperation; yet it also poses significant challenges since a fundamental
assumption of classical machine learning, an underlying stationary data distribution,
might be easily violated. Unexpected events or outliers, sensor drift, or individual user
behavior might cause changes of an underlying data distribution, typically referred to
as concept drift or covariate shift. Concept drift requires a continuous adaptation of the
underlying model and efficient incremental learning strategies. Within the presentation,
I looked at recent developments in the context of incremental learning schemes for
streaming data, putting a particular focus on the challenge of learning with drift and
detecting and disentangling drift in possibly unsupervised setups and for unknown type
and strength of drift. More precisely, I dealt with the following aspects: learning schemes
for incremental model adaptation from streaming data in the presence of concept drift;
various mathematical formalizations of concept drift and detection/quantification of
drift based thereon; and decomposition and explanation of drift. I presented a couple of
experimental results using benchmarks from the literature, and I offered a glimpse into
mathematical guarantees which can be provided for some of the algorithms.
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Artificial intelligence is currently leading to one breakthrough after the other, both in
public life with, for instance, autonomous driving and speech recognition, and in the
sciences in areas such as medical diagnostics or molecular dynamics. However, one
current major drawback is the lack of reliability of such methodologies.

In this lecture we took a mathematical viewpoint towards this problem, showing
the power of such approaches to reliability. We first provided an introduction into this
vibrant research area, focussing specifically on deep neural networks. We then surveyed
recent advances, in particular concerning generalization guarantees and explainability
methods. Finally, we discussed fundamental limitations of deep neural networks and
related approaches in terms of computability, which seriously affects their reliability,
and we revealed a connection with quantum computing.
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The advancements in telemonitoring platforms, biosensors, and medical devices have
paved the way for pervasive health management, allowing patients to be monitored
remotely in real-time. The visual domain has become increasingly important for patient
monitoring, with activity recognition and fall detection being key components. Com-
puter vision techniques, such as deep learning, have been used to develop robust activity
recognition and fall detection algorithms. These algorithms can analyze video streams
from cameras, detecting and classifying various activities, and detecting falls in real
time. Furthermore, wearable devices, such as smartwatches and fitness trackers, can
also monitor a patient’s daily activities, providing insights into their overall health and
wellness, allowing for a comprehensive analysis of a patient’s health. In this talk we
discussed the state of the art in pervasive health management and biomedical data ana-
lytics and we presented the work done in the Computational Biomedicine Laboratory
of the University of Piraeus in this domain. The talk also included Future Trends and
Challenges.
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A Classification Performance Evaluation
Measure Considering Data Separability

Lingyan Xue, Xinyu Zhang(B), Weidong Jiang, Kai Huo, and Qinmu Shen

National University of Defense Technology, Changsha, China

zhangxinyu90111@163.com

Abstract. Machine learning and deep learning classification models are
data-driven, and the model and the data jointly determine their classi-
fication performance. It is biased to evaluate the model’s performance
only based on the classifier accuracy while ignoring the data separabil-
ity. Sometimes, the model exhibits excellent accuracy, which might be
attributed to its testing on highly separable data. Most of the current
studies on data separability measures are defined based on the distance
between sample points, but this has been demonstrated to fail in several
circumstances. In this paper, we propose a new separability measure–
the rate of separability (RS), which is based on the data coding rate. We
validate its effectiveness as a supplement to the separability measure by
comparing it to four other distance-based measures on synthetic dataset.
Then, we discover the positive correlation between the proposed measure
and recognition accuracy in a multi-task scenario constructed from a real
dataset. Finally, we discuss the methods for evaluating the classification
performance of machine learning and deep learning models considering
data separability.

Keywords: Machine learning · Classification accuracy · Data
separability · Classification difficulty · Performance evaluation

1 Introduction

As an important branch in data mining, classification aims to construct a clas-
sification model to learn a mapping regularity from existing data to class labels.
The research of model is essential, yet data also determines the performance [2].
A specific example is the impact of spectral separability on classification accu-
racy [17]. Numerous classification models have been proposed, including KNN,
SVM, logistic regression, neural networks, etc., but studies on data separabil-
ity are substantially fewer. A recent study in hyperspectral image classification
has argued that insufficient data may limit the assessment capability of existing
accuracy indexes [9]. That leads to the problem of whether a model performs
best on a classification case is unclear or inconclusive [15]. It is acknowledged
that a good classification model provides greater generalization potential, which
means finding rules consistent with available data that apply widely to predict
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14254, pp. 1–13, 2023.
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the class of unknown data [20]. Yet the criteria for assessing the model’s general-
ization ability remain debated. To simplify the performance evaluation process,
researchers generally tend to adopt measures based on the confusion matrix [7],
like accuracy, precision, kappa statistic, and F-score. Each measure is represented
with a single score number, making it straightforward to compare and analyze
classification models quantitatively. Although the result is intuitive, its compa-
rability is invalid when confronted with a multi-task classification situation more
representative of the real-world environment.

A contradictory example is that a classifier reaches the highest accuracy
in one task but the lowest in another. What causes the problem is that such
classifier-oriented measures treat the different instances of a dataset as statisti-
cal objects and ignore the classification difficulty of each instance. For the above
issue, Yu et al. [18] proposed an instance-oriented measure but only apply to data
with few samples due to the computational complexity of classification difficulty
for each instance. Therefore, we require a measure to statistically characterize
the classification difficulty of datasets. Fortunately, previous research has estab-
lished that separability is an intrinsic characteristic of a dataset [4] to describe
how instances belonging to different classes mix. Measuring the data quality is
critical for estimating the problem’s difficulty in advance since a classification
model’s accuracy strongly depends on the data quality [1]. Obviously, the more
separable the dataset, the simpler the classification. Eventually, we consider data
separability as a metric of classification difficulty.

There are several measures of data separability that can quantify classifica-
tion difficulty. The Fisher discriminant ratio [8] has been used in many studies,
which measures the data separability using the mean and standard deviation of
each class, but it fails in some cases like a two-class circle data. A more effective
issue is data complexity which measures the distance of intra classes as well as
the inter class. Ho and Basu [6] conducted a groundbreaking review of data com-
plexity measures. Recently, Lorena et al. [11] summarized existing methods for
the measurement of classification complexity, showing that some of those may
have large time cost.

As an alternative to the distance-based criterion, we consider explaining data
separability from the perspective of probability theory. Inspired by Cover and
Thomas [3], the process of minimizing the data rate distortion is equivalent to
the process of solving the optimal solution of the likelihood function, i.e., the
data coding rate has strong consistency with the parameter estimation perfor-
mance [13]. That means if the data can be fitted with better distribution model
after segmentation, then the data should be effectively encoded in relation to
such model. Ma et al. [12] argued that the coding rate (subject to a distortion)
provides a natural measure of the goodness of segmentation for real-valued mixed
data.

Since there is no research verifying the feasibility of using coding rate as a
measure of data separability, this is the first study to construct a separability
measure based on rate-distortion theory called the rate of separability (RS). The
main contributions of this paper are summarized as follows.
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1) We propose a data separability measure based on rate-distortion theory,
and verify its effectiveness in theory and experiments.

2) We find a positive correlation between classification accuracy and data
separability in a multi-task noisy environment.

3) In a multi-task noisy environment, we design a task-oriented classifier
performance evaluation method considering data separability as the task dif-
ficulty. Unlike the classification accuracy changing with different tasks, this
method obtains classifier ability as the classifier’s inherent property under cer-
tain assumptions.

4) We build a modular classifier performance evaluation model to explain the
function of deep learning convolutional blocks using data separability.

The rest of this paper is structured as follows. Section 2 introduces the
method of constructing coding-rate-based measure. Section 3 provides experi-
mental methods for validating measure validity and evaluates the classification
model performance; results and analysis are also given in this section. Finally,
we conclude in Sect. 4.

2 Data Separability Measure

In this section, we apply rate-distortion theory in constructing a new data sep-
arability measure.

2.1 Coding-Rate Based Data Separability Measure

Given a data X = [x1, ...,xm] ∈ R
d×m with m samples of d dimension and a

encoding precision ε > 0, let Π = {Πj ∈ R
m×m}k

j=1 be the label matrix of
the X in the k classes, and Πj(i, i) is the label of xi belonging to class j, our
proposed data separability measure based on rate-distortion is:

RS(X) =
RC(X, ε|Π)

R(X, ε)
. (1)

In Eq. (1), the RC(X, ε|Π) and R(X, ε) denote the local and global coding
rate of the data, respectively. Unlike Yu et al. [19], who utilized ΔR(X) =
R(X, ε)−RC(X, ε|Π) as the optimization problem’s objective function subjecting
to

∥
∥Xj

∥
∥
2

F
= tr(Πj), here we discard the constraint and adopt a ratio form

between R(X, ε|Π) and R(X, ε), resulting in a data separability measure RS(X)
in the range of [0,1] with low values indicating high separability. It means that
the smaller the RC(X, ε|Π), the more clustered the samples within the class,
and the larger the R(X, ε), the more dispersed the samples between classes.
Next we introduce the definition of the coding rate and explain how the measure
we proposed reflects the data intrinsic separability.
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2.2 Definition and Computation of the Coding Rate

According to Cover and Thomas’ [3] definition of rate-distortion: the rate-
distortion R(X, ε) is the minimal number of binary bits needed to encode X
and the expected decoding error is less than ε. The actual estimation coding
rate of X with zero mean is as follows:

R(X, ε) =
m

2
log det(I +

d

mε2
XXT ). (2)

Furthermore, suppose X has k-class samples, then X = X1 ∪ X2 ∪ ... ∪ Xk .
the data Xj in each class j also occupy a certain volume in its low dimensional
subspace. For each subset, the above coding rate (2) is applied, then RC(X, ε|Π)
is given by

RC(X, ε|Π) =
k∑

j=1

tr(Πj)
2

log det
(

I +
d

tr(Πj)ε2
XΠjXT

)

(3)

The equation for the coding rate in Eq. (2) is for the scenario where the mean
value of the given data is zero mean. More generally, when X = [x1, ...,xm] ∈
R

d×m is not zero mean, we have the mean μ = 1
m

m∑

i=1

xi ∈ R
d and the zero mean

part of the data X̄, thus the total coding rate of X with non-zero mean is:

R(X) =
m

2
log det(I +

d

mε2
X̄X̄T ) +

d

2
log2

(

1 +
μT μ

ε2

)

. (4)

2.3 Correlation Between RS and Data Separability

This section discusses the connection between RS and data separability. Under
the condition that the data follows a Gaussian distribution, we prove Theorem 1.
Theorem 1 gives the lower bound of the data coding rate and the necessary and
sufficient conditions for it to reach the lower bound. This condition illustrates
that if and only if every class X has the same distribution, the total coding rate
of X is identical to the sum of Xj ’s coding rate.

Theorem 1. For any
{

Xj ∈ R
d×mj

}k

j=1
and any ε > 0, let X = [x1, ...,xm] =

[

X1, · · ·Xk
] ∈ R

d×m with m =
k∑

j=1

mj and μ = 1
m

m∑

i=1

xi ∈ R
d, then we define

the zero mean part X̄ = X − μ · 11×m. Let Xj = [xj
1, ...,x

j
mj

] ∈ R
d×mj with

μj = 1
mj

mj∑

i=1

xj
i ∈ R

d and X̄j = Xj −μj ·11×mj
. We have R(X, ε) ≥ RC(X, ε|Π),

m

2
log det(I +

d

mε2
X̄X̄T ) +

d

2
log2

(

1 +
μT μ

ε2

)

≥
k∑

j=1

mj

2
log det(I +

d

mjε2
X̄j(X̄j)

T
) +

d

2k
log2

(

1 +
(μj)T

μj

ε2

)

.

(5)
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where the equality holds if and only if

X̄1(X̄1)T

m1
=

X̄2(X̄2)T

m2
= · · · =

X̄k(X̄k)T

mk
=

X̄(X̄)T

m

μ1 = μ2 = · · · = μk = μ. (6)

The Proof of Theorem 1 is based on the concave property of the log det(·)
and log(·) functions, and they satisfy Jensen’s inequality.

Proof. Since log det(·) and log(·) is strictly concave, The Jensen’s inequality is
satisfied. We have

f(
k∑

j=1

βjSj) ≥
k∑

j=1

βjf(Sj). (7)

for all {βj > 0}k
j=1 ,

k∑

j=1

βj = 1 and
{

Sj ∈ S
n
++

}k

j=1
, where equality holds if and

only if S1 = S2 = · · · = Sk .
For function log det(·), take βj = mj

m and Sj = I + d
mjε2 X̄j(X̄j)T , we get

log det(I +
d

mε2
X̄X̄T ) ≥

k∑

j=1

mj

m
log det(I +

d

mjε2
X̄j(X̄j)

T
). (8)

with equality holds if and only if X̄1(X̄1)
T

m1
= X̄2(X̄2)

T

m2
= · · · = X̄k(X̄k)

T

mk
= X̄(X̄)T

m .
For function log(·), take βj = 1

k and Sj = 1 + d
ε2 (μj)T μj , we get

log(1 +
μT μ

ε2
) ≥

k∑

j=1

1
k

log(1 +
(μj)T

μj

ε2
). (9)

with equality holds if and only if μ1 = μ2 = · · · = μk = μ, and the last equality

is from
k∑

j=1

mjμ
j = mμ. From formula (8) and (9), Theorem 1 can be proved.

From Theorem 1, we can conclude that the sum of the various classes of data
coding rate is a lower bound on the overall data coding rate. When the overall
data coding rate reaches the lower bound, its necessary and sufficient condition
indicate: for the Gaussian distributed data, each category of data has the same
distribution, which also means that the feature vectors of each class have a high
degree of coincidence, corresponding to the most inseparable situation.

3 Experiments

3.1 Validation on Two-Class Synthetic Datasets

We first verify the proposed measure RS’s effectiveness using a two-class syn-
thetic dataset1 with adjustable separability, and contrast its separability evalua-
1 The datasets are created by the Samples Generator in sklearn.datasets https://

scikit-learn.org/stable/modules/classes.html#samples-generator.

https://scikit-learn.org/stable/modules/classes.html#samples-generator
https://scikit-learn.org/stable/modules/classes.html#samples-generator
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tion results with distance-based measures [5] (e.g., DSI, N2, LSC, Density). We
experiment on the data following a Gaussian distribution, the region of feature
overlap can be adjusted by changing the feature standard deviation (SD). We set
the SD parameter from 1 to 9. Four instances are depicted in Fig. 1, the results
are presented in Fig. 2.

Fig. 1. The data with different cluster
standard deviations (SD). A high SD
value denotes a significant overlap area

Fig. 2. Comparison of data separa-
bility evaluation results with varying
degrees of feature overlap. For mea-
sures, a high value on the y-axis indi-
cates low separability

In this condition, both N2 and LSC fail to assess the data separability. Among
them, LSC can only distinguish the case of features with or without overlap
and is not sensitive to the change of feature overlap area. At the same time,
N2 fluctuates with the deterioration of data separability, suggesting a lower
evaluation precision. Besides, RS, DSI, and Density can correctly reflect the
trend of data separability, i.e., a high SD value corresponds to a high measure
value. Furthermore, both DSI and RS have an extensive dynamic change range.

3.2 Correlation Between Classification Accuracy and Data
Separability

After verifying the validity of RS as a measure of data separability, we character-
ize the data separability using RS values. This section discusses the experimen-
tal procedures used to investigate the correlation between classification accuracy
and data separability. The experiment framework is shown in Fig. 3.

Step I is to add Gaussian white noise with a specific variance to the original
data to create a test set with a signal-to-noise ratio (SNR) of 5–20 dB.

In Step II, we deploy four standard machine learning classifiers. Nonlinear
classifiers such as K-Nearest Neighbor (KNN) and Support Vector Machine with
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Fig. 3. Experiment procedure to ver-
ify the correlation between classifica-
tion accuracy and data separability

Fig. 4. Analysis results to verify the
correlation between classification accu-
racy and data separability

Radial Basis Function (SVM with RBF) can generate nonlinear decision bound-
aries. Linear classifiers include linear SVM and logistic regression (LR). The Iris
data from UCI repository [10] are utilized in the experiment.

In step III, the T-SNE tool is used to visualize the influence of noise on data
separability. And in step IV, we compute noisy data’s RS value and analyze the
classification accuracy correlation. Here we apply the Monte Carlo simulation to
average the randomness of the results due to noise.

The analysis results on the Iris data are shown in Fig. 4. When the SNR is
lower than 5 dB, the test data separability becomes extremely poor relative to the
training data. And when the SNR is high as 20dB, its separability is equivalent
to the training data. Referring to the separability evaluation and correlation
analysis, as SNR grows, the separability of test data gradually improves, and the
classification accuracy increases along with it. Thus we can conclude a positive
correlation between data separability and recognition accuracy.

3.3 Classifier’s Ability Evaluated by Classification Accuracy Under
Data Separability

In this section, we evaluate the classifier’s generalization ability in the group
of tasks constricted in Sect. 3.2. Specifically, as shown in Fig. 4, for the dataset
Iris, the classification accuracy of SVM (RBF) is consistently higher than other
classifiers at SNR = 20 dB, but the lowest at SNR = 5 dB. Since the 5 dB task
is more difficult than the 20 dB one, we can’t conclude whether the classifier
performance is good or not. At this point, how could the classifier’s performance
be measured?

The simple idea is to assign a certain weight W ∈ R
n to the recognition

accuracy Pacc ∈ R
n of the classifier on that group of tasks according to the
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difficulty of the recognition task, and n is the number of tasks. The classification
ability θ on these tasks is defined as

θ = WT Pacc. (10)

W is determined by the difficulty of the recognition task. The more difficult
the task, the higher the weight value. According to the prior experiment, the
task difficulty depends to some extent on the data separability. Thus, W as
a mapping matrix is parameterized by the separability RS. To quantify this
mapping relationship, we seek a functional form f(·) of the mapping matrix W.

θ = f(Pacc;RS) (11)

f(·) needs to be obtained by fitting a given Pacc and θ. Pacc can be derived
directly from the classification results, whereas θ is uncertain. Therefore, it is
first necessary to construct the known θ based on the following assumptions.

1) For different difficulty tasks, homogeneous classifiers with fixed parameters
exhibit different recognition accuracies.

2) For the same dataset, homogeneous classifiers with fixed parameters
exhibit consistent recognition ability values.

3) For homogeneous classifiers with different parameter settings, their relative
ability value can be inferred from the recognition accuracy.

Fig. 5. The map of Pacc and θ. Here, k = 30, n = 15. Each column of Pacc records the
classification accuracy of an SVM model on 16 tasks associated with the same color
point column in Figure (a). Each row of Pacc records the classification accuracy of 30
SVM models on a single task. The row values are sequentially concatenated to obtain
the task curve shown in Figure (b)

Based on the assumptions stated above, we choose the SVM (Linear) model
on the Iris dataset to perform the anti-noise experiment depicted in Fig. 3. k
SVMs with relative ability values θ were obtained by adjusting the regular
parameter C. θ ∈ R

k take k values evenly from 0 to 1. Each SVM tests on n noisy
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tasks, and get Pj
acc ∈ R

n(j = 1, 2, ..., k). k-group Pj
acc is sorted from small to

large according to its largest element, and we have Pacc = [P1
acc,P

2
acc, ...,P

k
acc] ∈

R
n×k. Figure 5 shows the mapping of Pacc and θ.

Observe that the shape of the curve in Fig. 5(b) is more consistent with that
of the Sigmoid function, but the upper and lower bounds of the task curve are
variable; thus, Eq. (12) is adopted as the fitting function.

Pacc =
u − l

1 + exp(−a ∗ (θ − b))
+ u (12)

Plotting the curve of Eq. (12) in Fig. 6, we explore the properties of this
function.

Fig. 6. Fitting function plot Fig. 7. The fitting task curves and the
mapping points

The parameters u, l, a, and b reflect the function properties as follows.
1) u and l can represent the classifier’s upper and lower bounds of recognition

accuracy on a set of recognition tasks, respectively.
2) (u − l) ∗ a reflects the slope of the function. The flatter the function, the

harder the task and the lower the recognition accuracy.
3) b affects the right shift rate of the function. The larger the right shift

magnitude, the more difficult the task is, and the less accurate the classifier is.
Then we employ the polynomial fitting approach, with a and b represented

by RS

fa(RS) = h0 + h1RS + h2R
2
S

fb(RS) = p0 + p1RS + p2R
2
S. (13)

The mapping function f−1(·) from classification accuracy to classifier ability
with separability RS as a parameter is now obtained.
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Pacc = f−1(θ;RS) =
u − l

1 + exp(−fa(RS) ∗ (θ − fb(RS)))
+ u (14)

To examine the validity of this mapping function, we need to substitute
the recognition accuracy of another classifier into the Eq. (14) to ensure the
uniqueness of its recognition ability value, demonstrating that the recognition
ability value exists as an inherent property of the classifier.

Figure 7 shows the results of fitting the task curve with the SVM model as
a reference and an evaluation of the LR (with adjusted parameter α) models’
recognition ability on this curve.

This evaluation method has a high assessment accuracy in the middle of the
task curve. The evaluation of the LR model ability values for α = 0.01 and
α = 0.1 are distributed over a small interval, and a set of recognition accuracies
essentially map to a unique recognition ability value. Whereas at the two ends of
the curve, a slight change in recognition accuracy may bring about a significant
deviation in recognition ability due to the presence of the saturation zone.

3.4 CNN Layers’ Performance Evaluated by Data Separability

As an extension of machine learning classifiers, deep learning classifiers have
greatly improved recognition performance but are not satisfactory in model inter-
pretability. The convolution module, for example, is widely believed to play the
role of feature extraction, enabling the final output data to be more separable,
but how do we measure this function? In this section, we design a modular clas-
sifier recognition performance evaluation method to evaluate the performance of
each convolutional component of the CNN.

Effective separability indices are invaluable for the performance evaluation
of radar signal classification algorithms [14]. Since radar image is more difficult
to identify the classes to which they belong after their semantic features are
extracted by the convolutional layer, we use the typical radar image MSTAR2

as the experimental data. The evaluation method proposed is to insert a fea-
ture separability analysis module after each convolutional block to monitor its
performance, and the separability measure used is RS.

On the MSTAR dataset, we evaluate the performance of some convolutional
blocks of CNN provided by Chen et al. [16]. And to reduce the computational
effort of RS, we apply a 2 * 2 average pooling to the feature map. The network
structure and the feature separability analysis module are shown in Fig. 8.

After 100 epochs of training, the convergence of recognition accuracy on the
test set and the variation of feature separability extracted by each convolutional
block are set out in Fig. 9.

The most striking result from Fig. 9 is that the separability of features
extracted by each convolutional block keeps step with the final classification
accuracy. When classification accuracy improves dramatically, the RS value falls

2 The URL for downloading the dataset: https://www.sdms.afrl.af.mil/datasets/
mstar/.

https://www.sdms.afrl.af.mil/datasets/mstar/
https://www.sdms.afrl.af.mil/datasets/mstar/
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Fig. 8. Network architecture and fea-
ture separability analysis module

Fig. 9. Classification accuracy and fea-
ture separability analysis results

precipitously. And when the classification accuracy converges, the RS value
becomes steady. Furthermore, we also find that the convolutional block in a
deeper network has a more significant function in extracting a more separa-
ble feature with a lower RS value (RS1 > RS2 > RS3 > RS4). And the deeper
feature map exhibits a wider dynamic range of RS value (ΔRS1 < ΔRS2 <
ΔRS3 < ΔRS4).

4 Conclusion

Data separability quantification provides some basis for analyzing, understand-
ing, and enhancing model performance. In this paper, we validate the effec-
tiveness of the proposed measure on a typical synthetic two-class dataset and
confirm its positive correlation with the classification accuracy in a series of noisy
tasks constructed from real datasets. Then we designed machine learning and
deep learning classifier model evaluation methods based on the above two basic
argumentation experiments. We build a functional mapping model for machine
learning classifiers from classification accuracy to classifier ability. In the model,
the task difficulty is characterized by the measure, and the classification accu-
racy assesses the classifiers’ capability value as its inherent properties with a
separability measure as a parameter. For deep learning classifiers, we use a mod-
ular evaluation approach. Each convolutional block’s ability to extract separable
features is assessed using the proposed measure. Finally, we explain why neural
networks work effectively from the perspective of feature separability.

In fact, the separability measure can also be applied to evaluate clustering
results, understand the demerit of each feature, provide a theory for building
multi-classifier decisions, or reduce data complexity as a loss function. In general,
explaining and improving classification performance by exploiting data separa-
bility still deserves further study.
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4. Fernández, A., Garćıa, S., Galar, M., Prati, R.C., Krawczyk, B., Herrera, F.: Data
intrinsic characteristics. In: Learning from Imbalanced Data Sets, pp. 253–277.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98074-4 10

5. Guan, S., Loew, M.: A novel intrinsic measure of data separability (2022). https://
doi.org/10.1007/s10489-022-03395-6

6. Ho, T.K., Basu, M.: Complexity measures of supervised classification problems.
IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 289–300 (2002). https://doi.org/
10.1109/34.990132

7. Hossin, M., Sulaiman, M.N.: A review on evaluation metrics for data classification
evaluations. Int. J. Data Min. Knowl. Manage. Process 5(2), 1–11 (2015). https://
doi.org/10.5121/ijdkp.2015.5201

8. Li, C., Wang, B.: Fisher linear discriminant analysis. CCIS Northeastern University
(2014)

9. Li, S., Hao, Q., Gao, G., Kang, X.: The effect of ground truth on performance
evaluation of hyperspectral image classification. IEEE Trans. Geosci. Remote Sens.
56(12), 7195–7206 (2018). https://doi.org/10.1109/TGRS.2018.2849225

10. Lichman, M.E.A.: UCI machine learning repository (2013). https://archive.ics.uci.
edu/ml/datasets.php

11. Lorena, A.C., Garcia, L.P.F., Lehmann, J., Souto, M.C.P., Ho, T.K.: How complex
is your classification problem?: A survey on measuring classification complexity.
ACM Comput. Surv. 52(5), 1–34 (2019). https://doi.org/10.1145/3347711

12. Ma, Y., Derksen, H., Hong, W.: Segmentation of multivariate mixed data via lossy
data coding and compression. IEEE Trans. Pattern Anal. Mach. Intell. 29(9),
1546–1562 (2007). https://doi.org/10.1109/TPAMI.2007.1085

13. Madiman, M., Harrison, M., Kontoyiannis, I.: Minimum description length ver-
sus maximum likelihood in lossy data compression. In: International Symposium
on Information Theory. IEEE, Chicago (2004). https://doi.org/10.1109/ISIT.2004.
1365499

14. Mishra, A.K.: Separability indices and their use in radar signal based target recog-
nition. IEICE Electron. Express 6(14), 1000–1005 (2009). https://doi.org/10.1587/
elex.6.1000

15. Oprea, M.: A general framework and guidelines for benchmarking computational
intelligence algorithms applied to forecasting problems derived from an application
domain-oriented survey. Appl. Soft Comput. 89, 106103 (2020). https://doi.org/
10.1016/j.asoc.2020.106103

https://doi.org/10.1016/j.ins.2021.01.027
https://doi.org/10.1016/j.eswa.2013.02.025
https://doi.org/10.1007/978-3-319-98074-4_10
https://doi.org/10.1007/s10489-022-03395-6
https://doi.org/10.1007/s10489-022-03395-6
https://doi.org/10.1109/34.990132
https://doi.org/10.1109/34.990132
https://doi.org/10.5121/ijdkp.2015.5201
https://doi.org/10.5121/ijdkp.2015.5201
https://doi.org/10.1109/TGRS.2018.2849225
https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php
https://doi.org/10.1145/3347711
https://doi.org/10.1109/TPAMI.2007.1085
https://doi.org/10.1109/ISIT.2004.1365499
https://doi.org/10.1109/ISIT.2004.1365499
https://doi.org/10.1587/elex.6.1000
https://doi.org/10.1587/elex.6.1000
https://doi.org/10.1016/j.asoc.2020.106103
https://doi.org/10.1016/j.asoc.2020.106103


A Classification Performance Evaluation Measure Considering Data 13

16. Sizhe, C., Haipeng, W., Feng, X., Yaqiu, J.: Target classification using the deep
convolutional networks for SAR images. IEEE Trans. Geosci. Remote Sens. 54(8),
4806–4817 (2016). https://doi.org/10.1109/TGRS.2016.2551720

17. Wicaksonoa, P., Aryagunab, P.A.: Analyses of inter-class spectral separability
and classification accuracy of benthic habitat mapping using multispectral image.
Remote Sens. Appl. Soc. Environ. 19, 100335 (2020). https://doi.org/10.1016/j.
rsase.2020.100335

18. Yu, S., Li, X., Feng, Y., Zhang, X., Chen, S.: An instance-oriented performance
measure for classification. Inf. Sci. 580, 598–619 (2021). https://doi.org/10.1016/
j.ins.2021.08.094

19. Yu, Y., Chan, K.H.R., You, C., Song, C., Ma, Y.: Learning diverse and discrimi-
native representations via the principle of maximal coding rate reduction (2020).
https://doi.org/10.48550/arXiv.2006.08558

20. Zhang, C., Samy, B., Moritz, H., Benjamin, R., Oriol, V.: Understanding deep
learning (still) requires rethinking generalization. Commun. ACM 64(3), 107–115
(2021). https://doi.org/10.1145/3446776

https://doi.org/10.1109/TGRS.2016.2551720
https://doi.org/10.1016/j.rsase.2020.100335
https://doi.org/10.1016/j.rsase.2020.100335
https://doi.org/10.1016/j.ins.2021.08.094
https://doi.org/10.1016/j.ins.2021.08.094
https://doi.org/10.48550/arXiv.2006.08558
https://doi.org/10.1145/3446776


A Cross-Modal View to Utilize Label
Semantics for Enhancing Student

Network in Multi-label Classification

Yuzhuo Qin, Hengwei Liu, and Xiaodong Gu(B)

Department of Electronic Engineering, Fudan University, Shanghai 200438, China

xdgu@fudan.edu.cn

Abstract. Knowledge transfer has become a promising approach for
improving the performance and efficiency of relatively lightweight net-
works. Previous research has focused on identifying suitable knowledge
and enhancing network structures to obtain more valuable knowledge.
However, the introduction of extra information such as semantics remains
an unexplored area. In this study, we introduce a multi-label classifier
with label embeddings to replace the traditional GAP layer and incor-
porate semantics. Our approach adopts a cross-modal view for classifi-
cation and employs the correlation matrix of visual and label modalities
as knowledge to enhance the performance of the student. Furthermore,
due to the same classification head, we initiate the student’s head with
trained teacher’s and enable the label embeddings more representative.
Experimental results show that our proposed method outperforms exist-
ing typical methods. Additionally, further analysis confirms the effective-
ness of our approach.

Keywords: Label semantics · Knowledge transfer · Cross-Modal

1 Introduction

Knowledge-Transfer is widely used in deep learning as a means of transferring
knowledge from a large, complex model to a smaller, simpler one. While these
methods have shown promise in improving the performance and efficiency of
neural networks, they also have several drawbacks that need to be considered.

One of the main drawbacks of existing Knowledge-Transfer methods is that
they rely heavily on the design of a novel training strategy. This means that
researchers must spend a significant amount of time and resources developing
new algorithms and techniques to optimize the transfer of knowledge between
models. While this approach can lead to improvements in performance and effi-
ciency, it can also be time-consuming and expensive. Another drawback of exist-
ing Knowledge-Transfer methods is that they often focus on the selection of what
knowledge to transfer. This means that the teacher model is designed to provide
a specific subset of information that the student model is expected to learn.
While this approach can be effective in certain cases, it can also lead to a loss
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14254, pp. 14–25, 2023.
https://doi.org/10.1007/978-3-031-44207-0_2
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Fig. 1. The illustration of the process for obtain (a). label embedding and (b). word
embedding

of generalization and adaptability in the student model. However, the amount
of knowledge that a naive model can carry is limited, which also determines the
maximum gain that can be achieved through knowledge transfer.

Multi-label classification is a popular technique used to classify instances into
multiple labels or categories simultaneously. In recent years, there has been a
significant amount of research devoted to improving the accuracy of multi-label
classification models. However, one area that has been largely overlooked is the
use of Knowledge-Transfer techniques for improving multi-label classification
performance. Recently, some works such as [10,15] introduced label embeddings
to represent each unique category and fed them together with the spatial fea-
tures extracted from backbone network into a transformer encoder block, then
pools the features rich in label semantics and predicts the logits for correspond-
ing categories. The process for the obtain of label embeddings is similar to word
embeddings, which trains a neural network on a large corpus of text to repre-
sent words as numerical vectors in a high-dimensional space, as shown in Fig. 1
respectively. And this provides a cross-modal (text-image) view to treat the
multi-label classification task as the fusion of visual and label features to gain a
better classification performance.

As illustrated above, in the literature of Transfer-Knowledge for multi-label
classification, there is a significant gap in this field. Current methods focus on
what knowledge should be selected or how to design better architectures to fully
exploit the potential of teacher networks.

Therefore, in this paper, we propose to replace the traditional gap-based clas-
sification head with label-embedding one, to fully extract semantic information
from images. Inspired by paper [13], which used the tags of visual regions as a
intermediate to transfer contextual knowledge (i.e., the label correlation matrix)
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from the textual modality to the visual modality. Thus, we also make full use of
the refined knowledge obtained from the similarity matrix of the image and label
embeddings to better enhance the student network. Furthermore, as the classifi-
cation heads are the same for both teacher and student, we initial the student’s
classification head with trained teacher’s weight to make the label embeddings
in student network more representative. Experiments show that our proposed
method achieves best results compared with classical Knowledge-Transfer meth-
ods that are transplanted from single-label classification.

In general, our contributions could be summarized as:
(a) We analyze existing Knowledge-Transferred methods and find that they

either focus on the selection of transferred knowledge or the promotion of algo-
rithm for obtaining better knowledge. We find that decoupling the model and
adopt a proper classification head is important in Knowledge-Transfer.

(b) We introduce a multi-label classification model with label embeddings to
introduce semantics and treat the classification from a cross-modal review.

(c) We utilize the similarity matrix between visual features and label embed-
dings as knowledge and initial the student’s classification head with teacher’s
trained weights, experimental results show that our method gains great perfor-
mance among existing classical Knowledge-Transfer methods.

2 Related Works

Knowledge-Transfer is a concept that involves the transfer of knowledge from
one domain or task to another. It is a promising area of research that aims to
improve the performance and efficiency of deep learning models by leveraging
pre-existing knowledge or models. Knowledge transfer can take different forms,
including transfer learning, domain adaptation, and multi-task learning. Transfer
learning is the most common form of knowledge transfer in deep learning, where
a pre-trained model is used as a starting point for a new task, which is deemed
as teacher network in this work.

The transfer of knowledge can assist in training a model by learning the
data distribution from another model, thereby improving the performance of
both models. Due to its effectiveness in aligning different domains, knowledge
transfer is commonly used in knowledge distillation. Knowledge distillation was
first proposed by [5] to adopt teacher’s soft target as hint to guide the training
of student. Besides logit-based form, intermediate representations in network
could also be treated as a powerful form of knowledge, [16] selected intermediate
blocks of a teacher and forced the student to mimic the way how teacher outputs.
Besides, [21] refined the attention information of feature maps from the final
block of network into a single map. As a combined form of both logit-based
and feature-based, [19] proposed to force the student’s logits continuous with
teacher’s instead of only using feature matching loss.
Multi-label Classification aims at assigning multiple labels to a given input
image. This type of classification problem is often encountered in many real-
world applications, where an instance may belong to multiple categories or
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Fig. 2. Illustration of the classification network and knowledge-transfer, dashed lines
denote the process for knowledge transfer. “Teacher” and “Student” represent the
backbone networks

classes simultaneously. A straightforward way to impose multi-label classifi-
cation is to transform it into several independent binary classification tasks,
which switches the Softmax activation in single-label classification network to
the Sigmoid activation. There are several popular topics in multi-label clas-
sification, such as loss functions improvement [8,14], label correlation model-
ing [1,2,20] and classification head design [10,15]. Specifically, to address the
negative-positive imbalance in multi-label classification, [14] proposed asymmet-
ric loss to introduce a restricted factor to reduce the dominance of negative
samples in loss function based on [8]. [1,2] both constructed a graph based on
the statistical label co-occurrence and class-aware maps respectively. And [20]
updated static graph to dynamic graph by using a dynamic graph convolutional
network (GCN) module for robust representations. Furthermore, [10] utilized
transformer decoders to extract features with multi-head attentions focusing on
different parts or views of an object category and learning label embeddings.
And [15] modified Query2Label by utilizing group-wise queries and removing
the self-attention module for better computational friendliness.

3 Method

To enable transferred knowledge rich in label semantics, we replace the GAP
layer in a typical classification network with a query2label [10] head which
consists of label embeddings. The main pipeline of our knowledge-transferred
method is illustrated in Fig. 2. Firstly, an identical raw image is firstly fed into
teacher and student networks respectively, which are usually large as well as com-
plex and small as well as simple backbone networks. Then the spatial features
are sent into the classification head to be fused with label embeddings, where
the module consists of two transformer decoders. The correlation matrix from
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teacher is used as the knowledge to guide the student. Finally, a group fully-
connected pooling layer is utilized to pool the features output by classification
head and predicts the logit for each category. In this section, we will introduce our
proposed method from those aspects: (1) Existing Typical Knowledge-Transfer
Methods, (2) Pipeline, (3) Introduction of Label Semantics for Knowledge Trans-
fer, (4) Loss Functions.

3.1 Existing Typical Knowledge-Transfer Methods

Due to the similar pipeline with single-label classification, some knowledge-
transfer methods in that scene could be directly applied in multi-label classi-
fication. The original method KD [5] is to measure the final prediction logits, we
denote by T o

i and So
i the classifier outputs of teacher and student respectively,

thus the logit-based knowledge transfer loss could be presented as

L = τ2
K∑

i=1

KL(Ti||Si) (1)

where τ is the temperature, K is the category number and KL(·) represents
the Kullback-Leibler divergence. Different from single-label classification, multi-
label classification consists of multiple independent binary classifiers, thus the
activation in multi-label knowledge transfer is switched to Sigmoid activation
function.

Besides, intermediate representations could also be treated as knowledge. Fit-
Nets [16] selected blocks inside network and guided the student to learn the way
how those networks output. Attention Transfer [21] operated quadratic computa-
tion along the channel-wise dimension of feature maps and activated the spatial
areas which the network focuses most for taking its output decision. Mathemat-
ically, we denote by Feat, F eas the feature knowledge of teacher and student
respectively, the loss for feature-based knowledge transfer could be presented as

L =
∑

i∈K

L2(Feai
t, F eai

s), (2)

3.2 Pipeline

The whole pipeline, as shown in Fig. 2 can be divided into two parts: multi-label
classification and knowledge transfer. In multi-label classification task we adopt
the pipeline of Query2Label [10]. Given an input image, among a set of cate-
gories of interest, multi-label classification is to predict whether each category
is present. Assume that there are K categories, the corresponding label for the
given image X is denoted as y = {yk|k = 1, · · · ,K, yk ∈ {0, 1}}. Generally, the
given image, which is denoted by X ∈ RH×W×3, is first input into a backbone
network and obtains the spatial feature maps F ∈ RHo×Wo×d. H × W,Ho × Wo

are the size (height and width) of the original input image and the feature maps
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respectively. d represents the channel size of spatial feature maps. Spatial fea-
tures maps are then sent into a transformer-based classification head, which
contains several stacked Transformer blocks for query updating and adaptive
feature pooling, and a linear projection layer for computing prediction logits.
For each Transformer block, label embedding Q0 ∈ RK×d is used as Queries and
spatial feature map is used as Key and Value. Specifically, for the i − th block,
an iteration of Query can be formulated as:

Q
(1)
i = MultiHead(Q̃i − 1, Q̃i − 1, Qi−1),

Q
(2)
i = MultiHead(Q̃(2)

i , F̃ , F ),

Qi = FFN(Q(2)
i ),

(3)

Both the MultiHead(Query,Key,Value) and FFN(·) functions are the same
as defined in the standard Transformer decoder [18]. Assuming that there are
L blocks, the queried feature QL is used the final representation for predicting
the probability of each category. We treat each label prediction as a binary
classification task and project the feature of each class to a logit value using a
linear projection layer followed with a sigmoid function:

pk = Sigmoid(WT
k QL,k + bk) (4)

where Wk ∈ Rd, W = [W1, · · · ,WK ]T ∈ RK×d, and b = [b1, · · · , bK ]T ∈ RK

are parameters in the linear layer, and p = [p1, · · · , pK ] ∈ RK is the predicted
probabilities for corresponding categories.

3.3 Introduction of Label Semantics for Knowledge Transfer

Classification head utilizes MultiHeadAttention to fuse the spatial feature maps
and the label embeddings. The process of cross-attention operation enables it
convenient to obtain the similarity between each spatial feature and each cate-
gory, which can also considered the correlation knowledge between location and
semantic. And due to the larger capacity of network, teacher is more sophisti-
cated to capture greater spatial feature maps to achieve better fusion with label
semantics. Thus, we directly adopt the similarity matrix extracted from the sec-
ond decoder module as the transferred knowledge to guide student learn a better
correlation between the visual modality and the labeling modality, which can be
considered a cross-modal view. Specifically, we denote by Mt ∈ RHoWo×K and
Ms ∈ RHoWo×K as the similarity matrices from teacher and student respectively,
thus the loss function to measure the similarity of them can be presented as

Lcor =
∑

i∈K

piL2(M i
t ,M

i
s), (5)

where pi represents the teacher’s probability for the i-th category and the simi-
larity matrix is pre-normalized. L2(·) represents the L2 loss function.
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3.4 Loss Functions

Knowledge Transfer usually obeys a paradigm that the final object function
consists of two elements, i.e. the original task one and the one for measuring the
knowledge similarity. In this work, the original task is to predict multiple labels
for a given instance, where the logits output from group fully-connected pooling
is used to be closer to the ground-truths. We denote by pi the probability for the
i-th category and yi the corresponding label. To address the negative-positive
problem in multi-label classification, we leverage the asymmetric focal loss for
calculation, which is presented as

Lcls =
1
K

∑

i∈K

{
(1 − pi)λ+log(pi), yi = 1,

(pi)λ−log(1 − pi), yi = 0,

Thus the final object function of our proposed correlation knowledge transfer
could be presented as

L = Lcls + αLcor, (6)

where α is the weight to balance two losses.

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets. We conduct our experiments on MS-COCO [9], which is a public
datasets constructed for object detection and segmentation tasks, and can also
be used for multi-label classification. It contains 123,287 images totally with 80
categories covered. It is split into 82,783 and 40,504 as training and validation
sets respectively.
Evaluation Metrics. Due to the overall precision (OP) and the overall recall
(OR) are determined by the threshold for the probabilities. Following previ-
ous works, we adopt the mean average precision (mAP) over all categories for
evaluation.

4.2 Implementation Details

In this section we will introduce more detailed experimental settings for our pro-
posed model. The input image is resized into 448 × 448 and adopt random aug-
mentation for better performance. We select ResNet101 [4] and SwinLarge [11] as
teacher networks, ResNet18 [4] and MobileNetv3 [6] as student networks. For all
knowledge transfer settings, backbone networks are pre-trained on ImageNet [3],
spatial feature maps extracted from backbones are projected into the dimension
size of 2048. We train models using the Adam optimizer [7], with True-Weight-
Decay [12] set to 1×10−2, and a cycle learning rate schedule [17] with a maximum
learning rate of 1 × 10−4. The batch-size is set to 256. Additionally, we employ
the exponential moving average trick [14] to improve performance.
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Table 1. mAP(%) results of knowledge transfer with different combinations of back-
bones on MS-COCO. Best results are in bold font.

CNN-CNN Transformer-CNN

Teacher ResNet101 [4] ResNet101 [4] SwinLarge [11] SwinLarge [11]

Student ResNet18 [4] MobileNetV3 [6] ResNet18 [4] MobileNetV3 [6]

Teacher 84.88 84.88 91.44 91.44

Student 78.47 79.03 78.47 79.03

KD [5] 79.37 79.86 79.18 79.55

FitNets [16] 78.70 79.29 78.48 79.24

AT [21] 78.78 79.27 78.54 79.05

Ours 80.83 81.14 80.75 81.44

4.3 Experiment Results

We conduct experiments on MS-COCO [9] dataset and report different combi-
nations of networks in Table 1, including CNN-CNN and Transformer-CNN as
teacher and student networks respectively. As comparisons, results of classical
methods such as KD [5], FitNets [16] and AT [21] are also reported. It is note-
worthy that for FitNets, only representations from the last block are utilized,
because they are directly fed into the classification head and responsible to the
performance of the prediction. From the table, it could be seen that our pro-
posed method outperforms existing methods by a large margin. Among three
classical methods, KD works the best, which validates that using the teacher’s
logits to guide the student also works in the multi-label classification with label-
embedding classification head. Process for the final logits in both training and
validation stages are independent among different categories and it may cause
the helplessness of logits for student. However, the similarity matrix inside trans-
former block is computed by Softmax operation and it may help incorporate
information among categories, leading to the effectiveness of KD. For FitNets,
the information stored in feature maps is too redundant and brings little gains for
student. And we can also observe that the performances of AT on Transformer-
CNN are inferior than that on CNN-CNN, which may due to the non-locality
inside transformer structure and makes it less able to capture the local attention
areas in an image.

In general, our method improves the performance by 2.36% and 2.11% in
CNN-CNN settings, 2.28% and 2.41% in Transformer-CNN settings respectively.
Interestingly, as a stronger teacher comparison with ResNet101, SwinLarge
couldn’t enlighten a better student. We argue that the structure of ResNet101
is much more similar to that of ResNet18, thus enabling student easier to cap-
ture the correlation and improves itself. Still, compared with classical methods,
results could also validate that with initializing the student’s classification head,
and utilizing the correlation matrix between spatial features and label embed-
dings could promote student networks effectively in multi-label classification.



22 Y. Qin et al.

4.4 Ablation Studies

Table 2. Ablation studies for our proposed method. “ClsInit” represents initializing
the student’s classification head with teacher’s weight

Teacher ResNet101 [4] ResNet101 [4]

Student ResNet18 [4] MobileNetV3 [6]

Teacher 84.88 84.88

Student 78.47 79.03

KD [5] 79.37 79.86

FitNets [16] 78.70 79.29

AT [21] 78.78 79.01

Ours w/o ClsInit 80.73 80.89

Ours 80.83 81.14

To further validate the effectiveness of our proposed two approaches, i.e. knowl-
edge transfer with correlation matrix and initialization student’s classification
with teacher’s weight, we conduct ablation studies and also compare the result
of each method with classical knowledge transfer methods. As shown in Table 2,
we fist directly utilize the correlation matrix as knowledge to guide student, it
could be seen that the incorporation of label semantics works well and shows
the validity of treating this process with a cross-modal view.

Furthermore, after initializing the student’s classification head with teacher’s
weight, namely “ClsInit”, the performances of students are further improved.
It proves that teacher network with a larger capacity could learn better label
embeddings, and endow them richer semantics, thus provides a better starting
point for the training of student networks.

4.5 Further Analyses

Improvement of Student After Knowledge Transfer. In our proposed
method, we utilize the similarity matrix between spatial feature maps and label
embeddings as transferred knowledge. Thus the similarity matrix is able to
exhibit the local activation for each category, which could be utilized to visualize
and for better comprehension. In order to qualitatively analyse how correlation
knowledge works during knowledge transfer, we illustrate the activation maps
for corresponding categories in Fig. 3. The two rows represent student without
and with knowledge transfer respectively.

From the first row of Fig. 3, it could be seen that lightweight student net-
work is less able to activate accurate locations for specific categories, such as
the “bird” and “elephant”. However, with correlation knowledge learned from
teacher network, the location of those instances are improved obviously. The
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Fig. 3. Illustration of the visualization of category activation for student without and
with knowledge transfer respectively. The label below each picture represents its cor-
responding category.

visualization results demonstrate that with the help of correlation knowledge
transferred from teacher, student is much easier to be enlightened to acquire the
relationship between spatial and semantic domains.

Fig. 4. Illustration of the visualization of category activation extracted from similarity
matrix in transformer decoder. The label below each picture represents its correspond-
ing category

Comparison of Correlation Between Different Teachers. From Table 1,
we could observe that with MobileNet chosen as student, a greater teacher could
bring a better student. We conjecture that due to the larger capacity of Trans-
former backbones, they could obtain better spatial features and enable label
embeddings richer semantics, which leads to a better correlation between spa-
tial and semantic domains. Besides, the gain of student in Transformer-CNN is
not such drastic as CNN-CNN combination, this may because that less capacity
couldn’t make students thoroughly learn how to output the identical spatial fea-
tures as transformer teachers. Still, as shown in Fig. 4, we could observe that with
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a stronger backbone, the activation for each category could be better. Specifi-
cally, a better teacher network is able to appropriately activate corresponding
instances in space, such as people, giraffe, and bicycle. Thus knowledge from
teacher could convey more comprehensive semantic information to student net-
works.

5 Conclusion

In conclusion, this paper proposed a novel approach for improving the perfor-
mance of lightweight multi-label classification models by utilizing Knowledge-
Transfer techniques. We identified the limitations of existing Knowledge-Transfer
methods and proposed a solution that replaces the traditional gap-based classifi-
cation head with a label-embedding one, which fully extracts semantic informa-
tion from images. Our approach utilizes the refined knowledge obtained from the
similarity matrix of image and label embeddings to enhance the student network.
We also initialized the student’s classification head with the trained teacher’s
weight to make the label embeddings in the student network more representa-
tive. Experimental results demonstrate that our proposed method outperforms
classical Knowledge-Transfer methods that are transplanted from single-label
classification.
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Abstract. Imbalanced data classification is a challenging problem with
wide applications in machine learning and data mining. Most researchers
attempt to solve this problem from the data level or algorithm level.
Nevertheless, these methods have their limitations. In addition, most
of them focus on dealing with the imbalance in the number of data
samples while ignoring the imbalance caused by sample difficulty. Thus,
we design a hybrid model to handle this problem. Our model integrates
data space improvement, sample selection, sampling strategy, and loss
function. To evaluate the performance of our hybrid model, we conduct
experiments on several real-world imbalanced datasets. The experimental
results prove that our hybrid model is effective.

Keywords: Class imbalance · Machine learning · Imbalanced data

1 Introduction

Imbalanced data classification is challenging [10,13], and it has wide applica-
tions in the machine learning field [3,11,19]. The main characteristic of the
imbalanced data is its skewed data distribution, which means that most sam-
ples belong to one class (the majority class) and the rest belong to the other
(the minority class). The skewed data distribution usually leads to conventional
machine learning classifiers having poor classification performance.

To address imbalanced data classification, researchers have proposed plenty of
methods. Existing methods mainly contain two categories: data-level techniques
and algorithm-level techniques. Data-level techniques solve the imbalanced data
by changing the data distribution. Algorithm-level techniques increase the
importance of the minority class in adjusting the learning or decision process.

However, we notice the weakness of the above existing methods. On the
one hand, traditional data-level methods usually do not consider the impact of
different types of samples in the imbalanced dataset to train the model. The
study [16] indicates that some of the samples are useless and even negatively
impact model training. On the other hand, traditional algorithm-level methods
[6,8] usually focus on giving a higher loss to the minority class but ignore the
impact of sample difficulty.
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This paper aims to remedy the above weaknesses from two aspects. Firstly,
this paper introduces the concept of “sample classification importance” to select
suitable samples for sampling. Intuitively, classification importance represents
the importance of a sample for classifier training. For a dataset, we divide all sam-
ples into three kinds, i.e., important informative samples, negative informative
samples, and general informative samples. Such sample classification importance
can guide the selection of suitable samples for sampling to obtain satisfactory
results. Secondly, we propose a loss function that is based on sample difficulty.
This loss function can give different costs to different samples according to their
sample difficulty.

Then, we further propose a hybrid model to solve imbalanced data classi-
fication. Our model integrates data space improvement, sample selection, and
loss function based on sample difficulty. Specifically, it contains three blocks: (1)
Data space block, which transforms the data space to make samples close to
their nearest neighbors belonging to the same class and separates samples from
other classes by a large margin. This block can make samples easier to be sepa-
rated. (2) Sample selection block finds suitable samples for sampling to obtain a
balanced dataset. This block aims to find valuable samples. (3) Sample Difficulty
block applies a novel loss function that adds larger loss to samples with greater
difficulty for training the classifier.

In summary, our contributions lie in the following aspects. (1) Firstly, we
propose a new sample selection approach that can use fewer samples but get
better classification results. (2) Secondly, we design a novel loss function based
on sample difficulty for imbalanced data training. (3) Thirdly, we design a hybrid
model that integrates space improvement, sample selection, sampling, and loss
function to handle this problem. (4) Finally, experimental results on real-world
imbalanced datasets have shown that our hybrid model performs better than
competing methods, and each block of our model is valid.

2 Related Work

2.1 Data-Level Methods

Data-level approaches [7] aim to solve imbalanced data by changing the data
distribution. They can be further divided into undersampling methods and over-
sampling methods. Under-sampling methods reduce the number of majority
instances from the original dataset to balance the dataset. The simplest under-
sampling form is random undersampling [10]. This method removes the majority
of instances randomly. Unlike undersampling methods, oversampling methods
generate minority instances to obtain a balanced dataset. Random oversampling
is the most straightforward way that randomly generates minority instances
from the original data. In addition, plenty of advanced sampling methods have
been designed. SMOTE [5] is the commonly used sampling method that selects
close instances, drawing a line between instances and generating a new instance
at a point along that line. ADASYN [9], MWMOTE [1], and ADMO [18] are
representative sampling methods that generate the minority synthetic instances.
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However, the weaknesses of data-level methods are apparent: The technique of
selecting suitable instances for sampling is still being determined [4].

2.2 Algorithm-Level Methods

Algorithm-level approaches solve imbalanced data by increasing the importance
of the minority class in adjusting the learning or decision process. These methods
mainly contain cost-sensitive learning and novel loss functions. Cost-sensitive
learning approaches modify the cost matrix to reduce bias towards the majority
class. However, determining a matrix is difficult for cost-sensitive learning-based
methods. Researchers have recently designed several new loss functions [6,8] for
training deep neural networks for solving imbalanced data classification. The
most widely used loss for imbalanced data is the focal loss [15] that assigns a
weight to each instance according to its prediction accuracy in model training.

3 Proposed Method

3.1 Overview

As shown in Fig.1, our model consists of three blocks: (1) Data space block
(DSB), which transforms the data space to make samples close to their nearest
neighbors with the same class. This block can make samples easier to be sepa-
rated. (2) Sample selection block (SSB) finds valuable samples and builds up a
set based on valuable samples. This block aims to find valuable samples for sam-
pling. (3) Sample Difficulty block (SDB) applies a novel loss function that adds
larger loss to samples with higher sample difficulty for the training classifier.

Fig. 1. The architecture of our hybrid model

3.2 Data Space Block

Our model integrates the data space improvement technique to make the imbal-
anced data easier to be separated. In this work, we use the LMNN [17] technique
that builds up an algorithm to pull samples with the same class label close to
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the target sample and push samples that belong to different class labels away
from the target sample, as shown in Fig. 2. The algorithm of the LMNN tech-
nique is as follows: ϕ(H) = (1−μ)ϕpull (H)+μϕpush (H), where H is the linear
transformation of the input space and μ is a positive real number utilized as
the weight. The first part of this loss penalizes large distances between the sam-
ple and its k nearest neighbors belonging to the same class, which is defined as
ϕpull (H) =

∑
p,q∈M(p) ‖L (xp − xq)‖2, where M(p) is the k nearest neighbor of

sample p with the same class label as p.
The second part penalizes small distances between the sample and others

with different classes, which is defined as:
ϕpush (H) =

∑
p,q,l (1 − δpl) max

{
1 + ‖H (sp − sq)‖2 − ‖H (sp − sl)‖2 , 0

}
,

where δil is utilized to decide whether samples sl and sp belong to different
classes or not. If samples belong to different classes, δpl = 0; otherwise, δpl = 1.

Fig. 2. Using the LMNN algorithm, the comparison between original data space and
transformed data space

3.3 Sample Selection Block

Traditional data-level methods usually select all samples for sampling to obtain
a balanced dataset. However, study [16] has indicated that not all samples are
useful for model training. Thus, it is necessary to distinguish the types of samples
and select suitable samples for sampling. In this part, we first introduce the
definition of sample classification importance and propose a method to finish
sample selection based on this definition.

Definition: Sample classification importance represents the importance of a
sample for the classifier training.

Intuitively, we divide samples into three kinds, i.e., important informative
samples, negative informative samples, and general informative samples, as
shown in Fig. 3 .

Important informative samples: They are the most informative samples dur-
ing the classifier training. For instance, as we can see in Fig.3, important infor-
mative instances are usually located close to the classification boundary of the
classifier. Improving the importance of these instances is helpful in improving
the performance of the classification [16].
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Negative informative samples: By contrast, negative informative samples
harm the model training. For example, negative informative samples are in Fig.
3 are usually caused by indistinguishable noise, which could lead the model to
serious overfitting. Thus, we need to reduce the impact of these samples.

General informative samples: Most of the samples are general informative
samples that the model can correctly classify, as shown in Fig.3. Each general
informative sample only contributes minor importance. However, the overall con-
tribution is enormous because of its large number. For this type of sample, we
only need a small part of them to remain their ” skeleton ” to prevent overfitting,
then remove most of them.

We evaluate sample classification importance based on the kNN method [2].
If all neighbors of a sample belong to a different class, then it is a negative
informative sample. On the contrary, if all neighbors of a sample and itself belong
to the same class, then it is a general informative sample. In other cases, the
sample can be seen as an important informative sample, which means that it
will have a large value when a sample locates on the borderline between different
classes. Then, we introduce the sample selection method. Given a dataset, it can
be divided into three parts: negative informative set, important informative set,
and general informative set according to sample classification importance. We do
not use negative informative samples to sample since they have negative impacts
on the classifier training. We focus on sampling important informative samples
because they are essential in finding the classification boundary. In addition, we
only use small parts of general informative samples to sample because we only
need a small part of them to retain their ”skeleton”. Based on the above analysis,
our sample selection method is shown in Algorithm 1 in detail.

Fig. 3. Illustration of types of samples

3.4 Sample Difficulty Block

This block applies a new loss function based on sample difficulty to train the
classifier with the imbalanced data. We first introduce the sample difficulty and
then propose our loss function. Based on the analysis in the sample selection part,
finding suitable samples that can learn the classification boundary as precisely as
possible is important. In addition, we also notice that different suitable samples
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Algorithm 1. Sample Selection
Input: Dataset D, the quantity of samples N , the parameter of kNN method k,

the percent of general informative samples m.

1: for i ← 1 to N do
2: Use the kNN method to calculate the number of its neighbors that have different

labels with itself: kNN (xi,j , D − Dj);
3: if kNN (xi,j , D − Dj) = k then
4: xi,j is a negative informative sample;
5: else if kNN (xi,j , D − Dj) = 0 then
6: xi,j is a general informative sample;

Add xi,j to the set of general informative samples Dgeneral;
7: else
8: xi,j is an important informative sample;

Add xi,j to the set of important informative samples Dimportant;
9: end if

10: end for
11: Based on Dgeneral, use random undersampling to obtain m percent of general

informative samples Dsampledgeneral.
Dselection = Dimportant ∪ Dsampledgeneral

Output: The dataset after Sample Selection Dselection

may also have different difficulties in model training. Thus, we propose a method
to calculate the level of sample difficulty.

Intuitively, a sample with more nearest neighbors with different class labels
will have a high sample difficulty level. Based on this, we provide formula (1) to
evaluate the sample difficulty (SD), where k is the number of nearest neighbors.
kNN(xi,j ,D − Dj) is the number of k nearest neighbors of sample xi,j that do
not belong to class j.

SD (xi,j) =
kNN (xi,j ,D − Dj)

k
(1)

Then, We introduce our novel loss starting from the cross-entropy (CE) loss
for classification. For a classification of p categories, the CE loss is defined as:

LCE = − 1
n

n∑

i=1

p∑

j=1

yi,j log ŷi,j (2)

where n is the sample size. yi,j ∈ {1, 0} specifies the ground truth sample, and
ŷi,j ∈ [0, 1] is the model’s estimated probability for the sample with ground truth
i, j.

Based on the CE loss, we add a factor that can consider the different types of
samples in a dataset, as mentioned in the sample selection block. The parameter
wi,j is related to the sample difficulty. We use formulas (1) and (3) to calculate
the value of wi,j . Then we define our sample difficulty loss function as formula
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(4). We notice the property of our proposed loss function. The parameter wi,j

gives samples that are more difficult to train a large loss.

wi,j = log(1 + SD(xi,j)) (3)

LSD = − 1
n

n∑

i=1

p∑

j=1

wi,jyi,j log ŷi,j (4)

4 Experiments

4.1 Data Description and Compared Methods

We employ several real-world imbalanced datasets by imblearn toolbox [14]
(These datasets are from UCI, LIBSVM, and KDD repository.) to test the per-
formance of our hybrid model. These datasets have different characteristics in
terms of the number of samples, IR (Imbalance Ratio), and features. The detailed
information on datasets is shown in Table 1. Besides, we randomly split datasets
into training sets (60%), valid sets (20%), and test sets (20%).

Table 1. Summary of imbalanced datasets

Datasets Samples Features IR

optical-digits 5620 64 9.1

satimage 6435 36 9.3

pen-digits 10992 16 9.4

abalone 4177 10 9.7

sick-euthyroid 3163 42 9.8

spectrometer 531 93 11

isolet 7797 617 12

us-crime 1994 100 12

yeast-ml8 2417 103 13

scene 2407 294 13

thyroid-sick 3772 52 15

coil-2000 9822 85 16

arrhythmia 452 278 17

oil 937 49 22

car-eval-4 1728 21 26

wine-quality 4898 11 26

abalone-19 4177 10 130

We compare our hybrid model with the following methods, including data-
level methods: Random oversampling (ROS), MWMOTE [1], ADASYN [9],
SMOTE [5], and AMDO [18]; algorithm-level methods: Focal loss [15], Class-
balanced loss [6], and DWE loss [8].
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4.2 Evaluation Metrics

We employ commonly used metrics, G-mean and AUC [12], to evaluate the per-
formance of imbalanced data classification. Let FN, FP, TP, and TN be false
negative, false positive, true positive, and true negative. TNR and TPR mea-
sure the number of correctly classified positive instances and negative instances,
respectively. G-mean combines TNR and TPR . AUC is the area under the
receiver operating characteristic curve that reflects the relationship between the
false positive and true positive ratios. This area describes the trade-off between
incorrectly classified positive and correctly classified negative instances.

TNR =
TN

TN + FP
(5)

TPR =
TP

TP + FN
(6)

G − Mean =
√

TPR × TNR (7)

4.3 Implementation Details

We select Multilayer perception (MLP) as the classifier and a batch size of 32 to
train it for 100 epochs based on the TensorFlow framework. The classifier utilizes
Adam as the optimizer, with a learning rate is 0.001. We ran all experiments ten
times and took the average of ten times as the final result to obtain a reliable
result. Our model finds suitable samples and evaluates the sample difficulty level
based on the kNN method (k = 7).

4.4 Experimental Results

Tables 2 and 3 reports AUC and G-mean values on imbalanced datasets. From
the experimental results, we find that no single method can achieve the best
performance on all datasets. In contrast, our hybrid model achieves decent per-
formance in most cases. The reasons that our model can perform well lie in the
following aspects.

First, we use a data space block to make samples easier to be classified. Sec-
ond, unlike traditional imbalance resolution methods, we select suitable samples
based on sample selection for model training. This method retains the critical
classification information. Third, our sample difficulty loss function gives each
sample a loss corresponding to its sample difficulty. This loss function fully con-
siders the impact of sample difficulty and offers a higher loss to the samples
with higher sample difficulty and more challenging to distinguish. Combining
the findings above, our model is effective for imbalanced data classification.
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Table 2. Valus of AUC on 17 real-world imbalanced datasets

Dataset MWMOTE ADASYN SMOTE AMDO ROS Focal DWE BCE Our model

optical-digits 0.9792 0.9772 0.9810 0.9747 0.9861 0.5000 0.5000 0.9826 0.9940

satimage 0.7931 0.7946 0.7985 0.5302 0.8060 0.5000 0.5000 0.7964 0.8437

pen-digits 0.9951 0.9963 0.9977 0.9956 0.9985 0.5000 0.5000 0.9952 0.9985

abalone 0.7206 0.7389 0.7122 0.4990 0.7362 0.5048 0.5416 0.6504 0.6700

sick-euthyroid 0.9224 0.9404 0.8988 0.9006 0.9201 0.5000 0.5000 0.9283 0.9092

spectrometer 0.9948 0.9928 0.9726 0.9231 0.9574 0.5000 0.5000 0.9716 0.9776

isolet 0.9637 0.9581 0.9480 0.9621 0.9734 0.6846 0.5000 0.9617 0.9937

us-crime 0.6874 0.6685 0.6527 0.6870 0.6905 0.6555 0.6858 0.6947 0.8011

yeast-ml8 0.5193 0.5126 0.5196 0.4964 0.5126 0.5136 0.5102 0.5195 0.5916

scene 0.5924 0.6036 0.5850 0.5658 0.5841 0.5767 0.5000 0.5809 0.7827

thyroid-sick 0.9098 0.8941 0.8831 0.8536 0.8968 0.5000 0.5000 0.9098 0.9102

coil-2000 0.5572 0.5492 0.5641 0.5252 0.5581 0.5290 0.5331 0.5787 0.5923

arrhythmia 0.6101 0.6112 0.6100 0.6066 0.6089 0.5000 0.5000 0.6712 0.9965

oil 0.6799 0.8132 0.6443 0.6367 0.6028 0.5000 0.5000 0.7282 0.8475

car-eval-4 0.9072 0.9267 0.9170 0.9725 0.9470 0.9079 0.9023 0.8970 0.9880

wine-quality 0.6512 0.6522 0.6819 0.5438 0.6781 0.5000 0.5000 0.6532 0.6542

abalone-19 0.4892 0.5018 0.4896 0.4996 0.4898 0.4995 0.5000 0.5018 0.5818

Table 3. Valus of G-mean on 17 real-world imbalanced datasets

Dataset MWMOTE ADASYN SMOTE AMDO ROS Focal DWE BCE Our model

optical-digits 0.9788 0.9769 0.9807 0.9743 0.9860 0.0000 0.0000 0.9825 0.9940

satimage 0.7893 0.7892 0.7968 0.2582 0.8032 0.0000 0.0000 0.7936 0.8425

pen-digits 0.9951 0.9963 0.9977 0.9956 0.9985 0.0000 0.0000 0.9952 0.9985

abalone 0.7080 0.7347 0.7029 0.0000 0.7292 0.0605 0.2951 0.6129 0.6338

sick-euthyroid 0.9221 0.9403 0.8953 0.8980 0.9185 0.0000 0.0000 0.9281 0.8952

spectrometer 0.9948 0.9928 0.9721 0.9120 0.9558 0.0000 0.9372 0.9710 0.9445

isolet 0.9632 0.9574 0.9451 0.9615 0.9732 0.3844 0.0000 0.9612 0.9937

us-crime 0.6247 0.5936 0.5639 0.6118 0.6284 0.5646 0.6176 0.6375 0.7849

yeast-ml8 0.2287 0.2254 0.2412 0.0755 0.2302 0.1884 0.1939 0.2830 0.4853

scene 0.4736 0.4964 0.4527 0.3955 0.4483 0.4323 0.0000 0.4511 0.7652

thyroid-sick 0.9098 0.8904 0.8786 0.8436 0.8930 0.0000 0.0000 0.9072 0.9089

coil-2000 0.3921 0.3770 0.4210 0.2545 0.4098 0.2623 0.2994 0.4637 0.5298

arrhythmia 0.4924 0.4930 0.4924 0.4907 0.4918 0.0000 0.0000 0.6055 0.9965

oil 0.5201 0.8091 0.4144 0.3503 0.3683 0.0000 0.0000 0.7282 0.8383

car-eval-4 0.9031 0.9439 0.9212 0.9087 0.9236 0.9026 0.8954 0.8917 0.9880

wine-quality 0.6070 0.6059 0.6454 0.3003 0.6390 0.0000 0.0000 0.5883 0.6365

abalone-19 0.0000 0.0696 0.0000 0.0000 0.0000 0.0000 0.0000 0.1380 0.4926
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5 Discussion

5.1 The Impact of Important Informative Samples

In our model, we select suitable samples to train the classifier because samples
are essential for finding the classification boundary. Thus, we run experiments
on both original and datasets that only contain important informative samples
to further illustrate the impact of important informative samples. From Table 4,
we observe that training the classifier with datasets containing only important
informative samples can obtain better results than training the classifier with
original datasets, which verifies the effectiveness of important informative sam-
ples. In addition, we also noticed that by selecting suitable samples for training,
we improved the classification results while reducing the number of samples used
for model training. In summary, selecting suitable samples to deal with imbal-
anced data classification is a new perspective, which can both reduce the number
of samples used for the classifier training and improve the performance of the
classifier.

5.2 The Impact of Parameters

To analyze the impact of parameter k in our model, we conduct experiments
with varying k from 1 to 13 on three real-world imbalanced datasets. From the
experimental results in Fig. 4, we find that the performance of our model is
stable with the change of k and when k = 7 achieves the best performance.

Table 4. The Impact of Important Informative Samples

Dataset Original Samples Suitable Samples

AUC G-mean AUC G-mean

pen-digits 0.9976 0.9976 0.9985 0.9985

abalone 0.6561 0.6207 0.6700 0.6338

yeast-ml8 0.5330 0.2956 0.5916 0.4853

5.3 Ablation Study

Our model consists of three blocks: Data Space Block (DSB), Sample Selection
Block (SSB), and Sample Difficulty Block (SDB). To analyze the effectiveness of
each block, we build some variants of our hybrid model: (1) DSB, which is our
model without DSB; (2) SSB, which is our model without SSB; (3) SDB, which
is our model without SDB. Fig. 5 shows experimental results on abalone-19 and
us-crime datasets. We find that all of these variants perform worse than our
model on both datasets, which illustrates that our model effectively integrates
three blocks to take advantage of each. Moreover, we find that SSB performs
the worst, which demonstrates that SSB has a more critical impact among all
blocks.
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Fig. 4. Impact of parameter k in our model

Fig. 5. Ablation Study

6 Conclusion

We aim to overcome the weakness of existing imbalanced learning methods from
perspectives of sample selection and sample difficulty. First, we divide samples
into different types in an imbalanced dataset according to their impacts on imbal-
anced data classification. Based on this, we can select suitable samples for sam-
pling. Then, we propose a loss function based on sample difficulty. After that,
we design a hybrid model to solve imbalanced data classification. To the best of
our knowledge, this is the first model that integrates data space improvement,
sample selection, and loss function into imbalanced data classification. Exper-
iments on real-world imbalanced datasets have shown that our hybrid model
performs better than competing methods. The ablation study verifies that each
model block is valid.
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Abstract. We have created a publicly available scalp hair follicle dataset contain-
ing 1652 images and 20697 annotated vectors for 4 object classes, which can be
used for hair follicle classification and target detection in hair transplantation. The
dataset is derived from clinical data from Huashan Hospital of Fudan University
and contains 158MB of image data. To demonstrate the accuracy and superiority
of our dataset, we calculated the mean and variance of the image dataset and sta-
tistically analyzed the information such as the distribution of each category and
the size of the labeled targets. In addition, we conducted experiments on Faster
R-CNN and SSD to validate the usability of the dataset, and both were trained
successfully. By comparing the average precision (AP) and average recall (AR)
of the two experimental results, we demonstrate that the dataset can converge on
the target detection network and find that SSD works better.

Keywords: Follicle Database · Computer Vision · Deep Learning · Hair
Transplantation Robot

1 Introduction

Hair loss is a global problem. It is not only an index of people’s health but also increases
the psychological andmental burden of youngpeople.According to statistics, the average
hair loss rate of adult men in Asia is between 20% and 30%. Asia has a population of 402
million people with hair loss, of which China has more than 250 million patients with
hair loss. By referring to the latest epidemiological survey in China, the prevalence of
androgenetic alopecia in Chinese men is 21.3% and in women 6.0% [1, 2]. Furthermore,
the latest survey found that the post-90s account for 39% of the hair loss population and
the post-80s account for about 38%, showing a younger trend. These results indicate
that the problem of hair loss is becoming more and more serious.
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Although some medications are available to treat certain types of hair loss problems,
e.g.,male pattern baldness, they are often accompanied by certain side effects. In contrast,
surgical treatment is more reliable. A commonly adopted operation is follicular unit
extraction (FUE) which has a quick recovery and leaves no visible scars, and is currently
themainstream option for manual surgery. However, this process is slow and requires the
cooperation of several healthcare professionals, indicating that the efficiency is limited.
The FUE-based hair transplant robot is a good solution to this problem. This robot is
divided into two modules: the hair follicle visual recognition system and the mechanical
actuator. The hair follicle visual recognition system determines the category and position
information of hair follicles, and its accuracy is related to the execution of the whole
hair transplantation procedure.

Most of thework on hair follicle detection still relies on image processing algorithms,
such as image filtering, enhancement, feature extraction, segmentation, etc. For example,
Shih et al. [3] solved the problem of overlapping hair by using a hair bundling algorithm
and proposed a hair counting algorithm for curved hair; Zhang et al. [4] designed an
automatic hair counting systemusing theOtsu algorithmandHough transform;Kimet al.
[5] first preprocessed the images using contrast stretching andmorphological operations,
and then measured the hair density by converting skeletonized images and applying a
line endpoint search algorithm.

However, the accuracy of image processing algorithms for identifying overlapping
areas is still limited, and they cannot distinguish between the root and tip of the hair.
Moreover, they are easily affected by environmental factors. The rapid development of
deep learning in the field of medical imaging provides us with new directions. For exam-
ple, Chang et al. [6] developed an intelligent scalp detection and diagnostic system called
ScalpEye based on deep learning, which can detect four types of conditions, including
dandruff, folliculitis, hair loss, and oily hair. ERDOĞAN et al. [7] used multiple depth
cameras to build a 3D model of the patient’s head and combined it with deep learning
methods to detect and segment hair follicles, creating an FUE hair transplant analysis
system. Kim et al. [8] used deep learning techniques for hair density measurement and
compared the performance of multiple object detection algorithms, with experimental
results showing that YOLOv4 [9] performed the best.

Whereas the model accuracy and generalization ability largely depends on the size
and quality of the training dataset, no publicly available hair follicle dataset can be used
as a standard for hair follicle detection. To this end, we cooperate with the top derma-
tology team in China, who are also co-authors of this paper, to establish a professional-
grade hair follicle dataset for hair follicle classification and detection. We also conduct
a comprehensive statistical analysis of the dataset itself, the categories, and the labeled
target attributes to verify the superiority and reliability of our dataset. Finally, we suc-
cessfully trained two mature target detection networks, Faster R-CNN and SSD, using
FDU_HairFollicleDataset and proved the usability of the dataset. It can be used within
the field of hair transplantation. FDU_HairFollicleDataset is available at GoogleDrive
1, and if used, please cite this paper.

1 https://drive.google.com/file/d/1rMw8OzgxuTOSqKD8EBPN_BYXW18q9d3H/view?usp=
sharing.

https://drive.google.com/file/d/1rMw8OzgxuTOSqKD8EBPN_BYXW18q9d3H/view?usp=sharing
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The rest of this paper is organized as follows. Section 2 describes the work related to
dataset annotation. Section 3 provides the specific methods for dataset preparation and
statistical analysis. Section 4 presents the experiments for validating the usability of the
dataset. Finally, Sect. 5 summarizes the paper.

2 Related Work

This section will briefly describe the existing work on datasets and their evaluation
metrics.

As deep learning techniques evolve rapidly, there is an increasing demand for high-
quality datasets to support the training and validation of deep learning algorithms. For
example, the Pascal Visual Object Classes (VOC) challenge committee has released
multiple versions of computer visiondatasets since2005,whichhavebeenwidely applied
in object detection and image segmentation. Taking PascalVOC2012 [10] as an example,
it contains 20 categories, 17,125 original images, of which 5,717 are labeled training
images, 5,823 are labeled validation images, and 5,799 are labeled testing images. In
addition, the Pascal VOC2012 dataset provides evaluation tools for different metrics,
such asmean average precision (mAP), precision, and recall, to evaluate the performance
of object detection algorithms.The ImageNet dataset [11],whichhas been collected since
2007, has surpassed14million images andmore than20,000 class labels. Its openness has
greatly promoted the development of computer vision. The Microsoft Common Objects
in Context (MS COCO) dataset [12] has also been widely used for object detection,
segmentation, and image captioning. As of its last update in 2017, it includes 328,000
images, 80 object categories, and 5,000,000 annotations, and has been compared with
other datasets in terms of the number of categories, the number of annotation instances
per category, and the average size of objects. The Open Image dataset [13] released
by Google has reached version 4 as of 2019, with over 9 million images, over 300
million annotated bounding boxes, and approximately 2 million annotated key points. It
also provides statistics on label histograms, image-level label percentages, positive and
negative sample counts, and annotation box sizes to evaluate dataset quality.

In recent years, some work has been done on hair follicle datasets with varying sizes,
resolutions, and annotation qualities. Zhou et al. [14] collected 340 raw 3D hair models,
divided hair into 12 categories based on different criteria, and created a hair dataset
with over 40k samples using mirroring and mixed-filling techniques. Chang et al. [6]
obtained scalp hair symptommicroscope images fromahairdressing company, annotated
them using four common scalp hair symptom categories, and created a dataset that
includes 615 seborrheic dermatitis symptom images, 312 folliculitis symptom images,
859 alopecia symptom images, and 412 oily hair symptom images. AI Hub [15] also
created a scalp image dataset about patients with hair loss, containing 4492 enlarged
images and corresponding annotation data, which were classified based on the number
of hairs in the follicles. Kim et al. [16] collected 600 images from 10 male participants
and had them annotated by a physician, resulting in a hair follicle dataset with a total of
24012 labels.

Although existing scalp hair follicle datasets and labeling tools have greatly facil-
itated research in this field, they still have certain limitations. Firstly, the image data
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quality is poor and often obscured by noise. Secondly, most aggregated images are
directly sourced from the internet, which is inconsistent with clinical application sce-
narios. Thirdly, although some are hair epidermal datasets, they are not suitable for hair
transplantation. Fourthly, there is a lack of guidance from professional doctors, resulting
in inaccurate judgments for different categories of hair. Fifthly, the annotated bounding
boxes are mostly in the vicinity of the hair follicles, which is not in line with the real
application scenarios and makes it difficult to calculate the three-dimensional pose of
the hair follicles. Sixthly, there is a lack of statistical information about the datasets
themselves. Therefore, the development of the hair transplantation field still requires the
creation of large-scale, high-quality scalp hair follicle datasets.

3 Dataset Preparation

In this section, we will introduce the sources of the images, the criteria for labeling
categories, and how we annotated the dataset. We also conducted data statistics on the
dataset. The specific dataset preparation was carried out according to Fig. 1.

Dataset 

Acquisition

Dataset 

Verification

Dataset

Cleaning

Category 

Definition

Labeling 

Specification 

Determination

Labeling 

Software 

Development

Labeling Result 

Encapsulation 

Processing

Labeling 

Procedure

Fig. 1. Flowchart of dataset preparation. Shades of color indicate the work done by the
dermatologists, our work, and the work done together.

3.1 Dataset Acquisition and Annotation

3.1.1 Dataset Acquisition

The availability of reliable and authentic images is a fundamental requirement for cre-
ating a high-quality dataset. Unlike others facing challenges in developing hair follicle
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datasets, we collaborated with the Department of Dermatology at Huashan Hospital of
Fudan University, a top medical institution in China. We obtained the most compre-
hensive clinical photographs of hair follicles, along with professional guidance from
expert physicians. We have received permission from these physicians to disclose the
dataset to interested parties. The dataset is organized according to the format of PASCAL
VOC2012.

In summary, the FDU_HairFollicleDataset comprises approximately 1600 images,
collected through a rigorous process:

1. 1652 original images with an image resolution of 1280x1024 and a field of view
size of about 3x3 mm were provided successively by Huashan Hospital of Fudan
University.

2. Remove duplicate images.
3. Relevant metadata of all images were extracted to assign the appropriate attributes.

- folder: address of the dataset.
- filename: the file name of each image.
- source: the source of the images from Huashan Hospital of Fudan University.
- width: width of the original image.
- height: height of the original image.
- depth: the depth of the original image.

4. Partition the images into training, validation, and test splits (Table 1).

Table 1. Dataset divisions.

Train Validation Test

Images 992 330 330

3.1.2 Classes

There is currently no standardized medical definition of scalp hair follicles, and doctors
often rely on their knowledge and experience in the hair transplant process to make
judgments about them. However, a clear and standardized definition is necessary for
deep learning models to identify and classify hair follicles accurately. This can help
improve the accuracy and efficiency of the model by mapping image features to specific
classes.

To accurately describe the different characteristics of hair follicles on the scalp, we
have identified four categories: Premium, Single, Undersize, and Abnormal. Premium
follicles are large andhealthy, typically containingmultiple thick, full heels of hair. Single
follicles grow only one hair, while Undersize follicles tend to produce fine, fragile hair.
Finally, Abnormal follicles exhibit atypical features, such as twisted shapes, abnormal
growth patterns, or hair fragments and flakes that do not meet the definition of a hair
follicle. Typical category characteristics are shown in Fig. 2.
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By classifying hair follicles in this way, we can provide a more detailed and precise
analysis of scalp health and hair growth. It is worth noting that the criteria for hair
follicles may differ between doctors, so a standardized definition is especially important
in the context of deep learning and large-scale data analysis.

Fig. 2. Schematic diagram of various categories of hair follicles. (a) The actual scenario of hair
follicles. (b) Illustration of hair follicles in the Premium category. (c) Illustration of hair follicles
in a Single category. (d) Special types of hair follicles (Undersize & Abnormal).

3.2 Labeling Specifications and Processes

Annotation specifications and processes for the dataset are crucial to ensure the quality
and efficiency of the data labeling. In the hair transplant procedure, to facilitate the
surgery, the surgeon usually requests the subject to shave their hair to 1–2 mm, allowing
for better observation of the hair follicles. The number of hairs present in each follicle is
an essential criterion for classification, and as such, we require a directed line segment
as the marking method, with the hair follicles pointing towards the hair tips. The starting
point of the line segment indicates the location of the hair follicles.

We utilized the LabelBoundingBox [17] labeling tool, which enables us to import the
original image and sort it into categories. This tool accurately labels the boundaries of
each target by drawing rectangular boxes and generates information about the image’s
category and coordinate position. To better meet our specific requirements, we have
made improvements to the tool:

1. To accurately label the linear characteristics of hair, we have adopted a vector labeling
format instead of using rectangular boxes.

2. To distinguish between hair roots and tips, we have added a solid yellow circle to
indicate the location of the hair follicle.

3. Unlike typical target detection tasks, our scene contains multiple targets in a single
image. To increase annotation efficiency, we have introduced a new feature where
clicking on different annotations changes the corresponding target annotation vector’s
shade in the main interface, making it easier to distinguish between different targets.

Our dataset has benefited from the guidance of dermatologists from Huashan Hospi-
tal. The annotation process involved the following steps: first, two doctors jointly labeled
100 images to establish accurate classification criteria. Next, two other doctors indepen-
dently labeled 200 images according to the established criteria, serving as our reference.
Finally, the remaining images were annotated by our annotators and then reviewed and
verified by the doctors.
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3.3 Statistical Analysis of Dataset Quality

Our dataset consists of 1,652 scalp images, all derived from real clinical scenes, and
split into the train, validation, and test sets as shown in Table 1. We also calculated the
mean and variance of the dataset, which were [0.525, 0.521, 0.540] and [0.102, 0.105,
0.128], respectively.

To better understand the distribution of information within our dataset, we conducted
a statistical analysis of the categories and annotation vectors.

Specifically, the FDU_HairFollicleDataset is divided into four categories based on
the quality of the hair follicles: Premium, Single, Undersize, and Abnormal. We then
calculated the total and average number of each category within the training set, valida-
tion set, and test set to gain insight into the distribution of these categories throughout
the dataset.

Table 2. Distribution of each category on the dataset.

Train Validation Test

Sum Average Sum Average Sum Average

Premium 8096 8.16 2891 8.76 2741 8.31

Single 2825 2.85 949 2.88 944 2.86

Undersize 929 0.94 249 0.75 315 0.95

Abnormal 429 0.43 160 0.48 169 0.51

Table 2 shows that the proportion of each category in the training, validation, and
test sets is nearly identical, with a ratio of about 18:6:2:1. This indicates that our dataset
is stable and well-balanced.
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Fig. 3. Histogram distribution of the main categories of hair follicles in the dataset, (a) Premium,
(b) Single.
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Considering the proportion of categories in Table 2, the Premium category accounted
for approximately 66.3% of the total hair follicles, and the Single category for approxi-
mately 22.8%. We focused on the histogram of these two categories of hair follicles and
observed that the Premium and Single categories showed distributions that approximated
Gaussian distributions with maxima of 9 and 3, respectively in Fig. 3.

Annotation vectors are a crucial component of our dataset, and their quality is a
significant indicator of the dataset’s reliability. We conducted a comprehensive analysis
of the annotation vectors, including their number, size, and distribution, to accurately
assess the quality of our dataset.

Table 3. Annotated vector distribution and average number.

Train Validation Test

Images 992 330 330

Vector 12279 4269 4169

per image 12.4 12.9 12.6

In our study, we counted the total number and average size of annotation vectors
in the training, validation, and test sets. We found that the average number of vectors
was 12.4, 12.9, and 12.6, respectively, which were very similar in Table 3. This result
demonstrates the consistency and stability of our dataset across the three sets.

Fig. 4. Box plots for each class of annotated vectors on each set.

Moreover, in Fig. 4, we analyzed the size distribution of annotation vectors for
different categories.We found that the hair follicles of the Premium and Single types had
similar sizes, which were the largest among all categories. This finding is consistent with
our selection criteria of prioritizing high-quality hair follicles. In contrast, the Abnormal
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type had smaller hair follicles, some of which were less than half the size of those in the
Premium and Single categories. These results highlight the usefulness and reliability of
our dataset in supporting research and innovation in hair follicle transplantation.

4 Dataset Availability Validation

In this section,we aim to demonstrate the utility of our dataset. To achieve this, we carried
out experiments on Faster R-CNN [18] and Single Shot MultiBox Detector (SSD) [19],
respectively. We compare and analyze the results obtained from the experiments.

4.1 Experimental Environment and Evaluation Metrics

To validate the usability of our dataset, for the Faster R-CNN,we trainedwith vgg16 [20]
as the backbone network using 992 images from the training set. To speed up the training,
our training strategy involved using a pre-training approach, where we froze the prior
features to extract the network weights, trained the RPN and the final prediction network
for 20 cycles, and then trained the entire network weights for 81 cycles to complete the
usability validation experiments. The SGD optimizer with a learning rate of 0.005, a
momentum of 0.9, a weight decay of 0.0005, and a batch size of 4 was used during the
training process. We conducted the experiments on an Ubuntu operating system using
a GeForce RTX 3090 GPU with 24GB memory for accelerated computation. And for
SSD, we used the same hyperparameters and trained 101 epochs to get the experimental
results. The evaluation metrics used in this study were accuracy, recall, and loss values
at each stage of the network.

To evaluate the object detection performance, we followed the evaluation metrics of
COCO [12] and compared the performance of our dataset on Faster R-CNN and SSD.
The formulae for calculating the precision and recall in the evaluation metrics are:

Precision = TP

TP + FP
(1)

and

Recall = TP

TP + FN
(2)

where TP is the number of ground truth boxes that have been detected, FP is the number
of targets that are not ground truth boxes but are detected incorrectly and FN is the
number of ground truth boxes that are not detected. Then by further plotting the PR
curves, we can obtain the COCO metrics at different scales.

In addition, we observed the classification loss and regression loss values of Faster
R-CNN in both global and RPN stages, where the classification loss is a binary cross-
entropy loss and the regression loss is calculated by the smooth L1 function.
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4.2 Comparison and Analysis of Experimental Results

Based on the equipment and environment described above, we trained Faster R-CNNand
SSD on our dataset. In Fig. 5 (a), we can find that the training loss of each Faster R-CNN
is less than 0.2, and convergence is achieved. The COCO metrics of the training results
of the two types of target detection networks are counted to obtain theAP performance of
our dataset in both networks in Table 4 and the AR performance in Table 5, respectively.
It can be found that SSD performs better than Faster R-CNN across the board except
for the AP metric for Intersection over Union (IOU) of 0.5. The change curves of AP
(IOU = 0.5) and AR (area = large) for the two types of data with the largest statistical
values are plotted in Fig. 5(b), (c), where the difference between the AP values of SSD
and Faster R-CNN is not much, while the AR value is ahead by about 15.6%, and the
convergence speed is also better than that of Faster R-CNN, which verifies that SSD
does work better.

Table 4. Each AP value on Faster R-CNN and SSD.

AP AP (0.5) AP (0.75) AP (small) AP (medium) AP (large)

Faster
R-CNN

0.2237 0.4680 0.1896 0.0101 0.2093 0.2916

SSD 0.2432 0.4565 0.2268 0.0136 0.2120 0.3247

Table 5. Each AR value on Faster R-CNN and SSD.

AR (1) AP (10) AR (100) AR (small) AR (medium) AR (large)

Faster
R-CNN

0.1239 0.3116 0.3301 0.0505 0.3251 0.3882

SSD 0.1268 0.3453 0.3620 0.0690 0.3374 0.4489

The curves in Fig. 5 show that our dataset achieves convergence during training,
which is a good proof of its usability. And SSD also performs basically better than
Faster R-CNN in training with Faster R-CNN across the board.

However, there is still room for improvement in our dataset. On the one hand,we need
to expand it further, especially regarding the total number and the number of undersized
and anomalous categories. On the other hand, the two types of target detection networks
detecting target frames may not fully satisfy the hair follicle recognition application
scenario because some target frames have unbalanced aspect ratios, which will filter out
some samples and affect the accuracy. Therefore, a detection network using linear target
recognition may perform better in this scenario.
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Fig. 5. The performance of our dataset on target detection network results. (a) Epoch versus loss
values for our dataset in Faster R-CNN. (b) Epoch versus AP for IOU of 0.5 in Faster R-CNN and
SSD. (c) Epoch versus AR for the area of large in Faster R-CNN and SSD.

5 Conclusion

This paper introduces the FDU_HairFollicleDataset, a dataset comprising 1652 clini-
cal scalp images and 20697 hair follicle targets annotated using a unified standard for
hair follicle classification and detection in hair transplant surgery. The process of data
acquisition and annotation is meticulously described, and an extensive statistical analy-
sis of the dataset is provided. We also showcase the application of the dataset in Faster
R-CNN and SSD, and present a comparative analysis of their performance. Our results
indicate that SSD performs better than Faster R-CNN. In future work, we aim to scale
up the FDU_HairFollicleDataset to enhance the dataset quality, add more data in the
Undersize and Abnormal categories, and include additional attributes such as truncation
and overlap. The diversity of the dataset will promote research and innovation in hair
follicle transplantation.
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Abstract. Sequences are often not received in their entirety at once,
but instead, received incrementally over time, element by element. Early
predictions yielding a higher benefit, one aims to classify a sequence
as accurately as possible, as soon as possible, without having to wait
for the last element. For this early sequence classification, we introduce
our novel classifier-induced stopping. While previous methods depend
on exploration during training to learn when to stop and classify, ours
is a more direct, supervised approach. Our classifier-induced stopping
achieves an average Pareto frontier AUC increase of 11.8% over multiple
experiments.

Keywords: Early classification · Sequence classification

1 Introduction

Practical use cases for early sequence classification exist in many domains. Hold-
ing your smartphone’s microphone up to a speaker, in seconds a music recogni-
tion app can tell which song is being played. There are two competing objectives
with respect to the app making a real-time classification from audio. On one
hand, a longer sequence from the song may yield a more accurate classification.
On the other hand, the user may not have the patience to wait very long.

Generally, we are interested in scenarios in which a classifier receives elements
of a sequence over time. This kind of ongoing flow of data immediately suggests
a need for a real-time ability to stop waiting for new elements and classify given
the received elements at this point in time at sufficient accuracy. We call this
early classifying to differentiate from classification after a ‘complete’ sequence
or a pre-set number of sequence elements is received. Optimally deciding when
one has received enough data, and then making an accurate classification from
that data, is the crux of the problem we are investigating.

To this end, we introduce our novel classifier-induced stopping (CIS) in this
paper. Previous methods depend on exploration during training (when there
is access to the entire sequence) to learn (i) a policy to decide when to stop
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14254, pp. 50–61, 2023.
https://doi.org/10.1007/978-3-031-44207-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44207-0_5&domain=pdf
https://doi.org/10.1007/978-3-031-44207-0_5


A Policy for Early Sequence Classification 51

waiting for new elements and classify and (ii) the classifier itself. Exploration,
in an early sequence classification context, means the policy affects how much
of the sequence is ingested or used to learn. In contrast, CIS learns both pol-
icy and classifier in a more direct, supervised approach inspired by imitation
learning [1]. CIS learns to classify as accurately as possible at every time step,
after receiving a new element. Concurrently, it learns to stop and classify at
the optimal time (based off a reward) induced from its own classifications at
each time step. CIS removes notions of exploration and learns to follow the ideal
decision-making based off its own classification predictions; hence, we call it
classifier-induced. The main contributions of our work are as follows. We intro-
duce a novel, supervised framework to learn a stopping time for early classifiers
that avoids exploration. Instead, it learns when to stop from its own classifica-
tions. We demonstrate that CIS outperforms benchmarks in terms of a Pareto
frontier AUC measure across diverse experiments.

Our paper is structured as follows. In Sect. 2, we establish notation and review
related work, specifically the two benchmark methods used in experiments. Fol-
lowing in Sect. 3, we discuss CIS in detail. Section 4 presents results from three
sets of experiments on a variety of problems and data. Section 5 gives a summary.

2 Related Work

2.1 Problem Setup Notation

The framework of early classification we consider here is as follows. The set of
training data X comprises sequences x(i) paired with one-hot encoded labels
y(i) ∈ {0, 1}C for C classes, where x(i) =

(
x
(i)
1 , x

(i)
2 , ..., x

(i)
Tend

)
is a sequence of

tensors. At time t ≤ Tend, its state is given by s
(i)
t =

(
x
(i)
1 , x

(i)
2 , ..., x

(i)
t

)
.

A classifier neural network fα (st) = ŷα (·|st) parameterized by α takes st

as input1 and outputs predicted class distribution vector ŷα (·|st) at time t. A
policy neural network gβ (st) = πβ (·|st) parameterized by β takes st as input
and outputs policy distribution vector πβ (·|st) over two actions (‘wait’ and ‘stop
and classify’) at time t.

At each time step t, we take an action at according to policy πβ (·|st). This is
done stochastically via sampling or deterministically via taking the most likely
action. We keep waiting another time step and receive new element xt+1 until
we decide to stop. Once we decide to stop and classify, we make a classification
according to ŷα (·|st). To encourage a model to early classify as accurately as
possible, as quickly as possible, we use the following reward function at each
time step t

Rα
t (st, at)

=

{
−μ if at = ‘wait’
−μ − CE (y, ŷα (·|st)) if at = ‘stop and classify’ or t = Tend

(1)

1 We omit the (i) indices unless needed.
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where μ is a time penalty parameter and CE is cross-entropy. At each time step,
a constant penalty of −μ is incurred. Early classification is completed once the
model decides to stop and classify at a time T . The problem is to solve

max
α,β

EX
∑

t

Rα
t (st, at (β)) . (2)

Maximizing the cumulative reward is equivalent to classifying as accurately as
possible (so that the cross entropy is low), as quickly as possible (so that the
sum of time penalties is low). The time penalty parameter μ controls how much
waiting another time step is penalized. If μ is large, we may sacrifice more
accuracy for an earlier classification, and vice-versa.

The problem has two challenges. When a policy decides to stop, it never
directly learns what would happen if it waited longer. In essence, the ability to
look forward and learn from information after the stopping time is important.
Second, and more subtly, the policy and classifier need to be cohesively learned
together as the time penalty relates the two.

2.2 Early Classification via Reinforcement Learning

Several papers treat early classification as a standard reinforcement learning
problem. [5] ingests text sentence-by-sentence and answers given questions (via
classification) when the model decides enough information has been read. [2]
applies a very similar methodology to obtain early diagnoses from healthcare
vital signs like EEGs. It is important to note that [2,5] still train their models
with the REINFORCE algorithm [10], a standard policy gradient method. They
compare against full-sequence-length classifiers or utilize a fixed threshold on
each time step’s classification as a stopping rule. We choose the Proximal Pol-
icy Optimization (PPO) algorithm [7] as our standard reinforcement learning
benchmark to compare against CIS; details are in Sect. 2.3.

2.3 PPO

Policy gradient methods work by first creating episodes

(s1, a1, R
α
1 ), (s2, a2, R

α
2 ), ..., (sT , aT , Rα

T )

with actions determined by the current policy. The policy is then updated in
gradient ascent direction so that actions leading to greater future rewards become
more probable. PPO, following [7], maximizes the clipped surrogate objective

LPPO

= EX ,t

[
min

{
πβ (at|st)

πβold (at|st)
Âα

t , clip
(

πβ (at|st)
πβold (at|st)

, 1 − ε, 1 + ε

)
Âα

t

}]
.

(3)

The estimated advantage Âα
t is given by Âα

t =
∑T

t′=t γt′−tRα
t′ −V (st) where γ is

a discount factor and V (st) is a learned state-value function. PPO’s exploration
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hindrance is evident as any information after time T is not used in learning.
Keeping in line with previous work relying on exploration, we opt to keep the
policy stochastic during inference [2,4,7].

Policy gradient reinforcement learning methods are, by nature, trial and
error-based. They cannot take advantage of the fact that stopping and clas-
sifying later for a given sample would have been better. Put differently, they do
not utilize the entire sequence during training.

2.4 LARM

Length Adaptive Recurrent Model (LARM) [4] and CIS remedy this inability to
look forward in the sequence. LARM takes a more probabilistic interpretation
to early classification. Let AT = (a1 = ‘wait’, a2 = ‘wait’, ..., aT−1 = ‘wait’,
aT = ‘stop and classify’) be a decision sequence where the policy decided to
wait the first T − 1 time steps and stopped to classify at time T . Given AT and
πβ (·|st), we can explicitly factor the probability of sequence AT as

P (AT |sT ) =
T∏

t=1

πβ (at|st) . (4)

With respect to this stopping time probability, LARM seeks to maximize the
expected cumulative reward in (2) with the objective

max
α,β

EX

[
−CE

(
y,

Tend∑
T=1

(ŷα|sT )P (AT |sT )

)
− μ

Tend∑
T=1

T · P (AT |sT )

]
.

The first term is a micro-averaged cross-entropy loss and the second term is the
expected stopping time.

Because P (AT |sT ) is a product whose value may exponentially decrease,
LARM takes special care to prevent this. During training, the factors
πβ (at = ‘wait’|st) are set to 1 with probability ρ. This forces the model to wait
for more elements in the sequence and not get stuck stopping too soon. In terms
of early classification, waiting is tantamount to ingesting more information and
so ρ is a parameter controlling this aspect. Even so, there is an exploration
drawback here in that learning accurate classifications at low probability stop-
ping times is difficult. For inference, LARM opts for stochastic policy rollout
with deterministic classification.

3 Classifier-Induced Stopping

As previously stated, early classification can be framed as maximizing the cumu-
lative reward given in (2). We can recast this quantity as a function r depending
on label y, classification prediction ŷα (·|sT ), and classification time T given by
r (y, ŷ, T ) = −CE (y, ŷ)−μT . Note, for a fixed ŷ and y this is a univariate function
of time T . With this in mind, we aim to learn (i) when to stop and classify and (ii)
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what classification to make in a more direct, supervised manner. First, CIS seeks
to make the most accurate classification prediction at every single time step. Sec-
ond and simultaneously, CIS learns the corresponding policy which yields the
resulting optimal classification time. In this way, our policy learns the ideal pol-
icy based off of its own classifications. Hence, we name it classifier-induced. The
loss function is given by minα,β LCIS = minα,β EX [Lŷ + λ · Lπ] where

Lŷ =
1

Tend

Tend∑
t=1

CE (y, ŷα (·|st)) , Lπ =
1

Tend

Tend∑
t=1

CE (π̃α (·|x, t) , πβ (·|st))

(5)

π̃α (·|x, t) =

{
(1, 0) ift < T̃α (x, y)
(0, 1) if t ≥ T̃α (x, y) ,

T̃α (x, y) = arg max
t

r (y, ŷα (·|st) , t) .

(6)

We write (1, 0) to mean ‘wait’ with probability 1 and (0, 1) as ‘stop and classify’
with probability 1. There is hyperparameter λ. Figure 1 below offers an intuitive
visual walkthrough of CIS.

Fig. 1. (Left) Lŷ is increasing cumulative reward r at each time step. (Right) Concur-
rently, for the rendered reward curve, there exists an optimal time to stop and classify
˜Tα that maximizes r and therefore an optimal policy π̃α (·|x, t). Lπ aims to learn this
policy.

Unlike PPO and LARM, our novel CIS does not rely on any notion of explo-
ration. The entire sequence is wholly used in training and we are able to directly
learn the optimal classification time in a supervised manner. During training
π̃α (·|x, t) and T̃α are treated as fixed labels in minibatch updates. Since there is
no exploration in CIS, the policy does not have an exploratory nature; hence, in
inference we simply take the argmax action.
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4 Experimental Results

4.1 Datasets and Pareto Metric

Our first experiment is with the IMDB movie reviews sentiment analysis dataset
[6]. We do not need to ingest the entire review to classify its sentiment. Instead,
we read word by word and classify the review after ingesting a minima number of
words. The dataset comprises 50,000 movie reviews; half the reviews are positive
and the other half negative. We reserve a random 15% of samples to be the hold-
out validation set, separate from the training set. We set Tend = 236, which is
the mean training review length, and pad up or truncate down all reviews to
this length.

The second experiment uses Electrocardiography (ECG) waveforms of mul-
tiple cardiovascular diagnoses from PTB-XL [9]. ECGs record electrical signals
from the heart and help to assess cardiac clinical status of patients. Instead of a
diagnostic tool alone, early classification aids in continuous monitoring for heart
conditions. The sooner an early classifier can detect a heart attack, the sooner
medical attention can be given. Here we early classify ECG signals by ingest-
ing small segments sequentially. After following [8] and filtering out some ECGs
(those with uncertain diagnoses, for instance), we are left with 17,221 samples in
the dataset. There are five classes which are reasonably balanced. We reserve a
random 10% of samples to be the validation set, again separate from the training
set. Each ECG length is 10 s, sampled at 100 Hz. Consistent with the procedure
in [11], the network input is the log spectrogram of each ECG (using a Tukey
window of length 32 with 50% overlap). In essence, spectrograms are consecutive
fragments of a signal in Fourier space to represent frequencies varying over time.
Therefore our early classifier, in effect, receives each ECG in consecutive 0.16 s
fragments in Fourier space.

Our third and final experiment is motivated by European call options. They
give the holder the right to buy a stock at a specified strike price only on a
given expiration date (betting the stock will go up). However, after buying the
option, if the option holder could predict that the stock price will not be above
the strike price on the option expiration date, then the holder could attempt to
sell the option in the secondary market to recoup the original cost of the option.
To be clear, in this problem context we are concerned only with the prediction
aspect and not the option sale.

From [3], it is reasonable to assume a strike price equal to the stock price
on the option origination purchase date. With this in mind, we simulate 1-
month European call options in the following way. Samples are generated from
65 current S&P 500 technology stocks based on daily data ranging from 1962
to 2017. For the training set, we divide each technology stock into disjoint 30-
day stock price samples, through 2016. We consider a binary classification of
whether the stock closing price on day 30 is greater than or less than the stock
closing price on day 1 (proxying strike price). Thus, stopping to classify is akin
to committing on day T to exercise the option or not upon expiration. This
process yields 9,313 training samples with 59% of these options as profitable to
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exercise. For validation, we wish to roll out the early classifier more organically
and continuously. Accordingly, we take the remaining year 2017 after the training
set from each stock for validation. The assumption is that we will have year-long
stock price sequence to continually roll out early classifiers and ‘purchase’ new
options the day after stopping and deciding what to do with the current one.
Table 1 summarizes daily technical indicators used along with the standard open,
high, low, and close prices plus volume to form the daily features.

Table 1. Stock price sequence technical indicators, using standard parameters

Feature Description

Exponential moving average Measures trend direction,

(open, high, low, close, volume) heavier weighting on more recent days

Bollinger Bands Relative highs and lows of price movement

On-balance volume Measures buying and selling of stock

Accumulation/distribution Gauges supply and demand

Average directional Measures trend strength

Aroon oscillator Indicates uptrend or downtrend

Moving average Measures momentum

convergence/divergence

Relative strength Measures speed of price changes

Stochastic oscillator Measures momentum

In all experiments, we holistically compare early classifiers from PPO, LARM,
and CIS by their Pareto frontiers. This allows us to examine the entire perfor-
mance spectrum of their accuracy-timeliness tradeoffs. Our procedure for con-
structing a Pareto frontier is as follows. For a given μ value, we roll out the
early classifier over the validation set and compute the mean classification time
and accuracy after each training epoch. This is repeated for varying μ to get the
entire collection of such accuracy-timeliness tradeoff points. Finally, all domi-
nated points are removed which yields the Pareto frontier. The Pareto frontier
(piecewise-constant) AUC is a holistic measure of accuracy-timeliness tradeoff
efficacy. We treat μ as a hyperparameter, controlling the dichotomous balance
between accuracy and timeliness, and sweep multiple values to trace the Pareto
frontier. In a real-world use case, extrinsic factors from the problem itself should
guide which Pareto point is optimal.

4.2 Implementation

Before describing network design and hyperparameters, we modify PPO’s objec-
tive. Learning a state-value baseline function leads to more unstable training and
ultimately poorer results. So in our case we remove it, and the advantage reduces
to the sum of future rewards Âα

t =
∑T

t′=t γt′−tRα
t′ . In addition to PPO’s main
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objective, we add a classification term to help directly teach the classifier. The
combined objective is then

min
α,β

(
EX ,t [CE (y, ŷα (·|st))] − LPPO

)
.

While the policy and classifier can be disjoint networks, in practice it is
common to have them as two heads of the same body network [4]. We choose
this for our implementations of PPO, LARM, and CIS, with the body network
being an LSTM. Elements of sequential data (or embeddings) are inputs to the
LSTM. The recurrent hidden states are in turn inputs to separate, feed-forward
networks: one for the policy and one for the classifier. Each of these feed-forward
heads is composed of a single hidden-layer with ReLU activation and softmax
output. Next, we explicate all of the hyperparameters used in our experiments.

For all three experiments, we sweep μ ∈ {0.001, 0.003, 0.005, 0.007, 0.01,
0.03, 0.05, 0.07, 0.1}. We keep the standard PPO clip value of ε = 0.2 and a
discount factor γ = 1 yields the best results (and does not scale the cumula-
tive reward). To further aid PPO waiting longer and ingesting more information
initially, yielding better results, we initialize the policy head’s final layer’s bias
to (10, 0). For CIS, we set the scaling constant λ = 1. The training set is opti-
mized by using Adam with batch size 128 until validation accuracies and mean
classification times plateau.

For the IMDB experiment specifically, the word embedding dimension is 32.
For the network size, the LSTM hidden state is of dimension 64 and the two FFN
hidden layers are of dimension 32. Learning rates for PPO and LARM are 10−4

and 10−3 for CIS. Following [4], we keep LARM’s waiting parameter ρ = 0.9.
For the ECG experiment specifically, the hidden vector of the LSTM is of

dimension 128 and the two FFN hidden layers are of dimension 64. All three
learning rates are set to 10−4. Again, we keep LARM’s ρ = 0.9.

Finally, for the stock option experiment specifically, we implement a chrono-
logical rolling normalization so that all features are scaled in range [0, 1]. The
network dimensions are 32, 16, and 16. All three learning rates are set to 10−4. In
this experiment, LARM performs poorly with ρ = 0.9 and lowering it to ρ = 0.6
lead to significantly better performance.2

4.3 IMDB Experiment

Figure 2 displays the Pareto frontiers for the IMDB experiment. CIS’s AUC
is 17.7% greater than PPO’s AUC and 2.4% greater than LARM’s AUC. CIS
outperforms PPO and LARM, and we stress this is due to the forward-looking,
supervised nature of the algorithm.

While CIS and LARM performs well globally, they are also coherent on an
individual review level. Let us consider each early classifier at a mean T of about
40 words (red circles in Fig. 2). In Fig. 3 we present their respective outputs for
a very stark negative movie review. For this review, CIS and LARM are able to

2 Code is available at this repository: https://github.com/alexcao828/cis..

https://github.com/alexcao828/cis.
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Fig. 2. Pareto frontiers for the IMDB experiment.

quickly and correctly stop soon after ‘a really awful movie’ while PPO continues
to wait. Additionally, in Fig. 3 we also show CIS and LARM’s abilities to early
classify a long-winded, positive movie review. The first 20 words in this review
are not actually about the movie itself. It is not until ‘i loved it then and i
love it now’ that the models sense the review’s sentiment and act and classify
accordingly. Again PPO seems to need more information. These two didactic
examples indicate the discerning patience and linguistic understanding of CIS
and LARM over PPO, contributing to the gap in accuracies.

Fig. 3. Early classifer performances on an example (left) stark negative and (right)
long-winded positive IMDB movie review.

4.4 ECG Experiment

Figure 4 (left) displays the Pareto frontiers for the ECG experiment. CIS holis-
tically outperforms PPO and LARM. CIS’s AUC is 35.3% greater than PPO’s
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AUC and 2.9% greater than LARM’s AUC. Although it is worthwhile to note
that CIS performs worst for mean T below 0.3 s. This is due to those Pareto
points coming from early, un-converged epochs.

To be sure, there is significant nuance in differentiating ECGs. To again
highlight CIS’s discerning patience, we investigate the distribution of stopping
times for each diagnosis compared to LARM. Figure 4 (right) shows just this
using CIS and LARM at 68% accuracy (red circles in Fig. 4 (left)). We can see
that CIS (i) on average stops sooner for NORM and MI diagnoses and (ii) has
smaller interquartile ranges for all diagnoses.

Fig. 4. (Left) Pareto frontiers for the ECG experiment. (Right) Box plots showing
distribution of CIS and LARM classification times T for each ground truth ECG diag-
nosis. For HYP, CIS’s first quartile coincides with the median because of repeating
values. Similarly for STTC, CIS’s third quartile coincides with the median.

4.5 Stock Option Experiment

For our stock option experiment, we construct two Pareto frontier comparisons,
shown in Fig. 5. On the left, are the standard accuracy-time Pareto frontiers.
However, in the financial scenario inspiring this experiment, dollars and profit is
a more apt axis. So on the right, we also present profit-classification time Pareto
frontiers. Here, we take a perfect hindsight definition of profit to include potential
money gained and lost by not exercising the option. Since in this experiment we
roll out the early classifiers continuously, the stochastic policies of PPO and
LARM affect the future options (or samples). Accordingly, each Pareto frontier
point is the average of 100 trials. One hundred trials is sufficient as the maximum
ratio of standard error to mean is 2.7% across all points’ mean accuracies, profits,
and classification times.

Again, our CIS holistically outperforms the benchmarks. In the accuracy
sense, CIS’s AUC is 6.5% greater than PPO’s AUC and 5.4% greater than
LARM’s AUC. Turning to profit, CIS’s AUC is 10.3% greater than PPO’s AUC
and 18.4% greater than LARM’s AUC.
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Fig. 5. Accuracy (left) and profit (right) Pareto frontiers for the options experiment.

Fig. 6. (Left plots) Five options with their daily percent change in closing price com-
pared to day 1 exceeding ±10%, marked with black dashed lines in the upper panel. We
also mark 0.5 in the lower panel. (Right plots) Similar to left, except note the percent
changes within ±10% for these options.

While stock price movements are complex random walks, CIS is able to dis-
cern recognizable patterns better than LARM and PPO. If a stock displays
strong and consistent growth or loss in the early days (drift in a random walk),
one is more likely able to extrapolate a trend sooner. Similarly, if a stock contin-
uously fluctuates around the first day’s price, waiting longer becomes necessary
to observe a trend, if any exist. Figure 6 demonstrates this hypothesis on an indi-
vidual sample level using each early classifier at around 84% mean accuracy (red
circles in Fig. 5 (left)). CIS stops much sooner for stock price movements with
strong positive or negative drift. LARM consistently classifies around 25 days
and PPO waits until the end (very low time penalty).
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5 Conclusion

From our experiments, we stress CIS performs holistically better than state-
of-the-art PPO and LARM in terms of a Pareto frontier AUC measure. On
average, CIS is 3.6% more accurate than LARM, and 19.8% more accurate than
PPO, given the same stopping time. Directly learning when to stop from its own
classifications provides a better framework than exploration.
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Abstract. Severe acute respiratory disease SARS-CoV-2 has had a
profound impact on public health systems and healthcare emergency
response especially with respect to making decisions on the most effective
measures to be taken at any given time. As demonstrated throughout the
last three years with COVID-19, the prediction of the number of positive
cases can be an effective way to facilitate decision-making. However, the
limited availability of data and the highly dynamic and uncertain nature
of the virus transmissibility makes this task very challenging. Aiming
at investigating these challenges and in order to address this problem,
this work studies data-driven (learning, statistical) methods for incre-
mentally training models to adapt to these nonstationary conditions. An
extensive empirical study is conducted to examine various characteris-
tics, such as, performance analysis on a per virus wave basis, feature
extraction, “lookback” window size, memory size, all for next-, 7-, and
14-day forecasting tasks. We demonstrate that the incremental learning
framework can successfully address the aforementioned challenges and
perform well during outbreaks, providing accurate predictions.

Keywords: incremental learning · data streams · neural networks ·
time-series forecasting

1 Introduction

The COVID-19 pandemic has caused a massive disruption to society since its
emergence in December 2019. An unprecedented number of people were infected,
hospitalized and had COVID-19 being their leading cause of death. Moreover,
the consequences of the pandemic are still impacting our social and economic
ecosystems. Evidently, many countries still impose restrictions and measures
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based on the evolution of the infected population. Hence, effective modelling
and prediction of the evolution of the viral load in the society can be of detri-
mental factor in decision making. By taking proactive measures for closures and
lockdowns, restricting public events, health guidelines and vaccine policies, gov-
ernments can increase their effectiveness and limit transmissibility. A way to
capture the spread of the virus is by tracking and predicting the number of
positive cases. This constitutes a challenging task because of:

Data non-stationarity. The data exhibit a highly dynamic behaviour, i.e.,
the data distribution evolves over time [6]. In the COVID-19 case, for instance,
there have been many variants of the virus (e.g., Delta and Omicron), as well as
many measures which have been imposed (e.g., vaccination and school closure).

Limited data. This refers to the problem of having limited availability of
historical data. Evidently most countries reported positive cases on a daily basis
which accumulates to a mere 365 data points over the course of a year.

As a result, it is necessary to have an online learning model which is able
to adapt to non-stationary environments, and to be incrementally trained from
limited data. The contributions of this work are the following.

– The primary focus of this study is on COVID-19 cases forecasting for Cyprus,
a European country with a population of around one million.

– We conduct an extensive empirical analysis where we examine the roles of
(i) traditional/offline vs online incremental learning; (ii) “look-back” window
size; (iii) feature extraction; (iv) memory size; (v) learning (neural network)
vs statistical (ARIMA) models. Furthermore, all these are considered in three
tasks (next-, 7-, and 14-day forecasting) and we provide a per-wave analysis.

The remainder of the paper is structured as follows. Section 2 discusses work
related to ours. Section 3 describes the problem formulation and the incremental
learning framework for adaptive forecasting. The experimental setup and results
are provided in Sect. 4 and 5 respectively. We conclude in Sect. 6.

2 Related Work

2.1 Compartmental Models

These models, like the well-known Susceptible Exposed Infectious Recovered
(SEIR) [11] and any variations of it, split the population into mutually exclu-
sive states that describe a path of infection dynamics through mathematical
modelling [15]. For maximum accuracy, studies [4,10] have deduced parame-
ters describing the transition between states that are time-varying capturing
the social changes, medical advancements and non-pharmaceutical interventions
during a pandemic [10]. For example, the “DELPHI” model [15] consists of
11 compartments and forecasts detected cases and deaths for about 2 weeks,
accounting for government measures and limited population testing. The vast
majority of existing work on COVID-19 cases forecasting lie within this domain.
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2.2 Data-Driven Methods

The focus of our work is on data-driven methods. Forecasting using data-driven
methods can also be successfully achieved through statistical and machine learn-
ing methods. Isaac B. et al. [3] compared the performance of a model that com-
bines Convolutional and Long Short Term Memory (LSTM) layers to that of
a standard neural network, using a 14-day window of positive cases to predict
those of the next seven days both at the regional and national level. Several stud-
ies have compared the performance of LSTM to that of other models including
Recurrent Neural Networks (RNNs) [2], Gradient Boosting Trees [18] and the
statistical model ARIMA [12]. Research includes time series of just confirmed
cases for generalizability [3], added features like number of cured patients and
deaths [12] and aggregated features [12,18] for improved accuracy. The superior-
ity of the LSTM is concluded in all the last comparisons. Another comparative
study in [25] used LSTM, RNN, Bidirectional LSTM, Gated Recurrent Units
(GRUs) and Variational AutoEncoder (VAE) to predict new and recovered cases
for the next 17-days where VAE showed the best performance. Encoders of self-
attention and recurrent layers, that consider among other factors travelling from
each country to predict the spread were also proposed in [13].

The aforementioned methods consider offline learning. Continual or online
learning is starting to be used to capture the concept of drift in the spread of
COVID-19 and adapt models in real time. The study in [24] evaluates the best
number of training samples needed at each time step to minimize the predic-
tion error and, thus, capture drift. Ridge regression is used for predictions of
hospitalizations from new cases, severe cases from hospitalizations and deaths
from severe cases for the next 7 d using 14-day windows [24]. In [23] an ensemble
of regression models predicts 30-day mortality allowing for adaptation of the
models at every instance by i) fitting them again on the whole data, ii) fitting
them again on just the new instance, or iii) fitting a completely new ensemble
on the new data. A linear model with LASSO (least absolute shrinkage and
selection operator) penalty [16] and a feed-forward network with autoregressive
input (predictions at each time step used for training for the next forecast) [22],
were also able to incrementally train and produce 2-day cases predictions [16]
and 30-day predictions of hospitalizations and deaths [22], respectively.

2.3 Hybrid

A study [5] has used data from a compartmental model (exposed, infected, recov-
ered and dead population) to evaluate the best lags of each out of time series
windows in an ARIMA model, for predicting each of the variables and suscepti-
ble population. Based on this, new data is then continuously bootstrapped out
of a data stream, predicting and updating incrementally an ensemble of algo-
rithms each time [5]. In [7,8] incremental learning of a neural network provides
5 parameters (rate of infection during lockdown, time lockdown begins, rate of
death, rate of recovery) needed for a Susceptible Infected Recovered Vaccinated
Deceased (SIRVD) model. The SIRVD model forecasts monthly trajectories of
deaths under different senarios [7] and monthly total number of cases, active
infections and deaths [8].
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Algorithm 1 Data-driven framework for adaptive forecasting
Input:
D: number of days to forecast
W : “Lookback” window size
M : Memory / queue size

1: Wait W days, observe instance xW = {n1, ..., nW }
2: Create model fW .init()
3: Predict ŷW+1 = fW .predict(xW )
4: for each time step t ∈ [W + 1,W + D − 1] do
5: Get ground truth yt = nt

6: Observe instance xt = {nt, nt−1, .., nt−W+1}
7: Predict ŷt+1 = fW .predict(xt)

8: Initialise memory qt = {}
9: for each time step t ∈ [W + D,∞) do

10: Get ground truth yt = nt

11: Observe yt = {nt, nt−1, .., nt−D+1}
12: Append example to memory qt = qt−1.append((xt−D, yt))
13: Incremental training f t = f t−1.train(qt)
14: Observe instance xt = {nt, nt−1, .., nt−W+1}
15: Predict ŷt+1 = f t.predict(xt)

3 Incremental Learning Framework for Adaptive
Forecasting

We consider a data generating process S = {nt}T
t=1 that provides at each day t

a number nt ∈ R of positive cases, from an unknown and evolving probability
distribution pt(n), where T ∈ [1,∞). The instances constitute a univariate time
series, and nt corresponds to the number of COVID-19 cases on day t.

To address the temporal aspects of the data, we consider a sliding window of
size W ∈ Z

+, such that, xt = {nt, nt−1, ..., nt−W+1} ∈ R
W is a W -dimensional

vector belonging to input space X ⊂ R
W . The task is to forecast D ∈ Z

+

days of the COVID-19 cases, that is, at any day t > W to predict ŷt+D =
{n̂t+D, ..., n̂t+2, n̂t+1} ∈ R

D, a D-dimensional vector belonging to Y ⊂ R
D.

A regression model f t receives a new example xt ∈ R
W at time step t and

makes a prediction ŷt+D ∈ R
D, based on a concept f : X → Y such that

ŷt+D = f t(xt). In this study, we will be using neural networks as our regression
models, which they have been demonstrated to be effective incremental learners
[17,20,21]. The loss function used between a prediction ŷt ∈ R

D and ground
truth yt ∈ R

D at time t is the Mean Squared Error (MSE) defined as:

J t = MSE(ŷt, yt) =
1
D

D∑

d=1

(ŷt
d − yt

d)
2, (1)

The model is continually updated using incremental learning, which is defined
as the gradual adaptation of a model without complete re-training, that is,
f t = f t−1.train((xt−D, yt)). Learning is performed using incremental Stochastic
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Gradient Descent where each neural network weight w is updated according to
the formula wt ← wt−1 − α∂Jt

w , where ∂Jt

w is the partial derivative with respect
to w, and α is the learning rate.

Furthermore, we introduce a memory component implemented as a queue
q of size M , which stores historical examples. For instance, at time t, it will
append to memory the example (xt−D, yt), i.e., mt = mt−1.append((xt−D, yt)).
As a result, incremental learning is now performed using f t = f t−1.train(qt),
and the loss function is defined as the average MSE of all memory examples.

The framework’s pseudocode is shown in Alg. 1. Initially, we wait for W days
(Line 1). Subsequently and until day t < W +D, we only perform prediction (i.e.,
forecasting) without any incremental training (Lines 2 - 7). From day t ≥ W +D
we perform both prediction and incremental learning (Lines 8 - 15).

4 Experimental Setup

4.1 Dataset

Our data consist of reported daily SARS-CoV-2 cases in Cyprus from 15/10/20
to 08/10/22 as they appear in the TESSy platform of the European Center
of Disease Prevention and Control (ECDC) in the RESPISURV dataset. Data
preprocessing included creating sliding windows of 7, 14, 30 d and removal of
daily cases of under 100 for reduced noise and easier learning of the models.
Any missing values were imputed with the mean of their row or the previous
row and data were normalized by dividing by maximum number of cases. Six
periods of interest, referred to as “waves”, are considered in this study and are
shown in Fig. 1. The time periods of each wave are as follows: Wave 1: 13/12/20-
11/01/21; Wave 2: 04/04/21-03/05/21; Wave 3: 02/07/21-31/07/21; Wave 4:
19/12/21-07/01/22; Wave 5: 17/06/22-26/07/22. Also, we will be referring to
the remaining (i.e., non-waves) time period as “normal”.

4.2 Compared Methods

The compared methods follow the same framework shown in Algorithm 1.
MLP. It refers to the standard feed-forward, fully-connected Multilayer Per-

ceptron (MLP) model. In all experiments, its hyper-parameters are: He Normal
[9] weight initialisation, the Adam [14] optimisation algorithm, LeakyReLU [19]
and ReLU for the hidden and output activation function respectively, the MSE
loss function, and mini-batch size of one. The rest of them (architecture, learning
rate, regularisation, and number of epochs) slightly vary for each experiment.

ARIMA. The Autoregressive Integrated Moving Average (ARIMA) model
is a classical forecasting method. Despite the fact that ARIMA is often consid-
ered as a baseline method, it is emphasised that due to the limited availability
of historical data, it is actually demonstrated to be very effective particularly
during normal and small outbreaks. In all experiments, its hyper-parameters are
number of lagged observations for auto-regression: 1, number of times the raw
observations are differenced: 0 and moving average window size: 0.
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Fig. 1. COVID-19 cases in Cyprus (15/10/20-18/10/22)

4.3 Evaluation Method and Metrics

To evaluate and compare the aforementioned methods, we have been using the
following widely adopted metrics for regression forecasts.

MAE. This refers to the Mean Absolute Error (MAE).
MAPE. This refers to the Mean Absolute Percentage Error (MAPE)

between actual yt ∈ R
D and predicted ŷt ∈ R

D values as defined below:

MAPE(ŷ, y) =
100%

N

D∑

d=1

|yd − ŷd|
|yd| , (2)

For all experiments involving neural networks, we run each one over 10 rep-
etitions and provide the average and standard deviation for both metrics, for an
overall time period, as well as during wave and normal periods.

5 Experimental Results

5.1 Role of Incremental Learning

This section compares the performance of MLP using offline learning to that of
online incremental learning. For offline learning, the MLP was pre-trained on one
month of data and with no further training. For the next-day prediction task,
Fig. 2 shows the results of the two paradigms on a daily basis, while Table 1
provides the relevant aggregated metrics. The standard deviation of the error
is shown in brackets. The corresponding results for the 7- and 14-day forecast-
ing tasks are shown in Table 2 and Table 3. It is observed that online learning
significantly outperforms offline learning in all tasks and all time periods.
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Fig. 2. Online vs offline learning for next-day predictions

Table 1. MLP with online vs offline learning for next-day predictions

Overall Waves Normal

MAE MAPE MAE MAPE MAE MAPE

Online 186.1 (47.4) 26.3 (14.3) 378.4 (62.5) 25.5 (9.1) 148.2 (50.4) 26.7 (17.9)

Offline 767.9 (405.3) 83.9 (43.8) 1714.1 (934.0) 96.7 (57.1) 588.2 (302.7) 79.9 (40.5)

Table 2. MLP with online vs offline learning for 7-day predictions

Overall Waves Normal

MAE MAPE MAE MAPE MAE MAPE

Online 342.3 (48.0) 43.7 (5.3) 714.1 (105.8) 46.0 (5.0) 267.9 (36.5) 43.5 (5.5)

Offline 598.7 (59.4) 65.4 (6.3) 1319.8 (140.0) 75.1 (7.3) 461.2 (45.0) 62.7 (6.5)

Table 3. MLP with online vs offline learning for 14-day predictions

Overall Waves Normal

MAE MAPE MAE MAPE MAE MAPE

Online 524.2 (42.1) 75.9 (4.1) 1011.1 (97.9) 67.9 (4.9) 413.6 (31.6) 74.5 (4.3)

Offline 686.7 (47.2) 83.6 (7.8) 1416.5 (101.4) 88.3 (10.4) 546.3 (35.5) 82.0 (6.9)

5.2 Role of the Sliding Window Size

This section examines the impact of the sliding window size on the performance
of MLP using incremental learning. Results are provided in Table 4 and Table 5
for next- and seven-day prediction tasks, respectively.

Using MLP, the 7-day window performs better compared to the 14-day and
30-day ones for all prediction tasks. Regarding average performance across waves,
the 30-day window performs best for next-day and 7-day prediction and the 7-
day window performs best for 14-day prediction task (not shown here). Normal
periods benefit the most from a 7-day window for all prediction tasks. While not
shown due to space restrictions, for ARIMA, a 30-day window performs the best
on the overall data, wave and normal periods for all tasks.
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Table 4. MLP with 7-, 14- and 30-day sliding window (next-day prediction)

Overall Waves Normal

Window MAE MAPE MAE MAPE MAE MAPE

7 186.1 (47.4) 26.3 (14.3) 378.4 (62.5) 25.5 (9.1) 148.2 (50.4) 26.7 (17.9)

14 343.9 (258.0) 48.2 (28.8) 698.6 (569.1) 42.5 (30.9) 270.0 (201.5) 47.4 (29.9)

30 187.8 (20.8) 28.3 (7.1) 368.5 (23.0) 25.2 (5.2) 154.1 (23.6) 28.6 (8.7)

Table 5. MLP with 7-, 14- and 30-day sliding window (7-day prediction)

Overall Waves Normal

Window MAE MAPE MAE MAPE MAE MAPE

7 342.3 (48.0) 43.7 (5.3) 714.1 (105.8) 46.0 (5.0) 267.9 (36.5) 43.5 (5.5)

14 378.0 (43.5) 46.5 (4.7) 795.5 (95.5) 48.8 (4.9) 292.6 (32.9) 45.2 (4.6)

30 350.6 (38.9) 46.4 (5.0) 709.2 (81.1) 44.9 (4.7) 281.6 (32.1) 45.9 (5.5)

The better performance of a 7-day window can be attributed to the fewer
window days suggesting more recent data, which can increase performance. On
the other hand, it is speculated that a 30-day window works best because of the
more data and fluctuations considered.

5.3 Role of Feature Extraction

This section describes the role of 20 features in our model, aggregated across a
14-day window. The features are: school closing strictness (mean), public events
cancellation strictness (mean), positive cases (min, max), unvaccinated cases
(min, median), second dose vaccinated population (min, range), second dose
vaccinated cases (mean, median), first dose vaccinated cases (median, mean),
weekly deaths (mean), workplace closing strictness (mean), weekly ICU cases
(mean), weighted stringency index (median), recovered (s.d.), 70+ aged cases
(mean), first dose vaccinated population (median) and 18–24 aged cases (mean).

The results for next- and seven-day prediction tasks are shown in Table 6 and
Table 7, respectively. Using the features, MAPE is reduced by 8.3%, 7.2% and
0.2% for overall, wave and normal periods, respectively, for the 7-day prediction.
The features seem to be more informative when making later predictions.

5.4 Role of the Memory Size

In this section, the role of the memory size using i) raw data and ii) features
is assessed. For these experiments, raw data was used in 7-day windows for
14-day predictions and features were extracted from 14-day windows for 7-day
predictions. Window size here is chosen based on best windows for raw data and
features, respectively, as stated in Sects. 5.2 and 5.3. The results for the memory
use with raw data are shown in Table 8 and with features in Table 9.
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In the first case, it is deduced that increasing memory size improves overall,
wave and normal periods performance by up to 17%, 12.7% and 16.1%, respec-
tively. Interestingly, in the second case, using memory decreases performance.

Table 6. MLP with raw data vs features (next-day prediction)

Overall Waves Normal

Data MAE MAPE MAE MAPE MAE MAPE

Raw 186.1 (47.4) 26.3 (14.3) 378.4 (62.5) 25.5 (9.1) 148.2 (50.4) 26.7 (17.9)

Features 211.5 (42.1) 30.5 (11.8) 423.2 (57.1) 29.4 (9.1) 172.0 (43.8) 31.8 (14.1)

Table 7. MLP with raw data vs features (7-day prediction)

Overall Waves Normal

Data MAE MAPE MAE MAPE MAE MAPE

Raw 342.3 (48.0) 43.7 (5.3) 714.1 (105.8) 46.0 (5.0) 267.9 (36.5) 43.5 (5.5)

Features 284.7 (11.1) 35.4 (2.9) 603.1 (15.4) 38.8 (2.0) 238.7 (13.5) 43.3 (5.5)

Table 8. MLP performance with raw data per memory size (7-day window, 14-day
prediction)

Overall Waves Normal

Memory MAE MAPE MAE MAPE MAE MAPE

1 524.2 (42.1) 75.9 (4.1) 1011.1 (97.9) 67.9 (4.9) 413.6 (31.6) 74.5 (4.3)

30 570.0 (35.7) 98.7 (3.8) 981.1 (93.9) 67.9 (4.1) 464.3 (27.5) 98.2 (4.4)

90 505.9 (50.7) 78.9 (5.8) 917.8 (106.9) 63.4 (5.0) 421.8 (38.9) 82.9 (6.2)

180 428.7 (35.2) 65.5 (3.4) 798.2 (77.2) 57.8 (3.9) 350.3 (25.5) 67.0 (3.2)

240 445.1 (40.4) 65.6 (3.7) 846.8 (90.6) 59.0 (4.3) 349.8 (32.1) 63.9 (4.0)

360 418.7 (46.1) 58.9 (4.3) 820.7 (97.7) 55.2 (5.2) 329.3 (36.6) 58.4 (4.7)

Table 9. MLP performance with features per memory size (14-day window, 7-day
prediction)

Overall Waves Normal

Memory MAE MAPE MAE MAPE MAE MAPE

1 284.7 (11.1) 35.4 (2.9) 603.1 (15.4) 38.8 (2.0) 238.7 (13.5) 43.3 (5.5)

30 513.8 (13.4) 84.9 (0.9) 880.1 (37.3) 56.1 (2.0) 440.2 (11.3) 94.4 (4.4)

90 622.8 (3.7) 132.2 (0.9) 912.2 (5.6) 51.9 (1.4) 581.1 (13.6) 158.2 (7.1)

180 702.7 (2.0) 142.5 (0.6) 1071.6 (2.2) 57.2 (0.6) 580.3 (7.9) 147.6 (4.5)

240 696.7 (3.5) 134.2 (0.9) 1115.2 (5.5) 57.3 (1.4) 537.8 (13.8) 130.1 (6.9)

360 651.0 (2.2) 110.4 (0.6) 1181.4 (2.5) 57.0 (0.6) 496.7 (8.1) 107.7 (4.6)
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5.5 Comparative Study

This section aims to compare the best MLP experiments in this study to the
traditional forecasting ARIMA method. Results refer to overall, wave and normal
periods, as well as each wave. For next-day predictions, they are reported in
Table 10 and Table 11, and for 14-day predictions in Table 12 and Table 13. Next-
day prediction learning curves for the two models are shown in Fig. 3.

It is observed that for next-day predictions, the neural network outperforms
ARIMA at Waves 4 and Wave 5 (Table 11), with MAE of 529.1 (against 557.1)
at Wave 4 and MAE of 371.5 (against 385.4) at Wave 5. For 14-day predic-
tions, MLP captures the data distribution shift at Wave 4 (Table 13) better
than ARIMA with MAE of 1209 (against 1433.5).

Fig. 3. MLP vs ARIMA (next-day prediction)

Table 10. MLP vs ARIMA (next-day prediction)

Overall Waves Normal

Model MAE MAPE MAE MAPE MAE MAPE

MLP 186.1 (47.4) 26.3 (14.3) 378.4 (62.5) 25.5 (9.1) 148.2 (50.4) 26.7 (17.9)

ARIMA 176.2 20.3 371.7 20.5 137.6 19.6

Table 11. MLP vs ARIMA per wave (next-day prediction)

Wave 1 Wave 2 Wave 3 Wave 4 Wave 5

Model MAE MAE MAE MAE MAE

MLP 167.3 (131.5) 168.2 (174.4) 206.4 (264.4) 529.1 (13.8) 371.5 (18.2)

ARIMA 103.5 123.5 128.4 557.1 385.4
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Table 12. MLP vs ARIMA (14-day prediction)

Overall Waves Normal

Model MAE MAPE MAE MAPE MAE MAPE

MLP 418.7 (46.1) 58.9 (4.3) 820.7 (97.7) 55.2 (5.2) 329.3 (36.6) 58.4 (4.7)

ARIMA 412.7 42.8 861.6 48.3 322.6 40.9

Table 13. MLP vs ARIMA per wave (14-day prediction)

Wave 1 Wave 2 Wave 3 Wave 4 Wave 5

Model MAE MAE MAE MAE MAE

MLP 247.6 (29.2) 339.8 (50.5) 392.5 (58.8) 1209.0 (153.5) 767.4 (65.4)

ARIMA 142.9 246.3 297.9 1433.5 569.3

6 Conclusions and Future Work

The COVID-19 virus has been acutely affecting millions of people for more
than three years. In valuable attempts for prompt government interventions
and addressing data non-stationarity and availability, we have conducted an
empirical study of data-driven (learning, statistical) methods using incremental
training for adaptive forecasting of COVID-19 cases. Some future directions are:

Role of the memory. The impact of memory is unclear. We have demon-
strated its effectiveness on the performance of MLP with raw data, however,
performance declined for MLP with features. Future work will investigate this.

Statistical models with features. In this study we examine the impact of
features in MLP. We plan to use ARIMAX [1] to incorporate features to ARIMA.

Advanced neural architectures. Future work will investigate more com-
plex neural architectures, such as, autoregressive networks and LSTMs.
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Abstract. As artificial intelligence has grown, intelligent technology has
steadily been used in the classroom. Intelligent in-class evaluation has
gained popularity in recent years. In this study, we apply two models:
AE-SIS (Analytic Hierarchy Process-Entropy Weight-TOPSIS) and AW-
AB (Adjusted Weight in Adaptive Boosting) to evaluate in-class teaching
quality. We provide an ensemble scheme for intelligent in-class evaluation
that combines the benefits of the two models. We test the current in-
class evaluation criteria using classroom datasets for comparison. The
outcomes show how great and successful the suggested plan is.

Keywords: in-class teaching · intelligent evaluation · statistical
modeling · machine learning

1 Introduction

Education informatization is a breakthrough that stimulates improvements in
the outdated educational system while also supporting students in fully develop-
ing themselves. It does this by leveraging several information approaches [15,17],
including big data and AI methodology. For instance, Malaysia encourages
cloud resources while developing innovative curricula, instructional methods,
and learning resources [12]. Japan employs a platform for collaborative home-
schooling to raise awareness of electronic textbooks and other learning materi-
als [20]. China has started to gradually digitize education with support from the
strong policy. Governments must raise the degree of information infrastructure
building and set up a top-notch education support system, according to “The
14th Five-Year-Plan of National Informatization Plan” [1] in 2021. Governments
should adopt strategic efforts to hasten the digital education transformation and
intelligent updates as well as integrate information technology and educational
innovations, according to the “Work Highlights of the Ministry of Education”
from 2022 [2].
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In related research, intelligent education quality evaluation is a crucial com-
ponent of education informatization. It may evaluate learning outcomes, eval-
uate teaching quality, and help intelligent systems manage instruction. The
observation-based scale method and the questionnaire-based research method,
both of which are manual processes, are the two types of in-class teaching quality
evaluation techniques that are traditionally used [9]. As a result of the assessor’s
subjective elements, it is impossible to draw a more unbiased and trustworthy
conclusion. Also, it would take more time and effort to manually create question-
naires and observe teaching. Therefore, how to make education quality evaluation
more intelligent has become a research hotpot [19].

The Distance Education Center at Beijing Normal University, for instance,
has developed a methodology for measuring student involvement in distant
learning based on LMS data that considers four factors [10], including online
participation and interaction. To gauge student learning, the New Future firm
created the Wisroom smart classroom system [18]. The Gradescope platform
was developed by the University of California’s Department of Computer Sci-
ence to assist teachers in classifying and revising more than 250 million student
assignments [11]. However, most current intelligent systems are analytic tech-
niques such as behavior recognition, and in-class teaching quality models are
scarce and have yet to be evaluated. To address the above problem, we propose
an ensemble scheme for intelligent in-class evaluation.

2 Background

2.1 Statistical Learning

The Analytic Hierarchy Process and the Entropy Weight Method. By
reducing complex problems down into smaller, more manageable components,
the Analytic Hierarchy Process (AHP) [13] assists people and organisations in
prioritising and making decisions. It entails building a hierarchy of choice crite-
ria and options, then performing pairwise comparisons to ascertain their relative
weight. The Entropy Weight Method (EWM) [3,21], a multi-criteria decision
analysis technique, uses information theory and entropy to evaluate the rela-
tive weight of selection criteria. It works by assessing the degree of diversity
or uncertainty among the selection criteria and assigning weights based on the
importance of each criterion.

TOPSIS. In the Technique for Order Preference by Similarity to an Ideal Solu-
tion (TOPSIS), the solutions are ranked according to how closely they resemble
the ideal answer.

Denote n as the number of samples, m as the number of features, and xij

as the jth feature of the ith sample. The steps for using the TOPSIS method to
perform the calculations are listed as follows:

(1) Regularization. Features need to be classified into four categories:
extremely large features (larger is better), extremely small features (smaller is
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better), intermediate features (closer to a certain value is better) and interval
features (within a certain range is better). All features that are not extremely
large must be transformed into the type where larger features are considered
preferable.

(2) Normalization. Normalize all the feature series to eliminate the influence
of the magnitude.

(3) Calculation of the distance between each sample and the positive ideal
solution and negative ideal solution. Denote X+ =

{
X+

1 , . . . , X+
m

}
as the positive

ideal solution, where X+
j , j ∈ {1, . . . , m} is the maximum value of jth feature.

Denote X− =
{
X−

1 , . . . , X−
m

}
as the negative ideal solution, where X−

j , j ∈
{1, . . . , m} is the minimum value of jth feature. Denote D+

i as the distance
between ith sample and X+, D−

i as the distance between ith sample and X−.
They are calculated as:

D+
i =

√√
√
√

m∑

j=1

(
X+

j − xij

)2
(1)

D−
i =

√√
√
√

m∑

j=1

(
X−

j − xij

)2
(2)

(4) Calculation of the final score. The final score for each sample is calculated
as:

Si =
D−

i

D+
i + D−

i

(3)

2.2 Ensemble Learning

Ensemble Learning (EL) is a supervised learning algorithm that has gradually
become popular [6]. Freund and Schapire [7] proposed the Adaptive Boosting
algorithm (AB), which automatically adjusts the weight of each base learner
according to the error rate. All base learners are assigned weights according to
error rates to obtain an ensemble learner.

3 Method

3.1 The Analytic Hierarchy Process-Entropy Weight-TOPSIS
(AE-SIS) Model

Although the TOPSIS technique reveals sample differences clearly and correctly,
it tends to equally weight each aspect or relies on subjective experience, which
makes it inadequate for assessing the effectiveness of in-class instruction. As
a result, appropriate weights must be provided for each model feature. Using
the AHP-EW model with the TOPSIS technique results in more appropriate
weights for assessing the quality of classroom instruction because the AHP-EW
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model incorporates subjective and objective data [16]. The structure of the AE-
SIS model is shown in Fig. 1. For different indicators, the specific process of the
AE-SIS model is described in Fig. 2.

Fig. 1. Framework of the AE-SIS model.

The steps for using the AE-SIS model to evaluate in-class teaching quality
are presented as follows:

(1) By the in-class teaching quality evaluation system [8], choose and stan-
dardize the features that correspond to the indicators.

(2) Calculate the comprehensive weights of the features. The subjective and
objective weights of the features were determined and ranked using the AHP and
EWM, respectively. Then, based on the data intensity and order of the objective
and subjective weights, the comprehensive weights are decided.

(3) Calculate the scores of the samples. The samples are first evaluated and
scored based on TOPSIS. The combined weights derived in the previous step are
then introduced in the calculation of the distances to the positive and negative
ideal solutions. The updated equation is as follows:

D+
i =

√√
√
√

m∑

j=1

wj

(
X+

j − xij

)2
(4)

D−
i =

√√
√
√

m∑

j=1

wj

(
X−

j − xij

)2
(5)
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where wj is the comprehensive weight of the jth feature.
(4) Output of the corresponding results. For category indicators, we will com-

pare and analyze the scores of each sample, identify the classification threshold
and convert the scores into category results. For the score indicators, the scores
need to be normalized so that they meet the requirements.

Fig. 2. The AE-SIS-based statistical model for in-class teaching evaluation.

3.2 The Adjusted Weight in Adaptive Boosting (AW-AB) Model

Even while Adaptive Boosting excels at solving classification and regression
issues, it is highly sensitive to unusual data. The algorithm will give aberrant
samples more weight throughout the iterative training phase, which will change
the weight of regular samples and thus result in low accuracy. To increase accu-
racy, we implement a penalty mechanism to lessen the weight of samples with
multiple errors. For different indicators, the specific process of the AE-SIS model
is described in Fig. 3.

The steps for using the AW-AB model to evaluate in-class teaching quality
are described as follows:

Dataset A = {(x1, y1) , . . . , (xn, yn)}, where n is the number of the samples,
xi and yi are the data and label of the ith sample, respectively. h is the base
learner, and c is the number of iterations.

(1) Determination of the base learner and dataset. The corresponding fea-
tures and dataset are determined according to the indicator system.

(2) Initialization of the sample weights as 1
n .

(3) The base learner hc is trained using the current weight Wc, and the error
ec is calculated at each iteration. hc is calculated as:
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Fig. 3. The AW-AB-based ensemble model for in-class teaching evaluation.

hc = AdaBoost (A,Wc) (6)

ec =
N∑

i=1

wciI [hc(x) �= y] (7)

(4) The weighting factor αc and normalization factor Zc are calculated based
on ec. It is calculated as:

αc =
1
2

ln
(

1 − ec

ec

)
(8)

Zc =
n∑

i=1

Wcie
−αcyihc(xi) (9)

(5) A penalty mechanism is introduced to update the sample weights Wc+1.
We introduce the weighting threshold th. After a certain iteration, if a sample is
assigned weights above this threshold due to a consistently high ec, the sample
will be judged as an anomaly. We then add penalties to reduce the weight of
the sample, thus reducing the impact of the sample on the overall model ec. β
is the weight adjustment parameter after the threshold is exceeded. The process
is calculated as follows:

(6) Synthetic ensemble learner H(x). The combination of C weak learners
into AW-AB ensemble learners is calculated as:

H(x) = sign

(
c∑

c=1

αchc(x)

)

(10)
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Table 1. Formulas for updating weights based on the AW-AB model

Conditions Weighting update formula

If hc (xi) = yi Wc+1 = Wc(i)e
−αc

Zc

If hc (xi) �= yi If Wc (xi) ≤ th Wc+1 = Wc(i)e
αc

Zc

If Wc (xi) > th Wc+1 = Wc(i)e
1−β
2

Zc

4 Experiment

4.1 Dataset

We selected 200 sessions of audio and video data of smart informatization class-
rooms in primary and secondary schools at Beijing Normal University. After
processing by artificial intelligence algorithms such as object detection, speech
recognition, and action recognition [4,5,14], we obtained a total of 200 sets of
teacher samples and a total of 300 sets of student samples.

Fig. 4. Performance comparison of students’ and teachers’ indicators of different mod-
els. (a) Performance of students’ indicators (b) Performance of teaching style (c) Per-
formance of teaching method (d) Performance of teachers’ media usage.
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Fig. 5. Confusion matrix for teachers’ indicators evaluated by the AE-SIS model. (a)
Performance of teaching style (b) Performance of teaching method (c) Performance of
teachers’ media usage.

The teacher samples are divided into six categories-movement, emotion, vol-
ume, speed, speech text and labels. The student samples are divided into three
categories-movement, emotion, and labels. Both teacher data and student emo-
tion data include two categories: laughing or not laughing. Teacher movement
data include 9 categories: raising hands, gesturing with both hands, moving
around, teaching without gestures, bending over to operate the desktop, holding
textbooks, writing on the blackboard, turning over and fingering the multimedia.
Student movement data included 5 categories: raising hands, reading, writing,
head up, and lying on the table.

Table 2. Performance Comparison of TOPSIS and the AE-SIS model

Indicator Metric TOPSIS AE-SIS

Students’ Concentration RMSE 11.17 10.06

Students’ Participation RMSE 13.99 12.34

Teaching Style Acc 0.712 0.742

MP 0.715 0.738

MR 0.712 0.744

MF 0.712 0.739

Teaching Method Acc 0.876 0.925

MP 0.878 0.925

MR 0.876 0.925

MF 0.876 0.925

Teachers’ Media usage Acc 0.909 0.939

MP 0.909 0.939

MR 0.909 0.939

MF 0.909 0.939
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Fig. 6. Confusion matrix for teachers’ indicators evaluated by the AE-AB model. (a)
Performance of teaching style (b) Performance of teaching method (c) Performance of
teachers’ media usage.

Table 3. Performance Comparison of the AB and AW-AB models.

Indicator Metric AB AW-AB

Students’ Concentration RMSE 9.22 7.06

Students’ Participation RMSE 10.66 9.37

Teaching Style Acc 0.718 0.762

MP 0.729 0.764

MR 0.718 0.763

MF 0.713 0.764

Teaching Method Acc 0.896 0.903

MP 0.896 0.904

MR 0.896 0.904

MF 0.896 0.903

Teachers’ Media usage Acc 0.891 0.920

MP 0.891 0.920

MR 0.891 0.920

MF 0.891 0.920

4.2 Results

We drew on the existing evaluation systems as the in-class teaching quality
evaluation system for this trial [8]. In this section, we compare the performance
of the AE-SIS model, AW-AB model and proposed ensemble model.

Comparison of the AE-SIS and AW-AB Models. Fig. 4(a) shows a com-
parison of students’ indicator evaluations. Figure 4(b)(c)(d) shows a comparison
of teachers’ indicator evaluations. From the results, we know that two-category
classification tasks are simple, that the AE-SIS model fits well, and that the
AW-AB model is more suitable for complex tasks such as teaching style classi-
fication.
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Fig. 7. Framework of the ensemble scheme.

Table 4. Performance Comparison of the Traditional model and Combination model.

Classification Indicator Metric TOPSIS AdaBoost Ensemble Scheme

Students’ Score Indicators Students’ Concentration RMSE 11.17 9.22 7.06

Students’ Participation RMSE 13.99 10.66 9.37

Teachers’ Category Indicators Teaching Style Acc 0.712 0.718 0.762

MP 0.715 0.729 0.764

MR 0.712 0.718 0.763

MF 0.712 0.713 0.764

Teaching Method Acc 0.876 0.896 0.925

MP 0.878 0.896 0.925

MR 0.876 0.896 0.925

MF 0.876 0.896 0.925

Teachers’ Media usage Acc 0.909 0.891 0.939

MP 0.909 0.891 0.939

MR 0.909 0.891 0.939

MF 0.909 0.891 0.939

The Results of the AE-SIS Model. The RMSE between the predicted value
and the label value of students’ concentration is 10.06, and the RMSE of stu-
dents’ participation is 12.34. Figure 5 shows the confusion matrix of the teach-
ers’ indicators. Table 2 shows a comparison of the AE-SIS model and TOPSIS
method of in-class teaching evaluation. The results show that the proposed AE-
SIS model is overall better than the TOPSIS method, which performs well in
the classification of teaching methods and teachers’ media usage. The results
demonstrate the effectiveness of statistical models in in-class intelligence teach-
ing quality evaluation.

The Results of the AW-AB Model. The RMSE between the predicted value
and the label value of students’ concentration is 7.058, and the RMSE of stu-
dents’ participation is 9.370. Figure 6 shows a confusion matrix of the teachers’
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indicators. Table 3 shows a comparison of the AW-AB model and AB model.
The proposed AW-AB model has significant improvements in the classification
of teaching style and regression task of students’ indicators, is better than the
AB model. The results demonstrate the advantages of the proposed model in
in-class intelligence teaching quality evaluation.

Comparison of the Ensemble Scheme and Traditional Method. Thus,
for different indicators, we choose different suitable models to obtain the combi-
nation model, as shown in Fig. 7.

Table 4 shows a comparison of our proposed ensemble scheme and the tra-
ditional method:TOPSIS and AdaBoost. The ensemble scheme performs better
on the in-class student regression tasks and teacher classification tasks.

5 Conclusion

In this study, we propose an ensemble technique for intelligent in-class eval-
uation, and we experimentally show how better and more efficient it is. The
AE-SIS model outperforms the TOPSIS technique via entropy weighting and
analytic hierarchy process feature weighting. The AW-AB model outperforms
the AdaBoost method by tweaking basic learners’ weight updates to lessen the
influence of aberrant samples. In addition to providing a more thorough and
varied framework than a single model, the ensemble scheme efficiently addresses
the issues with traditional in-class teaching evaluation.
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Abstract. Traffic signs support road safety and managing the flow of
traffic, hence are an integral part of any vision system for autonomous
driving. While the use of deep learning is well-known in traffic signs clas-
sification due to the high accuracy results obtained using convolutional
neural networks (CNNs) (state of the art is 99.46%), little is known about
binarized neural networks (BNNs). Compared to CNNs, BNNs reduce the
model size and simplify convolution operations and have shown promis-
ing results in computationally limited and energy-constrained devices
which appear in the context of autonomous driving.

This work presents a bottom-up approach for architecturing BNNs
by studying characteristics of the constituent layers. These constituent
layers (binarized convolutional layers, max pooling, batch normalization,
fully connected layers) are studied in various combinations and with dif-
ferent values of kernel size, number of filters and of neurons by using the
German Traffic Sign Recognition Benchmark (GTSRB) for training. As a
result, we propose BNNs architectures which achieve an accuracy of more
than 90% for GTSRB (the maximum is 96.45%) and an average greater
than 80% (the maximum is 88.99%) considering also the Belgian and
Chinese datasets for testing. The number of parameters of these archi-
tectures varies from 100k to less than 2M. The accompanying material
of this paper is publicly available at https://github.com/apostovan21/
BinarizedNeuralNetwork.

Keywords: binarized neural networks · XNOR architectures · traffic
sign classification · GTSRB

1 Introduction

Traffic signs are important both in city and highway driving for supporting
road safety and managing the flow of traffic. Therefore, traffic sign classification
(recognition) is an integral part of any vision system for autonomous driving. It
consists of: a) isolating the traffic sign in a bounding box, and b) classifying the
sign into a specific traffic class. This work focuses on the second task.
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Building a traffic sign classifier is challenging as it needs to cope with com-
plex real-world traffic scenes. A well-know problem of the classifiers is the lack
of robustness to adversarial examples [29] and to occlusions [30]. Adversarial
examples are traffic signs taken as input which produce erroneous outputs and,
together with occlusions, they naturally occur because the traffic scenes are
unique in terms of weather conditions, lighting, aging.

One way to alleviate the lack of robustness is to formally verify that the
trained classifier is robust to adversarial and occluded examples. For construct-
ing the trained model, binary neural networks (BNNs) have shown promis-
ing results [14] even in computationally limited and energy-constrained devices
which appear in the context of autonomous driving. BNNs are neural networks
(NNs) with weights and/or activations binarized and constrained to ±1. Com-
pared to NNs, they reduce the model size and simplify convolution operations
utilized in image recognition task.

Our long term goal, which also motivated this work, is to give formal guar-
antees of properties (e.g. robustness) which are true for a trained classifier. The
formal verification problem is formulated as follows: given a trained model and
a property to be verified for the model, does the property hold for that model?
To do so, the model and the property are translated into a constrained satis-
faction problem and use, in principle, existing tools to solve the problem [22].
However, the problem is NP-complete [17], so experimentally beyond the reach
of general-purpose tool.

This work makes an attempt to arrive at BNN architectures specifically for
traffic signs recognition by making an extensive study of variation in accuracy,
model size and number of parameters of the produced architectures. In particu-
lar, we are interested in BNNs architectures with high accuracy and small model
size in order to be suitable in computationally limited and energy-constrained
devices but, at the same time, reduced number of parameters in order to make
the verification task easier. A bottom-up approach is adopted to design the archi-
tectures by studying characteristics of the constituent layers of internal blocks.
These constituent layers are studied in various combinations and with differ-
ent values of kernel size, number of filters and of neurons by using the German
Traffic Sign Recognition Benchmark (GTSRB) for training. For testing, similar
images from GTSRB, as well as from Belgian and Chinese datasets were used.

As a result of this study, we propose the network architectures (see Sect. 6)
which achieve an accuracy of more than 90% for GTSRB [13] and an average
greater than 80% considering also the Belgian [1] and Chinese [3] datasets, and
for which the number of parameters varies from 100k to 2M.

2 Related Work

Traffic Sign Recognition Using CNNs. Traffic sign recognition (TSR) consists in
predicting a label for the input based on a series of features learned by the trained
classifier. CNNs were used in traffic sign classification since long time ago [8,27].
These works used GTSRB [13] which is maintained and used on a large scale also
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nowadays. Paper [8] obtained an accuracy of 99.46% on the test images which
is better than the human performance of 98.84%, while [27] with 98.31% was
very close. These accuracies were obtained either modifying traditional models
for image recognition (e.g. ResNet [27]) or coming up with new ones (e.g. multi-
column deep neural network [8]). The architecture from [8] (see Fig. 1) contains
a number of parameters much higher than those of the models trained by us
and it is not amenable for verification although the convolutional layers would
be quantized. The work of [8] is still state of the art for TSR using CNNs.

Fig. 1. Architecture for recognizing traffic signs [8]. Image sz: 48× 48 (px × px)

Binarized Neural Networks Architectures. Quantized neural networks (QNNs)
are neural networks that represent their weights and activations using low-bit
integer variables. There are two main strategies for training QNNs: post-training
quantization and quantization-aware training [18] (QAT). The drawback of the
post-training quantization is that it typically results in a drop in the accuracy of
the network with a magnitude that depends on the specific dataset and network
architecture. In our work, we use the second approach which is implemented in
Larq library [11]. In QAT, the imprecision of the low-bit fixed-point arithmetic
is modeled already during the training process, i.e., the network can adapt to
a quantized computation during training. The challenge for QNNs is that they
can not be trained directly with stochastic gradient descent (SGD) like classical
NNs. This was solved by using the straight-through gradient estimator (STE)
approach [15] which, in the forward pass of a training step, applies rounding oper-
ations to computations involved in the QNN (i.e. weights, biases, and arithmetic
operations) and in the backward pass, the rounding operations are removed such
that the error can backpropagate through the network.

BinaryConnect [9] is one of the first works which uses 1-bit quantization
of weights during forward and backward propagation, but not during parameter
update to maintain accurate gradient calculation during SGD. As an observation,
the models used in conjuction with BinaryConnect use only linear layers which is
sufficient for MNIST [20] dataset, but convolutional layers for CIFAR-10 [19] and
SVHN [24]. Paper [14] binarizes the activations as well. Similarly, for MNIST
dataset they use linear layers, while for CIFAR-10, SVHN and ImageNet [10]
they use variants of ConvNet, inspired by VGG [28], with the binarization of the
activations.

In XNOR-Net [25], both the weights and the inputs to the convolutional
and fully connected layers are approximated with binary values which allows an
efficient way of implementing convolutional operations. The paper uses ImageNet
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dataset in experiments. We use XNOR-Net architectures in our work but for a
new dataset, namely traffic signs.

Research on BNNs for traffic sign detection and recognition is scarce.
Paper [7] uses the binarization of RetinaNet [21] and ITA [6] for traffic sign
detection, in the first phase, and then recognition. Differently, we focus only on
recognition, hence the architectures used have different underlying principles.
Verification of Neural Networks. Properties of neural networks are subject to
verification. In the latest verification competition there are various benchmarks
subject to verification [2], however, there is none involving traffic signs. We
believe that this is because a model with reasonable accuracy for classification
task must contain convolutional layers which leads to an increase of number of
parameters. To the best of our knowledge there is only one paper which deals
with traffic signs datasets [12] that is GTSRB. However, they considered only
subsets of the dataset and their trained models consist of only fully connected
layers with ReLU activation functions ranging from 70 to 1300. They do not
mention the accuracy of their trained models. BNNs [5,23] are also subject to
verification but we did not find works involving traffic signs datasets.

3 Binarized Neural Networks

A BNN [14] is a feedforward network where weights and activations are mainly
binary. [23] describes BNNs as sequential composition of blocks, each block con-
sisting of linear and non-linear transformations. One could distinguish between
internal and output blocks.

There are typically several internal blocks. The layers of the blocks are chosen
in such a way that the resulting architecture fulfills the requirements of accuracy,
model size, number of parameters, for example. Typical layers in an internal
block are: 1) linear transformation (LIN), 2) binarization (BIN), 3) max pooling
(MP), 4) batch normalization (BN). A linear transformation of the input vector
can be based on a fully connected layer or a convolutional layer. In our case
is a convolution layer since our experiments have shown that a fully connected
layer can not synthesize well the features of traffic signs, therefore, the accuracy
is low. The linear transformation is followed either by a binarization or a max
pooling operation. Max pooling helps in reducing the number of parameters. One
can swap binarization with max pooling, the result would be the same. We use
this sequence as Larq [11], the library we used in our experiments, implements
convolution and binarization in the same function. Finally, scaling is performed
with a batch normalization operation [16].

There is one output block which produces the predictions for a given image.
It consists of a dense layer that maps its input to a vector of integers, one for
each output label class. It is followed by function which outputs the index of the
largest entry in this vector as the predicted label.

We make the observation that, if the MP and BN layers are omitted, then
the input and output of the internal blocks are binary, in which case, also the
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input to the output block. The input of the first block is never binarized as it
drops down drastically the accuracy.

4 Datasets and Experimental Setting

We use GTSRB [4] for training and testing purposes of various architectures of
BNNs. These architectures were also tested with the Belgian data set [1] and
the Chinese [3].

GTSRB is a multi-class, single-image dataset. The dataset consists of images
of German road signs in 43 classes, ranging in size from 25 × 25 to 243 ×
225, and not all of them are square. Each class comprises 210 to 2250 images
including prohibitory signs, danger signs, and mandatory signs. The training
folder contains 39209 images; the remaining 12630 images are selected as the
testing set. For training and validation the ratio 80:20 was applied to the images
in the train dataset. GTSRB is a challenging dataset even for humans, due to
perspective change, shade, color degradation, lighting conditions, just to name
a few.

The Belgium Traffic Signs dataset is divided into two folders, training and
testing, comprising in total 7095 images of 62 classes out of which only 23 match
the ones from GTSRB. Testing folder contains few images for each remaining
classes, hence, we have used only the images from the training folder which are
4533 in total. The Chinese Traffic Signs dataset contains 5998 traffic sign images
for testing of 58 classes out of which only 15 match the ones from GTSRB. For
our experiments, we performed the following pre-processing steps on the Belgium
and Chinese datasets, otherwise the accuracy of the trained model would be very
low: 1) we relabeled the classes from the Belgium, respectively Chinese, datasets
such that their common classes with GTSRB have the same label, and 2) we
eliminated the classes not appearing in GTSRB.

In the end, for testing, we have used 1818 images from the Belgium dataset
and 1590 from the Chinese dataset.

For this study, the following points are taken into consideration.

1. Training of network is done on Intel Iris Plus Graphics 650 GPU using Keras
v2.10.0, Tensorflow v2.10.0 and Larq v0.12.2.

2. From the open-source Python library Larq [11], we used the function
QuantConv2D in order to binarize the convolutional layers except the first.
Subsequently, we denote it by QConv. The bias is set to False as we observed
that does not influence negatively the accuracy but it reduces the number of
parameters.

3. Input shape is fixed either to 30 × 30, 48 × 48, or 64 × 64 (px × px). Due
to lack of space, most of the experimental results included are for 30 × 30,
however all the results are available at https://github.com/apostovan21/
BinarizedNeuralNetwork.

4. Unless otherwise stated, the number of epochs used in training is 30.
5. Throughout the paper, for max pooling, the kernel is fixed to non-overlapping

2 × 2 dimension.

https://github.com/apostovan21/BinarizedNeuralNetwork
https://github.com/apostovan21/BinarizedNeuralNetwork
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6. Accuracy is measured with variation in the number of layers, kernel size, the
number of filters and of neurons of the internal dense layer. Various combi-
nation of the following values considered are: (a) Number of blocks: 2, 3, 4;
(b) Kernel size: 2, 3, 5; (c) Number of filters: 16, 32, 64, 128, 256; (d) Number
of neurons of the internal dense layer: 0, 64, 128, 256, 512, 1024.

7. ADAM is chosen as the default optimizer for this study. For initial training
of deep learning networks, ADAM is the best overall choice [26].

Following section discusses the systematic progress of the study.

5 Proposed Methodology

We recall that the goal of our work is to obtain a set of architectures for BNNs
with high accuracy but at the same time with small number of parameters
for the scalability of the formal verification. At this aim, we proceed in two
steps. First, we propose two simple two internal blocks XNOR architectures1

(Sect. 5.1). We train them on a set of images from GTSRB dataset and test
them on similar images from the same dataset. We learned that MP reduces
drastically the accuracy while the composition of a convolutional and binary
layers (QConv) learns well the features of traffic signs images. In Sect. 5.2.1, we
restore the accuracy lost by adding a BN layer after the MP one. At the same
time, we try to increase the accuracy of the architecture composed by blocks of
the QConv layer only by adding a BN layer after it.

Second, based on the learnings from Sects. 5.1 and 5.2.1, as well as on the
fact that a higher number of internal layers typically increases the accuracy,
we propose several architectures (Sect. 5.2.2). Notable are those with accuracy
greater than 90% for GTSRB and an average greater than 80% considering also
the Belgian and Chinese datasets, and for which the number of parameters varies
from 100k to 2M.

5.1 XNOR Architectures

We consider the two XNOR architectures from Fig. 2. Each is composed of two
internal blocks and an output dense (fully connected) layer. Note that, these
architectures have only binary parameters. For the GTSRB, the results are in
Table 1. One could observe that a simple XNOR architecture gives accuracy of at
least 70% as long as MP layers are not present but the number of parameters and
the model size are high. We can conclude that QConv synthesizes the features
well. However, MP layers reduce the accuracy tremendously.

5.2 Binarized Neural Architectures

5.2.1 Two Internal Blocks

As of Table 1, the number of parameters for an architecture with MP layers is at
least 15 times less than in a one without, while the size of the binarized models
1 An XNOR architecture [25] is a deep neural network where both the weights and

the inputs to the convolutional and fully connected layers are approximated with
binary values.
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Fig. 2. XNOR architectures

Table 1. XNOR(QConv) and XNOR(QConv, MP) architectures. Image size: 30px
× 30px. Dataset for train and test: GTSRB.

Model description Acc
#Binary

Params

Model Size (in KiB)

Binary Float-32

QConv(32, 3×3),

QConv(64, 2×2),

D(43)

77.91 2015264 246.5 7874.56

QConv(32, 3×3), MP(2×2),

QConv(64, 2×2), MP(2×2),

D(43)

5.46 108128 13.2 422.38

QConv(64, 3×3),

QConv(128, 2×2),

D(43)

70.05 4046912 495.01 15810.56

QConv(64, 3×3), MP(2×2),

QConv(128, 2×2), MP(2×2)

D(43)

10.98 232640 28.4 908.75

QConv(16, 3×3),

QConv(32, 2×2),

D(43)

81.54 1005584 122.75 3932.16

QConv(16, 3×3), MP(2×2),

QConv(32, 2×2), MP(2×2),

D(43)

1.42 52016 6.35 203.19

is approx. 30 times less than the 32 bits equivalent. Hence, to benefit from these
two sweet spots, we propose a new architecture (see Fig. 3b) which adds a BN
layer in the second block of the XNOR architecture from Fig. 2b. The increase in
accuracy is considerable (see Table 2)2. However, a BN layer following a binarized
convolution (see Fig. 3a) typically leads to a decrease in accuracy (see Table 3).
The BN layer introduces few real parameters in the model as well as a slight
increase in the model size. This is because only one BN layer was added. Note
that the architectures from Fig. 3 are not XNOR architectures.

5.2.2 Several Internal Blocks

Based on the results obtained in Sects. 5.1 and 5.2.1, firstly, we trained an archi-
tecture where each internal block contains a BN layer only after the MP (see
Fig. 4a). This is based on the results from Tables 2 (the BN layer is crucial after
MP for accuracy) and 3 (BN layer after QConv degrades the accuracy). There
is an additional internal dense layer for which the number of neurons varies in
the set {64, 128, 256, 512, 1028}. The results are in Table 4. One could observe
that the conclusions drawn from the 2 blocks architecture do not persist. Hence,
motivated also by [14] we propose the architecture from Fig. 4b.

2 A BN layer following MP is also obtained by composing two blocks of XNOR-Net
proposed by [25].
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Fig. 3. BNNs architectures which are not XNOR

Table 2. XNOR(QConv, MP) enhanced. Image size: 30px ×30px. Dataset for train
and test: GTSRB.

#Params Model Size (in KiB)
Model description Acc

Binary Real Total Binary Float-32

QConv(32, 3×3), MP(2×2),

QConv(64, 2×2), MP(2×2), BN,

D(43)

50.87 108128 128 108256 13.7 422.88

QConv(64, 3×3), MP(2×2),

QConv(128, 2×2), MP(2×2), BN,

D(43)

36.96 232640 256 232896 29.4 909.75

QConv(16, 3×3), MP(2×2),

QConv(32, 2×2), MP(2×2), BN,

D(43)

39.55 52016 64 52080 6.6 203.44

Fig. 4. Binarized Neural Architectures

6 Experimental Results and Discussion

The best accuracy for GTSRB and Belgium datasets is 96, 45 and 88, 17, respec-
tively, and was obtained for the architecture from Fig. 5, with input size 64× 64
(see Table 5). The number of parameters is almost 2M and the model size
225, 67 KiB (for the binary model) and 6932, 48 KiB (for the Float-32 equiva-
lent). There is no surprise the same architecture gave the best results for GTSRB
and Belgium since they belong to the European area. The best accuracy for Chi-
nese dataset (83, 9%) is obtained by another architecture, namely from Fig. 6,
with input size 48× 48 (see Table 6). This architecture is more efficient from the
point of view of computationally limited devices and formal verification having
900k parameters and 113, 64 KiB (for the binary model) and 3532, 8 KiB (for
the Float-32 equivalent). Also, the second architecture gave the best average
accuracy and the decrease in accuracy for GTSRB and Belgium is small, namely
1, 17% and 0, 39%, respectively.

If we investigate both architectures based on confusion matrix results, for
GTSRB we observe that the model failed to predict, for example, the End of
speed limit 80 and Bicycle Crossing. The first was confused the most with Speed
limit (80 km/h), the second with Children crossing. One reason for the first confu-
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Table 3. XNOR(QConv) modified. Image size: 30px × 30px. Dataset for train and
test: GTSRB.

Model description Acc
#Params Model Size (in KiB)

Binary Real Total Binary Float-32

QConv(32, 3×3),

QConv(64, 2×2), BN,

D(43)

82.01 2015264 128 2015392 246.5 7874.56

QConv(64, 3×3),

QConv(128, 2×2), BN,

D(43)

69.12 4046912 256 4047168 495.01 15810.56

QConv(16, 3×3),

QConv(32, 2×2), BN,

D(43)

73.11 1005584 64 1005648 123 3932.16

Table 4. Results for the architecture from the column Model Description. Image size:
30px ×30px. Dataset for train and test: GTSRB.

Model Description #Neur #Ep Acc
#Params Model size (in KiB)

Binary Real Total Binary Float-32

QConv(32, 5x5), MP(2x2), BN,

QConv(64, 5x5), MP(2x2), BN,

QConv(64, 3x3),

D(#Neur),

D(43)

0
30 41.17

101472 192 101664 13.14 397.12
100 52.17

64
30 4.98

109600 192 109792 14.13 428.88
100 5.7

128
30 7.03

128736 192 128928 16.46 503.62
100 5.70

256
30 12.43

167008 192 167200 21.14 653.12
100 8.48

512
30 19.82

243552 192 243744 30.48 952.12
100 32.13

1024
30 46.05

396640 192 396832 49.17 1546.24
100 50.91

Fig. 5. Accuracy Efficient Architecture for GTSRB and Belgium dataset

sion could be that End of speed limit (80 km/h) might be considered the occluded
version of Speed limit (80 km/h).

For Belgium test set, the worst results were obtained, for example, for Bicycle
crossing and Wild animals crossing because the images differ a lot from the
images on GTSRB training set (see Fig. 7a). Another bad prediction is for Double
Curve which was equally confused with Slippery road and Children crossing.

In the Chinese test set, the Traffic signals failed to be predicted at all by
the model proposed by us and was assimilated with the General Caution class
from the GTSRB, however General Caution is not a class in the Chinese test set
(see Fig. 7b, top). Another bad prediction is for Speed limit (80 km/h) which was
equally confused with Speed limit (30 km/h), Speed limit (50 km/h) and Speed
limit (60 km/h) but not with Speed limit (70 km/h). One reason could be the
quality of the training images compared to the test ones (see Fig. 7b, bottom).
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Table 5. Results for the architecture from Fig. 5. Dataset for train: GTSRB.

Input size #Neur
Accuracy #Params Model Size (in KiB)

German China Belgium Binary Real Total Binary Float-32

64px × 64px

0 93.83 77.86 79.75 159264 320 159584 20.69 623.38

64 94.43 75.09 82.39 195616 448 196064 25.63 765.88

128 95.42 74.71 83.44 300768 576 301344 38.96 1177.60

256 94.75 80.37 81.40 511072 832 511904 65.64 1996.80

512 95.65 78.49 85.64 931680 1344 933024 118.98 3645.44

1024 96.45 81.50 88.17 1772896 2368 1775264 225.67 6932.48

Fig. 6. Accuracy Efficient Architecture for Chinese dataset

Table 6. Results for the architecture from Fig. 6. Dataset for train: GTSRB.

Input size #Neur
Accuracy #Params Model Size (in KiB)

German China Belgium Binary Real Total Binary Float-32

48px × 48px

0 94.67 82.13 83.16 225312 320 225632 28.75 881.38

64 94.56 82.38 85.75 293920 448 294368 37.63 1146.88

128 95.02 81.50 87.45 497376 576 497952 62.96 1945.60

256 95.28 83.90 87.78 904288 832 905120 113.64 3532.80

512 95.90 76.22 87.34 1718112 1344 1719456 214.98 6717.44

1024 95.37 81.76 86.74 3345760 2368 3348128 417.67 13076.48

Fig. 7. Differences between traffic sign in the datasets
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In conclusion, there are few cases when the prediction failures can be
explained, however the need for formal verification guarantees of the results
is urgent which we will be performed as future work.
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Abstract. Few-shot learning can alleviate the issue of sample scarcity,
however, there remains a certain degree of overfitting. There have been
solutions for this problem by combining contrastive learning with few-
shot learning. In previous works, sample pairs are usually constructed
with traditional data augmentation. The fitting of traditional data aug-
mentation methods to real sample distributions poses difficulties. In this
paper, our method employs Lie group transformations for data augmen-
tation, resulting in the model learning more discriminative feature rep-
resentations. Otherwise, we consider the congruence between contrastive
learning and few-shot learning with respect to classification objectives.
We also incorporate an attention mechanism into the model. Utilizing
the attention module obtained through contrastive learning, the perfor-
mance of few-shot learning can be improved. Inspired by the loss function
of contrastive learning, we incorporate a penalty term into the loss func-
tion for few-shot classification. This penalty term serves to regulate the
similarity between classes and non-classes. We conduct experiments with
two different feature extraction networks on the standard few-shot image
classification benchmark datasets, namely miniImageNet and tieredIm-
ageNet. The experimental results show that the proposed method effec-
tively improves the performance of the few-shot classification.

Keywords: Few-shot learning · Contrative learning · Lie group

1 Introduction

In recent years, deep neural networks perform satisfactorily with the support of
large amounts of data. However, acquiring large amounts of labeled data requires
too many human and financial resources. And, in many sample-sparse domains,
obtaining enough samples for deep neural network training is impossible. Under
such circumstances, deep learning often fails to demonstrate its full efficacy. As
a result of these challenges, there has been significant interest in the field of
few-shot learning [5,7,12,22,24,25].

Few-shot learning allows the model to adapt to a task with a very small num-
ber of labeled samples. Meta-learning [5,7,22,24,25] is a popular class of methods
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used in few-shot learning. We usually divide meta-learning into two general direc-
tions: optimization-based [7] and metric-based [22]. Specifically, metric learning
is used to classify samples by learning transferable feature extraction capabilities
on the training set. It learns the feature representation capabilities specific to
that task from a small number of samples during the testing phase and constructs
a feature space to classify the samples by the metric. In meta-learning, feature
extraction networks also suffer from overfitting problems due to sample sparsity.
Unsupervised learning is proposed to address the problem of labeled sample
scarcity. Contrastive learning is a class of methods for unsupervised learning.
Networks trained by contrastive learning exhibit strong generalizations and are
commonly used in diverse downstream tasks.

Inspired by the generalization capability of contrastive learning across diverse
tasks, we propose a method that combines contrastive learning and meta-
learning, aiming to endow meta-learning with enhanced generalization ability.
Specifically, we divided the model training into two phases, the contrastive train-
ing phase and the meta-training phase. In the contrastive learning phase, we
improve the data augmentation method for constructing sample pairs. Typically,
traditional image augmentation, such as cropping, flipping, and color distortion,
is commonly employed in contrastive learning. Recent works combining con-
trastive learning and few-shot learning have shown exceptional performance but
have relied on traditional image augmentation methods. More powerful image
augmentation can facilitate the creation of more diverse sample pairs. More
diverse sample pairs enable the model to learn more discriminative expressions.
We introduce Lie group transformations in the comparative learning stage to con-
struct more diverse sample pairs. Specifically, we utilize the SO3 group, which
conforms to the structure of Lie groups, to implement an image augmentation
module. We refer to this module as the Lie transformation. Meanwhile, we incor-
porated an attention module in the contrastive learning phase. In meta-training
phase, we will transfer the attention module trained in the contrastive learning
phase. This transfer will enable the sample features to exhibit diverse expressive
abilities in the channel dimension. Moreover, we formulate a penalty term based
on contrastive learning in the meta-training phase. This penalty term imple-
ments inter-class constraints on samples by constructing positive and negative
sample pairs based on the support set. The contributions of this paper are as
follows:

• · Using the Lie group transformation method, we improve the image augmen-
tation module in contrastive learning. By integrating it with meta-learning,
we enhance the sample representation capability of meta-learning.

• · We introduce an attention module and add a penalty term to the meta-
learning loss function to correct the deviation of prototype points in the
sample space.

• · The result of our experiments on two popular few-shot classification bench-
mark datasets – miniImagenet and tieredImagenet, demonstrate that our
algorithm outperforms state-of-the-art methods significantly on both 1-shot
and 5-shot tasks.
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2 Related Work

2.1 Few-Shot Learning

We can divide few-shot learning into two categories: initialization-based method
and metric-based method. The main idea of initialization-based few-shot learn-
ing methods is to find an optimal set of initialization parameters for the model
through training on different tasks. These initialization parameters can be
trained with a small amount of data and quickly adapt to new tasks to achieve
good results. Chelsea Finn et al. proposed a classic model [7] in 2017, pioneer-
ing the field of initialization-based few-shot learning methods. The main idea of
metric-based few-shot learning methods is to acquire prior knowledge through
training the model with a large number of tasks, map the samples to a reasonable
space using the prior knowledge, and classify the samples using a predetermined
metric method. Prototypical Networks [22], Matching Network [25], and Siamese
Network [5] are classic models in metric learning. Many subsequent works are
based on the idea of these models and have made improvements. The current
metric-based few-shot learning shows excellent performance.

2.2 Contrativate Learning

The two mainstream methods of unsupervised learning currently are contrastive
learning and masked image modeling [10,13]. Contrastive learning is an unsu-
pervised learning method that learns representations by contrasting positive and
negative data pairs. The goal of contrastive learning is to make the representa-
tions of positive pairs similar while making the representations of negative pairs
dissimilar. Contrastive learning recently gains a lot of attention in deep learning
due to its impressive performance in various computer vision tasks, such as image
recognition and object detection. Inst Disc [27] pushes the class discrimination
task to the extreme and proposes for the first time an instance discrimination
method that achieves remarkable performance in the unsupervised domain. In
the unsupervised domain, a large number of contrastive learning works [2,9]
emerge and make rapid progress. In our work, we exploit the powerful general-
ization of contrastive learning to improve the performance of few-shot learning.

2.3 Lie Group Machine Learning

Recent years, Lie groups plays an important role in driving the development of
machine learning research. In [28], Lie algebra is used to perform unsupervised
augmentation of unlabeled samples and improve the performance of the model
using an expanded dataset. In [29], the intrinsic mean of Lie groups is introduced
to describe remote sensing images, which better reflects the commonalities of
objects and the relationship between feature expressions, thereby achieving bet-
ter results. In order to preserve shallow features and enhance local features, Lie
groups are introduced in [30] to achieve satisfactory results. In our work, we also
apply Lie groups to contrastive learning to improve the performance of few-shot
learning.
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3 Method

In this section, we introduce two parts in detail. In the first part, we introduce the
improvement of contrastive learning through Lie group transformations in the
contrastive learning phase. And the second part, we present the combination
of meta-learning and contrastive learning, which is integrated with attention
mechanisms and loss penalty terms.

Fig. 1. Original Image means the image that has not been augmented. Traditional is
the image augmented with traditional cropping, flipping, and color transformation. Lie
Mean is the image augmented with Lie transformation module and blank filled with
image mean. Lie Original is the image augmented with Lie transformation module and
blank filled with the original image.

We adopt a traditional few-shot learning setup to evaluate our method. In
meta-learning, we usually divide samples into a training set Dt = {(xi, yi) ; i = 1
· · · Nt} and a validation set Dv = {(xi, yi) ; i = 1 · · · Nv} (Dt ∩ Dv = ∅). Follow-
ing the N-way K-shot few-shot learning task setting, we draw N categories from
the dataset, with K +Q samples per category. Of these, N ×K samples are used
as the support set Ds = {(xi,j , yi); i = 1 · · · N, j = 1 · · · K}, with their category
labels are visible to the model. Where N × Q samples are used as the query set
Dq = {(xi,j , yi); i = 1 · · · N, j = 1 · · · Q} and their category labels are not visible
to the model.

3.1 Lie Contrative Learning

A Lie group is a mathematical object that simultaneously possesses a group
structure and a smooth manifold structure. Firstly, we provide a formal definition
for the structure of a Lie group. (G, •) is a group if it satisfies the following
conditions:

1. a • b ∈ G,∀a, b ∈ G
2. (a • b) • c = a • (b • c) ,∀a, b, c ∈ G
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3. ∃e ∈ G,∀a ∈ G, e • a = a • e = a
4. ∀a ∈ G,∃a−1, a−1 • a = a • a−1 = e

When a group structure satisfies the above conditions and it is also a differ-
entiable manifold with the property that the group operations are compatible
with the smooth structure, we call it a Lie group. It is commonly understood
that matrix multiplication groups consisting of non-singular matrices can form
Lie groups.

We define a new image augmentation operator as r : R3 → R3. We demand
that the operator satisfies the following conditions:

1. ‖r (v) ‖ =
√〈r (v) , r (v)〉 =

√〈v, v〉 = ‖v‖,∀v ∈ R3

2. 〈r (v) , r (w)〉 = 〈v, w〉 = ‖v‖‖w‖ cos α,∀v, w ∈ R3

3. u × v = w ←→ r (u) × r (v) = r (w)

Based on the above properties, we can define:

SO (3) : {r : R3 → R3∀v, w ∈ R3, ‖r (v) ‖ = ‖v‖, r (v) × r (w) = r (v × w)}

Thus, we have obtained a transformation method, denoted by r, for an image in
Euclidean space. Specifically, we can obtain a decomposed representation of the
operator r by performing a decomposition on it:

r = Rx (α) • Ry (β) • Rz (γ)

By decomposing its expression, we can construct a specific operator r based on
three parameters α, β and γ:

Rx (α) =

⎡

⎣
1 0 0
0 cos α − sin α
0 sin α cos α

⎤

⎦Ry (β) =

⎡

⎣
cos β 0 sin β

0 1 0
− sin β 0 cos β

⎤

⎦Rz (γ) =

⎡

⎣
cos γ − sin γ 0
sin γ cos γ 0

0 0 1

⎤

⎦

All possible operators that exist in r form a group structure known as SO3.
For the sake of brevity in our exposition, we shall denote this process as r (x).
In Fig. 1, we compare the commonly used augmentation methods in contrastive
learning and our two augmentation methods.

In contrastive learning phase, we put the samples in the training set through
two traditional data augmentations and the random operator r to obtain the
augmented samples {(rl (xi) , rr (xi)) ;xi ∈ Dt, i = 1 · · · Nt} after two different
data augmentation methods. We treat two augmentations from the same sample
as positive pairs, and one of the augmentations with two augmentations from
the other sample as negative pairs. We expect more similarity between positive
sample pairs and more variability between negative pairs, and have following
loss function:

L = − log
exp(rl (xi) · rr (xi) /T )

∑
i�=j exp (r (xi) · r (xj) /T )
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3.2 Attention and Penalty Items

It can be readily comprehended that the loss has a similar geometric meaning as
the prototype network loss. In Fig. 2, it is evident that in contrastive learning,
the positive sample pairs exhibit a closer distance in the corresponding metric
space, whereas the negative sample pairs are farther apart. In prototypical net-
works, instances of the same class exhibit clustering, while instances of different
classes demonstrate dispersion. Due to similar optimization objectives for the
loss function, we can enhance the expressive ability of feature channels in meta-
learning by training an attention module during the contrastive learning phase.
This attention module assigns distinct weights to the embeddings of sample fea-
tures in different channels. In the meta-learning phase, we transfer this attention
module to the meta-learning model to improve the channel-wise representation
capability of features in meta-learning.

Fig. 2. The figure shows the spatial distribution of samples obtained from compara-
tive learning and the spatial distribution characteristics of samples in the prototypical
network (few-shot learning).

In the meta-training phase, we construct a penalty term by defining positive
and negative pairs in the support set. Specifically, we consider samples within the
support set belonging to the same class as positive pairs, and construct negative
pairs from different classes. Therefore, our penalty term can be formulated as:

Lc =
∑N

i=1 d (xip, xiq)
∑N

j,k=1

∑K
m,n=1 d (xjm, xkn)

The d function here represents the measurement method. After adding a penalty
term, the meta-training loss can be uniformly expressed as: L = LCE + tLc. The
t serves as a hyperparameter that balances the penalty term and cross-entropy
loss function.
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Fig. 3. The overall process framework of our method.

In Fig. 3, we present the overall workflow of the proposed method. Our
method divides the training process into two stages: contrastive learning phase
and meta-training phase. In the contrastive learning phase, we subject the input
samples to two augmentations using a Lie transformation module, and obtain
a pair of augmented samples. These augmented samples are first input into
a feature extraction network. Then, the output is fed into an attention mod-
ule, before being processed through two fully connected layers to obtain the
sample feature representation. Following the conventional setup of instance dis-
crimination tasks, InfoNCE is computed using sample feature representations to
optimize the network. We incorporated attention modules following the feature
extraction network in the meta-training phase. We shared the parameters of both
the feature extraction network and attention modules trained in the contrastive
learning phase, and then optimize the model by incorporating a meta-training
loss function with a penalty term.

4 Experiments

In this section, we verify the method’s performance through extensive experi-
ments.

4.1 Datasets

We test our method on two public few-shot learning datasets with the 5way-5shot
and 5way-1shot tasks, respectively.

MiniImageNetMiniImageNetMiniImageNet [25]: The miniImageNet dataset is selected from the sizeable
visual dataset ImageNet. It contains 100 categories, 600 samples per category,
and a total of 60,000 color images. Each image’s resolution is set to 84×84. It is
partitioned into a training set of 64 categories, a validation set of 16 categories,
and a test set of 20 categories.
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TieredImageNetTieredImageNetTieredImageNet [19]: The tieredImageNet dataset, as a subset of the Ima-
geNet dataset, is richer in categories than miniImageNet. There are 608 cat-
egories, split into 351, 97 and 160 for the training, validation, and test sets,
respectively.

4.2 Implementation Details

For a fair comparison, we used ResNet18 and ResNet12 as the backbones com-
monly used in few-shot learning.

Contrastive Learning PhaseContrastive Learning PhaseContrastive Learning Phase: In the contrastive learning phase, we used the
adam [6] optimiser to optimise the model. We seted the initial learning rate to
0.001, the decay factor to 0.1 ,the weight decay was 0.00006 and the momentum
to the default value of 0.9. Our batch size was set to 64 and trained through
200 epochs. In the image augmentation phase, we used cropping, flipping, colour
transformation and Lie transformation to generate sample pairs. We seted the
three randomly generated variables α, β, and γ in the Lie transformation to
range between −0.5 and 0.5. We seted the temperature parameter to 0.5 in the
loss function of the contrastive learning phase.

Meta-Training PhaseMeta-Training PhaseMeta-Training Phase: In the meta-training phase, we used the adam [6] opti-
miser to optimise the model. The optimiser parameters were the same as those
used in the comparative learning phase. In the loss function, we seted the tem-
perature parameter t of the penalty term to 0.5. In the 5way-5shot task, we
randomly selected 5 categories in the training set. Each category had 5 samples
to form the support set and 16 to form the query set. Each task consisted of
105 samples. In the 5way-1shot task, we randomly selected 5 categories in the
training set, with 1 sample from each category formed the support set and 16
samples formed the query set. Each task consisted of 85 samples. In 1-shot tasks,
the limited number of samples precludes the calculation of penalty terms. We
employed Lie transformations to generate auxiliary samples for penalty term
computation to address this issue. Each batch contained one task in both the
5shot and 1shot tasks, and there were 100 batches in each epoch, and 400 epochs
were used for training.

Evaluation MetricEvaluation MetricEvaluation Metric: For the sake of fairness, we followed the assessment
scheme unchanged. We evaluate our method with 1000 tasks and report the
average accuracy with 95% confidence intervals.

4.3 Results

Following the standard setting, we conducted experiments using ResNet18 as
the backbone, employing the original image and mean padding methods to fill
the image’s blank spaces. We conducted experiments on both miniImagenet
and tieredImageNet, and the results are shown in Table 1. The state-of-the-art
comparative methods were categorized into Baselines, Optimization-based and
Metric-based. As our approach is metric-based, we selected more metric-based
models for comparative analysis. We use the Prototypical Network [22] as the
baseline, which we re-implemented using ResNet18 as the backbone, and test it
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Table 1. FEW-SHOT LEARNING CLASSIFICATION OF RESNET-18 ACCURA-
CIES ON MINI-IMAGENET AND TIERED-IMAGENET UNDER THE SETTING
OF 5-WAY 1-SHOT AND 5-WAY 5-SHOT WITH 95% CONFIDENCE INTERVAL.
(‘-’ NOT REPORTED)

Model Backbone mini-ImageNet tiered-ImageNet

1-shot 5-shot 1-shot 5-shot

Optimization-based

MAML [7] Resnet-18 49.68± 0.84 65.73± 0.83 - -

LEO [20] WRN-28-10 61.76± 0.08 77.59± 0.12 66.33± 0.05 81.44± 0.09

Metrics-based

Matching network [25] Resnet-18 52.92± 0.81 68.93± 0.65 - -

Relation network [24] Resnet-18 52.19± 0.83 70.20± 0.66 54.48± 0.93 71.32± 0.78

SimpleShot [26] Resnet-18 62.92± 0.83 79.07± 0.70 69.09± 0.22 84.58± 0.16

Neg-Cosine [15] Resnet-18 62.31± 0.81 80.97± 0.55 - -

TEAM [17] Resnet-18 60.10± 0.24 75.94± 0.23 - -

CTM [14] Resnet-18 64.12± 0.28 80.51± 0.86 68.41± 0.39 84.28± 1.73

TADAM [16] Resnet-18 58.50± 0.60 76.70± 0.45 - -

PFA [18] Resnet-18 59.60± 0.49 73.74± 0.36 - -

CC+rot [8] WRN-28-10 62.93± 0.45 79.87± 0.33 62.93± 0.45 79.87± 0.33

PSST [4] WRN-28-10 64.16± 0.44 80.64± 0.32 - -

Baseline Resnet-18 61.18± 0.74 79.58± 0.64 66.82± 0.12 80.82± 0.53

Ours:LieOrigin Resnet-18 62.68± 0.49 80.41± 0.54 67.22± 0.42 82.16± 0.61

Ours:LieMean Resnet-18 64.92± 0.52 82.63± 0.62 69.23± 0.34 84.92± 0.63

using the same settings. By observation, our method shows excellent advantages
compared to the baseline. Our method also shows better performance compared
to optimization-based methods. Compared with the metric-based methods of
the same category, [22,24,25] only focus on existing samples and do not solve
the problem of sample scarcity, whereas our method expands the sample set and
solves the problem to some extent. Our approach exploits the similarity between
contrastive learning and metric learning by acquiring a channel attention mod-
ule during training, enabling it to develop a more discriminative feature. Our
method shows better performance in similar methods that exploit the attention
mechanism [14,16]. In methods [4,8], which are similar to ours, we use the lie
group approach to expand the image set and introduce channel attention to
obtain more discriminative features to achieve a more competitive result.

We compare using ResNet-12 as the backbone in the same experimental
setup, as shown in Table 2. By observation, our method shows equally compet-
itive experimental results under ResNet-12.

4.4 Ablation Study

This section verifies the effectiveness of the proposed Lie group image augmenta-
tion method and attention module through ablation experiments. We used only
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Table 2. FEW-SHOT LEARNING CLASSIFICATION OF RESNET-12 ACCURA-
CIES ON MINI-IMAGENET AND TIERED-IMAGENET UNDER THE SETTING
OF 5-WAY 1-SHOT AND 5-WAY 5-SHOT WITH 95% CONFIDENCE INTERVAL.

Model Backbone mini-ImageNet tiered-ImageNet

1-shot 5-shot 1-shot 5-shot

MAML [7] ConvNet-4 47.78± 1.75 64.31± 1.1 52.07± 0.91 71.10± 1.67

Prototypical Network [22] Resnet-12 60.76± 0.39 78.44± 0.21 66.25± 0.34 80.11± 0.91

Cosine Classifier [1] Resnet-12 55.43± 0.81 77.18± 0.61 61.49± 0.91 82.37± 0.67

MTL [23] Resnet-12 61.20± 1.80 75.50± 0.80 65.62± 1.80 80.61± 0.90

TapNet [31] Resnet-12 61.65± 0.15 76.36± 0.10 63.08± 0.15 80.26± 0.12

Meta-Baseline [3] Resnet-12 63.17± 0.23 79.26± 0.17 68.62± 0.27 83.29± 0.18

DSN-MR [21] Resnet-12 64.60± 0.72 79.51± 0.50 67.39± 0.82 82.85± 0.56

MetaOptNet [11] Resnet-12 62.64± 0.61 78.63± 0.46 65.99± 0.72 81.56± 0.63

Ours:LieMean Resnet-12 64.94± 0.62 80.22± 0.68 68.78± 0.64 83.48± 0.58

ResNet-18 as the feature extractor and the same experimental settings as in the
comparison experiments section.

We conducted separate ablation experiments on the mean padding and orig-
inal image padding Lie group augmentation methods and the attention module
employed in the approach. Table 3 shows that the mean padding effect signifi-
cantly outperforms the original image padding. This may be due to the fact that
the positive pairs filled with the original image have a large number of identical
features, and the network model found a classification shortcut. This method
further improves the model effect and enhances the sample feature represen-
tation ability by adding an attention module. Figure 4 shows the Grad-CAM
visualization results obtained by our method and prototypical network on the
miniImageNet. In the Grad-CAM visualization, our proposed approach demon-
strates a stronger capability to focus on the object of interest that requires
classification in the image.

Table 3. ABLATION EXPERIMENTS ON MODULE. (‘�’ WITH; ‘-’ WITHOUT)

Lie Group mini-ImageNet

Mean Origin AT 1-shot 5-shot

(I) - - - 61.18 79.58

(II) � - - 63.28 82.52

(III) - � - 62.32 80.21

(VII) - � � 62.68 80.41

(IV) � - � 64.92 82.63
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Fig. 4. Grad-CAM visualization of prototypical network and our method sampled ran-
domly from mini-ImageNet.

5 Conclusion

In this paper, we propose a method of few-shot learning based on Lie group
contrastive method. Specifically, we are inspired by contrastive learning’s strong
generalization and use Lie group to improve it. We apply it to few-shot learn-
ing to enhance its generalization capabilities. In addition, we use an attention
mechanism and a loss penalty term in our approach. They optimize the model
regarding sample channels and sample space distribution, respectively. Experi-
mental results show that our method performs significantly on popular few-shot
classification benchmark datasets.
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Abstract. Action recognition in still images is a popular research topic in the
field of computer vision, but it is to remain challenging due to the lack of motion
information. Contextual information is a significant factor in the task of recog-
nizing image action, which is inseparable from a predefined action class. And the
existing research strategy does not ensure adequate use of contextual information.
To address this issue, we propose a Contextual Enhancement Module (CEM) that
combines the self-attention mechanism and the contextual attention mechanism.
Specifically, the context enhancement module uses self-attention to learn pixel-
level contextual information, after which separates the image into parts and uses
contextual attention to learn region-level contextual information. In this way, the
model can emphasize the significance of various pixels and regions in the image
and significantly improve feature representation. We performed a lot of experi-
ments on the PASCAL VOC 2012 Action dataset and the Stanford 40 Actions
dataset. The results demonstrate that our method performs effectively, with the
state-of-the-arts outcomes being obtained on both datasets.

Keywords: Action recognition · Attention mechanism · Contextual information

1 Introduction

Action recognition is a difficult study area in the world of computer vision and is widely
applied in domains like as surveillance, robotics, human-computer interaction, and other
areas [1]. The two categories of action recognition are image-based action recognition
and video-based action recognition. However, recognizing actions in images is more
challenging due to the lack of motion information, complex background, and high intra-
class variance and low inter-class variance in some categories [2].

Images contain more information, such as human beings, interactive objects and
scenes, which are composed of pixels. Humans can accurately distinguish these pieces
of information, which indicates that there are certain connections between pixels of
different information, we call these connections as the context information of images.
Context information is one of the important clues in images, which is used in many
image action recognition methods, however, most of the methods [7–10] consider from
the perspective of multiple features fusion, and do not focus on the extraction of context
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information. Only a few researchers have proposed the recognition method [11] using
context information, but the experimental results are not satisfactory.

After achieving success in the field of natural language processing, attention mech-
anism [3] found widespread application in computer vision. Self-attention mechanism
[4] is a special attention mechanism, which pays more attention to the key informa-
tion contained in the input data itself. The self-attention mechanism assigns weights to
each pixel in an image and then aggregates local features based on weighted summation.
Therefore, we use the self-attentive mechanism to capture the correlation between pixels
of an image to better describe global contextual information.

Regions can capture the object-parts relationships better, but they cannot be repre-
sented richly with only pixel-level contextual information. To truly describe an image,
we must consider not only the spatial arrangement of the parts, but also their appear-
ance and importance in distinguishing subtle differences. The context attention [5] can
learn to emphasize potential representations of multiple regions, as well as encode spa-
tial arrangements of various regions. It enables our model to selectively focus on more
relevant integral regions to generate holistic context information.

Motivated by the observations above, in this paper, we propose a context enhance-
ment module that uses a novel way to add two kinds of attention to the network, which
can efficiently encode the spatial layout and visual appearance of parts. The contributions
of this paper are summarized as follows:

• We propose a Context Enhancement Module (CEM). This module has a two-layer
attention structure that combines a self-attention module and a contextual attention
module to make the contextual information wealthy.

• We conduct experiments on the Stanford 40 Actions and PASCALVOC 2012 Action
datasets to demonstrate the effectiveness of CEM and the experiment parameters and
network structure are introduced in detail. The results show that our methodology
achieves the state-of- the-art performance.

2 Related Work

In 2006, Wang et al. [6] published the first paper on still image action recognition algo-
rithms, and since then, with the rapid development of computer technology, especially
the appearance of neural networks, more and more scholars have turned their attention
to this aspect of deep learning.

In the field of deep learning, Gkioxari et al. proposedR*CNN [7], which incorporates
contextual information as features in the recognition model. Zhao et al. [8] proposed
a proposed method to arrange the features of different semantic parts in spatial order,
arranging these features in a top-downorder. Zhao et al. [9] proposed amethod to improve
human action recognition using semantic partial actions by merging local actions with
contextual information.

With the occurrence of the attention mechanism, many authors began to try to bring
it into their ownmodels. Yan et al. [10] proposed amulti-branch attention network which
has three branches, the scene attention branch, the target sub-region classification branch
and the local region attention branch, thus capturing both global and local information.
Zheng et al. [12] proposes a multi-stage deep learning method called Spatial Attention
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based Action Mask Networks (SAAM-Nets). The model adds a spatial attention layer
to the convolutional neural network to create a specific action mask for each image that
has only an action label.

Additionally, some researchers are attempting to recognize actions in static images by
using a variety of features. Ma et al. [13] proposed a new approach to action recognition
by considering the relation between human and object as an important cue to enhance
the features of action classification by computing the information of pair-wise relation
between human and object.Wang et al. [14] proposed the pose enhanced relationmodule,
which can extract the implicit relation between pose and human body output the pose
enhanced relation feature with powerful representation capability. Surrounding objects
information is also applied to strengthen the solution.

Most of the above methods only use convolutional neural networks to extract context
information, and do not extract the context of images in depth. Some approaches conduct
extensive research on context information, but the experimental results are not good.
Compared with these methods, our proposed method can extract more detailed context
information, which is conducive to improving the performance of recognizing actions
in images.

3 Method

In this section, we introduce themodel in detail. First, we’ll go over the network’s overall
structure. Then, the two components of the Context Enhancement Module (CEM) are
introduced in detail: the self-attention submodule and the context attention submodule.

3.1 Overview

Figure 1 shows the model’s overall structure. First, ResNet-50 [15] is used for feature
extraction, and the convolutional feature map of the last residual block in the network is
retained. Then, the feature map is input into the Context Enhancement Module (CEM),
where self-attention is employed to aggregates the contextual information of the overall
image based on weighted summation, and contextual attention is used to enhance the
feature representation of various regions and encode their spatial arrangement. Thus,
the context enhancement module can emphasize the significance of individual pixels
and regions in the image and obtain more detailed contextual information. Eventually,
the dimension of the feature vectors is reduced by two fully connected layers to get
the final recognition results. The next part gives a detailed presentation of the context
enhancement module’s structure.
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Fig. 1. Overview of our proposed methodology for action recognition in still images.

3.2 Context Enhancement Module (CEM)

The context enhancement module (CEM) structure is shown in Fig. 2. The module con-
sists of two parts, namely self-attention submodule and contextual attention submodule.
First, the image features are entered into the self-attention submodule, which learns
pixel-level context information and generates a new feature map with self-attention
weight. The context attention submodule takes this feature map as input and divides it
into n integral regions, then extracts context information at the region level to produce
n feature vectors. Finally, the module stacks these feature vectors to produce the final
output feature map for the context enhancement module. As a result, the model could
emphasize pixels and different-sized regions in the image as well learning contextual
information in a hierarchical way.

Fig. 2. The structure of the Context Attention Module (CEM)

Self-attention Submodule. In order to learn the relations among all pixels, we add a
self-attentive module [16] to the model. f (x), g(x), h(x) are 1 × 1 convolutions, and the
output of f (x) is transposed and multiplied with the output of g(x). Through softmax,
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we get an attention map θp, and multiply the attention map θp and h(x) pixel by pixel to
get the feature map o of self-attention. It is calculated as:

θp = Softmax

(
g(x)f (x)T√

dk

)
(1)

o = θp ∗ h(x) (2)

where dk denotes the number of feature dimensions. As a result, the model could not
only learn global context information, but also focus on significant local information in
the image.

Contextual Attention Submodule. For further extracting contextual information, we
capture many regions with different roughness levels from the feature map, and the
level of roughness is determined by the size of the region. The minimum region is
r(i, j,�x,�y), where�x denotes the width and�y denotes the height, located (top-left
corner) in the ith column and jth row of the feature map o. We derive a set of regions by
varying their widths and heights. The set of regions can be expressed as follows:

R = {r(i, j,m�x, n�y)} (3)

Where m, n = 1, 2, 3, . . . and i < i+m�x ≤ w, j < j+ �y ≤ H. W and H denote the
width and height of the feature map o, respectively. This method can obtain regions with
different roughness in the feature map, so that the model can learn the subtle changes of
different hierarchical structures in the image and obtain richer context information.

Since the size of region r ∈ R is different, the goal is to represent these variable size
regions (X ×Y ×C) → (w×h×C)with a fixed size feature vector, we process it using
a bilinear pooling [17], usually a bilinear interpolation to achieve a differentiable image
transformation. Let Tϕ(y) be the coordinate transformation of ϕ and y = (i, j) ∈ R2 be
the region coordinates with feature value F(y) ∈ RC . The transformed image F̃ at the
target coordinate ỹ is:

F̃(ỹ) =
∑

y
F

(
Tϕ(y)

)
K

(
ỹ,Tϕ(y)

)
(4)

where F
(
Tϕ(y)

)
is the image indexing operation and is nondifferentiable; thus, the way

gradients propagation through the network depends on the kernelK(., .). We use bilinear
pooling to pool fixed size features fr(w × h × C) from all r ∈ R.

To obtain more detailed contextual information, fixed-size feature vectors are used
as input to the contextual attention module [5] and contextual feature vector zr as output.
This module converts fr to weighted versions of itself, conditional on the remaining
feature mapping fr′(r, r′ ∈ R). This allows our model to selectively focus on the more
relevant integration regions to generate overall contextual information. It is calculated
as:

gr,r′ = tanh
(
Wg(fr) + Wg′

(
fr′

) + bg
)

(5)

αr,r′ = softmax
(
Wαgr,r′ + bα

)
(6)
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zr =
∑R

r′=1
αr,r′ fr′ (7)

where Wg , Wg′ are the weight matrices of fr and fr′, Wα is the weight matrix of their
nonlinear combination, and bα and bg are the bias matrices. The attention element αr,r′
captures the similarity between the featuremaps f and fr′ of regions r and r′. The attention
focused context vector zr determines the strength of fr in focus conditioned on itself and
its neighborhood context. This applies to all integral regions r.

In order to improve the extensibility of the model and reduce the computational
complexity of the model, we use global average pooling to integrate the spatial informa-
tion of the feature vector zr(r = 1, 2, 3, · · · ) ∈ R

w×h×C and obtain the context feature
fr ∈ R

1×C . To create the context attention sub-module’s final output vectorF ∈ R
|R|×C ,

all of feature vectors fr are finally stacked.

4 Experiments

In this section, we first provide a description of the experimental datasets and parameter
settings, then compare our experimental results with the state-of-the-art models, and
finally perform ablation experiments to prove the effectiveness of our proposed model.

4.1 Datasets and Evaluation Metric

We use the PASCAL VOC 2012 Action [18] dataset and the Stanford 40 Actions [19]
dataset to train and evaluate the image action recognition task.

The PASCAL VOC 2012 Action dataset, which contains 9157 images covering 10
categories of actions. For training and validation, 400–500 images from each category
in the dataset are used, and the remaining images are used for testing. The Stanford 40
Actions dataset consists of 9532 images total, separated into 40 classes of actions, with
100 pictures every class used for training and the rest images used for testing. The two
datasets are split similarly to other methods that are currently in use in the field, allowing
for a performance comparison with those.

For action recognition in images, we measure the performance by Average Precision
(AP) and mean Average Precision (mAP). Average Precision (AP) is used to measure
the performance of the model on each category, and mean Average Precision (mAP) is
used to measure the overall performance of the model.

4.2 Experimental Setup

In our experiments, we set the input image size to 224 × 224 and the training epoch to
100 on all datasets. we utilize stochastic gradient descent (SGD) [20] with a momentum
of 0.9 and a learning rate of 0.0001 to optimize the model during the training period.
The entire model is constructed using the Tensorflow framework and trained on single
NVIDIA Tesla P40 GPU.
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4.3 Comparisons with the State-of-the-Art Models

In this section, we show the result of other state-of-the-art methods to provide a
comprehensive perspective on the performance of our proposed model.

Wefirstly evaluate ourmodel on the PascalVOC2012Action dataset. The results and
comparisonwith state-of-the-art approaches on the validation and test set are respectively
shown in Tables 1 and 2. On the validation and test sets, the mAP of our method achieves
93.1% and 94.2%, which is the State-of-the-art result among all methods. Especially on
the test set, our approach significantly improved the AP values for the categories of
‘playing instrument’, ‘using computer’ and ‘walking’ etc.

Table 1. Performance comparison on the PASCAL VOC 2012 Action validation set

Method Jumping Phoning Playing
instrument

Reading Riding
bike

Riding
horse

Running Taking
photo

Using
computer

Walking Mean
AP

R*CNN
[7]

87.7 80.1 94.8 81.1 95.5 97.2 87.0 84.7 94.6 70.1 87.3

Yan
et al.
[10]

87.8 78.4 93.7 81.1 95.0 97.1 86.0 85.5 93.1 73.4 87.1

Ma
et al.
[13]

89.2 89.8 96.5 87.6 98.2 99.1 92.3 91.6 95.2 79.2 91.9

Zhao
et al. [9]

89.6 86.9 94.4 88.5 94.9 97.9 91.3 87.5 92.4 76.4 90.0

Ours 92.4 84.5 98.8 92.7 95.5 99.8 91.6 91.2 98.4 85.5 93.1

Table 2. Performance comparison on the PASCAL VOC 2012 Action test set

Method Jumping Phoning Playing
instrument

Reading Riding
bike

Riding
horse

Running Taking
photo

Using
computer

Walking Mean
AP

R*CNN
[7]

91.5 84.4 93.6 83.2 96.9 98.4 93.8 85.9 92.6 81.8 90.2

Yan
et al.
[10]

92.7 86.0 93.2 83.7 96.6 98.8 93.5 85.3 91.8 80.1 90.2

Ma
et al.
[13]

91.1 89.8 95.4 87.7 98.6 98.8 95.4 91.4 95.8 84.3 92.8

Zhao
et al. [9]

95.0 92.4 97.0 88.3 98.9 99.0 94.5 91.3 95.1 87.0 93.9

Ours 96.6 89.5 99.1 91.9 97.8 99.2 91.4 87.7 98.6 90.6 94.2

Wefurther evaluate the proposedmodel on the Stanford 40Actions dataset. As shown
in Table 3, The mAP of our proposed method is 95.0%, achieving the state-of-the-art
performance. In particularly, The approach [13, 14, 21] focuses more on recognizing
the features of the interaction relationship between people and objects, but our approach
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evaluates from the aspect of context information, increasing themAP value by 1.8–5.5%.
The method [7, 10, 23] approaches the problem from a similar perspective as ours, but
these methods perform worse than ours, with a performance difference of 1.2–4.3%.

Table 3. Performance comparison on the Stanford 40 Actions validation set

Method Networks Mean AP(%)

Mi et al. [21] ResNet-101 89.5

Yan et al. [10] VGG-16 90.7

R*CNN [7] VGG-16 90.9

Zhao et al. [9] ResNet-50 91.2

Ma et al. [13] ResNet-50 93.1

Wang et al. [14] ResNet-50 93.2

Wu et al. [22] ResNet-50 93.7

Li et al. [23] ResNet-50 93.8

Ours ResNet-50 95.0

4.4 Ablation Study and Analysis

In this section, we conducted detailed ablation experiments on two datasets to
demonstrate the effectiveness of our proposed method.

Table 4. Ablation study on the two datasets

Method ResNet-50 Context Enhancement Module Mean AP(%)
Self-Attention
Submodule

Context Atten-
tion Submodule

PASCAL 
VOC 2012

Stanford 40

1 70.3 78.8
2 73.7 80.5
3 93.9 94.6
4 94.2 95.0

Firstly, we explored the impact of the model’s three components on the experimental
results, and the data are shown in Table 4. As shown in the table, the contextual attention
submodule plays a much significant role than the self-attention submodule. The experi-
mental results of adding the Context EnhancementModule into the model is the greatest,
with mAP of 94.2% and 95.0%, respectively, confirming that the proposed hierarchical
learning approach of pixel-level and region-level context information is beneficial for
recognizing action in still image.
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Fig. 3. Experimental results of different number |R| of integral regions

Figure 3 illustrates the effect of the number |R| of Integral Regions on model per-
formance. There are 10, 26, and 35 integral regions that can be obtained by altering the
values ofm and n in Formula (3) of Sect. 3, including the input image, the total number of
regions is 11, 27, and 36. When the number of regions was increased to 27, the PASCAL
VOC 2012 and Stanford 40 Actions datasets had the highest mAP values, proving that
the region provides the most contextual information in this setting. When the number
of regions is 36, the mAP values of the PASCAL VOC 2012 and Stanford 40 actions
datasets are the lowest, which means that the different regions overlapped more at this
time and the information contained in the feature maps was in an oversaturated state,
causing the performance of the model to decrease. This experiment shows that when
there are 27 regions, the model performs best on both datasets.

5 Conclusions

This paper presents a novel action recognition model based on contextual information.
Context information is an important clue of image activity recognition, but the exist-
ing methods do not make full use of it, resulting in poor recognition effect of static
images. We created a multiple-attention fusion strategy to solve this problem, which
build the context-enhancedmodules by applying attentionmechanisms in order to gather
more valuable contextual information for enhancing feature representation. Experimen-
tal results demonstrates that our method performs better than the state-of-the-art models
on PASCAL VOC 2012 and Stanford 40 Actions datasets.
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Abstract. Integer factorization is a famous computational problem
unknown whether being solvable in the polynomial time. With the rise of
deep neural networks, it is interesting whether they can facilitate faster
factorization. We present an approach to factorization utilizing deep neu-
ral networks and discrete denoising diffusion that works by iteratively
correcting errors in a partially-correct solution. To this end, we develop
a new seq2seq neural network architecture, employ relaxed categorical
distribution and adapt the reverse diffusion process to cope better with
inaccuracies in the denoising step. The approach is able to find factors
for integers of up to 56 bits long. Our analysis indicates that investment
in training leads to an exponential decrease of sampling steps required
at inference to achieve a given success rate, thus counteracting an expo-
nential run-time increase depending on the bit-length.

1 Introduction

Deep Neural Networks have shown excellent results not only for real-world tasks
but also for intellectually demanding algorithmic tasks such as sorting and mul-
tiplication [5], NP-hard problems including Boolean Satisfiability (SAT) [17],
Travelling Salesman Problem (TSP) [7] and game playing [21]. But there are
algorithmic tasks that are too complex for a neural network to predict the solu-
tion directly. One of such tasks is integer factorization (the inverse of multipli-
cation) where the goal is to find the prime factors of an integer number. Integer
factorization [15] is a famous computational problem believed not to be solvable
in polynomial time but also suspected that it is not NP-complete. There exists
a fast quantum algorithm [20] for factorization but it is questionable whether a
sufficiently capable quantum computer can be built. Therefore it is tempting to
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find out whether neural networks can facilitate finding the factors quickly and
this is the subject of our research.

The best algorithm is General Number Field Sieve which, for factoring a
b bit number, is of complexity exp((64/9)1/3 + o(1))b1/3 log(b)2/3) [3]. Simple
algorithms can factor small integers quickly, for example, Pollard’s rho algorithm
[18] factorizes a 56-bit number in about 0.03 s but struggles on large numbers.
The largest factored cryptographic-hard number is 829 bits long.

Some attempts have been made to predict integer factors using neural net-
works. In [16] experiments were done with tiny neural networks and encoding
the input and output as a single real number. In [12] binary encoding was used
reaching 37% success at factoring 20-bit numbers using a neural network only
and 90% when followed by brute-force post-processing to correct up to 4 bits in
the solution.

In this paper, we propose an indirect way of approaching integer factorization
that requires the neural network to learn a simpler task i.e. to correct errors in a
given partially-correct solution. Then, at inference time such error correction is
applied iteratively in a randomized fashion to search for a fully-correct solution.
Our approach is derived from Denoising Diffusion [22] which gives a strong the-
oretical basis for such a randomized search strategy. Diffusion models naturally
allow sampling from the entire solution distribution, rather than only giving the
most probable solution – a feature needed for our task since there can be many
ways to factor a given number. Also, diffusion models can be conditioned on
subsidiary data – the number to be factored, in our case.

We adapt the diffusion algorithm so that it works well for factorization.
First, we modify the sampling algorithm to retain the full probability informa-
tion from step to step and sample only when presenting data to the denoising
neural network. Second, we relax the discrete distribution using Gumbel-Softmax
[11] technique to make the denoising task easier to learn. We show that these
modifications improve the factorization performance. For the denoising task, we
evaluate several existing neural architectures and develop a new one that out-
performs the existing ones.

We evaluate our approach on integers up to 56 bits long. The success of
factoring a given number depends on the number of sampling steps that we
perform at the inference and in this paper we give detailed analysis with respect
to different number of sampling steps and bit lengths. For example, we get 98%
correctly factored 32-bit numbers in 8192 sampling steps and 31% correctly
factored 40-bit numbers given 16384 sampling steps. We also evaluate the scaling
behavior which reveals two trends: (a) longer numbers require exponentially
more sampling steps and (b) longer training results in an exponential decrease
of required sampling steps.

2 Background: Diffusion Models

Diffusion models have achieved state-of-the-art results for image generation [9,
19,25]. Diffusion has been applied to discrete binary [22] and categorical [10]
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data, text generation [1]. But not for such hard combinatorial problems like
integer factorization.

Given data x0, a diffusion model [22] consists of predefined variational distri-
butions q(xt|xt−1) that gradually introduces noise over time steps t ∈ {1, ..., T}.
The diffusion trajectory is defined such that q(xt|xt−1) adds a small amount of
noise around xt. This way, information is gradually destroyed and at the final
time step, xT carries almost no information about x0. A nice property of the
diffusion process is that it can be reversed if the gradient of the distribution can
be estimated which is often expressed as a function that denoises the data. Usu-
ally, Normal distribution is employed which is simple to work with and produces
excellent results for images [9] and sound [14].

To deal with discrete values, here we employ diffusion for categorical data,
namely the Multinomial Diffusion [10]. Having K categories, xt is encoded as
one-hot vector xt ∈ {0, 1}K . The multinomial diffusion process is defined using a
categorical distribution that has a small probability βt of resampling a category
uniformly and a large (1 − βt) probability of sampling the previous value xt−1:

q(xt|xt−1) = C(xt|(1 − βt)xt−1 + βt/K), (1)

where C denotes a categorical distribution with probability parameters after
|. For such diffusion process the probability of any xt given x0 is expressed as:

q(xt|x0) = C(xt|ᾱtx0 + (1 − ᾱt)/K), (2)

where αt = 1−βt and ᾱt =
∏t

τ=1 ατ . For reverse distribution step, we follow the
common practice to parametrize it using x0. According to [10], the distribution
for the previous time step t − 1 can be computed from the value xt at the next
step and the initial value x0 as:

q(xt−1|xt, x0) = C(xt−1|θpost(xt, x0)), (3)

θpost(xt, x0) = θ̃/

K∑

k=1

θ̃k, (4)

θ̃ = [αtxt + (1 − αt)/K] � [ᾱt−1x0 + (1 − ᾱt−1)/K] (5)

During the reverse process, an approximation x̂0 is used instead of x0 which
is produced by a neural network μ: x̂0 = μ(xt, ᾱt). The neural network is trained
by feeding it with the cumulative noise1 at time t and noisy sample xt which is
produced by the forward diffusion and asking the network to produce a clean
sample x̂0. We use a linear schedule of ᾱ both during training and inference. The
loss function for training is the KL divergence between the true distribution and
the predicted one:

KL(C(θpost(xt, x0))|C(θpost(xt, x̂0))) (6)

1 [10] parametrize the neural network with t, instead. This is equivalent once we fix
the noise schedule.
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3 Diffusion for Factorization

We wish to apply the diffusion process to produce two integer numbers a,b
given their product ab. Such function cannot be directly approximated by a
neural network for two reasons. First, this function is generally accepted to
be extremely hard for which no efficient algorithm is known [15] and also our
experiments confirm the inability of direct learning (see Fig. 1 portion with the
large noise level, for evidence). Second, the factors are not unique prohibiting a
straightforward supervised learning approach. Therefore we took the denoising
approach where the neural network is asked to correct errors in a partially correct
solution instead of outputting a fully correct solution from scratch. Such function
we found to be learnable and also it allows obtaining samples from the whole
distribution of factors, not only one particular.

To make the diffusion process work well for factorization, several modifica-
tions to the standard diffusion schema are introduced. At first, all functions
need to be conditioned on the given number ab to be factored. We augment
the neural network with an additional input in which ab is represented in
binary one-hot encoding. Similarly, each xt consists of one-hot encoded a and b:
â, b̂ = x̂0 = μ(xt, ᾱt, ab).

To train the model, we generate training examples consisting of two odd
random numbers of n/2 bits each (by selecting each bit randomly, hence some
leading bits may be zeros), calculate their product ab and form x0 by concate-
nating one-hot encodings of a and b. Then, we sample uniformly ᾱt and obtain
xt by sampling q(xt|x0) as given in Eq. 2. All three inputs to the neural network
are concatenated along the feature axis forming a sequence of length n (the
inputs ab and xt are n bits long and ᾱt is replicated in each sequence position).
The neural network μ(xt, ᾱt, ab) is trained using KL divergence given by Eq. 6
to estimate x0. We use a dataset of 10M examples generated this way, smaller
datasets in our setup lead to overfitting.

When the model is trained, we can use it for sampling to find the factors of
a given number ab. For testing, we use composite numbers having exactly two
prime factors each of length roughly n/2. We form a test set of 1K examples and
explicitly make sure that none of these factors are used as multiplicands in the
training set.

Diffusion models are meant for producing samples of some distribution. Here,
the distribution, conditioned on the number ab to be factorized, consists of all
the factorizations of ab. During training, we use randomly generated a and b
which may be composite numbers themselves, so the neural network learns to
factorize any composite number. But we test only on the most interesting (and
possibly the hardest) case when both a and b are primes. So the distribution to
sample from at test time consists of two discrete points (a, b) and (b, a).

The sampling algorithm is inspired by the reverse diffusion but it has two
differences: (a) it uses additive update instead of multiplicative and (b) it retains
the full probability distribution from step to step and performs sampling from
it only to present data to the neural network. Given the total number of steps
T , the algorithm (see Algorithm 1) works backward from step T toward step 1.
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The initial distribution xT is created with equal probabilities of 0 and 1 for each
bit and then at each step a sample xsample from it is drawn which is presented
to the neural network μ. The neural network returns an approximation of the
correct bits x̂0. The probabilities of the previous timestep xt−1 are calculated
by taking the weighted average of xt and q(xt−1|x̂0) with a coefficient γ. We
use γ = 0.9. The algorithm returns the bit probabilities at the final step (or at
an intermediate step if the solution is found) which should be close to binary if
the neural network produces a good approximation, but in practice, we take the
argmax over its category dimension as the bit values. This algorithm assumes
that the neural network μ returns probabilities that sum to 1 for each bit; that
is achieved by placing softmax as the last layer in μ.

The motivation behind deviating from the standard sampling algorithm is
that the neural network produces a very inexact approximation x̂0 which by Eq. 5
is often converging to a pair of numbers a, b whose product is not the required
ab. Also, the multiplicative nature of Eq. 5 prohibits recovering from confident
errors i.e. if, at some step the network gives a wrong 0 in some position, it is
almost impossible to get it to 1 by using multiplication in the subsequent steps.
The proposed modifications remedy these pitfalls. Use of the additive update
allows easy recovery from confident mistakes and keeping the full probabilities
instead of one sample retains more information and places less weight on each
individual (and possibly wrong) update. A drawback of these modifications is
that we lose the diversity of samples. That means that we may get only one
factorization solution of ab instead of all of them. But we are happy with that
since there is essentially only one way to factor examples in the test set. We have
confirmed experimentally that the proposed sampling algorithm works better.

Algorithm 1. Sampling
1: xT = 0.5n×2

2: for t = T ...1 do
3: ᾱt−1 = 1 − (t − 1)/T
4: xsample ∼ C(xt)
5: x̂0 = μ(xsample, ᾱt−1, ab)
6: if a and b encoded in x̂0 multiply to ab then return x̂0

7: xt−1 = γxt + (1 − γ)[ᾱt−1x̂0 + (1 − ᾱt−1)/K]

8: return x0

Another modification is that we use relaxed categorical distribution (with a
temperature equal to 1) instead of categorical. Their difference is how samples
are produced. Categorical distribution introduces discrete noise characterized
as bit flips. Relaxed distribution has more fine-grained noise which facilitates
training and obtains a better success rate at inference. To work with the relaxed
distribution we employ all the formulas given above except for sample gener-
ation where we apply the Gumbel Softmax technique [11]. We have confirmed
experimentally that using the relaxed distribution is beneficial.
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4 Choice of the Neural Model

The architecture of the neural network used to perform denoising has a signifi-
cant impact on the overall performance. As the integer numbers are encoded as
binary sequences, the task is of sequence-to-sequence nature. We evaluated three
suitable architectures: Transformer [26], Neural GPU [13] and Residual Shuffle-
Exchange Networks (RSE) [4,6] but were not satisfied with their performance
on our task. Therefore we tried to implement a new architecture, which turned
out to be about 10% better than Transformer and RSE.

The new architecture is a sequence-to-sequence recurrent convolutional neu-
ral network based on the combination of Neural GPU and Shuffle-Exchange
networks. It operates on hidden state s ∈ R

n×m where n is the sequence length
and m is the number of feature maps. It applies the following transformation,
named Convolutional Shuffle Unit (CSU), to the sequence transforming the state
sr at the recurrent-step r to the state at the next step sr+1:

sdrop = dropout(sr)
sF = ForwardShuffle(sdrop)
sR = ReverseShuffle(sdrop)
g = GELU(InstanceNorm(W � [sdrop|sF |sR] + B))
c = W ′g + B′

sr+1 = σ(S) � sr + Z � c

In the above equations, W is a convolution weight matrix of size 3m×h× 3,
where h is the hidden size; W ′ is a linear transformation weight matrix of size
h × m; S and Z are vectors of size m; B and B′ are biases − all of those are
learnable parameters; � denotes element-wise vector multiplication and σ is the
sigmoid function, � denotes convolution, — denotes concatenation along the
feature axis. We choose the hidden size h = 4m.

The CSU starts by regularizing its input with dropout [23] (we use dropout
rate 0.1), then the input is concatenated with its forward- and reverse-shuffled
versions [6] (ForwardShuffle and ReverseShuffle, accordingly). The forward shuf-
fle divides the sequence into halves and interleaves the halves. The reverse shuffle
does the opposite – places even elements consecutively in the first half of the
sequence and the odd elements in the second half. Convolution of kernel size 3 is
then applied to the concatenated sequence followed by Instance Normalization
[24] and GELU [8]. It is shown in [6] that repeated application of forward or
reverse shuffle together with combining adjacent sequence elements allows rapid
(in O(log n) steps) flow of information between any, possibly distant, sequence
positions. In the new model, we use both shuffles together to even more facil-
itate long-range information flow and combine them with convolution to deal
with short-range interactions.

The last step of the CSU is a scaled residual connection. The candidate c is
scaled by a zero-initialized parameter Z and added to the scaled input state sr.
The input scale parameter S is chosen such that σ(S) ≈ 0.95. Scaling both values
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in this way was shown to allow stable training of very deep residual networks [2]
and lead to excellent performance in recurrent networks [27].

The whole neural architecture consists of the input projection part, the
recurrent part, and the output projection part. In the input part, two linear
layers with GELU in-between are applied to data in each input sequence posi-
tion independently to obtain the initial hidden state s0. Then, CSU is applied
max(n/2, 4�log2(n)�) times in a recurrent fashion sharing the same parameters.
Such recurrent depth was chosen as a reasonable compromise between the high
expressive power of a deep network and the faster training of a shallow one. Each
position of the last state is projected by a linear mapping to two values followed
by softmax to obtain the bit probabilities of a and b.

Fig. 1. Bit prediction accuracy of the
trained model depending on the noise
level. The diagonal is a trivial baseline
achieved by rounding.
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Fig. 2. Prediction accuracy of each bit
depending on the noise level for 16-bit
factors of 32-bit numbers. We can see
that for small noise all bits are pre-
dicted precisely, for large noise only the
lowest and the highest bit can be pre-
dicted.

5 Results

We have implemented the proposed method in Tensorflow, the code is available
at https://github.com/KarlisFre/diffusion-factorization. To present our main
results, we trained the model to factor 16–56-bit numbers. The length 56 was
chosen roughly to be the maximum for which we can get a non-zero success rate.
The model itself is independent of the sequence length, so we create batches
of inputs in length increments of 8 in the given range and one training step
consists of minimizing the loss for all these batches simultaneously like in [5].
The training was performed for 1M steps using AdaBelief optimizer [28] taking
2 weeks on two NVIDIA RTX A6000 GPUs. We chose the number of feature
maps m = 384 yielding a model with 5.8M trainable parameters. This choice

https://github.com/KarlisFre/diffusion-factorization
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was obtained experimentally in a few trials to get good results within the given
training budget.

All the results presented below are the averages over a batch of 256 examples.
We repeated each experiment 5 times with different batches and depict the
standard deviation as a shaded area in the line charts.

At first, let us explore how well the neural model is able to learn denoising.
Fig. 1 shows bit accuracy depending on the amount of introduced noise which
is equal to 1 − ᾱt. For small amounts of noise, we get good prediction accuracy.
For large noise, the model performs only slightly better than the trivial baseline
that rounds each bit of the input xt. Poor prediction in case of large noise is
expected to some extent because there can be two possible results a, b or b, a,
and with purely random xt it is impossible to determine which order is the right
one.

We can inspect more closely which bits are well-predicted in Fig. 2. The
figure shows the accuracy for each 16-bit factor of 32-bit numbers. The first bit
is always correct since we use only odd numbers in training and testing. The last
bit is also predicted accurately which is possible solely from the magnitude of
the composite number ab. And there is a general tendency that the leading or
trailing bits are better predicted than the middle ones. For larger numbers, the
findings are similar, only the overall accuracy is lower.

Next, we investigate the factorization performance depending on the bit-
length of the numbers. Figure 3a shows how many diffusion steps are needed
to factor a given fraction of examples in the batch. Since diffusion is a random
process that may skip off an already found solution, we mark the example as
factored if it happened at least in one of the diffusion steps. We see that small
examples can be factored in a few steps but, for longer examples, the increase
is exponential. Note that the model has indeed learned how to factor unseen
numbers since we explicitly made sure that none of the prime factors used for
testing were shown to the model during training.

Often the goal is to factor one given number. We can replicate this number
to fill the whole batch, process the batch in parallel, and expect that some of
the replicas will be factorized faster due to randomness in sampling. Figure 3b
shows such a scenario. We see that the general shape of the lines is similar to
those in Fig. 3a only the variance is higher. The same mean in both these charts
is expected since the data is the same, only replicated in the latter case. The
variance is higher because some numbers appear to be easier to be factorized. We
see that the line regarding 1/256 is significantly below the two other lines even
taking the variance into account, indicating that some instances (of the same
number) in the batch get solved faster than the others, hence it is indeed useful
to use such replicated batches. Also, at least one of the replicated numbers up to
48 bits got solved within the step limit showing that there are no hard numbers
that the method is unable to factorize at all.

It is interesting to analyze how much resources it is advisable to invest in
training. If we invest more time in training, fewer diffusion steps (and computa-
tion time, respectively) are necessary to factor the given numbers. Notably, the
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one-time investment for training pays off for each number we wish to factor in
afterward. Fig. 4 shows a heat map depicting the success rate (fraction of solved
examples in the batch) depending on the training and diffusion steps for 32 and
40-bit numbers. We can see that the success rate increases both with training
time and diffusion steps where the increase with training time is roughly linear.
It can be observed that borders of equal success rate (one of such is marked in
blue color) form almost straight lines. Since training steps are presented linearly
but diffusion steps logarithmically, it means that a linear increase in training
time leads to an exponential reduction of diffusion steps. This is very good news
showing that investing in training pays off. The bad news is that the success rate
decreases exponentially with sequence length.

Fig. 3. Diffusion steps taken to reach a given fraction of fully solved instances on
batches containing different numbers (a) and on batches of equal numbers (b). Note
that diffusion steps are presented log-scale.

Fig. 4. Success rate depending on training steps and diffusion steps on 32 bit (left)
and 40 bit (right) integers. Note that diffusion steps are depicted in log-scale.
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6 Conclusion and Outlook

We have presented an approach that solves the integer factorization problem
using neural networks and discrete denoising diffusion. We found that neural
networks can learn error correction in integer factors and, although being too
imprecise to be used directly, it can gradually arrive at the correct solution
when applied iteratively, like in denoising diffusion. As a subsidiary result, we
have presented a novel neural architecture that performs well on the denoising
task. This new architecture, when properly validated, may find applications in
other sequence-to-sequence tasks.

We have analyzed how the method scales with respect to training and sam-
pling steps and the bit-length of the numbers. Increasing the bit-length requires
an exponential increase of the sampling steps at the inference or exponential
investment in training to reach the same success rate suggesting that the fac-
torization problem cannot be solved in polynomial time. On the other hand,
investment in training gives exponential benefit during inference. So we might
hint that a huge one-time investment in training would allow factorizing long
numbers quickly afterward. The current research is limited to numbers up to 56
bits, a neural model with 5.8M trainable parameters, and 2 week training time
on 2 GPUs. This is a very limited setup to fully understand the scaling behav-
ior and proper relation between the two mentioned trends. The small integers
considered in this paper can be factorized in a fraction of a second using stan-
dard methods while the neural approach can take several minutes (depending
on the number of diffusion steps). So, further work with much more investment
in computing resources is definitely needed to see whether the neural methods
can present an asymptotic speedup.

Although tested only on primes, the algorithm itself deals with a more general
problem – factoring the given integer into two multiplicands which themselves
can be composite numbers. But virtually all classical factorization algorithms
exploit in an essential way the additional information that the factors themselves
are primes. A further direction for improvement could be investigating how to
incorporate the properties of primality in the algorithm.

The same denoising idea may be applied to other discrete search problems, for
example, SAT. Currently, the main tool for solving them is tree-search. Diffusion,
as employed here, is essentially a linear goal-directed randomized search that may
serve as an alternative to the tree-search. We look forward to new results in this
direction.

Considering a broader scope, an important theoretical question is whether a
polynomial-time algorithm exists for factorization. Humans have not found such
yet but, if it exists, could it be discovered automatically via learning a neural
network? On the negative side, if a method someday would allow factoring long
integers quickly, it will yield many cryptosystems insecure and secrets, currently
protected by them, revealed.
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7. Gaile, E., Draguns, A., Ozolinš, E., Freivalds, K.: Unsupervised training for neural
tsp solver. In: Learning and Intelligent Optimization: 16th International Confer-
ence, LION 16, Milos Island, Greece, June 5–10, 2022, Revised Selected Papers,
pp. 334–346. Springer (2023). https://doi.org/10.1007/978-3-031-24866-5 25

8. Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs). arXiv preprint
arXiv:1606.08415 (2016)

9. Ho, J., Saharia, C., Chan, W., Fleet, D.J., Norouzi, M., Salimans, T.: Cascaded
diffusion models for high fidelity image generation. J. Mach. Learn. Res. 23(47),
1–33 (2022)

10. Hoogeboom, E., Nielsen, D., Jaini, P., Forré, P., Welling, M.: Argmax flows and
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Abstract. Using the Large Language Model(LLM) for in-context learn-
ing to solve Natural Language Processing(NLP) tasks has become one of
the most popular and effective methods. There has been a sea of works to
elicit knowledge from LLM to perform commonsense reasoning, but those
methods consume a lot of time and space. Our work considers how to
transfer the generated knowledge from LLM to a small model for knowl-
edge generation. We find that the incorporation of wrong knowledge is
important in knowledge transfer, which has been neglected by previous
work. We propose different filter methods to different generated knowl-
edge to distinguish the correctness of knowledge, and use both correct
and wrong knowledge in Contrastive-Learning for knowledge transfer to
improve the ability of small models to generate knowledge. In this paper,
we first figure out what kind of prompts in in-context learning can bet-
ter motivate LLM to generate knowledge that has higher generalization
and is more helpful in answering questions. Then, we compare various
filtering methods for knowledge correctness determination. At last, we
use Contrastive-Learning based knowledge generation for transferring
knowledge from LLM to the small model. In this way, the knowledge
generated by the small model are not only richer but also more cor-
rect, which boost reasoning tasks with performance improved up to 1.7%
on the CommonsenseQA and 3.2% on the OpnebookQA comparing the
knowledge generated by simply fine-tuned on all knowledge.

Keywords: Commonsense Reasoning · Large Language Model ·
Neural Network

1 Introduction

LLM has shown its strong capability on in-context learning, and has achieved
impressive results on various baseline tasks in the NLP tasks. GPT3 [2] propose
to solve NLP tasks using in-context learning, allowing the model to directly
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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predict results when facing with new sample inputs simply by giving task
instructions and examples as the context of the model input, it can be seen
as Direct Prompt, Fig. 1(a) are results of using Direct prompt to perform Ques-
tion Answering(QA), it can directly predict the answers to simple questions.
But this method lacks in explainability, and when it encounters a more compli-
cated problem, the prediction failed. GKP [8] further proposes to steer LLM for
generating relevant knowledge based on questions to perform commonsense rea-
soning, which achieves a considerable improvement compared to Direct Prompt,
but sometimes the generated knowledge is incomplete and irrelevant to the ques-
tion. As shown in Fig. 1(b), “Wood is a common building material” is a piece of
factual knowledge, but it does not help to derive the Ground Truth(GT) answer.

How to use LLM to generate more relevant knowledge for answering ques-
tions has become the focus of recent research. People establish the relationship
between concepts in the question through the chain of thought and use such
chain to derive the correct answer, CoT [17] uses LLM to simulate this chain of
thought to solve Numerical Reasoning and Commonsense Reasoning tasks and
has achieved better performance. Furthermore, [9,18] proposed Rationalization,
which gives the correct answer as an additional hint in the prompt and guide
the LLM to explain such answer. The generated knowledge have more informa-
tion, which help not only infer the correct answer but also distinguish the wrong
answer. The knowledge generated by Rationalization of Quesiton2 in Fig. 1(c)
can not only infer the correct answer “(c)desk drawer”, but also explain why not
choose the incorrect answer “(a)backpack”.

However, the knowledge generated by LLM is not always correct. CoT and
Rationalization do not always perform well when a quesiton require more com-
plex reasoning. For the question “To locate a choker not located in a jewelry
box or boutique where would you go? (a)jewelry store, (b)neck, (c) jewelry box,
(d)jewelry, or (e)boutique?”, the corresponding generated knowledge is “We can
find chokers in jewelry stores or boutiques, but if not in jewelry stores, then
we will find them in boutiques.” This is a wrong knowledge to help answer
the correct answer “(a)jewelry store”. [18] and [19] also found that the knowl-
edge generated by language models is unreliable and sometimes produces non-
factual knowledge, which is unacceptable for downstream tasks. The correctness
of knowledge can be determined by using metrics that approximate the factual-
ity of knowledge. Although LLM have strong knowledge generation capabilities,
judging the correctness of generated knowledge is still the focus of research.
Meanwhile, due to the large cost of LLM in storage and inference, [6] proposed
to use the knowledge of LLM to improve the reasoning ability of small models,
but it didn’t distinguish the correctness of knowledge generated by Rationaliza-
tion and utilized wrong knowledge when transferring, we demonstrate that the
knowledge generated by this method is sup-optimal through plenty of experi-
ments. Our work follows this setting, but we focus on how to use small model
to generate knowledge.

In this paper, we focus on how to distinguish the correctness of knowledge
generated by LLM and transfer it to a small model. First, We use Rational-
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ization and CoT to leverage knowledge generation on LLM respectively. Then,
the knowledge generated by Rationalization is filtered by an additional inference
model and False Rejection is used to filter the knowledge generated by CoT. At
last, we propose a Contrastive-Learning based method to utilize both correct and
wrong knowledge to perform knowledge transfer in a small model. We use the
generated knowledge by the small model to perform Commonsense Reasoning for
validation. Numerous experiments have shown that compared with simply fine-
tuned on all knowledge generated by LLM, the participation of wrong knowledge
in the transfer stage can prevent the model from overfitting and retard generat-
ing wrong knowledge. It has increased by up to 1.7% On the CommonsenseQA,
and 3.2% on the OpenbookQA, which proves that our proposed method can
effectively improve the knowledge generation ability of small models.

The following are the main contributions of this paper:
(1) We propose a pipeline method to extract, filter knowledge from LLM,

and transfer it to a small models.
(2) We use two filter methods to distinguish the correctness of knowledge

and propose a Contrastive-Learning based method to transfer these knowledges
to a small model for knowledge generation.

(3)We use knowledge generated by the small model to perform commonsense
reasoning, achieving up to 1.7% and 3.2% improvements in CommonsenseQA
and OpenbookQA respectively.

Fig. 1. Three samples in CSQA: Quesiton1 is “Where can a human find body coverings?
(a)phone booth, (b)clothing store, (c)workplace, (d)swimming pool or (e)closets?”,
it’s GT is (b)clothing store. Quesiton2 is “Where in your home would you keep a
ballpoint pen when not in use? (a)backpack, (b)bank, (c)desk drawer, (d)eat cake or
(e)office desk?”, it’s GT is (c)desk drawer. Quesiton3 is “What could go on top of
wood? (a)lumberyard, (b)synagogue, (c)floor, (d)carpet or (e)hardware store?”, it’s
GT is (d)carpet. Use blue, green, and red to denote generation, correct predictions,
and incorrect predictions respectively.
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2 The Proposed Method

We divide our proposed method into three stages. First, we select examples
for constructing Prompt and use LLM’s in-context Learning ability to generate
knowledge candidates for each sample on the training set. Then, using Knowledge
Filter to distinguish the correctness of the generated knowledge. Finally, we
perform knowledge transfer by simply fine-tuned and Contrastive-Learning based
method to guide the small model to generate knowledge. The overview of our
proposed method is shown in Fig. 2:

Fig. 2. A overview of our proposed method

In the validation stage, the transferred small model is used to generate knowl-
edge to questions for validation. We concatenate the question with the generated
knowledge, and using inference models to select the highest-scoring option from
candidates as the prediction, we compare the prediction and GT, so the gener-
ated knowledge can be verified by whether it helps to answer questions correctly.

2.1 Task Formulation

We focus on the impact of knowledge generated by our method on commonsense
reasoning tasks:

Given a natural language question Query and c options ( candidate1,
. . ., candidatec), select GT Answer from c options, and denotes the dataset
D with N training examples as: D={Queryi, candidate1, . . ., candidatec,
Answeri}N , i ∈ N . We follow settings of previous works, select M samples
(M � N) from the N training examples, manually write prompt P and cre-
ate Demonstration = {P1, ..., PM}. Use LLM to generate a knowledge set
K = {knowledge1, ..., knowledgeb} for each sample in the training set. Exe-
cuting different filter methods to distinguish the correctness of knowledgei,
i ∈ {1, ..., b}. Mark the correct knowledge as Knowledge+ and the wrong knowl-
edge as Knowledge−. Both Knowledge+ and Knowledge− will guide the small
model g to generate Knowledge according to the input (Query, candidate1, ...,
candidatec) in training stage. In validation stage, we connect the input and the
generation Knowledge′ as (Query, candidate1,. . . , candidatec,Knowledge′) to
make prediction, denoted as Answer′. The effectiveness of Knowledge′ is mea-
sured by the exact matching of Answer′ and Answer. We conduct validation
experiments on different inference models.
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2.2 Select Examples to Construct Demonstration for Knowledge
Generation

The aspects of the question include mathematical reasoning, negative reasoning,
relational reasoning, and other types of reasoning in the commonsense reasoning
task. We hope that the selected M samples are the most representative ones
in this task so that it can generate multi-aspect knowledge for new samples.
Inspired by [7], we use the K-means method to cluster the input representation
to obtain M cluster centers and select the M samples with the closest distance to
the cluster centers to construct demonstrations. This process can be expressed
as the follow:

K − means(D) = {Query1, ..., QueryM}
We use various strategies to generate knowledge that helps answer common-

sense reasoning questions. The specific way is to control the form of the prompt
to realize different strategies by focusing on problems from different angles. For
each sample, we have:

{Query, candidate1, . . . , candidatec, Answer}

The prompt designed by [17] derives the correct answer by simulating the chain
of thought of human beings. As an intermediate step in reasoning, it can also be
regarded as a piece of knowledge that helps answer questions. It defines prompt
as:

P = {QueryP
1 ,KnowledgeP

1 , Answer
P
1 , ...,

QueryP
M ,KnowledgeP

M , AnswerP
M , Queryi}

The prompt of Rationalization is similar to the data in the Cos-E [14]. Based
on the question and GT, an explanation corresponding to GT is put forward.
We assume that such explanation can also be used as knowledge to help answer
the question. It defines prompt as:

P = {QueryP
1 , Answer

P
1 ,KnowledgeP

1 , ...,
QueryP

M , AnswerP
M ,KnowledgeP

M , Queryi, Answeri}
Different from the previous two prompt methods, Rationalization sees GT

during the learning process, since GT is obviously invisible in the validation
stage, this can only be used for knowledge generation and cannot be used to
generate answers directly on the validation set.

For LLM G, we use beam-search to generate and search knowledge. We
express the generated knowledge as:

Kset={Knowledge1,...,Knowledgeb}=G(Knowledgei|P )

where b=beam size.
Nevertheless, due to the randomness in the process of knowledge generation,

it may lead to generate wrong knowledge, so it is necessary to distinguish the
correctness of knowledge.
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2.3 Knowledge Filter

For CoT, the answer finally generated by the chain can be directly used to
filter knowledge by False Rejections. If the answer in the generated result is
the GT, it proves that the knowledge corresponding to this chain of thought
can deduce the GT, which can be regarded as correct knowledge. Otherwise,
it is wrong knowledge. According to prompt, the generation is {Knowledgei,
Answeri}, if Answeri = Answer, then we mark Knowledgei as correct knowl-
edge Knowledge+i , otherwise mark it as Knowledge−

i .
For Rationalization, we regard the explanation about GT as a piece of knowl-

edge. Since there is no answer in its generation, it cannot be filtered by False
Rejections. We consider a reverse process, if GT can be easily answered after
adding these explanations, we can consider these explanations to be correct
knowledge. There are models fine-tuned on many reasoning and QA datasets,
which have strong knowledge perception ability, so these models can be used to
perform this reverse process. We use the inference model to compute the loss
for generating candidate answers, and select the candidate with the lowest loss
as the final prediction. If the prediction is the same as the GT, we consider
this piece of knowledge to be correct knowledge, otherwise it is considered to be
wrong knowledge. The process can be expressed as the following:

Answer′ =
Iargmax(candidatesi|Query, candidates1,. . . , candidatesc,Knowledgei)

We mark Knowledgei as correct knowledge Knowledge+i if Answer′ ==
Answer, otherwise mark it as Knowledge−

i .
We use different filter methods to distinguish each piece of knowledge, and

finally generate a training data set D′ consist of questions and associated correct
knowledge and wrong knowledge.

D′ = {Queryi,Knowledge+1 , ..,Knowledge+T ,Knowledge−
1 , ..,Knowledge−

F }N

Where T is the number of correct knowledge, F is the number of wrong
knowledge, and we have T+F=b, and NF is the size of the entire training dataset.

2.4 Contrastive-Learning Based Knowledge Transfer

The previous work [6] proposed that transferring the knowledge generated by
LLM to the small model can improve its reasoning ability, but he did not distin-
guish the correctness of knowledge and ignored the influence of wrong knowledge
in transfer learning. The goal of Contrastive-Learning is to learn a better rep-
resentation of the positive and negative samples and lead the distance between
the positive samples closer, make its farther away from the negative samples at
the same time. Using transfer learning in our task allows the model to learn
what kind of knowledge is correct and what kind of knowledge is wrong. The
framework of the Contrastive-Learning we use in transfer learning is shown in
Fig. 3:

.
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Fig. 3. The training stage and the generation stage of Contrastive-Learning

2.4.1 Sample Construction for Contrastive-Learning. The negative sam-
ples used in previous work are sampled from batch[3], but for this task, each
sample in the batch has different questions, so simply using different knowledge
of different problems for Contrastive-Learning has little effect. Since we have
distinguished the correctness of different knowledge for each question in 2.3, we
can use Knowledge+ as a positive sample and Knowledge− as a negative sample
for generation target for a question in a sample.

2.4.2 Learning Object and Inference of Contrastive-Learning. The gen-
erated different knowledge can be regarded as different perspectives of the same
question, we can make the representation of the problem close to the represen-
tation of correct knowledge and away from the representation of wrong knowl-
edge. We use sequence-to-sequence model [15] for knowledge generation and take
the output ZQ and ZK of the encoder and decoder as the feature representa-
tion of question and knowledge respectively, then perform affine transforma-
tion and cosine similarity to calculate the similarity scores of ZQ and ZK , we
maximize similarity scores of ZQ and representation of correct knowledge Z+

K

and minimize similarity scores of ZQ and representation of wrong knowledge
Z−

K . In the inference stage, we first use the beam-search algorithm to generate
b(beam-size) knowledge and get the normalized sequences scores of each gener-
ated knowledge. Then the learned affine transformation is used to calculate the
similarity scores of the question’s representation and generated knowledge’s
representation. At last, we sum up sequences scores and similarity scores to
get the final score for each piece of knowledge, and select the knowledge with
the highest score as the final generated knowledge. The process of selecting the
final generated knowledge is expressed as follows:

Knowledge′ = argmax{sequences scoresi + similarity scoresi}b, i ∈ {1, ..., b}
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2.4.3 The Loss Function. Sequence-to-sequence models generate target
sequences from source sequences, which are usually trained using maximum
likelihood estimation(MLE). Given a sequence of question Q = {qi}M

i=1 and a
sequence of correct knowledge K+ = {ki}N

i=1, we minimize the following negative
log-likelihood (NLL) loss to guide the model to generate correct knowledge:

lossNLL =
N∑

t=1

log pθ(kt|Q, k<t) (1)

In the training stage, the next predicted word is based on all previous ground
truth inputs k<t, and in the inference stage, each word is calculated according
to the previous predictions.

For the loss function during training in Contrastive-Learning, we first follow
the InfoNCE loss proposed by the previous works [4,11], which is implemented
in this method as:

lossNCE = −log

T∑

i=1

exp(cos(ZQ, Z
+
K))

mean(
∑F

j=1 exp(ZQ, cos(Z−
K)))

(2)

where ZQ, Z+
K , and Z−

K is the representation of input question, correct knowl-
edge and wrong knowledge respectively. The goal of InfoNCE is to learn a simi-
larity function, make ZQ get closer to Z+

K and farther away from Z−
K .

Inspired by [1], we compare the representation of each correct knowledge Z+
K

with each wrong knowledge Z−
K pairwise to obtain better Contrastive-Learning

performance. We construct each correct knowledge K+ and wrong knowledge
K− into a sample pair (K+,K−), we denote the set of multiple sample pairs as
P , and calculate the loss using margin loss:

lossPAIR ==
∑

(K+,K−)

max(0, cos(ZQ, Z
−
K) − cos(ZQ, Z

+
K)) (3)

The learning object of Pair loss is similar to InfoNCE loss, but each correct
knowledge is compared with each wrong knowledge, and the learning effect is
well when the amount of wrong knowledge is relatively small.

3 Datasets

We evaluate our proposed method on two commonsense reasoning tasks.
CommonsenseQA. [16] consists of commonsense reasoning questions, each of

which contains five candidate answers, and the reasoning ability is measured by
whether the correct answer can be selected from them. Its training, development,
and test set have 9741, 1221, and 1140 questions respectively, and we only vali-
date the development set because its test set is unpublished. OpenbookQA. [10]

is a question-answering dataset that requires scientific facts and commonsense
knowledge. Each of its questions contains 4 candidates. Its training, develop-
ment, and test set have 4957, 500, and 500 questions respectively, and we do
validation on its test set.
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4 Experiments

4.1 Experimental Setup

LLM for Knowledge Generation. We use GPT-J with 6B parameters for
knowledge generation. We set the temperature to 0.9 to increase randomness,
set top p and top k to 0.5 and 50 respectively, and set do sample to true for
sample more knowledge, set num return sequences to 10 to generate ten pieces
of knowledge for each question. For the generated knowledge, we use the exact
matching method to deduplicate the knowledge.

Methods for Knowledge Filtering. We use the common T5 model[13] and
the Unifiedqa-t5 model[5] fine-tuned on multiple QA datasets to filter the knowl-
edge generated by Rationalization, abbreviated as R-T5 and R-UT5, and all
models use the version with 3B parameters.

Table 1. Statistics for filtered knowledge

Metric Dataset CoT R-T5 R-UT5

Ratio of correct knowledge
to all generated knowledge

CSQA 35.9% 81.5% 88.1%

OBQA 73.3% 97.5% 98.8%

Ratio of the samples
used in the training stage

CSQA 25.2% 54.3% 81.6%

OBQA 54.3% 89.7% 97.7%

The knowledge generated by CoT is filtered using the method of
FalseRejection. After filtering with different filtering methods, the ratio of
correct knowledge to all generated knowledge is different, as shown in Table 1.
Besides, since not all samples have correct knowledge after filtering, we only use
samples containing correct knowledge during the Contrastive-Learning, so not
all samples participate in the training stage. The ratio of the samples used in
the training stage to the training set is shown in Table 1.

Small Model for Knowledge Transfer and Inference Models for Vali-
dation. We use T5-Large as a small model of knowledge transfer, use InfoNCE
loss (NCE-CL) and Pair loss (PAIR-CL) as loss functions respectively, and study
the impact of different loss functions on task performance through the results.
In the inference stage, use the small model after transferring the knowledge to
generate knowledge based on the question, concatenate question with knowl-
edge and use the inference model for reasoning verification. The effectiveness of
knowledge is measured by the improvement of the inference model’s ability to
answer questions after adding the knowledge.

In order to verify the effectiveness of our proposed method for knowledge
transfer, we use the same T5-Large model to perform knowledge transfer on
all generated knowledge (Sim-E) and only filtered correct knowledge (Sim-TE).
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For fairness, we set the same hyper-parameters, training strategy and knowledge
generation strategy in these methods.

4.2 Results

The main results are shown in Table 2. After filtering the knowledge, compared
with Sim-E, both Sim-TE and two Contrastive-Learning methods have different
degrees of improvement. It proves that the knowledge generated by LLM cannot
be simply used in knowledge transfer, and it is necessary to apply filter methods
to distinguish the correctness of knowledge. The biggest improvement in CSQA
comes from the result of using PAIR-CL to transfer the knowledge filtered by R-
UT5 and verifying it with UT5, which is 1.7% higher than SIM-E and SIM-TE,
and the biggest improvement in OBQA comes from using NCE-CL to transfer
knowledge filtered using R-T5-3b and verifying it with UT5, which is 3.2% higher
than SIM-E. After filtering the knowledge, using Contrastive-Learning based
method for knowledge transfer performs better than Sim-TE, which proves that
it’s useful to compare correct knowledge with wrong knowledge in the process of
knowledge transfer, it prevents the model from overfitting and generating wrong
knowledge to some extent.

Table 2. After using Sim-E, Sim-TE, NCE-CL and PAIR-CL for knowledge transfer
respectively, compare the accuracy(%) of answering questions using the knowledge
generated by the small model, and mark the best result in bold.

CommonsenseQA OpenbookQA

CoT R-UT5 R-T5 COT R-UT5 R-T5

UT5 T5 UT5 T5 UT5 T5 UT5 T5 UT5 T5 UT5 T5

Sim-E 55.3 41.1 60.8 51.4 60.8 51.4 35.8 22.2 43.4 27.0 42.4 28.2

Sim-TE 56.6 42.3 60.8 51.4 60.2 50.6 39.0 25.4 45.2 27.2 41.6 32.6

PAIR-CL 55.8 43.2 62.5 52.1 61.5 51.8 37.8 25.8 46.0 24.2 40.8 31.8

NCE-CL 57.0 42.3 57.4 52.1 57.3 50.5 39.6 28.2 46.4 24.2 45.6 33.2

4.3 Analysis

The Effect of Different LLMs on the Results. Our method which using
GPT-J(6B) to generate knowledge achieved improvement, but whether this
improvement can be shown by using a more powerful LLM? Due to the lim-
ited budget, we only conduct the same experiment on the CSQA dataset using
the newly released ChatGPT[12], the results is shown in Table 3.

It can be seen from the result that LLM’s performance has a positive cor-
relation on knowledge transfer, by using the knowledge which generated by the
transferred small model can boost the task around 10%. Our proposed filtering
and Contrastive-Learning methods are also effective, especially on CoT(about
2% improvement), which further proves the necessity for the effectiveness of
discriminative knowledge in transfer learning.
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Knowledge-Aware Capabilities of Inference Models Used to Filter
Knowledge Generated by Rationalization . Use the UT5 model for knowl-
edge filtering and for validation as an inference model, the performance improve-
ment is about 10% comparing with the ordinary T5 model. This is due to the
fact that UT5 has been fine-tuned on many QA tasks and has a stronger knowl-
edge perception for question answering. Therefore, a good filtering method can
distinguish knowledge more accurately, thereby helping knowledge transfer using
Contrastive-Learning.

Table 3. Results of experiments using Chatgpt to generate knowledge

CoT R-UT5 R-T5

UT5 T5 UT5 T5 UT5 T5

Sim-E 61.5 52.6 61.0 52.1 60.7 53.2

Sim-TE 62.5 53.3 62.0 53.8 61.6 53.7

PAIR-CL 63.6 54.5 62.7 54.7 61.7 53.6

NCE-CL 64.0 55.9 61.1 54.4 61.9 53.8

Impact of Loss Function in Contrastive-Learning on Performance.
Compared with T5, UT5(Unifiedqa-t5) has better knowledge perception abil-
ity, and the ratio of correct knowledge in its filtering results is higher. Using
PAIR-CL can better compare the correct knowledge with all the wrong knowl-
edge pairwise, but when the amount of wrong knowledge increases, a piece of
correct knowledge is compared with a large number of wrong knowledge, which
will lead to poor learning performance. At this time, it is more effective to use
NCE-CL to compare the correct knowledge with the average representation of
wrong knowledge. The same result can also be found on OBQA, because the
questions and answers are more complicated, there are more wrong knowledge
in the generated knowledge, so the method using NCE-CL is much better than
the method of PAIR-CL.

5 Conclusion

In this paper, we first make use of LLM’s in-context learning ability to gener-
ate knowledge, then design different methods to filter knowledge, and finally use
Contrastive-Learning to transfer this knowledge to a small model. We explore the
impact of various filter methods and what kind of loss function in Contrastive-
Learning is more effective under different ratios of correct knowledge. Meanwhile,
we used the latest ChatGPT for knowledge generation, the boost is also shown
on this more powerful LLM. Our proposed method effectively distinguishes the
correctness of the knowledge generated by LLM and successfully transfers it to
small models, improving its ability to generate knowledge. Compared with the
simply fine-tuned methods, it has improved by up to 1.7% on the Common-
senseQA and 3.2% on the Openbook.
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Abstract. We argue that the current few-shot learning, which only uses
contrastive learning as an auxiliary task, cannot fully realize the poten-
tial of contrastive learning. In this paper, we take a deeper exploration
of how to combine contrastive learning and few-shot classification bet-
ter. We use a two-stage training paradigm called pre-training and meta-
training, respectively. During the pre-training phase, we differ from pre-
vious work that only extracted global features of images for contrastive
learning. We extract the global features of the image and local features
for contrastive learning, where the local feature contrastive loss is called
the maximum matching local contrastive loss. To better integrate con-
trastive learning with few-shot learning, we propose a prototype con-
trastive module in the meta-training stage. During the meta-training
phase, we record the feature vector representations of all base class pro-
totypes and conduct class-level contrastive learning between K-way class
prototypes obtained from the current task and all base class prototypes.
Meanwhile, we dynamically update all stored base class prototypes as the
training progresses. We validate our model on mimiImagenet and tired-
Imagenet datasets. Our experimental results show meaningful improve-
ments in few-shot classification and therefore demonstrate the usefulness
of our model.

Keywords: Deep learning · Few-shot learning · Meta-learning ·
Contrastive learning

1 Introduction

With the development of deep learning, it has achieved remarkable success
in computer vision, including image classification [26] and more. For all its
strengths, deep learning also has some limitations and challenges. One of the
main challenges is the requirement for large amounts of labeled data for training,
which can be difficult and expensive to obtain. Few-shot learning can effectively
overcome the limitations of requiring many labeled samples for training. Cur-
rently, the favored approach for few-shot learning [6,12,14,20,22,24], is mainly
based on meta-learning methods. Meta-learning can be divided into metric-based
[20], optimization-based [6], and model-based [25] approaches depending on how
the model works. The metric-based methods are one of the most widely studied
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directions, which mainly learn a feature extractor to obtain feature representa-
tions of images and then calculate the distance between feature representations
of samples for classification. Thus it requires image features with strong discrim-
ination and generalization. Unfortunately, features extracted based on very little
data often do not have these capabilities and can cause a degree of overfitting
problems. Recently, the powerful feature extraction capabilities of contrastive
learning have received widespread interest, the core idea of contrastive learning
is mapping positive sample pairs to a close vector space while mapping nega-
tive sample pairs to a far away vector space. To enhance the generalization and
discrimination of meta-learning, we combine metric-based meta-learning with
contrastive learning in our work. It is well known that the local features of
images also play a crucial role in the discriminative process. Inspired by this, in
the training phase, we use the image’s global features for contrastive learning
and propose a maximum matching local feature contrastive learning to learn
the features of the image comprehensively. Meanwhile, to better align with the
paradigm of few-shot learning, we proposed a prototype contrastive module in
the meta-training stage. In the meta-training stage, we save the vector repre-
sentations of all base class prototypes. We conduct contrastive learning for each
task between the generated N-way class prototypes and the saved base class
prototypes. Moreover, we argue that the model generates class prototypes with
better representational capabilities as the training process proceeds. Therefore,
we dynamically update all saved base class prototypes to ensure the effectiveness
of prototype contrastive module. Integrating the above approach, we propose a
method called Diversified Contrast Learning (DCL) for few-shot. In summary,
the contribution of our study can be described as follows:

– A contrastive learning algorithm using global and maximum matching local
features of image data is proposed to improve the ability of the feature extrac-
tor.

– To better fit the paradigm of few-shot learning, a prototype contrastive mod-
ule is proposed in the meta-training phase, which can let the model obtain
features that better fit the metric-based method.

– A class prototype dynamic update mechanism is proposed to ensure the valid-
ity and discriminatory nature of the prototype contrastive module.

– We experimentally demonstrate that our method DCL reaches competitive
accuracy on two popular benchmark datasets.

2 Related Work

2.1 Meta Learning

Meta-learning is born with the expectation of human-like “learning ability.”
Meta-learning aims to learn new tasks based on their existing knowledge quickly.
Meta-learning can be primarily divided into three categories: metric-based
methods, model-based methods, and optimization-based methods. Metric-based
methods learn a metric space that can efficiently compare similarities between
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examples and adapt to new tasks quickly. Prototypical networks [20] learn a met-
ric space where examples from the same class are closer together. It is achieved
by mapping inputs to a low-dimensional embedding space, where class proto-
types are defined as the mean embeddings of examples in each class. Matching
Network [24] is achieved by using an attention mechanism to weigh the contri-
butions of the support examples. Model-based methods learn a model that can
be conditioned on new inputs to generate desired outputs. such as MMAML
[25]. It is achieved by training a model on the distribution of tasks across dif-
ferent modalities and updating the shared representation using gradient descent
on a small set of examples from a new task. Optimization-based methods, such
as MAML [6] and TAML [10], learn a set of initial model parameters that can
be fine-tuned quickly and effectively to new tasks with few examples. These
methods use gradient-based optimization to update the model parameters and
learn to adapt quickly to new tasks. Although meta-learning has achieved good
results in few-shot learning, limited data can still result in overfitting and pre-
vent extracting more discriminative and generalizable features. Therefore, we
use contrastive learning to learn more discriminative features for images.

2.2 Contrastive Learning

Contrastive learning [1,2,8,9,23] is powerful for learning representations by con-
trasting positive and negative sample pairs of instances with various data aug-
mentation and contrasting pairs of samples in a high-dimensional space. The
main idea behind contrastive learning is to encourage positive samples to be
closer and negative samples to be farther away from each other in the learned
representation space. By doing so, contrastive learning can effectively learn dis-
criminative features that capture the underlying structure of the data. Thus,
contrastive learning has shown great potential in addressing the problem of data
scarcity in few-shot learning. MOCO [8] uses an online encoder to encode input
images and a fixed encoder to generate a fixed “memory bank.” Then, contrastive
learning is performed by comparing the output of the online encoder with the
vectors in the “memory bank.” SimCLR [2] is a representation learning method
that utilizes contrastive loss in the latent space to maximize the consistency
between different augmented views of the same data example to learn meaning-
ful representations. Previous work combining few-shot learning with contrastive
learning [4,7,21] mainly use the powerful unsupervised learning ability of con-
trastive learning as an auxiliary task. Although they achieve better results, they
do not fully exploit the advantages of contrast learning in few-shot learning. In
addition to using contrastive learning as an auxiliary task, we tried combining
contrastive learning into a few-shot learning paradigm.

3 Methods

3.1 Problem Definition

In the Few-shot classification, two categories databases are given to us, which
are named base dataset Dbase and novel dataset Dnovel respectively, Dbase =
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{(xi
b, y

i
b)}nbase

i=0 , where yi
b ∈ Cbase and the Dnovel = {(xi

n, yi
n)}nnovel

i=0 , where
yi

n ∈ Cnovel. The categories in them are disjoint (Dbase ∩ Dnovel = ∅) and
each category in the base category dataset has sufficient labeled training data,
while each category in the novel dataset has only a small amount of labeled
training data. Instead of sampling image data to train, in few-shot learning, we
sample tasks to train. The task is usually called N-way K-shot which we should
classify the N classes sampled with K labeled data in each category correctly.
Meanwhile, the task is composed by support set S = (xi

n, yi
n)}N×K

i=0 and query
set Q = (xi

n, yi
n)}N×K+N×Q

i=N×K , where Q is the number of images in each category
in query set, and they also be sampled from the N categories in each task.

Fig. 1. The framework of the maximum matching local contrastive module.

3.2 Global Contrastive Loss

In our pre-training phase, we apply two different forms of data enhancement
to each image in a batch {xi, yi}B

i=1, so that our batch size changes from B
to 2B. The two images obtained from the same image with two types of data
enhancement form a positive sample pair and form negative sample pairs with
other 2B-2 samples. We then define a feature extractor fθ to extract the feature
map of the image data. The feature map x̄i = fθ(xi) ∈ R

C×H×W becomes the
global feature gi ∈ R

C after an adaptive averaging pooling (AdaptiveAvgPool).
To improve the extraction power of the feature extractor fθ, we use a fully-
connected layer as mentioned in [2] to project the global feature vector to hi ∈
R

D. Finally, the global contrastive loss in the pre-training phase is then shown
as follows:

Lglobal = −
2B∑

i=1

log
exp (hi · h′

i/τ1)∑2B
j=1 1j �=i exp (hi · hj/τ1)

. (1)

In the above equation, hi and h′
i represent the global features of different views

of an image data after the two data enhancements while the operation · repre-
sents the inner product operation between two vectors and the 1 is an indicator
function. τ1 is a temperature parameter.
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3.3 Maximum Matching Local Contrastive Loss

We believe that using only the global features of an image for contrastive learn-
ing without considering the local features of the image cannot fully utilize the
powerful self-supervised learning capability of contrast learning. Because in some
images, the subject only accounts for a small part of the image, and the majority
of the rest is background noise. Inspired by [4,15,30], we add local feature con-
trast loss of images in the pre-training phase to improve our model’s robustness
and generalization ability. Unlike previous work that directly compare feature
vectors at corresponding positions of paired images, we consider different posi-
tions and poses of image subjects. When an image undergoes random rotation,
the position and posture of the main object in the same image will significantly
change. If only local feature similarity calculation is conducted based on corre-
sponding positions, positive sample pairs may have extremely low local feature
similarity. Therefore, we propose a maximum matching local contrastive loss.
Specifically, let the local feature vector of one image perform similarity calcu-
lation with all the local feature vectors of another image and then take the
maximum value as the similarity between the local position of the current image
and the local position of another image. We use a spatial projection head to act
on the feature map x̄i to get the local feature map of the image zi ∈ R

HW×D.
This means that we divide the entire image data into HW local blocks, and
each local block is a D-dimensional vector. The struct of the module is shown
in Fig‘. 1. The local feature similarity of two image data can be calculated as
sim(zi, zj) = 1

HW

∑HW
k=1 max

1<=l<=HW
(vik · vjl). Where the vij ∈ R

D represents

the j th local block in image i. In our work, we take the sum of the local block
similarities between images and take the average as the local feature similarity,
thus our maximum matching local contrast loss can be computed as follows:

Llocal = −
2B∑

i=1

log
exp (sim(zi, z

′
i)/τ2)∑2B

j=1 1j �=i exp (sim(zi, zj)/τ2)
, (2)

where zi and z′
i represent the local features of different views of an image data

after the two data enhancements, τ2 is a temperature parameter.

3.4 Prototype Contrastive Loss

The contrast learning in the pre-training stage only judges the similarity between
the positive and negative sample pairs we have constructed without consider-
ing the image category information. We argue that under the few-shot learning
paradigm with a small amount of data, we should make full use of all the infor-
mation of data. We can alleviate the overfitting problem of few-shot learning
with all the information in the data. The DCL is based on prototype network
[20], so we first compute the class prototype in the current task using the global
feature vector gi as follows:

ck =
1

|Sk|
∑

(gi,yi)∈Sk

gi, (3)
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where Sk represents the set of sample data with category k. To effectively

Fig. 2. The framework of the Diverse Contrastive Learning Network.

compare the class prototypes in the meta-training stage, inspired by [8], we
use a “memory dictionary” M to store the class prototypes of all base classes,
and dynamically update the stored base class prototypes as the training process
progresses. The build process for M is as follows:

M[k] =

{
ck M [k] == NULL

λM [k] + (1 − λ)ck otherwise
. (4)

We use the category as the key of M and the class prototype corresponding
to it as the value of M. For a class prototype ck obtained inside a task, if the
category k can be found in the memory dictionary, then the class prototype of
the category k in the dictionary is dynamically updated. Otherwise, the current
ck is added to M as a new dictionary item and λ is a weight hyperparameter.
Thus the prototype contrast loss can be expressed as follows:

Lprototype = −
N∑

i=1

log
exp (ci · M [i]/τ3)∑|M |

j=1 exp (ci · M [j]/τ3)
, (5)

where N represents the number of categories within a task, and M is a memory
dictionary that stores prototypes of all base classes meanwhile τ3 is a temperature
parameter.

Our network consists of two training phases called the pre-training phase and
the meta-training phase, and the overall network structure is shown in Fig. 2.
In the pre-training phase, we perform self-supervised contrastive learning using
global features of the image and more fine-grained local features. So the loss in
our training phase is defined as Lpre = λ1Lglobal +λ2Llocal . Besides, our method
is a metric-based discriminant, so we also have a metric-based discriminant loss
in the meta-training phase as follows:

Led =
NQ∑

i=1

− log(
exp (−d (gi, ck))

∑N
j=1 exp (−d (gi, cj))

). (6)
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where gi represents the global feature vector of xi and d(·) denotes the Euclidean
Distance. So the total loss function of our meta-training phase can be defined as
Lmeta = λ3Lprototype + λ4Led.

Table 1. Few-shot classification accuracies on mini-imagenet and tiered-imagenet.
average 5-way accuracy (%) is reported with 95% confidence interval. (’-’ not reported)

Module Backbone mini-ImageNet tirerd-ImageNet

1-shot 5-shot 1-shot 5-shot

Optimization-based

MAML[6] ConvNet-4 47.781.75 64.311.10 52.070.91 71.101.67

MetaOptNet[11] ResNet-12 62.640.61 78.630.46 65.990.72 81.560.53

LEO[18] WRN-28-10 61.760.08 77.590.12 66.330.05 81.440.09

MetaFun-DFP[28] WRN-28-10 64.130.13 80.820.17 67.720.14 82.810.15

Model-based

Meta-SGD[13] ConvNet-4 54.240.03 70.860.04 62.950.03 79.340.06

Meta-learner[16] ConvNet-4 43.440.77 60.600.71 - -

Metrics

ProtoNet [20] ConvNet-4 49.420.78 68.200.66 53.310.89 72.690.74

MatchingNet [24] ConvNet-4 43.560.84 55.310.73 - -

RelationNet [22] ConvNet-4 50.440.82 65.320.70 54.480.93 71.320.78

TADAM [14] ResNet-12 58.050.30 76.070.30 - -

DSMNet[29] ConvNet-4 52.330.62 70.480.52 - -

COOPERATE[5] ResNet-12 62.720.41 71.240.33 59.510.43 73.780.34

Meta-OLE[27] ResNet-12 67.040.72 82.230.67 68.820.71 85.510.59

CC+rot [7] WRN-28-10 62.930.45 79.870.33 62.930.45 79.870.33

PSST [4] WRN-28-10 64.160.44 80.640.32 - -

Baselines

Meta-Baseline[3] ResNet-12 63.170.23 79.260.17 68.620.27 83.290.18

Prototypical Network ResNet-12 60.760.39 78.440.21 66.250.34 80.110.91

Ours(Correspond) ResNet-12 62.140.14 80.020.43 68.220.43 80.870.61

Ours(Maximum) ResNet-12 65.210.50 82.310.14 69.490.34 85.630.43

4 Experiments

4.1 Datasets

We selected two data sets that are more mainstream in few-learning.

Mini-Imagenet. [24] is a popular dataset used to test few-shot learning algo-
rithms. It contains 60,000 images from Imagenet, divided into 100 classes with
600 images each. It is usually divided into three subsets: the train set contains 64
classes, the validation set contains 16 classes and the test set contains 20 classes.
They do not overlap with each other.

Tiered-Imagenet. [17] is an advanced version of Mini-Imagenet, it consists of
608 classes with 779,165 images. Out of these, 351 categories were used for the
training set, 97 categories were used for the validation set, and 8 categories were
used for the test set.
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4.2 Implementation Details

In both the pre-training phase and the meta-training phase, we used ReNet-12
as the backbone model and Adam as the optimizer. The Adam optimizer for
both stages with a momentum of 0.9, the learning rate starts from 0.001 and the
weight decay is 0.0006.

Pre-Training Phase. During the pre-training stage, the model was trained for
500 epochs with batch size 64. Meanwhile, we applied cropping with rotation and
color jittering with rotation as data augmentations. The temperature parameter
τ1,2 were set to 0.5 and 0.3. Meanwhile, The parameters λ1,2 for balancing global
and local contrastive losses were both set to 0.5.

Meta-Training Phase. During the meta-learning stage, the model was trained
for 400 epochs, and each epoch contains 100 sampled tasks. In the 5-way 5-shot
tasks, we set the value of N to 5, the value of K to 5, and the value of Q to 16. In
5-way 1-shot tasks only the value of K was changed to 1. The hyperparameters
τ3 were set to 0.5 and λ3,4 were both set to 0.5. The λ used to adjust the update
frequency of the memory dictionary is set to 0.01.

Evaluation Metric. We followed the standard setting of few-shot learning,
experimenting 5-way 1-shot and 5-way 5-shot on mini-ImageNet and tiered-
ImageNet. Our model is evaluated with 600 randomly sampled test tasks and
reports the average accuracy with 95% confidence intervals.

4.3 Results on Benchmark Datasets

Following the standard setting, we conducted 5-way 1-shot and 5-way 5-shot
experiments on mini-ImageNet and tiered-ImageNet, with the outcomes pre-
sented in Table 1. We first compared our model with various mainstream works:
Compared with optimization-based methods [6,11,18,28], our method avoided
the problem of extra effort to adjust due to the sensitivity of the initial value of
the parameters while obtaining superior performance. Compared to metric-based
methods [14,20,22,24], we used contrastive learning in both training phases to
better extract features from the images, achieving better results while mitigating
the overfitting problem caused by the scarcity of data in metric-based methods.
In addition, the core idea of our work is based on the prototype network, so we
reimplemented it using ResNet-12 as our baseline. Besides, we also used [3] as
our baseline, which is a more reliable benchmark in the few-shot classification.
Finally, to illustrate the advantages of our maximum matching local comparison,
we implemented our DCL with the local comparison of the corresponding posi-
tion, denoted as Maximum and Correspond, respectively. It could be seen that
our proposed method had obvious advantages over the Correspond and baseline.
This demonstrates the feasibility of combining contrastive learning with few-
shot learning and confirms that our proposed maximum matching local pairwise
contrastive algorithm can extract more discriminative features from images with-
out being confused by similar pairs of samples with low similarity. Finally, our
method also outperformed PSST [4] and CC+rot [7], which also uses contrastive
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learning in few-shot learning. In summary, the above comparison experiments
could strongly confirm that our model achieves state-of-the-art performance.

Fig. 3. The Grad-CAM visualization of samples in the mini-ImageNet dataset.

4.4 Ablation Study

To illustrate the validity of the different components of our model. We will
use the ResNet-12 as the backbone to conduct 5-way 1-shot and 5-way 5-shot
experiments on the mini-ImageNet dataset.

Table 2. Ablation Experiments On DCL. (�WITH; - Without)

DCL mini-ImageNet

global local prototype 1-shot 5-shot

(a) – – – 60.76 78.44

(b) � – – 61.32 79.56

(c) – � – 63.26 80.02

(d) – – � 63.19 80.12

DCL mini-ImageNet

global local prototype 1-shot 5-shot

(e) � � - 63.78 80.52

(f) � – � 63.67 80.44

(g) – � � 64.64 81.75

(h) � � � 65.21 82.31

Influence on Our Module. Table 2 showed the ablation analysis of differ-
ent components in our model, in which global, local, and prototype represented
the global feature contrastive module, the maximum matching local contrastive
module, and the prototype contrastive module, respectively. Without consid-
ering (h), the combination of local and prototype in the (g) worked best on
mini-ImageNet with an improvement of nearly 4% on the 5-shot problem and
nearly 3% on the 1-shot problem. This showed that our proposed maximum
matching local contrastive module and prototype contrastive module were able
to extract better features of the images. Meanwhile, the combination of global
and local, represented by (e), and the combination of global and prototypical,



156 G. Lu and F. Li

represented by (f), also had an improvement of nearly 3% both on 5-shot and
nearly 2% on 1-shot. By observing (b),(c), and (d), we could see that removing
each component could cause a drop in performance, especially when removing
our proposed maximum matching local contrastive module or the prototype con-
trastive module, there was a drop of almost 4% on the 5-shot compared with (h)
while removing only the global contrastive module there was only a drop of 2%,
which confirmed the effectiveness of our proposed module. Table 3 showed the
influence of hyperparameter λ in the memory dictionary on mini-ImageNet. The
larger the value of λ, the more similar a class prototype of the current task is to
the corresponding class prototype in the memory dictionary. Thus the compo-
nent could get a shallow prototype comparison loss with almost no learning. So
we could see that when λ = 0.01, the best performance was obtained on both
1-shot and 5-shot problems.

Table 3. Influence of λ on the mini-imagenet

λ 1-shot 5-shot

0.1 62.79 0.34 80.01 0.54

0.01 65.21 0.50 82.31 0.14

0.001 62.31 0.72 80.61 0.23

Visualization Analysis. We performed a Grad-CAM [19] visualization of some
samples in the novel class of the mini-ImageNet dataset to illustrate our validity
model further. In Fig. 3, we can see that our model is more focused on the
content of the corresponding category of images than the prototype network.
For instance, in the third column, the ProtoNet focuses on only part of the
target class, while our model focuses on the entirety of the target class. In the
fifth column, the ProtoNet does not correctly focus on the target category due to
human interference in the image’s background. In contrast, our DCL correctly
focuses on the target category. In the last column, our DCL achieves better
results than the ProtoNet even when there are multiple target classes in the
image, which is a good indication of the effectiveness of our model.

5 Conclusion

In this paper, we deeply explore the effects of the complementarity of contrastive
learning and few-shot learning. In the pre-training phase, we propose using the
maximum matching local contrast loss module to learn the features of the image
more comprehensively. Besides, to better combine contrastive learning with the
few-shot learning paradigm, we propose a class-prototype contrastive module in
the meta-training phase. The experimental results on benchmark datasets and
ablation experiments demonstrate the validity of our method and the competi-
tiveness compared with the state-of-the-art.
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14. Oreshkin, B., Rodŕıguez López, P., Lacoste, A.: Tadam: task dependent adaptive
metric for improved few-shot learning. In: Advances in Neural Information Pro-
cessing Systems 31 (2018)

15. Ouali, Y., Hudelot, C., Tami, M.: Spatial contrastive learning for few-shot classi-
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Abstract. The cross-lingual named entity recognition task has attrac-
ted significant attention from researchers. Previous work has demon-
strated that incorporating unlabeled data with potential entities in the
target language can enhance cross-lingual model performance. However,
unlabeled data for the target language is not always available, and the
entity types may not share the same label space as the source language.
To address this issue, we introduce a new NER task called cross-lingual
few-shot NER. Distance metric learning has emerged as a popular solu-
tion for low-resource scenarios without semantic information for the tar-
get language. Inspired by few-shot metric learning and prompt learning,
we propose a novel method called Cross-lingual Prompt-guiding Named
Entity Recognition (CroPoNER) for this task. We use prompts from dif-
ferent languages to serve as 1) supervisory guidance for conveying unseen
entity type information to the language model; 2) metric referents for
predicting target language entity types; 3) a bridge between different
languages that mitigates the language gap. Our experiments on several
widely-used cross-lingual NER datasets (CoNLL, WikiAnn) in the few-
shot setting demonstrate that our method outperforms state-of-the-art
models by a significant margin in most cases for cross-lingual few-shot
NER.

Keywords: Named Entity Recognition · Few-shot Learning ·
Cross-lingual · Metric Referent

1 Introduction

Named Entity Recognition (NER) is a key task in NLU, involving the extrac-
tion and categorization of entities in unstructured text. Deep learning has
shown impressive potential for NER [2,12,23], but requires large-scale labeled
data. Annotating data for minority languages like Dutch is costly and time-
consuming. To address the zero-shot cross-lingual NER problem [1,31], studies
have explored semi-supervised approaches such as knowledge distillation [28,29]
and translation-based augmentation [9,17], which require substantial target lan-
guage data or a translation model.
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In the real-world scenario, acquiring labeled data is relatively straightfor-
ward for high-resource languages such as English and Chinese, allowing mod-
els to perform well. However, in low-resource languages like Dutch, annotating
specific domains, such as sentiment analysis or medical terminology, may prove
challenging. For these target language domains, procuring substantial annotated
data is difficult, while obtaining a small quantity of data necessitates minimal
effort and is easily achievable. In such situations, the expectation is for the model
to effectively transfer from the source language to the target domain within the
target language. Consequently, we introduce a novel task termed cross-lingual
few-shot Named Entity Recognition (NER). The complexity of this task lies in
the model’s capacity to transfer knowledge not only to the target language but
also across various domains.

Contemporary Few-shot Learning (FSL) and prompt learning approaches
have demonstrated effectiveness in performing Natural Language Understand-
ing (NLU) tasks [10,14] in monolingual, low-resource settings. FSL, leveraging
prior knowledge, rapidly generalizes to new tasks with limited samples and super-
vision. Recent research on distance metrics [22,26,27] reveals their potential for
FSL, as they train models to learn a metric space surrounding a single proto-
type guided by language models like BERT [5] in monolingual contexts. Named
Entity Recognition (NER), however, is a token-level task, posing additional chal-
lenges. Ding et al. and Yang et al. [7,32] employ nearest neighbor inferences for
monolingual test sample predictions. Nonetheless, our experiments indicate that
applying distance metrics in the source language without target language knowl-
edge yields unsatisfactory results.

Prompt-based learning, an alternative strategy, exploits language model
knowledge via task-specific templates containing task-related information,
enabling models to handle similar tasks with less data. This approach has
achieved promising results for few-shot problems [11,15,20]. In the NER task,
Cui et al. [4] utilize templates for all possible spans to determine entity types,
but inefficiencies arise due to span enumeration and potential result disturbances
from span overlaps. These methods primarily focus on monolingual settings and
prove challenging to transfer to cross-lingual contexts. Transitioning to cross-
lingual settings could enhance models’ generalization capabilities across various
languages.

To address the cross-lingual few-shot Named Entity Recognition (NER) chal-
lenge, we introduce a novel method called CroPoNER (Cross-lingual Prompt-
guided Named Entity Recognition), which combines the strengths of prompt-
guided learning and few-shot metric learning. CroPoNER aims to bridge the
gap between the source and target languages through prompt guidance and
enhance representation via metric learning. Manually designed prompts for tar-
get entity types are input to the model to facilitate knowledge acquisition of the
target entity type within the language model. The model is provided with tar-
get language prompts to convey both language- and entity-specific knowledge.
As depicted in Fig. 1, cross-lingual prompt guidance reduces the embedding dis-
tance of the same entity type, enabling CroPoNER to better capture language-
independent information for target entities. Leveraging prompts eliminates the
need for substantial target language unlabeled data or translation models.
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We perform experiments on a general English dataset and assess our method
on two prevalent cross-lingual datasets in the few-shot context. We examine
existing approaches for both few-shot and cross-lingual scenarios within the NER
task and compare our method against these techniques. Our experimental results
indicate that our method surpasses the state-of-the-art in the majority of cases.
In summary, our contributions are as follows:

– We introduce a novel NER task, termed cross-lingual few-shot NER, which
better reflects real-world situations where acquiring sufficient target language
data in a specific domain is challenging.

– We present a new cross-lingual few-shot method, CroPoNER, that leverages
the strengths of prompt and metric learning. By incorporating prompt sen-
tences from different languages, CroPoNER acquires enhanced target language
representations in low-resource settings.

– We carry out experiments on widely-used cross-lingual NER datasets within
a low-resource context. The results demonstrate that our approach attains
state-of-the-art performance compared to prior methods.

2 Task Formulation

The NER task is predominantly approached as a sequence tagging task. Given
an input sequence X = {x1, x2, · · · , xl}, the NER model is trained to generate
a label y ∈ C for each word xi, where C represents a predefined entity set for
the task. The NER task assumes that the input sequences in both the training
stage (Xtrain) and evaluation stage (Xtest) belong to the same language, where
Utrain = Utest.

2.1 Cross-Lingual NER

In the cross-lingual setting, Xtrain and Xtest are from different language Utrain∩
Utest = ∅ or Xtest containing more language Utrain ⊂ Utest, requiring the model
to have the ability for transferring knowledge from the source language Utrain

to the target language Utest.

2.2 Few-Shot NER

For the few-shot NER task, there is a rich source dataset H for training and a
low-resource dataset L for testing. The label set between L and H is not equal,
where CL �= CH , which requires the model to have the ability to fast adjust to a
new entity type.

2.3 Cross-Lingual Few-Shot NER

In this paper, we define a new task named cross-lingual few-shot NER. For the
training stage, there is a rich source dataset Xtrain ∈ H in source language
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Xtrain ∈ Utrain, on which the model is trained. For the evaluating stage, a low
resource dataset Xtest ∈ Utest in the target language Xtest ∈ Utest is provided,
and the language type between the source and the target is totally different. The
label set between training and testing is not equivalent CL �= CH , which means
we only have a few labeled data in the target language for the new entity type.
The model is transferred from Xtrain and is evaluated on Xtest. In this setting,
we can test the model’s ability of cross-lingual ability and few-shot ability.

3 Methodology

In this section, we introduce our methodology and its detailed implementation.
As shown in Fig. 1, our framework consists of four parts. For only the training
stage, few shot sampling is used to reduce the difference between training and
evaluation. Secondly, for both training and evaluation, prompts are manually
designed for each entity type for each language, and thirdly the prompted sen-
tence is fed to the pre-trained language model (PLM) to encode. For the loss
calculation, novel three losses are adopted for model adapting, where the metric
losses Lsrc from the source language and Ltgt from the target language aim to
calculate the similarity between each word in text and entity type referents. For
referents from different languages, Lsim is calculated additionally to catch the
common semantic for both languages.

Fig. 1. The architecture of CroPoNER framework with Prompt guiding. For each train-
ing step, we (a) use few-shot sampling to sample K

′
shot the same as evaluating stage.

(b) concatenate monolingual and target language prompts with original sentences. (c)
feed concatenated sentences to PLM to get sentence embedding. (d) calculate simi-
larity loss between both language embedding and tagging loss for each language. For
evaluating stage, we use few-shot samples directly to process (b), following the same
path from (b) to (d)

3.1 Few Shot Sampling

For the evaluating phrase, our model is evaluated on a low-resource dataset
L, but in the training stage, the model is trained on a rich source dataset H.
We want to alleviate the difference between the two stages. For each training
episode, several few-shot samples are sampled to imitate the evaluating stage.
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For each episode, N entity types are randomly selected from training predefined
entity label set Ctrain where N = Ntest as Csampled where ||Csampled|| = N . And
then, K

′
sentences are selected that include K shots for each entity type from

randomly selected entity types where the number of entity types N is equal to
the evaluating phrase dataset’s entity type number Ntest. A greedy-including
approach is utilized to achieve this sampling step. As shown in Algorithm 1,
with the sampling algorithm, it can be easy to get various different few-shot
training samples for models to learn to adapt swiftly.

Algorithm 1. Training Greedy Sample Algorithm

Require: Dataset X , Train Label set Ctrain, shot number K, entity types num-
ber N

Ensure: Sampled Episode Data S
1: S ← ∅

2: for i = 1 to N do
3: Count[i] = 0
4: end for
5: while exists Count[i] < K do
6: Randomly select a pair (x,y) ∈ X
7: Count entity numbers in (x,y) Countnew
8: Add ← true
9: for i = 1 to N do

10: if Count[i] + Countnew[i] > K then
11: Add ← false
12: end if
13: end for
14: if Add then
15: S = S ∪ (x,y)
16: Update Count
17: end if
18: end while

3.2 Prompt Engineering

For each unknown entity type, we provide the model with several candidate
prompts. We collect the entity descriptions from dataset introduction, Oxford
English dictionary [6] and self annotation for English. We asked two questions
to two crowd workers in arbitrary order: (1) which prompt can better describe
the entity type? (2) which prompt contains more information? This investigation
assists us in selecting a better prompt for representing the knowledge from the
entity type. In the majority of cases, the test label set ||Ctest|| < 10, which means
the manual effort to be made is extremely smaller than getting more annotated
data. For the target language, we invited language specialists to translate the
selected prompt into the target language. Also, due to the limit of entity label
set Ctest, this procedure requires little manual effort. By this approach, we can
get a prompt set P.
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3.3 Model Structure

Prompt Construction: Our model will start by constructing prompts. Suppose
there is a sampled episode S from few-shot sampling, and its label set is Csampled.
Prompt p= {p1, p2, · · · , pN} ∈ P is selected equal to the label set Csampled. As
shown in Fig. 1, suppose input sentences are Se= {Se1, Se2, · · · , SeK′ }, con-
catenated prompt sentence can be acquired by the following equation

Concat(Se,p) = {Sep1, Sep2, · · · , SepN×K′ } (1)

For each sentence word x in Sei, where Sei = {x1, x2, · · · , xslen} , and
for each prompt pj = {x

pj

1 , x
pj

2 , · · · , x
pj

plen} with prompt word xpj , concate-
nated sequence can be provided by Sepk = {[CLS], x1, x2, · · · , xslen, [SEP],
x
pj

1 , x
pj

2 , · · · , x
pj

plen}. The [CLS] and [SEP] token is the special token for PLM
to notify [5]. In this way, each sentence will be concatenated to N prompted
sentence.

Word Encoder: Since this is the cross-lingual NER task, multilingual mBERT
[30] is unitized as a word encoder to extract the prompted sentence embedding.
The model network structure can be formulated as follows:

h = mBERT(Sep) (2)

where h = {h}Li=1 represents the output of the pre-trained mBERT that cor-
responds to the input token Sepi, and the output is the hidden representation
of the input sequence. The former part {h}sleni=1 is the hidden states of the orig-
inal sentence and the later part {h}pleni=slen+1 is the hidden states of the prompt
sentence.

Referents Calculation: For each sentence Sei, its corresponding prompted
sentence is SepiN−1

j=(i−1)N , For each Sepj , the distance between [SEP] and each
word x is calculated by

dj = dot(hx
j , h

[Sep]
j ) (3)

where hx
j represents the original word in the Sei. And the distance function dot is

dot multiplication of matrix. Suppose the original label is (x,y), and contrastive
loss [13] of each word as l(x) can be calculated by

l(x) = − log
exp (−dyx)/τ

∑N
q=1 exp (−dy

q

x )/τ
(4)

where τ is the temperature hyper-parameter for training. And for the whole
sentence, the total tagging loss Lsrc of a sample S in the source language is

Lsrc =
1

| S |
∑

xi∈S ∧
p∈Utrain

l(x) (5)

For the target tagging loss Ltgt, the same procedure from equation (1) to
equation (5) is adopted. The only change is the prompt’s language, which means
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translated prompt is utilized to concatenate sentences in the target language
Utest.

Ltgt =
1

| S |
∑

xi∈S ∧
p∈Utest

l(x) (6)

Similarity Loss Calculation: In this part, inspired by [18], we put forward
a hypothesis that is for prompts that represent the same entity type have a
higher possibility of having similar embedding. Suppose hidden representations
for source language h

[SEP ]
src and target language h

[SEP ]
tgt are given, and cosine

similarity between them is calculated by

Sim(h[SEP]
src ,h[SEP]

tgt ) =
h[SEP]
src · h[SEP]

tgt

max(||h[SEP]
src ||2, ||h[SEP]

tgt ||
2
)

(7)

We expect the similarity to get higher. In this section, the BCE loss function
is adopted. The similarity loss can be formulated as

Lsim =
N∑

i=1

LBCE(Simi(h[SEP]
src ,h[SEP]

tgt ),1) (8)

And then for the whole model training part, the sum of the above losses is
weighed by

L = α1Lsrc + α2Ltgt + βLsim (9)

where α1, α2, β are set to adjust manually. Finally, the accumulated loss is used
for the training stage in order to optimize the model.

4 Experiment

4.1 Dataset

We test our experiments on three widely used cross-lingual datasets: CoNLL2002
[24], CoNLL2003 [25], WikiAnn [19]. CoNLL2002 has two languages, which are
Spanish (es) and Dutch (nl). And for CoNLL2003, it includes English (en)
and German (de). For WikiAnn, it includes 282 languages, for which we select
the three languages equivalent to CoNLL to conduct our experiment from the
English (en) source language. For the training stage, OntoNotes 5.0 [21] are
utilized as a rich source dataset in English. For the test stage, we give few-
shot samples for the test dataset to test the ability to transfer knowledge in the
cross-lingual few-shot NER task.
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4.2 Baselines

In our experiments, we compare the following models:

– TSL [29]: an approach that proposes a teacher-student semi-supervised model
for cross-lingual NER.

– AdvPicker [3]: a distillation-based cross-lingual NER model, by training a
teacher model in the source language to conduct student model training on
the target language unlabeled data with pseudo labels. We provide 50 extra
sentences for each entity type for the distillation step.

– UniTrans [28]: a translation augmentation-based NER model, which
translates the source language dataset into the target language word by word.

– COPNER [8]: a prompt-based metric referents model for few-shot NER,
using label words to represent the label stage, and reached SOTA for few shot
NER.

4.3 Implementation Details

We use PyTorch 1.9.1 to construct our model. For PLM, we adopt mBERT [30]
as our word encoder in the hugging face transformer.

We set the max sentence length to 70, and the excess part is truncated as
the following sentence. We use AdamW [16] as the model optimizer with default
hyperparameters except learning rates to 1×10−4. We set the weight parameter
α1 = 1, α2 = 1, β = 0.8, and the temperature τ the same as [13].

5 Results and Discussion

In this section, we report the performance on the mentioned datasets and analyze
the reason for unsatisfactory performance in the cross-lingual few-shot NER task.

Table 1. The results on CoNLL

Model Name Extra Data 5-shot 3-shot 1-shot Average

de nl es de nl es de nl es

TSL w/ 0.28 0.45 0.06 0.27 0.37 0.06 0.25 0.43 0.06 0.25

AdvPicker w/ 0.8 0.44 0.52 0.12 0.32 0.12 0.13 0.32 0.12 0.32

UniTrans w/ 1.198 0.16 0.107 1.72 0.0813 0.0814 1.68 0.0812 0.081 0.66

COPNER w/o 4.38 3.36 7.29 4.29 2.98 3.68 4.03 2.38 2.82 3.91

CroPoNER(ours) w/o 5.67 11.79 8.5 4.96 9.06 5.19 4.46 5.27 3.45 6.48

Table 2. The results on WikiAnn

Model Name Extra Data 5-shot 3-shot 1-shot Average

de nl es de nl es de nl es

TSL w/ 0.19 0.24 0.39 0.18 0.24 0.34 0.18 0.22 0.31 0.25

Advpicker w/ 0.12 0.33 0.23 0.12 0.24 0.13 0.13 0.23 0.15 0.19

UniTrans w/ 1.1 1.45 7.28 1.19 1.3 6.81 1.1 1.24 6.75 3.14

COPNER w/o 5.72 9.77 11.54 5.37 9.75 6.99 2.04 6.24 4.5 6.88

CroPoNER(ours) w/o 11.51 11.95 17.48 9.33 9.69 11.48 5.98 7.11 9.18 10.41



CroPoNER 167

5.1 Overall Results

Table 1 and Table 2 report the result of experiments on two datasets with 1-shot,
3-shot, and 5-shot data pieces for three languages.

The experiment results demonstrate the effectiveness of our framework. Com-
pared with the traditional tagging model, the traditional BERT-tagger model
cannot solve this problem at all. Compared with the former cross-lingual model
AdvPicker and Unitrans, our design structure doesn’t require much target lan-
guage unlabeled data with the latent entity. Furthermore, our model obtains
significant and consistent improvements in F1-score. Also, our structure doesn’t
need a language model translating from source language to target language.

For the few-shot NER model, we import knowledge of the target language
by prompted sentence. Compared with COPNER, with sentence-level prompts,
we improve F1-score by around 2% for the cross-lingual setting.

5.2 Ablation Study

We perform an ablation study on the following settings to demonstrate our
model’s effectiveness on the 5-shot WikiAnn dataset in three languages, with
the results presented in Table 3.

– w/o similarity: In this setting, we disregard Lsim and set it to zero to assess
the importance of extracting similarity between two prompts from both lan-
guages. This leads to a decrease in performance due to the absence of infor-
mation sharing between the languages.

– w/o target language: In this setting, we omit Ltgt and set it to zero to minimize
the information regarding the target language. The model relies solely on Lsim

for target language information, resulting in diminished performance.

The above results show the effectiveness of the cross-lingual part of our model.

5.3 Embedding Distribution

In this section, we perform experiments on the WikiAnn dataset, utilizing one
hundred samples for each entity type. We evaluate the settings without simi-
larity (w/o similarity), without target language (w/o target language), and the
original setting, applying t-SNE dimensionality reduction to one dimension in
three languages. The results are depicted in Fig. 2.

Table 3. Ablation Study

Model de nl es

CroPoNER 11.51 11.95 17.48

w/o similarity 8.2(–3.31) 9.42(–2.53) 16.67(–0.81)

w/o target language 7.69(–3.82) 10.29(–1.66) 15.43(–2.05)
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Our analysis reveals that, for the original approach, the embeddings for each
entity type are more compact compared to the settings without target language
or the original configuration, indicating that the original approach can yield a
superior representation of the entity type.

Fig. 2. The embedding distribution for each entity type in WikiAnn. (a)-(c) is the
embedding distribution of original CroPoNER, (d)-(f) is the embedding distribution
of CroPoNER w/o target language, and (h)-(i) is the embedding distribution of CroP-
oNER w/o similarity

6 Conclusion

In this paper, we introduce a novel task termed cross-lingual few-shot Named
Entity Recognition (NER) and discuss its application scenarios. We present a
model called CroPoNER to address this challenge, extracting information on
unknown entity types from both languages and utilizing similarity loss Lsim

to determine the similarity between entity types across languages. To enhance
understanding of the unknown entity type, we incorporate prompts to guide the
model in acquiring both entity-specific and language-specific knowledge. Addi-
tionally, we propose a weighting strategy to account for three different losses.
While the task is inherently difficult, resulting in relatively low performance, our
experiments demonstrate that our model outperforms existing NER models in
both few-shot and cross-lingual settings.
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Abstract. Artificial intelligence researchers have made significant
advances in legal intelligence in recent years. However, the existing stud-
ies have not focused on the important value embedded in judgments
reversals, which limits the improvement of the efficiency of legal intelli-
gence. In this paper, we propose a causal Framework for Accurately
Inferring case Reversals (FAIR), which models the problem of judg-
ments reversals based on real Chinese judgments. We mine the causes of
judgments reversals by causal inference methods and inject the obtained
causal relationships into the neural network as a priori knowledge. And
then, our framework is validated on a challenging dataset as a legal judg-
ment prediction task. The experimental results show that our framework
can tap the most critical factors in judgments reversal, and the obtained
causal relationships can effectively improve the neural network’s perfor-
mance. In addition, we discuss the generalization ability of large language
models for legal intelligence tasks using ChatGPT as an example. Our
experiment has found that the generalization ability of large language
models still has defects, and mining causal relationships can effectively
improve the accuracy and explain ability of model predictions.

Keywords: Legal Intelligence · Causal Inference · Language
Processing

1 Introduction

Legal intelligence is dedicated to assist legal tasks through the application of arti-
ficial intelligence. Data resources in the legal field are mainly presented in the
form of textual documents, and China has the world’s largest database of judg-
ment documents, which can be further explored for its significant value through
natural language processing(NLP). In recent years, with the increase of comput-
ing power and data scale, deep learning algorithms have developed rapidly and
gradually become the mainstream technology of legal intelligence. ChatGPT is
a typical large language model(LLM) that has triggered intense discussions, and
its generalization ability in the legal field also needs to be studied.
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Artificial intelligence researchers have put forth many fruitful efforts in
advancing the use of deep learning in legal intelligence. Several works in recent
years have contributed very rich legal data resources to the natural language
processing community [2,20,21], and these datasets together form the basis of
legal intelligence research. Based on these datasets, researchers have designed
diverse legal AI tasks based on the practical needs of the legal domain, among
which representative tasks include legal judgment prediction (LJP) [16], legal
case matching [22], legal entity extraction [2], etc. Based on natural language
processing techniques, researchers have developed corresponding solutions for
these tasks and applied them in judicial practice.

However, the established work neglects the issue of judgments reversals,
which is the area most closely linked to the application of law. According to
our statistics, the percentage of revision of judgments reaches 14.63% of all
judgments in China, which is a non-negligible part. The problem of judgments
reversals is directly related to the direction of application of AI techniques and
the effect of models. In the LJP task, extracting the causal relationship in judg-
ments reversals as a priori knowledge helps to improve the accuracy as well as
interpretability of model prediction.

Although the problem of judgments reversals has important theoretical and
practical value, there are major challenges in the research. 1) It is more difficult
to model the actual situation of reversals of judgments with high quality. The dif-
ficulty of this part of the work is that it is difficult to uncover all the factors that
influence the judgment, and it is difficult to quantify and analyze factors such
as judges’ subjective will. 2) It is difficult to directly apply the prior knowledge
to the improvement of neural networks. How to make neural networks efficiently
use prior knowledge from different domains has been one of the challenges of
research in artificial intelligence.

In this paper, we propose a causal Framework for Accurately Inferring judg-
ments Reversals (FAIR), which mines why revisions occur based on causal infer-
ence, which is the process of exploring how one variable T affects another vari-
able Y . In the construction of FAIR, first, the causal graph is initially modeled
with the help of legal experts by training an encoder to remove the redundant
constraints in the graph. Then, the causal effects between different variables are
estimated quantitatively using a causal inference algorithm. Finally, the obtained
causal knowledge is injected into the neural network model of the downstream
task, which can effectively improve the performance of the model.

While the recent rise of Large Language Models (LLMs) has had a huge
impact on the natural language processing community, we are also interested in
the generalization ability of LLMs on legal intelligence tasks. We design chal-
lenging experiments to explore the knowledge exploitation ability and reasoning
power of LLMs in the legal domain, and add LLMs as comparisons in the evalu-
ation experiments of the FAIR framework. The experiments reveal some current
limitations of LLM and demonstrate that the generalization ability of LLM can
be enhanced by causal knowledge mining and injection.
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Our main contributions are as follows: 1) We propose FAIR, a causal Frame-
work for Accurately Inferring judgments Reversals, and better mine the causal
relationships in complex legal judgments based on causal inference to uncover
the reasons for judgments reversals. 2)The results obtained from performing the
LJP task on a real legal dataset indicate that it is effective to improve the per-
formance of neural networks by injecting prior knowledge. 3) We explore the
knowledge utilization capability and inference capability of LLM in the legal
domain. By comparing our framework with LLM, we reveal some limitations of
LLM currently existing and proposed ways to improve its generalization ability.

2 Related Work

2.1 Legal Intelligence

Legal Intelligence focuses on applying natural language processing techniques to
the legal domain, for which researchers have designed diverse tasks and provided
rich data resources. CAIL2018 [20] is a large-scale Chinese legal dataset designed
for the LJP task, focusing on LJP in the criminal law domain. LEVEN [21]
considers the legal event detection task. FSCS [12] provides multilingual data for
the LJP task and studies the legal differences in different regions. LeSICiN [13]
designed the law and regulation identification task, using graphs to model the
citation network between case documents and legal texts. MSJudge [10] describes
a courtroom argument scenario with multi-actor dialogues for the LJP task.
Some work has attempted to provide solutions to the above tasks using natural
language processing techniques, and Lawformer [19] has designed a pre-training
model for legal text training. EPM [5] considers implicit constraints between
events in the LJP task. NSCL [6] attempts to use contrast learning to capture
the subtle differences between legal texts in the LJP task. QAjudge [23] uses
reinforcement learning to provide interpretable predictions for LJP. However,
these works have not taken into account the issue of judgments reversals, which
is directly related to the application of the law.

2.2 Causal Inference for Legal Domain

Recent work has attempted to use causal inference to provide more reliable
explanations and greater robustness for legal intelligence. Liepina [8] introduces
a semi-formal causal inference framework to model factual causality arguments
in legal cases. Chockler [3] investigates the problem of legal attribution of respon-
sibility using causal inference to capture complex causal relationships between
multiple parties and events. GCI [9] designs a causal inference framework for
unlabeled legal texts, using a graph-based approach to construct causal graphs
from factual descriptions. Evan [7] uses causal inference to provide explanations
for binary algorithms in legal practice. Law-Match [17] considers the influence
of legal provisions in legal case-matching tasks and incorporates them as instru-
mental variables in causal graphs. Chen et al [1] investigated the problem of
pseudo-correlation error introduced by pre-trained models and eliminated this
error by learning the underlying causal knowledge in legal texts.
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3 Methodology

Our framework FAIR consists of three main parts, including causal graph mod-
eling, estimating causal effects on the modeled causal graph, and injecting causal
effects into the neural network. Figure 1 illustrates the structure of FAIR.

Fig. 1. Overall structure of FAIR

3.1 Modeling Causal Graph

Preliminary Modeling and Analysis. Before conducting a quantitative anal-
ysis of causal effects, we need to model the problem based on prior knowledge
to ensure the clarity of causal assumptions, and the modeling results are given
in the form of a causal graph. We describe the possible causal relationships in
the judgment with the help of legal experts as Fig. 2(a). However, in Fig. 2(b),
we cannot directly estimate the causal relationship between “Judgment Basis”
and “Case Basic Fact” because there are multiple causal paths between them,
and we need to block the paths that are not directly connected. Considering
the presence of unobserved confounders in Fig. 2(a), we choose the instrumental
variable method to block the paths through the confounders, which means that
“Case Basic Fact” will be used as an instrumental variable, and it needs to sat-
isfy the correlation and exogeneity. To ensure exogeneity, we need to block the
direct path from the instrumental variable to the outcome, which means we need
to extract the part of the instrumental variable that is relevant to the treatment
and not relevant to the outcome, and we do this using a law article prediction
task.

Fig. 2. Preliminary and Target Causal Graph.
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Task Definition. Given a factual description of the judgment containing n
tokens X = {x1, x2, ..., xn} and a set L = {l1, l2, ..., lm} containing m legal
entries, we want the model to find a many-to-one mapping F from set X to a
subset of L, and the result of the mapping is denoted as an m-dimensional multi-
hot vector. This task can be understood as a multi-label classification task.

Encoder. We use the pre-trained model Lawformer as an encoder and fine-tune
it in the law article prediction task as a way to capture the features we need.
First, we use Lawformer to encode X = {x1, x2, ..., xn}.

H = Encoder(xi) (1)

Then, the encoded representation H is fed into a linear layer and the dimension
of Output is m, as same as the number of labels.

Output = {out1, out2, ...outm} = Linear(H) (2)

Considering the possible data imbalance of the real labels, we use ZLPR [15] as
the loss function.

Lzlpr = log(1 +
∑

i∈Ωpos

e−outi) + log(1 +
∑

j∈Ωneg

eoutj ) (3)

where Ωpos is the set of positive samples and Ωneg is the set of negative samples.
After extracting the features by Encoder, Fig. 2(b) shows the causal graph we
finally obtained.

3.2 Causal Effects Estimation

The estimation of causal effects requires controlling for confounders to ensure
the accuracy of the results, which we discuss in detail in Sect. 3.1, where we use
“Encoded Case Basic Fact” as an instrumental variable to ensure this.

We use Average Treatment Effect (ATE) as a quantitative criterion for the
causal effect. Suppose T is the intervention variable, p(Y |do(T = a)) is the inter-
ventional distribution, and Y is the target variable. Then, under the reference
condition T = b, the ATE after imposing the intervention T = a is described as

ATE(a, b) = Ep(Y |do(T = a)) − Ep(Y |do(T = b)) (4)

Under the condition that instrumental variables are used, the computation of
ATE can be described in the following form. We let U be the confounder and
Z be the instrumental variable, and suppose that Y = δT + αU , we have Y Z =
δTZ + αUZ, and since Z is not affected by U , the above equation is equivalent
to Y Z = δTZ, then the causal estimator δ = Y Z ∗ (TZ)−1, it is easy to find
that δ is exactly the unbiased estimate of ATE, i.e.

ATE(a, b) =
E(Y |Z = a) − E(Y |Z = b)
E(T |Z = a) − E(T |Z = b)

(5)
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3.3 Causal Smoothing

In this subsection, we propose a method called Causal Smoothing to inject the
causal effects estimated by FAIR into a neural network. We draw inspiration
from the widely used Label Smoothing [18]. If yi is the label of the classification
task, yi is 0 or 1 in the hard label case. Label Smoothing replaces the hard label
yi with a soft label

pi = (1 − ε)yi +
ε

K
(6)

where K is the number of categories of labels and ε is the hyperparameter,
which is the same for all samples in training. Causal Smoothing modifies ε to

εi = ω
m∑

j=1

ATE(tij , 0), where tij is the value of the jth treatment in the ith

sample, m is the number of treatments, and ω is the hyperparameter. In Causal
Smoothing, the soft label can be expressed as

pi+causal = (1 − ω
m∑

j=1

ATE(tij , 0))yi +
ω

m∑
j=1

ATE(tij , 0)

K
(7)

4 Experiments and Evaluation

In this section, we apply FAIR to a specific legal scenario and test the inference
results of the framework in a downstream task of legal intelligence. We have
chosen the determination of labor relationship for over-aged labors as the legal
issue for the experiment, and the legal judgment prediction task as the down-
stream task. Our experimental results have shown the superiority of FAIR in
this context.

4.1 Dataset

Currently, published datasets do not consider our research topic of judgments
reversals and are too coarse-grained to meet the needs of fine-grained tasks.
They do not differentiate between initial and appellate judgments in legal cases,
and we cannot obtain the required labels for FAIR. Therefore, we construct a
dataset of unstructured judgments from the internet and used regular expressions
to extract the labels for our experiment. We used this method because Chinese
judgments have a relatively fixed structure, and it is fairly accurate for us to
extract the required labels. We download and extract all of the judgments on the
determination of labor relationships for over-aged labors issues from the pkulaw1

website. These judgments are real and challenging, as they involve complex legal
issues and difficult factual determinations. The number of training sets is 5785,
the number of validation sets is 883, and the number of test sets is 416. We
choose the challenging second trial data as the test set, in which the number of
judgments reversals is 98.
1 https://www.pkulaw.com.

https://www.pkulaw.com
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4.2 Experimental Setup

Causal Acquisition. We first design a law article prediction task to train the
feature encoder, and selected the most important four law articles related to
the determination of labor relationship for over-aged labors as the labels. The
encoder was initialized by the pre-trained model Lawformer, and ZLPR was used
as the loss function during training. We use the encoded inputs as instrumental
variables to construct causal graphs, using the instrumental variables approach
provided by the dowhy [14] framework for inference.

Legal Judgement Prediction. In the legal field, LJP task requires the model
to predict the outcome of a decision based on the basic fact of the input case.
We chose the mainstream LJP models as the baseline, including Lawformer,
Longformer, Bert [4], and Bi-LSTM, which were trained under the condition
of no causal knowledge and injected causal knowledge respectively. Since Bert
only accepts inputs up to 512 tokens in length, we adopt a truncated input and
max-pooling approach to obtain the input for the classification layer.

Causal Knowledge Injection. We used Causal Smoothing, introduced in
Sect. 3, to inject causal knowledge into the model, and the hyperparameter ω
was set to 0.1 for the experiments. We used Label Smoothing as a control, and
the hyperparameter ε was set to 0.1. in addition to the mainstream models
described above, we also explored the performance of large language models for
the LJP task, and we chose OpenAI’s ChatGPT as the experimental subject
and provided it with a priori causal knowledge through different prompts. All
the above experiments use Adam as the optimizer, and the Learning rate is set
to 1e-4.

4.3 Main Result

Table 1 shows the experimental results of FAIR on the mainstream model of the
LJP task. From it, we find that the causal knowledge obtained by inference of
FAIR improves all baselines, with significant improvements on both F1 values
and Acc. Specifically, for F1 values, the improvements on baselines reach 1.92,
4.88, 1.02, and 12.82, respectively; for Acc, the improvements on baselines reach
4.81, 0.96, 11.54, and 2.41, respectively.

The Bi-LSTM model has the most significant improvement in F1 values,
which we believe is because the Bi-LSTM model is not capable of capturing
features for long texts, and it is difficult to learn effective knowledge during
the training process, so the injection of causal knowledge is a very significant
improvement for Bi-LSTM. The Bert model has the largest improvement in Acc,
which we believe is because the transformer model can make good use of causal
knowledge. Lawformer has the best overall performance without injecting causal
knowledge, which proves the advantage of legal text pre-training. In addition,
we can find that LLM still has some gaps with supervised learning models in
downstream tasks of legal intelligence, which we discuss in detail in Sect. 6.
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Table 1. Experimental results of FAIR on LJP task.

Models P R F1 Acc

Lawformer 48.97 65.75 56.14 63.94

Lawformer + Causal 54.87 61.64 58.06 (↑ 1.92) 68.75 (↑ 4.81)

Longformer 44.44 71.23 54.73 58.65

Longformer + Causal 45.92 84.93 59.61 (↑ 4.88) 59.61 (↑ 0.96)

Bert 46.03 79.45 58.29 60.09

Bert + Causal 59.72 58.90 59.31 (↑ 1.02) 71.63 (↑ 11.54)

Bi-LSTM 38.70 16.43 23.07 61.53

Bi − LSTM + Causal 47.72 28.76 35.89(↑ 12.82) 63.94(↑ 2.41)

ChatGPT 39.69 71.23 50.98 51.92

ChatGPT + Prior 39.44 58.90 47.25 53.84

ChatGPT + Prior∗ 41.23 54.79 47.05 56.73(↑ 4.81)

5 Analysis

5.1 Robustness of Inference Results

To make our inference results more reliable, we conduct sensitivity tests to ana-
lyze the robustness of the results. Specifically, we use the counterfactual sample
provided by Dowhy to generate counterfactual samples, and we use three coun-
terfactual methods for testing. 1) Bootstrap Sample Dataset: Replacing a given
dataset with bootstrap samples from the same dataset, it ideally does not show
significant changes in causal effects. 2) Placebo Treatment: The real interven-
tion variables were replaced with independent random variables, and the new
ATE should be zero for the significant causal relationship that should not be
exhibited between the variables in this condition. 3) Subset of Data: Replace the
given dataset with a subset of data from the same dataset, ideally, the new ATE
should remain the same as the previous one. The results of our sensitivity test
are shown in Fig. 3. This demonstrates the significant robustness of our inference
results. In addition, our inference results are agreed upon by legal experts.

Fig. 3. Test results using three counterfactual methods.
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5.2 Effect of Causal Smoothing

FAIR injects the causal knowledge obtained by the inference into the neural
network model by Causal Smoothing and achieves significant improvement in
downstream tasks. We believe this is because Causal Smoothing is closer to real
judgment scenarios than Label Smoothing controlled by the hyperparameter ε,
which can simulate the judge’s thoughts when deciding. For difficult judgments,
Causal Smoothing makes its Soft Label closer to the judge’s critical value, and
the model is not overconfident in its prediction, which enhances the general-
ization of the model. To verify our conjecture, we select the output of the last
hidden layer of the Lawformer model in the LJP experiment, downscale it using
t-SNE [11], and projected it onto a two-dimensional plane, and Fig. 4 shows our
results. We can find that Label Smoothing reduces the intra-class distance to
some extent compared to the Hard Label case, while Causal Smoothing shows
the superiority of Causal Smoothing as the intra-class distance is more compact
and the inter-class distance is pulled apart compared to the Label Smoothing
case.

Fig. 4. The t-SNE plots of feature representations.

6 Limitations of Large Language Model

With the development of LLM, we become interested in the generalization capa-
bilities of LLM in specific domains. In this section, we explore the capabilities
of ChatGPT2 for legal intelligence downstream tasks and discuss its limitations.
Our experiments have shown that improving the generalization ability of the
LLM through the injection of causal knowledge can be achieved.

Knowledge Utilization Capability. In the experiments shown in Table 1, we
conducted LJP experiments with the legal scenario of over-age labors issues and

2 https://openai.com/blog/chatgpt.

https://openai.com/blog/chatgpt
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compared it to our supervised training model. The results reveal that Chat-
GPT performs poorly without prior knowledge, with F1 values and accuracy
both around 50. It suggests that ChatGPT struggles to utilize the knowledge
of the over-age labors issues during training, and we believe this is because the
LJP task is too challenging for a model trained without labels. Furthermore, it
is difficult for the model to establish correlations between input facts and the
laws learned during training without any additional cues. To investigate further,
we incorporated judgment-related laws as prompts in the dialogue. Specifically,
we add “you should pay attention to the use of the law x” (x=a, b, c, d) as
prior knowledge in the prompt. The greater the influence of x in our inference
results, the higher the level of the prompt. We find that ChatGPT’s performance
improved with different levels of prompts, but it still differed significantly from
our supervised model. This indicates that ChatGPT can utilize input knowl-
edge to some degree, but the prompt’s design limits its utilization. Therefore,
for legal intelligence downstream tasks, we require a supervised model tailored
to the legal domain.

Reasoning Ability. To utilize LLM in legal practice, we require the model’s
decisions to be highly interpretable. Thus, we conduct a fine-grained label extrac-
tion experiment to evaluate ChatGPT’s reasoning ability in the legal domain.
We select six challenging labels from a dataset finely labeled by legal experts
with the information shown in Table 2. This dataset will be publicly available
soon. We take the original judgments as input and adjust the prompts several
times to obtain the best performance, and Table 3 shows the results of our exper-
iments. We can find that ChatGPT can extract better for labels that may be
given directly, such as C, while ChatGPT can barely extract effectively for labels
that require inference from contextual descriptions to be obtained, such as F.
Our experimental results show that ChatGPT still suffers from serious deficien-
cies in its inference ability in the legal domain, which blocks the application of
LLM in the legal domain, and we hope that subsequent work can improve this.

Table 2. The challenging labels we
select

A Labor gender

B When do labors to reach the mandatory age
for retirement

C Whether have a written contract

D Whether enjoy the benefits of the old-age
insurance

E Kind of old-age insurance

F Whether recognized of the basic old-age insur-
ance

Table 3. Results on ChatGPT

Label Acc P R F1

A 56.25 56.40 56.73 55.77

B 63.05 63.14 63.32 62.95

C 70.84 72.40 72.06 70.82

D 62.41 58.95 60.46 58.75

E 61.53 38.25 42.20 35.07

F 50.61 42.59 45.93 40.78
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7 Conclusion

We propose FAIR, a causal framework for accurately inferring judgment rever-
sals, and we also introduce Causal Smoothing, a technique for incorporating
causal knowledge into neural networks. In the context of predicting labor rela-
tionships of over-age labors, we demonstrate how the inferred causal effects
enhance the model’s performance. Our analysis examines the inferred outcomes’
quality and sheds light on Causal Smoothing’s role. Moreover, we undertake var-
ious tasks to evaluate large language models’ capabilities in the legal domain.
While acknowledging that LLM is not yet adequate for legal intelligence and can-
not replace traditional supervised models. However, mining and injecting causal
relationships can effectively enhance the generalization ability of the model, and
improve the accuracy and fairness of legal result prediction.

Ethical Statement. We utilize a dataset sample sourced from publicly available judg-

ment documents on the China Judgment Network, which is a platform that complies

with relevant legal and regulatory requirements and authorizes the use of documents

for research purposes. Our objective is to support legal services through FAIR princi-

ples and aid judges in their decision-making process rather than replace them. How-

ever, crucial information pertaining to over-age labors is often absent or ambiguous

due to privacy concerns. This can result in the dataset being incomplete, potentially

impacting the final analysis results. In certain cases, our model may generate erroneous

judgments; hence users must exercise caution when interpreting the model’s inference

results. Nevertheless, on the whole, our model can assist judges in identifying pertinent

legal articles and aid in ensuring judicial consistency throughout China.
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Abstract. Few-shot image classification (FSIC) studies the problem of
classifying images when given only a few training samples, which presents
a challenge for deep learning models to generalize well on unseen image
categories. To learn FSIC tasks effectively, recent metric-based meth-
ods leverage the similarity measures of deep feature representations with
minimum matching costs, introducing a new paradigm in addressing
the FSIC challenge. Recent metric-learning techniques, e.g., DeepEMD,
measure the distance between features with the earth mover’s distance
(EMD), and it is currently the state-of-the-art (SOTA) approach for
FSIC. In this paper, we however identify two fundamental limitations in
DeepEMD. First, it brings high computational cost, as it randomly sam-
ples image patches to extract features. This process is often wasteful due
to suboptimal sampling strategies. Second, its accuracy is also limited by
the use of optimal-transport costs based on cosine similarity, which only
measures directional discrepancies. To mitigate the above shortcomings,
we propose an improved method, which we call FeatEMD. First, it intro-
duces a feature saliency-based cropping (FeatCrop) to construct image
patches that concentrates computations on object-salient regions. Sec-
ond, it proposes a Direction-Distance Similarity (DDS) a more effective
distance criterion in capturing subtle differences in latent space features.
We conduct comprehensive experiments and ablations to validate our
method. Experimental results show FeatEMD establishes new SOTA on
two mainstream benchmark datasets. Remarkably, when compared with
DeepEMD, FeatEMD reduces up to 36% computational costs. Our code
is available at https://github.com/SethDeng/FeatEMD.
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1 Introduction

Recent ground-breaking deep learning techniques rely on training on large-scale
data [1–3]. In cost- and privacy-sensitive scenarios such as healthcare and pub-
lic safety, collecting massive high-quality samples is however impractical and
prohibitive for various reasons, impeding the direct application of existing data-
driven deep learning paradigm. This prompts few-shot learning (FSL) techniques
to improve rapidly in recent years. Amongst a broad variety of applications,
few-shot image classification (FSIC) which aims to learn classifiers that can
generalize to unseen categories with only a handful of labeled training samples,
provides a pivotal benchmark for evaluating the effectiveness of few-shot learning
algorithms. Recent years have thus observed a rise of FSIC methods, forming
three categories of approaches, namely augmentation-based [4], optimization-
based [5,6] and metric-based methods [3,7–13].

In particular, metric-based methods demonstrate great success on pushing
the current state-of-the-art (SOTA) of FSIC further. These methods, in general,
extract feature representations through deep neural networks, and then compute
the distances between pairs of representations of prototypes (condensed fea-
tures of each class in the support set) and queries (features belonging to images
that require classification). Notably, current metric-based learning method (e.g.,
DeepEMD [13]) further samples multiple patches from input images by random
sampling to enrich the object representation and thus extract diverse features
from the source image for distance evaluation. Such repeated random sampling
is proven an effective strategy to achieve SOTA accuracies on FSIC.

While being effective, the näıve random sampling approach may demand a
high degree of wasted computational effort. From an intuitive perspective, ran-
dom sampling is prone to frequently sample background regions when the scale
of the salient object is small (Fig. 1). Such crops may not contain necessary infor-
mation to accurately evaluate the distance metrics between the prototypes and
queries. Existing baselines thus requires many random crops to ensure sampled
patches to reliably contain the object. This allows it to form effective matches
between salient features of the prototypes and queries, and attain high task accu-
racies. Doing so, however, incurs substantial potentially wasted computation. As
certain patches contain only uninformative background, they contribute little to
the evaluation of the distance metric and could hence be detrimental to the task
performance.

To mitigate the computational costs of metric-based learning by random
sampling, it is desirable to introduce a frequency bias in the random sampling
procedure. We thus propose FeatCrop, a new sampling algorithm that seeks
to sample salient regions in images, allowing patches to concentrate sampling
effort to regions containing the object, while retaining feature diversity allowed
by random sampling. To summarize, FeatCrop saves computational resources in
metric-based few-shot learning by generating semantic embeddings from sampled
patches that are balanced in terms of diversity and accuracy for their categorical
representations.
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Original Image

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 1. (a) In DeepEMD, image patches are sampled randomly. This approach may lead
to the sampling of background patches that are irrelevant to representing the object,
and computationally wasteful. (b) Our FeatCrop, in contrast, focuses on semantic sub-
regions that contain the foreground objects. For two embedding vectors, (c) The �2
distance measures magnitude. (d) The cosine similarity measures direction. (e) The
inner product multiplies magnitudes with cosine similarity, and x = y does not cor-
respond to the minimum. (f) The proposed DDS combines directional and distance
similarities between two vectors.

Moreover, existing works [12,13] commonly employ either the cosine similar-
ity (cs), the L2 distance (�2), or the inner product (〈·, ·〉), as the distance met-
rics for evaluating the associated distances between extracted feature vectors.
As shown in Fig. 1, none of the �2, cs or 〈·, ·〉 distance metrics can simultane-
ously represent both the distance and directional similarity between a pair of
vectors. To this end, we take one step forward by proposing a novel distance
metric, namely the direction-distance similarity (DDS) to improve the distance
criterion. The main contributions of this paper can be summarized as follows:

– To our knowledge, we demonstrate, for the fist time, patch sampling strate-
gies play a critical role in FSIC. We show that the proposed FeatCrop, which
introduces saliency-based patch sampling for metric-based FSIC, achieves sig-
nificant computational cost reduction without sacrificing accuracy.

– We propose the Direction-Distance Similarity (DDS) for the EMD transporta-
tion cost matrices. This new metric can notably improve transportation cost
estimation and in turn FSIC task accuracies.

– Experiments on mainstream FSIC benchmark datasets (mini -ImageNet and
tiered -ImageNet) show that our algorithm, FeatEMD, achieves SOTA per-
formance and simultaneously reduce up to 36% computational effort when
compared against the current best competitors.

2 Related Works

2.1 Metric-Based FSIC Methods

Recently, metric-based few-shot learning methods gain notable traction
as they can learn a similarity metric that can generalize to new classes with
only a few labeled examples. This provides the necessary criterions for the accu-
rate classification of query images from unseen categories. With similar spirits,
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many recent works thus employ novel methods to improve the distance metric
between pairs of support and query features, such as the covariance pooling [11],
divergences between multivariate Gaussian distributions [10], optimal transport
in discrete distributions [13], bi-directional random walks [14] and Brownian
distance covariances [12]. The above-mentioned methods achieve better results
either by improving the expressiveness of the features, or by exploiting the (joint)
distribution information of the sample classes. To measure the distances between
features, these methods compute either the inner product, Euclidean distance
or cosine similarity between the final extracted metric-bearing vectors. Our pro-
posed DDS notably differentiates itself from these metrics as it takes distance
and direction jointly into consideration.

2.2 Image Patch Sampling

Image patch sampling is the process of sampling a number of cropped patches
from an original image. Previous researches show that sampling patches from
images can help prevent model overfitting and make models generalize bet-
ter [15,16]. It has a wide range of applications in computer vision. For example,
in image denoising [17], contrastive learning [18] and high resolution image recog-
nition [19]. In particular for metric-based learning in FSIC, grid-based sampling
and random sampling are often used to crop patches from an image [13]. How-
ever, they are prone to selecting irrelevant areas containing the background or
noise, yielding adverse impact on the final feature representation. Therefore, we
propose FeatCrop, which selects informative image patches based on semantic
saliency, allowing important objects to be sampled with higher probabilities.

3 The FeatEMD Method

3.1 Preliminaries

The few-shot image classification task can be defined as:

Dmeta = {Dtrain,Dtest},where
{y | (x, y) ∈ Dtrain} ∩ {y | (x, y) ∈ Dtest} = ∅,

(1)

i.e. the test and train datasets do not contain common classes.
Most recent works on FSIC employ the standard N-way K-shot (M-query)

episode task learning introduced in [20]. Specifically, for each meta-task, we
sample n episode tasks {T1, . . . , Tn} from Dtrain as training episodes, and m
episode tasks {T1, . . . , Tm} from Dtest as testing episodes. Each episode task Ti

consists of a support set TS
i and a query set TQ

i . From a dataset, each support or
query set randomly samples N or M categories respectively, with each category
sampling K image-label pairs (x, y), namely, TS

i = {(xk, yk)}N×K
k=1 . Both Dtrain

and Dtest samples the support and query sets following the above configuration,
except the Dtest provides no labels for the query sets, i.e. TQ

i = {(xk)}N×M
k=1 .
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Given a pair of images, DeepEMD [13] first samples image patches from
original image. Then it computes the cost matrix and subsequently the opti-
mal matching flows, using the Earth Mover’s Distance (EMD), between pairs of
features extracted from image patches. Finally, based on the optimal matching
flows, the distance between two images could be computed. In addition, for the
N-way K-shot setting, when K > 1, DeepEMD employs a learnable embedding
for each class, namely the Structured Fully Connected Layer (SFC), which rep-
resents the prototype of the class. The current SOTA on FSIC is a DeepEMD
model that samples 25 patches uniformly from each image, along with cosine
similarity as the transportation cost between features (Fig. 2).

3.2 Feature-Based Image Patch Sampling

Fig. 2. An overview of our proposed FeatEMD. In the pre-training stage, we first learn
an embedding network on the training set, then use it to select image patches for
the entire training set by FeatCrop module. In both meta-training and meta-testing
stages, we use the learned image patch selection to extract multiple feature vectors
from images. The proposed DDS distance metric evaluates the EMD transport costs

In previous FSIC algorithms, grid-based and random sampling are the most
common sampling methods for image patch selection. As we mentioned earlier,
they would easily select the noise and background areas that contain little rele-
vant information and contribute little to the accurate classification of the query
images. Inspired by [18], we propose the FeatCrop module, which uses the back-
bone model to first localize the salient object by using the extracted feature
maps. Specifically, we propose a function L which returns the smallest bounding
box B that encloses values in z > l within the box. Here, norm(reduce(f(x)))
denotes the heatmap of the input image x, which is obtained by summing across
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channels (with reduce) the final extracted feature maps f(x) and normalizing
the result to be within [0, 1]. Formally,

B = L(norm(reduce(f(x))) > l), (2)

where the constant l ∈ (0, 1) controls the threshold of activation values to be
bounded. In all experiments, we set l = 0.5. To introduce diversity in sampling,
we then use a Beta distribution β(α, α) with a single hyperparameter α to gen-
erate crop centers, and additionally sample height and width of patches with a
uniform distribution. This enables us to control how patches are sampled within
the box B. Notably, the Beta distribution with α = 1 corresponds to random
sampling.

In our experiments, we find that it is not always desirable to select all patches
within the outer bounding box B, as B may occasionally not contain the object
to be classified. Assuming we sample n patches, we thus select �rn� patches
with the above process, and sample remaining ones uniformly, where r ∈ [0, 1]
controls the proportion of patches sampled within B.

3.3 Combining both Directional and Distance Similarities

In FSIC, metric-based methods aim at finding a good distance metric to calcu-
late the distance between image features in order to classify images of unseen
labels correctly. However, existing methods often target improvements in image
features representations, while neglecting the impact of the distance metric on
the few-shot task performance. To this end, we propose the Direction-Distance
Similarity (DDS) to measure the distances between two feature vectors as sim-
ilarities on both the direction and magnitude. We define the DDS similarity
metric as follows:

DDS(x,y) � (1 − λ)
1
2
‖x − y‖22 + λcs(x,y), (3)

where x,y are two feature vectors, and λ is a hyperparameter that trades off the
L2 distance ‖x−y‖22 with the cosine similarity cs(x,y). The details of FeatCrop
and the overall FeatEMD algorithm are in Algorithms 1 and 2 respectively.

4 Experiments

We evaluate our FeatEMD on two FSIC benchmark datasets, mini -ImageNet [3]
and tiered -ImageNet [21], and compare it with our baseline, DeepEMD, the
current SOTA on FSIC.
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Algorithm 1. The FeatCrop method.
1: function FeatCrop( Image x, Model f , Activation threshold l, Number of sam-

pled patches n, Proportion r, Beta distribution hyperparameter α)
2: S ← {x} � Original image x as a patch.
3: B ← L(norm(f(x)) > l) � Bounding box from (2).
4: for i ∈ {0, 1, 2, . . . , n − 1} do
5: (μ, σ) ∼ U(0, 1)2 � Uniform height and width.
6: h ← h(x)μ � h(x): height of image x; h: height of the patch.
7: w ← w(x)σ � w(x): width of image x; w: width of the patch.
8: if i ≤ �rn� then � Sample crop center (x, y) in B.
9: (u, v) ∼ β(α, α)2

10: x = Bx0 + (Bx1 − Bx0) ∗ u
11: y = By0 + (By1 − By0) ∗ v
12: else
13: (x, y) ∼ U(0, 1)2 � Traditional random sampling.
14: end if
15: S ← S ∪ {crop(x, x, y, h, w)}
16: end for
17: return S � Return sampled image patches.
18: end function

Algorithm 2. The FeatEMD algorithm.
1: function FeatEMD( Images x1,x2, FeatCrop arguments f, l, n, r, α)
2: F1 ← {f(s) | s ∈ FeatCrop(x1)} � Extract patch features in x1,
3: F2 ← {f(s) | s ∈ FeatCrop(x2)} � . . . and also in x2.
4: for (fi, fj) in F1 × F2 do
5: Cij ← DDS(fi, fj) � Computes the cost matrix with DDS.
6: end for
7: return EMD(C). � Evaluates the EMD cost between x1 and x2.
8: end function

4.1 Implementation Details

For a fair comparison, we use ResNet-12 [22] as the backbone network for the
competing methods. In addition, we conduct experiments in both 5-way 1-shot
and 5-way 5-shot cases on the two FSIC benchmark datasets. Our code is imple-
mented in PyTorch, and all experiments are performed on NVIDIA V100 GPUs.

4.2 Experimental Results and Analysis

In our study, all experiments on mini -ImageNet contains three stages as men-
tioned above, yet meta-train stage is not obligatory for tiered -ImageNet, since
its domain differences among train-set, val-set and test-set are larger than mini -
ImageNet. Table 1 shows the performance of DeepEMD and FeatEMD on mini -
ImageNet and tiered -ImageNet. From Table 1, we can conclude that our method
outperforms DeepEMD by a clear margin on two datasets. Remarkably, when
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Table 1. Comparison results on mini-ImageNet and tiered -ImageNet. We report 95%
confidence intervals for 5,000 episodes evaluation on DeepEMD and FeatEMD. Results
with ∗ are reproduced with the official implementation.

Model Sampling Distance Patch mini-ImageNet tiered-ImageNet

Method Metric Count 1-shot 5-shot 1-shot 5-shot

MCL [14] Grid cs 25 67.51 83.99 72.01 86.02

Grid cs 34 67.85 84.47 72.13 86.32

DeepEMD [13] Grid cs 25 67.83 ± 0.29 83.14 ± 0.57 71.19 ± 0.75∗ 85.04 ± 0.60∗

Random cs 25 68.77 ± 0.29 84.13 ± 0.53 73.60 ± 0.75∗ 86.92 ± 0.60∗

FeatEMD FeatCrop cs 16 68.85 ± 0.54 84.10 ± 0.45 73.63 ± 0.54 86.91 ± 0.44

FeatCrop DDS 16 69.36 ± 0.54 84.36 ± 0.45 73.78 ± 0.54 87.14 ± 0.44

the number of patches is 16, FeatEMD is competitive against a DeepEMD model
that samples 25 patches, which translates to a reduction in computational effort
≈ 36%.

FeatCrop dominates under a varying number of patches. We first com-
pare FeatCrop with random sampling under a varying number of selected patches
per image, as shown in Fig. 3. Note that for both random sampling and FeatCrop,
the total computational cost for inference is directly proportional to the number
of patches n, as we need to extract features from each patch using the backbone
model. We also highlight that for all n ranging from 4 to 25, FeatCrop dominates
random sampling in terms of task accuracies. In contrast, DeepEMD requires 24
patches to obtain similar accuracy. As the number of patches increases, the
advantage of FeatCrop may diminish, this is also expected as random sampling
is also more likely to select object-relevant patches when given more sampling
opportunities.

Varying the Proportion of Patches Sampled within the Bounding
Boxes. B. As Fig. 4 shows, FeatCrop outperforms the DeepEMD baseline under
the majority of feasible choices of sampling proportions r. Here, larger r corre-
sponds to more patches sampled within the bounding boxes. It shows that it is
often useful to include uniform sampling to allow occasional patches outside B,
which may also contain relevant information.

Varying α in the Beta Distribution for Crop Center Sampling.
In Fig. 3(b), we tweak the hyperparameter α to figure out how different crop-
ping strategies may influence the classification performance. Interestingly, we
find cropping in the center (α = 1.2), or around the object boundary (α =
0.4) yield better results than cropping in the box uniform randomly (α = 1.0).
This corroborates our observation in Fig. 1 that random sampling could be detri-
mental to object representation due to frequent sampling of noisy background
patches.
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Fig. 3. (a) Comparing the sampling strategies under the 5-way 1-shot classification
task. (b) Sensitivity of α under different numbers of patches. The straight lines denote
baseline accuracies reproduced from the random crop used in DeepEMD.

Table 2. Ablation study on the distance metrics. The 95% confidence intervals are all
below 0.54 for the 5,000 episodes evaluation.

Distance Metric mini-ImageNet tiered -ImageNet

1-shot 5-shot 1-shot 5-shot

〈·, ·〉 64.70 78.86 71.68 82.80

�2 61.72 83.00 68.74 86.78

cs 68.85 84.10 73.63 86.91

DDS 69.36 84.36 73.78 87.14

Sensitivity Analysis of DDS. Table 2 shows that DDS is substantially better
than other competing distance metrics in both 1-shot and 5-shot tasks. As Fig. 5
illustrates, classification accuracies peak at λ = 0.8 in the 1-shot task, and
when λ = 0.6 in the 5-shot case. The importance values of both the �2 distance
and direction between feature vectors extracted in both 1- and 5-shot tasks
are thus different. Such differences can be attributed to the computation of the
structured fully-connected layers (SFC) used in the baseline. Namely, the 5-shot
case requires additional iterative steps to optimize for the feature prototypes.
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Fig. 4. Ablation results on r for varying numbers of patches. The dashed lines represent
baseline accuracy

Fig. 5. Sensitivity analysis of the λ interpolation constant in DDS for 5-way k-shot
tasks.
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5 Conclusion

In this paper, we proposed an improved FSIC method based on DeepEMD.
The resulting approach, FeatEMD, reduces up to 36% computational effort
and achieve SOTA results across two mainstream benchmark datasets, mini -
ImageNet and tiered -ImageNet. FeatEMD incorporates two novel components,
namely FeatCrop and DDS. The former substantially reduces the computational
effort by concentrating cropped patches to object relevant regions, and DDS
improves the model’s performance with a new distance metric. Finally, we hope
this work could inspire future research, in particular, to motivate computational
efficient FSIC methods while maintaining task performance.
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Abstract. Online kernel learning is an efficient way when dealing with
nonlinearly large-scale data. The training speed of online kernel learn-
ing is improved by Fourier online gradient descent (FOGD). However,
FOGD has a high space complexity when the number of features is rel-
atively high because FOGD lacks of sparsity. In this paper, we propose
a new sparse online kernel classification algorithm for large-scale data,
called Fourier follow-the-regularized-leader (FFTRL). Existing budget
(sparse) online kernel learning methods attempt to bound the number of
support vectors through some budget maintenance strategies; however,
budget maintenance strategies are unsuitable for FOGD. By introducing
the proximal algorithm, follow-the-regularized-leader, FFTRL achieves
sparsity in a different way. By applying random Fourier features as the
kernel approximation schemes, FFTRL finds the optimal sparse solution
in a linear manner. The regret bound analysis shows the feasibility of
FFTRL in theory. Comprehensive experiments were carried out on public
datasets to compare the performance of FFTRL with related online ker-
nel algorithms. Promising results show that our proposed method enjoys
both high accuracy and time efficiency and still produces sparse models,
opening a window for obtaining sparsity in online kernel learning.

Keywords: Online learning · Kernel approximation · Sparsity ·
Online graident descent

1 Introduction

It has been proven that online learning is successful for building accurate and
reliable models from a sequence of data elements efficiently. Different from reg-
ular batch machine learning algorithms that suffer from massive training time
and memory consumption, online learning models often enjoy the properties of
fast construction, highly scalable and memory saving. Due to these advantages,
online learning algorithms have been successfully used in many real-world appli-
cations, such as online advertising [14], weather condition prediction [11], and
computational finance [10].
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Various algorithms have been developed to tackle online binary classification
tasks, which can be simply divided into two types: linear and kernel methods.
The linear methods are able to construct linear predictive models at an amazing
speed. Some well-known examples include online gradient descent (OGD) [18],
forward backward splitting (FOBOS) [7], regularized dual averaging (RDA) [19]
and follow-the-regularized-leader (FTRL) [13,14]. However, linear models are
not always the right choice. Linear online algorithms may fail to produce effec-
tive outcomes when faced with linearly non-separable inputs, which is more
common in real-world applications. To overcome this issue, researchers invited
kernel functions into online learning methods and came up with field of online
kernel learning. Kernel-based estimators avoid the non-separable property in
the input space by mapping the instances to a high dimensional feature space
implicitly. One key limitation of classical online kernel methods is that the func-
tional representation of the produced estimator will become more complex as
the observations grows. To be more specific, the learner is asked to maintain a
support vector (SV) set during the online learning process. Whenever a newly
arrived instance is misclassified, it will be added to the SV set immediately. Thus
the complexity of the estimator and memory resource it demands will increase
linearly over time, causing memory overflow for a potentially infinite input data
sequence.

Several approaches have been proposed to handle the extension issues of
online kernel learning. One interesting aspect, which is usually referred to as
“budget online kernel learning” [5], tries to bound the number of SVs within a
fixed size during the training process. Two major wildly acknowledged budget
maintenance strategies are removal and projection. The former simply evicts a
selected SV when the number of SVs overflows. It is adopted by many algo-
rithms, such as Forgetron [6], randomized budget perceptron (RBP) [3], and
naive online Rreg minimisation algorithm (NORMA) [9]. The latter further
projects the selected SV onto the remaining ones, which is explored in algo-
rithms like Projectron [15] and online manifold regularization (OMR) [2], Budget
strategies do release the pressure to some extent, but the existing budget online
kernel methods are either too simple to achieve promising results or just too
slow to perform. The other promising aspect is to use the functional approxima-
tion scheme [20]. Unlike the budget maintenance strategy, this kind of scheme
tackles the problem in a mathematically elegant way. A certain explicit map-
ping can be derived by approximating a kernel function, making it possible to
project data from the input space to a computable highly dimensional feature
space. Combining with linear online learning algorithms like OGD, nonlinear
kernel-based algorithms are then trained in an efficient linear manner. As far
as we known, Fourier online gradient descent (FOGD) has achieved a success
in reducing time cost following this idea [12]. To reduce the required memory,
the final model should be stored sparsely, or the number of non-zero coefficients
in the final model parameter should be small. However, even employing the L1

penalty, FOGD can hardly produce sparse models. Similarly, it may cause the
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memory usage problem when the dimension of the feature space becomes too
high.

In order to take the advantages of linear online models and produce spar-
sity simultaneously, we propose a Fourier follow-the-regularized-leader (FFTRL)
algorithm in this paper. FFTRL adopts the random Fourier feature technique
to approximate shift-invariant kernels and introduces sparsity using the FTRL
algorithm. Theoretical analysis and experiments on FFTRL are also provided in
this paper.

The rest of the paper is organized as follows. Section 2 details the proposed
method. Experimental results and analysis are presented in Sect. 3 and the con-
clusion is given in Sect. 4.

2 Proposed Method

2.1 Algorithm Description

The proposed FFTRL is a online kernel learning method for binary classification
tasks. The goal of FFTRL is to learn a final mapping or hypothesis f : R

n → R

from a sequence of data elements {(x1, y1), (x2, y2), . . . , (xT , yT )}, where xt ∈
R

n is the tth training instance, and yt ∈ {+1,−1} is the corresponding class
label, n and T are the number of features and samples, respectively. Generally,
a convex loss function l(f(x), y) : R × R → R is used to penalize the deviation
of the estimation f(x) from the exact class label y. Further, we assume Hk is a
reproducing kernel Hilbert space (RKHS). Thus, the function k(·, ·) : R

n ×R
n →

R is defined as the reproducing kernel of Hk if and only if it implements the inner
product 〈·, ·〉 such that

1. k(x, ·) ∈ Hk for ∀x ∈ R
n;

2. 〈f, k(x, ·)〉 = f(x) for ∀x ∈ R
n and ∀f ∈ Hk.

In classical online kernel learning, the computation of kernel functions
improves the complexity of algorithms. Inspired by FOGD, FFTRL represents
a kernel mapping in a linear manner. Namely,

k(xj ,xm) ≈ z(xj)Tz(xm), (1)

where the superscript T means the operation of a vector or matrix transpose,
xj and xm are arbitrary instances in the sequence, and z(xj) is an approximate
image of xj in the feature space.

Let f(x) = wTz(x), where w is the weight vector. Then the loss function
can be represented as l(w, z(x), y). To find z(x) related to k(·, ·), we introduce
random Fourier features [16], which is a kernel functional approximation tech-
nique that works for shift-invariant kernels like Gaussian and Laplacian kernels.
Such kernels have the form of k(xj ,xm) = k(Δx), where Δx = xj − xm is the
divergence between the two instances. Bochner’s theorem implies that a positive
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definite kernel function k(Δx) is the Fourier transform of a proper probability
density function p(u) with a random variable u ∈ R

n [17]. Namely,

k(Δx) =
∫

p(u)eiuTΔx du, (2)

where i is the imaginary unit. By contrary, assume we have the right kernel here.
By calculating the inverse Fourier transform of the kernel k(Δx), we can obtain

p(u) =
(

1
2π

)n ∫
e−iuT(Δx)k(Δx) d(Δx). (3)

For example, given a Gaussian kernel k(xj ,xm) = exp(−‖xj − xm‖22/2σ2)
with the kernel parameter σ > 0, we have the corresponding distribution
p(u) = N (0, σ−2I) with the identify matrix I. According to (2), we can see
that the kernel function can be expressed as the expectation of u drawn from
the distribution p(u). In other words, we have

∫
p(u)eiuTΔx du = Eu[eiuTxje−iuTxm ], (4)

where the function Eu[·] is to find the expectation of u. Using Euler’s formula,
we can rewrite (4) as

Eu[cos(uTxj) cos(uTxm) + sin(uTxj) sin(uTxm)]

=Eu

[
[sin(uTxj), cos(uTxj)][sin(uTxm), cos(uTxm)]T

]
. (5)

According to (5), we can make z(x) = [sin(uTx), cos(uTx)]T that is a new
representation (image) of instance x. Since the kernel function k(Δx) equals
the expectation of inner productor of z(xj) and z(xm), we can draw D samples
u1, . . . ,uD independently from the distribution p and construct the image of x
as

z(x) =
[
sin(uT

1x), cos(uT
1x), . . . , sin(uT

Dx), cos(uT
Dx)

]T ∈ R
2D. (6)

Now, we can ignore the computation of kernel function because we get the
explicit images in the high-dimensional feature space that is induced by the
corresponding kernel function. If the number of samples D is large enough, the
error brought by approximation can be omitted reasonably. Thus, the online
kernel learning in the original space is transformed into the linear online learning
in a high dimensional feature space.

To produce sparsity in the online process, we introduce FTRL that compre-
hensively considers the differences between FOBOS and RDA on regularization
terms and model parameter w. In the tth round, FFTRL performs the update
of the weight vector wt+1 as follows:

wt+1 = arg min
w

{
wT

(
t∑

s=1

gs

)
+

1
2

t∑
s=1

‖√
σs 	 (w − ws)‖22 + λ‖w‖1

}
, (7)
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where gs = ∇ws
l(ws, z(xs), ys) is the gradient in the sth iteration, 	 is the

element-wise multiplication operator, σs = [σs,1, . . . , σs,2D]T ∈ R
2D is the

parameter related to the current learning rate, and λ is a positive regularization
parameter. We discuss σs later.

The basic idea behind FTRL is to minimize the loss cumulated in the online
training process, which will get a low-regret solution in the current round. There-
fore, FFTRL uses a cumulative gradient to approximately estimate the cumula-
tive loss, or the first term of (7). The second term in (7) works as a stabilization
penalty to avoid w from vibrating extensively in iterations, while the third term
is an L1 penalty. With λ > 0, FFTRL does an excellent job in producing sparsity.

Moreover, we thought that if a feature variable varies more rapidly than the
other, then it is reasonable that the learning rate on this feature variable should
decline faster. Thus, FFTRL uses the per-coordinate learning rate instead of
a global learning rate like setting ηt = 1√

t
(t > 0) for all features. In other

words, the learning rate is calculated independently for each feature. Let ηt =
[ηt,1, . . . , ηt,2D] ∈ R

2D be the learning rate used in FFTRL. We reflect the rate
of change using the gradient component in a certain dimension. Without loss of
generality, let gt,h be the hth entry in gt. Then, the corresponding learning rate
in the hth dimension can be expressed as

ηt,h =
α

β +
√∑t

s=1 g2s,h

(8)

for t > 0, where both α > 0 and β > 0 are two parameters needed to be tuned
for good performance. When t = 0, gs,t = 0. Then, η0,h = α/β for all h. For σs ,
its hth component can be defined as

σs,h =
1

ηt,h
− 1

ηt−1,h
. (9)

The detail algorithm description of FFTRL is summarized in Algorithm 1.
For training data arriving sequentially, we first construct the new representation
of an instance using the explicit mapping z(x) in (6) and then perform a sparse
linear online learning using FTRL. The overall time complexity of FTRL in one
update round is O(D).

2.2 Theoretical Analysis

We further analyze the theoretical property of our proposed method. For the
purpose of simplicity, lt(f) represents l(f(xt), yt), and lt(w) is lt(wt, z(xt), yt).
In the following, we show that the regret of our algorithm is sub-linear, which
indicates the effectiveness of FFTRL .

Theorem 1. Assume that the original data is contained by a ball in R
n of diam-

eter R̃. Let k(x,x′) = k(Δx) be a positive definite and shift-invariant kernel, and
l(f(x), y) : R × R → R be a convex loss function that is Lipschitz continuous
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Algorithm 1 Training process of FFTRL.
Input: Kernel function k(·, ·), parameters α, β, and λ, and the number of samples D.
Initialize: w1 = 0; mh = 0, qh = 0 (∀h ∈ {1, 2, . . . , 2D}).

Calculate p(u) of kernel k(·, ·) using (3);
Draw D independent and identically distributed samples u1, . . . ,uD from p(u);
for t = 1, 2, . . . , T do

Receive (xt, yt);
Construct the new representation z(xt) using (6);
Predict ŷt = sgn(wT

t z(xt));
Calculate gt = ∇wt l(wt, z(xt), yt);
for h = 1, 2, . . . , 2D do

σt,h = 1
α

√

qh + g2
t,h − √

qh; // which is equivalent to (9).

qh ← qh + g2
t,h;

mh ← mh + gt,h − σt,hwt,h;

wt+1,h =

{

0 if |mh| < λ,
α

β+
√

qh
(λ sgn(mh) − mh) otherwise.

end for
end for

with Lipschitz constant L. Assume that w1, . . . ,wT is the sequence of model
parameters generated by FFTRL (Algorithm 1) under the mild condition that
the learning rate ηt,h = ηt for every dimension in the same iteration, where

‖wt‖2 ≤ R. With probability at least 1 − 28( ςpR̃
ε )2 exp( −Dε2

4(n+2) ), the following
inequality

T∑
t=1

lt(wt) −
T∑

t=1

lt(f∗) ≤ (1 + ε)‖f∗‖21
2ηT

+ L2
T∑

t=1

ηt +
3R2

2ηT
+

√
2DλR + εLT‖f∗‖1

holds true for any f∗(x) =
∑T

t=1 α∗
t k(xt,x), where ‖f∗‖1 =

∑T
t=1 |α∗

t |, ς2p =
Ep[uTu] is the second moment of the Fourier transform of the kernel function
k(·, ·) given that p(u) is the probability density function calculated by (3), and ε
is a small positive constant.

Proof. Given f∗(x) =
∑T

t=1 α∗
t k(xt,x) as the optimal solution of FFTRL, we

have the corresponding linear model w∗ =
∑T

t=1 α∗
t z(xt). First of all, we have to

bound the regret of the sequence w1, . . . ,wT learned by FFTRL with respect to
the optimal linear model w∗ in the new feature space. According to the regret
analysis of the FTRL algorithm with strongly convex regularizers (Lemma 2.3.)
[18], we have:

T∑
t=1

(lt(wt) − lt(w∗)) ≤ L2
T∑

t=1

ηt + r1:T (w∗) + ψ(w∗), (10)
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where r1:T (w∗) =
∑T

t=1 rt(w∗). Let rt(w) = σt

2 ‖w − wt‖22 and ψ(w) = λ‖w‖1.
Then, the cumulative sum of regularizers becomes

r1:T (w∗) + ψ(w∗) =
1
2

T∑
t=1

σt‖w∗ − wt‖22 + λ‖w∗‖1, (11)

which is exactly the same as the regularization term in (7).
For r1:T (w∗), we can infer that

r1:T (w∗) =
1
2

T∑
t=1

σt‖w∗ − wt‖22

≤ 1
2

T∑
t=1

σt(‖w∗‖22 − 2〈w∗,wt〉 + ‖wt‖22)

≤ 1
2

T∑
t=1

σt(‖w∗‖22 + 3R2) =
1

2ηT
(‖w∗‖22 + 3R2). (12)

For ψ(w∗), it is upper-bounded by
√

2DλR according to the arithmetic-
geometric mean inequality (AGMI). The regret bound (10) now becomes

T∑
t=1

(lt(wt) − lt(w∗)) ≤ L2
T∑

t=1

ηt +
‖w∗‖22 + 3R2

2ηT
+

√
2DλR (13)

Next, we examine the difference between
∑T

t=1 lt(w∗) and
∑T

t=1 lt(f∗).
According to the uniform convergence of random Fourier features (Claim 1 in
[16]), with probability at least 1 − 28( ςpR̃

ε )2 exp( −Dε2

4(n+2) ), we have

∀j,m, |z(xj)Tz(xm) − k(xj ,xm)| < ε. (14)

In other words, the more we sample, the smaller the probability that the dif-
ference between approximated kernel value and real kernel value is greater than
the constant ε we will get. We further assume k(xj ,xm) ≤ 1, then we have
z(xj)Tz(xm) ≤ 1 + ε that leads to

‖w∗‖22 ≤ (1 + ε)‖f∗‖21. (15)

With (14), we have:∣∣∣∣∣
T∑

t=1

lt(w∗) −
T∑

t=1

lt(f∗)

∣∣∣∣∣ ≤
T∑

t=1

|lt(w∗) − lt(f∗)|

≤ L

T∑
t=1

T∑
j=1

|α∗
j ||z(xj)Tz(xt) − k(xj ,xt)|

≤ εL

T∑
t=1

T∑
j=1

∣∣α∗
j

∣∣ = εLT‖f∗‖1. (16)

Combing (13), (15) and (16) leads to the completion of the proof.
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Table 1. Information of eight publicly available datasets used in experiments.

Datasets #Instances #Features

Titanic 2201 3

Spambase 4597 57

Banana 5300 2

Phoneme 5404 5

Coil2000 9822 85

W7a 24,692 300

A7a 32,561 123

Ijcnn1 141,691 22

3 Experiments

3.1 Description of Data and Algorithms Involved

To validate the performance of our proposed algorithm, we conducted extensive
experiments on the tasks of online binary classification. We first introduced
the datasets used in our experiments and then described the algorithms for
comparison.

Table 1 shows the details of eight publicly available datasets where the first
five datasets can be downloaded from KEEL dataset repository [1] and the rest
three are available at LIBSVM website [4]. We followed the common setting
of online binary classification tasks that each dataset should be divided into
training and test sets. We adopted the original splits of training and test sets for
datasets downloaded from the LIBSVM website. For KEEL datasets, a random
split of 4 : 1 training–test was performed.

In experiments, our proposed method was first compared with NORMA and
ACCOSVM for regular online kernel classification, which are solved in primal
and dual spaces, respectively.

– “NORMA” [9]: Online gradient descent for kernel SVM without budget.
– “ACCOSVM” [8]: An accelerator for online SVM combing quadratic pro-

gramming and window techniques.

Further, we invited three state-of-the-art budget online kernel learning algo-
rithms to compare with FFTRL. Namely,

– “BNORMA” [9]: The budgeted version of NORMA using removal strategy.
– “Forgetron” [6]: Budget perceptron using the removal strategy.
– “Projectron” [15]: Budget perceptron using the projection strategy.

Finally, we introduced an algorithm sharing the similar idea with our proposed
method:

– “FOGD” [12]: Online gradient descent using random Fourier features for ker-
nel approximation.
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3.2 Experimental Setting

All the experiments were carried out in Python 3.6 on a PC running Windows
10 with a 2.9GHz Intel Core i7 processor and 16 GB RAM. To make a fair
comparison, all algorithms adopted the following same setups. The Gaussian
kernel was used as the kernel function k(·, ·), and the hinge loss was taken as the
convex loss function. Since the hinge loss is a non-smooth function, subgradient
was adopted instead of gradient, which counts only when yf(x) < 1.

The budget size in budget online learning algorithms and the number of
samples in FOGD and our proposed method were set to 100 and 200, respec-
tively, following the same setups in [12]. The learning rate related parameter
β in our algorithm was set to 1 according to the instruction from [14]. Other
hyper-parameters were selected by a standard 5-fold cross validation on the
training set, including the kernel bandwidth σ, the learning rate related param-
eter α for FFTRL, the regularization parameter λ for FFTRL, NORMA and
BNORMA, the initial learning rate η0 for FGD, NORMA, and BNORMA, and
C for ACCOSVM. Then, the training set was refitted using the best model five
times, where at each run the instances were shuffled differently. The mean and
standard deviation of mistake rate on the training set, training time, accuracy
on the test set, and test time were reported as the final results.

3.3 Results and Analysis

Table 2 summarizes the evaluation results on the eight datasets, where the best
results are in bold. Note that the test process of NORMA on the Ijcnn1 dataset
was early stopped after 10,000 s, and the instances being tested at the time of
early stopping was reported in italic. From Table 2, we can draw the following
conclusions.

First, we found that budget online kernel classification algorithms run much
faster than the regular ones (say, NORMA and ACCOSVM) in both training and
test process. That means scalable online kernel methods are more practical in
terms of time efficiency. However, budget online kernel classification algorithms
generally make more mistakes on the training set and then get lower accuracy
on the test set. Potentional loss of information is occurred when adopting bud-
get strategies, validating the importance of exploring effective techniques for
budget online kernel learning algorithms. The same phenomenon happens inside
the family of budget online algorithms too. We notice that Projectron takes
more time in training and test but obtains more promising results than both
BNORMA and Forgetron in five out of eight datasets since the projection strat-
egy is more complex than just simply remove an SV. The trade-offs between
accuracy and time efficiency should be analyzed in specific situations.

Second, we compared the two kernel approximation methods (FOGD and
FFTRL) with the budget online kernel classification algorithms. As is listed
in Table 2, FOGD takes the least time in training, and our proposed method
FFTRL shows competitive results too. Both algorithms achieve amazing speed
in training, far exceeding any budget online kernel algorithms. We inferred that
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Table 2. Comparison of online kernel algorithms on 8 benchmark binary classification
datasets.

Algorithm Titanic Spambase

Mistake Rate (%) Train (s) Accuracy (%) Test (s) Mistake Rate (%) Train (s) Accuracy (%) Test (s)

NORMA 22.54 ± 0.57 10.97 ± 0.02 77.65 ± 1.22 5.47 ± 0.02 12.96 ± 0.51 49.44 ± 0.44 91.10 ± 0.81 24.54 ± 0.29

ACCOSVM 23.33 ± 0.50 137.56 ± 0.54 78.67 ± 1.00 6.36 ± 0.04 12.05 ± 0.88 150.47 ± 3.03 91.80 ± 0.39 17.68 ± 0.27

BNORMA 22.86 ± 0.40 1.34 ± 0.01 76.65 ± 1.26 0.33 ± 0.00 18.76 ± 0.33 2.78 ± 0.05 83.77 ± 2.98 0.67 ± 0.01

Forgetron 31.13 ± 0.34 1.78 ± 0.01 76.83 ± 2.77 0.35 ± 0.00 17.19 ± 0.54 3.17 ± 0.04 83.47 ± 1.62 0.70 ± 0.00

Projectron 30.14 ± 0.54 0.24 ± 0.01 77.69 ± 1.62 0.05 ± 0.00 15.44 ± 0.43 10.67 ± 0.44 87.21 ± 1.44 3.94 ± 0.11

FGD 25.03 ± 0.55 0.02 ± 0.00 78.15 ± 1.80 0.01 ± 0.00 11.75 ± 0.24 0.06 ± 0.00 90.08 ± 1.20 0.01 ± 0.00

FFTRL 22.56 ± 0.29 1.76 ± 0.10 79.03 ± 1.05 0.01 ± 0.00 11.21 ± 0.41 5.63 ± 0.03 91.56 ± 0.49 0.01 ± 0.00

Algorithm Banana Phoneme

Mistake Rate (%) Train (s) Accuracy (%) Test (s) Mistake Rate (%) Train (s) Accuracy (%) Test (s)

NORMA 11.62 ± 0.36 65.46 ± 0.27 89.08 ± 0.58 34.52 ± 3.74 23.67 ± 0.33 67.29 ± 1.06 77.28 ± 0.91 33.66 ± 0.37

ACCOSVM 11.11 ± 0.24 134.27 ± 4.69 89.23 ± 0.62 11.86 ± 0.30 16.44 ± 0.27 412.58 ± 17.45 85.75 ± 0.65 19.26 ± 0.18

BNORMA 15.89 ± 0.27 3.33 ± 0.11 83.06 ± 1.70 0.80 ± 0.03 23.74 ± 0.39 3.32 ± 0.06 77.17 ± 0.92 0.79 ± 0.01

Forgetron 18.64 ± 0.49 3.67 ± 0.05 80.38 ± 2.23 0.79 ± 0.01 25.80 ± 0.14 4.14 ± 0.07 73.61 ± 2.34 0.82 ± 0.01

Projectron 14.56 ± 0.33 13.14 ± 2.97 85.38 ± 1.82 4.37 ± 0.59 20.38 ± 0.21 11.34 ± 0.46 80.94 ± 2.05 3.46 ± 0.09

FOGD 15.48 0.34 0.06 0.00 85.08 1g.13 0.01 0.00 18.02 0.23 0.07 0.01 83.62 0.57 0.01 0.00

FFTRL 11.92 0.20 5.26 0.15 89.81 0.39 0.01 0.00 17.48 0.23 6.68 0.29 84.70 0.53 0.01 0.00

Algorithm Coil2000 W7a

Mistake Rate (%) Train (s) Accuracy (%) Test (s) Mistake Rate (%) Train (s) Accuracy (%) Test (s)

NORMA 7.68 ± 0.17 231.33 ± 1.39 91.81 ± 1.05 114.43 ± 0.20 2.95 ± 0.02 2021.10 ± 248.08 97.14 ± 0.05 4003.87 ± 477.64

ACCOSVM 7.13 ± 0.09 2592.71 ± 59.48 92.89 ± 0.17 118.06 ± 0.74 2.03 ± 0.02 4927.57 ± 318.12 98.48 ± 0.01 1770.59 ± 78.54

BNORMA 7.59 ± 0.11 5.94 ± 0.03 91.19 ± 1.52 1.41 ± 0.01 4.27 ± 0.11 21.40 ± 1.34 96.11 ± 0.69 22.63 ± 1.34

Forgetron 11.19 ± 0.15 6.42 ± 0.04 92.34 ± 1.73 1.52 ± 0.01 4.36 ± 0.06 13.98 ± 1.04 96.69 ± 0.67 13.25 ± 0.07

Projectron 10.75 ± 0.16 25.96 ± 0.30 91.67 ± 2.14 10.53 ± 0.17 2.74 ± 0.03 45.78 ± 1.08 98.33 ± 0.10 64.99 ± 1.46

FOGD 7.27 ± 0.04 0.11 ± 0.00 92.80 ± 0.12 0.02 ± 0.00 3.47 ± 0.08 0.37 ± 0.01 96.67 ± 0.04 0.29 ± 0.02

FFTRL 6.90 ± 0.06 10.59 ± 10.4 93.55 ± 0.93 0.02 ± 0.01 3.36 ± 0.05 25.86 ± 0.29 96.92 ± 0.01 0.27 ± 0.01

Algorithm A7a Ijcnn1

Mistake Rate (%) Train (s) Accuracy (%) Test (s) Mistake Rate (%) Train (s) Accuracy (%) Test (s)

NORMA 17.99 ± 0.22 951.63 ± 18.63 82.42 ± 0.02 1958.85 ± 48.16 9.67 ± 0.16 4558.52 ± 104.74 90.26 ± 0.01 48542.60

ACCOSVM 16.34 ± 0.15 4473.56 ± 192.07 83.63 ± 0.05 1172.24 ± 24.88 6.15 ± 0.01 3382.09 ± 338.19 94.63 ± 0.05 2997.05 ± 50.54

BNORMA 20.54 ± 0.20 12.82 ± 0.40 80.91 ± 0.48 12.51 ± 0.40 13.03 ± 0.05 45.91 ± 1.22 87.07 ± 2.34 16.86 ± 0.85

Forgetron 24.57 ± 0.22 16.97 ± 0.86 78.23 ± 0.45 13.51 ± 0.27 16.60 ± 0.14 20.22 ± 0.25 86.96 ± 3.68 44.39 ± 0.96

Projectron 20.51 ± 0.37 366.03 ± 15.12 80.47 ± 0.92 372.86 ± 3.45 7.64 ± 0.07 162.50 ± 1.63 94.31 ± 0.90 454.11 ± 2.73

FOGD 18.77 ± 0.14 0.23 ± 0.01 82.48 ± 1.04 0.16 ± 0.00 9.33 ± 0.02 0.43 ± 0.01 91.46 ± 0.40 0.77 ± 0.01

FFTRL 16.84 ± 0.13 25.12 ± 0.49 84.15 ± 0.19 0.15 ± 0.00 9.35 ± 0.02 49.27 ± 0.44 91.90 ± 0.20 0.75 ± 0.01

the extraordinary time efficiency of kernel approximation methods should be
attributed to the linear online learning framework. Moreover, both FOGD and
FFTRL also show better mistake rate and accuracy in most cases, which demon-
strates that kernel approximation scheme is suitable for large scale online learn-
ing.

Finally, we analyzed the performance of FFTRL. It seems surprising to find
that FFTRL gets the lowest mistake rate or highest accuracy, even outperforms
NORMA in some datasets (such as, Spambase, Coil2000, A7a and Ijcnn1). The
reasons may lie in two aspects. The first reason is the appropriate choice of
sample number D. According to the conclusions from [12], choosing a too large
value of D will result in under-fitting for small datasets, and choosing a too small
value of D will result in over-fitting. The second reason is the well-designed per-
coordinate learning rate. Except from FFTRL, all the gradient-based algorithms
adopt the global learning rate schedule. However, we need to use the learning
rate to reflect our confidence of each dimension in online setting, which indicates
the global learning rate schedule is not the optimal choice. Besides, FFTRL also
produces a sparser model than FOGD as expected. Unfortunately, the benefits
of sparsity brought to FFTRL are largely obscured by the efficiency of linear
learning framework since the test time of FOGD and FFTRL are generally the
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Table 3. Sparsity promotion of FFTRL against FOGD.

Titanic Spambase Banana Phoneme

FOGD Baseline Baseline Baseline Baseline

FFTRL +272.80 +176.40 +193.40 +118.60

Coil2000 W7a A7a Ijcnn1

FOGD Baseline Baseline Baseline Baseline

FFTRL +143.00 +203.40 +76.40 +102.20

same. To validate the advantage of our proposed method over FOGD, we listed
the number of zero components in the weight vector w in Table 3, where the
number of zero coefficients in FOGD is taken as the baseline. From Table 3, we
can obviously see that the model generated by FFTRL is much sparser than
that of FOGD.

4 Conclusion

In this paper, we present a novel sparse algorithm FFTRL for solving large-scale
online kernel binary classification tasks. The basic idea of FFTRL is to approxi-
mate a kernel function via functional approximation technique, which enables us
to transform the original online kernel learning task into an approximate linear
online learning task. Random Fourier features are used as the kernel approxima-
tion scheme, and then a new high dimensional feature space is induced in this
process. We further adopt FTRL to find a sparse solution in the new feature
space. In theory, we analyze the regret bound of our proposed algorithm.

We performed extensive experiments to evaluate the performance of FFTRL
and other state-of-the-art online kernel learning methods. Our promising results
show that FFTRL enjoys both time efficiency and accuracy. Moreover, the spar-
sity produced by FFTRL fits the need of high dimensional and large-scale data
scenarios, making FFTRL suitable for real-world applications. In future work, we
plan to extend our work by exploring the field of multi-label online classification
tasks.
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Abstract. As collaborative robots (cobots) continue to gain popu-
larity in industrial manufacturing, effective human-robot collaboration
becomes crucial. Cobots should be able to recognize human actions
to assist with assembly tasks and act autonomously. To achieve this,
skeleton-based approaches are often used due to their ability to gen-
eralize across various people and environments. Although body skele-
ton approaches are widely used for action recognition, they may not
be accurate enough for assembly actions where the worker’s fingers and
hands play a significant role. To address this limitation, we propose a
method in which less detailed body skeletons are combined with highly
detailed hand skeletons. We investigate CNNs and transformers, the lat-
ter of which are particularly adept at extracting and combining impor-
tant information from both skeleton types using attention. This paper
demonstrates the effectiveness of our proposed approach in enhancing
action recognition in assembly scenarios.

Keywords: Action Recognition · Skeleton-based · Fusion · Body
Skeletons · Hand Skeletons · 3D/2D Skeletons · Assembly · Deep
Learning

1 Introduction

Collaborative robots are playing an increasingly important role in the course
of Industry 4.0 [9]. In order for the robot to collaborate with a human worker
and assist in assembly processes, it first needs to visually perceive its environ-
ment, the current assembly state, and human actions [6,15,18]. For human action
recognition, often RGB-based approaches are utilized in the state of the art, as
they achieve the best results. However, RGB-based approaches face major diffi-
culties when the target scenario deviates from the training scenario. They tend
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to overfit to the environment and the persons seen, especially when the train-
ing dataset lacks diversity [15]. This limitation frequently applies to assembly
datasets [2,3], which are often small and recorded at only a few locations. In
contrast, skeleton-based approaches do not face these limitations, as they only
process skeletons and, thus, can generalize much better to different environments.

Fig. 1. We combine body skeletons with hand skeletons for human action recognition.
Some actions can be recognized primarily by the movement of the hands. The encoding
of the skeleton sequences to images is explained in Sect. 4.1. Example frames from [2].

However, as shown in Fig. 1, some actions are difficult to recognize by the
body skeleton alone. For example, the action of attaching a small object is mainly
characterized by the object movement, as utilized in [1], and how the worker’s
hands interact with it. For this assembly step, it is therefore also useful to uti-
lize finer hand skeletons. This is already done for other assembly datasets such
as Meccano [12] or Assembly101 [14], which are recorded in first-person view.
However, using hand skeletons alone might not be sufficient for actions such as
turning, rotating or pushing of workpieces. During these actions, the fingers are
mostly rigid, and most of the movement takes place in the upper body.

Therefore, in this paper, we want to investigate how highly detailed hand
skeletons can be combined with less detailed body skeletons to enhance the
recognition of assembly actions on the ATTACH [2] and IKEA ASM [3] datasets.
By doing so, we aim to recognize both types of actions.

Our study examines both 2D and 3D body skeletons. While 3D skeletons
offer a more comprehensive representation of the person’s actions, 2D skeletons
are more widely available in practical applications. In this paper, we demonstrate
how 2D and 3D hand skeletons can be integrated with various body skeletons.
One of the key challenges is that the hands are often occluded, either partially
or entirely, which can complicate the estimation of hand positions and the fusion
with body skeletons. We also explore the challenges associated with differently
detailed skeletons. Specifically, a body skeleton typically has 18–32 joints, while
two hand skeletons have most often 42 joints. Although, there are typically
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more hand joints than body joints, the latter contains significantly more crucial
information for many assembly actions. Therefore, in this paper, we describe
how to address this dimension imbalance. Our contributions are as follows:

1. We investigate the use of hands in conjunction with body skeletons in both
2D and 3D to improve action recognition for assembly tasks.

2. We predict hand skeletons on the ATTACH and the IKEA ASM datasets and
employ a selection process to identify the appropriate hands.

3. To the best of our knowledge, we are the first to employ the SwinV2 trans-
former [10] for skeleton-based action recognition.

2 Related Work

In the following, we first present the state of the art of action recognition with
skeleton sequences, before going into more detail about differences between hand
and body skeleton action recognition and possibilities of fusing skeletons.

2.1 Methods for Skeleton-Based Action Recognition

Human action recognition encompasses various subfields, but in this paper, we
focus on the action classification task of pre-trimmed video clips of human skele-
ton sequences, as this task serves as a foundation for other related problems, such
as action segmentation or action detection. For skeleton-based action recogni-
tion, recently, 2D convolutional neural networks (CNNs) such as VA-CNN [20],
3D CNNs like PoseConv3D [5], graph convolution networks (GCNs) , and trans-
formers like AcT [11] have been used.

In our paper, we adopt the skeleton encoding of [4] and use it like VA-
CNN, which employs a ResNet50 backbone, as it has demonstrated superior or
comparable results on the ATTACH Dataset [2] compared to GCN methods.
In this approach, the skeleton sequence is encoded as an image so that typical
image based classifiers can be used. The image encoding also provides the ability
to weight the different skeletons based on their occupied image space which will
be explained in Sect. 4.

Moreover, we are able to replace the CNN backbone with the SwinV2-T
transformer [10], which has demonstrated excellent results in image-based pat-
tern recognition.

2.2 Hand and Body Skeleton-Based Action Recognition

The idea of fusing less detailed body skeletons with highly detailed hand skele-
tons for action recognition has only been briefly addressed in the literature, and
is still a new area of research. For instance, in NTU-X [17] body skeletons from
NTU-RGBD 60/120 were extended to include highly detailed hand skeletons and
facial features. In [16] a model was trained for every skeleton type to build an
ensemble for classifying actions. It was demonstrated in [16,17] that additional
hand skeletons from the NTU dataset for everyday and domestic actions (such
as eating or blowing one’s nose) are helpful to the classification task.
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In contrast, during assembly, the hand is often occluded by the object being
worked on, and the quality of the estimated hand skeletons varies significantly.
Typically, the state of the art for action recognition with hands focuses on ges-
ture recognition, where the hands are usually unoccluded. For action recognition
during assembly, hand skeletons have only been used in fine motor assembly
(e.g., Meccano [12], Assembly101 [14]), where cameras are mounted either on
the worker’s head or above the table and focus on the worker’s arms and hands.
For instance, in the application scenario of fine-motor toy assembly, which is
similar to ours, [14] demonstrated that estimated hand skeletons can be utilized
for action recognition. This indicates that our approach of fusing body skeletons
with hand skeletons shows promise for action recognition in general assembly
tasks. Such tasks involve a combination of coarse actions, where the movement
of the body is relevant, and fine motor actions (as in Fig. 1), where hand skele-
tons are primarily important. Therefore, in this paper, our goal is to explore how
these differently detailed body and hand skeletons can be combined optimally.

3 Hand and Body Skeleton Dataset Preparation

Below, we first present the datasets we used. Afterwards, we explain how we
estimated the hand skeletons and what to consider when processing them.

3.1 Datasets

To show our approach, we utilize two datasets that contain both small-grained
assembly actions that can be mainly recognized by the hands movement as well
as coarse assembly actions that involve the whole body, namely the ATTACH [2]
and the IKEA ASM [3] datasets. Both datasets are captured from multiple views
(three) and consist of assembly actions, where IKEA furniture are assembled.
The action names for the action recognition task are composed of verb-object
pairs. Below, we shortly discuss each dataset characteristics in detail.

ATTACH. The ATTACH dataset [2] provides different training splits, we focus
on the person split in this paper as it is the most commonly used split for
action recognition. Skeleton data are available in 3D from the Azure Kinect
framework. Since the state of the art typically deals with 2D skeletons, we have
also transformed the 3D skeletons into the 2D frame of the RGB camera. In our
experiments, we consider both 3D and 2D body skeletons for combination with
hand skeletons.

It is worth noting that actions are labeled for each hand independently.
Moreover, some actions involve the use of tools such as wrenches, hammers or
screwdrivers, where most of the movement occurs in the hand and fingers. Intu-
itively, this suggests that incorporating additional hand skeletons could poten-
tially enhance the performance of skeleton-based action recognition methods.

IKEA ASM. We use the official splits provided in [3]. The dataset provides
2D skeletons for all views estimated by Keypoint R-CNN [8]. Unlike the Kinect
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skeleton, Keypoint R-CNN only predict one single wrist joint per hand. There-
fore, incorporating additional hand skeletons might also be useful for action
recognition on the IKEA ASM dataset.

However, it should be noted that some actions are difficult to recognize even
with hand skeletons. For example, actions such as pick up back panel, pick up
front panel, and pick up side panel can only be distinguished by the object
used [1], which is not present in the skeleton data.

3.2 Hand Skeleton Estimation
For estimating hand skeletons, the hands need to be clearly visible in the current
frame. However, due to their small size in the IKEA ASM dataset, we first
cropped a 300×300 patch of the RGB image around the wrist joint of the body
skeleton. For the ATTACH dataset, we can skip this first step.

Fig. 2. Overview of our different fusion approaches. (a) As a baseline we train models
with only the body skeleton. H is the height of the input image. (b) As a simple way
of fusing both skeleton types we merge them into a single image while investigating
different ratios between body and hand skeletons. Nh is the number of hand joints (42
in our case) and s is a scaling factor. (c) We treat both skeletons types as different
modalities and apply them as distinct input images.

To detect hands and estimate hand skeletons, we used MediaPipe [19]. How-
ever, since the predictions can be rather noisy, we filtered the hands by discarding
all hands where the distance between the wrist joints of the predicted hand skele-
ton and the body skeleton exceeded a certain threshold. We kept at most two
hands per image. In cases where hand skeletons were missing, we simply took
skeletons from past frames to attribute for the missing data.

MediaPipe predicts both 2D and 3D hand skeletons with 21 joints each. While
2D hand skeletons are represented in the image plane, the 3D hand skeletons are
represented in a metric space, where the origin is located on the surface of each
hand. Therefore, when working with 3D data, we transformed the 3D hands into
the frame of the 3D body skeletons.

4 Approach

In the following, we describe our approach to action recognition of pre-trimmed
skeleton sequences. In Sect. 4.1, we first present our baseline with body skeletons,
before discussing different variations for incorporating hand skeletons in Sect.
4.2.
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4.1 Baseline: Body Skeleton Approach

For our baseline, we only use the body skeleton, without incorporating addi-
tional hand skeletons1. For this, we encode the skeletons from a trimmed action
sequence into one single RGB image, similar to [4,20]. One column of the image
represents one frame, where the skeleton joints are stacked in a fixed order. To
transform a joint to RGB, the XYZ coordinates are normalized and scaled.2

For 2D skeleton data, we have just two channels. These images (see Fig. 1 for
a visualization) can then be used as input to typical image-based classification
architectures such as ResNet50 (ResNet).

Furthermore, while ResNet is typically used in the state of the art [2,20], we
additionally use a SwinV2-T transformer (Swin) [10] for the first time to classify
skeleton sequences. Moreover, Swin offers another possibility for fusing hand and
body skeleton data, which we will describe in the following.

4.2 Approaches for Fusing Hand and Body Skeletons

For incorporating additional hand skeleton data, we experiment with different
methods, as illustrated in Fig. 2. Figure 2a serves as a schematic representation of
our baseline approach. In the following, we describe two approaches for encoding
the sequence of body skeletons with additional hand skeletons. The first approach
involves encoding the hand and body skeletons in a single image, while the second
approach creates multiple images that are then combined in the network, similar
to multimodal networks that integrate color data with depth data [7,13].

Single Image Fusion. Figure 2b illustrates our single image fusion approach.
Naively, the hand skeleton joints could be appended below the body skeleton
joints in the skeleton encoded image. For example, for a Kinect Azure skeleton
and MediaPipe hands, the first 32 rows would contain the body skeleton, followed
by the right hand and the left hand, each with 21 rows. In this way, however, the
body skeleton would account for just under 43% of the input, while the hands
would account for the remaining 57%. Such a division, in which the number of
hand joints of both hands is predominant, is typical for the relevant skeletons
used in the state of the art. This example is shown on the left side of Fig. 2b.

However, for recognizing assembly actions, the body skeleton provides more
relevant information than the fine hand skeletons, which should only serve as
support. With such a naive partitioning of the image, the classifier is given a
bias by devoting a larger input space to the hand skeletons.

To address this issue, we investigate another option to fuse the skeletons
into one image, which is shown on the right side of Fig. 2b. Here, we keep the
original scaling resolution of the body skeleton as in the baseline (see Fig. 2a).

1
Our preliminary experiments on the ATTACH dataset using hand skeletons solely showed far
inferior results compared to body skeletons solely and are thus not investigated further.

2
For ResNet, the image is resized to 224×224 with pixel values ranging from 0–255. For Swin, we
use a resolution of 256×256 with pixel values from 0-1.
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The body skeleton is scaled up to the original input resolution of the classi-
fier, and subsequently, another image with upscaled hand skeletons is stacked
below. We investigate scaling factors s ∈ [1, 8], where we scale the height of the
encoded hand skeleton images (i.e., Nh = 42 for MediaPipe skeletons), where
s=8 resembles the scaling of the body skeleton image.

Multiple Image Input. As an alternative to the previous approach, the skele-
ton data can be split into different images, and the resulting features can be
fused in the network. Recent work on the EMSAFormer [7] has shown that the
SwinV2 transformer is particularly suitable for multimodal processing. In their
study, the Swin transformer was extended in such a way that RGB and depth
images of a scene are fed into the same Swin network as two different images.

We propose a similar approach for processing the encoded body skeleton
images and the encoded hand skeleton images. Figure 2c (left) shows how we
create two images, one for the body skeleton and one for both hands. The first
image is encoded on the first 64 channels of the feature map in the patch embed-
ding, and the second image is encoded on the last 32 channels. After the first
attention block, the network combines the information and passes it on to the
subsequent blocks, whereby the Swin architecture was not changed.

Alternatively, we can split the skeletons into three images, as shown in Fig. 2c
(right). In this case, three images are created, and each is embedded on 32
channels and given to the respective attention head. With this approach, the
network itself can decide how to further use the combined information.

5 Experiments

Below we present the results of our experiments on fusing body skeletons with
hand skeletons. In Sect. 5.2, we show experiments with 3D body skeletons, before
moving on to 2D body skeletons in Sect. 5.3. First, we describe our training setup.

5.1 Setup

Our networks were trained for 100 epochs using the Adam optimizer and a
one cycle learning rate scheduler with 10% of epochs as warmup and several
maximum learning rates ranging from 5 · 10−3 to 5 · 10−5. We validated after
each epoch and chose the best epoch for testing. The performances of our trained
networks are evaluated using mean class accuracy (mAcc) and top-1 accuracy
(top1), two widely used metrics in action recognition literature [2,12,14,17].

Our networks are initialized with ImageNet weights, which improves perfor-
mance, although the encoded images generated from skeleton data differ a lot
from real images. However, performance is still fluctuating, which is why we
trained with at least five well-functioning learning rates and repeated training
three times for each setup. We present our result using box plots, where each
box plots summarizes at least 15 trainings.
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5.2 Experiments with 3D Body Skeletons

In the following, we present results solely on the ATTACH dataset [2]. While
the IKEA ASM dataset [3] also includes 3D skeletons, they are only available
for one camera perspective and captured at a very low frame rate, which makes
them rather unsuitable for skeleton-based action recognition.

Baseline – 3D Body Skeletons This subsection serves as a benchmark for
our experiments with fused inputs, as we optimize hyperparameters to create a
strong baseline using body skeletons solely. On the left side of Fig. 3, we present
the results of the baseline experiments with 3D body skeletons on the ATTACH
dataset. We compare the performance of two models with similar complexity,
namely the SwinV2-T transformer (Swin) and the ResNet50 CNN (ResNet).
Our results demonstrate that Swin outperforms ResNet, with a median improve-
ment of more than six percentage points and a maximum improvement of more
than four percentage points. Even the worst performing Swin model performs
better than the best ResNet model, indicating that Swin is a suitable model for
processing skeleton sequences encoded as images.

Fig. 3. Results using 3D body skeletons on the ATTACH dataset for our baseline
models as in Fig. 2a and our different fusion methods: Naive concatenation as in Fig. 2b
left, image concatenation with scaling of encoded hand skeleton image as in Fig. 2b
right, multi image input as in Fig. 2c. Best results are listed in Table 1.

However, we want to emphasize that training with Swin is significantly more
challenging than with ResNet, which is usually very robust regarding hyperpa-
rameters. With Swin, it is crucial to select an appropriate learning rate schedule,
as training can fail with even slightly too high learning rates. Conversely, slightly
too low learning rates do not produce significant improvements over ResNet. We
found that the best results were achieved with learning rates only marginally
smaller than the ones that caused training to fail.

Fusion of Hand Skeletons with 3D Body Skeletons Figure 3 illustrates
the results of our fusion experiments using our transformed 3D hand skeletons
from MediaPipe in the middle, and 2D hand skeletons on the right.
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3D Hands: Overall, an improvement of the median and variance can be observed
when using the single image fusion approach with the correct scaling factor.
While no improvement of the maximum for ResNet is observable, for Swin the
incorporation of 3D hands increased performance by about one percentage point.
This shows that there is relevant information in the hand skeletons that helps
making the training more consistent or even improves the general quality of
the models. Moreover, it shows that Swin is significantly better at combining
the relevant information from the estimated hand skeletons with the full body
skeletons. However, since the 3D hand skeletons in MediaPipe are estimated on
2D color images, a poor estimation of the hand joints may have led to only slight
improvements. Therefore, we explore to combine the 3D body skeleton with 2D
hand skeletons in the following.

2D Hands: The results of fusing 2D hand skeletons with 3D body skeletons
are shown in the right half of Fig. 3. First and foremost, this fusion can be
challenging due to the different frames of reference. The 3D skeletons exist in a
metric space while the 2D skeletons are given in image coordinates. This means
that the different parts of the input image for the single image fusion approach
need to be normalized independently.

For ResNet, using the 2D hands results in similar performance compared to
3D hand skeletons. On the other hand, Swin demonstrates that this fusion works
very well, and in some cases, it performs even better than the fusion with 3D
hands. In fact, the maximum improvement over the baseline is more than one
percentage point. This highlights Swin’s ability to handle the challenges of using
disparate input spaces.

These results also confirm our assumption that the estimated 3D hand skele-
tons from MediaPipe are less accurate than the 2D hand skeletons.

Fusion Variations: When comparing the different fusion approaches that we
examined, both ResNet and Swin yielded similar results. The naive approach,
which involves stacking the hand and body skeleton joints and then scale the
encoded skeleton image (Fig. 2b left), produced inferior results compared to
stacking the encoded images for hand and body skeleton joints (Fig. 2b right).
This highlights the importance of scaling up the body skeleton image with a
higher upscaling factor, similar to the body skeleton baseline (Fig. 2a).

However, we observed different results when comparing how much the hand
skeleton joints need to be upscaled. Swin performed better with a smaller scale
factor, while ResNet achieved better results with a larger scale factor. This could
possibly be attributed to the different convolutions in the first layer of the respec-
tive networks - ResNet uses a 7×7 convolution with stride 2, while Swin’s patch
embedder is a 4×4 convolution with stride 4.

We also compared single image fusion approaches to multiple image
approaches in the Swin transformer. Unfortunately, the multiple image
approaches were inferior to all other approaches. The median and maximum
results were significantly worse, and the variance was much larger. This suggests
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that this approach for multimodal input to a Swin network cannot be easily
applied.

The lower performance of the multiple image approaches in Swin could poten-
tially be attributed to the patch embedding process. This involves splitting the
convolutions to different images to obtain the feature maps with the needed
channel sizes. Furthermore, we experimented with larger patch embeddings as
in [7], where the body skeleton image is processed into 96 channels of the fea-
ture map and the hands into 32 or both into 64. Although this improved the
models and made them perform similarly to the single image approaches, it sig-
nificantly increased the needed computational power and training time. In [7], it
was shown that appropriate pre-training can be crucial. However skeleton-based
pre-training is not typical in literature and also not the focus of this paper.

5.3 Experiments with 2D Body Skeletons

Most datasets and state-of-the-art approaches utilize 2D skeletons. Therefore,
we also experiment with 2D skeletons and show results on the ATTACH [2] and
the IKEA ASM [3] dataset. First, we present results of our body only baseline
and afterwards the fusion with hand skeletons.

Fig. 4. Results using 2D body skeletons on the ATTACH and IKEA ASM datasets for
our baseline models as in Fig. 2a and our different fusion methods: Naive concatenation
as in Fig. 2b left, image concatenation with scaling of encoded hand skeleton image as
in Fig. 2b right, multi image input as in Fig. 2c. Best results are listed in Table 1.

Baseline – 2D Body Skeletons In Fig. 4, we present the results of the baseline
experiments with 2D body skeletons for each dataset. Firstly, it is important to
note that the 2D body skeleton baseline results are worse compared to the 3D
skeleton baseline results. This can be attributed to the loss of depth information
when using 2D skeletons.

As observed in the previous section on using 3D skeletons, Swin outperforms
ResNet on both datasets. However, as explained in Sect. 3.1 the skeleton-based
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action recognition problem is very challenging on IKEA ASM due to a differen-
tiation of actions by objects, which are not encoded in skeleton data. This could
explain the smaller improvement in accuracy on IKEA ASM than on ATTACH.

Fusion of Hand Skeletons with 2D Body Skeletons Right to the respective
baseline results in Fig. 4, we present the results of the fusion experiments with 2D
hand and body skeletons. The comparison between the 2D body skeleton base-
line and the fusion approaches reveals a notable improvement in classification
performance for both the ATTACH and IKEA ASM datasets. Thus, the inclu-
sion of hand skeletons in addition to body skeletons emerges as a highly effective
strategy to elevate the accuracy of action recognition in assembly applications.
Below, we go into more detail on the results for each dataset individually.

ATTACH: A closer look on the results on the ATTACH dataset and the compar-
ison with 3D body skeletons reveals that hand skeletons are crucial for achiev-
ing improved performance with 2D body skeletons, as indicated by the greater
improvement over the corresponding baseline. This holds true for both Swin and
ResNet models, highlighting the significance of hand skeletons in mitigating the
loss of depth information when only 2D body skeletons are available.

IKEA ASM: The results on the IKEA ASM dataset are less conclusive. Although
the addition of hand skeletons generally leads to better medians and smaller
variances, the improvement is not as clear as on the ATTACH dataset. Specifi-
cally, while the Swin and EMSAFormer models show clear improvement with the
addition of hand skeletons, the ResNet only shows improvement in median. One
possible explanation for this difference is that predicting hand skeletons on the
IKEA ASM dataset is more challenging due to the small size of the hands, which
often results in missing hand skeleton estimations. The attention mechanisms in
the Swin transformer may be better suited to handle this issue of jumps in the
temporal sequence, while the ResNet struggles with it and therefore processes
the information contained in the hand skeletons less effectively.

Table 1. Best results of our experiments. We report the mean class accuracy mAcc and
in parentheses the top-1 accuracy for the ATTACH [2] and IKEA ASM [3] datasets.

ATTACH IKEA ASM

3D Body (Baseline) 3D Body 3D Hand 3D Body 2D Hand 2D Body(Baseline) 2D Body 2D Hand 2D Body (Baseline) 2D Body 2D Hand

ResNet50 48.2 (56.5) 48.2 (55.7) 48.3 (55.9) 43.7 (52.3) 46.3 (54.6) 37.7 (70.3) 37.2 (72.6)

SwinV2-T 52.8 (60.3) 53.6 (61.0) 54.1 (61.7) 48.1 (56.0) 51.5 (58.9) 39.1 (72.6) 39.9 (73.9)

6 Conclusion

Our work demonstrates a successful fusion of hand and body skeletons, which
improves assembly action recognition notably. While hand skeletons contain
important information, they are often prone to noise and misinformation due
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to difficulties in estimation, such as occlusion or object/tool manipulation. To
avoid this issue, our approach specifically handles the importance of the body
skeletons to prevent the hand skeletons from dominating the input representa-
tion.

Furthermore, our approach demonstrates improved action recognition for two
state-of-the-art assembly datasets, not only with 3D body skeletons but also with
more commonly available 2D body skeletons. We have demonstrated a success-
ful approach for preparing hand skeletons for action recognition and provided
guidance on the key considerations for successful training with the Swin trans-
former. Overall, our work makes an important contribution to the field of action
recognition in mobile robotics and collaborative robots.
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Abstract. Early drowsiness detection could be crucial for some occupa-
tions such as drivers and monitors, as it can greatly improve safety and
efficiency. However, most existing drowsiness detection methods do not
consider the early stages of drowsiness or the practical feasibility of detec-
tion. To address this issue, we propose a gaze behavior pattern-based
drowsiness detection model that effectively distinguishes early drowsi-
ness. First, we extract the gaze behavior features of subject from the
video, which is composed of eye aspect ratio, head pose and gaze direc-
tion. Then we perform a preliminary analysis of the correlation between
the gaze behavior features and different stages of drowsiness and propose
a multi-stream Transformer model to obtain the classification result from
the feature sequences. Our proposed model uses two encoders to encode
the temporal and channel information respectively from the gaze behav-
ior features. We conducted experiments on the largest publicly avail-
able multi-stage drowsiness video dataset RLDD. Preliminary analysis
of the dataset showed the distribution of the features of our selected gaze
behavior patterns over different drowsiness stages had relatively signifi-
cant differences. For early drowsiness detection problem, experiments on
real dataset demonstrate the effectiveness of our approach compared to
state-of-the-art methods.

Keywords: Early drowsiness detection · Gaze behavior patterns ·
Transformer · Deep learning

1 Introduction

Drowsiness detection is an important and difficult problem, successful solutions
could be used in occupations such as drivers and monitors. Based on careful
analysis, experts believe the real number of annual fatalities due to drowsy driv-
ing in the U.S. may be closer to 6,000. This would mean drowsiness is involved
in approximately 21% of fatal crashes every year. Between hospital admissions,
property damage, and other costs, the estimated societal cost of drowsy driv-
ing in the U.S. may be anywhere between $12.5 billion and $109 billion per
year. In addition, studies show that, when driving for a long period of time,
drivers lose their self-judgment on how drowsy they are [17], and this can be
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14254, pp. 220–231, 2023.
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one of the reasons that many accidents occur close to the destination. Research
has also shown that sleepiness can affect workers’ ability to perform their work
safely and efficiently [15]. These troubling facts above prompted us to look for
a method to detect and alert people before they fall into drowsiness completely.
It is commonly recognized [11,13] that there are three main types of sources of
information in drowsiness detection: Performance measurements, physiological
measurements, and the behavioral measurements.

Performance measurements focus on subjects’ performance of work. For
instance, in the driving domain, it is reflected as steering wheel movements, driv-
ing speed, brake patterns, and lane deviations, etc. An example is the Autopilot
system of Tesla, by measuring the grip on the steering wheel or directly using
the lane departure warning system (LDWS) driving data it can obtain the time
and degree of vehicle deviation from the lane, and then analyze and project the
driver’s drowsiness level or whether the driver is distracted. In addition to being
expensive, the similar kind of solutions are difficult to redeploy to different work-
places. Some other performance measurements at workplace can be obtained by
testing workers’ reaction time and short-term memory [3]. Many of these meth-
ods can also not be used in other workplaces and the measurement itself can
have an impact on the results.

Physiological measurements can use heart rate, electrocardiogram (ECG),
electromyogram (EMG), electroencephalogram (EEG) [6,8,14] and electroocu-
logram (EOG) [8] to monitor drowsiness. However, these methods are intrusive
and not practical to deploy in the car or workspace even though they have higher
accuracy. Some wearable and convenient devices like hats and watches have been
proposed as an alternative for such measurements, but they are still not practical
to be used for long time.

Behavioral measurements are mostly obtained from subject’s facial move-
ments and expressions which could be captured non-intrusively by a single cam-
era. This data acquisition method not only require lower cost but also is highly
versatile, and can be used in almost any workplace, including the field of driver
drowsiness detection. And with the rapid development of deep learning and
computer vision techniques, behavioral measurements method will play a more
important role in the field of drowsiness detection.

Comparing the above three types of methods, the most potential and prac-
ticable is the drowsiness detection based on behavioral measurements. However,
it is rather difficult to detect early drowsiness in generic workplace using only
the behavioral data recorded by the video. The challenges for the recognition
are mainly in the early stage. Early drowsiness in real workplace is not evident
externally and is highly susceptible to be misclassified into normal or drowsy
stage. Most of the existing methods for drowsiness detection are based on videos
of pretend drowsiness in laboratory scenarios and most of them are aimed for
drowsiness driving only. And in some researches, the early drowsiness stage is
often ignored directly.

Thus, in this paper, we propose a vision-based early drowsiness recognition
method that aims to extract the behavior patterns of the different drowsiness



222 H. Gao et al.

stages of the subjects in the video to detect early drowsiness in real workplace
scenarios. In summary, this paper makes the following contributions:

– We extracted sequences data of eye aspect ratio (EAR), gaze direction, and
head posture data for the RLDD dataset. By analyzing the distribution and
correlation between these feature sequences, we verified that the sequences
of these features in different drowsiness states express different behavioral
patterns of the subjects, which can be used for early drowsiness detection
better.

– We design a multi-stream transformer model for early drowsiness detection,
which learns the gaze behavior patterns of the subjects in the videos by
the channel and temporal information from the feature sequences to classify
different drowsiness states.

– The experimental results show that our method has a strong advantage in
early drowsiness detection in real workplace scenarios based on video. And
our model significantly outperforms the baseline method of the RLDD dataset
and other multivariate time series classification methods.

2 Preliminary

In this section, we first present the RLDD dataset and our preprocessing opera-
tion of it. Then we perform an exploratory analysis to disclose the gaze behavior
patterns and further demonstrate the motivation for our proposed model.

2.1 Dataset

The RLDD dataset proposed by Ghoddoosian et al. [5] is the largest to date
realistic drowsiness dataset. It was created for the task of multistage drowsiness

Table 1. KSS drowsiness scale and drowsiness state categories

Drowsiness State Description Score

Extremely alert 1

Normal Very alert 2

Alert 3

Rather alert 4

Early Drowsy Neither alert nor sleepy 5

Some signs of sleepiness 6

Sleepy, no difficulty remaining awake 7

Drowsy Sleepy, some effort to keep alert 8

Extremely sleepy, fighting sleep 9

detection, targeting not only extreme and easily visible cases, but also subtle
cases of drowsiness. The RLDD dataset consists of around 30 h of RGB videos of
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60 healthy participants. For each participant they obtained one video for each of
three different classes: alertness, low vigilance, and drowsiness, for a total of 180
videos. Subjects were undergraduate or graduate students and staff members
who were from different ethnicities and ages. Videos were taken from roughly
different angles in different real-life environments and backgrounds. Each video
was self-recorded by the participant, using their cell phone or web camera. We
reclassified the videos in the dataset into the three categories in Table 1. based
on the KSS table [1] and the original labels. Our exploratory analysis and the
experimental part are all performed on this RLDD dataset.

2.2 Preprocessing and Feature Extraction

The motivation behind using gaze behavior features: eye aspect ratio, gaze direc-
tion, and head pose, was to capture temporal patterns that appear naturally in
human gaze behavior and could easily be overlooked by spatial feature detectors
like CNNs. We used dlib’s pre-trained face detector based on a modification to
the standard Histogram of Oriented Gradients + Linear SVM method for object
detection [4]. Then we calculate eye aspect ratio with the six facial landmarks
per eye (Fig. 1), and use the average value of two eyes as the EAR. For each eye,
we denote:

EAR =
AE + BD

2FC
(1)

where AE, BD and FC is the length of the line segment connecting the corre-
sponding points in the Fig. 1.

Fig. 1. The eye landmarks to define EAR for each eye.

In contrast to the blink features of Ghoddoosian et al. [5], we used original
eye aspect ratio of each frame of videos to preserve the continuity of the time
series so that it could be able to form multidimensional time series with other
features of gaze behavior.

For the head pose and gaze direction, we use the preprocessing pipeline from
[12] to obtain 3D head pose since the dataset does not provide camera parameters
and we plug ResNet50 [7,19] to the PnP-GA framework [10] to obtain 3D gaze
direction. Both of the extracted head pose and gaze direction are presented by
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pitch and yaw angle. All angles are converted to the camera-based coordinate
system so that they can be used together for drowsiness detection. A visual
representation of these two features is shown in Fig. 2 and Fig. 3.

Fig. 2. The pitch, yaw and roll angle of head pose.

Fig. 3. The pitch and yaw angle of gaze direction

It is worth noting that for head pose and gaze direction, their pitch angle
and yaw angle could be corresponded one by one in that they are both used to
express the direction to which the head or the eye is directing. As for the roll
angle of head pose, because the head can be tilted, for example, with the palm of
the hand propped up diagonally, we need a roll angle to measuring its degree of
inclination. And obviously, this angle could be significantly different in different
drowsiness phrase. For the direction of gaze, we do not consider the complex eye
structure here, we simply treat the eye as a sphere or a point, so the direction
of gaze does not need a roll angle.

For each frame of the videos of RLDD dataset, we have a 6-dimention feature:
{EAR, pitchh, yawh, rollh, pitchg, yawg}, in which EAR means the average
eye aspect ratio, pitchh, yawh and rollh means the pitch angle, yaw angle and
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roll angle of head pose, pitchg and yawg means the pitch angle and yaw angle
of gaze direction. These are the gaze behavior features that we use as the input
of our early drowsiness detection model.

2.3 Exploratory Analysis

Given the real-world early drowsiness dataset, we next convey several exploratory
analyses on all subjects from different perspectives to distinguish different
drowsiness state.

Fig. 4. Feature comparison between different drowsiness states

From {pitchg, yawg} and {pitchh, yawh}, the squint angle θs of gaze direc-
tion and head pose can be calculated. In general, when a person looks at some-
place, the head will also turns to the direction of looking accordingly, so the
direction of a person’s gaze direction and the direction of the head pose should
be basically the same, that is, the θs is not large. But if a person is in a drowsy
state, then he is likely to lean on the chair or tilt the body to look at the screen,
when the squint angle of gaze direction and head pose could be larger. We made
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a statistic of the squint angle under different drowsiness states for all subjects
in the dataset, as shown in Fig. 4(a). The distribution of the data fits well with
our assumption: Gradual increase in squint angle with increasing drowsiness.

As for EAR, it is a widely used feature in drowsiness detection. Here we show
its distribution over 3.24 M frames of the dataset in the Fig. 4(b). Even though
there is some individual variability in the value of EAR, it is still possible to see a
certain degree of differentiation in its distribution across the different drowsiness
phases. As drowsiness increases, the eye aspect ratio tends to decrease. Then we
show visualization of EAR in relation to gaze direction and head posture for all
subjects in the dataset for the three drowsiness states in Fig. 4(c) and Fig. 4(d).
Here we calculate the absolute value of the Pearson correlation coefficient of the
EAR with each angular component of gaze direction and head pose. It can be
seen that EAR has a higher linear correlation with the yaw angle component of
the gaze direction, while the linear correlation with all other angular components
is low (<0.3).

Through the above analysis of the components of gaze behavior, we can find
that the distribution of EAR and Squint Angle at different drowsiness states
has been significantly distinguishable. Although the linear correlation between
EAR and head pose and gaze direction is not very high, the distribution of their
values in different drowsiness states can still reflect slight difference of different
drowsiness states. Therefore, we have reason to believe that the gaze behavioral
features composed of the above-mentioned components can effectively extract
the behavioral pattern of different drowsiness states and help us effectively clas-
sify the early drowsiness state, and our subsequent experimental results also
corroborate our assumption.

3 Proposed Model

Our drowsiness detection model is based on the Transformer Network [16]. For
natural language processing problems, traditional Transformer has encoder and
decoder stacking on the word and positional embedding for sequence generation
and forecasting task. As for multivariate time series classification, we have several
modifications to adapt the Transformer for our need. The overall architecture of
our early drowsiness detection transformer model is shown in Fig. 5.

3.1 Embedding

We use the gaze behavior feature extracted from the video in the preprocessing
section as the input of our early drowsiness detection model, it’s a 6-dimensional
time series. We divide the input into temporal stream feature and channel stream
feature by time step and channel.
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Fig. 5. Overview of our multi-stream transformer model

In the original Transformers [16], all the tokens are projected to an embedding
layer. For the time series data is continuous, we replace the embedding layer
with fully connected layer. Instead of the linear projection, we use a non-linear
activation tanh. The positional encoding is added with the temporal stream
feature to encode the temporal information to utilize the sequential correlation
of time step better.

3.2 Multi-stream Encoder

Gaze behavior features we extract has multiple channels where each channel is
a multi-variate time series. The common assumption is that there exists some
hidden correlation between different channels. Capturing both the temporal and
channel information is the key for our early drowsiness detection.

One of the usual approaches is to apply convolutions, that is, the reception
field integrates both channel and temporal feature by the 2D kernels or the
1D kernels with fixed parameter sharing. We design a multi-stream extension
where the encoders in each stream explicitly capture the channel and temporal
correlation by attention and masking, as shown in Fig. 5.

Different from the natural language processing task, our task in this step is
actually a multi-variate time series classification task, so we do not need the
decoder [16] part of traditional Transformer.

Then, to merge the information of the two streams which encodes temporal
and channel correlations respectively, we use a fully connect layer after out put
of both encoders with the non-linear activation as T and C. Then we use a linear
projection layer to get h:

h = W · Concat(T,C) + b (2)

Through the softmax function, the streaming weight of each stream are com-
puted as sT and sC :

sT , sC = Softmax(h) (3)

Each streaming weight is attending on the corresponding stream’s output
and we get the final feature vector f :
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f = Concat(T · sT , C · sC) (4)

3.3 Loss Function

To verify the effectiveness of our model on early drowsiness detection task, we
design a supervised leaning framework on labeled video dataset. the loss function
of this framework is as follows:

ypre = σ(W
′
f + b

′
) (5)

Loss = − 1
N

∑

N

2∑

i=0

yiln(pi) (6)

It’s the loss function for our triple classification task. ypre is classification
probability of model output: ypre = [p0, p1, p2], pi is predictive probability of
category i. And yi is the onehot representation of the sample y: y = [y0, y1, y2],
when the sample y belongs to category i, yi = 1, otherwise yi = 0.

4 Experiment

4.1 Implementation Details

We used one fold of the RLDD dataset as our test set, and the remaining four
folds for training. After repeating this process for each fold, the results were
averaged across the five folds. All experiments are carried out with 6-dimensional
time series with a window length of 256 frames on the server, the step size of
the window movement is set to 128 frames and the batch sizes are 128. The
optimizer is uniformly used Adam, the learning rate is 4e − 5, the experiments
were conducted on a server with two NVIDIA A40 GPUs.

4.2 Evaluation Metrics

Accuracy, Precision, Recall, and F1-score are used to evaluate models. Four
evaluation indexes are computed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 − score =
2 × Precision × Recall

Precision + Recall
(10)
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For our target of early drowsiness detection problem, we choose Accuracy
and Precision, Recall, and F1-score of early drowsy category to evaluate our
model.

4.3 Results

We used SVM [2], HM-LSTM [5], and two state-of-the-art multivariate time
series classification methods: LSTM-FCNs [9] and TapNet [18] as our compar-
ison methods. The overall metrics of the RLDD dataset are shown in Table 2.
From this table, we observe that our method achieves significant results in the
overall accuracy and Precision, Recall, and F1-score of early drowsiness state
respectively, proving that our multi-stream Transformer model has good per-
formance on early drowsiness drowsiness detection problem. Compared with the
baseline HM-LSTM, all other methods using our proposed gaze behavior features
performer much better on early drowsiness classification, and this indicates that
our proposed gaze behavior features have a large contribution in early drowsiness
detection. Among all methods using gaze behavior features for classification, our
proposed model have the best performance in overall accuracy and three metrics
of early drowsiness classification.

Table 2. Performance of early drowsiness detection using different classification meth-
ods on the RLDD dataset.

Method Accuracy Precision∗ Recall∗ F1-score∗

HM-LSTM 0.6522 0.5105 0.3233 0.3959

SVM 0.6333 0.5112 0.5333 0.5220

LSTM-FCNs 0.7311 0.7213 0.6900 0.7053

TapNet 0.7411 0.6698 0.7033 0.6861

Ours 0.7833 0.7309 0.7333 0.7321

* The matrics of the early drowsy category

4.4 Ablation Study

We study the effectiveness of the channel stream encoder and each part of our
proposed gaze behavior features:1)Channel Stream Encoder:We remove the
channel stream encoder from the model and use the same gaze behavior features
for training and classification. The results in Table 3 show that there is large
reduction in the overall metrics of the model after the removal of channel stream
encoder. This result indicates that the Channel stream Encoder part of our
model plays a significant role in our early drowsiness detection model. 2)Gaze
Behavior Features: Our proposed gaze behavior features is composed of EAR,
gaze direction and head pose. To discover the extent to which each of these
features contributes to the final classification result, we remove 1 or 2 of the three
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input features and get the corresponding classification results. The results show a
drop in classification results when either 1 or 2 features are removed which means
each part of the gaze behavior features contributes to the final classification
result, of these, EAR is the most important, followed by gaze direction and head
pose.

Table 3. Performance after removing channel stream encoder or parts of gaze behavior
features on the RLDD dataset

Method Accuracy Precision∗ Recall∗ F1-score∗

Ours 0.7833 0.7309 0.7333 0.7321

Ours(remove channel stream encoder) 0.6188 0.5570 0.5700 0.5634

Ours(EAR) 0.6511 0.5980 0.6000 0.5990

Ours(head pose) 0.5889 0.4685 0.5200 0.4929

Ours(gaze direction) 0.6289 0.5710 0.5767 0.5738

Ours(EAR + head pose) 0.6933 0.6063 0.6367 0.6211

Ours(EAR + gaze direction) 0.6922 0.5868 0.6533 0.6183

Ours(head pose + gaze direction) 0.7244 0.6495 0.6733 0.6612

5 Conclusion

This paper addressed the problem of early drowsiness detection, and found an
approach to early drowsiness detection on gaze behavior feature sequence learn-
ing by learning the variability of subjects of different drowsiness state in gaze
behavior through data analysis. Based on the found variability in features of
gaze behaviors between subjects of different drowsiness state, we propose a new
variant model of Transformer by changing the internal structure of it to con-
sider gaze behaviors of subjects in combination with drowsiness state and using
an channel stream encoder a spatial stream encoder to better recognize gaze
behavior patterns which can improve the accuracy of early drowsiness detection
effectively. Experiments on real dataset demonstrate the effectiveness of the gaze
behavior features and model we proposed compared to state-of-the-art methods,
especially for the early drowsiness state. Our research may provide a reference
for the drivers and monitors’ drowsiness monitoring and warning system.
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Abstract. In the manufacturing sector, industrial defect detection tech-
nology has become a crucial component for substantial improvements in
both product quality and production efficiency. However, the accuracy
of deep learning-based defect detection methods can be compromised
by uneven training data, which could result in a bias towards over-
represented classes. To address this issue, some hard example mining
(HEM) methods have been developed to balance the contribution of dif-
ferent classes during training. Nonetheless, on the custom dataset, these
methods still inherit the hyper-parameters predefined on the COCO
dataset. We thereby propose a novel loss function, called Gradient Har-
monized Quality Focal Loss (GH-QFL), to weight hard examples dynam-
ically based on gradient statistics. The proposed approach is evaluated
on a defect detection dataset: NEU-DET. The results demonstrate that
our method outperforms the detection method using other loss functions
by 3.1% mean average precision (mAP).

Keywords: Hard example mining · Defect detection · Loss function

1 Introduction

Industrial defect detection [1,2,5] is a critical aspect of the production process,
as it plays a vital role in ensuring the quality and safety of the end product. With
the rapid growth of deep learning in recent years, the use of convolutional neu-
ral networks (CNN) [4] and the Vision Transformer (ViT) [3,28] has emerged
as a promising approach for defect detection tasks. Most deep learning-based
defect detection methods follow the same procedure as general object detection
methods. As illustrated in Fig. 1, the features are first extracted by the backbone
and feature pyramid networks (FPN) [17]. Then, two independent branches clas-
sify and regress the extracted features separately. Finally, the generated bound-
ing boxes are filtered and merged using methods such as Non-Maximum Sup-
pression (NMS). The localization quality estimation and classification score are
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Fig. 1. The overview of detection framework.

usually trained independently but compositely utilized during inference [16]. In
most existing defect detection methods, classification scores are used to rank
the prediction frames. However, this may induce the problem of classification-
localization imbalance. Specifically, samples with high classification scores but
low localization quality are more likely to be kept at NMS, whereas samples
with low classification scores but good localization quality are more likely to be
suppressed.

To address the above issue, the classical generalized focal loss (GFL) [16]
introduces a joint representation between localization quality (IoU score) and
classification score. GFL takes the IoU score between the positive bounding box
and its ground-truth box as the target of the classification branch. For negative
bounding boxes, their IoU score equals 0. As a result, the outputs of the classifica-
tion branch can represent the location quality, thus alleviating the inconsistency
between the classification and regression branches. Nonetheless, the class imbal-
ance problem still occurs in one-stage detectors. Generally, it can be alleviated
by hard example mining. Similar to focal loss [18], a scaling factor with some
hyper-parameters is introduced to make the detector attend more to hard exam-
ples. These hyper-parameters are usually tuned on the COCO dataset [19] and
then directly applied to other defect detection datasets, wherein these hyper-
parameters remain unchanged throughout the entire training process. However,
fixed hyper-parameters cannot be the ideal choice for different inputs.

In order to mine hard examples automatically and adaptively, we herein
propose a gradient harmonized quality focal loss, termed GH-QFL, to avoid
manually-adjusted hyper-parameters. GH-QFL is a novel loss function that
attenuates the loss from the perspective of the example number with a certain
range of the gradient norm. This loss function not only inherits the advantage
of the QFL but also automates finding hard examples and weighing them. It
can dynamically adjust the base loss dependent on the gradient statistics of
the current batch to handle the imbalance problem in the training examples.
To assign a harmonizing weight to each example’s gradient, the GH-QFL first
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calculates statistics on the number of examples sharing similar properties with
respect to their gradient density. The harmonized weight allows for significant
down-weighting of both the outliers and the vast quantity of cumulated gradi-
ent produced by simple examples. Once this is achieved, training can be more
effective and stable because all types of examples are contributing equally.

To summarize, the main contributions of this paper are as follows:

1. The existing one-stage detectors cannot effectively handle the hard examples
since predefined hyper-parameters are fixed on custom datasets. To mitigate
this, we propose a novel loss function, GH-QFL, which is capable of adjusting
the hyper-parameters weighted easy negative samples (background samples)
adaptively and automatically, thus realizing effective hard example mining.

2. With GH-QFL, we can easily improve the performance of one-stage RetinaNet
on the custom dataset, e.g., NEU-DET.

2 Related Work

The issue of imbalance in object detection datasets is a well-recognized prob-
lem, which has been addressed by various techniques proposed in the literature.
However, most of the current one-stage object detection frameworks [20,22–24]
fail to tackle this issue effectively, as they often assume a balanced distribution
of positive and negative examples. Furthermore, in real-world scenarios, certain
instances of object classes might be rare, which further exacerbates the problem
of imbalance [6,7,29]. Many datasets have a skewed distribution of classes, where
only a few dominant classes are accounted for the majority of the data while the
rest of the classes have very few examples. This poses a significant challenge
in effectively learning the characteristics of the underrepresented classes, which
may lead to poor detection performance for these classes.

The problem of accurately mining difficult examples based on RoIs is
addressed by the online difficulty example mining (OHEM) [26] approach. This
method involves selecting positive and negative examples based on a fixed thresh-
old and calculating the loss for all prediction boxes. The candidate boxes are then
sorted based on the size of the loss, and the first K boxes with the highest loss
are selected as difficult examples. During backpropagation, only the gradient of
these K examples is computed, while the gradient of other candidate boxes is
set to 0 and no backpropagation is performed. This results in a targeted diffi-
cult example mining approach that can be used to improve the accuracy and
robustness of object detection models.

However, one of the drawbacks of the OHEM method is that it prioritizes
retaining only the examples with high losses, while completely ignoring simple
examples. Therefore, further research is needed to explore alternative techniques
that can overcome these limitations.

While Balanced Cross Entropy solves the problem of positive and negative
example imbalance, it does not distinguish between simple and difficult exam-
ples. When there are too many easily distinguishable negative examples, the
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whole training process will be carried out around them, and then flood the posi-
tive examples, causing great losses [11]. So Lin et al. [18] introduced a modulation
factor, named focal loss, which is a dynamically scaled cross-entropy loss used
to focus on difficult-to-distinguish examples. Through it, the weight of difficult-
to-distinguish examples can be dynamically reduced during the training process,
so that the center of gravity can quickly focus on those difficult-to-distinguish
examples (which may be positive examples or negative examples, but are all
helpful to the training network).

Fig. 2. Outliers are data points
that are significantly different from
the majority of the other data
points in a dataset.

Due to a fact that the initial focal loss
only supported discrete labels, Li et al. devel-
oped Quality Focal Loss (QFL) [16] based on
the concept of focal loss and modified its form
to allow continuous labels and be suitable for
one-stage target identification.

In addition, traditional loss functions
such as cross-entropy and smooth L1 loss
treat each object equally, without consider-
ing differences in difficulty and complexity
[12]. In contrast, QFL incorporates the qual-
ity and difficulty of each object and extends
the idea of focal loss to the range of object
qualities. It introduces a quality factor that
assigns higher weights to difficult-to-detect
objects, allowing the model to focus more
on challenging objects and improve detection
performance.

Moreover, focal loss has been found to cause the model to over-emphasize
examples that are particularly difficult to distinguish, potentially leading to
reduced performance on other examples. As a result, the model might con-
verge, but outliers in the examples would still be wrongly classified [13,30,31].
To address this issue, Li et al. [15] argue that attention should not only be paid
to easily separable examples but also to particularly difficult examples(outliers),
as shown in Fig. 2. To this end, they proposed Gradient Harmonizing Mechanism
(GHM) to attenuate loss from the perspective of the example number within a
certain range of confidence. GHM is designed to effectively balance the contri-
bution of each example to the total loss, taking into account the example distri-
bution and the degree of difficulty. This allows the model to give more attention
to challenging examples while preventing the loss from being dominated by the
easy examples.

3 Approach

With the advent of deep learning in the field of defect detection, the number of
defect regions and non-defect regions in images is extremely unbalanced, which
can lead to poor detection performance. In industrial settings, the hard example
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mining technique improves the detection accuracy of the model by preferen-
tially selecting difficult-to-identify defect examples during the training process.
In this paper, we propose the Gradient Harmonized Quality Focal Loss (GH-
QFL) method to address this issue of mining hard examples during training.

3.1 Focal Loss

By providing different weights for different examples, focal loss can dynamically
reduce the loss of easy examples while increasing the loss of challenging ones.

FL (pt) =

{
−αt (1 − pt)

γ log (pt) , if y = 1
− (1 − αt) pγ

t log (1 − pt) , otherwise
(1)

In (1), −αt is the modulation factor of positive and negative examples; pt

is the probability that the prediction is a positive example (y = 1); γ is the
modulation coefficient, which controls the attention to the example.

Class imbalance arises when the majority of the image contains background,
while the foreground objects of interest are relatively sparse. This causes the
model to be biased towards the majority class, resulting in poor detection per-
formance for the minority class. Designed to address the issue of class imbalance
in object detection tasks, especially for one-stage object detection networks, focal
loss introduces a modulating factor that down-weights the loss contribution from
easy examples and focuses more on hard examples. By doing so, the network can
effectively mine the hard samples that are previously ignored and improve the
detection performance for the minority class [10]. With this mechanism, focal
loss has been shown to achieve state-of-the-art performance on many popular
object detection datasets.

3.2 Soft Label

The original focal loss had a misalignment of classification and regression
branches and only supported discrete labels. Therefore, based on GFL [16], an
implicit joint representation is designed to align the classification branch and
the regression branch, named Quality Focal Loss (QFL).

As shown in the Fig. 3, we take the detection box of the regression branch
prediction and the IoU (Intersection over Union) that corresponds to the true
value as the target of branch classification when we are going through the training
process, where its supervision softens the standard one-hot category label and
result in a float target for the corresponding category. So the classification loss
is changed as follows:

QFL (pt) =
{− (qt − pt)

γ [(1 − qt) log (1 − pt) + qt log (pt)] , if y = 1, qt > 0
−pt

γ log (1 − pt) , otherwise (2)

where qt is the IoU between the prediction box and its true value; γ is the mod-
ulation coefficient. Similar to focal loss, the weighting method of corresponding
examples is employed here to improve focus on hard samples. (qt − pt) close to
0 indicates an easy sample, while (qt − pt) is larger signifies a harder one.
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Fig. 3. The combined representation of classification scores and positioning quality
estimates is efficiently learned by the Quality Focal Loss.

3.3 GH-QFL

The above-mentioned methods share the same issue with focal loss, which
requires manual adjustment of hyper-parameters on different datasets in order to
achieve efficient mining of difficult samples. Inspired by gradient-based method
[15], we have designed “GH-QFL”, a classification loss function that is self-
adjusting based on the gradient norm.

Specifically, this gradient-based method firstly constructs a histogram of gra-
dients based on the current batch, and then uses the histogram to estimate the
gradient frequency and the gradient range of each bin. Next, it calculates a
weight for each example based on the gradient frequency and the gradient range
of its corresponding bin, and finally applies the example weight to adjust the
gradient of the example during backpropagation.

GD (gt) denotes the gradient density of the region where the gradient of the
t-th example lies, as shown in the following equation:

GD(g) =
∑N

k=1 δε (gk′g)
lε(g)

(3)

δε(x, y) =
{

1 if y − ε
2 <= x < y + ε

2
0 otherwise (4)

lε(g) = min
(
g +

ε

2
, 1

)
− max

(
g − ε

2
, 0

)
(5)

where
∑N

k=1 δε (gk′g) indicates the number of gradient magnitudes falling within
the interval of (g − ε/2, g + ε/2), g is a point previously partitioned within the
interval (0,1), and |qk − pk| represents the gradient magnitude of the k-th exam-
ple corresponding to gk; lε(g) denotes the length of the interval being computed.

L (pt) =
(1 − qt) log (1 − pt) + qt log (pt)

GD (gt)
(6)
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where qt > 0 for positive examples, qt = 0 for negative examples.
The gradient density is used as a modulation factor of the loss function to

increase the weight of hard examples while paying less attention to outliers, thus
mining more reliable challenging examples.

4 Experimental Setup

4.1 Dataset

We evaluate our proposed method on the NEU-DET dataset [9], which contains
1800 grayscale images of steel surface defects with the resolution of 200 × 200.
As shown in Fig. 4, the NEU-DET dataset consists of six kinds of surface defects
of the hot-rolled steel strip, i.e., crazing (Cr), inclusion (In), patches (Pa), pitted
surface (PS), rolled-in scale (RS) and scratches (Sc). In the experiments, the
dataset is randomly split into a training set and a test set with a ratio of 8:2.

Fig. 4. Examples of NEU-DET dataset

4.2 Configuration Setup

To train the defect detection model, we used the framework of PyTorch. All the
experiments are conducted on NVIDIA Geforce RTX 3090 GPU. RetinaNet is
used as the baseline. The initial learning rate is set to 0.1, and the batch size is
8 with 50 epochs. The stochastic gradient descent(SGD) is used to optimize the
training process. To improve the robustness of the model, data augmentation
such as random flipping, adjusting contrast, clipping, and scale change are used
in the training process.
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4.3 Evaluation Metrics

The average precision (AP) metric, a trade-off between precision and recall, is
used to evaluate the effectiveness of the detection approach. The definition of
these indices is as follows:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

AP =
Precision + Recall

2
, (9)

where TP, FP, and FN represent the number of true positives, false positives,
and false negatives, respectively. In order to assess overall performance, the mean
AP (mAP) across all classes, is also calculated.

5 Experimental Results

5.1 Performance Comparison

Table 1 shows the performance of our proposed method on NEU-DET dataset.
We compare our method with one-stage object detection algorithms RetinaNet
[18] and EfficientDet [27] and two-stage object detection algorithm Faster R-
CNN [25]. RetinaNet surpasses Faster R-CNN by 4.1 mAP and EfficientDet by
5.1 mAP with a mAP of 75.2. With the same backbone ResNet-50, our proposed
method outperforms RetinaNet by 3.1 points, achieving a mAP of 78.3. This
outcome shows that RetinaNet performed better in the defect detection tasks
when GH-QFL was used. Furthermore, our proposed method receives the highest
AP in four of the six categories, inclusion, patches, rolled-in scale and scratches.

Table 1. Detection results on NEU-DET dataset.

Method AP(%) mAP(%)

crazing inclusion patches pitted surface rolled-in scale scratches

Faster R-CNN [25] 39.5 77.3 85.2 81.6 64.5 78.2 71.1

EfficientDet [27] 45.9 62.0 83.5 85.5 70.7 73.1 70.1

RetinaNet [18] 49.3 81.5 94.5 81.4 65.2 79.1 75.2

RetinaNet w/ GH-QFL(Ours) 48.4 85.5 94.7 84.2 71.4 85.4 78.3

Figure 5 compares the visualization results of the proposed method with origi-
nal RetinaNet on NEU-DET dataset. It can be noticed that the proposed method
gives improved detection results for various examples that RetinaNet finds dif-
ficult to identify.



240 X. Xiao et al.

Fig. 5. Visualization of detection results on NEU-DET dataset

5.2 Ablation Study

To evaluate the effectiveness of GH-QFL, ablation experiments are carried out
to analyze the results of detection as well as hard examples mining. We compare
the performance of RetinaNet using different loss functions: (1) Focal Loss [18],
(2) GHM Loss [15], (3) Quality Focal Loss [16], (4) GH-QFL. Except for the loss
function, the architecture and parameters of the detector remain unchanged.

Table 2. Detection results of RetinaNet using different loss functions on NEU-DET
dataset.

Loss function AP(%) mAP(%) FN-TP TP-FN

crazing inclusion patches pitted surface rolled-in scale scratches

Focal [18] 49.3 81.5 94.5 81.4 65.2 79.1 75.2 – –

GHM [15] 42.9 85.4 91.4 80.7 64.1 87.4 75.3 52 46

QFocal [16] 38.0 85.0 93.9 84.1 68.6 90.1 76.6 54 43

GH-QFL 48.4 85.5 94.7 84.2 71.4 85.4 78.3 67 21

Detection Results. Table 2 displays the detection results of RetinaNet using
different loss functions on the NEU-DET dataset. Although the detection results
are improved when GHM Loss and Quality Focal Loss are employed indepen-
dently, our method achieved the highest mAP of 78.3, which was 3 points higher
than GHM Loss and 1.7 points higher than Quality Focal Loss. The experimen-
tal results highlights the positive impact of introducing the GHM mechanism
into Quality Focal Loss.
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Table 3. Detection results on different backbones.

Backbone Loss function AP(%) mAP(%)

crazing inclusion patches pitted surface rolled-in scale scratches

ResNet-50 [8] Focal Loss [18] 49.3 81.5 94.5 81.4 65.2 79.1 75.2

GH-QFL 48.4 85.5 94.7 84.2 71.4 85.4 78.3

ResNet-101 [8] Focal Loss [18] 47.1 85.1 91.6 88.1 68.9 82.5 77.2

GH-QFL 49.7 87.7 94.3 86.0 71.2 86.3 79.2

Swin-T [21] Focal Loss [18] 41.5 85.0 92.1 78.5 66.7 86.9 75.1

GH-QFL 46.2 86.2 92.6 79.9 67.1 89.8 77.0

Hard Example Mining Results. Since we do not predetermine the set of hard
examples, we define the defective examples that cannot be detected on baseline
RetinaNet, i.e., FN examples, as hard examples. If method B can detect examples
overlooked by method A, i.e., convert FN to TP, and has less error output for TP
of method A, it is reasonable to conclude that method B is superior to method
A in detecting hard examples. [14] By comparing the quantity of FN-TP pairs
and TP-FN pairs, we can validate the proposed method’s capacity to mine hard
examples.

FN-TP pairs are examples that are misidentified as FN by RetinaNet and
correctly identified as TP by the other approach. In the same approach, the
TP-FN pairs are defined. A good hard example mining approach should have a
higher number of FN-TP pairs and less TP-FN pairs.

According to the results which are presented in Table 2, our proposed method
converts 67 FN samples into TP, which is superior to GHM Loss with 52 FN-TP
pairs and Quality Focal Loss with 54 FN-TP pairs. Moreover, in comparison
to the original RetinaNet, only 21 TP samples are lost using GH-QFL, which
is almost half of that of GHM Loss or Quality Focal Loss. These experimental
findings show that the our proposed loss function works well for hard example
mining.

Different Backbones. Transformer-based backbones [21,28] are widespread
recently. Therefore, to make results more convincing, we compare the perfor-
mance of Focal Loss and GH-QFL by conducting experiments with different
backbones. As is demonstrated in Table 3, our proposed method achieves a high-
est mAP of 79.2 with ResNet-101 [8], which is higher than that of ResNet-50
[8] and Swin Transformer [21]. With all of the above-mentioned backbones, GH-
QFL outperforms Focal Loss with higher mAP.

6 Conclusion

This paper elaborates on a challenging yet often overlooked task in the defect
detection field, called hard example mining. We propose an effective loss func-
tion, namely GH-QFL, to realize an effective hard example mining, and thus
facilitating further research on the defect detection task. The experiments pre-
sented in this paper demonstrate the effectiveness of our proposed method for
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detecting defects in industrial applications. However, defect detection is an area
that requires continued research and attention. Our future work will focus on
the accurate localization of a wider range of defect styles, as well as improving
the computational efficiency of our proposed method to better meet the needs
of practical applications.
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Abstract. Image style transfer aims to obtain content images with cor-
responding styles by migrating style information to content images, but
transfer models in recent years have certain application limitations, for
which good image quality and transfer speed of the model cannot be
guaranteed at the same time, and it’s common that clear edges cannot
be maintained when stylizing. This paper proposes a new feed-forward
model Haar Based Network (HaarStyle), which uses different resolution
modules to complement the edge information and content features of
the image to improve its quality. It is experimentally demonstrated that
HaarStyle can ensure a certain transmission speed with fewer artifacts,
avoiding the problem of over stylization.

Keywords: Style Transfer · Image Quality · Deep Learning ·
VGG-19 · AdaIN

1 Introduction

With the development of deep learning, image style transfer has gradually
become one of the research hotspots in the field of computer vision. By transfer-
ring the style of the style image to the content image, the image with both style
image pattern and content image is obtained, which method has been widely
researched in industry and academia.

PhotoNAS [1] proposed that skip connections will invalidate the transmission
module at the bottleneck of the autoencoder, and autoencoders with skip con-
nections generally lose the ability to generate stylized images.DRLN [2] employs
cascading residual on the residual structure to allow the flow of low-frequency
information to focus on learning high and mid-level features. Xia [20] proposed a
feed-forward neural network that learns local edge-aware affine transforms that
automatically obey the photorealism constraint.PhotoWCT [14] improves the
network of WCT [13] to get a preliminary synthetic image with target style, and
then smoothing operation is performed on the synthetic image, which improves
the image quality and solves the problem of identical space but inconsistent
stylization within the image.WCT2 [21] further improves the ability to grasp
the details of the content image by using filtering instead of upsampling and
downsampling operations, which completely retains the detailed information of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14254, pp. 244–255, 2023.
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the image and speeds up the process. STROTSS [9] improves the image quality
by modifying the loss function and relaxing the EMD calculation to expand the
application of the loss function, while its slow optimization process hampers its
practical application. LapStyle [16] proposed to obtain high quality images by
Draft-Revision to add detailed modifications gradually from low-quality images,
but the images obtained suffer from certain artifacts and over styling. Ensuring
the overall stylization of the image while preserving the detailed features of the
image is still a major difficulty in image style transfer. The goal of this paper is
to achieve a higher stylized image quality with a certain style transfer speed.

The contribution of this paper is shown as follows. A new feed-forward model
is proposed, which first performs style transfer through low-resolution images,
then incorporates high-resolution image features on this basis. This method
enhances the understanding of content features when stylizing the model by
adding filtering, which ensures the speed of model transfer while reducing the
image quality problems of artifacts and over styling.

2 Related Work

Style Transfer. The main deep learning-based image style transfer methods
currently include two types. One of image based iterations and the other of
model based iterations. The goal of image based iterations is to make the white
noise image match both the content feature representation of the content image
as well as the style feature representation of the style image, and the stylized
synthetic image is obtained thereafter. The methods based on image iterations
are divided into three main ways: maximum mean difference based, Markov ran-
dom field based, and depth image analogy based. Gatys [5] was able to extract
abstract content representations from arbitrary images based on maximum mean
difference by reconstructing the abstract feature representations in the middle
layer of the VGG network [19], and the stylistic feature representations of arbi-
trary images can be extracted by constructing Gram matrices; Li et al. [10]
proposed a combination of Markov random fields and deep convolution neu-
ral networks to partition the image feature mapping into many region blocks.
Combining the concept of image depth analogy with deep learning, Liao [15]
proposed a deep image analogy method optimized with iterative region block
matching. The image iteration based approach can produce stylized images with
high and excellent effect quality without data training. However, it takes longer
computation time due to the need for multiple iterations and it relies greatly on
pretrained models. The model iteration based approach is a good solution to the
above problem, thus it can also be combined with the image iteration based app-
roach to achieve better image results. The style transfer based on model iteration
can be divided into Per-Style-Per-Model, Multi-Style-Per-Model and Arbitrary-
Style-Per-Model according to the number of style transfer that the model can
achieve. Per-Style-Per-Model method are featured by pre-trained feed-forward
neural networks to generate a stylized resultant graph [7], Li et al. [11] were
inspired by MRF-based neural style transfer algorithms that utilize GAN to
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solve the efficiency problem of Markov forward networks. Benefiting from an
effective block design, it can ensure texture information in complex images, but
it lacks semantic considerations. Multi-Style-Per-Model method fuses multiple
styles into one model, increasing the flexibility of the model for more applica-
tion scenarios. Its two main implementations are as follows: Dumoulin et al. [4]
kept the same convolution parameters in a convolution neural network and only
affined transformations of the parameters in the IN layer to simulate different
styles. Li et al. [12] first produced the desired stylized results by linking stylized
encoding features and image content encoding features together for input into
the decoder module in a stylized transfer neural network. Schmidt [3] achieves
arbitrary style transfer by finding content blocks that match the style blocks,
exchanging and rebuilding with reconstruction algorithm for fast reconstruc-
tion. Belongie [6], inspired by Dumoulin [4] and others, proposed AdaIN in the
IN layer using the mean as well as variance statistics information of content and
style features to achieve arbitrary stylization operations.

Picture Quality Improvement. WCT2 [21] uses filtering to decompose the
whole image into one low-frequency feature and three high-frequency features.
And by filtering instead of upsampling and downsampling, the original image
can be fully restored without losing feature information. LapStyle [16] employs
coarse to fine strategy to further process the image through the Revision network,
transforming the image at lower solution. PhotoWCT [14] adds manifold ranking
to correct the local content similarities of images into a consistent style, but its
grasp of detailed features is insufficient compared to that of WCT2 [21] and
LapStyle [16]. The HaarStyle in this paper outperforms the above models in
terms of detailed features as it can effectively reduce artifacts and blurring of
content edges.

3 Introduced Approach

In order to make the generated image content closer to the content image, it is
necessary to grasp the image details of the content processing. Image styles are
transferred at low-resolution first. Due to the large receiving field, and less local
details, global styles are easier to transfer at low-resolutions. Haar filtering is
used to decompose the picture into low-frequency features and high-frequency
features, where high-frequency features are used to repair the image details.

3.1 Network Architecture

The overall structure is shown in Fig. 1. The model consists of two main parts:
one is the low-resolution style transfer module, and the other is the high-
resolution module, which adds high-frequency image features to obtain a better
feature representation by performing style transfer at low-frequencies. Besides,
the loss function part of the model is also included in this part.
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Fig. 1. Overview of HaarStyle Framework, the model consists of two main parts: the
Low-resolution style transfer module, and the High-resolution module

3.2 Low-Resolution Module

The low-resolution module is designed to transfer the target style of the image to
the content image at a low-resolution. Firstly, the low-resolution image xlc of the
content image is obtained by downsampling the original image xc. The image of
low resolution will have less details and thus can be transferred better compared
to the original image, accelerating the computational efficiency of transfer to a
certain extent to obtain a faster transfer model.

Some content features of the remaining low-frequency features may be lost
after the high-resolution module separation, and compared with WCT [13],
AdaIN [6] prefers to learn the complete image distribution rather than just a
part of the content image, so the low-frequency features filtered by direct Haar
filtering are not used here.

The whole low-resolution module mainly includes encoder, AdaIN, and
decoder parts, and the overall structure is shown in Fig. 2. Multi-level links are
adopted, the features of layer4 are taken as the input of AdaIN, and the three
layer-level features obtained are acquired into decoder as the repair part of the
image. In the final model, the Revision Network [16] is added to further improve
the image quality.

3.3 High-Resolution Module

The high-resolution module is taken from the first 4 layers of VGG-19 [19], and
the original content image xc is input to the network to get the content features
Fc, where Fc is the feature information of each layer, which is decomposed into
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Fig. 2. Illustration of Low Frequency Module.

three parts of high-frequency features FLH , FHL, FHH by Haar filtering. These
features are incorporated into the low-resolution module for feature fusion, and
the low-frequency images are given high-frequency features in this way.

Haar filtering is mainly divided into three convolution kernels, corresponding
to the three high-frequency image parts of FLH , FHL, and FHH . The specific
composition of the three convolution kernels is shown in (1).

FLH =
1
2

[−1 1
−1 1

]
, FHL =

1
2

[−1 −1
1 1

]
, FHH =

1
2

[
1 −1

−1 1

]
(1)

Three separate high-pass filters are used to extract vertical, horizontal and
diagonal edge like information, which corresponds to the detailed information in
the image and is used to fill in the detailed features lost in low-frequency images,
ensuring that the image is generated with a good grasp of the detailed part.

3.4 Loss Function

During the training process, The encoder uses part of the VGG-19 network [19]
and the parameters are fixed, and decoder parameters update through parame-
ters training. The loss mainly contains two parts, namely content loss and style
loss. Therefore the loss function is introduced through these two aspects.

Content Loss. The content loss mainly adopts the widely used perceptual loss,
with the self similarity loss proposed in STROTSS [9] taken into consideration.
By comparing the feature value of the image to be generated after convolution
with that of the target image after convolution, perceptual loss makes the image
to be generated more semantically similar to the target image. The specific
formula is shown in (2).

lp = ‖norm (Fc) − norm (Fcs)‖2 (2)
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where norm is the normalization operation for feature F , Fc is the content image
feature after CNN, and Fcs is the corresponding image feature after stylization.
Self similarity loss preserves the correlation between content image and target
image, which have the same content and the same self similarity or emergence.
Self similarity loss is calculated as in (3).

lss =
1

(hw)2
∑
i,j

∣∣∣∣∣
Dcs∑
i D

cs
ij

− Dc∑
i D

c
ij

∣∣∣∣∣ (3)

where Dc
ij and Dcs

ij are the (i,j) elements of matrix Dc and matrix Dcs, while
Dij here is the pairwise cosine similarity < Fi, Fj >

Style Loss. The style loss uses mean-variance loss and relaxed Earth Mover
Distance (rEMD). rEMD is relaxed in STROTSS to enable it to comply with
the requirements of gradient descent for style transfer, which aims to capture
the distance between two sets. The feature vectors in the style loss are extracted
from each layer of the encoder. rEMD loss is calculated as shown in (4).

lr = max

⎛
⎝ 1

hsws

∑
i=1

min
j

Cij ,
1

hcswcs

∑
j=1

min
i

Cij

⎞
⎠ (4)

Cij represents the cosine distance between the feature vectors, which is shown
in (5).

Cij = 1 − Fs,i.Fcs,j

‖Fs,i‖ ‖Fcs,j‖ (5)

However, the cosine distance ignores the size of the feature vector. In practice,
this leads to visual bias in the output, so the usual mean-variance loss is added
to this part, where μ and σ are the mean and variance of the distribution,
respectively. The formula is shown in (6).

lm = ‖μ (Fs) − μ (Fcs)‖2 + ‖σ (Fs) − σ (Fcs)‖2 (6)

Loss of Network. The high-resolution module uses VGG-19 [19] with fixed
parameters, so it is not involved in the loss calculation. In the low-resolution
module, the input is the content image and style image, and the output is the
stylized target image. The network calculates the loss function from the target
image and the input content image and style image. And the overall loss function
of the whole network is shown in (7).

Lloss = (lp + ω1 × lss) + α (lm + ω2 × lr) (7)

The weights ω1 and ω2 as well as α are set for each part and are mainly used
to control the balance of each part and to make adjustments, lp,lss, lm, lr are
mentioned in (2), (3), (6) and (5) respectively.
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4 Experiment

4.1 Dataset

The “COCO2017” from MS-COCO [17] is used as the content images during
training. The overall size of the content image is 18.2G, and the validation set
is also the validation set from COCO2017, which contains about 5,000 images,
and a number of distinctive art style images are selected as the data source of
style images.

The devices used for the experiments are Intel(R) Xeon(R) Silver 4110 CPU
@ 2.10 GHz and RTX 2080 Ti, and all experiments are carried out with a single
GPU. For the training of the network as a whole, the Adam [8] optimizer is used.
The initial learning rate is set at 1e−4, while the batch-size is set to 5 images,
with 30,000 iterations for training and every 500 iterations for validation of the
validation set. The initial settings of each weight ω1 and ω2 and α in the loss
function are 16, 3, 3.

4.2 Qualitative Comparison

As is shown in Fig. 3, the LapStyle [16] model is Per-Style-Per-Model with fast
style transfer, which can generate high quality images at a guaranteed fast speed.
But over-styling features may occur in the processing of images. For example,
in the stylized image in row 6, column 2, LapStyle [16] generates certain noise
content (excessive yellow spots) while stylizing, while the building in the styl-
ized image in row 6, column 1 has certain edge distortion. AdaIN [6], WCT
[13], SANet [18] of the Arbitrary-Style-Per-Model have certain advantages over
Per-Style-Per-Model in processing styles, but the performance of image quality
in transfer for a specific style is not as high as that of Per-Style-Per-Model.
Specifically, the performance is poor when converting for larger content features
in images. And in some cases, the conversion style fails. At the same time, the
content has some edge blurring and does not effectively retain the content fea-
tures of the content images. Among them, WCT [13] performs slightly lower
than the other two of the Arbitrary-Style-Per-Model in the retention of content
features and cannot guarantee the contours of content image features. In this
regard, our model performs better than the Arbitrary-Style-Per-Model in gen-
erating images with higher quality, and better preserves the content features of
the images while ensuring the stylization. AdaIN [6] showed sensitivity to color
distribution when stylizing, with regard to the fact that the color distribution
of the original content image is still retained in the stylized image. Being of the
Per-Style-Per-Model, our modle has some advantages over others in terms of the
quality of the stylized transferred image performance.

We also compared HaarStyle with the image based iterative model [5,9],
shown in Fig. 4. Gatys et al. [5] used Gram matrix for image stylization, which
was not suitable enough for stylization of local details and distribution of styl-
ization to the overall picture, let alone the overall picture style conversion.
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Fig. 3. Qualitative comparisons with state-of-the-art feed forward methods.



252 H. Chen et al.

STROTSS [9] used a relaxed EMD distance for stylized loss function and syn-
thesized the image by going from 32 pix to 512 pix, which has clearer texture
and style compared with the method of Gatys et al. [5]. Our model is closer in
image quality to the image based iterative model.

Fig. 4. Qualitative comparisons with simage based iterative model.

Transfer Rate Comparison. We compared the style transfer rates of several
feed-forward networks, and overall the Per-Style-Per-Model was faster than the
Arbitrary-Style-Per-Model. HaarStyle model was faster than the other Per-Style-
Per-Model, and was similar to the LapStyle [16] model in terms of transfer rate.
The details are shown in Table 1.

Table 1. Image Style Transfer Rate of Different Models.

Method Time (256pix) Time(512pix)

Gatys et al 15.863 50.804

WCT 0.6892 0.9974

SANet 0.0174 0.0553

AdaIN 0.0113 0.0392

LapStyle 0.0082 0.0091

Ours 0.0079 0.0089

4.3 Ablation Study

Results of the ablation experiments are shown in Fig. 5. After adding the Harr
filter, the ability of the image generation to depict the original image elements
is further enhanced by strengthening the understanding of the detailed features,
which is reflected in Fig. 5 as a more detailed depiction of the contours of the
clouds.
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Fig. 5. Ablation Study.

Content-Style Tradeoff. When training, we control the degree of stylization
of the model by changing the size of α. As is shown in Fig. 6, when α is low,
the model as a whole tends to retain a lot of detailed features without enough
stylization, and when α is high, the model has higher stylization but less content
information.

Fig. 6. Content-style Tradeoff.

5 Conclusion

In this paper, we propose a feed-forward Per-Style-Per-Model, HaarStyle, which
performs fast style transfer by a low resolution module, while adding high-
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frequency features for enhancing the detailed features of the image. The effec-
tiveness of our proposed structure is demonstrated experimentally, and the over-
all model can guarantee the image quality with a certain style transfer speed.
Future work will revolve around converting the model from Per-Style-Per-Model
to Arbitrary-Style-Per-Model.
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Abstract. Social media is a fertile ground for the growth and distribution of mis-
information. The belief in misinformation can have devastating consequences,
and may lead to unnecessary loss of life. Properly identifying and countering
misinformation on social media is therefore necessary for the fight against misin-
formation. In this research, we developed an Adjusted Semi-Supervised Learning
for SocialMedia (ASSLSM)method to classify and analyze tweets regardingmis-
information related to earthquakes prediction. The ASSLSM method adjusts the
pseudo-labeling constraints based on assumptions related tometadata of the tweets
and users, with the goal of providing better information to the underlying models.
We collected a dataset of 82,129 tweets related to the subject of earthquakes pre-
diction. Expert seismologists manually labeled 4,157 tweets. We evaluated and
compared the performance ofASSLSM, supervised learning, and semi-supervised
learning (SSL) methods on the dataset. We found that the ASSLSM methodol-
ogy provides better and more consistent performance in comparison to supervised
learning and SSL. Finally, we used an ASSLSM classifier to classify the full
dataset and analyzed the classified dataset.

Keywords: Semi-Supervised Learning ·Misinformation · RoBERTa · NLP ·
Earthquakes · Social Media

1 Introduction

Social media has a key role in the expression and distribution of authoritative as well
as speculative information on different subjects in recent times, primarily because of its
massive adoption, audience, and accessibility.

Social media platforms reach different sectors of the population and are often
accessed multiple times a day, or even continuously throughout the day, for recreational
purposes as well as for receiving important information. Considering its reachability and
instantaneous nature, social media inevitably became a viable channel of communica-
tion for information, such as warnings about upcoming and ongoing emergencies and
disasters.
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During the COVID-19 pandemic, social media served as a communication channel
for news and updates about the spread of the virus throughout the world, as well as
medical recommendations [1].

It is important to acknowledge that social media is also a ground for the growth
and dissemination of misinformation. Misinformation is false or inaccurate information
according to the best factual evidence that is available at a given point in time, regardless
of an intention to mislead or deceive [2].

Misinformation and the belief therein are driven by a natural need to rationalize
unexplained or unexpected emergencies and disasters. The lack of authoritative sources
with reliable information regarding emergencies and disasters, such as an outbreak of a
virus or an earthquake, combined with circumstantial evidence, promotes misinforma-
tion [3, 4]. The belief in misinformation can have devastating consequences, and even
lead to unnecessary loss of life.

Earthquakes prediction is one of the topics of misinformation that is being discussed
on social media. According to the current state of research, earthquakes cannot be pre-
dicted. The exact location, time and magnitude of future events cannot be specified [5,
6]. However, misinformation regarding earthquakes prediction or advance warnings is
constantly spread on social media [5, 7]. Earthquakes contribute to anxiety, shock, and
panic of the population, which consequently make the population more vulnerable to
misinformation [8]. A population that frequently encounters misinformation regarding
earthquake predictions may hesitate to take necessary actions to protect itself when a
real earthquake alert is issued. Misinformation regarding earthquake predictions causes
a variety of symptoms, such as confusion, anxiety, or misguided beliefs that further lead
to unnecessary actions like evacuation. Misinformation on social media is a commonly
researched topic in general and on Twitter specifically [1, 9, 10].

In this research, we developed a new semi-supervised classifier to classify and ana-
lyze tweets regarding misinformation related to earthquake predictions. This methodol-
ogy presents several challenges, including the collection of enough relevant data, labeling
the data as misinformation or not-misinformation, and the development of a classifier
to detect tweets that spread misinformation. Finally, the classified tweets are analyzed
to gain knowledge and insights on how to support the fight against misinformation
regarding earthquakes prediction.

We address these challenges and provide the following contributions. We collected
82,129 tweets according to a specific search query that expert seismologists curated. A
key task in analyzing tweets related to misinformation is to label and classify the tweets
[1]. Collecting a large amount of data is often efficient and fast, whereas labeling the data
can be a lengthy, costly, and complicated process. Therefore, a relatively small amount
of labeled data is often used to classify a relatively large amount of unlabeled data. In this
work, expert seismologists labeled 4,157 tweets. The labeled dataset constitutes about
five percent of the dataset.

Training a classifier where only five percent of data is labeled can provide a good
model for the training set. However, applying the model on the rest of the data may be
problematic regardless of how representative the training set and classifier are [11]. Semi-
Supervised Learning (SSL) methods address this concern by making assumptions about
the actual labels of the unlabeled data based on the confidence levels of the predictions.
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In this work, we eased the confidence level assumption and introduced new assumptions
that are more robust when labeling data from social media.

Classification models depend on features that represent samples in the dataset. For
textual data, the features are often derived from Natural Language Processing (NLP)
word embedding algorithms. The outcome is that two semantically-similar texts are
likely to be classified as having the same label.

However, classification models based on word embedding features do not account
for valuable metadata of social media posts, such as the classification of other posts of
the same users, the number of followers a user has, or the time the user has existed on
the platform. While semantically similar tweets share similar embeddings, the actual
classification of other tweets posted by the same user can be even more useful than the
classification of more semantically similar tweets from other users.

In this work, we present the Adjusted Semi Supervised Learning for Social Media
(ASSLSM) method. ASSLSM takes into consideration different metadata of the users
whoposted the tweets, aswell asmetadata of the tweets. This approach ismore robust and
adapted to the environment of social media in general, and to misinformation regarding
earthquake predictions specifically. To the best of our knowledge, this work is the first
to consider features derived from social media metadata in the process of SSL.

2 Related Work

Twitter is a valuable and frequently used source of information for research regarding
misinformation on socialmedia. Erokhin et al. [9] analyzed the behavior of different con-
spiracy theories related to the COVID-19 pandemic. Batzdorfer et al. [12] investigated
the dynamics of tweets that discuss COVID-19 conspiracy theories, by comparing tweets
from a group of users that talked about conspiracy theories and a group of users that
participated in the general discussion on the virus. Darwish et al. [13] created a fake news
detection system and built a dataset of fake and real tweets about the Russian-Ukrainian
conflict using deep-learning and machine learning methods.

NLPmethodologies such as Bidirectional Encoder Representations fromTransform-
ers (BERT) [14], provide superior results for different NLP tasks, includingword embed-
ding [15, 16]. Micallef et al. [17] used BERT embeddings to investigate and counter
misinformation in tweets related to COVID-19 over a period of five months. Elroy and
Yosipof [1] transformedBERTword embeddings to sentence embeddingusingSentence-
BERT [18] to train a classifier and classify a dataset of over 300K tweets related to the
COVID-19 5G conspiracy theory.

RoBERTa is a Robustly Optimized BERT Pretraining Approach model based
on BERT, that was pretrained with different design decisions, leading to improved
performance and state of the art results [19–21].

Sentence-BERT is amodification of the pre-trainedBERT network that uses Siamese
and triplet network structures on top of the BERT model and fine-tuned based on high
quality sentence interface data to learn more sentence level information [18]. Sentence-
BERT can also be applied onRoBERTa’s embeddings to transform theword embeddings
into a single sentence embedding, resulting in 768 features per tweet when used with
RoBERTa-base.
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In addition to embeddings, training a classifier for misinformation on social media
also requires a labeled set. The labeled set is traditionally gathered through a lengthy
process of manual labeling and often results in a relatively small number of labeled
samples out of a relatively large amount of data. SSL addresses this issue by enhancing
the labeled dataset with pseudo-labels based on assumptions regarding the appropriate
labels for some of the unlabeled dataset.

Multiple SSL approaches exist, such as consistency training, proxy-label methods,
generative methods, and graph-based methods [22]. SSL models operate under certain
assumptions, such as that two samples that are close enough to each other in terms of
distance should share the same labels [22]. Another possible common assumption is that
two samples in the same cluster share the same label [22]. Depending on the task, these
assumptions can be more or less strict, which is reflected in the size and quality of the
pseudo-labeled dataset.

SSL proxy-label methods leverage a model that was trained on the labeled dataset to
label samples of the unlabeled dataset using heuristic approaches. A common require-
ment that the prediction meets a certain threshold of confidence level is typical for
proxy-label methods [22]. In this case, a label is considered a proxy label if the prediction
probability is greater than a certain threshold.

Metadata and characteristics of social media posts, as well as their authors, were
proven to be useful for classification tasks of tweets and were used to enhance classifica-
tion models in previous works [1, 23–25]. These include the number of users who follow
the author and the number of users the author follows as an indication of the author being
a robot [23], or URLs, mentions, retweets, and tweet length as indicators for credibility
[24, 25]. Balaanand et al. used tweets metadata in graph-based semi-supervised learning
to detect fake users on Twitter [26]. Jan et al. used tweets metadata as features for the
underlying classifier in a SSL methodology [27].

3 Workflow

To achieve the research objective, we developed the following workflow. Figure 1
describes the workflow used in this work. The workflow consists of four stages, namely
data collection and preprocessing, models evaluation, results, and analysis.

The data collection and preprocessing phase involves the collection of tweets related
to the discussion of earthquakes prediction misinformation on Twitter, the computation
of the embedding for each tweet, and the hand-labeling of tweets.

The evaluation process of the models consists of testing and comparing the perfor-
mance of different models using different techniques, namely supervised learning, SSL,
and ASSLSM.

Following the evaluation, the complete dataset is classified using the model that
provides the best performance, and the classified dataset is analyzed.
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Fig. 1. Research workflow.

4 Dataset

We collected 82,129 tweets related to the subject of earthquakes prediction, forecasts,
and notifications, and metadata of the users that posted the tweets, over a period of about
two years, fromMarch 1, 2020, toMarch 31, 2022. The datawas collected using a Twitter
API that is limited to academic research and provides access to Twitter’s full archive.
The search query used in this study was defined by expert seismologists as [[predict OR
forecast OR warn OR updates OR alert] AND [earthquake OR quake OR [seismic AND
event] OR seismicity OR shaking OR EQ]].

The data includes the tweets themselves as well as metadata such as the number of
retweets, likes, and replies a tweet received. Metadata of the users who posted the tweets
was also collected, such as the total number of tweets the user posted on the platform,
the number of followers they have, and the number of other users they follow.

Expert seismologists manually labeled 4,157 tweets into three categories in accor-
dance with the Communication Guide [6]. The three categories are misinformation,
not-misinformation, and irrelevant tweets (see Table 1). Tweets claiming to be able to
predict future earthquakes were labeled as misinformation (835 tweets, Table 1). Tweets
notifying about current earthquakes, rejecting others’ ability to predict future earth-
quakes, or explaining how certain services work, were labeled as not-misinformation
(1,416 tweets, Table 1). Other tweets that are not directly related to earthquakes, such
as secondary hazards, were labeled as irrelevant (1,906 tweets, Table 1).

We used RoBERTa-base to calculate the word embeddings of each tweet in the
dataset, and transformed the word embeddings of each tweet to a sentence embedding
using Sentence-BERT [18], yielding a vector of 768 features per tweet.
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Table 1. Categories of the manually labeled dataset with examples, number of tweets and
proportion of each category.

Category Example # of Tweets % of Tweets

Misinformation “24 h WARNING: 5.5 + earthquake is likely
in the Mammoth Lakes - Bridgeport area and
5.0 + earthquake is likely within 50 miles of
Santa Clarita - NW of Los Angeles during the
next 24 h.”

835 20.09

Not misinformation “No one can accurately predict earthquakes.
The USGS issues long term earthquake
forecasts for certain areas.”

1,416 34.06

Irrelevant “Could end in 5 billion gallons of lava or
nothing will happen. Hard to say. [link]”

1,906 45.85

5 ASSLSM: Adjusted Semi-Supervised Learning for Social Media

SSL based on proxy-method uses an underlying supervised learning model to predict
the labels for the unlabeled data. Predictions that meet certain criteria are assigned as
pseudo-labels to the labeled dataset for the purpose of training a model. A common
assumption in SSL is that predictions with a confidence level above a certain threshold
are correct.

ASSLSM implements additional constraints for the pseudo-labels, based on features
of the metadata of the tweets and the users who posted them.

The ASSLSM methodology provides better information to the models by adjusting
the constraints used in SSL, to achieve more consistent performance across different
underlying models. The constraints used in the ASSLSMmethodology require all of the
following:

(A) The predictionmatchesmost of the existing labels for that user in the labeled dataset.
(B) The user who posted the tweet has >=100 tweets in the dataset.
(C) The confidence level of the prediction is above threshold T.

Constraint A is based on the presumption that a new tweet by a user who mostly
posted tweets belonging to a certain category is very likely to also belong to the same
category. Constraint B reduces the number of exceptions to the previous presumption
by ignoring users without enough samples in the dataset. Constraint C uses a lower
threshold than basic SSL methods, to compensate for the lower number of samples due
to constraints A and B.

6 Results

According to the workflow previously described, we evaluated three methodologies,
namely supervised learning, semi-supervised learning, and ASSLSMwith two different
confidence thresholds. Each evaluation phase tested the performance of five different
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machine learning models, namely k-NN with k = 3, Random Forest with 100 trees,
Gaussian Naïve-Bayes, Logistic Regression, and a Voting Ensemble classifier of all
previousmodelswith soft voting.Weused 5-fold cross-validation for eachmodel. Table 2
presents the weighted F1, precision, and recall scores of the models using supervised
learning, SSL, and ASSLSM.

First, we tested traditional supervised learning using the labeled dataset. The results
of the supervised learning performance are presented in Table 2, Supervised Learning.

Second, we tested a proxy-method based SSL model by calculating the prediction
probability for the sentence embedding of each unlabeled tweet using each model at a
time. Predictionswith a confidence level over a threshold of 0.9were added to the labeled
dataset as pseudo-labels (Table 2, Semi-Supervised Learning). For the SSL method, we
used a single constraint that requires the confidence level of the prediction to be greater
than a fixed threshold of 0.9.

Finally, we tested the ASSLSMmethod (Table 2, ASSLSM) using a confidence level
threshold of >0.7, and a confidence level threshold of >0.8.

The supervised learning models provided an average F1 score of 0.752 with a
standard deviation of 0.04, using a dataset of only 4,157 labeled samples.

The SSL models with a confidence threshold of >0.9 presented a much higher
average F1 score of 0.938 and a slightly higher standard deviation than the supervised
learning models. These results represent an increase of almost 25% in the average F1
over the average F1 of the supervised learning models. The SSL approach significantly
increased the number of samples in the labeled dataset by hundreds of percent with
pseudo-labeled samples.

ASSLSM provided even better results with average F1, precision, and recall scores
of 0.961, 0.971, and 0.958, respectively, using a confidence level threshold of >0.7;
and 0.956, 0.969, and 0.953, respectively, using a confidence level threshold of >0.8.
ASSLSM also provided a significantly lower standard deviation. The additional con-
straints introduced in the ASSLSM method enable the use of a lower threshold for the
confidence level of the predictions while achieving better F1 scores than those of the
SSL method. The ASSLSM methodology performed better on average than the SSL
methods, using a lower average number of samples because of the tighter constraints in
ASSLSM.

The SSL methodology provided an average of 42,598 labeled and pseudo-labeled
samples. ASSLSM provided a lower number of labeled and pseudo-labeled samples,
with an average of 27,819 and 29,990, using a threshold of> 0.7 and>0.8, respectively.
The standard deviation of the number of labeled and pseudo-labeled samples in the
different models is also significantly larger in SSL (21,890) compared to ASSLSM
(3,468 and 1,967). The results show that more samples do not necessarily imply better
performance of the models. For example, the SSL Naïve Bayes model (80,423 labeled
samples, mean F1 of 0.853) and the SSL k-NN model (49,600 labeled samples, mean
F1 of 0.967) with a relatively larger number of samples, performed worse than the SSL
logistic regression (36,552 labeled samples, mean F1 of 0.979) and the SSL voting
ensemble (31,191 labeled samples, mean F1 of 0.968) models.
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Table 2. Supervised, Semi-Supervised, and ASSLSM classification performance metrics.

Model Labeled F1 Precision Recall

Supervised Learning

k-NN 4,157 0.742 ± 0.053 0.756 ± 0.047 0.748 ± 0.050

Random Forest 4,157 0.763 ± 0.075 0.812 ± 0.047 0.780 ± 0.065

Naïve Bayes 4,157 0.681 ± 0.100 0.683 ± 0.098 0.688 ± 0.100

Logistic Regression 4,157 0.799 ± 0.056 0.812 ± 0.046 0.804 ± 0.051

Voting Ensemble 4,157 0.773 ± 0.066 0.785 ± 0.056 0.781 ± 0.060

Average ± Std 4,157 ± 0 0.752 ± 0.04 0.770 ± 0.048 0.760 ± 0.04

Semi-Supervised Learning with threshold >0.9

k-NN 49,600 0.967 ± 0.024 0.967 ± 0.024 0.967 ± 0.024

Random Forest 15,222 0.923 ± 0.072 0.950 ± 0.037 0.922 ± 0.083

Naïve Bayes 80,423 0.853 ± 0.054 0.875 ± 0.047 0.843 ± 0.057

Logistic Regression 36,552 0.979 ± 0.037 0.980 ± 0.035 0.978 ± 0.038

Voting Ensemble 31,191 0.968 ± 0.043 0.971 ± 0.040 0.969 ± 0.043

Average ± Std 42,598 ± 21,890 0.938 ± 0.047 0.949 ± 0.038 0.936 ± 0.05

ASSLSM with threshold >0.7

k-NN 28,151 0.959 ± 0.036 0.966 ± 0.025 0.958 ± 0.041

Random Forest 27,126 0.961 ± 0.044 0.976 ± 0.021 0.958 ± 0.052

Naïve Bayes 32,010 0.947 ± 0.045 0.960 ± 0.025 0.943 ± 0.053

Logistic Regression 31,546 0.968 ± 0.038 0.976 ± 0.024 0.965 ± 0.045

Voting Ensemble 31,116 0.969 ± 0.040 0.979 ± 0.021 0.966 ± 0.047

Average ± Std 29,990 ± 1967 0.961 ± 0.008 0.971 ± 0.007 0.958 ± 0.008

ASSLSM with threshold >0.8

k-NN 27,793 0.958 ± 0.036 0.966 ± 0.025 0.957 ± 0.041

Random Forest 21,473 0.945 ± 0.057 0.968 ± 0.028 0.944 ± 0.063

Naïve Bayes 31,996 0.948 ± 0.045 0.961 ± 0.025 0.943 ± 0.053

Logistic Regression 28,931 0.964 ± 0.044 0.974 ± 0.026 0.961 ± 0.051

Voting Ensemble 28,902 0.966 ± 0.042 0.977 ± 0.022 0.962 ± 0.050

Average ± Std 27,819 ± 3468 0.956 ± 0.008 0.969 ± 0.006 0.953 ± 0.008

The results show that applying the ASSLSM methodology optimized the data pro-
vided to the models, resulting in more consistent performance results between the
different models.

The dataset contains 82,129 tweets posted by 34,219 unique users. Only 42 users
had 100 or more tweets in the labeled and unlabeled dataset, hence meeting constraint
B, according to which the user who posted the predicted tweet has >=100 tweets in the
labeled and unlabeled datasets. These 42 users are responsible for 33,084 tweets (about
a third of the dataset). It may therefore be presumed that participants in the discussion
of a certain domain of misinformation are likely to be repeating actors, and therefore
more predictions could be pseudo-labeled.
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7 Analysis

We applied the ASSLSMmethodology with a confidence level threshold of>0.7, which
provided the best performance, to train a Voting Ensemble model and classify the unla-
beled dataset. Table 3 presents the distribution of tweets in each classification label. The
results show that tweets in both the misinformation and not-misinformation groups are
posted by a relatively small number of authors (2,644 and 2,760 users, respectively). On
the other hand, authors who posted tweets that are classified as irrelevant, typically quit
the discussion after posting a little more than a single tweet on average.

Table 3. Distribution of tweets in each label.

Label # of Tweets % of Tweets # of Unique Authors Tweets/Author

Misinformation 7,412 9.0 2,644 2.803

Not misinformation 32,539 39.6 2,760 11.789

Irrelevant 42,178 51.4 30,530 1.382

We analyzed the time series of the tweet frequency in both groups. Figure 2 presents
the daily tweet frequency of the misinformation and not-misinformation groups. Certain
peaks are immediately visible and can be attributed to actual earthquakes that happened
at the time. For instance, the highest peaks on February 10, 2021 and March 4, 2021
(Fig. 2, annotations 1–2), correlate with a Mw 7.7 earthquake near Loyalty Islands and
a Mw 8.1 earthquake near Keramedac Islands. The peak on August 14, 2021 (Fig. 2,
annotation 3) correlates with a Mw 7.2 earthquake near Haiti.

Fig. 2. Daily tweets frequency per category. The blue line represents the not-misinformation
tweets, and the red line represents the misinformation tweets.

The cross correlation between the daily tweet frequency of the misinformation and
the not-misinformation groups examines how one group dynamics depending on the
dynamics of the other group. The results show a positive correlation of r= 0.36 between
the daily tweet frequency in the misinformation and not-misinformation groups at time
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t. This findingmeans that the tweet frequency of either group is associated with the tweet
frequency of the other group on the same day.

8 Conclusion

In this study, we introduced the Adjusted Semi-Supervised Learning for Social Media
methodology for the classification of misinformation tweets related to earthquakes pre-
diction. ASSLSM takes into consideration useful metadata from social media that is
not directly related to the text of the posts. We compared the performance of ASSLSM
to the performance of supervised learning and SSL. We found that ASSLSM achieves
significantly better results than supervised learning, and a model that is much more fit
with more consistent results than SSL.

The results show that the additional constraints introduced in ASSLSM helped
achieve better performance on average, while using a lower average number of sam-
ples than SSL. The variance of the results also decreased significantly when using
ASSLSM. This finding suggests that using constraints that are more relevant to the
data improves the performance and consistency of the models, despite reducing the
number of pseudo-labels.

We used ASSLSM to classify the complete dataset of tweets related to earth-
quakes prediction into three categories, namely misinformation, not-misinformation,
and irrelevant, and analyzed the resulting labeled dataset.

The analysis of the classified dataset shows that relatively small groups of authors
are responsible for most tweets in the misinformation and not-misinformation groups.
In the group of irrelevant tweets, however, more authors participate in the discussion but
typically quit the conversation after a little more than one post in average. We also found
that the daily tweet frequencies of the misinformation and not-misinformation groups
are positively correlated and peak during an earthquake.

Valid information regarding ongoing events and the effective spread thereof, espe-
cially in case of potentially hazardous events, is important for public safety [28]. At the
same time, the prevention of misinformation is of similar importance. As such, it can be
recommended to communicate authoritative and correct information in a timely manner
as an effective measure against misinformation on social media.

Future works can extend the ASSLSM to classify misinformation of other disaster
and emergencies events in social media, by fine-tuning the constraints to better fit other
datasets, as well as generalize the constraints to fit a wider variety of datasets, either on
different topics or from different social media platforms.
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and human factor for resilient society).



266 O. Elroy and A. Yosipof

References

1. Elroy, O., Yosipof, A.: Analysis of COVID-19 5G conspiracy theory tweets using sentence-
BERT embedding. In: Artificial Neural Networks and Machine Learning–ICANN 2022: 31st
International Conference on Artificial Neural Networks, Bristol, UK, 6–9 September 2022,
Proceedings, Part II, pp. 186–196 (2022)

2. Komendantova, N., et al.: A value-driven approach to addressing misinformation in social
media. Human. Soc. Sci. Commun. 8, 1–12 (2021)

3. Aschwanden, A., Demir, C., Hinselmann, R., Kasser, S., Rohrer, A.: Zika and travel: public
health implications and communications for blood donors, spermdonors and pregnantwomen.
Travel Med. Infectious Disease (2018)

4. Ortiz-Martínez, Y., Garcia-Robledo, J.E., Vásquez-Castañeda, D.L., Bonilla-Aldana, D.K.,
Rodriguez-Morales, A.J.: Can Google® trends predict COVID-19 incidence and help
preparedness? the situation in Colombia. Travel Med. Infect. Dis. 37, 101703 (2020)

5. Fallou, L., Corradini, M., Bossu, R., Cheny, J.-M.: Preventing and debunking earthquake
misinformation: insights into EMSC’s practices. Front. Commun. 7, 287 (2022)

6. Fallou, L., Marti, M., Dallo, I., Corradini, M.: How to fight earthquake misinformation: a
communication guide. Seismol. Res. Lett. 93, 2418–2422 (2022)

7. Cochran, E.S., et al.: Research to improve ShakeAlert earthquake early warning products and
their utility. US Geological Survey (2018)

8. Huang, Y.L., Starbird, K., Orand, M., Stanek, S.A., Pedersen, H.T.: Connected through crisis:
Emotional proximity and the spread of misinformation online. In: Proceedings of the 18th
ACMConference onComputer SupportedCooperativeWork and Social Computing, pp. 969–
980 (2015)

9. Erokhin, D., Yosipof, A., Komendantova, N.: COVID-19 conspiracy theories discussion on
Twitter. Social Media + Soc. 8, 20563051221126051 (2022)

10. Elroy, O., Erokhin, D., Komendantova, N., Yosipof, A.: Mining the discussion of monkeypox
misinformation on Twitter using RoBERTa. In: IFIP International Conference on Artificial
Intelligence Applications and Innovations, pp. 429–438 (2023)

11. Yosipof, A., Senderowitz, H.: Optimization of molecular representativeness. J. Chem. Inf.
Model. 54, 1567–1577 (2014)

12. Batzdorfer,V., Steinmetz,H.,Biella,M.,Alizadeh,M.:Conspiracy theories onTwitter: emerg-
ing motifs and temporal dynamics during the COVID-19 pandemic. Int. J. Data Sci. Anal.
pp. 1–19 (2021)

13. Darwish, O., et al.: Identifying fake news in the russian-ukrainian conflict using machine
learning. In: Barolli, L. (eds.) Advanced Information Networking and Applications. AINA
2023. Lecture Notes in Networks and Systems, vol. 655. Springer, Cham (2023). https://doi.
org/10.1007/978-3-031-28694-0_51

14. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

15. Piskorski, J., Haneczok, J., Jacquet, G.: New benchmark corpus and models for fine-grained
event classification: to BERT or not to BERT? In: Proceedings of the 28th International
Conference on Computational Linguistics, pp. 6663–6678 (2020)

16. González-Carvajal, S., Garrido-Merchán, E.C.: Comparing BERT against traditionalmachine
learning text classification. arXiv preprint arXiv:2005.13012 (2020)

17. Micallef, N., He, B., Kumar, S., Ahamad, M., Memon, N.: The role of the crowd in counter-
ing misinformation: a case study of the COVID-19 infodemic. In: 2020 IEEE International
Conference on Big Data (Big Data), pp. 748–757 (2020)

18. Reimers, N., Gurevych, I.: Sentence-bert: sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084 (2019)

https://doi.org/10.1007/978-3-031-28694-0_51
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2005.13012
http://arxiv.org/abs/1908.10084


Semi-Supervised Learning Classifier 267

19. Adoma, A.F., Henry, N.-M., Chen, W.: Comparative analyses of bert, roberta, distilbert, and
xlnet for text-based emotion recognition. In: 2020 17th International Computer Conference on
Wavelet Active Media Technology and Information Processing (ICCWAMTIP), pp. 117–121
(2020)

20. Naseer, M., Asvial, M., Sari, R.F.: An empirical comparison of bert, roberta, and electra for
fact verification. In: 2021 International Conference on Artificial Intelligence in Information
and Communication (ICAIIC), pp. 241–246 (2021)

21. Tarunesh, I., Aditya, S., Choudhury, M.: Trusting roberta over bert: insights from checklisting
the natural language inference task. arXiv preprint arXiv:2107.07229 (2021)

22. Ouali, Y., Hudelot, C., Tami, M.: An overview of deep semi-supervised learning. arXiv
preprint arXiv:2006.05278 (2020)

23. Beskow, D.M., Carley, K.M.: Bot-hunter: a tiered approach to detecting and characteriz-
ing automated activity on twitter. In: Conference paper. SBP-BRiMS: International Con-
ference on Social Computing, Behavioral-Cultural Modeling and Prediction and Behavior
Representation in Modeling and Simulation, vol. 3, p. 3 (2018)

24. ODonovan, J., Kang, B., Meyer, G., Höllerer, T., Adalii, S.: Credibility in context: an analysis
of feature distributions in Twitter. In: 2012 International Conference on Privacy, Security,
Risk and Trust and 2012 International Conference on Social Computing, pp. 293–301 (2012)

25. Gupta, A., Kumaraguru, P., Castillo, C.,Meier, P.: Tweetcred: real-time credibility assessment
of content on Twitter. In: International Conference on Social Informatics, pp. 228–243 (2014)

26. Balaanand, M., Karthikeyan, N., Karthik, S., Varatharajan, R., Manogaran, G., Sivaparthipan,
C.: An enhanced graph-based semi-supervised learning algorithm to detect fake users on
Twitter. J. Supercomput. 75, 6085–6105 (2019)

27. Jan, T.G., Khurana, S.S., Kumar, M.: Semi-supervised labeling: a proposed methodology for
labeling the twitter datasets. Multimedia Tools Appl. 81, 7669–7683 (2022)

28. Yosipof, A., Woo, G., Komendantova, N.: Persistence of risk awareness: manchester arena
bombing on 22 May 2017. Int. J. Disaster Risk Reduction 103805 (2023)

http://arxiv.org/abs/2107.07229
http://arxiv.org/abs/2006.05278


SkinDistilViT: Lightweight Vision
Transformer for Skin Lesion Classification

Vlad-Constantin Lungu-Stan1(B), Dumitru-Clementin Cercel1,
and Florin Pop1,2

1 Faculty of Automatic Control and Computers, University Politehnica of Bucharest,
Bucharest, Romania

vlad.lungu@stud.acs.upb.ro, {dumitru.cercel,florin.pop}@upb.ro
2 National Institute for Research and Development in Informatics - ICI Bucharest,

Bucharest, Romania

Abstract. Skin cancer is a treatable disease if discovered early. We
provide a production-specific solution to the skin cancer classification
problem that matches human performance in melanoma identification
by training a vision transformer on melanoma medical images annotated
by experts. Since inference cost, both time and memory wise is impor-
tant in practice, we employ knowledge distillation to obtain a model that
retains 98.33% of the teacher’s balanced multi-class accuracy, at a frac-
tion of the cost. Memory-wise, our model is 49.60% smaller than the
teacher. Time-wise, our solution is 69.25% faster on GPU and 97.96%
faster on CPU. By adding classification heads at each level of the trans-
former and employing a cascading distillation process, we improve the
balanced multi-class accuracy of the base model by 2.1%, while creat-
ing a range of models of various sizes but comparable performance. We
provide the code at https://github.com/Longman-Stan/SkinDistilVit.

Keywords: Skin Lesion Diagnosis · Vision Transformer · Knowledge
Distillation

1 Introduction

Skin cancer classification is a crucial problem because health complications can
be avoided through early detection and treatment. Deep learning can shine
here because both medics and machine learning solutions base their decision
on the same information, namely medical images. Since this is important for
all humankind, no matter the available computing power, this paper proposes a
lightweight, production-ready algorithm that classifies eight types of skin lesions.
The algorithm not only provides high performance, but it is also inexpensive to
run.

Since 2017, the mechanism that has revolutionized natural language process-
ing, attention [20], has shown its prowess for image processing with the vision
transformer (ViT) [5]. We opt for an attention-based model because of its ver-
satility and performance. However, a problem with the transformer [20] models
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14254, pp. 268–280, 2023.
https://doi.org/10.1007/978-3-031-44207-0_23
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is their size. Therefore, we use the knowledge distillation technique [8] to obtain
great performance with a smaller model. We also compare the ViT to convolu-
tional neural networks (CNNs) [10], the traditional solution for image processing
tasks.

The difficulty of gathering medical data leads to small datasets being publicly
available. Training transformers require huge amounts of data; thus, training
one for our melanoma classification task requires extra consideration. Luckily,
there are works that train transformer models with considerable data and whose
weights are publicly available [22]. These models make transfer learning [15]
possible, enabling the adoption of the ViT for our task.

By training a ViT-based solution for the skin lesion classification problem,
we match human performance on melanoma identification and obtain a precision
of 91.53% and a recall of 86.73% for cancer identification in skin lesion images.
Through knowledge distillation, we boost the speed considerably (97.96%) while
reducing the number of parameters almost by half (49.60%). We also study three
ways of producing a series of models of increasing sizes: introducing classification
heads after each layer, adding classification heads and forcing their probability
distributions to match, and cascading distillation, a technique of gradually dis-
tilling away one transformer layer at a time. These techniques boost the base
model’s performance while creating a range of models that preserve the teacher’s
performance well.

The rest of this paper is organized as follows. In the next section, we present
current approaches to our goals. Section 3 details our models, while Sect. 4
presents the experimental setup. Then, Sect. 5 describes our results. Lastly,
Sect. 6 concludes the paper.

2 Related Work

EfficientNets. Image classification is traditionally solved using CNNs. One
prominent set of CNN architectures is the EfficientNet [18]. This family of mod-
els is the result of a grid search that aims to produce efficient and easy-to-scale
models. The authors obtained state-of-the-art (SOTA) performance while drasti-
cally reducing the models’ size. EfficientNets are the go-to models for competitive
image classification tasks on online platforms like Kaggle1. These reasons make
EfficientNet a good baseline for our task.

ISIC 2019 Challenge. The International Skin Imaging Collaboration (ISIC)2

is an initiative aimed at alleviating this problem and increasing the performance
of melanoma detection systems. State of the art for the ISIC 2019 competition [1]
is dominated by ensembles of EfficientNets. The first position [7] in the contest
was obtained by an ensemble of EfficientNet-B0 to B6, while the second place
[24] was obtained with an ensemble of EfficientNet-B3 to B4. While ensembles

1 https://www.kaggle.com/, last visited March 2023.
2 https://www.isic-archive.com, last visited March 2023.

https://www.kaggle.com/
https://www.isic-archive.com
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are known to behave better than single models, their performance gain of several
points is not outstanding, considering the additional computing resources needed
for inference. We are interested in high-speed and memory needs, so ensembles
are unattractive.

Knowledge Distillation. Since we aim for a practical approach, even a single
model might be too big. One solution to tackle this problem is the technique
called knowledge distillation. A noteworthy example of transformer distillation
is DistilBERT [17], a distilled version of BERT [9]. DistilBERT is impressive
because it maintains most of the parent’s performance, 97%, while reducing the
size by 40%. In the process, it also gains a 60% speed boost by eliminating half
of the blocks, copying the weights of the rest, and using soft labels according to
the probability distribution of the teacher.

Transformers , a family of attention-centric models, represent a milestone in
the evolution of deep learning. Originally designed for text, they have over-
taken recurrent neural networks [6] due to their superior context awareness [9].
Transformers have also shown themselves capable of handling images using the
ViT by matching or exceeding SOTA performance [12]. The idea is to con-
sider patches of 16× 16 pixels, which are embedded into standard transformer
encodings and treated like word embeddings. Since images are inherently two-
dimensional, unlike text, special care is given to the positional encodings so that
they relay correct information about the positioning of the patch in the image.
We choose ViT because a good solution to our problem must localize the skin
lesion and ignore the rest, which suits the attention mechanism perfectly.

3 Method

3.1 Vanilla SkinDistilViT

Teacher Model. To the best of our knowledge, there is no vanilla ViT trained
for the ISIC 2019 challenge and with publicly available weights. Therefore, we
train one ourselves. The ViT is one of the models supported by the Huggingface
library [23], a popular open-source project for experimenting with and running
transformer models. Although it is also available through the vanilla PyTorch3,
we opt for the Huggingface library version4 to train our models because of its
user-friendliness and training optimizations.

Training transformers from scratch without considerable data is a bad idea
since their scale and attention mechanism make training unstable [16]. Since we
have a fairly limited dataset, we rely on transfer learning from the existing ViT
trained on ImageNet [4]. Because it is not a tiny dataset (25k images), we fine-
tune all parts of the model and follow the standard training procedure, with the
default hyperparameters provided by the framework.
3 https://pytorch.org/, last visited March 2023.
4 https://huggingface.co/google/vit-base-patch16-224, last visited March 2023.

https://pytorch.org/
https://huggingface.co/google/vit-base-patch16-224
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Student Model. Since transformers are highly modular, we follow the example
of DistilBERT and eliminate half of the encoder blocks to create the student
model. Out of the 12 blocks of the original ViT, we keep only blocks 0, 2, 4, 7,
9, and 11. We perform this by altering the state dictionary of the bigger model.
We keep all non-transformer block parameters. We solve the weight initialization
problem by copying the weights of the selected transformer blocks of the teacher
model. We also copy all the other trainable weights.

Loss Functions. Similar to DistilBERT, we use a mix of losses for fine-tuning
our distilled model. Besides the original training objective, we use a cross-entropy
loss between the teacher’s and the student’s outputs and a cosine loss between
their hidden states. We also experiment with a mean square error (MSE) loss
between the logits of the two networks. These losses are combined linearly to
obtain the final loss, with their weights representing training hyperparameters.

3.2 Full Distillation

We are interested in providing models of different sizes and levels of performance.
Therefore, we propose three techniques to obtain models ranging from a full
configuration of twelve transformer blocks to models with only a few, even one.
We call the process full distillation.

First, we study a ViT model that outputs a prediction for the class at every
stage by adding an independent prediction head at each of them. We try two
approaches. In the first case, we use the hidden states of each classification layer
independently. We use the usual cross-entropy loss at every layer and combine
them linearly. We call this Full Classification ViT (FCViT). This approach
injects gradient at each level and forces the model to find the best features for
our task early. In the second case, we link the classification heads of each level by
pushing the resulting probability distribution to match the one of the next level
by employing a Kullback-Leibler divergence loss [11] while keeping the cross-
entropy loss only for the topmost layer. We call this Full Classification ViT
with Probabilities (FCViTProbs). For convergence, we employ a multi-step
training approach in which we train only the final classification head for M
epochs, then add the classification heads one by one every N epochs, starting
from the last but one downwards and finishing by fine-tuning the whole stack for
another P epochs. This creates an implicit distillation process in the same model
without separate training. Both solutions make an implicit stack of models that
can be used standalone for classifying the result, all with a single training.

The second approach is to progressively distill the model, eliminating one
transformer block at a time. The idea is to let the model concentrate the infor-
mation as well as possible by eliminating minimal capacity, unlike SkinDistil-
ViT’s case, where we eliminate half the capacity from the start. We name this
process Cascading Distillation ViT. The idea is similar to FCViTProbs, but
we ensure that all the possible knowledge is kept from one layer to the next
by forcing both the probability distribution matching and the correct task pre-
dictions. In this case, for a model with k layers, the teacher is the model with
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k+1 layers. For the full model, we use the full FCViT as a teacher but keep the
same size. The subsequent students are initialized from the previous student by
stripping it of the last transformer block. We do this for the whole stack until
only one transformer layer is kept.

4 Experimental Setup

4.1 Dataset

The ISIC 2019 challenge proposed a hefty set of 33,569 high-quality dermoscopic
images of skin lesions, classified into eight categories, as follows: Melanoma,
Melanocytic nevus, Basal cell carcinoma, Actinic keratosis, Benign keratosis,
Dermatofibroma, Vascular lesion, and Squamous cell carcinoma. This dataset
is split into 25,331 annotated images (i.e., the training set) and 8,238 images
without public annotations (i.e., the test set). The whole dataset is a combination
of three corpora, namely BCN 20000 [3], HAM1000 [19], and MSK [2]. We use
this dataset for training our models.

Since the official test set of ISIC 2019 is not available, we split the existing
labeled data into 80% training and 20% test, taking class imbalance into account.
The class imbalance problem is major, with the most populated class having
more than ten thousand samples and the least populated one having only several
hundred samples.

Data Augmentation. A downside of small datasets is that they do not pro-
vide sufficient variety. This can lead to models that have a hard time generaliz-
ing. Since no two melanoma are the same, this is a dangerous shortcoming. We
address this problem by employing augmentation techniques. All images of the
dataset have the lesion close to the center. To avoid this bias, we use random
cropping but keep the target size large enough so that the lesion is still fully
present. We also apply: (i) basic spatial transformations, like shift, scale, and
rotate, and (ii) color augmentations, like RGB shift and randomly changing the
brightness or contrast.

4.2 Compared Methods

CNN Models. We train two CNN baselines. For the first baseline, we choose
the EfficientNet-B4 because it stands in the middle of the EfficinetNet-B0 to B7
family and is part of the ensembles of the top two best-performing solutions from
the competition. For the second baseline, we train the EfficientNet-B6 because
it has roughly the same number of parameters as our SkinDistilViT. We train
the EfficientNets using Pytorch Lightning5. For fairness, we employ the same
augmentations as ViT.

5 https://www.pytorchlightning.ai/, last visited March 2023.

https://www.pytorchlightning.ai/


SkinDistilViT: Lightweight Vision Transformer for Skin Lesion Classification 273

ViT. The official results of the ISIC 2019 challenge are incompatible with our
experiments. On the one hand, they lack public labels, so we cannot compute
our performance on them. On the other hand, we cannot submit our models
to the competition because the official test set contains images from categories
never seen at train time, which should be labeled as “unknown”. This task is of
no interest to our use case, so we omit it. Thus, we rely on training a baseline
ViT ourselves.

SkinDistilViT. It is initialized by transferring the weights from the ViT model
trained on our task. SkinDistilViT is trained with both the task loss and the
cross-entropy loss, combined with weights 1 and 0.5, respectively. Unlike Distil-
BERT, SkinDistilViT did not benefit from adding either the hidden cosine loss
or the MSE logit loss; therefore, we omit those results for brevity.

SkinDistilViT Variants. We study the importance of weight initialization by
training four versions of SkinDistilViT, all starting from the same architecture
but with different initializations, as follows:

– DistiViT fs -from scratch- has its parameters initialized randomly, so it does
not benefit from pre-training.

– SkinDistilViT fi -from ImageNet- has its parameters extracted from the orig-
inal, pre-trained on ImageNet, ViT.

– SkinDistilViT nt is an untrained version whose weights are just copied from
its teacher.

– SkinDistilViT t is a version trained only with the task loss.

4.3 Evaluation Metrics

Because of the inherent imbalance of the real data in medical scenarios, we resort
to the balanced multi-class accuracy (BMA) as a metric for comparing results,
as suggested in the ISIC 2019 challenge. We also employ the standard metrics
for classification tasks, namely accuracy, precision, recall, and the F1-score, in
their weighted form. We compute all these metrics using the official TorchMetrics
implementation of PyTorch.

4.4 Implementation Details

We have done all experiments on a machine with an i5-13600K paired to a 3090
Ti with 32 GB RAM. All models are trained on the same training set, with
the same augmentations, for 20 epochs. The batch size is 64 for all transformer
models. The EfficientNets require more memory at training time, and therefore,
we use a batch size of 32 for EfficientNet-B4 and 8 for EfficientNet-B6.
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5 Results

5.1 Performance Comparisons

Table 1 depicts the comparison between the models. SkinDistilViT obtains great
results, the best of all SkinDistilViT variants, proving the importance of teacher
guidance. All fine-tuned SkinDistilViTs beat both CNNs in all metrics. The
untrained SkinDistilViT does surprisingly well, too, considering many connec-
tions from its parent have been cut. We argue that this is due to the skip con-
nections of the transformer block.

Table 1. Model performance comparison. The top part compares ViT to EfficientNets,
while the bottom part compares SkinDistilViT variants. Bold indicates the best score
for each metric, per comparison.

Model BMA (%) Accuracy (%) Precision (%) Recall (%) F1-score (%)

EfficientNet-B4 27.64 71.60 67.95 71.62 67.80

EfficientNet-B6 31.51 81.62 86.25 81.62 82.21

ViT 83.73 89.18 89.04 89.18 89.06

SkinDistilViT nt 42.00 66.60 64.25 66.60 64.24

SkinDistilViT fs 39.88 66.79 63.67 66.79 64.03

SkinDistilViT fi 80.23 86.68 86.49 86.68 86.51

SkinDistilViT t 80.96 87.80 87.60 87.80 87.61

SkinDistilViT 82.34 88.51 88.34 88.51 88.37

The behavior of the ViTs in the case of imbalanced classes is interesting when
compared to CNNs. While the CNNs are greatly affected by the imbalance, as
seen in the BMA score, the ViTs seem unfazed. We suspect this stems from the
filter-based nature of the CNNs, which makes them more reliant on the image’s
texture.

Since all images contain skin, they can get more easily confused. The bet-
ter behavior of ViT can be explained by the attention mechanism, which only
ensures the processing of the relevant part of the image. The attention mecha-
nism in action can be observed in Fig. 1, where the model only pays attention to
the skin lesion. The class imbalance problem, although alleviated, is still present
because the BMA score is several points lower than all the others.

5.2 Full Distillation Results

We train the three full distillation experiments. The results of all three
approaches can be observed in Table 2. FCViT and FCViTProbs are trained
starting from the original ViT trained on ImageNet, just like our ViT baseline.
For the cascading distillation process, we use as a teacher the best-performing
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Fig. 1. Attention map visualization with BertViz [21]: original image without and with
the attention map applied.

full model we had obtained that far, FCViTProbs, which has a BMA of 85.13%
compared to the 83.73% BMA of the base ViT. We do not start from the same
model because we are more interested in the loss of performance rather than
actual numbers.

Table 2. Full distillation results in terms of BMA. Lx represents the classification layer
we computed the result from. Bold indicates the best score for each line.

Last Layer FCViT (%) FCViTProbs (%) Cascading Distillation ViT (%) ViT (%) SkinDistilViT (%)

L0 31.23 12.26 42.86 – –

L1 50.42 13.69 65.18 – –

L2 63.53 12.30 75.71 – –

L3 74.19 17.70 80.90 – –

L4 79.16 27.72 81.75 – –

L5 82.27 40.52 83.39 – 82.34

L6 83.46 52.77 84.33 – –

L7 84.27 61.26 84.74 – –

L8 84.20 66.18 85.16 – –

L9 84.57 73.70 85.16 – –

L10 84.66 82.50 85.54 – –

L11 84.68 85.13 85.83 83.73 –

Training everything on one go behaves well in the FCViT case. Thus, it is
stable, and its performance is more than adequate. This approach matches the
SkinDistilViT in terms of performance, without extra training and guidance from
a teacher model, while surpassing the SkinDistilViT t considerably. However, at
lower dimensions, the performance greatly diminishes. Thus, the cascading dis-
tillation approach is more suitable for tiny models. The probability distribution
matching ViT behaves rather badly, not managing to give good classifiers, espe-
cially at lower levels. However, the approach seems to help with training the
network because the performance of the full model surpasses both the ViT and
the FCViT, respectively.
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Cascading Distillation ViT obtains the best results at all levels, but it shines
in preserving the performance at a lower number of layers. All full-size models
surpass the original ViT model. The original SkinDistilViT is still competitive,
behaving slightly better than the similarly sized FCViT.

5.3 Distillation Trade-off

A trade-off analysis between SkinDistilViT and ViT can be observed in Table 3.
In general, the performance loss is low, while the gains are considerable. The
loss is greater in BMA’s case, which indicates that the smaller model loses more
nuances.

Regarding speed, we run the same scenario for both CPU and GPU. We
measure the speed by dividing the number of test samples by the inference time
of the model, ignoring batching and data loading. Interestingly, the speed gain
on the CPU is larger. This is explainable by the differences in the design of the
two processing units. Thus, GPUs are designed for matrix multiplications and
deal with great deals of data in parallel, so the speed does not double. Instead,
CPUs are more general, which translates into the expected double speed.

Table 3. Distillation trade-off.

BMA (%) Recall (%) Speed CPU (it/s) Speed GPU (it/s) #Params (Millions)

ViT 83.73 89.10 10.79 206.31 85.85

SkinDistilViT 82.43 88.51 21.36 349.20 43.27

Gain –1.57% –0.60% 97.96% 69.25% 49.60%

Regarding the speed comparison between ViT and CNNs, EfficientNet-B6 has
a speed of 64.67 items/second on GPU, while the similarly sized SkinDistilViT
sits at 349.2 items/second, 5.4 times faster. Training the SkinDistilViT took
81 min for 20 epochs, while training the EfficientNet-B6 took 364 min for the
same number of epochs, 4.49 times more. The convolution operation explains
the difference because it uses the same parameters for many operations. This
means the EfficientNet does more operations than the ViT for the same number
of parameters, hence the lower speed.

A comparison of the expressiveness between the embeddings of the teacher
and the student can be observed in Fig. 2. We use the t-distributed stochas-
tic neighbor embedding (t-SNE) technique [13] to project the high-dimensional
embedding provided by the ViT to a two-dimensional space. The teacher model
separates the eight classes well, with clearly defined clusters, regardless of the
class imbalance. The student model, albeit noisier, keeps the same performance.
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Fig. 2. Visualizations of two-dimensional t-SNE embeddings for the teacher (i.e., ViT)
and student (i.e., SkinDistilViT) models. The student embeddings are noisier but keep
the separation of the teacher classes well.

5.4 Cancer Detection Performance

Another performance metric is how well the model determines whether a lesion
is cancer or not. This metric is not directly computed through the dataset.
We compute it by separating the classes into cancer classes (i.e., Melanoma,
Basal cell carcinoma, and Squamous cell carcinoma) and benign classes (i.e.,
Melanocytic nevus, Actinic keratosis, Benign keratosis, Dermatofibroma, and
Vascular lesion). When analyzing the results based on this split, we obtain an
accuracy of 92.8%, a precision of 91.53%, a recall of 86.73%, and an F1-score of
89.06%. The confusion matrix for this problem can be found in Fig. 3.

Fig. 3. The confusion matrix for our Cascading Distillation ViT on cancer versus non-
cancer problem.

Our best-performing model classifies melanoma correctly in 80.64% of the
cases. The human baseline for this operation, i.e., dermatologists with ten years
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of experience, is 80% [14], which means we obtain good performance. The con-
fusion matrix of the classification results is given in Fig. 4. The confusions of
our model are the ones we would expect. The lesions are often confused with
common moles (Melanocytic nevus), which is a common mistake. Also, Actinic
keratosis is confused with Benign keratosis, another type of keratosis. Moreover,
Squamous cell carcinoma is confused with Basal cell carcinoma, another type of
cancer. Interestingly, the class imbalance is not necessarily a problem since the
top scores are not obtained in the highest populated classes, nor the worst scores
in the least populated ones.

6 Conclusions and Future Work

In this work, we provided a model for the skin lesion classification that is
lightweight, yet performant. The resulting distilled network is strong, keeping
most of the performance while considerably increasing speed and decreasing
memory consumption. Due to the attention mechanism, it has also proven supe-
rior to CNNs in terms of performance, especially considering class imbalance.

Careful weight initialization is critical to a good model. Training a distilled
model from scratch provides worse results than simply copying weights from the
bigger model. ImageNet initialization is good, but starting from the fine-tuned
ViT is better. Teacher guidance completes the distillation by providing a good
performance increase.

By forcing a consistency loss between layers and employing cascading dis-
tillation on top of the resulting model, we were able to boost the performance

Fig. 4. The confusion matrix of the Cascading Distillation ViT (full size, 12 layers).
Red represents malignant classes, green represents benign classes, and orange represents
benign classes that can turn malignant. (Color figure online)
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across all numbers of layers compared with the standard ViT and SkinDistilViT.
Moreover, this technique creates a family of well-performing models of different
sizes.

Last, our full-size models surpass the human baseline on melanoma identi-
fication and almost match it in the distilled form, while providing solid results
for the skin cancer identification problem.

As future work, we propose combining the three full distillation techniques.
We can add all the classification heads and train them as in FCViT but also
force the probability distributions of their outputs to match, then apply the
cascading distillation process. Another next step would be to study the impact
of class imbalance. Although robust to it, SkinDistilViT might benefit from a
balanced dataset.
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Abstract. The trade-off between high detection accuracy and fast
detection speed is a major challenge for printed circuit board (PCB)
defect detection. In this paper, a Sparse Block DETR method is pro-
posed, which can achieve precise and speedy PCB defect detection.
First, based on Deformable DETR, an object set reinforcement method
is designed. This method trains a set map prediction module, extracts
the feature of the target region, and adds the original encoder tokens
to obtain the reinforcement encoder tokens, which significantly enhance
the saliency of PCB defects. Second, an encoder queries sparsification
method is designed, which trains an object centers prediction module,
extracts object regions, and maps the object regions to reinforcement
encoder tokens to form sparse block tokens, which are used as new input
to the deformable encoder. Finally, the two proposed methods are com-
bined for validation on the enhancement PCB dataset.

Keywords: Sparse Block Attention · Object Set Reinforcement · PCB
Defect Detection

1 Introduction

With the rapid development of electronic technology and electronic manufactur-
ing, electronic products are also becoming increasingly compact and lightweight.
The quality of printed circuit board(PCB) plays a vital role in the stable oper-
ation of electronic products. Even minor PCB defects may potentially cause
complete product failure. Therefore, PCB defect detection, including the detec-
tion of weld defects and component issues, is of utmost importance. This paper
primarily focuses on six common defect types in weld defect detection in actual
industrial scenarios: Missing Hole, Mouse Bite, Open Circuit, Short, Spur, Spu-
rious Copper. See Fig. 1

Traditional machine vision inspection systems, such as Automatic Optical
Inspection(AOI), use cameras to obtain PCB image data for analysis, which
improves detection accuracy, reduces detection costs, and is more efficient than
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14254, pp. 281–292, 2023.
https://doi.org/10.1007/978-3-031-44207-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44207-0_24&domain=pdf
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Fig. 1. Six types of defects of PCB

manual inspection methods. However, their false detection rate and missed detec-
tion rate are still high, making them unable to meet industrial requirements. In
addition, the detection effect is easily affected by factors including lighting condi-
tions, occlusion, angle changes, etc. during image acquisition. At the same time,
conventional detection algorithms [3,13,19] generally have problems such as poor
anti-interference performance, time-consuming calculation, and poor real-time
detection ability.

In recent years, deep learning plays an increasingly significant role in object
detection, and a variety of object detection algorithms have been proposed. At
present, the mainstream algorithms can be divided into two categories: two-
stage method and single-stage method. The two-stage object detectors put for-
ward proposals first, and then predict boxes w.r.t. proposals. While this type of
detector has relatively high veracity, its real-time performance is not up to par.
Typical algorithms include R-CNN [8], SPP-Net [9], Fast R-CNN [7], FaserR-
CNN [21], etc. The single-stage detectors proposes anchors [15] and then per-
forms classification and refinement, which greatly improves the inference speed.
Typical algorithms include SSD [17], RetinaNet [14], YOLO [20], etc. However,
these algorithms require non-maximum suppression (NMS) post-processing of
near-repeated predictions, and the final performance of these algorithms heavily
depends on the exact way these initial guesses are set.

To eliminate the hand-crafted process of previous algorithms, a fully end-to-
end detector DETR [4] that uses a set-based predictive approach to eliminate the
need for NMS post-processing is proposed. This algorithm uses the Hungarian
algorithm for object classification and regression with favorable performance.
However, due to the characteristics of small and low contrast of PCB defects, the
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accuracy and inference speed of DETR in PCB defect detection cannot achieve
satisfactory results. To solve this problem, Deformable DETR [26] inspired by the
deformable convolution [5] is proposed, which adds multi-scale features to better
detect small targets. Meanwhile, the deformable attention mechanism sparsifies
the attention modules in the DETR, reducing the quadratic complexity to linear
complexity. Deformable DETR solves the problems of slow convergence and high
complexity of DETR. However, adopting multi-scale features as encoder input
will increase the number of encoder tokens to be processed by about 20 times,
leading to the overall inference speed of the model extremely reduced.

In actual industrial scenarios, high detection accuracy and fast detection
speed are required for PCB defect detection. Based on the insights mentioned
above, we take Deformable DETR as baseline and propose a Sparse Block DETR
method to achieve a balance of fast inference speed and high detection accuracy.
The main contributions of this paper are summarized as follows:

– We design an object set reinforcement module to extract the feature regions
that may include small targets for enhancement, making small objects more
conspicuous in the process of computing attention.

– We put forward an encoder queries sparsification method to reduce the num-
ber of encoder tokens, further cut down the computational complexity and
improve the inference speed of the model.

– We propose a sparse block attention mechanism to select encoder tokens,
thinning out the attention span and avoiding mass meaningless attention
calculations.

2 Method

As illustrated in Fig. 2, we put forward a precise and speedy end-to-end detector,
called Sparse Block DETR, for PCB defect detection. Based on the baseline,
two portions are mainly altered, one is object set reinforcement, and the other
is encoder queries sparsification. Before describing the details, we review briefly
Transformer [24], DETR [4] and Deformable DETR [26].

2.1 Review

Transformer. Transformer is a deep learning model based entirely on self-
attention, which is suitable for parallel computing and could promote the speed
of model training. It is widely used in the field of Natural Language Process-
ing(NLP). Transformer is mainly composed of encoder and decoder, which specif-
ically consists of self-attention and feedforward neural network(FFN). The input
of self-attention is the embedding, and query Q, key K, and value V are obtained
through embedding. The calculation of self-attention is as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where dk represents the dimension of K, softmax represents activation function.
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Fig. 2. Sparse Block DETR architecture

DETR. DETR has applied Transformer to the visual field with remarkable
success. It extracts the input feature x ∈ R

L×D from the Convolutional Neural
Networks (CNN) backbone ResNet [10], and converts the input feature into the
feature of the object queries through the standard Transformer [24] encoder-
decoder framework, where L represents the number of encoder tokens and D
represents the dimension of encoder tokens. The object queries are then pro-
cessed by a 3-layer feedforward neural network(FFN), which is referred to as the
regression head, and a linear projection, referred to as the classification head,
to detect objects. Finally predict bounding boxes coordinate b ∈ [0, 1]4 and
classification score c ∈ [0, 1]C , where C denotes the number of object classes.

Deformable DETR. Replacing dense attention with deformable attention
ameliorates the convergence speed and reduces the computational complexity of
the model by sparsifying encoder keys. Suppose there is a query collection and a
key collection of the same size, denoted Φq and Φk respectively, |Φq| = |Φk| = L,
for each pair {(q, k) : q ∈ Φq, k ∈ Φk}. The complexity of calculating atten-
tion weight Aqk using traditional dense attention is O(L2). The computational
complexity of deformable attention is O(LK), where K is the number of keys
selected. K � L. At the same time, Deformable DETR adopts multi-scale fea-
tures to extract multi-layer input features from the backbone, and converts these
features into the same dimension through convolution. Then concatenate the
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features as encoder tokens, which can significantly elevate the accuracy of small
targets. However, the citation of multi-scale features increases the number of
encoder tokens while elevating the model performance, resulting in a greatly
increased overall computational complexity of the model.

2.2 Object Set Reinforcement

Since PCB defects, such as Open Circuit and Short, are extremely small, the
model is prone to feature disappearance when using the down-sampling opera-
tions to extract features, resulting in low accuracy of defect detection. To address
the challenge of the low accuracy of small object detection, this section designs
an object set reinforcement module, inspired by QueryDet [25], to strengthen
the saliency of target features.

First, with the object queries as the input, the target region and confidence
of each target region is predicted through the set map prediction module. In
this way we acquire object set map, which includes the target region coordinate
b̂ ∈ [0, 1]4 and the confidence ĉ ∈ {0, 1} of each target region. Subsequently, the
object set map is mapped into multi-scale features, the top λ% confidence are
assigned a value of 1, and the rest are assigned a value of 0 to form a feature mask.
The feature mask extraction module is shown in Fig. 3. Add the obtained feature
mask to the original encoder tokens to produce reinforcement tokens. Secondly,

Fig. 3. Feature Mask Extraction. Each box of set map in the figure represents
a prediction target region, the color of the box represents the confidence level of the
region, and N represents the length of the object queries. The parameters in parentheses
of the linear layer are the input and output dimensions of the layer
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a score head is added after the model decoder, which predicts the confidence of
the decoder object set. The score head is trained using FocalLoss [15]. The
decoder object set map is obtained by combining the score head and regression
head. The decoder object set map includes the target region coordinate b ∈ [0, 1]4

and the confidence c ∈ {0, 1} of each target region. The predicted object set map
is updated by using the decoder object set map as the pseudo ground-truth.

Finally, the set map prediction module consists of two parts: target region
confidence prediction and target region prediction. Each prediction module con-
sists of five linear layers and a Layer Normalization [1], except for the last lin-
ear layer, all of the other layers are followed by a Leaky ReLU [18] activation
layer. Set map prediction module is trained by minimizing the SmoothL1 loss [7]
between b and b̂, and also minimizing the SmoothL1 loss between c and ĉ after
matching each region by Hungarian algorithm [12].

2.3 Encoder Queries Sparsification

Due to the relatively high real-time requirement of PCB defect detection in
the industry, Deformable DETR far exceeds DETR in detection accuracy, but
Deformable DETR uses multi-scale features, the number of encoder tokens has
increased significantly, leading to the reduction of model inference speed. In order
to solve this problem, Roh et al. proposed Sparse DETR [22], which uses decoder
cross-attention map predictor to sparsify encoder tokens. Building on this work,
this section proposes sparse block attention. On the premise of not reducing the
accuracy of the model, the number of encoder tokens can be greatly reduced,
thereby improving the inference speed of the model.

It is observed that the approach of Deformable DETR to reduce the com-
putational complexity is sparsifying encoder keys and PCB defects have the
characteristics of small area and sparse distribution. An encoder queries spar-
sification method is proposed to further reduce the computational complexity
of the model. This method extracts the encoder tokens region of the possible
locations and only calculates encoder attention within region, which is denoted
as sparse block attention.

For forward propagation, low resolution feature l ∈ R
M×D in multi-scale

features is used as input, and feature points p̂ ∈ R
M×2 ∈ [0, 1]2 in the feature

map are predicted through the centers prediction module. M and D represent
the length of expansion feature and the dimension of the feature. The predicted
feature points p̂ are clustered by K-means clustering algorithm [2] to get K
feature clustering centers, which are used as target centers to radiate outward to
obtain predicted target regions. The radiation range of the height and width of
the target region is one tenth of the original feature height and width respectively.
The extraction process of cluster blocks is shown in Fig. 4. Extract and integrate
target regions corresponding to center coordinates p̂ in encoder tokens to form
encoder sparse block tokens, which are used as new encoder tokens for deformable
encoder and decoder operations. If K = 10, the number of encoder sparse block
tokens is 10% of the original encoder tokens.
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Fig. 4. Cluster Blocks Extraction. The parameters in parentheses of the linear
layer are the input and output dimensions of the layer

For backpropagation, after the deformable decoder, the sampling points cor-
responding to each encoder token will be obtained. All sampling points are clus-
tered by K-means to obtain K sampling points clustering centers p ∈ R

K×2 ∈
[0, 1]2, which are used as the pseudo ground-truth of the feature points p̂. The
Hungarian algorithm for binary matching is used to match the sampling points
clustering centers p and the predicted feature points p̂. Centers prediction mod-
ule is trained by minimizing the SmoothL1 loss [7] between p and p̂. Among
them, the centers prediction module is composed of a Layer Normalization and
five linear layers. All but the last layer, all the other linear layers are followed
by a Leaky RELU activation.

2.4 Attention Complexity

Suppose there is the same size of a collection of a query and a collection of
key, denoted Φq and Φk respectively, |Φq| = |Φk| = L, for each pair (q, k) :
q ∈ Φq, k ∈ Φk, calculating attention weight Aqk complexity. Dense, Deform
and Sparse Block respectively represent the attention weights of traditional
dense attention, deformable attention and sparse block attention proposed in
this paper. The computational complexity of attention weight Aqk for different
types of attention is as follows.

O(Dense) = O(L2) (2)

O(Deform) = O(LK) (3)

O(Sparse Block) = O(SK) (4)
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Fig. 5. Attention Complexity. The grids in the square matrix represent the attention
between keys and queries. The reseda/gray grids correspond to preserved/removed
connection respectively, and dark green on the diagonal positions means where the
token attend to itself

where K is the number of keys selected and S is there number of queries
selected. K � L, S � L, thus O(Sparse Block) � O(Deform) � O(Dense).
Deformable DETR reduces the attention complexity through encoder keys spar-
sification, and we further reduce the attention complexity through encoder
queries sparsification, as shown in Fig. 5.

3 Experiments

3.1 Datasets and Implementation Details

Datasets. The dataset [23] comes from the public dataset provided by the Open
Laboratory of Intelligent Robots at Peking University. The dataset has a total
of 693 images, including six common types of defects: Missing Hole, Mouse bite,
Open Circuit, Short, Spur, and Spurious Copper.

In this experiment, the dataset is made into the standard COCO [16] dataset
format, but the amount of data in the original dataset is relatively few, which
easily leads to the occurrence of overfitting during the training process. There-
fore, the offline data enhancement method is adopted to increase the richness
and diversity of the dataset. That includes cropping, rotating the image, adjust-
ing the contrast etc. Increase the total number of images in the dataset to 6930,
denoted PCB enhancement dataset. In the experiment, 90% of the images are
randomly used as the training set and the remaining 10% as the test set.

Implementation Details. We implement our approach based on the PyTorch
platform. All models are trained on 2 GTX 1080 Ti GPUs. ImageNet[6] pre-
trained ResNet-50 [10] is utilized as backbone. Following Deformable DETR, we
train our model using Adam optimize r[11] with base learning rate of 0.0002,
β1 = 0.9, β2 = 0.999, and weight decay of 0.0001. We train Sparse Block DETR
with a total batch size of 2, for 50 epochs, where the learning rate is decayed at
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the 40th by a factor of 0.1. As for the object set reinforcement module, the loss
coefficient of SmoothL1 loss and FocalLoss added by us both are 1. As for the
centers prediction module, the loss coefficient of SmoothL1 loss is 2. The negative
slope of the Leaky RELU activation is 0.1. We use other same hyperparameters
as in Deformable DETR.

3.2 Comparison Studies

As shown in Table. 1, we compare Sparse Block DETR with Faster R-CNN [21],
RetinaNet [14], DETR [4] and Deformable DETR [26]. To ensure the reliability
of the experiments, all methods are trained and tested on the PCB enhancement
dataset with the same configuration. In Sparse Block DETR, encoder tokens are
sparsified with cluster centers of 10, 20, 30, and 40 categories, using the cluster
blocks extraction method. The λ% of the object set reinforcement module in
all Sparse Block DETR is 30%. We demonstrate detection performance aver-
age precision(AP ) and inference speed frames per second(FPS) on the PCB
enhancement dataset.

Table 1. Comparison of different methods on PCB enhancement test set.
K represents the clustering category using K-means clustering, and Ψ represents the
ratio of sparse encoder queries to original encoder queries

Method Epochs K Ψ AP AP50 AP75 APS APM APL FPS

Faster-RCNN 100 - - 30.8 78.7 14.7 15.0 30.9 32.6 26

RetinaNet 100 - - 32.3 80.3 15.2 16.8 32.1 33.6 22

DETR 300 - - 20.8 64.2 7.1 2.3 20.8 24.6 28

Deformable DETR 50 - - 38.7 90.3 20.2 18.8 39.3 32.3 19

Sparse Block DETR 50 10 10% 37.0 89.6 17.4 10.0 36.3 32.8 25

50 20 20% 40.8 91.1 20.7 20.0 38.5 30.4 23

50 30 30% 55.1 97.3 56.2 25.1 54.8 50.7 22

50 40 40% 52.6 96.8 49.9 23.3 52.1 49.3 20

The experimental results show that the proposed method achieves the highest
detection accuracy when the encoder queries only account for 30% of the original
one. Compared with Deformable DETR, AP and APS increase by 16.4 and 6.3
respectively, and FPS increase by 15.8%.

3.3 Ablation Studies

As shown in Table 2, ablation studies are conducted on the PCB enhancement
dataset to analyze how each component affected the accuracy and speed of detec-
tion. All the ablation experiments are conducted under the condition that the num-
ber of clustering categories is 30. Besides, the hyper-parameters keep consistent.



290 J. Hong et al.

Table 2. Ablation studies for Sparse Block DETR on PCB enhancement
test set. OSR indicates object set reforcement module, and EQS indicates encoder
queries sparsification module. λ% indicates the percentage of object set map selected

baseline OSR EQS λ% AP AP50 AP75 APS APM APL FPS

� - 38.7 90.3 20.2 18.8 39.3 32.3 19

� � 10% 43.3 94.8 28.9 16.9 40.9 38.3 18

� � 20% 45.9 95.4 33.3 20.4 46.5 43.6 18

� � 30% 52.6 96.8 49.9 23.3 52.1 49.3 18

� � 40% 42.1 92.9 27.9 25.0 42.6 37.1 18

� � - 46.8 92.6 30.3 7.1 46.5 49.1 23

� � � 30% 55.1 97.3 56.2 25.1 54.8 50.7 22

When the OSR module whose λ% is 30% is added separately, AP and APS

increase by 13.9 and 4.5 respectively. When the EQS module whose K is 30 is
added separately, AP and AP75 increase by 8.1 and 10.1 respectively, simultane-
ously FPS increase by 21.1%. Obviously, each module significantly contributes
to the predicted objects, which confirmed the effectiveness of each proposed
component.

4 Conclusion

On the one hand, we propose an encoder queries sparsification method to reduce
the computational cost of the encoder, which promotes the inference speed of
the model without sacrificing the accuracy. On the other hand, we propose an
object set reinforcement method, which can effectively alleviate the phenomenon
of feature disappearance in the downsampling operation of small targets, and
effectively improve the detection accuracy of the model. Experiments show that
the combination of these two methods achieves state-of-the-art performance.
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(eds.) 50 Years of Integer Programming 1958-2008 - From the Early Years to the
State-of-the-Art, pp. 29–47. Springer (2010)

13. Kumar, M., Singh, N.K., Kumar, M., kumar Vishwakarma, A.: A novel approach of
standard data base generation for defect detection in bare PCB. In: International
Conference on Computing, Communication & Automation, pp. 11–15. IEEE (2015)

14. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: Proceedings of the IEEE International Conference On Computer
Vision, pp. 2980–2988 (2017)

15. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object
detection. In: IEEE International Conference on Computer Vision, ICCV 2017,
Venice, Italy, October 22–29, 2017, pp. 2999–3007. IEEE Computer Society (2017).
http://orcid.org/10.1109/ICCV.2017.324

16. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

17. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

18. Maas, A.L., Hannun, A.Y., Ng, A.Y., et al.: Rectifier nonlinearities improve neural
network acoustic models. In: Proceedings of ICML. vol. 30, p. 3. Atlanta, Georgia,
USA (2013)

19. Raj, A., Sajeena, A.: Defects detection in PCB using image processing for industrial
applications. In: 2018 Second International Conference on Inventive Communica-
tion and Computational Technologies (ICICCT), pp. 1077–1079. IEEE (2018)

20. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified,
real-time object detection. In: Proceedings of the IEEE Conference On Computer
Vision And Pattern Recognition, pp. 779–788 (2016)

http://orcid.org/10.1109/CVPR.2009.5206848
http://orcid.org/10.1109/CVPR.2009.5206848
http://orcid.org/10.1109/ICCV.2015.169
http://orcid.org/10.1109/CVPR.2014.81
http://orcid.org/10.1109/CVPR.2014.81
http://orcid.org/10.1109/TPAMI.2015.2389824
http://orcid.org/10.1109/CVPR.2016.90
http://orcid.org/10.1109/ICCV.2017.324
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-46448-0_2


292 J. Hong et al.

21. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-CNN: Towards real-time object
detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell.
39(6), 1137–1149 (2017). http://orcid.org/10.1109/TPAMI.2016.2577031

22. Roh, B., Shin, J., Shin, W., Kim, S.: Sparse DETR: efficient end-to-end object
detection with learnable sparsity. In: The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event, April 25–29, 2022. Open-
Review.net (2022)

23. Unicersity, P.: PCB defect dataset. www.robotics.pkusz.edu.cn/resources/dataset/
24. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., (eds.) Advances in

Neural Information Processing Systems 30: Annual Conference on Neural Infor-
mation Processing Systems 2017, December 4–9, 2017, Long Beach, CA, USA, pp.
5998–6008 (2017),

25. Yang, C., Huang, Z., Wang, N.: Querydet: Cascaded sparse query for accelerating
high-resolution small object detection. In: IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18–
24, 2022, pp. 13658–13667. IEEE (2022). http://orcid.org/10.1109/CVPR52688.
2022.01330

26. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable
transformers for end-to-end object detection. In: 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3–7, 2021.
OpenReview.net (2021),

http://orcid.org/10.1109/TPAMI.2016.2577031
www.robotics.pkusz.edu.cn/resources/dataset/
http://orcid.org/10.1109/CVPR52688.2022.01330
http://orcid.org/10.1109/CVPR52688.2022.01330


SWP:A Sliding Window Prompt
for Emotion Recognition in Conversation

Hanlin Zhao1, Yan Chen1, Jiajian Xie1, and Kangshun Li2(B)

1 College of Mathematics and Informatics, South China Agricultural University,
Guangzhou, China

2 School of Artificial Intelligence, Dongguan City University, Dongguan, China
likangshun@sina.com

Abstract. Emotion Recognition in Conversation(ERC), also referred
to as sentiment mining in dialogues, aims at analyzing the speaker’s
state and recognizing their emotions during conversation. The study of
emotion recognition has attracted increasing interest in recent years due
to its wide range of applications, such as customer service analysis, med-
ical consulting, and intelligent robot conversations. However, the weak
correlation between emotion and semantics has posed several challenges
to emotion recognition in dialogues. Even for semantically similar utter-
ances, their emotions may differ greatly because of contextual or speaker
differences. To address this, we propose a new method for recognizing
emotions in dialogues called adjustable sliding chat window context mod-
eling, which uses prompt learning templates to focus on the speaker’s
emotional changes. Moreover, we introduce curriculum learning tech-
nique in the training stage to alleviate the impact of extreme samples
on the training process. We achieved state-of-the-art performance on
three widely used public datasets. To demonstrate the effectiveness of
our proposed curriculum learning strategy and adversarial training, we
conducted an ablation study.

Keywords: Context Modeling · Prompt Learning · Curriculum
Learning

1 Introduction

With the development of online social networks, emotion recognition in con-
versation has received increasing attention from the research community. It is
extremely important in many social network scenarios, such as sentiment mining
on WeChat chat records, Weibo public opinion analysis, and medical healthcare
applications on social media. The purpose of dialogue emotion recognition task
is to identify different emotions based on the content in each turn of the conver-
sation. A dialogue usually involves several speakers and several rounds, so the
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speaker’s emotions may vary greatly during the conversation. Unlike traditional
text classification tasks, understanding the speaker’s emotions requires not only
one turn of text dialogue, but also contextual information. Figure 1 shows an
example of ERC.

Fig. 1. Examples of emotion recognition in conversation. The same utterance “Yeah!”
can express different emotions in different contexts

ERC is a completely different task from traditional text classification tasks,
posing new challenges for researchers, with three issues worth solving:

(1) In ERC, similar utterances within a dialogue may express different mean-
ings depending on the context. Therefore, it is significant to explore contextual
cues to optimize emotion recognition tasks.

(2) To guide pre-trained models using prompt learning, a manual template
is required. However, each template varies significantly in performance, and
finding the optimal one is expensive. Hence, developing a robust and quickly
implementable suite of prompt learning templates is critical to effectively guide
pre-trained models for emotion recognition.

(3) Dialogue emotion recognition datasets commonly include multiple modal-
ities. However, some text data in these dialogues may not provide enough infor-
mation to distinguish emotions. Training a text-based emotion recognition model
using these high difficulty samples can result in reduced performance.

Regarding the first issue, we developed a sliding chat window module that
models context and speaker information to effectively capture the appropriate
cues for emotion recognition. The size of the chat window can be adjusted accord-
ing to different datasets as they may require different amounts of contextual
information. For the second issue, we created a set of prompt templates that
randomly generate examples to improve the robustness of template learning.
To mitigate the decrease in performance caused by extreme samples, we used
a curriculum learning strategy [1] by creating a distance-based difficulty mea-
surement function and training scheduler to sort the training data and schedule
model learning. Experimental findings support the efficacy of our proposed cur-
riculum learning strategy. The main contributions of this paper are summarized
as follows:
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- We designed a sliding chat window to model contexts that include both the
speaker’s information and background information so that the conversation’s
context information can be fully utilized.

- We designed a set of multi-prompt learning training strategies to quickly
integrate prompts, which can use the complementary advantages of different
prompts and reduce the cost of prompt design. Because choosing the best-
performing prompt is challenging, stabilizing the downstream task’s performance
allows the PLM to pay more attention to the speaker’s emotional changes in a
specified context.

- We introduced curriculum learning and designed a difficulty measure func-
tion based on inter-class distance and a training scheduling strategy based on
probability distribution. According to curriculum learning, the training dataset
can be sorted by the difficulty scores, allowing the PLM to learn from easy to
hard.

- We achieved state-of-the-art results on three widely used multi-modal pub-
lic datasets using text features. The experimental results further demonstrate
the effectiveness of our proposed multi-prompt learning and curriculum learning
strategies.

2 Related Work

Most previous dialogue emotion recognition models were achieved by encoding
the dialogue text into semantic embeddings, and then treating each round of
dialogue as a step or node. Then they use recurrent neural networks [11] or
graph neural networks [6] to obtain the corpus representation for final emotion
prediction. The dialogue text encoders in earlier models included Glove [14] and
Word2Vec [12]. In recent years, inspired by pre-trained language models’ (PLM)
ability to encode text semantic aspects, pre-trained models have also been used as
encoders to achieve higher recognition performance [16]. Although some achieve-
ments have been made, previous PLM-based ERC models have rarely made
full use of the potential knowledge of PLM, resulting in limited performance
improvements. Recently, some researchers have proposed prompt-based learning
paradigms to use PLM in various downstream NLP tasks: designing appropriate
prompts to guide PLM to better use knowledge related to downstream tasks. As
a result, PLM’s performance on downstream tasks has been improved. Inspired
by the rich semantic and emotional knowledge related to utterances in human
dialogues contained in PLM during the pre-trained phase, we use prompts about
this knowledge to guide PLM to perform emotion recognition tasks. However,
applying prompt-based learning paradigm on pre-trained models to implement
ERC is still challenging.
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3 Methodology

3.1 Task Definition

The goal of emotion recognition in conversation is to identify the emotion in each
sentence of a dialogue from several predefined emotions E based on the dialogue
records and information on each speaker. Specifically, an input sequence of N
utterances is given as [(u1, s1),(u2, s2),(u3,s1)...,(uN , sM )], where si ∈ S is the
speaker in utterance i, M denotes the total number of speakers, and ui ∈ U
represents the utterance in the ith turn. The objective is to predict the emotion
label ei ∈ E for each utterance ui.

3.2 Context Modeling

We developed a prompt-based scenario encoder that employs the BERT pre-
trained model [4] to represent emotions, capturing both contextual information
and speaker information.The architecture of the scenario encoder is depicted in
Fig. 2. We computed the representation of ut by incorporating the most recent
k rounds of dialogue as background information, with k being variable window
size.

Ct = [(ut−k/2, st−k/2), .., (ut, st), .., (ut+k/2, st+k/2)] (1)

Fig. 2. The architecture of our proposed scenario encoder

Kim and Vossen [8] pointed out that pre-trained language models have dif-
ficulty distinguishing between “context” represented by Ct and the target utter-
ance (i.e., (st, ut)). Inspired by prompt learning, and taking into account the



SWP:A Sliding Window Prompt for Emotion Recognition in Conversation 297

difficulty of selecting the best-performing prompts during prompt learning, and
the significant differences in the performance of different templates, we have con-
structed a set of Multi-Prompt, a rapid integration of multiple prompts at the
tth turn, as shown below:

query = random[query1, query2, ..., queryn] (2)

prompt = random[prompt1, prompt2, ..., promptn] (3)

Pt = query + ut, st + prompt (4)

3.3 Prompt Ensembling

Prompt ensembling is a technique used to predict inputs during reasoning that
have not received responses by using multiple prompts, whether discrete or con-
tinuous. This type of integration can leverage the complementary advantages
of different prompts, reduce the cost of prompt design, and stabilize the per-
formance of downstream tasks. Figure 3 shows the architecture of the discrete
prompts used in this study.

Fig. 3. The architecture of our proposed scenario encoder

In this paper, we constructed the query and prompt sets separately. By ran-
domly extracting queries and prompts from the set, we concatenate them with
the emotion recognition statements to create Prompt.

3.4 Curriculum Learning

Curriculum learning (CL) has become increasingly popular in recent years. Ben-
gio [1] first proposed the concept of CL, which advocates that models start learn-
ing from easy samples and gradually advance to complex samples and knowledge,
mimicking the process of human learning. The CL strategy has demonstrated
powerful ability in improving the generalization ability and convergence rate
of models in various scenarios, such as computer vision and natural language
processing. The focus of CL is that it requires appropriate difficulty measure
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function and training schedulers, which are usually determined based on prior
knowledge of human experts.

Multi-modal collection is the usual way of gathering existing ERC datasets.
The lack of adequate emotional information can affect the effectiveness of a
purely text-based ERC model during development. Including these extreme data
points during training can noticeably decrease performance. This paper aims to
utilize curriculum learning as a solution to this issue.

Difficulty Measure Function. We have incorporated a difficulty measurement
function based on inter-class distance from [18] into our research. Our approach
involves calculating the emotional representation of each data sample zi and its
corresponding label yi. Before each training epoch, we calculate the centers of
each emotion Ck based on the emotional representations. Specifically, for the kth

emotion, we calculate its center as follows:

Ck =
1

|{zi|∀i, yi = k}|
L∑

i=1

zi · I(yi = k) (5)

where I() is the indicator function, which outputs 1 if the argument is true and
0 otherwise. The difficulty DIF(j) of the jth sample is then calculated using the
following formula:

DIF (j) =
dis(zj , Cyj

)
∑|ε|

k=1 dis(zj , Ck)
(6)

where ε is the set of emotional labels, and the dis function is the cosine dis-
tance function. This function possesses two significant characteristics. Firstly, it
indicates that the greater the proximity of a sample to the center of its respec-
tive category, the easier it is. Secondly, it reveals that if two data samples are
equidistant from their respective category centers, the farther the samples are
from the centers of other categories, the easier they will be.

Training Scheduling Strategy. The present study proposes a technique to
construct a range of training subsets, gradually increasing in difficulty, by sorting
the complete training set according to a difficulty measure function. Specifically,
an arithmetic sequence a of length L, is calculated to train the model in the kth

epoch.
a1 = 1 − k/R (7)

an = a1 + (n − 1) ∗ d (8)

d =
2k/R − 1

L − 1
(9)

where R represents the total number of training epochs. The initial term in the
arithmetic sequence is a1, and d is the common difference. The Bernoulli distri-
bution is initialized using a, and a binary random array RB is generated from
it. Subsequently, we use RB to extract a subset, Dsub−k, from the training set of



SWP:A Sliding Window Prompt for Emotion Recognition in Conversation 299

the present training epoch, defined as Dsub−k ≡ {xi ∈ Dtrain|RBi
= 1}. Conse-

quently, Dsub−0 mainly comprises simple samples, while Dsub−R mainly consists
of difficult samples. This approach results in a more consistent progression of
difficulty for the model.

Adversarial Training. The implementation of curriculum strategies in our
model has led to the reduction of emotional representation in each training
epoch. Nonetheless, we aim to provide adequate training to the model even
when training becomes more challenging. To this end, we introduce adversarial
training to augment the emotional representation. In this approach, we employ
fast gradient sign method (FGM), as proposed by [13], to introduce perturba-
tions to the word embeddings in the recurrent neural network as opposed to the
raw input. Consequently, we observe significant improvement in the quality of
the learned word embeddings and reduction in overfitting during training, as
demonstrated in our experimental results.

3.5 Training and Evaluation

Training. Initially, we perform context modeling on the training set, followed
by using pre-trained language models to generate emotional representation for
all samples. Subsequently, we leverage these emotional representations to assess
the difficulty level of each sample. Based on the estimated difficulty scores, we
sort the training set in order. Then sample a training subset Dsub−k and train
it using cross-entropy loss.

3.6 Evaluation

After obtaining the emotional representation zi of the current utterance using
the scenario encoder, we added a linear fully connected layer to input zi into the
layer. The final probability of emotion prediction is obtained by applying the
softmax operation. Subsequently, we calculate the loss using the cross-entropy
function based on the actual emotion label and perform backpropagation.

pi = W · zi + b (10)

L = − 1
N

N∑

i=1

ε∑

c=1

yic · log(pic) (11)

where W ∈ R
dim×|ε| is a trainable parameter and b is the matrix bias value.
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4 Experiments

4.1 Experimental Setup

For the pre-trained model, we utilized the code framework and initial weights
that were provided by Huggingface’s Transformers [21]. Our backbone was “sup-
simcse-roberta-large”. The model was trained using the AdamW optimizer and
a cosine learning rate schedule approach. Training samples were limited to a
maximum of 256 in length. Hyperparameters were fine-tuned on the development
set. The best checkpoint on the development set was chosen and utilized to report
results on the test set. The entire experiment was conducted using a GeForce
RTX 3090 GPU.

4.2 Datasets

We conducted experiments on three widely used benchmarks: IEMOCAP [2],
MELD [15], and EmoryNLP [22].

IEMOCAP. This dataset consists of 151 video clips featuring 2 speakers each,
for a total of 302 clips. Each segment is annotated as one of 9 emotions (anger,
excitement, fear, sadness, surprise, frustration, happiness, disappointment, and
neutral). The dataset was recorded in 5 conversations with 5 pairs of speakers.

MELD. This dataset has over 1,400 dialogues and 13,000 utterances from the
television series Friends. Multiple speakers are involved in these conversations.
Each utterance in the dialogue is tagged as one of the seven emotions: anger,
disgust, sadness, joy, neutral, surprise, and fear.

EmoryNLP. This dataset includes 97 plots, 897 scenes, and 12,606 utterances,
with each utterance annotated as one of the seven emotions borrowed from the
six primary emotions in the Willcox’s feeling wheel [20]: sadness, anger, fear,
potency, peace, happiness, and the default neutral emotion.

4.3 Metrics

From Fig. 4, we observe that there is class imbalance in the three datasets. There-
fore, weighted F1 score is used as the evaluation metric in our experiments.
Weighted-F1 considers the importance of different categories by using the sam-
ple quantity of each class as the weight and calculates the weighted F1 score. The
statistical numbers of these datasets are listed in Table 1. No. Dials represents
the number of dialogues, while No. Uttrs represents the total number of data in
the dataset. No. CLS is the number of different emotions in the dataset.
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Fig. 4. Emotion distributions of the three datasets

Table 1. Statistics of the three datasets

IEMOCAP MELD EmoryNLP

No.Dials 151 1,432 827
Train 100 1,038 659
Dev 20 114 89
Test 31 280 79
No.Uttrs 7,333 13,708 9,489
Train 4,810 9,989 7,551
Dev 1,000 1,109 954
Test 1,523 2,610 984
No.CLS 6 7 7

4.4 Main Results

We conducted a comparative study between our proposed SWP method and
state-of-the-art text-based ERC methods. The results are presented in Table 2,
which demonstrate that by combining context modeling and curriculum learn-
ing strategy, we achieved superior performance on all three benchmarks, with
enhancements of 0.25%(S+PAGE on IEMOCAP), 0.81%(CoMPM on MELD),
and 0.79%(S+PAGE on EmoryNLP) over the previous state-of-the-art methods.
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Table 2. Performance comparisons on three datasets

Models IEMOCAP MELD EmoryNLP

COSMIC [5] 65.28 65.21 38.11
DialogueCRN [7] 66.46 63.42 38.91
DAG-ERC [17] 68.03 63.65 39.02
CoMPM [9] 66.61 66.52 37.37
EmotonFlow-Large [19] - 66.50 -
M2FNet-Text [3] 66.20 66.23 -
S+PAGE [10] 68.72 63.32 39.14
SWP(Ours) 68.97 67.33 39.93

4.5 Ablation Study

While conducting ablation experiments on the IEMOCAP dataset, Table 3 dis-
plays the results obtained throughout this ablation study.

Table 3. Ablation study on IEMOCAP

Model IEMOCAP

SWP 68.97
SWP w/o CL 68.28
SWP w/o FGM 68.38
SWP w/o CL+FGM 68.01

We discovered that both the curriculum learning and adversarial training
strategies can independently improve our model’s performance effectively. Imple-
menting the curriculum learning strategy alone resulted in a performance gain of
0.37%, while the adversarial training strategy alone resulted in a gain of 0.27%.
Curriculum learning guides the model to learn from easy to hard, enabling the
model to find the global optimum more efficiently. Additionally, the adversarial
training introduces a perturbation variable to the word embeddings during each
training epoch, improving the model’s generalization abilities. Combining these
two methods generated a significant improvement (0.96%) in the model’s train-
ing, further proving the viability of using adversarial training to compensate for
the emotional representation information loss caused by the curriculum learning
strategy.

5 Conclusion

In this paper, we propose a new contextual modeling method called Sliding
Window Prompt(SWP) for emotion recognition in conversation tasks. Com-
pared with the traditional method of contextual modeling using the previous
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utterances, we can freely select the relevant dialogue records with the current
utterance because the dialogues in different datasets have different lengths, and
the size of the chat window should be adjusted accordingly. Properly reducing or
increasing the contextual information of the current speaker’s speech can help
capture their emotional states. Meanwhile, in order to guide the backbone to
focus on the speaker’s emotional changes, we design an integrated prompt tem-
plate, which can leverage the advantages of different templates while reducing
the cost of design and maintaining the stability of downstream tasks. Finally,
we introduced curriculum learning to reduce the impact of outliers. Since we
construct an easy-to-hard training subset based on sampling, we lose some emo-
tional information in each training epoch, and therefore we increase the adver-
sarial training to compensate for this loss. We conducted experiments on three
widely used benchmarks: IEMOCAP, MELD, and EmoryNLP. The results show
that our method achieved state-of-the-art performance on all three datasets.
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Abstract. The existence of software vulnerabilities is the primary cause
of most security incidents in cyberspace. Timely detection of potential
vulnerabilities from source code during the software development stage
is a critical issue for developers. With the increasing scale of open-source
projects, traditional static analysis tools are becoming more and more
unreliable and stagnant in their development. Meanwhile, approaches
for vulnerability detection based on deep learning are being investigated.
This paper introduces a novel deep learning-based vulnerability detection
system, VDCNet, to identify and classify multiple vulnerabilities more
effectively. We extract advanced semantic information from AST repre-
sentations of source code and capture patterns of vulnerable functions by
training neural networks. VDCNet constructs a BERT model for embed-
ding and a Bi-LSTM network for prediction. The experimental results on
a comprehensive dataset demonstrate that our method is more efficient
in binary vulnerability detection than other deep learning-based meth-
ods, with outstanding multi-classification performance in cross-project
scenarios.

Keywords: Vulnerability detection · Code representation · Deep
learning · Feature extraction

1 Introduction

Vulnerability detection [16] is the primary technology to identify potential secu-
rity vulnerabilities in software systems, particularly in the early stages of soft-
ware development. In recent years, the annual number of security vulnerabilities
disclosed by the National Vulnerability Database (NVD) has shown an upward
trend. However, traditional static analysis approaches that rely on manual fea-
ture definition and code audit have proven inefficient [8,12]. There exists an
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urgent need for automated approaches to vulnerability detection with high effi-
ciency and accuracy.

Guided by manually defined rules, static analysis achieves high coverage-code
audit without compiling source code [1]. However, with the increasing complexity
of open-source projects, these rules are gradually unable to cope with the diver-
sity of source code, and the cost of rule definition is also increasing. Encouraged
by the success of deep learning in Natural Language Processing (NLP), many
security researchers have turned to deep learning as a solution to the bottleneck
problem of static analysis [3]. Firstly, programming language and natural lan-
guage share certain homogeneity, as both can be considered serialized symbols
with semantic information. Additionally, deep learning is suitable for automati-
cally extracting features from big data without human intervention.

Existing approaches based on deep learning still have some limitations despite
their advantages over traditional static analysis methods. Firstly, existing meth-
ods lack the capability or have a poor capability for cross-project vulnerability
detection [11]. This limitation is evident in the model’s poor performance when
the training and testing datasets come from different projects. Secondly, clas-
sifying detected vulnerabilities according to Common Weakness Enumeration
(CWE) types is of great reference value for the subsequent bug fixes. Unfortu-
nately, there is a complete lack of approaches with multi-classification capability
for vulnerabilities and datasets suitable for such tasks.

In this paper, we present VDCNet, a framework for more efficient C/C++
vulnerability detection and classification. The main contributions of this paper
can be summarized as follows:

• We improve the code representation method based on Abstract Syntax Tree
(AST) to provide better semantic information retention and project depen-
dency reduction.

• We propose a vulnerability detection and classification system, VDCNet,
based on neural networks. VDCNet can perform detection in cross-project
scenarios. And to the best of our knowledge, it is the first system to classify
the detected vulnerabilities.

• Evaluated on a comprehensive dataset including real-world vulnerability sam-
ples, VDCNet outperforms other binary classification systems, achieving sat-
isfactory performance in multi-classification.

2 Related Work

Static analysis tools analyze code properties such as syntax, data flow, and con-
trol flow to detect potential vulnerabilities. For instance, Flawfinder [12] detects
vulnerabilities based on its built-in high-risk function database, while KLEE [1]
calculates all possible program paths through mathematical operations. Some
other tools review the source code to detect vulnerabilities based on pre-defined
rules [8,16]. However, these detection systems ignore the semantic information
of the source code to varying degrees, resulting in a high false positive rate in
practice.
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VulDeePecker [9] was an early successful application of deep learning for
vulnerability detection, achieving higher precision than static analysis. Feng et
al. [6] mapped the AST pre-order sequences into vector space and trained a
Gated Recurrent Unit (GRU) for semantic information extraction. However,
these models do not consider vulnerability classification and have poor cross-
project detection ability. Lin et al. [11] combined a Long Short-Term Memory
(LSTM) and a random forest classifier to enhance the ability of cross-project
vulnerability detection. Nevertheless, their method relies on human experts to
determine vulnerabilities in the model’s output.

As for vulnerability detection granularity, some researchers identifies vulner-
abilities within source code files [2,11], which is not conducive to locating vul-
nerabilities owing to the possible presence of multiple vulnerabilities in one file.
In other methods, vulnerabilities are detected in single statements [3,16], often
resulting in poor performance, as most vulnerabilities are caused by multiple
statements.

Inspired by the research above, we propose an efficient vulnerability detection
system that can operate in cross-project scenarios and classify the vulnerabilities
detected while identifying vulnerable functions.

3 Method

VDCNet aims to analyze C/C++ source code input and predict the existence
of vulnerable functions and their possible vulnerability types. In this paper, we
define functions with no vulnerabilities as benign functions. The general workflow
of VDCNet is shown in Fig. 1.

Fig. 1. An overview of VDCNet

Firstly, we parse the source code files into ASTs [10], and process semantically
related AST nodes to construct node sequences. Next, we perform further pre-
training on a Bidirectional Encoder Representation from Transformers (BERT)
with code corpus for word embedding [4]. Finally, we construct an LSTM [15]
model to capture semantic features of vulnerabilities for classification.
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3.1 Preprocessing

Data Cleaning and AST Parsing. VDCNet identifies vulnerabilities within
function boundaries. For each input file, VDCNet removes components unrelated
to the code semantics (such as header files and comments.). In contrast, the
main part of source files, function definitions, must be reserved and divided.
After code segmentation, each function will be labeled as one record with its
type (vulnerability type or benign) in the dataset and parsed into AST.

AST is an intermediate result in the process of programming language com-
pilation, which implies lexical units stream and syntax information of the source
code organized in a tree structure. Taking the function in the first part of Fig. 2
for example, its AST representation is demonstrated in the second part. Each
node in AST contains rich syntax information but does not exhibit every detail of
the actual syntax. For instance, nested brackets are concealed in the tree struc-
ture and not explicitly shown in nodes. Therefore, converting code into AST
reduces data redundancy significantly while preserving semantic information in
a great measure.

Fig. 2. An example of AST parsing

AST Serialization. In this stage, we standardize and serialize the nodes from
ASTs. The node sequences need to retain the general semantic features of the
source code and reduce the dependence on their source projects. Finally, the
processed sequences are saved for word embedding.

A syntax analysis tool, “CodeSensor” [14], which can display AST as a table,
is selected as the AST parser of VDCNet. As demonstrated in the third part of
Fig. 2, “Codesensor” presents the ASTs in a table structure. Each row in the table
represents a node from the AST and its possible semantic information. Values
in the first column of the table denoting node types (nt), while the subsequent
two columns provide specific semantic values of nodes.

In order to obtain semantic information as the original order of statements,
we successively process each row, which is equivalent to performing an in-order
traversal of the AST. Three sets are defined to simplify the serialization:
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• NT : Including values in the first column (nt) of the table.
• ST : Including the first semantic values of those nodes with two semantic

values and “op” nodes, denoting the semantic types (st) of nodes.
• SN : Including other semantic values denoting the semantic names (sn) of

nodes.

During serialization, nt ∈NT and st ∈ST need to be directly retained, as
they have no relation to the dependency of projects. On the other hand, sn ∈SN
may come from specific projects and have dependencies on their source projects.
Directly retaining semantic names will lead to excessive sensitivity of the trained
model to specific vulnerable function names. Completely anonymizing them into
“func1,” “var1,” “var2,” and so on ignores many frequently used vulnerable
function calls in standard libraries.

VDCNet either retains or anonymizes sn ∈SN depending on whether they
come from standard libraries or specific projects. We use the C99 and C++11
standard library as the reference for C and C++ functions, respectively. All func-
tion and variable names other than these libraries are treated as project-specific
names. To sum up, the node sequence generation method can be described as
Algorithm. 1.

Algorithm 1. Node Sequence Generation Method
Input: Source Files: SF 1, SF 2, ..., SF t, ... , SFT , C99 and C++11 Libraries: L
Output: Node Sequences for Each Function: N(1, 2, ..., s, ..., S)
1: Initialize s = 0
2: for each t in (1,T ) do
3: Clean and split the SF t into functions: FT t

1, FT t
2, ..., FT t

i, ...
4: for each i do
5: s = s + 1.
6: Obtain Rowt

i(1, 2, ..., r) by feeding FT t
i into CodeSensor

7: for each j(nt ∈NT , st ∈ST , sn ∈SN ) in Rowt
i(1, r) do

8: Append nt and st into Ns

9: if sn ∈ L then
10: Anonymize and append the sn into Ns

11: else
12: Append the sn into Ns

13: end if
14: end for
15: end for
16: end for

For the example function in Fig. 2, the node sequence after serialization is
[func, int, func1, params, param, int, var1, ..., if, cond, ..., arg, int, var2, op,
<, ..., call, pow, ..., return, var1].
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3.2 Neural Networks

In this stage, two tasks are solved with neural networks. First, we perform further
pre-training on a bert-base-cased model [4] to map the node sequences into
vector space. Next, a Bi-Directional LSTM (Bi-LSTM) network is trained for
vulnerability classification. The detailed workflow of VDCNet is shown in Fig. 3.

Fig. 3. Detailed workflow of VDCNet

Word Embedding from Pre-trained Weight Matrix. Given a node sequ-
ence N [word1, word2, ..., words], word embedding aims to map N into a vector
sequence V [vector1, vector2, ..., vectors], where the relative position of vectors
represents the semantic similarity between words.

Traditional Word2vec models [13] perform CBOW or Skip-gram training and
extract their hidden layer output as a weight matrix W ∈ R

s×m for word embed-
ding. In sequence N , the word vector of Ni, V i ∈ R

m can be calculated as:

V i
1×m = Oi

1×s × Ws×m i = 1 · · · s, (1)

where m is the dimension of the word vectors we have preset and Oi ∈ R
s is the

one-hot vector of the Ni.

Word Vectors Generated by BERT. VDCNet regards the last hidden layer
output of the bert-base-cased model as word vectors to map node sequence N
into vector sequence V . Compared with the static word vectors generated by
Word2vec, word vectors dynamically generated by BERT using the bidirectional
information of sentences have richer contextual semantic information [4].

BERT takes the token sequence of N as initial input. The embedding layer
of BERT is composed of token embedding T ∈ R

d, segment embedding S ∈ R
d

and position embedding P ∈ R
d, where d is the dimension of word vector in

bert-base model, namely 768. For a word input x in node sequence N , its word
vector Hx that will be input into the classifier can be computed following the
calculation of the hidden layer in BERT:

Hx = En(En−1(· · ·E1(LN(Tx + Sx + Px)))), (2)
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where E and LN represent encoder layer and linear normalization computations.
The number of encoders that the bert-base model has is n, namely 12.

BERT Further Pre-training. BERT models were pre-trained on the English
text datasets. However, the semantic knowledge of initial BERT needs to be more
specific [7]. To make BERT provide a better semantic feature extraction in code
context, we further pre-trained a bert-base-cased model before word embedding.

The training task and dataset selected for pre-training are Masked Language
Modeling (MLM) and our whole dataset. Unlike natural language sentences,
functions in programming language lack the semantic relationship similar to
“next sentence.” Hence, we did not consider the Next Sentence Prediction (NSP)
task. The MLM training script released by Hugging Face, with default settings,
was utilized for training.

Vulnerability Classifier. The classifier we designed consists of Bi-LSTM layers
and a fully connected layer. It takes vector sequences of functions as input.

LSTM addresses the limitation of Recurrent Neural Network (RNN) in cap-
turing long-term dependencies of time series [15]. As the length of word sequences
of functions is often longer than that of natural language sentences, and vulner-
ability patterns are often associated with statements in different lines with long
distances, the model must have a better ability to handle long sequences. LSTM
introduces the cell state mechanism based on RNN. For each LSTM unit t, the
information it passes to later units includes hidden state ht and cell state ct.
The cell state, which decides information that needs to be saved or forgotten in
the training process, is calculated using three gates: forget gate ft, input gate
it, and output gate ot.

In VDCNet, we build two Bi-LSTM layers. Compared with LSTM with a
single direction, Bi-LSTM can learn the patterns and extract advanced semantic
features of vulnerabilities from both front and back directions. The output of the
hidden layer with dropout is connected to the dense layer for linear transforma-
tion. After SoftMax activation, the model outputs a one-hot vector representing
the predicted result of input.

4 Experiment

4.1 Environment and Metrics

We construct VDCNet on a Windows server with Intel Xeon W-2133 CPU and
NVIDIA GeForce RTX 2080Ti GPU.

Some widely used metrics are selected for evaluation: Accuracy (Accuracy =
TP

TP+FP+TN+FN ), Precision (Precision = TP
TP+FP ), False Positive Rate (FPR =

FP
FP+TN ), False Negative Rate(FNR = FN

FN+TP ), Recall (Recall = TP
FN+TP ), and

F1 score (F1 = 2×Recall×Precision
Recall+Precision ).
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4.2 Datasets

We select six CWE types of vulnerability for classification, three of which are
among the 2022 CWE Top 25 list. Our dataset is divided into two categories
according to where the source code comes from: manually built code and code
from real-world open-source projects. Both datasets satisfy the requirement of
comprising common vulnerability types. The following is the split:

• SARD: This dataset is part of the Juliet Test Suite 1.3 released by the Soft-
ware Assurance Reference Dataset (SARD). This suite is a manually built
vulnerability reference manual for software developers.

• RW: We constructed this dataset from source code in real-world open-source
projects.

Most detection systems in previous research conducted their experiments on
part of the SARD dataset, lacking evaluation of real-world vulnerabilities. To fill
the gap of real-world code data for vulnerability multi-classification, we collected
the RW dataset by supplementing and re-categorizing the dataset released by
Lin et al. [11]. Their dataset comes from six open-source projects: Asterisk,
FFmpeg, LibPNG, LibTIFF, Pidgin, and VLC. We collected additional samples
from other projects such as Wireshark, Firefox, and OpenSSL. Each function in
the RW dataset has a unique Common Vulnerabilities and Exposures (CVE) ID,
and all functions in both datasets have a CWE ID representing their CWE type.
The detail of our dataset is presented in Table 1.

Table 1. Details of the datasets

Source and CWE Type Vulnerability Brief Vulnerable functions

SARD-119 Memory Buffer Error 9148

SARD-125 Out-of-bounds Read 2824

SARD-787 Out-of-bounds Write 1792

SARD-189 Numeric Errors 6201

SARD-399 Resource Management Errors 1527

RW-119 Memory Buffer Error 195

RW-125/787 Out-of-bounds Read/Write 107

RW-20 Improper Input Validation 84

RW-189/369 Numeric Errors 116

RW-399 Resource Management Errors 78

Overall, there exist 41094 and 3500 functions (including benign ones) in the
SARD and RW datasets, respectively. To label functions, we assign numeric
values starting from 0 and incrementing by 1 to denote non-vulnerable functions
and functions with specific vulnerability types. In the experimental stage, we
divide the dataset into training, validation, and test sets with a ratio of 6: 2: 2.
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4.3 Settings

We conducted three groups of experiments. The first group performs binary vul-
nerability detection on the Buffer Error (CWE-119) dataset (part of the SARD
dataset) to compare the binary classification capability of VDCNet with the
baseline. The second and third groups use the complete RW and SARD datasets,
respectively, to evaluate the multi-classification performance of VDCNet. We list
the fine-tuned parameters of VDCNet in Table 2.

Table 2. Parameters in the vulnerability classifier

Parameter Description

Word Embedding dimension 768 for each word vector

Input sequence length Variable length using pack-padded-sequence

LSTM neurons 256 (hidden size: 64)

Training epoch 100

Batch size 32

Optimizer Adam

Learning rate 0.001 for group 1 and group 2. 0.005 for group 3

Loss function Cross Entropy Loss

Dropout 0.5 for group 2 and group 3

4.4 Results

In the first group, we select six vulnerability detection systems as the base-
line. These systems comprise two static analysis tools, RATS [8] and Flawfinder
[12], and four popular deep learning-based systems, Deepsim [17], VulSniper [5],
VulDeePecker [9] and the system proposed by Feng et al. [6]. The experimen-
tal results of the first group are presented in Table 3. In vulnerability binary
classification, VDCNet outperformed the baseline in most metrics, indicating its
superiority in distinguishing between benign and vulnerable functions.

The performance of RATS and Flawfinder reflect the defect of the high false
positive rate of traditional static analysis tools. These tools cannot comprehend
the semantics of source code at all. While Deepsim and VulSniper use data flow,
control flow, and code property graphs as intermediate code representations, this
process results in the truncation of code semantics. VulDeePecker transforms the
source code into code gadgets similar to the AST sequence, but this representa-
tion lacks information on variables’ relationships. Feng et al. use AST sequences
as the code representation and employ the Word2vec model for word embedding.
In contrast, word vectors of BERT can more effectively represent the semantic
information in the code context.
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Table 3. Binary vulnerability detection performance of VDCNet on SARD-119 dataset
compared with the baseline

System Precision Recall FPR FNR F1 Score

RATS 40.5 68.7 67.2 31.3 51.0

Flawfinder 39.9 55.2 56.6 44.8 46.3

Deepsim 71.6 58.4 16.1 41.6 64.4

VulSniper 88.7 73.8 6.4 26.2 80.6

VulDeePecker 91.7 82.0 2.9 18.0 86.6

Feng et al. [6] 93.8 73.5 3.0 26.5 82.4

VDCNet 94.2 84.6 4.7 15.4 88.6

Experiment results of the second and third groups are presented in Fig. 4.
These two groups perform vulnerability multi-classification on RW and SARD
datasets, respectively. To the best of our knowledge, no previous research has
ever conducted experiments on vulnerability multi-classification, leading to a
lack of comparative experiments. Generally, VDCNet achieved a high accuracy
of 90.7% and 93.9% on the RW and SARD datasets, respectively.

Fig. 4. The performance of VDCNet in classifying each CWE type of vulnerabilities
in multi-classification

The figure reflects the performance of VDCNet for detecting each type of
function in multi-classification tasks. Overall performance on the SARD dataset
is better than that of the RW dataset. For the SARD dataset, all classes achieved
high and balanced scores. However, classes with more training samples, such as
SARD-119 and SARD-Benign, tend to have slightly higher scores, and this imbal-
ance is more evident in the RW dataset. Although the classifier demonstrates
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high average accuracy on the RW dataset, the performance in detecting RW-20
and RW-399 functions is obviously worse than other functions due to the scarcity
of training samples.

It is worth noting that collecting source code of CVE vulnerabilities from
real-world projects is a challenging task, as CVE database only provides an
introduction without corresponding source code for each CVE ID. The primary
source of vulnerable functions is the source code in the historical version of open-
source projects. To provide a vulnerability multi-classification system with better
and more balanced performance, the data augmentation method for real-world
vulnerability data may have significant research value.

5 Conclusions

In this paper, we propose a method to improve the performance of deep learning-
based vulnerability detection in cross-project scenarios and a model to detect
vulnerability by CWE types. We first refine the AST-based code representation
method and then apply word vectors generated by the BERT model to our clas-
sifier. Finally, we demonstrate the superiority of VDCNet over the baseline and
the feasibility of vulnerability multi-classification through experiments. How-
ever, there are still limitations to our detection system. Our model has a lower
performance on RW dataset than SARD dataset. The deficiency of vulnerable
samples from real-world projects limits VDCNet’s performance to detect some
classes of vulnerabilities. Compared with the manually built vulnerabilities, the
semantic distinction between different types of real-world vulnerable samples is
more complicated to be caught.
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Abstract. The rapid development of point cloud processing has ushered
in a new era of point cloud upsampling. However, most existing meth-
ods for point cloud upsampling focus on designing feed-forward cascaded
networks based on a coarse-to-fine pipeline to enhance the network’s per-
formance. Unfortunately, these methods overlook the potential benefits
of incorporating higher-level information to improve low-level feature
learning. To address this issue, we propose a novel architecture called
Cascaded Feedback Network (CFNet), which differs from previous meth-
ods by incorporating both feed-forward and feedback mechanisms. The
feedback mechanism in our CFNet can enhance the feature learning of
the low-level layer by fusing the information from the high-level layer.
Additionally, we propose a novel Feedback Upsampling (FU) module
to construct our CFNet. Through extensive experiments on synthetic
datasets such as PU1K and PU-GAN datasets, we demonstrate that our
proposed CFNet architecture, along with the FU module, outperforms
existing methods in point cloud upsampling, indicating the effectiveness
of our proposed approach.

Keywords: Point Cloud Upsampling · Cascaded Feedback Network ·
Feedback Upsampling module

1 Introduction

Point clouds are widely used in 3D reconstruction and computer vision applica-
tions, including autonomous driving, augmented reality, and robotics. However,
point clouds acquired by scanning devices often suffer from limitations and noise
problems that result in irregular and sparse data with varying densities and sam-
pling intervals. These irregularities can significantly impede the effectiveness of
point cloud processing and analysis, as observed in public benchmark datasets
such as KITTI and ScanNet. Thus, it is crucial to process these sparse and
irregular point clouds into dense and regular point sets to improve their quality.

Point cloud upsampling is a technique utilized to convert irregular point
clouds into regular point clouds. The pioneering method, PU-Net [24], achieves
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Fig. 1. The architecture of proposed Cascaded Feedback Network (CFNet).
The CFNet contains several Feedback Upsampling (FU) modules based on parameter
sharing, which aims to reconstruct dense point clouds from sparse input across time
steps. We use FPS to initialize the input of feedback upsampling modules, which can
provide the prior information to the module

this by learning multi-scale features and expanding the number of points through
multi-branch Multi-layer Perceptrons (MLP). Subsequently, numerous meth-
ods [7,10,14,16] have adopted a single-stage network to generate dense points.
More recently, based on the coarse-to-fine pipeline, cascaded networks [3] have
been proposed to upsample point clouds, leading to impressive performance
improvements. It is worth noting that these methods are all feed-forward net-
works where information only flows from the low-level to the high-level layers.

The aim of this paper is to introduce a feedback mechanism that can incor-
porate information from high-level layers into low-level layers for point cloud
upsampling. To achieve this objective, we propose a novel approach named Cas-
caded Feedback Network (CFNet), which is composed of three cascaded Feed-
back Upsampling (FU) modules, as depicted in Fig. 1. The parameters of these
FU modules are shared with the iteration of the time step. The FU module is uti-
lized to upsample the input with the feedback connection, where the high-level
information is fed back to the low-level layers through the feedback connection
in each FU module. With the progression of time steps, the upsampling process
of the FU module is progressively refined by fusing feedback features. We con-
duct extensive experiments on synthetic datasets, such as PU1K and PU-GAN,
to evaluate the effectiveness of our proposed method. Our experimental results
demonstrate that CFNet significantly outperforms the state-of-the-art methods.

The main contributions are listed as follows:

• We propose a novel Cascaded Feedback Network (CFNet) for point cloud
upsampling. The proposed network can easily refine sparse point clouds across
time steps. To the best of our knowledge, the proposed CFNet is the first
feedback-based network for point cloud upsampling task.
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• We propose a Feedback Upsampling (FU) module to upsample the point
cloud. Based on the feedback mechanism, the FU module fuses the feedback
information to guide the current model to learn an impressive shape.

• Our network achieves leading performance on some widely adopted bench-
marks including the PU1K dataset and PU-GAN dataset compared to state-
of-the-art methods. Moreover, the complexity of our model remains compa-
rable to other existing point cloud upsampling methods.

2 Related Work

2.1 Point Cloud Upsampling

Point cloud processing methods [12,13,18,21] have accelerated the development
of point cloud upsampling techniques. PU-Net [24] proposed a classic frame-
work consisting of three parts: feature extraction, feature expansion, and coor-
dinate reconstruction. Subsequent works [1,7,10,14,15] related to point cloud
upsampling, mostly adopted this framework. For example, PU-GCN [14] applied
graph convolution network to feature extraction, while its upsampling module
was based on NodeShuffle, which experimentally demonstrated superior perfor-
mance compared to PU-GAN [7]. PU-EVA [10] introduced the Edge-vector based
approximation upsampling module, utilizing neighborhood points and max-
pooling to ensure point uniformity. Very recently, PUCRN [3] proposed a cas-
caded refinement network for point cloud upsampling, featuring a transformer-
based feature extraction module to learn both global and local shape context.
However, all of these methods are feed-forward networks. To address this limi-
tation, in this paper, we propose a feedback mechanism to fuse high-level layer
information with low-level layer information, achieving impressive point cloud
shape reconstruction.

2.2 Feedback Methodology

The feedback mechanism is a technique that adjusts the output of the feed-
forward by integrating information from high-level layers. It has been exten-
sively used in 2D images in computer vision [2,4,6,9,17,25], leading to improved
accuracy and robustness of models. Recently, the feedback mechanism has been
applied in point cloud processing, and FBNet [22] is the pioneering work in this
area. The Cross-Transformer module proposed by FBNet [22] overcomes the fea-
ture mismatching problem and selectively enhances low-level features by adap-
tively selecting valuable information from feedback features. In this paper, we
adopt the feedback mechanism in the point cloud upsampling task and achieve
state-of-the-art performance.
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Fig. 2. The detailed architecture of each Feedback Upsampling (FU) mod-
ule. Each FU module consists of four parts: Feature Extraction, Feature Fusion, Fea-
ture Expansion, and Coordinate Generation. FB module Set denotes the points and
features reflowed from the t − 1 step

3 Method

3.1 Cascaded Feedback Network (CFNet)

In this paper, we propose a Cascaded Feedback Network (CFNet) for point
cloud upsampling. CFNet contains several Feedback Upsampling (FU) modules,
as shown in Fig. 1. CFNet aims to refine the sparse input point cloud to the
dense point cloud. From the left to right in Fig. 1, we use three FU modules
to generate the feed-forward feature information. Each FU module takes the
output of the previous module as a part of the input. It should be noted that
we concatenate the original input and the feedforward output of the i − 1-th
module. Then we downsample concatenated point cloud by using the Farthest
Point Sampling (FPS) algorithm to the fixed scale. In this way, the input of the
current module is fused with the prior information of the original data, which is
more conducive to obtaining a favorable output. In particular, the input of the
0-th module is the pure original point cloud.

Apart from the feedforward information, CFNet also contains feedback infor-
mation flowing from the higher layer to the lower one. Hence, we introduce the
feedback mechanism via the time iterations, as shown in Fig. 1 (top to down).
With the time steps, the feedback information from the t − 1 step reflow to the
t step. We infer that the output of the high layer at the t − 1 step has fine infor-
mation, which can help the low layer feature to generate a more fine-grained
super-resolution point cloud at the t step. Across time steps and the feedfor-
ward information flows, FU modules gradually refine their output and we will
get representative and fine point cloud via our CFNet. This is also confirmed in
our subsequent experiments.

3.2 Feedback Upsampling (FU) Module

The proposed Feedback Upsampling (FU) module aims to refine the sparse point
cloud to fine-gained ones through the upsampling and feedback mechanism. Since
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we need to fuse the feedback information, our FU module consists of four parts:
Feature Extraction, Feature Fusion, Feature Expansion, and Coordinate Gener-
ation, as shown in Fig. 2. In the following, we will introduce each part in detail.

Feature Extraction. Previous methods [7,8,24] usually use the MLP-based
feature extraction to learn features of the input. However, the MLP-based meth-
ods are not able to capture the local and context features. Therefore, we intro-
duce the Transformer in 3D vision [3,5,11,26] to our network.

Specifically, we denote the input of i-th FU module at t time step is
P t
i = {pj}Nj=1 of three channels, the output of the feature extraction is the

corresponding point cloud feature F t
i = {fj}Nj=1 with channel C, where N is the

number of points. We first perform MLPs on the original point P t
i to obtain the

original point features. We then utilize max-pooling on the obtained point fea-
tures to obtain the global features. We can get the final features F ′ via a fusion
operation K between point features and global features. F ′ can be formulated
as:

F ′ = K([A(M(P t
i )),M(P t

i )]), (1)

where M and A denotes MLPs and max-pooling operation, respectively. [·] is
the operation of concatenation.

In the second stage, we use the Point Transformer [26] to extract the local
and context features F ′′ by building the relation between points. F ′′ can be
calculated as:

F ′′ = ϑ
(
F ′, P t

i

)
, (2)

where ϑ is the point-transformer function [26].
Finally, we aggregate the global features again like in the first stage to gen-

erate the final point features F t
i . This process is roughly the same as Eq. 1.

Feature Fusion. The feature fusion is used to aggregate the feed-forward fea-
tures and the feedback features. Cross-layer feature fusion strategies are widely
used in point cloud completion methods [19,20,22] in the field of point cloud pro-
cessing. Feedforward information flows from the lower layer to the upper layer,
and the output reflows to the next step as feedback information for fusion. How-
ever, the premise of cross-layer feature fusion is that the resolutions of the two
are consistent. In the field of point cloud processing, both point cloud completion
and upsampling involve upsampling rate, which will lead to unequal resolutions
of features we need to fuse. FBNet [22] proposed the Cross Transformer method
to fuse features from two point clouds with different resolutions. FBNet [22] also
proved its effectiveness through a series of experiments. Therefore, we directly
apply Cross Transformer to the feature fusion module of our network.

We denote the feed-forward point cloud and its features of the i-th FU module
in the t step as P t

i , F t
i , the corresponding feedback point cloud and its features as
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P t−1
i+1 , F t−1

i+1 . The fusion operation based on Cross Transformer can be formulated
as the following:

F t
i,r = R(F t−1

i+1 , F t
i , P

t−1
i+1 , P t

i ), (3)

where R denotes the Cross Transformer.
Specifically, the Cross Transformer build the relation between feed-forward

features F t
i and feedback feature F t−1

i+1 via the attention mechanism. Therefore,
the Cross Transformer can query the useful information from the feedback point
cloud to enrich the current point cloud and obtain more valuable features. Note
that, when the feedback information is None (e.g., t = 0), the Cross Transformer
degenerates into the point transformer.

Feature Expansion. Similar to the pixel shuffle, we use the point shuffle
to expand the aggregated point feature F t

i,r. We first apply a series of fully-
connection layers to obtain the high-dimension feature with the scale of rC × N ,
where r is the upsampling rate. Then, the expanded features are reshaped to the
low-dimension but high-resolution feature F t

i+1 with the scale of C × rN . Our
feature expansion module is time-saving and relatively saves some computing
resources.

Coordinate Generation. The purpose of coordinate generation is to generate
a new set of points P t

i+1 = {pj}rNj=1 from the upsampled point features F t
i+1.

A common method for coordinate reconstruction is to directly regress the 3D
point coordinates, but it is difficult to generate high-fidelity coordinates in a
noise-free environment. We choose to utilize both the original point cloud and
the upsampled point features for the coordinate generation to solve this problem.
The output of the coordinate generation module can be calculated as:

P t
i+1 = V(F t

i+1) + D (
P t
i , r

)
(4)

where V denotes MLP, and D denotes duplicated operation. The r is the upsam-
pling rate of the current FU module. This method alleviates learning conflicts
between multiple stages in a coarse-to-fine framework. In this way, we can gen-
erate reliable point coordinates through the stacked FU blocks.

3.3 Training Loss

We use Chamfer Distance (CD) as the loss function during our end-to-end train-
ing. The loss function can be formulated as:

LCD (P, P ′) =
1

|P |
∑

x∈P

min
y∈P ′

‖x − y‖2 +
1

|P ′|
∑

y∈P ′
min
x∈P

‖y − x‖2. (5)

where P and P ′ are different point clouds, and x and y are the points belonging
to P and P ′ respectively.
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Table 1. The quantitative results on PU1K dataset (×4 upsampling rate) in terms of
CD (103) and HD (103). There are different numbers of points of the input, including
512 (sparse), 1024 (medium), and 2048 (dense)

Methods 512 points 1024 points 2048 points

CD (↓) HD (↓) CD (↓) HD (↓) CD (↓) HD (↓)

PU-Net [24] 2.990 35.403 1.920 24.181 1.157 15.297

MPU [23] 2.727 30.471 1.268 16.088 0.861 11.799

Dis-PU [8] 2.130 25.471 1.210 16.518 0.731 9.505

PU-GAN [7] 2.089 22.716 1.151 14.781 0.661 9.238

PU-GCN [14] 1.975 22.527 1.142 14.565 0.635 9.152

PU-EVA [10] 1.942 20.980 1.065 13.376 0.649 8.870

PUCRN [3] 1.594 17.733 0.808 10.750 0.471 7.123

CFNet (Ours) 1.500 16.639 0.783 10.002 0.450 5.918

Table 2. The quantitative results on PU-GAN dataset (×4 upsampling rate) in terms
of CD (103) and HD (103). The number of points of input is 1024

Methods CD(↓) HD(↓)

PU-Net [24] 0.883 7.132

MPU [23] 0.589 6.206

Dis-PU [8] 0.527 5.706

PU-GAN [7] 0.566 6.932

PU-GCN [14] 0.584 5.257

PU-EVA [10] 0.571 5.840

PUCRN [3] 0.520 6.102

CFNet (Ours) 0.497 4.676

The loss function of our network is joint because each Feedback Upsampling
(FU) module has its own predicted output. So our joint loss function can be
defined as the following:

L =
T∑

t=0

n∑

i=0

LCD

(
P t
i , GT

)
(6)

where t denotes the step times, and n denotes the number of FU modules in
the same step. Obviously, P t

i is the output point cloud in the i-th module at t
step. GT denotes the corresponding ground truth of P t

i . In our paper, we set n
= 3, T = 3, so the total loss function consists of 9 parts.
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4 Experiment

We demonstrate the effectiveness of our proposed network by conducting exper-
iments on publicly available datasets in the field of point cloud upsampling. The
datasets we selected are PU1K and PU-GAN. Detailed parameter settings will
be introduced in Sects. 4.1 and 4.2. The number of time steps in our CFNet is
set to 3. The methods compared with our CFNet contain seven existing point
cloud upsampling methods, including PU-Net [24], MPU [23], PU-GAN [7], Dis-
PU [8], PU-GCN [14], PU-EVA [10] and PUCRN [3]. The model’s performance
is evaluated by Chamfer Distance (CD) and Hausdorff Distance (HD). Smaller
values for these metrics indicate better performance. We set the upsampling
rate of the first FU module to 1, and the rest to 2, to reach ×4 upsampling. The
experimental results of other methods are referenced in the PUCRN method [3].

Fig. 3. The visualized results on PU-GAN dataset (×U4 upsampling) with the input
of 1024 points

4.1 Evaluation on PU1K Dataset

Dataset. PU1K is a large-scale dataset for point cloud upsampling proposed
by PU-GCN [14]. PU1K contains 1,147 3D models divided into 1020 training
samples and 127 test samples. For inference, we follow the general settings [3,7,
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Table 3. The ablation study of feedback mechanism on PU-GAN dataset with the
input of 1024. The values of CD and HD are multiplied by 103

Feedback CD(↓) HD(↓)

False 0.502 4.891

True 0.497 4.676

Table 4. The ablation study on effect of time step. Conducted on PU-GAN dataset
with the input of 1024. The values are multiplied by 103

Time-step CD(↓) HD(↓)

1 0.504 5.209

2 0.501 5.099

3 0.497 4.676

14,24] and divide the input point cloud into point patches according to the seed
points. Therefore, PU1K is composed of 69000 training patches.

Setting. Our model is trained with 200 epochs on the PU1K dataset, and
the batch size is set to 64. The initial learning rate is set to 0.001 and drops by
a decay rate of 0.7 every 15 epochs. During training, the points of each training
patch’s ground truth are 1024, and the input contains 256 points randomly
sampled from the ground truth.

Results. We take the input of 256 points to train our model on the PU1K
dataset. The output of the predicted point cloud contains 1024 points after ×4
upsampling. We conduct experiments to test the performance of our model on
different input sizes of points, including 512 (sparse), 1024 (medium), and 2048
(dense). The quantitative results is shown in Table 1. Compared with the current
state-of-the-art models, our method achieves the best performance on all of the
resolutions in the metrics of CD and HD.

4.2 Evaluation on PU-GAN Dataset

Dataset. PU-GAN dataset is a smaller dataset than PU1K, proposed by PU-
GAN [7]. It is collected from the released datasets of PU-Net and MPU, com-
posed of 147 3D models. Different from PU1K, PU-GAN only contains 24000
training patches collectd from 120 3D models and the rest for testing. Each
training patch has 256 points and each ground truth has 1024 points as well as
PU1K.

Setting. The batch size of PU-GAN is set to 32, and the rest of the experi-
mental settings are the same as PU1K. Following PUCRN [3], we test our model
on the input of 1024 points, which is migrated from PU1K’s test set with the
input of 1024 points, as well as the ground truth with 4096 points.

Results. Following the abovementioned settings, we conduct experients on
PU-GAN dataset with ×4 upsampling rate. Table 2 shows our quantitative
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results. In general, our methods can achieve the best results of all metrics. In
particular, our results on the HD metric received a significant boost, decreasing
from 6.102 of PUCRN [3] to 4.676, also exceeding the current best PU-GCN [14].
Moreover, we visualize the results of PU-GCN [14], PUCRN [3] and our method
in Fig. 3. In contrast to PU-GCN [14] and PUCRN [3], our CFNet exhibits supe-
rior performance in generating point clouds with a high degree of uniformity and
detail, while also minimizing the presence of outliers.

Table 5. The Complexity Analysis

Methods Params (M) CD (↓) HD (↓)

PU-Net [24] 0.812 0.883 7.132

MPU [23] 0.076 0.589 6.206

Dis-PU [8] 1.047 0.527 5.706

PU-GAN [7] 0.542 0.566 6.932

PU-GCN [14] 0.076 0.584 5.257

PU-EVA [10] 2.869 0.571 5.840

PUCRN [3] 0.847 0.520 6.102

CFNet (T = 1) 1.252 0.504 5.209

CFNet (T = 2) 1.252 0.501 5.099

CFNet (T = 3) 1.252 0.497 4.676

5 Ablation Study

In order to demonstrate the effectiveness of the core components and settings in
our model, we design ablation experiments to quantitatively evaluate them. The
ablation study mainly tests the feedback mechanism and the time step.

5.1 The Effect of Feedback Mechanism

Compared to the previous work based on the feed-forward network, we introduce
the feedback mechanism into our model. To demonstrate the effectiveness of
the feedback mechanism for point cloud upsampling, we conduct our ablation
experiments on the PU-GAN dataset with the input of 1024. The results are
shown in Table 3, from which we can see the model with feedback connections
is better than the model without one.

5.2 The Effect of Time Step

Our proposed network can achieve refined point clouds across time steps. Hence,
we set different values of t to conduct experiments on the PU-GAN dataset with
1024 input to demonstrate the effectiveness of the time step. As shown in Table 4,
the value of t is bigger, and the performance of our network is better.
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6 Complexity Analysis

In this section, we analyze the complexity of our proposed model and compare
it with the existing point cloud upsampling methods. We test all methods on
the PU-GAN dataset with the input of 1024 points. As shown in Table 5, Com-
pared with PU-EVA [10], our method has fewer parameters but significantly
improves the performance. Compared with PU-Net [24], Dis-PU [8], and the
latest upsampling method PUCRN [3], we achieve the best performance with
small parameter growth. Overall, our cascaded feedback network (CFNet) not
only achieves significant performance gains but also achieves comparable model
complexity to other networks.

7 Conclusion

In this paper, we propose a cascaded feedback upsampling network (CFNet) for
point cloud upsampling. To the best of our knowledge, we are the first to apply
the feedback mechanism to the field of point cloud upsampling. The CFNet is
composed of three Feedback Upsampling (FU) modules. The FU module achieves
the upsampling rate distributedly, making the network structure more flexible.
By introducing feedback connections in the FU module, CFNet can learn more
representative and informative low-level features with the help of rerouted high-
level information and achieve impressive super-resolution point clouds as time
steps. Experiments on public datasets including PU1K and PU-GAN show that
our method outperforms the current state-of-the-art methods.
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Abstract. In this paper, we focus on the problem of small and long-
range object misses in 3D object detection on point clouds. We observed
that in challenging situations, especially for hard objects such as small
objects, the performance of the detector remains unsatisfactory. To
address these issues, this paper proposes a voxel-based two-stage 3D
object detector, named DA-TSD, which mainly includes a Double Atten-
tion (DA) module and a Pyramid Sampling (PS) module. The DA mod-
ule comprehensively considers point-wise and channel-wise excitation
attention, which can effectively enhance the crucial information of the
object and suppress irrelevant noise. In addition, the stacked DA mod-
ule utilizes not only the current level feature but also the multi-level
feature attention. The PS module provides cross-layer feature mappings
to obtain more comprehensive feature representations. The experimental
results on the val set of the KITTI dataset demonstrate the superiority
and effectiveness of DA-TSD. DA-TSD provides higher detection accu-
racy while maintaining real-time frame processing rate, running at a
speed of 28.5 FPS on an NVIDIA GeForce RTX 3090 Ti GPU.

Keywords: 3D Object Detection · Point Clouds · Autonomous driving

1 Introduction

In recent years, 3D object detection using point clouds has received extremely
wide attention in areas such as autonomous driving and augmented reality
where point clouds provide more reliable geometric information and accurate
depth. Although a large amount of researches [17] have contributed to significant
advances in 2D object detection, which can indicate the position and category
of each object in an image, applying these methods to 3D point clouds is still
difficult. In addition, the sparsity and unstructured properties of point clouds
pose more significant challenges for accurate object detection.

To address these challenges, many 3D object detection methods for point
clouds have emerged, which can be roughly divided into two categories: point-
based and voxel-based. Point-based methods [16,21] operate directly on the raw
point clouds from which features are extracted and 3D bounding boxes are gen-
erated. The methods of using raw point clouds have problems such as high time
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14254, pp. 330–343, 2023.
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costs for sampling and nearest neighbor search. Voxel-based methods usually
divide the point clouds into more regular voxel grids and generate 3D bounding
boxes on this basis to achieve 3D object detection. Compared with point-based
methods that have higher time costs, voxel-based methods have more efficient
sparse convolution [27] and can achieve SOTA detection performance. Sparse
convolution is most commonly used in voxel-based network structures.

Small object detection is crucial for safe driving in the field of autonomous
vehicles, especially the pedestrians and cyclists can easily appear in blind spots of
the driver’s vision and be overlooked. We identify two reasons for the poor perfor-
mance of existing methods on challenging objects, especially small objects: 1) a
low foreground point ratio results in fewer points being scanned on small objects
by LiDAR; 2) quantization leads to information loss during feature extraction
of 3D sparse convolution backbone. Although there have been some studies
[8,22,28] on this subject, these methods either perform high-density feature
extraction on objects, which is still a very difficult task and has poor porta-
bility, or are susceptible to noise.

This paper proposes two modules aimed at mitigating the impact of the
aforementioned factors. We draw inspiration from Voxel R-CNN [3] and adopt
a voxel-based framework to aggregate 3D structural contexts from 3D voxel fea-
tures. To enhance point recognition and reduce the impact of diverse background
information on voxel feature extraction, the Double Attention (DA) module is
introduced in the 3D backbone network. Specifically, the DA module contains
point-wise and channel-wise excitation attention, and these two types of atten-
tion are combined through element-wise multiplication.

The feature extraction process of the 3D sparse convolution backbone may
result in the loss of some information due to quantization. Considering the small
receptive field of the low-level network and its strong ability to represent geomet-
ric detail information, we propose a Pyramid Sampling (PS) method to provide
voxel feature maps across layers.

In summary, the key contributions of the proposed method lie in:

– We introduce a novel Double Attention (DA) module that considers point-
wise and channel-wise excitation attention, and then obtains multi-level fea-
ture attention via stacking.

– We propose a new feature sampling method that provides cross-layer voxel
feature maps.

– Experimental results on the KITTI object detection benchmark [4] show that
DA-TSD boosts the baseline model more significantly for Pedestrian and
Cyclist, proving that DA-TSD is effective for small object detection.

2 Related Work

Recently, the rapid development of computer vision technology has led to a
wide range of research on 3D object detection from point clouds. A large num-
ber of methods adopt point-based or voxel-based detection frameworks. Point-
based methods [1,13,16,21,24] utilized abstract set of points to detect objects.
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CenterPoint [31] provided a simple and effective anchor-free framework for 3D
detection. 3DSSD [29] improved point-based methods by adopting a new feature-
distance-based sampling strategy. STD [28] further extended proposal refinement
by converting sparse point features to dense voxel representations. SPG [26] gen-
erated semantic points to recover missing parts of foreground objects. Although
these methods have better detection results, they suffer from time-consuming
processes of sampling and feature aggregation from irregular points, resulting in
a slower running speed. Another category of methods is the voxel-based app-
roach [2,23,25,33], which aimed to improve computational efficiency by voxeliz-
ing unstructured point clouds into regular 2D or 3D grids and encoding only
the non-empty voxels. SECOND [27] proposed a sparse convolutional operation
instead of dense 3D convolution to speed up 3D convolutional network inference.
Pioneering work [2] encoded point clouds into 2D BEV (Bird’s-Eye View) fea-
ture maps to generate highly accurate 3D candidate boxes, and inspired many
efficient BEV-based methods. Sparse2Dense [22] boosted small object detection
performance by learning to densify point clouds in latent space, but high-density
feature extraction is a difficult task. We used a two-stage voxel-based detection
pipeline in our approach. However, the traditional voxel-based approaches tend
to ignore and obfuscate the details and texture information of small objects.
To address this issue, we consider the channel-wise and point-wise excitation
attention on point clouds to learn more robust representations for each voxel,
highlight key features and lead to better detection results.

3 DA-TSD Design

This section provides a detailed presentation of DA-TSD, a two-stage voxel-based
3D object detector. As shown in Fig. 1, our innovation mainly lies in two parts,
namely, the DA module and the PS module. The former adaptively learns the
importance between point-wise and channel-wise feature maps, highlights key
feature information, while the latter provides cross-layer feature maps to reduce
the impact of information loss caused by quantization of sparse convolution.

3.1 Double Attention

Assuming that the point clouds P in 3D space is divided into a set of fixed-size
voxels, with each voxel having a size of vW , vH , vD, the size of the voxel grid can
be calculated by division. It should be noted that, inspired by [10], we do not
perform voxel grid division on the Z-axis.

Previous studies have shown that random sampling methods employed in
SECOND [27] can be unstable in the vicinity of the LiDAR sensor. To mitigate
this issue, we adopt the sampling method proposed in [30]. A sampling point
is considered valid if it satisfies the condition that all Dist > M , where Dist
can be represented using Euclidean distance and M is a fixed value, and in
our experiments we set M = 3. The sampling process is accelerated using the
absolute value distance, i.e.:

Dist = |x − xval| + |y − yval| + |z − zval|, (1)
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where xval, yval, zval denote the coordinates of the existing valid sample points.

Fig. 1. An overview of DA-TSD. The raw point clouds are first divided into regular
voxels and feature extraction is performed using a 3D backbone network, where the
DA module processes each voxel separately to obtain more representative features.
The features processed by DA are sampled using PS to obtain features with stronger
geometric details. Then the 3D features are transformed into a Bird’s Eye View (BEV)
representation, and 2D backbone network and Region Proposal Network (RPN) are
applied on the BEV to generate 3D region proposals. Finally Region of Interest (RoI)
features are extracted using Voxel RoI Pooling and fed into the detection subnet for
further box refinement.

A set of voxels V consisting of K voxels can be denoted as V =
{V 1, V 2, ..., V K}, where V k ∈ R

N×C represents the k-th voxel.
Point-Wise Excitation Attention. Given a voxel V k, global average pool-

ing is used to aggregate point features across the channel-wise dimension, result-
ing in a per-voxel point-wise response Zk ∈ R

N×1. To exploit the aggregated
information generated in the previous step and to capture the dependencies of
points in space, in the second step, two fully connected layers (FC) are used to
encode the global response to limit the complexity of the model and help gen-
eralize it, and a simple gating mechanism with sigmoid activation [7] is used to
normalize the values of the attention matrix to the range [0, 1], i.e.:

Sk = σ
(
g(Zk,W1,W2)

)
= σ

(
W2δ(W1Z

k)
)
, (2)

where δ is the ReLU [14] function, σ is the sigmoid function, W1 ∈ R
r×N ,W2 ∈

R
N×r are the weight parameters of the reduced-dimensional FC and the

increased-dimension FC respectively, indicating the importance of point-level
features for each voxel. Sk ∈ R

N×1 is the point-wise excitation attention of
V k. As shown in Fig. 2(a), the upper branch of the attention module is used to
describe the spatial dependencies between points within each voxel.
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Fig. 2. Architecture of the DA module (a) and Pyramid Sampling Architecture (b).

Channel-Wise Excitation Attention. The channel-wise excitation atten-
tion is similar to the point-wise excitation attention, as shown in Fig. 2(a).
The global average pooling operation of the channel-wise excitation atten-
tion is to aggregate the channel features in the point dimension, such that
a channel-wise response Y k ∈ R

1×C for a voxel is obtained. Then, we com-
pute T k = σ(g((Y k)T ,W ′

1,W
′
2)) = σ(W ′

2δ(W
′
1(Y

k)T ), where W
′
1 ∈ R

r×C and
W

′
2 ∈ R

C×r represent the importance of channel-level features to each voxel.
Given a voxel V k, we perform element-wise multiplication on point-wise spa-

tial attention Sk and channel-wise attention T k to obtain an attention matrix
Mk ∈ R

N×C , i.e.:
Mk = Sk × T k. (3)

Therefore, a feature with attention can be expressed as F k = Mk � V k ∈
R

N×C , which weights the importance of all points within a voxel in the point-
wise and channel-wise dimensions.

Through the above two operation steps, the feature representation F k rein-
forces the key features. It has a positive effect on our task, and also suppresses
irrelevant noise features. We name the module that integrates these two types
of attention Double Attention (DA).

As shown in Fig. 1, in our approach, two DA modules are used so that multiple
levels of feature attention can be used. For each DA module, in order to incorpo-
rate more features, we concatenate/sum its input and output. High-dimensional
feature representations are then obtained through fully connected layers.

3.2 Pyramid Sampling

In order to reduce the effect of lost information during convolutional quantiza-
tion, a PS module is used to obtain cross-layer feature mapping, as illustrated in
Fig. 2(b). The features processed by the two DA blocks are denoted as O1 and
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O2, and the features processed by the last sparse convolution block are denoted
as O3. The shapes are (C

′
,H/2,W/2), (2C

′
,H/4,W/4) and (2C

′
,H/8,W/8),

respectively. Based on O1, a feature pyramid {O1, O
1
1, O

2
1} is constructed, where

O1
1 and O2

1 are obtained by down-sampling O1 twice. Similarly, the {O2, O
1
2, O

2
2}

is obtained by up-sampling and down-sampling O2. Two up-sampling operations
are performed on O3 to get {O3, O

1
3, O

2
3}. In these three pyramids, O1

1 has the
same size as O2, while O2

1 has the same size as O3. After obtaining the three
feature pyramids, features with the same scale are concatenated horizontally to
obtain PS = {PS1, PS2, PS3}, which will serve as a part of the input to Voxel
RoI Pooling.

3.3 Backbone and Region Proposal Networks

The backbone network of DA-TSD is similar to the architecture of [20,27]. The
3D backbone network extracts features from voxelized inputs and stacks along
the Z-axis to generate BEV feature maps. The 2D backbone network consists of
a top-down feature extraction sub-network and a multi-scale feature fusion sub-
network, where the former contains two 3× 3 convolutional layer blocks, and
the latter involves up-sampling and concatenating top-down features. Finally,
the output of the 2D backbone network is convolved using two 11 convolutional
layers to generate 3D region proposals.

3.4 Voxel RoI Pooling and Detect Head

Voxel RoI Pooling introduced in Voxel R-CNN is utilized in DA-TSD. First we
group a set of neighboring voxels using voxel queries, then aggregate the neigh-
boring voxel features using [16]. The voxel features are processed through an
MLP (Multilayer Perceptron) and channel-wise max pooling to obtain aggre-
gated features. Finally, we concatenate the aggregated features from different
stages to obtain the RoI features, which are used as input for the detect head.
In the detect head, MLP converts RoI features into feature vectors. After flat-
tening it is fed into two branches, one for bounding box regression that is used
to predict the residuals between 3D region proposals and ground truth boxes
and the other for prediction confidence, which is used to predict the IoU-related
confidence score.

3.5 Loss Function

Losses of RPN. The loss function of Region Proposal Network (RPN) com-
prises of both classification loss and bounding box regression loss. Due to the
extreme imbalance between foreground and background points during training,
we apply Focal Loss [11] as classification loss:

LclS = −αt(1 − pt)γt log(pt),

pt =

{
p, y = 1,

1 − p, otherwise,

(4)
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where p is the estimated probability of the model for the class with label y = 1.
αt and γt are the parameters of Focal Loss, and in our experiments, we set
αt = 0.25 and γt = 2.

For the regression target, the positive anchor is parameterized as ∗a and Δ∗

is used to represent the corresponding residual. Then the offset between the
prior anchor a and the ground-truth box g in bounding box regression can be
expressed as Eq. 5, and the regression loss is computed using the SmoothL1 [18]
function.

Δx =
xg − xa

da
,Δy =

yg − ya

da
,Δz =

zg − za

ha
,

Δl = log
(

lg
la

)
,Δw = log

(
wg

Wa

)
,Δh = log

(
hg

ha

)
,

Δθ = sin
(
θg − θa

)
.

(5)

The 3D ground-truth bounding box is defined as xg, yg, zg, lg, wg, hg, θg, where
x, y, z is the center position, l, w, h represent the length, width, and height of the
3D bounding box, and θ is the yaw rotation around the Z-axis. da =

√
l2a + w2

a

is the diagonal length of the bottom of anchor box base.
The total loss function for RPN can be defined as:

LRPN =
1

Npos

[∑
i

Lcls(pa
i , ca

i ) + 11(c∗
i ≥ 1)

∑
i

Lreg(δa
i , t∗i )

]
, (6)

where Npos represents the number of positive anchors, pa
i is the output of the

classification branch, ca
i is the classification label, δa

i is the output of the regres-
sion branch, and t∗i is the regression target. The term 11(c∗

i ≥ 1) indicates that
only the regression loss of positive anchors is calculated.Lreg and Lcls denote
the regression and classification loss functions, respectively, as described earlier.

Losses of Detect Head. The confidence scores are measured using IoU as
follows:

l∗i (IoUi) =

⎧
⎪⎪⎨
⎪⎪⎩

0, IoUi < θL,
IoUi − θL

θH − θL
, θL ≤ IoUi < θH ,

1, IoUi > θH ,

(7)

where IoUi is the IoU between the i-th predicted proposal and the ground truth
box. If IoUi is less than θL, the anchor is assigned as background (negative),
and if IoUi is greater than θH , the anchor is assigned as foreground (positive).
Binary Cross-Entropy is used for confidence prediction, while SmoothL1 is used
to calculate the loss for the box regression branch. The total loss function of the
detect head can be defined as:

Lhead =
1

Np

[∑
i

Lcls(pi, l
∗
i (IoUi)) + 11(IoUi ≥ θreg)

∑
i

Lreg(δi, t
∗
i )

]
, (8)
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where Np is the number of region proposals during training, and 11(IoUi ≥
θreg) indicates that only region proposals with IoUi ≥ θreg are considered for
computing the regression loss.

4 Experiments

4.1 Datasets

DA-TSD was trained on the KITTI dataset [4], which contains 7481 training
samples and 7518 test samples. For experimental studies, the training samples
are usually divided into a training set of 3712 samples and a val set of 3769 sam-
ples. We report the performance of our model on the KITTI val set. According
to the KITTI official evaluation protocol, mAP is used as evaluation metric. If
the datasets in general need to use our method, the data format needs to be
changed to the storage format of the KITTI.

4.2 Implementation Details

For data augmentation, 15, 10, and 10 ground truth samples of Cars, Pedestrians,
and Cyclists, respectively, are randomly selected and “pasted” into the current
point clouds to increase the number of objects. Secondly, points in the ground
truth boxes are randomly rotated from [−π/4, π/4]. Thirdly, the scale noise is
extracted from the uniform distribution [0.95,1.05].

For cars, we use an anchor with dimensions of w = 1.6 × l = 3.9 × h = 1.56
m, centered at z = −1.0 m. For pedestrians, we use an anchor with dimensions
of w = 0.6 × l = 0.8 × h = 1.73 m, and for cyclists, the anchor has dimensions
of w = 0.6 × l = 1.76 × h = 1.73 m; both are centered at z = −0.6 m.

The network setup of DA-TSD is similar to the baseline model Voxel R-CNN,
with four Conv. blocks in 3D backbone, and all three blocks contain three sparse
Conv. layers except the first one with one sparse Conv. layer, and the number
of filters are 16, 32, 64, and 64, respectively. The 2D backbone network consists
of two blocks, where the first block has the same resolution as the output of the
3D backbone network on the X and Y axis, and the second block has half the
resolution of the first block. The number of Conv. layers in both blocks is set
to 5. The network is optimized end-to-end using the Adam optimizer with an
initial learning rate of 0.01, and cosine annealing strategy is used for updating.
The network is trained for 80 epochs with a batch size of 4. In the detect head,
θH is set to 0.75, θL is set to 0.25, and θreg is set to 0.55.

During the inference stage, NMS (Non-Maximum Suppression) is first applied
on the RPN with an IoU threshold of 0.7, and the top 100 region proposals are
kept as input for the detect head. Subsequently, NMS is applied again with an
IoU threshold of 0.1 to refine the predictions and eliminate redundant detections.
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4.3 Comparison with State-of-the-Arts

In this section, we evaluate our approach on the KITTI val set according to a
common protocol to report the performance of the model with an IoU threshold
of 0.7 for Car class and 0.5 for Pedestrian class and Cyclist class. The mAP was
calculated with the AP setting of recall 40 positions and 11 positions, respec-
tively. Experimental inference was conducted using NVIDIA GeForce RTX 3090
Ti GPU.

Table 1. Performance comparisons with state-of-the-art methods on the KITTI val
set. All results are reported by the average precision with 0.7 IoU threshold and 11
recall positions

Method Modality Car 3D AP 3D mAP

Easy Mod. Hard

MV3D [2] LIDAR+RGB 71.29 62.68 56.56 63.51

F-PointNet [15] LIDAR+RGB 83.76 70.92 63.65 72.78

AVOD-FPN [9] LIDAR+RGB 84.41 74.44 68.65 75.83

PointRCNN [21] LIDAR 88.26 77.73 76.67 80.89

SECOND [27] LIDAR 87.43 76.48 69.1 77.67

STD [28] LIDAR 89.70 79.80 79.30 82.93

VoxelNet [33] LIDAR 81.97 65.46 62.85 70.09

PV-RCNN [20] LIDAR 89.35 83.69 78.70 83.91

TANet [12] LIDAR 87.52 76.64 73.86 79.34

SASSD [5] LIDAR 90.15 79.91 78.78 82.95

SVGA-Net [6] LIDAR 90.59 80.23 79.15 83.32

Voxel R-CNN [3] LIDAR 89.41 84.52 78.93 84.59

DA-TSD (Ours) LIDAR 90.32 85.95 80.46 85.55

As shown in Table 1 and Table 2, DA-TSD outperforms previous methods in
the key metrics, moderate Car 3D (R11) and Car 3D (R40). Specifically, DA-
TSD improves the baseline Voxel R-CNN [3] by 1.43% and 2.06% on the two
recall positions, and outperforms the SOTA SVGA-Net [6] by 5.72% and SE-
SSD [32] by 1.23%, respectively. For hard Car 3D (R11) and hard Car 3D (R40),
the baseline Voxel R-CNN [3] is improved by 1.53% and 1.97% on the two recall
positions, and outperforms the SOTA SVGA-Net [6] by 1.31% and CT3D [19]
by 1.37%, respectively. Regarding the result of SVGA-Net [6] in easy Car 3D
(R11), which is slightly higher than our method, we speculate that our method
weakens the relationship between local point sets. The next step in establishing
relationships between local point sets will be attempted to improve this situation.
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Table 2. All results are reported by the average precision with 0.7 IoU threshold and
40 recall positions

Method Modality Car 3D AP 3D mAP

Easy Mod. Hard

PV-RCNN [20] LIDAR 92.57 84.83 82.69 86.70

CT3D [19] LIDAR 92.85 85.82 83.46 87.38

SE-SSD [32] LIDAR 93.19 86.12 83.31 87.54

Voxel R-CNN [3] LIDAR 92.38 85.29 82.86 86.84

DA-TSD (Ours) LIDAR 93.58 87.35 84.83 88.59

Table 3. Performance of the Pedestrian and Cyclist for 3D object detection on the
KITTI val set compared to several state-of-the-art methods. All results are reported
by the average precision with 0.5 IoU threshold and 11 recall positions

Method Modality Pedestrian 3D AP Cyclist 3D AP

Easy Mod. Hard Easy Mod. Hard

PointRCNN [21] LIDAR 65.62 58.57 51.48 82.76 62.83 59.62

VoxelNet [33] LIDAR 57.86 53.42 48.87 67.17 47.65 45.11

PointPillars [10] LIDAR 66.73 61.06 56.50 83.65 63.40 59.71

DA-TSD (Ours) LIDAR 67.90 63.50 59.33 85.44 72.75 70.48

Table 4. Performance comparison of BEV object detection for Car and 3D object
detection for Pedestrian and Cyclist on KITTI val set at 40 recall positions with
baseline

Method Modality Car BEV AP Pedestrian 3D AP Cyclist 3D AP

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Voxel R-CNN [3] LIDAR 95.52 91.25 88.99 63.18 55.06 49.34 88.12 68.81 64.28

DA-TSD (Ours) LIDAR 95.57 92.08 88.78 69.96 65.91 61.77 89.71 75.39 70.92

Table 3 shows the performance of 3D object detection in the Pedestrian
and Cyclist on the KITTI val set at 11 recall positions compared to several
SOTA methods. For moderate Pedestrian 3D (R11) and hard Pedestrian 3D
(R11), a performance improvement of 2.44% and 2.83% was achieved, by the
proposed method over PointPillars [10]. And for moderate Cyclist 3D (R11)
and hard Cyclist 3D (R11), the proposed method demonstrates improvements
of 9.35% and 10.77%, respectively, compared to the baseline Voxel R-CNN [3].
The improvement for the Pedestrian and Cyclist is more pronounced. The per-
formance improvement mainly comes from the DA, which allows better learning
of important features of the objects, resulting in better detection performance.
In addition, the performance is shown comparing the proposed approach with
the baseline Voxel R-CNN in Table 4.
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4.4 Ablation Study

In this section, extensive ablation experiments are conducted in order to analyze
the effectiveness of each component of our approach. All modules were trained
on the Car class train split of the KITTI dataset and evaluated on the val split.

Table 5. “P.E.” and “C.E.” represent point-wise and channel-wise excitation attention,
respectively. The results were evaluated by calculating the mAP of the Car class with
40 recall positions

Method P.E C.E Concat DA module Car mAP3D (%)

Baseline 86.84

(a) � 87.22

(b) � 87.10

(c) � � � 87.51

(d) � � � 87.97

Table 6. Experimental results on the effectiveness of the proposed PS. “P.S.” stands
for pyramid sampling. The results were evaluated by calculating the mAP of the Car
class with 40 recall positions

Method P.S DA module Car mAP3D (%)

Baseline 86.84

(a) � 87.09

(b) � 87.97

(c) � � 88.59

Analysis of the Attention Mechanisms. Table 5 shows the ablation study
on the proposed attention mechanism. The baseline method used in this study is
Voxel R-CNN. By using only the point-wise excitation attention (a) and channel-
wise excitation attention (b), the performance is improved to 87.22% and 87.10%.
DA module employs a parallel fusion mechanism of P.E. and C.E., and when the
two are combined, the 3D mAP of (d) improves to 87.61%, outperforming the
baseline model by 1.13%. We also used the Concat operation to concatenate the
outputs of these two types of attention along the channel direction (c). It can
be observed that method (d) outperforms method (c), indicating that the DA
module can better utilize spatial and channel information in a more reasonable
way.
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Effect of thePyramidSampling. We further investigated the effect of pyramid
sampling (see Table 6). We compared two settings based on the baseline: with or
without the DA module. In the absence of the DA module (a), the improvement of
PS was not so obvious. It is worth noting that with the DA module (c), the improve-
ment of PS is significant. This suggests that with the help of the DA module, PS
can better utilize the different scale information of the data to improve detection
performance. This indicates that the two methods complement each other well.
The DA module can provide more robust feature representations, while PS can
provide more informative cross-layer voxel features.

5 Conclusion

In this paper, we propose a voxel-based two-stage 3D object detector called
DA-TSD. The core modules of DA-TSD are mainly the Double Attention (DA)
module and the Pyramid Pampling (PS) module. The former can encode the crit-
ical features of the object and suppress the noisy features. The latter provides
cross-layer feature maps and obtains more comprehensive feature representa-
tions. Experimental results on the KITTI dataset demonstrate the effectiveness
of the DA and PS modules. Compared with previous methods, our method shows
a significant improvement in detecting small objects.
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Abstract. Point clouds, as the most prevalent representation of 3D
data, are inherently disordered, unstructured, and discrete. Feature
extraction from point clouds can be challenging, as objects with similar
styles may be misclassified, and uncertain backgrounds or noise can sig-
nificantly impact the performance of traditional classification models. To
address these challenges, we introduce StyleContrast, a novel contrastive
learning algorithm for style fusion. This approach effectively fuses styles
of point clouds belonging to the same category across different domain
datasets at the feature level, thus fulfilling the need for data enhance-
ment. By aligning point clouds with their corresponding style-fused point
clouds in the feature space, StyleContrast allows the feature extractor to
learn style-independent invariant features. Moreover, our method incor-
porates category-centric contrastive loss to differentiate between similar
objects from different categories. Experimental results demonstrate that
StyleContrast achieves superior performance on Modelnet40, Shapenet-
Part, and ScanObjectNN, surpassing all existing methods in terms of
classification accuracy. Ablation experiments further confirm that our
approach excels in point cloud feature analysis.

Keywords: Point cloud · Contrastive learning · Style fusion

1 Introduction

In recent years, the growing presence of 3D data represented by point clouds has
prompted more in-depth exploration of the 3D domain and advancements in point
cloud feature extraction [18,19,24,25]. This phenomenon has led to an increase in
applications for classification [18,19,24], detection [31], and semantic segmenta-
tion [3,19,24]. However, models that excel in CAD-based datasets may underper-
form in real-world scenes with ambient backgrounds or uncertain noise interfer-
ence. Additionally, 3D point cloud datasets’ volume and diversity are significantly
smaller than their 2D counterparts. For example, ModelNet40 [27], a widely-used
3D point cloud classification benchmark, contains only 12311 CAD models across
40 categories, while ImageNet [5], a standard benchmark for 2D classification,
boasts around 1.2 million images covering 1000 categories. Therefore, it is crucial
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Fig. 1. The 2D t-SNE [10] visualization of style statistics on ModelNet40, ShapeNet,
and ScanObjectNN.

to address the challenge of learning class-invariant features unrelated to style from
limited data while avoiding misclassification in realistic scenarios.

Contrastive learning methods [4,7], which leverage correlations and differ-
ences between data to learn the nature of objects, have experienced great
success in the 2D domain. Recently, 3D contrastive learning models [2,9,28]
have also emerged. These methods require robust data augmentation to cre-
ate positive sample pairs [4]. Researchers have attempted to adapt augmenta-
tion techniques from the 2D domain to 3D tasks. As style transfer tasks in 2D
continue to evolve [8], similar approaches for transferring geometric properties
between target and source shapes have emerged in the 3D domain [1,26,29].
However, the concept of 3D style still needs further clarification, with only one
study [15] proposing stylistic similarities among 3D objects based on their geo-
metric shapes. We observed that the generation method for different point clouds
can also influence their style. For instance, both Modelnet40 and Shapenet [3]
utilize CAD models to generate point clouds, while ScanObjectNN [23] employs
actual scene sampling. To verify this observation, we use the first residual block
of DGCNN [24] to extract point cloud features from the point set through a
dynamically updated local graph structure. The style feature is then calculated
using the Gram matrix and downscaled to 2D using t-SNE [10]. As illustrated in
Fig. 1, the three images represent the same semantic concept (a chair) but possess
distinct styles. The feature statistics capture these styles, as evidenced by the
separable clusters. Our StyleFusion method is designed to efficiently synthesize
novel styles by combining these instance-level feature statistics. Notably, there
has been limited research on using style transfer to construct positive sample
pairs in 3D contrastive learning.

In this study, we propose StyleContrast, a contrastive learning method based
on style transfer. After feature extraction, we introduce a self-supervised con-
trastive learning branch to complement supervised learning. For each input point
cloud, the style features of target and source shapes are fused in the feature space,
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leveraging the similarity of content feature distribution within the same category
while maintaining a more distinct style feature distribution. The addition of con-
trastive learning enables the model to better distinguish between the structural
and stylistic information of the point cloud, thereby enhancing its generalization
capability. Furthermore, inspired by prototype networks [21], we introduce the
concept of category centers and employ confidence levels to guide the genera-
tion of feature vectors for each category center, ensuring they contain sufficient
semantic information about the corresponding category. StyleContrast learns the
intrinsic character of each category by minimizing the distance between all fea-
ture vectors in the feature space and their respective category-centered vectors.
The effectiveness of our model is validated through experiments on ModelNet40,
ShapeNet, and ScanObjectNN. Moreover, ablation experiments emphasize the
importance of both StyleFusion and contrastive learning modules. The main
contributions of this submission can be summarized as follows:

– We introduce StyleContrast, a pseudo label guidanced contrastive learning
based on style transfer, which enables the model to focus more on the struc-
tural information of the point cloud while minimizing the influence of style
information on model performance.

– We develop a confidence category-centric contrastive learning method that
allows the model to learn the essential properties of each category.

– We present a novel approach to enhance stylistic diversity by combining CAD-
generated point clouds with real scene sampled point clouds.

– We apply our StyleContrast method to a wide range of downstream tasks,
achieving improved results compared to the original supervised learning app-
roach.

2 Related Works

2.1 Contrastive Learning on Point Cloud

Contrastive learning methods maximize consistency among different augmented
views of the same data instance to learn representations, which has achieved
remarkable results in 2D tasks [4,7]. Typically, contrastive loss employs
InfoNCE [17], which measures similarity through a dot product. Recent research
has attempted to learn representations for tasks in the 3D domain, such as clas-
sification [2,13,20], segmentation [9,28], object detection tasks [31], and shape
completion [16]. PointContrast [28] introduces PointInfoNCE loss to handle sim-
ilarity between matched points. CrossPoint [2] enhances the representation of 3D
point clouds by employing 3D-2D consistency along with 2D image feature cor-
respondence. Another study [16] supplements the training set with additional
human-set RGB information. In contrast to most 3D contrastive learning meth-
ods that rely on 2D images, our approach focuses on learning the point cloud
itself without requiring auxiliary information.
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2.2 Data Augmentation on Point Cloud

Point clouds are characterized by their irregular arrangement, permutation
invariance, and rotation invariance. These unique properties render conven-
tional geometric transformations used in 2D data augmentation (such as flipping,
rotating, and scaling) inapplicable to point clouds. For laser point clouds, com-
monly used data augmentation methods include downsampling, random rotation
around the gravity axis, random scaling, random jittering [18,19], random dele-
tion, and random swapping [31]. While these methods have fixed parameters in
the model, they have not achieved optimal augmentation. Some studies have
explored point or color transformations to address these limitations [11,13], but
they primarily focus on the instance level of the point cloud. Data augmentation
at the feature level still needs to be explored. In this paper, we leverage the
distributional properties of content and style features to adaptively mix style
information from different samples within the same category, achieving style
migration at the feature level.

3 Proposed Method

3.1 Preliminaries

This section outlines the network structure of our proposed StyleContrast
method, as illustrated in Fig. 2. First, the source input consists of a random
batch containing N point clouds. For each point cloud, a point cloud pair (psi , p

t
i)

is constructed by randomly selecting another point cloud from the same cate-
gory i. Second, the model extracts features using a feature extractor and adjusts
the model parameters with pseudo label guided contrastive learning joint cross-
entropy loss, as discussed in Sect. 3.2. Finally, the aggregation of features across
categories is enhanced through confidence category-centric contrastive learning,
introduced in Sect. 3.3. To improve contrastive learning, we propose a new data
augmentation scheme called StyleFusion, with details provided in Sect. 3.4.

3.2 Pseudo Label Guidanced Contrastive Learning

For the point cloud pair, psi is considered the source style sample, while pti is
the target style sample. As per the StyleFusion method proposed in Sect. 3.4,
content features extracted by the first layer are combined with style features to
generate augmented samples paugi and construct positive sample pairs (psi , p

aug
i ).

The feature pairs (fs
i , faug

i ) are extracted by the subsequent network, and the
pseudo labels (ys

i , y
aug
i ) are generated using the classifier (Mlp blocks). In this

study, the extracted feature pairs (fs
i , faug

i ) are treated as positive sample pairs.
In contrast, all feature vectors from the remaining 2N − 2 vectors with a differ-
ent pseudo-label are considered negative samples. A non-linear mapping layer
maps each feature vector, obtaining the feature vectors (prosi , proaugi ) to enhance
the feature representation before calculating the contrastive loss. We use cosine
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Fig. 2. The overall structure and partial details of StyleContrast, where ⊕ indicates
concatenation and � indicates element-wise product. The EdgeConv block is consistent
with that used in DGCNN. The KL block in (b) performs the divergence operation.

similarity as the similarity metric. The contrastive loss for each mapped pair of
feature vectors is computed as follows,

ls,aug = −log
exp(sim(prosi , proaugi )/τ)

2N∑

k=1

I(ys
i �=yk

i )
exp(sim(prosi , proki )/τ)

, (1)

laug,s = −log
exp(sim(prosi , proaugi )/τ)

2N∑

k=1

I(yaug
i �=yk

i )
exp(sim(proaugi , proki )/τ)

, (2)

where ys
i and yaug

i represent the categories to which the mappings prosi and
proaugi belong, respectively, and τ is the temperature coefficient. The indicator
function, I(ys

i �= yk
i ), equals one when ys

i is not equal to yk
i and zero in all other

cases.

3.3 Confidence Category-Centric Contrastive Learning

In the prototype network [21], the category centroid vector Mc is obtained by
calculating the mean of all same-category feature vectors fc. To obtain a more
representative vector of category centroids, weights are assigned to all correctly
classified samples based on their classification confidence. Generally, samples
with higher classification confidence within the same category contain more
stylistic information. Conversely, samples with lower classification confidence
feature vectors contain more invariant features for classification. Therefore, we
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use Cc
i = Softmax(fc

i ) to calculate the confidence Cc
i and express its impor-

tance as 1 − Cc
i . The fc

i refers to the features for the ith sample in category c.
The category centers are generated as follows,

Mc =
1

N c

Nc
∑

i=1

(1 − Cc
i )f

c
i , (3)

where Nc denotes the total number of samples within category c.
We aim to map feature vectors to be more similar to their corresponding

category centroid vectors in the feature space while being less similar to other
categories. The cosine similarity measures the similarity between each feature
vector fc

i and its respective category centroid vector. The category centroid
alignment loss is then defined and calculated as follows,

lfc
i

= −log
exp(sim(fc

i ,Mc)/τ)
L∑

k=1

I(k �=c)exp(sim(fc
i ,Mk)/τ)

, (4)

where c represents the category to which the feature vector fc
i belongs. L denotes

the total number of categories in the dataset, and τ is the temperature coefficient.

3.4 StyleFusion

In this approach, we consider the features of each channel as individually dis-
tributed data samples. The point cloud’s category information should exhibit
minor variations within the same category. Consequently, we calculate the distri-
bution relationship between the source style feature and the target style feature
channels to filter the channels corresponding to the category information. We
employ divergence values to extract the differences between the distribution of
the source and target channels. Channels with smaller difference values are con-
sidered category information, while those with larger values are treated as style
information. The divergence values are mapped to the interval [0, 1], allowing for
shifting style information with more significant divergence differences. We define
these inter-channel differences as Wdif ,

W l
dif (f l

s, f
l
t) = f l

slog
f l
s

f l
t

, (5)

where f l
s and f l

t represents the channel l features of the source style and the
target style.

The channels of features are not independent; instead, they have a specific
correlation. To extract the relationship between the target style features’ chan-
nels, we calculate the inner product of the feature matrix and its transpose. This
represents the inter-channel correlation, denoted as Wrel,

W l
rel = f l

t

T · f l
t . (6)
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The weights W l
imp of each channel, where the target style feature is added to

the source style feature, are calculated as the dot product of the inter-channel
relationships (learned through full connectivity) and the inter-channel differ-
ences. The process of StyleFusion is shown below,

f l
aug = (1 − W l

imp)f
l
s + W l

impf
l
t , (7)

where f l
aug denotes the feature of the channel l after data enhancement.

4 Experiments

In this section, we thoroughly evaluate the performance of our proposed Style-
Contrast method on several benchmarks, following standard protocols. For a
fair comparison with existing methods, we use DGCNN as a point cloud feature
extractor. Our StyleContrast is implemented in PyTorch, experimenting with an
NVIDIA GeForce RTX 3090 graphics processing unit.

4.1 Classification on Modelnet40

The ModelNet40 dataset, the most commonly used benchmark for 3D point
cloud classification, contains 12311 CAD models across 40 classes (9843 for train-
ing and 2468 for testing). We report class-average accuracy (mAcc) and overall
accuracy (OA) on the testing set. All models are trained for 200 epochs with a
batch size of 24.

Table 1. Classification results for ModelNet40.

Method Inputs mAcc(%) OA(%)

Pointnet [18] 1024 86.0 89.2

PointNet++ [19] 1024 - 91.9

DGCNN [24] 1024 90.2 92.9

PCT [6] 1024 - 93.2

PosPool [14] 5000 - 93.2

PointCutmix [30] 1024 - 93.4

DGCNN + MD [22] 1024 90.26 93.39

StyleContrast (Ours) 1024 90.6 93.5

Results. Table 1 compares our StyleContrast method with previous approaches.
Among these methods, StyleContrast uses only 1024 points and achieves an
overall accuracy significantly higher than the baseline DGCNN method by 0.6%
(93.5% vs. 92.9%). This improvement is due to the method’s focus on the invari-
ant features of categories and its ability to avoid style interference. StyleContrast
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Fig. 3. Visualization results for ModelNet40 are presented, where each point represents
a sample, and the same color is used to indicate instances of the same category.

performs better by at least 0.1% without relying on attention mechanisms like
PCT [6], pre-training as in DGCNN + MD [22], or adding location information
to the pooling layer like PosPool [14]. Additionally, our method outperforms
PointCutmix [30], which employs data augmentation during training.
Visualization of Learned Feature. To gain a deeper understanding of the
representations learned by StyleContrast, we visualized the features of each sam-
ple in the ModelNet40 test set using t-SNE. The results are displayed in Fig. 3(a),
which relies solely on cross-entropy loss supervision. Some samples are mixed,
leading to an unclear distinction between categories and increasing the clas-
sification difficulty for the model. By introducing StyleContrast, as shown in
Fig. 3(b), point cloud features of the same category are better clustered together,
ultimately enhancing the ability to distinguish between classes.

Table 2. Classification results for ScanObjectNN. We tested all methods on the most
challenging variant (PB T50 RS).

Category Pointnet [18] PointNet++ [19] DGCNN [24] PointCNN [12] BGA-DGCNN [16] StyleContrast (Ours)

OA(%) 68.2 77.9 78.1 78.5 79.7 80.4

mAcc(%) 63.4 75.4 73.6 75.1 75.7 77.6

Bag 36.1 49.4 49.4 57.8 48.2 62.7

Bin 69.8 84.4 82.4 82.9 81.9 86.4

Box 10.5 31.6 33.1 33.1 30.1 42.9

Cabinet 62.6 77.4 83.9 83.6 84.4 77.4

Chair 89 91.3 91.8 92.6 92.6 90.5

Desk 50 74 63.3 65.3 77.3 67.3

Display 73 79.4 77 78.4 80.4 83.3

Door 93.8 85.2 89 84.8 92.4 90.5

Shelf 72.6 72.6 79.3 84.2 80.5 86.3

Table 67.8 72.6 77.4 67.4 74.1 73.3

Bed 61.8 75.5 64.5 80 73.6 81.8

Pillow 67.6 81 77.1 80 80 78.1

Sink 64.2 80.8 75 72.5 77.5 82.5

Sofa 76.7 90.5 91.4 91.9 91.9 90.5

Toilet 55.3 85.9 69.4 71.8 85.9 80.0
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4.2 Classification on ScanObjectNN

ModelNet40 is a synthetic dataset, and as a result, many models struggle to
perform well on perturbed scenes. To address this, we validated our approach
using ScanObjectNN, a dataset containing 15000 real-world samples across 15
categories, which include background, noise, and occlusion. In our experiments,
we considered the most challenging perturbation variant (PB T50 RS), training
our model for 200 epochs with a batch size 32.
Results. Empirically, our StyleContrast outperforms all methods, significantly
improving both mean class accuracy (mAcc) and overall accuracy (OA), as shown
in Table 2. For instance, StyleContrast achieved a 4.0% higher mAcc and a 2.3%
higher OA compared to DGCNN, outperforming both BGA-based methods [16]
and other approaches [12] that focus on local structures of point clouds. Our
method excels in 7 out of 15 categories, and for challenging categories like boxes
and bags, we see accuracy improvements of 5% and 10%, respectively. The per-
formance improves for objects with similar geometric properties, such as sofas
and beds. Our model can accurately classify samples with background informa-
tion interference, like a display with information about a table. Additionally,
our method has a small gap between average class precision and overall pre-
cision, indicating that StyleContrast is not biased towards a specific class and
demonstrates robustness.

4.3 Ablation Study and Analysis

In this subsection, we conduct a comprehensive ablation study to demonstrate
the effectiveness of StyleContrast both quantitatively and qualitatively, using
the ModelNet40 dataset as a basis for analysis.

Table 3. Different methods for constructing positive sample pairs on ModelNet40.

Method mAcc(%) OA(%)

DGCNN [24] 90.2 92.9

StyleContrast (normal) 90.2 93.0

StyleContrast (fix) 90.1 92.8

StyleContrast (StyleFusion) 90.4 93.3

The Impact of Style Fusion. We conducted experiments to assess the effec-
tiveness of the proposed StyleFusion model. Specifically, the baseline method
employs a cross-entropy (CE) loss function for pixel-level supervision. StyleCon-
trast (normal) represents enhancement using only random rotation, scaling, or
dithering. StyleContrast (fix) denotes the fixed fusion parameter (Wimp = 0.5).
As demonstrated in Table 3, StyleContrast (fix) results suggest that data aug-
mentation generates poor positive sample pairs because the fusion parameters
require adaptive adjustment. Closing the distance of these poor positive sample
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pairs harms the model’s performance. StyleContrast (normal) also underper-
forms due to the simplicity of the constructed positive sample pairs. However,
StyleContrast continually improves upon the baseline, and its performance is fur-
ther enhanced as the style fusion of point clouds provides more robust positive
sample pairs for contrastive learning.

Table 4. Different category center construction methods on ModelNet40.

Method mAcc(%) OA(%)

DGCNN [24] 90.2 92.9

Direct Averaging 90.1 93.1

Confidence-guided 90.3 93.2

The Impact of Confidence-Based Category Center. Further experiments
confirm the efficacy of the confidence-guided approach in constructing category
centers. Table 4 presents various construction methods, with “Direct Averag-
ing” representing the average method and “Confidence-guided” denoting our
approach. As demonstrated by rows 2 and 3 in the table, the confidence-guided
method effectively manages the unique features of individual categories and gen-
erates a more robust representation of category centers.

5 Conclusion

In this study, we introduce a simple yet effective point cloud analysis architec-
ture called StyleContrast. This approach employs contrastive learning combined
with StyleFusion, reducing the impact of style and encouraging the model to
learn invariant features unrelated to style. By migrating the styles of CAD-
generated point clouds with real scene-sampled point clouds, we enhance the
stylistic diversity of the samples. Additionally, incorporating category-centered
contrastive learning leads to a more compact distribution of features within the
same category, further improving the model’s performance. Our experimental
results demonstrate that StyleContrast surpasses related work on various bench-
marks. This method successfully applies contrastive learning to point clouds,
offering novel insights and solutions for future 3D point cloud feature under-
standing.
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Abstract. Existing 3D sensors can collect only incomplete and sparse
point cloud data because of object self-occlusion. Therefore, a method for
completing the missing point cloud and obtaining a high-quality point
cloud is of great significance. Current transformers model the point cloud
completion problem as a set-to-set conversion problem. However, due to
the high time and space complexity, it is impossible to effectively convert
the known point cloud information to obtain the missing part of it. To
this end, this paper proposes a point cloud completion network based on
the encoder-decoder structure of Linformer and Connect-DGCNN struc-
ture (PoinLin-Net). First, the linear complexity attention mechanism is
introduced to reduce the amount of calculation of the proposed model,
and it maximizes the proposed model’s performance. After that, a new
feature extraction network structure Connect-DGCNN, which combines
original and local geometric information, is designed to minimizes effec-
tively the loss of geometric information during feature extraction. From
experimental results, we can find that the proposed method is superior
to current best-performing methods in ShapeNet-55 and ShapeNet-34.
Furthermore, our model reduces a burden of computation by 66.7%.

Keywords: point cloud completion · linear complexity attention ·
feature extraction

1 Introduction

With the rapid development of visual hardware, a series of depth perception
devices such as Lidar and RGBD cameras are available to obtain objects’ depth
information directly. As the three-dimensional data closest to the original sen-
sor, the point cloud has a compact and straightforward representation. Point
cloud data easily and comprehensively captures 3D shapes, so researchers favor
it. However, in practical applications, data on actual scanned objects are often
incomplete due to the limitations of a single viewing angle, occlusion, and the
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environment. This leads directly to the incompleteness of the collected point
cloud data [15], causing point cloud geometry and semantic information loss,
which greatly limits the perception capabilities of vision and AI. Thus, restoring
the missing point cloud shape information to complete the object shape infor-
mation is challenging for researchers.

Following the success of transformers [11] in natural language processing
(NLP), the ability of transformers to learn local structural features and deter-
mine long-term correlations has been demonstrated. Some studies convert point
cloud completion into a sequence generation problem, thus applying transform-
ers to the tasks of point cloud completion and long-sequence prediction through
an internal self-attention mechanism. For example, PoinTr [20] predicts miss-
ing point cloud sequences by setting the point proxy input into the transformer
encoder-decoder. However, because the computational complexity of the trans-
former’s self-attention layer is proportional to the sequence length, the compu-
tation of long sequences is very time-consuming, influencing the model’s perfor-
mance and making the completion accuracy low.

In response to this problem, our study adopted a self-attention mechanism
of linear complexity in the Linformer [12] model to optimize the self-attention
mechanism in the transformer model and avoid secondary operations. This mech-
anism can reduce the complexity of the self-attention layer from O(n2) to O(n)
in time and space. The time efficiency of the Linformer model is significantly
higher than the standard transformer model, so we replaced the transformer in
the PointTr network to form a new network structure: PoinLin-Net. We success-
fully conducted experiments using PoinLin-Net on several different datasets, and
its performance proved superior to that of PoinTr. Multiple indicators on the
ShapeNet-55 [20] and ShapeNet-34 datasets have surpassed the current best-
performing methods. Furthermore, the number of calculations needed for the
model is the lowest.

The main contributions are summarized as follows:

• This work proposes a point cloud completion network based on the encoder-
decoder structure of Linformer and Connect-DGCNN structure, and it is
called as PoinLin-Net.

• A new feature extraction network structure Connect-DGCNN is designed to
minimizes effectively the loss of geometric information through combining
original and local geometric information.

• The linear complexity attention mechanism is introduced to decrease the
computational expense and maximize the proposed model’s performance.

2 Related Work

Researchers have tried many methods over many years to solve the problem
of point cloud completion using deep learning. Early research on this applied
methods commonly used in 2D completion tasks to 3D point clouds through
voxel localization and 3D convolution. For example, GRNet [18] reconstructs
full 3D voxels coarse-to-finely. The network first uses a 3D convolutional neural
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network to predict a rough shape. Then it selects similar parts from the full-shape
dataset [2] for fine output or reconstructs a dense point cloud from the output
voxels. However, these methods incur an increasingly higher computational cost
as the spatial resolution increases and lose many details.

Researchers have gradually begun to pay more attention to the representa-
tion of unstructured point clouds as 3D objects. This is because the storage and
processing requirements are much less computationally expensive than voxels,
and this approach can represent fine-grained details. Since the commonly used
convolutional network is no longer suitable for unstructured point cloud data,
researchers use encoders such as PointNet [7] or PointNet++ [8] to extract global
features from incomplete point cloud data and use decoders to generate a com-
plete point cloud based on the extracted features. For example, PCN [21] was the
first learning-based shape completion method to directly manipulate 3D point
clouds without the intermediate voxelization to generate dense, complete point
clouds in a coarse-to-fine manner. After PCN, TopNet [10] improved the struc-
ture of the decoder, which could generate structured point clouds by implicitly
modifying the point cloud structure in the root tree. In addition, some methods
based on the transformer structure have emerged. For example, PointTr [20] used
the transformer encoder-decoder to predict the center point of the missing part
of the point cloud. SeedFormer [23] designed an upsample transformer structure
to learn the spatial and semantic relationship between adjacent points. These
methods all pursue the generation of 3D shapes for more detailed structures,
higher resolution, and stronger robustness.

3 Our Approach

3.1 PoinLin-Net Architecture

Fig. 1. The overall structure of PoinLin-Net.

The overall structure of PoinLin-Net is shown in the Fig. 1. First, Connec-
DGCNN is used to extract the input point cloud features. Then the point cloud
center and the point proxy for predicting the missing part are generated through
the Linformer decoder and the existing point cloud is encoded. Finally, Fold-
ingNet [19] is used to obtain the local point cloud corresponding to the point
proxy and complete the restoration of the point cloud from coarse to fine. The
following is a detailed introduction to the PoinLin-Net process.
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Extract Features. First, perform the farthest sampling method on the input
point cloud to obtain a fixed number of N point centers in part of the point
cloud. Then use DGCNN [14] to extract features from a local area of the point
cloud to obtain N local area features, which correspond to the area features that
are the center points. But this method is easy to ignore part of original geo-
metric features. Connect-DGCNN connects features of different layers, making
the output global geometric information more perfect. Finally, an MLP network
extracts the positional embeddings of each local feature, which are summed to
obtain a point proxy for the input to the Linformer encoder.

Predict Centers. The global feature is obtained from the output of the Lin-
former encoder, and then the rough coordinate of the center point of the incom-
plete point cloud is predicted by the Linformer encoder, where M represents the
number of predicted point proxies. After splicing the center point coordinates
with the global features, a multi-layer perceptron generates the query feature,
which is the dynamic point proxy.

Generate Points. The decoder converts the dynamic point proxy into a pre-
dicted point proxy corresponding to the centered local point cloud. Then Fold-
ingNet is used to reconstruct the offset coordinates of the point proxy to obtain
a detailed local shape centered on the predicted point proxy. Finally, the input
point cloud is spliced with the predicted result to generate a complete point
cloud.

3.2 Connect-DGCNN

DGCNN utilizes EdgeConv to capture the local geometric structure while main-
taining alignment invariance, and adds FPS (farthest point sampling) to extract
the key points of the point cloud. With n points as input, let each point be
X = { xi| i = 1, 2, ..., n } on the EdgeConv layer to compute the edge features of
each point xi and its k neighbors, which constitute the edge feature set. These
feature sets are aggregated and output by aggregation functions such as Max-
Pooling to update the value of xi. Finally, a global geometric feature is generated.
The local features extracted in this way will make some of the important orig-
inal features lost, so that the complete global geometric information cannot be
obtained. In order to solve this problem, this paper links the hierarchical features
of the first two EdgeConv layers on the basis of DGCNN, and combines the cur-
rent features with the original features splicing, with FPS to form a new point
cloud feature extraction network Connect-DGCNN, whose structure is shown in
Fig. 2.

3.3 Linear Attention Mechanism

In the PoinTr network, the transformer encoder-decoder is used for the input
point cloud to predict the missing part of the point cloud. However, the complex-
ity of O(n2) time and space is used in the transformer’s self-attention, affecting
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Fig. 2. Structure of Connect-DGCNN.

the correlation information between points in the point cloud. We applied the
linear self-attention mechanism to the Linformer model in the computation to
solve this problem. The principal advantage of the linear self-attention mecha-
nism is adding two linear projection matrices Ei, Fi ∈ Rk×n when calculating
the key layer K and value layer V so that the n-order self-attention is reduced to
a fixed k-dimensional matrix, EiQWQ

i , FiKWK
i ∈ Rk×dk . The specific formula

of each head is as follows:

f(QWQ
i , EiKWK

i , FiVWV
i )

= softmax[
QWQ

i (EiKWK
i )T√

dk
]FiVWV

i

(1)

At this time, the calculation in the SoftMax function is given by

QWQ
i (EiKWK

i )T = n × dk × (k × dk)T = n × k (2)

The calculation of the entire attention layer is

QWQ
i (EiKWK

i )TFiVWV
i = n × k × k × dv = n × dv (3)

Calculating the query layer and key layer of linear attention only needs
O(kn) time complexity, which effectively improves the efficiency of model oper-
ation. The original (n×d)-dimensional key and value layers and the projection
to (k×d)-dimensional key and value layers are shown in Fig. 3.

4 Experiments

4.1 Implementation

The PoinLin-Net proposed in this paper is implemented in Pytorch [6]. An 8-
head attention is used in all Linformer modules, and their hidden dimensions
are set to 384. At the same time, the AdamW optimizer [5] trains the network,
with the initial learning rate set to 0.00025 and the weight decay set to 0.0005.
The models using the ShapeNet-55 and ShapeNet-34 datasets take 2,048 points
as input and predict the other 6,144 points. We set the batch size to 32 and
64, respectively, and trained for 300 epochs. The learning rate decayed by 0.76
every 20 epochs. With the PCN dataset, the model takes 2,048 points as input
and predicts the other 14,336 points. We set the batch size to 32 and trained for
400 epochs. The learning rate decayed by 0.9 every 20 epochs. And all models
were trained on a GeForce RTX 3090 Ti GPU.
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Fig. 3. Example of projection process for value and key layers.

4.2 Evaluation Metric

Our study utilized the most-used chamfering distance in point cloud completion
as an evaluation index that can calculate the average shortest point distance
between the generated point cloud P and the actual point cloud G and the
distance between the generated point cloud and the real point cloud. The formula
used in the computation is

dCD(P,G) =
1

|P |
∑

p∈P

min
g∈G

‖p − g‖ +
1

|G|
∑

g∈G

min
p∈P

‖g − p‖ (4)

The first term is the minimum distance between each point in the generated
point cloud and the closest point of the real point cloud. The second term repre-
sents the coverage of the real point cloud in the generated point cloud. Following
the previous method [4,10,18,21], our study used two versions of the chamfering
distance as evaluation indices to compare the performance of the existing point
cloud completion network. CD − l1 uses the L1-norm to calculate the distance
between two points, while CD− l2 uses the L2-norm. According to the literature
[9], the F-Score is used as a comprehensive evaluation index to determine the
quality of point cloud completion results.

4.3 Results on the PCN Dataset

This paper reports using synthetic CAD models from ShapeNet [1] to create a
large-scale dataset consisting of partial and complete point cloud pairs, namely
the PCN dataset. This is also one of the most used benchmark datasets in
point cloud completion tasks. It contains eight categories: airplanes, cabinets,
cars, chairs, lamps, sofas, tables, and ships. The residual point cloud used in
this paper has 2,048 points, and the real and complete point cloud has 16,384
points. As shown in Table 1, we compared CD − l1 with other methods and
achieved optimal results in the Car category, with overall reached sub-optimal
levels. Compared with PoinTr, the average CD was reduced by 14.43% (down
from 8.38 to 7.17).
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Table 1. Results on the PCN dataset. Here CD− l1 (×103) (a lower value is better) is
used for evaluation. The bold font is the optimal value in each column.The underline
is the second best value in each column.

Methods Plane Cabinet Car Chair Lamp Couch Table Boat Avg

FoldingNet [19] 9.49 15.80 12.61 15.55 16.41 15.97 13.65 14.99 14.31

TopNet [10] 7.61 13.31 10.90 13.82 14.44 14.78 11.22 11.12 12.15

AtlasNet [3] 6.37 11.94 10.10 12.06 12.37 12.99 10.33 10.61 10.85

PCN [21] 5.50 22.70 10.63 8.70 11.00 11.34 11.68 8.59 9.64

GRNet [18] 6.45 10.37 9.45 9.41 7.96 10.51 8.44 8.04 8.83

PMP-Net [16] 5.65 11.24 9.64 9.51 6.95 10.83 8.72 7.25 8.73

CRN [13] 4.79 9.97 8.31 9.49 8.94 10.69 7.81 8.05 8.51

PoinTr [20] 4.75 10.47 8.68 9.39 7.75 10.93 7.78 7.29 8.38

NSFA [22] 4.76 10.18 8.63 8.53 7.03 10.53 7.35 7.48 8.06

SnowflakeNet [17] 4.29 9.16 8.08 7.89 6.07 9.23 6.55 6.40 7.21

SeedFormer [23] 3.85 9.05 8.06 7.06 5.21 8.85 6.05 5.85 6.74

PoinLin-Net 4.08 9.28 7.88 7.70 6.18 9.25 6.63 6.32 7.17

Table 2 compares the number of parameters, number of calculations, and
CD − l1 (×103) index of different models, while the inference times of different
models are given in Table 3. The number of calculations in the proposed method
is lower than other methods, the reasoning speed of the model is faster (the
average inference time is shortened from 73ms to 63ms), and compared with
PoinTr, the number of parameters is also reduced by 10.25%.

Table 2. Comparison of model parameters and the number of calculations

Methods Params (M) FLOPs (G) CD − l1

FoldingNet [19] 2.41 27.65 14.31

PCN [21] 6.84 14.69 9.64

GRNet [18] 76.71 25.88 8.83

PoinTr [20] 30.90 10.41 8.38

SnowflakeNet [17] 19.32 10.32 7.21

SeedFormer [23] 3.20 29.61 6.74

PoinLin-Net 27.73 9.86 7.17
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Table 3. Comparison of inference time in no-load state and load state of the model

Methods Average (ms) No-load (ms) Load (ms)

FoldingNet [19] 71 53 89

PCN [21] 60 43 76

GRNet [18] 72 49 95

PoinTr [20] 73 56 90

SnowflakeNet [17] 85 42 126

SeedFormer [23] 262 118 296

PoinLin-Net 63 44 82

4.4 Ablation Study on PCN Dataset

To verify the effectiveness of the method in this section, we conducted ablation
experiments on the PCN dataset, and the results are shown in Table 4. Model
A indicates that only Linformer is used. From the results in Table 4, we can
see that the complementation effect of Model A has been significantly improved
compared with PoinTr. PoinLin-Net indicates that Connect-DGCNN is added
to A, and the model performance is further improved, but the improvement
is not significant. Figure 4 gives a comparison of the complementation effect
of our study’s method with other methods under several categories, and the
complementation result of PoinLin-Net is more refined.

Table 4. Ablation experiments under CD − l1 (×103) and CD − l2 (×104) contrast

Model Linformer Connect-DGCNN CD − l1 CD − l2

PoinTr [20] - - 8.38 3.35

A � - 7.41 2.34

PoinLin-Net � � 7.17 2.22

4.5 Results on the ShapeNet-55 Dataset

The ShapeNet-55 dataset [20] uses all objects in the 55 categories in ShapeNet.
Since real 3D objects are more diverse, we had to consider a richer category to
evaluate the point cloud completion model so that the model’s performance with
a more diverse dataset could be more comprehensively tested. The training set
of this dataset is a random sample of 80% of the objects from each category, and
the rest are used for testing. The test samples are divided into three difficulty
levels by setting the number of missing point clouds n, where n is 2,048, 4,096,
and 6,144, corresponding to simple, medium, and challenging difficulty levels.
These account for 25%, 50%, and 75% of the total point cloud. By comparing
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Fig. 4. Comparison of visualization effects of different models on the PCN dataset.

Table 5. Completion results of the ShapeNet-55 dataset under the evaluation of CD−l2
(×103) (a lower value is better) and F-score@1% (a higher value is better). The value
in bold font is the best in each column. The underline is the second best value in each
column.

Methods Table Chair Airplane Car Sofa Remote Key board Rocket CD-S CD-M CD-H. CD-Avg F1

FoldingNet [19] 2.53 2.81 1.43 1.98 2.48 1.44 1.24 1.48 2.67 2.66 4.05 3.12 0.082

PCN [21] 2.13 2.29 1.02 1.85 2.06 1.33 0.89 1.32 1.94 1.96 4.08 2.66 0.133

TopNet [10] 2.21 2.53 1.14 2.18 2.36 1.49 0.95 1.32 2.26 2.16 4.3 2.91 0.126

PFNet [4] 3.95 4.24 1.81 2.53 3.34 2.91 1.29 2.36 3.83 3.87 7.97 5.22 0.339

GRNet [18] 1.63 1.88 1.02 1.64 1.72 1.09 0.89 1.03 1.35 1.71 2.85 1.97 0.238

PoinTr [20] 0.81 0.95 0.44 0.91 0.79 0.53 0.38 0.57 0.58 0.88 1.79 1.09 0.464

SeedFormer [23] 0.72 0.81 0.40 0.89 0.71 0.46 0.36 0.50 0.50 0.77 1.49 0.92 0.472

PoinLin-Net 0.69 0.81 0.38 0.77 0.66 0.42 0.33 0.50 0.45 0.73 1.54 0.91 0.479

the data of each method under these three difficulty levels through experiments,
it is possible to judge the ability of each network to handle tasks of different
difficulty levels. In addition, this paper uses CD-Avg with three difficulty levels
to show the overall performance. From Table 3, we can quantitatively compare
our method with other methods on ShapeNet-55. Compared with the SOTA
method SeedFormer [23], the model in this paper is better at the simple and
medium levels. Furthermore, the mean CD at all three levels is superior to the
SOTA method. In terms of performance in the selected eight categories, the
proposed method achieves the best performance in seven categories. Compared
with PoinTr, the index of the average CD value is reduced by 16.51%, which
verifies the superiority of the module proposed in this paper. Figure 5 shows the
visualization results of this and other methods on ShapeNet-55 (Table 5).
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Fig. 5. Comparison of visualization effects of different models on the ShapeNet-55
dataset.

4.6 Results on ShapeNet-34

The ShapeNet-34 dataset [20] primarily evaluates the performance of point cloud
completion models on new categories. The dataset divides ShapeNet into two
parts: 21 invisible categories and 34 visible categories. In each visible category,
100 objects are randomly selected as the test set of the visible category, and
the rest are used as the training set. Also, the dataset uses 2,305 objects from
21 invisible categories to form a test set. The evaluation indicators used in the
experiment are the same as those of the ShapeNet-55 experiment. Table 4 shows
the comparison between the method proposed in this paper and the other meth-
ods. In comparing the ten indicators in the two test sets, eight indicators of the
method in this paper reached the optimal state, although two indicators were
sub-optimal. The F1 indicators of the two categories improved by 8.2% and
10.9% over the SOTA method (Table 6).
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Table 6. Completion results of the ShapeNet-55 dataset under the evaluation of CD−l2
(×103) (a lower value is better) and F-score@1% (a higher value is better). The value
in bold font is the best in each column. The underline is the second best value in each
column.

Methods 34 seen categories 21 unseen categories

CD-S CD-M CD-H CD-Avg F1 CD-S CD-M CD-H CD-Avg F1

FoldingNet [19] 1.86 1.81 3.38 2.35 0.139 2.76 2.74 5.36 3.62 0.095

PCN [21] 1.87 1.81 2.97 2.22 0.154 3.17 3.08 5.29 3.85 0.101

TopNet [10] 1.77 1.61 3.54 2.31 0.171 2.62 2.43 5.44 3.50 0.121

PFNet [4] 3.16 3.19 7.71 4.68 0.347 5.29 5.87 13.33 8.16 0.322

GRNet [18] 1.26 1.39 2.57 1.74 0.251 1.85 2.25 4.87 2.99 0.216

PoinTr [20] 0.76 1.05 1.88 1.23 0.421 1.04 1.67 3.44 2.05 0.384

SeedFormer [23] 0.48 0.70 1.30 0.83 0.452 0.61 1.07 2.35 1.34 0.402

PoinLin-Net 0.43 0.63 1.26 0.77 0.489 0.57 1.01 2.50 1.36 0.451

5 Conclusion

This paper has described a new point cloud completion network PoLin-Net. The
difference from the PoinTr network is that our study has proposed a new point
cloud feature extraction network Connect-DGCNN, which combined original fea-
tures with current local features to obtain more complete global features. Sec-
ondly, our network utilized the Linformer encoder-decoder instead of the usual
transformer encoder-decoder. The linear attention mechanism in the Linformer
was adopted to reduce the complexity of the self-attention layer, thereby improv-
ing the overall encoding and decoding performance and ultimately improving
the accuracy of the entire point cloud completion. Comprehensive experimental
results show that the performance of the proposed method on the ShapeNet-
55 and ShapeNet-34 datasets is currently the best method and requires fewer
calculations.
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Abstract. Recently, interest has grown in exploring the hypothesis that
neural activity conveys information through precise spiking motifs. To
investigate this phenomenon, various algorithms have been proposed to
detect such motifs in Single Unit Activity (SUA) recorded from pop-
ulations of neurons. In this study, we present a novel detection model
based on the inversion of a generative model of raster plot synthesis.
Using this generative model, we derive an optimal detection procedure
that takes the form of logistic regression combined with temporal con-
volution. A key advantage of this model is its differentiability, which
allows us to formulate a supervised learning approach using a gradient
descent on the binary cross-entropy loss. To assess the model’s ability to
detect spiking motifs in synthetic data, we first perform numerical eval-
uations. This analysis highlights the advantages of using spiking motifs
over traditional firing rate based population codes. We then successfully
demonstrate that our learning method can recover synthetically gener-
ated spiking motifs, indicating its potential for further applications. In
the future, we aim to extend this method to real neurobiological data,
where the ground truth is unknown, to explore and detect spiking motifs
in a more natural and biologically relevant context.

Keywords: Neurobiology · spike trains · population coding · spiking
motifs · heterogeneous delays · pattern detection

1 Introduction

1.1 The Age of Large-Scale Neurobiological Event-Based Data

Over the past decade, remarkable technological progress across multiple disci-
plines has expanded the potential for experimental neuroscience research. These
cutting-edge methods, such as in vivo two-photon imaging, large population
recording arrays, optogenetic circuit control tools, transgenic manipulations,
and large volume circuit reconstructions, allow researchers to explore neural
networks’ function, structure, and dynamics with unparalleled precision.

The complexity revealed by these advanced technologies underscores the sig-
nificance of neurobiological knowledge in bridging the gap between abstract brain
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function principles and their biological implementation in neural circuits. Con-
sequently, there is a growing need to scale up analysis methods to handle the
vast amounts of data generated by these powerful techniques. By meeting this
demand, researchers can gain deeper insights into brain function, further our
understanding of neural circuits, and make groundbreaking discoveries in neu-
roscience.

One approach aimed at addressing this challenge is the Rastermap algo-
rithm [24]. This algorithm rearranges neurons in the raster map based on the
similarity of their activity and utilizes a deconvolution strategy with a linear
model. However, it’s worth noting that the Rastermap algorithm’s primary test-
ing has been on calcium imaging data, which may introduce some imprecision
in the timing of spiking activity observed in Single Unit Activity (SUA) record-
ings. Another significant contribution is from the work of Williams et al. [32].
They propose a point process model that overcomes limitations present in exist-
ing models, such as the need for discretized spike times or lack of uncertainty
estimates for model predictions and estimated parameters. By incorporating
learnable time-warping parameters to model sequences of varying durations, the
model effectively captures experimentally observed patterns in neural circuits.

1.2 Decoding Neural Activity Using Spike Distances

Neuroscience research heavily relies on defining appropriate metrics to compute
the distance between spike trains, and one well-known measure for this pur-
pose is the Victor-Purpura distance [30]. This metric effectively addresses incon-
sistencies observed with firing rate-based estimation of spike trains. Another
study refines the Victor-Purpura distance by introducing a time constant as a
parameter, allowing for interpolation between a coincidence detector and a rate
difference counter [27]. Additionally, researchers have extended these distance
measures to non-Euclidean metrics and morphological manipulations, enabling
the computation of spike train dissimilarity.

Regarding spike timings, various methods have been developed to estimate
the latency of neural responses. Bayesian binning [19] is one such method. Uni-
tary event analysis, based on a statistical model of chance detection, has been
widely used to detect significant synchronous patterns above chance in neuron
pair recordings [11]. Recent extensions of these methods, such as the 3D-SPADE
approach [29], enable the identification of reoccurring patterns in parallel spike
train data and assess their statistical significance. Incorporating possible tem-
poral dithering in spike timings has been shown to improve performance, par-
ticularly in the presence of patterns with varying durations, such as surrogates
used to evaluate precisely timed higher-order spike correlations.

However, some of these methods may suffer from computational complex-
ity, block-based implementations, and narrow specialization for specific tasks.
To address these challenges, novel methods like SpikeShip [28] are being devel-
oped. The complexity and diversity of these spike train distance and timing
comparison methods demonstrate the growing interest in integrating such mea-
sures to understand the neural code. A critical step in testing their potential
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usefulness is scaling these methods to handle larger amounts of data, enabling
broader applications and deeper insights into neural activity patterns and their
significance.

1.3 A Novel Hypothesis: Spiking Motifs

Fig. 1. Core Mechanism of Spiking Motif Detection: In this illustrative exam-
ple, we consider a scenario involving three presynaptic neurons denoted as a1, a2, and
a3, which are fully connected to two postsynaptic neurons b1 and b2. The synaptic
delays for the connections to b1 are 1, 5, and 9 ms, while for b2 they are 8, 5, and 1 ms,
respectively. In the middle panel, when the three presynaptic neurons emit synchronous
pulses, the postsynaptic potentials generated in b1 and b2 reach them asynchronously
due to the heterogeneous delays. Consequently, the postsynaptic potentials may not
be sufficient to reach the membrane threshold (dashed line) in either of the postsynap-
tic neurons, and no output spike is generated. In the right panel, the pulses emitted
by the presynaptic neurons are arranged in such a way that, taking into account the
delays, they reach the postsynaptic neuron b1 at the same time (at t = 10 ms in this
example). As a result, the postsynaptic potentials Vt evoked by the three presynaptic
neurons sum up, causing the voltage threshold to be crossed. This leads to the emission
of an output spike, signaling the detection of a spiking motif in the presynaptic pop-
ulation (highlighted in red color). This core mechanism illustrates how the interplay
between heterogeneous delays in the network allows for precise spike timing, enabling
the detection of spiking motifs in neural populations. (Color figure online)

In recent studies, the importance of spike timing has been emphasized, espe-
cially in the barn owl auditory system, where precise spike timing in response to
the sound of a mouse allows the brain to determine the prey’s position [7]. This
discovery aligns with a growing body of literature suggesting that the brain’s
dynamics often exhibit stereotyped sequences known as spiking motifs [9]. The
concept of spiking motifs is a generalization of the patterns observed in the poly-
chronization model developed by Izhikevich [16]. This theoretical model com-
prises a random recurrent network of spiking neurons with biologically realistic
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synaptic delays and evolving weights governed by Spike-Time Dependent Plas-
ticity (STDP) learning rule.

The interplay between the synaptic delays and STDP leads to the sponta-
neous organization of neurons into groups called “polychronous groups.” Despite
neurons in one of these groups firing at different times, the heterogeneous delays
enable their spikes to converge synchronously on the postsynaptic neuron. This
convergence results in the summation of excitatory postsynaptic potentials, lead-
ing to the firing of the postsynaptic neuron (see Fig. 1). The polychronization
model allows spiking neurons to self-organize into groups and generate repro-
ducible time-locked spiking motifs. The STDP rule increases synaptic weights
selectively for neurons involved in these polychronous groups, thereby consoli-
dating the formation of such groups.

While the polychronization model provides valuable insights into understand-
ing spiking neural networks and their potential role in generating spatio-temporal
spiking motifs, it has a limitation. The model’s heterogeneous delays are fixed
and cannot evolve over time, which may limit its applicability in certain scenar-
ios. However, the underlying mechanism offers valuable implications for studying
neural activity motifs and their significance in the brain. To effectively detect
spiking motifs, we propose a novel metric inspired by this model.

1.4 The Heterogeneous Delays Spiking Neural Network (HD-SNN)

In this work, we propose to accurately detect spatio-temporal spiking motifs
using a feed-forward, single layer heterogeneous delays spiking neural network
(HD-SNN). The paper is organized as follows. We develop a theoretically defined
HD-SNN for which we can attune both the weights and delays. We first detail
the methodology by defining the basic mechanism of spiking neurons that utilize
heterogeneous delays. This will allow us to formalize the spiking neuron used to
learn the model’s parameters in a supervised manner and test its effectiveness.
In the results section, we will first evaluate the efficiency of the learning scheme.
We will also study the robustness of the spiking motif detection mechanism and
in particular its resilience to changing the dimensions of the presynaptic or post-
synaptic populations, or the depth in the number of different possible delays.
Then, we will explore how the spiking motifs may be learned using supervised
learning, and evaluate how the efficiency of the algorithm may depend on the
parameters of the HD-SNN architecture. This will allow us to show how such a
model can provide an efficient solution which may in the future be applied to
neurobiological data. Finally, we will conclude by highlighting the main contribu-
tions of this paper, while defining some limitations which will open perspectives
for future detection methods.

2 Methods

Let us formally define the HD-SNN model. First, we will define raster plots
similar to those obtained from Single Unit Activity (SUA) recordings using an
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event-based and then binarized setting. We will then derive a generative model
for raster plots using a HD-SNN, and derive a model for efficient detection of
event-based motifs using a similar HD-SNN with “inverted” delays.

2.1 Raster Plots: From Event-Based to Binarized

In neurobiological recordings, any generic raster plot consists of a stream of
spikes. This can be formalized as a list of neural addresses and timestamps
tuples ε = {(ar, tr)}r∈[1,Nev ] where Nev ∈ N is the total number of events in the
data stream and the rank r is the index of each event in the list of events. Each
event has a time of occurrence tr (these are typically ordered) and an associated
address ar in the space A of the neural population. In a neurobiological recording
like that of SUAs, this can be the identified set of neurons.

Events are generated by neurons which are defined on the one hand by the
equations governing the evolution of its membrane potential dynamics on their
soma and on the other hand by the integration of the synaptic potential prop-
agating on their dendritic tree. A classical characterization consists in detailing
the synaptic weights of each synaptic contact, the so-called weight matrix. As we
saw above, neurons can receive inputs from multiple presynaptic neurons with
heterogeneous delays. These delays represent the time it takes for a presynap-
tic spike to reach the soma of the postsynaptic neuron. In such neurons, input
presynaptic spikes ε will be multiplexed in time by the dendrites defined by this
synaptic set (see Fig. 1).

Let’s formalize such a layer of spiking neurons in the HD-SNN model. Each
postsynaptic neuron b ∈ B connects to presynaptic neurons from a set of
addresses in A. In biology, a single cortical neuron has generally several thou-
sands of synapses. Each may be defined by its synaptic weight and also its delay.
Note that two neurons may contact with multiple synapses, and thus different
delays. Scanning all neurons b, we thus define the set of Ns ∈ N synapses as
S = {(as, bs, ws, δs)}s∈[1,Ns], where each synapse is associated to a presynaptic
address as, a postsynaptic address bs, a weight ws, and a delay δs.

This defines the full connectivity of the HD-SNN model. The receptive field
of a postsynaptic neuron refers to the set of synapses that connect to it. Sim-
ilarly, the emitting field of a presynaptic neuron refers to the set of synapses
it connects to. These fields determine the synaptic inputs and outputs of indi-
vidual neurons. More formally, the receptive field of a postsynaptic neuron is
defined Sb = {(as, bs, ws, δs)‖bs = b}s∈[1,Ns], and the emitting field of a presy-
naptic neuron as Sa = {(as, bs, ws, δs)‖as = a}s∈[1,Ns]. Following this defini-
tion, an event stream which evokes neurons in the presynaptic address space is
multiplexed by the synapses into a new event stream which is defined by the
union of the sets generated by each emitting field from the presynaptic space:
∪r∈[1,Nev]{(bs, ws, tr+δs)}s∈Sar

. In biology, this new stream of events is naturally
ordered in time as events reach the soma of post-synaptic neurons. Synchronous
activation of postsynaptic neurons, where multiple spikes converge on the soma
simultaneously, will increase the firing probability of those neurons.
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From the perspective of simulating such event-based computations on stan-
dard CPU- or GPU-based computers, it is useful to transform this event-based
representation into a dense representation. Indeed, we may transform any event-
based input as the boolean matrix A ∈ {0, 1}N×T , where N is the number of
presynaptic neurons in A and T is the number of time bins (see Fig. 2a). In
this simplified model, we will consider that heterogeneous delays are integers
limited in range between 0 and D (that is, ∀s ∈ [1, Ns], 0 ≤ δs < D) such that
the synaptic set can be represented by the dense matrix Kb ∈ R

N×D giving
for each neuron b the weights as a function of presynaptic address and delay
(see Fig. 2b). It is equal to zero except on synapses: ∀s ∈ Sb,Kb(as, δs) = ws.
Equivalently, one may define for each presynaptic neuron a the emitting kernel
as the transpose kernel KT

a ∈ R
M×D, where M is the number of postsynaptic

neurons, whose values are zero except on synapses: ∀s ∈ Sa,KT
a (bs, δs) = ws.

Fig. 2. From generating raster plots to inferring spiking motifs. (a) As an illustration
for the generative model, we draw a multiunit raster plot synthesized from 4 different
spiking motifs and for 10 presynaptic neurons. (b) We show these motifs, each identified
at the top by a different color. The evidence of activation (red) or deactivation (blue) is
assigned to each presynaptic neuron and 31 different possible delays. (c) The activation
in time of the different motifs (denoted by stars) is drawn at random and then used
to generate a raster plot on the multi-unit address space (see panel a). By inverting
this model, an inference model can be defined for their efficient detection, outputting
an evidence value (continuous line) from which the identity and timing of SMs can
be inferred (vertical bars). (d) The original raster plot can be annotated with each
identified spiking motif (as represented by the respective color assigned to SMs). (Color
figure online)
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2.2 A Generative Model for Raster Plots

As described in Fig. 1, a spiking motif can be detected using a properly tuned
HD-SNN that maximizes spike synchronization at the postsynaptic terminal.
Taking the argument the other way around, one may form a generative model
for realistic raster plots in which spikes in the presynaptic address space are
generated as the conjunction of spiking motifs defined in the postsynaptic space,
knowing that both populations are connected by a set of weights and delays
whose structure is stable relatively to the coding timescale. When connection
weights are strong and sparsely distributed, this firing will robustly cause a
specific temporal motif. Overall, these examples show that raster plots may be
considered as a mixture of the effects of different elementary causes, and that
each event triggers a specific spatio-temporal spiking motif.

Formally, the activation of spiking motifs can occur independently and at
random times. The activity is represented as a boolean matrix B ∈ {0, 1}M×T ,
where M is the number of different spiking motifs (see Fig. 2c). Each entry
B(b, t) indicates whether a particular motif b is activated at time t. The firing of
a neuron a at time t is considered a Bernoulli trial with a bias parameter p(a, t) ∈
[0, 1]. This bias is conditioned by the presence of spiking motifs on postsynaptic
neurons with corresponding delays. Assuming that this bias is conditioned by
the presence of spiking motifs on all efferent postsynaptic neurons with the
corresponding delays, it can be shown that the logit (inverse of the sigmoid)
of this probability bias can be written as the sum of the logit of each of these
factors, whose values we will define as the corresponding weights in the kernel.
We can thus write the probability bias p(a, t) as the accumulated evidence given
these factors as

p(a, t) = σ
(
KA(a) +

∑

b∈Sa,0≤δ≤D

B(b, t + δ) · Ka(b, δ)
)

where σ is the sigmoid function. We will further assume that kernel’s weights are
balanced (their mean is zero) and that KA is a bias such that ∀a, t, σ(KA(a))
is the average background firing rate.

Finally, we obtain the raster plot A ∈ {0, 1}N×T by drawing spikes using
independent Bernoulli trials based on the computed probability biases A ∼ B(p).
Note that, depending on the definition of kernels, the generative model can model
a discretized Poisson process, generate rhythmic activity or more generally prop-
agating waves. This formulation thus defines a simple generative model for raster
plots as a combination of independent spiking motifs. This generative model can
be easily extented to include a refractory period in order to ensure that there is
a minimum time gap between successive action potentials, preventing them from
overlapping. This temporal separation allows for discrete and well-defined neural
signals, enabling accurate information processing and mitigating signal interfer-
ence. The refractory period contributes to energy efficiency in neural systems
and plays a crucial role in temporal coding by creating distinct time windows
between successive spikes.
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2.3 Detecting Spiking Motifs

Assuming the spiking motifs (as defined by the kernel K) are known, the genera-
tive model allows to determine an inference model for detecting sources B̂ when
observing a raster plot A. Indeed, by using this forward model, it is possible
to estimate the likelihood p(b, t) for the presence of a spiking motif of address b
and at time t by using the transpose convolution operator. This consists in using
the emitting field Sa of presynaptic neurons in place of the receptive field Sb of
postsynaptic neurons. It thus comes that when observing A, then one may infer
the logit of the probability as the sum of evidences:

p(b, t) = σ
(
KB(b) +

∑

a∈Sb,0≤δ≤D

A(a, t − δ) · Kb(a, δ)
)

This also takes the form of a temporal convolution. This assumption holds as
long as the kernels are uncorrelated, a condition which is met here numeri-
cally by choosing a relatively sparse set of synapses (approximately 1% of active
synapses). Finally, we compute B̂ by selecting the most likely items, allowing to
identify the spiking motifs in the input raster plot (see Fig. 2d).

One may naturally extend this algorithm when the spiking motifs (that is,
the weights) are not known, but that we know the timing and identity of the
spiking motifs. Indeed, the equation above is differentiable. Indeed, the activa-
tion function of our spiking neural is a sigmoid function implementing a form
of Multinomial Logistic Regression (MLR) [10]. The underlying metric is the
binary cross-entropy, as used in the logistic regression model. In particular, if we
consider kernels with similar decreasing exponential time profile, one can prove
that this detection model is similar to the method of Berens et al. [2]. In our spe-
cific case, the difference is that the regression is performed in both dendritic and
delay space by extending the summation using a temporal convolution operator.

3 Results

To quantify the efficiency of this operation, we generated raster plots parame-
terized by N = 128 presynaptic inputs and M = 144 synthetic spiking motifs
as random independent kernels and with D = 31 possible delays. We drew ran-
dom independent instances of B with a length of T = 1000 time steps and an
average of 1.0 spikes per neuron. This allowed us to generate a large number of
synthetic raster plots, which we use to infer B̂. We compute accuracy as the rate
of true positive detections (both for inferring the address and its exact timing)
and observe on average ≈ 98.8% correct detections.

We extended this result by showing how accuracy evolves as a function of
the number of simultaneous spiking motifs, holding the frequency of occurrence
constant. We show in Fig. 3 (left) that the accuracy of finding the right spik-
ing motif is still above 80% accuracy with more than 1364 overlapping spiking
motifs. This observation illustrates quantitatively the capacity of the HD-SNN
in representing a high number of simultaneous motifs. Furthermore, we show in
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Fig. 3 (middle) that (with M = 144 spiking motifs fixed) the accuracy increases
significantly with increasing temporal depth D of the spiking motif kernel, quan-
titatively demonstrating the computational advantage of using heterogeneous
delays. These results were obtained under the assumption that we know the
spiking motifs through K. However, this is generally not the case, for example,
when considering the raster plot of biological neurons.

Finally, we evaluated the performance of the supervised learning scheme in
inferring the connection kernel when the address and timing of spiking motifs
are known. The kernel was initialized with random independent values, and we
used stochastic gradient descent with a learning rate of 1e-4 over 1e4 trials of
rasters as defined above (T = 1000 and N = 128). Qualitatively, the convergence
was monotonous, and the correct values of the M = 144 spiking motifs were
quickly recovered. Quantitatively, the correlation between the true and learned
kernel weights showed that all kernels were correctly recovered (see Fig. 3, right).
Performing inference with the learned weights was as efficient as with the true
kernels, and showed no significant difference (not shown).

Fig. 3. Detecting spiking motifs using spiking neurons with heterogeneous delays.
Accuracy of detection for the classical correlation (red) and the HD-SNN method (blue)
as a function of (Left) the number M of kernels, (Middle) the number of presynaptic
neurons, (Right) Correlation matrix of true vs learned kernels. (Color figure online)

4 Discussion

4.1 Synthesis and Main Contributions

In this paper, we present a novel Heterogeneous Delays Spiking Neural Net-
work (HD-SNN) model designed for the detection of spiking motifs in synthetic
neurobiologically-inspired raster plots.

Our contributions encompass several innovations. Firstly, we formulate the
HD-SNN model from first principles, optimizing the detection of event-based spa-
tiotemporal motifs. Unlike previous models like the tempotron, which are evalu-
ated on simplified problems, our model is rigorously tested on realistic data. The
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results demonstrate that, assuming that the spiking motifs are known, our model
accurately detects the identity and timing of spiking motifs, even when multiple
motifs are superimposed. Additionally, we show that our method outperforms
correlation-based heuristics, such as those used in previous works like [6,33],
in terms of efficiency. Secondly, compared to other event-based methods, like
HOTS [18], our model’s weights are interpretable. These weights are directly
related to the logit, which is the inverse sigmoid of the probability of detecting
each spatiotemporal spiking motif. Finally, a crucial novelty lies in the simulta-
neous learning of weights and delays in our model. In contrast, models like the
polychronization model [16] only learn weights and delays are frozen. These con-
tributions highlight the significance and effectiveness of our HD-SNN model for
detecting spiking motifs, offering insights into the neural mechanisms involved
in pattern recognition and information processing.

4.2 Main Limits

The model comes with certain limitations. First, the entire framework is based
on discrete time binning, which is incompatible with the continuous nature of
biological time. While this choice facilitated efficient implementation on conven-
tional hardware such as GPUs, it can be extended to a purely event-based SNN
framework [8]. By analytically incorporating a precision term in the temporal
value of the input spikes, a purely event-based scheme can be achieved, promising
speedups and computational energy gains.

Second, the current model is purely feed-forward, i.e. the spikes generated by
postsynaptic neurons are based solely on information from their classical recep-
tive fields. However, neural systems often involve lateral interactions between
neurons in the same layer and feedback connections, which can be crucial for
computational principles and modulation of neural information. While our theo-
retical model can incorporate these recurrent connections by inserting new spikes
into the list of spikes reaching presynaptic addresses, it requires proper tuning to
avoid perturbations of the homeostatic state. For the implementation of predic-
tive or anticipatory processes, recurrent activity would be essential, especially
when dealing with multiple different delays that require temporal alignment.
Such recurrent activity has previously been modelled to explain phenomena
such as the flash-lag illusion. Implementing this using generalised coordinate
and delay operators would allow predictive mechanisms to be incorporated into
our proposed HD-SNN model, providing an elegant solution to this problem.

Addressing these limitations and exploring the extension of the HD-SNN
model to event-based schemes and recurrent connections would enrich its poten-
tial applications and pave the way for a better understanding of neural informa-
tion processing in complex systems.

4.3 Perspectives

The coding results were obtained under the assumption that we know the spiking
motifs by way of K, or using supervised learning by knowing the identity and
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timing of spiking motifs. However, this is generally not the case, e.g. when observ-
ing the neurobiological raster plot of a population of neurons. One perspective
would be to extend the model to a fully self-supervised learning paradigm, i.e.
without any labeled data [1]. This type of learning is thought to be prevalent
in the central nervous system and, assuming the signal is sparse [23], one could
extend these Hebbian sparse learning schemes to spikes [22,25].

We expect that this would be particularly adapted for exploring neurobiologi-
cal data [21]. Indeed, there is a large literature showing that brain dynamics often
organize into stereotyped sequences such as synfire chains [15], packets [20], or
hippocampal sequences [31] (for a review, see [9]). These motifs are stereotyped
and robust, as they can be activated in the same motif from day to day [13]. In
contrast to conventional methods used to process neurobiological data, such an
event-based model would be able to answer key questions regarding the repre-
sentation of information in neurobiological data.
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Abstract. Neocortical pyramidal neurons integrate two distinct
streams of information. Bottom-up information arrives at their basal den-
drites, and resulting neuronal activity is modulated by top-down input
that targets the apical tufts of these neurons and provides context infor-
mation. Although this integration is essential for cortical computations,
its relevance for the computations in spiking neural networks has so far
not been investigated. In this article, we propose a simple spiking neuron
model for pyramidal cells. The model consists of a basal and an apical
compartment, where the latter modulates activity of the former in a mul-
tiplicative manner. We show that this model captures the experimentally
observed properties of top-down modulated activity of cortical pyramidal
neurons. We evaluated recurrently connected networks of such neurons
in a series of context-dependent computation tasks. Our results show
that the resulting novel spiking neural network model can significantly
enhance spike-based context-dependent computations.

Keywords: Spiking neural networks · Dendrites · Context-dependent
computations · Simplified neuron models · Neuromorphic computing

1 Introduction

Spiking neural networks (SNNs) have emerged as a standard model for the inves-
tigation of computation and learning in the brain [10]. They have also become
the standard computational paradigm for energy-efficient neuromorphic hard-
ware [8,9,23,24,26]. Typically, SNNs are based on very simple spiking neuron
models that implement the basic computational principle of leaky integration
and thresholding: Input spikes are weighted by synaptic weights, temporally
integrated in a leaky manner, and compared to a firing threshold in order to
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determine whether to spike or not. These neurons are then organized either in
feed-forward or recurrently connected networks.

A number of recent advances have improved the computational and learning
capabilities of SNNs. New training methodologies have been developed that allow
us to optimize SNNs to a degree that is comparable to that of standard artificial
neural networks [4,31,38]. Extensions have been proposed that improve their
temporal computing capabilities [4] and their utilization of memories [20].

Nevertheless, these models lack essential features of the computational orga-
nization of the neocortex. A host of biological evidence suggests that a central
computational function of cortical microcircuits is the integration of bottom-up
sensory input with top-down contextual information [11,16,30]. In this way, sen-
sory processing in cortex is enriched with behavioral context such as attention,
expectations, and task information. Pyramidal neurons in neocortical layers 2/3
and 5 are assumed to play a pivotal role in this computation, since the morpho-
logical structure of these cells is well-aligned to integrate the two information
streams [11]. Feed-forward input from the thalamus or from areas located lower
in the cortical hierarchy are relayed via layer 4 to the basal dendrites of the
pyramidal cells. On the other hand, top-down input from higher cortical areas
targets mainly neocortical layer 1, where it reaches the apical tufts of these cells.
The dendrites of the apical tuft are electrotonically segregated from the basal
dendrites, allowing for an independent integration of these two signals [30]. Their
integration within the cell is based on a repertoire of nonlinear dendritic pro-
cesses [18]. In particular, it has been shown that contextual input arriving at
the apical tuft of pyramidal cells can modulate the gain of the cell output in
response to bottom-up input [17].

In this article, we study a simple extension of the standard SNN model. We
include in this network model extended leaky-integrate-and-fire (LIF) neurons
that consist of two compartments, a basal and an apical compartment. The
basal compartment acts as a standard leaky integrator, which is multiplicatively
modulated by the apical activity (see Fig. 1A). We train this model in a number
of context-dependent temporal processing tasks and compare its performance to
standard recurrent SNN models [4]. We find that multiplicative gain modulation
improves learning speed and test accuracy on context-dependent tasks based on
the DVS gesture [1] and Spiking Heidelberg Digits (SHD) [7] data sets.

2 Related Work

In recent years, several simplified models for cortical pyramidal cells were pro-
posed and compared to experimental data and to the behavior of detailed com-
partmental models [5,17,27,34,36]. The simplified models proposed in [17,27]
explicitly model interactions between the somatic and dendritic compartments,
which makes it hard to optimize them in larger networks with gradient-based
optimization techniques. Other models [5,34,36] incorporate a more detailed
structure of the dendritic tree, which hinders efficient optimization of large net-
works and is not in the scope of this study. The computational properties of
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such a simplified neuron model were studied in [27]. There, it was shown that
a three-compartmental model was capable to implement several basic computa-
tional operations related to coincidence detection, inhibition of input pathways,
logical operations, basic memory, transition detection, and sequence recognition.
However, the computational capabilities of dendritic interactions in networks of
such neurons have to the best of our knowledge not been studied so far.

The study of the computational capabilities of standard SNNs has a long
history. It was proven in [21] that SNNs are strictly more powerful than arti-
ficial neural networks in terms of the number of neurons needed to implement
functions. See [25] for a review of results and [32] for a more recent review of
SNNs in the context of deep learning. A recent study has shown that the specific
structure of cortical networks can benefit computations in SNNs [6]. The study
however did not investigate the implications of top-down signals and did not
consider the important role of pyramidal cells in the integration of these signals
with bottom-up input.

3 Results

3.1 Context-Dependent Spiking Neural Networks (cSNNs)

To incorporate top-down modulation of neuron responses, we extended the stan-
dard LIF neuron model with an apical compartment, see Fig. 1A. The apical
compartment is implemented as a leaky integrator of its synaptic input as in
[27] with time constant τa. The apical membrane potential is given by

V a
j (t + Δt) = αV a

j (t) + (1 − α)RmIaj (t + Δt), (1)

where α = exp(−Δt
τa

), Iaj is the apical input current, Rm the membrane resis-
tance, and Δt is the discrete time step (we used Δt = 1 ms). The resulting
apical membrane potential is rectified via a rectified linear (ReLu) nonlinearity
and multiplicatively modulates the somatic membrane potential

Vj(t+Δt) = βVj(t)+(1−β)
[
RmIj(t + Δt) · ReLu

(
V a

j (t + Δt)
)]−V thsj(t), (2)

where β = exp(−Δt
τm

) for membrane time constant τm. Note that the rectifying
nonlinearity of the apical contribution avoids the inversion of the somatic mem-
brane potential. When the somatic membrane potential crosses threshold V th,
the neuron outputs a spike, i.e. sj(t) = 1 (sj(t) = 0 otherwise). In the next time
step, the membrane potential is reset by subtraction of V th. In the following, we
refer to this model as the contextual LIF (cLIF) neuron model.

We studied recurrently connected networks of cLIF neurons—referred to
as context-dependent SNNs (cSNNs) in the following—in a series of context-
dependent processing tasks, see Fig. 1B. Neurons in the network receive bottom-
up input at their somatic compartments from a set of spiking input neurons.
Another set of spiking input neurons conveys context-information. These neu-
rons are connected to the apical compartments of the cLIF neurons in the net-
work. We studied two variants for recurrent connections in the network. In the
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Fig. 1. Context-dependent spiking neural networks (cSNNs). A) Schema of
the contextual LIF neuron model. B) In a cSNN, bottom-up input (gray) arrives at the
somatic and top-down contextual input (blue) at the apical compartment. Recurrent
inputs target the somatic (red) and optionally the apical compartment (dashed red).
C) The input output transformation of the cLIF model captures the basic properties
of pyramidal cells under top-down input, compare to Fig. 5 in [17].

first variant, neuron outputs are connected exclusively to the basal compartment
of other neurons. In the second variant, recurrent connections to both the basal
and the apical compartment exist. Finally, all network neurons project to an out-
put layer that consists of (non-spiking) leaky integrators. The activation of these
neurons determines the output of the network. In order to evaluate the compu-
tational capabilities of these networks, we trained them with backpropagation
through time (BPTT) using the surrogate gradient method [4,38].

3.2 Contextual LIF Neurons Capture the Behavior of Pyramidal
Cells Under Top-Down Input

We first asked whether our phenomenological neuron model captures the basic
properties of cortical pyramidal cells under the influence of top-down input.
Top-down modulation of layer 5 pyramidal cells (L5PCs) was described by
Larkum et al. [17]. The authors recorded the firing rate of L5PCs in response
to a somatic current ramp under different amplitudes of apical current injection
(Fig. 1C inset). They found that apical current injection has two effects on the
f/I-curve, that is, the dependence of the firing rate f of the neuron on the somatic
injection current I: First, increasing the apical current decreases the rheobase-
current, that is, the somatic current necessary to elicit action potentials. Second,
the apical current increases the gain of the f/I-curve: above the rheobase current,
the firing rate rises faster with increasing input current. Under the assumption
of a constant apical activation a, the f/I-curve can be computed analytically in
our model, adopting the standard derivation for LIF neurons [10]. This yields
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f(I) = [−τm ln(1 − V th

aRmI )]−1. This relationship is illustrated in Fig. 1C for neu-
ron parameters that are based on experimental results [33], see Methods. We
observe that the cLIF model exhibits the same behavior in terms of both the
decrease in the rheobase current and the gain increase. In contrast, an additive
integration of apical activation would only induce a rheobase decrease, but not
a gain increase.

3.3 Improved Performance of cSNNs in Context-Dependent
Temporal Processing Tasks

In order to evaluate the context-dependent computing capabilities of cSNNs, we
defined a principled way to convert multi-class classification tasks into context-
dependent tasks of increasing complexity. Consider a K-class classification task
for which we have a data set D = 〈(x(1), t(1)), . . . , (x(N), t(N))〉. In our case, each
x(n) is a multi-dimensional spike train (the inputs to the network) and t(n) ∈
{1, . . . , K} indicates the classification target for this input. Based on this data
set, we define three binary context-dependent tasks: single-sample classification,
sequence classification, and sequence memory.

In all variants, we generate a new data set D̃ = 〈(x̃(1), c(1), t̃(1)), . . . , (x̃(N),
c(N), t̃(N))〉. Here, c(n) ∈ {1, . . . , K} is the context variable that indicates the
class to be detected in the input and t̃(n) ∈ {0, 1} is the binary target output. In
the single-sample classification task, each data point (x̃(n), c(n), t̃(n) is generated
as follows, Fig. 2A. First, x̃(n) is given by a randomly chosen input sample x(sn)

with sn ∈ {1, . . . , N}. The context variable c(n) is chosen as the correspond-
ing target class in 50% of the cases (then, t̃(n) = 1) and uniformly over the
other classes otherwise (then, t̃(n) = 0). In the sequence classification task, each
network input x̃(n) is given by a concatenation of five randomly chosen input
samples x(sn,1), . . . ,x(sn,5), each from a different class, Fig. 2B. The context vari-
able c(n) indicates one of these classes. The target t̃(n) is defined here for each
presented pattern in the sequence, t̃(n) = (t̃(n)1 , . . . , t̃

(n)
5 ), with t̃

(n)
k being 1 if the

k-th input pattern belongs to the indicated class and 0 otherwise. In the sequence
memory task, inputs are generated in the same way. The target is defined again
for each presented pattern, being 1 if the current or a previous pattern of the
sequence did belong to the indicated class and 0 otherwise, Fig. 2C.

These constructions allow us to convert arbitrary classification tasks into
context-dependent tasks. The context-input in these tasks can be interpreted as
a task-context. Our construction implies K different binary classification tasks,
one for each context. The context input defines which of those tasks should be
performed by the network. Another interpretation is an attention signal that
indicates to which of the classes the network should attend and respond to.

Faster Convergence and Improved Performance of cSNNs in Single-
Sample Classification. We first evaluated the performance of cSNNs on the
single-sample-task version of the DVS gesture [1] and Spiking Heidelberg Digits
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Fig. 2. Context-dependent classification tasks. A) Example for a data point in
the single-sample classification task. The same input (right arm clockwise movement
from DVS gesture) should be classified as 1 in context i (green) and 0 in other contexts
(e.g. ii, red). B) Sequence classification task without and with memory. Top: The input
consists of a sequence of five gesture patterns and the context indicates the target class
(air guitar). The target is 1 when the indicated class is presented (i, dark blue, sequence
classification task)/when the indicated class is currently or has been presented (ii, light
blue, Sequence memory task). (Color figure online)

(SHD) [7] datasets. DVS gesture consist of samples from 10 classes of hand ges-
tures, recorded using a spiking vision sensor. After preprocessing (see Methods),
each input x(n) is a 512-dimensional spike train of a variable length from 196 to
1476 ms. SHD consist of samples from 20 classes of spoken digits from 0 to 9,
processed by an artificial cochlea model [7]. Here, after preprocessing, x(n) is a
350-dimensional spike train, of a variable length from 116 to 684ms.

Example input spike trains for DVS gesture are shown in Fig. 2. In the
context-dependent version considered here, the context-input to the network
consists of 10 neurons, one for each class. The target-class is indicated by Pois-
son firing with 200 Hz of the corresponding context-neuron, while other context-
neurons remain silent. The target output is 1 if the shown gesture was drawn
from the target class and 0 otherwise.

We trained a cSNN consisting of 200 cLIF neurons on this task using BPTT.
For this task, recurrent connections in the network were targeting only the
somatic compartments of network neurons. As a baseline model, we considered
a long-short-term memory spiking neural network (LSNN), which is a state-of-
the-art recurrent SNN model for temporal processing tasks [4]. To evaluate the
value of multiplicative modulation of somatic activity in our cSNN model, we
also compared it to a version where this modulation was replaced by an additive
integration of the apical activation, see Methods. All networks were trained for 10
epochs for DVS and 20 epochs for SHD. We found that the cSNNs outperformed
both baseline models in terms of the final test accuracy on both data sets (DVS:
cSNN: 89.4 ± 1.0, additive cSNN: 80.4 ± 2.2, LSNN: 75.9 ± 1.4, SHD: cSNN:
87.8 ± 0.77, additive cSNN: 72.2 ± 2.0, LSNN: 66.1 ± 1.7; mean±SD for n = 5
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Fig. 3. Improved performance and convergence for single-sample context-
dependent classification. A) Input spike trains, context input, network response,
and network output for an example inference run on DVS gesture. B) Validation accu-
racy over training epoch for cSNNs and baseline models. C) Comparisons of test accu-
racies for DVS gesture (left) SHD (right) (mean±SD for n = 5 training runs).

training runs), see Fig. 3. In addition, when inspecting the training progress, one
can observe highly significant faster learning in the cSNN as compared to both
baselines. Note that we optimized the learning rate independently for all three
models, hence, slower learning in the comparison models cannot be compensated
by learning rate adjustments.

Apical Recurrence Improves Performance of cSNNs at Context-
dependent Sequence Classification. Next, we considered the sequence clas-
sification task on DVS gesture and SHD. In addition to the LSNNs and additive
cSNNs baseline models, we also investigated whether recurrent connections to
apical compartments may improve the performance of cSNNs. In this task, target
classes are imbalanced, we therefore report also precision and recall performance
in Table 1, with precision being the most relevant measure. On the sequential
version of both data sets, LSNNs performed poorly with respect to precision.
Results for additive cSNNs with or without apical recurrence were clearly bet-
ter. A significant jump in performances can be observed for cSNNs with multi-
plicative apical integration. The inclusion of apical recurrent connections further
improved the performance, achieving a test precision of 88.5±1.6% on DVS and
89.4 ± 3.5% on SHD, an improvement of 30–40% over LSNNs on these tasks.

A Variety of Apical Time Constants Improves Performance of cSNNs
on Context-Dependent Sequence Memory Tasks. It has been shown that
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Table 1. Test performances for context-dependent sequential classification.

Task Model Apical Rec Accuracy Precision Recall

DVS cSNN yes 95.1 ± 0.6 88.5 ± 1.6 86.8 ± 2.0

cSNN no 93.3 ± 0.5 82.5 ± 2.7 85.2 ± 1.9

add. cSNN yes 86.9 ± 0.8 64.3 ± 2.0 78.7 ± 5.0

add. cSNN no 86.5 ± 0.9 63.0 ± 1.5 79.0 ± 4.0

LSNN - 84.8 ± 0.52 58.4 ± 1.1 83.7 ± 2.2

SHD cSNN yes 95.9 ± 0.8 89.4 ± 3.5 90.49 ± 1.4

cSNN no 93.08 ± 0.5 80.8 ± 1.5 86.2 ± 1.8

add. cSNN yes 84.5 ± 3.3 59.0 ± 6.5 81.0 ± 2.2

add. cSNN no 84.8 ± 0.3 59.4 ± 0.7 76.96 ± 0.5

LSNN - 78.4 ± 0.4 47.8 ± 0.6 77.98 ± 1.7

Table 2. Test performances for context-dependent sequence memory. U
denotes a uniform distribution over the given range. We report mean±SD for n = 5.

Model Apical Recurrence τa DVS Acc SHD Acc

cSNN yes U(0.02, 0.2) 83.9 ± 2.9 75.7 ± 2.5

cSNN yes 0.2 76.5 ± 2.8 66.6 ± 3.2

cSNN yes 0.02 74.7 ± 2.9 66.2 ± 7.0

cSNN no U(0.02, 0.2) 59.6 ± 1.6 53.1 ± 0.6

add. cSNN yes U(0.02, 0.2) 51.1 ± 2.3 55.8 ± 1.3

add. cSNN no U(0.02, 0.2) 50.1 ± 2.9 53.2 ± 1.2

LSNN - - 51.9 ± 1.6 51.0 ± 0.6

separate dendritic compartments can implement a form of short-term memory
[27]. This is because dendrites can elicit long-lasting plateau potentials due to
the activation of N-methyl-D-aspartate (NMDA) channels which can last on
the order of 100 milliseconds and Ca2+ spikes that can last for a few hundred
milliseconds [2]. The memorizing effect of plateau potentials is further boosted
by the electrical segregation of distal dendritic compartments from the soma.
Due to this segregation, these compartments are not reset, hence they can retain
depolarizations beyond action potential output. This type of memory was termed
dendritic memory in [27].

We wondered whether dendritic memory could boost performance of SNNs
in context-dependent sequence memory task as described above. To this end, we
considered cSNNs with apical recurrence and increased the time constant τa of
the apical compartment for each neuron from the standard 20 ms to a value from
20 to 200 ms (drawn from a uniform distribution for each neuron). This increased
time constant captures the memorizing effect of dendritic plateau potentials in
the arguably simplest manner. We compared the test accuracy of this model with
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the accuracy of LSNNs and several variations of cSNNs, see Table 2. Interestingly,
LSNNs and cSNNs without apical recurrence failed on this task, with a test
accuracy at chance level. On the other hand, cSNNs with apical recurrence and
a variety of apical time constants achieved 83.9 ± 2.9% and 75.7 ± 2.5% on DVS
and SHD respectively, outperforming all other tested variants. Interestingly, a
variety of time constants was crucial for good performance: the performance of
cSNNs with homogeneous τa of either 20 ms or 200 ms showed a clear reduction
of 7-9%. Also, the multiplicative integration of apical activation was necessary for
good performance: the additive variant with apical recurrence performed close
to chance level.

4 Discussion

Our knowledge about the architecture of the neocortical network suggests that
the integration of bottom-up with top-down input is a key feature of cortical
computation. In the center of this architecture are pyramidal cells in layers 2/3
and 5 of the cortical column. Experimental results suggest that a main feature
of these neurons is a modulation of activity through the apical dendritic com-
partment that receives top-down input. We have investigated in this article the
context-dependent computational capabilities of cSNNs, that are, SNNs based
on neurons which implement this modulation in an abstract manner. The main
advantage of our model is its simplicity, making it in principle possible to train
large networks on large data sets.

Our results show that cSNNs can drastically improve performance on such
tasks when compared to state-of-the-art SNN models, hinting at a computational
advantage of this architecture. While a detailed analysis of the reasons for this
advantage is out of the scope of this article, there are several arguments that can
be given. First, it has been recognized that multiplicative interactions enrich the
representational capabilities of neural networks [13]. The authors in [13] argue
that multiplicative interactions offer a powerful inductive bias when fusing mul-
tiple streams of information or when conditional computation is required, which
is exactly the case in context-dependent computation tasks considered here.
Such interactions can be found in several modern neural network models such as
long short-term memory networks (LSTMs) or transformers [12,35]. In SNNs,
multiplicative interactions have not been studied extensively so far. LSNNs [4]
implement long time constants to mimic longer-lasting memory in LSTMs, but
they do not utilize multiplicative interactions as cSNNs do. Multiplicative inter-
actions may also be beneficial for optimization. When the apical activation is
combined multiplicatively with the somatic one, gradients for the apical com-
partment are influenced directly by the somatic activation, which is not the case
in the additive case. This might explain why cSNNs exhibit faster training in
our single-sample context-dependent classification task, Fig. 3.

Second, as briefly discussed above, segregated apical compartments can
implement a form of dendritic memory [27], in particular if longer dendritic
time constants are utilized. Since the apical compartment is segregated from the
somatic one, action potential output does not reset this memory.
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SNNs are a fundamental architecture for energy-efficient neuromorphic hard-
ware [8,22–24,26]. Context-dependent computations have been recognized as
an important application area of this technology [3,19,37], and the potential
for nonlinear dendritic operations in neuromorphic hardware has been studied
[14,29]. Our results show that rather simple spiking architectures can be utilized
for context-dependent computations with neuromorphic systems.

5 Methods

cLIF Neuron and Model Parameters: The apical current is given by
Iaj (t) =

∑
i wa,in

ji ci(t) +
∑

i�=j wa,rec
ji si(t) + baj . The somatic current is Ij(t) =

∑
i win

jixi(t) +
∑

i�=j wrec
ji si(t) + bj . Here, wa,in

ji denotes the apical weight from
contextual input i, wa,rec

ji apical recurrent weights, and ba and b the apical and
somatic biases respectively. Weights were initialized as in [28], biases were ini-
tialized to zero. Further simulation parameters: V th = 0.05, τm = 20 ms. Rm

was set to Rm = 1 for simplicity as in [4]. τa = 20 ms for DVS and 40 ms for
SHD, unless stated otherwise. For the LSNN, adaptive threshold time-constants
drawn from U(20, 200) ms, with threshold increment coefficient of 1.3. Networks
were optimized using surrogate gradients and an upper spike regularization tar-
geting 10 Hz as in [4]. In the additive cSNN, the membrane voltage of neurons
evolved as Vj(t+Δt) = βVj(t)+(1−β)

[
RmIj(t + Δt) + V a

j (t + Δt)
]−V thsj(t).

Parameters for Fig. 1C were V th = 25.5mV , Rm = 220 MΩ and Cm = 170 pF.
Data Pre-processing: In the DVS gesture dataset, events are recorded with

a polar DVS camera of sensor size 128×128, which we summed over 8×8 spatial
and 5 ms temporal blocks. Binarization was employed, by setting positions to 1
if event sums ≥ 3 within each processed block, and 0 otherwise. As in [9], only
the first 40% of transformed gestures were considered, which is sufficient for high
accuracy due to the periodicity of recorded gestures. For the SHD dataset [7],
events on a 700-dimensional grid were processed with blocks of spatial resolution
2, and temporal resolution of 2 ms. Binarization was employed as before by
setting positions to 1 if event sums ≥ 1 for each block, and 0 otherwise.

Network Training: We used the binary cross entropy loss where a unique
target is provided for each sampled item (e.g. gesture) in the sequence. For
item k of length n in the sequence, prediction is computed as p(yk = 1) =
σ

(∑tk+n−1
t=tk

o(t)/n
)
, where o(t) is the non-spiking leaky integrator readout out-

put at time step t, and tk the onset time step of item k. Models were trained
using Adam [15] with initial learning rate 0.01 and batch size 64. We decayed the
learning rate exponentially after each epoch p via η(p+1) = γη(p) with γ = 0.75
for DVS and 0.85 for SHD. For DVS gesture, 10 epochs were used for task 1
and 2 and 20 for task 3. For SHD, 20 epochs were used for tasks 1 and 2 and 30
for tasks 3. For task 3, test accuracies were computed with respect to the out-
put at the last shown sample (hence, indicating whether the network correctly
memorized the appearance of the target class in the sequence). Training and test
examples were generated to balance these targets.
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berg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, vol. 1, pp.
1–47 (2012). https://doi.org/10.1007/978-3-540-92910-9 10

26. Pei, J., et al.: Towards artificial general intelligence with hybrid Tianjic chip archi-
tecture. Nature 572(7767), 106–111 (2019)

27. Quaresima, A., Fitz, H., Duarte, R., Broek, D.V.D., Hagoort, P., Petersson, K.M.:
The tripod neuron: a minimal structural reduction of the dendritic tree. J. Physiol.
(2022)

28. Rossbroich, J., Gygax, J., Zenke, F.: Fluctuation-driven initialization for spiking
neural network training. Neuromorphic Comput. Eng. 2(4), 044016 (2022)

29. Schemmel, J., Kriener, L., Müller, P., Meier, K.: An accelerated analog neuromor-
phic hardware system emulating NMDA-and calcium-based non-linear dendrites.
In: IJCNN, pp. 2217–2226. IEEE (2017)

30. Schuman, B., Dellal, S., Prönneke, A., Machold, R., Rudy, B.: Neocortical layer 1:
an elegant solution to top-down and bottom-up integration. Annu. Rev. Neurosci.
44, 221–252 (2021)

31. Shrestha, S.B., Orchard, G.: Slayer: spike layer error reassignment in time. In:
Advances in Neural Information Processing Systems, vol. 31 (2018)

32. Tavanaei, A., Ghodrati, M., Kheradpisheh, S.R., Masquelier, T., Maida, A.: Deep
learning in spiking neural networks. Neural Netw. 111, 47–63 (2019)

33. Tripathy, S.J., Savitskaya, J., Burton, S.D., Urban, N.N., Gerkin, R.C.: NeuroElec-
tro: a window to the world’s neuron electrophysiology data. Front. Neuroinform.
8, 40 (2014)

34. Ujfalussy, B.B., Makara, J.K., Lengyel, M., Branco, T.: Global and multiplexed
dendritic computations under in vivo-like conditions. Neuron 100(3), 579–592
(2018)

35. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

36. Wybo, W.A., Jordan, J., Ellenberger, B., Marti Mengual, U., Nevian, T., Senn, W.:
Data-driven reduction of dendritic morphologies with preserved dendro-somatic
responses. eLife 10, e60936 (2021)

37. Yang, S., Wang, J., Deng, B., Azghadi, M.R., Linares-Barranco, B.: Neuromor-
phic context-dependent learning framework with fault-tolerant spike routing. IEEE
Trans. Neural Netw. Learn. Syst. 33(12), 7126–7140 (2021)

38. Zenke, F., Vogels, T.P.: The remarkable robustness of surrogate gradient learning
for instilling complex function in spiking neural networks. Neural Comput. 33(4),
899–925 (2021)

https://doi.org/10.1007/978-3-540-92910-9_10


Efficient Uncertainty Estimation
in Spiking Neural Networks

via MC-dropout

Tao Sun1, Bojian Yin1, and Sander Bohté1,2,3(B)
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Abstract. Spiking neural networks (SNNs) have gained attention as
models of sparse and event-driven communication of biological neurons,
and as such have shown increasing promise for energy-efficient applica-
tions in neuromorphic hardware. As with classical artificial neural net-
works (ANNs), predictive uncertainties are important for decision mak-
ing in high-stakes applications, such as autonomous vehicles, medical
diagnosis, and high frequency trading. Yet, discussion of uncertainty esti-
mation in SNNs is limited, and approaches for uncertainty estimation in
ANNs are not directly applicable to SNNs. Here, we propose an efficient
Monte Carlo(MC)-dropout based approach for uncertainty estimation in
SNNs. Our approach exploits the time-step mechanism of SNNs to enable
MC-dropout in a computationally efficient manner, without introducing
significant overheads during training and inference while demonstrating
high accuracy and uncertainty quality.

Keywords: Spiking Neural Network · Uncertainty Estimation ·
MC-dropout

1 Introduction

Inspired by the brain’s event-driven and sparse communication, spiking neural
networks (SNNs) are enabling applications with high energy-efficiency in the
form of neuromorphic computing [21]. Analogous to biological neurons, spik-
ing neurons in SNNs communicate using discrete spikes, and time stepping is
typically used to account for the evolution of these neurons’ internal state as
a response to impinging and emitted spikes. With recent advances in architec-
tures and training methods, SNNs now achieve performance comparable to their
artificial neural network (ANN) counterparts in many tasks [3,25,26].

To employ SNNs in the real-world however, accurate predictions have to be
paired with high-quality uncertainty estimation to enable decision-making in
high-stakes applications such as autonomous vehicles, medical diagnosis, and
high frequency trading [4]: uncertain predictions in these applications may need
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14254, pp. 393–406, 2023.
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Fig. 1. (a) In ANNs, MC-dropout is performed by averaging results for a predefined
number (M) of forward passes through a dropout-enabled network. (b) In AOT-SNNs,
inference at each time step is taken as functionally equivalent to a forward pass in the
MC-dropout method. As the SNN network evaluation requires T time-steps already,
only one effective forward pass is needed.

to be reviewed by human experts for final decisions. In ANNs, predictive uncer-
tainties in classification models are commonly represented by predictive distri-
butions [13]. While evidence suggests that the brain performs a form of Bayesian
inference based on uncertainty representations [18], the literature on uncertainty
in SNNs is relatively limited and primarily concentrates on the sampling of prob-
abilistic distributions, typically from a neuroscience perspective [12,20].

Approaches for uncertainty estimation in classical deep learning models can
be divided into two groups: deterministic methods and Bayesian methods [6].
With a deterministic method, a model learned from training data is essentially a
point estimate of the model’s parameters. In a deterministic deep network, each
predictive distribution is estimated by a single forward propagation followed by
the softmax function. Yet, although it is feasible to infer uncertainty with deter-
ministic methods, these methods are known to be prone to output overconfident
estimation [6,13]. In contrast, a Bayesian network learns the posterior distribu-
tion of parameters in the network rather than depending on a single setting of
parameters. The probability outputs of a Bayesian method can be analytically
obtained by marginalizing the likelihood of the input with the estimated poste-
rior distribution; this however is generally an intractable problem. To tackle this
issue, many approximation methods and non-Bayesian methods have been intro-
duced [6]. Example of these methods like Monte-Carlo-dropout (MC-dropout)
[5] and deep ensembles [13] achieve excellent performance in terms of uncer-
tainty estimation quality, either by repeatedly carrying out inference for each
sample in perturbed versions of the network (Fig. 1a), or by training a collection
of networks and then carrying out inference in each network.
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Here, we propose an efficient uncertainty estimation approach for SNNs
by exploiting their time-step mechanism. Specifically, we apply continual MC-
dropout in SNNs by taking their outputs averaged over time steps as predictive
distributions, where we train SNNs with a loss function that also involves their
time steps: Average-Over-Time-SNNs (AOT-SNNs, Fig. 1b). In AOT-SNNs, we
take inference of each time step as functionally equivalent to a forward pass in
the classical MC-dropout method. Since only one forward pass is needed in infer-
ence, the computational overhead for AOT-SNNs is significantly reduced relative
to the MC-dropout method while still allowing effective uncertainty estimation.
We compare the performance of AOT-SNNs with more standard SNNs, as well
as with SNNs using the classical MC-dropout approach and SNN ensembles,
across multiple classification tasks. We demonstrate that for identical network
architectures, AOT-SNNs substantially outperform more standard SNNs and
achieve comparable accuracy as ensembles and classical MC-dropout SNNs at
little cost to uncertainty estimation quality while being much more computa-
tionally efficient.

2 Background

2.1 Problem Setup

We assume a training dataset D that consists of N i.i.d data points D =
{X,Y} = {xn, yn}N

n=1, where xn ∈ R
d and the true label yn ∈ y = {1, . . . , K}.

Given a sample xn, a neural network outputs the probabilistic predictive distri-
bution pω(yn|xn), where ω is the parameters of the network.

A number of non-Bayesian methods achieving excellent performance in term
of uncertainty estimation have been proposed, among which are deep ensembles
[13] and post-hoc calibration methods [10]. Deep ensembles are considered a
“gold standard” for uncertainty estimation [24], while a set of models are trained
with a proper scoring rule as the loss function. At inference time, the output of
all models are then combined to obtain a predictive distribution. Post-hoc cali-
bration methods, such as temperature scaling [10], involve the re-calibration of
probabilities using a validation dataset and achieve excellent calibration perfor-
mance in the i.i.d test dataset.

2.2 Bayesian Neural Networks and MC-Dropout Approximation

In a Bayesian neural network, the predictive distribution for a sample x is given
by:

p(y|x,D) =
∫

p(y|x, ω)p(ω|D)dω. (1)

The posterior distribution, p(ω|D) or p(ω|X,Y), of the parameters ω can be
computed by applying Bayes’ theorem

p(ω|X,Y) =
p(Y|X, ω)p(ω)

p(Y|X)
. (2)
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Due to the intractability of the normalizer in (2), the posterior distribution
p(ω|D) and the predictive distribution p(y|x,D)) usually cannot be evaluated
analytically. A variety of approximation methods have been introduced to tackle
this issue [9,14]. One such approximation is the MC-dropout method, which
is often taken as a baseline model in uncertainty estimation [13,17] due to its
feasibility and relatively good performance.

Dropout [22] is a simple but effective technique used in deep learning models
to prevent overfitting. In the MC-dropout method, dropout is applied before
each weight layer of a neural network in both training and testing. The pre-
dictive distribution calculation with the MC-dropout method is performed by
averaging results over a predefined number of forward passes through a dropout-
enabled network. Gal & Gharamani [5] showed that neural networks with such
configuration can be viewed as an approximation to a Bayesian method in the
form of deep Gaussian processes [2].

Either MC-dropout models or deep ensembles involves multiple forward prop-
agation passes in inference. As a result, when naively applied to SNNs, the
computational and energy costs becomes relatively high due to the necessity of
repeatedly running SNNs for multiple times during inference.

2.3 Source and Quality of Predictive Uncertainty

The only source of predictive uncertainty of deterministic methods is from the
noisy data. Uncertainty in a Bayesian method comes from both data and defects
of the model itself [6]: uncertainty caused by data is referred to as data uncer-
tainty, while uncertainty caused by defects of the model itself is referred to as
model uncertainty.

The quality of predictive uncertainties can be measured from two aspects
[13]. The first concerns uncertainty quality on in-distribution data, where test
data and training data share the same distribution. The second aspect evalu-
ates generalization of uncertainty on domain-shifted data. While certain post-
hoc calibration methods may generate accurate predictive probabilities for i.i.d
data, their effectiveness in predicting uncertainty for domain-shifted data is not
ensured [17]. For both aspects, model calibration is examined as the indication of
uncertainty quality [17]. For classification tasks, accuracy and calibration are two
evaluation measures that are mutually orthogonal [13]. Accuracy, defined as the
ratio of corrected classified examples to total number of examples, measures how
often a model correctly classifies; calibration measures the quality of predictive
probability distributions [13] and indicates the extent to which the probability
of a predicted class label reflects the real correct likelihood. A class of metrics to
measure calibration is referred to as proper scoring rules [8], which include the
Brier score (BS) and negative log-likelihood (NLL); another calibration metrics
is the Expected Calibration Error (ECE) [10], which is a scalar summary statistic
of calibration that approximates miscalibration. Although the definition ECE is
intuitive and thus widely used, it is not a perfect metric for calibration because
optimal ECE values can be generated by trivial solutions [17]; see the Appendix
for details on proper scoring rules and ECE.
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2.4 SNN

SNNs typically work with the same types of network topologies as ANNs, but
computation in SNNs is distinct. SNNs use stateful and binary-valued spiking
neurons, rather than the stateless and analog valued neurons of ANNs. As a
result, unlike synchronous computation in ANNs, inference in SNNs is in a iter-
ative form through multiple time steps t = 0, 1, ..., T : in each time step t, the
membrane potential of a spiking neuron U(t) is affected by the impinging spikes
from connecting neurons emitted at time step t − 1, and the past potential
U(t − 1). Once the membrane potential U(t) reaches a threshold θ, the neu-
ron itself emits a spike. Such sparse and asynchronous communications between
connected neurons is key to enabling SNNs to achieve high energy-efficiency.

LIF Neurons. Various spiking neuron models exist, ranging in complexity from
the detailed Hodgkin-Huxley model to the simplified Leaky-Integrated-and-Fire
(LIF) neuron model [7]. The latter is widely used in SNNs, as it is interpretable
and computationally efficient. Resembling an RC circuit, the LIF neural model
is represented as:

τ
dU

dt
= −U + RI. (3)

where I and R are the current and input resistance, and τ is the time constant
of the circuit. The discrete approximation of (3) can be written as:

ut
i = λut−1

i +
∑

j

wijs
t
j − st−1

i θ, (4)

st
i =

{
1, if ut

i > θ
0, otherwise (5)

where ui is the membrane potential of a neuron i, λ denotes the leaky constant
(< 1) for the membrane potential, wij represents the weight connecting the
neuron i and its pre-synaptic neuron j, and si indicates whether a neuron spikes.

With the introduction of surrogate gradient methods [16,25] and learn-
able LIF neurons [3,25], both trainability and performance of SNNs have been
improved dramatically.

3 Methods

Here, we present our proposed AOT-SNNs. We first explain how we efficiently
apply MC-dropout to SNNs, and then introduce the loss function used in AOT-
SNNs, which is based on the mean output values over time steps. Lastly, we
explain the network architecture we use to demonstrate AOT-SNNs in practice.
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3.1 Efficient MC-dropout in SNNs

As noted, the classical MC-dropout method runs a test sample a specified num-
ber (M) times in a model with dropout enabled, and takes the output of these
forward passes as the final predictive distribution (Fig. 1a). Thus applied in
ANNs, MC-dropout results in satisfactory predictive uncertainty estimation.

In principle, such MC-dropout can be applied directly to SNNs, as MC-
dropout SNN. This, however, results in computationally expensive inference as
an SNN typically has to be run for multiple time steps to perform inference.
Naively performing inference of a single sample in an MC-dropout SNN would
mean running M forward passes of a sample through a network where each
individual pass entails the evaluation of T time steps, incurring M × T time
steps in total.

As an alternative, we propose to leverage the SNN time-step mechanism by
enabling MC-dropout in AOT-SNNs during a single evaluation. Specifically, we
compute predictive distributions in a dropout-enabled AOT-SNN by averaging
outputs at multiple time steps. For a sample x, the AOT-SNN computes at each
time step t a probability distribution pt(y|x). Thus, the probability distribution
for the sample x is calculated as:

p(y|x) =
1
T

T∑
t=1

pt(y|x).

In this view, each time step in an AOT-SNN is weakly equivalent to a single
forward pass in the classical MC-dropout method. As such, only one forward
pass is required during inference, which requires just T time steps compared to
M × T for the MC-dropout SNN.

3.2 Loss Function

Loss functions in many current high-performing SNN learning algorithms [3,19,
25,27] are computed based on the output values of last time step, and we will
refer such loss functions as last-time-step loss, resulting in Last-Time-Step-SNNs
(LTS-SNNs). The last-time-step loss can be written as:

L = l(T ), (6)

where l(T ) is the loss function computed from the output values of the final time
step T .

Since the last-time-step loss is not compatible with the proposed uncertainty
estimation approach in AOT-SNNs, we introduce the average-over-time loss,
which calculates its output by averaging over multiple time steps:

L =
1
T

T∑
t=1

l(t). (7)
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By combining the average-over-time loss with dropout, we expect that the
quality of uncertainty estimation for our approach will be improved, as the AOT
loss pushes SNNs to correctly classify as much as possible at every time step.
This is in contrast to LTS-SNNs, where dropout is not enabled during inference1

and the predictive distributions output of only the last time step are used.
For l(t), either negative log-likelihood (NLL) loss or the mean squared error

(MSE) loss [3] can be used. Here, we use the MSE loss, as we find that in
practice the NLL loss causes a disconnect between NLL and accuracy, which is
an indication of miscalibration [10].

3.3 Network Architecture

We use AOT-SNNs with a network architecture very similar to the high-
performing PLIF networks in [3]. These networks are composed of a spiking
encoder network and a classifier network. The spiking encoder network consists
of multiple downsampling modules. Each downsampling module has a certain
number of convolution blocks and a pooling layer (kernel size = 2, stride =
2). The convolution block is composed of a convolution layer (kernel size =
3, stride = 1, padding = 1), a batch normalization layer, and a spiking neuron
layer.

Our classifier network is slightly modified from [3] and includes a fully-
connected layer, a spiking neuron layer, another fully-connected layer, which
is then followed by a readout integrator layer. Unlike the original PLIF networks
that classify using relatively coarse summed rate-coding collected from a popu-
lation of output neurons, probabilities of AOT-SNNs are computed based on the
membrane potentials of readout integrator neurons as in [25]. This modification
enables AOT-SNNs to achieve better uncertainty estimation performance com-
pared to corresponding standard PLIF networks while obtaining similar accu-
racy. In the spiking neuron layers, PLIF neurons [3] are used, where the time
constants τ are learned and shared by neurons within the same layer. Note that
dropout is applied to the neurons’ output spikes, and input data is directly
injected into the network as current into the input neurons.

4 Experiments

We performed a series of experiments to compare AOT-SNNs to LTS-SNNs, as
well as MC-dropout SNNs and also with the ‘gold standard’ of SNN ensem-
bles, across multiple classification tasks. As a proof of concept, we first applied
this approach to the MNIST dataset. Second, we experiment on the CIFAR-10
dataset to compare our models with corresponding LTS-SNNs. Additionally, we
reported and analyzed results on the CIFAR-100 dataset. Furthermore, we car-
ried out an ablation study where we characterized the uncertainty properties of
AOT-SNNs with regard to dropout rates and dropout types.
1 For LTS-SNNs, dropout is not enabled at inference time as this leads to notably

weak performance for LTS-SNNs, similar to that of ANNs.
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Table 1. Performance comparisons between the AOT-SNN and its corresponding LTS-
SNN on the MNIST dataset (mean±std across 10 models). The numbers after the model
names represent time steps.

Model Accuracy (%) ↑ BS ↓ NLL ↓ ECE ↓
AOT-SNN (8) 99.54 ± 0.030 7.0e-4 ± 4.3e-5 0.0144 ± 7.6e-4 1.2e-3 ± 3.4e-4

LTS-SNN (8) 99.37 ± 0.080 9.8e-4 ± 9.9e-5 0.021 ± 2.5e-3 4e-3 ± 1.1e-3

MC-dropout SNN (8, 10) 99.57 ± 0.033 6.5e-4 ± 5.0e-05 0.0125 ± 9.6e-4 1.1e-3 ± 2.9e-4

SNN Ensembles (8, 10) 99.56 7.5e-4 0.0180 6.7e-3

4.1 Experimental Setup

In our experiments, LTS-SNNs used the same layer structure as their corre-
sponding AOT-SNNs. All the MC-dropout SNNs and SNN ensembles are based
on their corresponding LTS-SNNs.

The Adam optimizer was used, with a cosine annealing learning rate sched-
uler, whose initial learning rate is 0.001 and Tmax is 64. The default dropout rate
used is 0.5. For the MINIST dataset, we used a batch size of 150, while the batch
sizes were 60 for CIFAR-10 and 15 for CIFAR-100. The number of epochs used
for each dataset were 200 (MNIST), 300 (CIFAR-10), and 300 (CIFAR-100).

4.2 MNIST

The spiking encoder network for the MNIST dataset has two downsampling
modules, each of which includes only one convolution block. In Table 1, we com-
pared the AOT-SNNs, its corresponding LTS-SNNs, MC-dropout SNNs, and
SNN ensembles, all using best performing models that have eight time steps to
evaluate samples. The results demonstrate that the AOT-SNNs outperform the
LTS-SNNs in both accuracy and the predictive uncertainty metrics, including
Brier score, NLL, and ECE. Furthermore, AOT-SNNs exhibit similar accuracy
and uncertainty estimation as both MC-dropout SNNs and SNN ensembles.

4.3 CIFAR-10 and CIFAR-100

The architectures of AOT-SNNs for the CIFAR-10 and CIFAR-100 dataset are
similar. They apply the same spiking encoder network, which has two down-
sampling modules, each with three convolution blocks. Their classifier networks
differ only in the last fully-connected layer due to their different number of
ground truth classes.

CIFAR-10 Held-Out Test Dataset. Table 2 presents a comparison of AOT-
SNNs to LTS-SNNs, MC-dropout SNNs, and SNN ensembles. While each MC-
dropout SNN ran five forward passes, each SNN ensemble consisted of five mod-
els. We show results for 4 and 8 time steps, corresponding to respective best
performing duration (see also Table 3). AOT-SNNs exhibit superior performance
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Table 2. Comparison on the CIFAR-10 dataset between AOT-SNNs, LTS-SNNs, MC-
dropout models, and deep ensembles (mean± std across 5 models). The digits enclosed
in brackets following the model names indicate the number of SNN time steps and the
number of forward passes or models used in inference.

Model Accuracy (%) ↑ BS ↓ NLL ↓ ECE ↓
AOT-SNN (4, 1) 90.2 ± 0.26 0.0153 ± 3.0e-4 0.38 ± 1.2e-2 0.040 ± 3.1e-3

AOT-SNN (8, 1) 90.8 ± 0.23 0.0144 ± 4.0e-4 0.37 ± 2.2e-2 0.043 ± 4.1e-3

LTS-SNN (4, 1) 88.9 ± 0.71 0.017 ± 1.1e-3 0.43 ± 2.8e-2 0.058 ± 4.4e-3

LTS-SNN (8, 1) 88.5 ± 0.60 0.0181 ± 8.1e-4 0.47 ± 1.3e-2 0.067 ± 3.4e-3

MC-dropout SNN (4, 5) 90.53 ± 0.37 0.0140 ± 4.1e-4 0.32 ± 1.0e-2 0.026 ± 3.0e-3

MC-dropout SNN (8, 5) 90.43 ± 0.37 0.0145 ± 5.3e-4 0.35 ± 1.3e-2 0.037 ± 1.4e-3

SNN Ensembles (4, 5) 90.9 0.0134 0.2919 0.012

SNN Ensembles (8, 5) 90.8 0.0135 0.2967 0.016

Table 3. Performance comparisons between AOT-SNNs and LTS-SNNs on CIFAR10
(mean±std across 5 trials).

Model Time steps Accuracy (%) ↑ BS ↓ NLL ↓ ECE ↓
AOT-SNN 2 89.4 ± 0.18 0.0168 ± 1.4e-4 0.417 ± 6.1e-3 0.047 ± 2.3e-3

AOT-SNN 3 89.7 ± 0.26 0.0160 ± 2.7e-4 0.40 ± 2.1e-2 0.044 ± 4.2e-3

AOT-SNN 4 90.2 ± 0.26 0.0153 ± 3.0e-4 0.38 ± 1.2e-2 0.040 ± 3.1e-3

AOT-SNN 5 90.4 ± 0.07 0.0150 ± 2.4e-4 0.39 ± 2.6e-2 0.043 ± 3.6e-3

AOT-SNN 6 90.5 ± 0.16 0.0149 ± 2.8e-4 0.38 ± 1.7e-2 0.043 ± 3.0e-3

AOT-SNN 7 90.2 ± 0.34 0.0151 ± 4.3e-4 0.37 ± 1.2e-2 0.043 ± 1.9e-3

AOT-SNN 8 90.8 ± 0.23 0.0144 ± 4.0e-4 0.37 ± 2.2e-2 0.043 ± 4.1e-3

AOT-SNN 9 90.5 ± 0.55 0.0147 ± 7.3e-4 0.37 ± 2.4e-2 0.044 ± 4.1e-3

AOT-SNN 10 90.7 ± 0.41 0.0146 ± 6.2e-4 0.37 ± 2.4e-2 0.044 ± 5.2e-3

LTS-SNN 1 88.2 ± 0.47 0.0168 ± 6.8e-4 0.36 ± 1.3e-2 0.014 ± 3.4e-3

LTS-SNN 2 88.6 ± 0.40 0.0180 ± 3.1e-4 0.46 ± 1.2e-2 0.067 ± 5.5e-3

LTS-SNN 3 88.0 ± 0.56 0.0184 ± 7.6e-4 0.44 ± 2.3e-2 0.060 ± 3.0e-3

LTS-SNN 4 88.9 ± 0.71 0.017 ± 1.1e-3 0.43 ± 2.8e-2 0.058 ± 4.4e-3

LTS-SNN 5 88.4 ± 0.27 0.0181 ± 4.7e-4 0.46 ± 1.6e-2 0.063 ± 3.1e-3

LTS-SNN 7 88.3 ± 1.12 0.018 ± 1.4e-3 0.48 ± 2.6e-2 0.068 ± 6.2e-3

LTS-SNN 8 88.5 ± 0.60 0.0181 ± 8.1e-4 0.47 ± 1.3e-2 0.067 ± 3.4e-3

LTS-SNN 9 88.0 ± 0.52 0.0189 ± 8.2e-4 0.49 ± 2.5e-2 0.069 ± 3.6e-3

LTS-SNN 10 88.0 ± 0.91 0.019 ± 1.5e-3 0.49 ± 4.6e-2 0.069 ± 6.2e-3

compared to LTS-SNNs and achieve comparable accuracy to SNN ensembles
while yielding slightly lower results on BS and NLL, only underperforming on
ECE. In comparison to the MC-dropout SNNs, AOT-SNNs do deliver superior
accuracy and performed almost as well as BS and NLL, with only a slight loss
in ECE.
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Table 4. Performance comparisons between the AOT-SNN and the corresponding
LTS-SNN on the CIFAR-100 dataset.

Model Time steps Accuracy (%) ↑ BS ↓ NLL ↓ ECE ↓
AOT-SNN 8 65.15 5.028e-3 1.6749 0.1352

LTS-SNN 8 62.32 5.333e-3 1.7325 0.1665

Fig. 2. Comparisons of the AOT-SNN model and its corresponding LTS-SNN on each
severity level of CIFAR-10-C.

Table 3 presents the results of AOT-SNNs and LTS-SNNs with time steps
smaller or equal to 10. With each model trained five times, the table lists the
mean and standard deviation for all the metrics. In this exhaustive compari-
son, we see that that AOT-SNNs significantly outperform LTS-SNNs, with all
models with more than 3 time steps achieving significantly better accuracy and
Brier score, with best results for 8 time steps. Moreover, almost all AOT-SNNs
achieve better NLL and ECE, except for the model with a single time step (which
however has considerably lower accuracy).

CIFAR-100. Comparing the AOT-SNN with time step eight with its corre-
sponding LTS-SNN for CIFAR-100 (Table 4), we similarly find that AOT-SNNs
achieve significantly better results than the LTS-SNN, in both accuracy and
predictive uncertainty quality.

CIFAR-10-C: Domain-Shifted Test Dataset. As mentioned earlier, the
quality of predictive uncertainties needs to be measured on both in-distribution
held-out data and domain-shifted data. We evaluated AOT-SNNs on the CIFAR-
10-C dataset [11], a domain-shifted test dataset of CIFAR-10. The CIFAR-10-C
dataset is designed to evaluate the robustness of image classification models
against common corruptions. It contains 19 corruption types that are created
by applying a combination of 5 severity levels to the original CIFAR-10 test
set. The CIFAR-10-C dataset is commonly used as a benchmark to evaluate
the uncertainty estimation in domain-shifted settings [17]. We compared the
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Table 5. Performance comparisons between the AOT-SNN with DropConnect and
its corresponding LTS-SNN on the CIFAR-10 dataset. The numbers after the model
names represent time steps.

Model Accuracy (%) ↑ BS ↓ NLL ↓ ECE ↓
AOT-SNN (8) 90.8 ± 0.23 0.0144 ± 4.0e-4 0.37 ± 0.022 0.043 ± 4.1e-3

AOT-SNN-DC (8) 90.5 ± 0.37 0.0140 ± 4.1e-4 0.32 ± 0.010 0.026 ± 3.0e-3

LTS-SNN (8) 88.5 ± 0.60 0.0181 ± 8.1e-4 0.47 ± 0.013 0.067 ± 3.4e-3

LTS-SNN-DC (8) 90.2 ± 0.25 0.0161 ± 3.6e-4 0.47 ± 0.035 0.065 ± 4.1e-3

Fig. 3. The impact of dropout rate on performance of AOT-SNNs on the CIFAR-10
dataset. Dropout rates are ranging from 0.1 to 0.9 in increments of 0.1.

performance of the AOT-SNN with eight time steps and its corresponding LTS-
SNN on all the severity levels of CIFAR-10-C (Fig. 2). With the AOT-SNN
outperforming the LTS-SNN in all severity levels, we conclude that AOT-SNNs
also improve uncertainty estimation over LTS-SNNs in domain-shifted settings.

Ablation Study. We further considered the impact of dropout rates and
dropout types on the quality of uncertainty estimates of AOT-SNNs.

Dropout Type. We replaced the dropout in the LTS-SNN and our best-
performing model, both of which have eight time steps, with DropConnect [23].
Instead of dropping the spikes like the regular dropout, DropConnect randomly
drops the weights in each layer before the PLIF neuron layer. As shown in
Table 5, despite the slightly better performance of the LTS-SNN-DC compared
to the corresponding dropout-based models (LTS-SNN), the AOT-SNN-DC out-
perform LTS-SNN-DC in terms of both accuracy and uncertainty quality (both
models in the table have a dropout rate of 0.5). The observation suggests that
DropConnect may fulfill the same function as regular dropout in AOT-SNNs,
and in some cases even could be preferable.
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Dropout Rate. To investigate the impact of dropout rate on performance, we
tested AOT-SNNs with dropout rates ranging from 0.1 to 0.9 in increments
of 0.1. These experiments were based on our best-performing model of eight
time steps and trained on the CIFAR-10 dataset separately for each amount
of dropout. The accuracy and Brier score were plotted in Fig. 3. The trends in
accuracy, Brier score are consistent, with models having dropout rates lower
than 0.5 producing flat results, followed by a decline in performance.

5 Conclusion

We proposed a novel and efficient approach for uncertainty estimation in spik-
ing neural networks SNNs based on the MC-dropout method combined with an
appropriate choice of loss-function. Our approach exploits the time-step mecha-
nism of SNNs to enable MC-dropout in a computationally efficient manner, with-
out introducing significant overheads during training and inference. We demon-
strated that our proposed approach can be computationally efficient and perfor-
mant in uncertainty quality at the same time. Future work could investigate the
potential of our approach in more applications, such as speech processing and
medical imaging.
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supported by the European Union (grant agreement 7202070 “HBP”).

Appendix

Proper Scoring Rules. A scoring rule S(p, y) assigns a value for a predictive
distribution p and one of the labels y. A scoring function s(p,q) is defined as
the expected score of S(p, y) under the distribution q

s(p,q) =
K∑

y=1

qyS(p, y). (8)

If a scoring rule satisfies s(p,q) <= s(q,q), it is called a proper scoring rule. If
s(p,q) = s(q,q) implies q = p, this scoring rule is a strictly proper scoring rule.
When evaluating quality of probabilities, an optimal score output by a proper
scoring rule indicates a perfect prediction [17]. In contrast, trivial solutions could
generate optimal values for an improper scoring rule [8,17].

The two most commonly used proper scoring rules are Brier score [1] and
NLL. Brier score is the squared L2 norm of the difference between p and one-
hot encoding of the true label y. NLL is defined as S(p, y) = −logp(y|x) with
y being the true label of the sample x. Among these two rules, the Brier score
is more recommendable because NLL can unacceptably over-emphasize small
differences between small probabilities [17]. Note that proper scoring rules are
often used as loss functions to train neural networks. [8,13].
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ECE. The ECE is a scalar summary statistic of calibration that approximates
miscalibration [10,15]. To calculate ECE, the predicted probabilities,
ŷn = argmaxyp(y|xn), of test instances are grouped into M equal-interval bins.
The ECE is defined as

ECE =
M∑

m=1

fm|om − em|, (9)

where om is the fraction of corrected classified instances in the mth bin, em the
average of all the predicted probabilities in the mth bin, and fm the fraction of
all the test instances falling into the mth bin. The ECE is not a proper scoring
rule and thus optimum ECEs could come from trivial solutions.
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Abstract. Spiking Neural Networks (SNNs) represent a promising solu-
tion for streaming applications at the edge that have strict performance
and energy requirements. However, implementing SNNs efficiently at
the edge requires model quantization to reduce memory and compute
requirements. In this paper, we provide methods to quantize a prominent
neuron model for temporally rich problems, the parameterized Adaptive
Leaky-Integrate-and-Fire (p-ALIF). p-ALIF neurons combine the com-
putational simplicity of Integrate-and-Fire neurons, with accurate learn-
ing at multiple timescales, activation sparsity, and increased dynamic
range, due to adaptation and heterogeneity. p-ALIF neurons have shown
state-of-the-art (SoTA) performance on temporal tasks such as speech
recognition and health monitoring. Our method, QMTS, separates SNN
quantization into two stages, allowing one to explore different quantiza-
tion levels efficiently. QMTS search heuristics are tailored for leaky het-
erogeneous neurons. We demonstrate QMTS on several temporal bench-
marks, showing up to 40x memory reduction and 4x sparser synaptic
operations with little accuracy loss, compared to 32-bit float.

Keywords: quantization · spiking neural networks · neuromorphic
computing

1 Introduction

Spiking Neural Networks (SNNs) are neural networks that integrate temporally
sparse events, called spikes, over time. Their sparse event-based activity makes
them suitable for ultra-low-power streaming applications at the edge. They are
considered dynamical systems similar to recurrent networks [1].

Spiking neuron models come in different flavors that vary in complexity and
biorealism [2]. In this paper, we focus on computationally simple models that
can accurately learn temporally rich tasks on multiple timescales.

ALIF networks with parameterized time constants (Heterogeneous neurons)
achieve SoTA performance on challenging temporal tasks [3,4] (see Table 1).
They combine the simplicity of LIF neurons, with the advantages of Spike Fre-
quency Adaptation (SFA) and heterogeneity of responses. In this paper, we refer

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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to such models as parameterized ALIF (p-ALIF) models. We introduce QMTS1,
a method for quantizing heterogeneous leaky SNNs. Our contributions are:

1. Two-stage quantization method to effectively traverse the search space;
2. Tailored iterative search algorithms for quantizing p-LIF SNNs;
3. Simplification and full quantization of p-ALIF SNN models;
4. Up to 40x size and 4x activity reduction on SOTA temporal SNN tasks.

Sect. 2 introduces background materials. In Sect. 3, we discuss recent approaches
in SNN quantization and motivate our choice to use the p-ALIF neuron. Our
methodology, including QMTS, is defined in Sect. 4 and our experiments and
results are in Sect. 5. We conclude our study in Sect. 6.

2 Background

The ALIF model extends the LIF model with spiking threshold adaptation. This
section introduces the ALIF neuron, by first examining LIF as its subset.

Leaky Integrate-and-Fire (LIF) neuron integrates current into its mem-
brane, which leaks over time. When the membrane reaches a certain threshold
voltage (vthr), the neuron fires a spike and resets. The following first-order RC
circuit differential equation and firing condition describe this model:

τm
du(t)

dt
= −[u(t) − urest] + RI(t) (1)

if (u(t) > vthr) → S(t + 1) = 1, u(t + 1) = urest. else → S(t + 1) = 0 (2)

where τm is the leakage time constant, u(t) is the membrane potential over time,
I(t) is the summed input current due to pre-synaptic spikes, R is a resistance
constant, urest is the rest membrane potential state, S is the output spike, and
vthr is the neuron’s firing threshold.

Equation 2 describes the firing and reset behavior. In biology, neuron mem-
branes have a limited voltage range; they fire and reset to urest immediately
upon reaching a threshold voltage. In SNNs, however, membrane potentials can
have greater variations. Hence, another way to reset the membrane potentials
in SNNs, which preserves information [5], is to subtract their firing threshold at
spiking time instead of a hard reset, as we do in Sect. 4.1.

Adaptive Leaky-Integrate-and-Fire (ALIF) Neuron is an extension of
the LIF neuron. In addition to leaky integration, the ALIF neuron’s firing thresh-
old adapts (increases) in response to an output spike. This adaptive behavior
is governed by another time constant which is typically an order of magnitude
bigger that the membrane potential’s leakage time constant. In addition to Eq. 1,
the ALIF neuron can be described by the following equations:

B(t) = vthr + b(t) (3)

1 QMTS framework is open-sourced at https://github.com/TUE-EE-ES/QMTS .

https://github.com/TUE-EE-ES/QMTS
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τadp
db(t)
dt

= −b(t) + βS(t) (4)

if (u(t) > B(t)) → S(t + 1) = 1,u(t + 1) = urest. else → S(t + 1) = 0 (5)

where B(t) is the adaptive firing threshold, b(t) is the adaptation variable, which
leaks over time according to τadp and is incremented by an adaptation constant
β whenever the neuron spikes.

3 Related Work

3.1 SNN Quantization

The deployment of deep learning models in embedded devices requires quan-
tization and pruning. Recent studies explore weight quantization and pruning
for SNNs [6–8]. Although some use techniques orthogonal to SNNs, such as
magnitude-based weight pruning [9], and weight quantization [10], others use
spike-based techniques, such as pruning neurons with low activity [11].

In [12], pruning and quantization are integrated into an optimizer. Based on
Dale’s principle, Deep-R [13] uses Bayesian probability to prune excitatory and
inhibitory connections. [14] applies the lottery ticket hypothesis to train pruned
SNNs while balancing workloads to preserve hardware utilization. These studies
focus only on connections and ignore neuron dynamics.

A few recent studies completely quantize SNNs. Q-SpiNN [6] is an SNN
Design-Space Exploration (DSE) quantization framework that demonstrated
benchmarks that use variants of LIF neurons. It fixes parameter ranges during
exploration and combines weight and membrane exploration together. In our
work, we separate their exploration into two stages, and explore range clipping.

In [7], the DECOLLE [15] SNN model is fully quantized to integer, including
error and gradient signals. While activations’ upper bounds were determined
analytically, different ranges and scales were explored as well.

In [8], a simplified DECOLLE model is quantized using hessian traces to
determine layer-wise noise sensitivity. Less sensitive layers were more aggressively
pruned and quantized. Their study show no parameter exploration.

All these studies quantize LIF-based neuron models. This work is the first
to explore full quantization of networks of adaptive parameterized neurons. Our
methods apply a simple and effective DSE to find efficient quantized SNNs.

3.2 Multiple Timescale Neurons

Neuron models capture a huge variety of features found in biological neurons.
They cover a wide spectrum with different degrees of complexity and biological
fidelity. This subsection investigates the role of three features on the ability
of SNNs to learn patterns at multiple timescales: Spike Frequency Adaptation
(SFA), recurrent connections, and heterogeneous time constants.

SFA leads to higher coding efficiency over a larger dynamic range, it increases
sparsity in signal representation [16–18], and it increases the learning capacity of
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Table 1. SoTA SNNs on temporal benchmarks.s.

Benchmark Ref Model Architecture Params (k) Accuracy Size.Loss (k)

SHD [34] TA-LIAF1 128F-128F 109 91.1% 9.7

[25] LIF2 128F-128F 109 74.0% 28.3

[22] p-LIF2 3x128F 126 87.0% 16.4

[25] r-LIF2 256R 250 82.2% 44.5

[28] r-LIF2 128R 109 71.7% 30.8

[28] pr-LIF2 128R 109 82.1% 19.5

[22] pr-LIF2 3x128R 175 89.8% 17.9

[22] p-ALIF2 3x128F 126 93.1% 8.7

[22] p-ALIF2 3x128F(sparse) 21 91.6% 1.8

[22] pr-ALIF2 3x128R 175 92.9% 12.4

GSC (35 [25] r-LIF2 256R 85 85.3% 12.5

classes) [23] r-ALIF2 256R 86 88.5% 9.9

GSC (12 [3] r-LIF2 2048R 4,303 89.0% 473

classes) [3] r-ALIF2 2048R 4,307 91.2% 379

[4] pr-ALIF2 300F-300R 220 92.1% 17.4

S-MNIST [3] r-LIF2 220R 36 60.9% 14.0

[3] r-ALIF2 220R (sparse) 9 92.0% 0.7

[4] pr-ALIF2 64R-256R 89 98.7% 1.2
1Temporal Attention-Leaky Integrate Analogue Fire neuron.
2p: trainable time-constants. r: recurrent network. (A)LIF: neuron model.

a network over long timescales [19]. In addition, SFA also provides a high-pass
filtering response to the input stimuli [20]. These adaptation features are also
visible in biological neural circuits [21]. Moreover, adaptation also leads to signif-
icantly higher accuracy for (recurrent) spiking neurons solving temporally rich
tasks, compared to non-adapting (recurrent) spiking neurons, by showing much
higher learning capacity and more robust generalization [3,4,22,23]. Recurrent
connections can help model a working memory, which is useful for sequential
problems requiring to recall input patterns over long timescales [24,25].

On the other hand, a neuron’s (frequency) response is affected by its time-
constant parameters. Neural heterogeneity through the incorporation of train-
able (i.e. parameterized) time constants has shown to improve performance,
generalization, and temporally-complex pattern detection [26–30].

Table 1 shows the SoTA SNN models’ performance in classifying three tempo-
ral datasets; the Spiking Heidelberg Digits (SHD) [31], the Google Speech Com-
mands (GSC) [32], and the Sequential MNIST (S-MNIST) [33] datasets. The
table shows a comparison between networks using adaptive versus nonadaptive
neurons [3,4,22,34], recurrent connections versus feedforward-only connections
[3,22], and heterogeneous versus homogeneous time constants [28]. Reported
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results show more accurate classification from networks composed of adaptive
and parameterized neurons over neuron models with nontrainable time con-
stants. This motivates our choice to use p-ALIF SNNs as quantization targets.

4 Methodology

Quantizing p-ALIF SNNs require a tailored strategy that accounts for their
dynamic heterogeneous behavior. This section presents our methods for such
task. First, we introduce the neuron model’s discrete approximate solution and
our simplification for more efficient deployment in Sects. 4.1 and 4.2. Finally, we
present QMTS for quantizing leaky heterogeneous SNNs in Sect. 4.3.

4.1 (p-)ALIF Discrete Solution

The (p-)ALIF approximate discrete solution is described by:

b[t] = ρb[t − 1] + (1 − ρ)S[t] (6)

B[t] = vthr + βb[t] (7)

U [t] = αU [t − 1] + (1 − α)I[t] − S[t]B[t] (8)

if (u[t] > B[t]) → S[t + 1] = 1 (9)

where α and ρ are the neuron decay parameters derived from τm and τadp respec-
tively. α and ρ are typically defined as hyperparamters. However, for p-ALIF,
they are defined per neuron. The other terms were defined already in Sect. 2.

The input current (I[t]) is the summed post-synaptic current due to spikes
from pre-synaptic neurons. Such synaptic connections can be fully-connected,
convolutional, recurrent or others. Batch normalization (BN), and (1 − α) from
Eq. 8, are fused to the synaptic connections for efficient deployment [35].

4.2 Simplifying P-ALIF

In ALIF SNNs, in addition to ρ, γ = β(1 − ρ) is pre-computed and stored
as the adaptation constant (see Eqs. 6, 7), to avoid extra computation. For p-
ALIF SNNs, this overhead is per neuron. We reduce this requirement by using
an average adaptation constant over a population of neurons γ̂ = β(1 − ρ̂).
Furthermore, we set vthr to 0. Substituting this into Eqs. 6 and 7 leads to:

B[t] = ρB[t − 1] + γ̂S[t] (10)

where γ̂ is the average adaptation constant per layer or population of neurons.
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4.3 QMTS

We start with a 32-bit float baseline model. After simplifying it, we apply quan-
tization. We define a range and scale per parameter and per layer or channel.
As SNNs are typically deployed in event-based systems, where input spikes are
sporadic and input scheduling is typically unpredictable, we restrict our param-
eters to uniform fixed-point representation without zero offset, where scales are
strictly powers of 2, as in Fig. 1, to avoid computation overhead [35].

We implement Quantization-Aware Training (QAT) using a straight-through
estimator [36] to approximate the gradient through quantizers. We separate our
method into two stages. First, we quantize parameters that are unchanged after
learning, such as layer parameters (weight, external input), and neuron parame-
ters (decay, bias, neuron constant). Then, we quantize neuron activations, which
vary dynamically during inference and reflect the network’s temporal memory
[3], such as the membrane time constant and the adapting spiking threshold.
This separation is effective as the quantization of activations is highly depen-
dent to the quantization of parameters, as activations act as accumulators of
these parameters. It also reduces our search space as illustrated in Fig. 2.

Fig. 1. Uniform Signed (left) and unsigned fixed-point quantization (right) for a max-
imum range |xf | and N target bitwidth. Scales are strictly powers of 2.

Fig. 2. QMTS efficiently traverses the search space with different accuracy limits.
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Weight Quantization (Algorithm 1): For parameter quantization, we
apply our tailored search algorithm to p-LIF network weights (see Fig. 3(b)).
Heterogeneous leaky neurons can have extremely varying responses. Note in
Eq. 8 how LIF time constant (α = e−1/τ ) affects memory retention and current
response. Relatively smaller time constants create larger current responses that
decay quicker and extremely low time constants cause abrupt responses with
instant decay. To tackle this issue, QMTS iteratively reduces the fixed-point
bitwidth of different weight parameters, while exploring different ranges where
such extreme kernel responses of relatively low time constants can be clipped.
First, we calculate initial 16-bit quantization parameters that cover the full range
of values for each layer/channel (Pre-process). Then, we iteratively reduce the
number of bits of each layer, by reducing range and/or increasing scale (i.e.
removing most and/or least significant bit(s)) according to accuracy (Range
exploration) until all layers fail successively in reducing their weight bitwidth.
The result is used in Algorithm 2 for activations quantization.

Fig. 3. (a) Weight (Algorithm 1) and (b) Activations (Algorithm 2) quantization.

Activations Quantization (Algorithm 2): Neuron activations in SNNs
are comparable to accumulators in Artificial Neural Networks (ANNs). Mem-
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brane potentials accumulate weights triggered by spikes, while adaptations accu-
mulate adaptation constants after output spikes. Accumulator bitwidth con-
straints can be statically analyzed for ANNs [37]. However, neuron activations
are non-volatile over time, so we record their ranges during inference.

Like ANN accumulators, an accumulator’s scale should not exceed its respec-
tive input scale [37]. Hence, a membrane potential scale is tied to its weights (and
inputs) scale, while an adaptation variable scale is tied to its adaptation constant
(γ̂) scale. Unlike ANNs, due to decay, having relatively smaller scales might be
necessary to model leakage correctly. This is in line with previous research which
showed that small leakage (> 0.9) requires more accurate computation [38].

Table 2. SHD model parameters quantization

Model Acc Size W Density SOP%1 Size1 Reduction

32-bit float [4] 90.8% 558 KB 100% 6.2% 558 KB 1x

4-bit 91.2% 72 KB 76% 4.7% 56 KB 10x

2-bit 90.6% 39 KB 37% 2.2% 17 KB 32x

Ternary 89.2% 32 KB 37% 2.3% 14 KB 40x
1Including structural sparsity.

Our activation search algorithm (see Fig. 3(b)) tackles the problem of leak-
age with finer scales. We start with initial ranges, based on maximum observed
values, and initial scales, based on input scales (Pre-process). We quantize
activations one by one, to observe their effects separately. After enabling each
activation, we reduce its scale until accuracy is recovered (Scale Calibration).
Finally, we iteratively reduce the range of each activation for more efficient rep-
resentations (Range Reduction), until all successively fail.

5 Experiments

We demonstrate our methods on two audio benchmarks and a dynamic vision
benchmark. We measure size with and without structural sparsity and compare
to a dense 32-bit float version. SOP% indicates the rate of synaptic operations
during inference, while considering structural sparsity which arises from quan-
tization. For the audio benchmarks, we apply our methods on SRNN [4], a
pr-ALIF network. We use the SHD and GSC datasets [31,32]. For the dynamic
vision benchmark, we use the IBM DVS128 hand gestures dataset [39]. Unfortu-
nately, we couldn’t find a p-ALIF model for this benchmark, so we use a p-LIF
network from [27]. This network uses convolutional connections and batch nor-
malization (Conv+BN). We use the same training methods as published for each
benchmark. We quantize all neuron parameters (α, ρ, and γ̂) with a scale of 2−8.
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5.1 Spiking Heidelberg Digits (SHD) Results

SHD is a spiking audio dataset of spoken words encoded by a cochlea model,
consisting of 8156 training and 2264 test samples. Data is pre-processed into
spikes with 4 ms timestep window and 250 timesteps. We use SRNN model and
framework [4]. The model consists of 2 recurrent layers of 128 pr-ALIF neurons.

Algorithm 1 quantizes the model to 4-bit with no accuracy loss. By lowering
accuracy limit, we achieve 2-bit and ternary weights models. Table 3 summa-
rizes weight quantization results. 2-bit quantization results in very high weight
sparsity. However, output layer weights are 6-bit wide and are ≈ 90% dense.
Next, activations are quantized according to Algorithm 2, with scales calibrated
to values lower than their respective inputs as shown in Table 3.

Table 3. SHD full quantized model

Model Acc S LS S1 LS1 Wh1 Uh1 Wh2 Uh2 γh1,h2 Bh1,h2 Wout Uout

4-bit 91.7% 71 6.0 55 4.7 4, –7 10, –7 4, –6 10, –7 3, -8 10, –10 6, –8 10, –8

2-bit 91.3% 37 3.4 15 1.4 2, –5 10, –6 2, –5 10, –6 3, –8 10, –10 6, –8 11, –8

Ternary 89.7% 30 3.2 12 1.3 –4 10, –6 –4 10, –6 –3, –8 10, –10 6, –8 11, –8

x, y: (un)signed fixed point with x bitwidth, 2y scale. x : ±2x Ternary.
Subscripts: layer id. S: Size, LS: Loss x Size (KB). 1Including weight sparsity.
W: weights. U: membrane potentials. γ: adaptation constant. B: adaptive threshold.

Table 4. GSC model parameters quantization

Model Acc Size(KB) I rate W Density SOP% 1 Size 1(KB) Reduct.

32-bit float [4] 92.1% 865 99% 100% – 865 1x

32-bit float 91.0% 865 99% 100% 23.0% 865 1x

Ternary 91.5% 51 36% 42% 5.1% 23 38x
1 Including structural sparsity.

5.2 Google Speech Commands Results

GSC consists of 35 spoken words/classes. Raw input is pre-processed as in typical
audio applications [4]. We use the SRNN model [4], consisting of 120 inputs, and
two layers of 300 p-ALIF neurons. Only the second layer is recurrent. We train
using a balanced subset of the GSC dataset, comprising roughly 60K audio
recordings with 12 class labels, using hyperparameters and training framework
from [4]. We split it into 90% train, 5% test, and 5% validation sets. We use the
same test set as in literature to report accuracy [4].

We quantize the external input and hidden layer weights to ternary with
no accuracy loss. Table 4 summarizes the results of parameters quantization.
Similar to SHD, hidden layer weights are heavily quantized and sparsified, while
the output layer weights more resolution and have roughly 90% density. Next,
activations are quantized according to Algorithm 2, with scales calibrated to
values lower than their respective inputs as shown in Table 5.
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5.3 IBM’s DVS128 Gesture Dataset

DVS 128 Gesture Dataset [39] consists of 1,500 human gestures recordings with
a dynamic vision camera. It comprises 11 classes, 29 subjects, and 3 illumination
conditions. The subjects are split into 75% train and 25% test sets. We use the
architecture from [27] consisting of 5 Conv+BN layers with 128 filters each and
two hidden layers. Each layer is connected to a p-LIF layer with only one learned
time constant per layer, followed by max pooling for Conv layers. Conv kernels
are fused with BN and (1 − α), where BN introduces a bias term to the kernel.
Events are pre-processed as in [27], using SpikingJelly [40] to split frames by
event count. The 128 × 128 input frame has two channels, each holding sum of
positive and negative events respectively. Hence, inputs are whole numbers. This
network consists of about 1.7 M weight parameters and 2.8M neurons in total.

Table 5. GSC full quantized model

Model Acc S LS S1 LS1 Input Wh1 Uh1 Wh2 Uh2 γh1,h2 Bh1,h2 Wo Uo

Ternary 91.5% 47 4.0 20 1.7 –3 –2 8, –5 –3 8, –3 3, –8 6, –8 5, –1 8, –1

x, y : (un)signed fixed point with x bitwidth, 2y scale. x: ± 2x Ternary.
Subscripts: layer id. S: Size, LS: Loss x Size (KB). 1Including weight sparsity.
W: weights. U: membrane potentials. γ: adaptation constant. B: adaptive threshold.

Table 6. IBM DVS128 model parameters quantization

Model Acc Size W Density SOP%1 Size1

32-bit float [27] 97.6% 17 MB 100% 17 MB

32-bit float 96.9% 17 MB 100% 7.1% 17 MB

Ternary 96.9% 11 MB 68% 5.2% 11 MB
1 Including structural sparsity.

Table 7. IBM full quantized model

Model Acc S LS S 1 LS1 Input Uc1 Uc2 Uc3 Uc4 Uc5 Uh1 Uh2 Reduction

Ternary 96.9% 3.0 96 2.9 93 uint3 8, 2 8, 2 8, 1 8, 2 7, 1 9, 1 8, 1 6x

x, y: x bitwidth, 2−y membrane scale to weight scale ratio.1Including weight sparsity.
S: Size, LS: Loss x Size (KB). U: membrane potentials. Subscripts: layer id.

For Conv weights, we apply per-channel quantization, where each output
channel range and scale are based on their respective maximum absolute values.
However, fine-grained search of reduced ranges can be unfeasible, as we have
many filter channels (5 layers x 128 channels). Instead, we apply a coarse search
per layer. However, unlike others, Algorithm 1 range search did not provide any
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gain here, as each layer has only one time constant (homogenous). We directly
quantize weights and biases to ternary, and inputs to 3-bit unsigned int. Although
all weights are ternary, hidden layer weights are significantly denser (≈ 90%)
than Conv weights (≈ 25%). Table 6 summarizes our results.

For activations quantization, we follow Algorithm 2 to find proper neuron
membrane scales. However, we apply a coarse-grained algorithmic search, per
layer instead of per output channel. A layer’s quantization is defined by two
parameters; its number of bits, and the number of bit shifts between each chan-
nel’s membrane potential scale and weight scale. Fine-grained algorithmic search
may yield more efficient results, but requires more search iterations. Table 7 sum-
marizes our results, showing how scale calibration is useful for leaky neurons.

6 Conclusion and Discussion

In this paper, we present QMTS, a two-step approach and search heuristics to
efficiently deploy (adaptive) leaky heterogeneous SNNs. We demonstrated our
approach on SoTA temporal benchmarks for spiking neurons, showing a signifi-
cant reduction in size up to 40x, compared to dense 32-bit float baseline models,
with little to no accuracy loss. Although quantization generally increases neuron
activity rate [7], the overall rate of synaptic activity was reduced by up to 4x due
to structural sparsity in highly quantized connections. While QMTS’s two-step
iterative approach is applicable to any neural network, the search algorithms are
tailored to improve the performance of leaky heterogeneous neurons.

Constrained accumulators trained with QAT may perform as good as uncon-
strained accumulators. However, restricting accumulators beyond a certain limit
leads to accuracy loss. This is in line with ANN quantization, where wide
accumulators are necessary to store feature maps prior to applying their non-
linear activation function [37]. Additionally, leakage may require finer scales, and
weight clipping can improve quantization for layers of heterogeneous neurons.
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Abstract. The self-organizing map (SOM) is an unsupervised learning
algorithm that extracts representations from an input dataset and orga-
nizes them in a topographic manner. Nevertheless, the SOM is unable
to handle event-based and asynchronous data such as spikes. This work
introduces a spiking SOM that consists of a network of leaky integrate
and fire neurons. Our spiking model differs from previous ones by demon-
strating not only the ability to generate topographically ordered maps,
but also the additional capability of vector quantization (VQ). Thus our
model replicates for the first time the two key functions of SOM. To do
so, we extend the VQ capabilities of a previous model by incorporating
a novel neuromodulator, which enables the generation of ordered maps.
We demontrate good performances on synthetic and real datasets.

Keywords: Spiking neural networks · self-organizing feature maps ·
temporal code · representation learning

1 Introduction

Topographically ordered maps are ubiquitous in the sensory cortex [8,9] and
are considered to be a fundamental organizational and computational principle.
They are characterized by spatially close neurons sharing similar input rep-
resentations, and they are created by projecting high-dimensional input data
onto a low-dimensional surface (the cortex), minimizing the synaptic connections
between neurons and enabling local calculations to be performed on nearby data
points within the cortex [2]. This principle of local computation between neurons
sharing similar representations can potentially be exploited by neuromorphic
processors to increase their efficiency. These processors mimic the organization
of the cortex by implementing hundreds of neurosynaptic cores, where memory
(synapse) and computation (neurons) are co-localized [3]. By exploiting locality,
the need for costly long-distance communications between cores can be reduced.

The canonical bio-inspired model for generating a topographically ordered
map is Kohonen’s SOM [6]. It consists of a vector quantization (VQ) mod-
ule, which employs competitive learning to represent the current input, and
a neighborhood function that enables cooperative learning among the winning
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neuron and its neighboring neurons. The combination of VQ and topographic
self-organization in SOM can have direct applications such as defining neural
distances exploited to enable novelty detection by SOM [1].

Hardware implementations of SOM are able to preprocess and categorize the
vast amount of digital data collected by embedded systems like IoT and edge
computing. Implementing SOM on neuromorphic chips thus sounds promising for
several embedded applications. These chips implement 3rd generation neurons
[7] that communicate temporally through spikes. However, Kohonen’s SOM is
not suited for computing and learning with spikes, which are sparse event-based
and asynchronous data. As a solution, several spiking models have been devel-
oped to replicate the functionalities of SOM [5,11–13]. Although they exhibit
some capacity to generate ordered maps, they fail to demonstrate the second
crucial function of the SOM: vector quantization aiming for low reconstruction
loss. Furthermore, apart from the work of [11], synaptic weights rather than
delays are considered as learnable parameters to extract representations from
temporal codes. In contrast to synaptic weights, delays intrinsically operate in
the temporal domain. Hence, we want to use delays to store representations, as
delays appear as a better candidate than weights to process and learn temporal
codes.

Our work presents a novel model of spiking SOM, called Self-Organizing
Temporally Coded Representation Learning (SO-TCRL). To the best of our
knowledge, our model is the first to integrate the two key functionalities of
Kohonen’s SOM [6], namely, the ability to create topographically ordered maps
and the capability of vector quantization (VQ). Our model is based on the VQ
capability of [4], extended by our new neuromodulator to produce ordered maps.
Neuromodulators in the brain act on sets of synapses to guide learning. Neuro-
modulators play a crucial role in shaping various essential properties of learning,
including but not limited to the learning rate, as well as more intricate proper-
ties such as the temporal profile of STDP (Spike-Timing-Dependent Plasticity)
[10]. Notably, neuromodulators can be found in neuromorphic processors, often
referred to as eligibility traces [3].

Section 2 defines the main components of our model that implements the
functionalities of the SOM algorithm in a network of spiking neurons, with a
focus on our new neuromodulator. Several components of the model such as the
temporal code and the STDP rules are based on the model of [4]. The experi-
mental study is summarized in Sect. 3, using synthetic and natural datasets.

2 Material and Methods

This section depicts the different architectural and algorithmic components that
make the neural model designed for learning representations and organizing them
topographically. Our model uses a neuromodulator to regulate the learning rate
of the STDP rules of [4], and its performance is assessed using both synthetic
and real datasets. Emphasis is placed on the differences with the work presented
by [4], with a focus on the new neuromodulator. For a more detailed analysis of
the common algorithmic components of the two models, see [4].
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Fig. 1. Block diagram of the SNN architecture. Given a k-dimensional input vector,
one dimension of the input vector is encoded by the relative firing latencies of l neurons.
The sparse activity of the k∗l neurons is transmitted to the representation layer. Delays
dji and synaptic weights wji (where i represents the index of a presynaptic neuron and
j represents the index of a postsynaptic neuron) between these two layers are learned
using two distinct STDP rules. Additionally, a novel neuromodulator operates based
on the activity of the representation layer and modulates the learning rate of both
STDP rules

2.1 Architecture

The spiking neural network consists of two fully connected layers. The first layer
encodes the input data into the relative latencies of sets of spiking neurons
assigned to each input vector coordinate. The second layer extracts represen-
tations from the received spike patterns, while also possessing the ability to
generate an ordered map thanks to the introduction of a neuromodulation.

These two layers are fully connected, as illustrated in Fig. 1. Learning occurs
between these two layers through the use of two STDP rules. One STDP rule
adapts the delays dji to store representations in the temporal domain, while
the other adapts the weights wji to filter the features based on their temporal
variability. The learning rate of these STDP rules are modulated by our new
neuromodulator.

2.2 Synapse and Neuron Model

Each synapse has access to one presynaptic trace xi(t) (with i = 1, 2, . . . n) and
a postsynaptic trace yj(t) (with j = 1, 2, . . . m). The traces are governed by the
following equations:

xi(t) ← 1 if si(t) = 1,

yj(t) ← 1 if sj(t) = 1,

τx
dxi(t)

dt
= −xi(t) otherwise

τy
dyj(t)

dt
= −yj(t) otherwise
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where s(t) is an indicator function that returns 1 when a neuron emits a
spike at time t, and 0 otherwise.

The neuron model is the Leaky Integrate-and-Fire (LIF). The potential Vj(t)
of neuron j is internally governed by a continuous evolution equation (1). Neu-
rons of the encoding layer receive a continuous, time varying input Iext(t) similar
to the first retinal coding stage producing analog voltages rather than discrete
spikes (see 2.3). Conversely, neurons of the representation layer do not receive
analog voltages from the encoding layer, i.e. Iext(t) = 0, but are rather subject
to instantaneous changes equal to the sum of the received presynaptic activities
delayed by transmission delays dji and weighted by synaptic strengths wji (2).
Firing is triggered when the potential reaches a threshold Vθ (3), and a potential
reset is induced during a refractory period Trefrac:

τm
dV (t)

dt
= −V (t) + Iext(t) (1)

Vj(t) ← Vj(t) +
n∑

i=1

wjisi(t − dji) (2)

if V (t) ≥ Vθ, then
{

s(t) = 1 (else s(t) = 0)
V (u) = 0 ∀u ∈]t, t + Trefrac]

(3)

2.3 Encoding Input in Spatio-Temporal Spike Patterns

We use the same encoding procedure as presented in [4]. The input is a nor-
malized k-dimensional vector of real numbers, with each dimension distributed
across a population of l = 10 neurons. Each neuron within the population emits
a single spike at a specific time, encoding the input value as a temporal code
through a specific spatio-temporal pattern. Each neuron in the population has
an associated gaussian receptive field in a circular space in range [0, 1], with a
center (or preferential value) μi and width σ. The centers are uniformly dis-
tributed between 0.05 and 0.95, while the width is constant at σ = 0.6 so that
each gaussian covers the entire input interval. These preferential values used for
the encoding process are then used again for decoding as illustrated in Fig. 2.

2.4 From VQ to SOM: Adding a New Spatial Neuromodulator

To address the limitation of [4], which lacks a mechanism for the self-organized
generation of topographically ordered maps, we introduce a novel spatial neuro-
modulator that shapes the learning dynamics in the representation layer.

Each neuron j in the representation layer modulates its own learning rate in
an event-driven and local manner based on its activity and the recent activity
of the other neurons in the network. When neuron j fires a spike (sj(t) = 1), it
determines the Spiking Best Matching Unit (SBMU) as the index of the first neu-
ron that fired for an input. To identify the SBMU, neuron j uses the postsynaptic
traces yh(t) of all m neurons in the representation layer, where h = 1, 2, ...,m.
The SBMU is found by identifying the postsynaptic trace with the lowest value



424 A. Fois and B. Girau

Fig. 2. Decoding process. (A) The relative spike timing relationships of the input
spike patterns are stored in the delays. (B) Each presynaptic neuron has an associated
preferential value µ. (C) The decoding process involves using a circular mean of the
encoding neuron’s preferential values, weighted by the delay values, to map the stored
temporal representation back to the input space. In this example the value 0.41 was
decoded from the delays

within a time window of 3τy after a postsynaptic spike, indicated by yh(t) > ε,
with a threshold ε = 0.05 ≈ e−3τy/τy .

sbmu = arg min
h=1,...,m

yh(t) if yh(t) > ε (4)

Next, the value of the spatial neuromodulator Θj of neuron j is determined
by a Gaussian kernel that depends on the normalized Euclidean distance between
the SBMU and neuron j in the map. The closer (farther) the neurons are in the
map, the higher (lower) the value of the modulation. This allows two spatially
close neurons to gradually learn to share similar representations in the input
space. The spatial modulation can be interpreted as a static factor imposing a
topological constraint on the map.

Θj = exp
(

−d(j, sbmu)2

r2

)
(5)

where hyperparameter r corresponds to the radius of the neighborhood cen-
tered on the position of the SBMU. A large (small) r implies a large (small)
neighborhood radius.

2.5 Modulation of Delay Learning

After having introduced our neuromodulator, we now integrate it into the STDP
rules of [4], starting with the STDP rule that targets the delays. This rule is
based on two modules consisting of a vector quantization module and a regular-
ization module. The vector quantization module is responsible for learning the
underlying structure of relative spike timings within the delays, with the goal of
minimizing reconstruction loss. The regularization module, on the other hand,
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aims to promote small delay values in order to prevent the emergence of unnec-
essary large delays. By integrating the neuromodulator into the STDP rule that
adapts the delays, we obtain the following rule with two adaptation cases:

Δdji =

⎧
⎨

⎩
Θj · α+

(
−τx ln

(
xi(t)

)− (dji + λdji)
)
, if sj(t) = 1 and xi(t) > ε

−Θj · α−
(
−τy ln

(
yj(t)

))
, if si(t − dji) = 1 and yj(t) > ε

(6)

As the neuromodulator Θj falls in range ]0, 1], the learning rates in our STDP
rule that adapts delays now vary between ]0, α+] and [−α−, 0[, respectively.

Note that the second adaptation case for a postsynaptic neuron j is triggered
if this neuron j has previously emitted a postsynaptic spike in a time window
set by yj(t) > ε relative to the current time t. This implies that the use of
the neuromodulator Θj is valid because Θj has previously been updated in a
temporal proximity, at the time of the postsynaptic spike emission by neuron j.

2.6 Modulation of Weights Learning

The other STDP rule assigns relevance weights to the features by estimating
the temporal variance of the features. A high (low) temporal variance induces a
small (large) relevance weight. We apply the neuromodulator to all adaptative
mechanisms in the network. Therefore, by integrating the neuromodulator into
the STDP rule adapting the synaptic weights, we obtain the following rule with
two adaptation cases:

Δwji =
{

Θj · β+
(
exp

(− vji

σ2

) − wji

)
, if sj(t) = 1 and xi(t) > ε and eji ≥ 0

−Θj · β−(
1 − yj(t)

)
, if si(t − dji) = 1 and yj(t) > ε

(7)

Again, since the neuromodulator Θj fall in range ]0, 1], the learning rates in
our STDP rule that adapts the weights now vary between ]0, β+] and [−β−, 0[,
respectively. The local temporal error eji = −τx ln

(
xi(t)

) − dji is already calcu-
lated and available in Eq. 6.

The use of the neuromodulator in the second adaptation case is valid for the
same reasons as in the STDP rule that targets the delays.

When the constraints of the first adaptation case are satisfied, not only is
the first adaptation case triggered, but also the online event-based estimation
of the temporal variance vji. The adaptation rate of the exponentially moving
variance thus also depends on the neuromodulator. A low value of Θj implies
a low update of the variance vji, allowing for relative stability. For example, a
neuron spatially distant from the SBMU receives a low neuromodulation value,
so that it remains locked onto the region of the input space that it clusters.

vji = (1 − Θj · α+ · γ) · (vji + Θj · α+ · γe2ji) (8)
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3 Experiments and Results

In this section, we carry out a set of experiments to assess the expected features
of a comprehensive SOM model, which include the ability to generate ordered
maps and to perform vector quantization (VQ). In our experiments, we employed
a toric topology for the map to suppress border effects.

Hyperparameters are fixed for all experiments except for the firing threshold
Vθ of the neurons in the representation layer. We use a simple and effective
method to automatically determine its value, as explained below.

We first evaluate the topographic ordering capability of our model using a
synthetic dataset by measuring the preservation of distances between data points
as distances between the positions of the neurons representing them. Next, we
evaluate the model’s ability to perform VQ and to preserve local neighborhood
relationships between neurons in their code vectors, which promotes sharing of
similar representations among neighboring neurons.

3.1 Parameters of the SNN

We propose a generic parameterization of the SO-TCRL model that can be
applied to any input vector dimension k. The only dimension-dependent param-
eter is the neuron spiking threshold Vθ in the representation layer. Since each
input dimension is encoded by a population of l = 10 neurons, the total number
of emitted spikes is k∗l. To ensure that a neuron fires in the representation layer,
its spiking threshold Vθ must be set to c ∗ k ∗ l, where c ∈ [0, 1] is a coefficient
to be determined. We assume for convenience a linear relationship between k ∗ l
and Vθ. Using an optimization method, we found as optimal value c = 0.44.

The parameters we use for the SO-TCRL model are provided in Table 1.

3.2 Metrics

We use three metrics to assess the quality of the generated map.

Root Mean Squared Error. We use the Root Mean Squared (RMS) error to
quantify the quality of the learned representations. It quantifies the difference
between an input vector ap and the associated code vector decoded from the
synaptic delays of the SBMU âp:

RMS =
1
P

P∑

p=1

√√√√1
k

k∑

i=1

(ai,p − âi,p)2 (9)

Here, k is the input dimension and P is the number of input patterns, and
ai,p is the ith coordinate of ap.
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Table 1. Parameters of SO-TCRL used in all simulations

Neuronal parameters for ...

... the encoding layer ... the representation layer

Vθ τm Trefrac Vθ τm Trefrac

0.5 10.0 ms 6 ms 0.44 kl 5.3 ms 6ms

retemaraprotaludomorueNsretemarapcitpanyS

τx τy dmin dmax r

01.0sm01sm0sm3sm4

Parameters of the STDP rules

λ α+ α− β+ β− γ σ ε

0.58 0.07 0.042 0.18 0.036 0.24 10.0 ms 0.05

MDN. Like Kohonen’s SOM, the SO-TCRL model aims to maintain local neigh-
borhood relations between neurons in their code vectors, creating a kind of local
continuity in the map. We use the Mean Distance to Neurons (MDN) to quantify
this property, which aggregates distances between a neuron’s code vector and
its neighboring neurons’ code vectors. In our case each neuron has four neigh-
bors. This measure is intrinsic to the map, meaning that it does not require an
external reference. The MDN is formulated as follows:

MDN =
1
m

m∑

j=1

m∑

k=1

{
||ck − cj ||2, if dist(j, k) = 1
0, otherwise

(10)

This formulation is based on code vectors cj decoded from each neuron j
with a weighted circular mean (see Fig 2).

EMDS. The MDN is a local and intrinsic measure based on the code vectors of
neurons, whereas the EMDS (expectation of multi-dimensional scaling measure)
is a global and extrinsic measure based on the spatial coordinates of neurons on
the map. While the MDN evaluates the preservation of neighborhood relations in
the code vectors, the EMDS evaluates the ability to preserve distances between
input data points on the map. The EMDS metric is based on a calculation of
dissimilarity between the distance in input space for two data points and the
spatial distance of the two neurons representing them. A value of 0 indicates
perfect topological preservation. Distances in input space and on the map are
normalized for comparison. The EMDS metric is given by:

EMDS =
2

P (P − 1)

P∑

p=1

∑

j<p

(
F (ap,aj) − G

(
M(ap),M(aj)

))2

(11)

where P is the number of input vectors. F and G are similarity measures
in input space and map space, respectively. F (ap,aj) measures the similarity
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between a pair of input vectors ap and aj using a normalized Euclidean dis-
tance. These two input vectors ap and aj are represented by two neurons on the
map, whose spatial positions are given by M(ap) and M(aj). G

(
M(ap),M(aj)

)

measures the similarity between these two positions M(ap) and M(aj) using a
normalized Euclidean distance.

3.3 Numerical Tests

Fig. 3. Results for 2-D input. (a) Generation of an ordered map with a toroidal topology
after 0, 5000, 40000 training iterations. The code vectors of the neurons are decoded
and projected onto the 2-D input space and displayed as red dots. The connections of
the neurons with their four neighboring neurons are depicted using blue dotted lines.
(b)-(c) Model performance through training iterations in terms of (b) MDN and (c)
EMDS (Color figure online)

2-D Input. First, we evaluate the ability of the model to generate topograph-
ically ordered maps using EMDS and MDN metrics. We perform a controlled
experiment, based on the one described in [13], which aims to reach a theoreti-
cal global minimum of 0 for the EMDS value. We use a 10× 10 two-dimensional
map with uniformly spaced 10*10 points in the [0, 1]2 interval as the dataset.
This setup allows us to project any distance between two input points onto the
spatial distance between two neurons.

We train the SO-TCRL with 120,000 randomly selected data points. The
delays between the encoding layer and the representation layer are randomly
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initialized within the range of [0, 0.4] ms using a normal distribution centered on
0.2 ms with a standard deviation of 0.1 ms. The synaptic weights are initialized
to their maximum values of 1. We evaluate the map quality obtained from 100
independent runs.

The EMDS and MDN measures consistently decrease with the number of
training iterations. The EMDS (Fig. 3c) decreases until reaching a plateau after
80,000 iterations around a value of 0.005, indicating that the spatial distance
between the two SBMUs selected for two data points converges to the distance
between those two points in the input space. This shows that the map learns
in a self-organized manner to preserve the distances between data points in
the spatial distances of neurons. The mean EMDS after the training phase is
0.00521 ± 0.00663, equivalent to 0.00554 ± 0.00483 as reported by [13] (Table 2).

Table 2. Comparison of mean model performances.

Method RMS Recon. Error EMDS

Fois et al. [4] 0.06 –

Rumbell et al. [13] – 0.00554

SO-TCRL 0.05 0.00521

At 80,000 iterations, the MDN (Fig. 3b) reaches a plateau at 0.11, revealing
that neighboring neurons possess comparable representations. This metric can
be related to the global input data distribution, where uniform spacing of 0.10
in each dimension specifies a theoretical ideal MDN value of 0.10 ± 0.00. The
achieved MDN value is 0.11 ± 0.01, close to the ideal 0.10 ± 0.00.

Figure 3a shows the successful unfolding of maps during learning iterations.
The neurons’ code vectors learned not only the uniform data distribution but
also shared similar representations when located close to each other in a cir-
cular space. The map topology is toric, and encoding neurons have receptive
fields located in a circular space, where extremal values are equivalent. The lin-
ear representation of Fig. 3a shows that code vectors close to the extremes of
one dimension of the input space are also close in a circular space, resulting in
connections between opposite sides of the input space.

Natural Image Dataset. We now evaluate the SNN’s ability to perform VQ
and generate local continuity using non-uniform and higher-dimensional dataset.

For that purpose we use the natural image dataset used in [4]. Input nor-
malization is restricted to [0.05, 0.95] due to the projection of linear input data
onto a circular space where extremal values 0 and 1 would become equivalent.
Patches of 4× 4 pixels extracted from 512× 512 natural images are used as input
vectors, with 60,000 patches provided during the training phase.

Both the RMS reconstruction error and MDN metric decrease as the SNN
learns to compress input data distribution and reduce the distance between code
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Fig. 4. Results for the natural image dataset with m = 256 neurons in the representa-
tion layer. (a) Code vectors at random initialization and after the training phase. The
blue-red gradient represent minimum-maximum values. (b)–(c) Model performance
through training iterations in terms of (b) MDN (ideal minimum is 0.10), and (c) RMS
reconstruction error. (d) Natural images are presented as input to the network and
reconstructed by the decoded code vectors. (Color figure online)

vectors of neighboring neurons. Fig 4c and Fig 4b show the decrease in RMS
reconstruction error and MDN respectively.

The code vectors in the representation layer have become selective to various
visual orientations, see Fig. 4a. These orientations are arranged in an orderly
manner on the map, with spatially close neurons sharing similar orientations.

Finally the reconstruction of natural images from the code vectors of the
representation layer produces images of high quality, comparable to the original
natural images, as shown in Fig. 4d. Experiments for other databases or network
sizes have been carried out and show similar results.

4 Discussion

This paper presents SO-TCRL, a self-organizing model for representation learn-
ing based on temporally coded data handled by spiking neurons. To be best of
our knowledge, SO-TCRL is the first complete model of spiking self-organizing
map able to combine the two key functions of a self-organizing map, vector quan-
tization, and the creation of topographically organized maps on generic datasets.
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Furthermore, unlike in [13], our model does not need any manual adjustment of
the maximum synaptic weight magnitude based on input data dimension.

Our main contribution is a novel spatial neuromodulator that enhances the
VQ capacity of [4] by incorporating the ability to generate ordered maps. Unlike
related works that use a lateral excitation-inhibition profile to influence spike
timing, our neuromodulator regulates the learning rates of neurons to create
orderly maps.

The SO-TCRL model was subjected to an experimental evaluation to test its
key functions, and we found that it performed comparably to the state-of-the-art
works by [4,13], combining the benefits of both models : a low reconstruction
error and a low mapping error. As a future research direction, we now plan to
investigate hierarchical architectures based on the SO-TCRL model for clustering
hierarchical data.
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Abstract. Perception is not a passive process but the result of an inter-
action between an organism and the environment. This is especially
clear in haptic perception that depends entirely on tactile exploration
of an object. We investigate this idea in a system-level brain model
of somatosensory and motor cortex and show how it can use signals
from a humanoid robot to categorize different object. The model sug-
gests a number of critical properties that the sensorimotor system must
have to support this form of enactive perception. Furthermore, we show
that motor feedback during controlled movements is sufficient for haptic
object categorization.

Keywords: Enactive perception · Affordances · Haptic perception ·
Object categorization · Humanoid robot

1 Introduction

Traditional theories of perception emphasize the passive bottom-up reception of
sensory information from the environment. According to these theories, percep-
tion is a matter of processing sensory inputs and constructing a representation
of the world that matches those inputs. In contrast, enactive perception is based
on the idea that perception arises from the dynamic interaction between the
perceiver and their environment. Rather than simply processing sensory inputs,
the perceiver actively engages with their environment, exploring and manipu-
lating it in ways that shape their perception. This interaction is characterized
by a continuous perception-action loop, in which the perceiver’s movements and
actions shape and influence their perception, which in turn guides their subse-
quent actions.

The theory emphasizes the active and embodied nature of perception and
how our perception of the shape and texture of an object is influenced by how
our body interacts with it during manipulation. We actively explore the surface
of an object to learn how rough or smooth it is. Similarly, we weigh the objects
with our hand to estimate its weight, and we test how hard an object is by
applying force to its surface [3,15,16,22].
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Enactive perception is intimately connected to the idea of affordances. Gibson
[8] described affordances as the link between perception and action. He argued
that we as active agents perceive action possibilities (affordances) of objects
directly through vision [24]. According to Gibson, the design of a chair affords the
action to sit and the handle of a coffee cup affords the action to hold. Although
Gibson’s idea of the term affordance usually applies to the geometrical shape of
an object, it is reasonable to use the concept also to describe perceived action
possibilities based on other object properties than shape. After all, objects do
not only come in various geometrical forms, they also come in various types of
materials that differ in physical properties. Each of these properties may require
a specific type of handling. For instance, a fluffy cube with rounded edges made of
synthetic fibres has soft physical properties and would afford the action to squash,
whereas a similarly shaped wooden cube with hard sharp edges would require
a greater force to be deformed. Despite their similarities in geometrical shape,
the perceived action possibilities are different due to their different material
properties. The shape and material of an object affords different actions, but
these different actions also define the physical properties of the object. Softness
affords squashing, while the act of squashing is what makes us perceive the object
as soft. This has important consequences for models of perceptual processing.

If perception is not separate from action, but a results of the ongoing inter-
action of objects in the world, it may be necessary to reevaluate many models
of information processing and coding in the brain. If perception and action are
two sides of the same coin, it does not make sense to look for separate regions
for sensation or motor control. Instead, we would expect brain regions involved
in tactile manipulation to reflect both sensory and motor aspects of the task.

In the brain, the coding of haptic object properties depends on an interaction
between a number of regions (Fig. 1). The main areas are the primary and pre-
motor cortices as well as the primary and secondary somatosensory cortices (S1,
S2), together with Brodmann’s areas 5 and 7. Although traditionally divided
into memory and motor regions, there is now evidence that cortical area S2, as
well as area 5 and 7 code for both sensory and motor information.

The primary motor cortex (M1) is located in the frontal lobe. It is responsi-
ble for the initiation and control of voluntary movements. Neurons in M1 send
signals down the spinal cord to activate the appropriate muscles and produce
movements. Different regions of M1 are responsible for controlling different parts
of the body, with the motor representation of the body arranged in an ordered
topographic manner. Premotor cortex is located anterior to M1 and plays an
important role in the control of complex movements such as reaching, grasp-
ing, and manipulating objects. While M1 is primarily responsible for generating
the basic motor commands that result in muscle contraction, premotor cortex
is involved in more complex aspects of motor control, such as sequencing of
movements, coordination of multiple muscles, and adaptation of movements to
changing conditions. Damage to premotor cortex can result in impairments in
motor planning and sequencing.
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Motor Cortex Somatosensory Cortex

OBJECT 
CATEGORY

S2M1/M2 S1

Thalamus

DC

A1 A2

Fig. 1. Regions in the brain involved in haptic perception included in the model. Motor
cortex is assumed to contain cells that produce sequences of activations (left) of different
motor patterns (right). Secondary somatosensory cortex uses sequences of comparisons
between efference copies of motor commands and afferent signals from muscle spindles
to recognize objects. A1: alternative model 1. A2: Alternative model 2. See Sect. 2.3.
Dotted lines represent connections that are not included in the current simulations.

The primary somatosensory cortex (S1) is located in the parietal lobe and it
is responsible for processing sensory information from the body. It receives infor-
mation about touch, temperature, pressure, and pain sensations. The secondary
somatosensory cortex (S2), which is adjacent to the primary somatosensory cor-
tex, is a higher-order processing region that receives and integrates sensory and
motor information to create more complex coding of haptic stimuli. Its functions
include object recognition by touch, and the processing more complex aspects
of somatosensory information, such as the size, shape, texture, and orientation
of objects.

Area 5 is also located in the parietal lobe, adjacent to area S2, and together
these areas are involved in the processing and integration of somatosensory infor-
mation from the hand and other body parts. While area S2 is thought to be
involved in the perception of the body in space and the recognition of objects
based on their physical properties, area 5 is more specifically involved in the
planning and execution of fine motor movements, such as grasping and manipu-
lation. This area is also involved in coding the position of the hand. Specifically,
area 5 contains neurons that are sensitive to the position and movement of the
hand, as well as to the location of tactile stimuli on the hand. These neurons
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form a body-centered reference frame, which allows for the accurate coding of
hand position and movement relative to the body.

Area 7 (which is posterior to area 5 and adjacent to the temporal and occipital
lobes is involved in a range of cognitive functions, including sensory integration,
attention, and spatial perception. It is divided into two subregions: areas 7a
and 7b. Area 7a is primarily involved in the integration of somatosensory and
visual information to contribute to spatial perception and movement planning
and receives inputs from S1, S2, as well as visual regions of the brain to cre-
ate a unified perception of the body in space. Area 7b is important for spatial
working memory together with Area 7a, and is also associated with attention. It
is involved in the selection and manipulation of visual and spatial information,
and plays a role in the perception of objects and scenes. Area 7b also integrates
visual, and somatosensory information. Lesions in area 7a have been associated
with deficits in spatial working memory, while lesions in area 7b have been asso-
ciated with impairments in visual perception and attention.

The above shows that the brain systems involved in object manipulation are
only one step away from systems thought to be involved in higher level cognitive
processes. This suggests that to understand how cognition is implemented in the
brain, we need to start with the parts that control the physical interaction with
the environment.

Already from a young age we learn about the physical properties of the world
and incorporate that knowledge into our actions, for example, when picking up a
soft toy or a handling hard building block. These motor actions appear effortless,
but are nevertheless remarkable, considering the great diversity of physical prop-
erties that need to be recognized in order to handle them successfully. Moreover,
objects are made from all kinds of materials, all of which have their own specific
characteristics. Perceived hardness is based on the compliance of the material
from which the object is made, and can be perceived using the ratio of the force
applied to the object and its deformation (i.e. indentation depth) [16] [4]. For
a study on perceived compliance see e.g. [29]. Hardness and shape differs from
visual properties in that they require an active manipulation of the object to be
perceivable.

Several studies have investigated how robots can learn affordances by inter-
acting with objects [6,9,20], how a robot could learn about tools use [17] and the
dynamic properties of objects [27]. Methododologies includes Bayesian networks
[20], convolutional networks [21], and metric learning [10].

Although the shape of an object is usually the primary focus in studies of
affordances, a number of techniques have been developed to allow humanoid
robots to sense the hardness of manipulated objects. Matsuoka [18] used com-
petitive neural networks to learn the hardness of objects from measurements
made using force-sensitive resistors in combination with a potentiometer-based
angle sensor in each finger. A similar idea was used to recognize both hard-
ness and texture using self-organizing maps [13,14]. Regoli at al. [23] also used
this approach for the iCub that repeatedly squeezed an object to determine its
hardness. This can be seen as exploratory movements that serve to obtain infor-
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mation about the object [11]. An alternative method is to use optical techniques
to record the deformation of the finger as it touches an object [28]. Common to
all these methods is that they look at the sensory signal over time as an object is
touched. The change to the sensory signal over time then reflects the hardness of
the object. The weight of an object is in principle easier to determine. It can be
measured by using piezoelectric sensors directly [5] or by using deflection sensors
in the limbs [26].

Below, we present a system-level brain model of haptic perception modelled
after the relevant regions of the mammalian brain. System-level models are char-
acterised by a number of interacting components that corresponds to different
brain regions. The focus is on the component needed for a particular task and
the coding and information processing in each component rather than on the
physiological details of the processing in each region. The model was imple-
mented in the Ikaros system [1] and used to categorize objects manipulated by
the humanoid robot Epi [12]. The model forms one component of the BAM
model that aims at eventually containing integrated models for most parts of
the brain.

The central idea that we investigate is that the difference between the motor
command and the feedback from the muscle spindles varies over time as a func-
tion of the shape of a grasped object. We model this in the robotic set-up in
two ways: first using a ‘load’ signal from the robot servos that corresponds to a
rough estimate of the effort exercised by the servo at each time; and second by
calculating the difference between the position command sent to the servos and
their current position. The first alternative would require that the error signals
calculated in the stretch reflex system of the spinal cortex is projected to cortex
to be further processed there. The second alternative corresponds to an assump-
tion that the cortex calculates the difference between the efferent motor signals
and the signals from the muscle spindles [19,25]. We then test if these signals
contain enough information to categorize object using the proposed model.

2 Methods

2.1 The Humanoid Robot Epi

For the experiments, we used the humanoid robot Epi that has been developed
at Lund University Cognitive Science [12] (Fig. 2). It has two arms with five
degrees of freedom each, three in the shoulder, one in the elbow, and one in
the wrist. Each joint is controlled by a Dynamixal MX-106 servo that allows
position control and produces a large number of feedback signals that can be
read through a serial interface. These include the current position, the current
used, temperature etc.

Epi has two hands with a single servo that controls all fingers except for the
stationary thumb (Fig. 2 right). Each of the movable digits are controlled by an
single tendon. The tendons and joints are made from 3D-printed polyurethane
plastic printed as a single component without any seams. The polyurethane
design can withstand very strong forces and it is not possible to manually break
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Fig. 2. Left. The robot Epi picking up an object. Right. The design of the robot
hand used in the experiments. The four movable fingers are controlled by a single servo
through a gear rack that drags rubber tendon using a whippletree mechanism within
the palm of the hand to distribute the force from the servo to the different fingers

the tendons by dragging or tearing. The joints continue into the tendon that
then seamlessly connect to tendon of the next finger [12]. The outer parts of the
digits are made from 3D-printed PLA plastic. The force onto each of the tendons
is controlled by a whippletree mechanism [7] within the palm of the hand that
distributes the forces between the fingers and makes the fingers automatically
grasp around objects.

The fingers have no dedicated touch sensors. Instead, the robot uses feedback
from the servo controller to determine if the fingers are touching during a grasp.

2.2 Objects

We used 25 objects to test the ability of the model to learn to recognize objects,
based on the sensory information from the robot. The object have different
shapes, hardness and textures. Some of the objects are very similar (A and B,
G and H) while most other object differ in some dimension. The object were
selected to be easy to pick up by the robot’s hand and to have different visual
appearances (although that aspect is not used in this study) (Fig. 3).

2.3 Model

Figure 1 shows an overview of the model. The main components are the motor
cortex, somatosensory cortex and the dorsal column of the spinal cord (DC).

The motor cortex consists of two regions with different properties (or alter-
natively two types of neurons). The right part of the motor cortex in the figure is
responsible for controlling movements by sending motor commands to the mus-
cles to move the arm and hand in a particular way. These codes are assumed to
be learned, but in the instantiation of the model used here, a fixed set of motor
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Fig. 3. The 25 objects used in the study

patterns are used. The other part of motor cortex (to the left in the figure) is
used to sequence movements by activating different patterns over time. When
the robot is about to pick up an object, a sequence is activated that will make
the robot hand reach for the object, grasp it, and lift it. Like the motor patterns,
we assume that these sequences are learned, but since we are mainly interested in
object categorization here, we do not investigate how different motor sequences
are learned and selected.

S2 is assumed to receive a time series where each signal corresponds to the dif-
ference between the motor command sent by motor cortex and its corresponding
proprioceptive input. A central idea of the model is that this feedback will reflect
properties of the manipulated object. When no object is present, the feedback
will closely follow the movement of the hand, but during haptic exploration, the
object will hinder the fingers of the hand which will result in a larger difference
between the motor command and the proprioceptive feedback. The profile of
this signal over time codes the interaction between the hand and the object in
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an object-specific way. Our central hypothesis is that this time series will code
the identity of the object in a way that could be categorized by S2. To this end,
we model S2 as a self-organizing map that learns the different patterns obtained
from motor cortex. A 100× 100 grid of nodes was used for the map.

If Oi is an output from motor cortex and P is the corresponding input from
the muscle spindles,

Δi(t) = Oi − Pi. (1)

The input to S2 is given by the time series,

IS2
i (t) = 〈Δi(t),Δi(t − 1), ...,Δi(t − n)〉 . (2)

For the simulations, n=425 and each time step is 40 ms.
To train the self-organizing map that corresponds to S2 to associate each

haptic pattern with a specific category, we extended the input vector with a
one-hot representation of each object category. This extra input has negligible
impact on learning, but allows the category of the best matching unit to be read
out during object recognition. The maximum element of this part of the weight
vector for the best matching using was considered the detected category. Note
that the one-hot category input was not used during testing of the model. While
testing, each node of the map is only activated by the other 425 inputs. However,
since the category input was present during training, the weight of the winning
node will reflect the detected category in this part of its weight vector.

We implemented two versions of the model. In alternative 1, we used the
error signals from the servos directly as input to the model of S2. This signal
corresponds to error signals from the reflex loops within the dorsal column of
the spinal cord. This mechanism is unlikely to be used for object categorization
in the real brain, but we tested it as it could be a useful possibility for a robot.

The second alternative was to assume that the difference was instead calcu-
lated in cortex between an efference copy of the motor command and the input
from the muscle spindles. This is a much more biologically likely mechanism.

3 Results

3.1 Signal Analysis

We analyzed the contents of the signals according to Eqs. 2 for our two alterna-
tive hypotheses using principal component analysis on the time series. Figure 4
(top left) shows the explained variance for each of the principal components for
alternative 1. Figure 4 (top right) shows the location of the measured objects
in the space spanned by the first two principal component of the time series
recorded during the squeezing operation (Eq. 2). The first principal component
roughly corresponds to the hardness of the objects but the second principal com-
ponent also appears to differ for the different objects. Subsequent measurement
of the same objects are nicely clustered together indicating both that the robot
hand shows good repeatability and that different objects can be distinguished
based on the load feedback.
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Fig. 4. The variance ratio for the first 25 principal components of the times series
during the squeeze operation. See text for explanation

Figure 4 (bottom) shows the same data for the cortical alternative 2. The
plots show that both are viable alternatives for haptic object recognition but
alternative 1 appears to contain more information than alternative 2, in that the
variance is explained by a larger number of principal components. The objects
also appear to be more spread out for alternative 1. The separation of the objects
is not perfect in either case, but that would not be expected given that some of
the objects are rather similar. For example, the two cubes differ only in visual
appearance and not in weight, shape or hardness.

3.2 Categorization Performance

The performance of the model was validated using leave-one-out cross-validation
of the two alternative models. The cross-validation measured the categorization
accuracy for alternative 1 and 2. For the first alternative, the categorization
accuracy was 88% while for the second method, the accuracy was 81%. This is
consistent with the signal analysis that shows a better spread of the objects for
alternative 1.
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4 Discussion

We have presented a system-level model of haptic perception in the brain and
tested it with a humanoid robot grasping different objects. Using the model, we
have shown that both shape and weight can be estimated without any specific
sensors by using feedback from the robot servos involved in the manipulation
of an object. This is similar to how proprioceptive information could be used
in a biological organism. We put forward two hypotheses about where in the
brain the necessary discrepancy between motor command and muscle spindle
feedback could be calculated, and showed that in principle both could be true. In
our experiments, assuming a cortical mechanism gave slightly worse performance
compared to using brain stem feedback. We do not claim that this simulation has
any bearing on deciding what is actually going on in the brain, but it does show
how two mechanisms that are present in the brain could be used to categorize
object based on touch.

There do not appear to be any evidence that the alpha motor neurons project
back to cortex, which would be needed for our first mechanism. However, it is
still a valid method to use in the robot if biological realism is not a factor. On
the other hand, it is well known that the muscle spindles project to the motor
cortex where the signals could be compared to an efference copy of the motor
command [25]. This is likely to be done in motor cortex before the result is sent to
somatosensory cortex and integrated with different forms of sensory information.

It is interesting to note that the robot does not directly measure the shape
of the different objects; instead it categorises the temporal feedback from the
servos as it grasps and lifts each object. The coding of each object depends
on the interaction between the body of the robot and the physical properties
of the object, including its shape and hardness. Even though we only measure
feedback from a single servo in this experiment, the time series of the signal
contains information about both shape and hardness. As the robot hand closes
around an object, the fingers engage with different parts of the object at different
times depending on its shape. The variations in the feedback signal over time is
thus an indication of the shape of the object.

In the future we want to further explore the two different alternatives pro-
posed here to investigate if the cortical alternative can be enhanced for better
performance, since this is the most likely mechanism in the real brain. We also
want to include other haptic modalities in addition to proprioception. In the
next iteration, we will include motor exploration and learning in the part of
the model corresponding to the motor cortex. Another development will be to
include visual categorization of the objects, and investigate how the robot can
associate between the visual and haptic modality to select the appropriate motor
sequence for the visually localized object. Another goal is to develop models of
the somatosensory regions responsible for working memory, and spatial attention
and to include the components presented here in our BAM-model to study the
interplay between spatial attention, working memory and decision making [2].

In summary, we have shown how an enactive approach to perception fits
well with the way the brain interprets signals from the hand during the haptic
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exploration of an object. We believe that to model cognitive processing in the
brain, it is important to start with an accurate view of how sensory information
is processed: namely as a result of the interaction between the organism and
object in the environment. Our results show that this view is viable both for
models of the brain, and for the design of robots.
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Abstract. Multimodal integration is a key component of allowing
robots to perceive the world. Multimodality comes with multiple chal-
lenges that have to be considered, such as how to integrate and fuse the
data. In this paper, we compare different possibilities of fusing visual,
tactile and proprioceptive data. The data is directly recorded on the
NICOL robot in an experimental setup in which the robot has to classify
containers and their content. Due to the different nature of the contain-
ers, the use of the modalities can wildly differ between the classes. We
demonstrate the superiority of multimodal solutions in this use case and
evaluate three fusion strategies that integrate the data at different time
steps. We find that the accuracy of the best fusion strategy is 15% higher
than the best strategy using only one singular sense.

Keywords: Multimodality · Robotics · Machine Learning

1 Introduction

We constantly receive information and stimuli from all of our senses. Even in
simple actions that we perform every day, such as drinking water, we will taste
it, touch the bottle or glass holding the water, feel our muscles that help us lift
it, and hear how we swallow it or how it moves around. We are processing all
of these modalities at once, integrating their features [23]. Robots, on the other
hand, are often much more limited in their perception, often only singular senses
are used for given tasks or a combination of just two or three senses. For these
tasks, a limited diversity of senses is often enough, however, if we want robots to
be able to freely interact with their environment, they need to be able to sense
more of their environment. To facilitate this, we use three sensory modalities of
our robot in this paper vision, tactile and proprioception and look at how to best
integrate them. We do this on a task where perception with a single modality
can be challenging.

In the theory of affordances [5], the perception of the world and specifically
the perception of objects is discussed. The focus lies on perceiving what the
c© The Author(s) 2023
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Fig. 1. The seven object classes, from left to right, we have: the empty bottle, the
filled bottle, the half filled bottle, the empty spam box, the filled spam box, the empty
tomato can and the filled tomato can.

world or objects can afford us. Depending on the observer, objects can have
affordances, such as a ball affording to lift or to grasp if the size of the ball
relative to the observer fits, if the ball is a bit bigger it might afford sitting on it
or leaning against it and so on. The idea is that when we perceive anything, we
mainly perceive what it affords us, as that is what we need to perceive in order
to interact with it. One group of objects that can be especially flexible when it
comes to their affordances are containers. The content of containers can differ
widely, changing what the container affords us. An empty container affords space
to store things safely, while a container filled with water could afford drinking,
washing or cooling. One of the challenges with creating robots that can learn
from the world, imitate others, and use that learned knowledge to interact with
the world, is that some objects are difficult to correctly perceive [3]. This is a
fundamental process on which further steps rely.

Robots tend to have multiple sensors and ways in which they can receive
information about the world, so we need to look at how we can use that multi-
modal data and how to combine it. We want to explore which senses are useful
and how to best integrate them to get a more complete concept of the world. In
this paper, we use a multimodal system to allow a robot to detect the contents
of containers, thereby gaining a deeper understanding of the affordances of con-
tainers for the robot. This understanding allows the robot to interact with the
world and learn from it, the robot can be helped by having a model of the world.
Part of such a model should be the effects of actions. If a robot can understand
the effect of actions, it can also predict what will happen after actions are per-
formed. This can allow the robot to interact with others as it can understand
the purpose or goal of actions. It can also allow it to learn from others [11,13].
As it can find actions that lead to the same effects as the actions it observes
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Fig. 2. An overview of the three methods of multimodal fusion we use.

from others. The ability to detect the content of containers can also improve
human-robot cooperation [20].

Using multiple strategies for multimodal object recognition has been tried
before [1,21], however, to our knowledge it has never been used for the detection
of content inside of containers, where the modalities encounter a higher number
of challenges. The containers we use vary more than in other research studies.
Where most studies only concern themselves with one type of container such as
a glass and different contents [6], we experimented with three containers that
differ in size, material and form.

The main contributions of this paper are summarised as follows:
By using a multimodal approach that utilises vision, touch and propriocep-

tion to detect the contents of containers, we improve the abilities of robots to
interact with their environment and other actors.

We collected multimodal data with a real-world humanoid robot of 3 objects
each with different fill levels for a total of 7 classes. Examples of the seven classes
can be seen in Fig. 1.

2 Related Work

2.1 Container Content Detection

Detecting the content of containers can be done in many ways, often depending
on the kind of container at hand. We can find some separation between them
by looking at which modalities are used. Using vision to detect the content of
containers is a common approach, where it is possible to look into or through
the container to see the content [4,14,17]. The vision can consist of just RGB
cameras or be improved further with specialised cameras such as depth cameras
or CCD cameras. The perceived images can be processed with many kinds of
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mechanisms such as neural networks, edge detectors or probabilistic models.
There are some containers where vision is not quite as useful to detect the
content. This applies for instance to cans, where we cannot see anything inside
them, or even fruits such as avocados, whose colouring tells us little about their
ripeness. A modality that can be used for these containers is the tactile sense [2].
Just like humans would touch an avocado to learn about its ripeness, machine
learning mechanisms can use the data gathered by tactile sensors to classify what
is inside of an object. Similarly, proprioception can be used to detect the weight
of a container and extrapolate from that to information about the content [15].

To use the advantages of more than a single modality, multimodal approaches
integrate senses to improve detection. While there is often an imbalance in the
performance between senses, the combination of them does improve the overall
results [7,8,16].

2.2 Multimodal Integration

Ofcourse,usingmultiplemodalitiesmeans thatwehave to integrate themandbring
them together. Fusion strategies are often separated into three groups. The three
groups are known by multiple terms [10,18,19], but tend to be quite similar. The
first group of fusion strategies fuses the data gained from the sensors directly before
anysortofmappinghappensfromthedatatoadesiredresult.Thisfusioncanbedone
in many ways depending on the data and often challenges are encountered, such as
different sizes of the data or other ways in which the data is hard to match between
senses [10].Another group of fusion strategies only fuses the information at the very
end of the process. Here, the senses are handled individually until they finish map-
ping fromthe informationtotheresult, andtheresults fromthesensesare then fused
to formaconsensus.Someexemplarymethodsaremajorityvoting,weightedmajor-
ity voting, behaviour knowledge space, andNaive-Bayes classification [12].The last
group is somewhat inbetween, here thedata is first processed individuallybut fused
before coming to clear results.The laterwe integrate the information, the easier this
integration tends tobe,with lesser training requirements ordata requirements.The
downside of later fusions is that it is easier to miss cross-modal interaction, as some
information about how the modalities interact with each other can be lost [22].

3 Multimodal Data Set for Container Content
Classification

We propose a multimodal data set including three modalities, vision, propri-
oception and tactile perception. We recorded this data set with the NICOL
(Neuro-Inspired COLlaborator) [9]. We started recording data from the cameras
hosted in the head of NICOL, the effort of its joints and the data from the tactile
sensors of the fingers. We put the container onto the table in front of NICOL,
where the robot moves its arm to grasp the container. Then the robot lifts the
container briefly, moving it around before putting it back in place. We filtered
out the data where the robot was not holding the container for the tactile and
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Fig. 3. Exemplary images recorded with the fish eye lens camera from the NICOL
robot.

proprioception data later on. The modalities are recorded at different frequen-
cies depending on the robot’s capabilities. We used three kinds of containers, a
water bottle, and, from the YCB Object and Model set, the spam box as well
as the tomato can. For the water bottle, we had three possible fill levels, empty,
halfway filled and filled. The other objects could either be filled or empty. The
bottle and the tomato can be grasped using a side grasp, while we used a top
grasp for the spam box. In total, we recorded around 77000 samples from the
joints, 95000 samples from the tactile sensors and around 57000 images.

For the vision, the robot recorded images at a resolution of 1920× 1080 with
a fish eye camera lens. We record 30 images per second. Which is quite high
regarding the movement in the images. This means that the difference between
two sequential images can be insignificant, so we only used every tenth image.
The containers only take up a small part of the image. Some exemplary images
are shown in Fig. 3. We annotated the data by hand, drawing bounding boxes
around the containers and labelling them.

The tactile data was recorded from the tactile sensors that NICOL has in its
five fingers. We used the values representing the directional forces relative to the
fingertips, so the force that is measured along the x, the y and the z-axis. The
tactile data is recorded at 50 samples per second. The tactile data does depend
on the grip that the robot has on the container. Throughout the lifting attempts,
the way each finger is positioned can change and impact the values we receive
from the tactile sensors.

The proprioceptive data was gathered from the joints of NICOL. For each
joint, we receive three values describing the position of the joint, the velocity
of the joint and the effort of the joint. Similar to the tactile data, the propri-
oception data is impacted by the way in which the robot grasps the container.
The proprioception data is recorded at a frequency of 40 samples per second.
By proprioception data, we refer to the data we get from the joint motors of the
robot, in our case, we have 23 joints.
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Throughout the data collection, we used two ways of grasping the object,
for the spam box we used a top grasp while we used a side grasp for the other
objects.

4 Approach

We have used three ways of integrating our modalities, they are depicted in
Fig. 2. The first strategy is majority voting, where we have individual classifiers
for vision, proprioception and tactile data. We further have two voting mechanics
to combine the output of these classifiers. The first one is hard voting, where we
take the classification from each classifier as one value. So, this classification will
either be filled, unfilled or half filled. Each classifier is counted as one voter. The
option that was voted for by the majority of the classifiers is chosen. If there is
no clear majority and there are multiple classifications with the highest number
of votes, we declare the vote as undecided and count it as a false classification.
Secondly, we have soft majority voting. Instead of taking a clear classification
from each classifier, we use the whole output from each classifier. This means
that each classifier provides us with an array that has seven values, one value for
each possible classification. We add the arrays together, forming a new array also
with three values. To form a final classification, we simply look at the highest of
the three values and the class it correlates to.

Apart from the majority voting, we also used a neural network to fuse the
modalities. We used the output from our classifiers as the input for another
classifier, fusing the modalities and providing a classification. Finally, we fused
the data at the beginning and created a NN that uses the fused data to directly
classify the fill level. So, we have three strategies as to when the fusion happens
in relation to the mapping from the data to the class.

To allow any of this, we first have to synchronise the data. The modalities are
recorded in different frequencies, and we want the samples to match for each of
the modalities. To avoid having a sample multiple times, we took the vision data
as our lead, as it had the lowest frequency. We then synchronised the data from
all modalities so that the samples would match each other across the modalities.
Like this, we compose a data set that has data from all modalities. This is the
data set that we use in our experiments. This way, the individual classifiers are
also looking at the same time frame.

We preprocessed the visual data, inverted the colours, and cut down the
image so that the container is a larger part of the image and in the centre of the
image. We used the images with a resolution of 256× 256 for our CNN, which
worked as our visual classifier. The inversion of colour was done, so that parts
of the images that are important to the detection of the content become easier
to see [14]. For example, the border where water meats air in the bottles. We
cut down the image because the original images had a lot of background with
only a small part being the container we wanted to focus on. This meant, that
often the classifier had problems finding the container in the first place, not even
getting to the task of identifying the contents.
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In our mid fusion strategy, we create a classifier to fuse the output from the
classifiers for each of the modalities. This classifier is a dense NN which consists
of 4 layers with the activation function relu and an output layer with the sigmoid
function and three neurons which provide three output values corresponding to
the possible fill levels. We use Adam as our optimiser and the categorical cross-
entropy loss function. We trained this network for 10 epochs with a batch size
of 5. This strategy allows us to process more cross-modal information, as the
classifier providing the final output has access to some information about each
modality. It also means that it would still be possible to judge the quality of the
individual modalities and gain information from them. This could be useful for
evaluating the modalities or judging how trustworthy the results are.

In the sensor fusion strategy, the classifier we create needs to be able to
process both visual data as well as data from the tactile sensors or the joints. To
facilitate this, there are two input arms, one consisting of convolutional layers
while the other one uses dense layers. The convolutional arm has 4 convolutional
blocks of a convolutional layer and a max pooling layer, each before a dense layer.
The dense arm has four dense layers with 100 neurons each. Both arms then
lead into a dense layer with 100 neurons, followed by three more dense layers
before the output layer with three neurons and the sigmoid activation function
which produced our output. The model can be seen in Fig. 4. The output is the
same as with the other models and has one value correlating to each possible
fill level. This strategy allows us to use a lot of cross-modal information. The
model has direct sensory data from each of the modalities and can gain a deeper
understanding of how they relate to each other and the desired output. However,
the model also has to deal with more complex data, so its task is more difficult.
We also lose some understanding about the model itself, as it would be a lot
harder to tell afterwards how important which modality was to the result and
whether or not we need all modalities or how to improve the data collection.

To gain a deeper understanding of each of our modalities, we further
researched how classifiers, that only depend on one of the modalities, perform.
Starting with the vision, we used the classifier that is also used for the majority
voting. We have a CNN with eight convolutional blocks, each consisting of one
convolutional layer with a relu activation function and max pooling layer. After
the convolutional blocks, we have one dense layer with 64 neurons, which also
uses the relu activation function. Finally, we have our output layer which has
three neurons and uses the sigmoid activation function to produce our output
which consists of three values, each corresponding to one possible fill level of
the container. We used the Adam optimiser and the categorical cross-entropy
loss function. We trained the network for 10 epochs and used an 80:20 split for
the training and validation set. The training data is a subset of the data set
introduced in Sect. 3.

For the other modalities, we used a dense neural network consisting of four
dense layers with the relu activation function and one output layer with three
neurons, which has the sigmoid function as its activation function. The only
difference between the tactile classifier and the proprioception classifier is, that
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Fig. 4. This figure displays the architecture of the neural network, that is utilised in
our sensor fusion strategy. The sensory data, gathered from the robot’s vision, joints
and tactile sensors, is used as the input. The outputs are one-hot encoded labels corre-
sponding to the seven possible classes we have. The number below the layers denotes
their output shape

the tactile classifier has 15 input values which are the force directions along
the x, y and z axis for each of the five fingers while the proprioception model
has 69 input values which are the velocity, position and effort of each of the
23 joints. Both of these models use the Adam optimiser and the categorical
cross-entropy loss function. We did, however, find that the proprioceptive model
needs significantly more epochs to converge than the tactile model; therefore, the
tactile model is trained for 10 epochs while the proprioception model is trained
for 50 epochs.

5 Results and Discussion

Table 1 shows the results of our fusion strategies, as well as the results of using
only singular modalities. The results are averaged from ten training runs. The
data used changed in between runs but stayed the same in one run for each clas-
sification method. The only way of fusing our data that performs worse than any
of the individual modalities is the hard majority fusion. Here the negative impact
of the more inaccurate modalities can be seen. As the other fusion strategies use
more sophisticated approaches to fuse the data, they can find more nuances and
be less impacted by the less accurate modalities. With most fusion strategies
performing better than even the best modality, we show the benefits of multi-
modality. The best-performing fusion strategy is the mid Fusion, in which we
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created a NN, which takes the output of the individual classifiers as its input
and produces seven values as its output which correlate to the seven possible
classes. While this method keeps less cross-modal information than the sensor
fusion strategy which directly takes the data from all sensors as its input, the
data that needs to be processed is also less complex. This advantage turns out
to be more important than the additional information. The soft majority voting
and the sensor fusion strategy perform similarly, and both still outperform the
best modality by more than 0.07 accuracy.

Table 1. Comparison of the classifiers on the synchronised data from ten training runs.

Classification Method Validation Accuracy Validation Standard Deviation

Tactile 74.9% 2.2%

Proprioception 43.3% 1.4%

Vision 60.9% 8.2%

Hard Majority Voting 65.4% 5.8%

Soft Majority Voting 83.5% 4.9%

Mid Fusion 90.6% 3.7%

Sensor Fusion 82.8% 6.8%

Out of the individual modalities, the classifier using the tactile data performs
the best, followed by the classifier using the visual data and finally the classifier
using the proprioception data. The tactile sensors can tell us a lot about the
weight of the object, and the different forms of the object also make it so that
they are grasped differently. Combining this information with the tactile data
allows the classifier to be able to accurately differentiate between the classes. For
the visual data, there are more obstacles to overcome, for some of the recorded
samples it is almost impossible to tell whether a given container is filled or
not with the hand of the robot occluding the content of the container. Another
hindrance is the transparent nature of the bottles and the water they are filled
with, which can also make it hard to detect the fill level. These factors lead
to the visual data, leading to a less accurate classifier. The classifier using the
proprioception data had the lowest accuracy. While it was able to have a far
better idea about the container than could be gained from simply guessing, the
data from the motors is quite noisy, especially with the grasping and lifting
process differing with each attempt.

While each of the modalities has its challenges, we have already seen that
the combination of them improves the results, to gain a deeper understanding
of the benefit that the combination of modalities provides, we compare how
each classification method performs for each class in Table 5. The results in the
table are averaged over ten runs. The first thing that comes to note is that
all of the best results for the classes come either from the mid fusion strategy,
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the sensor fusion strategy or, in one case, the Classifier using only tactile data.
While the mid fusion strategy is not surprising here as we had already seen
in Table 1 that it produced the best results overall, it is unexpected that for
two of the seven classes, the sensor fusion strategy is the most accurate. The
soft majority voting had a better overall accuracy, but also ends up being less
volatile, having higher lows and lower highs than the sensor fusion strategy.
With the main difference between the fusion strategies being the amount of
cross-modal information available, it appears that for the classes “Bottle Half
Filled” and “Can Full”, this information is more important than for other classes.
The other possible explanation is that the sensor fusion strategy does not make
use of the classifiers for the individual modalities. So, it could be possible that
the mid fusion and the soft majority voting perform worse for these three classes
than the sensor fusion because the individual classifiers are less sure about these
classes, so they could have high values for the class as well as a secondary class.
With the class “Bottle Half Filled”, we can easily imagine that the classifiers see
a larger similarity to the classes “Bottle Filled” and “Bottle Empty” than they
see between these two classes directly. Similarly, the classes “Can Empty” and
“Can Full” could be quite close to each other as they do look quite similar, and
the container is less prone to be deformed during the grasp regardless of its fill
level.

We can also see some peculiarities with individual modalities, The visual
classifier seems to be particularly challenged by the classes “Bottle Empty” and

Fig. 5. Comparison of the average results of the Classifiers per class over ten runs in
percent.

Fig. 6. Confusion Matrix for the vision classifier from a single run.
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“Bottle Half Filled”. If we look further at the individual runs, we can see that
there is always one bottle label that performs very well, most of the time that is
the “Bottle Filled” but on some runs, it is one of the others, the problem seems
to be to differentiate between the fill levels of bottles and not in detecting the
bottle. We can also see this in the confusion matrix shown in Fig. 6, where the
classifier has a strong bias towards the “Bottle Filled” class whenever any of
the bottle classes should be predicted. The tactile data finds the class “Spam
Empty” to be the hardest to detect. Of course, the tactile data also provides
the best result for the class “Can Empty”. That the visual classifier has such
difficulties with two of the bottle classes could be explained by the challenge of
transparency, why the tactile sensors performed worse on the “Spam Empty”
class would need to be researched further.

6 Conclusion

In this paper, we present multiple ways of classifying containers and their con-
tent, integrating up to three modalities. Our experiments compare different
fusion strategies and showcase their strengths and weaknesses on data collected
by a new robot. We evaluate the results and find that the best-performing fusion
strategy utilises an NN to combine the results of individual classifiers for each of
the modalities. We find an NN that can accurately classify multiple containers
and their content, which improves the ability of the robot to perceive the world
and learn about the objects in said world, which is necessary to discern self from
others. The large variance in shape appearance and material of the containers
in our data sets lets us find strengths and weaknesses of the sensory modalities,
as well as how we can overcome them by fusing the modalities. Future work can
include expanding the data set with more containers.
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Abstract. The paper introduces CycleIK, a neuro-robotic approach
that wraps two novel neuro-inspired methods for the inverse kinematics
(IK) task—a Generative Adversarial Network (GAN), and a Multi-Layer
Perceptron architecture. These methods can be used in a standalone fash-
ion, but we also show how embedding these into a hybrid neuro-genetic
IK pipeline allows for further optimization via sequential least-squares
programming (SLSQP) or a genetic algorithm (GA). The models are
trained and tested on dense datasets that were collected from random
robot configurations of the new Neuro-Inspired COLlaborator (NICOL),
a semi-humanoid robot with two redundant 8-DoF manipulators. We
utilize the weighted multi-objective function from the state-of-the-art
BioIK method to support the training process and our hybrid neuro-
genetic architecture. We show that the neural models can compete with
state-of-the-art IK approaches, which allows for deployment directly to
robotic hardware. Additionally, it is shown that the incorporation of the
genetic algorithm improves the precision while simultaneously reducing
the overall runtime.

Keywords: Neuro-inspired Inverse Kinematics · Humanoid Robots ·
Genetic Algorithms · Generative Adversarial Networks

1 Introduction

The inverse kinematics task searches for suitable joint configurations for a kine-
matic chain in order to achieve a specified end-effector Cartesian pose. Recent
collaborative and humanoid robot designs often rely on redundant manipulators
with more than six degrees of freedom (DoF). The complexity of the inverse
kinematics task is therefore increased, as the problem is then under-determined
and a set of redundant solutions for a single pose can be found, referred to as the
nullspace. The Python-based genetic IK solver Gaikpy [10], originally developed
for the child-sized NICO robot [11] with 6-DoF arms, requires a long runtime
in order to deal with the 8-DoF manipulators of the recently developed Neuro-
Inspired COLlaborator [9], pictured in the top-left image in Fig. 1.
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Fig. 1. CycleIK deployed to physical NICOL hardware (top-left). CycleIK hybrid
neuro-genetic inverse kinematics pipeline (top-right). Visualization of the nullspace
manifold from the CycleIK Generative Adversarial Network (bottom).

Traditionally, Jacobian-based methods are utilized for the IK task, such as
KDL [17] and Trac-IK [5] which are popular plug-ins in the MoveIt [7] framework
and can currently be seen as the industry standard. Both analytical solvers
require a high runtime when deployed to NICOL, and have a higher error than
Gaikpy [9]. We initially configured BioIK [18] to be the default solver, a popular
state-of-the-art genetic approach, which was also deployed via Moveit. MoveIt,
however, does not return a solution for an IK query, when the error is higher
than the internal threshold, leaving the control cycle of the robot with no action.

Neural inverse kinematics is a field that unites a wide range of neuro-robotic
applications that control the configuration space of a robotic system. The inverse
kinematics task is fundamentally embodied in every action-generating neural
architecture that takes data from Cartesian space as input. Explicit neural
approaches to the task, however, rarely show results with high precision and are
distributed over the different application domains of inverse kinematics ranging
from robotics to character animation.

Two neural architectures, an auto-regressive Multi-Layer Perceptron (MLP)
and a normalizing flow-based Generative Adversarial Network, are proposed in
this work. The models solve the inverse kinematics task for a given pose in the
reachability space of NICOL and can be deployed directly to robotic hardware,
or alternatively be optimized with Gaikpy. The MLP returns exactly one solution
for the IK task, while the GAN allows for the exploration of the nullspace mani-
fold. The method is inspired by CycleGAN [20], which trains a dual-GAN archi-
tecture in an unsupervised fashion, to transform between two image domains.
The positional and rotational errors are measured in Cartesian space by calcu-
lating the forward kinematics (FK) for a set of IK solutions that are inferred
from the neural models. The FK function calculates the end-effector pose from a
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given robot configuration and has a short runtime of below 1ms. Consequently, a
second generator as in the original dual-GAN setup of CycleGAN, that approx-
imates the FK function to transform from configuration to Cartesian space, is
not necessarily needed for this application.

2 Related Work

The most similar normalizing flow-based approaches to ours are IKFlow from
Ames et al. [3] and the work of Kim and Perez [12]. IKFlow is a recent and
promising neural IK approach. The authors propose a conditional normalizing
flow network for the inverse kinematics task, a form of Invertible Neural Network
(INN) [4], introduced by Ardizzone et al. for invertible problems. Samples from
a simple normal distribution are transformed into valid solution manifolds in
the configuration domain through coupling layers that consist of multiple simple
invertible functions. The solution manifold can optionally be further optimized
with Trac-IK[5].

The approach of Kim and Perez [12] has a very similar architecture to
IKFlow. Compared to IKFlow, which calculates the error with analytical for-
ward kinematics, Kim and Perez use a second neural network to approximate
the FK function in an autoencoder architecture. The approach of Kim and Perez
has a comparably high error in the centimeter range and requires further opti-
mization with the Jacobian, while IKFlow reaches a millimeter range of error.

Lembono et al. [14] present an ensemble architecture in which multiple GAN
generators learn to sample from disjunct patches of the configuration space.
A single forward kinematics discriminator is used that also checks for further
constraints, e.g. minimal displacement of the arms. A more detailed investigation
of GANs in the context of IK is given by Ren and Ben-Tzvi [16]. The paper
modifies four different types of GAN architectures to solve the inverse kinematics
problem. The discriminator produces binary output, while most GAN designs
perform regression and calculate the continuous error to the target pose.

Bensadoun et al. [6] introduce a Gaussian Mixture Model (GMM) ensemble to
calculate multiple solutions for the IK problem. A GMM is created for every joint
in the kinematic chain. A hypernet parameterizes the GMMs conditioned to the
target pose. Volinski et al. [19] utilize Spiking Neural Networks (SNN) to solve
the inverse kinematics problem. The approach trains three different variations
of simple SNN architectures. ProtoRes [15] was introduced by Oreshkin et al. to
reconstruct natural body poses from sparse user input for animation tasks. The
framework consists of a pose encoder that creates a latent embedding from the
user input and then solves the IK task with a pose decoder.
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3 Method

Fig. 2. CycleIK neuro-inspired training
and architecture overview. A batch of
Cartesian poses X is inferred by the net-
work to predict a set of valid robot config-
urations Θ under constraints L.

We propose CycleIK, a neuro-inspired
inverse kinematics solver that makes
use of the cyclic dependency between
the transformation from configuration
to Cartesian space and its inverse.
An overview of the architecture is
given in Fig. 2. The framework enables
either training a single-solution auto-
regressive Multi-Layer Perceptron or a
normalizing flow-based GAN architec-
ture that allows the parallel inference
of multiple redundant solutions within
1 ms. Furthermore, the approach can
be utilized as a neuro-kinematic tool-
box. The default networks can be sub-
stituted by any end-to-end or multi-stage robotic control architecture that pre-
dicts joint angles and provides a Cartesian pose as a label. CycleIK is imple-
mented in PyTorch, to be as openly available as possible. Most IK solvers are
implemented in C++ and generally rely on iterative numerical methods for the
optimization process, often leading to a higher runtime compared to the inference
of a neural network.

CycleIK treats the joint space as a semi-hidden domain, and calculates posi-
tional and rotational losses only in Cartesian space, by inferring a full cycle back
to Cartesian space, as shown in the following equations (Eq. 1 and 2):

X̂ = FK(IK(X )) (1)

eIK = ‖X̂ − X‖ (2)

where X is a batch of an arbitrary natural number of target poses, and eIK is
the linear Cartesian error. While learning a one-to-one mapping between data
from Cartesian space and corresponding joint angles θ can work for lower-DoF
manipulators [10], the approach shows a high error for redundant manipulators
like on the NICOL robot [9], as these manipulators have a one-to-many mapping
in the form of the redundant nullspace manifold Θ. Thus, we minimize the linear
Cartesian error eIK instead, which in our experience learns and generalizes more
smoothly.

Similar to neuro-inspired multi-solution solvers like IKFlow and CycleIK,
genetic algorithms produce multiple solutions for an IK query, and have shown
good results for the IK task [1,10,18]. The most popular genetic IK approach is
BioIK [18], which is available in both MoveIt and Unity. The method supports
genetic algorithms by hybridization with particle swarm optimization (PSO).
The architecture allows generic IK queries through a weighted partial cost func-
tion φ(Θ,L) that is applied to the set of IK solutions Θ under the constraints L.
The constraints can be reformulated at every IK query, so complex dynamic tasks
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Fig. 3. Visualization of NICOL’s right arm workspace, with the Small1000 dataset on
the left and the Full1400 dataset on the right.

such as collision avoidance in motion planning can be performed. Different goal
types can be set for either the links or joints of the robot. We adapt the weighted
partial cost function from BioIK for both of our models. CycleIK’s single-solution
model optionally makes use of a set of weighted constraints L = LC ∪ LJ , that
consists of specified goals, either in Cartesian or joint space. The constraints are
applied by the multi-objective function in every training step. Both, the single-
solution MLP as well as the multi-solution GAN, can optionally be further opti-
mized by the Python-based genetic IK Gaikpy [10] or non-linear sequential least
squares quadratic programming [13], where again a partial weighted cost func-
tion can be used to select the optimal solution. An overview of the neuro-genetic
IK pipeline is given in the top-right image of Fig. 1.

3.1 Dataset

Three datasets were collected from NICOL’s workspace: Small1000, Full1000
and Full1400. Uniform random collision-free robot configurations were sampled.
The Small1000 and Full1400 dataset are shown in Fig. 3. The Small1000 dataset
contains 1,000,000 samples and is limited to the right side of the tabletop, which
is located 80cm above the ground. The Full1000 and Full1400 datasets with
1, 000, 000 and 1, 400, 000 poses are sampled from the whole workspace of the
right arm over the tabletop. We built test sets with 10% size and validation sets
with 1% size for each of the training datasets. In all datasets, a 20cm safety
margin was included at the back of the workspace on the x-axis, as well as a
10cm safety margin on the y-axis on the right-hand side of the robot workspace.
All properties of the datasets can be seen in Table 1. A convex hull was generated
around the data points to approximate the Cartesian volume of each dataset.
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Table 1. Overview of the training datasets and the corresponding 10% test sets
(Small100, Full100 and Full140) and 1% validation sets (Small10, Full10 and Full14).

Dataset Workspace Samples Volume Sample Density

[x, y, z] (m) (cm3) (samples per cm3)

Small1000 106 295.56 · 103 3.383

Small100

[
0.2 −0.9 0.8

0.85 0.0 1.4

]
105 293.34 · 103 0.341

Small10 104 287.11 · 103 0.035

Full1000 106 420.11 · 103 2.38

Full100

[
0.2 −0.9 0.8

0.85 0.48 1.4

]
105 415.13 · 103 0.241

Full10 104 401.75 · 103 0.025

Full1400 1.4 · 106 420.43 · 103 3.33

Full140

[
0.2 −0.9 0.8

0.85 0.48 1.4

]
1.4 · 105 416.09 · 103 0.336

Full14 1.4 · 104 405.07 · 103 0.035

3.2 Architecture

The basic network architecture is very similar for both models. The pose is
encoded as a 7-dimensional vector, i.e. the 3-dimensional position [xp, yp, zp]T

concatenated with the rotation represented as a 4-dimensional unit quaternion
[xr, yr, zr, wr]T , as shown in Fig. 2. The output of the network has the same
dimension as the robot DoF, so every field of the output vector corresponds to
a motor position in the kinematic chain. The GAN additionally concatenates
the pose with a second input, a random uniform noise vector that is utilized to
sample from the nullspace manifold. The models utilize two different activation
functions. While Gaussian-Error Linear Units [8] (GELU) are generally used for
all the layers, the Tanh activation is applied to the last one to three layers of
the network, as this highly improves the results. The data is normalized to lie
in the interval [−1, 1], which is equivalent to the limits of the network input and
output. Thus, the method cannot push the joint angles through their joint limits,
which is a shortcoming of a lot of Jacobian-based IK solvers. Visualizations of
the two network architectures for the NICOL robot can be found in Fig. 4.
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Fig. 4. Neural architectures optimized for the Small1000 dataset, Multi-Layer Percep-
tron (left) and Generative Adversarial Network (right).

3.3 Training

In every training step, a batch of poses X is inferred by the network. For the
single-solution network, the training step is straightforward—after inference, for-
ward kinematics are applied to the batch of solutions Θ to determine the reached
poses X̂ and then apply the multi-objective loss function, as in Eq. 3:

lossL = φ(Θ, X̂ ,L) (3)

Here, L holds at least the positional and rotational error. For the NICOL robot,
we applied a zero-controller goal that minimizes the displacement of the motor
position from the zero position of the selected subset of redundant joints in the
kinematic chain. Our preliminary experiments showed the best performance by
using the mean absolute error for Cartesian space losses and mean squared error
for the joint space losses, as the error increased for all other evaluated error
terms. The learning rate is decreased linearly at the end of each epoch.

The training process for the multi-solution GAN extends the training process
of the MLP. After calculation of the positional and rotational loss for a batch of
Cartesian samples from the training set, one of the poses is randomly chosen from
the batch. A tensor of the same size as the training batch is created and filled
with the chosen pose. Random uniform noise Z of the required batch size and
noise vector size is then generated and used for the forward pass. The training
aims to maximize the variance in the solution batch Θ. The normalizing flow
method is applied, as the network is not being forced to regress to only one
solution, but instead fit the nullspace distribution Θ to the noise Z, as in Eq. 4:

lossvar = MSE(var(Θ) − var(Z)) (4)

The method can produce multiple valid solutions for the NICOL robot with
millimeter-level accuracy. One possible extension would be to combine Kullback-
Leibler divergence for the loss and normally distributed noise in the input, as
done by IKFlow [3] and Kim and Perez [12].



464 J.-G. Habekost et al.

3.4 Optimization

Each of the models was optimized over 250 trials for both the Small and Full
workspace. The results are shown in Table 2. For the Full workspace, we chose to
optimize the models with the Full1400 dataset. We used the Optuna framework
[2] to optimize the models with a Tree-structured Parzen Estimator (TPE) for
sampling, and a hyperband pruner. Four parameters were defined for the opti-
mization process, which are the batch size, learning rate, number of layers in
the network, and the number of layers with tanh activations at the end of the
network. Additionally, we optimized the number of neurons in every layer. An
overview of the exact network layouts can be found in Table 3, and a visualiza-
tion of the network structures for the Small workspace is shown in Fig. 4. For
the GAN only, we also optimized the size of the input noise vector.

Table 2. Training parameters for the different network types, optimized for the
Small1000 and Full1400 datasets.

Parameter MLP GAN Parameter Limits

Small Full Small Full min./max. step size

Batch Size 150 300 350 300 100 / 600 50

Learning Rate 1.6 · 10−4 10−4 2.1 · 10−4 1.9 · 10−4 10−5 / 10−3 10−5

Number Layers 8 8 8 8 7 / 9 1

Number 3 3 3 2 1 / 3 1

Tanh Layers

Noise Vector – – 8 10 3 / 10 1

Size

Table 3. Network structures of the different network types optimized for the Small1000
and Full1400 workspace.

Model Workspace Neurons per Layer

MLP Small [3380, 2250, 3240, 2270, 1840, 30, 60, 220]

Full [2200, 2400, 2400, 1900, 250, 220, 30, 380]

GAN Small [790, 990, 3120, 1630, 300, 1660, 730, 540]

Full [1180, 1170, 2500, 1290, 700, 970, 440, 770]

4 Results

The application of the weighted partial cost function on the MLP network and
the variance loss on the GAN created stability issues in the training process
of differing severity for the two models. The MLP rarely shows stability issues
during the training process, but they sometimes occur when trained for more
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Fig. 5. Average positional and rotational error of the MLP and GAN model under
training for varying numbers of epochs.

than 100 epochs, and can be dealt with using gradient clipping. The GAN suffers
more severe stability issues, and could not be trained for more than 50 epochs in
our experiments. We hypothesize it is due to the competition of maximizing the
nullspace manifold variance while maintaining precise IK regression. Gradient
clipping cannot be applied as easily in the case of the GAN because it prevents
learning proper minimization of the variance loss.

4.1 Optimal Number of Epochs

To determine the optimal number of epochs for the training process, we trained
both presented models for each of the three datasets that were generated, so that
six models in total were evaluated under different epoch configurations. A stan-
dalone training was performed for every individual model and number of epochs.
To handle the stability issues of the models, we gave every evaluated epoch con-
figuration a number of restarts in case stability issues occur. Each choice of
maximum epochs was allowed two restarts for the MLP and nine for the GAN.
If exploding gradients occurred in every observed training, the combination was
considered to have failed. The results of our experiments are shown in Fig. 5.
We calculated the positional and rotational error for the MLP by first taking
the average over the three corresponding axes of the 6-DoF pose error, and then
averaging the results for the whole 10% test sets. For the multi-solution GAN,
we first calculated the average error over single batches of nullspace solutions,
before taking the mean over the whole test set. We take the success definition for
the inverse kinematics task from Kerzel et al. [10], which allows 10mm positional
and 20-degree rotational error.
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GAN. It can be seen that the training process of the Small1000 dataset had
the lowest error for most of the epoch configurations when compared to the
training of the Full1000 and Full1400 datasets. For a higher number of epochs,
the positional error of the GAN models behaves similarly for the Small1000 and
Full1400 datasets. Instabilities occur for short training and with regard to the
rotational error. The training of the Full1000 GAN model already starts to fail
when training for more than 40 epochs, while the rotational error can compete
with the loss of the Full1400 model for a lot of configurations.

MLP. The results of the single-solution MLP for the training on the Small and
Full workspace differ more strongly than for the GAN. Different from the GAN,
where the exact same loss is used for both workspaces, the zero-controller goal
that we set for the training of the MLP has to be tuned for a specific workspace
and therefore differs. The additional joint space goal can therefore explain the
differences in training behavior to some degree. The training with the Full1000
dataset can also for the MLP compete with the Full1400 training for some epoch
configurations. Overall, the best model for the Full1400 dataset exceeds the best
model for the Full1000 dataset.

The training with the Small1000 dataset proceeded the smoothest, and we did
not experience any stability issues. In contrast to the GANs, where the smallest
positional error is achieved after 50 epochs for both workspaces, with slightly
below 3mm average error, the MLP models differ in the ideal training length
as well as in the smallest error. While the lowest positional error for the Full
workspace is achieved after 100 epochs, the best results for the Small workspace
are found after 300 training epochs. The best results for the Full1000 dataset
are also achieved with 300 training epochs, but cannot compete with the best
model of the Full1400 dataset. We evaluated the performance of the different
models for the Full1400 dataset on the Small100 test set to make the Small1000
and Full1400 models directly comparable. It can be seen from the green dotted
line in Fig. 5 that the Full1400 models perform very similarly when evaluated
on the same test data as the Small1000 models. Positional and rotational errors
only show small differences until 100 training epochs are exceeded.

Overall, we focus more on the positional error rather than the rotational
error, as the rotational error is far below our success limit of 20 ◦C in almost all
cases. Especially the models that were only trained for 10 or 20 epochs can show
up to 5 mm average positional error, and therefore a lot of solutions around the
upper bound of the error exceed the limit of 1 cm.

4.2 Precision Analysis

From the previous experiment, the best-performing models were selected and
evaluated for the Small100 and Full140 test sets. We seeded 50% of Gaikpy’s
initial population with solutions from the neural models in a follow-up exper-
iment and filled the other half of the population with uniform random robot
configurations within the joint limits. As a baseline, errors for standalone BioIK
and Gaikpy were evaluated. The results of our IK experiments on the Small
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and Full workspace can be seen in Table 4. The framework offers SLSQP for
further optimization but we did not use it in the experiments, as the solutions
are already precise enough to be deployed to the physical hardware.

The performance of BioIK on the test sets was measured via MoveIt. Since
MoveIt reports an exception for solutions whose error lies over a specified thresh-
old, as this threshold cannot be influenced, no solution can be evaluated for the
failed requests. This behavior is different from all other methods that are utilized
in this work, as they always report at least some kind of solution. For the failed
MoveIt requests, we calculated the distance between the initial rest end-effector
pose and the target pose, which increases the average positional and rotational
error in comparison to the other methods. The positional error lies around 0.02
to 0.05mm for the successful requests and would therefore outperform the pre-
sented Python-based methods.

For the GAN, 500 solutions for the same pose were generated, and the average
error for every pose was calculated before the mean was taken over the whole
test set. For all other methods, we only analyzed the error of the best solution
for every test pose. For the GAN results, the average error of the best solution
for every test pose is the average minimum error reported in Table 4.

It can be seen that the GAN model performs better for the Full workspace,
while the MLP performs better for the Small workspace. The average error of the
GANs is between three to ten times higher than for the MLPs. However, it was
possible to improve the solutions of the GANs as well as the MLPs through opti-
mization with Gaikpy. In general, the orientation errors of the MLPs increased
while the positional errors decreased. Moreover, while the average maximum
error of the GANs is near the upper limit we defined for the error, which is
generally good as it indicates that most solutions are within the error limit,
the success rate of the GANs can only compete with BioIK and the CycleIK
MLP model through the genetic optimization. Both the MLP and GAN models
can be deployed directly to real hardware without further optimization, as the
positional error stays far below 1 cm on average.

The standalone Gaikpy method shows a lower average positional error than
BioIK and a similar to slightly lower rotational error. The divergent success
definition of BioIK is the reason that its success rate of over 98% outperforms
the success rate of Gaikpy by about 3–5%, while the average error of BioIK
is tremendously higher. When Gaikpy is seeded with the neural models from
CycleIK, the error of the solutions can be reduced by around 60% to 90% while
the timeout of the genetic algorithm can be reduced by over 98%, enabling the
neuro-genetic method to directly compete with BioIK regarding success rate as
well as average error. The standalone Gaikpy method overcomes both neuro-
only architectures as well as the Gaikpy variant that was seeded with the GAN
solutions with regard to the positional error. In contrast, Gaikpy’s orientation
error is higher than for all CycleIK setups, which indicates that the seeding with
neural solutions increases Gaikpy’s performance with regard to the orientation.
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Table 4. Results of different CycleIK variants and standalone Gaikpy and BioIK on
the Small100 and Full140 test set.

Model Work- Position (mm) Orientation (◦) Success Timeout

space Avg. Min./Max. Avg. Min./Max. Rate (%) (ms)

CycleIKMLP Small 0.295 5.36 · 10−4 / 0.033 2.39 · 10−4 / 99.48 0.242

143.56 85.73

Full 1.022 1.12 · 10−3 / 0.152 3.92 · 10−4 / 98.49 0.243

376.39 127.41

CycleIKMLP Small 0.074 4.83 · 10−6 / 0.089 2.74 · 10−4/ 99.85 19.589

w. Gaikpy 245.57 93.43

Full 0.163 3.44 · 10−6 / 0.308 1.59 · 10−4 / 99.38 19.603

271.33 128.11

CycleIKGAN Small 2.892 0.602 / 0.266 0.046 / 92.07 0.458

11.87 2.82

Full 2.795 0.7 / 0.563 0.134/ 94.77 0.448

10.84 3.56

CycleIKGAN Small 0.525 6.84 · 10−6 / 0.308 4.22 · 10−4 / 98.46 19.922

w. Gaikpy 169.33 127.27

Full 0.4 9.34 · 10−6 / 0.407 7.58 · 10−4 / 98.97 19.572

366.22 133.89

Gaikpy Small 0.113 5.16 · 10−6 / 8.066 0.09 / 93.33 1022.534

62.83 139.45

Full 0.062 3.19 · 10−6 / 5.969 0.03 / 96.06 1106.849

100.83 143.06

BioIK Small 33.487 1.24 · 10−6 / 7.625 1.39 · 10−6 / 98.72 1

654.83 142.48

Full 41.468 9.93 · 10−6 / 8.349 1.54 · 10−6 / 98.05 1

575.57 147.08

5 Conclusion

This work presented two novel neuro-inspired architectures for the inverse kine-
matics task that deliver state-of-the-art performance when compared to other
bio-inspired methods. We showed that the neuro-only architectures are precise
enough to be directly deployed to real-world robots. It was also shown that the
solutions from the GAN, as well as the MLP architecture, can additionally be
used as seeds for a genetic algorithm. The results showed that seeding the GA
with the CycleIK output did not only improve the Cartesian precision of the
neural solutions, but also reduced the runtime of the GA by over 98%. The
weighted multi-objective function that was applied during the training of the
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MLP proved to successfully support the training and made it possible to influ-
ence the kinematic behavior of the model. Finally, the importance of the pre-
sented normalizing-flow method for the IK task is underlined, as the GAN model
reaches a similar precision as IKFlow and therefore has better performance than
most neuro-inspired IK approaches. CycleIK will be utilized for more sophisti-
cated experimental setups in the future, such as collision-free motion planning
in human-robot interaction and multi-modal grasping.
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Andrej Lúčny(B), Krist́ına Malinovská, and Igor Farkaš
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Abstract. We introduce an approach to building a custom model from
ready-made self-supervised models via their associating instead of train-
ing and fine-tuning. We demonstrate it with an example of a humanoid
robot looking at the mirror and learning to detect the 3D pose of its own
body from the image it perceives. To build our model, we first obtain
features from the visual input and the postures of the robot’s body via
models prepared before the robot’s operation. Then we map their cor-
responding latent spaces by a sample-efficient robot’s self-exploration at
the mirror. In this way, the robot builds the solicited 3D pose detector,
which quality is immediately perfect on the acquired samples instead of
obtaining the quality gradually. The mapping, which employs associating
the pairs of feature vectors, is then implemented in the same way as the
key–value mechanism of the famous transformer models. Finally, deploy-
ing our model for imitation to a simulated robot allows us to study, tune
up and systematically evaluate its hyperparameters without the involve-
ment of the human counterpart, advancing our previous research.

Keywords: association · imitation · deep learning · humanoid robot

1 Introduction

In nature we observe different forms of skills improvement. Sometimes, it is
achieved through gradual learning, for which it is necessary to undergo many
repeated attempts [6]. At other times we observe that the learning process sud-
denly occurred based on a single experience. Although we can be amazed by
the current achievements of artificial intelligence, the acquisition of most skills is
gradual and very lengthy, requiring each behavior pattern to be presented many
times. Would it be possible to achieve a sudden improvement in a novel task in
just one attempt, given a gradually and slowly prepared set of abilities? This
question is especially urgent in mobile robotics, where we already have technical
means for running deep learning models on board. However, on-board training
or fine-tuning these models is a capacity problem.

In our previous work [13], we addressed this issue in an imitation game [3]
between a human and a humanoid robot iCub [22]. (Please, do not confuse it
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14254, pp. 471–482, 2023.
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with the imitation game in the Turing test.) The goal was to teach a robot to
imitate a human based on the human imitating the robot. Learning took place
in two phases. In phase 1, the robot invited the human to imitate it. The robot
created different hand positions, and the human imitated them with his body in
front of the robot’s camera. It allowed the robot to remember the associations
between its body poses and the seen images. In phase 2, the robot imitated a
human using the associations acquired in the first phase.

The associations acquired by the robot in phase 1 of the imitation game
represent a list of representations of the image the robot sees and the poses the
robot has manifested. Technically, ensuring that the robot correctly captures
the moment a person takes its pose in the first phase was challenging. However,
we simplified this so the person indicated it to the robot by whistling - since
his hands are busy taking the right pose while interacting. The second phase of
the imitation game relied on the fact that the robot’s behavior has a stimulus–
response nature. However, it was necessary to solve the problem of using the
associations from the first phase because the person will never again be able
to take the same pose the robot memorized. Therefore, we needed to design a
mechanism to derive the robot’s response to a new stimulus from the associations
the robot had memorized and, above all, a suitable representation of the image
and pose for this mechanism to work.

We use the attention mechanism [21], a generally known part of transformers,
but in an unconventional way. Our model works with a set of key–value pairs
that represent obtained associations. When we have a query at the input, we try
to mix it from the available keys and create the output as an analog mixture of
the corresponding values.

Associating the image with the pose from the raw data is technically possible,
but it does not work. The image data space is too ample, sparse, and fluid to be
mapped to another data space by a few associations. Its dimensions are of order
hundreds of thousands and contain all possible image inputs, most of which the
robot can never see. A slight change in the seen figure can lead to a dramatic shift
in the point that represents its picture. Similarly, the pose space of the robot,
although much smaller (maximum tens of degrees of freedom), contains many
poses that are not reasonable to adopt. A small change in the hierarchically
higher degrees of freedom results in a significant difference in the generated
posture.

We use deep convolutional networks that process the data into feature vectors
to overcome this. Each feature vector corresponds to a possible image seen or a
reasonable pose assumed or, at most, some intermediate form between two such
images or poses. Moreover, these spaces are continuous and preserve similarity:
the feature vectors corresponding to the gradual change of the seen situation or
the adopted posture represent a trajectory in the feature space. Thanks to these
properties, we were able to implement the imitation game.1

The robot enters the game with two ready-made models: an image encoder
and a pose decoder. Both can be obtained without the need for annotation.

1 see the video at https://youtu.be/-3BVbU9BeRE.

https://youtu.be/-3BVbU9BeRE
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As an image encoder, we used a pre-trained backbone of a medium-sized self-
supervised vision transformer trained by the DINO method [4], which encodes
the image into 384 features. Next, we obtained the pose decoder by training
the variational autoencoder [10] from a dataset containing the robot’s hand
movements to randomly selected points around the robot, i.e., obtained during
the so-called robot’s babbling [15]. Then, in the first phase, the robot generated
a pose from several selected posture feature vectors, waited for a signal from
the human that it took the correct pose, encoded the image into the features,
and saved both feature vectors into the association list. In the second phase,
he encoded the image into features, calculated the corresponding pose feature
vector from the associations, decoded it, and took the obtained pose. At the same
time, the robot could lean towards some memorized posture or combine them
appropriately (however, this ability depended on the so-called scaling factor of
the association mechanism). An exciting feature of this solution was that the
person could deceive the robot in the first phase. The robot learned a lousy
reaction if the person did something else instead of the correct pose, for example,
showed an object.2

The weakness of this approach was the human involvement, which limited
the evaluation of the quality and impact of various system parameters. At the
same time, the influence of two parameters was apparent. The first was the
number of associations, and the second was the scaling factor of the association
mechanism. Another undesirable feature was the need to notify the robot that
the associating moment had arrived.

In this paper, we eliminate these limitations. We train the robot to learn
the association between its pose and image in the mirror. It allows us to obtain
a (3D) robot pose detector from ready-made self-supervised models without
further training or fine-tuning, only based on associating. Then we evaluate it
by imitating another robot with the same or similar visage.

Compared to the original solution, we must be able to arrange for the robot
to eliminate redundant associations. In addition, our solution solicits both the
encoder and decoder for poses. Then, in the first phase, the robot moves in
front of the mirror by choosing a random pose feature vector, decoding it, and
taking this pose. During the movement of the robot’s hands into the new pose,
the robot knows, thanks to proprioception, which pose it is currently passing
through and can associate each one with the seen image, encoding both into
feature vectors and remembering this pair if it is not redundant. The second
phase proceeds almost the same way as in the original solution. We will replace
the mirror with a view of another robot whose body we can manipulate. Then,
by comparing the poses of the two robots, we can evaluate the detector’s quality.
Unlike within the original imitation game, we can fully automate and assess this
process objectively. As a result, we can investigate the parameters’ influence and
evaluate the limits of the presented approach.

2 see the video at https://youtu.be/ CBnCOnWRdY.

https://youtu.be/_CBnCOnWRdY
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2 Related Work

Learning by imitation [2] is frequently addressed in cognitive robotics and
human–robot interaction. Typically a robot is required to imitate the human
companion, as in our previous research mentioned above.

Research on neural correlates of action understanding, namely the mirror
neuron system theory suggests that the association between the visual and the
motor modality, maintained by these special motor neurons, which also react to
visual stimuli, may be the substrate for action understanding or at least mitigate
the process of assessing the visual information [20]. In our past research, we built
a multi-layer connectionist model of action understanding circuitry and mirror
neurons, emphasizing the bidirectional activation flow between visual and motor
areas in a simulated iCub robot [17] and extended the work to perspective-
agnostic mirror neurons with results corresponding to biological data [16]. The
gist of our modeling is to connect the high-level representations of the visual and
motor aspects of motor actions in a hetero-associative manner. This allows the
robot to understand and replicate the observed action using the motor primitives
already in its motor repertoire.

The novel approaches to visual imitation learning usually utilize deep net-
works that can learn distributions and generate novel samples within, such as
the Generative Adversarial Networks (GAN) [8] and Variational Autoencoders
(VAE) [10]. Generative Adversarial Imitation Learning [5] extends the reinforce-
ment learning (RL) paradigm to utilize a smaller expert data sample. Liu et
al. utilize GANs and RL to translate the robot’s observation of the demonstra-
tion into different contexts, such as different viewpoints, allowing the robot to
repeat the observed action. Variational Autoencoders appear even more potent
than GANs within this field. Sermanet et al. [19] implement imitation learning
without any labels utilizing demonstrations in the videos from two different view-
points yielding a viewpoint-invariant representation of the relationships between
the end effectors and the environment with a metric learning loss driving the
system to represent the viewpoints for the same action as similar embeddings in
the deep model. Similarly, Bahl et al. [1] propose a system for imitating human
actions from the videos recorded in the wild. They base it on reinforcement
learning with agent-agnostic representations and conditional VAE employment.

On the path towards imitation via mirroring and building associations
between high-level visual and motor modality representations, Zambelli and
colleagues [25] proposed a multi-modal variational autoencoder to enable the
iCub robot to match different modalities up to the point of being able to imi-
tate an observed movement. Further in this line, Seker et al. [18] proposed the
new deep modality blending networks (DMBN) with the essence of variational
autoencoders, which endows the system to retrieve the missing information of
the associated modal information, including different perspectives in the visual
data. Garello and colleagues [7] use VAE to map the self-observation and third-
person observed perspectives, hence building perspective agnostic representation
of actions and using a similar paradigm as our previous MNS research inspired by
imitation learning in infants. Namely, the parents tend to involuntarily imitate
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children right after they produce an action, which could also be a mechanism of
the human MNS to emerge as a consequence of Hebbian learning as proposed
by Heyes [9].

Šejnová and Štepánová [23] utilized the conditional VAE to enable a robot
to incrementally learn simple actions from a limited number of demonstrations
by a human. Unlike our approach, the labels are presented to the VAE when
the robot demonstrates the task. The advantage is that the robot’s performance
can be assessed during learning. If the particular action receives more training
examples, it could start with a minimum of examples and perform a kind of few-
shot learning. Marcel and colleagues [14] use a VAE to model self-touch behavior
in developing the body schema in early infancy using a simulated iCub robot
with tactile skin. In their work, they iterate through the VAE projections using
it as a control loop that will finally produce a movement sequence representing
a trajectory from a neutral position to the point of contact of the agent’s arm
and its body, just from a single stimulation point.

Similarly to our current approach, Zahra and colleagues [24] proposed a two-
stage model in which a robot first acquires motor primitives by motor babbling
and subsequently learns via imitation. Interestingly, unlike other approaches
based on deep learning, they use more biologically relevant spiking networks and
self-organizing maps for forming high-level representations of movements similar
to our above-mentioned models, which use recurrent self-organizing maps.

We studied the self-recognition of a robot in the mirror in [12]. At that time,
we were working with a very simplified representation of the robot body, and it
was a big question for us how a robot (or a human) could create a model of its
seen body. In this paper, we partially address this question.

3 Our Approach

We aim to make the robot move in front of the mirror and learn to detect its pose
from the image it sees. Then we demonstrate the learned ability by imitating
the movements of its twin. The twin can be perfect or can vary in textures.

At the same time, we require that learning takes place immediately, based
on short-term experience, employing only ready-made models for general image
processing and robot poses. Similar to the imitation game mentioned above, we
will distinguish two phases. In the first phase, the robot will perceive its image
in the mirror, changing due to its babbling movements. In doing so, it gathers
sufficient associations between the taken pose and the seen image, but it has to
solve the problem with their redundancy. In the second phase, the robot will
react to the other robot we can manipulate to take a predefined set of poses.

3.1 Ready-made Models

Our solution works with three models: image encoder, pose encoder, and pose
decoder. The image encoder is the pre-trained backbone of a middle-sized visual
transformer trained from a large set of non-annotated images with the DINO
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method, i.e., in the following self-supervised way. It transforms color images with
a resolution of 224×224 into feature vectors of 384 real numbers. Its quality
is impressive, demonstrated by several successful applications, including pose
detection (of humans). Thus we are almost sure that the vector also contains
information representing the robot’s pose in the image. But, of course, they are
in a very raw form: we use the backbone only, while the applications mentioned
above add further processing layers. The model is relatively large, but its middle-
sized version can fit into the 4GB GPU. Moreover, its inference only takes 0.05 s
on an ordinary gaming notebook; thus, it is very suitable for building real-time
applications.

We prepare the pose encoder and decoder by training a VAE from a dataset of
the proper postures of the robot. We employ the iCub humanoid robot simulator,
whose arm contains five significant degrees of freedom, three in the shoulder and
two in the elbow joints. Together poses of the left and right arms are coded
by ten angles. We collect the dataset using the robot’s babbling. We randomly
generate points in the robot’s vicinity and use inverse kinematics to reach them
if possible. Here, inverse kinematics replaces missing feedback that disallows the
robot to feel one posture more and another less comfortable. In this way, we
have collected 60,000 possible poses of both arms, with the same probability
of the robot using the left arm, the right arm, and both arms symmetrically
and independently. Then we train the VAE on the dataset. Since the pose space
has a low dimension (ten degrees of freedom), we have used just ten input, six
intermediate, two feature, six intermediate, and ten output neurons. Of course,
the encoder part doubles, generating both the mean and the standard deviation
logarithm as typical for VAEs. We have used ReLU and tanh activations since
we converted joint angles from −180◦ to 180◦ into the range −1 to 1. Before
training, we shuffled the dataset and split it into 50,000 training and 10,000
testing examples. The training required ten epochs with batch size 32 and took
mere 92 s. Finally, we distilled the encoder and decoder parts of the trained
model and saved them. Thus the encoder converts ten angles into two features,
and the decoder the two features back to the ten angles.3

3.2 Association Mechanism

We employ an association mechanism known as attention [21]. It works with a
set of l key–value pairs. When we have a query q as an input, we try to mix it
from keys K and create the output as an analog mix from the corresponding
values V , where

K =

⎛
⎜⎜⎜⎝

k1
k2
...
kl

⎞
⎟⎟⎟⎠ V =

⎛
⎜⎜⎜⎝

v1
v2
...
vl

⎞
⎟⎟⎟⎠ (1)

All queries q and keys kl are vectors of the dimension n, so K is an l×n matrix.
Values vl and outputs are vectors of the dimension m, so V is an l × m matrix.
3 see the video at https://youtu.be/ZNkF5BTKOLU.

https://youtu.be/ZNkF5BTKOLU
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First, we find ci ∈ 〈0, 1〉 that
∑

ciki = prK(q),
∑

ci = 1, and i = 1, 2, ..., l, where
prK(q) is a vector similar to the projection of q into the subspace generated by
the keys K. In doing so, we want ci to express the similarity between the key ki
and the query q, so we can derive it from the dot product of qT ki, proportional
to the angle that q and ki make.

First, however, we have to get these similarities (positive for same, zero for
perpendicular, and negative for opposite vectors) to 〈0, 1〉, which we can obtain
by the function:

softmax(xi) =
exp(xi)∑
k exp(xk)

(2)

The coefficients with which we mix the keys ki into something similar to the
query q we, therefore, choose as:

c = softmax(
qKT

d
), (3)

where d is a constant that enables us to scale how much we mix from similar keys
and how much from different ones. The smaller this constant is, the closer the
coefficients are to the one-hot encoding. For d = 1/n, where n is the dimension
of the keys, we always lean towards the dominance of one key, while the value
d =

√
n ensures that we constantly mix a little from the other keys. A proper d

can be beneficial for the association mechanism to find the correct response, even
for queries for which no similar key was memorized but can be expressed as a
transition between two memorized keys. When we have the mixture coefficients
c, which roughly correspond to the query, we can analogically mix the values of
V to the output o = cV . So the complete response of the association mechanism
A to a query q is calculated as:

A(q,K, V ) = softmax
(

qKT

d

)
V (4)

The response of the attention mechanism to a query is the same as on its
orthogonal projection to the subspace generated by keys:

A(q,K, V ) = A(prortK (q),K, V ) (5)

since qkl = prortK (q)kl. This way, the mechanism generalizes when the query does
not lie in the subspace generated by keys. Of course, the generalization is as
good as the latent space is close to linear.

3.3 Technical Remarks

For implementation, we need a humanoid robot; we employ iCubSim, the sim-
ulator of the iCub robot [22]. We control it from Python via pyicubsim and
OpenCV libraries. Further, we have used ONNX runtime for running the image
encoder model. We do not need to train it; we have used a pre-trained back-
bone. We used Keras for training the VAE for postures, dissected its encoder
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and decoder parts, and converted them from h5 into the pb format for running
under OpenCV. We have implemented the association mechanism in NumPy.
Since the system operates in real-time, the integration employs a blackboard
architecture [11] that helps us to combine slower and faster processes.

3.4 Method

We have a system with an image encoder F (perception), posture decoder G
(action), and posture encoder H (proprioception). F transforms input images
into feature vectors in the latent space LF , H encodes posture features into LG,H ,
and G decodes them back into the postures. The system has three parameters:
the scaling factor d of the association mechanism, the mapping accuracy ε, and
a termination condition (number of the collected pairs t). We can summarize the
system operation into two phases in Algorithm 1.

Algorithm 1. Learning to imitate via association
F is image encoder, G is posture decoder, H is posture encoder
A is the association mechanism, K keys, V values
d is the scaling factor of A, ε is accuracy, t is the number of collected pairs

procedure phase 1(F ,G,H,K,L,d,ε) � Learning mirror self-recognition
K = L = [ ] � start with empty lists of keys and values
loop

i ← input() � grab the image seen in the mirror
k ← F (i) � encode the image into a point in LF

p ← proprioception() � get the current posture
v ← H(p) � encode the posture into a point in LG,H

w ← A(k, K, V, d) � potential response w of A to k
if ‖v − w‖ > ε then � if w differs from v too much

K ← K ∪ {k} � add k into keys K
V ← V ∪ {v} � add v into values V
if len(K) = t then exit � termination condition

if undefined(o) ∨ p
.
= o then � if the babbling movement is done

v ← random() � generate a point in LG,H

o ← G(v) � decode it into angles of the new goal posture
output(o) � set the goal posture, i.e., start a new babbling movement

procedure phase 2(F ,G,H,K,L,d,ε) � Imitation
loop

i ← input() � grab the seen image
q ← F (i) � encode the image into a point in LF

v ← A(q, K, V ) � response v of A to q
o ← G(v) � decode v to the posture o
output(o) � set the posture
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Fig. 1. Left: Visualization of the pose latent space with topographic organization.
Right: Development of the key–value pairs over time. The red points represent the
collected keys, and the green ones are redundant. (Color figure online)

In phase 1, we start babbling in front of the mirror and gradually collect
keys K (image features) and values V (posture features) that provide us with
mapping of LF to LG,H . We avoid redundant key–value pairs by checking the
response of the association mechanism (Fig. 1). The babbling aims to reach a
random but proper pose as we decode it from random features. In phase 2, we
use the collected associations to imitate another robot (Fig. 2).4

Fig. 2. An example of the learning imitation at the mirror via association. Top: The
testing postures and their points in the latent space. Bottom: Imitated poses.

4 Results and Discussion

Both phases of our algorithm are fully automated so that we can assess its quality
objectively (concerning the random nature of the babbling in phase 1). First,
we prepare a batch of pose feature vectors corresponding to several good poses
(Fig. 2) that we have not intentionally presented to the robot during phase 1.
Then we manipulate another copy of the robot (i.e., we run phase 2), wait until
the imitation finishes, and compare the postures of the two robots. Finally, we
4 see the video at https://youtu.be/G6xWAKDMpsM.

https://youtu.be/G6xWAKDMpsM
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evaluate the comparison in terms of the normalized mean absolute error (NMAE)
calculated as:

NMAE =
1
s

s−1∑
j=0

|DoFj − DoF′
j |

rangej
· 100% (6)

where s = 10 is the number of degrees of freedom, DoF′
j are joints angles of

the imitating robot, DoFj are the angles of its imitated twin, and rangej is
the angular range of the joint j. We achieved NMAE of 5.0% for parameters
d =

√
384, ε = 0.2, t = 100. For comparison, if we present exactly eight testing

postures to the robot, NMAE decreases to 1.14%.
Further, we have investigated the parameters’ influence to evaluate this app-

roach’s limits. First, we tried to modify the number of key–value pairs t. A
higher number enables us to map the latent spaces more precisely. However,
the too-high value decreases the ability of the association mechanism to gener-
alize the mapping. Many irrelevant items are within the n = 384 features the
employed image encoder provides. Therefore t should be significantly lower than
the dimension of keys. If they are equal, and the keys are diverse enough, the
projection prK(q) always equals the query q. As a result, there is not much gen-
eralization. For instance, if we change the viewpoint or the robot’s color from
red to blue, we could fail to recognize its posture. Therefore, the t providing the
most stable behavior is about 200 (Fig. 3 left).

Second, we investigated the influence of the scaling factor of the association
mechanism d. We fixed t and ε and tried to vary d. Lower d like 1

n (n is the
dimension of keys) achieves a low error for the collected values but approximates
the transient postures less accurately. Higher d like

√
n is less precise for the

collected values but generally more suitable (Fig. 3 right).

Fig. 3. The dependence of NMAE on the number of key-value pairs (left) and on the
scaling factor of the association mechanism (right).

Finally, we believe the achieved error could be lower if we train a better
VAE of poses. During its training, we followed the accuracy given by encoding
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and decoding the postures. However, it could be profitable also to consider the
accuracy of decoding and encoding of the posture feature vectors.

5 Conclusion

In this paper, we investigated our approach to learning imitation by association.
We presented an experiment in which a robot learns its posture model from its
images seen in the mirror. We designed the procedure such that we could not
only test our approach but also be able to objectively evaluate its quality and
examine the impact of changing the parameters.

Our approach is technically interesting, mainly for mobile robots that can
use deep learning models on board but lack the capacity for training and fine-
tuning. In parallel, from the cognitive science viewpoint, we shed light on body
modeling from seen images necessary for performing the imitation task. Namely,
we point out that it can emerge quickly, stemming from the gradually developed
general models dealing with perception and action separately.

The results of our experimentation provide us with several ideas for further
development. We intend to prepare better output models with a more advanced
association mechanism in the future.

We share the code at https://github.com/andylucny/learningImitation.

Acknowledgements. This work was supported by the EU-funded project TERAIS,
no. 101079338, and partly by the national VEGA 1/0373/23 project.
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Abstract. Distributions of errors in approximation of binary-valued
functions by networks with sets of input-output functions of finite VC
dimension is investigated. Conditions on concentration of approximation
errors around their mean values are derived in terms of growth functions
of sets of input-output functions. Limitations of approximation capabil-
ities of networks of finite VC dimension are discussed.
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1 Introduction

Theoretical investigation of capabilities of feedforward networks have mostly
been devoted to questions related to approximation of continuous functions on
infinite domains (see, e.g., [1–3] and references therein). Instead, our approach is
focused on approximation of functions on finite domains. Such domains model
finite sets of data (formed e.g., by regular grids or scattered vectors in R

d) that
neural networks process in real applications.

The advantage of our approach is that real-valued functions on finite domains
can be represented as vectors in finite dimensional Euclidean spaces of dimen-
sions equal to the sizes of the functions’ domains. Errors in their approximation
by neural networks can then be studied in terms of Euclidean distances in R

m,
where m is the size of the domain. Typically, sets of data to be processes are
large, so vectors modeling input-output functions are high-dimensional. Thus
properties of high-dimensional geometry (see, e.g., [4–9]) can be exploited for
study of approximation capabilities of feedforward networks.

In this paper, we explore distributions of errors in approximation of binary-
valued functions on large finite domains by neural networks in terms of con-
cepts from statistical learning theory. For this aim we employ the property
of high-dimensional geometry called concentration of measure. It was discov-
ered in statistical physics in study of distributions of velocities of large numbers
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14254, pp. 483–490, 2023.
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of molecules (see, e.g., [6]). Its first mathematical formulation appeared in the
work of Lévy [10] who proved that values of a Lipschitz function on a high-
dimensional sphere concentrate around their median. Mathematical theory of
concentration of measure in a general setting of normed linear spaces together
with related isoperimetric inequalities was elaborated by Milman and Shecht-
man [11]. A discrete version of this phenomena was independently discovered in
high-dimensional probability by Chernoff [12] and Hoeffding [13] (see also the
survey [14]).

We explore concentration of errors in approximation of binary-valued func-
tions by neural networks using one of the tools from high-dimensional probability
called McDiarmid Inequality [15]. It implies that functions on high-dimensional
Hamming cubes {−1, 1}m, which are sufficiently smooth, concentrate around
their mean values. We apply this concentration theorem to neural networks of
finite VC-dimension [16]. Combining concentration of measure and estimates of
growth of sizes of sets of input-output functions, we derive conditions for con-
centration of approximation errors in terms of VC dimension.

The paper is organized as follows. Section 2 introduces basic concepts and
notations on approximation of functions on finite domains. In Sect. 3, proba-
bilistic estimates of approximation errors and conditions for their concentration
in terms growth functions of sets of network input-output functions are proven.
In Sect. 4, there are derived consequences of concentration of measure proper-
ties of hight-dimensional probability for limitations of capabilities of function
approximation of neural networks of finite VC dimension. In Sect. 5, possible
extensions of our results are discussed.

2 Preliminaries

We investigate approximation of binary-valued functions (classifiers) on finite
domains X ⊂ R

d by feedforward multilayer networks with single threshold out-
puts.

For any U ⊂ R
d we denote by

S(U) := {f | f : U → {−1, 1}}

the set of all binary-valued functions on U , and by

F(U) := {f : U → R}

the set of all real-valued functions on U . For any X ⊂ U and any H ⊂ F(U) we
denote by

HX := {g|X : X → {−1, 1} | g ∈ H}
the set of functions on X obtained by restricting functions from H to X.

Let X := {x1, . . . , xm} ⊂ R
d be a domain of functions to be computed

(modeling a set of data to be potentially processed by a class of neural networks).
We identify F(X) with the finite dimensional Euclidean space R

cardX = R
m and
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S(X) with its subset {−1, 1}cardX = {−1, 1}m (in coding theory, it is called the
Hamming cube). The advantage of the range {−1, 1} instead of {0, 1} is that all
functions from X to {−1, 1} have l2-norms equal to

√
m.

F(X) inherits from R
m the inner product 〈f, h〉 =

∑m
i=1 f(xi)h(xi) and the

l2-distance

‖f − h‖2 =

√
√
√
√

m∑

i=1

(f(xi) − h(xi))2.

For f ∈ S(X) and H ⊂ S(X), we denote by

‖f − HX‖2 := min
h∈HX

‖f − h‖2

the distance of f from the set HX , which represents the l2-error in approximation
of f by the set HX (for X finite, the infh∈H ‖f − h‖2 is achieved and thus we
write minimum instead of infimum).

We consider classes of multilayer feedforward networks with fixed architectures
and fixed types of computational units and varying parameters. Their sets of
input-output functions are parameterized families of functions. Here, we focus
on feedforward networks with only one output unit in the last L-th layer. We
assume that the output unit is a signum perceptron, which computes

sgn(
k∑

i=1

viyi + b),

where yi are outputs of units in the (l − 1)-st layer, vi ∈ R are weights, b ∈ R is
a bias, and sgn denotes the signum function sgn : R → R defined as

sgn(t) = −1 for t < 0 and sgn(t) = 1 for t ≥ 0.

So we investigate networks computing sets of input-output functions which are
subsets of S(X).

3 Probabilistic Estimates of Approximation Errors

An advantage of focusing on finite input domains is that sets of all input-output
functions of networks with binary-valued outputs are finite. We show that their
sizes play an important role in analysis of distributions of approximation errors.

Sizes of sets of functions induced on finite sets by various families of binary-
valued functions have long been studied in statistical learning theory. Vapnik
and Chervonenkis [16] defined the growth function ΠH(m) : N+ → N+ of any
set H ⊆ S(U) of binary-valued functions on any set U ⊂ R

d as

ΠH(m) := max
X⊂U,cardX=m

card(H| X).

So the growth function measures the maximal size that a given family of binary-
valued functions H can induce on an m-point subset of U . Here we apply this
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measure to sets of input-output functions of multilayer feedforward networks
with single signum perceptron outputs.

To prove a probabilistic bound on errors in approximation by neural net-
works in terms of growth functions, we employ one theorem of concentration
measure type called the McDiarmid Bound [15]. This bound proves concen-
tration of values of functions of independent random variables, which satisfy
a discrete smoothness condition requiring that the function does not vary too
much if one of its variables is changed. We call a function φ : B1 × . . .×Bm → R

coordinate-wise Lipschitz with parameters c1, . . . , cm if for all i = 1, . . . , m and
all vectors b, b′ ∈ B1 × . . . × Bm that differ only in the i-th coordinate,

|φ(b) − φ(b′)| ≤ ci. (1)

The following version of the McDiarmid Bound is from [17, p.70], where it was
presented as one of the concentration bounds called methods of bounded differ-
ences.

Theorem 1. [17, p.70] Let φ : B1 × . . . × Bm → R be a coordinate-wise Lips-
chitz function with the vector of parameters c := (c1, . . . , cm), and Y1, . . . , Ym be
independent random variables with values in ranges B1, . . . , Bm, resp. Then for
every t > 0,

P
[
|φ(Y1, . . . , Ym) − E(φ)| > t

]
≤ e−2t2/‖c‖2

2 . (2)

Note that Theorem 1 implies concentration of values of φ around its mean value
E(φ) only for sufficiently small ‖c‖22.

We apply Theorem 1 to functions representing errors in approximation by
feedforward networks. For a randomly chosen function f from S(X), let

Y1 = f(x1), . . . , Ym = f(xm)

be random variables with values in {−1, 1} induced by f . For any h ∈ S(X) we
denote by

φh(Y1, . . . , Ym) :=
m∑

i=1

(Yi − h(xi))2

the function assigning to f the square ‖f − h‖22 of its l2-distance from h.
Our main theorem gives an estimate of a distribution of approximation errors

of uniformly randomly chosen functions from S(X) in terms of the growth func-
tion of an approximating set HX (in particular, a set of input-output functions
of a class of networks with binary-valued outputs).

Theorem 2. Let H ⊂ S(U), where U ⊂ R
d, m ∈ N+, X ⊂ U with card X = m,

HX = {h|X |h ∈ H}, and λ > 0. Then for every f ∈ S(X) uniformly randomly
chosen from S(X),
(i) P

[
‖f − HX‖22 ≤ 2m + mλ

]
> 1 − e− mλ2

8 ;

(ii) P
[
2m − mλ ≤ ‖f − HX‖22

]
> 1 − ΠH(m) e− mλ2

8 .
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Proof. Let f ∈ S(X) be uniformly randomly chosen and Y1 = f(x1), . . . , Ym =
f(xm) be independent random variables with values in {−1, 1} induced by f .
First, we verify that for every h ∈ HX , the function φh : {−1, 1}m → R is
coordinate-wise Lipschitz with “small” coefficients. Without loss of generality,
we assume that the two vector variables differ in the first variable. Then we get
|φh(1, b2, . . . , bm) − φh(−1, b2, . . . , bm)| ≤ 4. So φh is coordinate-wise Lipschitz
with all parameters ci = 4. Hence ‖c‖22 =

∑m
i=1 c2i = 16m.

By symmetry of the uniform distribution, for all h ∈ S(X) we have
E(〈f, h〉) = 0 and so E(φh(Y1, . . . , Ym)) = 2m. Setting t := mλ, we get

2t2/‖c‖22 = (2m2λ2)/(16m) = (mλ2)/8.

Thus by Theorem 1 for all h ∈ S(X) and for f uniformly randomly chosen from
S(X),

P
[∣
∣
∣ ‖f − h‖22 − 2m

∣
∣
∣ > mλ

]
≤ e− mλ2

8 . (3)

As for all h ∈ HX ‖f − H‖22 ≤ ‖f − h‖22, the upper bound (i) follows from (3).
The lower bound (ii) follows from

P
[
2m − mλ ≤ ‖f − HX‖22

]
≥ P

[
(∀h ∈ HX)

(
2m − mλ < ‖f − h‖22

) ]
≥

1 − cardHX e− mλ2
8 ≥ 1 − ΠH(m) e− mλ2

8 .

�
As all functions in S(X) have norms

√
m, we can also consider bounds fol-

lowing from Theorem 2 for normalized functions. We denote

h◦ :=
h

‖h‖2 and H◦
X := {h◦ |h ∈ HX}.

By normalizing, we get from Theorem 2

P
[
‖f◦ − H◦

X‖22 ≤ 2 + λ
]

> 1 − e− mλ2
8

P
[
2 − λ ≤ ‖f◦ − H◦

X‖22
]

> 1 − ΠH(m) e− mλ2
8 . (4)

For example, setting λ := m−1/4 the bound (4) implies the lower bound

P
[
2 − m−1/4 ≤ ‖f◦ − H◦

X‖22
]

> 1 − ΠH(m) e− m1/2
8

on the probability of an error in approximation of a uniformly randomly chosen
f by a set of network input-output functions with the growth function ΠH(m).
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4 Approximation by Networks with Finite VC Dimension

Theorem 2 and the bound (4) show that growth functions play a critical role
in approximation capabilities of neural networks. In particular, networks with
sets of input-output functions having polynomially increasing growth functions
cannot well approximate most functions on large domains.

The following theorem by Vapnik and Chervonenkis [16, Theorem 1] states
that a growth function ΠH(m) is either equal to 2m or it is bounded by a
polynomial.

Theorem 3. [16, Theorem 1] For any set U and a subset H of S(U) either
ΠH(m) = 2m or ΠH(m) ≤ mr + 1, where r = min{s |ΠH(s) < 2s}.
The growth function is related to the VC-dimension defined as

dimV C H := max{m ∈ N+ |ΠH(m) = 2m}.

The following bounds are known as the Shelah-Sauer Lemma [18,19], although
they were proven earlier by Vapnik and Chervonenkis [16].

ΠH(m) ≤
dimV C∑

i=0

(
m

i

)

(5)

and for m ≥ dimV C ,

ΠH(m) ≤
(

em

dimV C

)dimV C

. (6)

Thus the growth function of a family of functions with finite VC-dimension
is bounded from above by a polynomial of degree equal to the VC-dimension.
Combining Theorem 2 with the equation (6) we obtain for m ≥ dimV C the
following lower bound

P
[
2m − mλ ≤ ‖f − HX‖22

]
> 1 −

(
m

dimV C

)dimV C

edimV C − mλ2
2 (7)

on errors in approximation by networks with sets of inut-output functions HX

where cardX = m. By the bound (7) for a sufficiently large m (such that mλ2

2
outweighs dimV C(H)), almost all binary-valued functions on a domain X of the
size m have large errors in approximation by networks computing input-output
functions from H.

5 Discussion

We showed that growth functions of sets of input-output functions have an
impact on almost deterministic behavior of approximation errors of uniformly
randomly chosen binary-valued functions on large finite domains. Most of such
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functions have large errors in approximation by networks of finite VC dimension.
So there is a trade-off between finite VC dimension and accuracy in approxima-
tion by feedforward networks.

Our probabilistic bounds assume that we have no prior knowledge about clas-
sification tasks or that all binary classifiers have the same importance. In such
cases, the probability according to which random classifiers are chosen has to be
uniform. In real applications, probabilities of tasks are not likely to be uniform.
We investigated non uniform distributions of correlations of classifiers with net-
work units in [20]. Influence of network depth and numbers of its parameters are
subject of our paper [21]. Extension of probabilistic bounds for binary-valued
functions to real-valued ones is a subject of our work in progress.

Acknowledgments. This work was partially supported by the Czech Science Foun-
dation grant 22-02067S and the institutional support of the Institute of Computer
Science RVO 67985807.
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1. Kainen, P.C., Kůrková, V., Sanguineti, M.: Dependence of computational models
on input dimension: tractability of approximation and optimization tasks. IEEE
Trans. Inf. Theor. 58, 1203–1214 (2012)

2. Telgarsky, M.: Benefits of depth in neural networks. Proc. Mach. Learn. Res. 49,
1517–1539 (2016)

3. Yarotsky, D.: Error bounds for approximations with deep ReLU networks. Neural
Netw. 94, 103–114 (2017)

4. Gorban, A., Tyukin, I., Prokhorov, D., Sofeikov, K.: Approximation with random
bases: pro et contra. Inf. Sci. 364–365, 129–145 (2016)

5. Gorban, A., Tyukin, I.: Blessing of dimensionality: mathematical foundations of
the statistical physics of data. Philos. Trans. Royal Soc. A 376, 2017–2037 (2018)

6. Gorban, A.N., Makarov, V.A., Tyukin, I.Y.: The unreasonable effectiveness of small
neural ensembles in high-dimensional brain. Phys. Life Rev. 29, 55–88 (2019)
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15. McDiarmid, C.: On the method of bounded differences. In: Siemons, J. (ed.)
Surveys in Combinatorics, pp. 148–188. Cambridge University Press, Cambridge
(1989)

16. Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative fre-
quencies of events to their probabilities. Dokl. Akad. Nauk SSSR 16(2), 264–279
(1971)

17. Dubhashi, D., Panconesi, A.: Concentration of Measure for the Analysis of Ran-
domized Algorithms. Cambridge University Press (2009)

18. Shelah, S.: A combinatorial problem; stability and order for models and theories
in infinitary languages. Pac. J. Math. 41, 247–261 (1972)

19. Sauer, N.: On the density of families of sets. J. Comb. Theor. 13, 145–147 (1972)
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1 Introduction

ImageNet1 [2] is a large, publicly available, image dataset (14M+ images). Its
images are organized according to the WordNet hierarchy, making it especially
useful for image classification tasks, as target labels are readily available. In
2010, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [12]
introduced a particular subset of images from 1000 different categories known as
the ImageNet-1k dataset, with an accompanying image classification challenge.

In 2012, a Convolutional Neural Network (CNN) now widely known as
AlexNet [9] convincingly won this competition. This result led to quick and
widespreak adoption of CNNs to solve image classification and recognition tasks;
while AlexNet was the only CNN submitted in 2012, by the next year the major-
ity of submissions were CNN-based. Other popular architectures that were either
submitted to ILSVRC or trained on the ImageNet-1k dataset, and that will
be evaluated in this paper, are VGG16 [13], ResNet18 and ResNet50 [5], and
DenseNet161 [7].

Despite their popularity and successes, these architectures also have weak-
nesses, both ethical [1,14,16] and technical. The most famous in this latter cate-
gory are arguably adversarial attacks [15]: tiny alterations to an original image,
imperceptible to the human eye, that fool the network into misclassifying the
image. Also visible alterations such as blurring, pixelation, addition of several
types of noise, etc., severly impact model performance [6]. In summary, these
networks tend to perform very well on the type of data they are trained on, but
fail to generalize beyond that.

Within this context, this paper focuses on a type of alteration that seems
understudied, namely color changes. Moreover, existing work, such as [3,11],
focuses on comparison between the human vision system and CNNs. Both stud-
ies use models trained on ImageNet-1k—the former VGG-M and the latter
AlexNet, VGG16 and VGG19—to investigate the color sensitivity and selec-
tivity of unique CNN filters and layers. Their interest lies in decyphering how
these CNNs encode color, and to what extent this overlaps with biological sys-
tems. The results obtained in [3] state that overall, the models they studied are
more sensitive to changes in hue than in saturation, and that both affect model
accuracy. Both results will be discussed and compared to our results below.
Our focus lies solely on how color affects model robustness and performance.
Although complete color invariance is not desireable, neither should a useful
CNN model alter its predictions when small color shifts, that would not fool
humans, are applied to images. An example of undesireable behavior is depicted
in Fig. 1, which shows AlexNet misclassifying an originally correctly classified
image when it is subjected to modest hue shifts. In this context, it is interest-
ing to note that the original AlexNet paper [9] describes a data augmentation
scheme that (last paragraph Sect. 5.1):

1 https://www.image-net.org/.

https://www.image-net.org/
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[...] approximately captures an important property of natural images,
namely, that object identity is invariant to changes in the intensity and
color of the illumination.

For some reason, this specific augmentation disappeared from later implemen-
tations, e.g., the PyTorch implementation we use.

Fig. 1. Example of AlexNet sensitivity to hue shifts, expressed in degrees.

We start by investigating the effect of applying hue and saturation shifts to
ImageNet-1k images on ImageNet-1k trained models, both in terms of prediction
robustness—i.e., does a prediction for an altered image differ from that of the
original image, regardless of the correctness of that original prediction?—and
accuracy. Next, we turn our attention to EmoNet [8], an image classification
model obtained by taking AlexNet trained on ImageNet-1k, replacing its last
layer with a 20 node linear layer and training only this new layer on a custom
dataset of 137k images annotated with one of 20 emotion labels representing the
emotion elicited by the images in an observer. The question we want to answer
is to what extent this model obtained by means of transfer learning inherits
its parent’s properties. EmoNet forms an interesting case, because elicited emo-
tions form a dimension that can also reasonably be assumed to be independent
of moderate color changes; a few degrees of hue shift shall not make a puppy less
cute. Following this, we look at some of the earlier mentioned CNNs, but trained
from scratch on different large datasets. In particular, we consider Stylized Ima-
geNet [4], a dataset derived from ImageNet-1k by means of style transfer, and
Places365 [17], a dataset of millions of images annotated with one of 365 scene
classes. By comparing the effect of color-related changes on a same architecture
trained on different datasets, we determine if this effect is an inherent property
of the architecture or a consequence of the training data. Stylized ImageNet is of
particular interest, as its authors specifically constructed the dataset to obtain
models that use more global (“style”) rather than local (“texture”) features.

Finally, we propose two image preprocessing steps, one related to hue, the
other to saturation, to augment a model’s robustness with regards to alterations
in these dimensions. To demonstrate the effectiveness of these preprocessors, we
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focus on ImageNet-1k and show that one can simply continue training a pre-
trained model using these additional preprocessors to achieve the desired effect;
there is no need to train a model from scratch. All our code and models are
available through our GitLab page [10].

The remainder of this paper is organized as follows: in Sect. 2 we explain the
methodology used to test model robustness to hue and saturation changes, fol-
lowed by a discussion of obtained results in Sect. 3. Section 4 deals with retraining
pretrained models using additional preprocessing steps in order to increase model
robustness to hue and saturation changes. The paper concludes with Sect. 5.

2 Exploring Color Robustness: Implementation

We perform experiments with a number of models that were trained by others on
specific training sets. In our experiments, we test performance using a number
of existing validation sets. Table 1 shows an overview of the model-training-
validation combinations we consider. The ImageNet-1k train and validation sets
consist of 1,281,167 and 50,000 images respectively. For Places365, the mod-
els were trained using 8,000,000 images, with the corresponding validation set
containing 36,500 images. Our code is Python-based, using PyTorch2 as deep
learning framework and Pillow3, often referred to as PIL, as image processing
package. All ImageNet-1k models are standard PyTorch implementations. The
SIN and Places365 models were obtained through their respective public Git
repositories. EmoNet is officially released as a MatLab model, and was ported
by one of the current authors to PyTorch4.

Table 1. Overview of training and validation data per model. “〈ModelName〉” is a
placeholder for a valid architecture, “IN-1k” = ImageNet-1k, “SIN” = Stylized Ima-
geNet, “train” = train data, “val” = validation data.

Model Trained on Validated on

AlexNet, VGG16, ResNet18/50, DenseNet161 IN-1k train IN-1k val

〈ModelName〉-SIN SIN IN-1k val

〈ModelName〉-P365 Places365 train Places365 val

EmoNet IN-1k train + EmoNet IN-1k val

2.1 Applying Hue Changes

For a given pre-trained model M and corresponding validation data V , we apply
hue shifts with degrees d ∈ [0, 10, 20, . . . , 350] to obtain shifted data sets Vd. Note
that V = Vd=0.
2 https://pytorch.org/.
3 https://pillow.readthedocs.io/en/stable/.
4 This port is available at https://gitlab.com/EAVISE/lme/emonet.

https://pytorch.org/
https://pillow.readthedocs.io/en/stable/
https://gitlab.com/EAVISE/lme/emonet
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To apply the hue shifts, we first load the images as PIL images, then trans-
form them to tensors using PyTorch. These tensors, which encode RGB infor-
mation, are then converted to HSV5. Following this, the H-dimension is shifted
by the required amount of degrees, and the image converted back to RGB.

2.2 Applying Saturation Changes

To change the saturation level of an image, we use the enhance(g) method of
the PIL.ImageEnhance.Color class, with g ∈ [0,+∞[. Using color gain g = 1
returns the original image, g = 0 returns a black-and-white copy, values 0 < g <
1 produce desaturated images and g > 1 saturates the image. Starting again
from validation data V , we produce data sets Vg using the described approach
with g ∈ [0.00, 0.05, . . . , 1.95, 2.00], where V = Vg=1. The upper limit value of 2
was chosen heuristically by visual inspection.

2.3 Assessing Model Robustness

For a given model M , we determine its reference predictions, defined as its
predictions for V = Vd=0 = Vg=1. We then let M process all other data sets
Vd�=0 and Vg �=1, and check what percentage of predictions remain unchanged.
For each data set, we also compute the accuracy and look at what percentage of
originally correct and wrong predictions were left unchanged. In other words, this
tells us whether the internal model representation of correctly classified images
is more stable than that of wrongly classified images.

3 Exploring Color Robustness: Results

A graphical representation of the evolution of model performance with hue and
saturation shifts for AlexNet-based models is depicted in Fig. 2. Due to space
limitations, we do not include plots for the other models, but instead make those
available on our GitLab page [10]. Just as the symmetricity of the hue shift plot
can be explained by the hue shift being controlled by a 360-degree parameter,
the non-symmetricity of the saturation shift plot follows from the g parameter
being only lower bound, and non-symmetric around 1. Statistics for all models
are shown in Table 2. Besides the familiar Top1 accuracy, this table also includes
the following metrics:

– Equal predictions (Equal): for a given hue shift d �= 0 or saturation shift
g �= 1, this represents the fraction of images for which the predicted label
remains the same as the original prediction (d = 0, g = 1), regardless of the
correctness of the original prediction.

– OverLap+ (OL+): the fraction of originally correctly classified images whose
predicted label did not change.

5 We use the code available at https://github.com/limacv/RGB HSV HSL for this.

https://github.com/limacv/RGB_HSV_HSL
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– OverLap− (OL−): the fraction of originally wrongly classified images whose
predicted label did not change.

– Original Position (O.P.): the position of the label predicted for the shifted
image in the list [l0, l1, . . . , ln] of labels ordered by their likelihood as predicted
for the original image. That is, if O.P. = 0, the shift did not change the
prediction, but if O.P. is, e.g., 2, this means that the label predicted for the
shifted image was originally the third most likely label. The result tables show
averages that were computed taking only non-zero values into account.

Fig. 2. Fraction of identically classified images compared to the reference prediction
(d = 0, g = 1) for increasing hue and saturation shifts for AlexNet-based models.

For the Equal metric, we observe very similar results for the same archi-
tectures trained on different datasets. EmoNet does appear to perform slightly
better than other AlexNet-based models wrt. larger hue shifts, but given that it
only has 20 output nodes compared to 365 and 1000 for the other models, sug-
gesting that larger perturbations are needed to switch output nodes, the overall
similarities are remarkable. For saturation shifts, the differences are negligible.
The slightly better AlexNet-SIN performance compared to AlexNet for satura-
tion shifts is puzzling, given that both VGG16 and ResNet50 show the opposite
behavior. Overall, the fact that SIN-trained models appear to be less robust wrt.
both hue and saturation shifts than the ImageNet-1k models is intruiging, given
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that the aim of the SIN dataset is to create models that focus more on “global”
than “local” features. Since hue and saturation shifts are global transformations,
one would have expected the opposite. Our results confirm and expand on the
findings of [3] that hue sensitivity is higher than saturation sensitivity6, apparent
from the much lower values for Equal dall than for Equal gall.

Turning to the OverLap metrics, it is noteworthy that images that are origi-
nally correctly classified consistently have a lesser probability of being misclassi-
fied after applying hue/saturation changes. This suggests that the internal model
representations for these images are inherently more robust, although it is not
clear at first sight why this is the case. The magnitude of the gaps between the
OL+ and OL− metrics is striking. Even more so is the fact that, despite all
models being less sensitive to saturation changes, the corresponding OL+/OL−
gap lies considerably higher than for hue changes.

Finally, the O.P. results are in line with the previous results. As the number
of output nodes diminishes, so does the O.P. Furthermore, for hue changes, the
O.P. is higher than for saturation changes. For smaller perturbations (|d| ≤ 30,
g ∈ ]0.5, 1.5[\{1}), the O.P. is markedly smaller than when considering dall or
gall. As the size of the perturbation increases, so does the erraticness of the
change in predicted label. This is specifically apparent in the very large gap in
standard deviations between both regimes.

Concerning overall model performance, the top panel in Fig. 2 suggests that,
for AlexNet and EmoNet, this more or less linearly decreases until it plateaus
at around an 80◦ hue shift in either direction. Similar behavior can be observed
for the other models, with the exception of ResNet50, for which the perfor-
mance shows a slight bump around the 170◦–180◦ region. In their paper, [3]
report an average drop in performance of 31.6% over hue shifts, averaged over
VGG16, VGG19 and AlexNet performance, with 42% for AlexNet alone. This
matches our 41.5% for AlexNet7. In a non-reported experiment, we obtained
28.9% for VGG19, which combined with the 22.9% for VGG16 derivable from
Table 2 amounts to a 30.9% average, closely matching their result. The slight dif-
ferences can be explained by the useage of different pretrained models, namely
CAFFE vs. PyTorch implementations. Turning to grayscale (corresponding to
g = 0) vs. original images, they report average drops of 25% across all three net-
works, and 33% for AlexNet, compared to 25.5% and 40.2% for us respectively,
18.8% for VGG16. Although the average across networks matches, we can only
speculate as to the larger implied individual differences indicated by the AlexNet
mismatch.

6 Note that [3] use “chroma” instead of “saturation”, but given the similarity between
both, our conclusion still stands.

7 Divide “Top1 dall” by “Top1 d0, g1” to compute this number.
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4 Increasing Color Robustness by Adding Extra
Preprocessing Steps

4.1 Training of Models

For this experiment, we focused on the AlexNet, VGG16 and ResNet18
ImageNet-1k models. To increase their robustness to changes in hue and sat-
uration, we apply random hue and saturation changes to input images during
the training phase, on top of the standard ImageNet-1k preprocessing steps. The
image processing is done as explained in Sects.2.1 and 2.2. The difference is that
this time, the magnitude of the change is chosen randomly whenever an image
is loaded. The number of degrees of the hue shift is sampled from a normal
distribution N (μ = 0, σ = 30), while the gain factor for the saturation shift is
sampled from a normal distribution N (μ = 1, σ = 0.5). The choice for these
particular distributions is heuristic. For hue changes, σ = 30 was chosen as this
range coincides with a steep descent in model performance and comprises hue
changes that, as illustrated in Fig. 1, are not too extreme. For saturation changes,
given the reduced model sensitivity, we opted to have 2σ span the entire covered
spectrum.

The hue and saturation changes are applied right before normalizing the
image. Model validation is performed on the original validation set.

As a starting point, we take the pretrained PyTorch implementations of the
aformentioned models, available through the torchvision library. We then con-
tinue training these models using the ImageNet-1k train data, CrossEntropyLoss,
dropout = 0.25, Adam optimizer with weight decay = 10−6, batch size 64 for
VGG16 and 256 for Alexnet and ResNet18, and the learning update rule:

lre =
lr0√

(e//2) + 1
, (1)

with lre the learning rate at epoch e and the initial learning rate lr0 = 10−5.
By virtue of the floor division (//), this means we update the learning rate once
every 2 epochs. Training stops when either the best loss or the best weighted
F1 score on the validation set lies 6 epochs behind the current epoch, with the
model corresponding to this best epoch put forward as the final trained model.

Models were trained using hue (+h), and hue + saturation (+hs) preprocess-
ing. Given the increased model sensitivity to hue changes, we opted not to train
models using only saturation preprocessing. To check the effect of only retraining
a CNN’s classifier (class.; i.e., the final linear layers following the convolution
layers) instead of the entire model, we also retrained the AlexNet classifier, con-
sisting of the final 3 linear layers including the output layer, while keeping the
convolution layers fixed.

4.2 Results

Metrics for our retrained models are depicted in Table 3. Plots depicting model
performance are made available through out GitLab page [10]. Noteworthy is the
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fact that our retrained models retain the Top1 performance of the original mod-
els, but manifest clearly improved robustness to hue and saturation alterations.
This means that separate sets of CNN filters achieve the same accuracy on the
same dataset, but nonetheless show vastly different behavior when performing a
specific transformation on the input images. Although the “AlexNet class.” mod-
els already show a significant improvement in robustness compared to AlexNet,
the fact that the full retrained models perform even better confirms the intuition
that CNN filters are the crucial ingredient in obtaining robust models, rather
than the linear classification layers. For all models, the additional preprocessing
does not seem to alter the gap between OL+ and OL− for hue changes, i.e., they
are both affected similarly, but additional saturation preprocessing has a clear
positive effect for its corresponding gap. More striking is the large decrease in
O.P., specifically for hue. For saturation, the effect is less pronounced8, arguably
in part because there is less room for improvement to begin with. Moreover,
additional hue preprocessing tends to negatively influence O.P. for saturation
changes, but using both hue and saturation preprocessing benefits the O.P. for
both types of changes. All this suggests that these preprocessing steps contribute
to creating more robust internal model representations.

5 Conclusion

This paper explores the prediction stability of the popular CNN architectures
AlexNet, VGG16, ResNet18 and 50, and DenseNet161. We show that all mod-
els alter their predictions when input images have their hue shifted, with larger
shifts increasing alteration frequency. Averaged over all hue shifts, relative model
performance experiences a drop of 41.5%, 22.9%, 21.4%, 11.3% and 14.3% respec-
tively for the aforementioned models, resulting in an average drop of 22.28% over
all models; larger models show less sensitivity. The largest drops are observed
within up to 30◦ shifts from reference, with performance stabilizing around the
80◦ mark. Moreover, models trained on ImageNet-1k, Stylized ImageNet and
Places365 are compared, showing the training data has little to no effect on
this issue. EmoNet, a model derived from AlexNet, is shown to inherit essen-
tially the same behavior as its parent. Saturation shifts elicit similar but more
restrained behavior, with an average performance drop of only 4.0% over all
models. Importantly, for both hue and saturation alterations, the prediction for
images originally correctly predicted tends to be more robust than for images
originally wrongly predicted. We propose to include two additional preprocessing
steps in the training process, namely random hue shifts and saturation changes,
which, when used to retrain existing models, are shown to improve average pre-
diction stability for hue shifts on ImageNet-1k with 19%, 13% and 12% for
AlexNet, VGG16 and ResNet18 respectively. For saturation changes, 11%, 6%
and 6% improvements are obtained, in the last two cases lifting stability up to
94% and 93%. Interestingly, these retrained models retain the original model’s
ImageNet-1k performance, leading to the question: How exactly can several sets
8 We compare 〈ModelName〉 to 〈ModelName〉 +hs.
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of convolution filters result in the same ImageNet-1k accuracy, yet show markedly
different behavior when subjected to particular image transformations? We hope
to address this question in future work.
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Abstract. This paper presents a novel approach to efficient neural net-
work verification through the use of adversarial attacks and symbolic
interval propagation. The proposed method leverages low-cost adversar-
ial attacks to quickly obtain a rough estimate of the first set of bounds,
and then utilizes symbolic interval propagation to compute tighter
bounds. We demonstrate the effectiveness of our proposed method on
the popular MNIST dataset, which contains hand-written digit images.
The results show that the proposed method achieves state-of-the-art ver-
ification accuracy with significantly reduced computational cost, making
it a promising approach for practical neural network verification.

Keywords: Perturbation Refinement · Neural Network Verification ·
Adversarial Robustness

1 Introduction

Deep neural networks (DNNs) are widely used today. Their ability to generalise
and thus work well even on previously unknown inputs is a key factor in their
widespread use. Although this has many useful advantages, it could occasionally
render DNNs unreliable. This dearth of dependability can actually come at a ter-
rible price in applications that are either safety- or business-critical. Evidently,
a trained network’s instability is primarily caused by its inability to withstand
input perturbations, or the fact that even minor changes to some inputs can
significantly alter the network’s output. In a lot of application domains, this is
not ideal. Consider, for instance, a network that has been taught to alert air-
craft to change their paths in response to approaching intruder aircraft. It is
reasonable to anticipate that such a network will be capable of making sound
decisions, meaning that the advice given in two situations that are strikingly
similar should not diverge greatly. However, if that is not the case, then showing
the network’s lack of resilience through adversarial inputs can aid in both net-
work improvement and determining when the network should hand over control
to a more dependable entity.

When a network and an input are provided, an adversarial input is one that
is very similar to the input but the outputs of the network for the two inputs
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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are very distinct. Finding adversarial sources has been the subject of extensive
research in the past [3,7,9,17]. Depending on whether they take into account
the architecture of the network during the study or not, these approaches can
be categorised as black-box or white-box techniques. Both of these groups have
produced a wide range of techniques, from the creation of random attacks [14]
and gradient-based approaches [1] to symbolic execution [18,22,26], fault local-
ization [24], coverage-guided testing, SMT, and ILP solving [10,23].

Interval analysis is a method that’s used to verify the safety and robustness
of neural networks by estimating their output ranges for a given input. This is
achieved by calculating both the upper and lower bounds of the output using
interval arithmetic, as described in the literature [11]. To improve the accuracy of
this approach, researchers have proposed a related technique known as symbolic
interval analysis [22]. This involves approximating the output range of a neural
network by computing the upper and lower bounds using symbolic mathemat-
ical expressions, which can result in tighter bounds and improved verification
outcomes.

Robustness verification of neural networks is essential to ensure that they
behave correctly and reliably in the presence of adversarial attacks or unex-
pected inputs. However, the verification process can be computationally expen-
sive, especially for large and complex neural networks. Therefore, accelerating
robustness verification of neural networks is crucial to make it feasible for practi-
cal applications. Numerous techniques have been proposed to utilize abstraction
to achieve robustness [5,13]. Since ReLU activation function is commonly used
in neural networks, it is more practical to investigate the problem of verifying
robustness [15]. As ReLU networks have a piecewise-linear structure, the problem
of verifying robustness can be transformed into a standard Mixed-Integer Linear
Programming (MILP) problem, which can be tackled using branch-and-bound
methods [6]. However, for large-scale ReLU networks, solving MILP problems for
verifying robustness is still challenging. The difficulty of systematically searching
the high dimensional and continuous input space makes it challenging to ensure
that an adversarial example can be found, even if it exists. Therefore, machine
learning models that appear robust to existing attacks may still have security
weaknesses in practice. Off-the-shelf MILP solvers cannot make use of solutions
gathered at a low cost via gradient-based adversarial attacks to quicken up its
search. To tackle this issue, we propose warm-starting and bounds tightening
techniques by integrate symbolic interval analysis to obtain tighter bounds for
a gradient-based adversarial example which is formulated as MILP formulation.
This can reduce the number of iterations required to converge to the optimal
solution, and hence the computation time. The contribution is summed up as
follow:

– An approach called warm-starting has been proposed to incorporate cheap
solutions obtained from adversarial attacks, with the goal of reducing the
search space that a MILP solver would otherwise have to explore. Addition-
ally, a technique called bound tightening has been introduced to tighten the
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bounds on the neurons, which can further improve the accuracy and efficiency
of the MILP solver.

– A framework verifier for generating adversarial examples has demonstrated
superior performance and has been validated on the MNIST dataset using
three distinct neural network architectures and three different verification
methods.

2 Related Work

Our work is connected to prior studies on attacking and defending deep neu-
ral networks, which encompass topics such as verification, testing, and creating
adversarial examples. The existing research on neural verification can be catego-
rized into two types based on constraint solving: methods based on Satisfiability
Modulo Theories (SMT) problems [8,13] and methods based on Linear Program-
ming (LP) [2,4]. These techniques are generally sound and complete i.e., no false
negatives and no false positive respectively. But owing to the computational com-
plexity, they have little capacity to scale. There are two methods, namely approx-
imation and abstraction, that can be employed to achieve better scalability when
verifying robustness. These techniques are known to be effective in achieving
this objective [12,25]. Furthermore, there are numerous efforts aimed at either
attacking deep neural networks (DNNs) or enhancing their resilience through the
creation of adversarial examples. L-BFGS [19] was the earliest method developed
for producing adversarial examples, while FGSM [9] utilizes gradient updates to
create such examples. FGSM is capable of generating an adversarial example
from an input with just one update, making it a relatively efficient technique. In
our work, we employ FGSM attack to produce the rough set of bounds for the
neurons before formulating into a LP problem.

3 Background

3.1 Robustness Against Adversarial Perturbations

The characteristics of a neural network can be inferred from the meaning and
context of its specification. Typically, these characteristics are input-output (IO)
properties that specify a particular relationship between the input and output
of the network. One of the earliest IO properties that has been investigated is
robustness, which requires the model’s output to remain consistent even when
minor modifications are made to the input value [7,16].

3.2 Gradient-Based Adversarial Attack

A small change made to the input to deceive the classifier’s prediction is called an
adversarial attack. If a neural network can withstand such attacks, it is probable
that it can also handle other types of changes. However, this is not guaranteed,
and therefore it is necessary to formally test the network’s robustness against
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all potential alterations. In our work, the purpose of the finding adversarial
examples is to reduce the search space by obtaining the perturbation bounds of
the adversarial example before encoding it to a MILP solver. Numerous methods
exist for creating adversarial attacks, which can be classified into two categories
based on the attacker’s objective: targeted attacks and untargeted attacks.

– Targeted attack : A targeted attack aims to cause the input sample to be
misclassified to a specific target class, rather than just away from its original
class.

– Untargeted attack : An untargeted attack does not have a specific desired
output class, but rather aims to cause the input sample to be misclassified
from its original class, regardless of what new output class it ends up being
classified as.

Fast Gradient Sign Method. To create boundaries for the perturbations, we
use the Fast Gradient Sign Method for the adversarial attack [9].
To produce a modified version of an original sample represented by x, we intro-
duce a slight perturbation ε to each of its components through either addition
or subtraction.

The technique involves analyzing the sign of the gradient of the loss function,
which is denoted as ∇xL(x, y):

– If the gradient ∇xL(x, y) is positive, it indicates that an increase in x results
in an increase in the loss function L.

– Conversely, if the gradient ∇xL(x, y) is negative, it implies that an increase
in x leads to a decrease in the loss function L.

3.3 Symbolic Interval Analysis for Bound Tightening

Interval analysis is a method utilized in the verification of neural networks to
study their behavior and ensure their safety and robustness. The process involves
an estimation of the output range of a neural network for a given input through
computing the upper and lower bounds of the output using interval arithmetic.
In interval analysis, each neuron in the network is treated as a function that
takes an input and gives an output. The input and output are both represented
as intervals that express a range of possible values. Interval arithmetic operations
are then used to propagate the input intervals through the network, resulting
in the output intervals. The calculated output intervals are compared to the
desired output range to determine whether the network is safe and robust. If
the output intervals include the desired output range, then the network is con-
sidered safe; otherwise, it may be potentially unsafe, requiring further analysis.
Interval analysis is a robust technique for verifying neural networks as it can
handle non-linear activation functions and multiple layers. However, it may be
computationally demanding and not scalable to larger networks.

The given Fig. 1(a), depicts a Naive Interval analysis of a three-layer Deep
Neural Network (DNN) with weights assigned to edges, and bias vectors contain-
ing all elements as 0. Assuming the input intervals to the first layer to be [2, 4]



508 M. S. Patil and K. Främling

and [3, 6], the output interval obtained after performing scalar operations over
intervals layer-wise, is [−5, 7]. However, here the output bound includes certain
specific values that are infeasible in practical scenarios due to overestimation.
For example, the value of −5 can only be achieved when neuron n3 outputs 13
and neuron n4 outputs 8. But to output 10 for n3, the neurons n1 and n2 must
output 4 and 5 simultaneously, and to output 8 for n4, the neurons n1 and n2

should output 1 and 2 at the same time which also referred to as the dependency
problem.

Fig. 1. Naive Interval Propagation vs. Symbolic Interval Propagation.

Symbolic interval analysis [22] or Symbolic Interval Propagation (SIP) is an app-
roach utilized in the verification of neural networks to ensure their safety and
robustness. This method involves approximating the output range of a neural
network by calculating the upper and lower bounds of the output through the
use of symbolic mathematical expressions. Symbolic interval analysis employs
interval arithmetic to generate a group of mathematical expressions that repre-
sent the output range of the neural network. These expressions can be utilized
to calculate the output range of the network for a given input and compare it to
the desired output range to determine the safety and robustness of the network.
Symbolic interval analysis is a powerful technique for verifying neural networks
as it enables the analysis of intricate networks with non-linear activation func-
tions and multiple layers. It is particularly effective for analyzing networks with
piece-wise linear activation functions such as ReLU, as these networks can be
challenging to evaluate using other verification methods. Figure 1(b), represents
a symbolic approach to address the dependency problem. For neurons n1 and
n2, let x and y represent the input variables. For neurons n3 and n4 can be
symbolically represented as 2x + y and x + 2y correspondingly and greater than
zero since x ∈ [1, 3] and y ∈ [2, 4]. Therefore, the symbolic interval for n3 and
n4 is [2x + y, 2x + y] and [x + 2y, x + 2y] correspondingly and, similarly, the
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symbolic interval for n5 is [−x + y]. Hence, for x ∈ [1, 3] and y ∈ [2, 4], the
output interval is [−1, 3] which is computed as a tighter bound as compared to
the naive approach of [−5, 7].

3.4 Mixed-Integer Linear Programming

Unstable Neurons. The non-linearity of activation functions A is a significant
obstacle in the process of verification. Specifically, the ReLU activation function
A

(
z
(i)
j

)
= ReLU

(
z
(i)
j

)
= max

(
0, z

(i)
j

)
introduces complexities that must be

addressed during verification. To tackle this issue, we define intermediate layer
bounds l(i)j ≤ z

(i)
j ≤ u(i)

j that constrain the input of each ReLU neuron for a
given input x ∈ C. With these bounds, we can categorize the activation space of
each ReLU neuron.

– Active and Inactive: When the bounds of an intermediate layer for a ReLU
neuron satisfy the condition l(i)j ≥ 0 or u(i)

j ≤ 0, it indicates that the ReLU
neuron lies in either the linear active region where its output is equal to its
input (ẑ(i)j = z

(i)
j ) or the inactive region where its output is zero (ẑ(i)j = 0).

– Unstable: If l(i)j ≤ 0 ≤ u(i)
j , we call this ReLU neuron as an unstable neuron,

this circumstance frequently presents challenges to the process of certification.

We follow the MILP-based reformulation of ReLU networks [20], to encode
the unstable neuron. We formulate a ReLU activation function as:

z0 = x

ẑk+1 = W k+1zk + bk+1,∀k = 0, 1, . . . ,K − 1
zk = max (ẑk, 0) , ∀k = 1, . . . , K

ŷx = WKzK + bK ,

(1)

where the variable K denotes the number of layers. Each layer is determined
by a weight matrix W k and a bias vector bk. The size of the weight matrix is
[Nk+1×Nk], while the size of the bias vector is [Nk+1×1]. Here, Nk refers to the
number of neurons in the kth layer. The specifications that define the encoding
of the neuron are as follows:

zk = max (ẑk, 0) ⇒

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

zk ≤ ẑk − ẑmin
k (1 − bk)

zk ≥ ẑk

zk ≤ ẑmax
k bk

zk ≥ 0
bk ∈ {0, 1}Nk .

(2)

where bk is a binary variable.

4 The Perturbation Refinement Verification Framework

The methodology we have adopted involves the combination of gradient attack
and symbolic interval analysis with the MILP-based method. The use of adver-
sarial example from an attack aids in the provision of rough perturbation values,
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which we then utilize to establish the primary bounds. Following this, we lever-
age SIP to obtain more precise bounds for the hidden neurons. The application
of tighter bounds results in decreased activation search space in the verification
problem, thereby enhancing verification efficiency.

Algorithm 1: Perturbation Refinement
Input: DNN N , input x, perturbation threshold ε
Output: Robust

1 ε̂ := FGSM attack(x); // Initial adversarial perturbation

2 SymbolicBounds := SymbolicBoundpPropogation(x, ε̂)
3 MIPFormulation := MIPModel(N , x, ε̂, symbolic bounds)

4 ̂solver := Constraint&Objective(MIP formulation)

5 output := optimise( ̂solver)
6 if UNSAT then
7 return Robust N ; // returns a robust network

8 end
9 else

10 x′ :=get adversarial( ̂solver);
// returns an adversarial example

11 return x′;
12 end

Algorithm 1 displays an outline of our approach. Given an neural network N ,
an input x ∈ R

n and a perturbation threshold ε. The FGSM attack is responsible
for creating the initial boundaries for the adversarial example in line 1. In line
2, the SIP is utilized to establish tighter boundaries for the neurons than those
from the original adversarial example. Between lines 3-6, an MILP problem is
formulated that takes into account the input, N , ε̂, and the symbolic boundaries
from line 2. The problem returns UNSAT if no adversarial example can be found,
but it returns an adversarial example between lines 7-12.

FGSM Attack. In our method, we first compute a rough estimate ε using
adversarial examples generated by the FGSM attack. This value is typically
very close to the optimal robust radius, which helps to establish more precise
input bounds. By having tighter input bounds, the number of binary variables is
reduced, which in turn reduces the activation search space. Further, we constraint
the adversarial attack that limits the magnitude of the perturbation that can be
added to the input features of the neuron using the L-∞ norm. Mathematically,
we can represent it as:

‖δ‖∞ = max (|δ1| , |δ2| , . . . , |δn|) (3)

where δi is the perturbation added to the i−th neuron, and n is the total number
of neurons. First, we define the L-∞ norm as the maximum absolute deviation
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between the original input and the perturbed input as shown in 3. Next we define
the ε from the attack as the maximum allowable deviation between the original
input and the perturbed input. Next, we set the bounds for each neuron in the
network by taking into account both the L-∞ norm and ε. For example, if the
L-∞ norm is 0.1 and ε is 0.05, the bounds for a neuron would be [−0.05, 0.05],
since any perturbation greater than 0.05 in either direction would violate both
the L-∞ norm and ε. This ensures that the perturbed input stays within the
allowable range.

By constraining the L-∞ norm of the perturbation added to the input of the
neuron, the FGSM attack ensures that the resulting adversarial example remains
within a certain “perceptual distance” of the original input, or that the output
of the neuron remains close to its original output for small perturbations.

Epsilon-Robustness ε. Epsilon perturbation or epsilon-robustness is employed
to represent the perturbation limits, ε, for a neuron x. Epsilon perturbation
involves adding a small perturbation to the input of the neuron such that the
output remains approximately the same. The procedure to encode perturbation
bounds ε for a neuron x using ε perturbation:

– Determine the range of values that x can take. For example, if x is a pixel in
an image, it might take values between 0 and 255.

– Choose a value for ε (this is obtained from the FGSM attack). This is the
maximum amount of perturbation that is allowed for x.

– Scale epsilon to the same range as x. For example, if x takes values between
0 and 255 you can allow a maximum perturbation of 10%, you would scale
epsilon to 25.5.

– Add or subtract the scaled epsilon value to x to create two new values:
x min = x − ε and x max = x + ε

– Use x min and x max as the new input values for the neuron x. This ensures
that the output of the neuron will remain within a certain range, even if the
input is perturbed.

By using ε perturbation to encode perturbation bounds for a neuron x, we can
ensure that the neuron is robust to small perturbations in its input. This is
useful in speeding up the verification process because since it provides low-cost
solutions or information gathered via a gradient-based adversarial attack.

MILP Formulation. To formulate the bounded neurons bounded by ε into
MILP solver12, we follow the following steps:

1. The binary decision variables: We define binary decision variables for each
neuron in the network, where the variable takes a value of 1 if the neuron is
active and 0 otherwise.

1 We use the Gurobi solver to tackle the MILP problem.
2 https://www.gurobi.com/resources/chapter-1-why-mixed-integer-programming-

mip/.
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2. The objective function: The objective function can be defined to minimize
the distance between the original input and the perturbed input subject to
the constraints that we define in the following steps.

3. Define the constraints for the epsilon value: We can formulate the epsilon value
constraint as a set of linear constraints that ensure that the perturbation of
each neuron is within a specified bound. For each neuron, we can define two
linear constraints to enforce the upper and lower bounds on the perturbation
of the neuron obtained from the FGSM attack.

4. Solve the MILP: Once the MILP is formulated, we can solve it using an
optimization solver to find the input that minimizes the distance between
the original input and the perturbed input subject to the constraints that we
have defined.

By formulating bounded neurons bounded by epsilon into MILP, we can find
adversarial examples that are constrained by the epsilon value while preserving
the behavior of the neural network.

5 Experimentation, Dataset and Evaluation

We compare our verification procedure’s implementation with three existing ver-
ifiers, namely Venus [4], Neurify [21], and MIPVerify [20]. Venus Verifier is a soft-
ware tool for verifying neural network models using a combination of abstract
interpretation and SMT-based techniques. It is based on a novel approach that
combines interval arithmetic and constraint propagation with SMT-based tech-
niques such as CEGAR and IC3. Neurify is a software tool for verifying neural
network models using abstract interpretation. It is based on the ReluVal algo-
rithm, which is an abstract interpretation-based approach for analyzing ReLU
neural networks. MIPVerify is a software tool for verifying neural network mod-
els using mixed-integer programming (MIP). It is a verification framework that
is based on solving a sequence of MIP problems, where each problem checks if
the output of the neural network model is within a certain range. In this work,
we evaluate the effectiveness of our verification algorithm on the MNIST dataset,
which contains handwritten digits ranging from 0 to 9. To ensure consistency,
the images are preprocessed to have a size of 28 × 28 pixels and are normalized
and centered. Each pixel of the image has a value between 0 and 255, with 0
representing black, 255 representing white, and intermediate values representing
different shades of gray.

Table 1 displays the verification results on the first 100 instances using four
different neural architectures and three different verifiers, with an epsilon value
of 0.05. The metrics used to evaluate the verifiers are Vt(sec) (total verification
time), #Adv (number of adversarial examples computed), #SAT (number of
instances verified as satisfied), and #UNK (number of instances for which veri-
fication was inconclusive). The experiments were conducted on a Linux worksta-
tion equipped with a Dual Xeon E5-2673 v3 (24 cores) and 64GB of memory. A
time-limit was set to 120 min for each instance and an overall limit of 720 min. To
minimize experimental errors resulting from parallel tasks, each verification task
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Table 1. Verification on the MNIST dataset.

Method(N1)〈784, 24, 24, 10〉ε = 0.05 Vt(sec) #Adv #SAT #UNK

Ours 101.43 49 2 0

Venus 24.32 47 2 0

Neurify 398.42 47 2 0

MIPVerify 723.48 49 2 0

Method(N2) 〈784, 40, 20, 10〉 ε = 0.05 Vt(sec) #Adv #SAT #UNK

Ours 282.36 43 7 0

Venus 34.55 44 7 0

Neurify timelimit - - -

MIPVerify 1130.45 43 7 0

Method(N3) 〈784, 512, 512, 10〉 ε = 0.05 Vt(sec) #Adv #SAT #UNK

Ours 12335.32 41 7 0

Venus 2515.86 44 7 1

Neurify memlimit - - -

MIPVerify 34525.35 44 7 1

Method(N4) 〈784, 500, 10〉 ε = 0.05 Vt(sec) #Adv #SAT #UNK

Ours 513.43 2 46 0

Venus 18188.76 6 45 5

Neurify timelimit - - -

MIPVerify 18187.76 4 46 0

was run five times. The average of these results was then used as the experimen-
tal outcome. Our verifier performs better than the other verification methods
on all four neural architectures. Additionally, we notice that Neurify reaches a
time limit for the second and third architectures, denoted as N2 and N3, respec-
tively, and a memory limit for the fourth architecture, denoted as N4. Venus,
however, failed on N4 but outperformed on N1, N2, N3. On N4, Venus returns
five #UNK case whereas our verifier returns zero #UNK thus ensuring com-
pleteness is achieved by always providing a solution to the MILP problem.

6 Conclusion

In conclusion, our paper has successfully demonstrated the potential of low-cost
solutions derived from adversarial attacks to reduce the search space and stream-
line the verification process, while still maintaining high levels of accuracy. Future
work in this area will involve comparing our approach with different adversarial
attacks to further optimize the effectiveness of our method. By leveraging the
insights gained from this study, we hope to contribute to the ongoing efforts
to enhance the security and robustness of machine learning systems. In future
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work, we focus on robust optimization i.e., variability in the data or parame-
ters of the problem, can lead to sub-optimal or even infeasible solutions. One
way to address this is the objective function and constraints are reformulated to
explicitly account for the worst-case scenarios of the uncertain data. Adversarial
attacks can be seen as a way of generating such worst-case scenarios, and hence
the adversarial solutions can be used as inputs to the robust optimization formu-
lation. This can lead to more robust and reliable MILP solutions that perform
well under various scenarios.
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Abstract. High dimensional data can have a surprising property: pairs
of data points may be easily separated from each other, or even from
arbitrary subsets, with high probability using just simple linear classi-
fiers. However, this is more of a rule of thumb than a reliable property as
high dimensionality alone is neither necessary nor sufficient for successful
learning. Here, we introduce a new notion of the intrinsic dimension of a
data distribution, which precisely captures the separability properties of
the data. For this intrinsic dimension, the rule of thumb above becomes
a law: high intrinsic dimension guarantees highly separable data. We
extend this notion to that of the relative intrinsic dimension of two data
distributions, which we show provides both upper and lower bounds on
the probability of successfully learning and generalising in a binary clas-
sification problem.

Keywords: Intrinsic dimensionality · Classification problems · High
dimensional data

1 Introduction

A blessing of dimensionality often ascribed to data sampled from genuinely high
dimensional probability distributions is that pairs (and even arbitrary compact
subsets) of points may be easily separated from one another with high proba-
bility [2,4–7,9,13]. Such a property is naturally highly appealing for Machine
Learning and Artificial Intelligence, since it suggests that if sufficiently many
attributes can be obtained for each data point, then classification is a signifi-
cantly easier task.

However, although this provides a useful rule of thumb, it is far from a com-
plete description of the behaviour which may be expected of high dimensional
data, and a simple experiment shows that the precise relationship between data
dimension and classification performance is more subtle (see also [8], Theorem 5
and Corollary 2). Suppose that data are sampled from two classes, each described
by a uniform distribution in a unit ball in R

d, and that the centres of these balls
are at distance ε ≥ 0 from one another, as shown in Fig. 1. The classifier which
offers the optimal (balanced) accuracy in this case is given by the hyperplane
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c1
c2

1

1

ε

Fig. 1. Two unit balls separated by distance epsilon, and the optimal classifier (dotted)
separating the two.

which is normal to the vector connecting the two centres and positioned half way
between them. In Fig. 2 we plot the accuracy of this classifier as a function of the
distance separating the two centres for data sampled from various different ambi-
ent dimensions d. The insight behind the blessing of dimensionality described
above is immediately clear: when the data is sampled in high dimensions, for
values of ε greater than some threshold value ε0(d) depending on the ambient
dimension d, the accuracy of this simple linear classifier is virtually 100%. Yet,
what this simplified viewpoint misses is that, for ε < ε0(d) the probability of
correctly classifying a given point sharply drops to close to 50%, demonstrating
that raw dimensionality alone is no panacea for data classification1. On the other
hand, data sampled even in 1 dimension may be accurately classified when the
centre separation ε is sufficiently large: for ε ≥ 2 (when the two unit balls are
disjoint), the two data sets are fully separable in any dimension.

What this simple thought experiment demonstrates is a fact which is not
taken into account by previous work, such as [12]:

Determining whether data distributions are separable from each other must
depend on a relative property of the two, and even genuine high dimensionality2

alone is neither a necessary nor sufficient condition for data separability.
To lay the foundations of our approach, we propose the new concept of the

intrinsic dimension of a data distribution, based directly on the separability
properties of sampled data points.

Definition 1 (Intrinsic dimension). We say that data sampled from a dis-
tribution D on R

d has intrinsic dimension n(D) ∈ R with respect to a centre
c ∈ R

d if

P (x, y ∼ D : (x − y, y − c) ≥ 0) =
1

2n(D)+1
. (1)

This definition is designed in such a way that the rule of thumb in the blessing
of dimensionality described above becomes a law of high intrinsic dimension:
1 Moreover, standard dimensionality reduction techniques, such as Principle Compo-

nents Analysis, would not have any effect here since the data are uniformly sampled
from d-dimensional balls.

2 In the sense that dimensionality reduction techniques cannot be applied to find an
equivalent lower dimensional representation of the data.
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Fig. 2. Accuracy of the best linear classifier separating data uniformly sampled from
two balls with unit radius and centres in R

n separated by distance ε for different
dimensions n.

points sampled from a distribution with high intrinsic dimension are highly sep-
arable. The definition is calibrated so that the uniform distribution U(Bd) on
a d-dimensional unit ball Bd satisfies n(U(Bd)) = d (see Theorem 1), although
alternative normalisations are possible, and by symmetry n(D) ≥ 0 for all dis-
tributions D. For c = 0, the expression (x − y, y − c) ≥ 0 in the left-hand side
of (1) is simply a statement that x and y are Fisher-separable [8].

Based on the same principle, we further introduce the concept of the relative
intrinsic dimension of two data distributions, which directly describes the ease
of separating data distributions.

Definition 2 (Relative intrinsic dimension). We say that data sampled
from a distribution D on R

d has relative intrinsic dimension n(D,D′) ∈ R to
data sampled from a distribution D′ on R

d, with respect to a centre c ∈ R
d, if

P (x ∼ D′, y ∼ D : (x − y, y − c) ≥ 0) =
1

2n(D,D′)+1
. (2)

The relative intrinsic dimension is not symmetric, and satisfies n(D,D′) ≥
−1, with negative values indicating that D has lower intrinsic dimension than D′,
and data distributions with a low relative intrinsic dimension may be separated
from distributions with a high relative intrinsic dimension.

To illustrate this, consider our previous experiment as an example and let
X = U(B1) and Y = U(B2), where B1 = Bd(1, c1) ⊂ R

d and B2 = Bd(1, c2) ⊂
R

d are the unit balls centered at c1 and c2 respectively, and pick the centre c = c1.
When ε = ‖c1 − c2‖ ≥ 2 (the case when the data distributions are completely
separable), we have n(Y,X) = ∞. This implies that points y sampled from
Y can be separated from points sampled from points x sampled from X with
certainty. The relative intrinsic dimension n(X,Y ) is an increasing function of the
dimension of the ambient space in which the data is sampled with n(X,Y ) = 0
in 1 dimension, implying that it becomes easier to separate points in X from
points in Y as the dimension increases. These values of the relative intrinsic
dimensions suggest that points from Y can easily be separated from points in
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X by hyperplanes normal to y − c1, while hyperplanes normal to x − c1 do not
separate X from Y .

Although the asymmetry may be slightly surprising at first, it is simply
reflecting the asymmetric choice of centre c = c1, which is located at the heart
of the X distribution. The relative intrinsic dimensions described above would
be reversed for c = c2 and would be equal for c = 1

2 (c1 + c2). A justification
for this definition of relative intrinsic dimension is given by Theorem 2, where
it is shown (in a slightly generalised setting) that these concepts of intrinsic
dimension provide upper and lower bounds on classifier accuracy, indicating
that it is indeed necessary and sufficient for learning.

There is a rich history of alternative charaterisations of the dimension of
a data set, with each contribution typically aimed to solve a particular prob-
lem. For example, conventional Principle Components Analysis aims to detect
the number of independent attributes which are actually required to represent
the data, leading to compressed representations of the same data. However, as
discussed above, the representational dimension of a data set does not necessar-
ily give an indication of how easy it is to learn from. Several other notions of
dimensionality are captured in the scikit-dimension library [3]. Perhaps the
most similar notion of dimension to that which we propose here is the Fisher
Separability Dimension [1], which is also based on the separability properties
of data yet first requires a whitening step to normalise the data covariance to
an identity matrix. This whitening step has both advantages and disadvantages:
although it brings invariance to the choice and scaling of the basis, it disrupts the
intrinsic geometry of the data. The Fisher Separability Dimension also does not
address the important question of the relative dimension of data distributions
and samples, which we argue is a concept fundamental to learning.

Our approach may appear reminiscent of Kernel Embeddings, through which
nonlinear kernels are used to embed families of data distributions into a Hilbert
space structure [11]. Although Kernel Embeddings and our work are motivated
by very different classes problems, the common fundamental focus is on under-
standing the properties of a data distribution through the evaluation of (nonlin-
ear) functionals of the distribution. Here we demonstrate how a single, targeted,
property appears to encode important information about the separability prop-
erties of data.

An interesting question which arises from this work is how well the (relative)
intrinsic dimension can be estimated from data samples directly. If it can be,
then this could provide a new tool for selecting appropriate feature mappings
for data and shine a new light on the training of neural networks. We briefly
investigate this in Sect. 4, where we show that high order polynomial feature
maps can actually be detrimental to the separability of data.

2 Separability of Uniformly Distributed Data

We investigate the separability properties of data sampled from a uniform dis-
tribution in the unit ball in various dimensions. This provides the basis for our
definition of intrinsic dimension.
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To simplify the presentation of our results, we introduce the following geo-
metric quantities related to spheres in high dimensions. The volume of a ball
with radius r in d dimensions is denoted by

V ball
d (r) =

πd/2rd

Γ(d
2 + 1)

,

and the surface area of the same ball is denoted by

Sball
d (r) =

dπd/2rd−1

Γ(d
2 + 1)

.

Similarly, the volume of the spherical cap with height h of the same sphere (i.e.
the set of points {x ∈ R

d : ‖x‖ ≤ r and x0 ≥ r − h}) is given by V cap
d (r, h) =

V ball
d (r)W cap

d (r, h), where

W cap
d (r, h) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for h ≤ 0,
1
2I(2rh−h2)/r2(d+1

2 , 1
2 ) for 0 < h ≤ r,

1 − W cap
d (r, 2r − h) for r < h ≤ 2r,

1 for 2r < h,

represents the fraction of the volume of the unit ball contained in the spherical
cap. The function Ix(a, b) = B(a, b)−1

∫ x

0
ta−1(1−t)b−1dt denotes the regularised

incomplete beta function, where B(a, b) = B(1; a, b) = Γ(a)Γ(b)
Γ(a+b) is the standard

beta function.
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Fig. 3. The behaviour of fθ(d), formally extended to non-integer values of d, for various
values of θ. The function is only invertible for −1 ≤ θ ≤ 0, and we note the asymptote
of 1

2
as d → 0 when θ = 0 and as d → ∞ when θ = −1

Theorem 1 (Separability of uniformly sampled points). Let θ ∈ R, let d
be a positive integer and suppose that x, y ∼ U(Bd(1, c)), define

Rθ(t) = max
{ t2

4
− θ, 0

} 1
2
, aθ(t) =

1 − R2
θ(t)

t
− t

4
, (3)
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and
bθ(t) = 1 − aθ(t) − t

2
, (4)

and let

fθ(d) =
∫ 1

0

dtd−1
(
W cap

d (1, bθ(t)) + Rd
θ(t)W cap

d (Rθ(t), Rθ(t) + aθ(t))
)
dt. (5)

Then
P (x, y : (y − x, x − c) ≥ θ) = fθ(d), (6)

and, in particular,

P (x, y : (y − x, x − c) ≥ 0) =
1

2d+1
. (7)

Furthermore, fθ may be simplified in the following cases as

fθ(d) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 for θ ≤ −2,
1

2d+1 for θ = 0,
∫ 1

2θ1/2 dtd−1
(

t2

4 − θ
)d/2

dt for 0 < θ < 1
4 ,

0 for 1
4 ≤ θ.

(8)

and fθ(d) ≥ 1
2 for θ ≤ −1.

y
O

p

q

y
2

R

1

a b

Fig. 4. The shaded area is the volume computed in the proof of Theorem 1. The two
different shading colours indicate the two spherical caps used in the proof.

Proof. Without loss of generality, we suppose that c = 0, and consider points
x, y ∼ U(Bd). Rearranging terms, we observe that

(y − x, x) =
1
4
‖y‖2 − ‖x − y

2
‖2,
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and therefore, for fixed y, the set of x satisfying (y−x, x−c) ≥ θ may be similarly
described as those points x contained within the ball

‖x − y

2
‖2 ≤ R(‖y‖) = max

{1
4
‖y‖2 − θ, 0

}
.

Combining this with the condition that x ∼ Bd(1, 0), we find that x belongs to
the intersection of the balls

{x ∈ R
d : ‖x‖ ≤ 1} ∩

{
x ∈ R

d : ‖x − y

2
‖2 ≤ Rθ(‖y‖)

}
. (9)

This may be expressed as the union of two spherical caps, as depicted in Fig. 4.
Comparing the triangles O, p, q and y

2 , p, q shows that the lengths a and b in
the Figure are exactly those defined in (3) with t = ‖y‖. Since y only appears
through its norm, we deduce that

P (x : (y − x, x) ≥ θ | ‖y‖) = P (x : (y − x, x) ≥ θ | y)

=
V cap

d (Rθ(‖y‖), Rθ(‖y‖) + aθ(‖y‖)) + V cap
d (1, bθ(‖y‖))

V ball
d (1)

,

The result (6) follows by applying the law of total probability, which implies

P (x, y : (y − x, x) ≥ θ) =
∫ 1

0

P (x : (y − x, x) ≥ θ | ‖y‖ = t)p‖y‖(t)dt,

where p‖y‖(t) = Sball
d (t)

V ball
d (1)

is the density associated with ‖y‖ for y ∼ U(Bd).
When θ ≥ 0, the ball centered at y

2 is entirely contained within Bd, and so

P (x, y : (y − x, x) ≥ θ) =
∫ 1

0

Sball
d (t)V ball

d (Rθ(t))
(V ball

d (1))2
dt

=
∫ 1

0

dtd−1 max
{ t2

4
− θ, 0

}d/2

dt.

Since the integrand is zero for t ≤ 2θ1/2, for θ ∈ (0, 1
4 ) we have

P (x, y : (y − x, x) ≥ θ) =
∫ 1

2θ1/2
dtd−1

( t2

4
− θ

)d/2

dt.

Moreover, P (x, y : (y − x, x) ≥ θ) = 0 for θ ≥ 1
4 , and in the simplest case of

θ = 0

P (x, y : (y − x, x) ≥ 0) =
d

2d

∫ 1

0

t2d−1dt =
1

2d+1
.

On the other hand, for θ ≤ −2 we have
√

Rθ(t) ≥ 1 + 1
2 t for all t, implying

that the intersection (9) is the entirity of Bd, and hence

P
(
x, y : (y − x, x) ≥ θ

)
= 1.


�
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The behaviour of fθ(d) is illustrated in Fig. 3 for various values of the sepa-
ration threshold θ. Heuristically, we observe the following limiting behaviour:

lim
d→∞

fθ(d) =

⎧
⎪⎨

⎪⎩

1 for θ < −1,
1
2 for θ = −1,

0 for θ > −1,

which may be explained by the fact that when θ = −1, the surfaces of the ball Bd

and the ball centered at y
2 meet exactly at an equator of Bd. The phenomenon

of waist concentration (see [10], for example) implies that in high dimensions
the volume of Bd is concentrated around its surface and around this equator,
implying that this is the threshold value of θ at which the intersection of the
two balls contains slightly more than half the volume of Bd.

What these results suggest is that for any value of θ ∈ [−1, 0], the function
fθ(d) is an invertible function of d, and hence could be used as the basis of a
definition of intrinsic dimension. In Definition 1 we use the behaviour at θ = 0
to define our indicative notion of intrinsic dimension simply because it obviates
the need to couple the scaling of the support of the distribution and the scaling
of θ.

3 Few Shot Learning Is Dependent on Separability

We now consider the scenario of standard binary data classification, and show
that the probability of successfully learning to classify data is intrinsically linked
to the notion of relative intrinsic dimension. We focus on the case of learning
from small data sets, as in this case the link is particularly clear to demonstrate.

Mathematically, we suppose that X and Y are (unknown) probability dis-
tributions on an d-dimensional vector space R

d, and we have a sample {yi}k
i=1

of k training points sampled from Y and a sample {xi}m
i=1 of m training points

sampled from X.
Since the problem setup is symmetric in the roles of X and Y , we only analyse

the influence of training data sampled from Y . The role of the data sampled
from X (alongside any possible prior knowledge of the data distributions) is
incorporated through an arbitrary but fixed point c ∈ R

d in the data space.
We consider the following linear classifier to assign the label �X to data

sampled from X and the label �Y to data sampled from Y :

Fθ(z) =

{
�Y if L(z) ≥ θ,

�X otherwise,
(10)

where L(z) = 1
k

∑k
i=1(z − yi, yi − c). In practice, the value of the threshold θ to

be used in the classifier may be determined from the training data {yi}k
i=1 and

{xi}m
i=1, although here we consider it to be a free parameter of the classifier.
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Remark 1 (Comparison with similar classifiers). The classifier (10) may
be equivalently be expressed in the form of the common Fisher discriminant with
a slightly different threshold, viz.

Fθ(z) =

{
�Y if (z − μ, μ − c) ≥ θ + Θ,

�X otherwise,

where μ = 1
k

∑k
i=1 yi and Θ = 1

k

∑k
i=1 ‖yi‖2 − ‖μ‖2. Since the offset Θ to the

threshold θ depends only on the same training data as θ, it is clear that the clas-
sifier we study is simply a Fisher discriminant. However, we choose to write the
classifier in the form (10) because it simplifies some of the forthcoming analysis.

This classifier will successfully learn to classify the training data when both

P (Fθ(y) = �Y ) = P (L(y) ≥ θ)

is large (where the probability is taken with respect to the evaluation point
y ∼ Y and the training data {yi ∼ Y }k

i=1), and

P (Fθ(x) = �X) = P (L(x) < θ)

is also large (where the probability is taken with respect to the evaluation point
x ∼ X and the training data {yi ∼ Y }k

i=1). We now show that both of these
probabilities can be bounded from above and below by the probability of being
able to separate pairs of data points by margin θ. Corollary 1 to this theorem
then shows how this simply reduces to upper and lower bounds dependent on
the (relative) intrinsic dimension of Y and X when θ = 0.

Theorem 2 (Pairwise separability and learning). Let θ ∈ R and define

pθ(Y,X) = P (x ∼ X, y ∼ Y : (x − y, y − c) ≥ θ),

and let pθ(Y ) = pθ(Y, Y ). Then, the probability (with respect to the training
sample {yi ∼ Y }k

i=1 and the evaluation point y ∼ Y ) of successfully learning the
class Y is bounded by

pk
θ(Y ) ≤ P (Fθ(y) = �Y ) ≤ 1 − (1 − pθ(Y ))k, (11)

and the probability (with respect to the training sample {yi ∼ Y }k
i=1 and the

evaluation point x ∼ X) of successfully learning the class X is bounded by

(1 − pθ(Y,X))k ≤ P (Fθ(x) = �X) ≤ 1 − pk
θ(Y,X). (12)

Proof. Let E be the event that Fθ(y) = �Y for y ∼ Y . By definition, this
occurs when y and {yi}k

i=1 are such that
∑k

i=1(y − yi, yi − c) ≥ kθ. For each
1 ≤ i ≤ k, let Ai denote the event that (y − yi, yi − c) ≥ θ. Then,

∧k
i=1 Ai ⇒ E

and so P (E) ≥ P (
∧k

i=1 Ai). We may further expand this using the law of total
probability as

P
( k∧

i=1

Ai

)
=

∫

Rd

P
( k∧

i=1

(y − yi, yi − c) ≥ θ | y
)
p(y)dy. (13)
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Since the {yi}k
i=1 are independently sampled and identically distributed, it fol-

lows that the conditional probability satisfies

P
(
{yi ∼ Y }k

i=1 :
k∧

i=1

(y − yi, yi − c) ≥ θ | y
)

=P (y′ ∼ Y : (y − y′, y′ − c) ≥ θ | y)k.

Substituting this into (13) shows that P
( ∧k

i=1 Ai

)
= EY

[(
P (y′ ∼ Y : (y −

y′, y′ − c) ≥ θ | y)
)k]

, where the expectation is taken with respect to y. For a
random variable X and a convex function g, Jensen’s inequality asserts that
E[g(X)] ≥ g(E[X]). Applying this here (since the function g(x) = xk is convex
for k ≥ 1), we find that

P
( k∧

i=1

Ai

)
≥ (

EY [P (y′ : (y − y′, y′ − c) ≥ θ | y)]
)k

=
(
P (y, y′ : (y − y′, y′ − c) ≥ θ)

)k
.

Consequently, we deduce the lower bound of (11). The upper bound follows
by arguing similarly and using the fact that

∧k
i=1 not Ai ⇒ not E, from which

it follows that P (E) ≤ 1 − P (
∧k

i=1 not Ai). An analogous argument shows the
result (12). 
�

An immediate consequence of this theorem is that when θ = 0, the probability
of successfully learning can be bounded from both above and below using the
(relative) intrinsic dimension of the data distributions.

Corollary 1 (Intrinsic dimension and learning). The probability (with
respect to the training sample {yi ∼ Y }k

i=1 and the evaluation point y ∼ Y )
of successfully learning the class Y is bounded by

1
2k(n(Y )+1)

≤ P (F0(y) = �Y ) ≤ 1 −
(
1 − 1

2n(Y )+1

)k

, (14)

and the probability (with respect to the training sample {yi ∼ Y }k
i=1 and the

evaluation point x ∼ X) of successfully learning the class X is bounded by

1 −
(
1 − 1

2n(Y,X)+1

)k

≤ P (F0(x) = �X) ≤ 1
2k(n(Y,X)+1)

We note that the best lower bound which can be shown by (14) is 1
2 , due

to the fact that the classifier with θ = 0 will pass through the centre of the Y
distribution. Despite this, Corollary 1 shows that the intrinsic dimension of Y
is sufficient to know whether the probability of correctly learning the class Y is
less than 1

2 . Arguing symmetricaly, a more refined analysis taking more account
of the training set {xi}m

i=1 could instead show a version of the bound (14) which
depends on the relative intrinsic dimension n(X,Y ).

These bounds are tuned to the case when the size k of the training set sampled
from Y is small, and the upper and lower bounds separate from each other as



526 O. J. Sutton et al.

k grows, and alternative arguments would be required to get sharp bounds in
the case of large k. However, even for large values of k, if the (relative) intrinsic
dimension of the data distributions is sufficiently large or small, the bounds
above will provide tight guarantees on the success of learning.

4 Learning with Polynomial Kernels

As an application of our proposed notion of intrinsic dimension, we use it to find
the optimal polynomial kernel for a classification problem — i.e. the degree of
the polynomial feature map in which two data sets become easiest to separate.

For fixed bias b > 1 and polynomial degree k ≥ 0, let the polynomial kernel
κ : Rd × R

d → R be given by

κ(x, y) = (b2 + x · y)k. (15)

There exists a polynomial feature map φ : Rd → R
N , where N =

(
d+k

k

)
, such

that κ(x, y) = (φ(x), φ(y)) (see [12], for example, for details).
Consider

P (x, y,∼ U(Bd) : (φ(x) − φ(y), φ(y) − c) ≥ θ),

where c = 1
V ball
d (1)

∫

Bd
φ(z)dz is the empirical mean of the data in feature space.

Then, expanding the inner product,

(φ(x) − φ(y), φ(y) − c) = k(x, y) − k(y, y) +
∫

Bd

k(y, z) − k(x, z)
V ball

d (1)
dz

= (b2 + x · y)k − (b2 + ‖y‖2)k +
∫

Bd

(b2 + y · z)k − (b2 + x · z)k

V ball
d (1)

dz.

Exploiting the spherical symmetry of U(Bd), we have

1
V ball

d (1)

∫

Bd

(b2 + x · z)kdz =
∫ 1

−1

V ball
d−1 ((1 − t2)1/2)

V ball
d (1)

(b2 + t‖x‖)kdt = q(‖x‖),

for b ≥ 1, where q : [0, 1] → R is given by q(‖x‖) := b2k
2F1

(
1−k
2 ,−k

2 ; d
2 +1; ‖x‖2

b4

)
,

with 2F1 denoting the hypergeometric function. Therefore (φ(x) − φ(y), φ(y) −
c) ≥ θ if and only if

cos(β(x, y)) ≥ Q(‖x‖, ‖y‖)

where β(x, y) = arccos( (x,y)
‖x‖‖y‖ ) denotes the angle between x and y, and

Q(s, t) := (st)−1
((

θ + (b2 + t2)k + q(s) − q(t)
)1/k − b2

)
.

Geometric arguments show that for any α ∈ [−1, 1],

P (x, y ∼ U(Bd) : cos(β(x, y)) ≥ α | ‖x‖, ‖y‖) = T cap
d (α)
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where T cap
d (α) denotes the proportion of the surface area of a unit sphere which

falls within a spherical cap with opening angle arccos(α), given for d > 1 by

T cap
d (α) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, α > 1,
1
2I(sin(arccos(α)))2

(
d−1
2 , 1

2

)
, α ∈ [0, 1],

1 − T cap
d (−α), α ∈ (−1, 0),

1, α ≤ −1,

where Ix(a, b) is the regulalised incomplete beta function, and for d = 1 by

T cap
1 (α) =

{

0 for α > 1; 1
2 for α ∈ (−1, 1]; 1 for α ≤ −1

Let E be the event that x, y ∼ U(Bd) are such that cos(β) ≥ Q(‖x‖, ‖y‖). Then,
by the law of total probability,

P (E) =
∫ 1

0

∫ 1

0

P (E | ‖x‖ = s, ‖y‖ = t)p̂(s)p̂(t)dsdt,

where p̂(t) = Sball
d (t)

V ball
d (1)

= dtd−1 denotes the density associated with ‖z‖ for z ∼
U(Bd).

The arguments above therefore prove the following theorem, from which The-
orem 1 arises as a simplified special case when k = 1

Theorem 3 (Separability in polynomial feature space). Let k > 0, let d
be a fixed positive integer, and let φ denote the feature map associated with the
polynomial kernel (15) with degree k in dimension d. Then, for θ ∈ R,

P (x, y ∼ U(Bd) : (φ(x) − φ(y), φ(y) − c) ≥ θ)

= d2

∫ 1

0

∫ 1

0

T cap
d (Q(s, t))sd−1td−1dsdt.

Figure 5 shows how the intrinsic dimension of the unit ball in various dimen-
sions is affected by applying a polynomial feature mapping. Since the degree k
polynomial feature map φ : Rd → R

N , where N =
(
d+k

k

)
, increases the appar-

ent dimension of the space as k increases, the rule of thumb encapsulated by
the blessing of dimensionality would lead us to expect that high order polyno-
mial kernels should make the data more separable. However, this is not what
we observe. Instead, the intrinsic dimension reveals that there is an ‘optimal’
polynomial degree, for which the data is most separable, and increasing the
polynomial degree further beyond the point can actually have the detrimental
effect of making the data less separable.
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Fig. 5. The intrinsic dimension of the image of U(Bd) under a polynomial feature map,
for different polynomial degrees and data space dimensions d.

5 Conclusion

We have introduced a new notion of the intrinsic dimension of a data distribu-
tion, based on the pairwise separability properties of data points sampled from
this distribution. Alongside this, we have also introduced a notion of the rela-
tive intrinsic dimension of a data distribution relative to another distribution.
Theorem 2 shows how these notions of intrinsic dimension occupy a fundamen-
tal position in the theory of learning, as they directly provide upper and lower
bounds on the probability of successfully learning in a generalisable fashion.

Many open questions remain, however, such as how to accurately determine
the intrinsic dimension of a data distribution using just sampled data from that
distribution, and how best to utilise these insights to improve neural network
learning. This work also opens to door to generalising the concept beyond just
simple linear functionals of the data distribution to notions of intrinsic dimen-
sionality based around other more interesting models. The idea also generalises
beyond examining individual points sampled from distributions, to studying the
collective behaviour of groups, or ‘granules’ of sampled data.
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Abstract. In this work, we assess the theoretical limitations of deter-
mining guaranteed stability and accuracy of neural networks in classifi-
cation tasks. We consider classical distribution-agnostic framework and
algorithms minimising empirical risks and potentially subjected to some
weights regularisation. We show that there is a large family of tasks for
which computing and verifying ideal stable and accurate neural networks
in the above settings is extremely challenging, if at all possible, even when
such ideal solutions exist within the given class of neural architectures.
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Notation

R denotes the field of real numbers, R≥0 = {x ∈ R| x ≥ 0}, and R
n denotes the

n-dimensional real vector space, N denotes the set of natural numbers; (x, y) =∑
k xkyk is the inner product of x and y, and ‖x‖ =

√
(x, x) is the standard

Euclidean norm in R
n; Bn denotes the unit ball in R

n centered at the origin
Bn = {x ∈ R

n | ‖x‖ ≤ 1}, Bn(r, y) is the ball in R
n centred at y with radius

r ≥ 0: Bn(r, y) = {x ∈ R
n | ‖x − y‖ ≤ r}; Cb(�, y) is the cube in R

n centered at
y with side-length � ≥ 0: Cb(�, y) =

{
x ∈ R

n | ‖x − y‖∞ ≤ �
2

}
; Sn−1(r, y) is the

sphere in R
n centred at y with radius r: Sn−1(r, y) = {x ∈ R

n | ‖x − y‖ = r};
sign(·) : R → R≥0 denotes the function such that sign(s) = 1 for all s ∈ R≥0

and sign(s) = 0 otherwise; Kθ is the class of real-valued functions defined on R

which are continuous, strictly monotone on [θ,∞), and constant on (−∞, θ); 1n

denotes the vector (1, . . . , 1) ∈ R
n.
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1 Introduction

Data-driven AI systems and neural networks in particular have shown tremen-
dous successes across a wide range of applications, including automotive, health-
care, gaming, marketing, and more recently natural language processing. Fuelled
by high and growing rates of adoption of the new technology across sectors,
robustness and stability are vital characterisations of AI performance.

The importance of AI stability and robustness is exemplified by the dis-
covery of adversarial perturbations [12] – imperceptible changes of input data
leading to misclassifications. These perturbations can be universal [8] (i.e. trig-
gering misclassifications for many inputs), limited to a single attribute [11], or
masquerading as legitimate inputs [2]. Sometimes, such AI instabilities can be
typical [10,14]. Moreover, instabilities can also be induced by perturbations of
the AI structure [13].

The issue of AI robustness is non-trivial and cannot be considered in isolation
from other measures of AI performance: a model returning the same output
regardless of the inputs is perfectly robust yet useless. A theoretical framework
to approach the problem has recently been proposed in [1]. It has been shown
in [1] that (i) there is an uncountably large family of distributions such that for
an appropriately large data sample drawn from a distribution from this family
there is an architecture so that any feed-forward neural network trained with
that architecture has excellent performance on this sample, although (ii) every
such network becomes inevitably unstable to one perturbation on some subset
of the training and validation sets. Moreover, (iii) for the same distribution and
the same data, there is a stable network possibly having a different architecture.

Here we show that the stability-accuracy issues have other unexplored dimen-
sions and could be significantly more pronounced than previously thought. Our
main result, Theorem 1 shows that there exist large families of well-behaved
data distributions for which even networks achieving zero training and valida-
tion errors may be unstable to almost any small perturbation on nearly half of
the training or validation data. Yet, for the same data samples and distributions,
there exist stable networks with the same architecture as the unstable network
which also minimise the loss function. Strikingly, there exist infinitely many pairs
of networks, in which one network is stable and accurate and the other is also
accurate but unfortunately unstable, whose weights and biases could be made
arbitrarily close to each other. What is even more interesting, all this happens
and persists when the values of weights and biases are made small.

This result reveals a fundamental issue at the heart of current data-driven
approaches to learning driven by minimising empirical risk functions, even in the
presence of weight regularisation, in distribution-agnostic settings. The issues is
that such learning algorithms could be structurally incapable of distinguishing
between stable and unstable solutions.

The rest of the paper is organised as follows. In Sect. 2 we introduce notation
and problem setting. In Sect. 3 we state our main results along with discussion,
interpretation, and comparison to the literature. Section 4 concludes the paper.
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2 Preliminaries, Assumptions, and Problem Settings

Following [1], by NNN,L we denote the class of neural networks with L layers
and dimension N = {NL, NL−1, NL−2, . . . , N1, N0 = n}, where n is the input
dimension, and NL = 1 is the dimension of the network’s output. A neural
network with dimension (N, L) is a map

φ = GLσGL−1σ · · · · · · σG1,

where σ : R → R is a coordinate-wise activation function, and Gl : RNl−1 → R
Nl

is an affine map defined by Glx = W lx+ bl, where W l ∈ R
Nl×Nl−1 , bl ∈ R

Nl are
the corresponding matrices of weights and biases. By Θ(φ) we denote the vector
of all weights and biases of the network φ.

In general, the activation functions σ do not have to be the same for all
components and all layers, although here we will assume (unless stated other-
wise) that this is indeed the case. In what follows we will consider feed-forward
networks with activation functions in their hidden layers computing mappings
from the following broad class:

σ = gθ, gθ ∈ Kθ, θ ∈ R. (1)

Popular functions such as ReLU are contained in this class (that is the class
of functions which are continuous, strictly monotone on [θ,∞) and constant on
(−∞, θ)). The condition of strict monotonicity of gθ over [θ,∞) can be reduced
to strict monotonicity over some [θ, θ1], θ1 > θ, with gθ being merely monotone
on [θ1,∞). This extension won’t have any affect on the validity of the theoretical
statements below, but will enable the inclusion of leaky ReLU activations (since
then activation functions satisfying (1) can be constructed as a difference of
a leaky ReLU function and its shifted/translated copy, and the results below
therefore still follow) as well as “sigmoid”-like piecewise linear functions.

We will suppose that all data are drawn from some unknown probability
distribution belonging to a family F , and each element D ∈ F of this family is
supported on [−1, 1]n × {0, 1}. For any given D ∈ F , we will assume that the
training and testing algorithms have access to samples (xj , �j), j = 1, . . . , s + r,
s, r ∈ N, independently drawn from D, and which can be partitioned into training

T = {(x1, �1), . . . , (xr, �r)}

and validation/testing

V = {(xr+1, �r+1), . . . , (xr+s, �r+s)}

(multi)-sets. Let M = r + s = |T ∪ V| be the size of the joint training and
validation (multi)-set.

Further, we impose a condition that the data distribution is sufficiently regu-
lar and does not possess hidden instabilities and undesirable accumulation points
which could otherwise trivialise our statements and results. In particular, for
δ ∈ (0, 2

√
n] we will only consider those distributions Dδ ∈ F which satisfy:

If (x, �x), (y, �y) ∼ Dδ with �x �= �y, then, with probability 1, ‖x − y‖ ≥ δ. (2)
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Finally, we introduce the family of loss functions

CF loc ={R : R × R → R≥0 ∪ {∞} | R(v, w) = 0 ⇐⇒ v = w} (3)

which will be used to define the corresponding empirical loss functions for the
model outputs h : Rn → {0, 1} on samples S ∼ Dδ drawn from Dδ

L(S, h) =
∑

(xi,�i)∈S
R(h(xi), �i). (4)

The subscript “loc” in (3) emphasises that the loss functions R are evaluated on
single data points and in this sense are “local”. It provides an explicit connection
with the classical literature involving empirical risk minimisation, allowing us to
exploit the conventional interpretation of the generalisation error as a deviation
of the empirical risk from the expected value of the loss over the distribution
generating the data.

3 Main Results

Having introduced all relevant notation, are now ready to state the main result
of the contribution.

Theorem 1. (Inevitability, typicality and undetectability of instabil-
ity) Consider the class of networks with architecture

N = (NL = 1, NL−1, . . . , N1, N0 = n), L ≥ 2, n ≥ 2,

where N1 ≥ 2n and N2, . . . , NL−1 ≥ 1, and activation functions gθ in layers
1, . . . , L−1 satisfying conditions (1), and the sign(·) activation function in layer
L.

Let ε ∈ (0,
√

n − 1) and fix 0 < δ ≤ ε/
√

n. Then, there is an uncountably
large family of distributions Dδ ∈ F satisfying (2) such that for any Dδ ∈ F ,
any training and validation data T , V drawn independently from Dδ, and every
R ∈ CF loc, with probability 1:

(i) There exists a network which correctly classifies the training data T and
generalises to the test data V, satisfying

f ∈ arg min
ϕ∈NNN,L

L(T ∪ V, ϕ)

with L(T ∪ V, f) = 0.
Yet, for any q ∈ (0, 1/2), with probability greater than or equal to

1 − exp(−2q2M)

there exists a multi-set U ⊂ T ∪ V of cardinality at least �(1/2 − q)M� on
which f is unstable in the sense that for any (x, �) ∈ U and any α ∈ (0, ε/2),
there exists a perturbation ζ ∈ R

n with ‖ζ‖ ≤ α/
√

n and

|f(x) − f(x + ζ)| = 1. (5)
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Moreover, such destabilising perturbations are typical in the sense that if
vectors ζ are sampled from the equidistribution in Bn(α/

√
n, 0), then for

(x, �) ∈ U , the probability that (5) is satisfied is at least

1 − 1
2n

.

Furthermore, there exist universal destabilising perturbations, in the sense
that a single perturbation ζ drawn from the equidistribution in Bn(α/

√
n, 0)

destabilises m ≤ |U| points from the set U with probability at least

1 − m

2n
.

(ii) At the same time, for the same distribution Dδ there is a robust network
with the same architecture as f , satisfying

f̃ ∈ arg min
ϕ∈NNN,L

L(T ∪ V, ϕ)

with L(T ∪V, f̃) = 0, which is robust in the sense that for all (x, �) ∈ T ∪V

f̃(x) = f̃(x + ζ)

for any ζ ∈ R
n with ‖ζ‖ ≤ α/

√
n, even when |T ∪ V| = ∞.

Moreover, there exist pairs of unstable and robust networks, fλ, f̃λ and
fΛ, f̃Λ, satisfying the statements above such that the maximum absolute
difference between their weights and biases is either arbitrarily small or
arbitrarily large. That is, for any λ > 0,Λ > 0:

‖Θ(fλ) − Θ(f̃λ)‖∞ < λ, ‖Θ(fΛ) − Θ(f̃Λ)‖∞ > Λ.

(iii) However, for the above robust solution f̃ ,
a) there exists an uncountably large family of distributions D̃δ ∈ F on which

f̃ correctly classifies both the training and test data, yet fails in the same
way as stated in (i).

b) there exists an uncountably large family of distributions D̂δ ∈ F such
that the map f̃ is robust on T ∪ V (with respect to perturbations ζ with
‖ζ‖ ≤ α/

√
n, α ∈ (0, ε/2)) with probability

(

1 − 1
2n+1

)Mk

but is unstable to arbitrarily small perturbations on future samples with
probability k/2n+1.

The proof of the theorem is provided in the Appendix.
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3.1 Interpretation of Results

According to statement (i) of Theorem 1, not only are instabilities to be
expected, but they can also be remarkably widespread: for sufficiently large data
sets they may occur, with high probability, for nearly half of all data.

Statement (ii) of Theorem 1 confirms that a stable solution exists within pre-
cisely the same class of network architectures, although it is difficult to compute
it by using only the loss functional L as a measure of quality. This shows that
the architecture isn’t necessarily the source of the instability. Moreover, a robust
solution may be found in an arbitrarily small neighborhood of the specific non-
robust one in the space of network weights and biases. As the construction in
the proof shows, using networks with small Lipshitz constants can, counterintu-
itively, make the problem worse.

The robust solution, in turn, can also be unstable, as follows from statement
(iii), part (a). This is reminiscent of a “no free lunch” principle for robust and
accurate learning, although with a subtle distinction. In fact, as part b) of the
statement states, there are solutions which may appear to be certifiably robust
(and one can indeed certify the model on the training and validation sets),
although there is no guarantee whatsoever that the certificate remains valid for
future samples. To minimise the risks, one needs to certify the model on data sets
which are exponentially large in n. This is particularly relevant for safety-critical
settings, where the risk of failure must be calculated and bounded in advance.

Finally, we note that the instabilities considered in Theorem 1 become par-
ticularly pronounced for networks with sufficiently high input dimension n (see
statement (iii) of the theorem). Moreover, statement (ii) shows that the fraction
of perturbations around unstable points x in the sample which alter the net-
work’s response approaches 1 as n grows. These high-dimensional effects may
still be observed in networks with arbitrarily low input dimensions if such net-
works realise appropriate auxiliary space-filling mappings in relevant layers. The
technical point that the statement of Theorem 1 holds with probability one is
due to the fact that the proof constructs data distributions which assign proba-
bility zero to certain sets, so there may exist training samples with probability
zero for which the construction does not apply.

3.2 Discussion

Instabilities and Regularisation. The construction we used in the proof of
Theorem 1 reveals that the instability discussed in statements (i) and (ii) of the
theorem is inherent to the very definition of the binary classification problem
and may not be addressed by regularisation approaches constraining norms of
network’s parameters and Lipschitz constants of non-threshold layers.

Indeed, consider just the first two layers of the network f constructed in the
proof of the theorem, remove the sign(·) activation function, and introduce an
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arbitrarily small positive factor β (cf. (13)):

freg(x) =
n∑

i=1

gθ(θ) − gθ(β((x, ei) − 1/
√

n) + θ)

+
n∑

i=1

gθ(θ) − gθ(β(−(x, ei) − 1/
√

n) + θ).

(6)

If the functions gθ are Lipschitz then the Lipschitz constant of the function freg

can be made arbitrarily small by setting β to some sufficiently small value. At
the same time, the values of signfreg(x) and f(x) coincide. This implies that
regardless of how well-behaved the function freg in (6) is, forced classification
achieved either by the application of the sign function or, alternatively, through
thresholding or softmax, brings instabilities.

In this respect, network regularisation by pruning, restricting norms of the
network’s weights, and forcing the network’s Lipschitz constant to stay small do
not always warrant robustness. Similarly, requesting that there is some non-zero
margin separating the classes does not address or alleviate the problem either.
The instability occurs due to the fact that the algorithm is required to produce
a decision boundary, but is unaware that the data is placed directly on this
boundary.

Adversarial Training. A potential way to overcome the instabilities formalised
in statement (i) of Theorem 1 is to invoke a type of training capable of assessing
that instabilities (5) do not occur. Adversarial training and data augmentation,
whereby each data sample produces a set of points corresponding to perturbed
data is an example of an approach which can potentially address the problem.
The approach is not without its own challenges as one needs to ensure that all
points in the sets Bn(α/n, x), α ∈ (0, ε/2) are checked. The latter task can be
computationally and numerically overwhelming for large n.

Dark Data. The final and perhaps the most interesting point in relation to the
problem of verifiability is statement (iii), which can be related to challenge of
the “dark data” – the data which exists but to which we don’t have access [9]
or, more generally, the missing data and the data which we don’t have [6]. As
the theorem states, high-dimensional distributions could be a very real source of
such dark data, potentially leading to instabilities or non-verifiability.

4 Conclusion

Deep learning networks and models have convincingly shown ample capabilities
in many practical tasks. When properly engineered, these models stunningly
outperform shallower architectures (see e.g. [7,15] for examples and precise
statements). Moreover, recent breakthroughs such as the emergence of Chat-
GPT show exceptional power these models may bring. These models operate in
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high-dimensional spaces and process and execute decisions on genuinely high-
dimensional data.

At the same time, and despite these remarkable achievements, the appli-
cation of these highly expressive and capable models requires special care and
understanding of their fundamental limitations.

Our work, by building on [1], reveals a new set of limitations which are particu-
larly inherent to high-dimensional data. These limitations constitute the presence
of nested uncountably large families of exceptions on which even moderately-sized
networks may and likely will fail. The results also show that it may be compu-
tationally hard to verify both robustness and accuracy of models within classi-
cal distribution-agnostic learning frameworks based solely on the notions of risk
and empirical risk minimisation. All these call for the need to rethink standard
distribution-agnostic learning frameworks and introduce more appropriate mod-
els of reality into the mathematical setting of statistical learning.

The results, by showing fundamental difficulties with guaranteeing simulta-
neous stability, accuracy, and verifiability, highlight the importance of mathe-
matical theory and methods for the continuous correction of AI models [3–5].

At present, the results do not include networks with classical sigmoidal acti-
vation functions. Detailed analysis of these types of networks will be the topic
of our future work.

Acknowledgements. This work is supported by the UKRI, EPSRC [UKRI Turing
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Q.Z., EP/V046527/1 and EP/P020720/1 to D.J.H, EP/V046527/1 to A.B.].

Appendix

4.1 Proof of Theorem 1

Proof of Statement (i) of the Theorem. The proof consists of three parts.
The first part introduces a family of distributions satisfying the separability
requirement (2) and shows relevant statistical properties of samples drawn from
these distributions. The second part presents the construction of a suitable neural
network minimising the empirical loss function L for any loss function R ∈ CF loc

which successfully generalises beyond training (and test/validation) data. The
final part shows that, with high probability, this network is unstable on nearly
half of the data (for s + r reasonably large).

Proof of statement (i), part 1. Consider the n-dimensional hyper cube
Cb(2, 0) = [−1, 1]n. Within this cube, we may inscribe the unit ball Bn (the
surface of which touches the surface of the outer cube at the centre of each
face), and within this ball we may, in turn, inscribe the inner cube Cb(2/

√
n, 0)

each vertex of which touches the surface of the ball and whose faces are parallel to
the faces of the cube Cb(2, 0). For any ε ∈ (0,

√
n−1), the cube Cb( 2√

n
(1+ε), 0)

may be shown to satisfy Cb(2/
√

n, 0) ⊂ Cb( 2√
n
(1 + ε), 0) ⊂ Cb(2, 0).
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Let V = {vi}2n

i=1 denote the set of vertices of Cb(2/
√

n, 0) with an arbitrary
but fixed ordering, and note that each vi may be expressed as 1√

n
(q1, . . . , qn)

with each component qk ∈ {−1, 1}. The choice of ε ensures that the set

J0 =
{

x ∈ Sn−1(1, 0) | x /∈ Cb
( 2√

n
(1 + ε), 0

)}
.

is non-empty and that minx∈J0, y∈V ‖x − y‖ > ε√
n
.

Consider a family of distributions F1 ⊂ F which are supported on
Sn−1(1, 0)×{0, 1}, with the σ-algebra ΣS ×{0}∪ΣS ×{1}, where ΣS is the stan-
dard σ-algebra on the sphere Sn−1 with the topology induced by the arclength
metric.

We construct F1 as those distributions Dδ ∈ F such that

PDδ
(x, �) = 0 for x ∈ Cb

(
2√
n

(1 + ε), 0
)

\ V, and any �, (7)

with

PDδ
(x, �) =

{
1

2n+1 for x ∈ V, � = 1
0, for x ∈ V, � = 0

(8)

and

PDδ
(J0, �) =

{
0 for � = 1,
1
2 for � = 0.

(9)

The existence of an uncountable family of distributions Dδ satisfying (7)–(9) is
ensured by the flexibility of (9) and the fact that J0 contains more than a single
point (consider e.g. the family of all delta-functions supported on J0 and scaled
by 1/2). This construction moreover ensures that any Dδ ∈ F1 also satisfies the
separation property (2) with δ ≤ ε√

n
.

Let M = T ∪ V = {(xk, �k)}M
k=1, denote the (multi-)set corresponding to

the union of the training and validation sets independently sampled from Dδ,
where M = s + r = |M|. Let z : Rn × {0, 1} → {0, 1} be the trivial function
mapping a sample (x, �) from Dδ into {0, 1} by z(x, �) = �. This function defines
new random variables Zk = z(xk, �k) ∈ [0, 1] for k = 1, . . . , M , with expectation
E(Zk) = 1

2 .
The Hoeffding inequality ensures that

P

(
1
2

− 1
M

∑
Zk > q

)

≤ exp
(
−2q2M

)
,

and hence, with probability greater than or equal to

1 − exp
(
−2q2M

)
, (10)

the number of data points (x, �) with � = 1 in the sample M is at least

�
(

1
2

− q

)

M�. (11)
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Proof of statement (i), part 2. Let {e1, . . . , en} be the standard basis in R
n.

Consider the following set of 2n inequalities:

(x, ei) ≤ 1√
n

, (x, ei) ≥ − 1√
n

, for i = 1, . . . , n. (12)

Any function defined on [−1/
√

n, 1/
√

n]n (or which contains [−1/
√

n, 1/
√

n]n

in the domain of its definition) and which returns 1 for x satisfying (12) and 0
otherwise, minimises the loss L on T . It also generalises perfectly well on any V.
Hence a network implementing such a function shares the same properties.

Pick a function gθ ∈ Kθ and consider

gθ((x, ei) − 1/
√

n + θ), gθ(−(x, ei) + 1/
√

n + θ), i = 1, . . . , n.

It is clear that gθ(θ) − gθ((x, ei) − 1/
√

n + θ) = 0 for (x, ei) ≤ 1/
√

n, and
gθ(θ)−gθ((x, ei)−1/

√
n+θ) < 0 for (x, ei) > 1/

√
n. Similarly gθ(θ)−gθ(−(x, ei)−

1/
√

n + θ) = 0 for (x, ei) ≥ −1/
√

n, and gθ(θ) − gθ(−(x, ei) − 1/
√

n + θ) < 0 for
(x, ei) < −1/

√
n. Hence, the function f given by

f(x) =sign

(
n∑

i=1

gθ(θ) − gθ((x, ei) − 1/
√

n + θ)

+
n∑

i=1

gθ(θ) − gθ(−(x, ei) − 1/
√

n + θ)

) (13)

is exactly 1 only when all inequalities (12) hold true, and is zero otherwise. We
may therefore conclude that

f ∈ arg min
ϕ∈NNN,L

L(T ∪ V, ϕ).

Observe now that (13) is a two-layer neural network with 2n neurons in the
hidden layer and a threshold output. This core network can be extended to any
larger size without changing the map f by propagating the argument of sign(·)
in (13) to the next layers and appending the width as appropriate.

Proof of statement (i), part 3. Let us now show that the map (13) becomes
unstable for an appropriately-sized set M. Suppose that there are �(1/2− q)M�
data points on which f(x) = 1, and by construction each is a vertex of
Cb(2/

√
n, 0). According to (10), (11), the probability of this event is not zero.

Let x be one such point and let ζ be a perturbation sampled from an equidis-
tribution in the ball Bn(α/

√
n, 0) for some α ∈ (0, ε/2). Then, with probability

1 − 1
2n , the perturbation ζ is such that |f(x + ζ) − f(x)| = 1, since this is true

for any ζ such that x + ζ /∈ I = Cb(2/
√

n, 0) ∩ Bn(α/
√

n, x), and the set I is
uniquely defined by the signs of exactly n linear inequalities which slice the ball
into 2n pieces of equal volume and so has probability 1

2n .
Finally, note that if there are at least m points (u1, �1), . . . , (um, �m) in the set

U then the probability that all ui +ζ, i = 1, . . . , m are outside of the correspond-
ing intersections follows from the union bound, which completes the argument.
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Proof of Statement (ii) of the Theorem. The argument used in the proof
of statement (i), part 2, implies that there exists a network f̃ ∈ NNN,L such
that f̃(x) takes value 1 when the inequalities

(x, ei) ≤ 1√
n

(
1 +

ε

2

)
, (x, ei) ≥ − 1√

n

(
1 +

ε

2

)
, for i = 1, . . . , n. (14)

are satisfied, and zero otherwise. This network also minimises L and generalises
beyond the training and validation data.

However, since for any α ∈ (0, ε/2) the function f̃ is constant within a ball
of radius α/

√
n around any data point x ∈ T ∪ V, we can conclude that f̃ is

insusceptible to the instabilities affecting f .
To show that there exists a pair of unstable and stable networks, f and

f̃ (the network f̃ is stable with respect to perturbations ζ : ‖ζ‖ ≤ α/
√

n),
consider systems of inequalities (12), (14) with both sides multiplied by a positive
constant κ > 0. Clearly, and regardless of the multiplication by κ, these systems
of inequalities define the cubes Cb(2

√
n, 0) and Cb(2

√
n(1+ε/2), 0), respectively.

Then

f(x) =sign

(
n∑

i=1

gθ(θ) − gθ(κ((x, ei) − 1/
√

n) + θ)

+
n∑

i=1

gθ(θ) − gθ(κ(−(x, ei) − 1/
√

n) + θ)

) (15)

encodes the unstable network, and

f̃(x) =sign

(
n∑

i=1

gθ(θ) − gθ(κ((x, ei) − (1 + ε/2)/
√

n) + θ)

+
n∑

i=1

gθ(θ) − gθ(κ(−(x, ei) − (1 + ε/2)/
√

n) + θ)

) (16)

encodes the stable one. These networks share the same weights but their biases
differ in absolute value by κε/(2

√
n). Given that κ can be chosen arbitrarily

small or arbitrarily large, the statement now follows.

Proof of Statement (iii) of the Theorem. Part a) of statement (iii) can
be demonstrated following the same argument used to prove of statement (i) by
replacing the cube Cb(2/

√
n, 0) with Cb(2/

√
n(1 + ε/2), 0).

Part b) follows by considering a slightly modified family of distributions Dδ

in which the set V is replaced with

V = {vi | i = 1, . . . , 2n − k} ∪ V̂ ,

where
V̂ = {vi(1 + ε/2) | i = 2n − k + 1, . . . , 2n}.
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The probability that a single point from V̂ is not present in M is (1−1/2n+1)M .
Since the samples are drawn independently, the probability that none of these
points are present in M is (1 − 1/2n+1)Mk. The probability, however, that a
point from V̂ is sampled is k/2n+1. �
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Abstract. We motivate and test a new adversarial attack algorithm
that measures input perturbation size in a relative componentwise man-
ner. The algorithm can be implemented by solving a sequence of linearly-
constrained linear least-squares problems, for which high quality software
is available. In the image classification context, as a special case the algo-
rithm may be applied to artificial neural networks that classify printed or
handwritten text—we show that it is possible to generate hard-to-spot
perturbations that cause misclassification by perturbing only the “ink”
and hence leaving the background intact. Such examples are relevant to
application areas in defence, business, law and finance.

Keywords: backward error · misclassification · stability

1 Motivation

It is well known that deep learning image classification tools can be vulnerable
to adversarial attacks. In particular, a carefully chosen perturbation to an image
that is imperceptible to the human eye may cause an unwanted change in the
predicted class [7,15]. The fact that automated classification tools may be fooled
in this way raises concerns around their deployment in high stakes application
areas, including medical imaging, transport, defence and finance [11]. Over the
past decade, there has been growing interest in the development of algorithms
that construct attacks, and strategies that defend against them [1,6,10,12,13].
Amidst the background of this war of attrition, there has also been “bigger
picture” theoretical research into the existence, computability and inevitability
of adversarial perturbations [2,5,14,16,17].

In this work, we contribute to the algorithm development side of the adver-
sarial attack literature. We focus on the manner in which perturbation size is
measured. Figure 1 illustrates the benefits of our new algorithm. On the left, we
show the image of a handwritten digit from the MNIST data set [9]. A trained
neural network (accuracy 97%) correctly classified this image as a digit 8. In
the middle of Fig. 1 we show a perturbed image produced by the widely used
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DeepFool algorithm [12]. This perturbed image is classified as a 2 by the net-
work. On the right in Fig. 1 we show another perturbed image, produced by our
new algorithm. This new image is also classified as a 2. The Deepfool algorithm
looks for a perturbation of minimal Euclidean norm, treating all pixels equally.
In this case, we can see that although the perturbed image is close to the orig-
inal, there are tell-tale smudges to the white background. Our new algorithm
seeks a perturbation that causes a minimal componentwise relative change; and
in this context it will not make any change to zero-valued pixels. We argue that
the perturbation produced is less noticeable to the human eye, being consistent
with a streaky pen, rough paper, or irregular handwriting pressure.

Fig. 1. Showcasing the capabilities of our new algorithm, which seeks a perturbation
that causes minimal componentwise relative change. Left: image from the MNIST data
set [9], correctly classified as an 8 by a neural network. Middle: perturbed image pro-
duced by Deepfool [12], classified as a 2. Right: perturbed image produced by new
componentwise algorithm, also classified as a 2. The componentwise algorithm does
not change the background, where pixel values are zero. In the notation of Sect. 2,
the relative Euclidean norm perturbation size, ‖Δx‖2/‖x‖2, is 0.09 for Deepfool and
0.23 for the componentwise algorithm. This reflects the fact that Deepfool looks for
the smallest Euclidean norm perturbation whereas the componentwise algorithm has
a different objective.

2 Overview of Algorithm

We will focus on image classification, assuming that there are c possible classes.
Regarding an image as a normalized vector in x ∈ R

n, a classifier takes the form
of a map F : [0, 1]n → R

c, where we assume that output class is determined by
the largest component of F (x).

Suppose F (x) = y and we wish to perturb the image to x + Δx with F (x +
Δx) = ŷ, where the desired output ŷ produces a different classification, so ŷ has
a maximum component in a different position to the maximum component of y.
In the untargeted case, ŷ may be any such vector. In the targeted case, we wish
to specify which component of ŷ is maximum.
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Because we seek a small perturbation, we will use the linearization F (x +
Δx)−F (x) ≈ AΔx, where A ∈ R

c×n is the Jacobian of F at x, and F is assumed
to be differentiable in a neighbourhood of x. Then, motivated by the connection
to (norm-based) backward error developed in [4] and also by the concept of
componentwise backward error introduced in [8], we consider the optimization
problem

min{ε : AΔx = ŷ − y, |Δx|i ≤ εfi for 1 ≤ i ≤ n}. (1)

Here f ≥ 0 ∈ R
n is a given tolerance vector, and we note that choosing fi = |xi|

forces zero pixels to remain unperturbed. Following the approach in [8] it is
then useful to write Δx = Dv, where D = diag(f) and v ∈ R

n so that our
optimization becomes

min{‖v‖∞ : ADv = ŷ − y}. (2)

In practice, we found that the problem (2) encourages all components of v to
achieve the maximum ‖v‖∞, leading to adversarial perturbations that were quite
noticeable. We found more success after replacing (2) by

min{‖Dv‖2 : ADv = ŷ − y}. (3)

Because Δx = Dv, in this formulation we retain the masking effect where zero
values in the tolerance vector f force the corresponding pixels to remain unper-
turbed. We found that minimizing ‖Dv‖2 rather than ‖v‖∞ produced perturba-
tions that appeared less obvious, and this was the approach used for Fig. 1.

It can be shown that the underlying optimization task arising from this app-
roach may be formulated as a linearly-constrained linear least-squares problem.
To derive an effective algorithm, various additional practical steps were intro-
duced; notably, (a) projecting to ensure that perturbations do not send pixels
out of range, and (b) regarding each optimization problem as a means to gen-
erate a direction in which to take a small step within a more general iterative
method.

In our presentation, we will show computational results on a range of data
sets that illustrate the performance of the algorithm and compare results with
state-of-the-art norm-based attack algorithms. We will also explain how a rele-
vant componentwise condition number for the classification map gives a useful
warning about vulnerability to this type of attack.

For full details we refer to [3].
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Abstract. A hybrid, trainable weight initialization method for neural
networks has been proposed to address potential training issues caused by
weight symmetry. By pre-optimizing randomly initialized weights, using
backpropagation, this method enhances parameter diversity. This effi-
cient approach, applicable to any neural network architecture, decreases
symmetry and decorrelates weights, thus optimizing performance with
fewer trainable parameters.

1 Introduction

The stochastic nature of neural networks’ weight initialization [4] imposes cer-
tain restrictions on model performance. Mainly, it can result in symmetrical
activation patterns that limit the network’s representational capacity. This is
especially critical in resource-constrained models, where such patterns can sig-
nificantly degrade performance.

Small, resource-constrained neural networks are indispensable in a wide range
of applications that require limited computational resources, real-time process-
ing, or online retraining. Furthermore, a constrained number of parameters in
a neural network promotes learning of general rules rather than merely fitting
to a training dataset. Therefore, given the same performance, a smaller model
potentially has better generalization capability.

Weight initialization algorithms are typically non-deterministic and contain
an element of randomness, so symmetry in the distribution of weights is a matter
of chance. The similarity of the initial weights can also influence the network’s
symmetry, which in turn affects the network’s dynamics during training. This is
especially crucial in resource-constrained neural networks where weight redun-
dancy is low. To address this issue, various methodologies have been developed.
For instance, orthogonal initialization has been reported to reduce overfitting
and improve system stability in recurrent neural networks [6,8]. Numerous ini-
tialization techniques have been developed [2,5], ranging from random weight
initialization and the widely-used Kaiming initialization [3], to unsupervised
pre-training with stacked autoencoders [1].

In this work, we present an efficient solution to decorrelate weights using
backpropagation. The approach is based on a trainable Gram matrix of the
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model’s layer weights. The Gram matrix [7], a specific type of covariance matrix
that arises in the context of inner product spaces, has a determinant that pro-
vides a measure of the spread or volume of multivariate data. Leveraging the
fully differentiable nature of neural networks, we employed data-independent
weight decorrelation with backpropagation.

2 Our Contribution

In this work, we propose a hybrid approach to weight initialization that is both
stochastic and trainable. This technique is suitable for neural networks of any
architecture and activation function. The method is based on pre-optimizing
stochastically initialized weights to enhance diversity among the network param-
eters. It is architecture-agnostic, data-independent, and computationally cheap.
As a result, models with asymmetric initialization require far fewer trainable
parameters to achieve optimal performance due to the decorrelated weights and
lower symmetry.

3 Decorrelation by Backpropagation

Prior to the model training, an annealing process is employed. This process
applies a data-independent loss function, backpropagated through the neural
network, to decorrelate the weights. We define weight symmetry (inversely
related to diversity, D) as the cosine distance between the rows of weight matri-
ces in feed-forward layers and as the average cosine distance between individual
kernels in convolutional layers. To enforce this symmetry, a straightforward app-
roach that penalizes the Euclidean dot product of individual rows in feed-forward
neural network weight matrices and the average Euclidean dot product of con-
volutional kernels is utilized:

1/D =
∑

i

∑

j

(wi · wj)

L = 1/D + αW̄(1 − σ(W))

(1)

where D is diversity, wi is the i−th row of a weight matrix in feed forward layer,
W layer weight tensor α is a regularization strength parameter. As seen from the
equations above, the first term penalizes weight similarity (symmetry), therefore
decorrelates the weight, while the second term is denoted to tackle abnormalities
in the weight distribution, i.e. it penalizes weight mean and standard deviation
that is largely distinct from the normally distributed ones. Even though the
distribution penalization can be easily regularized by changing the α value, in
the present work all the experiments were performed with α = 1.

When reciprocal diversity and deviance from normally distributed weights are
penalized, it becomes possible to effectively enforce asymmetric initial weights.
This contributes to faster and more efficient neural network training, especially
when the number of parameters is constrained and the dataset variance is high.
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4 Decorrelation with Trainble Gram Matrix at
Initialization

The main drawback of the above mentioned method is a pairwise comparison of
the weights, therefore if the weight matrix is large. Therefore, here we describe
another method to decorrelate the weights by maximizing the logarithm of the
determinant of the Gram matrix. Since the determinant of a covariance matrix
is related to the degree of correlation between the variables in the data, if the
determinant is close to zero, some of the variables are highly correlated, which
implies that the dataset has redundant information. This can be formalized as:

Let the linear layer weight matrix W = (aij)1≤i≤m,1≤j≤n be of size m × n,
then if columns of W are linearly dependent, then there exist a vector x ∈ R

n

for some n ∈ N such that Wx = 0. Then if m > n:

(W�W)x = W�(W)x = W� · 0 = 0 (2)

alternatively if m < n:

(WW�)x = W(W�)x = W · 0 = 0 (3)

Therefore, in this case, by penalizing the normalized logarithmic determi-
nant of the Gram matrix (G = W�W)) weight decorrelation can be achieved
without pairwise weight comparison. Similarly to the previous case distribution
abnormalities from N (0, 1) were penalized:

L = log(det(G))/n + αW̄(1 − σ(W)) (4)

where G is Gram matrix, n – dimensionality of the Gram matrix, W layer weight
tensor α is a regularization strength parameter.

Table 1. Results of the models on the CIFAR10 and CIFAR100 datasets

Model MACs Kaiming Ours Rel. Improvement, %

CIFAR10

1 0.204 · 106 57.85 62.72 8.4

2 0.496 · 106 62.37 66.87 7.2

3 1.37 · 106 65.16 68.33 4.9

CIFAR100

1 0.204 · 106 28.40 31.76 11.8

2 0.496 · 106 31.24 33.92 11.7

3 1.37 · 106 33.65 35.52 5.6
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5 Accuracy on Benchmark Datasets

We conducted experiments on two standard image datasets: CIFAR10 and
CIFAR100, using resource-constrained neural networks with 2 convolutional lay-
ers followed by 2 linear layers. To investigate the impact of convolutional layers
on Multiply-And-Accumulate (MACs) operations1, we varied the number of con-
volutional layers in the models. The fully connected hidden layers in all models
consisted of 128 and 64 neurons. In total, we evaluated three different configu-
rations with varying numbers of parameters: (1) 4 and 8 convolutional kernels
of size 3 × 3 with default padding, stride = 1, and ReLU activation function
(408 trainable parameters, 0.204 · 106 MACs); (2) 8 and 16 kernels with the
same settings as above (1392 trainable parameters, 0.496 · 106 MACs); (3) 16
and 32 convolutional kernels with the same settings as above (5088 trainable
parameters, 1.37 · 106 MACs)

To demonstrate the robustness of our proposed method, we applied batch
normalization after each layer in the model. However, it is worth mentioning
that the proposed method is applicable alongside batch normalization layers,
and improves their performance.

The results are presented in Table 1. The decorrelated weight initialization
approach led to a significant improvement of > 11% in validation accuracy, which
diminishes as the model size increased. This phenomenon can be attributed to the
ratio of efficient parameters: for overparametrized models, the number of efficient
parameters responsible for correct reasoning is sufficient, even with symmetrical
weight initialization. This is why pruning methods are effective. However, for
resource-limited models, an excessive number of symmetrical weights decreases
the number of effective parameters, leading to decreased performance.
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Abstract. In the present study, we investigate the discernibility of indi-
viduality in brain dynamics at a macroscopic level, alongside fingerprints,
facial features, and gait patterns, by employing a reservoir computer for
time series prediction. Electroencephalograms (EEGs) are acquired from
100 participants during a resting state, and the reservoir computer is uti-
lized to forecast these time series. The findings demonstrate that individ-
uality manifests in the performance of time series prediction. Specifically,
the predictive pattern, namely the prediction error as a function of the
electrode’s position, exhibits similarities within trials of the same par-
ticipant while differing between participants. Furthermore, we illustrate
that applying manifold learning to the predictive patterns facilitates the
visualization of the similarity or dissimilarity among a substantial num-
ber of participants in a low-dimensional space. These results suggest
the potential utilization of EEG signals for biometric authentication and
other practical engineering applications.

Keywords: Individuality · Brain dynamics · Reservoir computing

1 Introduction

The brain consistently generates a diverse array of oscillations that occur across
various spatiotemporal scales [1]. Similar to fingerprints, faces, or gait patterns,
the inquiry into the extent to which these brain dynamics reflect individuality has
long been a subject of interest [2]. In this present study, we employ a reservoir
computing (RC) approach [3] to investigate the individuality of human brain
dynamics at a macroscopic level, specifically in terms of predictability. When
forecasting time series using a given model, the prediction error can be regarded
as one of the indicators of the system’s complexity or difficulty within a fixed class
of dynamical models. For our specific time series forecasting model, we employ a
reservoir computer and apply it to the resting-state electroencephalogram (EEG)
data recorded from 100 participants, which has been employed in our previous
studies [2]. We demonstrate that the predictive pattern reflects the individuality.
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2 Materials and Methods

2.1 Experimental Paradigm and Data Acquisition

A total of 100 individuals actively participated in our experimental trials. All
participants were provided their informed consent, which was duly approved by
the ethics committee of RIKEN prior to the commencement of the experiment.
Electroencephalogram (EEG) signals were recorded at a sampling rate of 1000 Hz
Hz while the participants were in a state of rest, with their eyes closed, for a
duration of 3 min. As part of the preprocessing stage preceding the main analysis,
artifacts such as ocular movements and blink-related occurrences were eliminated
through the implementation of an independent component analysis (ICA)-based
procedure. Subsequently, 14 distinct segments, each spanning a duration of 5.5 s
(equivalent to 5500 samples per segment), were extracted from the preprocessed
EEG data of each individual for further analysis.

2.2 Eco State Networks

As a reserver computing approach, we introduce the subsequent echo state net-
work [3] of N neurons defined as

xt+1 = (1 − τ)xt + τ tanh(gW recxt + ainW
in[ut; bin]), (1)

for simplicity. Here, xt is the N -dimensional state variables of the reservoir and
ut is the EEG time series taken from an electrode, where t denotes discrete time
(the unit time corresponds to the sampling time width of the recorded EEG)
and tanh(·) is applied to each component. The matrices W rec amd W in represent
the connectivity within the reservoir and that from the input to the reservoir,
respectively. The weight of each connection in W rec is chosen firstly from a
Gaussian distribution N (0, 1). Then, W rec is divided by its spectral radius so
that the resulting matrix is normalized. So, the parameter g controls the scaling
of the inter-connectivity within the reservoir. The weight of each connection in
W in is chosen from a uniform distribution U(−0.5, 0.5). The parameters ain and τ
are the input scaling and the leaking rate, respectively. Then, linear superposition
of the internal state xt and a bias bout is used as the output yt of the reservoir
as yt = W out[xt; bout], where the output matrix W out can be determined in a
linear way by minimizing a cost function such as ridge regression.

3 Results

We use one trial as the validation data, and the remaining 13 trials as the
training data. Here, the purpose of the RC Eq. (2) is to predict the future
ΔT seconds ahead. Figure 1(a) shows a demonstration of the RC’s prediction
of the EEG time series taken from an electrode (POz) for a single participant.
The discrepancy between the output from the reservoir and the target EEG
increases with an increase in the prediction time ΔT . Therefore, the normalized
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mean squared error (NRMSE) for the validation data was plotted as a function
of the prediction time ΔT , which is shown in Fig. 1(b). Here, different colors
indicate NRMSE for different positions of the electrode.

Fig. 1. (a) An example of EEG time series prediction via RC. The parameters are set
to g = 1.2, ain = 1, τ = 0.3, bin = 0, and bout = 1, respectively. The regularization
parameter for ridge regression is set to γ = 0.001. (b) The NRMSEs as functions of
the prediction time ΔT for 63 EEG time series.

Of interest here is that the tendency of the prediction error depends on the
position of electrode. Therefore, graphs depicting NRMSE as a function of the
index of electrode (we call this function the predictability pattern) for eight
different participants are shown in Fig. 2(a). In each of the panels in Fig. 2(a),
the predictive pattern in the different colors indicate NRMSE on different trials.
We found the following two interesting results. The first is that the predictive
patterns for individual participants are similar across trials, which suggests that
the system remains consistent for at least several minutes under the defined
conditions of resting state with eye-closing. The second is that the shape of
the predictive patterns differ from one another across participants. This means
that spontaneous brain activity in the resting state differs from individual to
individual, which is reflected in the predictive patterns.

To visualize the individuality of the predictive pattern in a low-dimensional
space, we employ t-SNE [4] that is a state-of-the-art technique of manifold learn-
ing for dimensionality reduction. The result is shown in Fig. 2(b). Here, each
point corresponds to a 63-dimensional prediction pattern for a single EEG seg-
ment, with different colors indicating different participants. It is evident that
the participants’ classes are adequately distinguished by the t-SNE embedding,
where each participant is represented as a distinct cluster of points.

4 Summary and Discussion

We investigated individuality in EEG signals using RC and found that pre-
diction patterns is useful for discerning individuals. Additionally, we demon-
strated the feasibility of visualizing interrelationships among prediction pat-
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Fig. 2. (a) Predictability patterns of eight participants for resting state. (b) Embed-
dings of 1400 EEG segments (100 participants × 14 trials) with t-SNE. Each point
corresponds to a 63-dimensional predictive pattern for a trial of a resting state and
each color denotes each participant. The perplexity parameter for t-SNE is set to
k = 30.

terns in a low-dimensional space using manifold learning. However, these find-
ings depend on the chosen hyper-parameters. To address this, we are exploring
a Bayesian optimization-based approach to mitigate variability. Comprehensive
results, including further analyses, will be presented at the upcoming conference.
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Abstract. Models of sensory processing and learning in physical sub-
strates (such as the cortex) need to efficiently assign credit to synapses in
all areas. In deep learning, a well-established solution is error backpropa-
gation; this however carries several biologically implausible requirements,
such as weight transport from feed-forward to feedback paths. We present
Phaseless Alignment Learning (PAL), a biologically plausible approach
for learning efficient feedback weights in layered cortical hierarchies. Our
dynamical system enables the simultaneous learning of all weights with
always-on plasticity, and exclusively utilizes information locally avail-
able at the synapses. PAL is entirely phase-free, avoiding the need for
forward and backward passes or phased learning, and enables efficient
error propagation across multi-layer cortical hierarchies, while maintain-
ing bio-physically plausible signal transport and learning.

Keywords: Credit assignment · Physical computing · Network
plasticity

1 Summary

Neural activity is modulated through learning, i.e., long-term adaptation of
synaptic weights. However, it remains unresolved how weights are adapted across
the cortex to effectively solve a given task. A key question is how to assign credit
to synapses that are situated deep within a hierarchical network. In deep learn-
ing, backpropagation (BP) is the current state-of-the-art for solving this issue,
and may potentially serve as an inspiration for neuroscience. Application of BP
to cortical processing is however non-trivial, due to several biologically implau-
sible requirements it entails. For example, it requires information to be buffered
for use at different stages of processing. Additionally, error propagation occurs
through weights that must be mirrored at synapses in different layers, resulting
in the weight transport problem. Furthermore, artificial neural networks (ANNs)
operate in separate forward and backward phases, with inference and learning
alternating strictly.
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We introduce Phaseless Alignment Learning (PAL) [4], a biologically plausi-
ble technique for learning effective top-down weights across layers in cortical hier-
archies. We propose that cortical networks can learn useful backward weights by
utilizing a ubiquitous resource of the brain: noise. Despite being usually treated
as a disruptive factor, noise can be leveraged by the feedback pathway as an
additional carrier of information for synaptic plasticity.

PAL describes a fully dynamic system that effectively addresses all of the
aforementioned problems: it models the dynamics of biophysical substrates, and
all computations are carried out using information locally available at the
synapses; learning occurs in a completely phase-less manner; plasticity is
always-on for all synapses, both forward and backward, at all times. Our app-
roach is consistent with biological observations and facilitates efficient learning
without the need for wake-sleep phases or other forms of phased plasticity found
in many other models of cortical learning.

PAL can be applied to a broad range of models and represents an improve-
ment over previously known biologically plausible methods of credit assignment.
For instance, when compared to feedback alignment (FA), PAL can solve com-
plex tasks with fewer neurons and more effectively learn useful latent representa-
tions. We illustrate this by conducting experiments on various classification tasks
using a cortical dendrite microcircuit model [7], which leverages the complexity
of neuronal morphology and is capable of prospective coding [2].

2 Theory

PAL utilises the noise found in physical neurons, as information is sent across the
cortical hierarchy, see Fig. 1 (a). Neuronal dynamics are described in a rate-based
coding scheme of a network with � = 1 . . . N layers,

τ u̇� = −u� + W �,�−1r�−1 + e� + ξ� , (1)

with bottom-up input W �,�−1r�−1, and noise ξ�; the local error signal e� is used
to update forward weights through Ẇ �,�−1 ∝ e� rT

�−1. Errors are passed down
from higher layers through top-down synapses B�,�+1 via e� = ϕ′ · B�,�+1 e�+1.

As suggested in [7], the different terms in Eq. (1) correspond to the differ-
ent compartments of a pyramidal neuron, and the error is transported as the
difference in firing rates of pairs of pyramidal and interneurons.

PAL learns from the noise ξ� accumulated on top of a stimulus signal as it
passes through the network. Backprojections are learned using high-pass-filtered
rates r̂�+1 through the rule

Ḃ�,�+1 ∝ ξ�

(

r̂�+1

)T − α B�,�+1 . (2)

By exploiting the autocorrelation properties of neuronal noise, this learning
rule dynamically achieves approximate alignment B�,�+1 ||W T

�+1,� for all lay-
ers simultaneously, and without interrupting the learning of forward weights
(see Fig. 1 (b,c)). This allows networks which implement PAL to efficiently learn
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Fig. 1. PAL aligns weight updates with backpropagation in hierarchical cor-
tical networks. (a) Cortical pyramidal cells as functional units of sensory processing
and credit assignment. Bottom-up (W �+1,�) and top-down (B�,�+1) projections pref-
erentially target different dendrites. Due to stochastic dynamics of individual neurons,
noise is added to the signal. (b) We train the backward projections in a deep, den-
dritic microcircuit network of multi-compartment neurons with layer sizes [5-20-10-20-
5] using our method PAL. All backward weights B�,�+1 are learned simultaneously,
while forward weights are fixed. Forward weights are initialised s.t. neurons are acti-
vated in their linear regime. (c) Same as b, but with weights initialised in non-linear
regime. (d) In a simple teacher-student task with a neuron chain [1-1-1] of dendritic
microcircuits, PAL is able to flip the sign of backwards weights, which is crucial for suc-
cessful reproduction of the teaching signal. (e) PAL solves teacher-student task, where
feedback alignment fails. The teaching signal (red dashed) requires positive forward
weights, whereas all student networks are initialised with negative W 1,0. Note that
PAL only learns the correct forward weights once the backwards weights have flipped
sign (at epoch ∼ 500). (f-h) PAL learns useful latent representations on the MNIST
autoencoder task, whereas FA leads to poor feature separation. We train a network
[784-200-2-200-784] using leaky-integrator neurons on the MNIST autoencoder task:
(f) Shown are the activations after training in the two-neuron layer for all samples
in the test set; colors encode the corresponding label. BP and PAL show improved
feature separation compared to FA. (g) Linear separability of latent activation. (h)
Alignment angle of top-down weights to all layers for networks trained with PAL. PAL
is able adapt top-down weights while forward weights are learned at the same time.
All curves show mean and standard deviation over 5 seeds.
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all weights (feedforward and feedback) without phases, as opposed to many
bio-inspired learning rules found in the literature (e.g., Difference Target Prop-
agation and variants [1,3], AGREL [5,6], Equilibrium Propagation [8]).

3 Results

We have evaluated PAL on varius tasks: for an excerpt of results, see Fig. 1 (b-h).
Additionally, we benchmark PAL using standard tests such as the MNIST digit
classification task, where the dendritic microcircuit model (of network size: [784-
100-10]) achieves a final test error 3.9 ± 0.2 % using PAL and 4.7 ± 0.1 % with
microcircuits with FA. We emphasize that our results were achieved through
simulation of a fully dynamic, recurrent system that is biologically plausible.
Weight and voltage updates were applied at every time step, and populations of
multi-compartment neurons were used as a bio-plausible error transport mech-
anism. Our findings demonstrate that PAL can efficiently learn all weights and
outperforms FA on tasks involving classification and latent space separation.

We argue that PAL can be realized both in biological and, more generally,
physical components. Specifically, it capitalizes on the inherent noise present in
physical systems and leverages simple filtering techniques to distinguish between
signal and noise where necessary. A realization of PAL (or a variant) in physical
form, whether in the cortex or on neuromorphic systems, constitutes an elegant
solution to the weight transport problem, while enabling efficient learning with
purely local computations.
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Abstract. We present self-organizing control principles for simulated
robots actuated by synthetic muscles. Muscles correspond to linear
motors exerting force only when contracting, but not when expanding,
with joints being actuated by pairs of antagonistic muscles. Individually,
muscles are connected to a controller composed of a single neuron with
a dynamical threshold that generates target positions for the respective
muscle. A stable limit cycle is generated when the embodied feedback
loop is closed, giving rise to regular locomotive patterns. In the absence
of direct couplings between neurons, we show that force-mediated intra-
and inter-leg couplings between muscles suffice to generate stable gaits.

Keywords: self-organization · robots · muscles

1 Muscle-Driven Robots

A substantial effort is devoted to the development of robotic artificial muscles
[9], with possible applications ranging from interactive soft robotics [7] to the re-
creation of human walking via compliant legs [2]. In comparison, only a somewhat
limited number of studies have been devoted to the study of robotic control
principles for synthetic muscles [1,4]. Here we examine control principles based
on embodied self-organization that have been developed previously for robots
driven by rotating actuators (motors) [3,6]. For pairs of antagonistic muscles that
are controlled independently, viz without cross-control, we find spontaneous anti-
synchronization due to the indirect coupling via the moving limb. Our studies
are carried out using Webots, an open-source mobile robot simulation software
developed by Cyberbotics Ltd [8].

The core processing unit of our controller is a single neuron with membrane
potential x(t) and a variable threshold b(t). The neuron receives two types of
inputs via constant synaptic weights, ws and wy, as illustrated in Fig. 1. The
first, ws transmits information about the current status s = s(t) of the actuator,
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with the second, wy, corresponding to an excitatory self-coupling:

τxẋ = −x + wssrel + wyy, srel =
s − smin

smax − smin
, (1)

τbḃ = y − yb, y =
1

1 + ea(b−x)
(2)

where the neuronal activity y ∈ [0, 1] is determined by a sigmoidal with gain a
and threshold b. The time constants for the evolutions of membrane potential and
threshold are respectively τx and τb. The position s of the actuator is bounded
by physical constraints, such that s ∈ [smin, smax]. Using the relative position
srel ∈ [0, 1] as an input to the membrane potential, as done in (1), allows to
directly compare the sizes of ws and wy. Entering (2) is the desired steady-state
value yb for the neural activity y. It is reached however only if activities would
cease altogether.

s

ws

wy

st

y

x, b

smin st s smax

F

Fig. 1. Left: Six-legged robot driven by 24 muscles. Each leg is controlled by two pairs
of antagonistic muscles, enabling movement both in up-down and forwards-backwards
direction. Simulations were performed using the Webots open-source robot simulation
software by Cyberbotics Ltd [8]. Right: Schematics of the single neuron controller. The
neuron takes the current actuator position s and its own activation y as inputs, weighted
respectively with synaptic weights ws and wy. The target position st determines via
(3) the actuating force F [Link to the video]

The one-neuron controller acts by generating a target position st ∈
[smin, smax] for the actuator, which in turn is translated to a force F via

F = −γṡ + Ks
st − s

smax − smin
, st = smin + (smax − smin)y (3)

where Ks is the coefficient for proportional control and γ a phenomenological
damping constant. The results presented are for critical damping. We assume
with (3), that the target position st for the actuator is directly proportional to
the neuronal activity y = y(t). As a result, one has a sensori-motor feedback

https://doi.org/10.6084/m9.figshare.23703399


562 E. Fischer et al.

loop [3,6], with the actuator trying to reach a continuously updated target posi-
tion. Biologically, muscles may exert force only when contracting, but not when
expanding. This corresponds to the substitution F → F

[
1 − θ(F )

]
, where we

use the Heaviside step function θ(x) to set the force to zero when st > s, viz
when the length s would be increased.

Fig. 2. The angle (in radians) of the legs of the robot shown in Fig. 1, viewed from the
left side of the robot walking to the right after the initial synchronization phase. The
dots show the position of the respective leg at the last time step, showcasing a tripod
gait with the middle legs being in opposite phases to the front and back legs. The blue
trajectory of the left legs can hardly be seen because the left/right trajectories align
almost perfectly

Attractoring. The autonomous system, attained by setting ws = 0 in (1),
shows a super-critical Hopf transition at

wy =
4
a

+
τx
τb

, (4)

which holds for yb = 1/2. When wy and/or a is large, the system oscillates
spontaneously, acting as a central pattern generator (CPG). In this regime, the
additional feedback wssrel corresponds to a modulator. Here we concentrate on
the case that the isolated neuron does not oscillate on its own, viz that wy and/or
a is too small for (4) to be fulfilled. Locomotion is generated consequently only
when the feedback from the actuator is strong enough for an embodied limit
cycle to emerge. We call this regime ‘attractoring’, which has been found to
allow for increased behavioural flexibility [6]. Locomotion is embodied in the
sense that the phase space of the resulting limit cycle contains the degrees of
freedom of the body in addition to x(t) and b(t). We note in this context that
it is important to use force signals for both real-world and simulated actuators,
as the respective default PID controllers tend to be stiff.
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Force Mediated Inter-muscle Coupling. The desired movement for a leg
with two pairs of antagonstic muscles (up-down; left-right) is up-forwards-down-
backwards. For this we expand (3) as

st,1 = smin + (smax − smin) · ((1 − α)y1 + αy2), α ∈ [0, 1] (5)

which corresponds to an embodied coupling via force superposition. The activity
y2 of a second neuron of the same leg influences the target position (and hence
the force) generated by the first neuron, but not the first neuron directly. The
order of coupling between the four muscles of a single leg is taken to be circular.
The same principle is used for (indirect) inter-leg coupling,

st,1 = smin + (smax − smin) · ((1 − α − β)y1 + αy2 + βy3), α + β ≤ 1 , (6)

where y3 is now the activity of a neuron from another leg. For the six-legged
robot shown in Fig. 1, the contralateral pairs of legs are coupled via the up-down
muscles for producing steps, while the inter-leg phase blocking is mediated solely
via the upper muscles. We call this coupling principle ’force-mediated’ coupling.

2 Results

For parameters in the attractoring regime, we present in Fig. 2 the time evolution
of the positions of the six legs. One observes a stable tripod gait [Link to the
video], which emerges without the direct coupling of the controlling neurons. A
conceptually similar result has also been achieved by using pressure sensors and
motors [5], albeit relying on CPGs for controlling the individual legs. Note that
here oscillations would not be generated without feedback from the body and
no forces are exerted when the muscles relax, so in this sense the locomotion is
fully self-organized.
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Abstract. Application of neural networks in industrial settings, such
as automated factories with bin-picking solutions requires costly pro-
duction of large labeled datasets. This paper presents an automatic data
generation tool with a procedural model of a cardboard box. We briefly
demonstrate the capabilities of the system, and its various parameters
and empirically prove the usefulness of the generated synthetic data by
training a simple neural network. We make sample synthetic data gen-
erated by the tool publicly available.

Keywords: Synthetic Data · Neural Applications · Intelligent
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1 Introduction

Automatic detection and localization of bins on a conveyor belt is an essential
task in automated factories. This detection must be robust to guarantee the safe
operation of robotic arms. It includes handling edge cases such as missing edges,
occlusion, and variance in the materials and shapes of the bins. Moreover, in a
specific scenario of package delivery factories, bins are made from a non-rigid
cardboard material. These boxes are prone to various deformations, and their
paper flaps are semi-randomly opened while being filled by workers and robots.

Analytical detection algorithms lack robustness and are hard to modify for
new cases [5]. On the other hand, machine learning-based methods require data.
Capturing real RGB-D samples in various scenarios in factories is costly. There-
fore, the generation of synthetic data is recently a popular research topic [1,6],
outlined by the boom of commercial solutions such as NVIDIA OmniverseTM1.
1 https://www.nvidia.com/en-us/omniverse/solutions/digital-twins/.
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Following our previous work [3], in this short submission we propose a novel
data-generation tool for the automated generation of training data containing
cardboard boxes. We evaluate the results of a neural network trained upon
this novel data against a baseline synthetic generator, which has no automatic
parametrization and cannot produce boxes with paper flaps.

2 Generating Data

This project aimed to create a high-level system for generating synthetic datasets
of 3D bin scans using Blender 3D compiled into a python module (bpy)2. We
accomplished this by wrapping Blender’s functionality into high-level classes
representing respective parts of the 3D scanning pipeline. Our pipeline simu-
lates the real scanning process of a structured light scanner. Render settings,
scanner parameters and the behavior of random parameter generation are fully
customizable by the user. The output of our system comes in the form of struc-
tured point cloud data. The camera transformation matrix and the volume box
of the generated cardboard box are also exported and used as ground truth data.

2.1 Parametric Cardboard Box

Variety in synthetic data can be achieved by randomizing parameters of appro-
priate parametric model [2]. To generate virtual cardboard boxes, we have cre-
ated a parametric model which approximates the most significant box features,
see Fig. 2a for visual illustration. By changing the parameters, we are able to
obtain a wide variety of virtual cardboard boxes. The box parameters are:

1. Size - box dimensions
2. Flap Length - flap dimensions
3. Flap Width - flap taper

4. Open - flap open angle
5. Thickness - cardboard thickness
6. Bevel - roundness of box edges

Fig. 1. Box creation process, operations are exaggerated for visual clarity.

2 https://docs.blender.org/api/current/info advanced blender as bpy.html.

https://docs.blender.org/api/current/info_advanced_blender_as_bpy.html
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We have approximated a generic cardboard box as an object created using the
corresponding sequence of steps as shown in Fig. 1. The steps include a series of
extrusions, rounding corner edges, and adding thickness. The parametric model
is implemented using Blender’s Geometry Nodes system [4].

In real production, a box is assembled by folding a sheet of cardboard. The
resulting object can therefore be closely approximated in 2D. Such 2D represen-
tation can serve as a UV map without visible seams, used for procedural shading
of the parametric cardboard box, Fig. 2b shows the resulting rendered image.

(a) parameters of the model (b) procedurally shaded cardboard box

Fig. 2. Illustration of box parameters and the resulting rendered image.

2.2 Generation Parameters

The camera location was generated as a random unit vector in the positive
XYZ part of a sphere scaled by uniformly distributed random distance in the
(1m, 1.7m) interval. The rotation of the scanner was then calculated such that
the camera would point at world origin. Generation of boxes utilized random
distributions for multiple parameters, ex. a single dimension was randomized as:

SizeX = 0.25 + min(max(−σ × γ, N (μ, σ2)), σ × γ).

For our experiments, we set σ = 0.1 and γ = 2.0, each constant is in SI units.

3 Experiment

We have verified the added value of the proposed generator by training a neural
network for 6D pose estimation of the cardboard boxes [3]. We have created two
sets of synthetic training data, each consisting of 496 samples. The first set was
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generated using a baseline generator, without the automated box parametriza-
tion and flaps, see Fig. 3a. The second set is generated using our novel tool. The
data, together with loading scripts in Python is publicly available3.

3.1 Metrics

Translation of the box origin is evaluated using Euclidean distance: eTE( t̂, t ) =
‖ t − t̂ ‖2. For rotation, we use model-independent angle distance between rota-
tional axes calculated from corresponding rotation matrices as: eRE(R̂, R) =
minR̂′∈{R̂1,R̂2} arcos((Tr(R̂′R−1)− 1)/2), where Tr is the matrix trace operator.

Table 1. Comparison of network’s performance using different training data.

Training Data val eTE (mm) val eRE (rad) test eTE (mm) test eRE (rad)

Baseline Synthetic 35.603 1.336 14.237 1.121

Novel Synthetic 4.326 0.240 12.161 0.787

3.2 Evaluation

Table 1 compares networks trained over the two synthetic datasets. The vali-
dation set consists of 100 synthetic samples from the proposed generator and a
test set of 22 real-world samples captured by PhoXi 3D Scanner4. Figure 3 shows
qualitative examples of the predictions. Note that it has only the 3D point cloud
on the input, without any information about the dimensions of the boxes.

We conclude that the novel generator helped the network to generalize and
learn to ignore paper flaps, showing promise in improving synthetic data tools for
more successful training. Future work includes expanding this tool for additional
possible variances, such as bins from semi-transparent plastic materials with a
simulation of physical phenomena like light caustics in photo-realistic textures.

(a) baseline generator (b) validation sample (c) test sample

Fig. 3. Sample from the baseline generator and network predictions.

3 http://www.st.fmph.uniba.sk/∼gajdosech2/icann2023-dataset/.
4 https://www.photoneo.com/phoxi-3d-scanner/.

http://www.st.fmph.uniba.sk/~gajdosech2/icann2023-dataset/
https://www.photoneo.com/phoxi-3d-scanner/
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Abstract. Transformers are rapidly gaining popularity in the field of
reinforcement learning. This research work proposes a transformer model
with enhanced stability and learning speed. Deliberate chunking is con-
scious in its nature, it is strategically intended to structure the material
to memorize. Automatic chunking on the other hand, is unconscious, and
continuous, this research work applies automatic chunking on transform-
ers. Firstly, the memory buffer of the transformer is divided into chunks.
A high level attention is then performed on summaries of these chunks
to select the most relevant parts of memory during training. Thus, the
transformer model learns to work on only the relevant parts of memory
instead of performing self attention on the entire buffer. Gating con-
nections which make use of gated recurrent units, layer normalization
and positional encoding are also used for further improvement in per-
formance. Training and testing for various visual navigation and robotic
locomotion tasks is done.

Keywords: Transformers · Gated Recurrent Units · Convolutional
Neural Networks

1 Introduction

Human learning and decision making works on recollection based on only rel-
evant parts of memory. We can re-live specific past sequences of events in
detail,without paying attention to everything in our memory. Reinforcement
learning agents should work similarly in order to function effectively in compli-
cated and long horizon tasks. The transformer mechanism used, should work on
relevant subsections of memory instead of performing self-attention on the whole
memory buffer. The architecture used in this research work does just that by
modifying the transformer with a high level attention which learns the ability
to select relevant chunks or sequences of events from memory during training.
Layer normalization, gating and positional encoding are used to further improve
the stability and performance of the transformer.
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2 Methodology

The input observations are first pre-processed by an encoder which consists of 3
convolutional layers. Output of this CNN is then stored in memory and also fed to
the transformer block. Memories are then split into various chunks and the output
of the CNN acts as the query. Each chuck gets assigned a mean value using the
PyTorch mean function which works around a specific dimension and attention
is performed on these new summarised memories to find the top k chunks based
on highest values. For the experiments in this paper, k was set to 3. These top k
chunks are then detached to create a collection of relevant memories. Attention
is again performed in the transformer, but this time, the new relevant memory is
used (query remains the same). Layer normalisation and gating is then performed
on the output of this attention. The final output of the transformer is then used
to create a distribution over the action space such that based on the input to the
CNN, there is always a specific action which will be taken. PPO (proximal policy
optimisation) is used to perform consistent updates (based on the defined learning
rate) and limit how far we can change the policy in each iteration through the use of
KL-divergence which measures the difference between two data distributions. As
a result, the model learns to select relevant parts of memory and take appropriate
actions based on them during training (Fig. 1).

Fig. 1. The diagram to the left shows the visual navigation instructions task environ-
ment, the diagram to the right shows the robotic locomotion humanoid environment

The tasks implemented and their objectives are as follows-

1) Visual maze navigation task- Navigate a maze to find a goal
2) Collection task- Based on visual input, collect as many distinct objects as

possible
3) Instructions task- Collect a specific colored object based on instructions dis-

played on a text box
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4) Humanoid robotic locomotion task- Consists of a humanoid bot, the
objective is to learn to balance and walk through manipulation of various
body parts.

5) Quadruped robotic navigation task- Consists of a quadruped bot, the
objective is to learn to move in a specified direction by manipulating
its body parts

3 Results

Comparative study of regular transformer, transformer with relevant memory
selection and transformer with relevant memory selection along with gating was
done. Such comparison of algorithms in terms of entropy, rewards and value
function loss was done for 3 visual navigation and 2 robotic locomotion tasks.

Fig. 2. Visual Instructions Task Results.

Fig. 3. Collection Task Rewards.
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In Fig. 2, the red line corresponds to gated automatic chunking, green line cor-
responds to gated transformer-XL, orange line corresponds to automatic chunk-
ing and blue line corresponds to transformer-XL. The diagram to the right repre-
sents the mean reward across parallel workers per episode during training and the
diagram to the left represents the entropy values during training. The X-axis rep-
resents episode number in all the above figures. Gated automatic chunking had
the highest rewards and lowest entropy (randomness) during training. Decrease
in entropy signifies successful training. Both gated algorithms showed superior-
ity in terms of training time, randomness and rewards achieved. Gated Auto-
matic chunking and automatic chunking showed better results as compared to
gated transformer-xl and regular transformer-xl respectively. Similar reward val-
ues were found for the collection task as well as shown in Fig. 3. Higher rewards
and consistent entropy values were found for other tasks as well. Similar to
entropy, value function losses were found to decrease more and their stability
was also higher.

4 Conclusion

Transformer with relevant memory showed better stability and was able to learn
complex behavior more rapidly as compared to regular transformers. Gating,
layer normalization and masking based on mean pooling led to consistent policy
updates and higher overall rewards during training. The cognitive abilities of
reinforcement learning agents can greatly benefit from chunking and relevant
memory selection. This work is a deliberate effort to enable AI Agents with
automatic chunking to learn complex skills in memory intensive environments
using modified gated transformers.
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Abstract. Foveated vision is a trait shared by many animals, includ-
ing humans, but its contribution to visual function compared to species
lacking it is still under question. This study suggests that the retinotopic
mapping which defines foveated vision may play a critical role in achiev-
ing efficient visual performance, notably for image categorisation and
localisation. To test for this hypothesis, we transformed regular images
by using a Log-polar mapping, and used this retinotopic images as the
input of convolutional neural networks (CNNs). We then applied trans-
fer learning on pre-trained networks on the ImageNet challenge dataset.
Our results show that surprisingly, the network re-trained on images
which were compressed by the retinotopic mapping performs as well as
the re-trained network applied to regular images. Moreover, we observed
that the retinotopic mapping improves the robustness and localisation
of image classification, especially for isolated objects. This was specially
acute on a custom version of the dataset which aimed to categorise images
that contain or not an animal. In summary, these results suggest that
such retinotopic mapping may be an important component of preatten-
tive processes, a central cognitive characteristic of more advanced visual
systems.

Keywords: Foveated vision · Convolutional Neural Networks ·
Transfer learning · Visual categorisation · Neuromorphic
transformation

1 Introduction

The visual system in humans and many mammals is distinguished by a sub-
stantial resolution disparity between the central area of the visual field (fovea)
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Fig. 1. We illustrate the process of transforming an example input image originally
defined in Cartesian coordinates into retinotopic space using a Log-polar transforma-
tion. In (A), the input image is presented with the fixation point marked by a red
cross. The regular grid representing the image is defined by vertical (red) and hori-
zontal (blue) Cartesian coordinates (x, y), as shown in (B). As depicted in (C) to
the image of the grid, by applying the Log-polar transformation, each pixel’s coordi-
nates with respect to the fixation point are converted based on its angle of azimuth
θ (abscissa) and the logarithm of its eccentricity ρ (ordinates). This transformation
results in an overrepresentation of the central area and a deformation of the visual
space. When the transformation is applied to a natural image, as shown in (D), there
is a noticeable compression of information in the periphery

and the peripheral regions, wherein the number of photoreceptors exponentially
decreases with eccentricity [11]. Consequently, a natural question arises regard-
ing the advantages conferred by these non-isotropic visual inputs in terms of
information processing. Numerous hypotheses have been proposed regarding the
role of this deformation of the visual field. One primary explanation is the cou-
pling of foveal inputs with visual exploration : a retina with a fovea allows for
efficient visual processing if the eye can actively move and focus its attention on
specific points of interest. Studies have shown that this combination of saccades
and foveal retina, coupled with an effective mechanism for detecting points of
interest, significantly enhances visual acuity [3–5].

The most common approach to modeling foveal retinas involves reorganizing
the pixels of an image into a Log-polar reference frame [9]. A Log-polar trans-
formation organizes the visual field based on the angle and distance from the
fixation point (eccentricity), with a resolution that exponentially decreases with
the eccentricity. The primary role of a Log-polar transformation is to strongly
compress the visual information, keeping high spatial frequencies at the center,
but only low-spatial frequencies at the periphery. This conducts to process far
less visual information when compared to the full resolution. Another impor-
tant feature of the Log-polar transformation is the changing of the geometrical
properties of the image, transforming rotations and zooms (homotheties) into
translations [16].

We thus assess Log-polar visual processing on a well-known task, in the
study of vision, that is the detection of an animal in a scene [6]. Applied to
generic natural scenes, the task is such that the animal species is arbitrary. A
further difficulty is due to the large variations in identity, shape, pose, size, and
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position of the animals that could be present in the scene. Yet, biological visual
systems are able to efficiently perform such detection in images which are briefly
flashed [15]. Recently, deep learning algorithms have achieved an accuracy that
is currently superior to humans for some visual recognition tasks. However, the
tasks on which these artificial networks are typically trained and evaluated tend
to be highly specialised and do not generalise well, e.g. accuracy drops after image
rotation [8]. Here, we propose that a retinotopic mapping may be one essential
ingredient in that robustness and study the advantages of this transformation
in the context of image classification and localization.

2 Methods

2.1 Retinotopic Mapping

We implement retinotopic mapping, as found in some animal species such as
humans, so that visual information is concentrated at the center of gaze by
applying a transformation from the regular Cartesian pixel grid to a Log-polar
grid (see Fig. 1). This transformation is accomplished using Pytorch library’s [10]
function : grid sample(), it applies a grid to the pixels of the image in Carte-
sian coordinates. Therefore with a Log-polar grid, each pixel in Cartesian space
is assigned a new position in Log-polar space. We set the number of angles sam-
pled (Nθ) and the number of eccentricity sampled (Nρ) to 256 to get an output
image with a 256 × 256 resolution which was also used during the training pro-
cess. All θ values are within a linear distribution in [0; 2π], while ρ values are
within a logarithmic distribution in log 2([rmin; rmax]). After analyzing various
rmin parameters (performed with a central fixation point), we set rmin to −5;
rmax fixes the radius and depend on the desired sub-sampling size. For instance,
setting rmax to 0 gives maximal ρ values range within a log 2 distribution in
[0.03; 1].

2.2 Transfer Learning

Transfer learning is a powerful technique that leverages knowledge gained from
solving one problem, such as ImageNet [13], and applies it to a different yet
related problem. Through our research, we successfully demonstrated the use
of transfer learning to retrain VGG networks [14], enabling their application to
various tasks. During the retraining process, we explored two network config-
urations: one with a retinotopic mapping at the input, and the other without.
We have shown in our previous study that an appropriate training process is
sufficient to produce performance with robustness comparable to physiological
data [8]. Also we have shown that it is possible to predict the likelihood of a
network trained on the animal task using the semantic link that connects the
outputs of a pre-trained network to a label library such as ImageNet [8]. There-
fore, we expect similar results even though we did not examine the networks
re-trained on the animal task in this study. We extended the study by retraining
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a Deep CNN ResNet101 on the categorization of 1000 ImageNet labels. This
deeper network exhibited enhanced robustness, albeit at the cost of a higher
computational load [7].

Each of these networks (i.e. Vgg16 and ResNet101) is then re-trained with
Log-polar inputs and compared with the baseline network on the Imagenet
dataset. Two types of task will be exploited: (i) categorization of a tag of
interest among the 1000 labels in ImageNet and (ii) categorization and local-
ization of an animal. The study covers 4 networks: Vgg16 Cartesian Ima-
geNet and Vgg16 Polar ImageNet, ResNet101 Cartesian ImageNet
and ResNet101 Polar ImageNet (where only Vgg16 Cartesian Ima-
geNet and ResNet101 Cartesian ImageNet are not re-trained using trans-
fer learning).

2.3 Data Sets

We have selected two datasets for our study. The first dataset is ImageNet [13],
which is widely used due to its extensive collection of images and associated
labels. This dataset offers rich semantic links, enabling the construction of task-
specific datasets, such as those focused on “animal” recognition. However, it is
worth noting that ImageNet exhibits certain biases, particularly with objects
being centered in many images. This characteristic makes it suitable for apply-
ing a Log-polar transformation, where information is concentrated around the
fixation point, which is considered the center of the image during training.

Despite its advantages, ImageNet has limitations for localization tasks. For
instance, it lacks multilabels, meaning there is only one label per image, and the
proportion of bounding boxes relative to the image size is relatively small, which
can limit the impact of certain analyses. To address these limitations, we also
utilize the Animal 10k [17] dataset. This dataset provides key points for each
animal present in an image. By fitting Gaussians to these key points, we can
generate heat maps centered around the label of interest, which, in this case, is
’animal’, see Fig. 2. This approach enables us to improve localization and better
analyze the distribution of animals in the images.

2.4 Likelihood Map Protocol

The CNNs described above are designed to categorise images by providing a
likelihood value for each label. This likelihood is a probability that is, a scalar
between 0 and 1) which predicts the probability that the label is present in the
image. This allows to take a binary decision (“presence” or not) by choosing
the label corresponding to the top likelihood, for instance. In our setting, we
can also take different views from a large image and compute the likelihood
for each of these, allowing to compare which view provides the best likelihood
(“Bootstraping”). Views may consist for instance of cropping sub-images centred
on different fixation points, with the fixation points aligned on a regular grid in
visual space, see Fig. 3.
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Fig. 2. (A) The original image of the Animal 10k dataset. (B) A heat map constructed
by fitting Gaussians to the key points of the Animal 10k data set (see Methods : Data
sets). (C) The heat map constructed in (B) is normalized and reduced to an 8 × 8
resolution to be used as ground truth when evaluating the heat map. A threshold (0.2)
is applied to reduce the heatmap field to the assumed contour of the animal

We used two parameters to define these maps: the first parameter is the
resolution of the grid of fixation points. The second one is the size of the samples
cropped at each of these positions define as the proportion of the input’s Log-
polar grid radius on the total input size (respectively Cartesian grid size, as the
grid is a square for Cartesian samples see Fig. 3-A & C). The input grid values
determine the size of the sample taken. For a sample size of ratio 1.0 representing
the entire input image, the grid values will lie within [-1.0;1.0], for a sample size
of ratio 0.33 representing 30% of the total size of the input, the grid values will
lie within [-0.33;0.33]. In the next section, we’ll refer to the ratio of sample size
to input size.

This sample is then transformed or not by the retinotopic mapping before
being used as input for the corresponding network see Fig. 3-B & D. Conve-
niently, a collection of samples for different fixation points can be process as
a single batch, and we used here a range between 50 and 70 fixation points.
This protocol define a likelihood map for any given network as the likelihood
of categorising the presence of a label of interest (here “an animal”) inferred at
regularly spaced fixation points in the image.

3 Results

3.1 Average Accuracy

We observed that the network retrained on transformed images had a similar
categorisation accuracy to that of the network retrained on regular images. This
is surprising, given that the networks were pretrained on regular images and that
images with a Log-polar transformation show a high compression of visual infor-
mation around the fixation point and a degradation of textures in the periphery,
see Fig. 4.
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Fig. 3. Generating different views of a single image to compute likelihood maps.
(A) For the networks using Cartesian inputs, we used a regular grid of 8 × 8 fixa-
tion points, which allow to crop samples, one particular view being highlighted. As
shown in (B), this creates a batch of images which can be used to generate likelihood
maps. (C)) Similarly, we used a similar grid for generating batches of Log-polar inputs,
as shown in (D)). In (B) & (D) each samples correspond to 33% of the input (see
text for more details)

In addition, we found that while the Vgg16 network retrained and tested
on regular images showed some degradations for different rotations, the cate-
gorisation results were much more invariant for the network including a retino-
topic mapping (see Fig. 4). This phenomenon is a consequence of the translation
invariance imposed by the structure of CNNs. Applied to the retinotopic map-
ping, this translation invariance in Log-polar space is transferred to a rotation
and zoom invariance in the visual space [1]. The performance of ResNet101
with Cartesian or Log-polar mapping are similar. Surprisingly, while this net-
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Fig. 4. Average accuracy over the Animal 10k [17] dataset, shown for both retrained
and pre-trained networks with different input image rotations. The rotation is applied
around the fixation point with an angle ranging from −180◦ to +180◦ (in steps of
15◦). We tested each network (Vgg16 or ResNet101) either with raw images or with
retinotopic mapping (Cartesian or Polar). The dotted line represents chance level. This
shows that Vgg16 has a degraded performance compared to ResNet101, and notably
that rotating images may have an adversarial effect on categorization performance, an
effect which is less observed for ResNet101

work was not designed a priori for retinotopic images, we observe a slight, but
consistent, advantage for the retinotopic mapping.

3.2 Likelihood Maps as a Proxy for Saliency

We tested the networks on the likelihood map protocol on a 8 × 8 fixed grid
of fixation points varying the relative size of the input sample with different
ratios (15%, 30%, 45%, 60%, see Table 1). Using the heat map extracted from
the key points of the Animal 10k [17] data set as ground truth, “in” represents
coordinates inside an animal (and respectively “out” coordinates outside an ani-
mal, see Table 1). For each point in the 8× 8 grid, a likelihood value is obtained
(probability of an animal’s presence). Next, we calculate the average likelihood
for all points located within the zone corresponding to the animal (likelihood
“in”) as well as the average likelihood for the zone that does not contain the
animal (likelihood “out”). Next, we compare the values obtained in the “in” zone
with those obtained in the “out” zone. A higher contrast indicates the network’s
better ability to identify regions of interest in an image. For the Resnet101,
both performed well on the task even if the Cartesian tend to maintain a high
accuracy outside the box. For the Resnet101 networks, the Cartesian version
of the network seems to perform much less well than the Polar version in this
exercise (see Table 1). If we consider a good categorization to be a high average
probability on “in” coordinates (or a low probability on “out” coordinates), then
in general, networks using Polar grids tend to be slightly more contrasted than
networks using Cartesian grids, which is more manifest in the ResnNet101
case. From this perspective, we observe that image ratios ranging between 30%
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and 45% appear to be best suited for highlighting the contrast between regions
inside and outside the area of interest.

Table 1. Likelihood maps results for the Vgg16 and ResNet101 networks and as
computed on the ImageNet challenge. Results are given as a fonction of the relative
size of the samples with respect to the full image (Image Ratio). We highlight for each
network the mapping which reaches maximal likelihood ratio for the “in” vs. “out”
conditions.

Vgg16 ResNet101

Cartesian Log-Polar Cartesian Log-Polar

Ratio In/Out In/Out In/Out In/Out

15% 1.18 1.14 1.06 1.14

30% 1.19 1.24 1.06 1.20

45% 1.10 1.19 1.01 1.14

60% 1.03 1.07 1.01 1.06

3.3 Accuracy After “Saccades” Protocol

In this part of the study, we focused on finding a label of interest by including
a large number of fixation points per image. Thus, in addition to the central
fixation point (1 point with a sample ratio of 100%), we applied a grid of 7 × 7
fixation points (49 points with a sample ratio of 33%) as well as a grid of 3 × 3
fixation points (9 points with a sample ratio of 60%). All 59 fixation points are
processed in a single image batch. The use of one of these fixation points would
correspond to the network response after a saccade to an area of high salience.

We applied this protocol to the 50,000 images in the validation set of the
ImageNet data set. If we only stop at the best position (Top 1), the perfor-
mance of the networks is degraded compared to their accuracy without saccades,
and the same is true for Top 5 (compared to the performance of Top 5 without
saccades, not shown here). On the other hand, by adding a simple saccade selec-
tion strategy (Top Choice), we find that the accuracy of all networks exceeds
their baseline level (Fig. 5).

4 Conclusion

A first and principal result of this study is proving the excellent capability of
off-the-shelf Deep CNNs to deal with Log-polar inputs, that however represent a
profound transformation of their visual inputs. The Resnet and VGG networks
seem to effortlessly adapt to inputs where a large portion (the periphery) is
heavily compressed, and the spatial arrangement significantly perturbed. The
recognition rates achieved with Log-polar inputs are equivalent to those of the
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Table 2. Accuracy after “saccades” results on the 1000 labels from ImageNet. Base
represents the Top 1 accuracy of the network without saccades (state of the art accu-
racy), Top 1 represents the accuracy using the post-saccade maximum likelihood as
the predictor, Top 5 represents the accuracy using the five post-saccade maximum
likelihoods as the predictor. The Top choice represents the accuracy by taking the
maximum post-saccade position if it is correct, otherwise we keep the pre-saccade pre-
diction.

Vgg16 ResNet101

Cartesian Polar Cartesian Polar

Base 0.74 0.55 0.78 0.74

Top 1 0.69 0.55 0.67 0.69

Top 5 0.79 0.70 0.830 0.84

Top choice 0.74 0.64 0.85 0.80

Fig. 5. (A) Example of a superposition of Cartesian fixation points (respectively Log-
polar in (B)) used to carry out the after “saccades” protocol. With a central fixation
point (black), a 3 × 3 grid of nine fixation points, each corresponding to a 60% ratio
of the input (blue) and a 7 × 7 grid of forty-nine fixation points, each taking a sample
corresponding to a 33% ratio of the input (white).

original models. Additionally, the Log-polar transformation provides the added
benefit of better invariance to zoom and rotation. However, this invariance comes
at the expense of a reduced invariance to translation. For images that would not
be centered on the region of interest, one would need to shift the fixation point
to the area of interest, akin to eye saccades (Table 2).

The integration of a retinotopic mapping approach holds significant promise
for enhancing the efficiency and accuracy of image processing tasks. Our results
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are consistent with physiological data on ultra-rapid image categorisation [6,
12]. The Log-polar compression employed in our approach allows for seamless
extension to larger images without a significant increase in computational cost.

As a second result, the definition of saliency maps based on scanning the
visual scene at a limited number of fixation points enables us to gain insights
into Log-polar processing specificities: the Log-polar transformation provides a
more focal view, thereby better separating the different elements of the image
when focusing on its specific parts. In out case, it seems for instance to allow
a more precise localisation of the category of interest, here an animal. It also
gives us an insight into the features on which our networks actually rely. Such
information can be compared with physiological data [2], used to design better
CNNs, and ultimately allow physiological tests to be proposed to further explore
the features needed to classify a label of interest. In particular, by focusing on
the point of fixation with the highest probability in likelihood maps, we could
envisage refining the training of the network our retinotopic mapping.

The accuracy performance of networks with a protocol that implements sac-
cades in the process provides insight into the spatial modulation of network
performance. It also allows us to extend the study of this type of network by
implementing a strategy for choosing the optimal saccade.

Finally, the implementation of this robust categorisation, coupled with a
refined localisation of a label of interest and the optimal selection of saccades,
could allow us to extend this study to a more complex task. One such task is
visual search (i.e., the simultaneous localisation and detection of a visual target),
and the likelihood maps could provide the underlying pre-attentive mechanisms
on which its effectiveness seems to depend.

References

1. Araujo, H., Dias, J.: An introduction to the log-polar mapping. In: Proceedings
II Workshop on Cybernetic Vision, vol. 1, pp. 139–144 (1997). https://doi.org/10.
1109/CYBVIS.1996.629454, http://ieeexplore.ieee.org/document/629454/

2. Crouzet, S.M.: What are the visual features underlying rapid object recognition?
Front. Psychol. 2, 326 (2011)
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Abstract. Reinforcement learning (RL) agents need to explore their
environments in order to learn optimal policies. In many environments
and tasks, safety is of critical importance. The widespread use of sim-
ulators offers a number of advantages, including safe exploration which
will be inevitable in cases when RL systems need to be trained directly
in the physical environment (e.g. in human-robot interaction). The pop-
ular Safety Gym library offers three mobile agent types that can learn
goal-directed tasks while considering various safety constraints. In this
paper, we extend the applicability of safe RL algorithms by creating
a customized environment with Panda robotic arm where Safety Gym
algorithms can be tested. We performed pilot experiments with the pop-
ular PPO algorithm comparing the baseline with the constrained version
and show that the constrained version is able to learn the equally good
policy while better complying with safety constraints and taking longer
training time as expected.

Keywords: safe exploration · reinforcement learning · robotic arm

1 Introduction

Reinforcement learning (RL) L agents need to explore their environments to
learn optimal behaviours. Sometimes an agent might perform a dangerous action,
therefore exploration is risky. Safe RL can be defined as the process of learn-
ing to maximize the reward and at the same time to ensure respecting safety
constraints during learning [2]. It is usually possible to train the agent in a sim-
ulated environment, and then after learning to transfer the learned policy to a
physical agent in the real world. However, because of difficulties in simulating
certain behaviours (e.g. human interaction, real-world scenarios in traffic, etc.)
agent’s learning is transferred to the real world, where safety concerns are of
great importance.

To address these problems, OpenAI created Safety Gym, a suite of environ-
ments and tools for measuring progress toward RL agents that respect safety
constraints while learning [3], not only in testing. Safety Gym offers three dif-
ferent agent types (point, car, quadruped), different tasks (goal, button, push)
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14254, pp. 585–589, 2023.
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and different safety constraints (hazards, vases, etc.). With those tools, one can
create different layouts for trying out novel RL algorithms and having a common
ground for benchmarking and evaluating them.

Our work integrates a new model of an agent (a robotic arm) into the Safety
Gym environment. In a simulated environment, we are able to evaluate the
agent’s behaviour regarding the safety concerns. Research in this direction can
produce significant contributions into human-robot interaction in the future.

An optimal policy in constrained RL is given by:

π∗ = arg max
π∈ΠC

Jr(π) ΠC = {π : Jci(π) ≤ di, i = 1, ..., k} (1)

where Jr(π) is a reward-based objective function and each Jci is a cost-based
constraint function, involving thresholds di (a human-selected hyperparameters).
These constraint functions form a feasible set (of allowable policies) ΠC that has
been defined in the framework of constrained Markov Decision Processes [1].
In our case, di = 1, if the arm collides with the obstacle, otherwise it is 0.
Hence, Lagrangian method uses a two-component loss function (reward-based
and cost-based). In Eq. 1, the cost-based component is included within the space
of acceptable policies ΠC . The optimization problem can also be expressed as

max
θ

min
λ≥0

L(φ, θ) .= f(θ) − λg(θ)

where the two terms of the loss function correspond to the reward and the cost,
involving policy network parameters θ and Lagrangian hyperparameter λ [3].

2 Finding a Technical Solution

On one hand, it is positive that there exist various Python libraries and robotic
simulators built on a variety of physics simulation engines. On the other hand,
combining them or making extensions may often not be easy. Our primary moti-
vation was to integrate safe RL algorithms with a robotic arm (not included in
the Safety Gym library) that can be used in human-robot interaction. Finding
a solution was not straightforward, though. The integration could be achieved
in two ways: (1) Bringing a robotic arm model into Safety Gym framework, or
(2) using a different or a customized environment with a robotic arm and inte-
grate just the safety algorithms into it. This led us to the exploration of feasible
options.

Safety Gym is built on the MuJoCo physics engine [5], so we first tried to
import a Reacher model (a simplified robotic arm) from OpenAI Gym to Safety
Gym. This should be compatible, since both are based on MuJoCo. But various
technical problems (a lot of dependencies, the need to use older versions of
Python and Tensorflow) discouraged us from pursuing this line of investigation.

Within the second option, we tried to connect Safety Gym with commonly
used robotic simulator CoppeliaSim using PyRep library built on top of it – but
this did not work due to incompatibility issues.

Finally, we used a PyBullet physics simulation engine that is built with
python and is an open source project, so it is well documented and with a
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lot of examples already on the web. That helped a lot to set up the environment
in the desirable way. Because there are already a lot of examples, we found the
environment with a robotic arm that is implemented with PyBullet and is com-
patible with OpenAI Gym - panda-gym. Our source code with the installation
guide and instructions of how to run the environment can be found here.1 We
also implemented two aditional arms to the environment – xarm and kuka – that
can be used for training with safety algorithms.

3 Experiments

We used the Proximal Policy Optimization (PPO), a well-known efficient policy
gradient method for RL [4] in our pilot experiments. We compared the basic
PPO with its constrained version (cPPO) using the panda-gym robotics arm
(with 7 DoF).

Fig. 1. Panda arm learned
to reach the target (yellow
cube) without colliding with
an obstacle (red) in front of
it. (Color figure online)

Regarding the action representation, we con-
sidered two options: (a) in PyBullet, the action
representation is given by a vector [dx, dy, dz]
which means changes of the tip of the arm in 3D
Cartesian space (we label it AR1). Those values
are used to calculate the new position of the tip
and via inverse kinematics to calculate how much
the joints should change. (b) We also tested a
“classical” actor output representation computed
directly in the joint space as a 7-dim. vector of DoF
angle changes in each step (AR2). These values
are then directly added to move the arm (forward
kinematics). We used dense reward hence simulat-
ing robotic vision enabling the robor to estimate
the distance between the tip and the target, which served as information for
calculating the (inversely proportional) reward. Last but not least, we added an
obstacle on the table in front of the target object (see Fig. 1).

Table 1. Average cost
(with std) per one run of
the classical PPO algorithm
and its constrained version
in case of Panda arm reach-
ing for a target, using two
action representation for-
mats.

PPO cPPO

3D 17.6 ± 1.3 11.9 ± 3.6

7DoF 23.8 ± 5.0 17.0 ± 1.9

In our four experiments (AR1/2, c/PPO) we
used separate feedforward MLP policy networks
with two hidden layers, each with 64 neurons, 1000
steps per epoch, maximum 200 epochs of train-
ing, and maximum number of steps per episode =
500. The experiments lead to two observations (see
Table 1): (a) Regarding AR type, the agent learns
faster (roughly with speedup factor of 2) and easier
when using AR1 than AR2 (this is probably due to
higher dimensionality of the state vector in the lat-
ter case). (b) Regarding the algorithm, cPPO yield
lower average costs for both AR types. This makes Lagrangian PPO safer, with

1 https://github.com/lukakovac99/robotic-arm-safeRL.

https://github.com/lukakovac99/robotic-arm-safeRL
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a tradeoff for length of training. Performance of both algorithms in case of AR1
is illustrated in Fig. 2.

Fig. 2. Comparison of PPO and cPPO using panda arm in terms of reward (left) and
cost (right). Constrained PPO is slower in learning and reaching the reward. On the
other hand, it is keeping the cost at lower values hence making the arm behavior safer.

4 Conclusion

We presented pilot results with a robotic arm (panda gym) environment that
is compatible with OpenAI Safety Gym, and verified the correct functionality
on a selected algorithm (PPO). Constrained (Lagrangian) PPO algorithm was
observed to have a longer learning time, but eventually learned the policies at
the same level of efficiency while being all the way safer.

The available code provides opportunities for experimenting with the robotic
arm in various setups, trying also other algorithms available in Safety Gym
(TRPO, cTRPO and CPO), adding a proper obstacle representation, obstacle
generation methods, or developing different safe tasks for the agent to perform.

Acknowledgment. L.K. was supported by Erasmus mobility stipend, and I.F. by the
Horizon Europe project TERAIS, no. 101079338 and by the national project APVV-
21-0105.

References

1. Altman, E.: Constrained Markov Decision Processes. Routledge, New York (1999)
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Ozoliņš, Emı̄ls 123

P
Patil, Minal Suresh 504
Perrinet, Laurent U. 369
Perrinet, Laurent U 574
Petrovici, Mihai A. 556
Pineda García, Garibaldi 556
Pop, Florin 268
Postovan, Andreea 87
Prokhorov, Danil 530

Q
Qin, Yuzhuo 14

S
Sándor, Bulcsú 560
Senn, Walter 556
Shan, Ao 26
Shen, Qinmu 1
Shi, Yuntao 171
Singh, Shweta 570
Song, Aohua 75
Spisak, Josua 444
Stephan, Benedict 207
Strahl, Erik 457
Stuijk, Sander 407
Stylianides, Charithea 62
Su, Changzhi 195
Suetani, Hiromichi 551
Sun, Tao 393
Sutton, Oliver J. 516
Sutton, Oliver 530

T
Tian, Rui 330
Tjøstheim, Trond A. 432
Tyukin, Ivan Y. 516, 530

U
Utke, Jean 50

V
Van den Stock, Jan 491
Vennekens, Joost 491



Author Index 593

W
Wang, Linna 317
Wang, Xuan 317
Wang, Yige 159
Wang, Yinchu 356
Wermter, Stefan 444, 457
Wu, Wei 112
Wu, Wenyu 38

X
Xian, Hequn 305
Xiao, Xianjing 232
Xie, Jiajian 293
Xie, JingJing 281
Xu, Zhiguo 305
Xue, Lingyan 1

Y
Yang, ChenHui 281
Yang, Jing 135
Yang, Kai 38

Yang, Rui 232
Yargholi, Elahe’ 491
Ye, Kejiang 183
Yin, Bojian 393
Yosipof, Abraham 256

Z
Zhang, Dongping 305
Zhang, Li 195
Zhang, Qionghui 171
Zhang, Xiaoxu 38
Zhang, Xinyu 1
Zhao, Hanlin 293
Zhao, Juanjuan 183
Zhao, Lei 195
Zhao, Xinyi 330
Zhao, Ziyun 75
Zheng, Siyu 75
Zhou, Qinghua 516, 530
Zhou, Ruimin 344
Zhu, Haijiang 356


	 Preface
	 Organization
	Invited Talks
	 Developmental Robotics for Language Learning, Trust and Theory of Mind
	 Challenges of Incremental Learning
	 Reliable AI: From Mathematical Foundations to Quantum Computing
	 Intelligent Pervasive Applications for Holistic Health Management
	 Contents – Part I

	A Classification Performance Evaluation Measure Considering Data Separability
	1 Introduction
	2 Data Separability Measure
	2.1 Coding-Rate Based Data Separability Measure
	2.2 Definition and Computation of the Coding Rate
	2.3 Correlation Between RS and Data Separability

	3 Experiments
	3.1 Validation on Two-Class Synthetic Datasets
	3.2 Correlation Between Classification Accuracy and Data Separability
	3.3 Classifier's Ability Evaluated by Classification Accuracy Under Data Separability
	3.4 CNN Layers' Performance Evaluated by Data Separability

	4 Conclusion
	References

	A Cross-Modal View to Utilize Label Semantics for Enhancing Student Network in Multi-label Classification
	1 Introduction
	2 Related Works
	3 Method
	3.1 Existing Typical Knowledge-Transfer Methods
	3.2 Pipeline
	3.3 Introduction of Label Semantics for Knowledge Transfer
	3.4 Loss Functions

	4 Experiments
	4.1 Datasets and Evaluation Metrics
	4.2 Implementation Details
	4.3 Experiment Results
	4.4 Ablation Studies
	4.5 Further Analyses

	5 Conclusion
	References

	A Hybrid Model Based on Samples Difficulty for Imbalanced Data Classification
	1 Introduction
	2 Related Work
	2.1 Data-Level Methods
	2.2 Algorithm-Level Methods

	3 Proposed Method
	3.1 Overview
	3.2 Data Space Block
	3.3 Sample Selection Block
	3.4 Sample Difficulty Block

	4 Experiments
	4.1 Data Description and Compared Methods
	4.2 Evaluation Metrics
	4.3 Implementation Details
	4.4 Experimental Results

	5 Discussion
	5.1 The Impact of Important Informative Samples
	5.2 The Impact of Parameters
	5.3 Ablation Study

	6 Conclusion
	References

	A New Dataset for Hair Follicle Recognition and Classification in Robot-Aided Hair Transplantation
	1 Introduction
	2 Related Work
	3 Dataset Preparation
	3.1 Dataset Acquisition and Annotation
	3.2 Labeling Specifications and Processes
	3.3 Statistical Analysis of Dataset Quality

	4 Dataset Availability Validation
	4.1 Experimental Environment and Evaluation Metrics
	4.2 Comparison and Analysis of Experimental Results

	5 Conclusion
	References

	A Policy for Early Sequence Classification
	1 Introduction
	2 Related Work
	2.1 Problem Setup Notation
	2.2 Early Classification via Reinforcement Learning
	2.3 PPO
	2.4 LARM

	3 Classifier-Induced Stopping
	4 Experimental Results
	4.1 Datasets and Pareto Metric
	4.2 Implementation
	4.3 IMDB Experiment
	4.4 ECG Experiment
	4.5 Stock Option Experiment

	5 Conclusion
	References

	A Study of Data-Driven Methods for Adaptive Forecasting of COVID-19 Cases
	1 Introduction
	2 Related Work
	2.1 Compartmental Models
	2.2 Data-Driven Methods
	2.3 Hybrid

	3 Incremental Learning Framework for Adaptive Forecasting
	4 Experimental Setup
	4.1 Dataset
	4.2 Compared Methods
	4.3 Evaluation Method and Metrics

	5 Experimental Results
	5.1 Role of Incremental Learning
	5.2 Role of the Sliding Window Size
	5.3 Role of Feature Extraction
	5.4 Role of the Memory Size
	5.5 Comparative Study

	6 Conclusions and Future Work
	References

	An Ensemble Scheme Based on the Optimization of TOPSIS and AdaBoost for In-Class Teaching Quality Evaluation
	1 Introduction
	2 Background
	2.1 Statistical Learning
	2.2 Ensemble Learning

	3 Method
	3.1 The Analytic Hierarchy Process-Entropy Weight-TOPSIS (AE-SIS) Model
	3.2 The Adjusted Weight in Adaptive Boosting (AW-AB) Model

	4 Experiment
	4.1 Dataset
	4.2 Results

	5 Conclusion
	References

	Architecturing Binarized Neural Networks for Traffic Sign Recognition
	1 Introduction
	2 Related Work
	3 Binarized Neural Networks
	4 Datasets and Experimental Setting
	5 Proposed Methodology
	5.1 XNOR Architectures
	5.2 Binarized Neural Architectures

	6 Experimental Results and Discussion
	References

	Boosting Few-Shot Classification with Lie Group Contrastive Learning
	1 Introduction
	2 Related Work
	2.1 Few-Shot Learning
	2.2 Contrativate Learning
	2.3 Lie Group Machine Learning

	3 Method
	3.1 Lie Contrative Learning
	3.2 Attention and Penalty Items

	4 Experiments
	4.1 Datasets
	4.2 Implementation Details
	4.3 Results
	4.4 Ablation Study

	5 Conclusion
	References

	Context Enhancement Methodology for Action Recognition in Still Images
	1 Introduction
	2 Related Work
	3 Method
	3.1 Overview
	3.2 Context Enhancement Module (CEM)

	4 Experiments
	4.1 Datasets and Evaluation Metric
	4.2 Experimental Setup
	4.3 Comparisons with the State-of-the-Art Models
	4.4 Ablation Study and Analysis

	5 Conclusions
	References

	Discrete Denoising Diffusion Approach to Integer Factorization
	1 Introduction
	2 Background: Diffusion Models
	3 Diffusion for Factorization
	4 Choice of the Neural Model
	5 Results
	6 Conclusion and Outlook
	References

	Distinguishing the Correctness of Knowledge Makes Knowledge Transfer Better
	1 Introduction
	2 The Proposed Method
	2.1 Task Formulation
	2.2 Select Examples to Construct Demonstration for Knowledge Generation
	2.3 Knowledge Filter
	2.4 Contrastive-Learning Based Knowledge Transfer

	3 Datasets
	4 Experiments
	4.1 Experimental Setup
	4.2 Results
	4.3 Analysis

	5 Conclusion
	References

	Diversified Contrastive Learning For Few-Shot Classification
	1 Introduction
	2 Related Work
	2.1 Meta Learning
	2.2 Contrastive Learning

	3 Methods
	3.1 Problem Definition
	3.2 Global Contrastive Loss
	3.3 Maximum Matching Local Contrastive Loss
	3.4 Prototype Contrastive Loss

	4 Experiments
	4.1 Datasets
	4.2 Implementation Details
	4.3 Results on Benchmark Datasets
	4.4 Ablation Study

	5 Conclusion
	References

	Enhancing Cross-Lingual Few-Shot Named Entity Recognition by Prompt-Guiding
	1 Introduction
	2 Task Formulation
	2.1 Cross-Lingual NER
	2.2 Few-Shot NER
	2.3 Cross-Lingual Few-Shot NER

	3 Methodology
	3.1 Few Shot Sampling
	3.2 Prompt Engineering
	3.3 Model Structure

	4 Experiment
	4.1 Dataset
	4.2 Baselines
	4.3 Implementation Details

	5 Results and Discussion
	5.1 Overall Results
	5.2 Ablation Study
	5.3 Embedding Distribution

	6 Conclusion
	References

	FAIR: A Causal Framework for Accurately Inferring Judgments Reversals
	1 Introduction
	2 Related Work
	2.1 Legal Intelligence
	2.2 Causal Inference for Legal Domain

	3 Methodology
	3.1 Modeling Causal Graph
	3.2 Causal Effects Estimation
	3.3 Causal Smoothing

	4 Experiments and Evaluation
	4.1 Dataset
	4.2 Experimental Setup
	4.3 Main Result

	5 Analysis
	5.1 Robustness of Inference Results
	5.2 Effect of Causal Smoothing

	6 Limitations of Large Language Model
	7 Conclusion
	References

	FeatEMD: Better Patch Sampling and Distance Metric for Few-Shot Image Classification
	1 Introduction
	2 Related Works
	2.1 Metric-Based FSIC Methods
	2.2 Image Patch Sampling

	3 The FeatEMD Method
	3.1 Preliminaries
	3.2 Feature-Based Image Patch Sampling
	3.3 Combining both Directional and Distance Similarities

	4 Experiments
	4.1 Implementation Details
	4.2 Experimental Results and Analysis

	5 Conclusion
	References

	FFTRL: A Sparse Online Kernel Classification Algorithm for Large Scale Data
	1 Introduction
	2 Proposed Method
	2.1 Algorithm Description
	2.2 Theoretical Analysis

	3 Experiments
	3.1 Description of Data and Algorithms Involved
	3.2 Experimental Setting
	3.3 Results and Analysis

	4 Conclusion
	References

	Fusing Hand and Body Skeletons for Human Action Recognition in Assembly
	1 Introduction
	2 Related Work
	2.1 Methods for Skeleton-Based Action Recognition
	2.2 Hand and Body Skeleton-Based Action Recognition

	3 Hand and Body Skeleton Dataset Preparation
	3.1 Datasets
	3.2 Hand Skeleton Estimation

	4 Approach
	4.1 Baseline: Body Skeleton Approach
	4.2 Approaches for Fusing Hand and Body Skeletons

	5 Experiments
	5.1 Setup
	5.2 Experiments with 3D Body Skeletons
	5.3 Experiments with 2D Body Skeletons

	6 Conclusion
	References

	Gaze Behavior Patterns for Early Drowsiness Detection
	1 Introduction
	2 Preliminary
	2.1 Dataset
	2.2 Preprocessing and Feature Extraction
	2.3 Exploratory Analysis

	3 Proposed Model
	3.1 Embedding
	3.2 Multi-stream Encoder
	3.3 Loss Function

	4 Experiment
	4.1 Implementation Details
	4.2 Evaluation Metrics
	4.3 Results
	4.4 Ablation Study

	5 Conclusion
	References

	GH-QFL: Enhancing Industrial Defect Detection Through Hard Example Mining
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Focal Loss
	3.2 Soft Label
	3.3 GH-QFL

	4 Experimental Setup
	4.1 Dataset
	4.2 Configuration Setup
	4.3 Evaluation Metrics

	5 Experimental Results
	5.1 Performance Comparison
	5.2 Ablation Study

	6 Conclusion
	References

	HaarStyle:Revision Style Transfer Based on Multiple Resolutions
	1 Introduction
	2 Related Work
	3 Introduced Approach
	3.1 Network Architecture
	3.2 Low-Resolution Module
	3.3 High-Resolution Module
	3.4 Loss Function

	4 Experiment
	4.1 Dataset
	4.2 Qualitative Comparison
	4.3 Ablation Study

	5 Conclusion
	References

	Semi-Supervised Learning Classifier for Misinformation Related to Earthquakes Prediction on Social Media
	1 Introduction
	2 Related Work
	3 Workflow
	4 Dataset
	5 ASSLSM: Adjusted Semi-Supervised Learning for Social Media
	6 Results
	7 Analysis
	8 Conclusion
	References

	SkinDistilViT: Lightweight Vision Transformer for Skin Lesion Classification
	1 Introduction
	2 Related Work
	3 Method
	3.1 Vanilla SkinDistilViT
	3.2 Full Distillation

	4 Experimental Setup
	4.1 Dataset
	4.2 Compared Methods
	4.3 Evaluation Metrics
	4.4 Implementation Details

	5 Results
	5.1 Performance Comparisons
	5.2 Full Distillation Results
	5.3 Distillation Trade-off
	5.4 Cancer Detection Performance

	6 Conclusions and Future Work
	References

	Sparse Block DETR: Precise and Speedy End-to-End Detector for PCB Defect Detection
	1 Introduction
	2 Method
	2.1 Review
	2.2 Object Set Reinforcement
	2.3 Encoder Queries Sparsification
	2.4 Attention Complexity

	3 Experiments
	3.1 Datasets and Implementation Details
	3.2 Comparison Studies
	3.3 Ablation Studies

	4 Conclusion
	References

	SWP:A Sliding Window Prompt for Emotion Recognition in Conversation
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Task Definition
	3.2 Context Modeling
	3.3 Prompt Ensembling
	3.4 Curriculum Learning
	3.5 Training and Evaluation
	3.6 Evaluation

	4 Experiments
	4.1 Experimental Setup
	4.2 Datasets
	4.3 Metrics
	4.4 Main Results
	4.5 Ablation Study

	5 Conclusion
	References

	VDCNet: A Vulnerability Detection and Classification System in Cross-Project Scenarios
	1 Introduction
	2 Related Work
	3 Method
	3.1 Preprocessing
	3.2 Neural Networks

	4 Experiment
	4.1 Environment and Metrics
	4.2 Datasets
	4.3 Settings
	4.4 Results

	5 Conclusions
	References

	CFNet: Point Cloud Upsampling via Cascaded Feedback Network
	1 Introduction
	2 Related Work
	2.1 Point Cloud Upsampling
	2.2 Feedback Methodology

	3 Method
	3.1 Cascaded Feedback Network (CFNet)
	3.2 Feedback Upsampling (FU) Module
	3.3 Training Loss

	4 Experiment
	4.1 Evaluation on PU1K Dataset
	4.2 Evaluation on PU-GAN Dataset

	5 Ablation Study
	5.1 The Effect of Feedback Mechanism
	5.2 The Effect of Time Step

	6 Complexity Analysis
	7 Conclusion
	References

	DA-TSD: Double Attention Two-Stage 3D Object Detector from Point Clouds
	1 Introduction
	2 Related Work
	3 DA-TSD Design
	3.1 Double Attention
	3.2 Pyramid Sampling
	3.3 Backbone and Region Proposal Networks
	3.4 Voxel RoI Pooling and Detect Head
	3.5 Loss Function

	4 Experiments
	4.1 Datasets
	4.2 Implementation Details
	4.3 Comparison with State-of-the-Arts
	4.4 Ablation Study

	5 Conclusion
	References

	Enhanced Point Cloud Interpretation via Style Fusion and Contrastive Learning in Advanced 3D Data Analysis
	1 Introduction
	2 Related Works
	2.1 Contrastive Learning on Point Cloud
	2.2 Data Augmentation on Point Cloud

	3 Proposed Method
	3.1 Preliminaries
	3.2 Pseudo Label Guidanced Contrastive Learning
	3.3 Confidence Category-Centric Contrastive Learning
	3.4 StyleFusion

	4 Experiments
	4.1 Classification on Modelnet40
	4.2 Classification on ScanObjectNN
	4.3 Ablation Study and Analysis

	5 Conclusion
	References

	PoinLin-Net: Point Cloud Completion Network Based on Geometric Feature Extraction and Linformer Structure
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 PoinLin-Net Architecture
	3.2 Connect-DGCNN
	3.3 Linear Attention Mechanism

	4 Experiments
	4.1 Implementation
	4.2 Evaluation Metric
	4.3 Results on the PCN Dataset
	4.4 Ablation Study on PCN Dataset
	4.5 Results on the ShapeNet-55 Dataset
	4.6 Results on ShapeNet-34

	5 Conclusion
	References

	Accurate Detection of Spiking Motifs in Multi-unit Raster Plots
	1 Introduction
	1.1 The Age of Large-Scale Neurobiological Event-Based Data
	1.2 Decoding Neural Activity Using Spike Distances
	1.3 A Novel Hypothesis: Spiking Motifs
	1.4 The Heterogeneous Delays Spiking Neural Network (HD-SNN)

	2 Methods
	2.1 Raster Plots: From Event-Based to Binarized
	2.2 A Generative Model for Raster Plots
	2.3 Detecting Spiking Motifs

	3 Results
	4 Discussion
	4.1 Synthesis and Main Contributions
	4.2 Main Limits
	4.3 Perspectives

	References

	Context-Dependent Computations in Spiking Neural Networks with Apical Modulation
	1 Introduction
	2 Related Work
	3 Results
	3.1 Context-Dependent Spiking Neural Networks (cSNNs)
	3.2 Contextual LIF Neurons Capture the Behavior of Pyramidal Cells Under Top-Down Input
	3.3 Improved Performance of cSNNs in Context-Dependent Temporal Processing Tasks

	4 Discussion
	5 Methods
	References

	Efficient Uncertainty Estimation in Spiking Neural Networks via MC-dropout
	1 Introduction
	2 Background
	2.1 Problem Setup
	2.2 Bayesian Neural Networks and MC-Dropout Approximation
	2.3 Source and Quality of Predictive Uncertainty
	2.4 SNN

	3 Methods
	3.1 Efficient MC-dropout in SNNs
	3.2 Loss Function
	3.3 Network Architecture

	4 Experiments
	4.1 Experimental Setup
	4.2 MNIST
	4.3 CIFAR-10 and CIFAR-100

	5 Conclusion
	References

	QMTS: Fixed-point Quantization for Multiple-timescale Spiking Neural Networks
	1 Introduction
	2 Background
	3 Related Work
	3.1 SNN Quantization
	3.2 Multiple Timescale Neurons

	4 Methodology
	4.1 (p-)ALIF Discrete Solution
	4.2 Simplifying P-ALIF
	4.3 QMTS

	5 Experiments
	5.1 Spiking Heidelberg Digits (SHD) Results
	5.2 Google Speech Commands Results
	5.3 IBM's DVS128 Gesture Dataset

	6 Conclusion and Discussion
	References

	Self-Organizing Temporally Coded Representation Learning
	1 Introduction
	2 Material and Methods
	2.1 Architecture
	2.2 Synapse and Neuron Model
	2.3 Encoding Input in Spatio-Temporal Spike Patterns
	2.4 From VQ to SOM: Adding a New Spatial Neuromodulator
	2.5 Modulation of Delay Learning
	2.6 Modulation of Weights Learning

	3 Experiments and Results
	3.1 Parameters of the SNN
	3.2 Metrics
	3.3 Numerical Tests

	4 Discussion
	References

	A System-Level Brain Model for Enactive Haptic Perception in a Humanoid Robot
	1 Introduction
	2 Methods
	2.1 The Humanoid Robot Epi
	2.2 Objects
	2.3 Model

	3 Results
	3.1 Signal Analysis
	3.2 Categorization Performance

	4 Discussion
	References

	Clarifying the Half Full or Half Empty Question: Multimodal Container Classification
	1 Introduction
	2 Related Work
	2.1 Container Content Detection
	2.2 Multimodal Integration

	3 Multimodal Data Set for Container Content Classification
	4 Approach
	5 Results and Discussion
	6 Conclusion
	References

	CycleIK: Neuro-inspired Inverse Kinematics
	1 Introduction
	2 Related Work
	3 Method
	3.1 Dataset
	3.2 Architecture
	3.3 Training
	3.4 Optimization

	4 Results
	4.1 Optimal Number of Epochs
	4.2 Precision Analysis

	5 Conclusion
	References

	Robot at the Mirror: Learning to Imitate via Associating Self-supervised Models
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Ready-made Models
	3.2 Association Mechanism
	3.3 Technical Remarks
	3.4 Method

	4 Results and Discussion
	5 Conclusion
	References

	Approximation of Binary-Valued Functions by Networks of Finite VC Dimension
	1 Introduction
	2 Preliminaries
	3 Probabilistic Estimates of Approximation Errors
	4 Approximation by Networks with Finite VC Dimension
	5 Discussion
	References

	Color-Dependent Prediction Stability of Popular CNN Image Classification Architectures
	1 Introduction
	2 Exploring Color Robustness: Implementation
	2.1 Applying Hue Changes
	2.2 Applying Saturation Changes
	2.3 Assessing Model Robustness

	3 Exploring Color Robustness: Results
	4 Increasing Color Robustness by Adding Extra Preprocessing Steps
	4.1 Training of Models
	4.2 Results

	5 Conclusion
	References

	Improving Neural Network Verification Efficiency Through Perturbation Refinement
	1 Introduction
	2 Related Work
	3 Background
	3.1 Robustness Against Adversarial Perturbations
	3.2 Gradient-Based Adversarial Attack
	3.3 Symbolic Interval Analysis for Bound Tightening
	3.4 Mixed-Integer Linear Programming

	4 The Perturbation Refinement Verification Framework
	5 Experimentation, Dataset and Evaluation
	6 Conclusion
	References

	Relative Intrinsic Dimensionality Is Intrinsic to Learning
	1 Introduction
	2 Separability of Uniformly Distributed Data
	3 Few Shot Learning Is Dependent on Separability
	4 Learning with Polynomial Kernels
	5 Conclusion
	References

	The Boundaries of Verifiable Accuracy, Robustness, and Generalisation in Deep Learning
	1 Introduction
	2 Preliminaries, Assumptions, and Problem Settings
	3 Main Results
	3.1 Interpretation of Results
	3.2 Discussion

	4 Conclusion
	4.1  Proof of Theorem 1

	References

	Componentwise Adversarial Attacks
	1 Motivation
	2 Overview of Algorithm
	References

	Decorelated Weight Initialization by Backpropagation
	1 Introduction
	2 Our Contribution
	3 Decorrelation by Backpropagation
	4 Decorrelation with Trainble Gram Matrix at Initialization
	5 Accuracy on Benchmark Datasets
	References

	Exploring Individuality in Human EEG Using Reservoir Computing
	1 Introduction
	2 Materials and Methods
	2.1 Experimental Paradigm and Data Acquisition
	2.2 Eco State Networks

	3 Results
	4 Summary and Discussion
	References

	Learning Efficient Backprojections Across Cortical Hierarchies in Real Time
	1 Summary
	2 Theory
	3 Results
	References

	Neural Self-organization for Muscle-Driven Robots
	1 Muscle-Driven Robots
	2 Results
	References

	Novel Synthetic Data Tool for Data-Driven Cardboard Box Localization
	1 Introduction
	2 Generating Data
	2.1 Parametric Cardboard Box
	2.2 Generation Parameters

	3 Experiment
	3.1 Metrics
	3.2 Evaluation

	References

	Reinforcement Learning with Memory Based Automatic Chunking for Complex Skill Acquisition
	1 Introduction
	2 Methodology
	3 Results
	4 Conclusion
	References

	Retinotopy Improves the Categorisation and Localisation of Visual Objects in CNNs
	1 Introduction
	2 Methods
	2.1 Retinotopic Mapping
	2.2 Transfer Learning
	2.3 Data Sets
	2.4 Likelihood Map Protocol

	3 Results
	3.1 Average Accuracy
	3.2 Likelihood Maps as a Proxy for Saliency
	3.3 Accuracy After ``Saccades'' Protocol

	4 Conclusion
	References

	Safe Reinforcement Learning in a Simulated Robotic Arm
	1 Introduction
	2 Finding a Technical Solution
	3 Experiments
	4 Conclusion
	References

	Author Index

