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Preface

The European Neural Network Society (ENNS) is an association of scientists, engineers
and students, conducting research on the modelling of behavioral and brain processes,
andon the development of neural algorithms.The core of these efforts is the applicationof
neuralmodelling to several diverse domains. According to itsmission statement ENNS is
the European non-profit federation of professionals that aims at achieving a worldwide
professional and socially responsible development and application of artificial neural
technologies.

The flagship event of ENNS is ICANN (the International Conference on Artifi-
cial Neural Networks) at which contributed research papers are presented after passing
through a rigorous review process. ICANN is a dual-track conference, featuring tracks
in brain-inspired computing on the one hand, and machine learning on the other, with
strong crossdisciplinary interactions and applications.

The response of the international scientific community to the ICANN 2023 call for
papers was more than satisfactory. In total, 947 research papers on the aforementioned
research areaswere submitted and 426 (45%) of themwere finally accepted as full papers
after a peer review process. Additionally, 19 extended abstracts were submitted and 9 of
them were selected to be included in the front matter of ICANN 2023 proceedings. Due
to their high academic and scientific importance, 22 short papers were also accepted.

All papers were peer reviewed by at least two independent academic referees.Where
needed, a third or a fourth referee was consulted to resolve any potential conflicts. Three
workshops focusing on specific research areas, namely Advances in Spiking Neural Net-
works (ASNN),Neurorobotics (NRR), and the challenge ofErrors, Stability, Robustness,
and Accuracy in Deep Neural Networks (ESRA in DNN), were organized.

The 10-volume set of LNCS 14254, 14255, 14256, 14257, 14258, 14259, 14260,
14261, 14262 and 14263 constitutes the proceedings of the 32nd International Confer-
ence on Artificial Neural Networks, ICANN 2023, held in Heraklion city, Crete, Greece,
on September 26–29, 2023.

The accepted papers are related to the following topics:

Machine Learning: Deep Learning; Neural Network Theory; Neural Network Models;
Graphical Models; Bayesian Networks; Kernel Methods; Generative Models; Infor-
mation Theoretic Learning; Reinforcement Learning; Relational Learning; Dynamical
Models; Recurrent Networks; and Ethics of AI.

Brain-Inspired Computing: Cognitive Models; Computational Neuroscience; Self-
Organization; Neural Control and Planning; Hybrid Neural-Symbolic Architectures;
Neural Dynamics; Cognitive Neuroscience; Brain Informatics; Perception and Action;
and Spiking Neural Networks.
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Neural applications in Bioinformatics; Biomedicine; Intelligent Robotics; Neuro-
robotics; Language Processing; Speech Processing; Image Processing; Sensor Fusion;
Pattern Recognition; Data Mining; Neural Agents; Brain-Computer Interaction; Neuro-
morphic Computing and Edge AI; and Evolutionary Neural Networks.
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Developmental Robotics for Language Learning, Trust
and Theory of Mind

Angelo Cangelosi

University of Manchester and Alan Turing Institute, UK

Growing theoretical and experimental research on action and language processing and on
number learning and gestures clearly demonstrates the role of embodiment in cognition
and language processing. In psychology and neuroscience, this evidence constitutes the
basis of embodied cognition, also known as grounded cognition (Pezzulo et al. 2012).
In robotics and AI, these studies have important implications for the design of linguistic
capabilities in cognitive agents and robots for human-robot collaboration, and have
led to the new interdisciplinary approach of Developmental Robotics, as part of the
wider Cognitive Robotics field (Cangelosi and Schlesinger 2015; Cangelosi and Asada
2022). During the talk we presented examples of developmental robotics models and
experimental results from iCub experiments on the embodiment biases in early word
acquisition and grammar learning (Morse et al. 2015; Morse and Cangelosi 2017) and
experiments on pointing gestures and finger counting for number learning (De La Cruz
et al. 2014). We then presented a novel developmental robotics model, and experiments,
on Theory of Mind and its use for autonomous trust behavior in robots (Vinanzi et al.
2019, 2021). The implications for the use of such embodied approaches for embodied
cognition in AI and cognitive sciences, and for robot companion applications, was also
discussed.



Challenges of Incremental Learning

Barbara Hammer

CITEC Centre of Excellence, Bielefeld University, Germany

Smart products and AI components are increasingly available in industrial applications
and everyday life. This offers great opportunities for cognitive automation and intelligent
human-machine cooperation; yet it also poses significant challenges since a fundamental
assumption of classical machine learning, an underlying stationary data distribution,
might be easily violated. Unexpected events or outliers, sensor drift, or individual user
behavior might cause changes of an underlying data distribution, typically referred to
as concept drift or covariate shift. Concept drift requires a continuous adaptation of the
underlying model and efficient incremental learning strategies. Within the presentation,
I looked at recent developments in the context of incremental learning schemes for
streaming data, putting a particular focus on the challenge of learning with drift and
detecting and disentangling drift in possibly unsupervised setups and for unknown type
and strength of drift. More precisely, I dealt with the following aspects: learning schemes
for incremental model adaptation from streaming data in the presence of concept drift;
various mathematical formalizations of concept drift and detection/quantification of
drift based thereon; and decomposition and explanation of drift. I presented a couple of
experimental results using benchmarks from the literature, and I offered a glimpse into
mathematical guarantees which can be provided for some of the algorithms.



Reliable AI: From Mathematical Foundations
to Quantum Computing

Gitta Kutyniok1,2

1Bavarian AI Chair for Mathematical Foundations of Artificial Intelligence, LMU
Munich, Germany

2Adjunct Professor for Machine Learning, University of Tromsø, Norway

Artificial intelligence is currently leading to one breakthrough after the other, both in
public life with, for instance, autonomous driving and speech recognition, and in the
sciences in areas such as medical diagnostics or molecular dynamics. However, one
current major drawback is the lack of reliability of such methodologies.

In this lecture we took a mathematical viewpoint towards this problem, showing
the power of such approaches to reliability. We first provided an introduction into this
vibrant research area, focussing specifically on deep neural networks. We then surveyed
recent advances, in particular concerning generalization guarantees and explainability
methods. Finally, we discussed fundamental limitations of deep neural networks and
related approaches in terms of computability, which seriously affects their reliability,
and we revealed a connection with quantum computing.



Intelligent Pervasive Applications for Holistic Health
Management

Ilias Maglogiannis

University of Piraeus, Greece

The advancements in telemonitoring platforms, biosensors, and medical devices have
paved the way for pervasive health management, allowing patients to be monitored
remotely in real-time. The visual domain has become increasingly important for patient
monitoring, with activity recognition and fall detection being key components. Com-
puter vision techniques, such as deep learning, have been used to develop robust activity
recognition and fall detection algorithms. These algorithms can analyze video streams
from cameras, detecting and classifying various activities, and detecting falls in real
time. Furthermore, wearable devices, such as smartwatches and fitness trackers, can
also monitor a patient’s daily activities, providing insights into their overall health and
wellness, allowing for a comprehensive analysis of a patient’s health. In this talk we
discussed the state of the art in pervasive health management and biomedical data ana-
lytics and we presented the work done in the Computational Biomedicine Laboratory
of the University of Piraeus in this domain. The talk also included Future Trends and
Challenges.



Contents – Part IX

MEA-TransUNet: AMultiple External Attention Network for Multi-Organ
Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Xianpeng Cao, Junfeng Yao, Qingqi Hong, and Rongzhou Zhou

Membership-Grade Based Prototype Rectification for Fine-Grained
Few-Shot Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Sa Ning, Rundong Qi, and Yong Jiang

Multi-grained Aspect Fusion for Review Response Generation . . . . . . . . . . . . . . . 25
Yun Yuan, Chen Gong, Dexin Kong, Nan Yu, and Guohong Fu

Multiple Object Tracking Based on Variable GIoU-Embedding Matrix
and Kalman Filter Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Kelei Sun, Qiufen Wen, Huaping Zhou, Kaitao Xiong, Jie Zhang,
Qi Zhao, Jingwen Wu, and Meiguang Li

Multi-relation Identification for Few-Shot Document-Level Relation
Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Dazhuang Wang, Shaojuan Wu, Xiaowang Zhang, and Zhiyong Feng

Multi-task Learning for Mongolian Morphological Analysis . . . . . . . . . . . . . . . . . 65
Na Liu, Ren Qing-Dao-Er-Ji, Xiangdong Su, Yatu Ji, Aodengbala,
and Guiping Liu

Multi-task Pre-training for Lhasa-Tibetan Speech Recognition . . . . . . . . . . . . . . . 78
Yigang Liu, Yue Zhao, Xiaona Xu, Liang Xu, and Xubei Zhang

Mutual Information Dropout: Mutual Information Can Be All You Need . . . . . . 91
Zichen Song and Shan Ma

Non-Outlier Pseudo-Labeling for Short Text Clustering . . . . . . . . . . . . . . . . . . . . . 102
Fangquan Zhou and Shenglin Gui

Optimal Node Embedding Dimension Selection Using Overall Entropy . . . . . . . 114
Xinrun Xu, Zhiming Ding, Yurong Wu, Jin Yan, Shan Jiang,
and Qinglong Cui

PairEE: A Novel Pairing-Scoring Approach for Better Overlapping Event
Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Zetai Jiang and Fang Kong



xxxii Contents – Part IX

PCB Component Rotation Detection Based on Polarity Identifier Attention . . . . 140
Haoming Ma and Hongjie Zhang

PCDialogEval: Persona and Context Aware Emotional Dialogue Evaluation . . . . 152
Yuxi Feng, Linlin Wang, Zhu Cao, and Liang He

PlantDet: A Benchmark for Plant Detection in the Three-Rivers-Source
Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Huanhuan Li, Yu-an Zhang, Xuechao Zou, Zhiyong Li, Jiangcai Zhaba,
Guomei Li, and Lamao Yongga

PO-DARTS: Post-optimizing the Architectures Searched by Differentiable
Architecture Search Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Debei Hao and Songwei Pei

Predicting High vs Low Mother-Baby Synchrony with GRU-Based
Ensemble Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Daniel Stamate, Riya Haran, Karolina Rutkowska,
Pradyumna Davuloori, Evelyne Mercure, Caspar Addyman,
and Mark Tomlinson

Properties of the Weighted and Robust Implicitly Weighted Correlation
Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Jan Kalina and Petra Vidnerová

PSML: Prototype-Based OSSL Framework for Multi-information Mining . . . . . 213
YiYong Xiao, GuiMei Ying, and YongCan Fu

Pure Physics-Informed Echo State Network of ODE Solution Replicator . . . . . . 225
Dong Keun Oh

RegionRel: A Framework for Jointly Extracting Relational Triplets
by Performing Sub-tasks by Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Zihao Li and Qun Mo

Robustness to Variability and Asymmetry of In-Memory On-Chip Training . . . . 249
Rohit K. Vartak, Vivek Saraswat, and Udayan Ganguly

Selecting Distinctive-Variant Training Samples Base on Intra-class
Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Hang Diao, Zhengchang Liu, Fan Zhang, Jiaqing Huang, Feiyu Zhou,
and Samee U. Khan

Semantic Information Mining and Fusion Method for Bot Detection . . . . . . . . . . 270
Lijia Liang, Xinzhong Wang, and Gongshen Liu



Contents – Part IX xxxiii

Semilayer-Wise Partial Quantization Without Accuracy Degradation
or Back Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Tomoya Matsuda,Kengo Matsumoto, Atsuki Inoue,Hiroshi Kawaguchi,
and Yasufumi Sakai

ShadowGAN for Line Drawings Shadow Generation . . . . . . . . . . . . . . . . . . . . . . . 296
Huanhuan Xue and Chunmeng Kang

Ship Attitude Prediction Based on Dynamic Sliding Window
and EEMD-SSA-BiLSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

Jiaqi Wang and Yaojie Chen

Solving Math Word Problem with External Knowledge and Entailment Loss . . . 320
Rizhongtian Lu, Yongmei Tan, Shaozhang Niu, and Yunze Lin

Spatially Invariant and Frequency-Aware CycleGAN for Unsupervised
MR-to-CT Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

Shuang Song, Jun Zhang, Wenbin Hu, Yong Luo, and Xin Zhou

Spatio-Temporal Attention Model with Prior Knowledge for Solar Wind
Speed Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Puguang Cai, Liu Yang, and Yanru Sun

Spatiotemporal Model with Attention Mechanism for ENSO Predictions . . . . . . 356
Wei Fang, Yu Sha, and Xiaozhi Zhang

SPM-Diffusion for Temperature Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
Wei Fang, Zhong Yuan, and Qiongying Xue

S-SOLVER: Numerically Stable Adaptive Step Size Solver for Neural ODEs . . . 388
Eliska Kloberdanz and Wei Le

TableSF: A Structural Bias Framework for Table-To-Text Generation . . . . . . . . . 401
Di Liu, Weihua Wang, Feilong Bao, and Guanglai Gao

TCS-LipNet: Temporal & Channel & Spatial Attention-Based Lip
Reading Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

Huanjie Chen,Wenjuan Li, Zhigang Cheng, Xiubo Liang, andQifei Zhang

The Dynamic Selection of Combination Methods in Classifier Ensembles
by Region of Competence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

Jesaías Carvalho Pereira Silva, Anne Magaly de Paula Canuto,
and Araken de Medeiros Santos



xxxiv Contents – Part IX

The Progressive Detectors and Discriminative Feature Descriptors
Combining Global and Local Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

Siyuan Liang, Baolu Gao, Bingjie Zhang, Xiaoyang Li, and Hao Wang

Towards Better Dialogue Utterance Rewriting via a Gated Span-Copy
Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

Qingqing Li and Fang Kong

TSP Combination Optimization with Semi-local Attention Mechanism . . . . . . . . 469
Hua Yang

UDCGN: Uncertainty-Driven Cross-Guided Network for Depth
Completion of Transparent Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

Yutao Hu, Zheng Wang, Jiacheng Chen, Yutong Qian, andWanliang Wang

Use of Machine Learning Algorithms to Analyze the Digit Recognizer
Problem in an Effective Manner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

Usama Shakoor, Sheikh Sharfuddin Mim, and Doina Logofatu

Vulnerability Analysis of Continuous Prompts for Pre-trained Language
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508

Zhicheng Li, Yundi Shi, Xuan Sheng, Changchun Yin, Lu Zhou, and Piji Li

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521



MEA-TransUNet: A Multiple External
Attention Network for Multi-Organ
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Abstract. Recently, pioneering work has improved segmentation perfor-
mance by combining the self-attention (SA) mechanism with UNet. How-
ever, since SA can only model its own features in a single sample, it ignores
the potential relevance of the whole dataset. Additionally, medical image
datasets are typically small, making it crucial to obtain as many features as
possiblewithina limiteddataset.Toaddress theseproblems,wepropose the
Multiple External Attention (MEA) module, which characterizes the over-
all datasetbymining correlationsbetweendifferent samplesbasedonexter-
nal concerns.Furthermore,ourmethodapplies theSqueeze-and-Excitation
(SE) module for the first time to low-level feature extraction of medical
images.ByusingMEAandSE,we constructMEA-TransUNet for accurate
segmentation of medical images. We test our method on two datasets and
the experimental results demonstrate its superior performance compared
to other existing methods. Code and pre-trained models are coming soon.

Keywords: Medical image segmentation · Deep learning ·
Self-attention · Vision Transformer

1 Introduction

Medical image segmentation aims to identify specific regions of a medical image
that have significant diagnostic or clinical importance [1–3]. It is an essential pre-
requisite for estimating lesion regions, selecting treatment methods, and adminis-
tering radiation, as the accuracy of segmentation directly impacts treatment out-
comes. UNet [4], an encoder-decoder network with skip connections, has gained
widespread attention for its excellent image segmentation performance. How-
ever, due to the inherent limitations of convolutional operations, both UNet and
its variants face the challenge of inadequate long-range correlation modeling
capability. Recently, some researchers have attempted to address this issue by
combining the Transformer encoder with UNet, as demonstrated in models such
as TransUNet [5], Swin-UNet [6], UCTransNet [7], etc.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14262, pp. 1–12, 2023.
https://doi.org/10.1007/978-3-031-44201-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44201-8_1&domain=pdf
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Fig. 1. A schematic view of the proposed MEA-TransUNet. We use the SE module
to capture the low-level semantic features and the MEA module to mine the whole
dataset for potential relationships.

Although previous research works have yielded better results, they still suffer
from these problems as follows: Firstly, medical image segmentation is a layout-
specific task, where the shape and location of the same organs are often similar
between different samples, but the shape and position of different organs vary
widely within the same samples. This results in a small variance between sam-
ples and a large variance within samples. However, most recent research has
focused on self-attention (SA) modules, which lack the ability to model feature
relationships between samples. Secondly, both channel and spatial features can
provide richer and more complete information, which is important for segmen-
tation results, but SA overlooks their importance. Finally, due to the limited
size of medical image datasets, the utilization of low-level feature information is
particularly important. However, SA has paid less attention to low-level feature
information.

To address these issues, We propose the proposed Multiple External Atten-
tion (MEA) module to acquire external spatial and channel features by two
external memory units of learnable parameters, which are learned using the
small variance between medical image samples. The MEA module can learn the
most discriminative features of the entire dataset, to capture the most informa-
tive parts, and to exclude interfering information from other samples. Thus, it is
the network that can better characterize the whole dataset and enhance features
association between samples. What’s more, this allows consistent processing of
features in medical images that belong to the same class but are distributed in
different samples. Meanwhile, we apply the squeeze-and-excitation (SE) module
[8] to low-level feature extraction of medical images for the first time to solve
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the problem of small medical image datasets that create difficulties for network
learning.

Our contributions can be summarized in three folds:

– We propose a novel module named MEA module to obtain external spa-
tial and channel feature information, characterize the samples of the whole
dataset, and fuse the information of different samples to generate the corre-
sponding channel and spatial level attention maps.

– Our innovative application of SE module to low-layer feature extraction for
medical image segmentation tasks.

– We construct MEA-TransUNet for medical image segmentation and demon-
strate its efficacy and generalization on two different datasets.

2 Related Works

2.1 UNet

Full Convolutional Neural Network [9] (FCN) is the pioneer of image segmenta-
tion, which extracts feature information by convolution, which makes pixel-level
image segmentation significantly better. Based on FCN, Ronneberger et al. [4]
proposed the encoder-decoder model UNet and applied it to the field of medi-
cal image segmentation, outperformed the state-of-the-art results of numerous
medical semantic segmentation tasks [10–12]. The network structure of UNet
provides skip-connection to connect same-resolution feature maps and fusion of
same-resolution features for encoding and decoding on different scales. In recent
years, most of the work on medical image segmentation has been improved based
on UNet. UNet++ [13] replaces the cropping and concatenating procedure in the
skip-connection section of UNet with a dense convolution operation in order to
gain better feature information. ScSE-UNet [14] obtains better network learning
results by adding SE module [8] to the sampling to emphasize to reinforce the
features that need to be focused on learning. What’s more, UNet3+ [15] and
Attention U-Net [16] allow decoders to fuse a richer level of semantic informa-
tion by increasing the number of skip connections or aggregating feature maps
in skip connections.

2.2 Vision Transformer

Compared with CNN, Transformer [17], a model structure based on the SA
mechanism, has a stronger learning ability, which can model the dependencies
between all positions of an image and can improve the segmentation performance
of neural networks. Jieneng Chen et al. incorporated the Visual Transformer into
UNet and proposed TransUNet [5]. TransUNet utilizes detailed high-resolution
spatial information from CNN features and global context encoded by Trans-
former to learn. The CNN is first used for feature extraction, and then the
tokenized image blocks from the extracted feature mapping are encoded into the
input sequence used to extract the global context. The encoded features are then
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upsampled and combined with the previous high-resolution CNN features. Both
the limitations of convolution are addressed to some extent and feature loss is
prevented. By combining the SA mechanism with spatial attention and channel
attention [18], Bo Dong et al. proposed Polyp-PVT [19] with powerful feature
expression, which achieved excellent results on polyp segmentation.

The above network design aims to compensate for the lack of UNet’s ability
to model remote correlations of samples but ignores SA’s lack of ability to model
external spatial and channel characteristics between samples. Recently, jiacheng
ruan et al. proposed MALUNet [20] to optimize the segmentation results by using
two external memory units to characterize the dataset. In this paper, based on
previous studies, we propose MEA-TransUNet that can accurately locate organ
boundaries even in extreme scenarios.

3 Approach

3.1 Overall Structure Design

Figure 1 shows the schematic diagram of MEA-TransUNet. The network is based
on the encoder-decoder architecture of TransUNet [5]. As shown in the figure,
MEA module improves the feature connections between samples by combining
external spatial and channel attention, as a way to compensate for the inability
of the SA mechanism of the Transformer layer in TransUNet to learn the feature
relationships between samples. Meanwhile, due to the small size of medical image
datasets, it is important to obtain as many features as possible in a limited
dataset. Low-level features usually contain rich detail information. SE module
adaptively enhances the boundary features by explicitly modeling the low-level
features of organ boundaries and finding the interdependencies between features.

Fig. 2. Overview of the proposed Multiple External Attention module. The MEA mod-
ule learns the most discriminative features of the entire dataset, capturing the most
informative parts while modeling the feature map of the entire dataset.
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3.2 Multiple External Attention

Medical image segmentation is an intensive prediction task and the variance
between samples is small [20], so acquiring both external spatial and channel fea-
tures between samples is the key to improving image segmentation performance.
The external spatial features learn ‘where’, that is, where is the most informative
part in the input image, which helps to understand the overall structure of the
organ and makes it possible to locate the organ position more accurately. The
external channel features are learned as ‘what’, that is, what is meaningful for the
input image, which helps to obtain the edge information of the organ and make
its segmentation results more continuous and complete. MEA-TransUNet uses
MEA module to get external attention. Figure 2 shows the schematic diagram
of MEA module.

The MEA module describes the feature interactions between samples using
two external memory units M1 ∈ RS×d and M2 ∈ RS×d whose weight parameter
values are shared. They are learnable parameter matrixs as the memory of the full
training dataset. The purpose of the external memory units are to learn the most
discriminative features of the entire dataset, to capture the most informative
parts, and to exclude interfering information from other samples. Units discover
the macroscopic relationships between all samples of the dataset and can model
the spatial and channel feature relationships between all samples, This allows
consistent processing of features in medical images that belong to the same class
but are distributed in different samples.

Fig. 3. Diagram of Spatial and Channel Attention Module

Given a feature map F ∈ RC×H×W as input, we compress and aggregate
the channel information of the input features to efficiently compute the spatial
feature map. As shown in Fig. 3(a), after compression and aggregation, two
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feature maps are obtained: F s
avg ∈ R

1×H×W and F s
max ∈ R

1×H×W . Then they
are concatenated and convolved to obtain our desired spatial attention map
Atts ∈ R

1×H×W . In brief, the spatial attention is computed as follows:

Atts = σ
(
f7×7([AvgPool(F );MaxPool(F )])

)
(1)

where σ denotes the sigmoid function and f7×7 indicates a convolution operation
with a convolution kernel of 7 × 7.

After matrix multiplication, convolution and shaped, we get F ′ which con-
tains spatial attention of each sample. F ′ obtains AttM ∈ R

C×HW after the
reshape operation so that it can be better learned by external memory units.
M1 establishes connections between samples by learning the spatial features of
each sample, while expanding AttM . This has the advantage of mapping the
input to a higher dimensional space for fuller learning, allowing external mem-
ory units M1 and M2 to model the overall feature information of the dataset
more comprehensively. The external memory unit M2 is then used to perform
dimensional recovery and shaping operations to obtain Att′M . Inspired by ResNet
[21], residual information is added to the shaped external spatial feature infor-
mation and obtain F ′′ for subsequent computation of external channel features.
In short, the external memory units process the feature map AttM in this way:

Att′M = AttMMT
1 M2 (2)

As shown in Fig. 3(b), the channel features are complementary to the spatial
features, so we aggregate the external spatial feature information through the
average pooling layer and the maximum pooling layer to generate two different
spatial context descriptors, F ′c

avg ∈ R
C×1×1 and F ′c

max ∈ R
C×1×1. These two

descriptors are then processed using the multi-layer perceptron (MLP) network
and the result of element summation is output as the external channel feature
vector. In brief, the external channel Attention is computed as follows:

Attc = σ(MLP(AvgPool(F ′′)) + MLP(MaxPool(F ′′))) (3)

The reason of spatial first and then channel: learning where first, by emphasizing
the range of required feature information, can reduce the learning cost when the
subsequent channel attention learns what, improve the learning effect of the
network, and obtain better segmentation results. We verified this in the ablation
experiment of Sect. 4.4.

3.3 Squeeze-and-Excitation Module

SE module [8] can recalibrate the weights of feature channels, adaptively enhance
organ boundary features, and suppress irrelevant features. The module fuses
the edge information of organs by performing a one-dimensional convolution
operation on the low-level feature information and assigns importance and larger
weights to the organ edge features. Therefore, we innovatively apply the SE
module to medical image segmentation tasks. Figure 4 shows the schematic
diagram of SE module.
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Fig. 4. Diagram of Squeeze-and-excitation module

First, after convolution layer into the Squeeze stage. In the Squeeze phase, each
two-dimensional feature channel is transformed into a real number by averaging
pooling operations. Each real number possesses a global perceptual field that
enables the lower layer convolution to acquire global information. Then, in the
Excitation phase, by using an idea based on the gate mechanism in RNN [22]
to generate weights for each feature channel. Finally, in the Reweight stage, to
complete the recalibration of the original features on the channel dimension, the
effect of assigning feature weights is done by multiplying the feature channels
with the relevant channel weights.

4 Experiments

4.1 Datasets and Metrics

Synapse: Synapse is a public multi-organ segmentation dataset. There are 30
contrast-enhanced abdominal clinical CT cases in this dataset. Following the
settings in [5], 18 cases are used for training and 12 for testing. The annotation
of each image includes 8 abdominal organs. We use Dice Similarity Coefficient
(DSC) and 95% Hausdorff Distance (HD95) to evaluate our method on this
dataset.
ACDC: ACDC is a public cardiac MRI dataset consisting of 100 exams. For each
exam, there are two different modalities, and the corresponding label includes
left ventricle (LV), right ventricle (RV) and myocardium (Myo). Same to the
settings of TranUNet, the dataset is split into 80 for training and 20 for testing.

4.2 Implementation Details

All the experiments are conducted on a Nvidia GTX 3060 GPU. The input image
size is set to 224 × 224 for all the methods. Data augmentation includes random
flip and random rotation. All the models are optimized by SGD optimizer with
learning rate 0.005, momentum 0.9, weight decay 1e−4 and batch size 16.
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Fig. 5. Qualitative results of different models on the Synapse dataset. Left to right
show Ground Truth, our MEA-TransUNet, TransUNet, Swin-UNet and MT-UNet.

4.3 Experimental Results

Segmentation Resluts of Synapse: We compare our MEA-TransUNet net-
work with four state-of-the-art CNN-based approaches and four transformer-
based methods. The qualitative segmentation results of different models on the
Synapse dataset are given in the Fig. 5, and as shown in the figure, we show
an overwhelming advantage in the segmentation of stomach and pancreas. The
quantitative segmentation results of the experiments are listed in Table 1 with
the best results in bold. All results of our method are averaged over five runs.
Our MEA-TransUNet achieves the best performance in terms of DSC (80.04%)
and the third-best HD (29.03%). This shows that our MEA-TransUNet is able
to learn the most discriminative features in the entire dataset, discover macro-

Table 1. Experimental results of the Synapse Dataset. DSC of each single class is also
presented. All results of our method are averaged over five runs.

Methods DSC ↑ HD ↓ Aorta Gallbladder Kidney (L) Kidney (R) Liver Pancreas Spleen Stomach

V-Net [23] 68.81 – 75.34 51.87 77.10 80.75 87.84 40.05 80.56 56.98

DARR [24] 69.77 – 74.74 53.77 72.31 73.24 94.08 54.18 89.90 45.96

UNet [4] 76.85 39.70 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58

R50 U-Net [5] 74.68 36.87 84.18 62.84 79.19 71.29 93.35 48.23 84.41 73.92

R50 ViT [5] 71.29 32.87 73.73 55.13 75.80 72.20 91.51 45.99 81.99 73.95

Swin-UNet [6] 79.13 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60

MT-UNet [25] 78.59 26.59 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81

TransUNet [5] 77.48 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62

Ours 80.04 29.03 86.33 63.70 80.79 80.13 94.43 62.45 90.71 81.81
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scopic relationships among all samples in the dataset, and model the feature
relationships among all samples to obtain excellent segmentation results.

Segmentation Resluts of ACDC: We evaluate MEA-TransUNet network on
ACDC dataset to demonstrate the generalization of our model and compare
the result with other SOTA methods. Table 2 records Dice Similarity Coeffi-
cient (DSC), left ventricle (LV), right ventricle (RV) and myocardium (Myo).
Our method achieves the best performance in terms of DSC (90.33%), Myo
(87.32%) and LV (95.85%). This shows that our MEA-TransUNet is able to
model inter-sample features makes the overall segmentation outperform other
visual Transformer methods.

Table 2. Experimental results of the ACDC Dataset. All results of our method are
averaged over five runs.

Methods DSC ↑ RV Myo LV

R50 U-Net [5] 87.55 87.10 80.63 94.92

R50 Att-UNet [5] 86.75 87.58 79.20 93.47

R50 ViT [5] 87.57 86.07 81.88 94.75

TransUNet [5] 89.71 88.86 84.53 95.73

Swin-UNet [6] 90.00 88.55 85.62 95.83

Ours 90.33 87.82 87.32 95.85

4.4 Ablation Study

On the Impact of MEA and SE Module: To verify the necessity of the MEA
and SE modules in our MEA-TransUNet network, we performed several sets of
experiments. Also we control whether to use external memory units to verify the
importance of external attention mechanisms in feature learning. At first, we
tried removing SE module or MEA module to verify their effectiveness. At the
same time, We try to remove the external memory units from the MEA module
to verify their important role in the network. Then we compared our model with
original TransUNet, which serves as the BasicUNet. The experimental results are
listed in Table 3. We observed that the DSC scores of MEA modules with exter-
nal memory units were all higher than those without, which demonstrates that
external memory units play an important role in mining potential relationships
across the dataset.

On the Impact of the Sequence of Spatial and Channal: As mentioned
above, the cooperation of the MEA and SE modules provides better performance
for the model than the baseline. In this section we perform ablation experiments
on the order of calculation of spatial and channel in the MEA module. The
experimental results are listed in Table 4. We observe that the DSC score of
spatial first and then channal is always better than the other order, which is
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Table 3. Ablation study on Synapse Dataset. M for external memory units in MEA
module. The bolded one is the method mentioned in the paper. All results of our
method are averaged over five runs.

Methods M DSC ↑
BasicUNet (BU) � 77.48

BU+SE � 78.16

BU+MEA � 78.59

BU+MEA � 79.56

BU+SE+MEA � 79.37

BU+SE+MEA � 80.04

because learning spatial first can emphasize the range of required feature infor-
mation, thus reducing the learning cost when subsequent channels pay attention
to what to learn, improving the learning effect of the network and obtaining
better segmentation results.

Table 4. Ablation study on Synapse Dataset. The bolded one is the method mentioned
in the paper. All results of our method are averaged over five runs.

Methods DSC ↑
BU+MEA (channel first) 79.12

BU+MEA (spatial first) 79.56

BU+SE+MEA (channel first) 79.48

BU+SE+MEA (spatial first) 80.04

5 Conclusions

In this paper, we propose an effective medical image segmentation method,
MEA-TransUNet. The model has the ability to model inter-sample features
to better characterize the entire dataset, enhance inter-sample feature associ-
ations, and obtain excellent segmentation results. In experiments the method
outperforms other state-of-the-art Visual Transformer methods. We evaluated
our approach and performed an ablation study in to demonstrate the effective-
ness of our novel design. We also compare MEA-TransUNet with previous work
in Sect. 4.3. The proposed method achieved 90.33% DSC on the ACDC dataset
and the most advanced performance (80.04% DSC) on the Synapse dataset. The
visualization also shows a qualitative comparison to show the superiority of our
method.
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Abstract. Few-shot fine-grained classification aims to recognize novel
fine-grained categories with the help of a few examples. Under the impact
of the low inter-class and high intra-class differences properties of fine-
grained datasets, the prototype-based approach, which originally per-
formed well in general FS classification, could not achieve the expected
results. In this paper, we propose a transductive method consisting of
a feature mapping module and a prototype rectification module. Specif-
ically, the feature mapping module removes redundant attributes from
the feature space to enhance the inter-class difference. The prototype rec-
tification module assigns a pseudo-label for each query sample according
to the membership-grade between the query samples and the prototypes
and uses them to update the prototypes. Experiments on multiple pop-
ular fine-grained benchmark datasets and few-shot general classification
datasets demonstrate the effectiveness of our approach.

Keywords: Few-shot classification · Prototype rectification ·
Fine-grained classification

1 Introduction

Few-Shot Learning (FSL) [5,7,18] has recently gained widespread attention
thanks to its imitation of the human ability to learn new things. FSL aims to
improve the generalization ability of a model, allowing it to generalize efficiently
to new classes when only few labeled examples are available. Fine-Grained Few-
Shot Learning (FG-FSL) has been studied recently. In FG-FSL, the classes of
all images are subclasses within a superclass (e.g., birds, cars). It is non-trivial
to employ general FSL methods to finish FG-FSL challenges directly.

In fact, many methods that perform well in general FSL challenges fail to
achieve the expected performance in FG-FSL. FG-FSL has the properties of
low inter-class difference and high intra-class difference. Meta-Baseline [2] pre-
trains a feature encoder on a base dataset and then recognizes novel classes using
average-based prototypes. However, this method suffers from a prototype bias
problem. Three reasons cause this problem: i) the scarce labeled data cannot pro-
vide a reliable estimate for prototypes, resulting in bias between the calculated
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and the real prototype; ii) the property of low inter-class differences leading to
difficulty in having an expected nearest prototype for query samples located at
category boundary; iii) the property of high intra-class differences further exac-
erbates the bias of the prototype. Simply transferring and generalizing the visual
representations learned by a model on the base dataset to the novel dataset, as
the general FSL approaches do, has fundamental difficulties in FG-FSL.

In recent years, many metric-based FG-FSL methods have been proposed.
Among them, FicNet [28] proposed a difference diminishing method that uses
a multi-frequency neighborhood and a double-cross modulation to capture the
structural representations on both the spatial domain and frequency domain for
intra-class differences influencing and modulates the representations according
to the inter-class relationship and the global context information for inter-class
differences identifying, respectively. BSNet [13] proposed a bi-similarity module
to measure the similarity using two distinct similarity measures. Despite their
success, they all attempted to solve the problem in FG-FSL from the perspective
of fine-grained classification, ignoring the impact of scarce labeled examples and
without fully exploiting the potential of the query samples.

In this paper, we propose a transductive method. Specifically, our method
consists of a feature mapping module and a prototype rectification module.
The feature mapping module is based on principal component analysis, which
removes unrepresentative attributes in the feature space to amplify the differ-
ences between categories. The prototype rectification module assigns a pseudo-
label for each query sample according to the membership-grade between the
query samples and the prototypes and then rectifies prototypes in a clustering
way. Our main contributions can be summarized as follows:

• We propose a novel fine-grained few-shot classification method and show the
significant performance gains obtained using our method.

• We propose a membership-grade-based method, and stronger gains in perfor-
mance can be obtained.

• We conduct a series of experiments on three popular fine-grained datasets and
two few-shot general classification datasets to demonstrate the superiority of
our method.

2 Related Works

2.1 Few-Shot Learning

Few-shot learning aims to classify unseen samples with few labeled examples.
Existing few-shot learning methods can be roughly divided into two main-
streams: optimization-based and metric-based approaches. The optimization-
based method follows meta-learning. The key idea is learning to learn a good
initialization of the model, as introduced in MAML [4]. MetaOptNet [11] employs
convex base learners and provides a differentiation process for end-to-end learn-
ing. The goal of the metric-based [18,19,23] approach focuses on learning a task-
agnostic metric space and then predicting novel classes by a nearest-neighbor
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classifier. In this work, we are interested in metric-based approaches due to their
validity and malleability.

The metric-based approach mainly consists of a feature extractor and a met-
ric function. The feature extractor extracts image features. The metric function
is used to assign labels for the query samples. ProtoNet [18] takes the mean of
the features as the prototype and uses the prototype to calculate the distance
from the query sample to the category. Meta-Baseline [2] explore the usage of
pre-trained models that can help the model better utilize the pre-trained repre-
sentations with potentially stronger class transferability. CSPN [14] points out
that the intra-class bias and the cross-class bias are two key factors affecting
the classification performance of the ProtoNet and proposes a method to reduce
these biases using label propagation.

2.2 Fine-Grained Classification

Fine-grained classification aims to identify multiple subordinate categories
belonging to the same super-category, thus attracting significant interest from
the researchers. Fine-grained classification is more challenging than general
object classification because local feature variations or subtle feature differences
usually distinguish fine-grained objects. Early work relied mainly on part anno-
tations or manually crafted bounding boxes to locate distinctive specific parts,
exacerbating the cost of prior information or additional annotations. Thanks to
significant advances in robust deep neural networks and large-scale annotated
datasets, some deep learning-based methods attempt to learn discriminative fea-
tures or locate discriminative parts in a weakly supervised manner where only
image-level class labels are available.

These methods can be roughly divided into two categories: feature encoding-
based and part localization-based methods. For example, Guo et al. [6] intro-
duced a lightweight attention module to locate key regions and learn fine-grained
feature representations. In addition, MMAL [27] and AP-CNN [3] propose first
finding more vital classification regions and then re-inputting them into the
network by cropping and adjusting the original image or feature map size, fur-
ther enhancing the discriminative ability of object representations. Despite their
success, these methods still rely on large-scale datasets. They could be more
practical in real-world scenarios due to the difficulty of obtaining large-scale
annotated datasets in some cases.

2.3 Few-Shot Fine-Grained Classification

Recently, with the development of few-shot research, some studies have begun
to explore few-shot fine-grained classification tasks. That is to say, only a few
labeled samples are used to distinguish images in novel classes. Wei et al. [25] use
bilinear pooling to extract image encoding features and then use multiple sub-
classifiers to classify the extracted image features. MattML [29] adopts a multi-
level attention mechanism to initialize the classifier, which helps the network to
capture the focused parts of different regions in the image. In contrast to these
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methods of learning useful categorical information from global features, CPSN
[22] introduces two coupled branches to compute the similarity scores between
patch-level input pairs to capture subtle and local differences. TOAN [8] pro-
poses a target-oriented matching mechanism to learn explicit feature transforma-
tions to reduce the intra-class variance. AGFP [20] proposed an attention-guided
refinement strategy to enhance the dominative object and conducted a two-stage
meta-learning framework to capture attention-guided pyramidal features.

Fig. 1. Method overview. � represents the channel transformation operation.

3 Method

3.1 Problem Formulation

Two datasets are given in the standard few-shot setting: the base dataset Cbase

and the novel dataset Cnovel. The goal of few-shot learning is to adapt the
experience learned in the Cbase to few-shot tasks derived from Cnovel. Note that
Cbase ∩Cnovel = ∅. Each few-shot task T contains a support set and a query set.
Both the support set and the query set contain the same N classes. Each class
in the support and query sets contains K labeled examples and Q unlabeled
samples, respectively. An “N -way K-shot” task aims to classify N × Q samples
using N × K examples.

3.2 The Proposed Framework

Our approach is based on the metric learning framework, using the nearest
neighbor matching strategy to predict the class for which the query sample
belongs. As shown in Fig. 1, the framework consists of three phases: pre-training,
meta-learning and meta-test. Next, we detail them respectively.
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Pre-training Phase. In the pre-training phase, following [2], pre-train a con-
volutional neural network W on Cbase using the standard cross-entropy loss.
Then the last fully connected (FC) layer of the neural network W is removed to
obtain the feature extractor E.

Meta-Training Phase. In the meta-learning phase, we sample N-way K-shot
tasks from Cbase and optimize the model with these tasks. Specifically, we first
use the feature extractor E to obtain the feature vectors Xs and Xq from the sup-
port and query sets, respectively. Then we apply the following transformations
for each channel of all feature vectors in the Xs and Xq:

φγ(Xi) =
{

1

lnγ
(

1
Xi

+1
) , (1)

where γ is as a learnable parameters and γ > 0. Xi represents the i-th channel
of feature X. X̂s and X̂q represent transformed feature vectors of the support
set and query set, respectively. Then, we compute the prototype vi of each class:

vi =
1
K

×
∑

xs∈X̂i
s

xs, (2)

where X̂i
s represents the feature vectors of class i in X̂s. Next, we introduce

a membership-grade rectification module to rectify prototype vi, and we will
detail the module in Sect. 3.4. Finally, we classify the query samples based on
the cosine similarity between the query sample xq and the rectified prototype
v′

i:

S (xq, v
′
i) =

exp (cosine (xq, v
′
i))∑

v′
j∈V exp

(
cosine

(
xq, v′

j

)) , (3)

where V = [v′
1, v

′
2, ..., v

′
N ] and cosine(·, ·) represents denotes the cosine similarity.

Meta-Test. The workflow of the meta-test phase is similar to the meta-training.
The only difference is that we introduce a feature mapping module after the
channel transformation using Eq. 1. We will detail the feature mapping module
in Sect. 3.3.

3.3 Feature Mapping Module

Let Xp = V ∪ X̂q, and we calculate the covariance matrix M:

M = XpXp
T . (4)

After that, we calculate the eigenvalues and eigenvectors of M and choose the
eigenvectors corresponding to the top β biggest eigenvalues from them as the
projection matrix W = [w1, w2, ..., wβ ], where the wi represents the standard
orthogonal basis vector (attribute). Then we get the mapped feature matrix X∗:

X∗ = WT Xp, (5)

where the dimension of the subspace is β.
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Algorithm 1. Membership-Grade Prototype Rectification Algorithm
Input: scale-parameter α, prototypes V , query samples’ features Xq

Output: Rectified prototypes V
′

1: Initialize o = 1
2: repeat
3: Calculate the membership-grade U using Eq.6;
4: Find the max uko for query sample xo

q;
5: Assign the label of vk to xo

q as a pseudo-label;
6: until o = |Xq|
7: Initialize l = 1
8: repeat
9: Calculate v

′
l using Eq.7;

10: until l = N
11: V

′
=

{
v

′
1, ..., v

′
N

}

3.4 Membership-Grade Rectification Module

Firstly, we calculate the membership-grade uij between the query feature xj
q and

the prototype vi as the basis for query samples:

uij =
1

∑N
k=1

(
dij

dkj

)2/(α−1)
, (6)

where dij denotes the cosine similarity of the i− th prototype to the j − th query
sample, uij ∈ U . α is a learnable parameter. We assign a pseudo-label for each
query sample according to the membership-grade and we get a pseudo-support
set X̂ps.

Secondly, we compute the rectified prototype v′
i:

v′
i =

1
K

×
∑

xs∈(X̂i
s∪X̂i

ps)

xs, (7)

where X̂i
s and X̂i

ps represent the support features and pseudo-support features
of the i-th class, respectively. The detailed process is summarized in Algorithm
1.

4 Experiments

4.1 Experimental Setup

Datasets. We conducted experiments on three popular fine-grained datasets
(CUB-200-2011, Stanford-Cars, Stanford-Dogs) and two few-shot general classi-
fication benchmarks (miniImageNet, tieredImageNet). The input images of all
datasets are resized to 84 × 84.
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• CUB-200-2011 [24] is a bird dataset. It contains 11788 image data in 200
categories. We use the raw images without human-annotated bounding box
as our input and follow [26] to divide the dataset.

• Stanford Dogs [9] contains images of 120 dog species. There are 20580 images
in this dataset. We followed [12] to divide the dataset into 70 training sets,
20 evaluation sets, and 30 test sets.

• Stanford Cars [10] contains a total of 16,185 images from 196 cars. Following
[12], we divide the dataset into 130 training sets, 17 evaluation sets, and 49
test sets.

• The miniImageNet [23] dataset contains 100 classes and each class contains
600 images. Following [1], we randomly split it into 64, 16 and 20 classes as
training, validation, and testing set, respectively.

• The tieredImageNet [17] dataset contains 608 classes and each class contains
1200 images, Following [1], we split it into 351, 97, 160 classes as training,
validation, testing set respectively.

Implementation Details. We take a 12-layer ResNet as the backbone network
of our method. In the pre-training phase, we train 200 epochs on the Cbase
and use an SGD optimizer with a momentum of 0.9. We set the batch size as
128 and the learning rate as 0.001. Moreover, the weight decay is 0.0005, and
standard data augmentation methods like random resized crops are also applied.
In the meta-learning phase, we train with 100 epochs and choose SGD with a
momentum of 0.9 as the optimizer. In particular, the learning rate is 0.001,
which will decay at epochs 30 and 50, and the decay factor is 0.1. The learnable
parameter γ and α is initialized as 2.5 and 1.5, respectively. The parameter β is
fixed to 10.

Evaluation Protocol. To evaluate the performance of our proposed method,
we take 10,000 N-way K-shot classification tasks from Cnovel. We focus on the
standard 5-way 1-shot and 5-way 5-shot task settings for each task. The average
accuracy of these few-shot tasks is reported with a 95% confidence interval.

Table 1. The accuracy (%) of 5-way 1-shot and 5-shot tasks on three popular fine-
grained datasets. The best results are reported in bold font.

Methods CUB-200-2011 Stanford Dogs Stanford Cars

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

OLSA [26] 77.77 ± 0.44 89.87 ± 0.24 64.15 ± 0.49 78.28 ± 0.32 77.03 ± 0.46 88.85 ± 0.46

CAN [7] 76.98 ± 0.48 87.77 ± 0.30 64.73 ± 0.52 77.93 ± 0.35 86.90 ± 0.42 93.93 ± 0.22

BSNet [13] 73.48 ± 0.92 83.84 ± 0.59 61.95 ± 0.97 79.62 ± 0.63 71.07 ± 1.03 88.38 ± 0.62

FicNet [28] 75.27 ± 0.61 88.48 ± 0.37 64.74 ± 0.69 79.23 ± 0.46 77.31 ± 0.58 89.47 ± 0.32

TOAN [8] 66.10 ± 0.86 82.27 ± 0.60 49.77 ± 0.86 69.29 ± 0.70 75.28 ± 0.72 87.45 ± 0.48

AGPF [20] 78.73 ± 0.84 89.77 ± 0.47 72.34 ± 0.86 84.02 ± 0.57 85.34 ± 0.74 94.79 ± 0.35

Ours 82.03 ± 0.73 90.32 ± 0.86 70.61 ± 0.50 81.64 ± 0.47 87.64 ± 0.57 95.17 ± 0.64
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4.2 Results

Results on Fine-Grained Datasets. We conduct few-shot fine-grained clas-
sification experiments on CUB, Stanford Dog and Stanford Car, with standard
5-way 1-shot and 5-way 5-shot tasks. Table 1 shows the performance evaluations
of our proposed method based on the ResNet-12 backbone. On the CUB-200-
2011 dataset, our proposed method can achieve the best performance both in
terms of 5-way 1-shot and 5-way 5-shot setting. Specifically, we observe that the
our method outperforms AGPF by 3.3% for 5-way 5-shot tasks and OLSA by
0.45% for 5-way 5-shot tasks. On the Stanford Dogs dataset, Compared to the
AGPF method, our method is lower than theirs by 1.73% and 2.38% for the
1-shot and 5-shot settings, respectively. But compared to other competitors, our
method is competitive. On the Stanford Cars dataset, our method also achieves
the best performance and Achieved 87.64% and 95.17% performance on 1-shot
and 5-shot settings, respectively. Outperforms CAN by 0.74% for 5-way 5-shot
tasks and OLSA by 0.38% for 5-way 5-shot tasks. It is noted that the perfor-
mance improvement of our method on the 1-shot setting is lower than that on
the 5-shot setting. We attribute this phenomenon to the increase in the num-
ber of samples used to calculate the prototypes in the 5-shot setup, where the
calculated prototypes are more expected, resulting in the reduced role of the
membership-grade rectification module.

Table 2. The accuracy (%) of 5-way 1-shot and 5-shot tasks on three popular few-shot
benchmarks. The best results are reported in bold font.

Methods backbone miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot

Meta-Baseline [2] ResNet-12 63.17 ± 0.23 79.26 ± 0.17 68.62 ± 0.27 83.29 ± 0.18

BD-CSPN [14] ResNet-12 70.31 ± 0.93 81.89 ± 0.60 78.74 ± 0.95 86.92 ± 0.63

MCGN [21] Conv4 67.32 ± 0.43 82.03 ± 0.54 71.21 ± 0.85 85.98 ± 0.98

LaplacianShot [30] ResNet-18 72.11 ± 0.19 82.31 ± 0.20 78.98 ± 0.21 86.39 ± 0.16

BaseTransformers [16] ResNet-18 70.88 ± 0.17 82.37 ± 0.19 72.46 ± 0.20 84.96 ± 0.52

UniSiam [15] ResNet-12 64.10 ± 0.36 82.26 ± 0.25 67.01±0.39 84.47 ± 0.28

Ours ResNet-12 72.29 ± 0.87 82.43 ± 0.84 79.13 ± 0.87 85.97 ± 0.94

Results on General Few-Shot Datasets. We conducted general few-shot
classification experiments on the miniImageNet and tieredImageNet dataset to
further evaluate the generalizability of our method. Table 2 shows the perfor-
mance evaluations of our proposed method based on the ResNet-12 backbone.
On the miniImageNet dataset, our proposed method achieves the best perfor-
mance than all existing methods by a large margin in terms of 5-way 1-shot set-
ting. Compared with the LaplacianShot method, our proposed method achieves
0.18% and 0.12% performance improvement under 1-shot and 5-shot settings,
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respectively. On the tieredImageNet dataset, our method can achieve competi-
tive or the best performance than other few-shot classification methods.

Table 3. Effect of sub-modules. MGR: membership-grade rectification module. FMM:
Feature Mapping Module.

Methods CUB-200-2011

5-way 1-shot 5-way 5-shot

baseline 67.02 ± 0.51 83.58 ± 0.48

baseline + MGR 80.23 ± 0.63 89.35 ± 0.72

baseline + FMM 70.64 ± 0.47 85.03 ± 0.59

baseline + MGR + FMM 82.17 ± 0.72 90.32 ± 0.68

4.3 Ablation Studies

Effect of Sub-modules. Table 3 reports the contribution of the sub-modules.
The first row shows the classification performance of the baseline model. The
second row shows the performance of the prototype rectification using only the
membership-grade rectification module. The third row shows the model’s perfor-
mance using only the feature mapping module. We can find that using both the
membership-grade rectification module and the feature mapping module alone
improves the model’s classification accuracy, which indicates that both modules
can improve the classification ability of the model. When we use both modules
together, the improvement in classification accuracy is smaller than that of using
the two modules separately on the baseline.

Table 4. Effect of using different distance calculation methods on membership-grade
rectification module. MGR: membership-grade rectification module.

Methods CUB-200-2011

5-way 1-shot 5-way 5-shot

MGR (Mutual Information) 81.74 89.53

MGR (Euclid) 80.64 88.41

MGR (Cosine) 82.17 90.32

Effect of Membership-Grade Calculation Function. We used Euclidean
distance and mutual information as distance measurement functions to demon-
strate the effect of using other distance measures on membership-grade. The
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experimental results are shown in Table 4. We can see that using cosine similarity
as the similarity measurement function achieves the best results, the Euclidean
distance method achieves the second best results, and the method using mutual
information has the worst accuracy.

5 Conclusion

In this paper, we propose a transductive method for fine-grained few-shot clas-
sification. The core idea of this method is to use the membership-grade between
query samples and prototypes as the basis for assigning pseudo-labels to query
samples. Then we use these query samples to rectification the prototype. To
further reduce the impact of low inter-class differences on fine-grained images,
we introduce a feature mapping module based on principal component analysis
to improve the performance of the model. We have conducted extensive experi-
ments to demonstrate the effectiveness of our method.
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Program (NO. 2021YFG0031).
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Abstract. Review response generation (RRG) aims to automatically
generate responses to customer reviews. Responding to reviews in a right
manner is important to online customer experience. However, most previ-
ous research on RRG focused on exploring coarse review information and
ignored fine-grain aspects within reviews, especially those with negative
sentiment. As a result, the generated responses are usually not targeted
to users’ real concerns in their reviews. To this end, we proposed a multi-
grained aspect fusion model (MGAF) model to improve the targeting of
generated responses. In particular, we first enhance the targeting ability
by performing sentence-level aspect selection and response script learn-
ing. Then we integrate aspect-level keywords with sentiment information
to further improve the diversity of generated responses. Experimental
results on both Chinese and English datasets show that our proposed
model outperforms the state-of-the-art models available, demonstrating
the importance of fusing multi-grained aspect information for targeted
response generation.

Keywords: response generation · aspect targeting · script learning

1 Introduction

Review Response Generation (RRG) aims to generate high-quality, targeted
responses to customer reviews. In general, reviews play a critical role in cus-
tomers’ purchase decision-making [19]. Effectively responding to these reviews
may transform dissatisfied customers into loyal ones and increase sales [16,17,23].

Over the past few years, RRG has been studied in different fields or appli-
cation scenarios, including e-commerce, mobile apps, and hospitality. In the
e-commerce, Clothing [28] and Makeup [3] datasets are introduced for study.
Recently, to improve the persuasiveness of responses, Chen et al. [3] proposed to
use additional sources of knowledge, such as product titles and retrieved review-
response pairs. Although they attempted to utilize aspect information through
a multi-aspect attentive network, it does not prioritize responding to the key
issues mentioned in the review. As shown in Fig. 1, the negative aspect (as the
blue text shows) should be explained first as the gold response did.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14262, pp. 25–37, 2023.
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Fig. 1. One sample of review response generation. The orange text in baseline response
is inappropriate, but the blue text represents the targeted response script addressing
the issues mentioned in the review. (Color figure online)

In the field of mobile apps, researchers used RNN-based models to incorporate
review-specific features to capture users’ sentiment and complaint topics. [6,7,
27]. However, these models are not generalizable [8]. Moreover, transformer-
based models were shown to be more effective than RNN-based models [2,27].
Therefore, in this paper we adopt a transformer-based BART [10] backbone
and add a copy layer to it as our baseline model. In the hospitality domain,
researchers proposed large-scale datasets [8] and analyzed the impact of data
filtering on performance improvement [9]. However, they did not explore the
connection between coarse and fine-grained features.

A major challenge with existing RRG methods is that the responses gener-
ated are not targeted to the aspects and opinions that users really care about
in their reviews. As illustrated in Fig. 1, the baseline generated response targets
the positive aspect of the “fabric” highlighted by the orange text, but it does
not address the negative issues of “color fading” and “pilling” highlighted by
the blue text. This oversight can adversely affect the user’s experience and does
not adequately resolve conflicts. Intuitively, high-quality and targeted responses
should focus on addressing critical issues from the review, rather than aspects
that customers are not concerned about.

In order to alleviate the aforementioned problems, we first complement from
a coarse-grained perspective by selecting key points from reviews and choosing
scripts1 used in the responses (as the blue text shows). Then we introduce a
fine-grained perspective by using aspect-level keywords and emotions. We fuse
multi-grained aspect features to enhance their connection and capture key issues
representations of aspects to generate more targeted and persuasive responses.
We perform experiments on Chinese clothing and English hospitality datasets.
The results demonstrate significant advancements and generalization compared

1 Response script refers to the language skills or templates used by customer service
when replying to user reviews.
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to previous SOTA methods. Moreover, the targeted F1 score improves signifi-
cantly, indicating that generated responses are more targeted.

In summary, our contributions can be summarized as follows:

– We propose to explore RRG from two perspectives. At a coarse granularity,
we conduct aspect selection and response script learning to enhance target-
ing ability. At a fine granularity, we incorporate aspect-level keywords with
sentiment to further improve diversity.

– We propose a model that adds a script learning auxiliary task to capture
coarse features. Moreover, we propose an aspects and sentiments fusion mod-
ule to incorporate fine-grained features.

– Experimental results demonstrate that our proposed model generates more
targeted responses and further improves the fluency and diversity of
responses.

2 Related Works

The task of generating review responses has been extensively studied, with a
focus on e-commerce, mobile apps, and the hospitality domain. Specifically, in
the e-commerce domain, Zhao et al. [28] introduced clothing review response
data. They proposed to use gated multi-source attention and a copy mechanism
with a dual RNN-encoder architecture to integrate product information. How-
ever, using only product information as additional knowledge is insufficient for
generating persuasive and informative responses. Thus, Chen et al. [3] intro-
duced the Makeup dataset and proposed to incorporate more sources of prior
knowledge, such as product titles and retrieved similar review-response pairs
from larger datasets. They added a pointer-generator network to copy factual
tokens from reviews under the Transformer-based BART [10] as the backbone
network. However, they ignored the aspect-level issues mentioned in reviews and
lacked selection, leading to less targeted generated responses.

In the mobile app domain and hospitality domain, Cao et al. [7] proposed
the RRGen model, which extends the basic NMT model [5,24] by combining
review-specific features (app category, review length, rating, sentiment tendency,
keywords). This captures users’ emotions and complaint topics, thus improv-
ing the performance. However, their approach lacks generality and cannot be
effectively applied to other domains [8]. Additionally, Farooq et al. [6] fused
seq2seq and machine reading comprehension models with retrieval technology to
partially address issues raised in specific app reviews. However, their approach
still used RNN-based models, and subsequent studies [2,27] demonstrated that
Transformer-based models are more effective than RNN-based models. They pro-
posed the TRRGen model which fuses features such as app category and rating.
However, these models lack features contained in the review. In the hospitality
domain, Kew et al. [8] proposed large-scale English and German datasets and
directly migrated the RRGen model [7] to this domain. They found that adding
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extra knowledge and keywords had no effect on performance improvement com-
pared to the mobile app domain. Kew et al. [9] analyzed this task from a data fil-
tering perspective and proposed methods for filtering general data. They showed
that filtering out meaningless general data can enhance response distinction.

The above studies mainly focus on coarse-grained information, such as review
context information and retrieved extra knowledge. Although some models inte-
grated features such as keywords and sentiment orientation, they did not explore
the connection between fine-grained information and coarse-grained features.
This resulted in models tending to generate meaningless responses that do not
effectively address specific issues mentioned in reviews. Therefore, inspired by
research on fine-grained sentiment analysis [1,4,13], this paper proposes a model
fusing multi-grained features to generate more targeted and persuasive responses.

3 Methods

3.1 Model Overview

Fig. 2. Framework of our model. The blue arrow indicates the flow of response script
learning, while the black arrow represents the flow of response generation with fine-
grained keywords and sentiments. (Color figure online)

As shown in Fig. 2, our proposed Multi-Grained Aspect Fusion (MGAF) model
for RRG is based on the BART [10], which contains two perspectives. On the
one hand, it incorporates a coarse-grained response script learning. On the other
hand, it integrates fine-grained aspect-level keywords and sentiments to guide
the generation process. Furthermore, to capture replicable tokens mentioned in
the review, similar to previous works [3,28], we also incorporate a copy layer to
achieve this objective. Most importantly, we hope that the copy layer can copy
generated script tokens addressing specific issues mentioned in reviews, thereby
further improving the targeting of generated response.
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Given a review text with n tokens X = {x1, x2, ..., xn}, the l pairs of
properties associated with the review are denoted as P = {p1, p2, ..., pl}. The
keywords related to aspects and opinions in the review text are denoted as
K = {k1, k2, ..., ko}, and the sentiment of each keyword in K is represented as
S = {(s1, b1), (s2, b2), ..., (so, bo)}, where o is the number of all keyword tokens.
si ∈ {0, 1, 2} where 0, 1, and 2 represent negative, positive and neutral senti-
ment, respectively, and bi ∈ [0, 1] represents the probability of the corresponding
sentiment si. The response with m tokens can be denoted as Y = {y1, y2, ..., ym}.
Therefore, the task can be formalized as f : (X,P,K, S) → Y .

To substantiate our proposed methodology, similar to the technique adopted
in [3], we utilize BART as the backbone. Precisely, we input the review into an
embedding layer to obtain the embedded representations {x0, x1, ..., xn, xn+1},
which are concatenated with the embedded representations of property pairs
{p1,p2, ...,pl−1,pl} :

X′ = {x0, x1, ..., xn, xn+1,p1,p2, ...,pl−1,pl} (1)

where x0, xn+1 represent the embedding vectors of the special tokens [CLS] and
[SEP], respectively, and X′ ∈ R

(n+l+2)×D, where D is the hidden size of the
BART Encoder. The concatenated source embedding X′ is fed into the BART
Encoder:

H(E)
src = Encoder(X′) (2)

where H(E)
src ∈ R

(n+l+2)×D, and it serves as the representation of the source
encoded by BART Encoder. We employ the BART Decoder module to decode
the initial representation H(D)

ŷ of the response:

H(D)
ŷ = Decoder(H(E)

src ,Y′) (3)

During the training phase, teacher forcing is utilized to accelerate convergence,
thus the input Y′ to the decoder is the true label shifted right by one position.
Once we obtain the initial representation of the response, we subsequently refine
it using a fine-grained aspect and sentiment fusion module. It is in conjunction
with a copy layer that incorporates coarse-grained response scripts to further
amplify the targeting of the response.

3.2 Aspect Selection and Response Script Generation

Chen et al. [3] suggested dividing review text into segments based on punctu-
ation, with each segment serving as an aspect for their multi-aspect attentive
network. However, this coarse-grained approach might not capture the signifi-
cance of each aspect within the review, potentially resulting in weak targeted
responses and limited response diversity. In our work, we also utilize a coarse-
grained approach, but carefully select specific aspects of the review to emphasize.
Additionally, we identify key segments from the response to serve as response
scripts. By prioritizing these selected aspects, our proposed model demonstrates
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the capability to generate response sentences that are highly specific and tar-
geted.

Ideally, the selected response scripts should directly address the issues chosen
from the review in a targeted manner. However, considering the computational
cost and time limitation, we draw from techniques used in the text summa-
rization and utilize the TextRank [15] algorithm combined with BM25 [20] to
compute the relevance score for each sentence in the segmented sentences. We
first select the salient sentences from review as the chosen aspect sequence, form-
ing a set of tokens A = {a1, a2, ..., ak1}. Similarly, we select the salient sentences
from the segmented response as the corresponding script sequence, forming a
set of tokens R = {r1, r2, ..., rk2}. Note that, we select the important sentences
according to a certain proportion that will be detailed in Sect. 4.6. We use the
chosen aspect sequence tokens as input and the selected script sequence as the
supervised signal to train the response script generation module. As shown in
Fig. 2, the response script learning task shares the encoder and decoder with
the response generation task, while each task has its own modules to maximize
parameter sharing and reduce training costs.

To obtain the aspect selection representation from the aspect sequence tokens
A, we feed the embedded representation A′ = {a0, a1, ..., ak1 , ak1+1} to the BART
Encoder:

H(E)
a = Encoder(A′) (4)

where a0, ak1+1 represent the embedding vectors of tokens [CLS] and [SEP],
respectively. A′ ∈ R

(k1+2)×D, where D is the hidden size of the BART Encoder.
After decoding with BART Decoder and linear layer transformation, the distri-
bution of each token in the response Pr is obtained through the softmax function.

H(D)
r = Decoder(H(E)

a ,R′) (5)

Pr = softmax(W(r)H(D)
r + b(r)) (6)

where R′ is the embedding representation of the script tokens shifted by one
position. W(r),b(r) are learnable parameters, and softmax is the activation func-
tion.

During the training phase, we accelerate the training by using teacher forcing.
We use cross entropy as our loss function, which is calculated as follows:

Ls = −
∑

v∈V

∑

ys∈R

Yv,t · log Pr(ys) (7)

In the inference phase, we first decode the response scripts to obtain their rep-
resentation and tokens. Then we proceed with generating the final response.

3.3 Aspects and Sentiments Fusion

Different aspects with varying sentiments have a direct impact on the response
generation process. Thus, we propose aspects and sentiments fusion module to
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integrate them into the initial result representation. Specifically, we use the
embedding of aspect and opinion keyword tokens K′ = {k0, k1, ..., kl, kl+1}
through the BART Encoder as follows:

H(E)
k = Encoder(K′) (8)

where k0 and kl+1 represent the embedding vectors of tokens [CLS] and [SEP],
respectively, and H(D)

k ∈ R
(l+2)×D where D is the dimension of the BART

Encoder output.
The sentiment embedding and its corresponding probability are multiplied

to obtain the sentiment representation Sk, which can be expressed as follows:

Sk = {b0 · s0, b1 · s1, b2 · s2, . . . , bl · sl, bl+1 · sl+1} (9)

where s0 and sl+1 correspond to the embedding vectors for the sentiment of the
entire review and are assigned values of b0 = 1.0 and bl+1 = 1.0, respectively.
It should be noted that l represents the length of all keyword tokens and bi
represents the probability of the i-th sentiment label.

Next, we incorporate the sentiment embedding Sk and the fine-grained key-
word representation H(E)

k by using multi-head attention modules to produce
a response that focuses on relevant fine-grained information. This is achieved
through the following:

H′
k = Sk + H(E)

k (10)

H′
k = MultiHead(Q = H′

k,K = H(E)
src ,V = H(E)

src ) (11)

Hd = MultiHead(Q = H(D)
ŷ ,K = H′

k,V = H′
k) (12)

where MultiHead(Q,K,V) represents the concatenation of h attention heads.
Each headi is calculated as headi = Attention(QWQ

i ,KWK
i ,VWV

i ). The scaled
dot-product attention is computed as Vaswani et al. [25] did:

Attention(Q,K,V) = softmax(
QKT

√
dk

)V (13)

3.4 Copy Layer

To facilitate the direct copying of tokens from the input tokens and previously
generated response scripts, we adopt the pointer-generator network [21] as uti-
lized by [3] for copying specific tokens from the multi-source input. This serves
as our copy layer for generating the probability P (yt) of each response token.
However, our approach differs in that we copy tokens not only from the review
input, but also from the response script tokens generated in Sect. 3.2.

Our model is primarily composed of two types of losses: script learning loss
Ls which is calculated by formula (7) in Sect. 3.4. And response generation loss
Lr which is computed as follows:
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Lr = −
∑

v∈V

T∑

t

Yv,t · log P (yt) (14)

Finally, the total loss is the weighted summation of them L = Lr +β ·Ls, where
β is the weight of loss Ls.

4 Experiments

4.1 Datasets

We carry out experiments on two benchmark datasets specifically designed for
RRG tasks. The first dataset, known as the Chinese Taobao1 Clothing dataset,
comprises 100,000 samples and was initially introduced in Zhao et al. [28]. It has
since become a popular choice for research in this area. The second dataset [8] is
an English hospitality dataset that consists of 400,000 review-response pairs for
hotels and restaurants posted on TripAdvisor2. Both datasets are divided into
80% for training, 10% for validation, and 10% for testing following the original
methodology.

4.2 Evaluation

To evaluate the proposed method, we adopt the evaluation methods employed
in prior research [3,8,28] and present the BLEU [18], Rouge-1/2/l [12], and
Distinct-1/2 [11] scores. The BLEU and Rouge-1/2/l scores gauge the fluency of
the generated results, whereas the Dist-1/2 scores evaluate the diversity of the
generated results. All of these scores are higher-the-better metrics.

Furthermore, to evaluate the targeting of the generated responses, we com-
pute the F1 score for the targeted aspect keywords as follows: F1 = 2∗P∗R

P+R ,
where P = target aspects ∩ predict aspects

predict aspects

and R = target aspects ∩ predict aspects
target aspects , the terms “target aspects” and “predict

aspects” denote the aspect and opinion keyword sets found in gold responses and
predicted responses, respectively, and “∩” represents the intersection operation.

4.3 Setups

We employ the BART-base [10] model from HuggingFace Transformers [26] as
our backbone, and most hyperparameters are the same as the BART-base model.
Considering the linguistic differences between Chinese and English, we utilize
BART-base-chinese [22] and BART-base [10] to partially initialize the param-
eters for experiments on clothing and hospitality, respectively. In addition, we
set the training batch size to 32 for the Clothing dataset and 24 for the Hospi-
tality dataset. We use the AdamW [14] optimizer with a learning rate of 1e-4
1 https://www.taobao.com/.
2 https://www.tripadvisor.com/.

https://www.taobao.com/
https://www.tripadvisor.com/
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Table 1. Results on Clothing dataset.
Model Rouge-1/2/L BLEU Dist-1/2 F1

EPI [28] 36.71/18.07/28.84 15.61 62.30/80.90 –

MsG [3] 41.77/23.28/32.95 21.75 68.00/88.50 –

MsMAAG [3] 43.64/25.67/34.99 24.44 68.80/89.50 –

Baseline 42.85/23.55/33.01 21.86 69.10/93.28 49.18

MGAF (ours) 44.72/26.19/35.34 24.46 69.73/93.58 51.16

Table 2. Results on Hospitality dataset.
Model Rouge-1/2/L BLEU Dist-1/2

Seq2Seq [8] 35.62/14.55/28.94 8.17 0.00/0.01

Seq2Seq+A+K [8] 24.24/9.65/20.34 2.92 0.00/0.01

Baseline 36.83/15.07/33.81 9.50 0.36/1.96

MGAF (ours) 37.17/15.20/34.05 9.67 0.34/1.89

to train 30 epochs for the Clothing dataset and 10 epochs for the Hospitality
dataset. For response script learning, we choose 25% of the total sentences from
the review and responses. We set the loss weight of script learning to 0.25 and
0.1 for the Clothing and Hospitality datasets, respectively. Our model is com-
pared with recent methods, including EPI [28], MsG and MsMAAG [3], and
Seq2Seq (+A+K) [8]. The MsMAAG and Seq2Seq are the previous SOTA mod-
els. However, due to the unavailability of their source code, we implement our
response generation strong baseline by referring to their paper for comparison.

4.4 Main Results

Tables 1 and 2 present the main experimental results on two datasets. The pro-
posed Multi-Grained Aspect Fusion (MGAF) model demonstrates its effective-
ness by achieving state-of-the-art performance on all metrics for both Chinese
and English datasets. This is attributed to the model’s ability to leverage more
inherent features of the reviews, including aspect-level keywords and sentiments.
In contrast, while MsMAAG attempted to utilize all sentences segmented by
punctuations as multi-aspects, it lacks selection and ignores to highlight the
issues mentioned in the review. This can also be demonstrated in Sect. 4.6. Our
model overcame this challenge through aspect selection and script learning at the
sentence level. Specifically, for the Chinese Clothing dataset, the MGAF model
achieves a significant improvement over the baseline and the target F1 metric
improves approximately 2 points compared to the baseline. These results suggest
that our model can better understand information related to the issues raised in
the review, thus generating more diverse and targeted responses. For the English
Hospitality dataset, our model also generates more fluent and diverse responses
compared to previous studies. However, due to the inclusion of more scenarios
in the Hospitality dataset (such as hotels and restaurants) and the lack of the
accurate aspect and opinion-related keywords, the improvement is not as signifi-
cant as that on the Clothing dataset. Therefore, further exploration is necessary
to better extract aspect-related features from reviews.

4.5 Ablation Results

As stated previously, this study incorporates response script learning to facili-
tate targeting of our model. Moreover, we integrate aspects, opinion keywords,
and sentiments into the model. Thus, we explored the effect of these modules
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Table 3. Ablation results. “w/o” means
without, “w/” means with. “scripts” repre-
sents response script learning, and “senti”
means sentiment features.

Model Rouge-1/2/L BLEU Dist-1/2 F1

MGAF 44.72/26.19/35.34 24.46 69.73/93.58 51.16

w/o scripts 44.18 / 25.48 / 34.64 23.88 69.74/93.69 50.15

w/o scripts & senti 44.17/25.14/34.29 23.91 67.86/92.67 50.76

w/ punctuation 43.97/25.20/34.39 23.58 69.73/93.65 50.51
Fig. 3. Influence of TopK and β on target
F1.

and compared them to the approach proposed by [3], which represents aspects
using all the sentences segmented by punctuations without aspect selection. The
results presented in Table 3 demonstrate that excluding aspect selection and
script learning resulted in a decrease in our model’s performance by 0.54/0.61/0.7
and 0.58 points on Rouge-1/2/L and BLEU, respectively. This suggests the ben-
efits of script learning in improving the fluency of generated responses. Further-
more, our analysis revealed a decrease of 1.01 points in the target F1 metric,
indicating that adopting a coarse-grained perspective improved the targeting of
responses, making them more useful in resolving user conflicts. We also notice
that removing the script learning has little positive impact on the Dist-1/2 score,
this may be because the aspect-level keywords with sentiments are the key factor
affecting the Dist-1/2 score. Thus, we further remove the sentiment, only keep
the aspect-level keywords but without their sentiments, leading to a significant
decrease in the model’s response diversity (1.88/1.02 on Dist-1/2). This indicates
that the sentiment polarity is more helpful in generating more diverse responses.
Finally, we use the multi-aspect representation segmented by punctuation pro-
posed in [3], which resulted in a decline in fluency and relevance, emphasizing
the importance of incorporating aspect-level keywords and aspect selection to
better represent the issues raised in the review.

4.6 Influence of Hyperparameters

In the ablation experiment, we notice that response script learning has a signif-
icant impact on the model. To evaluate the effects of selecting an appropriate
number of aspect and scripts sentences, we varied the percentage of selected sen-
tences from reviews as chosen aspects and from responses as scripts to be learned.
The TopK line in Fig. 3 demonstrates that an optimal number of selected sen-
tences is necessary for maximizing the effectiveness of this module. Too few or
too many selections can negatively affect the model’s targeting ability. When
TopK equals 1.00, which is no aspect selection, the F1 metric is the lowest. This
indicates that selective response to some aspects mentioned in the review, rather
than responding to all aspects, are more targeted and persuasive. Additionally,
we observe from the β line that the weight of the response script learning task
should be appropriately adjusted to prevent a negative impact on the model’s
convergence speed and performance. Based on our experimentation on the Cloth-
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ing dataset, we select 25% of the all aspect sentences from the segmented review
and scripts from the segmented response and set the weight of the script learning
task loss to 0.25.

5 Conclusion

This paper proposes the MGAF model, which combines multi-grained features
to improve the targeting of generated responses. The model integrates coarse-
grained aspect selection for response script learning and fine-grained aspect-level
keywords with sentiment representations. According to the experimental results,
the proposed model not only enhances the fluency and diversity of the generated
responses compared to previous works, but also generates more targeted and
persuasive responses.

In the future, we will explore ways to align aspects and response scripts to
obtain more accurate scripts for various issues mentioned in reviews, as well as
to improve inference speed.
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Abstract. Despite tracking-by-detection having shown dramatically ra-
pid improvement, most existing approaches are still scrabbling in dense
pedestrian tracking. To address this problem, this work presents a new
multiple object tracking approach, named VacoTrack. This method com-
bines variable GIoU-Embedding matrix (VGE) and Kalman Filter com-
pensation, which introduces motion compensation operation over tra-
jectory parameters to construct virtual uniform linear trajectories for
objects. This method combines GIoU distance and Embedding cosine dis-
tance of objects variably as a new association matrix VGE to adjustably
calculate similarity matrix in facing different occlusion problem. After
association, this method sends all tracked trajectories back to Kalman
Filter, including constructed virtual trajectories for re-matched objects,
and then operates Kalman Filter compensation to fine tune trajectory
parameters. Thus, this approach regards the motion patterns of objects
as uniform linear motion patterns to identify them across dense pedes-
trian, and improve robustness. Our proposed approach achieves 64.43
and 63.14 HOTA on MOT17 and MOT20 benchmarks respectively and
outperforms state-of-the-art in most evaluation metrics.
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1 Introduction

Tracking-by-detection is still a challenging issue for the computer vision appli-
cations due to the existence of objects overlapping in dense pedestrian tracking.
Recently, several approaches have been presented to against this appearance
problem. For example, MO3TR [1] combines spatial and temporal Transformers
to predict the locations of all tracked objects in frames. After which, MO3TR
can cope with occlusions over consecutive frames. Based on this example, this
paper proposes an approach to detect individuals via Deformable-DETR [2] (D-
DETR) in video frames, and then utilize the object confidence scores to variably
calculate the object GIoU-Embedding cost matrix to help association. And after
association, the proposed method performs motion compensation over history
and current association results in Kalman Filter to smooth trajectory parame-
ters, after which this method can get better estimation for the following frame.

In association process, the accuracy of similarity cost matrix between trajec-
tories and observations determines the robustness of tracker. The IoU matrix is
always utilized as a unique source of object matching [3,4], which is fast but fails
in tracking with severe occlusion. To this end, the proposed approach designs a
variable similarity matrix in the cascade matching strategy, which extracts object
confidence scores to combine GIoU distance and Embedding distance flexibly.

Predicting more accurately for association process, trackers can deal with
various appearance problems better. Guo [5] achieves the synergy between the
location estimation and the embedding matching, which makes the prediction
focus on appearance of targets instead of distractors. Motivated by this, an
improved Kalman Filter is implemented in this study to introduce a suitable
state vector for better box prediction, and compensates the existing trajectory
parameters to model uniform linear motion patterns.

This paper develops a new multiple object tracking (VacoTrack), which con-
tains the object variable GIoU-Embedding matrix and the Kalman Filter com-
pensation. In the current time step, firstly, the proposed method obtains all the
detection bounding boxes through D-DETR. Secondly, VacoTrack gets the esti-
mating locations of existing trajectories for this time step, which are predicted by
classical Kalman Filter prediction step in the previous time step. Thirdly, accord-
ing to confidence scores, the presented tracker variably combines the Embedding
distance for objects in long-range tracking and the GIoU distance for restrict-
ing the Embedding associating range. After association, along existing trajecto-
ries, VacoTrack performs Kalman Filter compensation operation over trajectory
parameters for purpose of decreasing estimation errors and obtains better esti-
mations in location predicting process. We evaluate the tracker on MOT17 and
MOT20 benchmarks, and reach competitive performance. The main contribu-
tions of this work can be summarized as follows:

– Fusing location distance matrix and appearance distance matrix as a vari-
able GIoU-Embedding matrix. The tracker presented in this paper uti-
lizes confidence scores of current observations to dynamically adjust the
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proportion of different distance matrix, which effectively against the occlusion
and crossover problems in crowd pedestrian tracking.

– Utilizing motion compensation and feedback receiving to form a Kalman Fil-
ter compensation module. The proposed method introduces a suitable state
vector for better box prediction and receives the feedback of tracked trajec-
tories to construct Kalman Filter compensation module which will fine tune
parameters of Kalman Filter and trajectories.

This paper is organized as follows. Related work is discussed in Sect. 2. The
methodology of this approach is presented in Sect. 3. Experimental results are
displayed in Sect. 4 followed by the conclusion in Sect. 5.

2 Related Work

Computing the similarity between trajectories and observations is the first step of
data association, which determines the upper bound of MOT. Location, motion
and appearance are crucial cues for similarity matrix calculation. The IoU dis-
tance matrix has been comprehensively used to associate targets in consecu-
tive frames [3], which is fast but inaccurate. In situation of low frame rate
or fast camera movement, learning from object motions [6–8] achieves robust
results. In short-range association, location and motion similarity are more help-
ful for matching. And appearance similarity performs better in long-range asso-
ciation. An independent Re-ID model [9,10] is adopted to extract high quality
appearance feature to build a more distinguishable association metric for match-
ing. However, they cannot outperform in complicated scenarios such as dense
pedestrian tracking. We believe that appearance and location matrix can work
together in a more reasonable way that one of them assists another in matching,
which is crucially beneficial in dense pedestrian tracking.

Constructed by filter, motion model [3,11] aims at finding out the object
motion pattern in the current time step, and then selecting an optimal region
to search for each object in the next time step. And it contains rich motion
information of objects, which is helpful for associating objects with occlusions
and overlapping. Some motion networks [4,6] are designed to extract object
motion model. The information of established motion models in MAT [12] are
considered as additional cues to promote the prediction process. Conforming
to the constant velocity assumption (CVA) [13], traditional Kalman Filter [14]
is a popular choice in extracting motion pattern [3,6,15]. However, traditional
Kalman Filter is unable to deal with the uncertain noise from observation. In
order to solve this problem effectively, many scholars try to improve the tracking
performance with different filters [16–18] and variants of the Kalman Filter [19,
20]. Through in-depth analysis of object motion patterns in MOT, it can be
seen that more suitable similarity matrix and motion model can help to better
associate objects between observation and prediction.



Multiple Object Tracking Based on Variable GIoU-Embedding Matrix 41

3 Methodology

In this section, the proposed multi-target tracker VacoTrack separates detec-
tion and association processes. For detection, this method deploys D-DETR,
a Transformer-based detector. For association, VacoTrack designs a variable
GIoU-Embedding matrix (VGE) and Kalman Filter compensation operation to
enhance association robustness over dense pedestrian tracking.

3.1 Model Architecture

When the appearance of individuals is not clearly identifiable in surveillance
videos due to occlusions and overlapping, a more accurate similarity cost matrix
and more reasonable motion models of objects play vital roles in their identi-
fication. To this end, this text proposes a new multiple object tracking model
VacoTrack. At time step t (not the first or the last frame), firstly, the cur-
rent frame of video is put into the CNN(ResNet-50) and Deformation-DETR(D-
DETR) encoder to extract the feature of this frame. Simultaneously, D-DETR
outputs all detection bounding boxes on current time step. Secondly, the obser-
vation confidence scores (confidence in Fig. 1) are utilizing to variably calculate
the GIoU-Embedding cost matrix. By doing this, the trajectory prediction from
Kalman Filter in the previous time step could be associated with the current
detection boxes by Hungarian algorithm [31] in current frame. Thus, this method
constructs virtual uniform linear trajectories for all objects. Then, the associa-
tion results and the current frame feature are both put into the D-DETR decoder
to output the final results, which will be put into Kalman Filter to estimate the
positions of reserved trajectories for the following frame. Finally, Kalman Filter
receives the feedback from tracking results and performs compensation operation
over trajectory parameters. After that, Kalman Filter compensation module can
decrease accumulation error in estimation process. The model architecture of
VacoTrack is shown as Fig. 1.

Fig. 1. Model architecture diagram of VacoTrack.

For the first frame of video, VacoTrack initializes all detection bounding
boxes detected by D-DETR as new trajectories. And then the method inputs
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them into the D-DETR decoder along with the frame feature extracted by the
CNN(ResNet-50) and D-DETR encoder to obtain the final output. Then, all
trajectories are fed into Kalman Filter compensation module for the following
frame trajectory predictions.

3.2 Variable GIoU-Embedding Matrix

The tracking performance depends on the precision of similarity matrix in data
matching. In dense pedestrian, using IoU distance alone is not enough to retrieve
the correct identity. Thus, the approach proposed in this paper proposes the vari-
able GIoU and Embedding matrix (VGE matrix) which combines the Embed-
ding distance for objects in long-range tracking and the GIoU [21] distance for
restricting the Embedding associating range. This method extracts weighting
factors from current frame observations to adjust the proportions of position dis-
tance and appearance distance respectively. Then, the variable GIoU-Embedding
matrix can be represented as:

VGE = Conf iG+Conf jE (1)

Where two hyper parameters Confi and Confj represent Weighting factors.
G denotes GIoU distance and E denotes Embedding distance. VacoTrack utilizes
confidence scores of objects in current frame to flexibly calculate the fusion of
GIoU and Embedding distance. Figure 2 shows different association process in
dense pedestrian scenario with occlusion.

Fig. 2. Different association preference in dense pedestrian scenario with occlusion.

When number of low score objects surpass threshold, this approach gives a
low weight to Embedding matrix and a high weight to GIoU matrix. In another
word, when the confidence level of target in the current frame is generally low,
that is, occlusion proportion between the targets is high, this approach uses
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appearance distance matrix to assist location distance matrix (location prefer-
ence in Fig. 2). On the contrary, when number of high score objects surpass
threshold, this approach gives a high weight to Embedding matrix and a low
weight to GIoU matrix. In another word, when the target confidence is generally
high, that is, occlussion proportion between the targets is small, this approach
uses location distance matrix to assist appearance distance matrix (appearance
preference in Fig. 2). By doing this, VGE matrix could improve the accuracy of
tracking method in dense pedestrian tracking.

3.3 Kalman Filter Compensation

Kalman Filter (KF) is an estimator of linear motion. For trajectory prediction in
current step, KF only requires the estimated state (x) on the previous time step
and the current measurement (the covariance matrix P ) for the state estimation.
And the prediction process in KF can be described by other parameters such as
the state transition model F , the observation model H, the process noise Q and
the observation noise R. At time t, the prediction of prior state estimate x and
covariance state matrix P are calculated as:

x̂t|t−1 = Ftx̂t−1|t−1

Pt|t−1 = FtPt−1|t−1F�
t +Qt

(2)

In MOT applications, some objects may be untracked on some association
process due to occlusion. In response to this problem, the proposed method
reuses the estimation of the last tracked time step to the new arrived time step.

In a whole video sequence, both static and dynamic cameras have camera
movement due to the change of background and themselves, which lead to shift-
ing of bounding boxes. These camera movements could lead to object tracking
failure. Enlightened by the global motion compensation in OpenCV [22], this
approach regard camera motion projection as relative movement calculation
between two adjacent frames. VacoTrack uses the affine matrix At|t−1 ∈ R2×3,
which is calculated by RANSAC, to transform the predicting boxes from the
coordinate system of frame t − 1 to the coordinates of the next frame t. The
affine matrix A is shown as:

At|t−1 = [M2x2 | T2x1] =
[

a11 a12 a13

a21 a22 a23

]
(3)

M′
t|t−1 =

⎡
⎢⎢⎣
M 0 0 0
0 M 0 0
0 0 M 0
0 0 0 M

⎤
⎥⎥⎦ (4)

T′
t|t−1 =

[
a13 a23 0 0 · · · 0 ]� (5)

Where M ∈ R2×2 contains the scale and rotation information of affine matrix
A. Matrix T contains the translation information. Defining M ′

t|t−1 ∈ R8×8 and
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T ′
t|t−1 ∈ R8, the prediction of prior state estimate x and covariance state matrix

P of update step in Kalman Filter compensation module are corrected as:

x̂′
t|t−1 = M′

t|t−1x̂t|t−1 +T′
t|t−1

P′
t|t−1 = M′

t|t−1Pt|t−1M′
t|t−1

� (6)

After considering the motion compensation for Kalman Filter, VacoTrack
could construct uniform linear trajectories for objects during tracking, includ-
ing re-matched objects. In loss period, VacoTrack defines the last detection
box before being untracked as zt1 , and the detection box that triggered the
re-association as zt2 . At time step t, the virtual trajectory can be generated as:

ẑt = zt1 +
t − t1
t2 − t1

(zt2 − zt1) , t1 < t < t2 (7)

Thus, motion models can be more effectively established by Kalman Filter
compensation. And the update process in the Kalman Filter compensation mod-
ule is shown as:

Kt = P′
t|t−1H

�
t

(
HtP′

t|t−1H
�
t +Rt

)−1

x̂t|t = Ftx̂′
t|t−1 +Kt

(
ẑt − HtFtx̂′

t|t−1

)
Pt|t = (I − KtHt)P′

t|t−1

(8)

After association process, the associated trajectories are send back to Kalman
Filter. Along virtual trajectories, VacoTrack can reversely check the parameters
in KF by alternating between the predicting and updating stages. The supervi-
sion provided by the observation is introduced to modify the trajectory of the
object and decrease the accumulated error of the Kalman Filter. We name this
process “Kalman Filter compensation”. This method only uses observation data
up to the current time step and does not modify past output results of multiple
object tracking. By applying this method, this tracker becomes more robust in
dense pedestrian tracking. Once a trajectory remains untracked for some frames,
this tracker tries to associate the last predicting location of this trajectory with
detection box on newly arrived time steps. If this untracked trajectory is still
untracked for more than 30 frames, this tracker will terminate this trajectory.
By doing this, the estimation error generated by Kalman Filter will no longer
accumulate.

4 Experimental Results

In this part, this paper illustrates the experimental setup and provides exper-
imental results to verify the ability of VacoTrack. The presented approach is
conducted with PyTorch framework in the python.
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4.1 Datasets, Metrics and Experimental Setup

Datasets and Metrics. The presented approach is validated with standard
performance criteria on MOT17 and MOT20 benchmarks. MOT17 and MOT20
are dense pedestrian tracking datasets whose motion is almost linear but with
mutual occlusion and frequent crossovers. Compared to MOT17, the scenes in
MOT20 are more crowded. This paper chooses the common metrics as the stan-
dard evaluation protocols to evaluate this approach, including Higher Order Met-
ric for Evaluating Multi-object Tracking (HOTA [25], AssA, DetA), Multiple-
Object Tracking Accuracy (MOTA), and Identity F1 Score (IDF1). Compared
with MOTA, HOTA keeps a balance between the evaluation within target detec-
tion and association.

Experimental Setup. Following the settings in MOTR, VacoTrack resizes the
shorter side of the input image to 800 and the maximum size to 1536. This
approach is built upon Deformable-DETR and ResNet-50. For MOT17 [23] and
MOT20 [24] datasets, we initialize VacoTrack with the official D-DETR weight,
which is pretrained on MS COCO dataset. VacoTrack has been trained for 200
epochs both on MOT17 and MOT20 datasets. And we train the proposed app-
roach on two joint datasets, one is combined by MOT17 train set and CrowdHu-
man val set, and the other is combined by MOT20 train set and CrowdHuman val
set. Then, the comparisons between the proposed method and other algorithms
have been conducted on MOT17 and MOT20 datasets respectively.

4.2 Experimental Results and Analysis

For the sake of verifying the application performance difference between the pro-
posed approach and the existing trackers on MOT17 and MOT20 benchmarks,
the same environment based on Tesla V100 is setup. Table 1 shows the perfor-
mance of VacoTrack and other trackers on MOT17 and MOT20 respectively.

The experimental results confirm the conclusion that the presented app-
roach constantly outperforms MOTR and the state-of-the-art (SOTA) models on
HOTA metric. MOTR[5], a Transformer-based model, only detects new-born tar-
gets in detection process and performs TALA module to obtain tracked targets.
But these two modules in MOTR inhibit each other and result in the degrada-
tion of both detection and association performance. Cutting out TALA module,
the proposed method obtains all detection bounding boxes from D-DETR, and
then calculates the object variable GIoU-Embedding distance matrix to help
association. In addition, Kalman Filter compensation operation is performed
over existing trajectory parameters to model uniform linear motion patterns. By
doing these, VacoTrack can more accurately predict object locations and hence
get better tracking results. In terms of the HOTA metric, the proposed tracker
outperforms MOTR by 6.84% on MOT17 test set. It is confirmed that VacoTrack
has better application performance than MOTR in multiple object tracking.
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Table 1. Comparison results on the MOT17 and MOT20 test set of trackers.

Dataset Tracker HOTA MOTA IDF1 DetA AssA

MOT17 JLA [26] 36.03 34.37 46.89 30.33 42.96
TADAM [5] 48.19 60.44 59.76 48.09 48.56
LPC [27] 51.09 58.82 66.04 47.56 55.15
TransCenter [15] 54.59 75.93 65.94 62.59 51.56
MOTR [28] 57.59 72.91 68.40 59.87 55.77
GTR [29] 59.01 75.21 71.53 61.49 56.92
OC-SORT [4] 61.76 75.94 76.12 61.58 62.20
ByteTrack [3] 62.37 78.69 76.57 63.69 61.39
BoT SORT [30] 63.76 78.56 78.56 63.52 64.31
Strong SORT [19] 64.25 79.36 79.45 63.99 64.79
VacoTrack 64.43 79.59 79.57 64.63 64.51

MOT20 TADAM [5] 42.68 57.16 52.93 46.83 39.21
TransTrack [6] 50.74 67.72 58.83 57.06 45.49
JLA [26] 52.17 51.69 64.10 50.38 54.32
OC-SORT [4] 60.51 73.10 74.35 60.45 60.76
ByteTrack [3] 60.95 75.74 75.01 61.99 60.11
BoT SORT [30] 62.35 76.91 76.10 63.31 61.62
Strong SORT [19] 62.56 73.84 76.93 61.34 63.98
VacoTrack 63.14 76.96 77.01 63.37 63.12

Compared with other SOTA trackers in Table 1, the proposed tracker gets
higher HOTA scores, which means VacoTrack holds the better association strat-
egy. Different detectors have an influence on the tracking ability. For exam-
ple, ByteTrack and OC-SORT use YOLOX to get detection bounding boxes.
VacoTrack is also compared with Transformer-based trackers, like GTR, Tran-
sCenter, MOTR and TransTrack. Compared with YOLO-based trackers and
Transformer-based trackers, Table 1 comprehensively indicates that VGE mod-
ule and Kalman Filter compensation are effectively enhance the tracking perfor-
mance in dense pedestrian tracking. The major improvement of HOTA comes
from object variable GIoU-Embedding distance matrix and the parameter com-
pensation in improved Kalman Filter for uniform linear motion modeling.

4.3 Ablation Study on MOT17 and MOT20

In order to prove the effectiveness of VGE matrix, we conduct the ablation stud-
ies on MOT17 and MOT20 datasets in Fig. 3. Two hyper parameters Confi and
Confj in Eq. (1) represent weighting factors, which are calculated from con-
fidence scores of objects in current frame to flexibly fuse GIoU distance and
Embedding distance. The proposed tracker inputs objects with low confidence
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scores into arrayi and objects with high confidence scores into arrayj to count
object numbers of high or low confidence scores respectively. Thus, this tracker
could dynamically adjust the proportions of these two distance matrix for pur-
pose of utilizing different distance matrix combinations to deal with different
overlapping situations. This tracker gives a low weight to Embedding matrix and
a high weight to GIoU matrix in facing high occlusion. On the contrary, when
objects are easily to be detected, this tracker gives a high weight to Embedding
matrix and a low weight to GIoU matrix. This paper tests the impact of differ-
ent proportions of GIoU distance and Embedding distance in dense pedestrian
tracking and displays the results in Fig. 3. This tracker fixes one distance matrix
and fine tune the other distance matrix. Thus, the tracker sets the weighting
factor of fixed distance matrix as 1, and use τ as weighting factor of changing
distance matrix. For example, when τ = 0.5, we set Confi = 0.5, Confj = 1
= in appearance preference situation and Confi = 1, Confj = 0.5 in position
preference situation. When τ = 1.5, we set Confi = 1.5, Confj = 1 in appear-
ance preference situation and Confi = 1, Confj = 1.5 in position preference
situation.

Fig. 3. The ablation study of weighting factor τ in variable GIoU-Embedding matrix
on MOT17 and MOT20 test set.

Setting (Confi and Confj), we conduct the ablation studies on MOT17
and MOT20 datasets in Table 2 to measure the impact of two proposed mod-
ules in VacoTrack respectively. The results demonstrate the efficiency of each of
these two modules. We reconstruct association process in MOTR as baseline. We
use classical Kalman Filter to estimate trajectories and update locations. Using
GIoU and Hungarian algorithms as baseline to associate the objects between the
previous and current time steps. The tracking results of baseline are displayed
in the first line in Table 2.
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Table 2. The ablation study of components on MOT17 and MOT20 test set.

VGE KF compensation MOT17 MOT20
HOTA MOTA IDF1 IDSW HOTA MOTA IDF1 IDSW

– – 61.67 75.97 76.16 2199 60.47 73.10 74.25 1496√
– 62.65 78.83 76.96 2437 60.88 75.69 74.90 1352

–
√

62.86 78.87 77.23 2261 62.12 76.93 75.62 1571√ √
64.43 79.59 79.57 1158 63.14 76.96 77.01 1321

With VGE module added, the baseline improves HOTA from 61.67% to
62.65% on MOT17 and from 60.47% to 60.88% on MOT20, which is a HOTA
increase of 5.06% to MOTR on MOT17. Further, adding Kalman Filter com-
pensation (KF compensation in Table 2) operation, the baseline improves HOTA
from 61.67% to 62.86% on MOT17 and from 60.47% to 62.12% on MOT20, which
is a HOTA increase of 5.27% to MOTR on MOT17. It proves that VGE mod-
ule and Kalman Filter compensation operation can improve the performance in
dense pedestrian tracking respectively. And then, we combine VGE module with
Kalman Filter compensation as VacoTrack, and we get a HOTA increase of 2.76%
on MOT17 and 2.67% on MOT20 to baseline, and 6.84% on MOT17 to MOTR.
Combined with the improved Kalman Filter and VGE module, VacoTrack gets
better performance in dense pedestrian tracking.

4.4 Visualization of Results

The proposed tracker is managed to more accurately calculate similarity matrix
for association and then compensate the parameters of Kalman Filter and tra-

Fig. 4. Qualitative results of VacoTrack on MOT17 test set.
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Fig. 5. Qualitative results of VacoTrack on MOT20 test set.

jectories in the dense pedestrian scenarios. In order to demonstrate both the
ability of the VGE matrix and Kalman Filter compensation module, this paper
shows some qualitative results of each sequence in MOT17 and MOT20 test set
in Fig. 4 and Fig. 5. In the case of occlusion, motion blur and large displacement,
this tracker can provide crucial cues to recover object relationships. The tracking
results of MOT17-06, MOT17-07, MOT17-12 and MOT17-14 show the effective-
ness of VacoTrack in irregular camera motion scenarios. MOT20 test results
demonstrate that our tracker performs well in scenarios with heavily occlusion
and overlapping.

5 Conclusion

This paper has introduced a new MOT model VacoTrack, which is based on
object variable GIoU-Embedding distance matrix and Kalman Filter compensa-
tion to solve the occlusion and crossover problems in dense pedestrian tracking.
The proposed framework achieves better tracking performance via calculating
object variable GIoU-Embedding distance matrix for association and performing
Kalman Filter compensation over trajectory parameters in current frame. This
tracker forms a virtual uniform linear trajectory for a re-matched object from
last tracked time step to re-matched time step. Then, the tracker can calculate
the locations of this object during loss period and compensate the trajectory
parameters in Kalman Filter. After that, VacoTrack can decrease the accumu-
lated error in Kalman Filter estimation process and get better trajectory predic-
tions for the following time step. Our evaluations on the MOT17 and MOT20
datasets illustrate that VacoTrack improves tracking capability considerably.

Besides, VacoTrack is still based on the linear motion assumption and the
variant of classical Kalman Filter without a fundamental extension for non-linear
object motion. So, there is still room for improvement of non-linear motion-based
tracking. In the future, we will conduct researches on this aspect.
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Abstract. Document-level relation extraction aims to extract relations
between entities mentioned in the given text. Existing approaches char-
acterize relations by concatenating the representation of entities from
numerous instances for each relation. However, it fails to identify multi-
ple relations that may be expressed by the same entity pair in few-shot
scenarios, since there may be only one instance for some relations. In this
paper, we propose a Context-aware Hybrid Attention Network (CHAN)
for few-shot document-level relation extraction to identify multi-relation.
Specifically, we design instance-specific attention to localize the rele-
vant context for each entity pair and capture keywords associated with
different relations. In addition, we introduce a contrastive prototypi-
cal network to further distinguish the subtle difference between mul-
tiple relations. Experimental results show that CHAN achieved the best
performance compared to previous methods, especially the F1 of the
multi-relation identification is improved by 17.94% under 1-doc setting
in FREDo benchmark.

Keywords: few-shot learning · document-level relation extraction ·
multi-relation · context-aware mechanism

1 Introduction

The goal of document-level relation extraction(DocRE) is to detect relations
between entities spanning multiple sentences within a given document. Specifi-
cally, given a set of predefined relation types and two entities mentioned in the
document, the goal is to determine the correct relations between them. DocRE
is important for improving the ability of natural language processing systems to
understand and analyze the content of documents. Most previous DocRE meth-
ods rely heavily on supervised learning with large annotated corpora, which
leads to poor performance when limited data is available. Motivated by the
achievements of few-shot learning methods in the few-shot sentence-level rela-
tion extraction [4,6,12], Popovic et al. [11] first proposed the task of few-shot
document-level relation extraction(FSDLRE) and proposed the FREDo bench-
mark for evaluating the few-shot performance of DocRE models.

One of the major challenges in FSDLRE is the identification of multi-relation
from a document. The overlap of entity pairs between different relations is a

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. Illustration of the 1-doc episode in FSDLRE setting. Given a support set con-
sisting of one document with labeled relation examples, the task is then to identify and
return all instances of the same relation types for the query document. Colored content
represents given entities, entities excluded from the query instance are highlighted in
grey. For a query instance “Louis-Joseph Janvier” and “Port-au-Prince”, their rela-
tion is correctly predicted with Doc1 as a support set but not with Doc2. In Doc2,
both “place of birth” and “place of death” relations only exist in the same entity pair
“Diane de France” and “Paris”. Existing methods only consider the entity pair of an
instance, thus treating these two relations as a single relation. This leads to confusion
in identifying the relations for the query instance. (Color figure online)

significant obstacle to this task, making those relations indistinguishable. Exist-
ing methods for DocRE [18,21] focus on explicitly representing entity pairs for
instances while ignoring the relation difference between them. As a result, it
becomes difficult to identify multi-relation that share the same entity pair. For
instance, as illustrated in Fig. 1, the entity pair “Diane de France” and “Paris”
exists in both the “place of birth” and “place of death” relation in Doc2, which
leads to confusion when extracting the relations between “Louis-Joseph Jan-
vier” and “Port-au-Prince” in the query set by referring to Doc2. In contrast,
the relation can be correctly identified when referring to Doc1 because there are
no multiple confusing relations.

In practical applications, it is common for a pair of entities to express multiple
relations. For example, our analysis of the FREDo dataset shows that 19.25%
of documents contain multi-relational entity pairs. Though important, it is a
difficult task to correctly categorize multiple confusing relations expressed by
the same entity pairs, which is more pronounced in few-shot scenarios because
of the scarcity of relation instances.

To tackle this issue, we propose a new method, Context-aware Hybrid Atten-
tion Network (CHAN), for FSDLRE that takes inspiration from meta-learning,
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as shown in Fig. 2. CHAN combines entity-level and context-level instance
representations to obtain discriminative instance representations. The hybrid
attention mechanism in CHAN consists of instance-general and instance-specific
attention that captures essential contextual information in the context encoder.
The instance-general attention learns the general importance distribution of
words. As the words related to entities are more likely to be informative in
instance representation [21], we have designed an entity-guided attention mech-
anism that learns the importance of words related to entities. Additionally, to
distinguish between multiple relations expressed by the same entity pair, we
design a relation-guided attention that captures corresponding keywords for dif-
ferent relations. Additionally, we incorporate a contrastive loss to a prototypical
network in the training strategy to boost the ability to identify multi-relation.
The key contributions of this work are summarized as:

– We propose CHAN, an effective model that captures useful context for iden-
tifying multi-relation in FSDLRE. This is achieved by designing a context-
aware hybrid attention mechanism that produces multi-level instance features
and more distinctive representations.

– We introduce a contrastive prototypical network that utilizes two contrastive
losses to better differentiate between multiple confusing relations with subtle
distinctions.

– We evaluate our method on the novel benchmark FREDo and the results
demonstrate that CHAN outperforms the baseline, especially in identifying
multi-relation. The F1 score for multi-relation identification is improved by
17.94% under 1-doc in FREDo.

2 Related Work

2.1 Few-Shot Relation Extraction

Most existing few-shot relation extraction(FSRE) methods focus on the sentence
level. Metric-based methods, which use similarity measures between examples to
detect new classes given only a few samples, are thought to be more useful in
FSRE [6]. As a strong correlation exists between the context information and
relation in a single sentence, many models attempt to enhance critical contex-
tual feature [3,5]. For example, some models incorporate local content words to
acquire fine-grained information [15]. Although using explicit context informa-
tion may achieve remarkable results in few-shot sentence level relation extraction,
it may introduce noise in FSDLRE since only a few parts of the context in the
document are related to the relation instances.

2.2 Document-Level Relation Extraction

Most existing methods for DocRE focus on representing and combining entities
to learn the relations between them, which can be grouped into graph-based
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methods and sequence-based methods. Graph-based methods construct a docu-
ment graph to model the interactions between different words, entities and sen-
tences [8,10,20]. With the proposal of Transformer [17], word interactions can
be learned directly. Consequently, sentence-based methods represent relations
by directly aggregating entity representations obtained from Transformer-based
pre-trained language models [7,16,21]. However, those methods treat different
instances for each entity pair equally, which is counterintuitive because the same
entity pairs can convey multiple relations within a given document.

2.3 Multiple Relations Extraction

In information extraction, extracting multiple relations is useful but challenging.
One common strategy is to treat multiple relation extraction as a multi-label
classification task, where a binary classifier is used for each relation type [1,18,
19,21]. However, such an approach needs to be provided with adequate training
to recognize novel classes, which is difficult to achieve in few-shot scenarios.

3 Approach

3.1 Task Definition

FSDLRE is to predict relations between each entity pair (h, t) mentioned in
the query document d (i.e., a document containing some entities) based on an
episode. Specifically, an episode consists of a support set S and query set Q.
The support set consists of documents with annotated relations between each
entity pair, formalized as S =

{(
di, h

k
i , t

k
i , y

k
i

)
, i = 1, . . . , N ; k = 1, . . . , K

}
and

the relation set R =
N⋃

i=1

K⋃

k=1

yk
i , where

(
di, h

k
i , t

k
i , y

k
i

)
means that there is a rela-

tion yk
i between the entity pair

(
hk
i , t

k
i

)
in the document di. N and K denote

the number of documents and relation instances, respectively. In FSDLRE, the
relation between entities could be NOTA (None-of-the-above), indicating the
given entity pair does not hold any relation defined in R. Moreover, documents
in the query set are unlabeled that are used to evaluate the ability of models in
identifying new relations.

3.2 Overall Framework

As shown in Fig. 2, the overall framework of our model consists of three parts: 1)
entity encoder, aiming to obtain the instance representation based on entities; 2)
context encoder, used to capture a fine-grained instance representation related
to instances and 3) contrastive prototypical network, further distinguishing the
subtle difference between confusing relations.
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Fig. 2. The overall framework of Context-aware Hybrid Attention Network (CHAN).
§ denotes the section where the module is described.

3.3 Entity Encoder

We employ an entity encoder to generate instance representation based on the
entity pair. Before introducing our proposed encoder, we introduce the entity
marker symbol “*” before and after the entity mentions according to [13] and
apply BERT [2] as the encoder to get corresponding contextualized embedding
H = {h1, . . . , hl} ∈ R

l×d, where hi ∈ R
d is the word embedding and d is the

dimension of embedding.
We concatenate corresponding hidden states of head entity marker start hh

and tail entity marker start ht as the basic representation of instance due to its
effectiveness [13]:

Ie = [hh;ht] ∈ R
2d (1)

where [; ] denotes concatenate operation. To address cases in which an entity
appears more than once in a document, we compute the average embedding of
all the mentions of this entity.

3.4 Context Encoder

Our context encoder is based on two kinds of context-aware attention. First, we
utilize instance-general attention to estimate the general importance distribu-
tion of each word in the document. Additionally, we leverage instance-specific
attention to learn context importance distribution specific to the corresponding
instance.
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Instance-General Attention. According to [15], we use a memory network
[14] denoted as uw to select the important words in each document. The instance-
general attention α is computed as follows:

α = softmax (Huw) (2)

Instance-Specific Attention. To capture context importance that varies by
instance, we introduce instance-specific attention consisting of two attention
mechanisms: entity-guided attention and relation-guided attention.

First, we learn entity-guided attention to capture important words related
to the entity pair, which helps reduce noise introduced by the context. This
attention is transferred from a pre-trained language model with a well-learned
multi-head self-attention matrix A ∈ R

H×l×l. We use the entity markers posi-
tions of the head and tail entities as indexes and multiply the resulting entity
attentions for the head and tail entities. By doing so, we locate words important
to both head and tail entities. The entity-guided attention βe is calculated as
follows:

βe =

[
1
H

H∑

i=1

[A]i

]

Ih

·
[

1
H

H∑

i=1

[A]i

]

It

(3)

where H represents the number of heads in the pre-trained language model, Ih
and It represent the entity marker’s position.

Second, we introduce a relation-guided attention mechanism to differenti-
ate between various relations expressed by the same entity pair. We start with
obtaining the relation type embedding R ∈ R

l×d by feeding the relation type
of instance into BERT. Then the relation-guided attention βr is computed as
follows:

βr = softmax
(
sum

(
H (R)�

))
(4)

where sum (·) means a sum operation of all elements in the vector.
Since the relation type of the instance in query documents is unknown, it

cannot be used to calculate relation-guided attention in the same way as support
instances. Similar to the entity-guided attention computing mechanism, we rely
on a pre-trained multi-head attention matrix A and obtain the relation-guided
attention βq

r for query instance as follows:

βq
r =

[
1
H

H∑

i=1

[A]i

]

I

(5)

I = max

(

sum

(
1
H

H∑

i=1

[A]i

))

(6)

where max (·) means to get the index of the largest attention keyword as a
relation type in support documents.

Finally, the context instance representation is computed as follows:

Ic = (α + βe + βr)H ∈ R
d (7)
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3.5 Contrastive Prototypical Network

In this module, the entity and context instance representation are combined to
obtain a multi-level instance representation I. Then, the instance representation
of K supporting instances is averaged to form a prototype representation P for
each relation, following the approach of [21]:

P =
1
K

K∑

k=1

Ik ∈ R
3d (8)

Ik =
[
Ike ; Ikc

]
(9)

where K represents the number of instances in an episode for the correspond-
ing relation. Specially, the NOTA prototype is a learnable vector initialized by
sampling the representation of 20 NOTA instances, following [11].

Finally, the probability of the relations for the query instance based on the
similarity between the query instance representation Iq and the prototypes of
each relation ri is computed as follows:

logiti =
exp

(
Iq · Pi

)

∑N
n=1 exp (Iq · Pn)

(10)

where N represents the number of relation types the current episode contained.
Considering a threshold is needed to convert probability to relation labels, we

use the max similarity score between query instance and NOTA as a threshold
according to [11]. Then We incorporate a contrastive loss function to distinguish
among the positive, the NOTA and negative classes and thus the difference
between multiple confusing relations according to [21], which consists of two
parts as shown below:

L1 = −
∑

i∈Pr

log

(
exp (logiti)∑

i′∈Pr∪{NOTA} exp (logiti′)

)

(11)

L2 = − log

(
exp (logitNOTA)

∑
i′∈Nr∪{NOTA} exp (logiti′)

)

(12)

where Pr and Nr represent the sets of positive and negative relation classes for
the current instance, respectively.

Finally, taking Eq. (11) and Eq. (12) into account, the final loss is the sum of
the two losses:

L = L1 + L2 (13)

where L1 aims to increase the probability of all positive classes relative to the
NOTA class and L2 is designed to decrease the probability of all negative classes
relative to the NOTA class.
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4 Experiments

4.1 Dataset and Settings

We conduct experiments on FREDo [11], a new benchmark for few-shot
document-level relation extraction that includes in-domain and cross-domain
tasks. The in-domain task contains 96 relations and 4051 documents, which are
split into 62 classes for training, 16 for validation, and 16 for testing. The in-
domain task is trained and tested on the DocRED [19]. The cross-domain task
is trained on the DocRED but tested on the sciERC [9] domain, where the test
set contains 7 scientific relations and 500 documents.

We evaluate our model using the 1-doc and 3-doc settings as defined in [11],
indicating that each episode contained either 1 or 3 support documents. We
utilize macro F1 score as the evaluation metric, i.e., the mean F1 score across
the different relation types, as well as precision and recall. We utilize the base-
cased version of BERT as basic encoder, which has 768 dimensions. To tackle
the limitation of the maximum input length of 512 in BERT, we adopt a long
text processing approach, following [21]. This allows us to encode inputs of up
to 1024 lengths. We use AdamW as our optimizer, the learning rate of which is
set to 1 × 10−5 and a linear warmup strategy for the first 1k steps is applied.

4.2 Baselines

We compare CHAN with various relation extraction methods: ATLOP [21],
using attention directly from pre-trained language models to identify the related
context of the entities for DocRE. HCRP [5], utilizing relation description files
as clues to capture useful context from sentences for FSRE. DL-MNAV [11],
aggregating entity representations as instance representations and representing
NOTA class as learned vectors based on the prototypical network for FSDLRE.
DL-MNAVSIE , DL-MNAVSIE+SBN [11], where SIE means using all sup-
port instances instead of prototype for each relation when computing the proba-
bility of the relations and SBN means sampling most 5 similar NOTA instance
as NOTA for each relation prototype instead of the learned vectors to adapt to
the cross-domain task.

4.3 Results

Performance on FSDLRE. Table 1 and Table 2 show the in-domain and
cross-domain results respectively. Our method achieves the best performance
in the in-domain task, especially in 1-doc setting. Specifically, we improve 1-
doc and 3-doc by 12.04% and 2.66% in terms of F1 than DL-MNAV, the next
best FSDLRE model, demonstrating the effectiveness of the explicit introduction
of the context feature. Compared to the 1-doc setting, each relation has more
instances in the 3-doc setting, which weakens the impact of entity pair overlap
in different relations. Although ATLOP considers the context related to enti-
ties, the instance is still represented based on the fusion of entities, which leads
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Table 1. Performance (%) on FREDo in-domain test set. * denote our reproduced
results in few-shot setting and � are reported by [11]. The underline denotes the next
best results.

Model 1-Doc 3-Doc

Precision Recall F1 Precision Recall F1

ATLOP* [21] 5.71 20.46 6.33 6.58 21.47 7.08

HCRP* [5] 6.76 16.13 6.41 6.44 15.21 6.22

DL-MNAV� [11] 6.26 21.08 7.05 7.71 22.80 8.42

DL-MNAVSIE
� [11] 5.57 23.12 7.06 5.16 33.61 6.77

DL-MNAVSIE+SBN
� [11] 1.02 22.94 1.71 1.75 23.41 2.79

CHAN(ours) 7.09 21.47 7.91 8.80 21.58 8.65

Table 2. Performance (%) on FREDo cross-domain test set.

Model 1-Doc 3-Doc

Precision Recall F1 Precision Recall F1

ATLOP [21] 1.72 3.77 1.66 2.09 1.62 1.42

HCRP [5] 1.76 3.62 1.71 2.51 2.24 1.50

DL-MNAV [11] 2.30 0.58 0.84 3.02 0.29 0.48

DL-MNAVSIE [11] 1.77 2.08 1.77 2.51 2.52 2.51

DL-MNAVSIE+SBN [11] 2.26 4.37 2.85 3.47 4.24 3.72

Ours 2.12 3.45 1.95 2.15 4.23 2.78

OursSIE+SBN 2.71 3.89 3.12 3.88 4.35 4.04

to poor performance. HCRP introduces noise while introducing local features
because documents contain more irrelevant information than sentences. Our
method improves F1 by 19.97% and 18.96% respectively, compared to ATLOP
and HCRP in 1-doc setting, demonstrating the significance of our hybrid atten-
tion mechanism. In the cross-domain task, although our source model does not
outperform DL-MNAVSIE+SBN , our model with SIE and SBN achieves the best
results, indicating that our approach has good adaptability.

Performance on Multi-relation Identification. To further exhibit the
effectiveness of our model for identifying multi-relation, we evaluate our models
on the FREDo in-domain test set under two scenarios, as presented in Table 3.
We trained our models using a general training setting and evaluated them
under two different settings: “Single” and “Multi”. The Single setting evaluates
the model’s ability to classify single relations expressed by entity pair, while the
Multi setting evaluates the model’s performance in classifying multiple relations
expressed by entity pair. As we can see, the performance of our baseline mod-
els dropped significantly from the Single setting to the Multi setting, especially
around 25.36% in the 1-doc scenario, indicating that identifying multi-relation



Multi-relation Identification for FSDLRE 61

Table 3. Macro-F1 (%) and the rate of change of two scenarios on FREDo in-domain
test set. “Single” stands for evaluating only relations expressed by different entity
pairs and “Multi” stands for evaluating including two or more relations expressed by
the same entity pair. The Macro-F1 score excludes those relations that appear either
only in the Single setting or only in the Multi setting.

Model 1-Doc 3-Doc

Single → Multi Single → Multi

ATLOP [21] 8.54 → 6.57 (↓ 23.07%) 9.38 → 8.18 (↓ 12.79%)

HCRP [5] 8.67 → 6.89 (↓ 20.53%) 8.79 → 7.84 (↓ 10.81%)

DL-MNAV [11] 9.11 → 6.80 (↓ 25.36%) 9.92 → 9.03 (↓ 8.18%)

Ours 9.17 → 8.02 (↓ 12.54%) 9.96 → 9.25 (↓ 7.13%)

is challenging. In contrast, our proposed CHAN model outperforms previous
methods and drops less under the Multi setting, demonstrating its ability to
distinguish between multiple confusing relations expressed by the same entity
pair.

4.4 Ablation Study

To further validate the effect of the different submodules in our proposed CHAN
model, we design an ablation study. As shown in Table 4, removing the context
encoder completely, the performance severely decreases by 12.14%, indicating the
explicit instance-related context is essential to represent instances. Furthermore,
the performance has different degrees of decline without instance-general and
instance-specific attention. The latter drops by 8.22%, more than the drop of
5.06% in the former, illustrating that instance-specific attention plays a more
important role in capturing useful context. F1 drops by 4.17% and 3.03% when
we remove the entity-guided and relation-guided attention respectively, which
proves that it is beneficial to attend to context related to entities and relations
jointly. In addition, we also observe that F1 drops by 6.19% when we use a binary

Table 4. Ablation study on FREDo in-domain test set showing F1(%).

Model 1-Doc 3-Doc

Ours 7.91 8.65

w/o context encoder 6.95 8.00

w/o instance-general attention 7.51 8.45

w/o instance-specific attention 7.26 8.08

w/o relation-guided attention 7.58 8.15

w/o entity-guided attention 7.67 8.24

w/o contrastive loss 7.42 8.31
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cross entropy loss instead of contrastive loss, demonstrating the effectiveness of
the contrastive prototypical network.

4.5 Qualitative Analysis

We visualize the context weight of an example introduced before in DL-MNAV
and CHAN to better understand the role of our hybrid attention mechanism,
as shown in the upper of Fig. 3. Our model attends to different keywords, such
as “born” and “died”, to distinguish between the relations “place of birth” and
“place of death” respectively, that are expressed by the same entity pair “Diane
de France” and “Paris”. However, DL-MNAV attends to the same words for
multi-relational entity pairs, leading to incorrect predictions. Moreover, we have
visualized the relation prototype representation distributions using the t-SNE
tool in DL-MNAV and CHAN, as shown in the lower of Fig. 3. Since “place of
birth” and “place of death” are expressed by the same entity pair, DL-MNAV
regards the two relations as single, resulting in the same predicted probability
for the query instance on both relations. In contrast, our model can distinguish
between the two relations in the embedding space and thus make the correct
classification.

Fig. 3. A qualitative example from our model compared to the baseline DL-MNAV
model. The upper visualizes the attention of each word by DL-MNAV and CHAN. A
darker color indicates a higher value. The lower shows T-SNE plots of relation prototype
embeddings of “NOTA”, “place of birth”, “place of death” and query instance, where
“NOTA” consists of 20 vectors. The numbers shown in the T-SNE plots indicate the
similarity between query instance and three relations. Only the max similarity score
between query instance and 20 NOTA instances is notated as a threshold, where any
relation with a higher similarity than NOTA is considered a positive class, and any
relation with a lower similarity score is considered a negative class.
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4.6 Limitations

Despite improving the performance of multi-relation identification for few-shot
document-level relation extraction, our model still faces two challenges: (1) the
lack of information available to identify relations between entities, which causes
relations to be often classified as NOTA; (2) the serious imbalance of positive
and negative instances. There are only a few instances containing relations in an
episode of FREDo, leading to a performance bottleneck.

5 Conclusion

In the paper, we present CHAN model that effectively captures context infor-
mation by attending to the words related to entities and relations and focus on
identifying multi-relation in FSDLRE by capturing useful fine-grained informa-
tion on the context related to relations. Our experimental results demonstrate
that CHAN performs well on two tasks on the FREDo benchmark, especially in
identifying multi-relation. In future research, we will focus on creating a general-
ized multi-label identification backbone network for various NLP few-shot tasks,
such as few-shot document-level event argument extraction.
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Abstract. Mongolian morphological analysis (MMA) includes two sub-
tasks: morphological segmentation and morphological tagging. It is a cru-
cial preprocessing step in many Mongolian NLP applications. Recently,
end-to-end neural approaches have achieved excellent results in the
MMA task. However, these approaches handle morphological segmen-
tation and morphological tagging independently, and ignore the rela-
tionship between the two subtasks. In this paper, we propose a multi-
task sequence-to-sequence model for the MMA task that learns Mon-
golian morphological segmentation and tagging jointly. The proposed
neural model introduces a shared morphological feature encoder to learn
character-level and context-level word information. Besides, we design a
flat joint attention decoder and a hierarchical joint attention decoder to
generate Mongolian segmentation and tagging results, respectively. We
employ the dynamic weight scheme to optimize and balance the weights
between the two subtasks in MMA. We compare the proposed model
with the baselines and evaluate the effectiveness of the sub-modules in
the experiment. The result suggests that the proposed MMA model out-
performed the state-of-the-art baselines.

Keywords: Mongolian morphological segmentation · Mongolian
morphological tagging · Flat joint attention · Hierarchical joint
attention

1 Introduction

Mongolian is a morphologically rich language with complex word-formation,
derivation and inflection [1]. Mongolian natural language processing (NLP)
still faces many challenges and the most significant one is data sparseness [2].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14262, pp. 65–77, 2023.
https://doi.org/10.1007/978-3-031-44201-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44201-8_6&domain=pdf
http://orcid.org/0000-0003-1611-5649
http://orcid.org/0000-0001-8480-1857
http://orcid.org/0000-0001-8061-1474
http://orcid.org/0000-0001-6460-9921
http://orcid.org/0009-0002-6846-1201
http://orcid.org/0009-0007-8544-1153
https://doi.org/10.1007/978-3-031-44201-8_6


66 N. Liu et al.

In Mongolian NLP tasks, there is a tendency to process Mongolian text with
morphemes rather than words, such as machine translation [3], speech synthesis
[4] and named entity recognition [5]. Mongolian morphological tags are progres-
sively used as abstract representations of words in several NLP tasks, such as
Mongolian constituent parsing [6] and fixed phrase recognition [7]. Therefore,
MMA is an essential preprocessing step in Mongolian NLP tasks.

Fig. 1. Example sentence, annotated with morphological segmentation and morpholog-
ical labels. The meaning of the sentence is “The service industry needs to be developed
rapidly.”

MMA includes morphological segmentation and tagging. Morphological seg-
mentation divides the words in a sentence into the root and suffixes to form
a morpheme sequence. Morphological tagging assigns root and suffixes to a
series of morphological labels. Generally, Mongolian suffixes contain abstract
information such as mood, case, tense and aspect [1,8], which are regarded as
the surface realization of those underlying abstract information. Morphological
labels are annotations of this abstract information in the form of specified char-
acter labels [9]. For most Mongolian words, each of them corresponds to only
one segmentation result and tagging result. For example, the target the word
“ ”, which means “need to be developed” is annotated with morphological
segmentation “ ” and morphological tag set of {Ve2;Fe11;Zv1;Fs21}, in
the example sentence (shown in the Fig. 1). Assuming that the MMA system
provides us with the morphological segmentation “ ” and the morpholog-
ical tag set {Ve2;Fc11} of the new word “ ”, we can easily infer that the
meaning of “ ” is “make something develop”. Therefore, MMA is very ben-
eficial for Mongolian natural language processing, which is used to deal with
rich morphology and data sparseness. However, some Mongolian words corre-
spond to different MMA results according to the context where they appear.
For example, while the word “ (means: went to)” is segmented to “ ”
and tagged with {Ve1;Fn2} (meaning of the morphological labels:transitive verb;
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suffix, separate adverb) in sentence “ ” (means:He went to work.),
it is segmented to “ ” (means:and) and tagged with {Cj} (meaning of the
morphological label:conjunction) in sentence “ ” (means:He took
the book and pencil.). This further makes the MMA more difficult. In summary,
the MMA remains an open challenge [10].

Obviously, MMA tasks are quite nuanced, and there is a clear relationship
between segmentation and tagging, both of which are dependent on the words
themselves and their contexts. In order to deal with these complex and delicate
relationships, we propose a multi-task learning model in this paper. We focus on
two key challenges of multi-task learning for MMA: (1) How to design a good
share network that can extract morphological information well? (2) How can
we optimize and balance the weights of the two subtasks in MMA to achieve
better performance? We introduce a shared encoder to learn character-level and
context-level morphological features. For the second challenge, we design a flat
joint attention decoder and a hierarchical joint attention decoder to generate
Mongolian segmentation and tagging results, respectively, and introduce the
dynamic weight scheme to make the performance of MMA better. The results
show that the proposed approach significantly outperforms the baselines. Our
contributions are summarized as follows:

(1) We propose a multi-task sequence to sequence neural networks to learn Mon-
golian morphological segmentation and tagging jointly.

(2) We designed two types of decoders to generate Mongolian segmentation and
tagging results, including flat joint attention decoder and hierarchical joint
attention decoder.

(3) We introduce a dynamic weight scheme to optimize and balance the weights
of the two subtasks in MMA, and prove that our approach is better than
other methods.

2 Approach

2.1 Architecture Design

As mentioned, we proposed a multi-task learning architecture to perform Mon-
golian word segmentation and tagging, as shown in Fig. 2. The proposed archi-
tecture uses a sequence-to-sequence backbone network, which includes (1) shared
feature encoder, (2) segmentation decoder and (3) tagging decoder. The shared
features encoder takes input data and extracts the morphological features. The
segmentation decoder and the tagging decoder learn the task-specific features
by applying a dynamic weighting scheme and multiple attention mechanisms
jointly. The details of each module are shown in the Fig. 3.

2.2 Shared Features Encoder

The lower-left of Fig. 3 is the shared morphological feature encoder, which shows
an overview of morphological feature embedding. There are two types of mor-
phological embedding: character-level embedding and context-level embedding.
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Fig. 2. Overview of our proposal architecture.

Character-level Embedding. We treat the word as a character sequence
and pass them into BiLSTM. In order to characterize Mongolian words better,
in the implementation, we use the attention mechanism in the character-level
word embedding layer. A character representation lookup table is initialized
at random, it contains a vector for every character. After that, an BiLSTM
is used to learn the character-level embedding. Let wi represents the ith word
in the sentence, lt represents the tth character in wi. The BiLSTM processes
characters in both directions and concatenate the hidden states. We obtain the
character hidden states

←→
ht = [

−→
hT ;

←−
h1] from BiLSTM, where

−→
hT comes from the

forward LSTM,
−→
hT = LSTMforward

(−−−→
hT−1, lT

)
,
←−
h1 comes from backward LSTM

←−
h1 = LSTMbackward

(←−
h2, l1

)
, and T represents the length of the word wi.

Character-level Attention. The character hidden state
←→
ht is fed into an

attention layer to generate the character-level word embedding ei
l. The ei

l is
calculated as, eli =

∑m
t=1 al

t

←→
ht , where al

t are the attention weights. Note that we
use global attention [17] in this paper.

Context-level Embedding. We adopt another BiLSTM as the context-
level encoder to generate the context-level word embedding. One motivation
of our contextualized representation approach is maintaining the MMA model
simplicity in the low resource settings. Thus we employ the character-level
word embedding as the input, avoiding relying on external resources. Like the
character-level embedding, we leverage another BiLSTM to generate context
vector eci =

[−→
hi ;

←−
hi

]
.
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Fig. 3. The detail of our proposal architecture.

2.3 Mongolian Morphological Decoders

In this work, we propose two separate decoders for Mongolian morphological
segmentation and morphological tagging. The decoding framework of the two
subtasks are the same, and they are both fed with the same character-level
word embedding eli and context-level word embedding eci . The difference is that
their parameters are not shared. Take the Mongolian morphological tagging, for
example. The decoder formalized formula as follows:

h̃t = tag decoder(ht, h
l
t, h

c
t) (1)

p(tagi,t | h̃t) = softmax(h̃t) (2)

where h̃t is the final hidden states of the tag decoder, which is computed through
LSTM networks and the joint attention mechanism. We design two different joint
attention mechanisms: flat joint attention and hierarchical joint attention. There-
fore, there are two types of decoders, flat joint attention decoder and hierarchical
joint attention decoder.

Flat Joint Attention Decoder. The upper-left of Fig. 3 is the flat joint atten-
tion decoder. The flat joint attention mechanism allows the decoder to simul-
taneously focus on character-level and context-level features. In the flat joint
attention decoder, the attention weights control the individual contribution of
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each hidden state, hl
j and hc

j . Both of hl
j and hc

j are the final hidden states of
two LSTM networks. Than we put hl

j and hc
j into the attention layer and get

the final hidden states h̃t. The h̃t is calculated as formula:

h̃t =
t∑

j=1

al
jh

l
j +

t∑
j=1

ac
jh

c
j (3)

where al
j and ac

j represent the attention weight of character-level and context-
level in the flat joint attention, respectively, and their calculation methods are
the same. Take the character-level attention weight al

j as an example:

al
j =

exp(ul
j
T
ul)

∑t
j=1 exp(ul

j
T
ul
j) +

∑t
j=1 exp(uc

j
Tuc

j)
(4)

where the ul
j and uc

j are the new hidden states depending on hl
j and hc

j , and their
calculation methods are the same. Take ul

j as an example, ul
j = tanh(wlhl

j + bl),
where wl is the weight matrix and bl is the bias.

Hierarchical Joint Attention Decoder. The right part of Fig. 3 is the hierar-
chical joint attention decoder. The hierarchical joint attention mechanism consid-
ers the hierarchical structure of words (characters and context). It includes two
attention modules: character-level attention focusing on the critical characters
in each word and context-level attention identifying the important contextual
words in the sentence. The structure of character-level and context-level atten-
tion modules are similar. The final hidden state h̃t of hierarchical joint attention
decoder is calculated as:

h̃t =
t∑

j=1

ac
jh

c
j (5)

where ac
j is the context-level attention weight, and hc

j is the output of LSTM
decoding network in the context-level attention module, which calculated as
formula:

hc
j = LSTM(hc

j−1, c
l
j) (6)

and clj is the output of the character-level attention module, clj =
∑j

k=1 al
kh

l
k,

where hl
k is the input of the character-level attention module. The al

k is the
character-level attention weight, and its calculation process is same as the
context-level attention weight ac

j . Take character-level attention weight al
k as

example in detail:

al
k =

exp(ul
k

T
ul
k)∑j

k=1 exp(ul
k

T
ul
k)

(7)

where the ul
j is the new hidden state depending on hl

j , ul
k = tanh(wlhl

k + bl),
and wl is the weight matrix and bl is the bias.
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2.4 Learning Objective

When related tasks are processed jointly in multi-task learning, they share induc-
tive bias. In the general multi-task learning with T tasks, the whole network is
trained by back propagating the sum of losses. The learning objective is defined
as:

min
T∑

t=1

λtLt(θ)
s.t.

∑T
t=1 λt = 1
λt ∈ {0, 1} (8)

where the learning objective is a linear combination of the empirical loss Lt(θ)
for multiple tasks,λ is the weight coefficient for each subtask and θ represents
the parameters of a neural network instance. In general, every subtask task t
has a statically equal weight, t = 1/T . However, this solution is valid only when
the tasks do not compete, which rarely occurs. We will consider two sub-tasks,
segmentation and tagging, as an example, where there are two solutions θa and θb
such that Lseg(θa) < Lseg(θb) and Ltag(θa) > Ltag(θb). In other words, solution
θa is better for task segmentation where as θb is better for tagging. Without
pairwise importance of tasks, which is typically not available, it is impossible to
compare these two solutions. Although the weight summation formulation (8) is
simple and straightforward, searching for a proper weight vector is very difficult
and expensive [16]. A variety of optimization algorithms have been proposed to
balance subtasks in Multi-task learning, including gradient normalization [12],
dynamic weight averaging [13], and uncertainty weighting [14]. In our dynamic
weighting scheme, we create weights for each subtask using a “softmax” output
layer, just as neural networks generate class probabilities with a “softmax”. In
the ith iteration, the weight coefficient λtag(i) of subtask tagging is:

λtag(i) =
exp(wtag(i − 1)/α)

exp(wtag(i − 1)/α) + exp(wseg(i − 1)/α)
(9)

wtag(i − 1) =
Ltag(θi−1)
Ltag(θi−2)

(10)

wseg(i − 1) =
Lseg(θi−1)
Lseg(θi−2)

(11)

where wt(i − 1) ∈ (0,+∞) calculates the relative descending rate, and α repre-
sents a constant that controls the softness of task weighting. The weight coef-
ficient λt(i) of each subtask will equal as 1/T that α is large enough. In the
experiment, we set α to 2 and use cross entropy loss as the loss function. The
loss value of subtask t, Lt(θi−1), is calculated as the average loss in each epoch
over multiple iterations. This reduces the uncertainty of random training data
selection and stochastic gradient descent.
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3 Experiments

3.1 Dataset and Experiment Setting

Nowadays, there is no open source Mongolian corpus with morphological infor-
mation. We annotated a Mongolian morphological dataset by a group of Mon-
golian native speakers for this target. The dataset includes 5,000 Mongolian
sentences, whose length varies from 2 to 37. The average length is 17.76. There
are 88,793 words and 9,419 different words in total. We split it into training
dataset (4,000 sentences, 80%), development dataset (500 sentences, 10%) and
test (500 sentences, 10%).

We use 10-fold validation to determine the optimal parameters and an early
stop mechanism in model training which stops the training after 10 consecutive
epochs (patience) without improvement on the developing dataset. Note: The
Mongolian morphological segmentation decoder uses the Limited Search Strat-
egy (LSS) [10] for decoding.

3.2 Baselines

We select three single-task models based on BiLSTM neural network as baselines:

– BiLa, Single-Task with Attention: BiLa [11] model is an BiLSTM-based
approach for morphological segmentation. In addition to adding the atten-
tion mechanism, this model is similar BiLSTM model. We reimplemented the
model for Mongolian morphological segmentation and tagging and keep its
default parameters unchanged.

– BiLSTM-CRF*, Single-Task: the BiLSTM-CRF [18] model is a sequence
labeling model that implements MMA in two steps. Firstly, the morphological
segmentation task is completed, and then converts morphemes into morpho-
logical tagging sequence. Due to the differences in experimental hardware and
software environments and data resources, we reimplemented the model with
the experimental data and evaluation metrics in this paper.

– SAN+BiLSTM-DAD, Single-Task: SAN+BiLSTM-DAD model was pro-
posed by Na et al. [19], an effective method for Mongolian morphological
segmentation. This model is based on the self-attention mechanism and uses
the double attention decoder to fuse character-level and context-level infor-
mation. We use the same hyperparameters as that in [19].

4 Results and Discussion

4.1 Comparison with Baselines

Table 1 shows the evaluation results of all baselines and our model. As one can
observe that our proposed model achieves the best performance on both mor-
phological segmentation and tagging. On the test dataset, we achieve 97.42%
precision, 97.56% recall, and 97.49% F1 for segmentation and 96.16% precision,
95.67% recall, and 95.91% F1 for tagging. We discuss the effectiveness of our
model as follows:
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Table 1. Comparative results with our model and baseline approaches.

model Segmentation Tagging

P(%) R(%) F1(%) P(%) R(%) F1(%)

BiLa 89.04 88.23 88.63 – – –

BiLSTM-CRF* 90.49 90.67 90.58 88.68 87.02 87.85

SAN+BiLSTM-DAD [19] 93.11 93.39 93.24 – – –

Ours 97.42 97.56 97.49 96.16 95.67 95.91

– Among those baseline models, the advantage of SAN+BiLSTM-DAD [19]
model which incorporates contextual features is more significant than other
methods. This can be attributed to the contextualized embedding of Mon-
golian words. Once Mongolian words are correctly contextualized, the subtle
ambiguities between words can be distinguished and predicted correctly.

– Our proposed multi-task model outperforms all the other single-task meth-
ods with significant margins. These results indicate that the Mongolian mor-
phological segmentation task and Mongolian morphological tagging task can
promote each other, learn together, and achieve performance improvements
under the framework of multi-task learning.

4.2 The Effect of the Different Decoders

To observe the applicability of the two decoders, we experiment on different com-
binations of the two decoders and report the results in Table 2. The conclusions
are as follows:

Table 2. Comparisons of decoders.

Decoder Segmentation Tagging

Segmentation Tagging P(%) R(%) F1(%) P(%) R(%) F1(%)

FJAD FJAD 96.47 95.63 96.05 94.92 93.89 94.40

FJAD HJAD 97.42 97.56 97.49 96.16 95.67 95.91

HJAD FJAD 95.05 94.16 94.60 93.72 92.11 92.91

HJAD HJAD 96.03 94.61 95.31 95.68 93.47 94.56

As shown in Table 2, our model achieves the best performance by employ-
ing FJAD for segmentation and HJAD for tagging. Our model reaches 97.49
and 95.91% F1 in segmentation and tagging. We find that these two subtasks
are interdependent, showing almost similar performance trends when subtasks
are in different combinations. That is once again proved the necessity and the
importance of using multi-task learning in MMA. Furthermore, we can see that
FJAD has a clear and even significant advantage over HJAD for segmentation.
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Decoding character-level and context-level features on the same layer, balancing
two information levels to find the morpheme boundaries better. HJAD for the
tagging is as remarkable as FJAD for the segmentation. This may benefit from
the fact that the context features most relevant to tagging are at the top layer
of the HJAD.

4.3 The Effect of Different-level Features

We conducted extensive analyses to understand better the efficacy of different-
level features. Both character-level only and context-level only models are with
the same decoder. The “only” means that we input one kind of character-level
or context-level embedding at the decoding step.

Table 3. Comparisons of different-level features.

model S egmentation Tagging

P(%) R(%) F1(%) P(%) R(%) F1(%)

character-level only 93.21 92.86 93.03 91.34 88.79 90.05

context-level only 94.62 92.17 93.38 93.64 91.31 92.46

Our 97.42 97.56 97.49 96.16 95.67 95.91

As shown in Table 3, the results demonstrate the importance of modeling
contextual features for MMA task again. Compared with the character-level
model, the context-level model improved the F1 of segmentation from 93.03
to 93.38% and tagging from 90.05 to 92.46%. Furthermore, the improvements
are remarkable: FJAD and HJAD to fuse the character-level and context-level
features lead to superior performance.

4.4 Effect of the Dynamic Weighting Scheme

Table 4. Comparative results of three weighting methods.

Weigthting Scheme Segmentation Tagging

P(%) R(%) F1(%) P(%) R(%) F1(%)

equal weighting 97.06 96.70 96.83 95.15 95.11 95.13

weight uncertainty [14] 97.44 97.28 97.36 95.62 95.31 95.46

dynamic weighting scheme(Our) 97.42 97.56 97.49 96.16 95.67 95.91

We conduct experiments with three weighting methods to verify the effect of
the objective function on the model: equal weighting, weight uncertainty [14] and
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Fig. 4. The Loss for two tasks on the developing dataset with different weighting
schemes.

the dynamic weighting scheme (2.4). Table 4 displays the experimental results.
We find that our dynamic weighting scheme maintains a good advantage in per-
formance. Compared with equal weighting and weight uncertainty [14] weighting
methods, our dynamic weighting scheme improved the F1 of segmentation from
97.36% to 97.49% and tagging from 95.46 to 95.91%. In experiments, we find
that our dynamic weighting scheme is more effective in convergence property,
and is more robust and converges rapidly. In the setting of our early stopping
mechanism (mentioned in Sect. 3.1), we conduct 10 experiments for each weight-
ing scheme, and the average number of iterations for he equal weighting, weight
uncertainty [14] and the dynamic weighting scheme was 96.7, 64.2, and 45.6,
respectively. We selected the best model from each scheme and drew the valida-
tion loss curves for the two tasks on the developing set, as shown in Fig. 4. We
can clearly see that our model follows a similar loss trend in different weighting
schemes, and the dynamic weighting scheme is more advantageous.

5 Conclusions

This paper proposes a multi-task neural network for Mongolian morphologi-
cal analysis. The proposed model consists of a shared morphological features
encoder and two separate decoders for Mongolian morphological segmentation
and morphological tagging. Specifically, we use an unsupervised approach to
adaptively embed character-level and context-level representations. We input
these two-level word representations into two different types of decoders, flat
joint attention decoder and layered joint attention decoder. Then, the network
is trained by the dynamic weighting scheme and attention mechanism jointly.
Our experiment results show that the proposed model outperforms is competi-
tive with baselines, and also show efficiency to the dynamic weighting scheme.
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Abstract. Compared to mainstream languages such as Chinese and
English, Tibetan speech corpus is limited. Pre-training technology can
improve the speech recognition performance for low-resource language
by using multiple languages corpus, which involves initially training a
neural network on the multi-language dataset, followed by fine-tuning
the trained model on low-resource language. In this paper, a multi-task
serial pre-training method is proposed to address the limited resources
in Tibetan speech recognition. By designing the number and order of
tasks in the pre-training process, better recognition performance can be
achieved. The experiments on the Lhasa-Tibetan speech recognition task
show that our proposed method is significantly superior to the baseline
model, achieving a Tibetan word error rate of 4.12%, which is a 9.34%
reduction compared to the baseline model and 1.06% lower compared to
the existing pre-training model.

Keywords: Lhasa-Tibetan speech recognition · Multi-task · Serial
Pre-training

1 Introduction

The development of deep learning has resulted in neural network models with an
immense number of parameters. This conveys that the model’s training neces-
sitates an extensive corpus of data. Nonetheless, when it comes to minority
languages like Tibetan, constructing a sizable labeled corpus proves to be an
expensive and time-intensive endeavor. It often requires numerous profession-
als to dedicate significant time to its completion. In light of this challenge, the
pre-training technique offers a solution. By initially training the model on high-
resource data and subsequently fine-tuning it for the target task, this method
can yield optimal results. Pre-training serves as a means to compensate for the
aforementioned limitation, enabling the model to leverage available resources
and achieve superior performance.
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Hendrycks et al. [1] conducted extensive training of the model using the 1000-
class ImageNet dataset, followed by fine-tuning it on two different datasets,
namely CIFAR-10 and CIFAR-100. The experimental result showed that pre-
training enhances the model’s robustness. Fan et al. [2] applied the pre-trained
model in the domain of sequence-to-sequence speech recognition by separately
pre-training the encoder and decoder with non-paired Chinese corpus. Subse-
quently, through fine-tuning on diverse language datasets, they observed a sig-
nificant reduction in error rates when compared to models lacking pre-training.
Moreover, the versatility and adaptability of pre-trained models across disparate
tasks were exemplified by Lech et al. [3]. They leveraged a pre-trained image clas-
sification network to achieve real-time speech-emotion recognition. The results
of their study showed the potential applicability of pre-trained models beyond
their original domain, paving the way for novel interdisciplinary research. Bansal
et al. [4] and Zhang et al. [5] used the pre-trained model trained on high-resource
language speech recognition tasks for speech-to-text translation in low-resource
languages. Their work shows that the pre-training process can address the prob-
lem of insufficient data in the target task.

Pan Lixin [6] harnessed the potential of pre-training models in tackling the
Lhasa-Tibetan speech recognition, where Chinese, Nepali, Sinhalese, and Bengali
were used as the source languages. The transformer model was pre-trained using
each source language. The four different pre-trained models were fine-tuned on
the Lhasa-Tibetan corpus. The lowest recognition error rate of the models was
33.64%. To further enhance the accuracy of Lhasa-Tibetan speech recognition,
this paper introduces a novel method: the multi-task serial pre-training method.
This method capitalizes on the power of continuous acquisition of knowledge
during the pre-training process by incorporating different speech recognition
tasks into the model’s training process. Finally, the pre-trained model is fine-
tuned on a small amount of Lhasa-Tibetan speech data.

The structure of this paper is as follows: Sect. 2 introduces related work,
including an overview of pre-training techniques and the current research works
of Lhasa-Tibetan speech recognition. Section 3 presents our pre-training method
and the baseline model. Section 4 discusses the experimental data, setting, and
results. Section 5 offers a discussion and summary of this work.

2 Related Work

Traditional speech recognition methods, which heavily rely on large amounts of
prior knowledge and labeled data, have proven to be less suitable for Lhasa-
Tibetan speech recognition tasks due to the inherent scarcity of resources in
this domain. In recent years, the emergence of end-to-end models has heralded a
new era in speech recognition. These models present a more fitting solution for
Lhasa-Tibetan speech recognition, as they obviate the need for arduous train-
ing processes, while also alleviating the demand for extensive prior language
knowledge. However, a direct application of end-to-end model to Tibetan speech
recognition is suboptimal.
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In 2017, Wang Qingnan et al. [7] conducted research to enhance the perfor-
mance of the Connectionist Temporal Classification (CTC) network in Tibetan
speech recognition. Through pre-training of the CTC network using Chinese
speech data, they successfully integrated the trained end-to-end model into
Tibetan speech recognition. The experimental results showed the effectiveness
of pre-training in improving the recognition performance of the model. In 2018,
Yan et al. [8] harnessed the power of pre-trained models to further augment
Lhasa-Tibetan speech recognition. Their method was to train a Time Delay
Neural Network (TDNN) on a Chinese corpus and then fine-tuned the TDNN
with Lhasa-Tibetan corpus. The experimental results showed a significant reduc-
tion in error rates. The error rate decreased from 40.85% to 34.29%. In the year
2022, Qin et al. [9] proposed an innovative combination of Tibetan characters
and Tibetan radicals as modeling units. The model was trained on Chinese cor-
pus. They used the trained model for Tibetan speech recognition, the error rate
was 29.61%. Wang Zhijie et al. [10] presented an effective method of Tibetan
end-to-end speech recognition via cross-language transfer learning from three
aspects: modeling unit selection, transfer learning method, and source language
selection. Experimental results show that the Chinese-Tibetan multi-language
learning method using multi-language character set as the modeling unit yields
the best performance on the error rate (CER) at 27.3%.

The aforementioned pre-training methods in Tibetan speech recognition
models rely on a single task for the initial learning phase of the model, which
results in the “knowledge” acquired by the model through this method being too
limited to provide general information to the target task. By enabling the model
to engage in a continuous learning process that involves new tasks, it emphasizes
the significance of continuous knowledge acquisition from some different tasks,
so that it becomes capable of expanding its knowledge base and capturing more
general information. This makes the model adapt more effectively to the target
task, even when only a limited amount of data is available. Within the ERNIE
2.0 [11]framework, a serial incremental pre-training method is introduced. This
method is a progressive training process, whereby the model is initially trained
on task 1 and its knowledge is then saved. Subsequently, the model is reloaded
and further trained on both task 1 and task 2, repeating this process until seven
tasks have been included into the model’s training. This incremental method
ensures that the model continually expands its knowledge base, capturing more
general information from each.

To further improve the accuracy of Tibetan speech recognition, we draw
inspiration from the ERNIE 2.0 language model and propose a novel method:
multi-task serial pre-training. The method is to first train serially the model
with speech recognition tasks in different high-resource languages and then fine-
tune it on the target task. Our target task is Lhasa-Tibetan speech recognition.
Consequently, within the model pre-training phase, we serially train the tasks
of “Chinese speech-to-Chinese character recognition,” “Chinese speech-to-pinyin
recognition,” and “English speech-to-word recognition.” The pre-trained model
is fine-tuned with a small account of Lhasa-Tibetan speech data. The serial
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pre-training method contributes to enable the model to continuously acquire gen-
eral knowledge from different speech recognition tasks. This knowledge acquisi-
tion enables the model to achieve a more robust adaptation to downstream tasks.
Through this serial pre-training framework, we aim to improve the accuracy of
Lhasa-Tibetan speech recognition models by leveraging the general knowledge
derived from different speech recognition tasks.

3 Method

3.1 Multi-task Serial Pre-training Method

Pre-training involves the initial training of a model on a large-scale dataset, fol-
lowed by fine-tuning on the target task. This method circumvents the need to
train the model from scratch and significantly reduces the demand for labeled
data. The choice of training parameters profoundly impacts the experimental
outcomes. The primary objective of pre-training is to acquire a relatively rea-
sonable set of training parameters. For neural networks, knowledge and judg-
ments are retained within the weights. By retaining these weights during the
pre-training process, the model retains its acquired knowledge. During the sub-
sequent training of the target task, the pre-trained model’s weights can be uti-
lized as initial weights, which provides the model with a clear path rather than
starting from a blindly initialized state. This initial strategy significantly reduces
training costs. For successful pre-training, it is crucial to ensure that the pre-
training task and the target task have sufficient similarities. The transferability
of knowledge between tasks is directly proportional to their similarity. In some
cases, tasks may require minimal modifications, such as changing only the out-
put layer. It effectively eliminates the need for redundant training and improves
overall training efficiency.

The focus of this paper is Lhasa-Tibetan speech recognition. In order to
ensure the similarity between the pre-training task and the target task, our
method involves the selection of multiple speech recognition tasks in high-
resource languages. Specifically, we select three different tasks that form the
backbone of our pre-training framework: “Chinese Speech-to-Chinese Charac-
ter Recognition” (referred to as “ch”), “Chinese Speech-to-Pinyin Recognition”
(referred to as “py”), and “English Speech-to-Word Recognition” (referred to
as “en”). In the pre-training phase, our paper adopts the proposed method of
multi-task serial pre-training. This method trains one task based on the pre-
trained model obtained from another task. The number and order of tasks in the
pre-training process can significantly influence the accuracy of the model’s recog-
nition. Hence, to provide a comprehensive evaluation, we compare the impact
of different combinations of pre-training tasks on the performance of the target
task.

In the fine-tuning phase, because of the strong similarities between the pre-
training task and the target task, the model is designed to solely inherit the train-
ing parameters of the pre-trained model, except for the output layer. Through
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Fig. 1. Multi-task serial pre-training process

this pre-training and fine-tuning framework, we aim to leverage the shared speech
and linguistic knowledge between the pre-training task and the target task.

Figure 1 shows the framework of Lhasa-Tibetan speech recognition based on
multi-task serial pre-training. To discuss the impact of the number and order of
pre-training tasks on the target task, we design five different training methods,
namely the baseline model, single-task pre-training, two-task serial pre-training,
three-task serial pre-training, and three-task serial incremental pre-training. By
considering these different training methods, we aim to explore the impact of
various combinations and sequences of pre-training tasks on the performance of
the models in Lhasa-Tibetan speech recognition.

(1) Baseline model: we train the model directly using the Lhasa-Tibetan corpus
without using any form of pre-training, denoted as model 1.

(2) Single-task pre-training: The pre-training process, as showed in Fig. 2, is
designed to focus on a single task, which allows us to evaluate the perfor-
mance of each pre-training model on the subsequent target task. In this
process, the initial parameters of the pre-training model are randomly ini-
tialized. We proceed to fine-tune each of the three trained models using the
Lhasa-Tibetan corpus and then compare the error rates of these models with
that of the baseline model.

Fig. 2. Single-task pre-training model
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Fig. 3. Two-task serial pre-training model

Fig. 4. Three-task serial pre-training model

(3) Two-task serial pre-training: This method has six different pre-training mod-
els, as illustrated in Fig. 3. Each model represents a unique combination of
pre-training tasks. Notably, the initial parameters of the first pre-training
stage for all six models are set to random initialization. The initial param-
eters of the second pre-training are designed to inherit all parameters from
the first pre-training, except for the output layer. This method not only
saves valuable training time but also facilitates rapid convergence of the
models.

(4) Three-task serial pre-training: This pre-training method likewise yields six
different models, as illustrated in Fig. 4. In this method, the initial parame-
ters for the first pre-training of each model are randomly initialized. The ini-
tial parameters of the subsequent pre-training inherit all the learned param-
eters from the previous pre-training, except for the output layer.
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(5) Three-task serial incremental pre-training: Inspired by the ERNIE 2.0 lan-
guage model, the three-task serial incremental pre-training is implemented
on the basis of the three-task serial pre-training to compare with our pro-
posed model, and the training process is shown in Fig. 5.

Fig. 5. Three-task serial incremental pre-training model

3.2 End-to-end Conformer Model

Although the transformer can better capture the long sequence dependencies in
speech, it is relatively weak in extracting fine-grained local features. The convolu-
tional neural network (CNN) has a good performance in extracting fine-grained
local features. So, by combining the strengths of CNN and the transformer, Con-
former, a convolution-enhanced transformer, was created. The conformer is com-
posed of encoder and decoder, and the CNN is used to modify the encoder part.
The overall architecture of the encoder is shown in Fig. 6 [13]. The conformer
block is composed of three modules: the feed-forward module, the multi-head
self-attention module, and the convolution module. Each module uses resid-
ual connections. The convolution and attention are concatenated to achieve an
enhanced effect.

The conformer block contains two feed-forward modules. Between the two
feed-forward modules are the multi-head self-attention module and the convolu-
tion module. This sandwich structure is inspired by the Macaron Net [12], which
proposes to replace the original feed-forward layer in the transformer with two
half-step feed-forward layers, one before the attention layer and one after the
attention layer.

Similar to Macaron Net, the residual weight in the FFN module is set to 1/2
to reduce the size of the residual and avoid unstable training caused by large
residual changes. In residual networks, the existence of residual connections can
enhance the propagation of gradients, but it may also lead to gradient explosion
or vanishing. By setting the residual weight to 1/2, the gradient propagation can
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Fig. 6. The model structure of Encoder

be smoother while the residual connection remains effective, which is beneficial
for model training and optimization. The calculation process of the output yi
from the i-th input xi of the Conformer block is shown in Eqs. 1, 2, 3, and
4 [13], where FFN represents the feed-forward module, MHSA represents the
multi-head self-attention module, and Conv represents the convolution module.

x̃i = xi +
1
2
FFN (xi) (1)

x′
i = x̃i + MHSA (x̃i) (2)

x′′
i = x′

i + Conv (x′
i) (3)

yi = Layernorm
(

x′′
i +

1
2
FNN (x′′

i )
)

(4)

4 Experiment

4.1 Experimental Data

The experimental data sets in this paper are obtained from the Open Speech
and Language Resources (OpenSLR), as shown in Table 1.

The first data set comes from the Aishell-1 Chinese data set [14]. It is a
Chinese speech corpus covering 11 fields such as smart homes, autonomous driv-
ing, and industrial production. We select 80,604 sentences with a total duration
of 100.42 h. The audio files are converted into Windows Audio Volume (WAV)
format with 16KHz sampling rate and 16-bit quantization accuracy.
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Table 1. The statistics of data set

Data set Speech Utterances Duration Size

Training data Test data Training data Test data Training data Test data

Chinese 80604 – 100.42 h – 10.7 GB –

English 28539 – 100.59 h – 6.21 GB –

Tibetan 18738 4874 24.33 h 6.41 h 14.3 GB 3.79 GB

The second data set is the LibriSpeech English data set [15]. We select 28,539
sentences with a total duration of 100.59 h. The audio files are converted into
Windows Audio Volume (WAV) format with 16KHz sampling rate and 16-bit
quantization accuracy.

The third data set is the TIBMD@MUC Tibetan data set [16]. It is a multi-
dialect Tibetan data set. We select 18,738 Lhasa-Tibetan sentences as the train-
ing set, with a total duration of 24.33 h. We select 4,874 Lhasa-Tibetan sentences
as the test set, with a total duration of 6.41 h. The audio files are converted into
Windows Audio Volume (WAV) format with 16KHz sampling rate and 16-bit
quantization accuracy.

4.2 Experimental Results and Analysis

The indicator for evaluating experimental results in this paper is Tibetan word
error rate (WER). The method of calculating WER is shown in Formula (5).

Word Error Rate =
Insertions + Substitutions + Deletions

Total Words
× 100% (5)

The error rates of the five models on Lhasa-Tibetan speech recognition are
shown as follows.

(1) Baseline model (Model 1): Without pre-training, the error rate of Lhasa-
Tibetan speech recognition is 13.46% (Table 2).

Table 2. The experimental results of baseline model

Model Pre-training Task Lhasa-Tibetan Speech Recognition WER

Model 1 None 13.46%

(2) Single-task pre-training: After single-task pre-training, the experimental
results of fine-tuning on the Lhasa-Tibetan corpus are shown in Table 3.

In direct comparison to the baseline model (Model 1), the results obtained
after undergoing the single-task pre-training show a reduction in the recognition
error rate. Among them, the model has the best recognition performance when
the pre-training task is “py”. The error rate of fine-tuning on the Lhasa-Tibetan
corpus is 5.03%. This outcome reflects an impressive 8.43% decrease in error rate
when contrasted with the baseline model.
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Table 3. The experimental results of single-task pre-training

Model Pre-training Task Lhasa-Tibetan Speech Recognition WER

Model 2 ch 6.41%

Model 3 py 5.03%

Model 4 en 9.79%

(3) Two-task serial pre-training: After two-task serial pre-training, the exper-
imental results of fine-tuning on the Lhasa-Tibetan corpus are shown in
Table 4.

Table 4. The experimental results of two-task serial pre-training

Model Order of Pre-training Tasks Lhasa-Tibetan Speech Recognition WER

Model 5 ch→py 4.52%

Model 6 Py→ch 4.68%

Model 7 ch→en 5.44%

Model 8 en→ch 4.89%

Model 9 py→en 4.97%

Model 10 en→py 4.79%

Overall, this method can acquire more general “knowledge”. These models
show better recognition performance compared to single-task pre-training.

Notably, Models 5 and 6 stand out due to their exclusion of the “en” pre-
training task. They have lower error rates than the remaining four models. These
results show that Chinese, as a pre-training language, holds greater suitability
for improving the accuracy of Lhasa-Tibetan speech recognition than English.

Comparing Model 5 with Model 6 and Model 9 with Model 10 longitudinally,
it is observed that the “py” of Model 5 and Model 10 is closer to the target task.
Remarkably, this proximity is reflected in their lower error rates compared to
Models 6 and Model 9. Consequently, it can be inferred that the “py” pre-
training task makes a more significant contribution to the overall performance
of the target task.

After two-task serial pre-training, Model 5 has the best recognition perfor-
mance. Its error rate is 4.52%. Compared to Model 3 (the best model in single-
task pre-training), the error rate is reduced by 0.51%. It shows that increasing
the number of pre-training tasks can reduce the error rate. Compared to Model
6, the error rate of Model 5 is reduced by 0.16%. It shows that an appropriate
pre-training order can reduce the error rate.
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(4) Three-task serial pre-training: After three-task serial pre-training, the exper-
imental results of fine-tuning on the Lhasa-Tibetan corpus are shown in
Table 5.

Table 5. The experimental results of three-task serial pre-training

Model Order of Pre-training Tasks Lhasa-Tibetan Speech Recognition WER

Model 11 ch→py→en 4.94%

Model 12 ch→en→py 4.12%

Model 13 py→ch→en 4.86%

Model 14 py→en→ch 4.64%

Model 15 en→ch→py 4.45%

Model 16 en→py→ch 4.55%

Overall, this method has better recognition performance compared to single-
task pre-training and two-task serial pre-training.

When the last task of the pre-training process is “en”, the error rate is higher.
When the last task of the pre-training process is “py”, the error rate is lower.
The results show that the recognition performance of the model is better when
the high contribution training corpus is closer to the Tibetan speech recognition.

After three-task serial pre-training, the recognition performance of Model 12
is the best. Its error rate is 4.12%. Compared to Model 5 (the best model in two-
task serial pre-training), the error rate is reduced by 0.4%. It also shows that
increasing the number of pre-training tasks can reduce the error rate. Compared
to Model 12, the error rate is reduced by 0.82%. It also shows that an appropriate
pre-training order can reduce the error rate.

(5) Three-task serial incremental pre-training: Drawing inspiration from the
ERNIE 2.0 language model, the serial pre-training method is proposed in
this paper. To provide a comprehensive comparison, we add experiments of
the serial incremental pre-training method of ERNIE 2.0. To maintain the
integrity and fairness of this comparison, each subtask within the pre-training
process has been trained for the same number of epochs. The comparative
results, showing the error rates (WER) of both the serial pre-training and
serial incremental pre-training methods on the Lhasa-Tibetan speech recog-
nition, are meticulously shown in Table 6.

Comparing the results of the six groups of models shows that the superiority
and lower error rates achieved by our proposed multi-task serial pre-training
method. In contrast, the serial incremental pre-training method, despite its
advantages of augmenting the training data as the number of tasks increases,
exposes a disadvantage: the gradual increase in training tasks adversely affects
the convergence rate of the model, posing challenges to its overall convergence.
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Table 6. The experimental results of three-task serial pre-training and serial incre-
mental pre-training

Serial pre-training WER Serial incremental pre-training WER

ch→py→en 4.94% ch→ch+py→ch+py+en 5.04%

ch→en→py 4.12% ch→ch+en→ch+en+py 5.18%

py→ch→en 4.86% py→py+ch→py+ch+en 4.83%

py→en→ch 4.64% py→py+en→py+en+ch 4.95%

en→ch→py 4.45% en→en+ch→en+ch+py 5.22%

en→py→ch 4.55% en→en+py→en+py+ch 5.12%

These results highlight the inherent limitations of the serial incremental pre-
training method, further reinforcing the effectiveness and accuracy of our pro-
posed multi-task serial pre-training method.

5 Conclusion

Compared to conventional speech recognition methods, the application of end-
to-end models in Tibetan speech recognition tasks effectively addresses the chal-
lenge of limited prior knowledge of the Tibetan language. However, given the
scarcity of data, enhancing the recognition performance of the end-to-end model
becomes a crucial research focus. In this paper, we adopt the pre-training method
to obtain more favorable initialization weights for the end-to-end model, which
significantly influences the final model performance. By changing the number
and order of pre-training tasks, the results show the effectiveness of our proposed
multi-task serial pre-training method in enhancing model recognition. Remark-
ably, when serially pre-trained with three different tasks, our model achieves a
WER of 4.12% for Lhasa-Tibetan speech recognition, showing a 9.34% improve-
ment over the baseline model and a 1.06% improvement over existing pre-trained
models. Notably, among the three tasks, the “py” task in Chinese speech has the
highest contribution to Tibetan speech recognition. Moreover, compared to the
ERNIE2.0 language model, our proposed multi-task serial pre-training method
yields faster model convergence. Future research endeavors could leverage the
pre-trained model for speech recognition in other Tibetan dialects or minority
languages, thereby expanding its applicability and impact.
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Abstract. Dropout is a powerful way for preventing model overfitting. However,
it is inefficient due to it randomly ignoring some neurons. Although there aremany
ways on Dropout, they are still either inefficient on improving generalization abil-
ity or not effective enough. In this paper, we proposeMutual Information Dropout,
which is an efficient Dropout based on dropping neuronswith lowmutual informa-
tion. InMutual Information Dropout, instead of randomly ignoring some neurons,
we first evaluated the mutual information of neurons to dropout with mutual infor-
mation below a certain threshold. In this way, Mutual Information Dropout can
achieve effective improving generalization ability with evaluate neurons. Exten-
sive experiments on Three datasets show thatMutual InformationDropout ismuch
more efficient thanmany existingDropout and canmeanwhile achieve comparable
or even better generalization ability.

Keywords: Dropout ·Mutual Information · Generalization Ability

1 Introduction

Dropout and their variants have achieved great success in many fields. For example,
preventing overfitting in neural networks, improving model accuracy in image classi-
fication, balancing exploration and exploitation in reinforcement learning and so on.
The core of a dropout is randomly ignoring some neurons, which allows the dropout to
improving generalization ability. However, since dropout discards some useful informa-
tion during the training process. Thus, it is difficult for standard dropout to efficiently
improve generalization ability.

There are many ways to improve the generalization ability of neural networks, such
as Drop-Connect, which sets each weight of the network to 0 with a certain probability
during each training iteration. However, this way incurs significant computational over-
head, and it can be difficult to select an appropriate dropout rate. Another way, Inverted
Dropout, sets each neuron to zero with probability p and then divides its output by p
during training. However, it can also be difficult to select an appropriate dropout rate,
and these ways may not be efficient if an inappropriate dropout rate is chosen.

In this paper we propose Mutual Information Dropout, which is an efficient Dropout
variant based on dropping neuronswith lowmutual information that can achieve effective

The code: https://github.com/shjdjjfi/MI-Dropout.git.
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generalization ability. In Mutual Information Dropout, we first use mutual information
to evaluate the usefulness of neurons. Next, we set an appropriate mutual information
threshold. Finally, we perform neuron dropout on those neurons that fall below a certain
threshold. We conduct extensive experiments on three benchmark datasets in various
tasks. The results demonstrate that Mutual Information Dropout is much more efficient
than many Dropout ways and can achieve improving the generalization ability.

The contributions of this paper are summarized as follows:

• We propose a Dropout based on dropping neurons with low mutual information. And
we discussed the feasibility of applying mutual information to Dropout.

• We propose a method to explore the performance of neural networks and demonstrate
this idea in experiments.

• Extensive experiments on three datasets show that Mutual Information Dropout
is much more efficient than many Dropout ways and can achieve competitive
performance.

• In addition, we found that the method always outperformed the original model and
that the improvement was greater on difficult datasets.

2 Related Work

2.1 Dropout

The technique of dropout was first introduced by Hinton et al. (2012) as a form of reg-
ularization. Its purpose is to prevent overfitting during training by randomly setting a
subset of neurons in a neural network to zero, thereby dropping them out. This compels
the remaining neurons to learn more resilient and diverse representations as they have
to handle the input data without the support of the dropped-out neurons. Dropout has
been demonstrated to be highly effective in enhancing the generalization performance
of neural networks across a broad spectrum of applications, including image classifica-
tion, natural language processing, and speech recognition. A range of extensions and
variations of dropout has been proposed, such as Drop Connect [9] and Spatial Dropout
[4], which implement the dropout technique on different segments of the network. It is
desirable to maintain low redundancy in the content.

2.2 Mutual Information

Mutual information is a crucial concept within information theory, as it quantifies the
degree of information that two random variables share. Recently, mutual information
has emerged as a potent tool for unsupervised and semi-supervised representation learn-
ing. One popular approach involves using mutual information as an objective function
for training generative models, such as variational autoencoders (VAEs) and adversarial
autoencoders (AAEs). By maximizing the mutual information between the input and
latent variables, these models are encouraged to learn a compact and informative repre-
sentation of the input data. In addition, mutual information has also found applications in
feature selection and learning for supervised learning settings. For instance, the MICNN
[10] method proposes maximizing the mutual information between the input and output
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of a neural network [11] to enable the network to learn discriminative features relevant to
the target task. [12]Mutual information has also been widely used in other domains [13],
including convolutional neural networks and signal processing. [14]Overall, minimizing
the level of redundancy in content is desirable. [15].

2.3 Mutual Information and Dropout

Several recent studies have explored the use of mutual information (MI) in Dropout
to automate the selection of the dropout rate. For example, Louizos et al. proposed
the “Probabilistic Dropout” method [16], which uses the MI between the output and
the weights of the network to dynamically adjust the dropout rate during training. The
method was shown to improve the performance of deep learning models on various
benchmark datasets, while reducing the need for manual tuning of the dropout rate. Sim-
ilarly, Sun et al. proposed a method called “Info-Drop” [17] that uses theMI between the
activations of the network layers and the output to adjust the dropout rate. The method
was shown to outperform standardDropout and other state-of-the-art regularization tech-
niques on several benchmark datasets, including CIFAR-10, CIFAR-100, and SVHN.
Moreover, Zhou et al. proposed a method called “ML-Dropout,” [18] which uses the MI
between the output and the weights to determine the optimal dropout rate for each layer
of the network. The method was shown to improve the performance of deep learning
models on several benchmark datasets, including MNIST, CIFAR-10, and ImageNet.

3 Mutual Information Dropout

In this section, we introduce our Mutual Information Dropout approach based on drop-
ping neurons with low mutual information. The architecture of Mutual Information
Dropout is shown in Fig. 1. It first uses mutual information to evaluate the usefulness
of neurons, next set an appropriate mutual information threshold, and finally perform
neuron dropout on those neurons that fall below a certain threshold. In this way, the test
performance of the recompiled model was significantly better than that of the previously
trained model and have effective generalization ability. Next, we introduce the details
of Mutual Information Dropout in the following section.

Fig. 1. The architecture of Mutual Information Dropout.
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3.1 Architecture

Our neural network consists of fully connected layers, denoted as Lj. A vector X of size
N is the input to the network and a vector y of size M is the output. The first layer L1
has K1 neurons, the second layer L2 has K2 neurons, and the j layer Lj has Kj neurons.
The output of the neuron that number of i in layer Lj is denoted as aij, where j = 1,
2…Lj and i = 1, 2… Kj. During training the fully connected network, we use a labeled
dataset D = {(x1, y1), (x2, y2)…(xn, yn)}, where N is the size of the dataset. We use
mutual information function to measure the difference between the predicted output and
the true label. Specifically, the loss function for a single (xi, yi) is given by:

L (xi,yi) = −log
(
SoftMax(f (xi))yi

)
(1)

where f (xi) is the output of the final layer of the neural network, SoftMax is the SoftMax
function, and yi is the true label of the input xi. . To optimize the loss function, we use the
stochastic gradient descent (SGD) algorithm with a fixed learning rate. After training,
we obtain the output of each layer for each input in the dataset.

Next, we aim to remove the neurons whose output is less relevant to the true label.
To quantify the relevance, we use the concept of mutual information (MI). MI measures
the amount of information that one random variable (in this case, the output of a neuron)
contains about another random variable (in this case, the true label). For a given neuron
i in layer Lj, we calculate the MI between its output aij and the true label yi as follows:

MI
(
aij,yi

) = H
(
aij

) − H
(
aij

∣∣yi
)

(2)

where H (aij) is the entropy of aij, and H (aij|yi) is the conditional entropy of aij given yi.
We calculate the average MI for all neurons in each layer as follows where j = 1, 2, 3:

MIavg(j) = 1

kj

∑kj

i = 1
MI(aji,y) (3)

Finally, we select a suitable MI threshold t such that all neurons with MI(aij, y) <
t are pruned. We empirically determine the value of t by evaluating the performance
of the pruned network on a validation set. Specifically, we start with a high value of
t (e.g. 2.0) and gradually decrease it until the performance on the validation set drops
significantly. After pruning, we obtain a new network with fewer neurons. To retrain
the pruned network, we use the same dataset D and the same optimization algorithm as
before. However, since the network has fewer parameters, we may need to adjust the
learning rate or the number of epochs to achieve optimal performance.

Additional explanation: We utilize statistical methods to determine the threshold
(such as histogram analysis, quartile analysis, maximum likelihood estimation, etc.). The
choice of the method for determining the threshold depends on the specific application
scenario.

We describe the process of constructing the Mutual Information Dropout model
using algorithmic pseudo code, including modules for compiling and training the model
withoutDropout, calculating themutual informationof neurons, andperformingDropout
operations onneurons usingmutual information.The algorithmicprocedure is as follows:
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3.2 Complexity Analysis

In this section, we analyze the computational complexity of Mutual Information Drop-
out. For the Dropout networks to discard neurons with mutual information below the
threshold, their time and memory cost are both O(N · i · j), and their total number
of additional parameters is 2ij (i is the Layer number, j is the number of neurons for
each Layer). In addition, the time cost and memory cost is also O(N · i · j), the total
complexity is O(N · i · j), which is much more efficient than the standard Dropout
with O(

∑j
j=1

∑i
i=1n

2
ij) complexity. These analysis results demonstrate the theoretical

efficiency of Mutual Information Dropout..
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4 Experiments

4.1 Datasets and Experimental Settings

We conduct extensive experiments on three benchmark datasets for different tasks. Their
details are introduced as follows.

Table 1. Statistics of image classification datasets.

Dataset Training Samples Test Samples Input Dimension

MNIST 60,000 10,000 28 × 28

CIFAR-10 50,000 10,000 32 × 32 × 3

CIFAR-100 50,000 10,000 32 × 32 × 3

The first one is MNIST [1], which is a widely used dataset for handwritten digit
recognition. The second one is CIFAR-10 [2]. It is a benchmark dataset for image clas-
sification tasks. The third one is CIFAR-100, which is a large-scale image classification
dataset, consisting of 100 classes. We perform two tasks on this dataset, i.e., the digit
recognition task based on handwritten digit dataset and image classification for limited
set of categories task based on the RGB images. The detailed statistical information of
the datasets introduced above are shown in Table 1.

Our experiments were conducted on an NVIDIA A100-SXM4-80GB machine
equipped with 80 GB memory. We repeated each experiment five times to ensure sta-
tistical validity and reported both the average performance and standard deviations. We
evaluated the classification tasks based on accuracy and loss performance metrics.

This experiment has high memory requirements for CPU. If you run the code on a
computer with a small amount of memory, it may encounter out-of-memory errors when
processing CIFAR100. Therefore, we recommend using a computer with larger memory
or adjusting the batch size (though this may result in reduced performance).

4.2 Effectiveness Comparison

First, we compare the performance of Mutual Information Dropout with many baseline
methods, including: (1) Dropout [3], the basic Dropout; (2) SpatialDropout2D [4], a
Dropout variant with image datasets; (3) Alpha Dropout [5], an extension of Dropout,
which can prevent neuron deactivation completely and maintain the mean and variance
of input values during training; (4) Gaussian Dropout [6], a Dropout variant with lower
complexity, which randomly perturbs input data instead of setting it to zero directly, it
can increase the robustness and generalization ability of the model, and is suitable for
situations where there is a small amount of noise in the input data.

The performance of these methods on the three classification datasets are compared
in Table 2. Results indicate that efficient Dropout variants may not surpass the standard
Dropout model due to different probability distributions and uniform dropout probabil-
ities across all layers, restricting the model’s potential. Mutual Information Dropout,
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Table 2. The results of different methods in the image classification tasks. Best average scores
are highlighted.

Model MNIST CIFAR-10 CIFAR-100

Accuracy Loss Accuracy Loss Accuracy Loss

Dropout 0.9694 0.0972 0.2862 1.9093 0.0474 4.2141

Alpha-Dropout 0.9008 0.3279 0.3221 1.8531 0.0370 4.3159

Gaussian-Dropout 0.9680 0.1035 0.3204 1.8731 0.0574 4.1533

MI-Dropout 0.9973 0.0091 0.5706 1.2062 0.3124 2.7232

however, can achieve better performance than other efficient Dropout variants because it
evaluates the mutual information between a neuron’s output and the true output, leading
to the removal of low mutual information neurons and improved generalization ability.
MI-Dropout outperforms other methods in most metrics, highlighting its advantage in
image classification.

4.3 Why is MI-Dropout Effective?

Based on experimental results on three datasets, Mutual Information Dropout consis-
tently exhibits excellent performance. Recent research on the application of Mutual
Information to evaluate the performance and interpretability of neural network models
suggests that:

Mutual Information can accurately assess the generalization ability of neurons.
Figure 2 shows that for datasets that are difficult to learn to generalize, the number
of neurons with Mutual Information below the threshold significantly increases. This
indicates that as the generalization ability of the neural network decreases, so does the
Mutual Information.

The evolution of Mutual Information conforms to the learning principles of neural
networks. The average Mutual Information of deep neural networks is often higher
than that of shallow neural networks, which is consistent with the observation that
deep networks often have better generalization ability than shallow networks. Therefore,
Mutual Information can effectively evaluate the generalization ability of neural networks.

Since Mutual Information can effectively assess the generalization ability of neural
networks, pruning neurons with Mutual Information below the threshold can effectively
improve the model’s generalization ability [7] and reduce its complexity [8].

To validate the effectiveness of our proposed MI-Dropout in improving generaliza-
tion performance, we compiled the model after applying MI-Dropout and trained the
recompiled model under the same environment and parameters. We calculated the aver-
age MI for each layer of the recompiled model and compared it with the average MI for
each layer of the model without MI-Dropout in three different datasets. The results are
shown in Fig. 3.

Note that the Mutual Information baseline of the two graphs is different. TheMutual
Information baseline of the model without MI-Dropout on the left is 0.2, while the
Mutual Information baseline of the model after MI-Dropout on the right is 0.3.
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Fig. 2. The result of Mutual Information Dropout.

Fig. 3. Comparison of Mutual Information before and after MI-Dropout Operation.

From Fig. 3, it can be observed that the average Mutual Information for each layer
of the model after MI-Dropout operation and retraining has increased, especially in the
middle layers. This phenomenon is interesting because it not only indicates that the
MI-Dropout operation itself discards neurons with lower generalization ability, but also
suggests that the retained neurons continue to improve their generalization ability during
training. Therefore, MI-Dropout operation can be performed after pre-training in large
models, which can effectively improve the generalization ability of themodel and reduce
training costs.



Mutual Information Dropout: Mutual Information 99

The reason for this phenomenon is that the middle layer is a crucial layer for learn-
ing and generalization in neural network models. Therefore, the MI-Dropout operation
effectively enhances the learning ability of the middle layer, resulting in a significant
increase in the average performance of the middle layer. This also effectively improves
the generalization ability of the neural network model.

4.4 Comparison with Other MI-Based Dropout Methods

According to our investigation of recent papers on MI-based Dropout variants, the cur-
rently popular methods include Probabilistic Dropout, Info-Drop, and ML-Dropout. To
test the performance gap between our proposed MI-Dropout and these methods, we
conducted two experiments: one using neural network models with MI Dropout variants
and the other using neural network models with MI-Dropout. The experiments were
conducted in a different environment (V100-32GB) and with an increased batch size.
The average results were computed over five runs.

The experimental results, shown in Fig. 4, clearly demonstrate that our proposed
MI-Dropout outperforms Probabilistic Dropout, Info-Drop, and ML-Dropout from the
second epoch onwards. Specifically, MI-Dropout exhibits faster accuracy improvement
and more stable accuracy increase without overfitting in the later stages.

Fig. 4. Comparison between MI-based Dropout and MI-Dropout.

Figure 4 shows the comparison of results between the model without Dropout and
the model with Dropout based on MI (Mutual Information) in the left panel, and the
comparison between the MI-Dropout and the model with Dropout based on MI in the
right panel.

5 Conclusion and Future Work

In this paper, we proposeMutual Information Dropout, which is a Dropout variant based
on dropping neurons with low mutual information that can achieve effective generaliza-
tion ability. In Mutual Information Dropout, we use mutual information to evaluate the
usefulness of neurons. Next, set an appropriatemutual information threshold. Finally, we



100 Z. Song and S. Ma

perform neuron dropout on those neurons that fall below a certain threshold. Extensive
experiments on three benchmark datasets show thatMutual InformationDropout ismuch
more efficient than many Dropout ways and can achieve improving the generalization
ability.

In our future work, we plan to explore the combination of mutual information with
other regularization techniques to further improve model performance by applying the
mutual information between the normalized output of the batch normalization layer in
neural networks and the normalized ground truth.Additionally, developingmore efficient
and scalable methods for estimating mutual information is also a crucial future direc-
tion, as current estimation methods can be computationally expensive and require large
amounts of data. These improvements would make mutual information more accessible
for use in a wider range of applications.
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Abstract. Instance-level correlation and cluster-level discrepancy of
data are two crucial aspects of short text clustering. Current deep clus-
tering methods, however, suffer from inaccurate estimation of either
instance-level correlation or cluster-level discrepancy of data and strongly
relay on the quality of the initial text representation. In this paper,
we propose a Non-outlier Pseudo-labeling-based Short Text Clustering
(NPLC) method, which consists of two parts. In the first part, we use
Mask Language Model (MLM) to pre-train the feature model on a given
dataset to enhance the initial text representation. The second part based
on non-outlier pseudo-labeling is a joint training in which we first cluster
the dataset and select cluster labels of outlier-free data in each cluster as
pseudo labels for the next joint training based on a novel framework. The
novel framework makes use of a contrastive loss to gain excellent inter-
cluster separation by minimizing similarity between outlier-free and out-
lier data and a clustering loss to narrow intra-cluster distances by maxi-
mizing similarity among outlier-free data. Extensive experimental results
demonstrate that NPLC achieves significant improvements over existing
methods and advances the state-of-the-art results on most benchmark
datasets with 1%–12% improvement on Accuracy and 1%–6% improve-
ment on Normalized Mutual Information.

Keywords: Short text clustering · Deep clustering · Text
representation · Outlier-free data

1 Introduction

Short text clustering (STC), as a essential task in unsupervised learning, aims
to group short texts into different clusters without any label information. With
the popularity of social media, short texts, like tweets, search inquiries, online
reviews, etc., have increased significantly and rapidly [1]. Therefore, organizing
these short texts (e.g., grouping them by event or topic) is an important step
for many data mining tasks, such as data summarization [11], public opinion
analysis [7] and event detection [10].

However, owing to high sparsity, high noise and high dimensionality of short
texts, shallow clustering methods, relying on distance measured in the data
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14262, pp. 102–113, 2023.
https://doi.org/10.1007/978-3-031-44201-8_9
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Fig. 1. TSNE visualization of the embedding space learned on StackOverflow using
SentenceBERT [14] as backbone. Each color indicates a ground truth semantic category.

space, perform poorly on short texts. To solve the problem, deep clustering
utilizes neural networks to enrich the sparse representations and gain promising
improvements [6,19]. But the clustering performance is still inadequate when
dealing with dataset with many clusters. As illustrated in Fig. 1, original text
representation based on SentenceBERT [14] has poor purity and significant over-
lap across categories. After pre-trained by Mask Language Model (MLM) [4],
text representation purity could get improved to some extent, but overlap across
categories still needs to be further improved.

On the other hand, instance-wise contrastive learning (Instance-CL) has
recently become prominent in self-supervised learning [19], which can make sam-
ples distribution scattered and alleviate data overlap (see Fig. 1(c)). The basic
idea is to pull positive pairs augmented from the same original instance close
while pushing negative pairs apart as long as they are from different original
instances. Based on Instance-CL, SCCL [19] gains excellent clustering perfor-
mance over earlier works. However, its intrinsic false-negative pairs whose origi-
nal instances are in the same semantic cluster make Instance-CL less stable and
more data-dependent.

To address the above problems, we propose a Non-outlier Pseudo-labeling-
based Short Text Clustering, referred to as NPLC1 Our main contributions are as
follows: (a) We find pre-training the feature model over MLM could help greatly
enhance the quality of initial short text representation for short text clustering,
especially performing better on our framework. (b) We introduce outlier-free
pseudo labels to help generate higher-quality negative pairs for self-supervised
learning compared with [19]. (c) In our novel framework, self-training iterates
with soft cluster assignment over the outlier-free pseudo labels, achieving the
state-of-the-art on most of the mainstream datasets in terms of two popular
metrics.

2 Related Work

In this section, we will provide a briefly introduction to recent developments in
two related topics: self-supervised learning and short text clustering.
1 Our code is available at https://github.com/zhoufangquan/NPLC.

https://github.com/zhoufangquan/NPLC
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2.1 Self-supervised Learning

Recent years have witnessed the rapid development of self-supervised learn-
ing, which provides effective representations for many downstream tasks. Early
research concentrates on addressing various artificially designed pretext tasks
to improve the quality of text representation. For example, BERT [4] uses two
pre-training tasks: Mask Language Model and Next Sentence Prediction. Based
on BERT, SentenceBERT [14] designs a task to improve text semantic similarity
of sentence pairs which is conducted by a Siamese bert-networks.

On the other hand, Instance-CL promoted the development of self-supervised
learning and gained many successes [5,8,16]. Importantly, constructing effective
positive pairs is crucial for Instance-CL. SimCSE [5] directly utilizes the dropout
in BERT as noise to create positive pairs by encoding an instance twice, resulting
in better performance compared to SentenceBERT. The two instances of positive
pair conducted in this way have the same length, which tends to make sentences
of the same or similar length more similar in semantics. To alleviate this problem,
ESimCSE [16] applies a repetition operation to modify the input sentence, then
the two instances of positive pair have different lengths. Based on the powerful
potential of BERT, PromptBERT [8] finds prompts can provide a better way to
generate positive pairs by different viewpoints from different templates.

2.2 Short Text Clustering

As we mentioned before, short texts often lack context and can be ambigu-
ous, making it difficult to identify their meanings and relationships accurately.
Therefore, methods based on BoW and TF-IDF often add external knowledge
resources to enrich the very sparse representation vectors that lack expressive
ability [12], and then apply K-means to gain the cluster assignment.

In addition, neural networks can be used to enrich the text representation
and clustering, where various word embeddings are used to boost performance.
STCC [17] pre-trains word embedding on a large in-domain corpus using the
Word2Vec method, then optimizes a CNN to enrich the representations further.
Self-Train [6] uses Smooth Inverse Frequency (SIF) [2] to gain the text vec-
tors, then leverages an autoencoder to pre-train the encoder by reconstructing
these vectors. Finally, the pre-trained encoder is fine-tuned by minimizing the
distance between the clustering probability distribution and an auxiliary target
distribution. SCCL [19] leverages contrastive learning to improve representation
learning and a clustering objective same as Self-Train for clustering learning. By
optimizing the contrastive loss and clustering loss jointly, SCCL achieves better
separated text representation. HAC-SD [13] proposes an iterative classification
method to enhance the effect of initial clustering.

Although SCCL and HAC-SD have achieved good results, they both strongly
rely on the initial short text representation. In this paper, before joint training,
we first leverage MLM to pre-train SentenceBERT [14] to improve the quality
of initial short text representation. Different from SCCL, we utilize the pseudo-
labels from non-outliers in each cluster to alleviate the influence of intrinsic
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Fig. 2. The pipeline of our method

false-negative pairs, which can make the grouping effect of contrastive learning
better and more stable. What’s more, our pseudo-labels are obtained from the
entire dataset, which contributes to our superior cluster performance.

3 Method

We aim to cluster a set of N short texts X = {xj}N
j=1 into K classes by train-

ing our model without using any annotations. As illustrated in Fig 2, we use
SentenceBERT as our feature model and our method consists of two parts: (1)
We first use MLM to pre-train SentenceBERT on dataset X ; (2) we utilize the
pre-trained SentenceBERT for a joint training, and the framework of this part
comprises three components: a pre-trained SentenceBERT that extracts feature
vectors from original texts and their augmentations, a cluster head that projects
feature vectors to the probabilities over K classes, and a contrastive head that
maps feature vectors to a 128-dimensional subspace. In the following subsections,
we will elaborate on the two parts in turn.

3.1 Pre-train

Though SentenceBERT is effective for short text representation, it still has prob-
lems of poor purity and significant overlap across categories when clustering a
given dataset. To this end, we use MLM to pre-train SentenceBERT and enhance
the quality of short text representation on a specified dataset. As illustrated in
Fig. 1(a) and Fig. 1(b), after pre-training, the purity of text representation on
StackOverflow is higher. Following BERT [4], we randomly mask 15% of the
input tokens, then use SentenceBERT fθ(·) to predict the original vocabulary id
of the masked word based only on the input context. When the loss value is less
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than 0.055, we stop pre-training and use the pre-trained SentenceBERT f ′
θ(·)

for the next joint training. When the loss value is about 0.055, we get the best
average results on the eight benchmark datasets.

In the following three subsections, we will give the details about framework
in the second part.

3.2 Extract Features

We select a minibatch B = {xi}M
i=1 from the whole dataset X at random,

and then generate a weak augmented minibatch Bw = {xw
i }M

i=1 and a strong
augmented minibatch Bs = {xs

i }M
i=1, where M is batch size. In Sect. 4.2, we

will detail how to generate the two augmentations. The aforementioned pre-
trained SentenceBERT f ′

θ(·) is used to extract features from B, Bw and Bs by
hi = f ′

θ(xi), hw
i = f ′

θ(x
w
i ) and hs

i = f ′
θ(x

s
i ).

As we don’t have ground truth labels to train the clustering head and help the
contrastive head to alleviate the influence of false-negative pairs, we introduce
a non-outlier pseudo-labeling algorithm to generate pseudo labels to solve the
two problems. Specifically, we get cluster labels Y ′ = {y′

j}N
j=1 by clustering X

into K clusters. Then we apply an outlier detection algorithm called Isolation
Forest [3] to select outliers in each cluster and set their cluster labels to -1. We
use the cluster labels as pseudo labels to help train the two heads. It is worth
noting that as the training goes on, we will update the pseudo labels every 50
mini-batches.

3.3 Compute Clustering Loss with Non-Outlier Pseudo-Labeling

The Clustering head includes a two-layer nonlinear MLP gC(·), which maps
feature vector hi into a K-dimension vector pi. The k-th element of pi, pi[k],
represents the probability of belonging to the k-th cluster. Formally, given the
feature matrix H = {hi}M

i=1, we use clustering head to project it into probability
matrix P = {pi}M

i=1 ∈ R
M×K via pi = gC(hi). We aim to train the clustering

head only for predicting the cluster labels.
Based on the pseudo labels Y ′ of X , we optimize the parameters of pre-trained

SentenceBERT and clustering head by the following weighted cross-entropy loss
function:

L1 = − 1
|S|

∑

i∈S

wy′
i
log

(
exp(pi[y′

i])∑K−1
k=0 exp(pi[k])

)
(1)

where S ≡ {i|y′
i �= −1, xi ∈ B} is the index set of non-outliers in B, and wk ∝

1/Nk is the weight parameter for cluster k whose size is Nk and can prevent
large clusters from distorting the hidden feature space.

3.4 Compute Contrastive Loss with Non-Outlier Pseudo-Labeling

The objective of contrastive head is to maximize the similarities of positive
pairs and minimize negative pairs. To improve the quality of negative pairs, we
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Algorithm 1 . Non-outlier Pseudo-Labeling for Short Text Clustering
Input: dataset X , cluster number K, SentenceBERT fθ(·), contrastive head gI(·),

cluster head gC(·), batch size M , temperature parameter τ , iteration number L.
Output: cluster assignments
1: // pre-training part
2: pre-training fθ(·) on X by MLM until loss value is less than 0.055
3: get pre-trained SentenceBERT f ′

θ(·)
4: // training part
5: compute pseudo labels Y ′ with pre-trained SentenceBERT f ′

θ(·)
6: for l = 1 → L do
7: randomly select a mini-batch B from X
8: get two augmentations Bw and Bs

9: extract feature vectors H, Hw, Hs

10: compute clustering loss L1 and contrastive loss L2 by Eq.(1) and Eq.(3)
11: compute total loss L by Eq.(4) and Eq.5
12: update fθ

′, gI , gC by minimizing L
13: if l mod 50 == 0 then
14: update pseudo labels Y ′ with current SentenceBERT f ′

θ(·)
15: end if
16: end for
17: // test part
18: for x in X do
19: extract features through h = fθ

′(x)
20: compute cluster assignment through c = arg maxk(gC(h))
21: end for
22: return C = {ci}N

i=1

use aforementioned pseudo labels Y ′ to alleviate the influence of intrinsic false-
negative pairs. Formally, the contrastive head is also a two-layer nonlinear MLP
gI(·), which projects feature vectors hw

i and hs
i into 128-dimension vectors zw

i

and zs
i via zw,s

i = gI(x
w,s
i ). We then minimize the following for xw

i ,

lwi = − log
es(zw

i ,zs
i )/τ

∑
j∈Ni

(es(zw
i ,zw

j )/τ + es(zw
i ,zs

j )/τ ) + es(zw
i ,zs

i )/τ
(2)

Here Ni ≡ {j|xw
j ∈ Bw, y′

i �= y′
j or y′

j = −1} is the index set that does not
belong to the same cluster as xi, s(z1, z2) = z�

1 z2/||z1||2||z2||2 is a dot product
between a pair of normalized outputs and τ is the temperature parameter which
is set as 0.5. The computation method of lsi is similar to that of lwi .

The contrastive loss is averaged over all insrances in Bw and Bs,

L2 =
1

2M

M∑

i=1

(lwi + lsi ) (3)

We use a adjustment function λ to dynamically adjust the weight of con-
trastive loss L2. In summary, the overall objective loss function is,

L = L1 + λL2 (4)
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where the adjustment function is a monotonic decreasing function with a value
interval of [5, 15], namely,

λ(l) = 10 + 5 cos (
l

L
π), l ∈ [0, L] (5)

where l is the current iteration number and L is the expected total iteration
number.

The total process is summarized in Algorithm 1.

4 Experiments

4.1 Datasets and Evaluation Metrics

We evaluate the effectiveness of NPLC method on eight widely-used datasets
for clustering short texts. The left part of Table 1 shows a summary of the main
statistics for all 8 datasets. AgNews is a subset of news titles [20], which contains
4 topics selected by [13]. StackOverflow is a collection of posts from question and
answer site stackoverflow, published by Kaggle. This subset contains question
titles from 20 different categories are selected by [17]. SearchSnippets is a text
collection comprising web search snippets whose texts represent sets of keywords,
rather than being coherent texts. Biomedical is a subset of the PubMed data
distributed by BioASQ, which contains many special terms from biology and
medicine [17]. The GoogleNewsTS, GoogleNewsT, GoogleNewsS and Tweet sets
were exactly those datasets which are used in [18]. The first four datasets contain
relatively low cluster counts ranging from 4 to 20, while the last four datasets
have greater cluster counts ranging from 89 to 152.

Table 1. The left part is a summary of datasets used for evaluations (N: sample count;
Len: average word count per sample; K: cluster count; L: the largest cluster; S: the
smallest cluster). The right part are results of pre-trained SentenceBERT evaluated
with two clustering algorithms: K-means and HAC.

Dataset Documents Clusters K-means HAC

N Len K L S ACC NMI ACC NMI

AgNews 8000 23 4 2K 2K 80.6 57.8 75.1 50.2

StackOverflow 20000 8 20 1K 1K 79.8 75.3 65.2 63.8

Biomedical 20000 13 20 1K 1K 45.2 39.3 38.9 33.2

SearchSnippets 12340 18 8 2.66K 0.37K 75.1 60.2 60.9 56.5

GooglenewsTS 11109 28 152 430 3 65.5 84.5 83.5 92.8

GooglenewsS 11109 22 152 430 3 64.0 81.4 79.3 90.1

GooglenewsT 11109 6 152 430 3 62.9 75.9 77.5 89.3

Tweet 2472 8 89 249 1 56.4 82.1 82.0 91.3

Following the previous works [6,17,19], two widely-used clustering metrics
Accuracy (ACC) and Normalized Mutual Information (NMI) are adopt to eval-
uate our method.

https://www.kaggle.com/c/predict-closed-questions-on-stackoverflow/download/train.zip
http://participants-area.bioasq.org
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4.2 Implementation Details

For pre-training, we choose distilbert-base-nli-stsb-mean-tokens in Sentence-
BERT library [14] as feature model and use MLM to pre-train it on the target
dataset.

For generating pseudo labels, compared with Hierarchical Agglomerative
Clustering (HAC), K-means exhibits better clustering performance in terms of
the former four datasets with fewer clusters, while HAC outperforms K-means
in terms of the latter four datasets with more clusters (see the right part of
Table 1).

For the joint training, we use the pre-trained SentenceBERT as the backbone,
followed by two heads which are both two-layer nonlinear MLPs. One is the
clustering head with one hidden layer of size 768, and output vectors of size
K, where K is predefined as the class count on the target dataset as shown in
Table 1; the other one is contrastive head with one hidden layer of size 768, and
output vectors of size 128. The learning rate of the feature extractor is 5e-6, and
that of two heads are 5e–4. We set the batch size to 800, the total number of
iterations to 1000, the temperature parameter τ = 0.5.

For augmented data, following the SCCL setting [19], we perform weak aug-
mentation by randomly substituting 20% of the words in each text with their
top-N appropriate words obtained from the pre-trained Roberta model in the
Contextual Augmenter Library [9]; we employ four strong augmentation opera-
tions proposed by EDA [15] with a probability of 0.2 each, namely SynonymRe-
placement, RandomInsertion, RandomSwap, and RandomDeletion.

4.3 Results

We evaluate the proposed NPLC on 8 challenging short text datasets and com-
pare it with 6 representative state-of-the-art clustering approaches, including
Bow, TF-IDF, STCC [17], Self-Train [6], HAC-SD [13], SCCL [19]. Following
the SCCL [19], we do not apply any pre-processing procedures on any of the
8 datasets either. However, STCC [17] & Self-Train [6] preprocessed Biomedi-
cal dataset and HAC-SD [13] preprocessed all 8 datasets by removing the stop
words, punctuation, and converting the text to lower case.

The clustering results on 8 datasets shown in Table 2 demonstrate the promis-
ing performance of NPLC. It is worth noting that our method outperforms all
baselines by a large margin on StackOverflow and performs best on the last
four datasets in terms of NMI. Due to pre-training word embeddings on a large
in-domain biomedical corpus, Self-Train [6] outperforms our method on Biomed-
ical. SCCL [19] or HAC-SD [13] show better Accuracy on Tweet and GoogleNews
than our method, for which we hypothesize three reasons: 1) both Tweet and
GoogleNews have fewer training samples and more clusters, while contrastive
learning requires a large training samples to guarantee its performance; 2) clus-
ter head exhibits performance degradation when the cluster count is large; 3)
due to applying agglomerative cluster on carefully selected pairwise similarities
of preprocessed data, HAC-SD [13] can achieve better performance when text
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Table 2. Clustering results for 8 short text datasets. Performance results are averaged
over 5 random runs.

AgNews StackOverflow Biomedical SearchSnippets

ACC NMI ACC NMI ACC NMI ACC NMI

Bow 27.6 2.6 18.5 14.0 14.3 9.2 24.3 9.3

TF-IDF 34.5 11.9 58.4 58.7 28.3 23.2 31.5 19.2

STCC – – 51.1 49.0 43.6 38.1 77.0 63.2

Self-Train – – 59.8 54.8 54.8 47.1 77.1 56.7

HAC-SD 81.8 54.6 64.8 59.5 40.1 33.5 82.7 63.8

SCCL 88.2 68.2 75.5 74.5 46.2 41.5 85.2 71.1

NPLC 88.7 68.5 88.1 80.9 48.9 42.6 85.4 69.0

GooglenewsTS GooglenewsT GooglenewsS Tweet

ACC NMI ACC NMI ACC NMI ACC NMI

Bow 57.5 81.9 49.8 73.2 49.0 73.5 49.7 73.6

TF-IDF 68.0 88.9 58.9 79.3 61.9 83.0 57.0 80.7

STCC – – – – – – – –

Self-Train – – – – – – – –

HAC-SD 85.8 88.0 81.8 84.2 80.6 83.5 89.6 85.2

SCCL 89.8 94.9 75.2 88.3 83.1 90.4 78.2 89.2

NPLC 87.5 95.5 78.3 90.8 82.3 91.8 89.4 93.5

instances are very short and few. SCCL [19] performs better NMI than NPLC
on SearchSnippets, for which we hypothesize that texts in SearchSnippets are
incoherent, thus the pre-training strategy do not perform as well as expected.

We track the inter-cluster distance and inter-cluster distance evaluated in the
feature space in the process of joint training. As shown in Fig. 3, with the progress
of training, inter-cluster distance is getting bigger and bigger and intra-cluster
distance is getting smaller and smaller as a whole. The contrastive loss domi-

Fig. 3. Cluster-level evaluation on StackOverflow
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nates in early training phase and samples are initially scattered in the feature
space, hence the initial intra-cluster distance is big. Later, as training progresses,
the training focus on clustering loss and the outlier-free samples are gradually
clustered together.

4.4 Ablation Study

In this subsection, we conduct two ablation experiments to better validate our
method.

Effectiveness of the Pre-training Strategy: To verify the effectiveness of
pre-training strategy on NPLC and SCCL, we apply the pre-trained Sentence-
BERT to SCCL [19], and conduct our NPLC without pre-training on StackOver-
flow, Tweet and Biomedical. As shown in Table 3, our NPLC and SCCL [19]
both perform better on ACC and NMI after using pre-trained SentenceBERT.
Moreover, our method can gain a greater margin for improvement based on
pre-trained SentenceBERT. After using pre-trained SentenceBERT, our method
achieves a maximum improvement of 12.9% (8.6%) on ACC (NMI), surpassing
the maximum improvement of 10.1% (2.3%) achieved by SCCL.

Table 3. Effectiveness of the pre-training strategy. “SCCL+” refers to results by repre-
ducting SCCL with pre-trained SentenceBERT. “NPLC−” refers to results by conduct-
ing our NPLC without pre-trained SentenceBERT.

StackOverflow Tweet Biomedical

ACC NMI ACC NMI ACC NMI

SCCL 75.5 74.5 78.2 89.2 46.2 41.5

SCCL+ 85.6 (+10.1) 76.6 (+2.1) 83.1 (+4.9) 91.5 (+2.3) 47.7 (+1.5) 42.0 (+0.5)

NPLC− 75.2 74.1 77.6 88.3 40.3 39.9

NPLC 88.1 (+12.9) 80.9 (+6.8) 89.4 (+11.8) 93.5 (+5.2) 48.9 (+8.6) 42.6 (+2.7)

Effectiveness of Joint Training and Pseudo Labels: To verify the effective-
ness of joint training, we evaluate NPLC on StackOverflow, Tweet and Biomed-
ical against its fixed weight version, which fixes the weights of contrastive loss
during joint training and its sequential version where we first train the con-
trastive head well and then train the other clustering head. For all three ver-
sions, we evaluate contrastive loss L2 against the loss where L2 doesn’t leverage
pseudo labels to filter out potential false-negative pairs, i.e. substituting Ni in
Eq. (2) with N′

i ≡ {j|xw
j ∈ Bw, i �= j}. As shown in Table 4, the performance of

clustering is improved after using pseudo labels to relieve the influence of intrin-
sic false-negative pairs. L1 + λL2 outperforms its fixed weight version (L1 + L2)
and sequential version (seq(L2, L1)) on both Ni and N′

i. We make two conjec-
tures for our success: a) the two loss functions in NPLC could keep mutually
promoting each other as the training goes on; b) by gradually decreasing the
weight of contrastive loss, the focus of training shifts to clustering loss so that
outlier-free samples gradually become closer.
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Table 4. Effectiveness of joint training and pseudo labels

pseudo labels Training model Tweet StackOverflow Biomedical

ACC NMI ACC NMI ACC NMI

N′
i seq(L2, L1) 80.5 90.2 81.5 75.9 45.1 38.9

L1 + L2 83.9 91.6 84.9 77.1 45.9 39.1

L1 + λL2 86.3 92.4 86.3 78.4 46.3 40.4

Ni seq(L2, L1) 81.4 91.2 83.6 76.8 45.8 39.8

L1 + L2 86.9 92.6 86.9 79.1 47.1 41.1

L1 + λL2 89.4 93.5 88.1 80.9 48.9 42.6

5 Conclusion

In this paper, we propose a method named NPLC, which leverages MLM to
enhance the quality of initial text representation and introduce outlier-free
pseudo labels to combine contrastive loss with clustering loss to learn instance-
level correlation and cluster-level discrepancy of data. We evaluate our method
on eight short text clustering datasets and achieved comparable results than
state-of-the-art methods. In addition, we conduct two ablation experiments to
verify the validity of our method. The first ablation experiment demonstrates
that the pre-training strategy effectively improves clustering performance and
can also work well in combination with other methods. The second ablation
experiment demonstrates that filtering out potential false-negative pairs based
on non-outlier pseudo labels can alleviate the influence of intrinsic false-negative
pairs in contrastive loss. In the future, we will conduct more tests on clustering
wild datasets from social media, making NPLC more practical.
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Abstract. Graph node embedding learning has gained significant atten-
tion with the advancement of graph neural networks (GNNs). The essen-
tial purpose of graph node embedding is down-scaling high-dimensional
graph features to a lower-dimensional space while maximizing the reten-
tion of original structural information. This paper focuses on select-
ing the appropriate graph node embedding dimension for hidden layers,
ensuring the effective representation of node information and preventing
overfitting. We propose an algorithm based on the entropy minimiza-
tion principle, called Minimum Overall Entropy (MOE), which combines
graph node structural information and attribute information. We refer
to one-dimensional and multi-dimensional structural entropy (MDSE) as
a graph’s structural entropy. A novel algorithm combines graph Shannon
entropy, MDSE, and prior knowledge for faster convergence of optimal
MDSE. We introduce an inner product-based metric, attribute entropy,
to quantify node characteristics and simplify its calculation. Extensive
experiments on Cora, Citeseer, and Pubmed datasets reveal that MOE,
requiring just one computation round, surpasses baseline GNNs.

Keywords: Graph Neural Networks (GNNs) · Graph node embedding
dimension · Structural entropy

1 Introduction

GNNs are a practical approach for learning graph representation, replacing net-
work embeddings in graph ML [14]. GNNs have been successful in CV and NLP
[34] but can lose graph structure information due to dimensionality reduction.
Graph embedding algorithms, developed to address these challenges, map high-
dimensional graph data to low-dimensional vectors while preserving structural
information and features [15,36]. Graph embedding allows efficient integration of
graph data into machine learning algorithms. The main challenges include select-
ing appropriate distance metrics and node properties, scalability, and determining
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Fig. 1. The Minimum Overall Entropy (MOE) framework applies the principle of
entropy reduction to determine optimal node embedding dimension (ONED). It estab-
lishes a connection between structural entropy, attribute entropy. MOE efficiently
preserves a significant amount of graph’s information while selecting an appropriate
embedding dimension.

optimal embedding dimension. Over the past decade, embedding algorithms have
evolved into three categories: (1) decomposition-based methods like HOPE [18],
(2) random walk-based methods such as node2vec [8], and (3) deep learning-based
methods including GCN [7,12]. Finding the optimal dimensionality is challeng-
ing as higher dimension improve accuracy but increase complexity, while lower
dimension reduce complexity but sacrifice essential information. In this paper,
we propose a novel method inspired by multi-dimensional structural information
metric for graphs [13] and paired inner products for word embedding dimension
[38]. We define the graph’s overall entropy and relate it to structural entropy
(including one-dimensional structural entropy (ODSE), multi-dimensional struc-
tural entropy (MDSE)) and attribute entropy. To tackle large graph MDSE com-
putation, we propose a new algorithm and demonstrate its feasibility. We intro-
duce the Informap-based PK approach, using prior knowledge (PK) [24] to reduce
MDSE time complexity. Our approach utilizes attribute entropy from node pair
inner products for computing graph features and introduces a simplified calcula-
tion method for computational efficiency. We also develop a new algorithm, MOE,
following the entropy minimization principle to determine ONED. The algorithm
flowchart is depicted in Fig. 1. The contributions of our paper are as follows:

1. We present a minimum entropy-based algorithm for ONED and preserving
essential information by analyzing graph features, structural and attribute
information.

2. We create and validate a PK-based algorithm to reduce MDSE time com-
plexity for large graphs.

3. We suggest attribute entropy to measure graph node characteristics, utiliz-
ing node pair inner products to determine ONED. Our streamlined method
significantly lowers time complexity.
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4. We conduct extensive experiments on GNNs and benchmark datasets, evalu-
ating MOE’s generality and efficiency in downstream tasks like link prediction
(LP) and node classification (NC).

The paper is structured as follows: Sect. 2 reviews related work on optimal
embedding dimension selection and structural information. Section 3 describes
MOE. Section 4 evaluates the MOE’s generality and effectiveness through exper-
iments. Section 5 concludes this paper.

2 Related Work

In this section, we provide a review of previous studies on optimal embedding
dimension selection and the development of structural information theory.

Selecting an appropriate embedding dimension is critical for accurately cap-
turing semantic and structural relationships in entity geometry, which signifi-
cantly impacts the performance of downstream deep learning tasks [20,31]. Typ-
ically, default dimensional parameters (e.g., 100, 200, 300) are chosen for word
embeddings to balance model performance and parameter count due to limited
semantic space variation [9,11,19]. Yin et al. [38] compared embeddings of differ-
ent dimension using a loss function based on the pairwise inner product between
entities. However, complex and variable graph data structures necessitate adjust-
ing dimensional parameters for different graphs. Graph embedding techniques
map nodes to vectors by capturing a graph’s structural information [8,10,12,21].
GNNs are popular for graph-based tasks such as LP and NC due to their robust
representation capabilities [33,34]. To minimize noise and redundancy, previ-
ous studies have focused on dimensionality reduction [15,16,30,35,40]. However,
these methods may not accurately capture a graph’s structure, leading to infor-
mation loss [28]. GNNs often select hyperparameters based on downstream task
performance rather than the relationship between embedding dimension and
graph links, even though the total information in graph data may not be rele-
vant to the task.

Quantifying structural information has been a significant challenge in com-
puter and information science for over half a century, originating from Shannon’s
1953 proposal [29], and is considered one of the three main challenges in these
fields [3]. Early attempts include Rashevsky’s graph entropy [22], and Bonchev
and Trinajsti’s distance-based graph entropy measure, with varying results due
to different distance calculation methods [2]. Raychaudhury et al. developed
the first local graph entropy measure based on vertex complexity [23]. Bianconi
et al. employed an exponential function based on Shannon entropy to capture
the relationship between network structure and node semantics [1]. Choi and
Szpankowski defined structural entropy for network models [5], and Li and Pan
introduced structural information measure and the MDSE method for detect-
ing complexity in fundamental structures and dynamic networks [13]. Yi et al.
proposed a graph-based dimensionality reduction framework for graph optimiza-
tion and low-dimensional feature extraction [37], while Fang et al. developed an
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entropy-driven graph embedding method using two heuristics to determine ran-
dom walk length and walks per node [6].

3 MOE

Shannon defined the information entropy of a probability distribution p =
(p1, p2, ...pn) as: H(p1, p2, ...pn) = −∑n

i pi log pi. This formula measures the
uncertainty or randomness of a probability distribution p = (p1, p2, ...pn). Lower
entropy values indicate higher confidence in the information contained, suggest-
ing its usefulness. However, when dealing with graph data containing rich net-
work structures, relying solely on information entropy is insufficient. To address
this limitation, we propose a comprehensive entropy measure that considers both
node attributes and network structure, as defined in Definition 1 - 8 in this paper.

Definition 1. (Overall Entropy of A Graph): Given the structural entropy HS

and attribute entropy Ha of a graph, the overall entropy Ho of this graph can be
defined as Ho = βHS + Ha, where β is a hyperparameter that controls the ratio
of structural entropy for embedding dimension selection.

Structural entropy can be categorized into ODSE and MDSE, while attribute
entropy links node attributes with the ideal dimension nideal. By employing the
minimum entropy principle [39] to determine the minimum value of Ho, we can
directly compute ONED.

3.1 Structural Entropy

Structural entropy is the sum of ODSE and MDSE. ODSE quantifies the inher-
ent uncertainty in a graph, while Optimal MDSE [13] assesses the uncertainty
embedded in the graph under the optimal coding tree. The optimal coding tree
represents an abstract hierarchical mathematical model and data structure of
the graph. Its uncertainty magnitude influences the entropy of the MDSE.

Definition 2. (Structural Entropy):We define structural entropy as follows:

HS = HS1 + HSm
(1)

where HS1 , HSm
represent the ODSE and MDSE respectively.

Shannon entropy and structural entropy, although related, are distinct con-
cepts. Shannon entropy quantifies the information in a probability distribution,
while structural entropy measures the complexity of structures in real-world
systems, accounting for uncertainty and assisting in system semantics and func-
tional analysis. Therefore, structural entropy offers a more direct and meaningful
approach to quantifying information in complex systems.
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Definition 3. (One-Dimensional Structural Entropy, ODSE): The ODSE of an
undirected graph G(V,E,W ) is defined as follows:

HS1 =
n=|V |∑

i=1

f(deg(vi)/vol(G)) (2)

where vi ∈ V is the vertex of G, deg(vi) is the degree of a vertex vi, and vol(G) =
∑n=|V |

i=1 deg(vi) is the volume of G. Usually, the mathematical expression of f(∗)
is defined as f(x) = −x log2 x, where x ∈ [0, 1] and f(0) = f(1) = 0. For graph
with empty edge sets, vol(G) = 0.

The ODSE principle involves extracting a probability distribution from a
graph’s structure to measure its information. Specifically, the graph’s degree
distribution’s Shannon entropy serves as the ODSE of the graph, representing
its static information encoded in a single dimension. In contrast, the MDSE
captures the graph’s dynamic information.

Definition 4. (Multi-Dimensional Structural Entropy, MDSE). Given set P =
{V1, V2, · · · , VL} where | P |= L,

∑L
i=1 | Vi |=| V |, Vi ∈ V , ∩Vi = ∅ and ∪Vi =

V , the MDSE [13] of an undirected graph G(V,E,W ) is defined as: Hp
m(G) =

∑L
j=1[

vol(Vj)
vol(G) ∗ ∑Ni

i=1 f(deg(vi
i)/vol(Vj)) + gj

vol(Vj)
∗ f(vol(Vj)/vol(G))], where gi

is the number of edges from Vi to nodes outside of Vi.

When the starting point of a random walk is known, Hp
m(G) represents the

information conveyed by the codeword generated by the coding tree to identify
the vertex that the random walk reaches in the graph G.

Definition 5. (Optimal MDSE): The optimal MDSE of an undirected graph
G(V,E,W ) is defined as: HSm

= minP

{
HP

m(G)
}
, where P runs over all parti-

tions of G, i.e. P takes all encoding trees of G.

HSm
decodes a coding tree that minimizes uncertainty in codewords for ver-

tices visited by random walks in a graph G, thereby reducing dynamic uncer-
tainty in G. This method identifies the significant structure in G by generating
the best encoding of G with minimal uncertainty during random walks. The
resulting coding tree decodes the information stored in G, enabling the identi-
fication of regular structure, random variation, and noise. [13] found that the
optimal encoding tree of a graph G correlates with the minimum MDSE. This
is because HSm

encodes the optimal priority tree P for G, reducing uncertainty
in identifying random walks in G. P determines the substantive structure of
G, which is also the least uncertain. The ODSE and MDSE can measure the
depth of information in a graph and decode its significant structure, facilitating
semantic analysis of the graph’s structural information.
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Definition 6. (The Change of MDSE): We describe Δp
i,j as the change of

MDSE when partition Vi and partition Vj are combined into one partition.

Δp
i,j(G) =HP

m(Vi) + HP
m(Vj) − HP

m(Vi + Vj) =
vol(Vi) − gi

vol(G)
log2

vol(Vi)
vol(G)

+
vol(Vj) − gj

vol(G)
log2

vol(Vj)
vol(G)

− vol(Vij) − gij

vol(G)
log2

vol(Vij)
vol(G)

(3)

where Vi ∪Vj = Vij, gij is the number of edges from Vij to nodes outside of Vij.

Theorem 1. For nodes set Vi ∈ V and Vj ∈ V , where Vi ∩ Vj = ∅. If there is
no edge between Vi and Vj, Δp

(i,j)(G) ≤ 0 is satisfied.

Proof (Proof of Theorem 1). By definition of MDSE, for the partition P , if there
is no edge between Vi and Vj , then vol(Vi) + vol(Vj) = vol(Vij), gi + gj = gij .
To simplify the notations, we relabel vol(Vi) → Vi, and then

vol(G) · Δp
(i,j)

(G) =vol(G) · (HP
m(Vi) + HP

m(Vj) − HP
m(Vi + Vj))

=(Vi − gi) log2
Vi

vol(G)
+ (Vj − gj) log2

Vj

vol(G)
− (Vij − gij) log2

Vij

vol(G)

=(Vi − gi) log2 Vi + (Vj − gj) log2 Vj − (Vij − gij) log2 Vij

− (Vi + Vj − Vij − gi − gj + gij) log2 vol(G)

=(Vi − gi) log2(
Vi

Vi + Vj
) + (Vj − gj) log2(

Vj

Vi + Vj
) ≤ 0

Finally, Δp
(i,j)(G) ≤ 0 holds in the Theorem 1.

This work presents an algorithm for approximating the optimal partition of
a graph using the MDSE-minimized strategy, described in Algorithm 1. MMOP
consists of three steps: first, singleton Pi = vi is partitioned from V ; next,
the minimized Δp

(i,j)(G) is found for all pairs Pi, Pj until no (Pi, Pj) satis-
fies Δp

(i,j)(Pi, Pj)<0; and finally, the partition is sorted by the node order in
V . MMOP is a greedy algorithm that approximates optimal graph partitions
by dividing nodes into clusters. To improve the time efficiency of MMOP, a
Informap-based PK [24] mechanism is proposed, which partitions the graph in
advance to reduce the number of comparison operations needed by MMOP.
Section 4 demonstrates the efficiency of Informap-based PK through compara-
tive experiments with other mainstream PK-based clustering algorithms.

3.2 Attribute Entropy

We have developed a novel approach that employs inner product of node pairs
as basic unit, under the premise that embeddings of neighboring nodes are likely
to be more similar.
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Algorithm 1: MDSE-Minimized Optimal Partition (MMOP)
Input: G(V, E, W ) - The extracted structure from data points where |V | = n,

|E| = m, and W ∈ Rn×n is adjacency weights matrix.
Output: P = {P1, P2, · · · , PL} - Graph partition where Pi ∩ Pj = ∅ and

∪Pi = V .
1 {P1, P2, · · · , Pn} ← CutV ertex(V ) where Pi ∩ Pj = ∅, ∪Pi = V , and |Pi| = 1.
2 P0 ← {P1, P2, · · · , Pn}.
3 repeat
4 δmax ← 0.0, Pmin ← ∅.
5 for Pi in P0 do
6 P ′

0 ← P0 − Pi.
7 for Pj in P ′

0 do
8 ΔP

(i,j) ← ΔP
(i,j)(Pi, /Pj).//Eq. (3).

9 if ΔP
(i,j)<0 and ΔP

(i,j)<δmax then

10 δmax ← ΔP
(i,j).

11 Pmin ← Pj .

12 end

13 end
14 if Pmin �= ∅ And Pmin ∈ P ′

0 then
15 P ′

0 ← P ′
0 − Pmin.

16 P ′
0 · Insert({Pi + Pj}).

17 else
18 P ′

0 · Insert({Pi}).
19 end
20 P0 ← P ′

0.

21 end

22 until there is no (Pi, Pj) such that ΔP
(i,j)(Pi, Pj)<0;

23 P ← SortByOrder(P0).
24 return P and Optimal MDSE HSm .

Definition 7. (Probability of A Node Pair): Given a graph G = (V,E), V and
E denote graph’s node and edge set, respectively. Given a pair of correspond-
ing node embedding vi and vj, 〈∗, ∗〉 is inner product operation. We define the

probability of a node pair as: Q(vi, vj) = e〈vi,vj〉
∑

i,j e〈vi,vj〉 . It’s simple to obtain, that

0 ≤ Q(vi, vj) ≤ 1 and
∑

ij Q(vi, vj) = 1.
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Definition 8. (Attribute Entropy): Given the probability of node pairs. The
attribute entropy of graph data can be defined as follows:

Ha = −
∑

ij

Q(vi, vj) log Q(vi, vj) = −
∑

ij

e〈vi,vj〉
∑

i,j e〈vi,vj〉 log
e〈vi,vj〉

∑
i,j e〈vi,vj〉

= log
∑

i,j

e〈vi,vj〉 −
∑

ij e〈vi,vj〉〈vi, vj〉
∑

i,j e〈vi,vj〉

= log(N2 1

N2

∑

ij

e〈vi,vj〉) − N2 1
N2

∑
ij e〈vi,vj〉〈vi, vj〉

N2 1
N2

∑
ij e〈vi,vj〉

≈ log N2 + log Evi,vj (e
〈vi,vj〉) − Evi,vj (e

〈vi,vj〉 〈vi, vj〉)
Evi,vj (e

〈vi,vj〉)

(4)

where E is expectation operation, and N is the total number of nodes for graph.

Building upon [17], we have derived a mathematical expression for the cor-
relation between ONED (nideal) and inner product, presented as: x = 〈vi, vj〉 =
n ∗ cos θ. The computation of expectation is demonstrated as: E(f(θ)) =
∫ π

0
f(θ)Pn(θ)dθ, where Pn(θ) = Γ(n

2 )

Γ(n−1
2 )

√
π

sinn−2 θ. Plugging Taylor’s formula,
we get final result:

Ha = log N2 + log
∫ π

0

+∞∑

i=0

xi

i!
Pn(θ)dθ −

∫ π

0

∑+∞
i=0

xi

i! xPn(θ)dθ

log
∫ π

0

∑+∞
i=0

xi

i! Pn(θ)dθ

(5)

3.3 Algorithm of MOE

Finally, the overall entropy can be described as follows:

Ho =βHS + Ha

=β(

n=|V |∑

i=1

f(deg(vi)/ vol(G)) + HSm)+

log N2 + log

∫ π

0

+∞∑

i=0

xi

i!
Pn(θ)dθ −

∫ π

0

∑+∞
i=0

xi

i!
xPn(θ)dθ

log
∫ π

0

∑+∞
i=0

xi

i!
Pn(θ)dθ

(6)

The measure of structural uncertainty in a graph is represented by structural
entropy (HS), which can be reduced through hierarchical abstraction. Minimiz-
ing the MDSE yields the inherent structure of system components, allowing for
a deeper exploration of data space. On the other hand, attribute entropy (Ha)
quantifies the correlation between node pairs and ONED (nideal). The MOE
algorithm for solving the multi-objective optimization problem is presented in
Algorithm 2, with its time complexity discussed in Sect. 4.
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Algorithm 2: Minimum Overall Entropy (MOE)
Input: G(V, E) - The extracted structure from data points where |V | = n,

|E| = m; Hyperparameter β.
Output: The ideal node embedding dimension nideal of graph G.

1 Calculate the adjacency matrix W of the graph dataset G.
2 Calculate the ODSE HS1 ← Eq. (2).
3 Use Informap-based PK to pre-partition the graph.
4 Calculate the optimal MDSE HSm using PK information ← Algorithm 1.
5 Calculate the structural entropy HS ← Eq. (1).
6 Estimate the attribute entropy Ha ← Eq. (5).
7 Calculate the overall entropy Ho ← Eq. (6).
8 Obtain the ideal node embedding dimension nideal ← Minimum (Ho).

4 Experiments

4.1 Datasets and Baselines

This section aims to demonstrate the effectiveness of MOE on benchmark
datasets, using standard GNNs. We evaluated MOE on two types of tasks,
namely LP and NC, utilizing reputable benchmark datasets commonly used
in GNN research, such as Cora, Citeseer, and Pubmed [27].

Our evaluation encompassed popular GNNs, including GCN [12], GAT [32],
and GCNII [4], to test the generalizability and efficiency of MOE. For NC,
we adopted dataset partition outlined in Table 1. For LP, we randomly divided
the edges into training, validation, and test sets at a ratio of 85%, 5%, and
10%, respectively. To ensure a fair comparison, GNNs were set to a dimensional
interval of 64 for both tasks. All experiments utilized an early stopping strategy
on validation set, with patience of 100 epochs. The reported results are the
average of 10 runs, and unless otherwise noted, the original paper’s optimal
protocol and hyperparameters were maintained.

Table 1. Overview of benchmark datasets in GNNs. Where * denotes the optimal
dimension in our experiments.

Dataset # Nodes # Edges # Features # Classes # Training Nodes # Validation Nodes # Test Nodes *

Cora 2708 5429 1433 7 120 500 1000 91

Citeseer 3327 4732 3703 6 140 500 1000 112

Pubmed 19717 44338 4500 3 2000 500 1000 115
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Fig. 2. Performance on NC with varying β, where horizontal axis is value of β and the
number in brackets represents dimension of the last hidden layer.

Fig. 3. Performance of MOE. Where * denotes ONED calculated by MOE.

4.2 Hyper-parameters Analysis

MOE uses a single hyperparameter β, to control the weight of structural entropy.
By analyzing benchmark datasets with GCN and GAT, we found that setting
β = 4 consistently results in peak accuracy for GNNs, as shown in Fig. 2. This is
because structural entropy is a more significant factor than attribute entropy
in MOE, as it decodes the underlying structure and supports semantic and
functional analysis. For Cora, Citeseer, and Pubmed datasets, MOE computed
ONED of 91, 112, and 115, respectively, in the last hidden layer of GNNs.
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4.3 Performance Analysis

Figure 3 depicts the results of GNNs with different dimensions on benchmark
datasets for LP and NC. GNNs with an appropriate dimension selected by MOE
consistently achieve the best or near-best performance compared to other dimen-
sions, demonstrating the effectiveness and generalizability of MOE. MOE mea-
sures both structural and attribute entropy to determine ONED of each dataset,
capturing node features and link structures and leading to superior performance.

4.4 Prior Knowledge Analysis

We assess the efficiency of three clustering-based approaches for PK, specifically
MiniBatch-K-Means [26], DBSCAN [25], and Informap [24]. Figure 4 illustrates
that using PK, particularly Informap-based PK, significantly improves MMOP’s
performance and convergence speed.

Fig. 4. The MMOP state updation with or without different PK initialization.
Informap, MiniBatch-K-Means, and DBSCAN-based PK are represented as PK1, PK2,
and PK3, respectively.

4.5 Time Complexity Analysis

In Fig. 4, we observe the complexity of Informap-based PK is significantly lower
than DBSCAN-based PK, with the latter having a complexity of O(n log n),
where n represents the number of graph nodes. The time complexity of MOE pri-
marily depends on Informap-based PK (line 3 in Algorithm 2) and MMOP (line
4 in Algorithm 2), as other steps exhibit linear complexity. The time complexity
of MMOP can be calculated as O(k!), where k denotes the number of graph
partitions after applying Informap-based PK. Given the sparse graph structures
in our experiments, O(k!) � O(n log n), leading to an overall time complexity of
MOE at O(n log n). It is worth noting that MOE requires a single execution on
different datasets, whereas identifying ONED using traversal search necessitates
multiple GNN runs, increasing computational burden and time.
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5 Conclusion

We introduce MOE, an algorithm that integrates structural and attribute
entropy to identify the optimal node embedding dimension for GNNs. Distinct
from prior methods, MOE necessitates only a single calculation using the adja-
cency matrix, thereby eliminating repeated parameter adjustments. We eval-
uate MOE on widely-used GNNs and benchmark datasets, demonstrating its
generality and efficiency. Furthermore, we propose an innovative algorithm for
efficiently computing multidimensional structural entropy in large graphs. Our
findings suggest that MOE is applicable to diverse GNNs, tasks, and datasets,
as it successfully captures crucial graph properties and structural information.

References

1. Bianconi, G., Pin, P., Marsili, M.: Assessing the relevance of node features for
network structure. Proc. Natl. Acad. Sci. 106(28), 11433–11438 (2009)
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Abstract. Event Extraction (EE) is a fundamental task and has
achieved much success in the past few years. However, the overlap
between the event elements has been largely ignored in most previous
studies. In this paper, we propose a novel pairing-scoring approach to
better solve the overlapping problem. In particular, we firstly extract all
event triggers and arguments simultaneously. Then we cast the acquisi-
tion of the complete event as an assembly task. By pairing and scoring
all possible event triggers and arguments, we group event elements into
different events to get the list of complete events. In addition, we design
a type-aware fusion layer to improve the extraction of event elements
by explicitly exploiting predefined event type and argument role label
information. Experiments on the FewFC demonstrate that our proposed
model can significantly improve the performance of overlapping EE.

Keywords: Event extraction · Overlapped event · Pairing task

1 Introduction

Event Extraction (EE) is a fundamental task in natural language processing
(NLP), which aims to extract concise, structured information from a large num-
ber of documents based on predefined event templates. Figure 1(a) illustrates
a traditional event example. The given Share Reduction event is triggered by
“reduced”. Its subject argument is “Lugutong”, and the object argument is
“Kweichow Moutai”. However, the phenomenon is more complicated in reality,
even a single sentence may contain multiple events or overlapped events. In
example (b), there are two events driven by different triggers (i.e., “acquire”
and “litigation”). They share two arguments (i.e., “TSMC” and “SMIC”). What’s
more, “TSMC” acts as the same argument role subject, while “SMIC” acts as
different roles target and object. In example (c), there are two different events
driven by the same trigger “purchased”. One event is Investment type, it has two
arguments, i.e., Yunnan Tourism Corporation (subject) and Wenhua Technol-
ogy (object). The other is Share Transfer type, it has three arguments, i.e.,
Yunnan Tourism Corporation (subject), Wenhua Technology (object), and
100% (proportion). They share two arguments and the trigger. From example
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Fig. 1. Examples of events: (a) a normal event; (b) two overlapped events with different
triggers; (c) two overlapped events with the same trigger.

(b) and (c), we can conclude that, not only do the event triggers overlap, but
the arguments overlap between the two different events.

Although current studies on EE have achieved much success, the overlap
between the event elements has been largely ignored. In this paper, we cast
overlapping EE as a pairing task. Differing from other EE approaches, instead
of considering the predefined relationships between triggers and arguments in the
beginning, we firstly view both trigger and argument as spans, and extract them
simultaneously. The obtained spans and their type labels are presented in the
form of (span, label) tuples. For each span, multiple labels can make up multiple
tuples, and thus we can solve the overlapping problem of one span acting as
multiple roles. After that, we pair all possible trigger spans and argument spans.
By calculating the pairing score between them, we can get the complete events
and also solve the problem of overlapping the same tuple in multiple events.
Figure 2 illustrates the detail of our pairing scheme using an example. We can
find that, six spans and their corresponding labels are firstly extracted. Referring
to the obtained labels, the six spans can be grouped into two triggers and four
arguments. Then we pair all possible assemblies to get eight trigger-argument
pairs. Finally, we calculate pairing score for each pair and filter out impossible
ones. In this way, we end up with two complete events.

According to the above discussion, we propose a novel joint event extraction
framework, named PairEE. Specifically, in the encoding phase, PairEE adopts
a pre-trained BERT model [2] as the encoder to get the contextual represen-
tation of each token. In order to achieve event type aware and argument role
aware representations, we design an information fusion layer to explicitly exploit
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Fig. 2. Illustration of our pairing scheme. The example sentence from Fig. 1(b). For
ease of understanding, we replace the spans with specific tokens.

predefined label information (both event type and argument role). In the extrac-
tion phase, the model extracts all triggers or arguments in parallel way by equip-
ping a dual channel extraction module. And in the prediction phase, our frame-
work builds a relative position based relation scorer to generate a score matrix
of the pair-wise relations between extracted triggers and arguments, which can
effectively integrate the distance information. The contributions of this paper
are as follows:

– We propose PairEE, a novel joint event extraction framework, which treats
EE as a pairing task for the first time and can effectively solve the overlapping
problem in EE.

– We investigate the impact of predefined label information in EE and design
an information fusion layer to implement event type aware and argument role
aware representations for downstream subtasks.

– We conduct experiments to demonstrate that PairEE achieves significant
improvements on overlapping EE compared with several competitive base-
lines.

2 Related Work

Most EE approaches can be divided into pipeline or joint approaches. Pipeline
approaches [1,5,12,13] divide a complete EE into multiple independent subtasks,
which greatly simplifies the complexity of EE but suffers from error propagation
problem and neglects associations between different subtasks. Joint approaches
[4,7,9–11] have been proposed as a promising alternative to alleviate error prop-
agation by optimizing sharing parameters simultaneously. In this paper, our
proposed framework adopts joint approach.

Despite the advances in EE, the existing research on overlapping problems
is insufficient. On one hand, traditional sequence labeling based approaches
[1,7,9,10] can quickly identify triggers and arguments with corresponding labels
but have obvious difficulty to resolve overlapping problem due to label con-
flicts. On the other hand, question answering based approaches [3,5,6] need to
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customize more complex and differentiated questions so that the model may
understand the differences and relations between overlapped triggers and argu-
ments, which is time-consuming and labor-intensive. Recently, Yang et al. [13]
tried to solve the overlapped argument problem by using the pre-trained lan-
guage model, but they ignored the event trigger overlap cases. Sheng et al. [11]
systematically investigated the overlapping problem in EE and proposed a joint
framework CasEE to solve the overlapping problem. But they suffered from the
error propagation problem in the cascade decoding paradigm and didn’t make
full use of argument information to assist with the extraction subtask.

3 Methodology

3.1 Problem Definition

To address the overlapping problem, we formulate EE into pairing task. Given
an input segment S = {w1, w2, ..., wn} with n words, event types C and argument
roles R, we aim to extract all possible triggers TC = {t1, t2, ..., ti} and arguments
AR = {a1, a2, ..., aj} in segment S (note that elements in TC and AR can be
a single word or a phrase with the corresponding event type or argument role
labels), and pair them into O = {(tn, am), ...}. Thus, our objective is to maximize
the following joint likelihood:

P (O|S) = P (AR, TC |S) × P (O|AR, TC)

=
∏

a∈AR

P (a|S)
∏

t∈TC

P (t|S)
∏

a∈AR,t∈TC

P ((a, t) |a, t) (1)

Based on Eq. (1), we design the model PairEE, the overall architecture is demon-
strated in Fig. 3. There are three main components in our model, i.e., (1) Encod-
ing fusion module adopts BERT encoder to get contextual representations and
fuses the predefined label information through a fusion layer. (2) Dual chan-
nel extraction module P (AR, TC |S) extracts triggers and arguments in parallel
and generates a representation matrix for them respectively. (3) Pairing module
P (O|AR, TC) calculates the scores between candidate triggers and arguments by
a distance aware relation scorer.

3.2 Encoding Fusion Module

BERT Encoder. BERT [2] has been proven to be able to capture contextual
representation effectively in various NLP tasks. Thus, we leverage BERT as the
encoder in our model. Assume BERT (·) denotes the BERT encoder, the hidden
representations H = {h1, h2, ..., hn} ∈ R

n×dh of sentence S = {w1, w2, ..., wn}
can be obtained by the following:

{h1, h2, ..., hn} = BERT ({w1, w2, ..., wn}) (2)
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Fig. 3. The overall architecture of our framework.

Information Fusion Layer. In this layer, we aim to explicitly integrate pre-
defined label information into H to generate event type aware and argument
role aware representations for subsequent subtasks. To achieve this goal, we first
randomly initialize label embedding matrices C = {c1, c2, ..., c|C|} ∈ R

|C|×dh and
R = {r1, r2, ..., r|R|} ∈ R

|R|×dh for event types and argument roles, where |C|
and |R| represent the number of predefined types and roles. To enable hidden
representations H to detect the potential relationship with the label embedding
matrices, we utilize the self-attention mechanism, which can obtain similarity
weight distribution of values by calculating the dot product:

Attention (Q,K,V) = softmax

(
QKT

√
dk

)
V (3)

where Q, K and V represent query, key and value, and
√

dk is the scaling factor.
Since we have observed that arguments and triggers have certain differences

in semantics and part of speech, so we regard H as the query, C and R as
different key and value separately. The formulas are as follows:

EC = Attention
(
HWC

q ,CWC
k ,CWC

v

)

ER = Attention
(
HWR

q ,RWR
k ,RWR

v

) (4)

where WC
q ,WC

k ,WC
v ,WR

q ,WR
k ,WR

v ∈ R
dh×dh are the projections parameter

matrices, and EC ,ER ∈ R
n×dh are the output of self-attention. Then we prelim-

inarily integrate EC and ER with H through Eq. (5) and get E
C

,E
R ∈ R

n×4dh :

E
C
=

[
H;EC ;

∣∣∣H − EC
∣∣∣ ;H � EC

]

E
R
=

[
H;ER;

∣∣∣H − ER
∣∣∣ ;H � ER

] (5)

where [·; ·] denotes concatenation, |·| denotes an absolute value operator, �
denotes the element-wise production.
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To avoid the harm of direct fusion to context representations H, we designed
a gate mechanism to calculate the retention ratio between H and E

C
, E

R
. Based

on these ratios, we can generate complementary representations between H and
EC , ER, which can effectively achieve event type awareness and argument role
awareness. The gate mechanism is formulated as:

P = σ
(
HWH

p +E
C
WC

p

)

Q = σ
(
HWH

q +E
R
WR

q

) (6)

HC = P � H+ (1 − P) � E
C

HR = Q � H+ (1 − Q) � E
R

(7)

where WH
p ,WH

q ∈ R
dh×4dh and WC

p ,WR
q ∈ R

4dh×4dh are trainable parameters,
which map matrices to the same feature space, σ(·) denotes sigmoid function.
HC ,HR ∈ R

n×4dh are event type aware and argument role aware representa-
tions, respectively.

3.3 Dual Channel Extraction Module

In this module, we extract triggers and arguments in the form of (span, label) by
leveraging the embeddings HC and HR from the previous module. As illustrated
in Fig. 3, in view of the discrepancy between triggers and arguments, we adopt
a dual channel method to extract them in parallel. Each channel is equipped
with a multi-layer label pointer network, which is composed of multiple groups
of binary classifiers. Each group represents a particular label and consists of a
start pointer classifier and an end pointer classifier, which can determine the
span of triggers or arguments. Therefore, we can calculate the probability that
a token wi is the start position or the end position of c ∈ C or r ∈ R:

tcsi = p (tcs|wi) = σ
(
wc

tsh
C
i + bc

ts

)

tcei = p (tce|wi) = σ
(
wc

teh
C
i + bc

te

) (8)

ars
i = p (ar

s|wi) = σ
(
wr

as
hR
i + br

as

)

are
i = p (ar

e|wi) = σ
(
wr

ae
hR
i + br

ae

) (9)

where wc
ts , w

c
te , b

c
ts , b

c
te and wr

as
, wr

ae
, br

as
, br

ae
are learnable weights and bias,

hC
i and hR

i are i-th embedding in HC and HR.
We follow Sheng et al. [11], set a threshold δ1 ∈ (0, 1) to filter invalid candi-

dates, when the probability exceeds δ1, the current token is the desired result.
In this way, we can obtain all possible start and end positions of triggers and
arguments, we enumerate over all the start positions, and match the nearest
following end position as the span of the trigger or argument.
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Then, we encode each trigger and argument according to their span and
label for later pairing tasks. We concatenate the start and end token embeddings
from H and the label embedding from C or R to represent a whole trigger or
argument. Thus, for any tn and am can be expressed as:

tn = mlpt

([
hstart(n);hend(n); clabel(n)

])

am = mlpa

([
hstart(m);hend(m); rlabel(m)

]) (10)

where mlpt(·), mlpa(·) are multi-layer perceptron. Ultimately we can gener-
ate the triggers embedding matrix T = {t1, t2, ..., ti} ∈ R

i×dh and arguments
embedding matrix A = {a1,a2, ...,aj} ∈ R

j×dh .

3.4 Pairing Module

To explore whether a trigger and an argument are in the same event, we pair each
other of them and calculate their relation score. Because relative position can
effectively help identify relationships in many pairing tasks, we also introduce the
relative position embedding to our model. We feed all triggers and arguments into
the relation scorer and generate the score matrix S ∈ R

i×j , the pair-wise relation
score snm ∈ S between trigger tn ∈ T and argument am ∈ R is calculated as
follows:

snm = p ((tn, am)|tn, am) =

σ
(
ws

nm

[
tn;am; tn � am;pi−j

]
+ bs

nm

) (11)

where ws
nm and bs

nm are learnable weights and bias, pi−j ∈ R
dp denotes the

randomly initialize relative position embedding.
We determine whether a trigger and an argument are related by setting a

threshold δ2 ∈ (0, 1), when snm > δ2, we assume that the current trigger and
argument belong to the same event.

3.5 Model Training

The overall loss function L of our model is divided into LT , LA, and LP , cor-
responding to the extraction task and the pairing task described above. We use
cross-entropy to formulate the loss function. The formulas are as follows:

L = λ1LT + λ2LA + λ3LP (12)

LT =
|C|∑

c=0

n∑

i=0

−log p (tcs|wi) +
|C|∑

c=0

n∑

i=0

−log p (tce|wi) (13)

LA =
|R|∑

c=0

n∑

i=0

−log p (ac
s|wi) +

|R|∑

r=0

n∑

i=0

−log p (ac
e|wi) (14)

LP =
i∑

n=0

j∑

m=0

−log p ((tn, am)|tn, am) (15)

where λ1, λ2 and λ3 are hyper-parameters.
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4 Experiments

4.1 Experimental Settings

To assess the performance of our model in overlapping EE, we adopt a Chinese
financial event extraction dataset FewFC [14] as the benchmark dataset, which
contains a total of 8,982 sentences with 12,890 events, and nearly 22% sentences
with the overlapping problem. We partitioned the dataset into training, valida-
tion, and testing sets according to an 8:1:1 ratio.

For fair evaluation, we also follow the metrics of previous works [1,3,11]:
Trigger Identification (TI), Trigger Classification (TC), Argument Identification
(AI),and Argument Classification (AC). We present each of the four metrics by
Precision (P), Recall (R), and F measure (F1).

We adopt Bert-base-Chinese as the encoder, which has 768 hidden units and
512 maximum lengths. We utilize AdamW [8] to optimize the parameters of our
model. We set the learning rate to 2e − 5 for BERT encoder and 1e − 4 for
other modules. We also adopt the warming up and set the proportion to 10%.
In the training stage, the max epoch is set to 50 and the batch size is set to
8. The thresholds δ1 and δ2 are all tuned to 0.1, and the dimensions of relative
position embedding dp are tuned to 128. To pursue the balance of each module,
we set λ1, λ2, and λ3 to 1. The hyper-parameters are all tuned based on the
development dataset. In addition, the label embedding matrices and relative
position embedding matrix are all trained from scratch.

4.2 Baselines

The baselines can be grouped into two groups, i.e., methods without considering
overlapping, and methods for overlapping EE.

Methods without considering overlapping are mainly based on sequence label-
ing and assume that there are no overlapping problems in the sentence.BERT-
softmax uses BERT to get the contextual representations and classifies event
triggers and arguments directly. BERT-CRF adds a conditional random field
(CRF) based on BERT-softmax, which can capture label dependencies by calcu-
lating transition probability. BERT-CRF-joint adopts joint labels of the type
and role as B/I/O-type-role to joint extraction of entity and relation.

Methods for overlapping EE attempt to solve the overlapping problem. PL-
MEE [13] solves the overlapped role problem by separating the argument pre-
dictions in terms of roles. MQAEE [5] adopts a multi-span extraction method
that sequentially predicts triggers with types and then predicts overlapped argu-
ments according to the typed triggers. CasEE [11] decomposes the complete EE
task into type detection, trigger extraction, and argument extraction, where the
overlapped targets are separately extracted conditioned on former predictions.

4.3 Experiment Results

Overall Performance. Table 1 shows the results, we can observe that: In com-
parison with the systems without considering overlapping, PairEE can achieve
much better performance. The average F1 scores of our model on all four metrics
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Table 1. Overall performance of all methods on FewFC.

TI(%) TC(%) AI(%) AC(%)
P R F1 P R F1 P R F1 P R F1

BERT-softmax 89.8 79.0 84.0 80.2 61.8 69.8 74.6 62.8 68.2 72.5 60.2 65.8
BERT-CRF 90.8 80.8 85.5 81.7 63.6 71.5 75.1 64.3 69.3 72.9 61.8 66.9
BERT-CRF-joint 89.5 79.8 84.4 80.7 63.0 70.8 76.1 63.5 69.2 74.2 61.2 67.1
PLMEE 83.7 85.8 84.7 75.6 74.5 75.1 74.3 67.3 70.6 72.5 65.5 68.8
MQAEE 89.1 85.5 87.4 79.7 76.1 77.8 70.3 68.3 69.3 68.2 66.5 67.3
CasEE 89.4 87.7 88.6 77.9 78.5 78.2 72.8 73.1 72.9 71.3 71.5 71.4
PairEE 87.7 90.1 88.9 77.4 82.7 80.0 72.0 77.0 74.4 69.8 75.0 72.3

outperform BERT-softmax, BERT-CRF, and BERT-CRF-joint by 6.9%, 5.6%,
and 6.0%, respectively. It indicates the necessity of solving overlapping problem.

In comparison with the systems attempting to solve the overlapping problem,
our model also achieves performance improvement, it indicates the effectiveness
of our model on addressing overlapping problem. Comparing with MQAEE,
our PairEE achieves better performance on all metrics. Even comparing with
the state-of-the-art (SoTA) model, CasEE, the F1 score of PairEE on TI, TC,
AI, and AC are better by 0.3%, 1.8%, 1.5%, and 0.9% respectively. Cascade
decoding helps CasEE simplify the difficulty of triggers extraction, so it has
achieved a pretty good result in TI, but also suffers from error propagation.
PairEE takes full advantage of label information in the extraction stage, and
extracts all triggers and arguments at once without error propagation, this is
why the F1 score of PairEE is substantially leading on the three remaining
metrics than CasEE.

Results on Overlapped and Normal Data. To further validate our model’s
ability to identify overlapped events and figure out how PairEE performs in
normal data, we continue our experiments on the testing set that contains only
overlapped or normal sentences.

As shown in Table 2, our model outperforms other methods in overlapped
sentences and achieves acceptable results in normal sentences. PairEE has a
very balanced performance in both cases. From dealing with normal sentences
to dealing with overlapped sentences, our model has almost no significant per-
formance degradation compared with other methods. The reasons are as follows:
1) PairEE is a general model that incorporates the ability to extract events in
both situations. 2) The dual channel extraction module avoids label conflicts
and error propagation problems, which occur frequently in other methods. 3)
Even in more complex situations, our pairing scheme can still effectively dis-
cover potential relations between triggers and arguments.
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Table 2. Performance on overlapped sentences(left) and normal sentences(right) in
testing. We report F1 scores for each evaluation metric.

Overlapped Sentences Normal Sentences
TI(%) TC(%) AI(%) AC(%) TI(%) TC(%) AI(%) AC(%)

BERT-softmax 76.5 49.0 56.1 53.5 86.9 79.9 76.2 74.1
BERT-CRF 77.9 52.4 61.0 58.4 88.4 80.8 74.9 72.8
BERT-CRF-joint 77.8 52.0 58.8 56.8 86.9 79.9 76.1 74.0
PLMEE 80.7 66.6 63.2 61.4 86.4 79.7 75.7 74.0
MQAEE 83.6 70.4 62.1 60.1 89.0 82.0 74.2 72.3
CasEE 89.0 74.9 71.5 70.3 88.4 80.2 74.0 72.3
PairEE 88.7 78.6 73.6 72.0 89.1 80.9 75.0 72.6

Ablation Study. We conduct ablation experiments for PairEE to evaluate
the effectiveness of each component in our method. The experimental results
are shown in Table 3. We first replace the gate mechanism by adding the two
embeddings directly, the performance of our model has become worse. It suggests
the usefulness of the gate mechanism. When we replace the information fusion
layer with concatenation operation, the results decreased significantly, and the
performance on the four metrics drops by 1.0%, 2.0%, 0.9%, and 0.9%, which
suggests the fusion layer can effectively integrate contextual representations with
label embeddings for subtasks. There is also a drop when we remove the relative
position embeddings, the performance drops by 1.0%, 1.1%, 0.7%, and 0.7%,
which indicates the relative position is critical for pairing tasks. Furthermore,
when we remove the whole label embeddings, and the experimental results show
a sharp decline on all metrics, the F1 scores decrease by 2.3%, 1.5%, 2.3%, and
2.4% respectively.

Analysis of Label Embeddings. To further verify the impact of label embed-
dings on experimental performance, we made a series of adjustments to the
dimensions of the label embeddings. We center on the hidden layer dimensions
768 and gradually increase or decrease the dimensions, the changes of experimen-

Table 3. Results of ablation experiments on FewFC.

TI(%) TC(%) AI(%) AC(%)

PairEE 88.9 80.0 74.4 72.3
w/o Gate 88.6 79.5 74.0 72.0
w/o Fusion Layer 87.9 78.0 73.5 71.4
w/o Position Emb 87.9 78.9 73.7 71.6
w/o Label Emb 87.6 78.5 72.1 69.9
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Fig. 4. Performance with different dimensions.

tal results on the four metrics are shown in Fig. 4. Combined with the previous
results of removing label embeddings, it is not difficult to find that label embed-
dings are essential to our model, too long or too short dimensions can make the
performance poor, and the length of the label embedding equals to the length
of the contextual representation embedding seems to be a good choice. Mean-
while, TI, TC, and AI, AC are all sensitive to changes of dimensions according to
experimental results. We consider the main reason is from the architecture of our
model, which relies heavily on label embeddings. In extraction stage, we combine
the label embeddings with contextual representations to identify the spans and
categories of triggers and arguments, and in pairing stage, label embeddings are
the clue to judge their relations. Thus, using high-quality label embeddings can
effectively improve the performance of our model.

5 Conclusion

In this paper, we propose a novel joint framework based on pairing scheme,
named PairEE, for overlapping EE. PairEE decomposes the complete EE into
encoding, extraction, and pairing stage, which greatly simplifies the complexity
of EE and effectively solves the overlapping problem. In addition, by equipping
an information fusion layer, PairEE can enrich the contextual representations
with label information. We conduct extensive experiments to demonstrate the
effectiveness of our proposed model. In the future, we may further explore how to
capture potential relations between triggers and arguments, and utilize pairing
scheme to address other problems in EE.
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Abstract. Accurate detection of component rotation is a critical task
in the production of printed circuit boards (PCBs). However, with the
rapid development of integrated circuits, manually labeling large datasets
of all kinds of components for training machine learning models is time-
consuming and impractical. To address this challenge, we propose a novel
one-shot conditional component rotation detection framework, PolarNet.
Given a standard image of the target component, a query image, and a
polar indicator image as input, PolarNet can detect the rotation angle of
the component in the query image. PolarNet comprises a Siamese net-
work, an Indicator Attention Generator, and a Rotation Detector. The
Indicator Attention Generator takes the polar indicator image as heuris-
tic knowledge to help the Rotation Detector. Once trained, PolarNet
can detect component rotation in both seen and unseen classes without
further training. Our experiments on our own dataset demonstrate that
PolarNet achieves good performance for one-shot rotation detection in
both accuracy and scalability.

Keywords: Rotation Detection · One-shot Learning · Polar
Component

1 Introduction

Component placement is a critical step in the manufacturing process of printed
circuit boards (PCBs) as any misalignment can result in circuit errors and device
malfunction or failure. To address this issue, automated optical inspection (AOI)
systems and computer vision algorithms have been developed to detect errors in
component orientation during the assembly process. AOI systems use advanced
cameras and image recognition software to detect and verify the orientation of
components on the PCB. Computer vision algorithms can process images of the
PCB to identify and verify the orientation of components. These techniques have
gained significant attention in the manufacturing industry as they help improve
the accuracy and efficiency of the assembly process. However in practice, the use

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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of AOI is limited due to the low accuracy, difficulties with tuning parameters
and strict environmental requirement such as illumination.

In recent years, the wide use of deep convolutional neural networks(CNN) in
computer vision has made a huge progress in the field. Specifically, CNN has been
used in various tasks including object detecting [1], visual tracking [2], similarity
comparing [3] and rotation detection [4–6] recently. This method has also been
used in PCB production assurance [7]. However, these methods’ performances
are closely associated with the scale of labeled data set, which have the inherent
shortcomings in practice. For example, in object detecting tasks, a large number
of manually labeled samples is often needed to tuning the parameters in the
network, which is both consuming and unscalable with large amount of visual
data which is accessible today. Moreover, these fully supervised models often
have problems when extend to new classes. If we want to detect a new type of
component we usually have to retrain the whole model, or at least a part of
model to detect that kind of objects.

Recent researches on few-shot and one-shot image classification and detec-
tion start to appear [8,9]. The purpose of one- or few-shot learning is to learn
rapidly from few new data. Few-shot learning approaches can be divided into
three categories: Model-Based [10,11], Metric-Based [12,13] and Optimization-
Based [14]. These approaches have shown promising results on various datasets,
including image classification, object detection, and natural language process-
ing. However, few works focus on object rotation detection, which is needed in
PCB production process and quality inspection. Previous studies [4,5] mixed
object detection and rotation detection together, making it hard to do one-shot
rotation detection. Because these methods can only applied to objects in the
training set, but cannot be used when detecting new kinds of objects. Therefore,
we propose PolarNet, a self-supervised one-shot conditional rotation detection
framework with generalization capability.

In this work, we find that most polar integrated components have polar indi-
cators to denote direction, which is crucial for human recognition of orientation.
Motivated by this finding, we design a framework to take this as heuristic knowl-
edge to enhance the performance. The proposed PolarNet takes a standard image
of the target component, a query image and a polar indicator image as input to
detect the rotation angle of the query image. A Siamese network is first employed
to extract features and map the images into a common embedding space. Then
Indicator Attention Generator will work to generate attention to help Rotation
Detector focus on the polar indicators. Lastly, Rotation Detector will predict
the rotation angle of the query image based on features and attention.

Our contributions are summarized as follows:

1. We build and publish the first data set of polar circuit components to spur
the research of implementing deep learning methods on circuit boards testing.

2. We propose a self-supervised one-shot rotation detection algorithm, PolarNet,
with the heuristic information from polarity indicators.

3. We show that on our data set, PolarNet significantly outperforms traditional
algorithms both accuracy and scalability.
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Fig. 1. PolarNet: the proposed one-shot conditional rotation detection scheme with
Siamese feature extractor, Indicator Attention Generator and Rotation Detector.

2 Methodology

2.1 Overview

Our work is to learn ConvNet to detect the rotation angle of components on
PCBs comparing the standard image and the under test PCB image (query
image). To achieve that goal we propose a PolarNet to predict the component
rotation angels. Specifically, we define the rotation transformation as g(.). When
the transformation is applied to image X with label y, which indicating the
rotation angels, we get the transformed image Xy = g(X, y).

The PolarNet get a pair of images of components, including the standard
one and the query one, and output probabilities of certain rotation angels (e.g.
4 directions for rotating 0◦, 90◦, 180◦, 270◦ ).

Therefore, given a set of N training images D = {Xi}N
i=1, the training objec-

tive that PolarNet must learn to solve is:

min
θ

(− 1
N

N∑

i=1

k∑

c=1

yiclog(pic)) (1)

Here, k is the number of angels to detect, pic is the predicted probability for
input Xi rotating angle c, yic is the ground-truth label for input Xi rotating
angle c.

Figure 1 shows the basic framework of PolarNet. In the following subsection,
we describe each part of PolarNet design in details and methods to enhance the
performances of PolarNet.

2.2 Training Set Preprocessing

Since our task is to detect rotation, the manual labeled dataset is not always
needed. Our dataset is based on a set of component images.

Firstly we rotate the image to y angles (depending on how much angles you
want to classify). In our task, y = 4. Then by arranging the rotated images, we
can get y2 pairs of training data from one single component image, significantly
increasing the scale of training set.

Secondly, several random data enhancement methods are applied to each of
the image to improve interference immunity and avoid overfitting. Those meth-
ods include saturation transformation, image resizing and slightly rotation.
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Fig. 2. Some components with indicators. The component images are in the upper
part. The corresponding indicator images are in the lower part.

Fig. 3. One example in pretraining. The background is pure colored, with several
randomly transformed irrelevant indicators. The relevant polarity indicator is pasted
onto the image. In figure, the polarity indicator is boxed.

2.3 Pretraining

When human try to recognize the direction of components, we will find the
certain kinds of polarity indicators on the components. As shown in Fig. 2, the
indicator image can help us to find the rotation angle of component. We regard
this as an heuristic information and use it to train our PolarNet.

To force PolarNet to focus on the indicators, we add a pretraining step. In this
step, the training data is pairs of random images (background) with indicators
pasted on the image. Only indicators are relevant to the label. One example of
pretraining figure is shown in Fig. 3.

2.4 Rotation Detector Based on Similarity Comparing

In previous work [15], the ConvNet is used directly to classify the directions
of images. But the same method doesn’t perform well in our task. From our
point of view, this is partly because of the traits of convolutional layers. The
convolutional layers and pooling layers will extract features of image and keep
them in spatial order. So the classification to multi classes depends on the final
fully connected layers. The parameters of the final fully connected layers can be
represented as W, which is a n × y matrix. Parameter n stands for the output
dimension of last layer, and y stands for the classes.

In our work, we instead propose a method based on similarity comparing
to detect the rotation. The input image pair includes a rotated image and an
original image. The rotated image will be rotated for k times, compared with
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the original image and get k possibilities. These possibilities are inputted into
a softmax layer and get the probability. The output of PolarNet for each input
pairs of images is a probability, indicating the possibility of those two images are
in the same direction. And to classify all the directions, the transformed image in
the input pair will be rotated for y times, and each is put into the PolarNet with
the original image and get an output respectively. We put these outputs into a
softmax layer and get the final result. Therefore, the parameters W ′ for the last
fully connected layer has been reduced to n×1, and all the training data can be
used to tune these parameters. To illustrate, one original image with k different
rotation angles can be used as one positive sample and (k - 1) negative samples.
As a result, all the training data has been fully used to train the PolarNet, and
the numbers of parameters has been reduced.

2.5 Network Design

A Siamese network [2] is a promising approach to develop a scalable rotation
detector. The detection process can be divided into two steps: feature extraction
and rotation angle prediction. In the first step, the same convolutional network
is used to extract features from a pair of input images. In the second step, the
feature maps are concatenated and fed into a fully connected layer for rota-
tion angle prediction. However, this process does not take polar indicators into
account as heuristic information, which can significantly improve the accuracy
of the rotation detector.

Inspired by [1], we propose an Indicator Attention to help the PolarNet to
focus on the indicators to detect rotation. Figure 1 shows the structure of Polar-
Net.

Siamese Feature Extractor. We use a Siamese network as a feature extracting
network to extract features from original images. Parameters in the Siamese
network are shared in all branches. Let ψ to represent the Siamese network.
When one group of images, including an original image Io, an transformed image
It and an indicator image Ii, is inputted into the network ψ(.), the Siamese
network is applied to each of the image, and we get features (ψ(Io), ψ(It), ψ(Ii)).
These features are used in the following process of rotation detection. Once we
have these features, the following two-stage detection model will learn to use
them and implement one-shot conditional detection.

Indicator Attention Generator. Indicator Attention generator aims to gen-
erate attention on both original image Io and transformed image It to help the
ConvNet to focus on polarity identifier and other helpful regions. Rotation angles
are predicted on the combination of features (ψ(Io), ψ(It), ψ(Ii)) generated by
Siamese feature extractor. In this phase, Global Feature Extracting is applied to
ψ(Ii) to get salient indicator features. Then we scan the entire original image and
transformed image and compare salient indicator features with local indicator
features in each position.



PCB Component Rotation Detection Based on Polarity Identifier Attention 145

Fig. 4. Indicator Attention generator: Global Feature Extracting operation concate-
nates global average- and max-pooling features of indicator image, and halve the dimen-
sions by an 1 × 1 convolutional layer. Feature Tiling tile the global feature to get the
same size feature map as the original image features and transformed image features.
Then, the global image feature is fused with original image features and transformed
image feature by an 1 × 1 convolutional core to get the attention map.

Figure 4 shows the detailed structure of Indicator Attention Generator.
Global Feature Extracting aims to get salient indicator features, and may have
several types of implementation. In our network, we get global max and global
average pooling, concatenate them into a 1×1×2k vector, where k is the dimen-
sion of Siamese network’s output, and then use 1 × 1 convolutional kernels to
reduce half of the dimensions. Then, in order to concatenate the indicator fea-
tures with the original image feature and the transformed image feature, we use
Feature tiling to make the tiled indicator features have the same spatial size as
original and transformed image. Then the tiled indicator features, the original
features and the transformed features are fused together and processed by a 1×1
convolutional layer to generate an attention matrix.

Rotation Detector. Based on the attention generated by the Indicator Atten-
tion generator, we can get potential region which may help with detecting rota-
tion. Rotation Detector multiply the attention map with the original image
features and transformed image features, then put them into a series of fully
connected layers, which work as classifier to predict the probability of rotation.
The network architecture is shown in Fig. 5.
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Fig. 5. Rotation Detector: the attention is applied to the fused feature to get the
focused feature, then a classifier is used to get the probability of rotation.

3 Experiments

3.1 Dataset

Previous datasets have serveral printed circuit board (PCB) images. These
images are labeled with location of each component. However, there is no indica-
tor classification and no image of indicators. In our work, we build and publish
the first dataset of polar circuit components to spur the research of implementing
deep learning methods on circuit boards testing.

Our dataset1 is based on PCB DSLR DATASET. The PCB DSLR dataset
contains images of PCBs from a recycling facility, captured under representative
conditions using a professional DSLR camera. We performed selective cropping
on component regions from the original images and classified those components
according to the indicators. There are seven kinds of indicators in our dataset,
including arc, circle, groove, half, line, multiple lines and rectangular. There are
several images of polarity component in each kind, and an indicator image, as
shown in Fig. 2. In total, there are 671 images. In our experiment, the components
with groove indicator are separated from the training set to test the scalability
of models. The rest of images is divided into training set and validating set with
the ratio of 19 : 1.

3.2 Baselines

Previous works [16,17] on rotation detection have primarily focused on denoising
and detecting specific classes of objects, which is not scalable and limited to one-
shot conditional detection. In our experiment, we have chosen methods based
on Siamese networks as baselines, which are more scalable and applicable to a
wider range of objects.

1 https://github.com/ma-h-m/Polar-Component-with-Indicator-Image-Dataset.

https://zenodo.org/record/3886553#.ZDu-fj1By0q
https://github.com/ma-h-m/Polar-Component-with-Indicator-Image-Dataset
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Siamese Network. Siamese network get input as a pair of images. After
using convolutional layers to extract features from the images, those features
are inputted into a series of FC layers and output the probabilities of different
rotation angles.

Siamese Network with Spatial Attention. Based on the features extracted
by Siamese network, the Spatial Attention is generated using convolutional layers
to fuse the information in different channels. Then, the Spatial Attention is
applied to the features.
Siamese Network and GAM [18]. Global Attention Mechanism (GAM) uses
both channel attention and spatial attention to generate attention for the net-
work. GAM first uses an encoder-decoder structure to generate channel atten-
tion, and apply it to the feature F0 and get feature F1. Then, it use spatial
attention, which has been described above, to attention F1, and get F2. And put
F2 into classifier.

3.3 Implementation Details

We resizes the input image to 224 × 224. The images will undergo a serious of
random transformation to enhance the anti-interference ability, including rota-
tion with in 15◦C, saturation adjustment, scaling and color changing. AlexNet
[19] is chosen as the Siamese network to extract features. The classifier is three
layers of FC with ReLU activation function. Each has 4096 neurons. Values of
hyperparameters are shown in Table 1.

Table 1. Hyperparameters in Implementation

Hyperparameter Value

Learning Rate 10−4

Learning Rate Decay Rate per iteration 0.99

Training Iteration 100

Pretraining Iteration 30

3.4 Performance

Table 2 shows the performance of different rotation detectors on the our dataset.
The proposed Indicator Attention yields 95.32% accuracy on validation set, and
94.70% accuracy on test set. Compared with other detectors, Indicator Atten-
tion network gains an improvement in performance, and remains the size of
parameters.

In addition, to test the scalability and generalization ability, we test our
network on unseen data set. In this dataset, the classes of indicators and compo-
nent are both not used in training, so problem becomes one-shot problem. The
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proposed Indicator Attention yields 94.70% accuracy on seen classes (validation
set), and 92.92% accuracy on unseen classes (test set). Compared with other
detectors, Indicator Attention network are more generalizable (Table 3).

Table 2. Performance of different Rotation Detectors

Detector Parameter Size Validation Set Accuracy Testing Set accuracy

Siamese network (4 class classification) 59.49M 83.76% 80.68%

Siamese network (similarity comparing) 59.48M 90.45% 91.60%

Spatial Attention 61.76M 93.32% 91.77%

GAM 62.69M 93.56% 92.92 %

PolarNet 61.95M 95.32% 94.70%

Table 3. Scalability of different Rotation Detectors

Detector Seen Classes accuracy Unseen Classes accuracy

Siamese network (4 class classification) 80.68% 82.45%

Siamese network (similarity comparing) 91.60% 86.32%

Spatial Attention 91.77% 90.26%

GAM 92.92% 92.86%

Indicator Attention 94.70% 92.92%

3.5 Visualization

In Fig. 6, we visualize some attention generated by Indicator Attention generator.
At the left side, there are input images including original image, transformed
image and the indicator image. At the right side, there are attention applied
to the input. The brightness of each part of image represents the attention the
network applied to that region.

In these examples, the Indicator Attention generator successfully focuses on
the indicators in the image and detect the rotation correctly, while the Siamese
network cannot correctly detect the rotation angles of them. This can partly
explain the performance improvement of our network compared to the baselines.

3.6 Ablation Study

Similarity Comparing. We employ a rotation detection based on similarity
comparing. The network only have to output a probability of whether rotation
or not each time and do not have to predict the rotation angle. The transformed
image is rotated for k times and inputted with the original image to detect each
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Fig. 6. Attention examples generated by the indicator attention generator. The bright-
ness of the region indicates how much attention it pays to the region.

time. k is all the possible rotation angles. In our experiment, k = 4. Finally, we
put all the probabilities into a softmax function and get the output. However,
rotation detection can also be implied with a direct k-class classification. We
demonstrate the effectiveness of our similarity comparing methods in Table 4.

On our dataset, similarity comparing achieves much better performance on
both validation(seen) classes and testing(unseen) classes. Similarity comparing
has an extra 18.25% and 20.46% accuracy improvement on seen and unseen
classes. This experiment proves the effectiveness of our similarity comparing
method in rotation detection.

Table 4. Comparison of similarity comparing and 4-class classification

Detector Seen classes accuracy Unseen classes accuracy

Indicator (4 class classification) 76.45% 72.46%

Indicator (similarity comparing) 94.70% 92.92%

Pretraining. In our first 30 epochs of training period, we employ a pretraining
method described in Sect. 2.2 to help the whole network to focus on the indicator.
We also tests these two implementation on our dataset. The result is shown in
Table 5.

On our dataset, similarity comparing achieves better performance on both
validation(seen) classes and testing(unseen) classes. Similarity comparing has an
extra 1.29% and 3.73% accuracy improvement on seen and unseen classes.

Figure 7 shows an example of attention generated by network with and with-
out pretraining. The brightness of each part indicates how much attention the
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Fig. 7. Attention example of with and without pretraining. Input image pair is at left.
Attention without pretraining is at middle. Attention with pretraining is at right. The
brightness indicates how much attenton the network pays to the region.

network pays to that part when classification. We can see that the attention
where the indicator is generated by network with pretraining is much higher
than the attention generated by network without pretraining.

This experiment proves the effectiveness of pretraining in our experiment.

Table 5. Comparison of with pretraining and without pretraining

Detector Seen classes Unseen classes

Indicator Attention without pretraining 93.41% 89.19%

Indicator Attention with pretraining 94.70% 92.92%

4 Conclusion

This paper proposes a novel one-shot conditional component rotation detection
framework, which aims to detect rotation of integrated components in PCB pro-
duction from unseen classes without further training on these newly interested
classes. We use a Siamese network to extract features from standard and query
image. Indicator attention generator has been applied to evaluate the impor-
tance of each region in the image features. After applying the attention to the
features, a similarity-comparing-based rotation detector has been implemented
to predict the possibility of rotation. Experiments on our dataset verify that
our method achieves good performance for one-shot rotation detection in both
accuracy and scalability.

There are still some limitations: the performance gap between our model and
the traditional rotation detectors, the strict requirement of physical environmen-
tal conditions. We will continue to improve the framework, such as exploring bet-
ter Siamese networks and utilizing triplet loss to extract more expressive deep
features. Additionally, we will device a more suitable dataset for PCB component
rotation detection with more samples categories to promote the development of
practice of deep learning in PCB production.
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Abstract. Endowing dialogue systems with emotional intelligence is an
essential strategy for machines to achieve deep social interaction with
users, for which effective evaluation metrics for emotional dialogue are
in urgent need. However, most existing evaluation methods ignore the
impact of users’ individual differences and situational contexts on emo-
tional expressions, which poses a significant challenge in assessing the emo-
tional expression capabilities of dialogue models. To address these issues,
we propose a novel evaluation model that incorporates personality into
evaluation metrics for dialogue systems. Our model quantifies the influence
of human personality on emotional expressions and simulates the emo-
tional transfer during conversations to calculate the intensity of emotional
expressions in candidate sentences. To accomplish this calculation, we first
incorporates “Big Five Personality” traits for personality analysis, and
subsequently modify the emotion vector in a Valence-Arousal-Dominance
(VAD) space. Furthermore, we construct mood transfer equations to sim-
ulate the impact of the conversational context on emotional expressions.
Additionally, we propose an additional assessment at both sentence and
session-levels to evaluate the fluency and coherence of the generated dia-
logue. Experimental results on two datasets demonstrate the effectiveness
of the proposed evaluation model in accurately assessing the emotional
expression capabilities of dialogue systems.

Keywords: Emotiona Dialogue Evaluation · Psychological Theory
Application · Persona-Aware Modeling

1 Introduction

Due to the advance in neural models and the accessibility of massive datasets,
open-domain dialog systems have made great progress in imitating human-like
responses. In recent years, we have witnessed the rapid development of empa-
thetic dialogue systems in endowing machines with emotional intelligence, which
enables conversational models to better understand users’ emotions, empathize
with interlocutors, and achieve in-depth social interaction.
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An essential step in building an empathetic dialogue system is to evaluate
the quality of the generated dialogue from the perspective of human emotions.
Traditional evaluation metrics have the drawback of simply assessing the seman-
tic equivalence instead of emotional-related characteristics. For instance, the
BLEU [1] score, compares the candidate sentences with annotated references by
calculating the n-gram overlap. Although it provides a simple and universal mea-
surement method, this metric is insufficient to reflect the diversity of sentence
composition and the amount of emotional information in generated responses. In
recent years, the way to evaluate the fluency of statements has been constantly
developed, such as BertScore [2], BartScore [3], etc. However, these evaluation
method mainly focus on the assessment of sentence coherence, ignoring other
significant aspects including emotional intensity. At present, the most reliable
evaluation of dialog systems is still based on manual evaluation, which is time-
and cost-intensive, and is not suitable for large-scale applications in scientific
research.

In addition, how to evaluate the performance of an empathetic dialogue sys-
tem is also an urgent problem. Train on conversations from different speak-
ers, existing empathetic dialogue systems ignore the individual differences of
expressing emotions, which may lead to inconsistent emotional interactions and
disinterest users, because they may still feel that they are talking with a cold
machine [4]. Mehrabian [5] showed that personality, such as the “Big Five person-
ality” model [6], can also be expressed as temperament in the Valence-Arousal-
Dominance (VAD) space for emotions [7]. This finding shows that different per-
sonalities have different effects on emotional expressions. For example, when
feeling happy, extroverts may shout out, while introverts may only smile; At
the same time, emotional expressions will also be affected by the Context. If a
person’s mood is very happy, the negative emotional response generated in the
process of talking with others will be weakened, while the positive emotional
response will be enhanced. Inspired by these works and phenomena, we propose
a dialogue emotion evaluation method which is affected by personality. The sen-
tence is modified by personality and Context, so that it can judge the emotional
expression intensity of the sentence when it can perceive personality and context.

To be specific, our evaluation method analyzes the speaker’s personality
firstly, modifies the utterances based on personality, then models the emotional
state in the conversation, considers the speaker’s emotional change in the conver-
sation, and finally calculates the intensity of emotional expressions. In addition
to the assessment of emotional intensity, we also put forward the assessment of
the fluency and coherence of dialogues at the sentence and session levels.

To sum up, the main contributions of our paper are as follows: (1) We pro-
pose PCDialogEval, a dialogue evaluation method that incorporates psycho-
logical concepts to measure the intensity of emotional expression and contex-
tual awareness of personality. The method accounts for the speaker’s personal-
ity and simulates the mood state of the conversation context to calculate the
emotional expression intensity of the utterance. (2) Additionally, it evaluate dia-
logue fluency and coherence at both the independent sentence and session level.
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(3) Experiments on the MELD and PERSONA-CHAT datasets demonstrate
the effectiveness of our evaluation method, highlighting its superiority over tra-
ditional approaches in measuring the quality of emotional dialogue with respect
to multiple aspects of personality and context.

2 Related Work

2.1 Dialogue Evaluation

Evaluating dialogue systems is a challenging task that has received significant
attention in research. Evaluation is a crucial aspect of dialogue system develop-
ment, aiming to provide an automated and repeatable process that can distin-
guish various dialogue strategies and identify critical features of the system [8].
Traditional evaluation methods involving human assessments and questionnaires
are time-consuming and costly, thus necessitating the development of automatic
dialogue evaluation. Existing automatic evaluation metrics, such as BLEU [1],
mainly focus on comparing the similarity between candidate and reference sen-
tences but fail to capture the diversity of words and structures that convey
meaning. Therefore, there is a need for developing a reference-free automatic
evaluation metric that aligns well with human intuition.

2.2 Emotion Model

Two main categories of models have been proposed to simulate the relationship
between different emotions: Dimensional Affective Models and Discrete Affective
Methods. Dimensional models are based on the assumption that affect has inher-
ent continuity and project emotions onto several dimensions for representation.
The widely used VAD affective model represents Valence (pleasure), Arousal
(emotional intensity), and Dominance (control). Dimensional models emphasize
conscious experience or emotional phenomenology, whereas there are hypothe-
ses that there are patterns of discrete or interactive emotions in the conscious
brain [9–11]. Discrete models propose several basic discrete emotions on which
complex emotions form [12], of which the most universal six items [13,14] include
anger, aversion, fear, happiness, sadness, and surprise. However, there are many
types of discrete models, including those with eight, five, or ten basic emotions.
A hybrid model also exists that combines discrete emotions with positive and
negative dimensions to represent emotion intensity.

3 Methodology

In this paper, we propose a novel dialogue evaluation method to assess the
quality of dialogue in multiple dimensions, including the influence of persona
and contexts, the intensity of emotional expression, and the coherence. We will
start with the preliminary knowledge of personality and the impact of personality
on emotional expression, and subsequently provide the technical details of the
evaluation method that we propose.
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3.1 Preliminaries

Personality. Personality is a synthesis of all the traits -behavioral, disposi-
tional, emotional, and spiritual -that characterize a unique individual. As we all
know, in addition to the semantic content, speech also conveys a lot of informa-
tion about the speaker, including the speaker’s personality characteristics, which
is one of the most basic differences between people. In recent years, researchers
have formed a relatively consistent consensus on the personality description
model, and the “Big Five” model of personality (OCEAN) is called a revolution
in personality psychology. Using lexicographic methods, five traits were found
to cover all aspects of personality description:

Openness: Openminded, imaginative, and sensitive.
Conscientiousness: Scrupulous, well-organized.
Extraversion: The tendency to experience positive emotions.
Agreeableness: Trusting, sympathetic, and cooperative.
Neuroticism: The tendency to experience psychological distress.
The “Big Five” model has become a standard in psychology over the past

50 years. There is evidence that personality interacts with and influences other
aspects of language production. Compared with pragmatic phenomena such as
emotions and opinions, personality is usually considered as a more long-term
and stable individual factor [15].

Personalities in the VAD Space. The “Big Five” personality characteristics
are widely used in psychological analysis. Mehrabiana [5]uses the temperament
model fitted by statistical analysis to represent the corresponding relationship
between the “Big Five” personality characteristics O, C, E, A, N and VAD
emotional dimensions:

V = 0.21E + 0.59A + 0.19N ,
A = 0.30A − 0.56N + 0.15O,
D = 0.60E − 0.32A + 0.25O + 0.17C.

(1)

Emotions in the VAD Space. Our evaluation method uses six basic emo-
tions: surprise, fear, sadness, joy, disgust and anger. Referring to the pre-
vious research results [16], the basic emotions can be projected into the Valence-
Arousal-Dominance (VAD) space, as shown in Table 1. The VAD space indicates
emotion intensity in three dimensions, in which the valence represents positiv-
ity/negativity, arousal represents excitement/calmness, and dominance repre-
sents powerfulness/weakness. As for the utterances without obvious emotion,
we use neutral with (0.00,0.00,0.00) as the VAD vector.

Personality Effects on Emotions. Emotions reflect an individual’s psycho-
logical state when interacting with people or environment [17], which is a com-
plex psychological experience. The VAD emotional model uses three dimensions
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Table 1. Emotions in the VAD space

Basic Emotions (Valence, Arousal, Dominance)

Surprise (0.40,0.67,–0.13)

Fear (–0.62,0.82,–0.43)

Sadness (–0.63,–0.27,–0.33)

Joy (0.81,0.51,0.46)

Disgust (–0.60,0.35,0.11)

Anger (–0.51,0.59,0.25)

Neutral (0.00,0.00,0.00)

to provide a comprehensive description of emotional states. In the past, some
psychologists have studied the relationship between human affective factors and
personality factors, but most of them are rule-based and probability-based mod-
els. Mehrabian [5] used the “Big Five” Personality Theory [18] to derive a VAD
emotional model through linear regression analysis. Since then, VAD models
have been widely used to design emotional interaction robots [17,19], where
predefined personality of the robot affects its propensity to simulate emotional
switching.

Based on the theories analyzed above, Ball [20] uses Bayesian network to
encode emotional and personality models to generate empathetic behaviors or
verbal responses in conversations. Han et al. [17] applies the five personality
factors to a 2D model (pleasure-wake) to represent the emotional model of a
robot. Masuyama et al. [19] use an affective associative memory model to allow
the robot to express emotions. Although there have been some studies in the field
of natural language processing using VAD space to simulate emotions [21–23],
the impact of personality on emotions in conversation still needs to be further
explored.

3.2 Our Methods

Personality Analysis. With the help of previous work, we use the person-
ality recognition model [26] to analyze and calculate the speaker’s “Big Five”
personality vector. The model uses the word features marked in the LIWC dic-
tionary [27] and the MRC language psychology database [28] to conduct a pre-
liminary assessment of the five dimensions of personality characteristics in the
word-segmented text, and then uses regression and ranking models to evaluate
the accuracy of personality recognition. After optimization, a five-dimensional
OCEAN vector is finally obtained as a personality feature. The approach to the
model can be summarized in four steps:

Step 1: To collect personal corpus.
Step 2: To collect relevant personality ratings for each participant.
Step 3: To extract relevant features from the text, find and calculate LIWC

and MRC features of sentences and words.
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Step 4: To construct a statistical model of personality score based on char-
acteristics, the input is the linguistic psychological characteristics of the text,
and the output is personality score.

The output recognizes the personality as a five-dimensional vector, and
obtains a score in the interval (0, 7) for each dimension.

Sentence-Level Emotional Expression Intensity. Personality affects how
people express themselves and experience emotions. Different personalities
respond differently to the same thing, with varying emotional expression.
Researchers study the relationship between personality traits and emotional
responses to better understand this. By incorporating personality into emotional
response modeling, we can gain insights into how people with different personal-
ities react to the same thing. Mehrabiana used statistical analysis and fitting to
obtain the corresponding relationship between the emotional dimension of VAD
and different personality traits [5] as Eq. (1).

The average score of each dimension of the population obtained from the
“Big Five” personality scale is used as the reference point of each dimension,
the position of the reference point is taken as the neutral point, and the part
beyond the neutral point is taken as the factor affecting the VAD emotion. The
emotional corresponding vector formula after personality modification is:

êp = ê + ê∗
p, (2)

[ΔE,ΔA,ΔN,ΔO,ΔC] = [E,A,N,O,C] − [Ē, Ā, N̄ , Ō, C̄] (3)

ê∗
p =

⎡
⎣

0.21 0.59 0.19 0 0
0 0.30 −0.56 0.15 0

0.60 −0.32 0 0.25 0.17

⎤
⎦ ·

⎡
⎢⎢⎢⎢⎣

ΔE
ΔA
ΔN
ΔO
ΔC

⎤
⎥⎥⎥⎥⎦

(4)

where êp is the emotional response vector obtained after the correction of the
“Big Five” personality factors; ê∗

p is the modification value of the “Big Five”
personality factors in the three dimensions of V, A, and D; Ō, C̄, Ē, Ā, N̄
represent the average scores of the population on the five dimensions obtained
from the “Big Five” personality scale, which are 0.70, 0.73, 0.61, 0.60, and 0.60,
respectively. Take these as a neutral level of human personality.

Next, the calculation of emotional expression intensity is carried out. Since
the VAD emotional space is not a uniform Euclidean space, the Euclidean dis-
tance cannot be directly used to measure the intensity of emotion. Therefore, a
calculation formula of emotional intensity suitable for VAD emotional space is
proposed:

Êp =
{‖êp‖ | cos θ|/ ‖ês‖ , Ê > 0

0, Ê � 0
(5)

where Êp is the emotional intensity that corresponds to êp, ês is the reference
emotional vector, and cos θ is the cosine value of the angle between êp and ês.
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Session-Level Emotional Expression Intensity. In everyday life, people’s
moods can impact how they react emotionally to external stimuli. Emotions
accumulate and affect one’s overall state of mind. We have explored using mood
state to modify emotional vectors and incorporating personality information. By
doing so, we can better understand how personality and mood can interact with
emotional states to impact overall emotional experience. We define the update
state equation of the mood as follows:

êpm = ϕmk + êp (6)

mk+1 =

{
m0, k = 0

γ
e‖m0‖ êp +

(
1 − γ

e‖m0‖
)
mk, k > 0

(7)

where γ is the influence coefficient of ep on mk, γ = 0.2.
Similarly, after modifying the emotion vectors using contextual information,

the following formula is used to calculate the emotion intensity calculation for-
mula of the VAD emotion space:

Êpm =

{
‖êpm‖ | cos θ|/ ‖ês‖ , Ê > 0
0, Ê � 0

(8)

where Êpm is the emotional intensity corresponding to êpm, ês is the reference
emotional vector, and cos θ is the cosine value of the angle between êpm and ês.

Sentence-Level Coherence Evaluation. In some natural language genera-
tion tasks, assessing the quality of generated responses using the BLUE score
is not possible due to the lack of reference sentences. To overcome this, we use
an automatic scoring method to measure the fluency of generated sentences.
This method is similar to the perplexity and BARTScore evaluations [3], pro-
viding a more reliable means of evaluating the performance of natural language
generation models:

S = −
L∑

i=1

1
L

log p (yi | y<i, θ) (9)

where yi denotes the ith token in the generated response, θ stands for the lan-
guage model, which is a fine-tuned GPT-2 [24] in our experiments; L is the
sequence length.

With such a score, we can properly measure the response quality when BLEU
score [1] is no longer applicable as the metric for evaluating dialogue response
quality.

Session-Level Coherence Evaluation. In addition to sentence-level response
quality, it is also important to measure the coherence of sentences throughout
the session. Therefore, we use the session-level score to explore inter-sentence
coherence in the whole dialogue.
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Inspired by the next sentence prediction task [25], we construct a binary clas-
sification model to predict whether the interactions between adjacent sentences
in a dialogue are coherent or not. Consider a continuous session consisting of the
sentence ut and its corresponding response rt, and the next sentence ut+1. We
suppose the dialogue turns such as [ut,rt] and [rt,ut+1] are coherent in nature.
We randomly select a response r∗ to construct negative samples to train a binary
classification to evaluate session-level correlations. After building the binary clas-
sifier, we use the average score (softmaxed confidence) of all [ut,rt] and [rt,ut+1]
pairs in a session as the session-level score.

The session-level score can be used as an evaluator to measure the fluency
of the whole session, that is, the session-level score evaluates the overall quality
of sentences and responses at each turn. Therefore, such a score can be used to
evaluate the performance of dialogue systems.

4 Experiments

4.1 Datasets

PERSONA-CHAT is a dataset consisting of conversations between randomly
paired crowdworkers, each of whom is asked to play a given role (created by
another group of crowdworkers), communicate naturally in the conversation,
and get to know each other, resulting in interesting and engaging dialogue.
The PERSONA-CHAT dataset contains 10,981 dialogues and 164,356 sentences.
Each character in the dataset has a personality description (persona) of more
than five sentences for personalized dialogue generation.
MELD is a collection of scripts from the TV series “Friends”, containing daily
dialogues with rich themes. The emotion labels include neutrality and Ekman’s
six basic emotions [29], namely happiness, surprise, sadness, anger, disgust, and
fear.

4.2 Implementations

Baseline Models. A variety of excellent models were selected as baseline
models: (1) Seq-2Seq [30] is a simple generation-based method that has been
widely used in dialogue generation tasks. (2) HRED [31], a hierarchical encoder-
decoder network, performs well due to its context modeling capability. (3)
ReCoSa [32] employs self-attention to measure the correlation between response
and dialogue history and achieves state-of-the-art performance on benchmark
datasets. (4) TTransfo [33], proposed by the Huggingface team, is the first-
place solution for automatic evaluation in the ConvAI2 competition, obtained
by fine-tuning a pre-trained language model GPT on personalized dialogue data.
(5) LIC [34], proposed by the Lost in Conversation team, is the first-place solu-
tion for human evaluation in the same competition, using a multi-input model
that utilizes the encoder-decoder structure with GPT initialization parameters.
(6) AR [35] is an encoder-decoder architecture similar to the full version of the
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Transformer architecture. It incorporates context and persona embeddings of
the corresponding speaker and concatenates persona key-value pairs of the tar-
get sequence into another sequence, which are then fed into the same encoder
and decoder.

Automatic Metrics. (1) PPL is a language model quality metric that esti-
mates the probability of a sentence based on each word and normalizes it by
sentence length. Lower values indicate more coherent sentences. (2) BLEU [1] is
used to calculate the similarity between generated responses and gold responses,
commonly used in NLP tasks. Higher values indicate better results. (3) Dist-
n [36] measures text diversity by the proportion of non-repeated n-grams to total
n-grams. This paper employs Distinct-2 (Dist-2) to assess model diversity.

Proposed Evaluation. For Emotional Expression Intensity, we first calcu-
late Sentence-level Emotional Expression Intensity and Session-level Emotional
Expression Intensity on MELD and PERSONA-CHAT data sets respectively.
After completing the calculation, we count their average and maximum emo-
tional expression intensity, and conduct extensive case studies, which will be
discussed in detail later. For the sentence-level score, we use a GPT-2 model
and fine-tune the model using the dataset to be tested for special token learning.
For the session-level score, we use a BERT-base model as the binary classifi-
cation model and use the average softmax logits. For the sentence-level scores,
we use a GPT-2 model and fine-tune the model using the data set to be tested
for special token learning. In the implementation, we set the batch size to 32,
trained the score model for 10 epochs with the learning rate of 1e-4, and added
early stopping to prevent over-fitting.

Human Evaluation. For metrics without references, human evaluation is still
the most reliable. Therefore, we designed corresponding human evaluation for
emotional expression intensity and fluency evaluation respectively. Five human
annotators are employed to score 100 test examples for each dataset from five
aspects:

Sentence-level Emotional Expression Intensity: annotators need to observe
separated utterances and, based on the speaker’s personality, give a sense of how
emotionally intense the utterance is.

Session-level Emotional Expression Intensity: annotators read the entire
conversations and give the intensity of emotional expression they feel for each
utterance based on the personalities and interactions of the speakers.

Fluency: measures whether the response is fluent and human-like, to match
our sentence-level coherence evaluation, the rating scale ranges from 0 to 4
(higher scores indicating better results);

Coherency: measures whether the response is coherent with the dialogue
context; to match our session-level coherence evaluation, the rating scale ranges
from 0 to 1;
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Consistency: measures whether the response is consistent with the target
persona, rating scale ranges from 0 to 5.

4.3 Result Analysis

Automatic Evaluation. We calculate the automatic metrics on the baseline
models for two datasets, PERSONA-CHAT and MELD, respectively. The results
are shown in Table 2.

Table 2. Results of automatic metrics

PERSONA-CHAT MELD

Models PPL BLEU Dist-2 Models PPL BLEU Dist-2

LIC – 1.97 0.248 Seq2Seq 108.29 1.34 2.13

TTransfo 17.87 2.08 0.273 HRED 121.51 1.17 1.55

AR 15.84 2.15 0.270 ReCoSa 114.19 2.11 2.57

From the results in Table 2, the BLEU scores of the baseline models on the
two datasets are relatively close, while the PPL scores and Dist-2 scores of the
PERSONA-CHAT based model are generally lower than those of the MELD-
based model. This is most likely due to the source of the dataset, PERSONA-
CHAT is crowdsourced by humans, and the generated sentences are more mun-
dane and homogeneous in composition than the MELD extracted from the TV
series.

Proposed Evaluation. We calculate the average and maximum emotional
expression intensity on MELD and PERSONA-CHAT, as for human evalua-
tion, annotators rate the emotional intensity of separated sentences, or sentences
in a whole conversation, and the average of all annotators’ scores are used as
Sentence-Avg. and Session-Avg., the results are shown in Table 3.

Table 3. Statistical data of emotional expression intensity

Datasets MELD PERSONA-CHAT

Sentence-level Avg. 2.36 1.06

Max 13.41 9.60

Session-level Avg. 10.44 1.46

Max 119.26 40.71

Human Evaluation Sentence-Avg. 2.77 1.35

Session-Avg. 16.53 1.57

As seen in Table 3, the emotional expression intensity of MELD is higher
than that of PERSONA-CHAT. The possible reason is that MELD is collected
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from the comedy “The Big Bang Theory”, in which the dialogue emotions are
rich and the expressions are exaggerated. While PERSONA-CHAT comes from
the chit-chat of crowdsourcing workers, there are no fixed topics and emotions,
so the overall emotional expression intensities are relatively low.

The sentence-coherence and session-coherence scores of MELD and
PERSONA-CHAT, as well as the relative human evaluation scores are shown in
Table 4. In this part, human annotators rate the extracted dialogues on Fluency,
Coherency, and Consistency. We collect all human ratings and take the average
as the final result of human evaluation.

Table 4. Results of different datasets under sentence-score and session-score

Metrics MELD PERSONA-CHAT

Our Evaluation Sentence-Score 2.80 3.35

Session-Score 0.72 0.94

Human Evaluation Flu. 2.77 3.27

Coh. 0.72 0.92

Con. 4.23 3.9

As seen in Table 4, the sentence coherence score of PERSONA-CHAT is 3.35,
0.55 higher than MELD, and the session coherence score is 0.94, 0.22 higher than
MELD. PERSONA-CHAT performs better than MELD in both metrics, with
more fluent sentences and more coherent sessions.

We calculate the Pearson correlation between the above metrics and the
human evaluation. Since the scale of each metric is different, we use the
Avg./Max of each metric as the attribute value to measure the correlation, and
the results are shown in Table 5.

Table 5. Pearson correlation with human judgments on PERSONA-CHAT and MELD
datasets

Metrics PERSONA-CHAT MELD

PPL 0.81 0.75

BLEU 0.78 0.68

Dist-2 0.84 0.87

Our Evaluation 0.95 0.91

The results show that the Pearson correlation coefficient between the pro-
posed metric and human evaluation is 0.91 on the MELD dataset, and 0.95 on
the PERSONA-CHAT dataset, both higher than the automatic metrics on the
baseline models. The correlation coefficients show that our methods are highly
correlated with human evaluation results.
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5 Conclusion

In this paper, we propose PCDialogEval, an innovative evaluation model for
assessing the quality of generated conversations. Our approach incorporates psy-
chological concepts to evaluate dialogue systems, leveraging the speaker’s per-
sona to modify the emotion vector in the Valence-Arousal-Dominance (VAD)
space and employing the mood transfer equation to model the conversation con-
text to measure the intensity of emotional expression in the conversation. More-
over, PCDialogEval assesses fluency and coherence at both the sentence and
session levels, based on the dialogue itself. Through experiments conducted on
two datasets, our method demonstrates significant effectiveness in terms of per-
sona and contextual awareness, offering a novel and efficient evaluation approach
for emotional dialogue.
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Abstract. The Three-River-Source region is a highly significant nat-
ural reserve in China that harbors a plethora of botanical resources.
To meet the practical requirements of botanical research and intelligent
plant management, we construct a dataset for Plant detection in the
Three-River-Source region (PTRS). It comprises 21 types, 6965 high-
resolution images of 2160 × 3840 pixels, captured by diverse sensors and
platforms, and featuring objects of varying shapes and sizes. The PTRS
presents us with challenges such as dense occlusion, varying leaf resolu-
tions, and high feature similarity among plants, prompting us to develop
a novel object detection network named PlantDet. This network employs
a window-based efficient self-attention module (ST block) to generate
robust feature representation at multiple scales, improving the detec-
tion efficiency for small and densely-occluded objects. Our experimental
results validate the efficacy of our proposed plant detection benchmark,
with a precision of 88.1%, a mean average precision (mAP) of 77.6%,
and a higher recall compared to the baseline. Additionally, our method
effectively overcomes the issue of missing small objects.

Keywords: Object Detection · Plant Recognition · Transformer

1 Introduction

The Three-Rivers-Source region is located in the hinterland of the Qinghai-Tibet
Plateau, in the southern part of Qinghai Province. It is the largest nature reserve
in China, containing extremely rich wild plant resources. In recent years, the
conservation of flora and fauna in the Three-Rivers-Source region has become a
focus of attention. However, due to its remote geographical location, underdevel-
oped information technology, people’s awareness of vegetation protection in the
Three-Rivers-Source region is relatively low. Therefore, conducting a survey of
plant resources in the Three-Rivers-Source region, especially in plant detection,
is of great significance for achieving intelligent plant management and protection.
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In recent years, with the rapid development of artificial intelligence and com-
puter vision, many convolutional neural network models based on deep learn-
ing,such as AlexNet [1], ResNet [2], and VGGNet [3], have emerged. They have
propelled the development of object detection algorithms. The introduction of
algorithms such as SSD [4], YOLO series [5–10], and the algorithms based on the
R-CNN [11], has expanded the promotion and application of object detection
in the agricultural field. Numerous experimental results have shown that algo-
rithmic models based on convolutional neural networks perform well in plant
recognition research. Therefore, utilizing artificial intelligence and deep learning
technology to detect plants in the Three-Rivers-Source region is feasible.

In essence, we have made the following contributions:

– We collected 6965 plant images of 21 categories from the Three-River-Source
region, and manually annotated them to establish a large-scale dataset called
PTRS for plant detection. This dataset lays the foundation for precise and
modern plant detection in the Three-River-Source region.

– We proposed a novel object detection benchmark called PlantDet on PTRS
to tackle the challenges of uneven leaf sizes and high feature similarity of
diverse plant species. This method consists of three parts: Backbone, Neck,
and Head. We introduced an efficient self-attention module based on slid-
ing windows to enhance the feature extraction ability of the backbone and
obtained robust feature representation of different scales through efficient fea-
ture fusion strategies.

– Experimental results on PTRS demonstrated that our benchmark (PlantDet)
surpasses the baseline (YOLOv5), achieves a precision of 88.1% and mAP of
77.6%, and mitigates the problem of missed detection and false positives for
small objects.

2 Related Work

2.1 Object Detection

Compared to image classification, object detection not only identifies the cate-
gory of various objects in the image but also determines their location. Object
detection can be divided into two types: one is the two-stage algorithm repre-
sented by R-CNN [11]. The principle of such methods is to generate candidate
boxes, search for prospects, and adjust bounding boxes through specialized mod-
ules. Although this candidate region-based detection method has relatively high
accuracy, it runs slowly and does not meet the demand for real-time detection.

To tackle the crucial issue of slow detection speed, one-stage object detection
algorithms such as SSD and YOLO series algorithms have emerged. They con-
sider the detection task as a regression problem and directly classify and locate
objects in the image through a single neural network. Due to the usage of a single
network, they are relatively faster and can meet the real-time detection require-
ments in the industry. The YOLO series of algorithms have been widely applied
in the agricultural field such as detecting diseases and pests [12], maturity [13],
and growth stages [14], among others.



168 H. Li et al.

2.2 Visual Transformer

In 2017, the Google research team proposed the transformer architecture based
on the self-attention mechanism, which achieved tremendous success in the field
of natural language processing. The rapid development of the transformer in
natural language processing has attracted widespread attention in the field of
computer vision. The advantage of a transformer lies in its explicit modeling of
long-range dependencies between contextual information, so many researchers
have attempted to apply the transformer to computer vision in order to enhance
the overall perceptual ability of images. In 2020 Carion et al. [15] proposed the
first end-to-end transformer-based object detection model. That same year, the
proposal of the image classification model ViT [16] led to the rapid development
of visual transformers.

Today, the visual transformer is widely used in various computer vision fields,
such as image classification, object detection, image segmentation, and object
tracking. So far, many algorithm models based on the visual transformer have
emerged: 1) Transformer-based object detection and segmentation models, such
as Swin Transformer [17] and Focal Transformer [18] which replace CNN-based
backbone networks for feature extraction and combine classic object detection
and segmentation networks to complete detection and segmentation tasks; 2)
Transformer-based object tracking tasks, such as TrSiam [19] for single-object
tracking tasks, TransTrack [20] for multi-object tracking. The rapid development
of the transformer in computer vision is mainly due to its ability to extract
the relevance of contextual information to obtain global receptive fields, which
improves the performance of the model compared to CNN-based models.

3 Method

3.1 Overall Pipeline

Plant detection is an application of object detection technology in botany. A
deep learning-based task takes an image with plants as input and outputs the
plant’s category and bounding box location of its leaves. The Three-River-Source
region has diverse flora, to achieve real-time detection, we use YOLOv5 as the
baseline for the plant detection pipeline.

Having an efficient model structure is one of the most critical issues in design-
ing a real-time object detector. Our proposed method, PlantDet, uses CSPDark-
Net and CSPPAFPN composed of the same building units for multi-scale feature
fusion, and finally inputs the features into different detection heads. The over-
all model structure of PlantDet is shown in Fig. 1. PlantDet consists of three
parts: 1) Backbone: it mainly performs feature extraction in the main part and
effectively extracts crucial feature information of the feature map through down-
sampling; 2) Neck: this part consists of FPN [21] and PAN [22], respectively
performing upsampling and downsampling to achieve the transmission of object
feature vectors of different scales and fusion of multiple feature layers; 3) Head:
which is made up of three multi-scale detectors and performs object detection
on feature maps of different scales using grid-based anchors.
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Fig. 1. A pipeline of our one-stage plant detection methods (like the Y0LO series).

3.2 Detection Backbone

We use YOLOv5 as the baseline for the plant detection pipeline. YOLOv5 con-
sists of Input, Backbone, Neck and Head. The backbone (refer to Fig. 2(a))
mainly includes C3 and SPPF, where C3 consists of a CBS layer with x residual
connections for Concat operation, which improves the feature extraction ability
and retains more feature information. SPPF first performs the extracted feature
map for multiple maximum pooling operations, and then the results after each
maximum pooling are summed for Contact operation, i.e., feature fusion.

In response to the issue of difficult detection caused by varying distributions
of leaf sizes in different plants, severe occlusion, and high feature overlap, we
have introduced a sliding window module based on self-attention and embedded
it into the backbone (refer to Fig. 2) to obtain a robust feature representation
with multi-scale resolution.

Specifically, we have re-designed the C3 module in the YOLOv5 backbone,
which has the most significant impact on feature extraction. The C3 mod-
ule primarily acquires feature representation through two parallel convolution
branches and introduces residual connections, but does not consider modeling
global contextual information. Therefore, we have introduced a self-attention
module named “ST block” (refer to Fig. 2(c)) to obtain a global receptive field
and more robust representation.

The ST block includes sliding window operation with hierarchical design. It
consists of LayerNorm and a shifted window-based MSA with two layers of MLP.
Firstly, input features are normalized using Layer Normalization (LN) to expe-
dite model convergence. Subsequently, global feature representation is obtained
through the multi-head self-attention mechanism. Furthermore, the features are
further enhanced and their expression ability is strengthened through the use of
MLP. Finally, residual connection is employed for feature reuse. In addition, a
window mechanism is utilized to reduce the additional overhead resulting from
the calculation of self-attention matrices.

As is well known, Convolutional Neural Networks (CNNs) perform exception-
ally well in local feature extraction due to their inductive bias, while transformer
networks based on self-attention mechanisms are effective in modeling long-range
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Fig. 2. Backbone of our proposed PlantDet and details of the ST block. (a) Structure of
the original YOLOv5’s backbone. (b) Structure of our proposed PlantDet’s backbone.
(c) Details of the ST block in PlantDet. The specially designed ST block is used for
extracting global contextual information, mainly composed of W-MSA and SW-MSA,
for information exchange within and between windows, respectively.

global contextual information. Taking into account the superiority of both con-
volutional and self-attention mechanisms, we have designed a robust backbone
feature extractor for plant detection, as shown in Fig. 2(b). It consists of two C3
modules for local feature extraction and two ST blocks for global feature extrac-
tion. Finally, the SPPF module fuses the features extracted by both modules to
obtain a robust feature representation.

3.3 Loss Function

The task of object detection involves the regression of bounding boxes in addi-
tion to classification. Consequently, the training loss function comprises three
parts: 1) bounding box regression loss; 2) confidence prediction loss; 3) category
prediction loss. These three loss functions are jointly optimized to achieve the
goal of object detection

L = λ1Lreg + λ2Lobj + λ3Lcls, (1)

where λ1, λ2, λ3 represent the weights of the three loss functions, respectively.

Bounding Box Regression Loss. To account for the large variation in scale
among different plant leaves and to balance the impact of objects of different
sizes on detection performance, we use the Complete-IoU(CIoU) [23] to calculate
the bounding box regression loss

Lreg = CIoU = IoU − ρ2

c2
− αv, (2)
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where ρ, c, and v respectively represent the distance, the diagonal length and the
similarity of aspect ratio between the centers of the predicted and ground-truth
bounding boxes, and α represents the impact factor of v.

Confidence Loss. The loss function for confidence prediction is computed
by matching positive and negative samples. Firstly, it involves the predicted
confidence within the bounding box. Secondly, it uses the Intersection over Union
(IoU) value between the predicted bounding box and its corresponding ground-
truth bounding box as the ground-truth value. These two values are then used to
calculate the final loss for the confidence prediction, which is obtained through
binary cross-entropy

Lobj(po, piou) = BCEsig
obj(po, piou;wobj), (3)

where po and piou represent the predicted confidence and ground truth confi-
dence, respectively, wobj demonstrates the weight of positive samples.

Classification Loss. The category prediction loss is similar to the confidence
loss. It involves predicting the category score within the bounding box and using
the ground-truth one-hot encoding of the category for the corresponding ground-
truth bounding box. The category prediction loss is computed using the following
formula

Lcls(cp, cgt) = BCEsig
cls (cp, cgt;wcls), (4)

where cp and cgt represent the predicted values for the corresponding categories.

4 Experiments

4.1 Dataset

Data Collection. The research object of this experiment is the vegetation
in the grassland plots distributed in the Three-River-Source region. The plant
species image data were taken between July and August 2022 using a handheld
camera, approximately 20 cm away from the plot, and recorded at a certain
speed. After processing, 6965 grassland images were obtained, involving 21 plant
species. The plant images involved in the experiment and their corresponding
Latin names are shown in Fig. 3. These plants were all identified by experienced
experts in the field.

Data Annotations. 6965 images of 21 plant species involved in this exper-
iment were annotated by experienced experts in the field. Initially, the Make
Sense(https://www.makesense.ai/) labeling tool provided by YOLO was utilized
to generate label files containing information about plant categories and target
plant coordinates. Subsequently, the above data was organized into VOC format
datasets for Plant detection in the Three-River-Source region (PTRS). Finally,
PTRS was divided into training, validation, and testing sets in an 8:1:1 ratio. In
addition, comparing our dataset PTRS with other plant detection datasets, the
detailed comparison results of these existing datasets are shown in Table 1.

https://www.makesense.ai/
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Fig. 3. Samples and corresponding Latin names of our dataset for Plant detection in
the Three-River-Source region (PTRS).

Table 1. Comparison among PTRS (Ours) and other plant detection datasets in agri-
culture. “-” indicates that this metric is not revealed in the original paper.

Dataset Annotation way Classes Instances Images Image Size

AT [24] Oriented Bounding Box 1 1000 1000 410*410

GHLD [25] Horizontal Bounding Box 1 300 416*416

TDAP [26] Horizontal Bounding Box 1 5000

TFP [27] Oriented Bounding Box 1 814

GPSD [28] Horizontal Bounding Box 4 1200

PTRS (Ours) Horizontal Bounding Box 21 122300 6965 2160*3840

4.2 Implementation Details

Training Settings. The important training parameters for the model in this
experiment were set as follows: training epoch of 300, uniform resizing of input
images to 640 × 640 resolution, training batch-size of 32, an initial learning
rate of 0.01 with Stochastic Gradient Descent (SGD) optimizer. The model was
trained on a device with a GPU of 1xNVIDIA A100 and 80GB memory, and the
deep learning framework PyTorch was used for implementation.

Evaluation Metrics. In these experiments, Precision (P), Recall (R), and
mean of Average Precision (mAP@0.5) are used as evaluation metrics.

4.3 Ablation Studies

Transformer Backbone. To investigate the efficacy of self-attention mecha-
nisms and determine the optimal mechanism applicable to plant detection, we
conducted experiments using YOLOv5 as the baseline as shown in Table 2.
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Table 2. Ablation experiments of self-attention mechanisms.

Self-Attention Precision Recall mAP@0.5

Baseline 88.0 71.9 76.6

Baseline+MSA 86.1 66.2 72.1

Baseline+W-MSA 88.1 72.9 77.6

The MSA represents the original implementation of self-attention, whereas
the W-MSA is a window-based self-attention mechanism. The experimental
results demonstrate that compared to the model combined with MSA, the combi-
nation of W-MSA module yields better results on the PTRS dataset. Specifically,
the Precision, Recall, and mAP were improved by 2.0%, 6.7%, and 5.5%, respec-
tively. This improvement is attributed to the fact that the W-MSA is constructed
based on the image resolution hierarchy, which not only achieves feature connec-
tions across different windows but also enhances information exchange among
different windows, allowing for the extraction of more effective multi-scale fea-
ture information to exhibit superior detection performance.

Strategy for Combining Global and Local Modules. In the original
YOLOv5, the feature extraction network of the backbone consists of four C3
modules. We conducted ablation experiments to explore the impact of different
module combination strategies (C3 and ST block) on the detection results, and
the results are shown in Table 3.

Table 3. Ablation experiments of module combination strategies.

Number of Module Precision Recall mAP@0.5

C3 ST block

0 4 87.3 70.8 75.9

1 3 84.3 72.5 75.8

2 2 88.1 72.9 77.6

3 1 85.7 72.3 76.0

4 0 88.0 71.9 76.6

The results indicate that the best performance in feature extraction is
achieved by using two C3 modules and two ST blocks in the backbone. This
is because the C3 module based on the convolutional network can extract local
features, while the ST block based on self-attention can extract global features,
and the fusion of the two types of features can obtain a more robust feature
representation. Therefore, we use two C3 modules and two ST blocks for fea-
ture extraction, aiming to improve model performance while minimizing model
parameters and computation time complexity.
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5 Comparison with the State-of-the-Arts

Quantitative Comparison. We conducted experiments to quantitatively com-
pare PlantDet with currently popular object detection algorithms on our self-
made PTRS dataset. The results are shown in Table 4. The results indicate that
comparing to the baseline YOLOv5, the Recall and mAP of PlantDet increased
by 1%, and achieves SOTA results. The outstanding performance of PlantDet is
due to the robust detection backbone we have proposed, which integrates global
and local information to obtain a more robust multi-scale feature representation.
In addition, the numerical evaluation results of Precision, Recall and mAP of
baseline (YOLOv5) and PlantDet on the PTRS dataset are shown in Table 5.

Table 4. Quantitative comparison between our and existing models on the dat-aset.

Mothods Precision Recall mAP@0.5

SSD [4] 46.6 18.6 48.9

FCOS [29] – 71.8 57.4

CornerNet [30] 11.0 51.9 38.1

Fast R-CNN [31] – 40.0 56.3

YOLOF [32] – 69.7 54.6

YOLOv7 [10] 84.9 72.7 76.0

YOLOv5 88.0 71.9 76.6

PlantDet (Ours) 88.1 72.9 77.6

Qualitative Comparison. In order to further verify the superiority of our
proposed PlantDet for plant detection, we conducted qualitative experiments
to compare the detection performance of PlantDet and other models (FCOS,
YOLOv5 and YOLOv7). The specific visualization results are shown in Fig. 4.

Fig. 4. Visualization results on our PTRS dataset.
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Table 5. Numerical results of YOLOv5 and our PlantDet in 21 categories of our PTRS
dataset. Size represents the size of plant leaves, obtained by calculating the bounding
box size of all class instances. It can be easily observed that PlantDet enhances the
detection performance of small and medium-sized targets, and has a superior effect.

Plant Size YOLOv5 (Baseline) PlantDet (Ours)

Precision Recall mAP@0.5 Precision Recall mAP@0.5

01 Small 86.9 66.6 73.6 85.4 65.4 72.8

02 Medium 88.9 77.1 82.3 88.9 76.7 82.1

03 Medium 89.2 74.9 80.8 89.5 74.9 80.8

04 Large 90.7 75.7 81.5 88.6 76.3 81.8

05 Medium 85.5 66.4 70.3 82.4 63.8 70.2

06 Medium 87.7 73.6 78.0 82.5 74.3 77.2

07 Small 90.0 73.3 77.8 92.9 68.0 75.0

08 Large 95.5 77.9 81.1 96.2 77.0 79.1

09 Small 82.8 67.2 69.8 84.2 67.5 71.5

10 Small 87.7 72.7 81.3 98.8 90.9 90.6

11 Medium 93.5 76.3 81.1 92.3 75.2 81.9

12 Small 89.7 76.0 84.5 89.5 84.0 88.2

13 Medium 86.8 69.7 74.6 85.0 69.7 73.8

14 Medium 91.1 77.1 81.0 90.0 77.9 81.8

15 Small 77.2 53.4 57.6 73.2 55.1 59.6

16 Small 93.7 77.4 81.4 93.6 80.2 85.4

17 Small 82.6 68.2 69.7 81.7 68.1 70.7

18 Small 85.7 69.7 73.7 86.1 69.7 75.0

19 Large 79.8 66.7 66.0 80.4 61.9 63.7

20 Medium 93.3 86.0 92.7 97.3 86.0 89.7

21 Large 88.9 63.0 70.3 91.8 68.5 79.6

Avg – 88.0 71.9 76.6 88.1 72.9 77.6

The visualization results show that compering with other models, our Plant-
Det can effectively prevent the occurrence of missed inspections and reduce the
false detection rate while ensuring detection accuracy. In summary, our PlantDet
has better performance for plant detection in the Three-River-Source region, and
can meets the needs of botanical Studies and intelligent plant management.

6 Conclusion

To address the problem of varying leaf resolution, severe occlusion, and high
feature similarity in plant species, we proposed a novel object detection bench-
mark called PlantDet. Experimental results show that our PlantDet achieves
SOTA detection performance and effectively prevents false detection and missed
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detection. In addition, we construct a large-scale dataset for plant detection in
the Three-River-Source region, which provides data foundation and technical
support for the informatization of grassland resources and the construction of a
smart ecological animal husbandry new model of “reducing pressure and increas-
ing efficiency” for ecological protection of the Three-Rivers-Source region.
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MARA (CARS-37).
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Abstract. In neural architecture search, differentiable architecture search algo-
rithm has become one of the mainstream methods. However, no matter in the
search or evaluation stage, the architecture is repeatedly stacked by two kinds
of Cells, namely Normal Cell and Reduction Cell, respectively. This undoubt-
edly limits the performance of the evaluation architecture to a large extent due
to the architecture restriction, resulting in sub-optimal performance. In order to
alleviate the impact of architecture restriction on network performance, this paper
proposes to post-optimize the architecture searched by differentiable architecture
search algorithms by freezing the architecture parameters of partial Cells and
further searching other Cells to bring more diversity into the stacked Cells. The
proposed post-optimizing methods consist of the global post-optimizing search
method and the local post-optimizing search method, respectively. The perfor-
mance of the evaluation architecture can benefit from the diverse stacked Cells
with less architecture restriction. In the experiments, the proposed post-optimizing
method is applied to the mainstream differentiable architecture search algorithms
such as DARTS and P-DARTS, and superior results have been achieved on
CIFAR-10 and CIFAR-100 datasets. Moreover, the proposed method can obtain
the post-optimized architecture with limited computing resources.

Keywords: Deep Learning · Image Classification · Differentiable Architecture
Search · Neural Network Optimization

1 Introduction

Currently, neural architecture search (NAS) technology has been paid attention to the
fields of computer vision [1], speech recognition [2], etc. Among them, the architecture
search based on differentiable strategies stands out from various search algorithms by
virtue of the advantages of low search cost and easy implementation. The goal of theNAS
based on differentiable strategies is to search for two kinds of Cells, namely Normal Cell
and Reduction Cell, from the search space composed of various candidate operations,
and then generate the evaluation architecture by repeatedly stacking the searched Cells
[3]. Compared with the search algorithms of other strategies [4–6], the NAS based on
differentiable strategies can search for a more excellent architecture in a short time.
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Although differentiable architecture search has the advantage of low search time cost,
there are also some shortcomings that limit the performance of this method. The obvious
disadvantage is that the architecture can only be generated by repeatedly stacking the
searched Normal Cell and Reduction Cell, thereby bringing the reduction of network
performance caused by the serious architecture restriction.

In order to improve the shortcomings mentioned above, this paper proposes to
post -optimize the evaluation architecture searched by the differentiable architecture
search algorithms. The evaluation architecture built by the searched Cells is further
post-optimized by re-searching Cells with different structures, and then an evaluation
architecture formed by a variety of Cells can be generated. The proposed post-optimizing
method can not only alleviate the gap in the architecture search and evaluation stages,
but also break through the limitation that the evaluation architecture can only be stacked
repeatedly by Cells, making the searched architecture perform better.

The main contributions of the paper are as follows:

1. In order to alleviate the impact of repeatedly stacking of Normal Cell and Reduction
Cell on network performance, post-optimizing algorithms are proposed in this paper,
which can be further divided into the global post-optimizing algorithm and the local
post-optimizing algorithm. Among them, the global post-optimizing algorithm can
find a more optimized architecture, and the local post-optimizing algorithm can get
a better architecture in a short time.

2. In this paper, the global post-optimizing algorithm is performed based on the eval-
uation architecture searched by DARTS (first-order and second-order). Experiments
show that the test errors on CIFAR-10 are reduced from 3.03% and 3.06% to 2.54%
and 2.58%, respectively, and the test errors on CIFAR-100 are reduced from 17.76%
and 17.54 to 15.68% and 15.73%, respectively.

3. In this paper, the local post-optimizing algorithm is performed based on the architec-
ture searched by DARTS (first-order and second-order) and P-DARTS, respectively.
Experiments show that the test errors on CIFAR-10 are reduced to 2.66%, 2.63%,
and 2.43%, respectively, and the test errors on CIFAR-100 are reduced to 16.06%,
15.83%, and 15.66%, respectively.

The paper is organized as follows: Sect. 2 introduces related works. Section 3 intro-
duces the proposed post-optimizationmethod. In Sect. 4, the post-optimization strategies
proposed in this paper are experimentally verified. This paper is concluded in Sect. 5.

2 Related Work

In recent years, NAS has gradually received more attention as a new research direction.
Its goal is to find a way to automatically design the architecture to replace the original
human manual design method. Currently, the main popular neural architecture search
methods can be roughly divided into three categories, including reinforcement learning
based architecture search [4], evolutionary algorithm based architecture search [5] and
differentiable architecture search [3]. Among them, the first two methods dominated the
field of neural architecture search in the early days, but the search cost was extremely
high. This was followed by the method of differentiable architecture search, in which
the seminal work is DARTS [3].
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The contribution of DARTS is significant, and there also exists a series of improved
algorithms on the basis of DARTS. For example, to address the depth gap between the
architecture search and evaluation, P-DARTS [7] proposes to progressively increase the
depth of stacked Cells to alleviate this gap. In order to further reduce the computational
overhead of DARTS, PC-DARTS [8] designs a channel-based sampling mechanism.
There are also many redesigns of the search space to reduce the amount of calculation,
such as GOLD-NAS [9], etc.

In addition, FairDARTS [10] reveals the reason why large amounts skip connec-
tions prone to occur, and proposes to replace the Softmax with the Sigmoid function to
transform the candidate operation in the search stage from a competitive relationship
to a cooperative relationship. NoisyDARTS [11] injects noise into skip connections to
alleviate the enrichment of skip connections and poor architectural performance caused
by unfair competition to a certain extent. DARTS+ [12] found that early stopping can
be used to prevent excessive skip-connects, and proposed two early stopping strategies.

3 The Proposed Method

In the DARTS algorithm, the architecture under search is formed by stacking 8 Cells
consisting of Normal Cell and Reduction Cell. After the end of search process, the
searched Normal Cell and Reduction Cell are repeatedly stacked to form the evaluation
architecture. It is worth noting that both the search and evaluation architectures are
built by repeatedly stacking the Normal Cell and Reduction Cell in a series of DARTS
derived algorithms. Although the composition of this architecture is simple, it will limit
the performance of the network to a certain extent due to the architecture restriction. This
paper proposes to post-optimize the evaluation architecture searched by differentiable
architecture search algorithms to bring more diversity into the stacked Cells. In this
work, we propose two post-optimizing methods, called global post-optimizing search
and local post-optimizing search, respectively.

3.1 Global Post-optimizing Search

The goal of the global post-optimizing search is to search for a better architecture on
the basis of the evaluation architecture obtained by the differentiable architecture search
algorithm. In this section, we verified the proposed global post-optimizing search algo-
rithm by leveraging the evaluation architecture generated by the DARTS algorithm.
To bring more diversity into the stacked Cells, the global post-optimizing gradually
re-search the Cell from the beginning to the end of the evaluation architecture while
freezing the architecture parameters of other Cells of the architecture. The compositions
of the evaluation architectures before and after post-optimizing are shown in Fig. 1.

Figure 1(A) shows the architecture under search and evaluation in DARTS, and
Fig. 1(B) shows the architecture to be post-optimized and after post-optimization. Com-
pared with the way of repeatedly stacking Cells, the post-optimized architecture is com-
posed of Cells with different structures, and the architecture is more diverse. In short,
the global post-optimizing search proposed in this section is firstly to use the evaluation
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architecture generated by existed differentiable architecture search algorithm as the tar-
get to be post-optimized, and then gradually re-search the Cell in the target to obtain a
new architecture by further applying the search strategy on a pre-set search space, so as
to elevate the performance of the evaluation architecture.

2

2 

2 

Reduction
Cell

Normal
Cell

Normal
Cell

Reduction
Cell

Normal
Cell

Images

Softmax

Search Net.

Cell - 2

Cell - 1

Cell - 20

… …

Images

Softmax

Eval Net.

(A) DARTS (B) Global post-optimization

6 

6 

6 

Reduction
Cell

Normal
Cell

Normal
Cell

Reduction
Cell

Normal
Cell

Images

Softmax

Eval Net.

6

6 

6 

Reduction
Cell

Normal
Cell

Normal
Cell

Reduction
Cell

Normal
Cell

Images

Softmax

Search Net

Fig. 1. The global post-optimizing search.

It is worth noting that the depth and width of the architecture to be post-optimized
are set to the same settings as the final evaluation architecture. Based on the DARTS
algorithm, the depth of the network to be post-optimized consists of 20 Cells, and the
number of initial-channel of the network is 36. Since the architecture to be post-optimized
is already consistent with that of the evaluation architecture, this approach can further
bridge the gap between the architecture search and evaluation as known in the original
DARTS architecture search method.

Table 1. Algorithmic process of global post-optimizing search.

Global Post-Optimizing Search Algorithm
1. Obtain Cells searched by DARTS
2. Built the evaluation network with the searched Cells.
3. for first Cell to last Cell do:
4.     Freeze the architecture parameters of other Cells except for the post-optimized Cell.
5. while not converge do:
6. update network weights and architecture parameters.
7. end while
8.     /*Complete the optimization of the current Cell*/
9. end for

When post-optimizing, the architecture parameter of most Cells in the architecture
will be frozen, and only the specific Cell will be further post-optimized. By re-searching
the specific Cell, the new Cell obtained by the latest search will replace the original Cell
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at the same position. In this way, each Cell that constitutes the evaluation architecture is
post-optimized from the beginning to the end, which is called the global post-optimizing
search. The global post-optimization algorithm is shown in Table 1.

It is worth mentioning that when using the global post-optimization algorithm, there
is no need toworry about the pressure on computing resources. Also take the architecture
generated byDARTS as an example, although 20Cells are stacked and the initial channel
number is set to 36 when post-optimizing, the architecture parameters of most Cells
are frozen at each re-search, that is, the operations between nodes in these Cells are
deterministic, and only the Cell to be post-optimized needs to be re-searched, so the
GPUmemory overhead will not be too much. When only one Cell is optimally searched
at a time, the overhead of GPUmemory is within 16 GB, and the algorithm can be easily
deployed on common hardware platforms.

3.2 Local Post-Optimizing Search

Although the global post-optimizing search can improve the performance of the architec-
ture, the overhead in terms of search time is relatively large.We leveraged the architecture
searched by the DARTS (first-order and second-order) as the start-point for global post-
optimization, and collected the time overheads by conducting the global post-optimizing
search algorithm on NVIDIA GeForce RTX 3090 GPU twice. The time overheads are
shown in Table 2.

Table 2. The time overhead for global post-optimizing search.

Search Algorithm DARTSv1 DARTSv2

Total optimization time
(GPU-hours)

8.5 8.0

8.9 7.6

Among them, DARTSv1 and DARTSv2 mean that we use DARTS first-order search
algorithm and DARTS second-order search algorithm for re-searching the specific Cell
in the global post-optimizing search, respectively. It can be seen that if the global post-
optimizing search is adopted, it means that the user needs to invest more additional
post-optimizing search time. Therefore, in order to post-optimize the architecture more
efficiently, a local post-optimizing search algorithm which only re-searches a very small
number of Cells is proposed in this section, and the architecture performance can also be
improved but requires a much shorter time. However, the local post-optimization needs
to consider which part of the architecture should be post-optimized to better improve
the network performance. To this end, this paper explores the Cell locations that are in
the front, middle, and rare of the architecture to determine which Cells are suitable for
post-optimization on the basis of the DARTS algorithm. To pursuit the efficiency, we
only re-search two Cells in the local post-optimizing search. The exploited locations are
shown in Fig. 2, in which the first two Cells of the extracted image features are called
the front (denoted as f2), the middle two Cells are called the middle (denoted as m2),
and the last two Cells are called the rear (denoted as r2).
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To verify which Cells after post-optimization can improve the performance of the
architecturemore effectively, this paper sets up experiments for post-optimizing the front,
middle and rear Cells, respectively. Local post-optimizing search is firstly to freeze the
architecture parameters of other parts of the architecture other than the Cell to be post-
optimized, and then perform re-search for the specific Cells. The difference between
the local post-optimizing search and the global post-optimizing search is that the local
post-optimizing search does not need to re-search every Cell in the architecture, but only
post-optimizes the Cells in the front, themiddle, or the rear of the evaluation architecture.
In the experiments, we found it better to post-optimize the Cells in the front mainly due
to the vital role in the feature extraction at the early layer, and we call it front local
post-optimizing algorithm. By local post-optimizing, the search time can be shortened
to a large extent, and the performance of the optimized architecture is comparable to the
global optimization in accuracy.
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Fig. 2. Post-optimizing exploration for Cells in the front, middle, and rare of the architecture.

4 Experiments

In this section, we first introduce the experimental setup, then verify the effectiveness
of the global post-optimizing search and the local post-optimizing search, and finally
compare with the state-of-the-art methods on CIFAR-10 and CIFAR-100 datasets.

4.1 Experimental Setup

In order to verify the effectiveness of the proposedmethod, the datasets used in the exper-
iment are CIFAR image classification datasets, including CIFAR-10 and CIFAR-100,
and the differentiable architecture search algorithms used are DARTS and P-DARTS. It
is consistent with DARTS and P-DARTS in terms of dataset processing.Whether search-
ing on CIFAR-10 or CIFAR-100, the training set is equally divided into two subsets, one
for optimizing network parameters and the other for optimizing architecture parameters.

In the post-optimizing search algorithms, the candidate operation category is consis-
tent with DARTS and P-DARTS, and there are a total of 8 candidate operations including
zero operation. In terms of network configuration, the architecture consists of 20 Cells,
and the initial number of channels is set to 36. The neural architecture parameters use the
Adam optimizer with learning rate= 0.0006, weight decay= 0.001, and momentum=
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(0.5,0.999). During the global post-optimizing search, we performed the post-optimizing
search on each of the Normal Cells from the beginning to the end. When performing
the local post-optimizing search experiments, we conduct post-optimizing searches for
different partition Cells of the architecture. For the post-optimizing search of Cells, we
set the epoch to 15 and the batch size to 96. Furthermore, in order to accelerate the
post-optimization, we use the first-order approximation for parameter optimization.

When evaluating the architecture on CIFAR-10 or CIFAR-100, we use the standard
training set/test set split for the dataset. The evaluation architecture consists of 20 Cells,
the number of initial-channels is set to 36, the batch size is 128, and the standard SGD
optimizer is used. For CIFAR-10 and CIFAR-100, the weight decay is set to 0.0003 and
0.0005 respectively, the momentum is 0.9, the initial learning rate is 0.025 and decays
to 0 according to the cosine rule, and a total of 600 epochs are trained from scratch.

4.2 Experimental Results and Analysis Based on DARTS

For the architecture searched by the DARTS algorithm on CIFAR-10, we perform a
further global post-optimizing search on the corresponding dataset, and generate the
evaluation architecture. In order to verify the transferability of the post-optimized archi-
tecture during the evaluation process, we also evaluate it on CIFAR-100, and compare
the test error of the architecture before and after post-optimization on the corresponding
dataset, as shown in Table 3.

Table 3. Comparison of the evaluation results before and after the global post-optimizing search
(GOS) of the architecture searched by DARTS.

Architecture Test Err. (%) Params (M)

CIFAR-10 CIFAR-100

DARTS (first order) 3.03 17.76 3.16

DARTS (second order) 3.06 17.54 3.36

DARTS (first order) + GOS 2.54 15.68 3.37

DARTS (second order) + GOS 2.58 15.73 3.20

Among them, GOS represents the global post-optimizing search algorithm proposed
in this paper. On the NVIDIA GeForce RTX 3090 GPU, the total search time cost of
the global post-optimizing search algorithm is within 9 h. From the results in Table 3, it
can be concluded that the test errors of the obtained architectures on CIFAR-10 can be
reduced to 2.54% and 2.58% by applying the global post-optimizing search algorithm
based on the DARTS first-order and DARTS second-order methods, respectively. In
order to verify the transferability of the post-optimized architecture, we evaluated it on
CIFAR-100, and the test errors can be reduced to 15.68% and 15.73%, respectively. It
can be seen that the global post-optimizing algorithm proposed in this paper can greatly
improve the performance of the evaluation architecture.
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In order to illustrate the difference between the evaluation architecture before and
after the global post-optimization, we draw a schematic diagram of the Normal Cell
obtained by the DARTS (first-order) search algorithm and partial re-searched Cells after
the global post-optimization. Among them, Fig. 3(A) is the Normal Cell obtained by
DARTS (first-order) search, and Fig. 3(B) shows partial post-optimized Cells after the
global post-optimization.Due to the limited space, hereweonly draw twopost-optimized
Cells for comparison. By comparing Cells before and after post-optimization, it can be
found that the connections in the post-optimized Cells are deeper than those before post-
optimization, and the operations between nodes are more complex and diverse. In terms
of the performance, the accuracy of the post-optimized evaluation architecture is much
higher.

Fig. 3. The schematic diagram of Cells before and after the global post-optimization on the basis
of the DARTS (first-order).

In addition, in order to shorten the post-optimization time of the architecture, this
paper validates the local post-optimizing search algorithm through experiments. After
we obtained the architecture by using the DARTS (first-order) on CIFAR-10, we only
post-optimized the Cells in the front, middle, and rear of the architecture, and then
evaluated it on CIFAR-10 and CIFAR-100, respectively. The results are shown in Fig. 4.

Among them, Fig. 4(A) and Fig. 4(B) show the evaluation results of the architecture
by applying the local post-optimizing the Cells in the front, middle, and rear of the archi-
tecture based on the first-order and second-order search algorithms of DARTS, respec-
tively. The blue histogram represents the performance of the architecture on CIFAR-10
before and after local post-optimization of different parts of Cells. The orange histogram
is to verify the transferability of the post-optimized architecture, that is, the performance
on CIFAR-100. On an NVIDIA GeForce RTX 3090 GPU, the local post-optimization
search time overhead is within one hour.

By comparing the experimental results of the global post-optimization and the local
post-optimization, it can be found that when post-optimizing the same architecture, the
accuracy of the architecture after global post-optimizing is higher. Although it is more



186 D. Hao and S. Pei

likely to obtain a better architecture through the global post-optimization, the global post-
optimizing algorithm is relatively unstable, and the reason for the instability is related to
the approximate optimization algorithm when post-optimizing the architecture. When
continuing to post-optimize the next Cell, it will depend on the last post-optimized
Cell to a certain extent. Therefore, the global post-optimizing search algorithm is less
stable, but more likely to discover novel architectures. For practical applications, from
the perspective of time-saving or algorithm stability, the local post-optimizing search
algorithm is a good choice.
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Fig. 4. The performance of the architecture before and after the local post-optimizing search on
CIFAR-10 and CIFAR-100.

According to the results, it can be seen that when post-optimizing the front Cells of
the architecture, the result is better than that of other parts. We believe that after post-
optimization for the front Cells, the architecture can better extract image features. If the
Cells in the front are not good enough and the extracted features are not sufficient, then
even if the Cells in the back are excellent, the performance of the entire architecture is
still limited. Therefore, we encourage to consider the front local post-optimizing search
when conducting the local post-optimization, and we will only conduct post-optimizing
with the front local post-optimizing search algorithm later.

4.3 Experimental Results and Analysis Based on P-DARTS

P-DARTS [7] is an improved algorithm for DARTS to alleviate the depth gap. In the
field of NAS, P-DARTS and DARTS are also widely concerned. Due to the advantage of
front local post-optimizing search, we apply it on the architecture searched by P-DARTS
to further verify the effectiveness of proposed post-optimization. First, the P-DARTS
algorithm is used to search for the architecture on CIFAR-10 and CIFAR-100, and then
front local post-optimizing is used to update the architecture. On CIFAR-10, the Cells
obtained before and after front local post-optimization are shown in Fig. 5.
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Among them, Fig. 5(A) shows the Normal Cell searched on CIFAR-10 by using
P-DARTS. Figure 5(B) and Fig. 5(C) show the Cell structure after applying the front
local post-optimizing search, Cell-1 and Cell-2 represent the first and second Cell in the
post-optimized architecture, respectively. By comparing the structure before and after
post-optimization, it can be easily found that the post-optimized Cells will contain more
convolutions with larger convolution kernels. These convolutions have a larger receptive
field, which facilitates the extraction of more image features.

Fig. 5. The Schematic diagram of Cells before and after front local post-optimizing search on the
basis of P-DARTS.

Table 4. The evaluation results before and after post-optimization of the front Cells of the
architecture searched by P-DARTS.

Architecture Test Err. (%) Params (M)

CIFAR-10 CIFAR-100

P-DARTS CIFAR10 2.55 16.40 3.4

P-DARTS CIFAR100 2.66 16.26 3.7

P-DARTS CIFAR10 + LOS 2.43 15.66 3.4

P-DARTS CIFAR100 + LOS 2.55 15.86 3.7

We evaluated the post-optimized architecture and compared the results of perfor-
mance with that of the P-DATS, as shown in Table 4. It is marked with LOS to indicate
that the front local post-optimizing algorithm is adopted to optimize the architecture
searched by P-DARTS, that is, only the two Cells in the front part of the architecture are
optimized. “P-DARTS CIFAR10” and “P-DARTS CIFAR100” represent the architec-
tures searched onCIFAR-10 andCIFAR-100 using the P-DARTS, respectively. The local
post-optimizing search process takes only one hour on an NVIDIA GeForce RTX 3090.
It can be seen from Table 4 that the proposed local post-optimizing search algorithm can
greatly improve the performance of the architecture in a short time.
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4.4 Comparison with State-of-the-Art

In order to better illustrate the effectiveness of the proposedmethod in this paper, Table 5
lists the comparison between the results of the post-optimization of P-DARTS and some
other mainstream NAS methods.

Table 5. Comparison with state-of-the-arts on CIFAR-10 and CIFAR-100.

Architecture Test Err. (%) Params (M) Method

CIFAR-10 CIFAR-100

DenseNet-BC [13] 3.46 17.17 25.6 manual

AmoebaNet-B [5] 2.55 – 2.8 evolution

PNAS [14] 3.41 – 3.2 SMBO

ENAS [15] 2.89 – 4.6 RL

PC-DARTS [8] 2.57 – 3.6 gradient

R-DARTS [16] 2.95 18.01 – gradient

FairDARTS [10] 2.59 – 3.8 gradient

NoisyDARTS-b [11] 2.47 – 3.0 gradient

SDARTS-ADV [17] 2.61 – 3.3 gradient

DARTS- [18] 2.50 – 3.5 gradient

β-DARTS [19] 2.53 16.24 3.8 gradient

P-DARTS CIFAR10 + LOS 2.43 15.66 3.4 gradient

P-DARTS CIFAR100 + LOS 2.55 15.86 3.7 gradient

By using the post-optimizing search algorithm, we reduce the test error on CIFAR-
10 and CIFAR-100 to 2.43% and 15.66%, respectively. It can be seen from Table 5
that when the post-optimizing search algorithm proposed in this paper is used, the
obtained architecture is superior to many current mainstream NAS methods in terms
of performance.

5 Conclusions

This paper proposes effective post-optimizingmethods based on the differentiable archi-
tecture search algorithm. The evaluation architecture formed by repeatedly stacking the
Normal Cell and Reduction Cell searched by differentiable architecture search algo-
rithms is regarded as the network to be post-optimized, and then the specific Cell can be
re-searched through the global post-optimizing and local post-optimizing search meth-
ods, respectively. By post-optimizing the Cells, the final evaluation architecture will be
composed of Cells with more diverse structures, which lightens the architecture restric-
tion and performs better. Experimental results show that the proposed method achieves
superior performance on both CIFAR-10 and CIFAR-100.
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Abstract. The early stages of life are paramount for the baby’s brain and emo-
tional development, and the quality of interaction between mother and baby -
measured as a dyadic synchrony score, is critical in that period. This study pro-
poses the first machine learning prediction modelling approach, based on Gated
Recurrent Unit - GRU ensemble models, to automatically differentiate high from
low dyadic synchrony between mother and baby, using a dataset of videos cap-
turing this interaction. The GRU ensemble models which were post-processed by
maximising the Youden statistic in a ROC analysis procedure, show a good predic-
tion capability on test samples, including a mean AUC of 0.79, a mean accuracy
of 0.72, a mean precision of 0.87, a mean sensitivity of 0.64, a mean f1 perfor-
mance of 0.72, and a mean specificity of 0.83. In particular the latter performance
represents an 83% detection rate of the mother-baby dyads with low synchrony,
suggesting these models’ high capability for automatically flagging such cases
that may be clinically relevant for further investigation and potential intervention.
A Monte Carlo validation procedure was conducted to accurately estimate the
above mean performance levels, and to assess the proposed models’ stability. The
statistical significance of the prediction ability of the models was also evaluated,
i.e. mean AUC > 0.5 (p-value < 9.82 × 10–19), and future research directions
were discussed.

Keywords: Automating mother-baby synchrony detection · Gated Recurrent
Units - GRU · Ensemble learning · ROC analysis ·Monte Carlo validation

1 Introduction

The early stages of life are paramount for babies’ brain and emotional development,
and the quality of interaction between mother and baby is critical in that period. If a
baby is denied the attention and a positive interaction, they can struggle in later life with
forming relationships, education and functioning in society [1]. An increasing body of
research shows that babieswhowere neglected from the early stages of development face
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further social development difficulties [2]. In particular, research suggests that synchrony
between the infant’s behaviour and their caregivers play many functions in the infants’
development, from co-regulations of exchanges in interactions to language acquisition
[3]. A functional interaction between mother and baby is one in which the mother
focuses her attention on the child and responds to their behaviour in a short time. Such
an interaction can be described as synchronous. According to [4] synchrony between
two people is defined as a state where they move together in the same or almost the
same time with one another. Research suggests that synchrony in group interactions
can have a later positive influence on forming social actions [5]. Synchrony is used to
find patterns in movements of positive and negative interactions between mother and
baby. Developing new methods for finding synchrony patterns can help to automate the
process of assessing the mother-baby interaction quality.

Due to its vital role in the early stages of baby’s development, expert assessment
of the synchrony between mother and baby in videos capturing this interaction, is an
important research question. Moreover, there is value in automating this assessment
process using machine learning, as such automation could flag those videos which are
more likely to capture a negative, lower synchrony between mother and baby, allowing
early specialist intervention in problematic mother-baby interactions.

Predicting synchrony between participants in videos usingmachine learningmodels,
was previously tackled in literature including works such as [6], in which the authors
successfully trained a model based on Long Short-Term Memory (LSTM) recurrent
neural networks [13, 14], on facial expressions data that had been extracted from pre-
recorded videos representing a group of three interacting people. The proposed approach
was used to predict synchrony score on a scale of 1 to 5, and the recurrent neural
model’s predictions were validated by comparison with predictions based on a random
permutations baseline. In another machine learning study proposing the prediction of
synchrony between a human arm and a robot arm, the final position of the human arm
was predicted also with recurrent neural networks based on LSTM models [7].

In the present study we propose an innovative machine learning approach to pre-
dicting the categorical level of dyadic synchrony – high versus low, for 58 mother-baby
dyads, based on a dataset comprising 58 records with body part coordinates extracted
from 58 videos capturing the interaction of these dyads. Our approach is based on Gated
Recurrent Unit (GRU) recurrent neural networks [8, 13] as baseline models, with a focus
on ensembles of such models – with the purpose to enhance the models’ prediction and
stability on a relatively small number of record dataset. GRUs are similar to but involve
a lesser complexity in training than LSTM models [13, 14] since they are able to store
and filter the information using only two gates - reset and update, as opposed to three
gates – input, output and forget, for LSTMs, respectively. GRUmodels are often capable
of performance levels comparable to SLTM models, and due to their reduced relative
complexity are preferred in this preliminary study on a dataset comprising a relatively
small number of records. However, the volume of data extracted from videos is relatively
large, overall, leading to a substantial computational cost.

The rest of the paper is organised as follows: Sect. 2 introduces our proposed predic-
tion modelling approach’s methodology, including data description and pre-processing,
and model development, evaluation, and Monte Carlo validation. Section 3 presents
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and discusses our results, and Sect. 4 concludes the paper and outlines future research
directions.

2 Methodology

2.1 Data Description and Pre-Processing

This work was based on a sample of 60 videos from the SPEAKNSIGN dataset [20],
each lastingmore than 10minwith 25 frames per second, capturing a session of free-play
between 4–7-month-old infants and their mothers. The videos were scored by experts
with a dyadic synchrony score ranging from 2 (low) to 14 (high).

OpenPose library [19] was used to extract a 5D array based on coordinates of body
part keypoints from each video. In particular, for the purpose of this analysis, data rep-
resentation was adapted and simplified by extracting, for each frame, pairs of x and y
coordinates for 25 body keypoints for each mother and her baby. Figure 1 illustrates
the body part keypoints extracted by OpenPose from a single frame of the interaction
video. 3D arrays were finally obtained for the analysis, comprising the record number
corresponding to each video, the frame number, and the sum aggregation of the x and y
coordinates. Two records were discarded as they did not meet the data quality require-
ments, leading to a dataset of 58 records in all. Records were categorized in two classes
by using the dyadic synchrony scores: class 1 – high synchrony, and class 0 – low syn-
chrony, containing the highest 60% scores and the lowest 40% scores in the dataset,
respectively.

Fig. 1. Body part keypoints extracted by OpenPose from a single frame of the interaction video.

The dataset was cleaned with respect to missing values which were imputed with
linear interpolation, and outliers were detected using criteria based on the range of 0.025
or 0.975 quantiles, and discarded. Data was normalised.

Figure 2 illustrates, in a preliminary exploratory data analysis conducted in [20], a
partial correlation between mother and baby as reflected by the whole body movement
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index aggregating differences in body coordinates in the frame sequence [20]. We note
various levels of correlation of the body movement index between mother and baby, and
these go as high as 0.84 in the four examples of mother-baby dyads illustrated here (see
second plot).

Fig. 2. Body movement index capturing a correlation in mother and baby’s body movement [20].
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2.2 Model Development, Evaluation and Monte Carlo Validation

The baselineGRUneural network architectures [8, 13] used in this work comprised 2 and
3 GRU layers with 200, 256, 300 nodes, and 1 hidden dense layer with 50, 64, 70 nodes,
implemented in Keras and TensorFlow. As activation functions we employed relu, prelu,
elu, selu, softplus for the hidden dense layer and sigmoid for the output layer, while for
the GRU layers we used tanh as activation function and sigmoid as recurrent activation.
As loss functions we employed Binary crossentropy and binary focal crossentropy (for
the moderate data imbalance 60:40 present in the data). The constant learning rate of
0.001, and the exponential learning rate scheduling were used, together with adam, and
nadam optimisers. To prevent overfitting, an early stopping with 4, 5, 7, 10 patience,
and L2 regularization for the dense layer, were explored.

Due to the relatively small number of records available in the dataset, i.e. 58, which
may increase the variance of the model performance and hence negatively affect the
model stability, we built ensembles of 10 and 20 GRU models whose predicted prob-
abilities were averaged. After splitting the dataset into a test set and a non-test set, the
GRUmodels in each ensemble were obtained by repeatedly further splitting the non-test
set into validation and train set, for 10 and 20 times, and training the models in each case.
The ensemble of 10 and 20 models was then evaluated on the test set. Data splitting was
stratified, and the following proportions were used for the test, validation, and training
set, respectively: (0.3, 0.3, 0.4), (0.25, 0.3, 0.45), (0.25, 0.25, 0.5).

For this binary classification problem with a moderately imbalanced dataset, the
primary performance in evaluating the models was the ROCArea Under Curve, denoted
AUC.We utilised the Youden statisticmaximisationmethod in a ROC analysis procedure
[18] for estimating the optimal probability threshold on the non-test (i.e. training and
validation) set of records, in order to apply this threshold on the test set to predict the
high and low synchrony classes. With this optimal threshold we computed accuracy,
precision, sensitivity, specificity, and f1 performances.

Moreover, for each model, we computed the Cohen’s kappa statistic and MCC
(Matthews correlation coefficient) whose positive values, when sufficiently far from
0, suggest the existence of predictive pattern in the data that is captured by models.
Model predictiveness was established also by running a one-side T-test, inferring sta-
tistically that the model’s AUC is significantly larger than 0.5 which corresponds to a
random prediction model.

Such evaluations are useful also when working with a relatively small number of
records, which usually increases the range of variation of models’ performance at the
point of overlapping with the performance range of a random prediction. With the same
rationale in mind, we conducted a Monte Carlo validation (MCV) based on 30 experi-
ments, each of which consisting of: (a) a test/non-test data set split; and (b) building the
ensemble model as explained above in this subsection, and then evaluating it on the test
set using the performances mentioned above.

Building a GRU ensemble model especially on a large data volume extracted from
videos is a computationally expensive procedure (even if the number of records is rela-
tively small as in our approach). Moreover, an MCV multiplies this computational cost
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by the number of experiments (i.e. 30). However, this is beneficial in our case to reli-
ably assess the model prediction performances and stability, given the relatively small
number of records at our disposal in this study (i.e. 58).

2.3 Software and Hardware

The data analysis was conducted using Python, with libraries Numpy, Pandas, Ten-
sorFlow, Keras, Sklearn and Seaborn. Videos were initially processed with OpenPose
library to detect the body, hand, facial, and foot keypoints coordinates.

The hardware consisted of 3 Linux servers with Xeon 6-cores processors and 96 GB
RAM each, for data exploration and pre-processing, and for code prototyping, and 2
Linux servers with Intel 9 10-cores and AMD Ryzen 16-cores with 128 GB RAM each,
and Titan RTX 24GB and 3090 RTX 24 GB GPUs, for GRU and ensemble model
training and MCV intensive computation procedures for building and assessing the
models’ performances and stability.

3 Results and Discussion

The results in theMonteCarlo validation (MCV) illustrated in Fig. 3, reveal the following
aspects:

a) The mean AUC of 0.79 of the GRU ensemble models (ens_auc_test) shows a good
prediction level for the relatively small number of records in the dataset.

b) The ROC analysis estimating optimal probability thresholds for classification by
maximising the Youden statistic [18], led to good levels of mean accuracy (acc_test)
0.72, mean precision (prec_test) 0.87, mean f1 performance (f1_test) 0.72, as well as
positive, far from 0, mean Mathews correlation coefficient (mcc_test) 0.48 and mean
Kappa coefficient (kappa_test) 0.44.

c) Given the mean precision (prec_test), mean sensitivity (sens_test), and mean speci-
ficity (spec_test) levels achieved by the models, we can infer that 87% of mother-
infant dyads predicted as being in the high synchrony class, were predicted cor-
rectly by the ensemble models, and that these ensemble models detected 64% of
the high synchrony cases; More importantly, these ensemble models detected also
83% of mother-infant dyads with low synchrony. This suggests our models’ capabil-
ity for automatically flagging such cases that may be clinically relevant for further
investigation and potential intervention.

The performance values in Fig. 3 are means computed in the Monte Carlo validation
on 30 test sets randomly sampled from the dataset (more precisely, via random training,
validation, test stratified splits). Due to the relatively small number of records and the
data splitting required for building and evaluating the models, which make the training
and test sets even smaller, the model stability has some expected limitations as suggested
by the various performance boxplots illustrated in Fig. 3 and by the AUC performance
histogram depicted in Fig. 4, both of which showing a significant variation of such
performances across the Monte Carlo validation procedure.
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Fig. 3. Left: Boxplots of ensemble model performances on 30 test sets in Monte Carlo validation.
Right: mean performances in Monte Carlo validation.

Fig. 4. Histogram of AUC performances on 30 test sets in Monte Carlo validation.

We also conducted a T-Test based on the AUC results obtained in the 30 experiments
in theMonteCarlo validation, which led to establishing, with a significant p-value< 9.82
× 10–19, the alternative hypothesis that mean AUC > 0.5. This proves also statistically
that the models proposed in this approach predict better than chance.

4 Conclusion and Future Research Directions

To our knowledge, this work represents the first machine learning based approach in
literature, predicting the categorical level of dyadic synchrony – high versus low, in
mother-baby interactions captured in a dataset of videos. We processed the videos with
OpenPose library for extracting coordinates from themother and baby bodymovements,
expected to inform mother-baby dyadic synchrony. Using the dataset of extracted coor-
dinates, this work proposed a novel and substantially high-performing prediction mod-
elling approach, by developing GRUmodels and ensembles of such models, which were
studied in terms of exploring various model architectures, and of assessing prediction
performances and model stability with a Monte Carlo Validation procedure.

The GRU ensemble models showed a good prediction capability on test samples,
including a mean AUC of 0.79, a mean accuracy of 0.72, a mean precision of 0.87, a
mean sensitivity of 0.64, a mean f1 performance of 0.72, and a mean specificity of 0.83.
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In particular the latter performance represents an 83% detection rate of the mother-
baby dyads with low synchrony, suggesting these models’ very good capability for
automatically flagging such cases that may be clinically relevant for further investigation
and potential intervention.

Future research directions to further develop the current study concern: (a) Extend-
ing the analysis to a superset of the current dataset, comprising additional videos not
available in the present analysis, and incorporating further derived variables exploiting
correlations similar to those illustrated in Fig. 1; (b) Expanding the machine learning
predictionmodellingmethodology including the application of autoencoders [13, 14] for
alternative feature extraction and representation, and of transfer learning [17] based on
other similar datasets, as further enhancements of the approach proposed in this study;
(c) Developing explanatory models for getting insights of the prediction, and for per-
formance comparison with the black-box models presented in this study; (d) Expanding
and evaluating the generalisability of this methodology by employing alternative video
based data capturing the interaction between parents and children in other various joint
activities.
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Abstract. Pearson product-moment correlation coefficient represents
a fundamental measure of similarity between two data vectors. In various
applications, it is meaningful to consider its weighted version known as
the weighted Pearson correlation coefficient. Its properties are studied in
this theoretical paper; these include the robustness to rounding, as it is
an important issue in approximate neurocomputing, or specific robust-
ness properties for the context of template matching in image analysis.
For a highly robust correlation coefficient inspired by the least weighted
estimator, properties are derived and novel hypothesis tests are proposed.
This robust measure is recommendable particularly for data contami-
nated by outliers (not only) in the context of image analysis.

Keywords: Correlation coefficient · Outliers · Robustness · Image
analysis · Approximate computing

1 Introduction

Pearson product-moment correlation coefficient r represents a notoriously well
known measure of similarity between two data vectors. It has been widely used
e.g. in very recent deep learning applications. Most recently, the coefficient r
was successfully used in nonlinear regression applications with the aims to com-
pare the results of predictions of a continuous response given by two deep net-
works [17] or to compare the predictions with the ground truth [12]. Also in
the context of time series, r has commonly been used to measure the quality of
predictions reported by deep networks [10].

In image analysis, Pearson correlation coefficient is habitually used as a sim-
ilarity measure in object detection by centroid-based methods (template match-
ing) or landmark localization [4]. Template matching is commonly performed by
comparing a template with every candidate area in the image [3]. The theory of
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centroids (prototypes, ideal simplified objects, typical forms with ideal appear-
ance) and centroid-based object detection in images was developed in [8]. In some
applications such as in image analysis, it is meaningful to consider the weighted
Pearson correlation coefficient rw as a natural weighted version of r. A sophisti-
cated procedure for the optimal construction of centroids for template matching
was suggested in [15], where rw was used as the similarity measure between the
centroid and a given image. For optimal centroids, robustness against outlying
values turns out to be interconnected with sparsity [13]; the optimal centroids
are sparse trimming away not only irrelevant pixels but also those pixels that
violate the robustness [15].

Because both r and rw are vulnerable to the presence of outliers in the data,
robust measures may be more appropriate to evaluate the correlation for con-
taminated data [19]. The correlation coefficient rLWS based on the highly robust
LWS (least weighted squares) estimator [7] seems to represent an especially per-
spective alternative to r. It was shown to be highly robust for contaminated
data as well as highly efficient for non-contaminated data in [14], where however
other useful properties were not studied. The robust correlation coefficient has
the potential to be routinely used in various deep learning applications, where
r remains to represent the most fundamental measure, e.g. in template matching
within deep learning or within (modified) convolutional networks.

This paper is focused on deriving properties of rw and rLWS . The weighted
correlation coefficient is investigated in Sect. 2, where the effect of rounding the
data (i.e. the trade-off between the energetic demands and the performance) is
evaluated in a context of approximate neurocomputing. Also, the effect in the
context of applying the weighted correlation coefficient to images within template
matching is quantified there. Properties of the robust correlation coefficient based
on the least weighted squares (LWS) estimator are investigated in Sect. 3, where
a novel hypothesis test about the population correlation coefficient based on the
robust estimator is also proposed. Section 4 concludes the paper and recommends
rLWS for contaminated data (not only) in image analysis tasks.

2 Weighted Correlation Coefficient

Let us consider two data vectors

x = (x1, . . . , xn)T ∈ Rn and y = (y1, . . . , yn)T ∈ Rn. (1)

In some applications, weights may be naturally assigned to each of the pairs
(x1, y1)T , . . . , (xn, yn)T . Such situation may occur e.g. if each of the pairs cor-
responds to a measurement obtained under different conditions with different
(known or estimated) measurement errors; in image processing, the weights may
be assigned to pixels according to their positions within the image [15]. Thus, the
correlation between x and y may be in many applications naturally measured by
means of rw with given non-negative weights w = (w1, . . . , wn)T ∈ Rn fulfilling
the assumption

∑n
i=1 wi = 1. We may recall rw to be defined by
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rw(x, y;w) =
∑n

i=1 wi(xi − x̄w)(yi − ȳw)
√∑n

i=1[wi(xi − x̄w)2]
∑n

i=1[wi(yi − ȳw)2]
, (2)

where x̄w =
∑n

i=1 wixi ∈ R denotes the weighted mean of x. A template match-
ing study of [15] revealed the superior performance of rw if suitable weights were
used; the study considered mouth localization in facial images and constructed
optimal weights maximizing the localization performance. Generally valid prop-
erties of rw were investigated in [14] and additional specific purpose properties
for the context of template matching will be derived in this section.

2.1 Energetic Demands

In various machine learning tasks, recent attention has been paid to the task to
reduce tedious computations that are energetically demanding (energy-hungry)
and researchers attempted to formulate low-energetic alternatives within the field
of approximate neurocomputing [22]. This subsection is focused on reducing the
energetic demands in the context of template matching. The vector playing the
role of a template will be denoted as c ∈ Rn, where c1, . . . , cn are grey values
for the individual coordinates. The centroid c, which is ideally obtained by some
sophisticated (optimization) procedure, is assumed here not to be known pre-
cisely. Instead, an approximate version denoted as c̃ is available. This may be
obtained by rounding of the precise (ideal) c or by some approximate training
procedure following the recent paradigm of approximate computation [2]. The
task now is to study the effect of replacing c by c̃ within the weighted corre-
lation coefficient, i.e. the effect of replacing rw(x, c) by rw(x, c̃). We can say
this corresponds to the effect of replacing the original centroid by a low-energy
version.

We consider two n-variate vectors according to (1). In order to stress that
the approach is tailor-made for templates (centroids), the data vectors will be
denoted as x and c. The vector c̃ is replaced by

c̃ = c + e, where e ∈ Rn, −ε ≤ ei ≤ ε, i = 1, . . . , n. (3)

It is meaningful to interpret ε as a very small positive number. A formulation of
an upper and lower bounds on rw(c̃, x) is now presented. The lower and upper
bounds for rw(c̃, x) are much simplified here thanks to the assumption that x
and c contain only non-negative values.

Lemma 1. Let us have data vectors (1) and a centroid c with its modification
according to (3). It is further assumed that xi ≥ 0 for every i = 1, . . . , n and
also ci ≥ 0 for every i = 1, . . . , n. Then, it holds that

L(x, c, w, ε) ≤ rw(c̃, x) ≤ U(x, c, w, ε), (4)

where

L(x, c, w, ε) =
∑n

i=1(xi − x̄w)(ci − c̄w) − 2ε
∑n

i=1 wixi
√∑n

i=1 wix2
i − x̄2

w

√∑n
i=1 wic2i − (c̄w)2 + 2ε(1 − c̄w)

(5)
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and

U(x, c, w, ε) =
∑n

i=1(xi − x̄w)(ci − c̄w) + 2ε
∑n

i=1 wixi
√∑n

i=1 wix2
i − x̄2

w

√∑n
i=1 wic2i − (c̄w)2 − 2ε(1 − c̄w)

. (6)

Proof. Let us start by finding lower and upper bounds separately for the numera-
tor (say ξ) and for the denominator (say η) of rw(c̃, w) evaluated for the version
c̃ considered in the approximate neurocomputing setup. Recalling (3) to have
c̃ = c+ e, we now consider partial derivatives of ξ and η with respect to individ-
ual coordinates of e. Particularly, the derivative of the numerator

∂ξ

∂ei
= 2wi(1 + ei) − 4wi

n∑

j=1

wjcj , i = 1, . . . , n, (7)

reveals the numerator to be a monotone function of ei for every i = 1, . . . , n so
that the upper bound is obtained for ei = ε for every i. Thus, we obtain

ξ0 − 2ε(1 − c̄w) ≤ ξ ≤ ξ0 + 2ε(1 − c̄w), (8)

where

ξ0 =
n∑

i=1

wic
2
i − c̄2w. (9)

In an analogous way, derivatives of the denominator in the form

∂η

∂ei
= wi

⎛

⎝xi −
n∑

j=1

wjxj

⎞

⎠ , i = 1, . . . , n, (10)

reveal the upper bound to be obtained for ei = ε for every i. We get

η0 − 2εx̄w ≤ η ≤ η0 + 2εx̄w, (11)

where

η0 =
n∑

i=1

wixiyi − x̄wȳw. (12)

A suitable combination of (8) and (11) gives the formulas (5) and (6).

2.2 Formulas for a Modified Image

Our aim now is to express the effect (influence) of modifying the image on the
resulting values of rw in the context of template matching. Formulas for the effect
of some selected modifications of the images will now be presented for 3 situations
in centroid-based object localization with asymmetric illumination (in 2 different
versions) or rotation of the image. While the centroid and candidate areas are
matrices of size (say) I ×J pixels, it is natural to use them in computations after
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being transformed to vectors of length IJ , where we denote n = IJ . Nevertheless,
it will be more convenient to use here the following notation.

Model M: We assume the centroid c = (c)i,j with i = 1, . . . , I and j = 1, . . . , J to
be a matrix of size I × J pixels. A candidate area x and non-negative weights w
with

∑
i

∑
j wij = 1 are assumed to be matrices of the same size as c.

Asymmetric illumination I. In the first situation, let us consider a selected
candidate area x to be divided to three parts denoted as x = (xT

1 , xT
2 , xT

3 )T ∈ Rn.
Let

∑
II and

∑
III denote the sum over the pixels of the second or third part,

respectively. The modified image corresponds e.g. to the situation when grey
values on one side of the image (in a rectangular area) are additively modified
by a ∈ R and the grey values of the background on one side of the axis are
modified by b ∈ R.

Lemma 2. Let us consider Model M. For

x = (x1, x2, x3)T and x∗ = (x1, x2 + a, x3 + b)T with a ∈ R, b ∈ R, (13)

it holds

rw(x∗, c) = rw(x, c)
Sw(x)
S∗

w(x)
+

a
∑

II wi(ci − c̄) + b
∑

III wi(ci − c̄)
Sw(c)S∗

w(x)
, (14)

where (S∗
w(x))2 =

S2
w(x)+2a

∑

II

wi(xi − x̄)+2b
∑

III

wi(xi − x̄)+a2(1−a)
∑

II

wi + b2(1− b)
∑

III

wi.

(15)

Asymmetric illumination II. The next lemma may be used for evaluating the
effect of illumination from aside that is proportional to the distance of columns
of the image from one side. There, the choice k > 0 grants columns with a large j
to be lighter compared to those with a smaller j.

Lemma 3. Let us consider Model M. For x∗ = (x∗
ij)i,j defined by x∗

ij = xij +kj
for i = 1, . . . , I, j = 1, . . . , J, and for k > 0, it holds that

rw(x∗, c) = rw(x, c)
Sw(x)

√
S∗2

w (x)
+

k
∑I

i=1

∑J
j=1 wijj(cij − c̄w)

Sw(t)
√

S∗2
w (x)

(16)

with
S∗2

w (x) = S2
w(x) + 2k

∑

i,j

wijjxij − kx̄wJ(J + 1)

+
1
6
k2IJ(J + 1)(2J + 1) +

1
4n

k2I(I − 2)J2(J + 1)2. (17)
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Rotated image. Further, it is shown that centroid-based object localization
can be expected to be robust only to a very small rotation of the image. Here,
[a] denotes the integer value that is the closest to a ∈ R.

Lemma 4. Let us consider Model M. Without loss of generality, let us assume
both c and x to be standardized to zero mean and unit variance. By rotating
the candidate area x by angle θ ∈ [−π, π) around a given the center of rotation
[i0, j0], the rotated area x∗ of size I ×J pixels is obtained. Let us assume that all
pixels after the rotation still belong to the original image. For particular values
of i and j, let us consider the angle ϕ and the radius r defined as

ϕ = arctan(i/j) and r =
√

(i − i0)2 + (j − j0)2. (18)

Then, it holds

rw(x∗, c) =
I∑

i=1

J∑

j=1

wijcijx[i−rθ sinϕ],[j+rθ cosϕ] + o(θ). (19)

Proof. For an infinitesimal rotation θ → 0, we may use Taylor’s expansion of
sin θ and cos θ of the first order to obtain the approximation of rw(x∗, c). The
expansion is applied to the following considerations. If the image x was contin-
uous (defined not only in individual discretized pixels), the expressions

rw(x∗, c) =
I∑

i=1

J∑

j=1

wijcijxr cos(ϕ+θ),r sin(ϕ+θ)

=
I∑

i=1

J∑

j=1

wijcijxr(cosϕ−θ sinϕ),r(sinϕ+θ cosϕ) (20)

would hold exactly. Because the coordinates have to be integers, the real (non-
integer) numbers are rounded in (20); the effect of rounding is negligible for
θ → 0 so that the statement remains to be approximately valid.

The assumption that all pixels after the rotation belong to the image makes
the lemma applicable for candidate areas not at the very boundary of the image.
The idea of the proof is formulated in the appendix.

3 LWS-Based Robust Correlation Coefficient

The highly robust correlation coefficient rLWS based on the least weighted
squares (LWS) estimator will now be recalled and its properties will be studied.
These include two novel rLWS-based methods for hypothesis testing about the
significance of the population correlation coefficient.



206 J. Kalina and P. Vidnerová

3.1 Definition

First, we recall the least weighted squares (LWS) estimator with fixed magni-
tudes of the weights. This is formulated for the standard linear regression model

yi = β1xi1 + · · · + βpxip + ei, i = 1, . . . , n, (21)

where the vector xi = (xi1, . . . , xip)T corresponds to the i-th observation for
i = 1, . . . , n. Let us also consider a particular weight function, which represents
a non-increasing and continuous function ψ : [0, 1] → [0, 1] with ψ(0) = 1 and
ψ(1) = 0. The residual for any (fixed) b = (b1, . . . , bp)T ∈ Rp will be denoted as

ui(b) = yi − b1xi1 − · · · − bpxip = yi − xT
i b, i = 1, . . . , n. (22)

The LWS estimator [7] of the parameters (β1, . . . , βp)T in (21) is defined as

arg min
b∈Rd

n∑

i=1

ψ

(
i − 1/2

n

)

u2
(i)(b). (23)

Let us further denote the squared residuals arranged in ascending order as
u2
(1)(b) ≤ · · · ≤ u2

(n)(b). We can alternatively express (23) as

arg min
b∈Rd

n∑

i=1

wiu
2
(i)(b), (24)

where given magnitudes of weights w1, . . . , wn are assigned to individual obser-
vations after the optimal permutation. The magnitudes w1, . . . , wn should be
non-increasing and a simple choice is to take linearly decreasing weights [16].
More suitable data-dependent (adaptive) weights were proposed by [7] based on
comparing the empirical distribution of the squared residuals with the expected
counterpart under normally distributed errors; other choices were compared
in [14]. The appealing properties of the LWS are ensured by the ranking of
residuals, which has been repeatedly exploited e.g. to construct estimators that
are robust to measurement errors [20].

Correlation analysis is connected to a regression model with p = 1. For the
data (1), let us consider the model (21) in the form

yi = β0 + β1xi + ei, i = 1, . . . , n, (25)

with xi ∈ R. Then, rLWS(x, y) is defined as rw(x, y; w̃) with the permutation
of the weights that is found as the optimal permutation given by the LWS
estimator [16]. The weights after the optimal permutation will be denoted as
w̃ = (w̃1, . . . , w̃n)T .

3.2 Properties of rLW S

Some properties of rLWS were investigated already in [14]. These include the
asymptotic distribution of rLWS under normality (without outliers in the data).
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Moreover, the LWS-based robust correlation coefficient rLWS is known to be
a highly robust alternative to standard r in terms of the breakdown point [14].
It will be convenient to use the notation for the weighted mean of x and weighted
variance of x ∈ Rn with given weights w1, . . . , wn in the form

x̄(w) =
n∑

i=1

wixi ∈ R and S2(x;w) =
n∑

i=1

wi(xi − x̄(w))2 ∈ R. (26)

The linear model (25) will be symbolically denoted as y ∼ x here.

Lemma 5. Let us assume x ∈ Rn, y ∈ Rn, and z ∈ Rn. Let us select fixed
magnitudes of non-negative weights. Let the optimal permutation of the weights
in the model x ∼ z be denoted as w̃I

1 , . . . , w̃
I
n. Let the optimal permutation of

the weights in the model y ∼ z be denoted as w̃II
1 , . . . , w̃II

n . Let the optimal
permutation of the weights in the model (x−y) ∼ z be denoted as w̃III

1 , . . . , w̃III
n .

Let us introduce the notation

x∗ =
(√

w̃I
1x1, . . . ,

√
w̃II

n xn

)T

, y∗ =
(√

w̃II
1 y1, . . . ,

√
w̃II

n yn

)T

, (27)

and

x̃ − ỹ =
(√

w̃III
1 (x1 − y1), ...,

√
w̃III

n (xn − yn)
)T

. (28)

Then, it holds that

•
rLWS(x, z; w̃I) ≥ rLWS(y, z; w̃II) ⇐⇒ r(x∗, z) ≥ r(y∗, z), (29)

•
rLWS(x − y, z; w̃III) ≥ 0 ⇐⇒ r(x̃ − ỹ, z) ≥ 0. (30)

Lemma 5 represents an extension of Lemma 2 of [14], where the latter was
formulated for rw.

3.3 A Hypothesis Test Based on rLW S

In this section, hypothesis tests about the population correlation coefficient are
formulated. For this task, we need to assume the data to come from a bivariate
normal distribution and the population correlation coefficient between the first
and the second coordinate will be denoted as ρ. We are interested in testing the
null hypothesis H0 : ρ = 0 against the general alternative hypothesis H1 : ρ 	= 0
based on rLWS . First, a theorem from [14] is recalled, which holds under general
(and rather technical) assumptions on the distribution of the random errors.

Theorem 1. Let us assume a random sample (x1, y1)T , . . . , (xn, yn)T from
a bivariate normal distribution with correlation coefficient ρ. The variances of
both marginal distributions are assumed to be positive and ρ ∈ (−1, 1) is assumed.
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We will denote x = (x1, . . . , xn)T and y = (y1, . . . , yn)T . It holds under H0 and
under Assumptions A of [23] that

TLWS =
rLWS(x, y)

√
1 − r2LWS(x, y)

√
n − 2 D→ Z (31)

for n → ∞, where Z is a random variable with normal N(0, 1) distribution.

As a novelty, we now suggest to perform the test of H0 against H1 based on
Theorem 1 according to the decision rule

H0 is rejected ⇐⇒ |TLWS | ≥ z1−α/2, (32)

where z1−α/2 is the (1 − α/2)-quantile of N(0, 1) distribution.

Note 1. The test (32) represents an extension of a standard test of H0 based
on r for bivariate normal distribution. To recall, the test statistic

T =
r√

1 − r2

√
n − 2 (33)

has Student’s tn−2 distribution for normally distributed errors as formulated
in [18]. Let us also recall that an equivalent test based directly on r is presented
in more traditional literature; tables of critical values of r based on the monotone
transform (33) of r depending on n and α have namely been available.

Note 2. Constructing a Wald-type test based on rLWS is not meaningful,
because asymptotic normality of rLWS does not hold. In the test statistics,
although one can exploit approximate theoretical results

Er
.= ρ − 1 − ρ2

n
and var r

.=
(1 − ρ2)2

n
(34)

for bivariate normal distribution [18], replacing ρ by r much deteriorates the
resulting null distribution of the test statistic (see e.g. Chap. 6 of [5]). This is
fact motivates us to consider the Fisher transform and to apply it to rLWS ,
because it is well known to be stable (to keep the asymptotic distribution) in
such a situation.

3.4 A Hypothesis Test Based on rLW S Based on the Fisher
Transform

We will now propose another novel approach for testing H0 against H1 exploiting
the Fisher transform applied to rLWS . Such test is based on the test statistic

ZLWS =
1
2

log
1 + rLWS

1 − rLWS

= arctanh(rLWS).
(35)
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The Fisher transform used in (38) is one of variance stabilization transforms
making the variances of r to be independent of the correlation magnitudes. The
transform is also popular for constructing confidence intervals for ρ [15], thanks
to its reliability also for values of ρ close to −1 or 1 (which is a property not
needed for testing of H0 : ρ = 0).

The test of H0 against H1 based on (35) is based on the decision rule

H0 is rejected ⇐⇒ ZLWS/SD(ZLWS) ≥ z1−α/2. (36)

Bootstrapping can be used to estimate the standard deviation of ZLWS denoted
here as SD(ZLWS).

Note 3. Specifically, if rLWS is computed with the adaptive weights of [7], it is
possible to express an explicit approximate formula for SD(ZLWS) in the form

SD(ZLWS) .=

√
1

n − 3
, (37)

which requires the assumptions of Theorem 3 of [7]. This is in fact the approxi-
mate standard deviation of

Z =
1
2

log
1 + r

1 − r
, (38)

as can be derived by considering Taylor’s series approximation [5]. If ZLWS

considered with adaptive weights under the given assumptions (i.e. for the non-
contaminated case), one obtains the very same standard deviation (37) thanks
to the fact that the weights converge to 1 in probability for the adaptive weights.

Theorem 2. Under the assumptions of Theorem 1, the test statistics TLWS (31)
and ZLWS (35) are first-order equivalent under H0.

Proof. Let us understand

T (rLWS) =
√

n − 2
rLWS√

1 − r2LWS

and Z(rLWS) =
1
2

log
1 + rLWS

1 − rLWS
(39)

as functions of the argument rLWS . We need to express the derivatives

T ′(rLWS) =
√

n − 2

(
1

√
1 − r2LWS

− rLWS

2
(1 − r2LWS)−3/2

)

(40)

and
Z ′(rLWS) =

1 + rLWS

(1 − rLWS)3
. (41)

Now, using Taylor’s approximation for r → 0 leads to proving the theorem
thanks to

T (r) = T (0) + rT ′(0) + o(r) and Z(r) = Z(0) + rZ ′(0) + o(r). (42)

Numerical experiments will be needed to compare the performance of the
test (32) and the test (36). Let us at least recall that numerical evidence showed
the test based on (33) to be superior to the test based on (38), especially because
of a quicker convergence to the normal distribution.
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4 Conclusion

Properties of rw are derived here as tailor-made expressions for a particular
context of template matching. The study of rw in Sect. 2.1 is applicable for per-
forming template matching on specific devices such as cell phones (mobile devices
with limited memory and powered by a battery); this result may find applica-
tions within approximate neurocomputing. Should a more intensive acceleration
of the computation be desirable, it remains possible to resort to using sparse
(compressed) centroids. The much more specific results on rw in Sect. 2.2 are
tailor-made for template matching and reveal rw to be vulnerable to modified
illumination or rotation of the images.

The properties of rLWS derived here with deterministic as well as proba-
bilistic tools are generally valid results not connected to the context of image
analysis. The robust rLWS inherits some properties of rw and the hypothesis
tests proposed here represents the first available tests about the population cor-
relation coefficient based on rLWS , which are useful for image analysis tasks with
the need to evaluate the significance of the correlation coefficient [6]. Extensive
numerical experiments related to the performance of rw and rLWS in object
localization tasks in images have already been performed. The performance of
both rw and rLWS is superior to that obtained with r [15] and rw yields quite
good results also for data with a moderate contamination by outliers [15].

For severe contamination of the data, rLWS may be recommended as a sim-
ilarity measure for various following applications. Methods based on centroids
may be used for object localization in images within deep learning procedures.
Particularly, the weighted and the robust correlation coefficients studied in this
paper may be used to replace convolutions within deep networks [1]. Also tem-
plate matching may be transferred into a deep-feature space provided by a deep
convolutional network. For these possible applications, we find the derived prop-
erties to be very useful. In [24], template matching was exploited withing a deep
learning procedure for ship identification in underwater sound waves. Using cen-
troids within deep learning may be expected to be more tolerant to changes in
appearance (such as lighting conditions or partial occlusion) and may benefit
from combining features from different network layers [9,11,21].

Acknowledgements. The authors are grateful to Jakub Krett for numerical exper-
iments motivating this work and to Jǐŕı Š́ıma and Václav Šmı́dl for discussion about
Sect. 2.
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Abstract. Openset semi-supervised learning (OSSL) has been mainly
used in recent years to address the negative impact of out-of-distribution
(OOD) unlabeled data on semi-supervised learning. However, current
openset semi-supervised learning approaches directly discard the iden-
tified ood data, while ignoring the positive impact of ood data simi-
lar to in-distribution (ID) data on semi-supervised learning. And the
method based on learnable parameters is prone to overfitting ood unla-
beled data. Therefore, we propose a prototype-based OSSL framework
for multi-information mining (PSML) to better mine ood unlabeled data
and improve the classification performance of ID data. Specifically, we
detect the multi-level information density of unlabeled data by a learn-
able OOD detector and a non-learnable prototype similarity detector.
Then we perform different degrees of prototype based information mining
on the data with different information densities (ID data, similar data,
and dissimilar data). As a result, PSML is able to perform better infor-
mation mining in ood unlabeled data, and thus it achieves a significant
performance improvement relative to previous work, as demonstrated in
experiments on multiple benchmark datasets.

Keywords: Semi-Supervised Learning · Class Mismatch ·
Prototypical Network

1 Introduction

Semi-supervised learning (SSL) [6,28,29] as an efficient machine learning
paradigm has achieved remarkable progress with limited labeled data available,
contributing to its superiority in harvesting information from a large amount of
unlabeled data. Most existing works [5,8,14,15] on SSL assume that the cate-
gories of unlabeled data are identical with with the categories of labeled data,
both unlabeled and labeled data belong to the same class distribution (ID).
However, this assumption hinders the application of semi-supervised learning in
more practical scenarios. To tackle with this issue, most recently, open-set semi-
supervised learning (OSSL) [4,21,26] is proposed to broaden the application
scenarios by allowing the inclusion of out-of-distribution unlabeled data.

Recently, many OSSL modeling approaches [11,18,21,26] have emerged,
which usually mine the information difference between ID data and OOD data
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14262, pp. 213–224, 2023.
https://doi.org/10.1007/978-3-031-44201-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44201-8_18&domain=pdf
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Fig. 1. Data partiton compared

using labeled data and noise learning. The ID data is separated from the OOD
data by fitting an energy function or training a detector. The ID data detected
in the unlabeled data is then used for semi-supervised learning to improve the
classification performance of the ID data. These methods all perform well in
semi-supervised learning of open sets, however, they may incur two major chal-
lenges: Firstly, previous methods [2,10,18] discarding the OOD data directly
may cause a waste of information. Most of the current OSSL methods learn to
identify between OOD data and ID data for semi-supervised learning, while the
OOD data are usually ignored in the training of categories. We consider that,
some of the OOD data can be helpful for the category training of the model,
especially on the data with similar categories as in Fig. 1, where learning some
of the tiger’s features can be beneficial to train a superior SSL model. Moreover,
parametric models are more likely to be overfitted in SSL. These methods usually
use learnable parametric methods such as fully connected layers as the solution
dock for ID data classification. In semi-supervised scenarios where labeled data
are missing, this parametric decoding approach requiring data redundancy is
not conducive to the classification of ID data. Due to the experimental setup
of OpenSet, these approach will fit the noisy-OOD data in the unlabeled data.
Therefore, a more robust, structurally simple way of decoding feature classifica-
tion is needed for the semi-supervised learning scenario of OpenSet.

In OSSL, the classification performance of ID data can be improved when the
open set contains OOD data (sim data) that are similar to ID data [1,12,26]. The
inclusion of sim data can help the model to learn the features of ID data because of
the similarity of the features of sim data and ID data. Meanwhile, prototype learn-
ing has been used in many classification works [17,20,25] with a limited number of
labeled samples due to its efficient use of data and robustness properties. In OSSL,
OOD data are easily introduced as noise in the classification learning of ID data
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due to the error of OOD detector. And the property that prototype learning is not
easy to overfit can mitigate the negative impact of these noises on the classifica-
tion effect of ID data. Therefore, to address the above challenges, we design a new
framework for OSSL– Prototype based Multi-information mining OSSL (PMSL).
PMSL Based on prototype learning by using a prototype approach to measure the
beneficial information density of OOD data, and accordingly perform different lev-
els of information mining on OOD data. Specifically, we simultaneously evaluate
the multi-level information density of unlabeled data by a learnable OOD detec-
tor and a non-learnable prototype similarity detector. Then based on the data with
different information densities (ID data, similar data, and dissimilar data), differ-
ent degrees of information mining and learning are performed on different data
by different loss functions to reduce the waste of information. Since the classifica-
tion head of parametric approach tends to overfit a small amount of labeled data
in semi-supervised learning, We adobt the prototype learning approach to train
the model for classification and utilize the prototype to perform similarity data
information mining on the data.

The main contributions of our work are summarized as follows:

1. In this work, we design prototype based multi-information mining OSSL as
a new framework to improving OSSL performance.

2. By using a prototype approach to measure the useful information density of
OOD data, and accordingly perform different levels of information mining on
OOD data.

3. The validity of the method was verified by comparing it with state-of-the-art
methods on various public datasets.

2 Related Work

2.1 Semi-Supervised Learning

Semi-Supervised Learning (SSL) has led to remarkable progress in diverse
machine learning problems. This success can be attributed to advancements in
learning algorithms and the utilization of large amounts of unlabeled data. Three
main categories of Deep SSL methods exist, namely consistency regularization,
pseudo-labeling, and hybrid methods.

Consistency regularization methods, as proposed in [14,19], make use of unla-
beled data by assuming that the model should output similar predictions for
any image and its perturbed version. Pseudo-labeling methods, as proposed in
[5,15,24,28], utilize the model to generate artificial labels for unlabeled data.
Hybrid methods, as proposed in [2,3], combine both consistency regularization
and pseudo-labeling and also make use of data augmentation techniques, such
as those proposed in [8,9,23], to further enhance performance.

However, the effectiveness of these methods depends on the assumption that
all labeled and unlabeled data originate from the same distribution. Once this
assumption is violated, the performance of seen-class classification may degrade
and even fall below the performance of supervised learning methods, as reported
in [4,10,16].
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2.2 Openset Semi-Supervised Learning

The concept of Openset SSL methods refers to situations where the labeled
and unlabeled datasets have different class sets. This issue was first addressed
by Laine and Aila [14] and Oliver et al. [16]. Since then, several approaches
have been proposed to tackle this problem. One such approach is Uncertainty
Aware Self-Distillation (UASD) [7], which uses historical predictions to identify
out-of-distribution (OOD) data and applies a self-distillation method to filter out
potentially OOD data. Another approach is Safe Deep Semi-Supervised Learning
(DS3L) [10], which employs a meta-learning scheme to automatically reduce the
impact of OOD data. Multi-Task Curriculum Framework (MTC) [26] treats
ID and OOD data as separate domains and employs curriculum learning to
distinguish between them. These methods have made significant strides towards
resolving the class-mismatch problem. OpenMatch [18] unifies FixMatch with
novelty detection based on one-vs-all (OVA) classifiers.

However, the current methods all default OOD data as harmful data, which
may miss the beneficial information.

3 Method

3.1 Overview

In Fig. 2, assuming a collection of labeled images {Xl, Yl} and an unlabeled
collection {Xu} , the features extracted from the labeled data with the number of
categories C are averaged to obtain the prototype Vp = {V0, V1 . . . Vc} ∈ R

C×M ,
while the data are classified into ID data XID and OOD data XOOD using an
OOD detector F . We aim to train a SSL model using labeled and unlabeled
data via prototype-based loss Ll and hard pseudo-labeled loss Lhard. And the
classification probability function of model prediction is set to pm (y | x). The
OOD data are then classified into similar data and dissimilar data by the distance
between the OOD data features and the prototype Vp. We leverage soft pseudo-
labeled label loss Lsoft for similar data to train the model. And we adopt uniform
class distribution loss Lucd for dissimilar data.

3.2 Preliminary

The proposed framework is flexible to multiple SSL baselines, and in this paper
we use the FixMatch [21]. PMSL trains the data by augmenting the data
with strong A (·) and weak a (·) data, via supervised loss Ll with unsupervised
lossLhard. First, the weakly supervised labeled data a (Xu) are trained using
the standard cross-entropy loss CE (p, q). The unlabeled data are subjected to
strong augmentation and weak data augmentation A(·), a(·) here we set to and
then the weakly augmented predictions pu with higher probability confidence
are used as the pseudo-label Ŷu = argmax(pu) for the strongly augmented pre-
dictions. Finally the unlabeled data are trained with consistent regularization
via cross entropy.

Ll =
1
Xl

CE (Yl, pm (y | a (Xl))) (1)
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Fig. 2. PSML framework

Lhard =
1

Xu
I(max(pu) ≥ γ)CE(Ŷu, pm(y|A(Xu))) (2)

3.3 Multi Detection

Since some OOD data may contain beneficial information for OSSL, detecting
only the OOD score of the data is more homogeneous and lacks the exploration
of the beneficial information density of OOD data. To this end, we propose the
Multi detection method by using a learnable OOD detector with a prototypical
similarity detector for multi-perspective information detection of unlabeled data.

To detect OOD scores for unlabeled data, we need to train an OOD detector.
To optimize the OOD detector using noise labels so that it can predict the OOD
scores of the data. First, we initialize the OOD scores for all data. For labeled
data, the score Sl is initialized to 0, and for unlabeled data, 0 is used as the
initialized score Su. Since a faster learning rate reduces the model’s fit to noisy
data, the initialized OOD scores are trained as the labels for OOD detection
in the first round. The labels are then updated in a momentum fashion using
the predicted OOD scores from each round. Where the parameters of the OOD
detector can be updated by the following equation.

Lood =
1

|Xl|CE(S
′
l , Sl) +

1
|Xu|CE(S

′
u, Su) (3)

where Su
l , S

′
u denotes the Xl,Xu prediction results of OOD detector and CE is

the cross entropy.
In the training phase, the network usually learns how to extract discrim-

inative features from the data, and similar data are prone to extract similar
features. The features from some categories that share similar patterns may be
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beneficial to each other. Thus, propose to adopt to use prototypes to measure the
beneficial information density of OOD data, and obtain the similarity of unla-
beled and labeled data by comparing the distribution of features of unlabeled
data with the distribution of features (prototypes) of labeled data. First, fea-
tures are extracted from the labeled data by the backbone network F, and then
each category of features are averaged to obtain a prototype Vp, where C is the
number of categories and M denotes the feature dimension. The vector distance
between the features extracted by F and the category prototypes is compared
with a function as shown in Eq. Then the value at the maximum distance d(p, q)
is taken as the similarity score:

Sim = max(d(F (Xood), Vood)) (4)

3.4 Multi Knowledge Minging

When performing information mining, since the use of fully-connected layers as
classification prediction does not directly train the feature representation of the
feature network. This can affect the accuracy of measuring the representation
of the prototype versus the distance between the data and the prototype during
prototype similarity detection. Also, the fully-connected layer tends to overfit
the features on a small amount of labeled data. Therefore, we propose to utilize
prototype to train the OSSL model. The classification probability pm is obtained
based on the softmax of the distance between the features and the corresponding
prototypes of each category, as shown in Eq.

pm(y = k|x) =
exp(−d(F (X)), Vk)∑
k′ exp(−d(F (X)), Vk′ )

(5)

After determining the implementation of classification probabilities pm, we
divide the data into several data domains based on the results of Multi detection
scores and use different losses to mine them for different levels of information.
We set thresholds ∂ood and ∂sim for OOD scores and Sim scores, using OSTU
method[ref]. Moreover the unlabeled data are divided into ID data Xid and
OOD data Xood based on OOD score . The similar data Xsim and dissimilar
data Xunsim are obtained based on the division with sim scores.

For Xid data, we adopt supervised loss Ll and unsupervised loss Lhard for
information mining. In this manner, the framework is more robust to informa-
tion mining of ID data of unlabeled data by strong and weak consistency regu-
larization, which is a better performing learning framework in semi-supervised
learning.

For similar OOD data Xsim, it may often have different degrees of similarity
to different classes of data in some aspects (a deer can have the body shape of
a dog while having the tail of a rabbit). To this end, we expect that these OOD
data, close to ID data in the feature domain, will have a consistent classification
probability distribution under strong and weak data augmentation both with
the distance distribution of the prototype with the same strong and weak aug-
mentation. To achieve this, we design the loss function Lsoft in a soft way to
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train the ID similar part of the Xsim data for information mining. As shown
in Lsoft. we computed the probabilities of the strongly and weakly enhanced
distributions separately and supervised the consistency of these two probability
distributions via the cross-entropy loss function CE:

Lsoft =
1

|Xsim|CE(pm(y|a(Xsim)), pm(y|A(Xsim))) (6)

At the same time, these dissimilar data we want to reduce the bias learning
of the model discriminator for these dissimilar data by training their probability
distributions to average probability distributions. As shown in Eq. Here, both
the strong and weak enhanced probability distributions are added to the average
class distribution loss.

Laug() = CE(pus, pm(y|aug(Xus))) (7)

Lucd =
1

|Xunsim| (La() + LA()) (8)

3.5 Trainning and Inference

We divide the training process of PSML into two stages: pre-training and for-
mal training. Firstly, in the pre-training stage, we use labeled data to train the
backbone network of the model and the ood detection of the Multi-detection
module. Among them, the backbone network is trained through prototype clas-
sification tasks with labeled data. Through pre-training, the ood detector can
preliminarily have ood detection functions, and the backbone network can also
extract data features to some extent. We extract features from all labeled data,
and average the features by category to obtain the most initial prototype. This
step will be performed before each epoch of formal training and remain fixed
within the epoch.

In the formal training stage, we jointly train labeled and unlabeled data.
Firstly, the Multi-detection is performed on the input unlabeled data. The ood
score and sim score of the predicted and trained data are predicted and trained
through the ood detector and sim detector. Then, the Multi-mining module
divides the data into labeled data, unlabeled ID data, sim ood data, and unsim
ood data according to the predicted information of Multi-detection, and uses
different loss functions to mine information of different data to varying degrees.

For the overall training loss Lall of each batch of PSML in the training, it is
jointly calculated by labeled data and unlabeled data as shown in the formula.

Lall = Ll + λoodLood + λhardLhard + λsoftLsoft + λucdLucd (9)

4 Experiment

4.1 Experimental Settings and Evaluation

We validated the PSML method on multiple SSL benchmarks. Among them, we
divided the categories of datasets such as cifra10/cira100 [13] and imagenet30 [22]
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into known and unknown categories to construct the OSSL task, and conducted
experiments and parameter adjustments based on parameters such as labeled
data quantity and known/unknown category ratio.

In the experiments, we used multiple hyperparameters in the training loss
to balance the weights of different losses. In the pre-training stage, we set λood

to 0.3, while setting the values of λhard, λsoft, and λucd to 0, so that only
the classification loss of labeled data and the ood detector were trained in this
stage. In the formal training stage, λood was set to 0.2, while λhard and λsoft

were both 0.5, and λucd was set to 0.1 at the end. We set the pre-training stage
to train for the first 100 epochs, and then train for 400 epochs in the formal
training stage. We used wideresent [27] as the backbone network for all methods
to extract features. For each experiment, only one NVIDIA 3090 GPU was used
for training.

For testing the dataset, we only used the known categories for in-domain
classification results testing. Then, we mainly used classification accuracy (%)
as the result indicator for testing the model on different datasets.

4.2 CIFRA10 and CIFRA100

To validate the feasibility of our method, we need to artificially construct seman-
tic correlations between known and unknown categories in the experiments.
Specifically, we extracted 4 animal categories from the 6 animal categories in
CIFRA10, and took 2 non-animal categories to form the known categories of the
CIFRA10 dataset, while the remaining 4 categories were unknown categories.
Similarly, for CIFRA100, we divided the categories according to coares labels.
In this experiment, we set two partition parameters following previous work: 80
known categories (20 unknown categories) and 55 known categories (44 unknown
categories).

In both of these partition parameters, we still followed the principle that
there is partial correlation between known and unknown categories. At the same
time, we also compared the performance of the methods under different numbers
of class labels (the number of labeled samples of each class).

Table 1 and Table 2 describes the validation set classification accuracy of
different methods under different experimental settings (dataset, number of class
labels, and category ratio). It can be seen that the PSML method performs
better than other methods in different settings. PSML improves the ability of
feature extraction and class clustering of ID data by detecting and mining useful
information from OOD data at multiple levels. Specifically, when the number
of labeled data is 50, PSML is significantly better than other methods. This
is because the prototype classification feature in PSML can efficiently utilize
limited labeled data and reduce overfitting to noise.

4.3 ImageNet

To further validate the performance of POML in the OSSL scenario, we com-
pared the effectiveness of different methods on ImageNet. As the cost of training
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Table 1. Results of CIFRA10.

CIFRA10 (6/4)

Method 50 100 400

FixMatch 58.2± 0.23 68.5± 0.25 77.1± 0.17

MTC 78.0± 0.19 85.9± 0.14 90.7± 0.13

OpenMatch 83.2± 0.21 88.1± 0.12 92.3± 0.11

PSML 86.1± 0.13 90.6± 0.09 94.3± 0.10

Table 2. Results of CIFRA100.

Method CIFRA100 (55/45) CIFRA100 (80/20)

50 100 50 100

FixMatch 63.7± 0.29 72.4± 0.35 58.0± 0.22 65.1± 0.46

MTC 68.2± 0.18 73.8± 0.67 60.2± 0.44 67.4± 0.12

OpenMatch 71.2± 0.21 76.9± 0.34 63.4± 0.29 70.5± 0.12

PSML 74.6± 0.15 79.3± 0.26 66.2± 0.42 73.8± 0.32

Table 3. Results of IMAGENET30.

ImageNet30 (20/10)

Method 2% 10%

FixMatch 82.3± 0.14 87.5± 0.09

MTC 83.6± 0.12 88.1± 0.02

OpenMatch 84.9± 0.08 90.3± 0.11

PSML 86.2± 0.13 91.2± 0.09

and validating on the full ImageNet dataset is relatively high (in terms of time
and computation power), we conducted experiments on the ImageNet30 subset.
This dataset includes 30 different categories of images and is easier to validate
and compare than the complete ImageNet dataset. Similarly, we divided the 30
categories into 20 visible categories and 10 invisible categories, and set different
labeled data quantities (2% and 10% of each category) for multiple experiments.

Table 3 describes the performance of different methods in different experi-
mental settings in ImageNet30. Similarly, PSML outperforms other methods in
different settings.

4.4 Ablation Study

In this section, we will carry out the ablation experiment analysis of the infor-
mation mining part and the prototype classification part of the OOD data to
verify the validity of our viewpoint. In this ablation experiment, we will remove
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Table 4. Results of IMAGENET30.

ImageNet30 (20/10)

method 2% 10%

baseline 84.7± 0.12 88.5± 0.08

PSML 86.2± 0.13 91.2± 0.09

Table 5. Results of IMAGENET30.

ImageNet30 (20/10)

method 2% 10%

baseline 85.3± 0.23 89.6± 0.14

PSML 86.2± 0.13 91.2± 0.09

some modules in POSL as the baseline for effect comparison and compare with
the complete POSL method under ImagetNet30 (2%) dataset.

OOD Information Mining. In the baseline method, we will remove the Sim
score calculation module of the data in the multi detection module and the
information mining of the OOD data part in the multi knowledge mining module
(Lsoft, Lucd) (Table 4).

Prototype Classification. In the baseline method, we change the classification
method in the model to a learnable fully connected layer, and directly input the
sample features to regress its category probability (Table 5).

5 Conclusion

This paper design a new framework for OSSL– Prototype based Multi-
information mining OSSL (PMSL) to better mine the information of OOD data
in unlabeled data, thereby improving the classification performance of ID data.
PMSL uses the prototype-based Multi detection method to calculate the active
knowledge capacity of the OOD Sample, and based on this, different degrees
of information mining are carried out on the data.The validity of the method
was verified by comparing it with state-of-the-art methods on various public
datasets.

References

1. Banitalebi-Dehkordi, A., Gujjar, P., Zhang, Y.: AuxMix: semi-supervised learning
with unconstrained unlabeled data. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 3999–4006 (2022)

2. Berthelot, D., et al.: RemixMatch: semi-supervised learning with distribution align-
ment and augmentation anchoring. arXiv preprint arXiv:1911.09785 (2019)

http://arxiv.org/abs/1911.09785


PSML: Prototype-Based OSSL Framework for Multi-information Mining 223

3. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.:
MixMatch: a holistic approach to semi-supervised learning. In: Advances in Neural
Information Processing Systems, vol. 32 (2019)

4. Calderon-Ramirez, S., Yang, S., Elizondo, D.: Semisupervised deep learning for
image classification with distribution mismatch: a survey. IEEE Trans. Artif. Intell.
3(6), 1015–1029 (2022)

5. Cascante-Bonilla, P., Tan, F., Qi, Y., Ordonez, V.: Curriculum labeling: revisiting
pseudo-labeling for semi-supervised learning. In: Proceedings of the AAAI Confer-
ence on Artificial Intelligence, vol. 35, no. 8, pp. 6912–6920 (2021)

6. Chapelle, O., Scholkopf, B., Zien, A.: Semi-supervised learning (Chapelle, O. et al.,
eds.; 2006) [book reviews]. IEEE Trans. Neural Netw. 20(3), 542 (2009) (2006)

7. Chen, Y., Zhu, X., Li, W., Gong, S.: Semi-supervised learning under class distribu-
tion mismatch. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 04, pp. 3569–3576 (2020)

8. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: learning
augmentation strategies from data. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 113–123 (2019)

9. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural net-
works with cutout. arXiv preprint arXiv:1708.04552 (2017)

10. Guo, L.Z., Zhang, Z.Y., Jiang, Y., Li, Y.F., Zhou, Z.H.: Safe deep semi-supervised
learning for unseen-class unlabeled data. In: International Conference on Machine
Learning, pp. 3897–3906. PMLR (2020)

11. He, R., Han, Z., Lu, X., Yin, Y.: Safe-student for safe deep semi-supervised learning
with unseen-class unlabeled data. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 14585–14594 (2022)

12. Huang, Z., Yang, J., Gong, C.: They are not completely useless: towards recycling
transferable unlabeled data for class-mismatched semi-supervised learning. IEEE
Trans. Multimed. (2022)

13. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

14. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. arXiv
preprint arXiv:1610.02242 (2016)

15. Lee, D.H., et al.: Pseudo-label: the simple and efficient semi-supervised learning
method for deep neural networks. In: Workshop on challenges in representation
learning, ICML, vol. 3, p. 896 (2013)

16. Oliver, A., Odena, A., Raffel, C.A., Cubuk, E.D., Goodfellow, I.: Realistic evalua-
tion of deep semi-supervised learning algorithms. In: Advances in Neural Informa-
tion Processing Systems, vol. 31 (2018)

17. Rosch, E.: Prototype classification and logical classification: the two systems. New
Trends in Conceptual Representation: Challenges to Piaget’s Theory, pp. 73–86.
Lawrence Erlbaum Associates, New Jersey (1983)

18. Saito, K., Kim, D., Saenko, K.: OpenMatch: open-set semi-supervised learning with
open-set consistency regularization. In: Advances in Neural Information Processing
Systems, vol. 34, pp. 25956–25967 (2021)

19. Sajjadi, M., Javanmardi, M., Tasdizen, T.: Regularization with stochastic trans-
formations and perturbations for deep semi-supervised learning. In: Advances in
Neural Information Processing Systems, vol. 29 (2016)

20. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In:
Advances in Neural Information Processing Systems, vol. 30 (2017)

http://arxiv.org/abs/1708.04552
http://arxiv.org/abs/1610.02242


224 Y. Xiao et al.

21. Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency
and confidence. In: Advances in Neural Information Processing Systems, vol. 33,
pp. 596–608 (2020)

22. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-UCSD
birds-200-2011 dataset (2011)

23. Xie, Q., Dai, Z., Hovy, E., Luong, T., Le, Q.: Unsupervised data augmentation for
consistency training. In: Advances in Neural Information Processing Systems, vol.
33, pp. 6256–6268 (2020)

24. Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves
ImageNet classification. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 10687–10698 (2020)

25. Yang, H.M., Zhang, X.Y., Yin, F., Liu, C.L.: Robust classification with convolu-
tional prototype learning. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3474–3482 (2018)

26. Yu, Q., Ikami, D., Irie, G., Aizawa, K.: Multi-task curriculum framework for open-
set semi-supervised learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M.
(eds.) ECCV 2020. LNCS, vol. 12357, pp. 438–454. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-58610-2 26

27. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint
arXiv:1605.07146 (2016)

28. Zhu, X., Goldberg, A.B.: Introduction to semi-supervised learning. Synthesis Lect.
Artif. Intell. Mach. Learn. 3(1), 1–130 (2009)

29. Zhu, X.J.: Semi-supervised learning literature survey (2005)

https://doi.org/10.1007/978-3-030-58610-2_26
https://doi.org/10.1007/978-3-030-58610-2_26
http://arxiv.org/abs/1605.07146


Pure Physics-Informed Echo State Network
of ODE Solution Replicator

Dong Keun Oh(B)

Korea Institute of Fusion Energy, Daejeon 34133, South Korea
spinhalf@kfe.re.kr

Abstract. Inspired by recent arguments to the echo state neurons, a reservoir
model of sequential data is polished to replicate the solution of given ODEs (Ordi-
nary Differential Equations). By training with the differential equation itself, a
pure physics-informed echo state network (ESN) is firstly introduced based on the
loss function as consistent with the general invariance of differential equations, in
which the actual training scheme is implemented as a regression in two stages. On
such a physics-informed model of recurrent neurons, some dynamical problems
are explored by means of sequential generation of the ODE solution as drawn
from the nonlinear trajectories of hidden state in the reservoir model.

Keywords: Echo State Network · Physics-informed Neural Network · Neural
ODE approximator

1 Introduction

Echo state property is a fundamental concept to support the reservoir computing (RC)
paradigm as a necessary condition for the “trainable readout mechanism” from the
already configured recurrent neurons [1–3]. In such a neural model, the neurons are
initially created at random, and stay fixed, potentially being independent of the training
process. To secure the desired output from a given input sequence, each evolution of the
reservoir has to be at the state of “echoing” memory [1, 4, 5]. This property just claims
a passive state of the neurons accumulating the input history in a certain period to the
past [1].

Onmany insights to the neurobiological system [6, 7], for instance, to cerebral cogni-
tive processes [8, 9], the idea of echo state network (ESN) has proven itself outperforming
in supervised learning problems for the complicated dynamic patterns. In practice, it has
achieved great success in nonlinear system modeling, specifically, for generation [10]
and prediction [11, 12] of nonlinearly evolving sequences. At the same time, this app-
roach has been recognized as a breakthrough to the difficulty in training of recurrent
networks [1–3]. Hence, particularly related to the echo state property, reservoir models
have led specific interests in how the neural memory of fading out surely assimilates the
given nonlinear behavior, or what conditions make such a chaotic data systematically
lead the trained readout. Thus, in a number of different aspects, theoretical deductions
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have been calling out stochastic viewpoint on the driving inputs as a matter of probabilis-
tic behavior. For instance, a stricter definition of the echo state was proposed relying on
non-autonomous input-driven dynamics [4], and a stronger inference is attained assum-
ing the target system as an ergodic source [4, 13, 14]. On this ground, the efficacy of
ESN is ensured in terms of universal approximation [15]. Furthermore, as a complement
of this argument, it was also discussed that an ESN surely embeds a structurally stable
dynamical system [13, 14]. In those theoretical developments, the dynamical behavior
was proven to be imposed by an L2 approximation, and it is possible to reproduce the
future observation by means of regularized least square regression [14].

While the recent arguments are quite evident how an ESN model works to secure
the chaotic trajectories, the actual inference about “learning dynamical behaviors” has
an inherent limitation so far, because the main idea just relies on a sampled sequence,
eventually, without the dynamics (physical information) itself into the learning process.
As a shortcoming on the attempt of theoretical demonstration, it was already indicated
that the underlying dynamics of the target system has been ignored in ESN models
[14]. Then, any alternative development is critically recommendable to integrate the
input driver’s dynamics into the reservoir training scheme. Hence, attention has to be
paid to the recent studies [16–23] on the echo state memory consolidated with physical
information [13, 14].

However, no meaningful development has not been made yet, not only to activate
any theoretical demonstration of the embedding (or approximation) to the dynamical
behaviors, but also to establish a pure physics-informed reservoir model in which the
underlying dynamics is assimilated by the recurrent neurons. In this study, an ESN-
based ODE solution replicator is introduced as the first realization of a reservoir model
trained absolutely in physics-informed manner, because a differential equation itself is
solely attributed to the information for training without supervision of data, to generate
the solution in sequence. Namely, the echo state of recurrent neurons is invoked in the
attempt of “training by pure physical information” by the simple type of differential

equation
·
y= f (y), as described in the rest of this article.

2 Background -ANeuralODEApproximatoras aPhysics-Informed
ESN

Since the emergence of physic-informed neural network, common efforts have been
made on the physics-driven models of machine learning, mostly, applied to the feedfor-
ward neural networks [16–20]. They have emerged on the aim of “learning analytic rela-
tions instead of data”, and just derived a recent activity as a notion of “physics-informed
neural network (PINN)” [17]. As shown in the studies such as a neural approximator
of differential equation [19, 20], their learning process is a regression on the error of
outputs deviated from the causal relations, namely, of the governing equations or its
underlying principles.



Pure Physics-Informed Echo State Network of ODE Solution Replicator 227

As an extension of feedforward PINN, some pilot studies of “physics-informedESN”
have been also found [21–23] incorporated with the physical error terms like any other
feed forward PINN. Nonetheless, the physical information was employed only in part,
i.e., as a complement of the supervision by prerequisite data (solutions) [21, 22]. In
practice, pure physics-informed ESN is challenging indeed, as it is easy to point out
that the piecewise recurrence of reservoir neurons is inevitably prone to be deviated
from the target system’s dynamical behavior. Hence, care must be taken to keep up the
basic invariance of differential equations, in particular, between the sequential steps of
recurrent generation of reservoir model.

3 Outline - ESN-Based ODE Model

An ESN model of ODE solution is conceived on to the sequential nature of recurrent
evaluation. In order to represent such a recurrence, the readout has to follow discrete
steps of the givenODE on the independent variable t getting forward to t+τ in sequence.
Thus, by means of a simple modification from the standard layout of reservoir models,
it is possible to take an idea to update the (n + 1)th recurrent state hn+1 following the
independent variable tn. In Eq. 1, the recurrent state is represented for the input vector

(yn, τ n) in case of
·
y= f (y), or (yn, tn, τ n) in case of

·
y= f (y, t),

hn+1 = σ
(
M · hn + V · yn0 + bτ n + c

)

or hn+1 = σ
(
M · hn + V · yn0 + atn + bτ n + c

) (1)

whereσ means element-wise operation of the nonlinear activation, and thefixedvariables
M,V, a, b and c are the weight matrices and vectors of the hidden layer’s (the reservoir’s)
connection randomly configured in the beginning [1–3]. Then, the readout yn+1 comes
out of the update of hidden state as the following,

yn+1 = yn0 + τ nW · hn+1 (2)

whereW is the readout matrix of weights to be determined by means of regression, i.e.,
in the training process.

Indeed, Eq. 2 describes an incremental update, just conforming to the integral ofODE
along the interval of [tn, tn + τ n]. Thus, it is suitable to express the solution after τ n,
namely at tn + τ n, where the initial condition is given by the nth input yn0. For simplicity,
the intervals are applied to be constant. Following up of the layout (Eqs. 1 and 2), one
has to get into the details of regression process to the solution. Namely, the matrix W
will be determined to get to the solutions in step. Of course,

·
y is what is to be informed to

learn the physical system, and the proposed layout (Eqs. 1 and 2) is possible to provide
such a differential to τ n explicitly. Hence, the ESN-based ODE replicator is drawn on
the ground of such an outline.

In spite of the minor modification, the training process is different a lot, when com-
pared with other cases of regularized linear regression. That is to say, an intrinsic dif-
ficulty will be brought, whenever nonlinearity on the right-hand-side of f (y) or f (y, t)
is involved into the least square terms, while solving a linear system is enough [1–3]
just for the regression to the sampled data yntarget . Just at a glance to a particular formula
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| ·
y −f |2 after the causality directly from the ODE, it is simple to notice that, even to

be straightforward to the physical information [17, 19–22], nonlinearity out of f (y) or
f (y, t) has to invoke an essential measures of iterative regression which is not avoidable
in case of the nonlinear least square minimization. Thus, it is a critical to develop the
training scheme in this work. On the other hand, any attempt on this study has to respect
the sense of sampling, regarding the sequential outputs. Namely, the yn just represents a
numerical approximation to the solution for each period. Ultimately, the reservoir model
works in autonomous mode to generate the solution in sequence. Thus, all readouts are
to be connected in series with each other as an approximation to the solution. In other
words, at each initial condition given by yn0 of the n

th input, the incremental part of the

readout �yn is to be consistent with the solution of
·
y= f (y) with respect to each initial

condition yn0.

�yn+1 = τ nW · hn+1(τ n, yn0,h
n) (3)

In consequence, the readout can be described as a series of previous �y according
to the recurrent evaluation, when the nth readout yn is transferred to the next step as an
input yn0, i.e., in recurrence.

yn+1 = yn + �yn+1

⇒ yn+1 = yn−n0 + �yn+1 + �yn + · · · + �yn−n0+1(n ≥ n0 ≥ 0) (4)

Meanwhile, the fundamental logic of differential equation is always satisfied in the
flashback (Eq. 4) to the point n0 shifted backward. Namely, the output yn is also the
same solution regardless of what n0 is selected for the initial state. Hence, one must take
into account such a nature of the solution as an important consideration to establish the
details. Actually, it is noted as the most particular idea in this study of physics-informed
ESN, to take care of such a consistency in the sequential readouts regarding the general
principle of differential equations; it is described in the next section.

3.1 Solution in Recurrence - How to Constrain the Neural Output

The Lie invariance is the neatest idea to consider a solution in the form of recurrent
sequence, which is the fundamental idea about general invariance (symmetry) of differ-
ential equations, particularly, with respect to the arbitrary shifts by a certain parameter

[24, 25]. Into a step further about the loss function, it is natural to consider the | ·
y −f |2

term for the causality at each prompt response “on the steps”. At the same time, such an
invariance on the recurrent evaluation just inspires to bring an essential idea of “constraint
between the steps”.

y∗ = Y(y, t; τ), t∗ = T (y, t; τ) = t + τ

� = f (y, t) · ∂
∂y + ∂

∂t
(5)

To describe the particular idea, every readout of the reservoir can be denoted by
y∗ as a solution of dy∗/dt∗ = f (y∗, t∗) on the evolution toward t∗ = t + τ from the
moment t with the initial value y. Then, the Lie transformation is naturally brought to
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correspond (y, t) to (y∗, t∗), i.e., for the both of independent and dependent variables.
As written in Eq. 5, the transformation is ruled by the parameter τ , and the logical
layout is supported by the infinitesimal evolution operator �. Namely, as a special case
of the general transformation, T (y, t; τ) = t + τ is able to be applied, and Y(y, t; τ) is
represented as y + τ(� · y) + O(τ 2) ≈ y + τ f (y, t) in terms of infinitesimal evolution
of τ [28, 29]. Thus, the constraint equation (Eq. 6) is derived as a differential formula
in the Lie’s theory of differential equation, where Eq. 5 is proposed to make it conform
to the evolution getting to y∗ over the period of τ [27, 28].

dy∗
dt∗ = DtY

DtT
=

(
∂
∂t +ẏ· ∂

∂y

)
Y

(
∂
∂t +ẏ· ∂

∂y

)
T

⇒ f (y∗, t∗) =
(

∂
∂t + f (y, t) · ∂

∂y

)
y∗

(6)

In accordance with the idea, the formulation in Eq. 7 just fits to the sequential output.
Indeed, it is introduced as a solution virtually evolving along the period of τ n, where
(yn, tn) is given to be the initial state.

{
yn+1 = yn + τ n�n+1(yn, tn; τ n)

tn+1 = tn + τ n
(7)

To be consistent with the equation dy/dt = f (y, t) the essential constraint on yn+1,
which is ruled by �n+1, should be applied above all in terms of the τ-derivative; see
the first formula in Eq. 8. In addition, another essential constraint, as the last formula in
Eq. 8, should be taken following the invariance principle represented in Eq. 6, for the
recurrence between the output and the input (or the previous output) of the reservoir.

�n+1(yn, tn; τ n) + τ n ∂
∂τ

�n+1(yn, tn; τ n) = f
(
yn+1, tn+1

)

�n+1(yn, tn; τ = 0) = f (yn, tn)(
f (yn, tn) · ∂

∂yn + ∂
∂tn

)
yn+1 = f

(
yn+1, tn+1

) (8)

As a result, the constraint equations (Eq. 8) are obtained to make the readout tight
enough to the sequential solution getting into step with its recurrent evaluation. From
the Eq. 8, the error terms will be derived for a loss function to be applied to the actual
process of training.

3.2 Regression Strategy in Two Steps - the Actual Training Scheme

In case ofODE approximator based on the recurrent layout in Eq. 1–4, the input sequence
is unknown, in principle, to be determined as an accurate solution. Thus, it does notmakes
sense either to prepare a proper input at one go, or to keep up with the approximation
without spoiling the straightforwardness of regression. On such a ground, an idea of
training scheme “in two stage” just emerges leading a kind of pre-casting from a trial
solution. Once an accurate approximation is secured based on the trial solution at the
first stage, it is possible to prepare the input sequence for the next stage on the ultimate
purpose to generate the solution in recurrent manner. Thus, it is possible to actualize the
two-pass regression scheme in terms of least square minimization for given ODEs.
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Once the solution strategy is established, each stage of regression is implemented to
minimize the sum of square errors which indicate howmuch the approximation deviates
regarding the causality from the differential equations as described by some constraints.
To build such a function of square errors, the error vectors are formulated with respect
to Eq. 8 not only for each step (the first two formulae in Eq. 8), but also between the
contiguous evaluations (the last formula in Eq. 8). Actually, one is able to regard the
constraint equations as a general formulation, and the t-derivative term is neglected just
because of the equations in the form of dy/dt = f (y); however, the formulation is easy
to extend to the cases of absolute t-dependence in f .

At the first stage, the trial solution is denoted by yn0. Then, to obtain the neural
approximation in sequence, yn is supposed to be the reservoir’s readout in the next step
evolving from yn at present. Thus, one has to take into account the previous readout as
the initial value of the next step, whereas the second stage, even at the same logic, must
bring the input sequence instead.

yn+1 = yn + τ nW · hn+1

where

{
h
n+1 = σ

(
zn+1)

zn+1 = bτ n + M · hn + V · yn0 + c

(9)

Thus, the second stage output yn is represented in terms of yn out of the first stage.

yn+1 = yn + τ nW · hn+1

where

{
hn+1 = σ

(
zn+1

)

zn+1 = bτ n + M · hn + V · yn + c
(10)

Hence, the error vectors of the first stage is defined, according to the three constraint
equations in Eq. 8, and the second stage also goes in the similar manner, where zn+1

0 is
M ·hn+V ·yn0+c, and zn+1

0 isM ·hn+V ·yn+cmeaning τ = 0 on the second constraint
formula of Eq. 8. Being notable to the first stage, the third constraint (Eq. 8) requires the

derivative by yn on which the hidden state h
n+1

doesn’t have any explicit dependence.
Thus, care has to be taken of the yn-derivative term ∂yn+1/∂yn to be imbedded into
the error vector e3 in an implicit manner by means of the identities of ∂yn+1/∂h

n =
(∂yn+1/∂yn) · (∂yn/∂h

n
) and ∂yn+1/∂h

n = W. After all, the error vectors are written
just in code-ready form, where� is element-wise multiplication of two vectors (Eq. 11).
Now, one is able to introduce the loss functions of square errorL = eT1 ·e1+eT2 ·e2+eT3 ·e3
for the first stage, and L = eT1 · e1 + eT2 · e2 + eT3 · e3 for the second stage.

⎧
⎪⎪⎨

⎪⎪⎩

en+1
1 = f

(
yn+1) − W · {

σ
(
zn+1) + τ nb � σ̇

(
zn+1)}

en+1
2 = f

(
yn

) − W · σ
(
zn+1
0

)

en+1
3 =

(
f
(
yn

) · ∂
∂yn

)
yn+1 − f

(
yn+1)

⎧
⎪⎪⎨

⎪⎪⎩

en+1
1 = f

(
yn+1

) − W · {
σ
(
zn+1

) + τ nb � σ̇
(
zn+1

)}

en+1
2 = f(yn) − W · σ

(
zn+1
0

)

en+1
3 =

(
f(yn) · ∂

∂yn

)
yn+1 − f

(
yn+1

)

(11)
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As a result, each stage of least square regression is ready in action relying on the
loss function, to determine the weight matricesW andW for each stage in turn. Solving
regularized linear equations based the Gauss-Newton method, the local minimum of
each loss function is obtained from the iterative process updating the weight matrix W
orW [26] applying the Tikhonov regularization [27] whose parameter is adjusted to be
small enough.

4 Implementation - A Test of Harmonic Oscillator

As the details of regression are arranged, it is tested above all whether the implemented
approximator works as planned. Namely, a pilot program is carried out to get a solution

of the simple harmonic oscillator, i.e.,
·
y1 = y2 and

·
y2 = −y1. The reservoir neurons are

just built based on the custom class, importing the Tensorflow library, with respect to the
proposed structure. Setting up theESNmodel, 200neurons of the hidden (recurrent) layer
are configured at random connection whose connectivity is 0.01–0.1, and the spectral
width of the hidden connection’s weight W is controlled by its 2-norm to be 10.0, as
the 2-norm is the upper bound of the spectral radius of W. Notably, the large spectral
radius doesn’t belong to the sufficient condition for echo state in the conventional setup
(ρ(W) < 1) [1], but just selected to be good enough for this special modification. For
the main part of regression, a trial solution is prepared, by means of the Euler method,
on the sequential steps of τ = 0.05, and is cropped to get 500 points on the span of
neural solution. In this course, 150 points of the leading part are dropped to wash out the
initial transient of reservoir [3]. Then, the regression process of the first stage is invoked
to carry out the Gauss-Newton iteration which needs the initial guess of W. Finding
nothing for alternative, the initial guess is selected just to replicate the trial solution, i.e.,

to make y0 = τ nW
n · hn+1

equal to yn+1
0 . As obtained in a different context from the

actual formulation (Eq. 9), the first stage output with the initial guess of W can be far
from the expectation as demonstrated in Fig. 1.

After the iterations, the final yn comes out to be accurate enough. Then, the result is
transferred to the second stage of regression. Because the harmonic oscillator is a linear
equation, it is easy to converge so that only a few iterations are enough to stabilize the
relative change of total loss |�L/L| to be less than 10–5 in the both stages. Eventually,
the demonstration is completed to verify the regression process was a training scheme
of the ESN-based ODE solution replicator.
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Fig. 1. Training by the harmonic oscillator equation in the first stage: the trial solution is prepared
by the explicit Euler method (upper). Then, the initial state for the regression process is presented
as an initial guess (middle).The finial state of regression is converged to the accurate sinusoidal
waves (lower).

5 Result - Demonstrations of Nonlinear Dynamic Problem

As the verification is successful, the cases of nonlinear equation are attempted as pre-
sented in this section; one is the van der Pol oscillator [28], and the other is the Lorentz
chaotic system [29].

5.1 Case 1: The van der Pol Oscillator

The van der Pol equation can be written in the form of
·
y= f (y), where f (y) = (y2, y2 −

y1 −y21y2) for y = (y1, y2) [28]. The reservoir of 300 neurons are configured in the same
manner of the previous verification with a simple harmonic oscillator. For the evolution
span of 500 points, the input sequence is prepared by the trial solution with τ = 0.1.
In the both stages of regression, the regularization parameter λ = 10–7 is assigned, and
the iterations are carried out as presented in Fig. 2. As a result, the neural solution is
obtained comparing with the trial solution for the first stage (Fig. 3).

5.2 Case 2: The Lorenz Equations

The Lorenz equations are well-known as a nonlinear system of chaotic behavior. The

system of differential equations, which are
·
y1 = σ(y2 − y1),

·
y2 = y1(ρ − y3) − y2

and
·
y3 = y1y2 − βy3, exhibit chaotic attractors, which Lorenz discovered with the
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Fig. 2. The first stage regression process for the van der Pol oscillator (left); the relative change
of the weight matrix versus the number of iterations (left upper), the amount of error versus
the number of iterations (left middle), and the final error vectors (left lower). The second stage
regression process (right) for the van der Pol oscillator; the relative change of the weight matrix
versus the number of iterations (right upper), the amount of error versus the number of iterations
(right middle), and the final error vectors (right lower).

Fig. 3. The result of the van der Pol Oscillator; y1 is plotted in solid line, and y2 is in dotted line;
the trial solution is plotted in gray color just for comparison.

parameters σ = 10, ρ = 28, and β = 8/3 [29]. To generate the 200 sequential solutions
on the intervals of τ = 0.03, the ESN-based ODE approximator is configured with 1500
hidden neurons which is large amount selected in reason after many efforts to make the
regression converged. To prepare the trial solution, the time interval τ/20 is applied to
the Euler method, and the original period τ is recovered by means of downsampling;
it is required to make the Euler step sufficiently fine. After then, the regression is done
for each stage, and its progress in detail is described in Fig. 4 respectively per stage.
Eventually, the neural solution is obtained, as shown in Fig. 5.
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Fig. 4. The first stage regression process for the Lorenz system (left), and the second stage (right);
the relative change of the weight matrix versus the number of iteration (upper), the amount of
error versus the number of iteration (middle), and the final error vectors (lower).

Fig. 5. The result of the Lorenz system; the final neural output is plotted in solid line as well as
the trial solution in grey color just for comparison (upper), and the difference between the result
and the trial solution is presented (lower).

6 Conclusion

As already recognized, the feedforward PINN are just supposed to learn the solution
at a specified condition of initial or boundary constraints, which means that one has
to do training again whenever those conditions are changed. Thus, it is not suitable to
replicate the target system’s behavior under the various conditions in practice. In such a
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point of view, the ESN-based replicator is important in favor of the recurrent architecture
based on the reservoir neurons, where it is expected to assimilate the nonlinear (chaotic)
trajectories [13–15]. On the other hand, its power of insight is possibly extended to the
theoretical discussions on the dynamical behavior hidden in the reservoir-based model
of nonlinear trajectories. Paying attention to the logical layout to be consistent with the
theory of differential equations, this study just implements the neural ODE replicator,
in particular, evaluating in step respecting the integration along each interval of the
dynamical interactions. What is the most remarkable is that the physical information is
imposed in terms of the invariant principle as a special constraint between the recurrent
steps. For a practical activity, the idea of this study is possible to enhance the previous
attempts [21–23] of the physics-informedESNwhich extracts the hidden states’ behavior
as constrained by the Lie invariance.
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Abstract. Extraction of the relation triple is a fundamental work for
the construction of knowledge graph. Since extraction of the relation
triple can be divided into two sub-tasks: entity recognition and relation
classification, most existing models conduct these sub-tasks jointly. How-
ever, most models suffer from the problem that the information of two
sub-tasks can’t be interacted with. To this end, we propose a new joint
model named RegionRel, which conducts two sub-tasks in one module at
the same time instead of several separate modules, a unified label space
is designed for unifying the learning of two sub-tasks. By doing so, the
problem mentioned above can be alleviated. Experiment on two widely
used datasets has proved that our proposed model performs better than
most of the state-of-the-art baselines.

Keywords: Relation triple · Joint model · Unified label space

1 Introduction

Extracting the relation triple in the form of triplet like (subject, relation, object)
or (s,r,o) is a fundamental work for the construction of knowledge graph. Tra-
ditional pipeline methods treat it as two separate tasks:(1)Extraction of enti-
ties;(2)Relation classification between entities. This is concise and easy to under-
stand but the result of the second step depends on the first step, which causes
the problem of error accumulation [1]. To solve this problem, most recent studies
focus on extracting relation triples jointly through an end-to-end model named
the joint approach. Some works [2,3] have proved that the joint model performs
better than the pipeline model due to the alleviation of error accumulation.

Most existing joint models divide relation triple extraction into several sub-
tasks. ETL [4] and CasRel [5] first extract head entities, then extract relation
and tail entities according to the head entities. Some methods [6,7] use graph
neural networks to extract entities and relations.

Sequence tagging methods [2,3] use various tagging methods to mark rela-
tion triple but still suffer from the problem of overlapping patterns. Apart from
that, most tagging strategies employ BIO annotation which is complex when
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handling long entities. Generation methods [8] treat the triple extraction task
as a generation task that considers triple as a sequence that can be generated
employing an encoder-decoder framework.

TPLinker [9] divides the task into two sub-tasks:(1)Alignment of subject-
object and (2)Entity recognition, these two sub-tasks are conducted jointly. An
additional relation judgment module that aims to identify potential relations in
a sentence is added to PRGC [10] based on the two sub-tasks of TPLinker, the
sub-tasks are conducted jointly and alleviates the problem of error accumulation
to some extent.

By summarizing the above models, we can observe that some models with
multiple modules split the task into sub-tasks and conduct sub-tasks separately
in different modules instead of one module, resulting in the information of differ-
ent modules not getting interacted which hinders better extractions. One reason
for not conducting sub-tasks in one module is that it is generally acknowledged
that the label space of different sub-tasks is difficult to be unified.

UniRE [11] takes the lead to break this conventional thought, it designs a
token pair matrix to represent both the entity and the relationship between
entities. However, due to its special tagging schema and decoding strategy, some
special patterns of relation triples are unable for extraction such as subject-
object overlap(SOO) and entity pair overlap(EPO). For example, the entity
pair(“Leborn”, first name, “Leborn James”) is unable to be extracted because
the subject and object overlap. Inspired by it, we propose a new model named
RegionRel to divide the task into two sub-tasks: entity recognition and subject-
object alignment, it conducts different sub-tasks in the same module and can
deal with different patterns of relation triples. Specifically, given a sentence, we
first use the biaffine attention mechanism [12] to construct a token pair matrix,
then use start-end annotation to recognize entities. Considering the start posi-
tion of the entity always appears before the end position of the entity, the label
space of the entity recognition task is always distributed in the upper triangu-
lar region of the matrix. Therefore, the lower triangular region of the matrix is
applied for the subject-object alignment task. In this way, the training of two
sub-tasks is unified in the same module. Experimental result has proved that
our model performs better than most of the state-of-the-art baselines.

In summary, the main contributions of this paper are as follows:

• We propose a new joint model named RegionRel which tackles the problem
in a novel perspective that decomposes the relation triple extraction task into
two sub-tasks in one module. The experiment has proved that our method
effectively makes the information of two sub-tasks interact and successfully
deals with different special patterns.

• Experiment has proved that our proposed model shows a better F1-score
in most datasets compared with other state-of-the-art baselines. In addition,
our model is robust enough for different overlapping patterns of relation triple
extraction.
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2 Related Work

Traditional pipeline methods [13,14] mainly consider the task as two sub-tasks:
Entity recognition and Relation classification. These methods are intuitive but
fails to focus on the intrinsic relevance between the two sub-tasks. To handle
it, many researchers focus on joint models, early joint models such as [15,16]
require a complex process of feature engineering and many NLP tools.

To address the problem, neural network-based joint models have attracted
the attention of researchers. Some researchers used the traditional sequence tag-
ging method [3] to extract the triple jointly but failed to handle the problem of
overlapping patterns. RSAN [2] used a set of tagging sequences for each rela-
tionship between entities to address the problem of overlapping patterns. ETL
[4] and CasRel [5] used a novel sequence tagging method to extract head entities
first, then extract tail entities and relations based on the result of the early step.
However, these methods neglect the relevance between two sub-tasks and lead
to redundancy in relation classification.

TPLinker [9] employs two modules to conduct sub-tasks jointly. However,
this method needs 2∗R+1(R denotes pre-defined relations) token pair matrices
which still leads to the problem of redundancy of parameters and complexity of
decoding. PRGC [10] used a module for potential relation judgment to reduce
the parameter redundancy caused by pre-defined relations, but it still suffers
from the problem that the information of modules doesn’t get interacted.UniRE
[11] conducts two sub-tasks in one module by which the information between
two sub-tasks has interacted, but due to its special way of table-filling, it suffers
from overlapping patterns.

3 Methodology

3.1 Task Definition

The goal of relation triple extraction is to identify all possible triples like (subject,
relation, object) from a given sentence. The input of our model is a sentence
with n tokens S = {ω1, ω2, ..., ωn}. The output of the model is a set of triples
τ = {(s, r, o)|s, o ∈ E, r ∈ R}, where E and R denotes the entity set and relation
set.

3.2 Encoder

Given a sentence with n tokens S = {ω1, ω2, ..., ωn}, we first employ a pre-trained
BERT [17] as sentence encoder to obtain contextual representation as follows:

{h1, h2, ..., hn} = BERT ({ω1, ω2, ..., ωn}) (1)
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Fig. 1. The decode framework of our model. The left and middle matrices represent the
decoding situation of RegionRel of different relations respectively. The upper triangle
region in light yellow of the matrix is used for named entity recognition and the lower
triangle region in dark yellow of the matrix is used for alignment of subject-object.
The right matrix represents the decoding situation of RegionRel Plus, the grey and
white region represents the extra region compared with RegionRel. ST-OT represents
the end position of subject to the end position of object. Similarly,OT-ST represents
the end position of object to the end position of subject, T-T represents the same end
position of both subject and object. (Color figure online)

3.3 Construction of Token Pair Matrix

We employ biaffine attention mechanism [12] to generate hspan
i,j as representation

of the token pair(ωi, ωj) for each index pair (i, j) in following way:

headi = MLPhead(hi) (2)

tailj = MLPtail(hj) (3)

hspan
i,j = headTi Utailj + W (headi+©tailj) + b (4)

According to [18], the experiment has proved that two separate MLPs project
encoded text to different feature spaces which leads to worse performance. We
employ a single MLP to project text for the above reason.

In this way, if the length of the sentence is L, we can obtain the vector
representation hspan

i,j of all L2 token pairs. We arrange these vectors by row and
column index (i, j) to get the token pair matrix R. the shape of R is L ∗ L ∗ N ,
where L denotes the length of the given sentence, and N denotes the dimension
of the vector representation hspan

i,j .

3.4 Tagging Strategy

Motivation. Biaffine attention [12] was proposed to address the problem of
long entity recognition. This method constructs the token pair matrix which
is mentioned above to calculate the score for each position(i, j), the index of
the row i denotes the start position of the entity, and the index of the column
j denotes the end position of the entity. Since the start of the entity always
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appears before the end of the entity, the lower triangular region of the matrix is
not utilized.

For this reason, the task of relation triple extraction can be divided into two
sub-tasks: Entity recognition and Alignment of subject-object. We apply Biaffine
attention mechanism to these two sub-tasks. Especially, the first sub-task of
entity recognition is conducted in the upper region of the token pair matrix;
the second sub-task of subject-object alignment is conducted in the lower region
which is not utilized in named entity recognition. Different regions have been
differentiated by color in Fig. 1.

Strategy. In this section, we will give an introduction to the tagging strategy
of the token pair matrix R which is derived according to Sect. 3.3.

We name these two sub-tasks mentioned above as task A: Entity recog-
nition and task B: Alignment of subject-object. In task A, there are two
labels: {Entity Type, None}.In this way, by using biaffine attention mechanism
[12], we can identify the start position and the end positions of each entity in
the upper region of the token pair matrix.

After getting all possible entities of one sentence, we need to determine
the correct pairs of the subjects and objects for which we focus on subject-
object alignment in Task B. In Task B we need to choose a suitable link scheme
first. Here we choose the end position of the subject to the end position of the
object(ST-OT) as our links of subject and object, in this way, all correct entity
pairs are detected. For example, for the relation triple(“Maynard Jack Ramsay”,
birthplace, “Boca Raton”), the position of the token pair(“Ramsay”, “Raton”)
is assigned with ST-OT to identify the relation triple. For the lower triangular
region of the matrix which is colored with dark yellow in Fig. 1, the index of rows
is always greater than the index of columns, ST-OT can’t be tagged here when
the end position of the subject appears before the end position of the object, we
need to tag it conversely as OT-ST in this situation. In this way, there are three
labels for Task B:{ST-OT, OT-ST, None}.

From the above discussion, in order to achieve the goal of joint learning of two
sub-tasks, we unify the label spaces of the two sub-tasks. As a result, there are
four labels {Entity Type, ST-OT, OT-ST, None} to identify all relation triples.
The last dimension of matrix R is 4.

3.5 Decoding

In this section, we will give a detailed introduction to the decoding of triplets.
In the left matrix of Fig. 1, the example sentence is “Maynard Jack Ramsay was
born in Boca Raton in Florida” in which there are two relation triples:(“Maynard
Jack”, birthplace, “Boca Raton”) and (“Florida”, contains, “Boca Raton”). The
whole matrix is split by different colors corresponding to different sub-tasks.

For the entity recognition, the position of the token pair (“Maynard”, “Ram-
say”) and (“Boca”, “Raton”)are tagged as “Entity Type” which means that both
“Maynard Jack Ramsay” and “Boca Raton” is the entity in the relationship of
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“birthplace”. For the alignment of subject-object, the token pair of (“Raton”,
“Ramsay”) is tagged as “OT-ST” which means the subject of the triple ends
with “Ramsay” and the object of the triple ends with “Raton”. Therefore a triple
(“Maynard Jack Ramsay”, birthplace, “Boca Raton”) is extracted, as same as
talked about above, (“Florida”, contains,“Boca Raton”) is another triple.

3.6 RegionRel Plus

From the discussion above we know that most triplets can be predicted by
RegionRel. However, the diagonal of the matrix is used to identify entities, which
means that the token pair in the diagonal can’t be tagged as ST-OT or OT-ST.
This flaw of the decoding strategy leads to the problem that some relation triples
with the end position of the subject is the same as the end position of the object
are unable to be predicted.

The core of the flaw is that the region of two sub-tasks overlaps. To solve
this problem, the labeled region of the matrix should be expanded.

To this end, we add an extra special token to the end of the sentence named
“[ST=OT]”. As is shown in the right sub-figure of Fig. 1, the number of token
pairs has increased from L2 to (L+1)2 after adding “[ST=OT]”, the extra region
of the token pair matrix is marked with grey and white. As we mentioned above,
for the triplet whose end position of the subject is the same as the end position
of the object, subject-object alignment can’t be tagged in the original matrix.
However, the last row of the matrix can be tagged for subject-object alignment
after adding an extra token to the sentence. For example, the sentence in the right
sub-figure is “American Journal of Mathematics was first published in 1878”,
(“American Journal of Mathematics”, academic discipline, “Mathematics”) is
one relation triplet with entity pair overlaps, therefore, the position of the token
pair (“ST=OT”, “Mathematics”) is tagged as “tail-to-tail”(T-T) which means
that “Mathematics” is both the end position of the subject and the end position
of the object.

In this way, some special triplets which can’t be extracted in RegionRel are
extracted by the new model named RegionRel Plus. Compared with the original
model, there is a new label in the label space called “T-T” which means the
end position of the subject is the same as the end position of the object. In
the experiment process, we use “ST-OT” to replace “T-T” because the label
distribution will be unbalanced if “T-T” is added to our label space.

3.7 Loss Function

Classification Loss. From the discussion above, the task is abstracted into a
multi-label classification problem, so the loss function of our model is defined as
follow:

Lcls = − 1
L × L × R

×
L∑

i=1

L∑

j=1

R∑

k=1

(yijk log (Rk
i,j,:) + (1 − yijk) log (1 − Rk

i,j,:)) (5)
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where L is the length of sentence, R is the number of relations, yijk is the gold
label of the token pair(hi,hj) and kth relation, Rk

i,j,: is the score of the token
pair matrix R with the token pair(hi,hj) and kth relation.

Constraint Loss. Based on our assumptions about the model, the distribution
of label space is not dependent. Labels of entity recognition tend to be distributed
in the upper triangle region while labels of subject-object alignment tend to be
distributed in the lower triangle region. Therefore, it’s necessary to add some
constraints to the model which helps the model learn the label distribution
better.

Specifically, After we derive R, distribution probability is achieved by follows
which is noted as P:

Pk
i,j,: = Softmax(Rk

i,j,:) (6)

We denote positive labels belong to the sub-task of entities recognition as
Ye and positive labels belong to the sub-task of subject-object alignment as Ya,
that is, Ye = {Entity Type} and Ya = {ST − OT,OT − ST}. We want the
sum of the probability scores belonging to Ye to be greater than the sum of the
probability scores belonging to Ya for the upper triangle region, and conversely
for the lower triangle region. We formulate this constraint loss as follows, Relu(x)
means max(0, x).

Lcon =
1

L × L × R
×

R∑

k=1

(
∑

(i,j)∈up

ReLu(
∑

y∈Ya

Pk
i,j,y −

∑

y∈Ye

Pk
i,j,y)+

∑

(i,j)∈low

ReLu(
∑

y∈Ye

Pk
i,j,y −

∑

y∈Ya

Pk
i,j,y)) (7)

Finally, the final loss is derived as L = Lcls + Lcon.

4 Experiment

4.1 Datasets

To compare with previous work, we conduct our experiment on two public
datasets NYT [20] and WebNLG [21]. Both of which have two versions, we
denote these datasets as NYT,NYT* and WebNLG and WebNLG*. The
difference between them is that NYT* and WebNLG* annotate the last token of
entities, NYT and WebNLG annotate the whole span of the entity. The details
of the datasets are shown in Table 1.

In Table 1, SEO is short for Single Entity Overlap which means the same sub-
ject or object corresponding to different relations like (“James”, live in, “USA”)
and (“Davis”, live in, “USA”).EPO is short for Entity Pair Overlap which
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Table 1. Details of four Datasets and numbers of different patterns in the test
set.Train, Valid, Test means the number of sentences in the train set, dev set and
test set.

Dataset Train Valid Test Relations Normal SEO EPO SOO

NYT* 56195 4999 5000 24 3266 1297 978 45

NYT 56196 5000 5000 24 3071 1273 1168 117

WebNLG* 5019 500 703 171 245 457 26 84

WebNLG 5019 500 703 216 239 448 6 85

means the same entity pair corresponding to different relations like(“China”,
the capital city,“Beijing”) and (“China”, contains,“Beijing”).SOO is short
for Subject Object Overlap like (“Leborn James”, first name,“Leborn”)

We report the standard micro Precision(Prec.), Recall(Rec.), and F1-score
for all baselines in our experiments. Following previous work, we use Partial
Match for NYT* and WebNLG* which means an extracted triple is predicted
correctly only if the relation and the last word of both subject and object are all
predicted correctly, and use Exact Match for NYT and WebNLG which means
an extracted triple is predicted correctly only if the relation and the whole span
of both subject and object are all predicted correctly.

4.2 Experiment Settings

We use bert-base-cased which contains 12 Transformer blocks with 768 dimen-
sions of hidden layer as our pre-trained encoder, the pre-trained model is
available on Huggingface. The batch size is 8/3 for NYT, NYT*/WebNLG,
WebNLG*. The accumulation step is 1/2 correspondingly. The dimension of
MLP in biaffine attention is 100. The max length of the sentence is 200. The
dropout probability is set to 0.5. All parameters are optimized by Adam [22]
with a learning rate of 1e-5. The training epoch is set to 400.

Table 2. Comparison between our model with previous models.

Model NYT* WebNLG* NYT WebNLG

Prec Rec F1. Prec Rec F1. Prec Rec F1. Prec Rec F1

GraphRel [6] 63.9 60.0 61.9 44.7 41.1 42.9 – – – – – –

ETL-span [4] 84.9 72.3 78.1 84.0 91.5 87.6 85.5 71.7 78.0 84.3 82.0 83.1

RSAN [2] – – – – – – 85.7 83.6 84.6 80.5 83.8 82.1

CasRel [5] 89.7 89.5 89.6 93.4 90.1 91.8 – – – – – –

TPLinker [9] 91.3 92.5 91.9 91.8 92.0 91.9 91.4 92.6 92.0 88.9 84.5 86.7

PRGC [10] 93.3 91.9 92.6 94.0 92.1 93.0 93.5 91.9 92.7 89.9 87.2 88.5

EmRel [19] 91.7 92.5 92.1 92.7 93.0 92.9 92.6 92.7 92.6 90.2 87.4 88.7

RegionRel 93.5 91.6 92.5 94.6 87.5 90.9 93.4 91.8 92.6 92.0 85.9 88.9

RegionRel Plus 93.5 92.3 92.9 94.9 92.4 93.6 93.1 92.8 93.0 91.5 87.1 89.2
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4.3 Main Result

Table 2 shows the result of our model compared with other baselines on four pub-
lic datasets. From the result, we can observe that our model outperforms most
of the baselines in terms of precision and F1-score. Both CasRel and TPLinker
are methods that split tasks into several sub-tasks performed in different mod-
ules. Our model outperforms CasRel by 3.3 and 1.8 in F1-score on NYT* and
WebNLG*, and outperforms TPLinker by 1.0,1.7, 1.0, and 2.5 in F1-score on
NYT*, WebNLG*, NYT and WebNLG. It can be obtained that our model alle-
viates the problem of error accumulation.

However, it is worth noting that the recall of RegionRel is generally poor
compared with most baselines. The main reason for this phenomenon is that
our model can’t recognize some specific triples due to the flaws of the model
structure which we mentioned above. RegionRel Plus solved this problem, so
we can observe that the recall returned to normal levels, especially outperform-
ing RegionRel by 4.9 in WebNLG*.The precision of our model is better than
most models. It can be mainly attributed to the following two reasons: first,
the decoding method prevents wrong triplets as much as possible; second, the
relation-specific decoding method improves the precision of our models.

To sum up, our model achieves satisfying results compared with other base-
lines. The results of F1-score and Precision are better than most previous sota
baselines

4.4 Detailed Result

We also conduct further experiments to test our model when handling different
overlapping patterns and different numbers of triples on the test set of NYT*
and WebNLG*.

Table 3. Detail result of different patterns on test set of NYT* and WebNLG*. SEO,
EPO, SOO means different overlapping patterns mentioned in Table 1, and N means
the number of triples in one example.

Model NYT* WebNLG*

Normal SEO EPO SOO N = 1 N = 2 N = 3 N = 4 N ≥ 5 Normal SEO EPO SOO N=1 N=2 N=3 N=4 N ≥ 5

ETL-Span 88.5 87.6 60.3 - 88.5 82.1 74.7 75.6 76.9 87.3 91.5 80.5 - 82.1 86.5 91.4 89.5 91.1

CasRel 87.3 91.4 92.0 77.0 88.2 90.3 91.9 94.2 83.7 89.4 92.2 94.7 90.4 89.3 90.8 94.2 92.4 90.9

TPLinker 90.1 93.4 94.0 90.1 90.0 92.8 93.1 96.1 90.0 87.9 92.5 95.3 86.0 88.0 90.1 94.6 93.3 91.6

RegionRel 91.7 92.8 94.0 82.3 91.3 92.8 92.7 95.8 90.3 90.2 91.5 89.4 83.4 86.2 90.6 94.8 92.4 90.4

Region Plus 91.1 94.0 94.5 82.9 90.4 93.0 93.5 96.4 92.7 92.7 94.1 94.2 94.3 91.3 92.0 96.0 95.0 92.6

As shown in Table 3, it can be observed that our model performs well in
most scenarios. It obtains the best F1-score on 14 of 18 subsets. Our model
achieves better results compared with other baselines when handling different
numbers of triples. Compared with RegionRel, RegionRel Plus improves perfor-
mance about SOO, increasing by 0.6% and 10.9% on NYT* and WebNLG*, it
can be attributed to the extra regions added by RegionRel Plus by which model



246 Z. Li and Q. Mo

can predict most special patterns, especially SOO. This result shows that our
model has advantages in dealing with complex scenarios.

4.5 Result on Sub-task

In this subsection, we will conduct experiments to compare the performance of
entity recognition with other models. Considering the entity in the task is divided
into subject and object, we decide to take the entity pair (subject, object) as
our target to compare with other models. The result is shown in Table 4, from
the result we can observe that our model performs better than most baselines
in entity recognition, especially compared with PRGC which conducts sub-tasks
separately, our model outperforms PRGC in all instances except the precision of
NYT*. This result proves that integrating entity recognition and subject-object
alignment into one module can effectively improve the effect of the model.

Table 4. The performance of entity pair(subject, object) on test set of NYT* and
WebNLG*

Model NYT* WebNLG*

Prec. Rec. F1. Prec. Rec. F1

CasRel 89.2 90.1 89.7 95.3 91.7 93.5

PRGC 94.0 92.3 93.1 96.0 93.4 94.7

RegionRel Plus 93.7 92.7 93.2 96.8 94.0 95.4

5 Ablation Study

In this section, we will conduct several ablation experiments to explain the inter-
action between sub-tasks and analyze the effects of the loss function. The result
is reported in Tables 5 and 6.

Table 5. Ablation study on the dev set of NYT.

entity recognition Prec. Rec. F1

+ subject-object alignment 0.960 0.950 0.955

- subject-object alignment 0.942 0.945 0.943

From Table 5, we can observe that the performance of entity recognition with
subject-object alignment increase Precision, Recall, and F1-score by 1.8%,0.5%,
and 1.2% compared with conducting entity recognition task only. This result
proves that our proposed model can make information of two sub-tasks interact
which contributes to better performance of relation triple extraction.

The result of Table 6 shows us the fact that adding constraint loss will signifi-
cantly improve the effectiveness of the model. This is because the distribution of
label space will approach the ideal distribution by adding constraint loss which
helps the model converge better.
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Table 6. Model performance with/without constraint loss on the test set of WebNLG*.

method Prec. Rec. F1

with constraint 94.9 92.4 93.6

without constraint 94.4 92.2 93.3

6 Conclusion

In this paper, we propose a new joint model named RegionRel Plus for relation
triple extraction. It splits the task into two sub-tasks and conducts them in one
module which successfully alleviates the problem of error accumulation. More
importantly, this method successfully conducts two sub-tasks in one module and
shows that the label space of different sub-tasks can be unified. As a result,
the information of different sub-tasks is interacted which contributes to better
performance of our model.

In the future, we would like to improve the generalization of our model in
low-resource scenarios.
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Abstract. In-memory on-chip learning is crucial for low-power, in-field
training capabilities at the edge. We demonstrate the robustness of
on-chip back-propagation to hardware variability in terms of bit-cell
transistor VT variability (2.5× more robust than off-chip training). We
use perturbation schemes, asymmetry variations and variability-aware
update schemes to identify the relative contribution of different on-
chip operations: forward pass, backward pass and weight updates to
Fashion-MNIST classification performance degradation with variations.
It is revealed that variability during the weight update step is crucial
while accuracy of backward pass or gradient calculation is not critical.
We promote weight perturbation scheme over back-propagation as the
choice for on-chip in-memory training with reduced points of failure and
low cost of hardware.

Keywords: In-memory · Variability · Back-propagation · Perturbation

1 Introduction

Hardware acceleration of artificial neural network (ANN) operations is crucial
for widespread deployment in high-throughput applications. Further, the explo-
sion of data at the edge and concerns of personal data privacy require on-chip
learning capabilities for low-power devices [9,17,18]. Learning at the edge has the
potential to relieve communication bandwidth and promote decentralised edge
computing rather than centralised cloud computing. However, learning is typi-
cally an expensive operation with high data movement resulting in high energy
and latency requirements [8,15].

In-memory computing using conventional (Static Random Access Memory
or SRAM, Dynamic Random Access Memory or DRAM, Flash) or emerg-
ing memories (Resistive Random Access Memory of RRAM, Magneto-resistive
Random Access Memory or MRAM, Ferroelectric Random Access Memory or
FeRAM) provides an alternative architecture for high-speed, low-power opera-
tions using device physics and circuit laws for partially analogous computing [14].
Specifically, vector-matrix inner product and vector-vector outer product oper-
ations have been accelerated in-memory to demonstrate on-chip learning for
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ANNs [1,5,6]. However, hardware non-idealities like quantization and variabil-
ity pose a challenge to accuracy [4,16].

Fig. 1. Comparison of the decisions involved in the BP and WP pathways for in-
memory on-chip training

Backpropagation (BP) is a powerful learning algorithm employing forward
pass for loss, backward pass for gradients and weight update computations as the
fundamental operations [13]. In-memory implementation of BP incurs errors in
these operations owing to hardware non-idealities. Further, on-chip implemen-
tation of BP requires reversibility of network hardware to allow bidirectional
passes [8] along with the assumption of availability of exactly transpose weights
(i.e., no asymmetry variation) for backward pass. In this work, we motivate the
robustness of “on-chip learning” vis-à-vis “offline learning followed by on-chip
inference” to hardware variability. Next, we use a weight perturbation (WP)
scheme to identify the primary operation in BP that is affected by variability
while training on-chip [15]. Finally, we test the robustness of on-chip BP to
the extent of asymmetry in forward and backward passes weights of the net-
work. These requirements for a successful on-chip BP implementation namely
reversibility in hardware puts BP at a disadvantage when compared to more
generally applicable perturbation schemes (Fig. 1).

2 Related Work

Due to the adverse effects of variability on-chip on the performance of ANNs
trained using the Back Propagation algorithm, researchers have suggested several
ways to improve model performance, for example - [2,7,10].

[3] develops quantization-aware and variability-aware training or QAVAT,
improving performance of models on computer vision datasets like CIFAR100.
To make the network robust to variability, QAVAT, introduces variability during
training and attempts to find the unbiased estimator for the gradients. [12] devel-
ops a Weight Variation Aware Training or WVAT for Spiking Neural Networks
(SNNs) and ANNs. WVAT aims to find model parameters which are resilient to
small changes.

While all these developments propose techniques that show improvements
in model performance, none attempt to answer which step in the training pro-
cess of ANNs is the most affected by variability. Thus, in addition to having a
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variability-aware weight update algorithm, which shows improvement in model
performance, we fundamentally answer the question - which step in our training
process is the most affected by on-chip non-idealities?

3 Methods

3.1 Modelling Hardware Non-Idealities

We assume the weights of the network are implemented using multi-bit dig-
ital arrays of memories with capability of in-memory vector-matrix multipli-
cations (wij,Q =

∑N−1
k=0 bk.2k). Each bit of each weight has the capability of

an analog readout current using a transistor depending on the bit value (1/0)
(Fig. 2(a),(b)). The effective weight (wij,eff ) that participates in multiply and
accumulate (MAC) during forward/backward passes is then computed as a sum-
mation of the bit-wise currents scaled according to their significance:

wij,eff =
1
I1

N−1∑

k=0

Iij,k(bk).2k (1)

where [bN−1, · · · , b1, b0] is the bit-pattern for the specific weight, I1 is the nomi-
nal ON current for bit ‘1’ and Iij,k is the instance of current readout from the kth

bit of ijth weight. Iij,k are variable bit to bit, weight to weight due to transistor
threshold (VT ) variability and sampled from the distribution:

Iij,k(bk) = Ix exp
ΔVT

ηVth
(2)

where x ∈ {0, 1} gives the nominal OFF (I0) or ON (I1) current depending
on value of bk (I1/I0 ∼ 104), ΔVT is sampled from a normal distribution
with zero mean and σVT

standard deviation, η (∼ 1.5) is the transistor
sub-threshold non-ideality factor and Vth (26 mV ) is the thermal voltage at
room temperature. These effective weights, with quantization and variability,
affect the MAC and weight update operations and hence, the on-chip learning
and inference performance. In this work, only the weights and weight updates
are considered non-ideal during operation since these consume the maximum
area on-chip and undergo an aggressively scaled implementation, and are thus
vulnerable to variations.

3.2 Weight Perturbation Scheme

Weight Perturbation (WP) is an alternative of BP, an approximate method to
calculate the gradients that does not involve backward pass through the network.
In this scheme, the weights of the network are perturbed one by one. After
perturbing a weight, a forward pass is done and the new output loss is observed,
then:



252 R. K. Vartak et al.

∂L

∂wij
∼ ΔL

Δwij,eff
(3)

Here Δwij,eff is the change in the effective weight when perturbed by 1 bit value
from its current bit-pattern.

3.3 Blind Updates Vs. Variability Aware Updates

Once the gradients and hence the desired weight updates are calculated using
BP or WP, we need to update the wij,Q. We can quantize the obtained updates
and add it to previous bit-pattern of the weights digitally. This method is termed
as a blind update as it is blind to the variability of the effective weight of the new
bit-pattern. On the other hand, we can find a new effective weight which results
in an effective weight update closest to the calculated update. This method is
termed as a variability aware update. It is important to note here that typically
the user only has access to the wij,Q. However, variability aware updates assume
a knowledge of available wij,eff corresponding to different quantized levels Wij,Q

can take, and hence it will require specialized hardware to implement. Currently,
we generate a lookup table of effective weights for all bit-patterns of each weight
to enable variability aware updates (Fig. 2(c)).

3.4 Asymmetry in Forward and Backward VT

Backpropagation assumes reversible network hardware for forward and backward
passes with symmetric forward and backward effective weights for transposed
weight multiplication operations (Fig. 2(a),(b)). However, when implemented in
technology using transistors, the source to drain and drain to source current at
appropriately reversed biasing may result in different current flows (Fig. 2(d)).
This effectively means that the forward VT,F and backward VT,B may not be
identical. We consider the scenario where the VT,F and VT,B are sampled from a
bi-variate normal distribution with same σVT

and different amounts of correlation
ρ between VT,F and VT,B . Typical measurements conducted on 6 Metal-Oxide-
Semiconductor Field-Effect Transistor (MOSFET) devices in 32 nm Partially
Depleted Silicon On Insulator (PDSOI) technology (W = 450 nm and LG =
40 nm) and distributions reported earlier in 65 nm Complementary Metal-Oxide-
Semiconductor or CMOS [11] for extracted VT for forward and backward bit-
cell currents are shown in (Fig. 2(d),(inset)). The experimental data suggests
prevalence of high ρ ∼ 0.9.

4 Results and Discussions

All experiments are performed for the training and testing of Fashion-MNIST
dataset (90% - 10% training-testing split) using a fully connected layered network
(784×10×10). We use only one hidden layer to keep the number of learn-able
parameters in our network small as Weight perturbation is slow to train the
network since the gradient computation for each weight is performed sequentially.
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Fig. 2. (a) Forward and (b) Backward pass in-memory MAC scheme for the special
case of 1-bit weights, (c) Blind vs. variability aware updates, (d) Measured asymme-
try variations for 6 devices, (inset) Extracted VT,B vs. VT,F along with distributions
reported earlier [11]

We use ReLU activations in the hidden layer and softmax activations in the
output layer with categorical cross entropy loss for training. A batch-size of
630 samples is used with a fixed learning rate of 0.1. We use a quantization
of 12 bits per weight and sweep the amount of variability per bit (σVT

). Each
variability experiment is run for 5 instances to obtain statistical data and the
mean (markers) and standard deviation (shaded) of test accuracy are reported
for the following experiments.

4.1 Robustness of On-Chip Learning to Variability

We consider two scenarios. (1) Ideal weights trained off-chip in software are
transferred on-chip for inference, (2) Training is performed on-chip with vari-
ability inflicted but symmetric weights and blind updates. We see that case (2),
i.e., calculation of loss and gradients on-chip through effective weights (Sect. 3.1)
grants the system significantly higher robustness (2.5× higher) against variabil-
ity (Fig. 3(a)).
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Fig. 3. (a) Test accuracy vs. σVT for off-chip and on-chip training, (b) Overlapping test
accuracy for WP and BP blind updates, (c) Test accuracy vs. epochs and improvement
due to variability awareness

4.2 Weight Updates as the Fundamental Limiting Operation

In this Section, we sub-sample inputs to reduce network size to 16× 10× 10 and
use a fixed learning rate of 1. The weights are symmetric and the updates are
blind. We compare on-chip BP and WP (Sect. 3.2) based accuracies to determine
the limiting operation out of forward pass, backward pass and weight updates.
WP requires no backward pass but overlaps in performance with BP (Fig. 3(b)).
This indicates that on-chip backward pass for gradients calculation is not respon-
sible factor for performance degradation with variations. This also implies that
it is the blind weight update step that is the performance defining critical oper-
ation during learning on-chip. Further, adding variability awareness (Sect. 3.3)
to updates enhances the performance significantly reinforcing the role of update
step as the fundamental limiting operation (Fig. 3(c)).

4.3 Impact of Asymmetric VT on Performance

We perform blind updates based BP for the asymmetric VT scenarios (Sect. 3.4).
Asymmetry variations in VT translate to different forward and backward weights
(WF and WB). This experiment provides a method to resolve the importance
of exact transpose weights multiplication during backward pass. For ρ = 0, we
observe that the performance is similar to the symmetric VT case (Fig. 4(a))
for different amounts of σVT

. An instance of VT,F and VT,B sampling for the
uncorrelated case and the corresponding asymmetry in WF and WB is shown
in Fig. 4(b),(c). Next, we fix σVT

= 30 mV , and sweep the correlation ρ from
−1 to 1 (Fig. 4(d)). Again, a correlation insensitive test accuracy is observed.
An instance of VT,F and VT,B sampling for ρ ∼ 0.9 case and the corresponding
asymmetry in WF and WB is shown in Fig. 4(e),(f). These experiments suggest
that the asymmetry in WF and WB caused due to hardware asymmetry varia-
tions in VT,F and VT,B is not a critical factor in backpropagation accuracy. This
again reinforces the conclusion that the accuracy of backward pass or gradients
calculation is not the performance limiting operation.
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Fig. 4. (a) Test accuracy for uncorrelated asymmetry case, Distribution for forward
and backward (b) ΔVT and (c) W for ρ = 0 and σVT = 30 mV , (d) Test accuracy
for different VT correlation case, Distribution for forward and backward (e) ΔVT and
(f) W for ρ = 0.9 and σVT = 30 mV , Typical hardware σVT and ρ are star-marked

4.4 Benefits of Weight Perturbation

Clearly, it is beneficial to have an on-chip in-memory training capability
(Sect. 4.1. Further, the critical operations are the loss calculation (forward pass)
and weight updates on-chip for robustness to variability. However, if we choose to
develop hardware for BP, there is increased cost of reversible hardware capable of
forward and backward pass in the same memory array along with the peripher-
als needed to enable that. In contrast, WP requires much simple hardware. The
network does not need to be reversible. It does not need to be compatible with
backpropagating gradients and hence asymmetry is immaterial. The network can
be fully connected sequential layers or recurrent. WP would function agnostic to
network architecture and is thus more generally applicable with reduced number
of potential failures and low cost of implementation. However, WP is expected
to run slower, polling through the weights, as compared to BP. If the frequency
of re-learning weights is low, WP is an excellent choice for in-memory on-chip
learning hardware.

5 Conclusion

We have analysed the impact of VT variability and asymmetry variations in
weights on the performance of backpropagation on-chip using an in-memory
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implementation. On-chip training is more robust (2.5× higher) to hardware vari-
ability. It is critical to implement on-chip loss calculation (forward pass) and
variability-awareness in weight update step while the accuracy of backward pass
and gradients calculation on-chip shows low significance to performance degra-
dation with variability. Backpropagation requires reversible hardware in order
to calculate gradients on-chip increasing the cost of hardware implementation.
Weight perturbation on the other hand does not depend on reversibility and
hence, is more generally applicable with reduced hardware cost.
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Abstract. Deep learning models often require a significant amount of
data, which can be computationally intensive and architecturally com-
plex. Efforts to address the challenge of handling large amounts of data
in high-resolution scenarios have led to the development of techniques
like data pruning and data diet approaches. We present a novel app-
roach called Select Base on Intra-Class Similarity (SICS), distinguishes
itself by measuring the similarity of samples within the same class and
identifies the most informative samples that are most dissimilar from
others, and introducing the novel concept of a distinctive-variant sam-
ple, vital for enhancing deep-learning classification tasks. We evaluated
our method on several image classification benchmarks and compared it
with existing techniques. Our results show that in high-resolution images
and many class scenarios, SICS can achieve the same level of accuracy
as the full data while using only about 80% of the training data, out-
performing the ForgettingScore method by 20% to 90%. Additionally,
our method maintains its robustness when switching to different train-
ing models. Our source code is publicly available at https://github.com/
Gusicun/SICS.

Keywords: Data pruning · Data diet · Intra-class similarity ·
Important samples · Distinctive-variant samples

1 Introduction

Deep learning has achieved remarkable success in various domains. However,
deep learning faces significant challenges due to its models and datasets’ increas-
ing scale and complexity. For example, GPT-3 (Generative Pre-training Trans-
former) [2], one of the most significant language models, has over 175 billion
parameters and requires hundreds of gigabytes of data to train. Similarly, Ima-
geNet [5], a classic dataset for image recognition, contains over one billion images
and takes up over 300 GB of storage. This poses several challenges: (1) Collect-
ing and annotating large-scale datasets is expensive and time-consuming; (2)
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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(a) standard samples (b) distinctive-
variant samples

(c) forgettable samples

Fig. 1. Differences in selecting samples using SICS(Ours) and Forgetting
Score(baseline) Fig. 1a shows the most standard samples of the Siamese Cat category
in the Oxford Pets dataset; Fig. 1b shows the most distinctive-variant samples we
choose by the SICS method; Fig. 1c shows the most forgettable samples chosen by
the ForgettingScore method.

Training on large-scale datasets requires huge computational resources and long
training time; (3) Large-scale datasets contain redundant or noisy samples that
degrade the model performance.

In response to those challenges, the concepts of data pruning and data diet
have been proposed in online and active learning, as discussed in references
[3,12]. One possible solution is to select a subset of essential training samples
that can effectively represent the characteristics and diversity of the full dataset.
This reduces the data size and complexity, saves computational costs and time,
and improves model performance and robustness. However, selecting essential
training samples is not a trivial task.

Inspired by the established research on human perception and performance,
we extend the concept of variations to deep learning classification tasks. Vari-
ations refer to the degree of deviation among samples within a category. For
example, in human perception, Nosofsky’s seminal study [10] showed that peo-
ple could accurately identify and categorize new stimuli if they were exposed
to diverse examples from each category rather than just prototypes or aver-
ages. Similarly, variations can help capture more salient or distinctive features
and reduce redundancy among samples within a category. We provide empirical
evidence to support this claim in our experiments.

We focus on a specific type of training sample that we call distinctive-variant
sample. These samples deviate from the majority of others within their category
in some specific features but still share salient features with other samples in the
same category. We argue that selecting distinctive-variant samples can improve
the performance and robustness of deep learning models for classification tasks.
Existing methods for data pruning are either based on random sampling or inter-
class similarity, which does not capture the intra-class similarity. Therefore, we
propose a novel method to bridge the gap. We named our method Select Base
on Intra-Class Similarity (SICS). SICS aims to select a subset of samples that
effectively represent the full dataset while eliminating redundant samples.
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Our experimental findings suggest that:
1) We introduce the concept of a distinctive-variant sample, show its impor-

tance and usefulness for deep learning classification tasks, and propose a novel
method for selecting distinctive-variant samples based on their intra-class simi-
larity. We call our method Select Base on Intra-Class Similarity (SICS).

2) We conduct experiments on several image classification tasks and show
that our method can achieve comparable or even better results than using the
full dataset or other data pruning methods.

3) We show that our method excels when the pruning ratio is high and when
the original dataset is complex. We demonstrate that our method can improve
the robustness and generalization of the model by transferring distinctive-variant
samples between different DNN architectures.

2 Related Work

We have conducted a comprehensive evaluation of various techniques employed
for data pruning and data diet and have compared them with our own novel
approach. Cody et al. [4] proposed a method called selection via proxy (SVP),
which selects the samples that have the highest loss on the proxy model. Pruthi
et al. [8] proposed a method that uses influence functions to estimate the change
in test loss when a training sample is removed. Zhu et al. [15] proposed a method
that defines two scoring metrics: Gradient Normed (GraNd) score and Error L2-
Norm (EL2N) score.

Inspired by Zhu’s work, Toneva et al. [14] defined a training sample that is
characterized as forgettable if the model keeps wrongly predicting it over the
course of multiple epochs during the training process. On the contrary, a train-
ing sample that is unforgettable if it remains correctly predicted on the training
process. Unforgettable samples can be eliminated from the training set without
affecting the performance of the network. Paul et al. [11] proposed a method
that cherrypicks the important samples in early training. They used the Gra-
dient Normed (GraNd) score and the Error L2-Norm (EL2N) score, which are
computed from the initial loss gradient norm and the normed error of each train-
ing sample over multiple weight initializations, to identify a subset of important
training data.

Our proposed method Select Base on Intra-Class Similarity (SICS) differs
from these existing methods in several aspects. We introduce the concept of
a distinctive-variant sample and show its importance and usefulness for deep-
learning classification tasks.

3 Methodology

3.1 Definition and Methodology

Our proposed method consists of two main steps: feature extraction and sample
selection. In the feature extraction step, we use a pre-trained model or a self-
defined Convolutional Neural Network (CNN) model as the backbone to extract
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Fig. 2. The Select Base on Intra-Class Similarity (SICS) method follows a well-defined
workflow. Through intra-class similarity computation, the least similar pairs populate
V arCk , and training samples with the highest occurrence rate, embodying distinctness,
are chosen.

features from each sample. In the sample selection step, we calculate the pair-
wise similarity between each pair of samples using the extracted features and
rank them accordingly. We then select a subset of samples that have high intra-
class similarity as the distinctive-variant samples we desired. Formally, let D =
{Dtrain,Dtest} be a given dataset that comprises of N distinct classes C =
{C1, C2, . . . , CN}. Let x be a training sample and x′ be a test sample.

In our approach, we calculate intra-class pairwise similarity, relocate the least
similar half to V arCk

, tally sample occurrence, and retain those with top frequen-
cies, arguing their distinctness due to maximal dissimilarity. Further subsections
delve into specifics of our approach (Fig. 2).

3.2 Getting Intra-class Similarity

First, we extract features from each training sample using a pre-trained model
or a self-defined Convolutional Neural Network (CNN) model. The extracted
features are used to measure the similarity among samples within each class.
We use pre-trained models as the backbone because they have been shown to
be efficient for various image classification tasks [7,13]. We use ResNet [6] as
our default pre-trained model, but other models are also used depending on the
dataset and task. For some intricate datasets, we design custom convolutional
layers to capture the specific characteristics of each training sample.

Let backbone(x) be a function that extracts features from sample x using
the pre-trained or self-defined CNN model. We define the feature extracted from
sample x as fx:

fx = backbone(x) (1)

To measure the degree of similarity between samples within class Ck, we compute
the pairwise similarity between all samples in class Ck using cosine similarity [9].
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Cosine similarity measures the angle between two vectors and ranges from −1
to 1, where 1 means identical and −1 means opposite. We define the similarity
between two samples xi and xj as:

sim(xi, xj) =
fxi

· fxj

||fxi
|| × ||fxj

|| (2)

In order to compute the similarity among all samples within each class, we
proceeded to form tuples consisting of pairwise samples along with their corre-
sponding similarity values. These tuples were then appended to the simlistCk

,
where Ck represents the K class. The step-by-step process for this can be found
in Algorithm 1.

Algorithm 1: Getting Intra-class Similarity
Input: Train dataset: Dtrain, all classes: C, a model for feature

extraction: backbone, function to compute the degree of similarity
between two samples: sim(xi, xj)

Output: The list of tuples that contains each pairwise sample and their
similarity for each class: sim listCk

1 foreach class Ck in C do
2 f list = empty list ;
3 sim listCk

= empty list ;
4 foreach sample x ∈ Dtrain do
5 if x ∈ Ck then
6 fx = backbone(x) ;
7 add fx to f list ;
8 end
9 end

10 foreach fxi
, fxj

∈ f list do
11 Initialize variable simxi,xj

to store the result of sim(xi, xj) ;
12 simxi,xj

← sim(xi, xj) ;
13 add ((xi, xj), simxi,xj

) to sim listCk
;

14 end
15 end
16 return sim listCk

for each class Ck in C

3.3 Select Distinctive-Variant Samples via Intra-class Similarity

Having identified the intra-class similarity, the subsequent step involves selecting
the distinctive-variant samples within each class. To achieve this, we establish
a threshold for each class based on the median similarities within that class.
Our working hypothesis suggests that samples with a lower similarity value
may exhibit unique features compared to other pairs, implying that they are
distinctive-variant.

Assume that we have a list of thresholds defined as Th =
{ThC1 , ThC2 , . . . , ThCN

} for the N classes. For any two samples xi and xj in
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class Ck, we obtain the similarity value simxi,xj
, as we gain from each tuple

through sim listCk
. The threshold of Ck is denoted as ThCk

. Then, we can
define the subsets for each class as V arCk

, which contains pairs of samples with
low similarity values.

In the context of V arCk
, each sample in a sample pair is considered an

individual sample. Thus, when a pairwise sample such as (xi, xj) and (xi, xk)
appears in V arCk

, both samples xi, xj , and xk are added repeatedly to the list
variantCk

. In other words, each sample is treated independently and added to
the list multiple times if it appears in multiple sample pairs.

V arCk
= {(xi, xj)|simxi,xj

≥ ThCk
,∀xi, xj ∈ Ck, xi �= xj} (3)

variantCk
= xi | ∃xj : (xi, xj) ∈ V arCk

∪ xj | ∃xi : (xi, xj) ∈ V arCk
(4)

Samples that appear at least once in variantCk
are identified as distinctive-

variant, for we consider these samples to have unique characteristics that dif-
ferentiate them from other samples. To measure the distinctiveness of these
samples, we rank them based on their frequency in variantCk

. Samples that
occur more frequently are considered to have higher distinctive-variant features
and therefore are given higher priority. Conversely, samples with low frequency
are deemed not-salient-feature samples and can be removed. To denote the fre-
quency of a particular sample x, we use the notation varfreq(x, variantCk

) and
sort the samples in descending order as vardesCk

. The Kronecker delta function
[1] is utilized to indicate the number of times a sample x appears in variantCk

.

var freq(x, variantCk
) =

∑

v∈variantCk

δv,x (5)

Upon identifying distinctive-variant samples, we proceed with data pruning,
utilizing a predetermined ratio. Suppose we aim to preserve a fraction of the
original training dataset, denoted by R. In that case, we must choose 	|Ck|×R

samples from each category Ck based on the priority we established earlier to
construct the retention dataset. We repeat this iterative process until we reach
the desired quota, resulting in a new dataset for each category, which we label
retentionCk

. The retention procedure is visually presented in Fig. 3.
To provide a more comprehensive explanation of the process, we describe

the discipline in greater detail in Algorithm 2. To demonstrate the distinctive-
ness of the most frequent occurrence of dissimilar samples, Fig. 4. illustrates the
var freq for samples obtained from Algorithm 2.

4 Experiments

In order to validate our hypothesis, we experimentally apply our methodology
to multiple models and datasets.
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Fig. 3. Arrange the samples in descending order based on their var freq values. Dur-
ing the dataset selection phase, we accord greater precedence to samples with higher
var freq values.

Fig. 4. A comparison between samples chosen through the Select Base on
Intra-Class Similarity (SICS) approach from the CIFAR10 dataset. Specifi-
cally, the upper row displays the most distinctive-variant samples with high var freq
values, while the lower row showcases the samples with low var freq values.

4.1 Experimental Setup

Opting for a custom two-layer CNN for MNIST’s low-resolution data and a pre-
trained Resnet18 for other datasets, we applied the pruned dataset to the feature
extraction model for generalization accuracy evaluation. The experiments were
expedited on multiple 3080Ti GPUs for computational efficiency.

Datasets. Our experiments leveraged multiple benchmark datasets: MNIST
with 70,000 28× 28 grayscale digit images, CIFAR10 and CIFAR100 contain-
ing 60,000 32× 32 color images across 10 and 100 classes respectively, STL10
comprising 96× 96 color images across ten classes with an additional 100,000
unlabeled images for unsupervised learning, and the Oxford Pets dataset, fea-
turing diverse pet images across 37 categories. We partitioned the Oxford Pets
dataset into training and testing sets in an 8:2 ratio.

Backbones. In this experimental setup, we used various backbone networks to
extract features. For ResNet18, we reduced the output dimension by 99.5%, from
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Algorithm 2: Selecting Distinctive-variant Samples based on Intra-class
Similarity

Input: List of tuples for each class we gain from last algorithm sim listCk , set
of all classes C, set of thresholds Th

Output: Retention dataset for each class retentionCk

1 foreach Ck ∈ C do
2 Initialize empty set V arCk , list var des to store samples on frequncy in

descending order, variable R to store the retention ratio of dataset, variable
freqx to count frequncy of sample x, and list of tuple var list to store each
sample and its frequncy ;

3 foreach ((xi, xj), simxi,xj ) ∈ sim listCk do
4 if simxi,xj ≥ ThCk then
5 V arCk ← V arCk ∪ (xi, xj);
6 end

7 end
8 add each sample in each pairwise sample in V arCk to variantCk ;
9 foreach sample x ∈ Ck do

10 freqx ← var freq(x, variantCk ) ;
11 add (x,freqx) to var list ;

12 end
13 Sort var list on freqx for ∀x ∈ Ck in descending order and store the sorted

samples into var desCk by same order;
14 Initialize empty set retentionCk ;
15 foreach x ∈ var desCk do
16 retentionCk ← retentionCk ∪ x ;
17 if |retentionCk | = |Ck| × R then
18 break;
19 end

20 end

21 end
22 return retentionCk for each class Ck in C

1000 to 5, and initialized it with a unit matrix. We also froze the parameters to
avoid overfitting. For the customized CNN model, we only used the convolutional
layers as features. This simplified the model and improved the feature quality.

Training Setup. Post-pruning, we retrained a model, assessing test accuracy
across datasets to exhibit our method’s generalization and competitive perfor-
mance. Training involved 200 epochs for MNIST, CIFAR10, CIFAR100, and
Oxford Pets, with STL10 at 100 epochs, utilizing SGD optimizer with momen-
tum and suitable schedulers for optimization.

4.2 Results Analysis

Compare with Forgetting Score Method. Figure 5 presents the experi-
mental results in comparison with the ForgettingScore method [14]. The x-axis
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(a) MNIST+CNN (b) CIFAR10+ResNet18 (c) CIFAR100+ResNet18

(d) STL10+ResNet18 (e) Oxford Pets+ResNet18

Fig. 5. Impact of pruning different percentages of the training data The
horizontal red solid line represents training with the whole training data without data
pruning; The horizontal blue dot represents a ForgettingScore pruning away of the
same amount of data; The green dashed lines represent the results of using SICS(Our
method) to prune the data.

represents the retention ratio, where a higher ratio indicates a lower percentage
of pruned training samples, e.g., 80% retention ratio means 20% of samples are
pruned. The y-axis represents the model accuracy achieved by training only on
the retained data. The solid line in each figure represents the results obtained
without data pruning, while our method is depicted by a dashed line and the
forget method by a dotted line.

Our proposed SICS approach demonstrates significant performance improve-
ments in Fig. 5a, achieving up to 10% higher accuracy on MNIST when the
retention ratio is between 1% and 3%. On CIFAR10 in Fig. 5b, SICS achieves up
to 17% higher accuracy with a 35% retention ratio. Similarly, on CIFAR100 in
Fig. 5c, SCIS outperforms the ForgettingScore method by up to 15% accuracy
under a 70% retention ratio. The performance gap is even more pronounced in
Fig. 5d and Fig. 5e, with accuracy improvements of 56% and 80% across all reten-
tion ratios. These results highlight the significant advantage of our approach over
the ForgettingScore, particularly at low retention ratios.

Our method achieves higher accuracy than the Forgetting Score on different
datasets, especially when the original dataset has higher image resolution or
more categories to be classified. This trend is highlighted in Table 1, where we
compare our method with the Forgetting Score on various datasets with different
characteristics.

Based on Table 1, it is evident that the Oxford Pets dataset and the STL10
dataset outshine the other datasets in terms of resolution. Moreover, the Oxford
Pets dataset stands out with its larger number of categories compared to the
other datasets. By employing our method, we were able to achieve a considerable
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Table 1. A comparison of the generalization accuracy on SICS(Ours) and Forgetting
Score when different datasets are used with different proportions of data retention. We
bold the results that are better than the ForgettingScore.

Dataset Resolution Retention Ratio SICS(Ours) Forgetting Score

MNIST(CNN) 28× 28 1% 0.914 0.819

2% 0.945 0.920

3% 0.959 0.961

5% 0.964 0.987

CIFAR10(resnet18) 32× 32 10% 0.671 0.634

20% 0.826 0.658

40% 0.903 0.940

60% 0.937 0.956

80% 0.944 0.959

CIFAR100(resnet18) 32× 32 20% 0.496 0.384

40% 0.658 0.593

60% 0.724 0.713

80% 0.758 0.769

STL10(resnet18) 96× 96 10% 0.357 0.101

20% 0.448 0.112

40% 0.529 0.121

60% 0.632 0.123

80% 0.655 0.129

Oxford Pets(resnet18) over 200× 200 10% 0.856 0.014

20% 0.903 0.018

40% 0.919 0.032

60% 0.925 0.069

80% 0.936 0.078

improvement in generalization accuracy, which was almost 60% on STL10 and
more than 90% on Oxford Pets when compared to the baseline. This remarkable
improvement validates our hypothesis.

Generalization Capability on Different Models. The SICS methodol-
ogy entails the careful selection of critical training samples through a metic-
ulous analysis of feature similarity within each class. As part of our ongoing
research, we aim to further expand the scope of our experiments by leveraging the
selected dataset to evaluate various models. Notably, our training process solely
utilized distinctive-variant samples that were previously identified through the
pre-trained ResNet18 model on the MobileNet-v2 model. The experiments were
conducted on the CIFAR10 dataset, employing the forgetting-score and random
approach as evaluation metrics. Table 2 showcases the comparative results, indi-
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cating that the SICS approach consistently maintains a substantial advantage
of up to 25% over the forgetting-score method and up to 5% over the random
approach. The experimental findings affirm that the SICS approach exhibits
good generation capability when applied to diverse models.

Table 2. A comparison of the generalization accuracy on SICS(Ours) and Random-
chose samples of CIFAR10 on MobileNet-v2 are used with different proportions of data
retention.

Dataset Retention Ratio SICS(Ours) Forgetting Score Random

CIFAR10 10% 0.357 0.233 0.313

20% 0.576 0.329 0.525

40% 0.753 0.603 0.748

60% 0.815 0.784 0.819

80% 0.840 0.831 0.832

5 Conclusion and Future Work

In this study, we have introduced a novel approach called Select Base on Intra-
Class Similarity, which leverages the concept of distinctive-variant samples to
efficiently prune training data for classification tasks without compromising per-
formance. Our experimental results on multiple datasets have demonstrated the
effectiveness and robustness of our proposed method, particularly at high reso-
lutions and across various model architectures. These findings have important
implications for improving the efficiency and scalability of data-centric methods
and offer a fresh perspective on data pruning and data diet.

In the future, we plan to: (1) use more diverse datasets due to limitations in
our current datasets; (2) streamline the sample-selecting process to reduce the
number of steps involved, and (3) explore data pruning and data diet applications
in other domains.
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Abstract. Twitter bot detection is a crucial yet challenging task. The
existing bot detection methods have limited semantic information min-
ing ability for a large number of tweets posted by social media users.
To address this challenge, we propose SIMF, which stands for Semantic
Information Mining and Fusion. SIMF leverages a pre-training scorer to
rank a large number of a user’s tweets, and filters them based on specific
rules. Additionally, SIMF preprocesses tweets and integrates multiple
information encodings to obtain user representation, which enhances its
ability to capture a diverse array of fake bots. Our comprehensive experi-
ments on the benchmark TwiBot-20 demonstrate that SIMF outperforms
other competitive algorithms.

Keywords: Twitter Bot Detection · Social Media · Semantic
Information Mining

1 Introduction

With the rapid development of social networks, millions of users are active on
social platforms such as Twitter, Weibo and so on. Nowadays, social networks
have gradually become an important part of people’s online life. But in addition
to genuine users, social networks are also home to a large number of social bots,
automated programs that mimic normal human behavior on social networks
with a purpose. Some malicious bots will actively participate in online discus-
sions of important events in an attempt to manipulate opinions, such as election
intervention [1]. Malicious bots are also responsible for spreading low-credibility
information [2] and extreme ideologies [3]. The appearance of malicious social
bots has a bad effect on the order of social networks and is a serious threat to the
security of cyberspace. Therefore, it is of great practical significance to detect
bot accounts on social networks.

Twitter bots hide their automated nature by mimicking real users. Because
identifying bots in social media is critical to maintaining the integrity of online
discourse, much research work has been devoted to identifying bots active on
Twitter. Over the past few years, a number of people have proposed machine
learning frameworks for bot detection on Twitter (refer to the Related Work
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section). But challenges remain due to the diversity and dynamic behavior of
social bots. Most current methods try to identify bots by a user’s property
information, which means new bots can be specifically designed to evade existing
detection systems.

However, Twitter bots often need to send tweets to achieve their purposes,
such as influencing public opinion and promoting advertisements. The tweets
they release are different from those of real users, which makes it possible to
detect the bots through their tweets. At the same time, based on the Transformer
[4], a variety of large-scale pre-training language models(PLM) have emerged and
show strong performance in various natural language processing tasks, mainly
because the large-scale PLM improves the semantic information encoding perfor-
mance and enriches the semantic representation input. However, most of these
methods do not carry out in-depth research on how to extract semantic infor-
mation more effectively, but simply use PLM to encode semantic information
which limits the final detection ability of the model.

In this article, we propose a framework to address this challenge. By mining
semantic information, especially tweets, beyond a user’s property information,
our model can process richer information and is less likely to miss bots designed
to evade existing systems. We first train a scorer to rank a user’s tweets and
filters tweets according to specific rules. Then, multiple information is fused
to obtain user representation. Obviously, how to combine multiple twitter user
information for next detection step is also a big challenge. In this paper, we
study different ways of mining semantic information and integrating multiple
information to address the challenge of bot disguise.

Our contributions are as follows:

– We propose a tweet filter that improves the efficiency of semantic represen-
tation. By applying specific rules and rankings from a pre-training scorer, we
reduce a large number of tweets to the most critical ones.

– We design a bot detection model that can incorporate various user informa-
tion with flexibility.

– Our model outperforms other baselines in terms of F1-Score and Accuracy.
Furthermore, the comparison between the experimental groups demonstrates
the effectiveness of our model design (Fig. 1).

2 Related Work

Most existing bot detection methods are based on supervised machine learning.
An earlier Twitter bot detection scheme proposed by Lee et al. [5] focuses on
feature engineering with user information. Yang et al. [6] design new features to
counter the evolution of Twitter bots. Other features are also adopted, such as
the information of a user’s home page [7] and social networks [8]. Some methods
also incorporate information from the content of tweets. For example, A recursive
neural network proposed by Wei et al. [9] identifies bots with semantic informa-
tion in tweets. Kudugunta et al. [10] develop a bot detector based on LSTM both
considering user tweets and property information. Yang et al. [11] take a new
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Fig. 1. Overall architecture of SIMF

perspective and minimize account metadata to scale and generalize social bot
detection. Graphics-based bot detectors are also being developed, which consider
social user’s neighborhood information. Alhosseini et al. [12] regard Twitter as a
user network and use graphical convolutional networks for bot detection. SATAR
[13] proposes a task to learn the representation of the user and is fine-tuned
for the robot detection task. BotRGCN [14] further constructs a heterogeneous
information network to represent Twitter and uses relational graph convolutional
networks for bot detection. Finally, RGT [15] constructs a heterogeneous infor-
mation network with users as nodes and decentralized relationships as edges,
and conducts heterogeneous sensing Twitter bot detection.

Large data sets are also essential for training and evaluating bot detec-
tion methods. The earliest bot detection data set is caverlee-2011 [7]. The bot
accounts in the Cresci-17 [16] data set contain more granular breakdown: tradi-
tional spambots, social spambots, and fake followers. Recent data sets include
verified-2019 [11], botwiki-2019 [11], cresci-rtbust-2019 [17], Astroturf [18]. In
order to facilitate the use of multi-modal user information, Feng et al. [19] con-
struct TwiBot-20 containing semantic, property and neighborhood information.

3 Problem Definition

Let D = {di}LD
i=1 represents a user’s description with LD words. Let T = {ti}M

i=1

represents a user’s M tweets. And ti = {wi
1, · · · , wi

Qi
} represents each tweet with

Qi words. Let P = {pi}N
i=1 represents a user’s N property features. Let y repre-

sents a user’s label, generally “0” represents a genuine user, and “1” represents a
bot. The bot detection task through a user’s information is to identify the label
y with the help of the following information D,T, P .
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4 Tweet Filter

How to filter more effective content from the mass of tweets sent by Twitter users
is the problem of tweet filtering. We first use the user data (D,T, P ) in the data
set to construct a Twitter user text corpus, which will be used to train a scorer to
evaluate the tendency of a tweet to be a bot. The scorer then calculates a score
for each tweet that can be used to filter subsequent tweets. As we can see that
certain rules are used to calculate scores in some competitions, for example, the
highest and lowest scores are removed before the average score is calculated. So
we propose some rules to be applied to tweet filtering, and their effectiveness will
be investigated in later experiments. Besides, the tweet preprocessing method
also should be taken into account.

Fig. 2. The process of constructing the Twitter User Text Corpus

4.1 Twitter User Text Corpus

Figure 2 illustrates the process of constructing a Twitter user text corpus. To
begin, we extract the tweets, descriptions, and labels of U users from the source
dataset. Next, we select L tweets from each user’s M tweets. If M is less than
L, we take out all M tweets. The randomly selected ith tweet is represented by
tai

, then combined with the user’s description D and label y to form min(L,M)
pieces of data. Let c represents the combination of a single tweet and a single
description. Therefore, each piece of data is composed of combination c and label
y:

{(tai
,D), y}min(L,M)

i=1 = {ci, y}min(L,M)
i=1 (1)

Since a single user can generate multiple pieces of data in the Twitter user
text corpus, we can easily create a larger corpus by including all user data from
the source dataset.
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4.2 Tweet Scorer

Based on the constructed Twitter user text corpus, We will then train a scorer
to rate and filter a user’s tweets.

Firstly, we define the feature extraction method of the combination of a tweet
and a description, c. We use the large-scale PLM BERT [20] to extract features.
Specifically we put tweets/descriptions into the BERT, and take the pooling
average of the 12th layer as the feature extraction vector:

BERT(c) = [BERT(t); BERT(D)] (2)

All input combinations of a tweet and a description, {c1, c2, · · · , c|c|}, receive
the scores {s1, s2, · · · , s|c|} by the tweet scorer, which includes the feature extrac-
tor and a single-layer perceptron (SLP):

s = Scorer(c) = SLP(BERT(c)) (3)

We avoid using multi-layer perceptrons(MLP) in this scenario because MLP
tends to overfit. The SLP is trained by minimizing the cross entropy loss between
si and the corresponding label yi. The value of si represents the likelihood of the
combination ci to be a bot. Once the tweet scorer is well trained, we associate
corresponding a user’s description with all of a user’s tweets T = {ti}M

i=1 to
obtain corresponding scores {si}M

i=1. We can then rank each tweet by their scores
from smallest to largest, resulting in a ranking {ri}M

i=1.

4.3 Rule

Due to the large number of tweets posted by users (usually M � 100), we will
try to select K tweets by the ranking r. We want to find out which segment of
the ranked tweets is best to distinguish between genuine users and bots.

– High: This rule assumes a significant difference between highly ranked tweets
from bots and those from genuine users. It means selecting K tweets with the
highest rating.

– Low: This rule assumes a gap between lowly ranked tweets from bots and
those from genuine users. It means selecting K tweets with the lowest rating.

– Mid: This rule assumes that both overrated and underrated tweets are biased.
It means choosing K tweets with a rating in the middle range.

– Rand: This rule assumes that the overall difference between bots and real
users is most noticeable. It means K tweets are randomly chosen, and the
first K tweets are chosen for simplicity.

4.4 Preprocessing

In general, a tweet can be divided into the following parts: the text posted by
the user, other users mentioned in the tweet (users can use the “@user” format
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Table 1. Tweet preprocesing example

Preprocesing Tweet after preprocessing

Raw @White: POTUS remarks at the 2020 Council https://www.xxx.com

Sub @user POTUS remarks at the 2020 Council http

Del POTUS remarks at the 2020 Council

to remind a specific user to follow the tweet), the topic of the tweet (users can
use the “#topic” format to remind a specific user to follow the tweet), and the
url of the tweet. Messy “@user” symbols and url links may reduce the feature
extraction ability of PLM. In this part, we propose some preprocessing methods
to solve this problem. Let T = {ti}M

i=1 represent a user’s original M tweets.
Three preprocessing methods are defined below. Table 1 shows an example of
them.

– Raw: Nothing is done because it assumes preprocessing is not necessary.
– Sub: Replace words beginning with “@” with “@user”, and replace words

beginning with “http” with “http”.
– Del: Delete words beginning with “@” or “http”.

5 Bot Detection Model

5.1 User Representation

After getting selected tweets T ′, we combine user property information P and
description D to classify users. In addition, We propose tweet-derived features
to help bot detection.

Description Vector. We apply BERT to description feature extraction.
Descriptions are input into the BERT model, and the pooling average of the
12th layer is used as the output of sentences:

rD = BERT(D), rD ∈ R
Ddes×1 (4)

where Ddes is equal to the dimension of the pooling average from BERT 12th

layer.

Tweet Vector. We propose two tweet encoding methods to gain tweet vector.
One is to concatenate K tweets and encode them by BERT at one time; the
other is to encode K tweets separately and then average them. Following r1T and
r2T are collectively referred to by tweet vector rT .

https://www.xxx.com
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– Concat: Use “[SEP]” symbol to concatenate K tweets, then use BERT to
encode the whole concatenated tweet:

t̂ = [t1; [SEP]; · · · ; [SEP]; tK ], ti ∈ T ′ (5)

r1T = BERT(t̂), r1T ∈ R
Dtweet×1 (6)

where Dtweet is equal to Ddes for the same reason.
– Average: The second approach starts by encoding each tweet using BERT,

then average all K vectors:

ti = BERT(ti), ti ∈ T ′ (7)

r2T =
K∑

i=1

ti, r2T ∈ R
Dtweet×1 (8)

Property Vector. Most methods attempt to identify bots by user property,
which means that new bots can be specially designed to evade existing detection
systems. Therefore, we only use the user property “verified” to assist our detec-
tion. This property “verified” indicates to others that the user has been verified
by Twitter.

P =

{
0 , if verified = False
1 , if verified = True

(9)

Tweet-Derived Vector. We also attempt to extract a tweet-derived vector
PT from tweets. Num@, Num#, Numhttp means the number of “@”,“#”,“http”
symbols in T ′. Rate@, Rate#, Ratehttp represents the frequency of the corre-
sponding symbols in T ′. Rateclean means the ratio of the length of T ′ after Raw
preprocesing to Del preprocessing.

PT = [Num@;Num#;Numhttp;Rate@;Rate#;Ratehttp;Rateclean], PT ∈ R
7×1

(10)

User Representation Vector. We can flexibly select the combination of the
above vectors and then concatenate them to get the user representation vector
r. For example, we use the concatenation of all the above vectors to get:

r = [rD; rT ;P ;PT ], r ∈ R
Duser×1

where Duser is the user representation vector dimension.

5.2 Classifier Layer

Let ri represents the user representation vector of user i. We use a single-layer
neural network with activation function for prediction.

ŷi = softmax(WO · ri + bO) (11)
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where WO, bO are learnable parameters.
The loss function is composed of supervised annotations and a regularization

term, shown as follows:

Loss = −
∑

i∈U

[yi log (ŷi) + (1 − yi) log (1 − ŷi)] + λ
∑

w∈θ

w2 (12)

where U represents the set of labeled users, yi is the label of the real user i, and
θ is all the learnable parameters in the classifier.

6 Experiments

6.1 Experiment Settings

Data Set. TwiBot-20 [19] contains 229,573 Twitter users, 33,488,192 tweets,
8,723,736 user property items and 455,958 follow relationships. We apply our
model in TwiBot-20 according to the classification of training, verification and
test sets in the original benchmark.

Twitter User Text Corpus Details. For each user in the training set and
verification set of TwiBot-20, we randomly select L = 10 tweets to form a Twitter
user text corpus.

Hyperparameters. BERT-base is chosen when we need to use BERT to extract
semantic features. In Tweet Filter, the optimizer and learning rate of SLP are
SGD and 0.001. We train our SLP for 200 steps with the batch size as 200. In Bot
Detection Model, the optimizer, learning rate, λ and dropout of the Classifier
Layer are AdamW, 0.00001, 0.000001, 0.3. We train our Bot Detection Model
for 3000 epochs with the batch size as 64.

Baseline Methods

– Kudugunta et al. [10]: Kudugunta et al. propose an architecture considering
both user tweet and user property.

– Yang et al. [11]: Yang et al. attempt to find minimal account metadata and
use random forest classifier.

– Wei et al. [9]: Wei et al. identify bots by a three-layer BiLSTM for bot
detection with semantic information.

– Lee et al. [7]: Lee et al. focus on user engineering and use random forest to
classify.

– Miller et al. [21]: Miller et al. detect bot by feature engineering of user
information.

– Alhosseini et al. [12]: Alhosseini et al. regard Twitter as a user network and
use graphical convolutional networks for bot detection.
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Table 2. Bot Detection performance on TwiBot-20 benchmark. The letters P, S, and
N in the “Type” column indicates whether a baseline is based on property information,
semantic information, or neighborhood information.

Method Type F1-score Acc

Kudugunta et al. [10] P 0.8174 0.7517

Yang et al. [11] P 0.8546 0.8191

Wei et al. [9] S 0.7533 0.7126

SIMF(S) S 0.7842 0.7548

Lee et al. [7] PS 0.7823 0.7459

Miller et al. [21] PS 0.6266 0.4801

SIMF(PS) PS 0.8857 0.8698

Alhosseini et al. [12] PSN 0.7318 0.6813

Botometer [22] PSN 0.4892 0.5584

SATAR [13] PSN 0.8642 0.8412

BotRGCN [14] PSN 0.8707 0.8462

RGT [15] PSN 0.8821 0.8664

– Botometer [22]: Botometer is a widely used service that leverages many
features.

– SATAR [13]: SATAR does a task to learn the representation of the user and
is fine-tuned for the robot detection task.

– BotRGCN [14]: BotRGCN develops a heterogeneous information network
to represent Twitter and use relational GNN for bot detection.

– RGT [15]: RGT conducts heterogeneous sensing Twitter bot detection by
constructing a heterogeneous information network with users as nodes and
decentralized relationships as edges.

6.2 Bot Detection Performance

Table 2 shows the bot detection performance on TwiBot-20. The SIMF(S)
method utilizes only semantic information, whereas the SIMF(PS) method
combines both property and semantic information. The results indicate that
SIMF(PS) achieves the best performance among all the methods, as it has strong
semantic information extraction abilities. Additionally, SIMF(S), which only uses
semantic information, outperforms other models that rely solely on semantic
information. These findings demonstrate that SIMF can effectively utilize the
semantic information of Twitter users.

6.3 Semantic Information Study

In semantic information extraction, selecting the appropriate K value, rules, and
tweet encoding method is crucial. The performance of the SIMF model under
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Fig. 3. The chart on the left shows SIMF(S) performance with different K while Pre-
processing = Del, Tweet Encoding Method = Average; the right chart shows SIMF(S)
performance with different Rule while K = 5, Preprocessing=Del.

different rules and tweet encoding methods when K = 5 is shown in the right
chart of Fig. 3. The results indicate that both the “Mid” and “Rand” rules are
effective, and the “Concat” tweet encoding method has a slightly better effect
than the “Average” tweet encoding method when K = 5.

We also investigate whether the model’s effectiveness changes with different
values of K, as shown in the left chart of Fig. 3. When using the “Average”
tweet encoding method, the “Mid” rule does not require a large K value, and
its best effect is inferior to that of the “Concat” tweet encoding method with
K = 5. Conversely, the “Rand” rule favors larger K values, as tweets encoded
with larger K values tend to be more representative of a user’s overall behavior.

In summary, based on the experiments conducted above, we have identified
two optimal combinations of parameters for K, rule, and tweet encoding method:
{5, “Mid”, “Concat”} and {20, “Rand”, “Average”}. Table 3 displays the model’s
performance for different preprocessing and user representation techniques, using
these two combinations as the baseline. Our analysis reveals that the “Sub”
preprocessing approach yields the best performance among the three methods
tested. Additionally, we observed that PT has a slightly negative effect on the
results when only semantic information is considered.

6.4 Fusion Information Study

In the fusion information study, the semantic information extraction methods
are the same combinations as above. The results in Table 4 demonstrate that
incorporating property information significantly enhances the model’s detection
ability. Specifically, the inclusion of PT results in a slight improvement when
comparing experiments 1 and 2 to experiments 3 and 4. However, the inclusion
of rD has a negative impact on model performance, as seen in experiments 3–6.

It’s worth noting that in experiments 3–10 as shown in Table 4, the com-
bination of {5, “Mid”, “Concat”} proves significantly more effective than {20,
“Rand”, “Average”}, underscoring the power of Tweet Filter. Moreover, the
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Table 3. SIMF(S) performance with different preprocessings and user representations

No K Rule Preprocessing r Tweet Encoding Method F1-score Acc

1 5 Mid Del [rD; rT ] Concat 0.7734 0.7464

2 20 Rand Del [rD; rT ] Average 0.7665 0.7354

3 5 Mid Del [rD; rT ;PT ] Concat 0.7705 0.7421

4 20 Rand Del [rD; rT ;PT ] Average 0.7712 0.7422

5 5 Mid Sub [rD; rT ] Concat 0.7771 0.7498

6 20 Rand Sub [rD; rT ] Average 0.7842 0.7548

7 5 Mid Raw [rD; rT ] Concat 0.7720 0.7439

8 20 Rand Raw [rD; rT ] Average 0.7713 0.7387

9 5 Mid Sub [rD; rT ;PT ] Concat 0.7744 0.7465

10 20 Rand Sub [rD; rT ;PT ] Average 0.7820 0.7540

Table 4. SIMF(PS) performance with different preprocessings and user representations

No K Rule Preprocessing r Tweet Encoding Method F1-score Acc

1 5 Mid Del [rT ;P ] Concat 0.8769 0.8597

2 20 Rand Del [rT ;P ] Average 0.8800 0.8630

3 5 Mid Del [rT ;P ;PT ] Concat 0.8811 0.8648

4 20 Rand Del [rT ;P ;PT ] Average 0.8810 0.8648

5 5 Mid Del [rD; rT ;P ;PT ] Concat 0.8805 0.8655

6 20 Rand Del [rD; rT ;P ;PT ] Average 0.8771 0.8614

7 5 Mid Sub [rT ;P ;PT ] Concat 0.8857 0.8698

8 20 Rand Sub [rT ;P ;PT ] Average 0.8831 0.8672

9 5 Mid Raw [rT ;P ;PT ] Concat 0.8810 0.8655

10 20 Rand Raw [rT ;P ;PT ] Average 0.8798 0.8630

results from experiments 3, 4, and 7–10 reveal a notable variance across differ-
ent preprocessing methods, with the “Sub” method outperforming the others.

7 Conclusion

Bot detection is an area of increasing interest. Our proposed method, SIMF,
aims to improve the extraction ability of semantic information by filtering and
encoding tweets, jointly encoding multiple user information, and constructing
neural networks for classification. The SIMF approach is specifically designed to
address the challenge of camouflaging bots. We conduct extensive experiments to
demonstrate the effectiveness of SIMF compared to current state-of-the-art base-
line methods. Further study has confirmed that SIMF offers significant advan-
tages in bot detection by effectively mining and fusing semantic information.
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Abstract. In edge AI technologies, reducing memory bandwidth and compu-
tational complexity without reducing inference accuracy is a key challenge. To
address this difficulty, partial quantization has been proposed to reduce the num-
ber of bits in weight parameters of neural network models. However, existing
techniques monotonically degrade accuracy with the compression ratio without
retraining. In this paper, we propose an algorithm for semilayer-wise partial quan-
tization without accuracy degradation or back-propagation retraining. Each layer
is divided into two channel groups (semilayers): one being positive for loss degra-
dation and the other negative. Each channel is classified as positive or negative in
terms of cross-entropy loss and assigned to a semilayer accordingly. The evalua-
tion was performed with validation data as input. Then, the quantization priority
for every semilayer is determined based on the magnitude in the Kullback-Leibler
divergence of the softmax output before and after quantization. We observed that
ResNet models achieved no degradation in accuracy at certain parameter com-
pression ratios (i.e., 79.43%, 78.01%, and 81.13% for ResNet-18, ResNet-34, and
ResNet-50, respectively) in partial 6-bit quantization on classification tasks using
the ImageNet dataset.

Keywords: Partial Quantization · Sensitivity Analysis · Image Classification

1 Introduction

Compression methods such as quantization [21], which reduces the number of bits,
have been proposed to reduce the size and computational costs of neural network mod-
els. Quantization is an effective method of compressing learning models because it can
reduce their size, memory requirements, and computational cost. Nonetheless, there is
a tradeoff relation between the compression ratio and the accuracy of the compressed
model; that is, quantization degrades accuracy. In previous studies on full quantization
of neural networks, models were uniformly quantized with the same bit width [8, 16].
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However, differing distributions of weights in each layer have been shown to exhibit
different impacts on accuracy in quantization. Therefore, partial quantization, in which
quantization is selectively performed for some parts of a model (e.g., layers), can be
used to make a tradeoff between accuracy and size. Sensitivity analysis methods [20]
have been proposed to answer the question of which layers and channels should be
quantized; either accuracy or loss are used as measures of sensitivity. Layer-wise [18,
19] and channel-wise quantization [2, 11, 15] methods have been used to prioritize net-
work regions where quantization should be performed. In these methods, quantization
is performed on a layer-by-layer or channel-by-channel basis. Layer-wise quantization
is more compatible with edge AI and is easy to handle for hardware owing to its larger
granularity. In some earlier studies [7, 15, 18, 19], learning models were quantized with-
out retraining. Naturally, quantized models must be created in a practical computation
time. This approach also prevents the possible degradation of generalization performance
owing to retraining. However, models quantized using these existing methods cannot be
compressed sufficiently while maintaining accuracy.

In this study, to achieve compression of neural models while suppressing accuracy
degradation resulting from quantization, we propose a new layer-wise partial quanti-
zation method. The proposed method examines the �loss of the entire model when
quantizing only one channel for all convolutional layers of a pretrained neural network.
The evaluation was performed with validation data as input. It then divides each con-
volutional layer into two channel groups according to the positive and negative values
of �loss for all channels. These are referred to as “semilayers”. The proposed method
quantizes the model on a semilayer basis. We also incorporate Kullback-Leibler (KL)
divergence in the sensitivity analysis. In fact,�loss includesmore information than accu-
racy.Moreover, it is effective in terms of sensitivity [15]. However, the change compared
to the original model cannot be considered by �loss, whereas the KL divergence mea-
sures changes between models and tends to exhibit a large value when the absolute value
of�loss is large. Thus, introducingKL divergence as ameasure of sensitivity is effective
in suppressing large model changes due to compression.

To evaluate the performance of the proposed method, we conducted experiments
on standard image classification tasks using the ImageNet dataset [3] with various
ResNet models [24] and the CIFAR-10 dataset [22] with a VGG-16-bn model [25].
The contributions of this study are summarized as follows:

• We propose a new quantization granularity for convolutional neural network (CNN)
models, which considers “semilayers” as an alternative to layers and channels. A pos-
itive semilayer has positive channels in�loss. A negative semilayer contains negative
channels in�loss. Consequently, the accuracy of this approach can be improved after
priority quantization of the negative semilayers.

• For the sensitivity analysis, we consider KL divergence for each semilayer. Introduc-
ing KL divergence improves the tradeoff between accuracy and compression.

• We observed that the proposed semilayer-wise partial quantization exhibited maxi-
mum accuracy greater than that of baseline models, and that it caused no accuracy
degradation at certain compression ratios in the image classification tasks of the
ImageNet and CIFAR-10 datasets. For example, the proposed method maintained a
76.12% accuracy at a compression ratio of 81.13% for ResNet-50.
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2 Related Work

Priorworks have proposed a unified framework for CNNs, referred to as quantizedCNNs
(Q-CNNs) [21], which simultaneously accelerates and compresses CNN models with
only slight performance degradation. The results indicate that Q-CNN models can per-
form especially fast computation in the testing phase and that they significantly reduce
storage andmemory requirements. Specifically, this approach can achieve 4–6× speedup
and compress a model by a factor of 15–20 while decreasing classification accuracy by
less than 1%. Furthermore, the Q-CNN models can be implemented on mobile devices
and have been shown to classify images in less than one second. Quantization has also
beenwidely adopted to assess compressionmethods.An earlier report [11] described that
introducing channel-wise quantization instead of layer-wise quantization could reduce
the degradation in accuracy after 8-bit quantization without finetuning. One study [2]
indicated that a channel-wise quantization scheme that minimized the mean square error
was effective for 4-bit quantization. In addition, a quantization step size designed to
minimize cross-entropy loss has been used [14]. Another report [13] proposed the use
of approximate loss functions to optimize rounding. As another approach, one study
proposed performing partial quantization based on individually investigated layer sensi-
tivities before employing quantization aware learning [20]. Reportedly, �loss analysis
(DLA) [15], in which quantization is selectively performed depending on the parts of
the model (e.g., layers), is useful to make a tradeoff between accuracy and model size.
Along these lines, a sensitivity search method has also been proposed based on the idea
that accuracy can be improved using �loss, especially at the channel level of each con-
volutional layer. In other studies [18, 19], a deterministic greedy search algorithm (GSA)
inspired by submodular optimization was used to derive a practical solution to the bit
assignment problem without retraining. Another approach proposed a mixed hardware-
friendly quantization (MXQN) method [7] that applies fixed-point quantization and log-
arithmic quantization without finetuning deep CNNs. Constrained-optimization-based
algorithm for mixed-precision quantization (CQ) exploited Hessians [1], but it required
retraining. In the present work, our proposed method allows sufficient quantization of
the trained model without accuracy degradation or back-propagation retraining.

3 Proposed Method

For simplicity, the proposed method is described in this section using the case of a
ResNet-18 model for the ImageNet dataset. We consider quantization for weights only
and not for activation.

Layer 9

(a)

Positive channelsNegative channels Positive channelsNegative channels

Layer 13

(b)

Fig. 1. Histograms of�losschannel for all channels in layers (a) 9 and (b) 13 at 6-bit quantization.
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3.1 Semilayer-Wise Quantization Using �loss per Channel

The ResNet-18 network has 16 convolutional layers. Here, we refer to these as layers
1, 2,…, 16, starting from the layer closest to the input. First, a pretrained model to
be quantized1 is prepared. Next, we perform a validation test on the trained model to
check its baseline cross-entropy lossbefore as the classification error. The evaluation using
ImageNet classification was performed with 50-k validation data as input. Then, only
one of the first channels of the first layer is quantized, and a validation test is performed
to obtain its cross-entropy loss lossafter-1,1. Similarly, after lossafter-i,j is calculated for
the i-th layer and the j-th channel, the difference between the loss functions �lossi,j is
calculated for every layer and every channel as

�lossi,j = lossafter−i,j − lossbefore. (1)

Some examples of the channel-wise distribution of �losschannel for ImageNet clas-
sification when 6-bit quantization is applied in ResNet-18 are shown in Fig. 1. The
horizontal axis represents the �losschannel bins. Almost half of the channels have neg-
ative values in �losschannel. This may indicate that quantization of half of a pretrained
model could improve its accuracy.

In quantization, a set of weightsw are shifted by a quantization error�w. In channel-
wise quantization, the weights and quantization errors respectively have vectors with
channel sizes w and�w. In this case,�loss is approximated as a quadratic function [13]

�loss ≈ �wT · g + 1/2�wT · H · �w + · · · , (2)

where g and H denote the gradients and Hessians, respectively. Figure 2 shows the rela-
tionships between ||�w||1 (an L1 norm forweights) and�loss. Some channels apparently
behave as quadratic functions; this phenomenon has been analyzed in [13]. In particular,
some channels in the negative semilayer seem to have a minimum point in �loss. That
is, the 6-bit quantization is superior to others in this case. Therefore, we mainly chose
6-bit quantization.

Wepropose the division of each layer into two channel groups (semilayers) according
to the positive and negative values of channel-wise �loss. For example, if �loss of the
first channel of layer 1 is negative, then it is assigned to the semilayer.

1-negative. The positive channel of layer 1 is assigned to the semilayer 1-positive.
This process is performed for all channels in all layers. The purpose of this operation is to
divide each layer into channels for which quantization is expected to improve accuracy
and channels for which there is some possibility of decreasing accuracy.

1 Note that the quantization method is the same approach as the “qint” cast in PyTorch [6].
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Fig. 2. Scattering plots of ||�w||1 and�losschannel for channels in layer 13 of a ResNet-18model.
(a) only channels with negative �losschannel for 6-bit quantization and corresponding points for
4-bit and 8-bit quantizations are shown. (b) only channels with positive �losschannel for 6-bit
quantization and corresponding points for 4-bit and 8-bit quantizations are shown.

3.2 KL Divergence in Sensitivity Analysis

We calculated the KL divergence for all semilayers. The KL divergence DKL for a
semilayer is calculated as follows.

DKL(P||Q) =
∑

x∈X
P(x)log

P(x)

Q(x)
, (3)

where x is one of output, X is number of classifications (1000 for ImageNet classifi-
cations), P(·) denotes the softmax output of the pretrained model, and Q(·) denotes the
softmax output of the model after quantization of all channels in a semilayer. The eval-
uation using ImageNet classification was performed with 50-k validation data as input.
As described herein, KL divergence for each semilayer was calculated for all 50-k inputs
individually. The average value of the 50-k data was taken as the KL divergence after
quantization for that semilayer. This KL divergence was calculated for each of the 32
semilayers in ResNet-18 with 16 convolutional layers.

In the sensitivity analysis, KL divergence obtained using the operation above is
normalized by the number of parameters in the semi-layer. In the proposed approach,
KL divergence normalization is calculated as KLparameterized

KLparameterized = DKL(P||Q)

param(X )
, (4)

where param(·) represents the number of parameters in the semilayer. In the case of a
process that quantizes multiple parameters together, such as layer-wise quantization, a
greater number of parameters quantized is associated with a greater effect on the output
of the neural network. Therefore, to consider the number of parameters in a semilayer,
we normalize KL divergence in Eq. (3) by the number of parameters in a given semilayer.

Actually, in sensitivity analysis, it might be seen that the �loss is more informa-
tive and effective for partial quantization [15]. However, the degree of change from the
original model is not considered in �loss when it is used as a sensitivity. That is, a
semilayer with larger absolute values of the�loss (= �losssemilayer) might incur greater
model change. The large changes in weight prevent continuous compression without
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Fig. 3. Correlation between KLparameterized and �losssemilayer with semilayers quantized.

accuracy degradation. Thus, we adopt the KL divergence to limit changes in the model
or its weights to moderate levels. KL divergence tends to be smaller when the abso-
lute values of the �losssemilayer are smaller. Figure 3 shows the correlation between
KLparameterized and �losssemilayer for 6-bit quantization in ResNet-18 when each semi-
layer was quantized separately. The correlation coefficient of the negative semi-layer
was −0.129. That of the positive semi-layer was 0.834. The figure shows that the abso-
lute values of the �losssemilayer with larger KLparameterized were larger. In fact, a more
negative�losssemilayer indicates good performance in terms of loss, but it is not effective
as a measure of sensitivity owing to the large changes in the model. To suppress this
shortcoming, the KL divergence is prioritized for the evaluation index.

3.3 Postponing Strategy after Sensitivity Analysis

For the KLparameterized obtained in the preceding subsection, all semilayers are quan-
tized in order of decreasing value according to the sensitivity analysis findings. As
an exception, we introduce “postponing” only once for each semilayer. This process
ensures that the accuracy is improved and contributes to the efficiency of parameter
compression. To perform this process within a practical computational time, we use
semilayers, which is not a channel-wise approach, but rather is closer to layer-wise. In
all, 32 semilayer-wise quantizations are performed on ResNet-18 models in order of
decreasing KLparameterized . In the postponing strategy, however, if the accuracy is lower
than the state before semilayer-wise quantization, then the semilayer is not quantized at
this time step, and is instead postponed. The next semilayer is examined and inference
performed similarly, starting in the original sorted order.When all sorted semilayers have
been examined, postponing the first trial is completed. An improvement in accuracy is
expected in the first trial.

Next, the remaining semilayers that have not yet been quantized are quantized and
inferred again as the second trial, according to the sensitivity analysis. The postponing
strategy is not adopted in the second trial, where accuracy degradation is expected. Based
on this tendency, by improving the accuracy in the first trial and slightly decreasing the
accuracy in the second trial, accuracy and the parameter compression ratio aremaximally
improved without any reduction in accuracy, as shown by the results of the experiments
described below. The pseudocode of the algorithm for the proposed semilayer-wise
quantization is shown in Algorithm 1.
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4 Experiments

4.1 ResNets for ImageNet

We used ResNet-18, ResNet-34, and ResNet-50 [24] in the experimental evaluation
of the proposed approach. Figure 4 shows the results obtained from 6-bit and 4-bit
quantizations using a pretrained ResNet-18 model as the ImageNet dataset. Our method
compressed the number of parameters of the model by 79.43% in 6-bit quantization and
by 33.82% for 4-bit quantization without degradation of accuracy. Figure 5 shows other
results for the 6-bit and 4-bit quantizations on ResNet-34. Our method compressed the
number of parameters by 78.01% for 6-bit quantization and by 38.05% compression for
4-bit quantization without degradation of accuracy. On ResNet-50, 6-bit quantization
compressed the number of parameters by 81.13%, as shown in Fig. 6.
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Fig. 4. Accuracies in (a) 6-bit quantization and (b) 4-bit quantization of a ResNet-18 model.
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Fig. 5. Accuracies in (a) 6-bit quantization and (b) 4-bit quantization of a ResNet-34 model.
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Fig. 6. Accuracies in 6-bit quantization of a
ResNet-50 model.
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Fig. 7. Accuracies in 6-bit quantization on a
VGG-16-bn model for CIFAR-10 dataset.

4.2 VGG-16-bn for CIFAR-10

Figure 7 presents the results obtained for 6-bit quantization using VGG-16-bn as the
trained model and a classification task on the CIFAR-10 evaluation dataset. Our method
achieved 81.10% parameter compression with 6-bit quantization without accuracy
degradation.
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Table 1. Results for ImageNet dataset. The “bMP” refers to mixed-precision quantization, where
b is the lowest bits used for weights.

Network Method Baseline Quantization
bit

Compression
ratio

Top-1
/quant

Top-1
/rop

Retraining

ResNet-18 GSA
[18, 19]

69.75% 4 ±00.00% 69.75% ±0.00% No

GSA
[18, 19]

69.75% 6 −64.34% 69.79% +0.04% No

DLA
[15]

69.75% 4 −35.23% 69.82% +0.07% No

DLA
[15]

69.75% 6 −79.06% 69.77% +0.02% No

MXQN
[7]

69.75% 8 −75.00% 67.61% −2.14% No

CQ [1] 69.75% 3MP −87.98% 69.66% −0.09% Yes

CQ [1] 69.75% 2MP −90.61% 69.39% −0.36% Yes

Ours 69.75% 4 −33.82% 69.88% +0.13% No

Ours 69.75% 6 −79.43% 69.77% +0.02% No

ResNet-34 GSA
[18, 19]

73.31% 4 −12.23% 73.31% ±0.00% No

GSA
[18, 19]

73.31% 6 −36.36% 73.33% +0.02% No

DLA
[15]

73.31% 4 − 34.26% 73.35% +0.04% No

DLA
[15]

73.31% 6 −69.88% 73.32% +0.01% No

MXQN
[7]

73.31% 8 −75.00% 71.43% −1.88% No

Ours 73.31% 4 −38.05% 73.31% ±0.00% No

Ours 73.31% 6 −78.01% 73.34% +0.03% No

ResNet-50 GSA
[18, 19]

76.12% 6 −73.45% 76.13% +0.01% No

DLA
[15]

76.12% 6 −79.36% 76.13% +0.01% No

MXQN
[7]

76.12% 8 −75.00% 74.06% −2.06% No

CQ [1] 76.12% 2MP −91.83% 75.28% +0.16% Yes

Ours 76.12% 6 − 81.13% 76.12% ±0.00% No

(continued)
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Table 1. (continued)

Network Method Baseline Quantization
bit

Compression
ratio

Top-1
/quant

Top-1
/rop

Retraining

VGG-16-bn GSA
[18, 19]

93.90% 6 − 81.03% 93.91% +0.01% No

DLA
[15]

93.90% 6 −80.83% 93.90% ±0.00% No

Ours 93.90% 6 −81.10% 93.90% ±0.00% No

4.3 Comparison with Other Methods

Table 1 presents our experimental results. Compared with conventional methods, the
proposed method provided sufficient compression without back-propagation retrain-
ing or accuracy degradation. The GSA and The DLA were ineffective because they
achieved lower parameter compression values than the proposed method did. Mixed
hardware-friendly quantization (MXQN) [7] and constrained optimization-based algo-
rithm for mixed-precision quantization (CQ) [1] achieved a parameter compression ratio
of 75.0% and 91.83%, respectively, in ResNet-50; especially, CQ was superior in terms
of compression ratio. However, CQ was impractical because it required retraining and
degraded the accuracy compared to the baseline.
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4.4 Quantization with More and Fewer Bits

Here, we also provide experimental results obtained from 8-bit, 2-bit, and 1-bit quan-
tizations of a ResNet-18 model. Figure 8 shows the results for 8-bit, 2-bit, and 1-bit
quantization for the pretrained ResNet-18 model performing a classification task on the
ImageNet evaluation dataset. The proposed method is not suitable for 8-bit quantization
because the maximum compression ratio by bit reduction is lower than that of 6-bit
quantization that can compress parameters efficiently. The 8-bit quantization is near the
original pretrained model and far from the minimum point in �loss (see Fig. 2a). In
the 2-bit and 1-bit quantizations, �loss seems to have reached a massive value, which
cannot maintain accuracy.

4.5 Experiment with Another Trained Model

We ran the same experiment on another trained model under varying conditions to
demonstrate the reproducibility of the proposed method. We experimented with a pub-
licly available ResNet-18 model [24] that was retrained for 10 epochs by 1.2-M training
data. Figure 9 shows the results obtained from 6-bit quantization using the retrained
ResNet-18 model; we observed that the baseline was improved by 0.45% (compare to
Fig. 4a). Even in such case, our method achieved 79.40% parameter compression for
6-bit quantization without accuracy degradation. These results show that the proposed
method can provide efficient compression for models with different levels of training.

5 Conclusions

In this paper, we proposed a newmethod for the quantization of trained neural networks.
This method enables more efficient compression without reduction of accuracy. The
proposed method is a semilayer-wise quantization in which each layer is classified into
two channel groups according to�loss, in contrast to layer-wise quantization. The results
of the experimental evaluation of the proposed method on classification tasks with the
ImageNet dataset using various trained neural networks have shown that it can improve
the tradeoff between reducing the size of amodel and degrading its accuracy. Specifically,
using a trained network as a starting point, the proposedmethod successfully compressed
the number of parameters of a ResNet-18 model through 6-bit quantization by 79.43%
without accuracy degradation, and by 78.01% and 81.13% for a ResNet-34 model with
6-bit quantization and a ResNet-50 model with 6-bit quantization, respectively.
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Abstract. Shadow performs an important role in the image, which can
enhance the image effect and convey important visual clues. We pro-
pose a method based on deep learning to automatically generate styl-
ized shadows for line drawings. Based on StarGAN, a shadow generation
adversarial network (ShadowGAN) is designed, which can automate the
creation of stylized shadows with different light directions. This method
defines eight light directions. Users can select one of the eight light direc-
tions around the 2D image to specify the light source according to the
encoding of the light direction, and generate the shadow corresponding
to the light direction. We use a new dataset containing line drawings
with shadows and label information corresponding to the light direc-
tion. Experiments show that our method can generate stylized shadows
for line drawing with satisfactory quality, which can simplify the user’s
workflow, and save the time of drawing line drawing shadows.

Keywords: Stylized shadow · Line drawings · Deep learning ·
ShadowGAN

1 Introduction

The shadow is an important element in the drawing. Shadow can enhance the
effect of image and convey important visual clues about scene depth, shape,
motion and light [1]. Many artists paint shadows and lines to draw the outlines
and express their ideas.

Stylized shadows are fundamentally different from physical shadows and real-
istic shadows. Stylized shadows are artistic and free, drawn by the artist to depict
the mood of the character and express emotions and not limited by the structure
of physical shadows. Artists adjust the position, proportion, shape, density and
other characteristics of shadows to achieve different artistic purposes, such as
magnification, exaggeration, contrast, silhouette, etc [2]. Shadow drawing is the
basis for the further creation of various artistic works. When drawing shadows,
the artist has to make constant adjustments according to the structure of the
image and the direction of the light, which takes a lot of time and effort.

Nowadays, there are more and more applications and researches in the field of
image using deep learning, such as IC-GAN [3], StarGAN [4], Pix2pix [5], Cycle-
GAN [6], CGAN [7], etc. Some researchers have focused on using deep learning
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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to generate stylized shading for line drawings [2,8]. In this paper, we propose a
method to generate stylized shadows using shadow generative adversarial net-
work (ShadowGAN). The method in this paper does not require separate treat-
ment of shadows and line drawings during training, and can be trained directly
by inputting line drawings with shadows and label information corresponding
to the light direction, which improves the processing efficiency and reduces the
complexity of data for generating stylized shadows for line drawings based on
deep learning methods.

Fig. 1. Training and testing of our network. The network training consists of generator
and discriminator, using the generator to produce images with shadows.

In our method, the stylized shadows are generated according to the line
drawing and the specified light direction. These shadows can be used directly
or modified by artists. We use the deep learning method to design a network
model. Given a line drawing and light direction, the network automatically gen-
erates a shadow image. We divide the 2D image with shadows into 8 directions
according to the light in 8 different directions. As shown in Fig. 1, the network
consists of generator and discriminator, and generator G receives training data
with multiple shadow states and converts the non-shadowed line drawings into
multiple images with shadows in different directions. The generator takes the
image and shadow state label information as input, and the training model flex-
ibly converts the input image to the target shadow state. In this way, the image
can be converted to any desired shadow image by controlling the shadow status
label. The main contributions of our work:

1. In this paper, we propose a method based on deep learning to generate shad-
ows for line drawings. This method can automatically generate stylized shad-
ows in different light directions.

2. We design a deep learning network model ShadowGAN that can accurately
identify the direction of shadows and light. ShadowGAN can learn shadow
images directly, which improves the processing efficiency and reduces the
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complexity of data for generating stylized shadows for line drawings based on
deep learning methods.

3. The feasibility of the network model is verified on a new dataset. Experiments
show that the method in this paper can generate excellent shadow effects for
line drawing.

2 Related Work

Unlike real physical light and realistic rendering, the artistic creation of shad-
ows is a perception-oriented process [2]. ShadeSketch [8] is the first time to use
deep learning to automatically generate artistic shadows from line drawings and
light directions. Hudon et al. [9] proposed a method to increase the global illu-
mination effect for hand drawn objects. Zhang et al. [10] proposed a method
based on stroke density to generate digital painting light effects for a single
image. Hudon et al. [11] proposed a CNN-based method for predicting high-
quality, high-resolution normal maps from single-line drawn character images
that automatically generates shadow effects for hand-drawn characters. Petikam
et al. [12] addressed the problem of dynamic stylized shadow editing by param-
eterizing individual edits, where the parametric model produces locally stylized
shadow edited shapes. DeCoro et al. [13] proposed an algorithm to control styl-
ized shadows based on four intuitive parameters: expansion, brightness, softness,
and abstraction.

Generative adversarial networks (GAN) have been much studied in image
translation and style transfer. The GAN consists of a generator, which generates
samples that are as real as possible, and a discriminator, which distinguishes
between real and fake samples. Zhang et al. [14] integrated residual U-net to
apply the style to the grayscale sketch with auxiliary classifier generative adver-
sarial network. Wei et al. [15] implemented image style translation based on
cyclic consistent adversarial generative networks. In this paper, we propose a
deep learning based shadow drawing method to generate stylized shadow effects
for line drawings.

3 Method

In this paper, we train a shadow generative adversarial network (ShadowGAN)
to draw shadows using the given line drawing and shadow state label information,
and the network can complete the transition between multiple shadow states at
the same time. In this section, we describe data preparation, network training
and loss functions, and design of generator and discriminator networks.

3.1 Data Preparation

In this paper, we use a new shadow image dataset. Since the line drawing shadow
dataset is small and the format of the existing data does not match our network,
a line drawing shadow dataset is created in this paper. We collect a total of 18,208
line drawing images from the internet. The collected images are preprocessed into
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a unified format, and the standard size of each image is 256 × 256px. Then we
manually mark the shadow corresponding to the light direction of the image to
facilitate network training. This paper focuses on the attribute of shadow state.
As shown in Fig. 2, eight light directions are defined and represented in the
dataset by the numbers 1–8. It is intuitive for the user to specify the light source
by selecting one of the 8 light directions around the 2D image. The network draws
the stylized line drawing shadow according to the direction of light source.

Fig. 2. We define eight light directions in a two-dimensional plane. The shadow images
of the 8 light directions were done in two parts during the training process.

3.2 Network Training and Loss Function

Based on the StarGAN which can realize the multi domain translation of images,
this paper designs a new network model. The network consists of one genera-
tor and one discriminator. When the network is trained, images with different
shadow states and corresponding labels are input. The Generator G can con-
vert the input image x to a stylized shadow image under the condition of the
target shadow state label c. As shown in Fig. 3, G receives an image and a tar-
get shadow state label as input and generates a fake image which can deceive
the discriminator. G reconstructs the fake shadow image into the original image
with the original shadow state label. The reconstructed image and the original
image are constrained for consistency. These two parts use one generator. The
training process makes G generate images that are indistinguishable from the
real images. The discriminator D distinguishes between real and fake images and
classifies the real image to the corresponding shadow state. In our experiments,
the shadows of the eight light directions are trained in two parts for network per-
formance and image generation results. Five directions of shadows are selected
respectively, and eight styles of shadows in the corresponding direction of light
are selected at least once. We use one-hot vectors to represent the attribute of
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Fig. 3. Network training process.

the shadow state. In this vector, the bit corresponding to the light direction is
set to 1, and the other bits are set to 0. For example, for a shadow style with
light direction 4, the shadow status label is (0 0 0 1 0).

A. Adversarial loss. In order to generate the image which is indistinguish-
able from the real image, we use adversarial loss. The calculation method is

Ladv =Ex[log Dsrc(x)]+
Ex,c[log(1 − Dsrc(G(x, c)))].

(1)

Generator G generates a shadow style image G(x, c) conditional on the input
image x and the target shadow state label c. Dsrc(x) represents the probability
distribution of the input image on the shadow state given by the discriminator D.
The G reduces the difference between the generated shadow image and the real
image as much as possible, and make D cannot discriminate. The D identifies
the real image and the generated shadow image as accurately as possible.

B. Shadow state classification loss. For a given input image x and shadow
state label c, our goal is to convert x to an output image y with shadows and
correctly classify it to the corresponding shadow state c. The discriminator D
discriminates between the real shadow image and the fake image generated by
generator. At the same time, we add an auxiliary classifier to D, and add shadow
state classification loss when optimizing D and G. The shadow state classification
loss of the real image used to optimize D is

Lr
cls = Ex,c′ [− log Dcls(c

′ |x)]. (2)

Dcls(c
′ |x) represents the probability distribution on the shadow state label c

′

of the corresponding image x calculated by discriminator D. By minimizing
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the target, D classifies the real shadow image x into its corresponding original
shadow state c

′
. The generator G generates a fake image G(x, c) based on the

input image x and target shadow label c. The loss function of fake image shadow
state classification is defined as

Lf
cls = Ex,c[− log Dcls(c|G(x, c))]. (3)

The generator G tries to minimize this target in order to generate shadow images
that can be classified as target shadow states c.

C. Reconstruction loss. The generator generates realistic images and clas-
sifies them to the correct target shadow state. However, minimizing the above
adversarial loss and classification losses does not guarantee that the translation
of the shadow image only changes the shadow-related part of the input image
while preserving the rest of its input image. Therefore, a cyclic consistency loss
is introduced in the generator, that is the reconstruction loss. By using the gen-
erator twice, the first generated fake image and original image label are input to
the generator again to generate the reconstructed image, and the reconstructed
image and the original image are constrained for consistency. Then the recon-
struction loss is

Lrec = Ex,c,c′ [||x − G(G(x, c), c
′
)||1]. (4)

where G receives the fake shadow image G(x, c) and the shadow state label c
′
as

input and reconstructs the original image x. In this paper, the L1 norm is used
as the reconstruction loss.

D. Full Objective. The discriminator loss consists of two parts: the adver-
sarial loss and the shadow state classification loss. The generator loss consists
of three parts: the adversarial loss, the shadow state classification loss and the
reconstruction loss. The full objectives are

LD = −Ladv + λclsLr
cls, (5)

LG = Ladv + λclsLf
cls + λrecLrec. (6)

λcls and λrec are hyper-parameters, which control the relative importance of
shadow state classification and reconstruction loss relative respectively, com-
pared to the adversarial loss. We use λcls=1 and λrec=10 in all of our experi-
ments. To improve the stability of the network and the quality of shadow images,
Eq. (1) is replaced by the Wasserstein-GAN [16,17] objective with gradient
penalty

Ladv = Ex[Dsrc(x)] − Ex,c[Dsrc(x, c)]

− λgpEx̂[||∇x̂Dsrc(x̂)||2 − 1)2.
(7)

x̂ is sampled uniformly between the real image and the generated image along a
straight line. We use λgp = 10 for all experiments.
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Fig. 4. Network architecture of the generator.

3.3 Network Structure

The structure of the generator network is shown in Fig. 4. The line drawings are
normalized before input to unify the size, and then the network is trained. The
3-channel image and 5-channel label are used as input. Through a layer of con-
volution, the number of output channels is 64 and the convolution kernel size is
7× 7. Except for the output layer, all layers use instance normalization to accel-
erate training and improve the stability of training. We use the ReLU function as
the activation function. Three convolutional layers are used for downsampling,
and the stride is two, which can better extract image features and decompose
the input image. Seven residual blocks [18], which can identify the shadows of
the images, train deeper networks, and ensure excellent performance. Self atten-
tion layer [19] is added to each residual block to strengthen shadow boundary
and improve the quality of image shadow effect. Three transposed convolutional
layers with stride of two are used for upsampling. The output layer uses the
Tanh activation function to obtain a shadow image with an output dimension
of 3.

The discriminator uses PatchGAN [5,6,20]. The discriminator is not normal-
ized and uses Leaky ReLU as the activation function for all layers except the
output layer. The output layer outputs the real or fake of the image and the
shadow state label of the image.

4 Experiments and Evaluation

In this section, we evaluate the performance of ShadowGAN, show stylized shad-
ows, and compare it to previous work. In this paper, ablation studies are done
to show that each component of the network is essential.

4.1 Implementation Details

All images in the dataset are preprocessed to generate a standard data repre-
sentation. There are 18208 images in the dataset, and each image has a shadow
attribute. The entire dataset is used as the training data and 1000 original
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images are selected as the test set. The model is trained using Adam [21] with
β1=0.5 and β2=0.999. For data augmentation, we flip the images horizontally
with a probability of 0.5. A generator update is performed after five discrimina-
tor updates. For all experiments, the batch size is set to 8 and the learning rate
is set to 0.00001. Both parts of the data are trained with 10 epochs, which takes
about one day in total.

4.2 Shadow Effect Show

In this section, we show the shadow effects of line drawings generated by Shad-
owGAN. In this paper, we design a new network based on StarGAN with three
convolutional layers for downsampling and three transposed convolutional layers
for upsampling to extract image features and enhance the image shadow bound-
ary effect. The residual layer and self-attention layer are added to improve the
network performance, enhance the change of shadow details, improve the quality
of shadows, accurately identify the direction of shadows and light, and generate
usable shadows for users. As shown in Fig. 5, we show the generated shadow
effects from different light directions.

Fig. 5. The shadow effects are shown. (a) is the original images. In images (b)-(g), the
yellow dots indicate the light direction. (Color figure online)

4.3 Comparison with Prior Work

To prove the effectiveness of the stylized shadow generation method proposed
in this paper, we compare our network with the baseline models StarGAN [4],
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Fig. 6. Comparisons with prior works. The shadows generated by our method own
good quality and accurate shadow direction.

Pix2pix [5] and CycleGAN [6]. All three models are proposed for image-to-image
translation.

StarGAN can generate multiple image style transitions using a single model.
Pix2pix is based on conditional GAN and provides a general framework for
image-to-image translation, but it can only handle translations between two
image styles, and the training data requires image pairs. CycleGAN transforms
between two image types by learning a mapping relation G : X → Y through
an adversarial loss function, combining it with an inverse mapping F : Y → X,
and introducing a cycle consistency loss to enforce F (G(X)) ≈ X (and vice
versa). It does not need to input paired images, and is mainly composed of two
generators and two discriminators. In addition, we compare our results with the
line drawing shadow effect generated by the method of Zhang [15]. In this paper,
we use StarGAN, Pix2pix, CycleGAN source code training dataset to generate
shadows for comparison, and use Zhang’s source code generate shadows for line
drawings.

As shown in Fig. 6, we compare the shadow effects generated by above meth-
ods in the same light direction. The shadow generated by StarGAN fills the whole
image, which is not beautiful and has no artistic effect. There are several places
beyond the line drawings boundary. The shadows generated by Pix2pix do not
conform to the light direction, and most of generate shadows is opposite to the
light direction. The network cannot generate shadows in multiple directions. The
shadow images generated by CycleGAN are blurred with redundant lines, and
the shadows do not conform to the structure of line drawing. Zhang’s method
is to generate digital painting lighting effects for images, which can generate
excellent lighting effects for some images with brilliant colors and more strokes,
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but it cannot generate lighting and shadows for line drawings. The experimen-
tal results show that the network in this paper performs well in generating line
drawing shadows and can generate high-quality shadow effects.

Fig. 7. Ablation studies. The impact of each individual component is studied by remov-
ing the network components one by one.

4.4 Ablation Study

We performed seven ablation studies in this section. In Fig. 7(a), the genera-
tor network uses two convolutional layers for downsampling, six residual layers
and two transposed convolutional layers for upsampling. The shadow images
generated after network training are blurred, with poor shadow quality and
unclear lines. In Fig. 7(b), the generator network uses two convolutional layers
for downsampling, seven residual layers and two transposed convolutional layers
for upsampling. The shadow shape generated after network training is out of con-
trol, shadow fills the whole image, and the shadow direction cannot be correctly
recognized. In Fig. 7(c), the generator network uses three convolutional layers
for downsampling, six residual layers and three transposed convolutional layers
for upsampling. In Fig. 7(d), the generator network uses three convolutional lay-
ers for downsampling, seven residual layers and three transposed convolutional
layers for upsampling. In Fig. 7(g), the generator network uses three convolu-
tional layers for downsampling, six residual layers, each residual layer adds a self
attention layer, and three transposed convolutional layers for upsampling. In
(c)(d)(g), the shadows generated by the network are not evenly distributed and
do not perform well in terms of detailing, with large gaps in the shadow range
and shadow overflow, failing to achieve an aesthetically pleasing and balanced
appearance. In Fig. 7(e), the generator network uses two convolution layers for
downsampling and six residual layers, each residual layer adds a self attention
layer, and two transposed convolutional layers for upsampling. The shadows
generated after network training are distorted, without smooth boundaries, and
the shadow shapes do not correspond to the light direction, and the shadows are



306 H. Xue and C. Kang

extremely poor. In Fig. 7(f), the generator network uses two convolutional layers
for downsampling, seven residual layers, each residual layer adds a self attention
layer, and two transposed convolutional layers for upsampling. The shadows gen-
erated after network training appear blocky, with distorted shadow boundaries
and no obvious shadow direction. The quality of the shadows generated by the
network in Fig. 7(a)–Fig. 7(g) is lacking and cannot achieve the desired shadow
appearance for the users. Overall, with 8 light directions, our network obtains
the best results and can identify shadows in any light direction. Experiments
show that every structure in this network is essential.

5 Conclusion

We propose a deep learning based method to automatically generate stylized
shadows for line drawings. A new network model, ShadowGAN, is designed based
on StarGAN to accurately identify the direction of light and generate usable
shadows for users. We defined 8 light directions for the image to generate the
corresponding stylized shadows. In the network, we use three convolutional layers
for downsampling and three transposed convolutional layers for upsampling to
extract image features and enhance image shadow boundary effects. Adding
residual layers and self attention layers can improve the performance of the
network, strengthen shadow detail processing, generate good shadow effects for
the images, and improve the shadow quality. Experiments show that the method
in this paper can generate stylized shadows for line drawings, and can greatly
reduce the workload of users and saving the time of drawing image shadows.
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Abstract. A ship attitude prediction method is proposed in this paper,
which combines dynamic sliding window, sparrow search algorithm
(SSA), Ensemble Empirical Mode Decomposition (EEMD), and Bidi-
rectional Long Short-Term Memory (BiLSTM). This method addresses
the highly random, non-stationary, and non-linear characteristics of ship
motion on the sea surface, making it difficult to accurately predict its
motion state. Firstly, the EEMD method is used to decompose the ship
attitude into several Intrinsic Mode Functions (IMF) and a Residual
(Res) to reduce noise and non-smoothness in the ship attitude data. Sec-
ondly, the corresponding sliding window size and sliding step length are
calculated for each IMF component, and the dynamic sliding window is
used to extract the local features of the data, reducing the high random-
ness influence of the ship motion attitude. Finally, the SSA algorithm is
used to find the optimal parameters in the BiLSTM network to improve
the accuracy of the prediction method. The experimental results show
that the EEMD-SSA-BiLSTM model incorporating dynamic sliding win-
dows significantly improves prediction accuracy and generalization abil-
ity compared to other models.

Keywords: Ship attitude prediction · Neural Networks · Dynamic
sliding window · Ensemble Empirical Mode Decomposition · Sparrow
search algorithm

1 Introduction

Under the complex environment of the sea, the ship’s navigation is affected by
environmental factors such as sea wind and waves, resulting in changes in the
ship’s movement full of uncertainty, this uncertainty poses a safety hazard to
the ship’s operation at sea. Therefore, predicting the ship’s attitude in advance
during navigation is essential to ensure the stable use of shipboard equipment
and navigation safety.
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In recent years, neural networks have been used as the main method for pre-
dicting the attitude of a ship. The biggest advantage of neural networks is that
the process of data analysis and modelling is eliminated, making the problem
processing process simple and more applicable to practical engineering problems.
[11] Wei et al. used a bi-directional long and short-term memory (BiLSTM) net-
work to predict ship motion with high accuracy. [14] Yin et al. constructed a
variable radial basis function (RBF) network based on sliding data windows,
[15] Zhang et al. used a combined CNN-LSTM model to predict the attitude of
unmanned surface vehicles. Recurrent neural networks,particularly represented
by BiLSTM, have achieved remarkable success in the field of time series predic-
tion with the ability to capture the past and future context of the input elements.
[5,6,8,17]

However, BiLSTM does not address the problem of random initialisation of
neural network parameters, which can seriously affect the accuracy of prediction.
To solve this problem, existing methods for optimising neural networks have
mainly focused on improving the loss and activation functions, or optimising
the initial parameters of the network using population intelligence optimisation
algorithms [1,16]. In [7] Ren et al. applied the particle swarm algorithm Particle
Swarm Optimization) to LSTM, and the experimental results showed that the
root mean square error of prediction of the PSO-optimized LSTM model was
reduced by 9%. Various optimization algorithms exist, [9,10,13] such as Par-
ticle Swarm Optimization (PSO), Grey Wolf Optimization (GWO), and Spar-
row Search Algorithm (SSA), [3] and the SSA algorithm is widely used for the
optimization of model parameters because of its powerful optimization-seeking
capability.

There is also the problem of ignoring the possible noise in the data itself in
ship attitude prediction, which makes the raw data have a greater impact on the
prediction results. Therefore, signal decomposition techniques are often used to
pre-process non-smooth time-series data such as ship attitude, thereby reducing
the effect of noise in the data. In [18] Zheng et al. combined empirical mode
decomposition (EMD) and long short-term memory (LSTM) neural networks to
forecast electrical loads, and in [2] Hao et al. used EMD to process wave data and
predicted the processed data using LSTM models. [4] Xiao et al. used EEMD to
process ship attitude signals, which reduced their RMSE by 5.26% compared to
a single model. [12] The EEMD algorithm is widely used to process non-smooth,
non-linear signals as it solves the modal confounding problem that occurs during
signal decomposition.

Therefore, we constructed a combined model in terms of both data pre-
processing and optimisation of parameters related to the prediction algorithm,
and proposed a combined model based on dynamic sliding windows and EEMD-
SSA-BiLSTM. The ship attitude data is decomposed by EEMD to make the data
smoother, and then the SSA-based optimised parametric BiLSTM model is used
to predict the components. A comparison of our model with EEMD-BiLSTM
and SSA-BiLSTM shows that our model can effectively improve the prediction
accuracy of ship attitude.
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2 Theoretical Foundations

2.1 Ensemble Empirical Modal Decomposition

To solve the problem of the influence of non-smoothness and non-linearity of
ship motion attitude data on prediction accuracy, we use EEMD to process the
raw ship data. The method is adapted to the needs of processing non-stationary
signals by decomposing the signal into different basis functions according to the
characteristics of the signal source itself. During processing, different scales of
Gaussian white noise are introduced into the ship attitude data to compensate
for the missing time scale in the attitude data. The following is the decomposition
process for EEMD: White noise is added to the original signal.

Xm(t) = X(t) + kqm(t),m = 1, 2, 3.. (1)

where: X(t)represents the original data sequence of the ship’s attitude; mis the
number of times white noise is added;qm(t)represents Gaussian white noise; rep-
resents the new power sequence. EMD decomposition of the new pose sequence
Xm(t) to obtain n IMF components and a residual component

Xm(t) =
n∑

i=1

IMFmi(t) + rm(t) (2)

where IMFmi(t) is the nth IMF component obtained from themth decomposi-
tion; rm(t) is the residual component of the decomposition. Calculate the mean
value of each decomposition quantity:

IMFi(t) =
1
n

n∑

i=1

IMFmi(t) (3)

rm(t) =
1
n

n∑

i=1

rim(t) (4)

The final output is a single decomposition component obtained by EEMD,
which decomposes the attitude data into a number of intrinsic mode functions
(IMFs), each representing a specific frequency component. These IMF compo-
nents exhibit a greater degree of regularity and smoothness.

2.2 Bi-directional Long and Short-Term Memory Networks

BiLSTM is a further improvement on LSTM, which uses a combination of for-
ward LSTM and reverse LSTM networks to combine the forward and reverse
hidden states that are stitched together to capture more comprehensive time
series information. As a result, the model can train the influence of future infor-
mation on the current state compared to the LSTM, enhancing the model’s abil-
ity to learn from data that exhibit both backward and forward dependencies,
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thus better reflecting the trend of the time series. The advantage of BiLSTM for
introducing contextual information is due to the inherent periodic and recipro-
cal nature of ship attitude, so a ship attitude prediction method using BiLSTM
based on BiLSTM is proposed.

it = σ (wkixt + whiht−1 + bi) (5)

gt = σ (wxgxt + whght−1 + bg) (6)

Ct = ftCt−1 + itgt (7)

ht = ot tanh (Ct) (8)

ft = σ (wkfxt + whfht−1 + bf ) (9)

where: xt denotes the input to the neuron at moment t. The variable signifies
the Sigmod number, while ft, it denote the bias terms of the forgetting gate,
input gate, respectively. Moreover,wkf , wki, wk0 represent the weights of the
forgetting gate, input gate, and output gate, respectively. of the network.

2.3 Sparrow Search Algorithm

The Sparrow Search Algorithm is a population-based intelligent optimization
algorithm used to locate the global optimum. It simulates the foraging pro-
cess of sparrows and is inspired by their behavior when foraging and evading
predators. The algorithm involves coding and determining the adaptive value of
each individual, mimicking the natural behavior of sparrows such as searching
for food and escaping from predators, and ultimately selecting individuals that
meet certain conditions.

3 Ship Attitude Prediction Model

3.1 Dynamic Siding Window Settings

The movement of ships on the sea surface exhibits a high degree of randomness
and uncertainty. However, the actual situation shows that there are also periodic
variations in the ship’s motion. To read the periodic data in the highly random
ship motion, this paper sets up a dynamic sliding window to read the decom-
posed EEMD data a dynamically adjusted sliding window, which can adjust the
window size according to the actual data changes.

The selection of the sliding window size usually requires consideration of
several factors. This model takes the IMF component as a feature, the time-
domain characteristics of the IMF component and the sampling rate of the data
as considerations, and since the IMF component usually has a short mean period
and time-varying energy distribution characteristics, the length of the window
is set to half the mean period of the IMF component. The average period T (k)
is calculated as follows:

T (k) = 2π/ω(k) (10)
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W (k) =
∫ ∞

−∞
f(t)e−iωtdt (11)

where (k) is the frequency of the IMF components, where the mean periods are
all specific to each IMF component, i.e. there is a corresponding mean period for
each IMF component, and the BiLSTM sliding window size is determined based
on these characteristic parameters. The sliding step length is the length of each
sliding window step forward, which is set to four-fifths of the sliding window size
in this paper.

3.2 SSA Optimizes BiLSTM Parameters

To address the problem that individual BiLSTM neural networks in ship atti-
tude prediction are greatly influenced by the initialization and hyperparameter
values, we use SSA to determine the hyperparameters in BiLSTM. The SSA
parameters are set as follows: the number of populations is 20, the maximum
The four hyperparameter optimization intervals of the BiLSTM are as follows:
numHiddenUnits1 and numHiddenUnits2 are [1, 100], Iterations are [1, 100], and
learning rate is [0.001, 0.1], and the search process is as follows: (1) Determine
the parameters of the algorithm. In the sparrow search algorithm, the number
of populations, the number of iterations, the ratio of predators and joiners, and
the range interval for the speed-to-take values are initialized. For BiLSTM, on
the other hand, the number of neuron nodes in each network layer, the number
of hidden layer units, the learning rate, and the weight matrix are initialized.
(2) Calculate the fitness value. In this paper, the mean square error function is
chosen as the fitness function for this experiment, and the formula is as follows.
The particle position that makes the smallest fitness function value corresponds
to the best number of hidden layer nodes of the neural network, and the test set
of experimental data is tested to construct the fitness function of SSA with the
prediction value of BiLSTM algorithm and the root mean square error of the
sample data to calculate the fitness value of each sparrow and solve for the best
particle.

fitMSE =
1
n

n∑

i=1

(ŷi − yi)
2 (12)

where n is the number of particles (population size), ŷi is the predicted value
and yi is the actual value. (3) Finding the global optimal solution. The identity
of the sparrow population is divided into discoverers and joiners, both of which
change dynamically, but occupy a constant proportion of the population. The
global optimal position of the population is constantly updated by the discoverer
searching for areas with abundant food and the joiner following the discoverer to
change its position. (4) Determine the termination condition. Repeat the above
steps and if the number of iterations reaches the maximum, exit the iteration
and save the optimal individual, i.e. the optimal parameters of the BiLSTM
network. (5) Output the optimal solution. The optimal particles calculated by
SSA are used as parameters of the BiLSTM.
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3.3 EEMD-SSA-BiLSTM Ship Attitude Prediction Model

Our proposed EEMD-SSA-BiLSTM is shown in Fig. 1 and is built as follows:
(1)Collect ship attitude data. (2) Sequentially process each IMF component
obtained from the EEMD decomposition. Calculate the sliding window size, i.e.,
predict the next stage data using a historical period of data, and then slide to
read the corresponding historical sequence period decomposition data for each
IMF component. (3) Input the IMF components into a two-layer stacked BiL-
STM layer. With the first and second-layer neural dimensions set to 128 and
64, respectively. During the model training process, “mse” is used as the loss
function, and “adam” is used as the model optimizer. The EEMD decompo-
sition feature modal components are mapped to higher dimensions through a
double-layer BiLSTM network for learning. (4) Use SSA to optimize several
hyperparameters of BiLSTM. (5) After the large amount of time series data col-
lected by the inertial measurement unit is preprocessed by the EEMD algorithm.
Several feature variables highly correlated with the ship’s motion attitude are
obtained. Select the time series data of the roll, pitch and yaw angles at time t
as the input of the neural network, and output the ship’s roll, pitch, and yaw at
time t + N(N is a smaller period). (6) Output the prediction results.

Fig. 1. Ship attitude prediction model based on dynamic sliding window and EEMD-
SSA-BiLSTM.

4 Experimental Results and Analysis

4.1 Platform Construction and Data Collection

In this paper, a six-degree-of-freedom platform is used to simulate the real-life
situation of a ship moving on the sea surface, and attitude data is collected
using an attitude sensor. The attitude sensor model is HWT905, which is a
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Fig. 2. Experimental site. Fig. 3. Experimental equipment.

high-performance 3D motion attitude measurement unit based on MEMS tech-
nology, capable of collecting high accuracy, high dynamic, and real-time compen-
sated 3- axis attitude angles. The six-degree-of-freedom platform model ACE6-
16052008OF-07LM1 is capable of realistically simulating the rocking generated
by a ship in the direction of six degrees of freedom while sailing on the sea.
The longitudinal and transverse rocking angles of the attitude sensor are corre-
sponding to the longitudinal and transverse rocking angles of the platform, and
through calibration, the angle measured by the attitude sensor is the angle of
change of the six degrees of freedom platform. The experimental site and equip-
ment parameters are shown in Figs. 2, 3 and Table 1. 1000 bars of transverse and
longitudinal rocking were measured under Class III waves as well as yaw angle,
as shown in Figs. 4, 5 and 12.

Table 1. Main parameters of the six degrees of freedom platform.

Range of motion Project parameters

Horizontal rocking ±15.0◦

Longitudinal rocking ±15.0◦

Yaw ±18.0◦

Lift 0.16 m

Traverse 0.19 m

4.2 Data Pre-processing

One of the characteristics of the EEMD method is that there is no unified expres-
sion for the basis functions, which depend on the signal source itself and can
decompose different signals into different basis functions. Therefore, EEMD is
suitable for processing and analyzing non-stationary signals such as ship motion
attitude. 1000 posture data were decomposed using EEMD, the result of the
decomposition is shown in Fig. 6. The ship attitude data were decomposed into
an intrinsic mode function (IMF1−IMF10) component and a Res using EEMD.
As shown in Fig. 6, the IMF1−IMF10 component exhibits overall similarities.
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Fig. 4. Roll angle Fig. 5. Pitch angle

Typically, the high-frequency IMF component is considered to be influenced by
external factors, while the low-frequency component represents the trend of the
ship motion. It can be seen that the IMF1−IMF6 components processed by
EEMD consist of high frequency sinusoidal intermittent signals, and can be seen
as small energy losses for the. When analyzing high-frequency signals, stacking
these signals as reconstructed high-frequency signals can lead to better analysis
results and effectively extract the low-frequency components in the signal.

4.3 Comparative Experiments

For ship attitude prediction accuracy, the choice of data pre-processing method
and neural network model play a greater influence, so this paper mainly conducts
comparisonexperiments from these two aspects, and the results are shown in
Figs. 7, 8 and Table 2.

Table 2. Model prediction error results.

Modules Models RMSE MAE

Neural network LSTM 0.1158 0.0982

GRU 0.1035 0.0712

BiLSTM 0.0725 0.0623

Data preprocessing methods EMD-BiLSTM 0.0595 0.0412

VMD-BiLSTM 0.0513 0.0385

EEMD-BiLSTM 0.0413 5.132

(1) To verify the superiority of the BiLSTM model in ship attitude prediction,
the ship transverse rocking angle attitude data were predicted under three
models, BiLSTM, LSTM, and GRU respectively. It can be seen that the ship
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Fig. 6. IMF Restructuring Results.

Fig. 7. Neural Network Comparative
Experiment

Fig. 8. Comparative Experiment on
Preprocessing Methods

transverse rocking attitude angle predicted by the BiLSTM model has the
best fit between the real data, and the RMSE of BiLSTM is 0.0433 and
0.031 lower than that of LSTM and GRU respectively, and its MAE is 0.0359
and 0.0089 lower than that of LSTM and GRU respectively when predicting,
which shows the BiLSTM has higher accuracy in ship attitude prediction
compared with GRU and LSTM, and better reflects the trend of time series.

(2) To verify the superiority of EEMD in smoothing the ship attitude data, the
ship transverse rocking angle attitude data were predicted under three models,
EMD-BiLSTM, VMD-BiLSTM, and EEMD-BiLSTM, respectively. It can be
seen that the ship transverse rocking attitude angle predicted by the EEMD-
BiLSTM model has the best fit with the real data, with its MAE reduced
by 0.0182 and 0.01 compared to EMD-BiLSTM and VMD-BiLSTM respec-
tively, and its MAE reduced by 0.0116 compared to EMD-BiLSTM and VMD-
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BiLSTM respectively and 0.0089, which shows that EEMD is better for ship
attitude compared to EMD and VMD.

4.4 Ablation Experiment

To verify the role of each module in this model, the transverse and longitudinal
rocking angles as well as the bow rocking angle were experimented with under
the five models BiLSTM, SSA-BiLSTM, EEMD-BiLSTM, EEMD-SSA-BiLSTM
and EEMD-SSA-BiLSTM based on sliding windows. The results are shown in
Figs. 9, 10, 11 and Table 3.

(1)From the graphs and tables, it can be seen that the predicted RMSE and
MAE were reduced by 0.0073 and 0.0114 on average after adding SSA, indi-
cating that SSA solved the problem of random initialization assignment of the
result parameters of the BiLSTM network and improved the prediction accuracy
to a certain extent. (2)The predicted RMSE and MAE were reduced by 0.0304
and 0.0322 on average after the addition of EEMD, and the prediction accu-

Fig. 9. Ablation experiment based on
roll angle.

Fig. 10. Ablation experiment based on
pitch angle.

Fig. 11. Ablation experiment based on
heave displacement.

Fig. 12. Deep displacement.



318 J. Wang and Y. Chen

Table 3. Model prediction error results.

Models Roll angle Pitch angle Heave displacement

RMSE MAE RMSE MAE RMSE MAE

BiLSTM 0.1112 0.1003 0.0725 0.0623 0.0625 0.0565

SSA-BiLSTM 0.1035 0.0912 0.0652 0.0525 0.0556 0.0412

EEMD-BiLSTM 0.0825 0.0654 0.0413 0.0296 0.0312 0.0276

EEMD-SSA- BiLSTM 0.0678 0.0541 0.0215 0.0196 0.0253 0.0233

Ours 0.0578 0.0423 0.0165 0.0152 0.0179 0.0154

racy was improved significantly. Although the prediction curves did not change
much from the true values in the monotonically increasing and monotonically
decreasing intervals, the degree of fit to the true values in the peaks and troughs
was greatly better than that without the addition of EEMD, indicating that
the EEMD method can adapt to the temporal and characteristic changes in the
data. Sequence changes and feature changes in the data, effectively addressing
the effects of non-linearity and non-smoothness in the ship’s attitude. (3)The
predicted RMSE and MAE are reduced by 0.0439 and 0.0407 on average after
adding EEMD and SSA, which is a significant improvement in accuracy com-
pared with the single addition of SSA, proving the superiority of combining SSA
and EEMD. (4)The dynamic sliding window mechanism added to the EEMD-
SSA-BiLSTM reduces the predicted RMSE, and MAE by 0.0539 and 0.0487 on
average, indicating that it reduces the effect of high randomness in the ship
motion attitude.

5 Conclusion

We propose a dynamic sliding window-based EEMD-SSA-BiLSTM prediction
model for the non-smoothness and non-linearity of ship motion attitude. EEMD
is used to pre-process and decompose the ship attitude data to reduce the non-
smoothness of the original data while retaining the data features, while SSA is
used to optimise the BiLSTM network parameters. A dynamic sliding window
is used to read the IMF and pass it into the BiLSTM model for prediction,
reducing the effect of the high randomness of the ship’s motion attitude. The
experimental results show that the ship attitude prediction model proposed in
this paper effectively solves the non-smoothness of ship attitude, reduces the
influence of high randomness and significantly improves the attitude prediction
accuracy.
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Abstract. Automatic math word problem(MWP) solving is an inter-
esting task for NLP researchers in recent years. Over the last few years,
a growing number of effective sequence-to-sequence deep learning-based
model are proposed. However, these models do not efficiently consider
factual errors as the sequence-to-sequence model can produce expres-
sions that do not appear in the question. Additionally, these models
neglect external knowledge information during the math word problem-
solving process. To address these problems, we propose a model that can
automatically solve math word problems with External Knowledge and
Entailment Loss (MathEE). MathEE uses a Textual-Entailment auxil-
iary task to identify factual errors and introduces an entity graph based
on external knowledge to model the highly relevant entity words in the
question. Our experimental results on publicly available Chinese datasets
Ape210K and Math23K show that MathEE achieves an accuracy rate of
74.43% and 78.7%, which is 2.08% and 1.6% higher than strong baseline
models.

Keywords: math word problem · textual entailment · external
knowledge aware

1 Introduction

Solving math word problems(MWPs) is a common challenge in daily life, and
exploring ways to solve MWPs automatically is necessary. Early methods relied
on either predefined rules or statistical methods to map problems into several
predefined templates [1–3]. These methods required a large number of manually
formulated features and could only be applied to small-scale MWP datasets.
Recently, deep neural networks are used to solve MWPs [4–6], and promising
results are reported on some datasets. These methods use end-to-end models to
generate mathematical expressions directly from the question text.

Table 1 shows an example of the MWP. The crucial step in solving such
a problem is to construct a mathematical expression. Wang et al. (2017) [5]
proposes a sequence-to-sequence model to translate language text to a solution
expression. Since then, many sequence-to-sequence models are proposed [6–10].
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Although sequence-to-sequence models achieve promising results, several prob-
lems still need to be addressed.

The first is factual errors. We need to ensure that if a mathematical expres-
sion can be inferred from the question, the question must entail the mathematical
expression. However, the sequence-to-sequence model sometimes can make factual
errors, since it can produce expressions that do not appear in the question text.

The second is integrating external background knowledge. Humans are natu-
rally aware of the background knowledge connected highly relevant entity words
in the question text when they read the question. It is difficult for the model to
get this information from question text without external background knowledge.
As shown in Table 1, “weekly paper” and “evening paper” are different entities
but they have the same hypernym.

To address these problems, we propose MathEE, a sequence-to-sequence model
with Textual-Entailment and External Knowledge-Aware modules. The Textual-
Entailment auxiliary task module can identify factual errors in the target sentence
and provide feedback to train the model better. Meanwhile, MathEE can obtain
representations of commonsense information and improve interactions between
words by modeling highly relevant entity words in the question text.

The main contributions are as follows:

• We propose a Textual-Entailment auxiliary task module to address factual
errors. To the best of our knowledge, this is the first time that factual errors
are systematically discussed in the MWP solving task.

• We propose an External Knowledge-Aware module that includes an effective
entity graph to model highly relevant entity words in the question text and
incorporate external knowledge into math word problem-solving tasks.

• We conduct extensive experiments on Math23K and Ape210K [11] two Chi-
nese benchmark datasets compared with strong baselines and the results con-
firm the effectiveness of the MathEE.

Table 1. An example of the math word problems from Ape210K dataset.

Problem Grandpa Li’s news-stand receives 230 yuan today, among them,
weekly newspaper sells 85 copies, each weekly newspaper is 1.5
yuan, each evening paper is 0.5 yuan, how many evening papers
does Grandpa Li sell today?

Equation (230-1.5*85)/0.5

Answer 205

2 Related Work

Previous methods to automatic MWP solving involve incorporating additional
features by creating fine-grained templates or defining math concepts [1–3],
which are then used to generate the mathematical expression. Huang et al.
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(2017) [12] proposed fine-grained templates and aligned numbers in MWPs with
candidate templates. Roy and Roth (2018) [13] developed declarative rules to
convert math concepts into mathematical expressions without relying on addi-
tional predefined templates. However, according to Huang et al. (2016) [15], these
kinds of methods did not perform satisfactorily on a large dataset comprising
more than 18,000 questions, as these methods require manually created features
and may be challenging to apply to MWPs in various domains.

In recent years, deep learning models are used to solve MWPs automati-
cally [4–6]. Wang et al. (2017) [5] proposed a sequence-to-sequence neural net-
work model that achieved promising results in MWP solving, while Zou and
Lu (2019) [27] parsed question text into math expressions using a sequence-to-
sequence framework. Xie and Sun (2019) [28] proposed a sequence-to-tree model
to generate expression tree in a goal-driven manner based on the parent node
and left sibling tree of each node. Li et al. (2020) [22] proposed a graph-to-tree
neural network model to generate expression tree. Qin et al. (2021) [23] proposed
a neural network model to generate expression with four auxiliary tasks. Addi-
tionally, Lan et al. (2022) [25] used BERT and Roberta to solve MWP. Compared
with traditional template or feature matching methods, the sequence-to-sequence
model based on deep learning neural network does not require manually formu-
lated features. However, these models ignore the external background knowledge,
making it is necessary to incorporate such external knowledge into the MWP
solving task.

Pre-training models have achieved significant success in various natural lan-
guage processing tasks in recent years. Specifically, pre-training models like
BERTGen [25] and RobertaGen [25] are utilized for automatic MWP solving
with promising results. Additionally, other pre-trained language models such as
Unified pre-trained Language Model (UniLM) [16] have demonstrated effective-
ness in this task. The model is pre-trained using three types of language mod-
eling tasks, and its ability to perform sequence-to-sequence predictions makes it
suitable for fine-tuning in generation tasks, including MWP solving.

3 Model

The model incorporates the Textual-Entailment auxiliary task for truth checking
and the External Knowledge-Aware module for modeling the highly relevant
entity words in the question text. AS shown in Fig. 1, the input of this model is
a MWP and the output is a mathematical expression.

3.1 Input Representation

AS shown in Fig. 1, for a MWP, the question and the mathematical expression
can be expressed as P = {P1, ..., Pm} and E = {E1, ..., En}, respectively. We
always add a special token [CLS] at the beginning of the question and a [SEP]
token at the end of each segment. The [SEP] token marks the sentence boundary.
It is also used for the model to learn when to terminate the decoding process
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Fig. 1. An overview of the MathEE model includes Textual-Entailment module with
automatic labeling ability and External Knowledge-Aware module.

in natural language generation tasks. Texts are tokenized to subword units by
WordPiece. The representation of each token is computed by summing the cor-
responding token embedding, position embedding, and segment embedding.

3.2 Multi-layer Transformer

As shown in Fig. 1, The input sequence < [CLS] ;P ; [SEP ] ;E; [SEP ] > is first
mapped into H0 =

[
hCLS
0 ;HP

0 ;hSEP
01 ;H0

E ;hSEP
02

]
, and then encoded into con-

textual representations using a L-layer Transformer Hl = Transformerl (Hl−1).
In each Transformer block, multiple self-attention heads are used to aggregate
information from the output vectors of the previous layer and produce a new set
of features. For the l-th Transformer layer, the output of a self-attention head
Al is computed via:

Al = softmax

(
QKT

√
dk

+ M

)
Vl (1)

where Q = Hl−1W
Q
l ,K = Hl−1W

K
l , V = Hl−1W

V
l . The previous layer’s output

Hl−1 is linearly projected to a triple of queries, keys and values using parameter
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matrices WQ
l , WK

l , WV
l respectively, and the self-attention mask matrix M

determines whether a pair of tokens can attend to each other, the white squares
denote 0 and black squares denote −∞.

The above description can be abstracted into the following equations:

HL = Multi Layer Transformer (< [CLS] ;P ; [SEP ] ;E; [SEP ] >) (2)

HL =
[
hCLS ;HP

L ;hSEP
1 ;HE

L ;hSEP
2

]
(3)

where HL is the output of the last layer of the L-layer Transformer. hCLS denotes
the summary representation of the question and mathematical expression. This
representation will be used in Textual-Entailment auxiliary task in Sect. 3.3.
HP

L = {hP
1 , ..., hP

m} denotes the representation of tokens in the question text.
HE

L = {hE
1 , ..., hE

n } enotes the representation of tokens in the mathematical
expression. hSEP

1 and hSEP
2 represent the special token [SEP], with the hSEP

2

serving the additional function of determining when to terminate the decoding
process. Notably, all representations are context-aware.

3.3 Textual-Entailment Module

We use Textual-Entailment to identify factual errors in the target sentence and
provide feedback to the model. As shown in Fig. 1, we obtain the Textual-
Entailment label using the loss value of the sequence generation task.

We use the [CLS] token, which contains contextual information, and design
a Textual Entailment auxiliary task as a classification task in the training stage.
The output from the L-th layer(the last layer) of the Multi-Layer Transformer
is represented as HL =

[
hCLS ;HP

L ;hSEP
1 ;HE

L ;hSEP
2

]
. HE

L is used to calcu-
late the loss of the target sequence, which represents the target mathematical
expression, and cross-entropy is used to calculate the loss. After obtaining the
loss value from the sequence generation task, we use it to automatically label
the Textual Entailment auxiliary task. The hCLS which represents the summary
representation of the question and mathematical expression, is used as the input
for the Textual Entailment auxiliary task. We pass the hCLS through two fully
connected layers, followed by a randomly initialized softmax-classifier:

TE = Softmax
(
(h[CLS]W

)
(4)

where the W refers to a trainable parameter matrix and TE is the output of the
softmax-classifier. We utilize the prediction results to fine-tune the parameters
of the pre-trained model and train the classifier using mean squared error loss
as the loss function.

3.4 Entity Graphs Module

Each MWP question text can be represented by an entity graph G = (N,E),
where N is the list of nodes and the E is the adjacent matrix of these nodes.
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Nodes represent words in the MWP, and edges are retrieved from external knowl-
edge bases as relationships between words. An edge is added between two words
when they have similar semantic representations and are strongly related. With
n words in the MWP, the corresponding entity graph will have a node list
N = {x1, x2, ..., xn} with n nodes.

A two-layer Graph Attention Network (GAT) [18] is used to process word
vectors and synonym correlation matrices after word embedding from the ques-
tion text obtained in data preprocessing. This is done to obtain high-dimensional
knowledge representation feature vectors of synonym entities. Using this method,
we obtain the node initial vectors hnode = {hnode

1 , hnode
2 , ..., hnode

n }. We then use a
two-layer GAT to obtain the hidden vectors Hknow = {hknow

1 , hknow
2 , ..., hknow

n }
for these nodes. The GAT functions are defined as follows:

hknow
i = ‖k=1,...Kσ(

∑

Aij=1

αijWkh
node
j ) (5)

αij =
exp(LRelu(wT

s [Whhnode
i ||Whhnode

j ]))
∑

Aij=1 exp(LRelu(wT
s [Whhnode

i ||Whhnode
j ]))

(6)

where wT
s ,Wh,Wk represent the trainable weight vectors and matrices. The ‖

represents the concatenation operation, and LRelu is a LeakyRelu activation
function [19]. K represents the number of heads in the GAT, and Aij = 1 means
that there is an edge between the i-th and j-th node.

Then we concatenate the output from the L-th layer of the Multi-Layer
Transformer HL with the knowledge graph vectors Hknow to obtain the output
of the encoder Hout.

Hout = [HL : Hknow] (7)

4 Experiments

4.1 Dataset

We evaluate MathEE on both Math23K and Ape210K two large-scale Chinese
datasets. The Math23K and Ape210K datasets contain 24162 and 210488 ele-
mentary school MWPs respectively, each MWP originally associates with an
expression and answer.

Table 2. The Statistics of MWPs in Ape210K and Math23K datasets.

Train Valid Test

Ape210K Before Preprocessing 200488 5000 5000

After Preprocessing 200390 4999 4998

Math23K Before Preprocessing 21162 1000 1000

After Preprocessing 20657 972 980
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Data Preprocessing. We use Cilin [20] and Synonyms as our external knowl-
edge sources. Cilin is a synonym dictionary while Synonyms is a toolkit for
natural language processing and understanding in Chinese. Both can be used to
group words in the question text, and by using the Synonyms toolkit, we can
obtain semantic units of entities in the question text. We use these word groups
and semantic representations to construct the entity graph. Furthermore, to facil-
itate the automatic calculation of mathematical expressions by the program and
remove some MWPs with errors, we processed the mathematical expressions in
the Ape210K dataset. We replace the percentage such as ’a%’ with the fractional
like ’a/100’, improper fractions such as ’a(b/c)’ with the form of ’(a + b/c)’, and
the ’:’ which represents the proportion with ’/’. Then we calculate the equation
to obtain the final numerical answer and compare the result with the provided
answer to remove MWPs with errors. Finally, the number of available MWPs in
the Ape210K and Math23K datasets is shown in Table 2.

4.2 Implementation Details

Our code was implemented with Pytorch1 and based on UniLM [16], with the
hidden size of 768. We use the Adam optimizer with a learning rate of 2e-5 and
a dropout rate of 0.1. To improve speed and reduce memory usage, we trim
questions and mathematical equations to 256 and 40 tokens, respectively. We
train the model for 20 epochs with a batch size of 8. During decoding, the beam
size was set to 3.

4.3 Comparing Models

To evaluate the performance of MathEE, we compare it with the following mod-
els:

StackDecoder. [21] is a neural sequence-to-sequence model where the encoder
is designed to obtain the semantic embedding of the numbers in the question
description, while the decoder is designed to construct the mathematical equa-
tion in a suffix manner by applying stack actions to a stack.

GTS-model. [6] is a tree-structured neural model. The encoder is designed
to encoder the question texts to contextual representations with a two-layer
Bi-GRU, and the decoder is designed to construct the mathematical equation.
Given a goal vector, the decoder predicts the token ŷ, if the predicted token ŷ
is a numeric value, the goal is marked as achieved. Otherwise, if the predicted
token is an operator, the goal vector q will be split into a left sub-goal ql and a
right sub-goal qr, respectively. The left sub-tree will be embedded via a recursive
neural network and used when this model decodes the right sub-tree.

Feature-Enriched and Copy-Augmented LSTM. [11] follows the encoder-
decoder approach with soft attention. There are five handcrafted features in the

1 https://pytorch.org/.

https://pytorch.org/
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word embedding layer: 1) the character of the current position; 2) the part-
of-speech tag of the word in the current position; 3) the word of the current
position; 4) whether the character of the current position is a number or not
based on regular expression matching; and 5) sorting all the numbers in the
question description in descending order and assigning each number an index
starting from 0. The model uses a 4-layer Bi-LSTM as an encoder and a 2-layer
Bi-LSTM as a decoder.

BERTGen. [25] is a Pre-trained model that uses BERT [17] as encoder and
Transformer as the decoder to solve MWPs. Similarly, the RobertaGen uses
Roberta [26] as the encoder and Transformer as the decoder to solve these prob-
lems.

4.4 Main Results

We use accuracy as the evaluation metric. For a given MWP, a predicted equation
is considered correct if it produces the same numerical answer as the ground
truth.

Result on Math23K Dataset. We compare MathEE with well-known MWP
solvers from 2017 to the present on the Math23K dataset and present the results
in Table 3. MathEE achieves an accuracy of 78.7% on the Math23K dataset,
outperforming UniLM by 1.5%.

Table 3. The performance of models on Math23K test dataset.

Model Accuracy

StackDecoder [21] 65.8%

GTS-model [6] 74.3%

Feature-enriched and Copy-augmented LSTM [11] 77.5%

BERTGen [25] 76.6%

RobertaGen [25] 76.9%

UniLM [16] 77.1%

MathEE 78.7%

Result on Ape210K Dataset. We choose three state-of-the-art open-source
models: StackDecoder, GTS, UniLM, and the baseline of the Ape210K dataset
to compare with MathEE on the Ape210K dataset. Table 4 shows the accuracy
rates of MathEE and several other models on the Ape210K dataset. As we can
see, MathEE outperforms all the models. Specifically, MathEE outperforms the
Feature-enriched and Copy-augmented LSTM model, which is a strong base-
line in the Ape210K dataset. Moreover, MathEE improves the accuracy rate of
UniLM from 72.35% to 74.43%.
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Table 4. The performance of models on Ape210K test dataset.

Model Accuracy

StackDecoder [21] 52.28%

GTS-model [6] 56.56%

Feature-enriched and Copy-augmented LSTM [11] 70.20%

BERTGen [25] 70.91%

RobertaGen [25] 71.78%

UniLM [16] 72.35%

MathEE 74.43%

Model Performance on Different Length of the Expressions. We
compare the MathEE model with the best-performing state-of-the-art model,
UniLM, to investigate the performance of the models on expressions of different
lengths.

As shown in Table 5, we divide the test dataset from Ape210K into four
subsets according to the expression length. MathEE outperforms UniLM with
respect to expressions of different lengths, especially those with a length of less
than 5, which means that there is only one number in the expression and it
is equal to the answer. One possible explanation for this is that such problems
require the model to generate the answer directly, making UniLM more likely to
make factual errors while MathEE can handle them with the Textual-Entailment
module. These results further demonstrate the beneficial effect of the Textual-
Entailment module in the MathEE model.

Table 5. The performance of models on Ape210K test dataset that was divided into
4 subsets according to the length of the expression

Expression Length UniLM [16] Acc MathEE Acc Percent

length of expression<5 39.89% 43.45% 3.56%

5≤length of expression<10 73.39% 75.44% 23.45%

10≤length of expression<20 80.11% 82.01% 49.80%

20≤length of expression 59.62% 61.97% 23.19%

4.5 Ablation Study

As an ablation study, we compare our model with the models that without the
modules we propose. The results of the ablation study on the Ape210K and
Math23K datasets are shown in Table 6.
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Table 6. The ablation study results of MathEE on Ape210K and Math23K.

Model Ape210K Math23K

Feature-enriched and Copy-augmented LSTM [11] 70.20% 77.50%

UniLM [16] 72.35% 77.10%

MathEE w/o Textual-Entailment 74.15% 78.29%

MathEE w/o External Knowledge-Aware module 73.73% 77.83%

MathEE 74.43% 78.70%

1) Textual-Entailment Auxiliary Task: We first investigate the effect of the
Textual-Entailment auxiliary task on the results. As shown in Table 6, the
model with the Textual-Entailment auxiliary task module outperformed the
model without this module on Ape210K and Math23K by 1.38% and 0.73%
accuracy rate, respectively. This shows that the Textual-Entailment auxiliary
task module is important, as it can strengthen the relationship between the
target sentence and the source sentence. In other words, it can strengthen
the relationship between the mathematical expression and the question text,
identify factual errors in the target sentence, provide feedback to the model,
reduce the incidence of factual errors, and ultimately improve the performance
of the model.

2) External Knowledge-Aware Module: We investigate the influence of the
External Knowledge-Aware module on the results. The External Knowledge-
Aware module makes the model capable of connecting highly relevant entity
words in the question text and dynamically encoding external knowledge into
the model, which improves the performance. As shown in Table 6, the model
with the External Knowledge-Aware module outperformed the model without
this module on Ape210K and Math23K by 1.80% and 1.19% accuracy rate,
respectively.

4.6 Case Study

Table 7 shows an example generated by MathEE for comparison with
UniLM [16]. In the first example, without the Textual-Entailment module and
the External Knowledge-Aware module, UniLM does not realize that this ques-
tion is asking about the weight of fruit instead of the weight of oranges. And
it cannot aware the background information that apples, pears, and oranges
are fruits, therefore it generates incorrect results. By incorporating the Textual-
Entailment module and the External Knowledge-Aware module, MathEE can
obtain this information and generate the correct expression.

In the second example, UniLM cannot combine the “news-stand total
income” with the price of each “weekly newspaper” and “evening paper” with-
out external knowledge, and it even ignores the existence of “weekly newspa-
pers”, resulting in incorrect results. By incorporating external knowledge and
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Table 7. An example of expressions generated by MathEE compared with UniLM.

Example1 In a box of fruit, the weight of apples is 36KG, the weight of
pears is (1/3) of apples, and the weight of oranges is (5/4) of
pears. What is the weight of the box of fruit?

UniLM [16] 36*1/3*5/4 (Wrong)

MathEE 36+36*1/3+36*1/3*5/4 (Right)

Example2 Grandpa Li’s news-stand receives 230 yuan today, among them,
weekly newspaper sells 85 copies, each weekly newspaper is 1.5
yuan, each evening paper is 0.5 yuan, how many evening papers
does Grandpa Li sell today?

UniLM [16] 230/0.5 (Wrong)

MathEE (230-1.5*85)/0.5 (Right)

the External Knowledge-Aware module, MathEE is able to establish the rela-
tionship between these kinds of newspapers and generate correct expressions.

5 Conclusion

In this study, we propose a model that can automatically solve MWPs with
External Knowledge and Entailment Loss (MathEE). We use an entity graph to
model the highly relevant entity words in the question text and incorporate exter-
nal knowledge into the model. Additionally, we propose a Textual-Entailment
auxiliary task module with automatic labeling ability to reduce the incidence of
factual errors. Our experimental results on Ape210K and Math23K confirm that
our MathEE model outperforms other models.
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Abstract. Synthesis of computed tomography (CT) images from mag-
netic resonance (MR) images plays an important role in radiotherapy
treatment planning. CycleGANs have achieved promising performance
in unsupervised MR-to-CT synthesis. However, the inter-modality gap
between the two modalities and the loss of high-frequency informa-
tion in the synthetic CT images are still not well addressed. In this
paper, we propose a spatially invariant and frequency-aware CycleGAN
(SF-CycleGAN) to improve the performance of unsupervised MR-to-CT
synthesis. Specifically, we introduce a translation-invariant generator to
generate CT from MR images, while maintaining the invariance of spa-
tial feature during translation for those positions having similar char-
acteristics. Furthermore, we define a frequency-consistent loss to pro-
mote the consistency of the frequency between real and synthesized
images and adaptively guide the model to pay more attention to syn-
thesizing the harder-frequency (e.g., higher-frequency) parts. Intensive
results in unpaired brain MR-to-CT image synthesis demonstrate that
our method provides both quantitatively and qualitatively superior per-
formance as compared to the baseline (CycleGAN) and other state-of-
the-art approaches.

Keywords: MR-to-CT synthesis · unsupervised · CycleGAN

1 Introduction

Computed tomography (CT) and magnetic resonance (MR) images are two
commonly-used medical imaging modalities, which are both important and
widely applied in the treatment planning of radiotherapy [1]. MR images deliver

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14262, pp. 332–343, 2023.
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Fig. 1. Example of a pair of brain MR and CT images from the same patient.

excellent soft-tissue contrast that is useful for the delineation of gross tumors
and organs at risk (OARs) [2], while CT images provide electron density infor-
mation for dose calculation and reference images for pre-treatment positioning
[3]. Due to their complementary characteristics, the acquisition of both CT and
MR images of the patient has become part of the clinical workflow [4]. However,
obtaining both CT and MR images is not only time-consuming and costly, but
also leads to the nonrigid misalignment between the two modalities. In light of
these challenges, MR-only treatment planning based on MR-to-CT synthesis has
become an attractive alternative, which is valuable for both scientific research
and clinical application.

Recently, since deep learning has shown great success in medical image anal-
ysis [5,6], many CNN-based architectures have been proposed for MR-to-CT
synthesis, and the most popular ones are the U-nets [7] and generative adver-
sarial networks (GANs) [8]. Although these approaches can produce promising
synthetic images sometimes, most of them learn using paired MR and CT data,
which are hard to acquire in practice. To relax the requirement of paired training
data, some approaches based on CycleGAN [9] have been developed for unsu-
pervised medical image translation [10–12].

Despite the certain success of existing approaches in CT synthesis, the fol-
lowing challenges still remain to be tackled: 1) there is a large inter-modality
appearance gap between the MR and CT images, as shown in Fig. 1, and thus
it is difficult to encode both the spatial and context information and learn accu-
rate translation between the two modalities [13]. 2) the reconstruction error in
CT images is crucial in the high-frequency components, where a lot of detailed
information (e.g., contours) is contained [14]. However, the existing loss function,
such as the simple �1 loss, may lead to poor preservation of image details since
it is minimized by averaging for all possible outputs [15]. Some researches [16]
also reveal that deep neural networks (DNNs) tend to learn from low to high
frequencies during training. That is, the low-frequency parts are learned faster,
at the sacrifice of the high-frequency parts.

To tackle these challenges, we propose a spatially invariant and frequency-
aware CycleGAN, termed SF-CycleGAN, for unsupervised MR-to-CT synthe-
sis using unpaired training data. This method not only constrains translation-
invariance of the spatial feature between the input MR and synthetic CT images
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without additional requirements on the training dataset, but also adaptively
enforces the model to focus on synthesizing the frequency components that are
hard to synthesize. Specifically, we leverage dynamic region-aware convolution
[17], which can automatically assigns filters to corresponding spatial-dimension
regions, as part of the image generator. Furthermore, we improve focal frequency
loss [18] to make it better adapt to MR-to-CT synthesis, compensating for the
loss of the high-frequency parts of the CT images. We also incorporate a spec-
tral normalization step [19] in the discriminators to stabilize the training process.
Our contributions can be summarized as follows:

– We propose a novel generator to dynamically learn the distribution of spacial
semantics, which reduces the modality gap and well preserves the translation-
invariance of spacial features during MR-to-CT synthesis.

– We define a frequency-consistent loss to maintain the frequency-consistency
between the input and synthetic images, as well as adaptively focus the model
on the frequency parts that are hard to synthesize.

Comprehensive experiments are performed for MR-to-CT synthesis, and
the results indicate the superiority of our method over the state-of-the-art
approaches.

2 Related Works

A variety of deep learning-based methods have been proposed to synthesize CT
images from MR images. Generally, medical image synthesis methods can be
roughly classified into supervised and unsupervised methods.

Supervised methods require non-rigidly aligned image pairs of the same
patients during training. Han [20] proposed using Deep Convolutional Neural
Networks (DCNN) to generate synthetic CT images, outperforming the tra-
ditional atlas-based approach. Cusumano [21] applied conditional generative
adversarial networks (cGAN) [22] to generate pelvic and abdominal CT images
from MR images. Despite the success of these methods in synthesizing medical
images, they require a large number of pairwise aligned MR and CT training
images of the same patient, which may not be easy to access in practice.

For the lack of paired MR and CT images, an increasing number of unsuper-
vised methods have been developed to learn from unpaired MR and CT training
data. Wolterink et al. [10] applied cycle generative adversarial network (Cycle-
GAN) [9] with unpaired brain MR and CT images, to successfully generate
high-quality synthetic CT images. Unfortunately, CycleGAN cannot guarantee
the structure alignment between the input and synthetic images since there are
no direct constraints between these two images. Some studies then added addi-
tional losses for improved performance of synthesized images. Hiasa et al. [11] uti-
lized a gradient consistency loss to improve the boundary alignment between the
input and synthesized images. Yang et al. [12] defined a cross-modality structure-
consistency loss to provide structural consistency constraints.



SF-CycleGAN 335

Fig. 2. Illustration of the framework of our proposed SF-CycleGAN. Two generators
G and F learn the MR-to-CT and CT-to-MR mappings, respectively, where spatially
invariant constraint is enforced to reduce the modality gap. Two discriminators DX

and DY distinguish between real and synthesized images in the MR and CT domain,
respectively, and a frequency-consistent loss is added to make the generated image
maximally preserve details.

3 Proposed Method

3.1 Model Overview

The ultimate goal of our proposed SF-CycleGAN is to obtain a mapping from
the MR image to the CT image without using paired training data. We suppose
that X = {xi}N

i=1 and Y = {yj}M
j=1 are the sets of MR and CT images, respec-

tively. As shown in Fig. 2, based on CycleGAN [9], our SF-CycleGAN employs
two generators G : x → ŷ and F : y → x̂ to learn the MR-to-CT and CT-to-MR
mappings, respectively, where ŷ = G(x) and x̂ = F (y) represent synthesized CT
and MR images. In addition, two generators DX and DY are used to distin-
guish the synthetic and real images within the MR and CT domains, forcing the
generators to synthesize more realistic images.

3.2 Translation-Invariant Generator

Due to the complex nonlinear mapping between MR and CT images, it’s difficult
to ensure the consistency of the spatial features during MR-to-CT translation
and capture sufficient spatial semantic information that is significant for iden-
tifying the anatomical structure. Inspired by the observation that DRConv [17]
is able to maintain the translation-invariance for the same objects, our goal is
to develop a generator to extract plentiful semantic information and enforce the
translation-invariance between the MR and CT domains, without using addi-
tional structural constraints. To achieve this, we incorporate DRConv into the
generator, as shown in Fig. 3.

DRConv [17] can be divided into two modules: the learnable guided mask
and the filter generator g(X). The mask decides which filter will be assigned to



336 S. Song et al.

Fig. 3. Illustration of the architectures of (a) the proposed translation-invariant gener-
ator and (b) DRConv with kernel size k×k and region number m, where g(X) denotes
the filter generator.

which region by applying a k×k standard convolution to produce guided feature
with m channels. The filter generator generates m filters, which will be assigned
to the corresponding m spatial regions. Each region utilizes an individual filter
and standard 2D convolution is performed using the corresponding filter in these
regions to output Y .

Our proposed generator network mainly contains an encoder, a transforma-
tion module, and a decoder. The encoder extracts the knowledge of images from
the original domain. The transformation module transforms the feature from the
original domain to the target domain. And the decoder maps feature to the syn-
thesized image. In the proposed network, DRConv is utilized in the generator,
which takes the output vectors from the encoder as inputs, to maximally extract
useful spatial features from the source domain, and further preserve spatial fea-
ture invariance for the positions that have similar characteristics.

3.3 Frequency-Consistent Loss

In the literature, the frequency domain gap between the real and fake images
is a common issue for deep learning-based image reconstruction and synthesis
models, since the DNNs tend to fit training data using a low-frequency function
and hence, the high-frequency components cannot be well exploited [16]. In the
MR-to-CT translation task, the lack of high-frequency information is reflected
in the blurring of the synthesized CT images. This issue can be alleviated by
utilizing the focal frequency loss (FFL) [18], which directly optimizes image
synthesis approaches in the frequency domain. Given an image x of size M ×
N , x is converted into its frequency representation using a 2D discrete Fourier
transform, i.e.,

Fx(u, v) =
M−1∑

p=0

N−1∑

q=0

f(p, q) · e−i2π(up
M + vq

N ), (1)

where (p, q) represents the spatial coordinate of an image pixel; f(p, q) is the
pixel value; e and i are Euler’s number and the imaginary unit, respectively;
F (u, v) is the spatial frequency value at the spectrum coordinate (u, v) of the
input image.
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Let Fx(u, v) be the spatial frequency value at the spectrum coordinate (u, v)
of the real image x, and Fx′(u, v) is of the reconstructed image x′. The focal
frequency loss can be regarded as a weighted average of the frequency distance
between the real and fake images, which can be defined by:

Lff (x, x′) =
1

MN

M−1∑

u=0

N−1∑

v=0

w(u, v)|Fx(u, v) − Fx′(u, v)|2, (2)

where w(u, v) denotes the weight of the spatial frequency at (u, v), which can be
expressed as:

w(u, v) = |Fx(u, v) − Fx′(u, v)|α, (3)

where α is the scaling factor of the spectrum weight matrix for flexibility and is
set to 1 by default.

Following the above formulations, we improve FFL to make it adapt better
for the unsupervised MR-to-CT synthesis task. Our frequency-consistent loss
(FCL) is defined to encourage the synthesized images G(F (x)) and F (G(y)) to
be frequency-identical to their inputs x and y, respectively, as well as make the
model focus on synthesizing hard-frequency parts, e.g., the edges and boundaries
in CT images, adaptively. Our frequency-consistent loss is given by:

Lfc(G,F,X, Y ) =Ex∼pdata(x)Lff (x, F (G(x)))
+Ey∼pdata(y)Lff (y,G(F (y))),

(4)

The frequency-consistent loss calculates the weighted average of the fre-
quency distance between the real and the cycle-reconstructed images in the
same domain. It guides the model to pay more attention to synthesizing hard-
frequency parts during training, by adaptively increasing the corresponding
weights and progressively refining the synthesized images.

3.4 Training Objective

Our training loss consists of two terms: the standard adversarial loss [8] and our
frequency-consistent loss presented in Eq. (4), and we introduce the adversarial
loss function and the final objective as follows.

Adversarial Loss. The adversarial loss is applied to both mappings, as shown
in Fig. 2. For the generator G : X → Y and its discriminator DY , the adversarial
loss is:

Ladv(G,DY ,X, Y ) =Ey∼pdata(y)[log DY (y)]
+Ex∼pdata(x)[log(1 − DY (G(x)))],

(5)

where x and y are the input MR and CT images, respectively. During training,
the generator G generates images G(x) that look as close as possible to the
domain Y , while DY tries to distinguish the synthesized G(x) from the real
images y. The adversarial loss of generator F : Y → X and its discriminator DX

is defined similarly.
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Final Objective. Given the adversarial loss and frequency-consistent loss men-
tioned above, the final training objective of our SF-CycleGAN is defined as:

L(G,F,DX ,DY ) =Ladv(G,DY ,X, Y )
+Ladv(F,DX , Y,X)
+λLfc(G,F,X, Y ).

(6)

where λ is a trade-off hyper-parameter.

4 Experiment

4.1 Experiment Setup

Dataset. In this study, the GammaKnife-Hippocampal [23] dataset, which
is provided by The Cancer Imaging Archive (TCIA) [24], is used for perfor-
mance evaluation. The dataset contains high-resolution (1 mm slice thickness)
T1 FLASH trans-axial MR imaging and their corresponding high-resolution CT
image from 390 patients with brain diseases. The MRI volumes were rigidly
registered and resized to the coordinate space and voxel dimensions of the CT
volume (0.5 × 0.5 × 1.0 mm).

To perform experiments on 2D axial images, five axial slices from each MR
and CT volume pair are extracted, which are then padded and randomly cropped
to the resolution of 256×256. We randomly select 300 patients with 1, 500 image
pairs for training and 40 patients with 200 image pairs for testing. To achieve
unsupervised MR-to-CT synthesis, the paired brain CT and MR data are shuffled
to create an unpaired training set. The intensity ranges are [−700, 1300] HU for
CT images and [0, 1000] (arbitrary units) for MR images, both of which are
linearly normalized to [−1, 1] for training.

Evaluation Metrics. Three popular evaluation metrics, including mean abso-
lute error (MAE), peak signal-to-noise ratio (PSNR), and structural similarity
(SSIM) are used to quantitatively evaluate algorithm performance. For MAE,
the lower the better; for PSNR and SSIM, higher values indicate better results.

4.2 Implementation Details

For the discriminator networks, 70 × 70 PatchGANs [22] is utilized to classify
whether the overlapping image patches are realistic or synthetic. Additionally,
we implement a spectral normalized (SN) convolutional layer [19] instead of the
conventional one in the discriminators to stabilize the training process.

Our network implementation is based on Pytorch and all the experiments
are performed on three NVIDIA Geforce RTX 3090 (24GB). All networks are
optimized by the Adam solver with a learning rate of 0.0002 and coefficients of
(0.5, 0.999), using a batch size of 16 and 200 epochs.
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Table 1. Quantitative comparison in terms of CT synthesis quality evaluation metrics
for various state-of-the-art image synthesis models. Both mean and standard deviation
are reported.

Method MAE PSNR SSIM

CycleGAN [9] 88.26 ± 14.64 26.05 ± 0.31 0.7478 ± 0.063

AttentionGAN [25] 88.51 ± 9.50 26.53 ± 0.59 0.8533 ± 0.035

CUT [26] 62.59 ± 13.68 26.31 ± 0.58 0.8444 ± 0.030

GCGAN [27] 60.20 ± 7.10 26.08 ± 0.35 0.9368 ± 0.027

DCLGAN [28] 45.42 ± 11.06 26.30 ± 0.47 0.9697 ± 0.031

SCC-CycleGAN [29] 117.14 ± 16.43 24.06 ± 0.15 0.5846 ± 0.073

Ours 36.32 ± 8.43 27.55 ± 0.49 0.9771 ± 0.013

Fig. 4. Visualization of synthetic CT images using different methods. For one test
subject, we show the ground-truth CT image and the input MR image, the synthetic
CT images, and their difference from the ground-truth image.

4.3 Comparison Results

To verify the effectiveness of the proposed method, we conduct comprehensive
comparisons between our SF-CycleGAN and other state-of-the-art unsupervised
image-to-image synthesis approaches, including CycleGAN [9], AttentionGAN
[25], CUT [26], GCGAN [27], DCLGAN [28], and SCC-CycleGan [29].

Table 1 reports the quantitative results of different methods on the test set.
As can be seen, our model outperforms the other approaches in synthesizing
CT images in terms of all metrics, which indicates that the synthesized CT
images of our method are closer to the real CT images in both CT values and
anatomical structure. Compared with the conventional CycleGAN, our model
achieves 58.85%, 5.76%, and 30.66% improvements in MAE, PSNR, and SSIM,
respectively, which indicates that the proposed method can better maintain the
translation and frequency consistency between the source and target domains.

A visualization of the test results on a subject is shown in Fig. 4. The first
column shows the ground-truth CT image and the input MR image. The second
to the eighth columns show the synthesized CT images along with the differ-
ence images between the real and synthesized images by different methods. It
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Table 2. Ablation study: CT synthesis quality under different conditions. Both mean
and standard deviation are reported.

Method MAE PSNR SSIM

CycleGan 88.26 ± 14.64 26.05 ± 0.31 0.7478 ± 0.063

Ours w/o TG & FCL 75.33 ± 12.53 26.39 ± 0.38 0.8344 ± 0.044

Ours w/o FCL 66.70 ± 12.61 26.60 ± 0.34 0.8550 ± 0.049

Ours w/o TG 48.29 ± 11.45 27.11 ± 0.47 0.9502 ± 0.023

Ours 36.32 ± 8.43 27.55 ± 0.49 0.9771 ± 0.013

can be seen that the synthesized images by our model are more identical to
the real one, and the difference between the ground-truth and CT images pro-
duced by our model is relatively smaller as compared with other approaches. The
red squares in Fig. 4 highlight our ability to better reduce synthesized errors,
especially in high-frequency parts, which demonstrates the effectiveness of the
proposed frequency-consistent loss in improving CT synthesis performance.

4.4 Ablation Study

To further demonstrate the effectiveness of each design and to better under-
stand how the hyper-parameters affect performance, we conduct a set of abla-
tion studies to systematically evaluate the importance of the main components
in our model. As shown in Table 2, we can observe that all components play a
vital role in improving our model’s performance. Compared with the conven-
tional CycleGAN, the CycleGAN with spectral normalization (“ours w/o TG &
FCL”) obtains better results in all metrics. Our proposed translation-invariant
generator (TG) can help improve the quality of synthesized images. Besides, the
frequency-consistent loss (FCL) has an outstanding contribution to explicitly
enhance high-frequency MR-to-CT image synthesis. In summary, SF-CycleGAN
with all its components achieves the best performance.

Impact of the Translation-Invariant Generator: To choose the optimal
number of divided regions, i.e., m introduced in Sect. 3.2, we vary the number
from 2 to 8 in the proposed generator. The results in Table 3 show that applying
DRConv in the generator achieves significantly better performance in terms of all
metrics than the conventional CycleGAN (see “CycleGan” in Table 1). Besides,
the performance reaches its peak when we divide the spatial dimension into 4
regions. Fewer divided regions cannot learn sufficient spatial semantics, while
more regions may lead to filter assign error and optimization difficulty.

Impact of the Frequency-Consistent Loss: We study the influence of the
frequency-consistent loss (FCL) by conducting experiments under different λ
chosen from {1.0, 2.0, 5.0, 10.0, 20.0} in Eq. (6). Results in Table 4 outperform
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Table 3. CT synthesis quality for our model trained with different region numbers of
DRConv in the generator. Both mean and standard deviation are reported.

Number MAE PSNR SSIM

2 52.41 ± 10.19 26.77 ± 0.42 0.9580 ± 0.018

4 36.32 ±8.43 27.55 ± 0.49 0.9771 ± 0.013

8 53.59 ± 6.26 26.78 ± 0.28 0.9437 ± 0.016

Table 4. CT synthesis quality for our model trained under different choices of hyper-
parameter λ. Both mean and standard deviation are reported.

λ MAE PSNR SSIM

1 45.36 ± 5.22 26.82 ± 0.31 0.9782 ± 0.009

2 41.11 ± 7.22 27.18 ± 0.42 0.9761 ± 0.011

5 36.32 ± 8.43 27.55 ± 0.49 0.9771 ± 0.013

10 37.71 ± 7.35 27.36 ± 0.41 0.9763± 0.012

20 61.95 ± 8.13 26.57 ± 0.28 0.9180 ± 0.022

those of the CycleGAN model in Table 1, which indicates the superiority of the
proposed frequency-consistency loss over the cycle-consistency loss in improving
image synthesis quality and semantic information alignment. The best MAE
and PSNR are obtained when we set λ to be 5, while the highest SSIM appears
when λ = 1. This is because when λ is too large, the model focuses too much on
maintaining frequency consistency, leading to the ignorance of the pixel distance
and style information learned from CycleGAN.

5 Conclusion

In this paper, we propose SF-CycleGAN, a spatially invariant and frequency-
aware CycleGAN to reduce the modality gap and improve the details information
for unsupervised MR-to-CT synthesis. The proposed translation-invariant gener-
ator synthesizes CT images from MR images, which not only extracts more plen-
tiful spatial information but also preserves the invariance of spatial feature during
translation. Moreover, we define a frequency-consistent loss to minimize the fre-
quency distance between real and synthesized images and adaptively enforce the
model to focus on the frequency parts that are hard to synthesize. Comprehen-
sive experiments on unpaired brain MR and CT images show that our method
can achieve better CT synthesis performance compared with the state-of-the-art
approaches. In the future, we intend to develop 3D-based synthesis models to
take full use of 3D spatial information of medical images.
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Abstract. Solar wind prediction is a critical aspect of space weather
forecasting, and current research has primarily focused on feature extrac-
tion from historical wind speed or individual solar images. To enhance the
quality of data and improve prediction accuracy, we propose a novel app-
roach that leverages multi-modality, combining both temporal and spa-
tial dimensions. Additionally, we utilize prior knowledge to guide model
training, specifically in the image preprocessing and matrix multiplica-
tion stages, where prior knowledge constraints are applied. Our study
introduces the spatio-temporal attention model (STA) for solar wind
prediction, which comprises an image branch and a solar wind speed
data branch. The image branch uses a shared-weight feature extraction
network to extract features from EUV images, while the solar wind speed
data branch models temporal dynamics with sequence networks. Further-
more, we incorporated an attention-based feature extraction module and
a feature fusion module to enhance the model’s performance. Our exper-
imental results demonstrate that the proposed STA model outperforms
existing state-of-the-art models.

Keywords: Solar Wind Forecast · Multimodal Learning · Prior
Knowledge · Space Weather Forecast

1 Introduction

The solar wind is a dynamic and uninterrupted flow of charged particles ema-
nating from the Sun’s corona, the outermost layer of its atmosphere. Com-
prised mostly of electrons, protons, and alpha particles, this plasma exhibits
a broad range of kinetic energies spanning from 0.5 to 10 keV . As the Earth
is constantly exposed to the solar wind, any alterations to its conditions can
result in widespread repercussions. Satellites may lose their ability to func-
tion, communication links can be disrupted, navigation systems may fail, and
power grids can experience blackouts. To alleviate these risks, scientists closely
monitor solar wind conditions utilizing satellites such as Advanced Composition
Explorer(ACE), which can aid in predicting magnetic storms. Typically, solar
wind speeds greater than 500 km/s is the conditions most likely to trigger mag-
netic storms. The interplanetary magnetic field is produced by the Sun and is
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conveyed throughout the solar system by the solar wind. By continuously mon-
itoring the solar wind and anticipating potential space weather events, we can
enhance our readiness and minimize the impact on our technology and infras-
tructure.

High-speed solar wind streams (HSS) are a well-known phenomenon originat-
ing from coronal holes that exert a strong influence on the Earth’s magnetosphere
and affect various technological systems such as satellites. Although HSS-driven
storms are typically weak, they can have long-lasting recovery phases that give
rise to enhanced substorm activity. This poses a significant risk to satellites due
to repeated injections of suprathermal electrons into the inner magnetosphere
and substantial increases in the fluxes (Schrijver et al., 2015) [7]. Nevertheless,
coronal holes are not the only source of high-speed solar wind. Coronal mass
ejections (CMEs), which are large-scale explosions on the Sun that propel vast
amounts of plasma into space, also generate high-speed solar wind. As the occur-
rence rate of CMEs peaks at solar maximum, most periods of high solar wind
speed observed during these periods are usually CME-driven (St. Cyr et al.,
2000) [8]. The range of speeds in interplanetary coronal mass ejections (ICMEs)
and sheath regions linked with CMEs on the Sun spans from 250 to 950 kms−1

(Kilpua et al., 2017) [9]. Thus, it is crucial to consider both coronal holes and
CMEs as potential sources of high-speed solar wind when predicting solar wind
speed.

To date, deep learning techniques have been applied to solar EUV images
to forecast or backcast solar wind speed. Upendran et al. (2020) [10] was the
first to apply deep learning techniques to solar extreme ultraviolet(EUV) images
for solar wind speed forecasting. They used images from both 193 and 211 A
wavelengths to forecast the solar wind speed at a daily resolution. They extracted
features from each image using GoogleNet (Szegedy et al., 2014) [11], which was
pre-trained on the ImageNet data set (Deng et al., 2009) [12]. Then they fed the
features into an LSTM Recurrent Neural Network (Hochreiter & Schmidhuber,
1997) [6] to generate the predicted solar wind speed. Their best model achieved
a correlation of 0.55 and an RMSE of 80.28 kms−1 at a lag of three days and a
history of four days. Raju and Das (2021) [4] have proposed a compact three-
layer convolutional feature extractor, trained on solar EUV images at 193 A
wavelength. Unlike Upendran(2020), their approach involves backcasting, rather
than forecasting, solar wind speed. Specifically, the current solar wind speed is
used to select the past image that is most likely to have caused it, which is then
input into their model to reconstruct the observed solar wind speed. Raju and
Das (2021) present findings for a fixed four-day forecast horizon model, yielding
an RMSE of 78.3 km/s and a correlation of 0.55, using 2018 as a test set.

However, above approach utilized historical solar wind speed or integrated
information from image sequences. In a separate study, Edward Brown and Svo-
boda (2021) [1] utilized an attention-based neural network architecture for pre-
dicting solar wind speed. However, their model was constrained by the use of
single-frame images as input, which precluded the integration of information
from image sequences. This limitation is especially critical as a single-frame
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image may not entirely capture the solar wind speed at a given moment. Notably,
their also did not utilize historical solar wind speed, which is essential for accu-
rate solar wind predictions, as it facilitates the integration of both temporal and
spatial dimensions.

This study presents a novel approach for predicting solar wind speed by
incorporating both spatial and temporal information, along with prior knowl-
edge. Firstly, an attention mechanism that considers both spatial and temporal
information is proposed. Secondly, prior knowledge is incorporated by multi-
plying a latitude-varying matrix with the solar image. Thirdly, an EfficientNet
architecture is employed to extract features from the solar images, using mul-
tiple scales. The attention-based feature extraction module and feature fusion
module are added for improving the model’s accuracy and generalization ability.
Solar images from the SDO/AIA dataset and solar wind speed data from the
OMNI database are used for the experiments. The experimental results demon-
strate that the proposed model outperforms the state-of-the-art models in terms
of prediction accuracy and generalization ability. The effectiveness of incorpo-
rating prior knowledge and utilizing both spatial and temporal information for
solar wind prediction is highlighted by the results.

2 Data Analysis and Processing

This section presents the methodology used to curate and preprocess the data
for our study.

2.1 Solar Images

The image dataset used in this study was obtained from NASA’s Solar Dynam-
ics Observatory (SDO) and was captured by the Atmospheric Imaging Assembly
(AIA). The dataset underwent a series of instrumental corrections to ensure its
accuracy and quality. Additionally, the images were downsampled to enable spa-
tial and temporal resolutions and were synchronized both spatially and tempo-
rally to form the SDOML dataset. The resulting dataset contains monochromatic
images that provide information on the intensity of light. Specifically, this study
utilizes the EUV images at 211 Angstroms, which allows for the detection of
coronal loops and other solar structures are important for understanding solar
activity.

Prior to model training, we preprocessed the input and output data to facili-
tate faster and more effective convergence of the model. Our image preprocessing
approach not only accelerates model training, but also incorporates prior knowl-
edge and introduces additional constraints, resulting in improved model per-
formance. In the image preprocessing stage, we first cropped the solar images
to remove irrelevant information and speed up model training. L. Zhao and R.
T. Wicks(2016) [2] observed a negative correlation between the peak speed of
the solar wind and the co-latitude of the corresponding solar source coronal
hole. Specifically, their analysis showed that as the co-latitude of the coronal
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hole increases, the peak speed of the solar wind decreases accordingly. So we
multiplied the images with a latitude-varying weight mask to incorporate prior
knowledge that coronal holes at different latitudes have different effects on solar
wind. Mathematically, let I be the original solar image and M be the weight
mask, the preprocessed image Ip is computed as follows: Ip = I � M where �
denotes element-wise multiplication (Fig. 1).

2.2 Solar Wind Speed

The solar wind speed data are taken from the OMNIWeb service. Specifically, we
use the solar wind speed, measured in km/s, at a 1 min time resolution for the
OMNI data set. The data comes from WIND and the Advanced Composition
Explorer spacecraft, both positioned at the L1 point, about 1.5 million km from
Earth.

The numerical magnitude and distribution of the initial values of the solar
wind speed from OMNI are not suitable for the output of machine learning.
Therefore, we normalized all solar wind speed values. Labeli = (Si − Min)/N
where Si is the speed value, Min and N are the minimum value for removing
outliers and the value range of all data. Labeli is the label value of our supervised
model.

Fig. 1. In pre-processing, we crop to remove irrelevant information and speed up model
training. Then, we multiply the mask with a weight varying with latitude to incorporate
prior knowledge about the effects of coronal holes at different locations on the solar
wind.

2.3 Training, Validation and Test Sets

In this research, we employed a 5-fold cross-validation technique to evaluate the
models. Because the solar wind speed exhibits auto-correlation up to a period of
approximately 4 days. Specifically, during the period from June 2010 to Decem-
ber 2018, the auto-correlation remains high at 0.70 for one day. As a result,
the proximity of timestamps in the training, validation, and test sets can signif-
icantly impact the model’s performance evaluation, as It doesn’t reflect a fair
representation of the Sun’s changes in a short period of time.
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2.4 Assessment Criteria

When making model predictions, it is important to establish performance metrics
that can quantitatively evaluate the model’s accuracy. To accomplish this, we use
several metrics, including the root mean square error, and the Pearson correlation
coefficient between predicted and observed values.

RMSE =

√∑N
k=1 (ok − pk)2

N
(1)

CC =
∑N

k=1

(
pk − p

) (
ok − o

)
√∑N

k=1 (pk − p)2
√∑N

k=1 (ok − o)2
(2)

where ok is the observed speed value, pk is the predicted speed value, o and p are
the mean value, and N is the batch size of data. RMSE uses the average error and
is sensitive to both large and small errors within the set of measurements, making
it a good indicator of the predicted value’s accuracy. The Pearson correlation
coefficient CC is used to measure the linear correlation between predicted and
observed values. By using these metrics, we can better evaluate the accuracy of
the model and eliminate the influence of sample size N and dimension.

3 The Proposed Model of STA

This section presents our model. The model is based on a two-branch structure,
namely the image branch and the historical speed branch. The image branch
uses the EfficientNet deep learning architecture to extract features from images
of the Sun. The branch takes in the solar images as input, denoted as I, which
are first resized to the same dimension and then passed through EfficientNet
to obtain the output feature vector, denoted as B ∈ Rd. The historical speed
branch provides context for the model by incorporating information about the
past speed of the solar wind. The Branch takes in the solar wind time series
as input, denoted as X = {x1, x2, ..., xT }, where T is the sequence length. It
first passes X through A-RNN to obtain the output feature vector, denoted as
A ∈ Rd, where d is the dimensionality of A. The two branches are combined
through a feature concatenation process denoted as F = [A;B] ∈ R2d. This F is
then input into a Transformer module which consists of N identical layers. Each
layer consists of a multi-head self-attention mechanism and a position-wise feed-
forward network. The input to each layer is F , denoted as F0, and the output is
FN ∈ R2d. Then A, B, FN are concatenated through the self-attention module,
which is passed through a fully-connected layer to obtain the predicted solar
wind speed, denoted as ŷ ∈ R. The loss function used Huber loss.

Incorporating both time and spatial information into the design of the solar
wind prediction model offers several advantages. Firstly, by utilizing image pro-
cessing techniques, the model can take into account the visual characteristics of
the Sun that are directly related to the speed of the solar wind. This can lead to



Spatio-Temporal Attention Model 349

more accurate predictions by capturing complex relationships between the Sun’s
appearance and the behavior of the solar wind. Secondly, incorporating histor-
ical speed information enables the model to account for the dynamic nature of
the solar wind and understand how it evolves over time. Finally, using a Trans-
former module allows the model to handle both time and spatial information
effectively, making more informed predictions. In conclusion, incorporating both
time and spatial information into the design of the solar wind prediction model
offers a comprehensive understanding of the solar wind, leading to more precise
predictions (Fig. 2).

Fig. 2. Framework of the model. An image branch that uses a shared-weight Efficient-
Net network to extract features from solar images, and a solar wind branch that uses
an attention-based RNN to process historical solar wind data. The outputs of the two
branches are then merged and fed into a fully connected layer for final prediction.

3.1 Attention-Based RNN

An attention-based RNN is a type of recurrent neural network that uses an
attention mechanism to selectively focus on specific parts of the input sequence
when making predictions. In our model, we used an attention-based RNN to
process the solar wind data, with the goal of capturing the temporal dependencies
and identifying important features in the time series data. Specifically, we used
a self-attention mechanism to compute the importance of each time step in the
input sequence and selectively attend to those time steps that are most relevant
for making predictions. This approach allows our model to effectively capture
the complex dynamics of the solar wind and make accurate predictions of the
solar wind speed.
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3.2 EfficientNet

We employ EfficientNet (Tan, 2019) [5] as our feature extraction backbone. Effi-
cientNet is a convolutional neural network that comprises multiple layers of
convolutional, activation, and pooling operations. The model aims to achieve
a balance between network depth, width, and resolution, leading to improved
accuracy and efficiency. EfficientNet employs the “compound scaling” technique
to adjust these factors by scaling the network’s parameters based on predefined
ratios. This enables the network to handle high-resolution images while main-
taining computational efficiency. Specifically, we utilize the shared weights of
EfficientNet to extract features from the image branch of our model. These fea-
tures are then combined with solar wind data to make predictions. By doing so,
we capitalize on the powerful feature extraction capabilities of EfficientNet while
minimizing the computational cost of our model.

3.3 Transformer

Transformer (Vaswani, 2017) [3] is a popular neural network architecture for
sequence modeling and natural language processing tasks. It relies on self-
attention mechanism to weigh the importance of different parts of the input
sequence when generating outputs. In our task, we use Transformer as the main
model, and we adopt its self-attention mechanism to compute the attention
scores between the solar wind data and the extract image features, enabling
the model to selectively focus on relevant spatio-temporal features when mak-
ing predictions. This helps to improve the accuracy of our solar wind prediction
model.

Multi-head Attention. In the Transformer architecture, Multi-Head atten-
tion is a key component that allows the model to selectively attend to different
parts of the input sequence in a self-attention mechanism. Specifically, Multi-
Head attention computes the dot-product of the queries and keys from different
“heads” to obtain the attention weights, which are then used to compute the
weighted sum of the values. This process is performed in parallel across multi-
ple heads, and the outputs are concatenated and projected to obtain the final
attention output. In Fig. 3, we give the structure of multi-head attention.

In our model, Multi-Head attention is applied to the features extracted from
the low-dimensional features, allowing the model to capture complex temporal
dependencies in the solar wind data. By selectively attending to different parts of
the input sequence, the Multi-Head attention mechanism helps the model better
distinguish relevant information from noise, leading to more accurate predictions.

Q, K, V transformation formula in Multi-Head Attention:

Query(Q) :Q = WQX;Key(K) :K = WKX;V alue(V ) :V = WV X (3)

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (4)
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Among them, the WQ, WK , WV is weighting matrix, X as input characteristic
matrix. Attention(Q, K, V) is the attention output of a head.

Fig. 3. Multi-head attention is implemented by projecting the input into multiple
subspaces and performing separate scaled dot-product attention computations on each
of them before concatenating and projecting the results.

3.4 Feature Fusion

We fuse the features from two branches, one for solar wind time series data and
the other for solar images, to capture both temporal and spatial information.
Specifically, the low-dimensional features A and B extracted from the A-RNN
and EfficientNet, respectively, are concatenated to form a mid-level feature rep-
resentation, which is then fused with the high-dimensional feature C extracted
from the Transformer. The fusion mode is that we first concatenate the fea-
tures ABC into matrix D, and then through the self-attention algorithm, output
matrix E, the shape of matrix E. Features of different dimensions are given dif-
ferent weights. This fusion not only gives different features different weights but
the combination of features from multiple levels enables the model to effectively
capture both shallow and deep information. This fusion method improves the
performance of the model in solar wind prediction by integrating complementary
information from different sources.

3.5 Loss Function

Solar wind speed exhibits large fluctuations over time, and conventional loss
functions such as MSE can be sensitive to large errors, resulting in models that
are overly responsive to these fluctuations. Compared to MSE, Huber Loss has a
lower sensitivity to outliers, using MSE for samples with small errors and MAE
for samples with large errors. This loss function can be adjusted by controlling
the hyperparameter δ to balance MSE and MAE. Specifically, when the absolute
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error is less than or equal to δ, MSE is used, and when the absolute error is
greater than δ, MAE is used. The mathematical form of Huber Loss is given as:

Lδ(y, ŷ) =
{

1
2 (y − ŷ)2, if |y − ŷ| ≤ δ
δ|y − ŷ| − 1

2δ2, if |y − ŷ| > δ
(5)

Among them, δ is a hyperparameter, indicating that when | y − ŷ | ≤ δ, use the
mean square error as the loss function, otherwise use the linear function of the
absolute error. y is the true value and ŷ is the predicted value.

4 Experiments and Results

In this section, conducted experiments to compare the proposed model with the
models developed by Raju and Das (2021) and Edward Brown & Filip Svoboda
(2021) for solar wind prediction. The proposed model outperformed both of the
existing models, achieving a 4.61% improvement in the RMSE metric. These
results suggest that the proposed model can effectively predict solar wind values
and may have practical applications in the field of space weather forecasting.

4.1 Benchmark Models

The proposed model was evaluated with a series of carefully selected and tuned
parameters to ensure optimal performance. These parameters included a learn-
ing rate of 1e-5, a batch size of 32, a number of training epochs set to 100, a
weight decay of 0.9, and the use of Adam as the optimizer. Through a series of
experiments, these parameters were carefully tuned to achieve the best possible
results. Our experimental results confirm the effectiveness of these settings.

Table 1. Performance of Our Solar Models Relative to (Raju and Das, 2021; Edward
Brown 2021;) Predicting Solar Wind Speed Using Extreme Ultraviolet Data at a 4 Day
Forecast Horizon in for the Year 2018.

Model RMSE %Improvement Correlation %Improvement

Persistence 118.76 −65.75% −0.027 −104.2%

Raju and Das 78 −8.86% 0.55 −14.6%

Edward Brown 71.65 – 0.644 –

STA(Our) 68.35 4.61% 0.677 5.12%

We compare STA with Raju and Das (2021) and Edward Brown (2021). As
shown in Table 1, we summarize the experimental results of our model and other
benchmark models based on the performance indices: RMSE and CC. We can see
that our model achieves the best performance, with the lowest RMSE and the
highest CC. It can also be seen from Fig. 4 that our model achieves the best fitting
of the observed values and better captures the upward and downward trend of
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the solar wind speed. The reason is that the STA learn the feature dimension
and the time dimension automatically. And the addition of prior knowledge also
plays a key role, which we’ll talk about in the ablation experiment.

As illustrated in Fig. 5, our model effectively avoids overfitting on the training
set, thereby demonstrating its aptitude in capturing the fluctuating trends of
the solar wind speed and acquiring insightful information for predicting the
same from solar observation images. This phenomenon can be attributed to the
capacity of the STA to autonomously acquire various spatio-temporal feature
dimensions.

Fig. 4. Fitting curve of the predicted value of the STA model and the observed value
of the verification set. The blue line is the observed value, and the red line is the
predicted value of the STA model 96 h in advance. It is a good predictor of the upward
and downward trends of observations, respectively. (Color figure online)

Fig. 5. STA model effectively avoids overfitting on the training set, thereby demon-
strating its aptitude in capturing the fluctuating trends of the solar wind speed and
acquiring insightful information for predicting the same from solar observation images.
Space is limited, we only show 2011 and 2017.

4.2 Ablation Experiments

To investigate the importance of various components of the proposed model,
ablative experiments were conducted. In this section, we present the results of
removing each component from the model and report the corresponding changes
in the model’s performance. The experimental results are shown in Table 2.
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Table 2. Ablation Experiments.

Model Removing Module RMSE %Improvement Correlation %Improvement

Model-1 Dot-Mask 70.42 −3.02% 0.622 −3.27%

Model-2 A-RNN 72.93 −6.70% 0.614 −9.31%

Model-3 EfficientNet 69.17 −1.20% 0.625 −7.68%

Model-4 Transformer 72.68 −6.34% 0.539 −20.4%

Model-5 Attention Fusion 70.64 −3.35% 0.643 −5.02%

STA(Our) – 68.35 – 0.677 –

This study analyzes the effectiveness of various components in our proposed
solar wind prediction model. Experiment Model-1 compares model performance
with and without prior knowledge mask, showing a decrease of 3.02% and 3.27%
in RMSE and CC, respectively, indicating the benefit of using prior constraints.
Model-2 assesses the contribution of A-RNN in capturing temporal dependencies,
showing a significant decrease in performance when this component is removed.
Model-3 investigates the role of the EfficientNet network in capturing spatial
features, showing a noticeable but less critical impact. Model-4 explores the
impact of transformer network and position encoding, emphasizing the impor-
tance of the transformer network in capturing complex relationships and position
encoding in enabling the transformer network to capture sequential information.
Finally, Model-5 examines the impact of removing attention-based feature fusion,
observing significant declines in key indicators, emphasizing the importance of
this fusion in extracting features of varying importance in both time and space,
as well as their interdependence.

5 Discussion and Conclusion

In conclusion, this study introduces a novel model for solar wind speed forecast-
ing that surpasses existing models. By employing an attention-based recurrent
neural network on solar wind time-series data and a shared-weight EfficientNet
on solar images, the model effectively captures the temporal and spatial charac-
teristics, thereby enhancing the prediction task. The integration of information
from both branches through a transformer further improves the combination
of shallow and deep information, enabling the model to capture interdependen-
cies among input features. However, the incorporation of prior knowledge in the
model is relatively simplistic. To enhance accuracy and reliability in predicting
solar wind speed, future work should focus on incorporating more comprehensive
prior knowledge and leveraging deep learning techniques. This would enable a
more sophisticated integration of prior knowledge into the forecasting process,
holding great potential for further advancements in this field.
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Abstract. Climate disasters such as floods and droughts often cause significant
losses to human life, national economy, and public safety. The El Niño South-
ern Oscillation (ENSO) is one of the most important interannual climate signals
in tropical regions, and has a global impact on atmospheric circulation and pre-
cipitation. Accurate ENSO predictions can help prevent related climate disas-
ters. Recently, convolutional neural networks (CNNs) have shown the best tech-
niques for ENSO prediction. However, it is difficult for convolutional kernels to
capture the long-distance features of ENSO due to the locality of convolution
itself. We regard ENSO prediction as a spatiotemporal series prediction problem,
and propose an ENSO non-stationary spatiotemporal prediction deep learning
model based on a new attention mechanism and a recurrent neural network, called
ENSOMIM. The model expands the Receptive field of the network to achieve the
learning space characteristics of local and global interaction, and uses high-order
nonlinear spatiotemporal neural networks to encode long-term time series fea-
tures. In order to adequate training the model, we also add historical simulation
data to the training set and conduct transfer learning. The experimental results
indicate that ENSOMIM is more suitable for large-scale and long-term predic-
tion. During the testing period from 2015 to 2023, ENSOMIM’s Niño3.4 index’s
all-season correlation skill improved by 11% compared to classical CNNs, and
the root mean square error decreased by 29%. It can provide effective predictions
for a lead time of up to 20 months. Therefore, ENSOMIM can serve as a powerful
tool for predicting ENSO events.
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1 Introduction

Climate change is currently a difficult problem facing the world, affecting people’s lives
to a large extent. Themost significant ElNiñoSouthernOscillation (ENSO) phenomenon
is the most important interannual signal of short-term climate change on the earth [1],
which has a great impact on global climate, environment and socioeconomic.

ENSO is the wind field and sea surface temperature oscillation in the equatorial east-
ern Pacific region. In 1969, Bjerknes [2] proposed that El Niño and Southern Oscillation
are two different manifestations of the same physical phenomenon in nature, which are
reflected in the sea as El Niño phenomenon and in the atmosphere as Southern Oscilla-
tion phenomenon. El Niño refers to the phenomenon that the equatorial eastern Pacific
Ocean warms abnormally every two to seven years (every four years on average). The
opposite cold phenomenon is called La Niña phenomenon [3]. Due to ENSO being a
global ocean atmosphere interaction, it has significant impacts on global weather, cli-
mate, and ultimately agriculture. In 1997–1998, fires caused by the abnormal drought
caused by ENSO destroyed large areas of tropical rainforest worldwide [4]. In ENSO,
almost half of the basins across the earth’s surface had abnormal flood risk [5]. In order
to cope with the threat of such climate disasters, making effective ENSO prediction in
advance is essential to reduce disaster losses around the world.

Since the 1980s, scientists from all countries have been committed to the prediction
research of ENSO [6]. Because the relevant time scale of sea surface temperature vari-
ability in most of the tropical Pacific is about 1 year, and the ENSO event dominates the
sea surface temperature variability [7], the occurrence of ENSO phenomenon is reflected
by sea surface temperature anomaly (SSTA), so predicting ENSO phenomenon is equiv-
alent to predicting SSTA. In addition, among all indexes, Niño3.4 index is the most
commonly used to measure ENSO phenomenon, and Niño3.4 index is the average sea
temperature in the range of 5°N ~ 5°S 170°W ~ 120°W. The traditional ENSO predic-
tion models are mainly divided into statistical models and dynamic models. Statistical
models analyze and predict ENSO through a series of statistical methods, such as linear
transposition model (LIM) [8], nonlinear canonical correlation analysis (NLCCA) [9],
Markov model (MKV) [10], etc., but they do not make full use of physical laws. The
dynamic model is mainly based on the dynamic theory of the interaction between the
atmosphere and the ocean, such as the simple coupling model [11], the intermediate cou-
pling model (ICM) [12], the mixed coupling model (HCM) [13] and the fully coupled
circulation model (GCMs) [14]. The prediction has reached the reliable prediction of 6
to 12months, which is successful in the short-term prediction, but does not make full use
of the existing large amount of actual historical data. For the long-term prediction, the
simple dynamic method is difficult to work. Practices have shown that both dynamic and
statistical methods have certain accuracy, and both can reflect some laws of atmospheric
motion [15–17]. However, due to the variability and diversity of ENSO space-time evo-
lution, most of the traditional methods are difficult to generate sophisticated predictions
with a longer lead time than 12 months [18]. Especially in the 21st century, the impact
of the extratropical atmosphere on the tropical region is intensified, making ENSOmore
complex and difficult to predict.

With the advent of the era of big data, Artificial Intelligence (AI) has made break-
throughs in various fields. Recently, the deep learning model based on neural network
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has made some promising achievements in ENSO prediction, namely, artificial neural
network [19], recurrent neural network [20], short-term and short-term memory neural
network [21–23], convolutional long-short-term memory [24], CNNs [25] and graph
neural network [26]. Among them, the depth CNN shows a reliable prediction of up to
16months, which is superior tomost classical models [27]. The remarkable performance
mainly comes from the convolution kernel, which can learn local signals from ENSO
precursors. However, according to some recent findings in the field of computer vision,
convolution kernels are inherently inefficient in learning the long-term correlation of
ENSO predictors. For example, based on the local convolution kernel, in order to calcu-
late the relationship between the SSTA of the North Pacific and the South Atlantic, it is
necessary to accumulate deep layers of small nuclei.

We use simulation data and reanalysis data to alleviate the problem of insufficient
training sets, and introduces a spatiotemporal series prediction method to predict ENSO.
The main contributions are as follows.

(1) We express ENSO prediction as a spatiotemporal prediction problem rather than a
time series regression task. Using the spatiotemporal series (meteorological factors)
of the past three months of T time, a deep learning model for predicting ENSO is
constructed to predict the Niño3.4 index in the next 20 months. For meteorological
data, we regard the distribution field of a certain element at a certain time as an image
and take it as the input of the model.

(2) We propose a new channel spatial attention module BGAM, which combines
MBConv, channel attention and spatial attention. Spatial attention includes local
and global attention, which can better conduct spatial interaction.

(3) We design an ENSO unsteady spatiotemporal prediction model based on attention
mechanism and recurrent neural network, ENSOMIM, and use this model to predict
the monthly mean sea surface temperature anomaly distribution and the correspond-
ing Niño3.4 index in the equatorial Pacific in the next two years. ENSOMIM is an
improved encoder-decoder structure of MIM-Block. The encoder extracts spatial
features through convolution layer and attention mechanism, ST-LSTM and stacked
memory module capture temporal features and non-stationary state. The decoder
predicts through three-layer memory module and convolution layer.

(4) The experimental results show that from 2015 to 2023, ENSOMIM outperforms
existing models based on CNNs and recurrent neural networks (RNNs) in terms of
long-term prediction over 20 months.

2 Related Work

2.1 Spatiotemporal Sequence Forecasting

The problem of spatiotemporal series prediction includes two factors: time and space.
Here, time refers to the sequence before and after. Space refers to both the target in
the picture and the spatial information of the target’s movement and change, as well
as the GPS data in the tabular data or the spatial information of longitude and latitude.
The data predicted by ENSO is the spatial information of the longitude and latitude
of the latter. The problem of spatiotemporal series prediction has been widely used
in the fields of precipitation nowcasting, typhoon prediction, traffic flow prediction,
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video prediction, etc., and has innovatively developed many variant structures, which
has become a research hotspot in depth learning. In 1997, Srivastava et al. [28] proposed
the Long Short-TermMemory (LSTM)model, which improves the performance of RNN
model by injecting forgetting gate to learn selective memory of important information
and forgetting secondary information. In order to better apply the LSTMmodel to image
sequences, Dr. Shi Xingjian [29] proposed a new network of Convolutional LSTM
(ConvLSTM) that combines convolution structure with LSTM in 2015. This model can
learn both spatial and temporal features. In 2016, Dr. Shi Xingjian continued to propose
trajectory GRU to overcome the local in-variance of convolution structure. In 2017,
Yunbo Wang et al. [30] improved the internal structure of ConvLSTM and proposed
a “gzag” network PredRNN to effectively utilize horizontal and vertical information.
In 2018, they further improved this model and proposed PredRNN++ [31]. There is an
adaptive connection between each time step and each layer serving both long-term and
short-term routes, and proposed the Gradient Highway Unit to prevent the gradient from
disappearing for a long time. In 2019, Yunbo Wang et al. [32] continued to propose
a Memory in Memory (MIM) network, which utilizes the differential signals between
adjacent repeating states to potentially handle high-order non-stationary behavior by
stacking multiple MIM blocks.

2.2 Deep Learning for ENSO Forecasting

With the rapid development of AI, prediction methods based on deep learning are widely
used in various fields. Some scholars began to try to improve ENSO prediction skills
by using deep learning. In 2019, Ham et al. [27] first proposed to use CNN for ENSO
prediction.The research results show thatwhen theprediction time ismore than6months,
the prediction ability of CNN method to Niño 3.4 index is significantly higher than the
current international best dynamic prediction system. When testing the real data from
1984 to 2017, CNN can predict the El Niño event 18 months in advance. At that time,
this research achievement was regarded as the pioneering work of in-depth learning in
the field ofmeteorological prediction. In the same year, HeDandan et al. [33] established
the deep learning ENSO prediction model (DLENSO) by using ConvLSTM to predict
ENSO by directly predicting the sea surface temperature (SST) in the tropical Pacific
region. DLENSO is superior to LSTM model and deterministic prediction model, and
is almost equal to integrated average prediction model in medium-long term prediction.
In 2021, Hu et al. [34] used dropout and transfer learning to overcome the problem of
insufficient data during model training, and proposed a model based on deep residual
convolution neural network. The model effectively predicted the Niño 3.4 index with a
lead time of 20 months during the evaluation period of 1984–2017. In the same year,
Mu et al. [35] proposed a deep learning prediction model EN-SO-ASC based on a
coupled model, which includes an encoder and decoder for capturing and restoring
multi-scale spatiotemporal correlations, as well as two attention weights. During the
validation period from 2014 to 2020, ENSO-ASC’s Niño3.4 index had a higher seasonal
correlation skill than existing dynamic models and re-current neural networks, and its
prediction performance for a lead time of up to 20 months far exceeded [27]. In 2022,
Feng et al. [36] applied Transformer to ENSO prediction, which can predict the monthly
average Niño3.4 index for up to a year and a half, and can also predict strong El Niño
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phenomena more than a year in advance. In addition, with the increasing recognition
of deep learning in various fields, more and more scholars have applied deep learning
model prediction methods to ENSO prediction [25, 37, 38].

3 Method

We use pattern simulation data for pre-training of the model, then finetune the model
through reanalysis of the data, and introduce an improved spatiotemporal prediction
model ENSOMIM to predict SSTA in theNiño3.4 region. From the perspective of feature
pre-extraction, we select the leading andmost stablemodel for improvement and propose
ENSOMIM. ENSOMIM is an Encoder-Decoder structure that integrates convolutional
modules, attention modules, ST-LSTM, and uses MIM as a recurrent unit to improve the
accuracy of model prediction, alleviate the problem of neglecting spatial information,
forgetting toomuch long-term information, and the high order non-stationary features of
ENSO data in spatiotemporal sequence prediction, resulting in limited prediction time
and low accuracy.

3.1 Modeling ENSO Prediction Problems

The Pacific region where ENSO occurs is divided into a uniform grid by longitude and
latitude, with each grid point havingmultiple meteorological element values at each time
step, such as SST, sea surface wind speed, seawater velocity, etc. These elements are
horizontally distributed in two-dimensional (2D). Therefore, after adding time dimen-
sion, for some time, SST data is three-dimensional (3D), which are time, longitude, and
latitude, respectively. We use meteorological factors from the past 3 months (including
time T), including global sea surface temperature and upper 300m ocean heat content,
to construct a deep learning model for predicting ENSO and predict the Niño 3.4 index
for the next 20 months.

The basic data predicted by ENSO is the monthly seawater surface temperature. We
treat it as the four-dimensional grid data of the moving average seawater surface temper-
ature anomaly every three months. For meteorological data, we regard the distribution
field of a certain element at a certain time as a frame image, and take it as the input
of the model, and expressed by tensor X ∈ RP×M×N , where M × N represents the
spatial area, P represents the number of meteorological factors, and then the prediction
of sea surface temperature anomalies is expressed as an unsupervised spatiotemporal
prediction problem. The observation of T time steps with time changes forms a group of
dynamic sequences, which are represented by a total of T frame data of matrix sequence
X1,X2 · ··,XT . Given the previous S frame data, the most likely N frame data in the
future can be predicted, which can be modeled as shown in formula (1). The sequence
prediction process is shown in Fig. 1.

X
∧

T+1, · · ·,X
∧

T+N = argmax
Xt+1,···,Xt+N

p(XT+1, · · ·,XT+N |XT−S+1, · · ·,XT ) (1)
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Fig. 1. The diagram of Series Forecast

3.2 BGAM

Considering that the ENSO prediction factors, namely the sea surface temperature and
the ocean heat content, are greatly affected by the ocean internal dynamics and external
environmental factors, the temperature change of a certain grid point in the same sea
area can not only consider the influence of the surrounding grid points, but also need
to consider the influence of the remote grid points, so we propose a new local global
attention module BGAM combining MBConv, channel attention (CAM) and spatial
attention (SAM), Among them, spatial attention includes local and global attention for
better spatial interaction. The structure of attention module is shown in Fig. 2.

Fig. 2. Structure of BGAM.

MBConv and attentionmechanismcanbe used together to improve the generalization
ability and trainability of the network, and can also be replaced by other convolutions;
CAM and SAM sub-modules are used for channel and spatial attention respectively,
which not only save parameters and computing power, but also ensure that they can
be integrated into the existing network architecture as plug-and-play modules. Input
the characteristic F ∈ RC∗H∗W , and then the channel attention module one-dimensional
convolutionMc ∈ RC∗1∗1, multiply the convolution result by the original image, take the
CAM output result as input, and perform two-dimensional convolution M of the spatial
attention module Ms ∈ R1∗H∗W , and then multiply the output result with the original
figure. The formula is as follows:

F ′ = Mc(F) ∗ F (2)

F ′′ = MS(F
′) ∗ F ′ (3)
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In CAM, the channel dimension remains unchanged and the space dimension is
compressed. This module focuses on what information is useful in the input feature map.
The input feature map first passes through two parallel MaxPool layers and AvgPool
layers, changing the dimension of the feature map from C * H * W to C * 1 * 1, then
through the MLP module, compressing the number of channels to 1/r (reduction rate)
times the original number of channels, and then expanding to the original number of
channels. After the ReLU activation function, the two activated results are obtained. Add
the two output results element-by-element, and then use a sigmoid activation function
to get the CAM output result. Finally, multiply the output result by the original image
and change it back to the size of C * H * W, as shown in the following formula:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) = σ
(
W1

(
W0

(
Fc
max

)))
(4)

In SAM, the spatial dimension remains unchanged and the channel dimension is
compressed. This module focuses on where the useful information is. First, change the
output dimension ofCAM intoH*W*C, and divide the feature into shape tensor (H/P×
W/P, P× P. C), indicating that the window is divided into non-overlapping windows, and
the size of each window is P× P. Applying self-attention in the local spatial dimension is
equivalent to paying attention in each small window after division. We use this block of
attention for local interaction. Next, we use the fixed G × GUniform mesh to transform
tensor mesh into shape (G × G, H/G × W/G, C), instead of using a fixed window size
to split the feature map, to generate an adaptive size H/G × W/G window. Using self-
attention on the decomposed mesh axis is equivalent to using attention in global space.
The formula is as follows.

MS(F) = σ([Block_SA(F);Global_SA(F)]) (5)

3.3 ENSOMIM

Aiming at the problem that the improved LSTM-based deep learning method cannot
capture the spatiotemporal non-stationary characteristics of ENSO, we improved on the
mature Memory in Memory (MIM) network, and designed two cascaded time memory
multiplexing modules in MIM to replace the time forgetting gate. The first module
(MIM-N) starts with H 1

t−1 is the input, which is used to capture non-stationary changes
based on the difference between two consecutive hidden representations (H 1

t − H 1
t−1).

The differential characteristic D of the other loopmodule (MIM-S) output by theMIM-N
module Dl

t and external time memory cell Cl
t−1 is used as the input to capture the nearly

stable changes in the space-time series. This method, which combines stationary and
non-stationary changes, can more effectively deal with complex dynamics in space-time
series. The key calculation formulas in the MIM block are as follows. The structure of
the two modules is shown in Fig. 3.

gt = tanh(Wxg ∗ Hl−1
t + Whg ∗ Hl

t−1 + bg) (6)

it = σ(Wxi ∗ Hl−1
t + Whi ∗ Hl

t−1 + bi) (7)
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Dl
t = MIM − N(Hl−1

t ,Hl−1
t−1 ,Nl

t−1) (8)

T l
t = MIM − S(Dl

t ,C
l
t−1, S

l
t−1) (9)

Cl
t = T l

t + it � gt (10)

g′
t = tanh(W ′

xg ∗ Hl−1
t + Wmg ∗ M l−1

t + b′
g) (11)

i′t = σ(W ′
xi ∗ Hl−1

t + Wmg ∗ M l−1
t + b′

g) (12)

f ′
t = σ(W ′

xf ∗ Hl−1
t + Wmf ∗ M l−1

t + b′
f ) (13)

M l
t = f ′

t � M l−1
t + i′t � g′

t (14)

ot = σ(Wxo ∗ Hl−1
t + Who ∗ Hl

t−1 + Wco ∗ Cl
t + Wmo ∗ M l

t + bo) (15)

Hl
t = ot � tanh(W1x1 ∗ [Cl

t ,M
l
t ]) (16)

Fig. 3. Structure of MIM cell.

We build an encoder-decoder structure. In the encoder, we first use two layers of 3
× 3. The convolution extracts the underlying features, changes the number of channels,
and makes the input data dimension adapt to the input of the attention module. Then,
the attention module extracts the local and global features in space, and then uses the
stacked three-layerMIMblocks to extract the temporal features and unsteady state. In the
decoder, the three-layer MIM is simply used as a predictor, and the prediction results are
input into the convolution layer, and the number of channels is combined into 1. At the
end of themodel, the output of the decoder is input into a convolution network composed
of single-layer transposed convolution, and the predicted spatiotemporal sequence of the
next 20 months will use longitude and latitude as the width and height of the image to
form the size of the original image. Finally, through a full connection layer, the output
sequence and label data set are arranged in the same way (channel number * 24 * 72,
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1), which is convenient for later measurement of model performance. The overall model
structure is shown in Fig. 4. The black arrow represents the transition path of state M,
the red arrow represents the diagonal transition path of hidden state H, and the blue
arrow represents the horizontal transition path of storage cells C, N, and S. Subscript
represents time, superscript represents layer.

Fig. 4. Structure of ENSOMIM.

4 Experiments

4.1 Datasets

Our model uses predictive factors including global SST (0° − 360°E, 55°S-60°N) and
upper 300 m ocean heat content, with a spatial resolution of 5° × 5°, using sea surface
temperature for three consecutive months to predict the Niño 3.4 index, which is one of
the indicators used to describe ENSO events. For the training process of neural networks,
we divide the dataset into pre-training data and fine-training data. Due to the limited
number of observation data samples, we are unable to meet the demand for sufficiently
large data. We use coupled models from 1861 to 2013 to compare the simulation data
of 15 climate models in the Coupled Model Intercomparison Project Phase 6 (CMIP6),
and preliminarily trained the neural network model. However, the CMIP6 model has
bias, which can affect the prediction accuracy of the constructed model. Therefore, we
use the transfer learning method to further calibrate the pre-training model by using
the simple ocean data assimilation (SODA) reanalysis data [39] in the transfer training
from 1870 to 1973, which to some extent simulated the development of ENSO [40].
In addition, for cross validation analysis, we use the Global Ocean Data Assimilation
System (GODAS) reanalysis data from 1984 to 2014 [41] as the validation set to evaluate
prediction techniques. In order to eliminate the possible impact of ocean memory during
the training period on the validation period ENSO, we leave a ten-year gap between
the last year of the training set and the earliest year of the validation set. The dataset
partitioning is shown in Table 1.
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We preprocess the datasets. First, we aggregate the training data set to form a large
data array. Then we unify the time range, calculate the moving average of three months,
and then interpolate it into the required network. Finally, we calculate the SSTA and save
the data set for training. We visualized the results of global seawater surface temperature
interpolation from1870 to 2023, as shown inFig. 5. In addition, due to the large time scale
of ENSO data, and the monthly scale data represented by each sample, the temperature
difference will also be large, so it is difficult to accurately predict ENSO. We have
visualized the SSTA from 1870 to 2023, as shown in Fig. 6.

Table 1. Datasets used to train and validate the ENSOMIM model.

Data Period

Training dataset CMIP6 historical run 1861–2013

Reanalysis(SODA) 1870–1973

Validation dataset Reanalysis(GODAS) 1984–2014

Test dataset Reanalysis(GODAS) 2015–2023

Fig. 5. Visualization of global SSTA after interpolation.

4.2 Experimental Designs

4.2.1 Experimental Details

We set up five sets of experiments to verify the performance of our model. The first
group of experiments is to explore the effectiveness of the embedded position of attention
module. The second group of experiments is to explore the effectiveness of MIM layers
and structures. The third group of experiments evaluated the performance of the proposed
attention mechanism. The fourth group of experiments is to verify the prediction ability
of ENSOMIM model in the long term through evaluation indicators. The fifth group of
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Fig. 6. Distribution of SSTA in Niño 3.4.

experiments is a comparison experiment between our proposedmodel and other dynamic
models and deep learning models.

All our experiments are implemented on Pytorch, using the Adamw optimizer to
train multiple models with a learning rate of 0.0003 and a batch size of 4. In addition, in
order to further improve performance. We use the mean square error (MSE), root mean
square error (RMSE), and mean absolute error (MAE) to evaluate the model’s ability to
predict changes in SSTA, and use the Pearson correlation coefficient PCC (the current
month and the next twomonths) of the three-monthmoving average of the Niño3.4 index
to evaluate the model’s ability to predict ENSO. LowMAE and RMSE, high correlation
skill PCC represent good predictive ability. The indicators are defined as follows:

MAE = 1

m

∑m

i=1
|(yi − yi

∧

)| (17)

MSE = 1

m

∑m

i=1
(yi − yi

∧

)2 (18)

RMSE =
√

1

m

∑m

i=1
(yi − yi

∧

)2 (19)
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∧
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√
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√

∑n
i=1 (yi − y

∧

)
2

(20)

4.2.2 Optimization of Related Algorithms

When training the deep learning neural network, we usually hope to get the best gener-
alization performance, that is, to fit the data well. However, all standard deep learning
neural network structures are easy to over-fit, that is, when the network performs better
and better in the training set and the error rate is lower and lower, in fact, at some point,
its performance in the test set has begun to deteriorate. In order to make the model
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have better generalization ability and avoid over-fitting to achieve good equilibrium, we
introduce the concept of early stop method. Early stop method is a widely used method,
which is better than regularization method in many cases. The main steps are as follows:
divide the original training data set into training set and verification set, and train only on
the training set. Calculate the error of the model on the verification set for each period.
Set a patient (patient ≤ epoch) in advance, which represents the maximum period that
can tolerate generalization error. When the error of the model on the verification set is
worse than the last training result, save the model parameters in the last iteration result,
At the same time, the counter is increased by 1. When the counter and the patient are
equal, the training is stopped. Assumption Eopt(t) is the best validation set error obtained
at the iteration number t, then Eopt(t) = mint′≤tEva(t′), the growth rate of generalization
error is shown in formula (21). See Fig. 7 for the effect of early stop.

GL(t) = 100 ∗ (
Eva(t)

Eopt(t)
− 1) (21)

Fig. 7. Early Stopping Rendering.

In the subsequent network training process, the learning rate automatic attenuation
strategy is adopted to accelerate the training speed. A large learning rate will achieve
very fast convergence, so a larger valuewill be adopted at the initial stage, while avoiding
falling into a local minimum; When the training reaches a certain level, the excessive
learning rate may jump back and forth around the global minimum, resulting in the
gradient swinging around the convergence. Therefore, a smaller learning rate can reduce
the convergence pace and avoid the result swing. The learning rate decay strategy can be
expressed as formula (22).When the number of training rounds reaches the set value, the
learning rate will decrease a little. Wherein, decay_rate is the initial coefficient, epochi
means the ith training, α0 is the initial learning rate.

αi = 1

1 + decay_rate ∗ epochi
∗ α0 (22)



368 W. Fang et al.

4.3 Results

We first conduct experiments on the location of attention, aiming to find out where
the attention module can be embedded in the encoder to better extract features. The
experimental results are shown in Table 2. We conduct experiments on the classic MIM
network, using ST-LSTM and three-layer MIM, respectively placing BGAM at the front
and back ends of the MIM network. The experiments show that the location of the front
and back has little impact on the experimental results, the error of extracting spatial
features through attention is slightly small at the beginning.

Table 2. Error of different positions of BGAM.

Positions MSE ↓ MAE ↓ RMSE ↓
Att-MIM 0.1413 0.2660 0.3759

MIM-Att 0.1444 0.2718 0.3800

Att-MIM-Att 0.1617 0.2945 0.4021

Then we carry out experiments on the model structure of ENSOMIM, as shown in
Table 3. For the structure and number of layers of the encoder and decoder based onMIM
in the model, we select a separate 3-layer MIM, 5-layer MIM, 7-layer MIM and coder-
decoder structure of three layers of MIM-Encoder-Decoder to carry out experiments.
The experimental results show that in a separate MIM network, the 3-layer MIM has
the best effect, and the effect of MIM-Encoder-Decoder is better than that of a separate
3-layerMIM network. Therefore, we use theMIM-Encoder-Decoder with the best effect
to build ENSOMIM.

Table 3. Comparative experimental results of different layers and structures of MIM.

Models MSE ↓ PCC ↑
MIM7 0.1750 0.4210

MIM5 0.1566 0.4239

MIM3 0.1398 0.4329

MIM-Encoder-Decoder 0.1384 0.4336

In order to verify the effectiveness of the channel-space attention mechanism we
proposed, we use the most popular channel-space attention module CBAM as the con-
trast object. On the basic of the previous two groups of experimental results, the loca-
tion of embedded attention is selected as the starting position of the encoder, and the
MIM-Encoder-Decoder is selected as the MIM structure. Under the same experimental
conditions, the experimental effects of CBAM and BGAM are compared, the results as
shown in Table 4.
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Table 4. Comparative experimental results between CBAM and BGAM.

Models MSE ↓ PCC ↑
MIM-Encoder-Decoder 0.1384 0.4336

With CBAM 0.1822 0.4285

With BGAM 0.1359 0.4487

Considering the large amount of data in pattern simulation and its bias, which can
affect the prediction accuracy of the constructed model, we only use reanalysis data in
the experiment of model structure exploration, which is the reason why the error of the
experimental results is small but the correlation coefficient is low. In the training of the
final model ENSOMIM, we use pattern simulation data for pre-training of the model,
and then finetuning the model through reanalysis of the data. The ENSOMIM model
predicts the MAE and RMSE of Niño3.4 SSTA during the 1 to 20 months lead time
on the validation set, as shown in Fig. 8, demonstrating the long-term predictive ability
of the ENSOMIM model. During a lead time of up to 14 months, the RMSE was all
below 0.5, and during a lead time of 20 months, the MAE was all below 0.7. Overall,
ENSOMIM is more suitable for long-term forecasting and has shown superiority in
the prediction range of nearly two years. Figure 9 shows the difference between the
predicted and true values of ENSOMIM’s Niño3.4 index for each year during the 10-
year period from 1984 to 1993. Figure 10 shows the difference between the predicted
and true values of ENSOMIM’s Niño3.4 index for each month on the test set. It can be
seen that ENSOMIM can approximate the trend of the Niño3.4 index, but its predictions
for certain extreme cases are too conservative.

Wecompare the test results ofENSOMIMwith8deep learningmodels and4dynamic
models, and the full season related techniques of each model are shown in Fig. 11. The
results of 13 models are compared in the experiment, and the ENSOMIM model show
a higher correlation in long-term prediction time over 15 months compared to other
models’ curves. The relevant skills within a lead time of 1–14 months also exceed most
deep learning models and all dynamic models, achieving the best results in a prediction
interval of 20 months in advance.

We also compare various evaluation indicators of different deep learningmodels, and
Table 5 shows the MAE, RMSE, and PCC indicators of different deep learning models
in the training set. Compared with 2D CNN that does not consider any temporal order
of a given input, ENSOMIM uses 3D Receptive field blocks with 2D+ time convolution
filters to learn spatiotemporal patterns from short-term inputs (three months), and uses
MIM-Encoder-Decoder modules with attention mechanisms to learn the temporal order
of long-term sequences. The Encoder Decoder structure constructed based on MIM
modules can retain long-term contextual information in sequential input data even after
small batch processing bymaintaining its hidden and unit states. In addition, the attention
mechanism allows the proposed model to process geophysical data and accurately focus
on more relevant regions at specific time steps in prediction tasks, making the model
more effective than simply using CNNs or RNNs.
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Fig. 8. Evaluation indicators of ENSOMIM in 1–20 lead times.

Fig. 9. Comparison of Predicted Values and Real Values from 1984 to 1993.

Fig. 10. Comparison of Predicted and Real Values on a test set.
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Fig. 11. Correlation skill for various lead times and methods.

Table 5. Evaluation indicators of different deep learning models at a lead time of 20 months.

Models RMSE ↓ MAE ↓ PCC ↑
EEMD-TCN [25] 0.78 — 0.31

GRU [23] 0.87 — 0.32

CNN [27] 0.88 0.72 0.38

STANet [23] 0.85 — 0.40

ENSOTR [36] — — 0.41

SDNet [37] 0.75 — 0.41

GeoFormer [38] 0.86 0.69 0.41

ENSO-ASC [35] — — 0.46

ENSOMIM 0.59 0.50 0.49

5 Conclusion

At present, deep learning networks based on CNN can achieve the best results, but there
are still shortcomings. We consider the ENSO prediction problem as a spatiotempo-
ral prediction problem and design the ENSOMIM model. Compared with traditional
dynamic methods and existing deep learning methods, ENSOMIM can provide more
effective predictions, especially in long-term predictions lasting up to two years. This
model exhibits superior potential. Considering the versatility ofENSOMIMand the high-
order non-stationary nature of ENSO, we will also attempt to apply it to the prediction
of radar echoes, precipitation, humidity, and other meteorological factors in the future.
In addition, future work can combine other relevant climate variables with ENSOMIM
or better architectures to further improve prediction results and provide new informa-
tion on the relationships between global regions represented by the learned connectivity
structures.
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Abstract. Temperature prediction is a critical component of weather
forecasting, impacting human life, safety, and property. Compared to
traditional numerical weather prediction models, data-driven deep learn-
ing methods have more advantages in terms of computational time and
resource consumption. However, existing deep learning methods also
have inherent drawbacks, such as producing more ambiguous and dif-
fused forecast results. To address these limitations, we introduce a novel
model composed of a Spatiotemporal Perception Module (SPM) and an
enhanced diffusion model. The SPM captures the long-term dependency
information, serving as the generation condition for the diffusion model,
and thereby endowing it with forecasting capabilities. We also introduce
a new equilibrium loss function that balances the generation abilities of
the diffusion model and the spatiotemporal information extraction capa-
bilities of the SPM. Our model demonstrates superior performance on
Weatherbench temperature prediction. It achieves a 13.3%.

Keywords: Temperature Prediction · Deep Learning · Spatiotemporal
Perception Module · Diffusion

1 Introduction

Machine learning methods have seen successful applications in the realm of cli-
mate and weather forecasting [1–3]. Extreme gradient boosting trees (EXtreme
Gradient Boosting,XGBoost) have been utilized in near-term rainfall forecast-
ing [4], whereas Quan et al. [5]employed support vector regression models and
genetic algorithms to optimize parameters and predict water temperatures.
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Deep learning has also started to make strides in weather forecasting. Ayzel
et al. [6]used a fully stacked two-dimensional convolutional structure for radar-
based precipitation forecasting, demonstrating that a straightforward deep learn-
ing model can predict short-term precipitation field evolution. Three-dimensional
convolution, capable of extracting temporal information, has shown promise in
accurately capturing precipitation trends over time [7]. In the realm of weather
forecasting, which requires precise forecasts for each grid point, semantic segmen-
tation algorithms like Unet have proven applicable [8], Trebing et al. [9]extended
Unet to propose SmaAT-UNet, an algorithm that achieves short-term precipi-
tation forecasting with less memory consumption. Xie et al. [10]used ConvL-
STM for storm surge floodplain prediction, while Luo et al. [11]introduced a
novel LSTM network capable of capturing both spatial and motion information,
applying it to short-term precipitation forecasting. Deep generative models have
been used to address short-term precipitation [12]and Xu et al. [13] employed
generative adversarial networks for satellite image prediction.

The development of deep learning in computer science has led to an array
of new models and ideas that can be integrated into weather forecasting. Con-
vLSTM [14]is a recurrent neural network (RNN) that extends a fully connected
LSTM, using memory units to capture features of past input data and perform
well in learning long-range dependencies. PredRNN [15]employs an Encoding-
Forecasting structure that uses stacked structures to store spatiotemporal mem-
ories. MIM [16]takes into account nonstationary prediction, dividing information
into stationary and nonstationary terms, introducing the concept of difference,
and proposing the MIM mechanism to extract nonstationary information. E3D-
LSTM [17] integrates 3D convolution into RNNs, and PhyDnet [18]learns the
dynamics of partial differential equations in latent space, inspired by bias cor-
rection in meteorology. Self-Attention ConvLSTM [19]changes the way long-
term spatial dependencies are captured through attention mechanisms. Pre-
dRNN++ [20]proposes Causal LSTM and a GHU structure to mitigate gradient
vanishing, while CrevNet [21] suggests using CNN’s normalized flow module to
encode, decode, and save feature transformation information.

In the field of image generation, there have been significant developments in
the use of variational autoencoders [22],generative adversarial networks [23], and
diffusion models [24–26]These have made notable progress in static visual data,
surpassing GAN in image synthesis [27].However, their application in weather
forecasting remains largely unexplored. We, therefore, aim to incorporate diffu-
sion models into temperature forecasting, marking the first instance of a diffusion
model used in weather forecasting.

In conclusion, the advancements in deep learning have transformed many
fields, and weather forecasting is ripe for such change. To simulate the spa-
tiotemporal relationship, we propose SPM-Diffusion, which employs SPM to cap-
ture spatiotemporal information, grasp the high-order information of the input
data, and harness the powerful generation abilities of diffusion models. The syn-
ergy between the SPM and the diffusion model allows our model to generate
more accurate temperature predictions. We also introduce a new equilibrium
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loss function to balance the generation abilities of the diffusion model and the
spatiotemporal information extraction capabilities of the SPM, improving the
overall model performance.

The rest of this paper is organized as follows: Sect. 2 reviews related works.
Section 3 introduces the model and the proposed loss function. Section 4 presents
experimental results, and Sect. 5 discusses the results and gives conclusions.

2 Background

2.1 Diffusion Model

Denoising diffusion probabilistic models (DDPM) is a generative model that
relies on the maximum likelihood training paradigm and has considerable image
quality. Like VAE (Variational Autoencoder), it is a deep latent variable model,
but unlike VAE, the dimension of each latent variable of DDPM is the same. Its
main idea is to x0 the initial data, continuously add Gaussian noise z, gradually
destroy the structure of the initial data x0 and finally x0 will become a random
noise after several steps, and then go through a denoising process to gradually
generate the structure. For the process of forward noise, this is shown in Eq. (1).

q(xt | xt−1) = N (
xt;

√
1 − βtxt−1, βtI

)
(1)

In Equation (1), t represents the number of times noise is added, x0 represents
no noise added, xt represents the addition of t noise, and {βt}T

t=1 is the variance
used for each step, which is between 0–1. Each step of the diffusion process
generates a noisy data, which is a Markaf chain as shown in Eqs. (2)(3).

q(x1:T | x0) =
T 1
∏

t=1

q(xt | xt−1) (2)

xt =
√

ᾱtx0 +
√

1 − ᾱtε (3)

pθ(x0:T ) = p(xT )
∏

t=1

pθ(xt−1 | xt)(xt−1 | xt)

= N (
xt−1;pθ(xt, t),xθ(xt, t)

) (4)

The second process of the diffusion process is noise reduction process, as shown
in formula (4), Here p(xT ) = N (xt; 0, I), and pθ(xt−1|xt), is a parameterized
Gaussian distribution, and their means and variances are given by the trained
networks µθ(xt, t) and Σθ(xt, t), since pθ (xt−1|xt) cannot be processed directly,
but can be obtained by taking advantage of the properties of Bayesian formula
and Markov chains (5)(6).

(xt−1 | xt,x0) = N (
xt−1; μ̃(xt,x0), β̃tI

)
. (5)

β̃t =
√

αt(1 − αt − 1)
1 − αt

xt +
√

αt − 1βt

1 − αt
x0 (6)
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It can be seen that the variance is a fixed value, while the mean is a function
of xt, and x0 can be derived from the formula of the noise process, so that the
mean is a function of fθ(xt, t) between xt and t.

2.2 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a class of neural networks that incorpo-
rate a hidden state ht to capture higher-order representations of past data. This
class includes LSTM and GRU, which can learn long-range dependencies and
utilize memory gates, forget gates, output gates, and other mechanisms to cap-
ture important information and discard irrelevant information, thereby enriching
the information encoded in ht.

Shi et al. [14] leveraged the temporal modeling capabilities of LSTM and
GRU and introduced convolutional operations to enable them to capture spatial
correlations. They proposed ConvLSTM and ConvGRU, which extend the fully
connected LSTM and GRU to have a convolutional structure that captures spa-
tiotemporal dependencies. As a result, ht not only encodes temporal information
but also spatial information, as demonstrated in Eq. (7).

ht = frn(vn, vn−1, . . . , vn−i+1) (7)

The architecture of RNNs incorporates memory and forget units to jointly
regulate the learning of higher-order features, with the learning process being
akin to temperature evolution.

We present a temperature prediction model, named SPM-Diffusion (SPMD),
which leverages both the generative capabilities of Diffusion and the contextual
information extraction abilities of SPM. SPM extracts high-order information,
such as representation, position, and motion information, from past data, and
utilizes this information as the generation condition for the Diffusion generative
model.

3 Approach

3.1 SPM-Diffusion

The SPM module comprises a three-layer RNN architecture, with each layer
capable of extracting higher-order features. The deepest layer can capture more
sophisticated features, such as motion information, while the shallower layers
capture more elementary information, such as position information.

We utilize a slice operation on the RNN, where the slice size is p, and the
original Vi ∈ R

c,H,W , i = 1 . . . n
.

+1 is sliced such that Vi ∈ R
c∗p∗p,H/p,W/p, i =

1 . . . n + 1. The higher-order features captured by the RNNs are denoted as
Hn ∈ R

3,c,H/p,W/p, where H and W are the spatial extent of meteorological
elements, c is the number of channels, and the number of hidden layers in the
network. To transform Hn to pp in the channel dimension, a new ResBlock is
designed, resulting in H ′

n ∈ R
3,p∗p,H/p,W/p. The output is then matched with
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Fig. 1. SPM-Diffusion network architecture.

(Vn+1)t ∈ R
1,H,W in the last two dimensions by adding noise, enabling the re-

extraction of Hn features.
The information captured by SPM is connected to the noised (Vn+1)t in the

channel dimension, providing the Diffusion model with predictive capabilities.
To embed time-step information, we adopt a learnable method for each residual
block, where the information about the time step t is embedded. Although heavy
parameter techniques are used, the noise added at different time steps varies,
which requires a focus on the information from different time steps.

Figure 1 illustrates the network architecture, where V1:n represents n frames
from the past, and Vn+1 represents the ground-truth frame to be predicted.
During training, the input is the ground-truth value of the next time step
Vn+1, which is continuously corrupted by adding noise. The value (Vn+1)t is
obtained by adding noise at the t-th time step, and if t is sufficiently large,
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then (V n + 1)t∼N (0, I). In the testing phase, the input to the model is random
noise generated by sampling from a Gaussian distribution. The noise is gradually
removed through the εθ predicted by the network.

3.2 Equilibrium Loss Function

We propose a hybrid equilibrium loss function, which not only ensures the gener-
ation ability of Diffusion, but also protects the SPM’s ability to grasp long-term
dependent information, and the equilibrium loss function is shown in Eq. (8).

L(θ) = Ex0,n,ε‖ε − fθ(xn, n, ht)‖2 × λt + ‖grnn(x1,x2...xn−1) − xn‖2 × β (8)

Here, λt = (k+ ᾱt/(1− ᾱt))γ is a function of t, where γ is a hyperparameter that
controls the weight reduction intensity, with no weight reduction when γ = 0 and
the maximum reduction when γ = 1. The parameter k is also a hyperparameter
used to prevent weight explosions caused by very small signal-to-noise ratios,
and it determines the sharpness of the weighting scheme. fθ(xn, n, ht) is the
noise predicted based on xn, n, and ht.

While Ht provides the high-level information required for Diffusion genera-
tion, it is critical to control the output of the RNNs in SPM to ensure the learned
Ht captures remote dependency information effectively. Diffusion also needs to
extract the necessary parts from this data. Therefore, an additional loss term
‖grnn(x1,x2 . . .xn−1) − xn‖2 is added, where grnn(x1,x2...xn−1) is the output
of the RNN in the SPM module, and β is a hyperparameter used to balance the
loss relationship with Diffusion.

4 Experiment

This section focuses on evaluating the performance and effectiveness of the SPM-
Diffusion architecture for weather forecasting. To this end, we explore multiple
options for RNN cells in SPM and propose two new variants of the model, SPMD-
ConvLSTMcell and SPMD-ConvGRUcell. We then compare these variants with
commonly used and state-of-the-art deep learning algorithms in meteorology to
validate the effectiveness of the SPM-Diffusion architecture. Next, we evaluate
the performance of the model using the publicly available weatherbench [29]
dataset and compare it with that of physical models. Finally, we conduct ablation
experiments to confirm the effectiveness of the equilibrium loss function used in
the SPM-Diffusion architecture. Overall, this section provides a comprehensive
evaluation of the proposed model and its performance in the context of weather
forecasting.
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4.1 Variant of SPM-Diffuison

Different RNNs possess varying abilities in feature extraction. In our experiment,
we test two variants of SPMD, with a batch size of 32 and a patch size of 4,
using three hidden layers, each with a dimension of 64. Figure 2 displays the
output results of the two SPM-Diffusion variants at different iterations, allowing
us to compare and select the most suitable RNN structure. The following steps
outline the algorithm’s execution.

Algorithm 1. SPMD train
Require: β ← choice(0, 1);
1: while not converged do
2: Sample xn ∼ p(xn);
3: L = 0;
4: for t = 1 to n do
5: ht, frames = fSPM (xt);
6: end forε∼N (0, I); yn

0 =
(
xt − μφ(ht)

)
/σ; yn

n =
√

αnyn
0 +

√
1 − αnε; L =

Exn,n,ε‖ε − fθ(y
n
n , n, ht)‖2 × λt + ‖frames − xn‖2 × β; (θ, φ)

∼
= (θ, φ) − ∇θ,φL

7: end while

Fig. 2. SPMD-ConvLSTMcell (first row) and ConvGRUcell (second row) compared
with four columns with 0, 20K and 40K training times and real values.

Figure 2 displays the experimental results, which consist of four blocks. The
first block shows the output result when the number of iterations is 0. The second
and third blocks show the output results at iterations 20K and 40K, respectively.
The last block includes two images of the true values. We combine the structures
of the two STMs and present the output results of the iterations at 0, 20K, and
40K. When the number of iterations is 0, both variants produce random noise and
do not learn effective features. However, after 20K iterations, both variants learn
basic features. Nevertheless, our experiments show that the ConvGRU unit fails
to capture specific details effectively. The area with higher temperature is overly
broad, and the overall trend of diffusion is not very accurate. In contrast, the
ConvLSTM unit exhibits a better combined learning effect. After 40K iterations,
both variants demonstrate good effects, accurately capturing the intensity of the
range and temperature, thereby proving the feasibility of SPMD.
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4.2 Comparison of Spatiotemporal Series Prediction Algorithms

In this section, we compare our model with the latest spatiotemporal sequence
prediction algorithms. We split the dataset into three parts: 80% for training,
10% for validation, and 10% for testing. The meteorological values in the data
change significantly in each three-hour interval, presenting a significant challenge
for the model. Table 1 and Figure 3 display the performance of various models
and the results of different evaluation metrics.

Fig. 3. Temperature Plots Output by Multiple Models.

Figure 3 displays temperature diagrams of the outputs of various models. The
input of each model comprises the first eight frames, and the output contains the
predicted future frames. The first row shows four images of the input data, rep-
resenting the outputs at t=0, t=2, t=4, and t=6, respectively. The temperature
values in the data change significantly in each three-hour interval, presenting
a considerable challenge for the model to successfully capture the temperature
change trend.
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Table 1. Comparison of Model Performance.

Model MSE↓ MAE↓ PSNR↑
PredRNN V2 1.42 59.30 35.49

ConvLSTM [14] 0.85 43.22 37.91

ConvGRU [14] 0.76 40.31 38.49

E3D LSTM [17] 0.75 42.43 38.00

MIM [16] 0.69 39.49 38.43

Phydnet [18] 0.59 35.61 39.32

PredRNN [15] 0.58 34.26 39.68

SPMD-ConvLSTMcell 0.56 33.52 39.82

SPMD-ConvGRUcell 0.54 32.31 40.25

The second and third rows show the output results of multiple models, with
the first row being the true values, and the subsequent rows being the outputs
of the models. In the following analysis, we compare the specific output results.

In Fig. 4, the red box highlights the local high-temperature area, which has
a small range and a temperature gap with other regions that is not significant,
making it the most challenging to capture. The experiment selects this area as
a selection standard and compares the algorithms that capture this area. The
results show that the algorithm can capture such details, as well as PredRNN
and MIM.

We then analyze a relatively large range, as highlighted by the blue box in
Fig. 4. The temperature range is concentrated in the middle, and there are several
independent regions that are not connected to their adjacent areas. Observing
PredRNN and MIM in the framed part of the blue box, we see that the range
is more concentrated in the middle, with most of the yellow range connected
together and fewer independent areas. Finally, we observe the model proposed
in this article, and the overall rendering is consistent with the true values.

Additionally, since the forecast is predicting one next frame, algorithms such
as PredRNN and PredRNN V2 use mask operations for rounding, which makes
long-distance forecasting more convenient by retaining a certain real value at
each time step. However, such operations have no effect on the prediction of
future frames. Our experiments show that these algorithms perform poorly
on adjacent frames, especially PredRNN V2, which exhibits poor performance
after losing the mask operation. We also introduce the PSNR (Peak Signal to
Noise Ratio) as an evaluation index, which is an objective standard for evaluat-
ing image quality. Experimental studies show that the proposed algorithm has
the best image quality, which facilitates accurate judgments by meteorological
observers.
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Fig. 4. Compare the forecasting effects of various models on different scales, where
the red box frames the more detailed range, and the blue box frames the larger range.
(Color figure online)

4.3 WeatherBench Forecasting Experiment

To predict a sufficient number of steps, we convert the number of images into
the number of channels. Since temperature is a grayscale value, the number of
channels after conversion equals the number of images. Using this method, we
perform a temperature prediction task on the WeatherBench 5.625◦ dataset,
forecasting the 2-meter temperature for a 5-day lead time. We compare our
results with three baselines: a physical NWP model run at a coarser resolution
of T42 (2.8◦ or 310-km resolution at the equator (NCAR, 2020)), which was ini-
tialized from ERA5, and a climatological forecast that uses either a single mean
or a weekly mean computed from the training data set (1979–2016). The perfor-
mance of our proposed model at a 2-meter temperature (T2m) in WeatherBench
is presented in Table 2. In Fig. 5, we observe that the model’s predictions are not
accurate in the first few time steps. However, after 48 h, the prediction perfor-
mance improves. We consider that the temperature prediction results may not
only capture the change in temperature at the previous time step but also the
temperature situation at the same time on the previous day. Since temperature
does not change frequently, in some cases, the temperature at the same time the
previous day may be a more reliable reference than the previous time step.

Table 2. WeatherBench T2m.

Model RMSE↓ (3 d/5 d) MAE↓ (3 d/5 d) ACCuparrow (3 d/5 d)

Climatology [29] 6.07 3.84 0

Weekly climatology [29] 3.19 2.48 0.85

IFS T42 [29] 3.21/3.69 1.99/2.53 0.87/0.83

SimVP [30] 3.04/3.12 1.94/1.98 0.0.87/0.86

Unet+resnet18 3.06/3.10 1.96/1.98 0.87/0.86

Unet+resnet32 2.97/3.10 1.95/2.00 0.87/0.85

Unet+resnet50 2.90/3.04 1.89/1.95 0.87/0.86

ours 2.78/2.78 1.82/1.86 0.89/0.89
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Fig. 5. Compare WeatherBench T2m in 120h(5 d).

4.4 Ablation

We propose a new mixed loss function, referred to as the equilibrium loss func-
tion, that prioritizes the generation ability of Diffusion while also ensuring the
predictive ability of the RNN structure. In this subsection, we conduct ablation
experiments to demonstrate the feasibility of the mixed loss function, and the
experimental results are presented in Table 3. The experimental results demon-
strate that the equilibrium loss function is beneficial for model learning. This
function not only ensures the generation ability of Diffusion but also maintains
the prediction ability of the model. Here, β is a hyperparameter, and when it is
set to 1.0, SPM dominates the model training. Although the model is better at
training SPM, it compromises the generation ability of Diffusion. Therefore, we
set β to 0.2, favoring Diffusion, while using the SPM structure as an auxiliary
to retain a certain forecasting ability of SPM and also protect the generation
ability of Diffusion.

Table 3. Ablation test results.

Model 1 Model 2 Model 3 Model 4 Model 5

Ex0,n,ε‖ − fθ(xn, n, ht)‖2 � � � � �
λt - � - � �
‖grnn(x1,x2 . . .xn−1) − xn‖2β - - � β = 0.2 � β = 1.0 � β = 0.2

MSE 0.64 0.63 0.59 0.65 0.54

MAE 37.32 35.25 34 37.3 32.31

PSNR 38.82 39.32 39.9 38.8 40.25

5 Conclusion

We propose a temperature forecasting model based on the spatiotemporal per-
ception module (SPM) and diffusion process, which effectively learns the rules of
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temperature evolution and generates high-quality temperature fields. We care-
fully design the SPM to capture spatiotemporal dependencies in temperature
fields and use it to construct an SPM-Diffusion framework. This framework
uses the information captured by the SPM as the generation condition of Dif-
fusion. We also propose two variants of SPMD, namely SPMD-ConvGRUcell
and SPMD-ConvLSTMcell, which enhance the generation ability of Diffusion by
leveraging SPM’s grasp of long-term information dependence. Additionally, we
propose a balancing loss function to balance the forecasting ability of SPM and
the generative ability of Diffusion.

We conduct experiments using the SPMD dataset to verify the effectiveness
of the SPMD algorithm and compare it with the latest deep learning methods.
Furthermore, we design ablation experiments to prove the role of each part of
the model. Finally, we compare our model with other deep learning and physi-
cal prediction models in the task of predicting the 2m temperature for the next
3/5 d on WeatherBench. Our experimental results demonstrate that our model
achieves excellent forecasting performance, proving the effectiveness and gener-
ality of our model. We believe that our model provides a novel and powerful
approach for the temperature forecasting field and offers valuable insights for
other spatiotemporal sequence prediction problems.
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Abstract. A neural ordinary differential equation (ODE) is a relation
between an unknown function and its derivatives, where the ODE is
parameterized by a neural network. Therefore, to obtain a solution to a
neural ODE requires a solver that performs numerical integration. Dopri5
is one of the most popular neural ODE solvers and also the default solver
in torchdiffeq, a PyTorch library of ODE solvers. It is an adaptive step
size solver based on the Runge-Kutta (RK) numerical methods. These
methods rely on estimation of the local truncation error to select and
adjust integration step size, which determines the numerical stability of
the solution. A step size that is too large leads to numerical instability,
while a step size that is too small may cause the solver to take unnec-
essarily many steps, which is computationally expensive and may even
cause rounding error build up. Therefore, accurate local truncation error
estimation is paramount for choosing an appropriate step size to obtain
an accurate, numerically stable, and fast solution to the ODE. In this
paper we propose a novel local truncation error approximation that is
the first to consider solutions of four different RK orders to obtain a more
reliable error estimate. This leads to a novel solver S-SOLVER (Stable
Solver), which is more numerically stable; and therefore accurate. We
demonstrate S-SOLVER’s competitive performance in experiments on
image recognition with ODE-Net, learning hamiltonian dynamics with
Symplectic ODE-Net, and continuous normalizing flows (CNF).

Keywords: neural ordinary differential equations · numerical
stability · ODE solvers

1 Introduction

Neural ODEs are continuous depth deep learning models that combine neural
networks and ODEs. Since their first introduction in [5], they have been used
in many applications such as: stochastic differential equations [17], physically
informed modeling [25,30], free-form continuous generative models [6,8], mean-
field games [24], and irregularly sampled time-series [23].

Neural ODEs parameterize the derivative of the hidden state using a neural
network; and therefore, learn non-linear mappings via differential equations. A
differential equation is a relation between an unknown function and its deriva-
tives. Ordinary differential equations describe the change of only one variable

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14262, pp. 388–400, 2023.
https://doi.org/10.1007/978-3-031-44201-8_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44201-8_32&domain=pdf
http://orcid.org/0000-0001-7159-2937
https://doi.org/10.1007/978-3-031-44201-8_32


S-SOLVER: Numerically Stable Adaptive Step Size Solver for Neural ODEs 389

(as opposed to multiple) with respect to time, i.e.: dx/dt = f(t, x). Typically, an
ODE is formulated as an initial value problem (IVP), which has the following
form. Given a function derivative dx/dt, a time interval t = (a, b) and an initial
value (e.i.: x at time t = a), the solution to the IVP yields x evaluated at time
t = b. The method for approximating x(b) is numerical integration; therefore, all
the various ODE solvers include different methods for performing integration.

Adaptive step size solvers are amongst the most popular solvers for neural
ODEs. In fact, the default solver in torchdiffeq (a library of ODE solvers imple-
mented in PyTorch) is Dopri5, the Dormand-Prince 5(4) embedded adaptive step
size method of the Runge-Kutta (RK) family. Adaptive step size RK solvers per-
form two approximations: one of order p and another of p−1 and compare them
to obtain the local truncation error, which is used to determine the integration
step size. Specifically, the error is used to make a decision whether to accept or
reject the solution step under the current step size and to decide how to modify
the step size for the next step. A step size that is too large leads to numerical
instability, while a step size that is too small may cause the solver to take unnec-
essarily many steps, which is computationally expensive and may even cause the
rounding error to build up. Therefore, accurate local estimation is paramount
for choosing an appropriate step size to obtain an accurate, numerically stable,
and fast solution to the ODE.

The local truncation error is defined as the difference between the exact and
approximate solution obtained at a given time step. All currently available adap-
tive step neural ODE solvers rely on estimating the local error as the difference
between order p and p − 1 solutions, which assumes that the order p solution is
exact. This is not necessarily true and if the p solution is far from the exact one,
the local error estimate is inaccurate, which results in the solver making poor
decisions regarding its step size.

In this paper we propose a novel local truncation error estimation that takes
into account multiple orders of the RK method as opposed to just order p and
p − 1 to obtain a more accurate estimate of the local truncation error that
guides the integration step size. Specifically, we modify the local truncation error
estimation of Dopri8, the Dormand-Prince 8(7) embedded adaptive step size
method. Dopri8 calculates the local truncation error as the difference between
its 8th and 7th order solution. Our modification computes this error as the
average of the difference between both its 8th and 7th, and also 4th and 5th
order solution. This leads to a new ODE solver, S-SOLVER (Stable Solver), a
modified Dopri8 integrator with more accurate local truncation error estimation
that provides more reliable information for step size calculations; and therefore,
more numerically stable solution. To our best knowledge, S-SOLVER is the first
solver that uses a multiple solution orders to estimate local truncation error for
adjusting its step size.
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2 Background

2.1 Neural Ordinary Differential Equations

Traditional neural networks are defined as discrete models with a discrete
sequence of hidden layers, where the depth of the network corresponds to the
number of layers. Neural ODEs [5] are continuous depth deep learning models,
which parameterize the derivative of the hidden state using a neural network.
Specifically, they are ODEs that are parameterized by a neural network, which
has many benefits such as memory efficiency, adaptive computation, and param-
eter efficiency.

Neural ODEs are inspired by the dynamic systems interpretation of residual
and other networks [9,28]. These networks perform a sequence of transformations
to a hidden state:

statet+1 = statet + f(statet, θt), (1)

which can be viewed as discretized forward Euler method applied to a contin-
uous transformation. Given this interpretation, the transformation to a hidden
state can be formulated as an ODE:

d state(t)/dt = f(state(t), t, θ), (2)

where state(t = 0) is the input layer and state(t = T ) is the output layer.
Therefore, the neural ODE is an IVP:

dx(t)/dt = f(t, x(t), θ), for t0 ≤ t ≤ t1, subject to x(t0) = xt0 , (3)

where f(., ., θ) is the deep neural network, xt0 is the input, and xt1 is the
output.

Neural ODEs are trainable through loss minimization, but due to their con-
tinuous nature the optimization process is slightly different from classical discrete
deep learning models. The forward pass solves the ODE with an ODE solver and
the backward pass computes the gradients either by backpropagating through
the ODE solver or with the adjoint method [5]. In this work we focus on the
forward pass, which outputs a solution to the ODE.

2.2 Neural ODE Solvers

Solving neural ODEs that we generalized in Eq. 3 requires numerical integration
that can be described as follows:

x(t1) = x(t0) +
∫ t1

t0

f(t, x(t), θ)dt (4)

This equation can be solved with an ODE solver, which returns the value of
x(t1) that represents the solution at the end of the time interval that satisfies
the initial condition x(t0) = xt0 .
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There are different types of ODE solvers that use different methods and
algorithms for performing numerical integration, and the Runge-Kutta (RK) set
of methods that are amongst the most popular [26]. The basic idea behind the
RK integration methods is to re-write dx and dt in Eq. 3 as finite steps Δx
and Δt and multiply the equations by Δt, which provides a change in x with
respect to Δt. The finite time step Δt is called the step size [26] and is typically
represented as h. The simplest RK method, the Euler method, illustrates this
well:

xtn+1 = xtn + hf(tn, xtn) (5)

RK methods leverage the differential equation for computing the slope k of
the tangent line to the function f . The slope is then used to approximate f at
the next time step t + 1. As shown in [2], this can be represented as:

xtn+1 = xtn + h

S∑
i=1

b̂iki, (6)

where

k1 = f(tn, x̂tn)

ki = f(tn + cih, x̂tn + h

i−1∑
j=1

aijkj) for RK stages i = 2, ..., s

ci =
i−1∑
j=1

aij

(7)

Since the Euler method approximates the slope only once to proceed from t
to t + 1, it can be expressed using the general RK method shown in Eq. 6 as:

xtn+1 = xtn + h(b1k1) (8)

The number of times that the slope k is approximated between t and t + 1
impacts the local truncation error the RK method [3,4]. The local truncation
error is the difference between the exact and approximated solution and deter-
mines the order of the RK method [3]. The order of the RK method corresponds
to the order of the local truncation error minus one. For example, the local trun-
cation error for the Euler’s method is O(h2), resulting in a first order numerical
technique.

3 Numerical Stability of Neural ODE Solvers

When approximating the solution of an IVP, there are two primary sources of
error: the roundoff error and the truncation error [1], which impact the numerical
stability of the ODE solver that yields the approximate solution.
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3.1 Numerical Stability

Numerical stability can be viewed property of an algorithm, which describes the
sensitivity of a solution to numerical errors [10]. An unstable numerical method
produces large changes in outputs in response to small changes in inputs [11],
which can lead to unexpected outputs or errors. Numerical instability arises due
rounding, and truncation errors [10]. Roundoff errors are caused by approxi-
mating real numbers with finite precision, while truncation errors are caused by
approximating a mathematical process. Many numerical methods (e.g.: Euler’s
method for solving differential equations) can be derived by taking finitely many
terms of a Taylor series. The terms omitted constitute the truncation error,
which often depends on a parameter called the step size [10]. In this paper intro-
duce a novel truncation error estimation used for setting an adaptive step size
that achieves a numerically stable solution.

3.2 Stability of Different ODE Solvers

There are two notions of numerical stability of ODEs: zero-stability and absolute
stability. Zero-stability implies that on a fixed time interval, small perturbations
of data yield bounded perturbations in the solution as the step size h approaches
zero [16]. Absolute stability, a stronger notion of stability, guarantees the same
behavior, but for a fixed step size h as the time interval approaches infinity. Gen-
erally, a numerical method for solving initial value ODE is numerically stable if
“small changes or perturbations in the initial conditions produce correspondingly
small changes in the subsequent approximations” [3].

Different ODE solvers have different numerical stability. This can be demon-
strated with a canonical example of an ODE that describes a swinging pendulum:

ml
d2Θ(t)

dt2
= −mg sin(Θ(t)), (9)

where Θ(t) is the angle between the pendulum and a vertical axis at a time t, l is
the length of the pendulum, m is the pendulum mass, and g represents gravity.
Figure 1 illustrates the varying degrees of numerical stability of three different
methods that can be used to solve this pendulum IVP.

Fig. 1. Comparison of numerical stability of various ODE solvers
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3.3 Analysis on Numerical Stability with Respect to Step Size

To illustrate the impact of step size on the numerical stability of ODE solvers,
we provide a numerical stability analysis of the Euler method and derive its
stability condition. The stability condition pertaining to explicit Euler method’s
step size can be derived using the test equation:

y′ = ky, y(0) = α, α < 0 (10)

Applying the forward Euler method to this ODE yields:

x0 = α, xi+1 = xi + h(kxi) = (1 + hk)xi (11)

Solving for xi+1:

xi+1 = (1 + hk)xi = (1 + hk)i+1x0 = (1 + hk)i+1α (12)

The exact solution is:
y(t) = α exp(kt) (13)

The absolute error is the absolute difference between the exact and approximated
solution:

|y(ti) − xi| = | exp(ihk) − (1 + hk)i||α| = | exp(hk)i − (1 + hk)i||α| (14)

If k > 0, the problem is unstable. If k ≤ 0 and |1+hk| < 1, the forward Euler
method will be stable. This condition is called the stability region and pertains
to the notion of absolute stability. Specifically, the analysis of the stability region
is useful for determining a step size that can ensure absolute stability.

Illustrative Example. We demonstrate the practical application of the theo-
retical numerical stability analysis shown above with an illustrative example of
an ODE dy/dt = −2.3y with an initial value of y(0) = 1. Figure 2a compares
the exact solution −2.3t with approximate solutions obtained with the explicit
Euler method with varying step sizes: h = 1.0, 0.7, 0.1. The solution obtained
with step size h = 1.0 is erratic and inaccurate, while the solution with the
smallest step size h = 0.1 yields a stable solution that is very close to the exact
one. The reason for that is that kh for h = 1.0 and h = 0.7 are far away from
the stability region represented as the blue circle in Fig. 2b. Therefore, we can
observe that the step size h has a significant impact on the numerical stability
and accuracy of the ODE solution.

4 Method

Prior adaptive step size solvers approximate the local truncation error as the
difference between order p − 1 and p solution, where the p order solution is
assumed to be the exact solution. This means that the error estimates are not
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Fig. 2. The relationship between numerical stability of an ODE solution and ODE
solver step size

exact, but only accurate to the leading order in h, i.e.: order p [20]. S-SOLVER
is an adaptive step size solver with novel, more accurate local error estimation
that is used for adjusting the solver step size to achieve an accurate numerically
stable solution to neural ODEs.

S-SOLVER is based on Dopri8, the Dormand-Prince 8(7) embedded adaptive
step size method, which is a 8th order RK method that requires 13 function
evaluations per integration step [21] as shown in Eq. 15.

xtn+1 = xtn + h

13∑
i=1

b̂iki, (15)where

k1 = f(tn, x̂tn)

ki = f(tn + cih, x̂tn + h
i−1∑
j=1

aijkj) for i = 2, ..., 12

ci =
i−1∑
j=1

aij

(16)

The coefficients a, b, and c in Eqs. 15 and 16 are defined using the Butcher
tableau provided in [21].

In contrast to Dopri8, which calculates local error as the difference between
the 7th and 8th order solution, S-SOLVER uses order 8, 7, 5, and 4. Specifically,
given a neural ODE:

x(t1) = x(t0) +
∫ t1

t0

f(t, x(t), θ)dt, (17)

suppose that the solver has progressed to some time step tn and approximated
x(tn) as x̂(tn). To make further progress, the solver needs to take a step forward
and compute the value of x at time step tn +h, where h is the step size. Suppose
that this is approximated as x̂(tn + h) and that the step’s error is xerror. S-
SOLVER computes xerror as an average of the difference between 8th and 7th
order solution and 5th and 4th order solution to obtain a more reliable estimate:

xerror =
(x̂(tn + h)order8 − x̂(tn + h)order7) + (x̂(tn + h)order5 − x̂(tn + h)order4)

2
(18)
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The 5th and 4th order solution is computed using a similar process, but only
with 6 stages as follows:

xtn+1 = xtn + h
6∑

i=1

b̂iki, (19)where

k1 = f(tn, x̂tn)

ki = f(tn + cih, x̂tn + h
i−1∑
j=1

aijkj) for i = 2, ..., 5

ci =
i−1∑
j=1

aij ,

(20)

where the coefficients a, b, and c are given in the Butcher tableau provided in
[15]. Given a pre-defined upper bound on relative error RTOL (1e-7 default in
torchdiffeq) and upper bound on absolute error ATOL (1e-9 default in torchdiff ),
the solver then computes an error ratio r as follows:

r = ‖xerror

scale
‖, (21)

where scale is defined as:

scale = ATOL + RTOL max(x̂(tn), x̂(tn + h)). (22)

If r ≤ 1 the step is accepted, otherwise it is rejected and the value of x at time
step tn + h is approximated again with a smaller step size h.

5 Experiments

We implement S-SOLVER as a new solver that is part of the torchdiffeq library
(https://anonymous.4open.science/r/S-SOLVER-EC78/ReadMe.md) and per-
form experiments on image recognition with ODE-Net, learning hamiltonian
dynamics with Symplectic ODE-Net, and generating new distributions with con-
tinuous normalizing flows (CNF). We demonstrate the S-SOLVER is accurate
and numerically stable thanks to better local error estimation that determines
the step size, which in turn afects the numerical stability of the ODE solution
as shown in Sect. 3.

5.1 Stiff Neural ODE and Error Monitoring

We first validate S-SOLVER’s numerical stability on solving the following stiff
neural ODE obtained from page 353 of [3]:

dy/dt = 5 exp(5t)(y − t)2 + 1 for 0 ≤ t ≤ 1, subject to y(t = 0) = −1 (23)

This ODE equation is stiff, which means that it is likely the error due to approxi-
mation is amplified and becomes dominating in the solution calculations leading
to a numerically unstable solution [3,12].

https://anonymous.4open.science/r/S-SOLVER-EC78/ReadMe.md
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As shown in Fig. 3b, the neural ODE solved with S-SOLVER yields a solution
that is very close to the exact solution:

y(t) = t − exp(−5t) (24)

Fig. 3. Learning Hamiltonian dynamics and solving stiff neural ODEs with S-SOLVER

In addition to demonstrating that S-SOLVER can solve stiff neural ODEs,
which typically have numerical stability issues, we also examine the local error.
Figure 4 shows the local error estimate produced by Dopri5 (default solver in
torchdiffeq), S-SOLVER, and also a comparison of the two, which suggests that
Dopri5 underestimates the local error.

Fig. 4. A comparison of the local error produced by Dopri5 and S-SOLVER

5.2 Image Recognition

The next set of experiments focuses on image recognition with ODE-Nets. We
train an ODE-Net with S-SOLVER and compare its results with an ODE-Net
trained with Dopri5 (default solver in torchdiffeq) and also a classical ResNet
on two datasets: MNIST and FASHION MNIST. Table 1 shows that the highest
test accuracy on both datasets is achieved with our ODE-Net with S-SOLVER.
The test accuracy on MNIST beats prior SOTA results in [5], who report a
0.42% test error, i.e.: 99.58% test accuracy. Using the same experiment settings
as [5], thanks to S-SOLVER we push the test accuracy to 99.73%. Our results
are also better compared to, for example, [7] who report 98.3% test accuracy
that is achieved with their proposed temporal regularization.
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Table 1. Results for ODE-Net with S-SOLVER on image recognition tasks

MNIST FASHION MNIST

train acc test acc loss train acc test acc loss

ODE-Net with S-SOLVER 99.99% 99.73% 0.00013 97.58% 94.00% 0.079816

ODE-Net with dopri5 99.98% 99.69% 0.04623 97.75% 93.72% 0.055531

ResNet 99.96% 99.68% 7.2E-05 98.52% 93.94% 0.065489

5.3 Learning Hamiltonian Dynamics

We test S-SOLVER on Symplectic ODE-Net [30], which can learn Hamiltonian
dynamics. Specifically, we choose the problem of ”acrobot” [18,27], which sim-
ulates a physical system with two joints and two links, where the joint between
the two links is actuated. Initially, the links are hanging downwards, and the
goal is to swing the end of the lower link up to a given height. In Fig. 3a we
show that the validation loss obtained with S-SOLVER is more stable than with
Dopri5 (default solver in torchdiffeq) and therefore, preferable. We interpret this
observation to be the result of S-SOLVER’s more reliable local estimation that
controls the step size, which in turn impacts the stability of the ODE solution.

5.4 Continuous Normalizing Flows

Continuous Normalizing Flows (CNFs) are generative models introduced by [5]
that leverage neural ODEs. CNFs are based on normalizing flows [22], which
perform transformations of a simple probability distribution into a more com-
plex one by a sequence of invertible and differentiable mappings [13]. We perform
experiments with CNFs that use S-SOLVER and visualize how the model gen-
erates the Two Circles distribution from random noise in Fig. 5. Figure 5 shows
the evolution of the generated distribution (samples) and probability density
(log probability) with respect to the Two Circles distribution (target) over time
from time-step 0.0 to 10.0. It can be observed that by the last time step, the
random distribution has been transformed into the Two Circles distribution.

Fig. 5. CNFs for fitting the Two Circles distribution with S-SOLVER
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6 Related Work

This paper focuses on ODE solvers for solving neural ODEs, which involves per-
forming numerical integration. Specifically, we focus on adaptive step size ODE
solvers which have become the standard for solving neural ODEs. While to our
best knowledge, we are the first ones to propose a more numerically stable ODE
solver that is based on more accurate local truncation error estimation, there
are several prior works that also study numerical integration in neural ODEs.
[31] perform numerical analysis of numerical integration in neural ODEs and
propose IMDE, or inverse modified differential equations. [32] propose MALI, a
new numerical integrator that is memory-efficient. [7] introduce STEER, a sim-
ple temporal regularization that randomly perturbs the numerical integration
time limits. [19] propose a regularization method for adaptive ODE solvers that
uses the internal cost heuristics. [29] study the robustness of the Euler method,
which is the simplest, but important neural ODE solver. [14] develop a con-
vergence test that can be used to select an ODE solver that is suitable for a
particular task.

7 Conclusion

In this paper we demonstrate the importance of appropriately choosing and
adapting the step size in ODE solvers for obtaining a numerically stable; and
therefore, accurate solutions to a neural ODEs. To this end we propose S-
SOLVER, a new neural ODE solver that is more numerically stable thanks
to more accurate local truncation error estimation that is based on comparing
multiple approximations as opposed to just two, which has been the standard
approach. We provide a theoretical analysis of the impact of solver step size on
numerical stability and also perform practical experiments with S-SOLVER. We
show that S-SOLVER can solve a stiff neural ODE and that image recognition
ODE-Nets learned with S-SOLVER surpass the test accuracy of prior solvers as
well as classical ResNets on MNIST and FASHION MNIST. In fact, S-SOLVER
achieves a new SOTA test accuracy on MNIST. We also show that the process
of learning Hamiltonian dynamics with Symplectic ODE-Nets on the acrobot
example is more stable with S-SOLVER than with Dopri5, the solver used in
prior neural ODE works. Finally, we also show that S-SOLVER works well for
CNFs in an experiment, where we successfully learn a new data distribution
from random noise.

References

1. Abell, M.L., Braselton, J.P.: Introductory differential equations (2014)
2. Bogacki, P., Shampine, L.F.: A 3(2) pair of runge - kutta formulas. Appl. Math.

Lett. 2, 321–325 (1989)
3. Burden, R.L., Faires, J.D., Burden, A.M.: Numerical analysis. Cengage learning

(2015)



S-SOLVER: Numerically Stable Adaptive Step Size Solver for Neural ODEs 399

4. Burrage, K., Burrage, P.M.: Order conditions of stochastic runge-kutta methods
by b-series. SIAM J. Numer. Anal. 38, 1626–1646 (2000)

5. Chen, T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary dif-
ferential equations. ArXiv abs/1806.07366 (2018)

6. Finlay, C., Jacobsen, J.H., Nurbekyan, L., Oberman, A.M.: How to train your
neural ode: the world of Jacobian and kinetic regularization. In: ICML (2020)

7. Ghosh, A., Behl, H.S., Dupont, E., Torr, P.H.S., Namboodiri, V.: STEER: simple
temporal regularization for neural odes. ArXiv abs/2006.10711 (2020)

8. Grathwohl, W., Chen, R.T.Q., Bettencourt, J., Sutskever, I., Duvenaud, D.K.:
FFJORD: free-form continuous dynamics for scalable reversible generative models.
ArXiv abs/1810.01367 (2019)

9. Haber, E., Ruthotto, L., Holtham, E.: Learning across scales - a multiscale method
for convolution neural networks. ArXiv abs/1703.02009 (2018)

10. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, second edition
(2002)

11. Jong, L.D.: Towards a formal definition of numerical stability. Numer. Math. 28,
211–219 (1977)

12. Kim, S., Ji, W., Deng, S., Ma, Y., Rackauckas, C.: Stiff neural ordinary differential
equations. Chaos: Interdisc. J. Nonlinear Sci. 31(9), 093122 (2021)

13. Kobyzev, I., Prince, S., Brubaker, M.A.: Normalizing flows: an introduction and
review of current methods. IEEE Trans. Pattern Anal. Mach. Intell. 43, 3964–3979
(2021)

14. Krishnapriyan, A.S., Queiruga, A.F., Erichson, N.B., Mahoney, M.W.: Learning
continuous models for continuous physics. ArXiv abs/2202.08494 (2022)

15. Lawrence, F.S.: Some practical runge-kutta formulas. Math. Comput. 46, 135–150
(1986)

16. LeVeque, R.J.: Finite difference methods for differential equations (2005)
17. Li, X., Wong, T.K.L., Chen, R.T.Q., Duvenaud, D.K.: Scalable gradients for

stochastic differential equations. ArXiv abs/2001.01328 (2020)
18. Murray, R.M., Hauser, J.: A case study in approximate linearization: the acrobot

example (2010)
19. Pal, A., Ma, Y., Shah, V.B., Rackauckas, C.: Opening the blackbox: accelerating

neural differential equations by regularizing internal solver heuristics. In: ICML
(2021)

20. Press, W.H., Teukolsky, S.A.: Adaptive stepsize runge-kutta integration. Comput.
Phys. 6, 188–191 (1992)

21. Prince, P.J., Dormand, J.R.: High order embedded runge-kutta formulae. J. Com-
put. Appl. Math. 7, 67–75 (1981)

22. Rezende, D.J., Mohamed, S.: Variational inference with normalizing flows. In:
ICML (2015)

23. Rubanova, Y., Chen, T.Q., Duvenaud, D.K.: Latent ordinary differential equations
for irregularly-sampled time series. In: NeurIPS (2019)

24. Ruthotto, L., Osher, S.J., Li, W., Nurbekyan, L., Fung, S.W.: A machine learning
framework for solving high-dimensional mean field game and mean field control
problems. Proc. National Acad. Sci. 117, 9183–9193 (2020)

25. Sanchez-Gonzalez, A., Bapst, V., Cranmer, K., Battaglia, P.W.: Hamiltonian graph
networks with ode integrators. ArXiv abs/1909.12790 (2019)

26. Seiler, M.C., Seiler, F.A.: Numerical recipes in C: the art of scientific computing.
Risk Anal. 9, 415–416 (1989)

27. Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction. IEEE Trans.
Neural Netw. 16, 285–286 (2005)



400 E. Kloberdanz and W. Le

28. Weinan, E.: A proposal on machine learning via dynamical systems (2017)
29. Yan, H., Du, J., Tan, V.Y.F., Feng, J.: On robustness of neural ordinary differential

equations. ArXiv abs/1910.05513 (2020)
30. Zhong, Y.D., Dey, B., Chakraborty, A.: Symplectic ode-net: Learning hamiltonian

dynamics with control. ArXiv abs/1909.12077 (2020)
31. Zhu, A., Jin, P., Zhu, B., Tang, Y.: On numerical integration in neural ordinary

differential equations. In: ICML (2022)
32. Zhuang, J., Dvornek, N.C., Tatikonda, S.C., Duncan, J.S.: MALI: a memory effi-

cient and reverse accurate integrator for neural odes. ArXiv abs/2102.04668 (2021)



TableSF: A Structural Bias Framework
for Table-To-Text Generation

Di Liu1, Weihua Wang1,2,3(B), Feilong Bao1,2,3, and Guanglai Gao1,2,3

1 College of Computer Science, Inner Mongolia University, Hohhot, China
wangwh@imu.edu.cn

2 National and Local Joint Engineering Research Center of Intelligent Information Processing
Technology for Mongolian, Hohhot, China

3 Inner Mongolia Key Laboratory of Mongolian Information Processing Technology,
Hohhot, China

Abstract. Table-to-text generation is to generate a description from the tabu-
lar data. Existing methods typically encoded table content in a fixed order and
relied heavily on the table row or column sequence. They generated error text
descriptions when the row or column sequence changed. To solve the above prob-
lems, we proposed a novel structural bias framework that encodes tables using a
modified self-attention mechanism. The framework captures the connectivity of
cells in the same row or column through structural bias attention, distinguishing
important cells from unimportant cells from a structural perspective. The struc-
tural bias attention will be added on top of the full self-attention, which can obtain
the full structural information of the table. Experimental results show that this
method generates better text descriptions on the public dataset and accomplishes
a better understanding of the structured tables. This method not only obtains the
relationship between cells but also improves the robustness of the pre-trained
model.

Keywords: Table-to-text Generation · Self-Attention · Structural Bias Attention

1 Introduction

Tables are very common in all kinds of documents, they contain a lot of key information
and convey it to the readers [1]. Table-to-text generation refers to the language model
that generates text describing the table by inputting the table. Figure 1 shows an exam-
ple of table-to-text generation. In this task, the model needs to understand the content
and structure of the table and generate a short text that describing the table content.
The generated text should be fluent in sentences, fully express the information of the
table and not deviate from the facts of the table. Understanding the meaning of tables
and describing their contents has potential applications such as document analysis [2],
question answering [3], building dialog agents [4], and supporting search engines [5].

Most of the previous table-to-text generation tasks used the sequence-to-sequence
architecture [6]. These methods represent the table as a linear structure, causing the
model to rely too much on the row or column sequence of the table.
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Fig. 1. An example of table-to-text generation tasks.

These methods ignore the structural features of tables, which are key guidelines
for generating accurate text. The table structure contains the relationship between each
cell. However, the relationship between these cells can’t be utilized by linearizing the
table. Recently, pre-trained language models such as BERT [7], T5 [8], and GPT-2 [9]
have shown excellent ability to encode and generate natural language text fluently and
coherently, but the pre-training model can’t capture the structural information of the
table.

In this paper, we will improve the existing pre-trained language model method
through the structural properties of tables. The structural characteristics of the table
mainly refer to the relationship between the cells in the table. We propose a structural
bias framework, refered as TableSF,which not only obtains the relationship between cells
but also improves the robustness of the model. It encodes tables using a structure-aware
self-attention mechanism and captures table structure information through self-attention
and structural bias attention. This framework will add table structural bias attention on
top of the full self-attention structure, which can capture the connection structure of
cells belonging to the same row or column for a better understanding of the table. Our
method can be applied to pre-training model, like T5, BART and etc. Experiments show
that this method achieved better performance on the publicly ToTTo [10] dataset.

In particular, our contributions mainly include the following aspects:

• We illustrate the importance of table structural characteristics for generating correct
text descriptions about tables and improving the robustness of the model.

• We propose a new structural bias framework to efficiently express the relationship
between cells by an improved self-attention mechanism. This framework captures
the table’s structural information through self-attention and structural bias attention
to generate accurate and fluent textual descriptions of tables.

• We evaluate our method on the ToTTo dataset and obtain better results in several
domains.

2 Related Work

Table-to-text generation is to generate a description from the tabular data. Early research
adapted encoder-decoder [11] frameworks for table-to-text generation tasks. To enable
the model to extract the structural information from the table, Liu et al. [12] proposed a
table structure-aware model. This method does not perform well in generating complex
structured tables. Tables contain a significant amount of information, but the descriptions
of tables typically revolve around key information. So Ma et al. [13] proposed a model



TableSF: A Structural Bias Framework for Table-To-Text Generation 403

centered on the key facts of the table. However, this method is not good enough for
table information extraction and needs to be improved. Puduppully et al. [14] proposed
a content selection and planning model to solve the problem that the table-to-text gen-
eration model performed poorly in content selection. But it can lead to incorrect facts,
thus affecting the performance of the model.

The pre-training language model has an excellent performance in the field of natural
language processing. Inspired by it, Harkous et al. [15] andKale et al. [16] have achieved
excellent results on different data and text benchmarks using different pre-training lan-
guage models. Recently, some researchers have proposed several pre-training methods
designed for table data. Deng et al. [17] propose STRUG, a weakly supervised structure-
based text-to-SQL pre-training framework that can efficiently learn to capture text table
alignments. But their model is only for text-to-SQL tasks, which require parallel text
table data. Chen et al. [18] proposed a knowledge-based pre-training model, KGPT,
which is trained based on a large knowledge-based text corpus scraped from the web. To
solve the problem that the pre-trained languagemodel is difficult to perceive the structure
of the table. Zhang et al. [19] restrict attention to cells in the same row or column with
attention mask, where this institutional bias is too narrow. As a result, it is impossible
to directly focus on the relationship between cells in different rows or columns.

In the model mentioned above, the order of rows and columns of the table is more
or less dependent, and the structural characteristics of the table are not fully utilized,
which leads to the vulnerability of row or column order disturbance. But our structural
bias framework, TableSF, can effectively avoid this problem.

3 Approach

3.1 Preliminaries

Table Structure Transformations. Tables are both a visual communication mode and
a means of organizing data. A table consists of cells that display information in rows
and columns.

We will introduce the transformation methods of the two types of tables. First, table
content conversion involves modifying cell content or incorrectly exchanging any cell
information in the table. This practices will change the original meaning of the table.
The original table and the table with changed content are shown in Fig. 2. Secondly,
transform the table layout structure without changing the table cell content, which is
equivalent to the original table in a practical sense. Tables can be transposed, and entire
rows or columns can be swapped. Choose one or more of the above operations to change
the structure and layout of the table without changing the actual meaning of the table.
The table of the transformation structure is shown in Fig. 3.
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A good table-to-text generation method should generate correct descriptions for
tables with the same content but different layouts.

Fig. 2. Example of table content changes. (a) is the original table structure, (b) is changing the
row cells of the table alone, (c) is changing the column cells of the table alone, and (d) is changing
the cell content information. Arrows indicate how the position of the table component changes.
Content that does not conform to the original table is marked in red.

Fig. 3. An example of table structure changes. (a) swaps the rows of the table, (b) transposes the
table, (c) swaps the columns of the table, and (d) combines the first three ways. Arrows indicate
how the position of the table component changes. Such operations are effectively equivalent to
the original table contents.

Base Models. In a wide variety of generative tasks, generative models based on pre-
trained Transformers perform well [20]. To make such models suitable for table-to-
text generation tasks, we incorporate TableSF into them without changing the model’s
architecture. We use the T5 model as the base Model. The basic idea of T5 is to treat
every text processing problem as a text-to-text problem, taking the text as input and
generating new text as output.
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3.2 TableSF: Structural Bias Framework

TableSF realizes table structural bias learning by modifying the Transformer encoder. It
improves the ability of the base model to capture the structure of the table. Specifically,
we introduce a self-attention mechanism with structural bias in the base model.

Structural Bias Attention. Transformer [21] employs self-attention mechanism to
obtain information about all tokens in the input sequence. Each token can be connected
to other tokens through attention. This attention mechanism achieves good results in
sequence modeling but fails to capture table structural information.

We integrate structural information of tables through table structural bias. According
to the structural characteristics of the table, cells in the same row or column are seman-
tically related. We consider cells that are not in the same row or column to be irrelevant
to the table structure. The structural bias of the table includes the following situations:
“same row”, “row title to row cell”, “same column”, “column title to column cell”, “same
cell”, and “title to title”. In TableSF, we first get and save the attention of each token
and other tokens in the table. Next, in order to extract the structural bias attention of the
table, we integrate the table structure information by pruning the attention. Specifically,
we remove attention from the start of the attention between cells that are not structurally
related to the table, retaining attention within titles, within each cell, and between titles
and cells of the same row or column. Then combine the original attention and structural
bias attention to get the final attention. An example of attention used in our method is
shown in Fig. 4.

Fig. 4. Example of Original Attention, Structural Bias Attention, and TableSF Attention. In this
example, we omit attention between tokens within the same cells. The red line represents the
added structural bias attention.

Each Transformer contains self-attention mechanism and each token attention to
all tokens. For a single self-attention sublayer, the input X is projected by three matri-
ces WQ ∈ R

dmodel×dk , WK ∈ R
dmodel×dk and WV ∈ R

dmodel×dv to the corresponding
representation Q, K and V vectors:

Q = XWQ,K = XWK ,V = XWV (1)
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A
∧

= QKT

√
dk

,A = A
∧

+ Ā (2)

Attention(X ) = softmax(A)V (3)

where A
∧

is the original matrix capturing the similarity between queries and keys, and A
is the attention bias matrix after removing structurally irrelevant cells.

In this way, we also ensure efficient extraction of the table structure, which can
generate fluent sentences. It can be ensured that text descriptions generated in the case
of equivalent content with varying table layouts will still accurately reflect the meaning
of the table. Because the cells related to the table structure are all linked together in a
specific manner.

Positional Biases. When computing attention scores between tokens, the base model
usually needs their relative position in the linearization table sequence, but it can’t
completely obtain the positional relationship between the cells in the table, which can
easily lead to positional biases between different cells. In addition, the relative position
between the same token pair will change with the change in the table structure, which
leads to the generation of text descriptions inconsistent with the table content. Due to the
structural characteristics of the table, we should equally consider the relationship of each
cell in the same row or column. Cells in the same row or column should be assigned the
same relative position, no matter how far apart the cells in the same row or column are
in the linear sequence of the table. When changing the table structure doesn’t change the
table content, only the position of each cell changes without affecting the relationship
between cells. So even if the table structure layout changes, it’s still possible to generate
a text description that matches the table content.

3.3 Learning Objective

We use minimizes the negative log-likelihood, with N samples the loss function is

L = − 1

N

N∑

i=1

ni∑

j=1

logP
(
yij |yi<j,Ti, Si

)
(4)

where Ti is linearized table, Si is structural layout of the table, and target sentence are
Yi = {yi1, yi2, . . . , yini }.

4 Experiments and Results

In this section, we experiment with our method on the ToTTo [10] dataset. First, we
introduce the dataset, baselines, evaluation metrics, and input format. Then, we compare
the experimental results on TableSF and baselines. We also conduct an ablation study
targeting the modified attention part. Finally, we will use a case to demonstrate the
effectiveness of our method.
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4.1 Dataset

ToTTo [10] is an English dataset for the table-to-text generation task. It contains 83141
Wikipedia tables, and 120761/7700/7700 sentences, for train/dev/test. Depending on
whether the table exists in the train set, the development set and the test set can be
further divided into two subsets, namely overlap and non-overlap. Parikh et al. [10]
apply several heuristics to sample tables and candidate sentences fromWikipedia pages.
They used crowd worker annotators to highlight the corresponding table cells and revise
table text descriptions.

4.2 Baselines

We used the following methods as our baselines:

• Pointer-Generator [22]: A LSTM-basedmodel with attention and replication mech-
anism. Although originally designed for summarization, it is also commonly used for
data-to-text.

• BERT-to-BERT [23]: A Transformer-based encoder-decoder model, where the
encoder and decoder are both initialized with BERT.

• T5: A pre-trained model based on Transformer, it was pre-processed for text-to-text
tasks, and fine-tuned by linearization table to provide excellent performance.

• TABT5 [24]: An encoder-decoder model relies on special embeddings of the input
structure. The model was applied to table-to-text generation tasks and achieves state-
of-the-art performance.

4.3 Evaluation Metrics

The output is evaluated using two automatic metrics:

• BLEU [25]: It is a commonly used evaluation metric in text generation tasks. The
calculation method is designed with the core idea that the closer the generated text is
to the target text, the higher the quality of the generated text.

• PARENT [26]: It is a metric recently proposed specifically for data-to-text evaluation
that takes the table into account. Parikh et al. [10] modified it to make it suitable for
the ToTTo dataset, described in the Parikh et al. [10] thesis Appendix.

4.4 Input Format

We linearize ToTTo based on Kale and Rastogi [16] linearization procedure. The input
format is shown in Fig. 5. Specifically, the linearized text sequence consists of the page
title, section title, table titles and many cells. Each cell in a table may have relationships
with multiple rows or columns. The start and end of each field are indicated using special
markers. But not quite the same as Kale and Rastogi (2020), we use the same markers
to label row and column titles.
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Fig. 5. An example of the input representation of the dataset, with a structured table at the top,
the input format of the table in the middle, and the target text at the bottom.

4.5 Results

For the ToTTo test set, we reported the results in Table 1. We follow the official BLEU
and PARENT calculation results of Parikh et al. as evaluation indicators. It can be seen
from the experimental results that among all the baselines, the methods based on the
pre-trained Transformer models BERT-to-BERT. T5 are better than other methods, and
it performs best. Therefore we add TableSF to the T5 model. Adding our method to
base models of different sizes and comparing them separately, our method consistently
performs better.

Specifically, Compared with T5-small, TableSF (T5-small) improved 2.4 BLEU
points and 1 PARENT points, while compared with T5-base, TableSF (T5-base)
improved 1.3 BLEU points and 2.0 PARENT points. These results fully illustrate the
importance of table structural information, which is nearly completely discarded by the
baseline model.

On the overlap subset, TableSF (T5-small) achieves an improvement of 3.3 BLEU
points and 1.6 PARENT points over the baseline model. While compared with T5-
base, TableSF (T5-base) outperforms it by 0.8 BLEU points and 1.5 PARENT points
improvement, showing better performance.

On the non-overlap subset, compared with T5-small, TableSF (T5-small) achieved
1.5 BLEU points and 0.4 PARENT points improvement, while compared with T5-base,
TableSF (T5-base) improved 1.6 BLEU points and 2.7 PARENT points, which indicates
that our method has good generalization ability.

Furthermore, comparing our method with the state-of-the-art method TABT5.
TABT5uses a large-scale dataset of 6.2M tables for pre-training, enablingTabT5 to better
capture the structure of the language, thereby generatingmore accurate text descriptions.
In this case, the PARENT of our method is higher than TABT5 by 1.1 points and 1.6
points in the overall set and non-overlap subset, but theBLUEvalue is notmuch different.
TABT5 did not give results on the overlap subset.
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Table 1. Results on the ToTTo test set. The best score among all methods is shown in bold.
Unpublished results are represented by the ‘——’ symbol.

Model Overall Overlap Non-Overlap

BLUE PARENT BLUE PARENT BLUE PARENT

Pointer-Generator 41.6 51.6 50.6 58.0 32.2 45.2

BERT-to-BERT 44.0 52.6 52.7 58.4 34.8 46.7

T5-small 45.3 57.0 52.7 61.0 37.8 53.0

TableSF(T5-small) 47.7 58.0 56.0 62.6 39.3 53.4

T5-base 47.4 56.4 55.5 61.1 39.1 51.7

TABT5-base 49.2 57.3 —— —— 41.0 52.8

TableSF(T5-base) 48.7 58.4 56.3 62.6 40.7 54.4

4.6 Ablation Study

To demonstrate the role of our structural bias mechanism, we present the ablation study
results in Table 2. Compared with original self-attention, only applying the structural
information of the table by pruned structural bias attention can improve the overall
performance by 1.8 BLEU points. After combining original attention and structural bias
attention, it can bring an additional improvement of 0.2 BLEU points to the overall
performance. The overlap subset and non-overlap subset results illustrate that both the
tables seen and unseen during training can benefit from table structural information. The
structural bias framework improves the model’s ability to capture relationships between
cells.

Table 2. Ablation studyonToTTodev set. Scores areBLEU.Org+ str attention is the abbreviation
of the combination of original attention and structural bias attention.

Attention Overall Overlap Non-Overlap

original self-attention 45.7 53.7 37.7

structural bias attention 47.5 55.5 39.5

org + str attention 47.7 55.8 39.6

4.7 Case Study

In this section,we used a case to demonstrate the effectiveness of ourmethod.Descriptive
text for tables is generated using the base model and improving the base model based
on our method. We linearize table cells based on row and column sequence. It traverses
row by row the table from the upper left cell to the lower right cell. For example, if
the table in Fig. 6 is linearized, Huang Feihong will be located between the two movies
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Drunken Master and Karate Ghostbuster. It is impossible to judge which movie Huang
Feihong came from using the base model. This leads to a wrong match between the role
and title relationship, thus generating wrong text descriptions. However, our method not
only captures the structural information of the table, and finds the relationship between
roles and titles, but also generates correct textual descriptions of the table.

Fig. 6. Use T5 and TableSF to generate the text description of the table and the roles and titles
that match correctly are displayed in bold blue font.

Fig. 7. Change the order of the cells in the table in Fig. 6 without changing the contents of the
cells to form a new table. Use T5 and TableSF to generate a text description for the new table, with
correctly matched roles and job titles shown in blue bold. Table structure changes significantly
affected T5 results but not TableSF results.

In addition, tables with the same content can be expressed in different equivalent
forms. In this case, the model is required to generate a textual description that conforms
to the content of the table. Therefore, we change the layout of the table structure in Fig. 6
by transposing and exchanging the sequence of cells in the entire row and column, the
modified table is shown in Fig. 7. The text description generated by the base model isn’t
the same as the text description generated when the cell structure is not disturbed and
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doesn’t conform to the table facts. But this change in table structure doesn’t affect our
method which proves the effectiveness of our method.

5 Conclusion

We propose a structural bias framework suitable for table-to-text generation tasks. The
experimental results show that our method can extract the table structure. As long as the
cell content remains unchanged, no matter how the table structure layout changes, it can
generate correct text descriptions about the table content. We will study how to apply
our framework to the task of few-shot table-to-text generation.
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Abstract. Lip-reading is the process of translating input lip-movement
image sequences into text sequences, which is a task that requires both
temporal and spatial information to be considered, and feature extraction
is difficult. In this regard, this paper proposes a new lip reading model,
TCS-LipNet, which innovatively proposes the temporal channel space
attention mechanism module TCSAM, and compared with the channel
space attention mechanism, TCS increases the association of channel
space features in the temporal dimension and improves the performance
of the model. TCS-LipNet uses the TCSAM-based ResNet18 network as
the front-end module to enhance the extraction of visual features, and
DC-TCN (Densely Connected Temporal Convolutional Networks) as the
back-end module to address the temporal correlation of sequences. The
experimental data show that TCS-LipNet achieves 92.2% accuracy on
LRW, which is the highest accuracy rate currently.

Keywords: Lip reading · attention mechanism · feature extraction

1 Introduction

Lip reading is a process of understanding language through visual features and
has a wide range of application scenarios. Lip reading goes through three main
steps: lip visual feature extraction, sequence feature extraction, and classifica-
tion.

Ideally, the visual features should contain enough valid information and show
some robustness to noise in the video. Since the image features extracted by CNN
have powerful representation capability, existing lip-reading models usually build
front-end modules with them.

In the process of lip reading, we not only focus on the shape of the speaker’s
lips but also the motion of the lips and the sequential connection between visual
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features. Therefore, lip reading models need back-end modules to capture the
lip dynamics in frames for sequence feature extraction. RNN has good modeling
capability for sequence data, and RNN and its improved versions are widely
used in lip reading models. However, the latest results use the time-convolutional
network TCN, which performs better than RNN in all kinds of tasks. Martinez
et al. [1] used MS-TCN instead of Bi-GRU to achieve SOTA results. This was
followed by DC-TCN combined with the optimal training strategy to obtain a
classification accuracy of 92.1% on the LRW dataset [2].

Although attention mechanisms are widely used in the back-end module of
lip-reading models to improve the performance of RNNs, current research on
the introduction of attention mechanisms in the front-end module has not been
fully developed. Feng et al. [3] are one of the few attempts in this area, with
the introduction of SE-Net [4] in the front-end module of their model. The
model achieved an accuracy of 55.7% on LRW-1000, which is the most advanced
on this dataset effect, but the authors do not explore the specific role of SE-
Net in depth. In addition, we believe that lip reading is a task that requires
simultaneous consideration of temporal and spatial information, and existing
attentional mechanisms cannot fully satisfy the needs of the lip reading task.

Based on the above observations and reflections, this paper proposes the lip
reading model TCS-LipNet. Front-end module of the model, we design a new
attention mechanism module TCSAM, which increases the attention of channel
space features in the time dimension compared with the channel space attention
mechanism. The back-end module uses DC-TCN. experimental results show that
our model achieves 92.2% accuracy on LRW, achieving a new highest accuracy
for this dataset.

2 Related Work

2.1 Visual Feature Extraction

With the emergence of CNN architectures such as VGG [5], GoogleNet [6],
AlexNet [7], ResNet [8], DenseNet [9], etc., deep convolutional neural networks
have gradually become the mainstream approach in lip vision feature extraction
tasks. In computer vision, 2D CNN is a better choice for processing spatial infor-
mation, and it has two application methods in lip reading: one is to apply 2D
convolution on each frame to extract discriminative features of the lips, and this
method pays attention to the shape of the lips when speaking specific characters
[10–14]; in the other method, frames are stacked and input to 2D CNN, and
the model tries to capture local spatial features while capturing local temporal
features [15].

Compared with 2D CNN, 3D CNN-based feature extraction methods can
extract both temporal and spatial information from consecutive frames. LipNet
[16] uses 3D CNN and pooling layers with different kernel sizes to extract features
at different levels, combining GRU and CTC losses [17] to construct the first
end-to-end lip-reading model with recognition accuracy up to 93.4% on the Grid
dataset. Another popular approach is to deploy 3D counterpart blocks of 2D
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networks. Shillingford et al. [18] used a 3D version of VGG, which outperformed
the visual modality of LipNet and WLAS [19] on the LSVSR dataset.

The combined use of 2D CNNs, which emphasize visual features, and 3D
CNNs, which encode both spatiotemporal features in a sequence, can produce
more powerful and discriminative features [20–22].

2.2 Attention Mechanism in Convolutional Networks

SE-Net [4] adaptively adjusts the importance of each channel by using the
“squeeze-and-excitation” module. ECA-Net [23] improves on SE-Net with an
efficient way to compute channel attention, significantly reducing the computa-
tional effort and number of parameters of the model. The core idea of SK-Net
[24] is to introduce selective convolution between channels so that the model can
better capture the relationship between different channels. CBAM [25] is built
with a spatial attention module SAM and a channel attention module CAM.
Aggregates the attention information of both spatial and channel. DA-Net [26]
is similar to the CBAM idea, but the way to obtain the attention of both channels
is different.

3 TCS-LipNet Architecture

3.1 Time and Channel and Spatial Attention Module

The lip reading task is highly dependent on both temporal and spatial informa-
tion. Each image frame in the lip sequence carries part of the word information,
and the focused part of the word is more capable of making a distinction between
words. In the feature extraction of each lip image frame, the feature maps of dif-
ferent channels contain image information of different dimensions or depths, and
different positions in the image space have different degrees of importance to
the information provided by the task, and the lip reading should focus on the
information of the lip region and reduce the attention to the chin, cheek and
other regions.

For the above analysis, we propose TCSAM, which introduces attention
mechanisms in three dimensions: time, channel, and space assign weights to
the input data in three dimensions by convolution, filter out important infor-
mation in different dimensions, and then perform information fusion. There are
four forms of TCSAM, as shown in Fig. 1 and Fig. 2.

Figure 1a represents segmenting the image by sequence, each sequence unit
consists of feature maps of multiple channels, performing channel and spatial
attention extraction on the channel feature maps, and then extracting temporal
attention after merging the images by sequence.

Figure 1b represents segmenting the image by channel, each channel unit
consists of feature maps of multiple sequences, performing temporal and spatial
attention extraction on the sequence feature maps, and then extracting channel
attention after merging the images by channel.
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Fig. 1. The way a of TCSAM.

Figure 2a represents the segmentation of images by channel, each channel
unit consists of feature maps of multiple sequences, spatial attention extraction
is performed on the sequence feature maps, and then time, as well as channel
attention, is extracted after merging the images by channel.

Figure 2b represents segmenting the image by channel, each channel unit con-
sists of multiple sequences of feature maps, performing spatial attention extrac-
tion on the sequence feature maps, and then extracting the time as well as
channel attention after merging the images by channel.

The channel dimension is generally understood as different depth information
in the image space in the 2D image domain and different motion information in
the video in the 3D video domain. The main difference between Fig. 1 and Fig. 2
is whether the channel and time are considered as two interrelated dimensions,
similar to the width and height dimensions of an image, if they are not, then
Fig. 1, and vice versa, then Fig. 2. The difference between a and b is which is
more important for the task, the image information or the motion information.
If the 2D image information is more important for the model task then it is a,
and vice versa it is b. Considering that the lip reading model consists of an image
feature extraction model at the front end and a temporal semantic extraction
model at the back end, we choose the architecture in Fig. 1a and combine it with
the ResNet18 model for feature extraction.

Given a feature map F ∈ RT×C×H×W as input, TCSAM first calculates
the weight feature map of channel attention for Mc ∈ RC×1×1and the feature
map of each time series unit Ft ∈ RC×H×W , then calculates the weight feature
map of spatial attention Ms ∈ R1×H×W ,and finally combines the sequences
to calculate one-dimensional temporal attention weight MT ∈ RT×1×1×1.The
overall attention calculation process is shown in (1).
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Fig. 2. The way b of TCSAM.

F = {F1, F2, . . . , FT }
F ′ = MC(Ft) ⊗ Ft

Ft
′′ = MS(Ft′) ⊗ Ft′

F ′′ = {F1
′′, F2

′′, . . . , FT
′′}

F ′′′ = MT (F ′′) ⊗ F ′′

(1)

where ⊗ denotes element-wise multiplication, during which the value of attention
is multiplied by the corresponding dimension. Among them F ′, F ′′

t is the feature
map at time t, and F ′′ is the final output feature map. Figure 3 describes the
calculation process of each attention module. Next, we mainly introduce the
details of each attention module.

The calculation process of the channel attention module, as shown in Fig. 3a,
performs two-dimensional average pooling and maximum pooling on a set of
feature 3. A, performs two-dimensional average pooling and maximum pooling on
a set of feature FC

Avg2D ∈ RC×1×1 maps of each frame of the image, respectively,
forming average pooling feature maps and maximum pooling features Figure
FC

Max2D ∈ RC×1×1, and then use the same group of 2D convolution MLPs to
perform fully connected operations, add the two sets of vectors and pass through
the sigmoid layer to obtain the attention weight of the same dimension as the
number of channels. The formula is shown in (2), where σrepresents the sigmoid
function, W0 and W1 is MLP the shared weight in.
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Fig. 3. Diagram of each attention sub-module

MC(Ft) = σ(MLP (AvgPool2D(Ft)) + MLP (MaxPool2D(Ft)))

= σ(W1(W0(F
C
Avg2D)) + W1(W0(F

C
Max2D)))

(2)

The calculation process of the spatial attention module, as shown in Fig. 3b,
performs average pooling and maximum pooling in the channel dimension for
a set of feature FS

Avg2D ∈ R1×H×W maps of each frame of the image, respec-
tively, forming an average pooling feature map and a maximum pooling feature
map FS

Max2D ∈ R1×H×W , after the two sets of vectors are concatenated, 2D
convolution is used for full connection operation, and then the attention weight
of the same dimension as the image width and height is obtained through the
sigmoid layer. The formula is shown in (3), whereσ represents the sigmoid func-
tion, where f7×7 represents the convolution operation with a convolution kernel
size of 7 × 7.

MS(Ft
′) = σ(f7×7([AvgPool2D(Ft

′);MaxPool2D(F ′
t )]))

= σ(f7×7([FS
Avg2D;FS

Max2D]))
(3)

The calculation process of the temporal attention module, as shown in Fig. 3c,
performs three-dimensional average pooling and maximum pooling on all feature
maps of each frame in the image sequence to form average pooling feature maps
FT

Avg3D ∈ RT×1×1×1 and maximum pooling feature maps FT
Max3D ∈ RT×1×1×1,

and then use the same set of 3D convolution MLP to perform fully connected
operations, add the two sets of vectors and pass through the sigmoid layer to
obtain the attention weight of the same dimension as time. The formula is shown
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in (4), where σ represents the sigmoid function, W0 and W1 is MLP the shared
weight in.

MT (F
′′
) = σ(MLP (AvgPool3D(F

′′
)) + MLP (MaxPool3D(F

′′
)))

= σ(W1(W0(F
T
Avg3D)) + W1(W0(F

T
Max3D)))

(4)

3.2 Overall Model

TCS-LipNet can be divided into a front-end module and a back-end module. In
the front-end module, a 3D convolutional neural network and residual network
are used for lip feature extraction, and TCSAM is embedded into the residual
network to obtain deeper feature extraction. In the back-end module, DC-TCN
is used for temporal semantic feature extraction, and the specific architecture is
shown in Fig. 4.

Fig. 4. TCSAM integrated with a ResBlock in ResNet

The original image sequence is changed into T * 512 * 1 * 1 high-dimensional
feature data after Front3D and TCSAM-ResNet18, and the one-dimensional data
of this vector are dimensionally compressed and then extracted by DC-TCN for
temporal features. Input data After DC-TCN, the feature data of the same
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dimension as the number of classifications is output, and finally, the probability
is calculated by the softmax function for the prediction and classification of
results. The overall calculation formula is shown in Eq. 5.

y = softmax(DCTCN(x)) (5)

4 Experiments

4.1 Datasets

The LRW dataset was proposed by the Visual Geometry team at the University
of Oxford in 2016. The LRW dataset was born out of the growing need for large-
scale datasets due to the rise of deep learning. The LRW dataset data is sourced
from BBC radio and television programs rather than recorded by volunteers
or experimenters, making the dataset a qualitative leap in data volume. The
dataset selects the 500 most frequently occurring words and intercepts footage
of the speaker saying these words. This dataset is widely used in the field of
speech lipreading and has been evaluated and compared as a benchmark dataset
in several research papers.

4.2 Pre-processing

The video images from the LRW dataset are segmented at a frame rate of 25
FPS, grayed out, and cropped to a size of 96 * 96. The images were normalized,
randomly horizontally flipped, and randomly cropped to 88 * 88 size again before
being input into the model. The latest lip-reading enhancement techniques such
as Word Boundary, Time Mask, MixUp, Label Smooth, and cosine annealing
strategy are also used during training.

4.3 Model Experiments

On the LRW dataset, we used different lightweight image feature extraction
models to obtain the experimental results shown in Table 1.

Table 1. Experimental results of different lightweight models in the LRW

Front-end convolution Feature extraction model Acc. (%)

3D convolution ResNet18 83.70%

ResNet34 83.50%

VGG-M 61.10%

The ResNet18 model with the best results among them is selected, and the
comparison experiments are done for the no-attention mechanism, SE-based,
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Table 2. Experimental results of different attention models

Front Model Attention Module Acc.(%)

C S T

ResNet18 – – – 89.4%

SE-ResNet18 � – – 89.9%

CBAM-ResNet18 � � – 90.3%

TCSAM-ResNet18 � � � 91.6%

CBAM, and TCSAM attention mechanism models, respectively, and the results
are shown in Table 2.

It can be seen that the SE module has some improvement on ResNet, which
can improve the final accuracy by 0.5% with the same back-end model, while
the CBAM module improves ResNet18 better than the SE module because it
has more spatial attention than the SE model, and the TCSAM with the added
temporal attention mechanism obtains a higher accuracy.

In addition, we also conducted experiments on the LRW-1000 dataset. Due
to the extremely uneven distribution of data in the LRW-1000 training set, we
reduced the dataset and re divided the training set, verification set, and test set
at a ratio of 7:2:1 for experiments.

In the experiments on the LRW-1000 dataset, the front-end module uses the
Resnet18 model embedded with different attention mechanisms, and the back-
end uses the unified three-layer GRU model, and the results are shown in Table 3,
which shows that TCSAM has good generality.

Table 3. Comparison of different front-end modules in the LRW-1000

Front Model Attention Module Acc.(%)

C S T

ResNet18 – – – 61.7

SE-ResNet18 � – – 62.04

CBAM-ResNet18 � � – 62.26

TCSAM-ResNet18 � � � 62.47

After that, we used 5 × 7 × 7 3D convolution and TCSAM-based ResNet18
as a unified front-end model to experiment on different back-end models on the
LRW dataset, and the experimental results are shown in Table 4.
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Table 4. Experimental results of different back-end models

Front-end model Back-end model Acc. (%)

ResNet + TCSAM DC-TCN 92.2%

3-Bi-GRU 88.7%

4-Bi-GRU 86.2%

Bi-LSTM 84.3%

MS-TCN 85.3%

5 Conclusion

In this paper, we propose the lip-reading model TCS-LipNet. In the front-end
module, we design a new attention mechanism module TCSAM, which is embed-
ded into the ResNet model to extract the lip features of the person in the image.
Experiments show that our design is more effective in extracting the lip infor-
mation in the image. In the back-end module, we adopt DC-TCN, which is the
most effective in isolated lexical lip-reading tasks, to achieve temporal semantic
extraction of character lips, and this model can reduce the interference of useless
temporal sequences. TCS-LipNet achieves the current optimal accuracy of 92.2%
on the LRW dataset. In the future, this model can be extended for sentence-level
lip reading, applications on other linguistic datasets, and other tasks that rely
on both temporal and spatial information.
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Abstract. Over the years, research has advanced in the field of classifier ensem-
bles. Several ways to improve its efficiency have emerged, for homogeneous
and heterogeneous ensembles. One challenge when using classifier ensembles
is the definition of its structure. Basically, the ensemble structure selection can be
done in two different ways, static and dynamic selection. Different static selec-
tion, dynamic selection defines the ensemble structure is selected for each testing
instance (dynamic selection). Dynamic selection methods have been proposed in
the literature, mainly for ensemble members and features, but very little effort
has been done to propose dynamic selection methods for combination methods.
In this paper, a dynamic combination selection is proposed in which the combi-
nation method is selected to each testing instance. The main aim of the proposed
dynamic combination selection is to adapt the ensemble structure to the charac-
teristics of each testing instance. In order to assess the feasibility of the proposed
method, an empirical analysis is conducted. In this analysis, the proposed method
is used alongwith a dynamic ensemblemember selection (KNORA-Eliminate and
META-DES) in order to promote more dynamicity in the ensemble structure. In
this analysis, the proposedmethods are compared to classifier ensemblewith static
combination methods and it improved the performance of all analyzed methods,
for almost all analyzed scenarios.

Keywords: Classifier ensembles · Dynamic structure selection · Combination
methods

1 Introduction

A classifier ensemble can be defined as a collection of individual classifiers (ensemble
members), working in a parallel way, which receives the same pattern input and produces
its output. A combination method receives the members outputs and provides the global
output of the system [13]. Inmachine learning, classifier ensembles have been emerged as
an efficient technique in different classification problems. In the literature, several studies
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have been investigated efficient ways to combine classifiers aiming at improving the
classification performance in different applications. In these cases, we can find different
algorithms, methods and/or practices for combining classifiers [1–5, 7, 8].

In this context, one important aspect is the definition of the ensemble structure.
Several studies have proposed different ways to define the ensemble structure such as:
Optimization techniques, meta-learning, among others [21, 22]. Basically, the ensemble
structure definition can be done statically or dynamically. In the static selection, the
ensemble structure is selected in the beginning of the training phase, and it is used
throughout the whole ensemble processing. On the other hand, the dynamic selection
defines the ensemble structure dynamically, in which each testing instance has its own
ensemble structure. Several studies have shown that the dynamic selection tends to
increase the predictive capacity of an ensemble [1, 9].

There are several studies that investigate the dynamic selection of ensemble struc-
ture, mainly for ensemble members [7, 8] and features [23] and both of them [24]. As
mentioned previously, in an ensemble structure, the combination method aims at com-
bining the outputs of all classifiers in order to provide the final output of an ensemble.
Although this component plays an important role in the performance of an ensemble,
very little has been done in order to define an efficient dynamic selection of this module.

Aiming at proposing an automatic decision process to select the best classification
structure to a testing instance, this paper proposes a dynamic selection method for com-
bination methods in classifier ensembles. Also known as dynamic fusion, the proposed
method defines the region of competence of each candidate (combination method) for
each testing instance and the most competent combination method is selected. The def-
inition of the region of competence is made based on a pool of classifiers and it can be
statically or dynamically formed. In this paper, wewill apply the dynamic selection since
we aim to promote dynamicity in two important parameters of an ensemble (ensemble
members and combination method).

In order to assess the feasibility of the proposedmethod, an empirical analysis will be
conducted. In this analysis, the proposedmethodwill be used alongwith twowell-known
ensemble members dynamic selection methods, KNORA-Eliminate (KNORA-E) and
META-DES. In the proposed method, a set of eight combination methods are used as
candidates to be selected. Additionally, an analysis of the selection distribution of the
possible candidates will be performed in order to investigate whether this selection is
distributed over all possible candidates or there are one or two candidates that dominates
the selection process. Finally, the proposed method will be compared to 12 ensembles in
which the combination methods are selected in a static way. All the analyzed methods
will be evaluated using 15 classification datasets.

2 Theoretical Concepts and Related Work

2.1 State of the Art

There are several studies that investigate the dynamic selection of ensemble structure,
mainly for ensemble members [7, 8] and features [23] and both of them [10, 24].
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In relation to ensemble members, in [7], for instance, a new method for dynamic
ensemble member selection is presented and it uses the confidence of the base classi-
fiers during the classification and its general credibility as selection criterion. Thus, an
ensemble member is selected to compose the ensemble if its selection criterion is higher
than an established threshold x. Another interesting way is to use region of competence
as selection criterion, making it possible to improve the combination of classifiers, in
which the most competent ones in a certain region are selected. The use of region of
competence as selection criterion helps to maximize results [11, 12] by focusing only
on the most competent classifiers, and examples can be found in KNORA-E [1] and
META-DES [3].

In terms of dynamic feature selection, in [23], a dynamic feature select approach
was proposed. The main aim of this approach is to select a different subset of features
for one instance or a group of instances. The main goal of this approach is to explore
the full potential of all instances in a classification problem. In [24], an initial study on
how to combine these two dynamic selection techniques was performed. According to
the authors, an improvement in performance was detected with the use of this integrated
dynamic selection technique.

Although there are several studies to propose dynamic selection of ensemble mem-
bers and feature selection, very little has been done in order to propose efficient dynamic
selection of combination methods. This paper tries to bridge this gap and it proposes a
dynamic selection method based on region of competence.

2.2 Classifier Ensembles

It is well-known that there is not a single classifier which can be considered optimal
for all problem domains [13]. Therefore, it is difficult to select a good single classifier
which provides the best performance in practical pattern classification tasks [14]. There-
fore, classifier ensembles have emerged as an efficient classification structure since it
combines the advantages and overcomes the limitations of the individual classifiers. Pro-
viding better generalization and performance ability, when compared to the individual
classifiers [14]. In a classifier ensemble, an input pattern is presented to all individ-
ual classifiers [15, 16], and a combination method combines their outputs to produce
the overall output of the system [13, 17]. The Machine Learning literature has ensured
that diversity plays an important role in the design of ensembles, contributing to their
accuracy and generalization [13].

One important issue regarding the design of classifier ensembles involves the appro-
priate selection of its structure (individual classifies and combination methods) [18].
As previously mentioned, there are basically two main selection approaches, static and
dynamic. In this paper, we will focus on the dynamic approach. The next subsection will
describe some existing dynamic selection methods that will be used in this paper.

2.3 Dynamic Ensemble Member Selection

The Dynamic Ensemble Selection (DES) methods perform the dynamic ensemble mem-
ber selection. These methods select a subset of classifiers to classify each test instance.
The selection of the classifier subset is done through the use of a selection procedure
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and each DES method has its own procedure. There are several DES methods proposed
in the literature. In this paper, we will use two well-known DES methods, KNORA-E
and META-DES.

KNORA-E: Knora [1] is a well-known DESmethod and it seeks to find the best subset
of classifiers for a given test instance. It applies a k-Nearest Neighbors methods and the
neighbors of a testing instance are selected from the validation set and the competence
of each classifier is calculated. Based on a certain selection criterion, the classifier subset
is selected.

KNORA-E is a knora-based method, and the selection criterion is to select a set
of classifiers formed only by the classifiers that correctly classify all k neighbors of a
testing instance. In the case where no classifier can correctly classify all k neighbors,
the k value is decremented by one and this is done until at least one classifier can be
selected [1].

META-DES: The META-DES [3] is a DES method that uses the idea of selection
using meta-learning. In this method, a meta-problem is created to determine whether
a classifier is competent for a given test instance. According to [10], the META-DES
method uses five criteria for extracting meta-features in order to establish the new region
of a meta-problem.

After that, a meta-classifier is trained, based on the definedmeta-features. This meta-
classifier is then used to identify whether a classifier is competent or not to classify a
testing instance. Classifiers that are labeled as competent will be selected to compose
the ensemble to classify the test instance.

3 The Proposed Method

The proposed method aims at selecting the combination method of a classifier ensemble
dynamically. Algorithm 1 presents the main steps of the proposed method. As it can be
observed, the dynamic selection of combination is performed in the testing phase. In this
phase, when a testing instance is presented to the classifier ensemble, the competence
of each combination method is calculated.

Algorithm 1: The proposed method. 

01:  Procedure Dynamic Fusion 

02:  Input: Testing instance (Ti), Validation set (V),  

 pool of classifiers (M), combination methods (C) 

03: Output: The selected combination method (Cm)   

04:  N = k-NN(Ti,V) % Find the neighbors of Ti  

05:  FOR j=0 until j= size(C) DO
06:         Acc(Cj) = Accuracy(Cj,N)        

07:  END FOR
08:      Cm = Max(Cj,j=1,2,...,size(C))  

09: Return Cm  

10: END procedure  
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This competence can be calculated in several different ways. As the use of local
competence has beenwidely used in dynamicmember selectionmethods, in the proposed
method, the k-NN method is used to select the neighbors of the testing instance. Then,
the local accuracy of each combination method is calculated in this neighborhood, and
the most accurate combination method is selected.

When computing the competence region, a draw in accuracy may occur. In this case,
the number of neighbours is increased by 1 (k = k + 1) until a winner is detected. If
all instances of the Validation set is used and there is still a draw, the winner method is
randomly selected.

Additionally, there are two main parameters in the proposed method, the number
of neighbors of a testing instance (line 4 of Algorithm 1) and the size of the pool of
classifiers. Finally, he proposed method can be applied to a pool of classifiers selected
statically or dynamically. In order to providemore dynamicity for the classifier ensemble,
in this paper, the proposed method will be applied to two well-known dynamic member
selection methods, META-DES and KNORA-E (described in Sect. 2.3).

4 Experimental Methodology

In order to assess the feasibility of the proposed method, an empirical analysis will be
conducted. The next subsections will describe the main aspects of this analysis, mainly
the used datasets as well as its methods and materials.

4.1 Datasets

The datasets used in this paper are extracted from theUCIMachine Learning Repository.
Table 1 describes some characteristics of the used datasets, focusing in the number of
instances (Inst), number of attributes (Att) and number of classes (Class) of each dataset.

Table 1. Description of the used datasets

Dataset Name Inst Att Class

D1 Cardiac insufficiency 368 53 2

D2 Car 1728 6 4

D3 Seismic-bumps 2584 18 2

D4 Zoo 101 16 7

D5 Ionosphere 351 34 2

D6 Prognostic 198 33 2

D7 Wine 178 13 3

D8 Dermatology 366 34 6

(continued)
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Table 1. (continued)

Dataset Name Inst Att Class

D9 Heart 303 13 2

D10 Bone marrow 187 36 2

D11 Algerian Forest Fires 244 13 2

D12 Congres Voting Records 435 16 2

D13 Maternal Health Risk 1014 6 3

D14 Risk Factors Cervical Cancer 855 28 2

D15 Phishing Website 2456 30 2

Each dataset is divided into training, Validation1, Validation2 and Testing sets, in a
proportion of 50%, 16.7%, 16.7%, and 16.6%, respectively. The training set is used to
generate the pool of classifiers. The testing set is used to assess the performance of the
classifier ensembles. The Validation2 set is used to train the trainable combination meth-
ods (Neural Networks and Naive Bayes) while the Validation1 set is used to obtain the
competence region of the proposed dynamic fusion method. This division is performed
30 times and the presented results of each ensemble configuration represent the average
values over these 30 values.

4.2 Methods and Materials

In this paper, we evaluated 6 different pool sizes, 5, 10, 15, 20, 25, and 30 classifiers, in
which all of them are, generated through the Bagging method. In addition, 3 different
number of neighbors are assessed, 3, 7, and 11 neighbors. It is important to emphasize
that the proposed method as well as both member selection techniques (KNORA-E and
META-DES) use the idea of competence region. In this sense, the same number of
neighbors are used for both cases, the selection of the combination method (proposed
method) and the ensemblemembers (KNORA-E andMETA-DES). Finally, all ensemble
configurations use Decision Trees as ensemble members.

The proposed method used a pool of 8 different combination methods, which are:
Majority Vote, Sum, Geometric Mean, Naive Bayes, Edge and three Neural Networks
(MLP) versions, Hard, Soft and Soft-Class. The three NN versions differ on the input
information received by the ensemble members. In the Hard version, the ensemble
member provides only the winner class for the testing instance. In other words, thisMLP
version is trained and tested using only the winner class of each ensemble member. In
the other two MLP versions, the prediction probability for each class is used. In this
sense, the prediction probability for each class is provided, for both MLP versions.

As the MLP input must have a fixed size and the number of selected members might
vary, a strategy to define the input size must be done. In this paper, we decided to use the
maximum possible size for a combination method (pool of classifier times the number
of classes). In doing this, it is important to define how to handle the outputs of the
unselected classifiers. The way to handle the outputs of the unselected classifiers is the
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main difference between Soft and Soft-Class versions. While the Soft MLP version uses
-1 to all classes of an unselected classifier, the Soft-Class version uses a fixed value
(1/number of total classes) as the value to all classes of the unselected classifiers.

The MLP algorithms were implemented using the Scikit-Learn [6] library with the
Multi-layer Perceptron model, using 200 neurons in the hidden layer. All three neural
networks followed the same configurations since this configuration provided promising
results for all three NNs in a grid search method. For comparison purposes, the perfor-
mance of the proposedmethod is compared to 12 classifier ensembles using the following
combinationmethods:Majority Vote, Sum (Sum),Maximum (MAX),Minimum (MIN),
Geometric mean, Hard MLP, Soft MLP, Soft-Class MLP, Edge, Naive Bayes, Weighted
Sum and Weighted Ensemble Voting. For all analyzed ensembles, the ensemble mem-
bers are dynamically selected, and the combination method is statistically selected, as
originally proposed in both analyzed methods (KNORA-E and META-DES).

Additionally, the Weighted sum and weighted vote methods use weights on their
functioning. The used weight is 1/(distance-of-classes) and it is applied to the vote
procedure in theWeightedSumaswell as the probability of the classifiers in theWeighted
sum method.

The obtained results of all analyzed methods will be evaluated using the Friedman
statistical test [20]. In cases where a statistically significant difference is detected, the
Nemenyi post-hoc test is applied [20]. In order to present the obtained results by the post-
hoc test, the critical difference diagram (CD) [20] is used. This diagram was selected in
order to have a visual illustration of the statistical test, making it easier to interpret the
obtained results. Additionally, all implemented methods are included in the DESLIB [3]
library that contains both methods, KNORA-E and META-DES.

5 The Obtained Results

In this section, the obtained results are presented and analyzed. This analysis will be
done in three main parts. In the first part, the accuracy of all 13 analyzed methods are
assessed. The second part presents the distribution of the selected combination methods
while the third part describes the results of the statistical analysis.

5.1 The Accuracy of the Analyzed Methods

Tables 2 and 3 present the accuracy results of all 13 analyzed methods for KNORA-E
and META-DES, respectively. As previously mentioned, 18 different ensemble config-
urations (6 pool sizes and 3 different number of neighbors) and each configuration was
performed 30 times. Therefore, values in Tables 2 and 3 represent the average over 540
results. Additionally, the last line in both tables represents the overall accuracy over all
15 datasets. Finally, the bold numbers represent the highest accuracy for each dataset.
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For KNORA-E (Table 2), it can be observed that the proposed method (Dynamic
Fusion) delivered the highest accuracy in 8 datasets, out of 15, followed byVote and Sum
(6 datasets). Furthermore, the overall accuracy achieved by the proposed method is the
highest one of all analyzed methods. For META-DES (Table 3), the proposed method
did not deliver the highest accuracy levels in many datasets (4 out of 15). Nevertheless,
it presents the highest overall accuracy, followed by Vote and Sum. It shows that the
proposed method is the best overall classifier ensemble.

The results obtained in Tables 2 and 3 show that the use of the dynamic selection of
the combination methods proved to be efficient since it improves the performance of the
classifier ensembles, when compared to the static selection methods.We believe that this
improvement in performance is due to the fact that the dynamic fusion technique maxi-
mizes, even more, the characteristics of the ensemble members and, as a consequence,
to improve the performance of the classifier ensemble. The original KNORA-E and
META-DES techniques themselves already provide more efficient classifiers since the
best ones are selected to classify a testing instance. Furthermore, the proposed method
handles even more efficiently the classifier ensembles since it selects the combination
methods that suits better to the ensemble members. Finally, we can state that the inclu-
sion of more dynamicity in the ensemble structure can lead to an improvement in its
performance.

Table 2. Results of the classifier ensembles using the KNORA-E method

Dataset 
Majority 

Vote 
SUM MAX MIN Geometric

average 
Weighted

Sum 
Weighted

Vote 
MLP -
HARD 

MLP -
SOFT 

MLP -
SOFT 
CLASS 

Edge Naive 
Bayes 

Dynamic
Fusion   

D1 94.58 94.58 95.17 95.17 95.17 88.77 88.77 95.05 94.17 95.02 94.58 92.93 95.66 
D2 97.30 97.30 93.35 91.81 91.81 84.90 84.90 94.29 96.12 97.15 96.39 93.85 97.93 
D3 92.07 92.06 93.06 93.06 93.06 91.63 91.64 92.39 91.70 92.11 92.07 85.43 92.57 

D4 93.63 93.63 93.10 89.97 89.97 76.47 76.47 90.59 88.37 92.45 90.82 76.21 93.73 
D5 90.97 90.97 79.84 79.84 79.84 77.02 77.02 88.21 89.20 88.96 90.97 84.31 89.91 

D6 69.48 69.48 44.75 44.75 44.75 62.09 62.09 69.53 68.86 69.28 69.48 71.80 72.62 
D7 93.68 93.68 78.35 72.89 72.89 64.27 64.27 85.34 91.25 92.99 92.61 57.16 93.10 

D8 95.84 95.84 90.94 84.75 84.75 78.84 78.84 90.79 93.79 95.82 94.03 78.01 95.74 

D9 76.90 76.90 63.44 63.44 63.44 67.71 67.71 74.41 73.68 72.61 76.90 73.01 76.04 

D10 91.70 91.70 88.39 88.39 88.39 90.97 90.97 90.13 88.48 89.78 91.70 89.18 91.95 
D11 97.65 97.65 96.13 96.13 96.13 97.28 97.28 96.57 96.72 96.90 97.65 96.88 97.63 

D12 94.45 94.45 91.70 91.70 91.70 92.46 92.46 93.11 93.51 93.36 94.45 92.80 93.94 

D13 77.48 77.45 78.12 77.98 77.98 64.80 64.80 75.61 74.56 75.73 77.62 73.40 78.69 
D14 91.47 91.47 93.21 93.21 93.21 90.97 91.00 92.57 92.17 92.36 91.47 91.05 93.37 
D15 95.48 95.48 92.48 92.48 92.48 92.50 92.50 94.85 94.92 94.77 95.48 90.99 95.49 

Acc Ave 90.18 90.18 84.80 83.70 83.70 81.38 81.38 88.23 88.50 89.29 89.75 83.13 90.56 

5.2 The Selection Distribution

Once we have analyzed the accuracy of the different classifier ensembles, now we will
evaluate the selection distribution made by the proposed methods. In other words, what
is the proportion of selection for each combination method which was made by the
proposed method in the testing phase.
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Table 3. Results of the classifier ensembles using the META-DES method

Datasets Majority
Vote

SUM MAX MIN Geometric
average

Weighted
Sum

Weighted
Voting

MLP -
HARD

MLP-
SOFT

MLP -
SOFT
CLASS

Edge Naive
Bayes

Dynamic
Fusion

D1 94.23 94.23 94.52 94.52 94.52 90.43 90.43 94.07 95.09 95.22 94.23 91.30 95.01

D2 96.80 96.80 89.89 87.12 87.12 83.86 83.86 93.72 96.77 96.99 95.68 91.08 96.85

D3 92.01 92.01 93.25 93.25 93.25 92.37 92.37 92.37 92.17 92.62 92.01 82.59 92.66 

D4 94.54 94.54 89.54 85.26 85.26 75.92 75.92 90.88 95.13 95.26 89.80 75.13 94.48 

D5 90.46 90.46 80.22 80.22 80.22 76.99 76.99 88.31 89.42 88.96 90.46 83.57 89.67 

D6 74.26 74.26 41.30 41.30 41.30 65.80 65.80 69.21 69.65 70.28 74.26 58.61 73.16

D7 92.84 92.84 74.37 67.87 67.87 64.39 64.39 84.39 91.97 92.45 91.97 58.95 92.36 

D8 96.22 96.22 88.23 80.62 80.62 78.96 78.96 90.49 96.10 96.17 93.85 78.53 96.32 
D9 78.54 78.54 63.02 63.02 63.02 68.59 68.59 74.18 75.70 76.46 78.54 66.94 78.85 

D10 92.01 92.01 89.43 89.43 89.43 91.49 91.49 89.77 90.68 90.82 92.01 88.87 91.79 

D11 97.75 97.75 95.86 95.86 95.86 97.42 97.42 96.58 96.82 96.78 97.75 96.54 97.71

D12 94.54 94.54 92.17 92.17 92.17 92.72 92.72 93.09 93.70 93.50 94.54 92.72 94.08

D13 77.54 77.62 77.10 76.29 76.28 64.49 64.51 75.55 76.67 77.32 77.74 68.05 78.93 
D14 91.85 91.84 93.66 93.66 93.66 92.16 92.19 92.54 92.19 92.32 91.85 89.02 93.40 

D15 95.50 95.51 92.17 92.17 92.17 92.63 92.62 94.92 95.18 95.12 95.50 90.36 95.40 
Acc Ave 90.61 90.61 83.65 82.18 82.18 81.88 81.88 88.01 89.82 90.02 90.01 80.82 90.64 

Tables 4 and 5 present the selection distribution for KNORA-E and META-DES
methods, respectively. As it can be observed in both tables, all eight combination meth-
ods were selected by the proposedmethod in the testing phase. Themost selected combi-
nation method is Vote, for both methods (KNORA-E andMETA-DES). It is an expected
result since this method provided the second best accuracy level. On the other hand, the
Naïve Bayes was rarely selected as the best combination method. Once again, this com-
binationmethod provided one of theworst accuracy levels, for bothmethods (KNORA-E
and META-DES). It is important to emphasize that the Sum combination method was
also rarely selected since its performance is usually very similar to the Vote method and,
in these datasets, the latter method was slightly better, and it was then selected. Finally,
although the edge combination method obtained good accuracy levels, it is possible to
observe that it was rarely selected by the proposed method.

Still in the analysis of the selection distribution, it can be seen that there is a certain
equal selection distribution among five combination methods (Vote, Geometric mean,
MLP-Hard, MLP-Soft and MLP-Soft-Class) which shows that there is no best combi-
nation method and that an efficient selection can improve even further the performance
of the classifier ensemble. Among the NN versions, it can be observed similar selection
distribution among themselves, showing a certain similarity among all three version,
which together surpasses the majority vote proportion.

Based on the results of Tables 4 and 5, one can conclude that the proposed method
generally biases towards the method with the highest accuracy level. This is an expected
result since if a combination method is the most successful one, it is usually one of the
most successful one in the dynamic fusion competence region.

5.3 Statistical Analysis

In order to evaluate the obtained results from a statistical point of view, the Friedman
test [19] was applied to verify if there are statistical differences among all ensemble
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Table 4. Selection distribution in the dynamic fusion when using KNORA-E

x Sum Majority
Vote

Geometric
average

MLP-
HARD

MLP-
SOFT

MLP –
SOFT
CLASS

Edge Naive
Bayes

Cardiac
insufficiency

0.00 27.13 23.05 21.26 9.50 13.20 0.00 5.87

Car 0.00 30.81 1.82 12.22 11.61 26.53 7.06 9.95

Seismic-bumps 0.03 11.27 39.29 15.59 10.63 11.31 0.00 11.88

Zoo 0.69 79.94 0.80 4.57 7.43 6.20 0.19 0.19

Ionosphere 0.00 35.94 3.07 20.54 19.24 12.45 0.00 8.75

Prognostic 0.00 19.69 5.58 18.05 18.83 11.95 0.00 25.90

Wine 0.00 56.62 6.29 6.59 13.80 16.08 0.24 0.37

Dermatology 0.05 64.87 2.54 7.23 11.53 13.45 0.29 0.05

Heart 0.00 22.50 11.58 19.93 19.59 12.94 0.00 13.45

Bone marrow 0.00 46.83 18.20 15.27 6.40 6.35 0.00 6.95

Algerian Forest
Fires

0.46 58.11 18.64 9.62 4.49 3.92 0.49 4.26

Congressional
Voting Records

0.00 31.45 14.60 22.99 13.02 7.52 0.00 10.42

Maternal Health
Risk

1.31 6.98 28.23 22.25 11.46 15.76 5.99 8.00

Risk Factors
Cervical Cancer

0.00 5.50 41.65 22.76 10.29 6.90 0.00 12.89

Phishing
Website

2.64 27.28 10.39 23.30 16.98 17.23 0.00 2.18

OVERALL
AVERAGE

0.35 34.99 15.05 16.15 12.32 12.12 0.95 8.07

classifiers. The Friedman test is used to be able to state the hypothesis that the k-related
observations derive from the same population (similar performance) or not (superiority
in performance). In this test, the significance level used was set to 0.05. Hence, if the p-
value is less than the established value, the null hypothesis is rejected, with a confidence
level greater than 95%.

Table 6 presents the results of the Friedman test. As it can be observed in both
cases (KNORA-E andMETA-DES) that the statistical test detected statistical differences
among all analyzed methods. In this sense, the post-hoc test was applied the results are
presented in the Critical Difference Diagram [20].

In the Critical Difference Diagram, the performance of a method is statistically
different from another method if the difference between their average rankings is higher



The Dynamic Selection of Combination Methods in Classifier Ensembles 435

Table 5. Selection distribution in the dynamic fusion when using META-DES

x Sum Majority
Vote

Geometric
average

MLP-
HARD

MLP-
SOFT

MLP –
SOFTCLASS

Edge Naive
Bayes

Cardiac
insufficiency

0.00 24.71 26.66 19.82 13.38 12.42 0.00 3.01

Car 0.00 27.53 1.87 6.19 21.72 26.59 10.34 5.74

Seismic-bumps 0.21 14.42 43.71 14.85 4.64 8.92 0.00 13.26

Zoo 0.05 86.87 0.60 3.22 8.49 0.69 0.05 0.05

Ionosphere 0.00 38.44 4.97 23.05 16.68 11.93 0.00 4.93

Prognostic 0.00 31.72 6.07 17.69 12.37 13.71 0.00 18.45

Wine 0.00 50.36 6.39 8.83 20.03 13.21 1.06 0.12

Dermatology 0.00 66.19 1.74 5.83 22.73 1.15 2.36 0.00

Heart 0.00 27.24 16.11 19.53 14.87 14.39 0.00 7.87

Bone marrow 0.00 46.72 24.43 10.99 8.14 3.52 0.00 6.20

Algerian Forest
Fires

0.85 60.28 16.87 9.58 2.72 1.85 1.65 6.20

Congressional
Voting Records

0.00 33.12 19.66 22.12 12.64 4.71 0.00 7.75

Maternal
Health Risk

5.68 10.18 24.26 16.91 14.66 17.74 3.67 6.91

Risk Factors
Cervical
Cancer

0.00 12.90 50.08 14.87 8.44 2.33 0.00 11.37

Phishing
Website

5.13 28.92 10.77 14.84 18.49 17.32 0.00 4.52

OVERALL
AVERAGE

0.79 37.31 16.95 13.89 13.33 10.03 1.28 6.42

Table 6. Friedman test for KNORA-E and META-DES

KNORA-E META-DES
Chi-Squared df P Kendall's W Chi-Squared df P Kendall's W

1.161.254 12 <0.05 0.358 960.454 12 <0.05 0.296

than the critical difference calculated by the Critical Difference Diagram (CD). In this
case, when two methods are similar, there is a horizontal line linking these two methods.

Figure 1(a) shows the CD diagram for KNORA-E. As it can be observed in this
figure, the superiority of the proposed method was detected by the statistical test. It
shows that the improvement in performance was strong enough to be detected by the
statistical test, when compared to all other analyzed methods.
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Fig. 1. Critical Difference Diagram for KNORA-E (a) and META-DES (b)

Figure 1(b) presents the CD diagram for META-DES. In this method, unlike
KNORA-E, the superiority in performance delivered by the proposed method was not
detected by the statistical test. As it can be observed, the CD diagram detected that the
accuracy of dynamic fusion, sum, majority vote, and soft class MLP provide similar per-
formance. For the remaining methods, the proposed method provided higher accuracy
levels, detected by the statistical test.

6 Final Remarks

This paper proposed amethod to dynamically select combinationmethods for a classifier
ensemble. The combination methods are selected for each testing instance based on the
competence region of the analyzed combination methods. The dynamic combination
method selection was used along the dynamic ensemble member methods in order to
include more dynamicity in the ensemble structure selection and, as a consequence,
leading to more efficient ensembles.

In order to assess the feasibility of the proposed method, an empirical analysis
was conducted. In this analysis, the dynamic combination method selection was made
among eight combination methods: Majority Vote, Sum, Geometric Average, Edge,
Naive Bayes, and three types of MLP. Additionally, the proposed method was used in
two different dynamic ensemble member methods, KNORA-E and META-DES.

Through this analysis, it can be observed that the proposed method provided the
highest overall accuracy levels among all analyzedmethods, for bothmethods (KNORA-
E and inMETA-DES). Additionally, we could observe that the proposedmethod selected
almost equally five combination methods (out of 8), showing that it is indeed important
to apply different combination methods in the classifier ensemble structures. Finally, the
statistical test proved that the superiority in performance of the proposed method was
detected by the statistical test, for KNORA-E.

In general, the proposed technique showed promising results and, indeed, improve-
ments in performance, when compared to the static selection of combination methods.
We believe that this improvement in performance is due to the fact that the dynamic
fusion technique maximizes, even more, the characteristics of the ensemble members
and, as a consequence, to improve the performance of the classifier ensemble.



The Dynamic Selection of Combination Methods in Classifier Ensembles 437

This empirical was limited to 15 classification databases. As future analysis, it is
necessary to expand this analysis using another selection approaches and to perform a
more detailed analysis with more datasets and different ensemble configurations. It will
also be investigated the best number of neighbors to define the dynamic fusion compe-
tence region and to expand the tests for KNORA-Union [1] and Overall Local Accuracy
(OLA) [9], among others. Finally, different approaches to define the competence of a
method will be analyzed.
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Abstract. Point cloud registration plays a critical role in many com-
puter vision applications. Nevertheless, despite numerous feature-based
registration methods that have been presented recently, the majority
concerns learning local features, which unavoidably suffers from an insuf-
ficient discriminative ability of the point cloud feature descriptors. Thus,
this paper proposes a more discriminative feature descriptor by com-
bining global and local information and adding an intermediate supervi-
sion mechanism. Unlike previous methods, we introduce a Local-Nonlocal
Module that focuses on the local information of the point cloud and cap-
tures the global information, thus improving the discriminative ability of
the feature descriptors for repetitive structures. To obtain more robust
keypoints, we utilize the progressive scoring mechanism to detect key-
points that are the most significant in the neighborhood and channels
and range from a coarse to a detailed scope to provide progressive detec-
tors (PD). Additionally, we utilize the multi-level supervision mechanism
to provide stronger supervision signals. Finally, we train and evaluate the
proposed model on the indoor dataset 3DMatch, with the experimental
results indicating that our method outperforms related techniques.

Keywords: Local-Nonlocal features · Multi-level supervision
mechanism · Progressive scoring mechanism · Point cloud registration

1 Introduction

The point cloud registration methods can be classified into optimization-based
and feature-based. Optimization-based registration methods are repre-
sented by ICP-based methods, which mainly estimate the transformation matrix
through two-step optimization strategies. First, they search for the nearest neigh-
bor points to obtain correspondences and then estimate the transformation
matrix between the two point clouds based on the obtained correspondences. The
above two steps are performed iteratively to calculate the best transformation
matrix. However, this method is susceptible to poor initial relative pose. The
feature-based registration methods, which have received much attention in
recent years, can be divided into two categories according to the data type: learn-
ing on volumetric data and point cloud. Such methods typically involve three
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steps. First, the point cloud feature descriptors are obtained through the net-
work. Then keypoint descriptors of higher significance are extracted based on the
feature detectors. Finally, the correspondences and the transformation matrices
between the point clouds are calculated through the keypoint descriptors.

However, the existing feature-based methods mainly extract local feature
descriptors and calculate the feature of each point utilizing the neighboring
points, and thus are constrained to the local point cloud information. For exam-
ple, FCGF [8] extracts local features of sparse point clouds using the Minkowski
engine, and 3DMatch [36] extracts local features using the 3D voxel data after
point cloud conversion. However, there may be some repetitive structures in
a point cloud, forcing the feature descriptors obtained from the local area to
be insufficiently discriminative, affecting the feature similarity of 3D data. To
improve the discriminative nature of similar structures and products and enhance
the features’ descriptiveness, we introduce a Local-Nonlocal Module that com-
bines local and global information of the point cloud. This enables the network
to learn the point cloud distribution as a whole. Additionally, the traditional
single-level supervision methods cannot provide adequate supervision signals for
the point cloud registration, and the keypoint detectors disregard minute detail
information. Given this problem, the multi-level supervision mechanism is intro-
duced to provide stronger supervision signals. Moreover, to obtain more robust
keypoints, we utilize the progressive scoring mechanism that gradually shifts
from a coarse scope to a detailed scope to combine the regional significance and
the channel significance of keypoints into keypoint scores. The progressive scor-
ing mechanism combines the detection results at different density scopes to make
the keypoint scoring information more accurate.

In summary, this paper’s contributions are threefold:

1. We propose a Local-Nonlocal Module to combine local and global information
and improve the discriminative ability of feature descriptors for repetitive
structures.

2. We propose a multi-level supervision mechanism to provide stronger super-
vision signals and a progressive scoring mechanism to provide more accurate
keypoint scores.

3. Our method achieves better results on the indoor dataset 3DMatch than
related techniques.

2 Related Work

2.1 Point Cloud Registration Methods

Current point cloud registration methods can be divided into optimization-based
and feature-based methods. Next, we will introduce the milestone methods of
each of these two categories, and then introduce multi-level supervision, which
is a method that effectively improves the model effect.
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Optimization-Based Registration Methods. The key idea of the
optimization-based methods is to develop a complex optimization strategy to
obtain an optimal solution to the point cloud registration problem. The classic
implementation strategies for this approach are ICP-based methods. The ICP-
based registration methods can be classified as point-to-point ICP [3], point-
to-plane ICP [5], and plane-to-plane ICP [4] according to the different distance
metric employed. Calculating the transformation matrix based on the correspon-
dences can be divided into four methods: SVD-based [3], Lucas-Kanade (LK) [2],
LM-ICP method [12], and Procrustes analysis [11]. This type of methods is sen-
sitive to the initial relative poses, i.e., poor initial relative poses can lead the
algorithm to a local optimum, forcing the model not to converge to the best
registration result through iterations.

The Feature-Based Registration Methods. Feature-based registration
methods are a mainstream registration category that is divided into two cat-
egories according to the data type: learning on volumetric data and point cloud.
Several works have tackled this problem by learning volumetric data jointly. For
instance, 3DMatch [36] converts RGB-D images into 3D voxel data and inputs
it into a neural network to obtain local feature descriptors. 3DSmoothNet [13]
firstly adjusts the pose of point clouds by an estimated local reference frame
(LRF), then computes the 3D volumetric data based on the point clouds, and
finally feeds the volumetric data into the convolutional neural network to extract
the feature descriptors. FCGF [8] utilizes UNet-like network [21] and Minkowski
Engine [7] to extract feature descriptors based on volumetric data, providing a
larger receptive field while being computationally efficient. CGF [16] proposes a
unique method for learning feature descriptors that represent the local geometric
information of each point in an unstructured point cloud and then feeding the
hand-crafted descriptors into the neural network to obtain the learning-based
3D local feature descriptors. O-CNN [28] first transforms the point clouds into
a voxelized octree model and then constructs the neural network with modified
convolution to extract feature descriptors. OctNet [20] utilizes an unbalanced
octree to partition the space according to a hierarchy, stores the pooled feature
representation with the octree leaves, and then extracts the feature descrip-
tors by a modified neural network. These methods for learning volumetric data
mainly start from the perspective of local point cloud information and ignore
the repetitiveness of structures in the global perspective.

Besides, several works have learnt features on point clouds jointly [9,10,30,
34,38]. PPF-FoldNet [9] utilizes an unsupervised method to address the limi-
tation of requiring labeled data. The basic idea is to utilize PointNet [19] to
encode features and then utilize a decoder to obtain local feature descriptors
that are consistent with the input dimension. SiamesePointNet [38] extracts
feature descriptors utilizing a hierarchical coder-decoder network containing a
global shape constraint module and a feature transformation operator integrat-
ing global and local contextual information. DGCNN [31] dynamically updates
the graph structure between different levels to learn the semantic information of
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point sets at different levels and then extracts the local shape features of point
clouds that satisfy the registration invariance. Yang [33] proposes a hybrid fea-
ture representation involving color moments for each point to save point cloud
information. Then it extracts feature descriptors from point clouds utilizing a
supervoxel segmentation algorithm.

Methods such as FCGF [8], PPFNet [10], PPF-FoldNet [9], and D3feat [1],
extract local information as feature descriptors. Thus, these methods consider
only the point cloud’s local information and ignore each point’s information from
a global perspective. Opposing current methods, we present a Local-Nonlocal
Module that extracts local and global features simultaneously.

2.2 Multi-level Supervision

Multi-level supervision is a novel approach in deep learning that directly adds
supervision signals to the network’s intermediate layers instead of supervising
at the output layer of the network. This concept is widely utilized in artificial
intelligence tasks. For example, Wang [26] is the first to apply a multi-level super-
vised method to deep convolutional neural networks to solve image classification
tasks. The author successfully demonstrates that adding auxiliary supervision
branches to several intermediate layers enhances the model’s generalization abil-
ity. He [14] proposes a fictional teacher-student method and utilizes intermediate
supervision signals in the teacher network to improve the inferential ability of
the student network. Wang [27] utilizes intermediate supervision for adversarial
learning, which improves the network’s recognition ability in the intermediate
layer, and explores the structural consistency between semantics and depth. Li
[17] and Shi [24] suggest that inferential tasks usually have fixed intermediate
representations that can improve the model’s generalization ability. Therefore,
they utilize dense intermediate supervision to improve the sensitivity of the
backbone convolutional neural network to treat all regions. Note that all studies
above demonstrate the extraordinary effectiveness of multi-level supervision in
deep networks.

Given the successful practice of multi-level supervision in recent years, we
utilize a multi-level supervision mechanism to provide a stronger supervision
signal. In addition, more accurate keypoints are obtained through a progressive
scoring mechanism that combines keypoint scores in different receptive fields.

3 Method

Most feature-based methods [8–10] calculate the transformation matrices using
local information from the point clouds, which inevitably ignores global infor-
mation. However, there may be several repetitive structures in a point cloud,
and feature descriptors solely extracted using local point cloud information can
degrade the feature descriptors’ discriminative ability. Therefore, this paper com-
bines the global and local information of the point cloud, enabling the network to
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learn the point cloud structural distribution in the global space and enhance dif-
ferentiating similar structures by generating more discriminative feature descrip-
tors(DFD). Additionally, a multi-level supervision mechanism and progressive
scoring mechanism are utilized to obtain more accurate correspondences and
more robust transformation matrices.

3.1 Problem Definition

Point cloud registration has non-convex characteristics [18], and thus the best
transformation matrix and the most appropriate correspondences cannot be
computed simultaneously through a simple method. However, if we first derive
the correspondences by the Euclidean distance between two point cloud fea-
ture descriptors, the point cloud registration problem can be converted to an
L2-distance minimization problem.

arg min f(x)
R∈SO(3),t∈R3

= [
1
N

· ‖P − (RQI + t)‖], (1)

where R ∈ SO(3) denotes the rotation matrix and t ∈ R
3 is the translation

vector. I ∈ R
N×N is an indicator function matrix with a value of 1 when the

v-th point in Q is the corresponding point of the u-th point in P, and a value of
0 otherwise.

3.2 Network Structure

We construct a UNet-like [21] network structure that comprises a five-layer
encoder structure and a four-layer decoder structure, utilizing skip links to fuse
the corresponding feature descriptors in encoding and decoding. The local and
the computed nonlocal feature descriptors are fused in the last three layers of
the encoder network. Additionally, supervision signals are added in the last two
layers of the decoder network, and the keypoint scores obtained by the detec-
tors in the last two layers are fused, providing the final keypoint scores. Figure 1
illustrates the proposed network architecture.

3.3 Feature Descriptor

Recently, global information has been widely utilized [6,37]. Inspired by [29,32],
which introduces global information for registration tasks, we combine the local
and global information of the point cloud to obtain feature descriptors with
higher discrimination. Next, will present the details of the point clouds’ local
and nonlocal feature descriptors.

Local Feature Descriptor. A local feature descriptor is extracted by a new
convolution type named KPConv [25], which will be introduced in the following
paragraphs.
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Fig. 1. The network architecture comprises a UNet-like network with five encoding
layers and four decoding layers. The features are extracted in the last three layers
of the encodings part utilizing the Local-Nonlocal Module. A multi-level supervision
mechanism is utilized in the last two layers of the decoding part, and a progressive
scoring mechanism is employed to fuse scores in different scopes and obtain more
robust keypoint scores.

First, we calculate the weight coefficient h(yi, x̃i) based on the relative dis-
tance from the kernel points corresponding to the weight matrix to each neighbor
point. The smaller the relative distance, the greater the weight of the neighboring
point feature, with the maximum value being 1. Then, we represent the weight
parameter g(yi) of each neighboring point feature by a kernel function.

h(yi, x̃i) = max(0, 1 − ‖yi − x̃k‖
σ

), (2)

g(yi) =
∑

k<K

h(yi, x̃i) · Wk, (3)

where yi = xi − x denotes the decentralized neighbor point, x̃k is the kernel
point represented by a special position computed according to the specific rules,
and Wk is the kernel point weight matrix representing the weights of the kernel
points.

Finally, we calculate the local feature descriptor of each point utilizing the
weight parameter g(yi) and the features fi of each neighboring point, which are
calculated as follows:

(F · g)(x) =
∑

xi∈NX

g(xi − x) · fi, (4)

where F denotes the feature of each point corresponding to the neighboring
points, with each point having Nx neighboring points, and the weight coefficients
are calculated by the kernel function g.
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Fig. 2. Extraction method of the local and nonlocal feature descriptors. The notation
⊗ and ⊕ represent matrix multiplication and concatenation. Both source and target
point clouds extract features using this method.

Nonlocal Feature Descriptor. As depicted in Fig. 2, we utilize the attention
mechanism to compute the nonlocal feature descriptors for each point concerning
the whole point cloud. For each point feature f1, ..., fk ∈ Nk, its corresponding
nonlocal feature is F1, ..., Fk ∈ Mk, where Nk and Mk are the local and nonlocal
features of the current point cloud, respectively. The nonlocal features can be
written as:

Fi = A(R(fi, fj)γ(fk),∀fj , fk ∈ Nk), (5)

We utilize the paired function R to compute a high-dimensional relationship
matrix between the features of different points, representing the similarity
between the feature descriptors of different points. The dimension of the initial
feature changes with a unary function γ, changing from Din to Dout. Besides,
A denotes a connectivity function. In the experiment, we define the linear fully
connected function as γ(f) = Wγ · f and utilize the matrix dot product to cal-
culate the function R(fi, fj) that represents the feature similarity of two points.
The following equation expresses this similarity, and softmax [15] is utilized to
normalize the result.

R(fi, fj) = Softmax(Φ1(fi)T · Φ2(fj)/Dout), (6)

where Φ1 and Φ2 are two independent linear fully connected functions utilized
to compute the output features of a specific dimension Dout from the original
feature dimension Din. Here Din and Dout denote the original feature dimension
and the computed feature dimension, respectively.



446 S. Liang et al.

Fig. 3. Detectors via the progressive scoring mechanism.

Fig. 4. Schematic diagram of keypoint detection.

In summary, we propose a Local-Nonlocal Module to extract local and global
features of the point cloud respectively, and then fuse the obtained features by
matrix addition to obtain more discriminative feature descriptors (DFD).

3.4 Feature Detector

Progressive Scoring Mechanism in Training. To obtain more accurate key-
points, we present the progressive scoring mechanism that gradually shifts from a
coarse to a detailed scope to combine the regional and channel significance of the
keypoints into the keypoint scores. The keypoint scores Smid and Soutput of the
intermediate layer features Fmid and output layer features Foutput are calculated
separately by the following method. Then the intermediate layer scores Smid

are mapped to the dense keypoint score Smapping. Finally, the keypoint scores
(Smapping and Soutput) of the coarse and detailed scopes are superimposed to
obtain the final point cloud keypoint score S. The details are illustrated in Fig. 3
and Fig. 4.

si = max
k

(αk
i · βk

i ), (7)

sj = max
k

(αk
j · βk

j ), (8)

where i and j denote the subscript of a point in the point cloud of the intermediate
and the output layer, and k denotes the channel subscript of a specific point.

Then, we utilize the keypoint scores smid in the intermediate layer combined
by si and downsample the indexes to obtain the mapping keypoint scores s′

final.
After that, we fuse the above mapping scores s′

final and network output keypoint
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scores sfinal combined by sj to calculate the final keypoint scores. The details
are given below.

The regional saliency score αk
i is utilized to evaluate the significance of each

point relative to the points in its neighborhood. The relative significance of
each point within a certain local area is evaluated by calculating the differ-
ence between each point feature Dk

i and the average feature of the points in its
neighborhood. To prevent the scores from being affected by local sparsity, the
calculated regional saliency scores are processed utilizing the softplus function in
PyTorch. In particular, the number of nonzero features is utilized to normalize
the features, preventing gradient explosion caused by significantly large values.
The specific calculation equation is as follows:

αk
i = ln(1 + exp(Dk

i − 1
‖Nxi

‖ ·
∑

xj∈Nxi

Dk
j )). (9)

The channel saliency score βk
i is calculated by the magnitude of each point

relative to the maximum channel eigenvalue, assessing the saliency of different
channels for each point, as follows:

βk
i =

Dk
i

maxt(Dt
i)

. (10)

Keypoint Scoring Method in Testing. The keypoints in the testing point
cloud must be the most significant in their neighborhood and in the channels,
based on the following calculations. Besides, we also utilize the progressive scor-
ing mechanism to combine the scores under different scopes during testing.

i = arg max
j∈Nxi

[max
t

(Dt
j)], (11)

where Nxi
denotes the set of points of the i-th point in the specified radius.

Specifically, we first select the most significant channel k (with the largest eigen-
value) for each point and then utilize whether the eigenvalue of this point in
channel k is the maximum eigenvalue of the points in the neighborhood on
channel k as the judgment criterion for the keypoints. Finally, the keypoints
with the highest scores can be selected as the final keypoints.

3.5 Multi-level Supervision Mechanism

First, the source and target point clouds in the intermediate layer are extracted
from the considered point set (the source and target point clouds are downsam-
pled to obtain the point set of the intermediate layer according to the given
radius). The source point cloud is translated and rotated utilizing the ground
truth transformation. Finally, the KD-tree built with the target point clouds is
utilized to perform a radial search and obtain the correspondences between the
source and target point clouds. Following that, the corresponding source and
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target point cloud features utilized in the intermediate layer are extracted from
the complete features for a multi-level supervision mechanism.

The supervision signal is divided into two parts. The first part involves the
feature descriptors’ supervision in the intermediate and final layers, represented
as Lmid and Lfinal. The second part is the supervision of the detectors for the
keypoint score combinations in different network layers, represented as Ldet. The
final loss function is the sum of the two types of losses in the case of different
weights.

Loss = Wdesc · (Lmid + Lfinal) + Wdet · Ldet. (12)

Feature Descriptor Loss. The supervision of feature descriptors is divided
into two parts, i.e., in the intermediate layer and the final layer. The supervision
of a certain feature descriptor is obtained by superimposing the supervision on
positive and negative sample points, respectively.

Ldesc =
1
n

n
∑

i=1

(Lpos + Lneg), (13)

Lpos = max(0, dpos(i) − Mpos), (14)

Lneg = max(0,Mneg − dneg(i)), (15)

where Mpos and Mneg are the boundary values of positive and negative point
cloud pairs, dpos(i) denotes the Euclidean distance between corresponding point
features, and dneg(i) is the Euclidean distance between non-corresponding point
features, which is calculated as follows:

dpos(i) = ‖dAi
− dBi

‖2, (16)

dneg(i) = min‖dAi
− dBj

‖2 s.t. ‖Bi − Bj‖2 > R, (17)

where R denotes the safe distance and Bj is the negative sample outside the full
distance of the true correspondences.

Feature Detector Loss. The feature detector loss can be calculated from the
keypoint scores after fusing the scores in the intermediate and the final layers.
The specific calculation method can be represented as follows,

Ldet =
1
n

n
∑

i=1

[(dpos(i) − dneg(i)) · (sAi
+ sBi

)]. (18)

In the above formulation, if two points are corresponding, i.e., dpos(i) −
dneg(i) < 0, the smaller the feature detector loss, the higher the score of the point
pair. Similarly, if two points are not corresponding, i.e., dpos(i) − dneg(i) > 0, the
smaller the feature detector loss, the lower the score of the point pair. Through
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the deep learning back-propagation mechanism, the detector loss will become
smaller, which means the scores of positive sample pairs will increase, the scores
of the negative sample pairs will reduce, and finally, the most appropriate point
cloud score will be obtained.

4 Experiment

4.1 Dataset

The 3DMatch dataset [2] is a common indoor registration dataset, commonly
utilized to extract keypoints and feature descriptors of 3D point clouds, and con-
duct point cloud registration, classification, and segmentation tasks. This dataset
collects data from 62 scenarios, of which 54 were utilized to train the model and 8
to evaluate the model. The dataset consists of three main components: 3D coor-
dinate data of the point clouds, overlap rate between the point cloud pairs, and
correspondence pairs between the two point clouds. We down-sample 3DMatch
point clouds using a voxel grid filter of size 0.03 m in our experiment. Several
point clouds of the dataset has been shown in the first column of Fig. 6.

4.2 Evaluation Metrics

We utilize three metrics, i.e., feature matching recall, inlier ratio, and registra-
tion recall, to evaluate the performance of the feature descriptors the network
provides. Similar to the related literature, we briefly discuss these evaluation
metrics as follows. Refer to [1] for more details of the evaluation metrics.

Feature matching recall measures the accuracy of the correspondences
obtained by the feature descriptors of the point cloud pairs after being registered
by the ground truth transformations.

Inlier ratio is the metric that judges the requested correspondences by the
proportion of the Euclidean distance between the corresponding point cloud
pairs within a distance threshold after registration utilizing the ground truth
transformations.

Registration recall defines the proportion of overlapping regions that can
be correctly registered by the transformation matrix derived from RANSAC[39]
for the standard transformation matrix fragment pairs.

4.3 Experimental Details

All experiments are conducted on a PC with an Intel Core i7 @ 3.6 GHz, 20 GB
RAM, and an NVIDIA RTX 3090 GPU. We utilize point cloud pairs with an
overlap of over 30% for training, construct the network structure according to the
PyTorch framework, and set the initial voxel radius for downsampling to 3 cm.
During training, we optimize the model parameters utilizing gradient descent loss
with an initial learning rate of 0.01 and update the learning rate dynamically
utilizing an exponential decay strategy. The maximum training epoch is set to
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150, and the model converges at the 47-th epoch. To solve the emergent gradient
explosion problem, we utilize a gradient cropping method to control the gradient
values in the range of [−10, 10] before back-propagation.

4.4 Comparison with Related Methods

We compare our method’s evaluation results with the representative techniques
on the 3DMatch dataset, by selecting 5000 sampling points to compare the
registration effect. The developed method uses 5000 keypoints obtained from
the detector scores for testing. As reported in Table 1, the proposed method
attains the best results.

Table 1. Results of FMR and STD in different methods.

FMR (%) STD

FPFH [22] 35.9 13.4

SHOT [23] 23.8 10.9

3DMatch [36] 59.6 8.8

CGF [16] 58.2 14.2

PPFNet [10] 62.3 10.8

PPF-FoldNet [9] 71.8 10.5

PerfectMatch [13] 94.7 2.7

FCGF [8] 95.2 2.9

D3feat [1] 95.8 2.9

Ours 96.3 2.61

4.5 Model Performance Under Different Numbers of Points

To obtain more comprehensive evaluation results, we further evaluate the results
of the three evaluation metrics under a different number of sampling points and
extend during testing the number of points from 5000 to 2500, 1000, 500, and
250. As reported in Table 2, our method achieves better results in most cases.

4.6 Ablation Experiments

To evaluate the validity of our proposed methods, we conduct ablation experi-
ments on the 3DMatch dataset. As highlighted in Table 3, we compare 1) the
registration results utilizing the method proposed in D3feat [1], 2) Model-V1:
the registration results utilizing our method without intermediate supervision,
3) Model-V2: the registration results utilizing intermediate supervision mecha-
nism with local features and 4) the registration results integrating global and
local features and utilizing intermediate supervision mechanism. We conclude
from the experimental results that the new proposed feature descriptors and the
intermediate supervised mechanism lead to more robust registration results.
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Table 2. Evaluation results of the 3DMatch under a different number of points.

# Keypoints 250 500 1000 2500 5000

Feature Matching Recall (%)

PerfectMatch [13] 82.9 90.1 92.6 94.2 94.7

FCGF [8] 89.9 93.0 94.6 95.5 95.2

D3feat [1] 90.6 92.8 94.4 94.8 95.8

UKPGAN [35] 92.6 93.5 94.2 94.7 95.5

Ours 94.6 95.3 96.0 96.2 96.3

Registration Recall (%)

PerfectMatch [13] 50.9 64.8 73.4 77.5 80.3

FCGF [8] 73.0 81.0 85.8 85.8 87.3

D3feat [1] 75.4 83.0 86.6 88.2 89.4

UKPGAN [35] 69.7 77.1 81.4 82.8 83.8

Ours 85.8 89.7 91.7 92.0 92.6

Inlier Ratio (%)

PerfectMatch [13] 19.1 23.0 28.3 34.5 37.7

FCGF [8] 34.7 43.3 49.1 54.5 56.9

D3feat [1] 30.8 35.3 38.6 41.1 42.1

UKPGAN [35] 33.1 34.0 35.5 38.8 39.3

Ours 41.7 43.5 44.3 43.0 43.7

Table 3. Ablation experiments.

# Keypoints 250 500 1000 2500 5000

Feature Matching Recall (%)

D3feat [1] 90.6 92.8 94.4 94.8 95.8

Model-V1 92.8 93.8 94.7 95.6 92.8

Model-V2 93.5 94.2 95.4 95.5 95.5

Ours 94.6 95.3 96.0 96.2 96.3

Registration Recall (%)

D3feat [1] 75.4 83.0 86.6 88.2 89.4

Model-V1 81.3 86.2 88.4 89.4 89.6

Model-V2 84.4 89.1 90.9 91.5 92.1

Ours 85.8 89.7 91.7 92.0 92.6

Inlier Ratio (%)

D3feat [1] 30.8 35.3 38.6 41.1 42.1

Model-V1 36.2 38.8 40.7 41.8 42.4

Model-V2 40.9 43.2 43.5 41.9 42.3

Ours 41.7 43.5 44.3 43.0 43.7

4.7 Visualization

As can be observed from Fig. 5, the keypoints are mainly distributed in the
regions of the edges and vertices of the point cloud. By utilizing the keypoints
selected by the progressive detectors to calculate the transformation matrix, we
can obtain the transformation matrix with smaller registration errors for point
clouds in different poses.
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Fig. 5. Results on the 3DMatch dataset, visualizing the complete point cloud and the
selected keypoints (500 are in red and the rest in blue). (Color figure online)

We select some fragment pairs and register them with our proposed method,
D3feat [1] and FCGF [8]. The results before and after registration are shown in
Fig. 6. From the results, we can conclude that: 1) Point cloud registration task
can be accomplished by the proposed method, 2) The point cloud reregistrated
by the proposed method can achieve better results compared to D3feat [1] and
FCGF [8].

Initial relative pose Ours D3feat FCGF Ground truth pose

Fig. 6. Quantitative test results in the 3DMatch dataset.
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5 Conclusion

This paper proposes an efficient feature descriptor by combining global and
local information. A stronger supervision signal can also be provided to the
feature descriptors by applying a multi-level supervision mechanism and a pro-
gressive scoring mechanism. The developed method selects more accurate key-
points, leading to more robust point cloud registration. Extensive experiments
on the 3DMatch dataset demonstrate that our model outperforms some existing
methods, especially when selecting fewer keypoints.
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Abstract. Dialogue rewriting aims to reconstruct the incomplete utterance from
dialogue history. It is a challenge task due to the frequent phenomena of corefer-
ence and ellipses in dialogue. Although the conventional encoder-decoder archi-
tecture has shown the effectiveness for dialogue rewriting, there are still two
issues should be addressed. Firstly, the objects referred to or omitted are usually
mentions, represented as spans. So the traditional word-by-word copy mecha-
nism, which is widely used in current models, can lead to incompletion, repeti-
tion and disorder problems. Secondly, words in dialogue history and common
vocabulary list have different effects on rewriting the current utterance. Intu-
itively, semantically and cohesively matched spans are more important. In this
paper, we propose a novel Gated Span-level Copy Mechanism (GSCM) that aims
to retrieve the omitted or co-referred spans contained in history dialogue and
recover them for the incomplete utterance. The experimental results on the Cam-
Rest676 and RiSAWOZ corpora show that our GSCM can significantly improve
the performance of dialogue rewriting.

Keywords: Copy Mechanism · Dialogue Rewriting · Ellipsis Recovery ·
Coreference Resolution

1 Introduction

In daily conversations, objects that are repeatedly referred to or are well known, tend to
pronoun or be omitted. It is normal for humans, but hard for machines to understand.
The task of dialogue utterance rewriting (Su et al. [13]; Pan et al. [7]) aims to recon-
struct the latest utterance using dialogue history. The obtained utterance is semantically
equivalent to the original one and can be understood without historical information.

Table 1 illustrates a typical example. For the incomplete utterance x3(usr), the
expression ‘Suzhou’ is omitted to avoid repetition (Ellipsis), and the pronoun ‘this’ in
x3(usr) refers to ‘always cloudy raining’ in x2(sys) (Coreference).

Currently, A series of models of generative-based have been studied for multi-turn
systems. The conventional encoder-decoder architecture has been widely used in dia-
logue rewriting task with great success (Su et al. [13]; Pan et al. [7]; Quan et al. [10];
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Table 1. An example of multi-turn human-to-machine dialogue, including the dialogue history
utterances (x1, x2), the incomplete utterance (x3) and the complete utterance(x∗

3). Purple means
ellipsis and orange means co-reference.

Zhang et al. [15]; Ni et al. [6]). Some studies focus on how to better model the con-
versation history to improve the rewriting performance, while others focus on better
generation (i.e.,decoding) with techniques such as pointer networks, copy mechanisms,
and so on. Although recent work on dialogue rewriting has been achieving impressive
progress, there are still two issues should be addressed. Firstly, just as noted in Table 1,
we can find that the omitted or co-referred objects are mentions (i.e., spans), which
can be found in dialogue history in most cases. However, most generation models are
currently based on the word level, which inevitably leads to in-completion, repetition
and disorder problems. Secondly, intuitively, what is referred or omitted is usually the
current focus of the dialogue. During decoding stage, all words without prior focus are
considered equivalently may result in performance degradation.

In this paper, we propose a novel Gated Span-level Copy Mechanism (GSCM) to
retrieve the omitted or co-referred spans contained in history dialogue and recover them
for the incomplete utterance. It tracks the copying history and copies the next word
from the input based on its relevance with previously generated tokens. In particular,
during encoding stage, we use the encoder to predict the span-copy labels. Then filtered
history dialogue spans will be integrated into the original history dialogue. So that we
can effectively extract and aggregate the omitted or co-referred expressions into history
dialogue as extra guidance. During decoding stage, we use the decoder to predict the
span-copy labels to get the span-copy distribution. Then the span-copy distribution is
used to generate the Gated Span-Copy distribution to work for generation. Our model
achieves the state-of-the-art results on CamRest676 and RISAWOZ datasets.

2 Related Work

Recently, building a chatbot with data-driven approaches in open-domain has drown
significant attention [4,12]. However, it is hard for machines to understand the real
intention from the original incomplete utterance. Then sentence rewriting task is pro-
posed to generate complete utterances. Xing et al. [14] proposed a hierarchical recurrect
network using sentence-level attention and word-level attention mechanisms to get the
history dialogue being copied distribution. Kumar et al. [5] and Su et al. [13] used
the framework of sequence-to-sequence learning to generate complete questions from
a non-sentential question, given previous question and answer. Quan et al. [10] first
attempted to provide both solution and dataset for ellipsis and coreference resolution in
multi-turn dialogue. Pan et al. [7] propose a cascade frame of “pick-and-combine” to
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restore the incomplete utterance from history, then use extra guidance from context to
help the generation during decoding time. We also use this method to do experiment.
Ni et al. [6] proposed the ELD which solves such restoration task in an end-to-end way.
It employs a speaker highlight dialogue history encoder and uses the same architec-
ture in [14] to use both the sentence-level and word-level attentions. To mask full use
of the characteristic of coreference and ellipsis, since the object omitted or co-referred
objects are mentions (i.e., spans), we propose the GSCM to make model learn to copy
consecutive spans.

3 Constructing Span-Copy Labels

The gold span-copy labels for utterance rewriting is not naturally available. To address
this problem, We construct the span-copy tags based on the alignment between the input
ui and reference utterances u

′
i. We firstly match the ui and u

′
i using longest common

Fig. 1. An example of constructing span-copy tags.

sub-sequence(LCS) algorithm to get the span alignments(the black lines in Fig. 1). Then
we get span-copy labels following rules:(i) For the aligned spans in both ui and u

′
i, the

first word (e.g. “。 (.)”) in each span is assigned the label B, which means the beginning
of the aligned span. If one span (e.g. “冬天就是 (winter is like)”) contains more than
one word, the following words (e.g. “就是 (is like)”) after first word are assigned the
label I, which means the word is the intermediary in the aligned span. (ii) For each
unaligned span (e.g. the spans in blue and yellow in Fig. 1) in u

′
i, if there are multiple

candidate spans can be matched from dialogue context, we choose the closest span (e.g.
“苏州 (Suzhou)”) to avoid long-range dependency. The matched span (e.g. “ 经常阴
天下雨 (always cloudy raining)”) in both ui and u

′
i are assigned labels following (i)

Synchronously. (iii) If no candidate can be found, the token are assigned label O.

4 Approach

We formulate utterance rewriting task as a sequence-to-sequence generative prob-
lem. Given n-th user utterance Un = (u1, u2, ..., us) and its dialogue history H =
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Fig. 2. The framework of GSCMmodel that copies what is relevant to the previous copied words.
The red boxes indicates the being copied 3-gram. (Color figure online)

{(U1, R1), (U2, R2), ..., (Un−1, Rn−1)} corresponding to all previous dialogue turns,
where Ri represents the system response of the i-th turn, the goal is to recover the ellip-
sis or coreference for the original user utterance Un. The dialogue ellipsis and corefer-
ence resolution task can be formulated as ((H,Un) → Uc) where each token of Uc is
generated from current user utterance or its dialogue history. Our model architecture is
shown in Fig. 2 which mainly consists of three components: (i) utterance encoder; (ii)
Gated Span-Copy Mechanism; (iii) decoder with gated copy mechanism.

4.1 Seq2Seq Baseline Architecture

We adopt GECOR [10] Seq2seq architecture as our baseline. We get the hidden states
Hc and Hu from GRU encoder. Hc = {hc1, hc2, ..., hcm}, Hu = {hu1, hu2, ..., hun},
in the decoder, the attention distribution is calculated as in [1], the previous hidden
state st−1 and the hidden states Hui

of token ui are used to produce attention distri-
bution at. Then the attention distribution at is used to calculate a weighted sum of the
representation Hui

, which is known as context vector h∗
t .

attnt
i = vT tanh(w1Hui

+ w2st−1 + b1) (1)

at = Softmax(attnt) (2)

h∗
t =

∑

i

atHui
(3)

where w1, w2, b1, v are learn-able parameters. Then the auto-regressive generation is
described as follows:

ot, st = GRU([et−1;h∗
t ], st−1) (4)
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Pvocab(yt|y1:t−1) = w3h
∗
t + w4ot + b3 (5)

where w3, w4, b3 are learn-able parameters and h∗
t is then fed into the single-layer uni-

directional GRU together with the previous decoder state st−1 and the word embedding
et−1 of previous generated word to obtain the decoder state st, ot. Word-copy mech-
anism is applied to calculate the probability of copying words from history dialogue
information enhanced by the explicit information as follows:

Pcopy(yt|y1:t−1) =
|C|∑

i:ci=yt

1
Z

eψc(ci) , yt ∈ C (6)

ψc(yt = ci) = σ(w5Hc + b5)st (7)

where ψc is the score function for the copy mode and Z is the normalization term. w5,
b5 are learn-able parameters. At last, the final probability distribution over the extended
vocabulary which is calculated as follows:

P (yt|y1:t−1) = Pvocab(yt) + Pcopy(yt), yt ∈ V ∪ C (8)

The gated word-copy mechanism is introduced to regulate the contribution of the gen-
eration and copy mode to the final prediction to generate the generation probability
distribution P (yt|y1:t−1).

λ = σ(w6[h∗
t ; et−1; st] + b6) (9)

P (yt|y1:t−1) = λPvocab + (1 − λ)Pcopy (10)

where λ is a gate to regulate the contribution of the generation and copy mode to the
final prediction. σ is the sigmoid function. w6, b6 are learn-able parameters. Both the
generation probability over the entire vocabulary and the copy probability over all words
are taken into account for predicting the complete user utterance.

4.2 Gated Span-Copy Mechanism

We propose the Gated Span-Copy Mechanism(GSCM) that takes advantages of span-
copy labels and at each time step, explicitly encourages the model to copy the context
word that is relevant to the previously copied tokens. For an example in Fig. 2, in order
to predict the current token “下雨 (raining)”, the model first predicts its span-copy label
equals I, which indicates the current token constitute a 3-gram with the predicted tokens
“经常”, “阴天”. Then we search the potential 3-grams from the context, and ’下雨’ is
the only valid candidate. Finally, the span-copy distribution except “下雨 (raining)” are
all masked as zero, gate g is adapted to regulate the contribution of attention copying
distribution and span-copy distribution to generate the Gated Span-copy distribution
P span as Eq. (11):

We employ a 3-class classification network on st to generate the span-copy labels
in inference time.

P span
j (yt|zt) =

{
0 cj /∈ cans
∑|C|

i:ci=yt

1
Z eψc(ci) cj ∈ cans

(11)
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– If the span-copy label is B(eg. “苏州 (Suzhou)” in both Fig. 1 and Fig. 2) or O,
the gated span-copy distribution is followed by attentional copying distribution. The
cans equals to all the context word list.

– If the span-copy label is I(eg. “下雨 (raining)” in Fig. 1), which indicates the current
generating token constitute a n-gram(n is calculated according to the number of
generated tokens labeled I)with the predicted tokens as we calculate the copied token
number. The BI-labeled generated words before time t(“经常阴天” (always cloudy)
in Fig. 1) are worked as a prefix. We use the prefix to find the matching next word
in dialogue history and mask the word which cannot constitute the any n-gram of
history dialogue using the prefix, which can ensure the words of BI labeled is a span
copied from dialogue history. The next word lists constitute the set cans (eg. “下雨
(raining)” in Fig. 1).

The Eq. (6) is replaced by Eq. (13):

g = σ(w7[h∗
t ; et−1; st] + b7) (12)

Pcopy(yt|y1:t−1) = g

|C|∑

i:ci=yt

1
Z

eψc(ci) + (1 − g)P span(yt) (13)

5 Experimentation

In this section, we systematically evaluate our proposed gated span-copy mechanism
approach to dialogue ellipsis and coreference restoration.

5.1 Experimental Settings

Same as previous work [10], all experiments are conducted in the data from the English
corpus CamRest676 [10] and the Chinese corpus RiSAWOZ [11]. CamRest676 include
three types of data: the ellipsis CamRest676 dataset where only ellipsis version utter-
ances from the annotated dataset was used, the co-reference CamRest676 where only
co-reference version utterances from the annotated dataset were used and the mixed
CamRest676 dataset where we randomly selected a version for each user utterance from
ellipsis, co-reference, complete. We employed the 50-dimension word embeddings pro-
vided by Glove [9] for CamRest676 and 300 dimensional fastText [2] word vectors to
initialize word embeddings for RiSAWOZ. We set the vocabulary size V to 800 and
12000 respectively. The size of hidden states was set to 128 and 256 respectively. The
learning rate was set to be 3e-3. The batch size and dropout was set to 16 and 0.5
respectively. The standard cross-entropy loss is adopted as the loss function. We use
exact match rate(EM) which measures whether the generated utterances exactly match
the gold utterances, F1 score which is a balance between word-level precision(Prec)
and recall(Rec), and Bilingual Evaluation Understudy(BLEU) [8] is used for evaluating
the quality of generated utterances at n-grams and word level.
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Table 2. The main results on mixed CamRest676 dataset of our generative method and other
methods. † denotes the duplicated systems.

Model EM BLEU F1 Prec Rec

GECOR1† 66.48 82.39 95.75 98.12 93.49

GECOR2† 66.73 83.79 96.53 98.40 94.73

ELD† 68.05 85.04 96.43 98.24 94.70

GSC1 68.97 85.22 96.82 98.06 95.04

GSC2 69.65 99.29 96.86 98.34 95.42

ELDGSC 70.68 85.07 96.07 97.61 94.57

Table 3. The main results on ellipsis and coreference CamRest676 dataset of our generative
method and other methods. † denotes the duplicated systems.

Ellipsis Coreference

Model EM BLEU Prec Rec F1 EM BLEU Prec Rec F1

GECOR1† 67.78 83.32 96.40 98.39 94.49 71.35 85.89 96.49 98.19 94.86

GECOR2† 66.36 83.39 96.46 98.25 94.74 71.18 85.93 97.09 98.46 95.76

ELD† 68.16 84.17 96.42 98.35 94.58 72.47 88.01 96.99 98.38 95.63

GSC1 72.01 84.87 96.34 98.23 94.53 72.68 88.11 97.30 97.45 97.16

GSC2 72.00 84.82 96.54 98.17 94.96 73.18 87.59 97.24 97.45 97.04

ELDGSC 70.09 84.44 96.22 97.95 94.55 74.14 88.14 96.61 97.53 95.70

5.2 Compared Methods

In this paper, we compare our proposed system with the following competitive models
on the CamRest676 and RiSAWOZ corpus:

– GECOR1: an end-to-end generative model proposed by Quan et al. [10] that uses
the plus copy mechanism proposed by Gu et al. [3] to recover omission and corefer-
ence. Using our GSCM after GECOR1 called GSC1.

– GECOR2: whose architecture is as the same as GECOR1, but uses the gated copy
mechanism. Using our GSCM after GECOR2 called GSC2.

– ELD [6]: It employs a speaker highlight dialogue history encoder, a top-down hier-
archical copy mechanism and a gated copy mechanism as the same as GECOR2.
Which works on probability of coping words from history dialoguee, our GSCM
works after the gated copy mechanism is called ELDGSC.

5.3 Main Results

The main results on CamRest676 are as shown in Table 2, 3 respectively. The perfor-
mance of our proposed models on mixed data has been improved on CamRest676 cor-
pora. All the model with GSCM get better performance original model where gaps are
2.49, 2.92 and 2.63 EM points. The results prove the necessity of GSCM.

The performance on coreference data has been improved on CamRest676 corpora.
The GSC1 and GSC2 models can improve performance by 1.33 and 2 EM points, com-
pared with GECOR1, GECOR2 respectively. And the BLEU score is improved by 2.22
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Table 4. The main results on RiSAWOZ test set of our generative method and other methods. †
denotes the duplicated systems.

Model EM BLEU F1 Prec Rec

GECOR1† 59.26 87.88 97.52 98.05 97.01

GECOR2† 58.33 87.67 97.02 97.05 96.01

ELD† 64.89 88.68 98.02 98.09 97.01

GSC1 63.01 88.67 97.32 97.75 96.88

GSC2 62.14 88.24 97.39 97.64 97.15

ELDGSC 65.24 88.95 98.37 98.60 98.14

Table 5. The main results on mixed CamRest676 dataset of our method with extra guidance. †
denotes the duplicated systems.

Model EM BLEU F1 Prec Rec

GSC1 68.97 85.22 96.82 98.06 95.04

GSC1+ex 71.18 85.64 96.97 98.51 95.51

GSC2 69.65 85.31 96.86 98.34 95.42

GSC2+ex 71.43 87.08 97.33 98.57 96.13

ELDGSC 70.68 85.07 96.07 97.61 94.57

ELDGSC+ex 70.81 86.87 96.71 98.04 95.42

points and 1.66 points respectively. And surprisingly the ELD model with GSCM can
achieve the better score in EM and BLEU. As we suppose, the speaker highlight mech-
anism can make the model pay more attention to user-aware or system-aware sentence
flow in history dialogue, because of which the model can find the best coreference link
in the history dialogue. The comparative experimental results on the two corpora pro-
vide strong support and verify the effectiveness of the improved method.

The results on RiSAWOZ are in Table 4. Our GSCM can make the model achieve
better EM, BLEU and F1. The GSC1 and GSC2 models can improve performance by
0.79 and 0.57 BLEU points, compared with GECOR1 and GECOR2 respectively. And
surprisingly the ELD model with GSCM can achieve the SOTA result on all metrics, in
which the word-level and utterance-level attention are helpful to especially Chinese cor-
pus because of the complex structure in Chinese. Moreover, we can find that our GSCM
is more helpful in terms of the fragment or sequence-based metrics (i.e., BLEU and
EM) than in terms of the word-level metrics (i.e., F1, Prec, and Rec). Which matches
our span-level rather than word-level hypothesis.

5.4 Effect of Extra Guidance

Following [7], all the B-labeled and I-labeled words encoder hidden states HBI c(eg.
“苏州 (Suzhou)”, “经常阴天下雨 (always cloudy raining), “冬天就是(Winter is)”
and “。(.)”) in dialogue context in Fig. 1) are filtered out as extra guidance, which



464 Q. Li and F. Kong

corresponds to the missing semantic information. There are three different guidance
ways: The first two are to concatenate HBI into the original history dialogue hidden
states and the user utterance hidden states respectively. The last one is to do the above
two ways together. Table 5 shows the experimental results of our method with extra
guidance. The GSC1+ex means the GSC1 with the best one of the three guidance ways.
When confronted with the model, extra guidance can greatly enhance performance on
all five metrics. We intuitively believe that adding extra guidance can give the model
the ability to pay more attention to the missing semantic information and restore the
semantic expression related to the omitted and correlative information.

5.5 Case Studies

A given utterance is semantically complete when it requires no additional information
to understand and contains no references or omissions that may cause ambiguity. In
mixed dataset, about 53.36% utterances are semantically complete, while incomplete
utterances occupy about 46.64%. We analyze our models for complete and incomplete
utterances.

For each complete utterance, our model needs to confirm that the utterance is seman-
tically complete, just leave it in its original state. Our GSC1 can generate 98.94% utter-
ances that exactly match the input utterances, only 1.06% utterances do not match the
input utterances perfectly. Most unmatched cases can be grouped into three types, i.e.,
missing words, repetition and missed tone auxiliary. Following illustrates the corre-
sponding examples for each type.

– Missing words
User: Can I get a Korean restaurant in the town centre?
GEOCOR: Can I get a Korean restaurant in the town?
GSCI: Can I get a Korean restaurant in the town centre?

– Repetition
User: OK, thank you. That is all for today then.
GEOCOR: OK, thank you. That is all for today for today then.
GSCI: OK, thank you. That ’s all for today then.

– Missed tone auxiliary
User:再帮我找家川菜吧，中等的就行，告诉我评分和人均消费
。
GSC1:再帮我找家川菜吧，中等的就行，告诉我的评分和人均
消费。

From these examples, we can conclude that our GSC1 model can retrieve the miss-
ing word and the repetition problems due to the employment of GSCM. Copying spans
from history dialogue, our model can keep a high consistency with the history dialogue.
However, our model is unable to deal with the problem of missed tone auxiliary. In Chi-
nese, the tone auxiliaries are always missed or generated in wrong places.

When the input user utterances are incomplete, our model needs to find the elements
that may be ambiguous and replace them from the conversation history. At the same
time, our model should also keep the unambiguous parts as they are. Result analysis of
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our model shows that, the GSC1 model can generate 43% utterances that exactly match
the reference utterances, about 57% do not match perfectly. An in-depth analysis on the
unmatched cases shows that, excluding the same three kinds of problems for complete
utterances, there are additional three kinds of problems closely related to ellipsis and
coreference for incomplete utterances, i.e., paraphrase, partial resolution, and lack of
resolution. Table 6 lists some examples.

Among them, we find that paraphrases occupy the majority of the unmatched cases.
Example (1)–(3) are associated with this category. Sometimes the generated utterances
cover even more detail information than the reference, just as Example (1) and (2) indi-
cate. Additionally, there are some spans generated in different positions. In fact, these
positions are legal, just as Example (3) notes. In general, we think, the paraphrased
complete utterances generated by GSC1 are acceptable for understanding. Partial res-

Table 6. Examples for incomplete utterances.

Example (1)

User: Any will be fifine.

GSC1: any cheap restaurant in the north part of town will be fine.

Reference: Any type of restaurant will be fifine.

Example (2)

user:这家店的营业时间是几点到几点？

GSC1:那川菜馆名叫江边城外烤全鱼的营业时间是几点到几点？

Reference:那江边城外烤全鱼的营业时间是几点到几点？

Example (3)

user:听起来不错呢，电话是多少啊

GSC1:东吴面馆听起来不错呢，电话是多少啊

Reference:听起来不错呢，东吴面馆电话是多少啊

Example (4)

User: I do not care about them.

GSC1: I do not care about the price range.

Reference: I do not care about the price range or location.

History:

usr: I would like a barbeque restaurant.

sys:Where would you like to search for a restaurant, and what price range would you prefer?

Example (5)

User:噢噢，了解了，你再帮我看看第二天有没有厦门回北京的飞机。

GSC1:噢噢，了解了，你再帮我看看第二天有没有厦门回北京的飞机。

Reference:噢噢，了解了，你再帮我看看下周一有没有厦门回北京的飞机。

olution means our model only conducts a partial resolution for the pronoun referring
to more than one items. Just as Example (4) shows, referring to the dialogue history,
we can find the pronoun “them” means both “location” and “price range” of a restau-
rant. However, our model only recovers one item “price range”. Lack of resolution
means some anaphors are ignored. In Example (5), the anaphora between the mention
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“ 第二天/the second day” and “下周一/next monday” is missing. In fact, this may
require additional knowledge beyond the content of the conversation (i.e., today is
Sunday).

6 Effect on Different Window Size of Gram for BLEU Score

As we have found the BLEU score has getting better with our GSCM. Which shows
our model effectiveness on word-level(1-gram). We want to further investigate that
has our model learned to copy more accurately (especially for the consecutive copy-
ing). We employ GSC2 and GECOR2 for a fair comparison in which the difference
is only GSCM. Figure 3 shows that GSC2 model contain a higher rate of ’correct’ n-
grams(those appear both in the generated sentence and reference) than the GECOR2,
especially, with the rise of the gram window size, our GSC2 work better than indicating
that learning to copy spans from the copying history is beneficial to generate consecu-
tive spans.

Fig. 3. The BLEU scores of different n-grams.

7 Conclusion

In this paper, we propose a novel Gated Span-level Copy Mechanism that aims to
retrieve omitted or co-referred spans contained in history and recover them for the
incomplete utterance. Experimental results demonstrated the effectiveness of our pro-
posed model.
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Abstract. The Traveling Salesman Problem (TSP) is a canonical NP-
hard combinatorial optimization problem. The attention mechanism has
shown promising performances in natural language processing (NLP)
and computer vision (CV). But on the TSP combinatorial optimization
problems, the attention mechanism has not achieved satisfactory per-
formance. Therefore, this paper proposes a new attention mechanism,
termed a semi-local attention mechanism, to solve combinatorial opti-
mization problems such as the TSP road network graph problem. This
paper trains a Long Short-Term Memory (LSTM) network to predict a
distribution over different city permutations with the input of a set of city
node coordinates, uses negative tour length as the reward, and optimizes
the parameters of the LSTM network with Adam optimizer and utilizes
a stochastic gradient descent and a policy gradient method to train the
model. The extensive experiments demonstrate that the semi-local atten-
tion mechanism achieves more close to optimum solutions than the local
attention and globe attentional mechanism on 2D TSP combinatorial
optimization problem graphs with 200 nodes.

Keywords: combinatorial optimization · attention mechanism · TSP ·
reinforcement learning · deep learning

1 Introduction

Combinatorial Optimization Problems (COP) [6,11,18,23] are well studied dis-
crete optimization problems. The Traveling salesman problem (TSP) [4,9,15] is
a canonical Combinatorial Optimization Problem. Given a graph of city nodes,
one needs to search the city node permutations to find the optimal solution of
nodes with minimal total tour length [32].

The traditional methods of solving combinatorial optimization problems have
the following categories:

– Exact approaches [31] To ensure that the best solution is discovered, the
exact algorithm examines the whole solution space. Because the search space
is too vast, pruning techniques can be used to minimize it. Modeling inte-
ger programming (IP) or mixed-integer programming (MIP) is a frequent
method. The problem can be solved using branch-and-bound, branch-and-cut,
and constraint programming techniques. By continually picking and dividing

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14262, pp. 469–481, 2023.
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nodes and working with pruning, branch and bound effectively construct the
search space into the shape of a tree and successfully locate the ideal answer.
Many heuristics have been developed to determine how to specify nodes and
assign values to them, which has a substantial impact on the speed with which
the solution is found.

– Approximate methods [1] The goal of an approximation algorithm is to
discover a sub-optimal or near-optimal solution with a particular degree of
optimality guarantee. For example, it can ensure that the worst-case answer
is many times the optimal solution. There are several polynomial complex-
ity algorithms for the Near-optimal solution, despite the fact that there is
no polynomial complexity method for the ideal answer. The greedy algo-
rithm, dynamic programming, primal-dual method, randomized technique,
and other ways are examples of such approaches. Christofides algorithm [5]
is a prominent example of this solution for the TSP, which is addressed by
computing the minimal spanning tree and minimum weight perfect match.
The time complexity is polynomial O(n3).

– Heuristic algorithms [19] The purpose of a heuristic algorithm is to dis-
cover an approximate solution; however, unlike an approximation algorithm,
it has no theoretical guarantee of optimality, which means it cannot guar-
antee the quality of the solution. However, it can discover a better solution
than the approximation approach in most cases. It also features a diverse
range of options. The first is to build the solution using a problem-related
heuristic, such as Nearest Neighbor or Minimum Spanning Tree; the second
is local search, which modifies the intermediate solution locally using the
heuristic and searches the solution space in an iterative manner; the third
is to use meta-heuristic, such as simulated annealing, tabu search, particle
swarm optimization, and so on. The state-of-the-art algorithm for the TSP
in this type of method is Lin-Kernighan-Helsgaun (LKH) [10], and the scale
of the TSP that it can solve can reach tens of thousands.

However, the drawback of the traditional approaches is that it is intractable
when the scale of problems becomes large due to insufficient memory of Graphic
Processing Unit (GPU) or Central Processing Unit (CPU). Therefore, recently
one tries to find the solutions to the TSP using machine learning. Moreover, many
researchers have achieved rather satisfactory results [13,24]. And the attention
mechanism has shown promising performances in natural language processing
(NLP) and computer vision (CV). But it does not do better on Combinatorial
Optimization Problem. This paper tries to make up for it, proposing a new
attention method, named the semi-local attention mechanism.

The main contributions of our work are the following:

(1). Present a new attention mechanism: We propose a new attention
mechanism, a semi-local attention mechanism, to tackle combinatorial opti-
mization problem. This attention mechanism is closer to the optimal solu-
tion than the vanilla attention mechanism in combinatorial optimization
problems and shows better performance.
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(2). Attention mechanisms play a better role in the field of combina-
torial optimization: The attention mechanism [2,20,26] not only shows
good results in computer vision and natural language processing, but also
shows better and better performance in the field of combinatorial opti-
mization, we make the attention mechanism [2,20,26] play a better role in
the field of combinatorial optimization, digging into the application field of
attention mechanism.

2 Related Works

In this section, we review the application of attention mechanism in combi-
natorial optimization, especially in the TSP. The work [26] proposed a global
attention and a local attention mechanism. The global attention always pays
to all source input sequences, and the local attention only looks at a selection
of source input sequences at a time [20]. One usually classifies Attention-based
models into two categories, a local attention based model and a global attention
based model. These classes differ in terms of whether the “attention” is placed
on all source inputs or on only a few source inputs.

Solving combinatorial optimization problems [6,11] using neural networks
dates back to Hopfield [12], who first applied a Hopfield-network for solving the
traveling salesman problem instances (TSP) [32]. Deep learning [3] has recently
been employed in an offline setting to learn about a whole category of prob-
lem instances. Deep reinforcement learning [27] has demonstrated promising
results [13,21,24,29,32] when used to solve combinatorial challenges.

In 2015, Google’s paper “Order Matters: Sequence to sequence for sets” [30]
focused on those scenarios where the order of input and output data is important
for learning models, and experimented with sorting and estimating the joint
probability distribution in the unknown graph model problem.

In 2017, Vaswani’paper “Attention Is All You Need” [29] caused a huge
response from the industry. The modeling of serialized data at that time was
mostly based on Recurrent Neural Network (RNN), Long Short-Term Memory
(LSTM) or Convolutional Neural Networks (CNN). The Transformer model is
proposed in [29], which only uses the attention mechanism, and the model is more
accurate, easier to parallelize, and faster to train. The Transformer [29] contin-
ues the encoder-decoder architecture, and its encoder and decoder networks are
composed of stacked self-attention and point-wise fully connected layers.

In 2018, Nazari et al. [22] extended the method of Bello et al. [3] to vehicle
routing problem (VRP), adds a dynamic change part of processing requirements.
The basic idea is similar to Bello et al. [3]. It is also based on reinforcement
learning. The model is also based on Pointer Network. For VRP, its difficulty is
that its problem input is dynamically changing.

In 2018, the paper of Deudon et al. [7] was based on the main idea of Bello et
al. [3], which is to solve the TSP based on reinforcement learning. It is still based
on Pointer Network’s structure output, but its network structure has absorbed
the essence of Transformer. The Encoder encodes all city coordinates into a
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Fig. 1. The proposed semi-local attention architecture. Assuming that the node i is
the center, we only take the 3 nodes to the right of the i-th node for linear embedding
transformation, then calculate the attention ai and the score function ci, and finally
calculate the probability of each node.

corresponding number of action vectors based on the structure in the Trans-
former. The decoder obtains the query vector based on the last three actions,
and the result is obtained through the Pointing mechanism together with the
action vector output by the encoder. In the experimental, it is compared with
Christofides algorithm [5], OR tools [8] and other industry solutions, and the
solution quality and running time are comparable. It also performed well when
the model trained on TSP50 was directly used on TSP100, indicating its gen-
eralization ability. When combined with local search 2-opt heuristic, it can also
quickly improve the effect, showing the benefits of combining machine learning
with traditional operations research.

In 2019, the paper of Kool et al. [17] was also based on the Transformer
model. Compared with the original Transformer model, positional encoding is
not used in the encoder, which makes node embedding independent of the input
order. The other parts basically use the stacked multi-head attention (MHA) and
feed-forward structures in the Transformer architecture to get the node embed-
ding corresponding to each city node graph. The average of node embedding is
regarded as graph embedding. This embedding will be output to the decoder.
Decoder uses the classic autoregressive mode. In each step, the output of the
current step is based on the embedding of the encoder and the output of the
previous step. The Decoder network is also based on the attention mechanism.
A big difference from the previous work is that it introduces a context node to
represent the context vector during decoding. Finally, the decoder structure has
a single attention head (MHA with m = 1), and the output through softmax is
the output of the current step. The difference here is that the baseline function
is obtained through the rollout method [32].
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The graph attention network [7,16,17] is used to extract the features of each
node in graph structure. An explicitly forgetting mechanism is introduced to con-
struct a solution which only requires the last three selected nodes per step. Then
the constructed solution is improved by 2OPT local search. A context vector is
introduced to represent the decoding context and the model is trained by the
REINFORCE algorithm [27] with a deterministic greedy rollout baseline [27].

3 Model Architecture

Our proposed semi-local attention mechanism architecture illustrated in Fig. 1,
including input layer, which is L (L ∈ R2, node number, sequence length) city
nodes CNL, linear embedding layer, which transformates the input layer into
hidden layers ht, and semi-local attention layer, which comprises a variable-
length vector ai, a context vector ci, and a probability distribution p(π|s). The
semi-local attention mechanism we proposed means that at time step t = i, we
only consider half of the length of a quarter of the input after i, rather than the
entire interval centered on a city point of the local attention mechanism, this is
because the city node before the i-th time step of the TSP has been visited and
does not need to participate in the calculation. As shown in Fig. 1, we assume
that the input length is 12, t = i, and we only take the 3 input nodes after i to
participate in the operation, rather than the 6 nodes centered on i to participate
in the operation.

At each time step t, the model will first enter the hidden state ht at the top
level of the LSTM. Then, our goal is to derive a context vector ct, which captures
the coordinate information of the city node of the relevant data source to help
predict the city node information ht output by the current target. Although
these models differ in the way they derive the context vector ct, they share the
same subsequent steps. Note that considering the target hidden state ht and
the source context vector ct, we use a simple connection layer to combine the
information from the two vectors to produce an attention hidden state Eq. 1.
The attention vector Hiddent is then fed through the softmax layer to produce
the predictive distribution Eq. 2. i.e.

Hiddent = tanh(Wc[ct;ht]), (1)

qθ(π|s) = softmax(WsHiddent). (2)

When calculating the context vector ct, a standard global attentional model
takes into account all of the encoder’s hidden states. By comparing the current
target decode hidden state ht with each source input encode hidden state hs, a
variable-length vector at Eq. 3 is created, whose size equals the number of time
steps on the source side. Here, the scoring function is referred to as a content-
based function for which Eq. 4 are considered.

Global attention has a disadvantage that it must process all source coded
input city nodes for each target city node. In order to solve this defect, the local
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attention mechanism only focuses on a small part of the source input node of
each target decoding output.

at(s) =
exp(score(ht, hs))∑
s′ exp(score(ht, hs)

, (3)

score(ht, hs) = V softmax(
QKT

√
dk

). (4)

The vanilla local attention mechanism selectively focuses on a small context
window. This method avoids the expensive calculations caused by soft atten-
tion [20] and is easier to train than hard attention methods [32]. In concrete
details, the model first generates an aligned position pt for each target input
at time t. The context vector ct is then derived as a weighted average over the
set of source hidden states within the window[pt − w, pt + w]; w is empirically
selected Unlike the global approach, the local alignment vector at is now fixed-
dimensional.

4 Model Training

In terms of the TSP, we define a TSP instance s as a network with n nodes, with
node i ∈ {1, 2, 3, ..., n} represented by features xi , which is the coordinate of
node i. Input graphs are represented as a series of n cities in a two-dimensional
space s = {xi}. We are interested in discovering a tour technique, which is a
permutation of the nodes π. The length of a tour defined by a permutation π as

L(π|s) =
n−1∑

i=1

‖xπi
− xπi+1‖2 + ‖xπ1 − xπn

‖2. (5)

A tour π = (π1, π2, π3, ..., πn) is defined as a solution with a permutation of
the nodes, thus πi ∈ {1, 2, 3, ..., n}. Our attention-based encoder-decoder model
[2] defines p(π|s) as a stochastic policy for finding a solution given a problem
instance s. It is factorized and parameterized by θ as

pθ(π|s) =
n∏

i=1

pθ(πi|π1...i−1, s). (6)

Because the input length of the pointer network is changeable, we utilized it
as an input to the model. Our training goal function is the average tour length
(ATL) given an input graph s, which is defined as Eq. 7.

C(θ|s) = Epθ(π|s)L(π|s). (7)

We use stochastic gradient descents (SGD) and policy gradient methods to
optimize the parameters [32]. The gradient of Eq. 8 is formulated using the well-
known REINFORCE algorithm [27],

∇θC(θ|s) = Epθ(π|s)[(L(π|s) − b(s))∇θ log pθ(π|s)], (8)
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Table 1. The average tour length of the TSP with a semi-local attention mechan-
ics. “Att” is the abbreviation of “Attention”. Difference Length, left column is global
attention subtract optimal length, middle column is local attention subtract optimal
length, right column is semi-local attention of k = L/4(L = 20, 50, 100, 200) equal 25
subtract optimal length. Optimal Gap Ratio, the left column is the first column of
Difference Length divided by optimal length, the middle column is the second column
of Difference Length divided by optimal length, the right column is the third column
of Difference Length divided by optimal length.

Task Example Global Local Optimal semi-local Attention Difference Optimal

Numbers Att Att Length k = 5, 12, 25, 50 Length Gap Ratio(%)

TSP20 1280 4.03 3.89 3.84 3.91, 3.95, 3.89, 3.92 0.19, 0.05, 0.05 4.95, 1.30, 1.30

12800 3.94 3.95 3.84 3.94, 3.95, 3.94, 3.96 0.10, 0.11, 0.10 2.60, 2.86, 2.60

128000 4.03 3.86 3.84 3.94, 3.91, 3.87, 3.93 0.19, 0.02, 0.03 4.95, 0.52, 0.78

1280000 4.25 4.07 3.83 3.98, 3.99, 3.95, 3.97 0.42, 0.24, 0.12 10.97, 6.27, 3.13

TSP50 1280 5.82 5.92 5.73 5.94, 5.91, 5.83, 5.92 0.09, 0.19, 0.10 1.57, 3.32, 1.73

12800 5.89 5.94 5.73 5.93, 5.91, 5.87, 5.86 0.16, 0.21, 0.13 2.79, 3.66, 2.27

128000 5.83 5.84 5.74 5.88, 5.94, 5.85, 5.90 0.09, 0.10, 0.11 1.57, 1.74, 1.91

1280000 5.93 5.83 5.72 5.88, 5.91, 5.77, 5.78 0.21, 0.11, 0.05 3.67, 1.92, 0.87

TSP100 1280 8.91 8.98 7.82 8.69, 8.71, 8.57, 8.72 1.09, 1.16, 0.75 13.93, 14.83, 9.59

12800 8.41 8.63 7.83 8.01, 8.11, 8.04, 8.19 0.58, 0.80, 0.21 7.41, 10.21, 2.68

128000 7.95 8.21 7.77 7.98, 8.02, 7.83, 7.99 0.18, 0.44, 0.06 2.32, 5.66, 0.77

1280000 7.84 7.91 7.75 7.94, 8.05, 7.87, 7.93 0.09, 0.16, 0.12 1.16, 2.06, 1.55

where b(s) denotes a baseline, being independent on π and estimates the average
tour length (ATL) to reduce the variance of the gradients [32]. Our selection is the
critic network which learns a value function with the Asynchronous Advantage
Actor-Critic (A3C) algorithm [27]. We take a look at the graphs s1, s2, ..., sB ∼
S, the gradient in Eq. 8 is estimated with Monte Carlo sampling:

∇θC(θ) =
1
B

B∑

i=1

(L(πi|si) − b(si))∇θ log pθ(πi|si). (9)

5 Experiments

We conducted experiments to verify our proposed model architecture, semi-local
attention mechanism, also considered 100 2D Euclidean TSP tasks, where the
number of nodes is 20, 30, 50, 80, 100, and 200. City node coordinates are ran-
domly generated from a uniform distribution in units of unit square [0,1]*[0,1].

All of our models are trained on a single Geforce RTX 2080Ti GPU with
11GB of GPU memory, 32GB of CPU memory, and a single layer LSTM with
256 hidden units, mini-batches of 128 sequences, LSTM cells with 256 hidden
units, and embedding the two coordinates of each point in a 256-dimensional
space. We utilize the Adam optimizer to train our models and use an initial
learning rate of 10−3 for TSP20, TSP50, and TSP100, which we decay by a
factor of 0.96 every 5000 steps. Our parameters are evenly initialized at random
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within the range [−0.08, 0.08], and our gradients’ L2 norms are clipped to 2.0.
We can employ up to two attention glimmers at a time.

We report the two kinds of metrics, average tour length (ATL) and optimality
gap ratio (OGR) which is the average percentage ratio of the predicted tour
length relative to optimal solutions, to evaluate performance of our model and
other baselines.

Table 2. The Comparison of the semi-local attention mechanism with various solvers,
several heuristic algorithms and the work of other similar authors. The number of city
nodes in the TSP graph are 20, 30, 50, 100 and 200. The abbreviation “ATL” stands for
“Average Travel Length”. The abbreviation “OGR” stands for “Optimal Gap Ratio”.

Method TSP20 TSP30 TSP50 TSP100 TSP200

ATL OGR ATL OGR ATL OGR ATL OGR ATL OGR

Concorde 3.83 0.00% 4.56 0.00% 5.71 0.00% 7.77 0.00% 10.53 0.00%

Gurobi 3.83 0.00% 4.56 0.00% 5.71 0.00% 7.77 0.00% 10.53 0.00%

LKH3 3.83 0.00% 4.56 0.00% 5.71 0.00% 7.77 0.00% 10.53 0.00%

OR-Tools 3.84 0.26% 4.60 0.88% 5.80 1.57% 7.95 2.32% 11.74 11.49%

Random Insertion 4.06 6.01% 4.89 7.24% 6.25 9.46% 8.53 9.78% 14.28 35.61%

Nearest Insertion 4.38 11.75% 5.27 15.57% 6.75 18.21% 9.46 21.75% 16.82 58.40%

Farthest Insertion 3.89 1.31% 4.79 5.04% 6.03 5.60% 8.37 7.72% 13.99 32.86%

Nearest Neighbor 4.43 13.05% 5.73 25.66% 6.88 20.49% 9.67 24.45% 14.83 41.12%

Cheapest insertion 4.21 9.92% 5.04 10.53% 6.39 11.91% 9.37 20.59% 15.16 43.97%

Christofides 4.11 7.31% 5.21 14.25% 6.21 8.76% 9.51 22.39% 14.92 41.69%

Bello et al. [3] 3.85 0.52% 4.78 4.83% 5.89 3.15% 8.31 6.95% 13.42 27.45%

Dai et al. [16] 3.89 1.31% 4.72 3.51% 5.96 4.38% 8.28 6.56% 15.87 50.71%

Kool et al. [17] 3.86 0.78% 4.68 2.63% 5.76 0.86% 7.98 2.70% 13.25 25.83%

Nazari et al. [22] 3.97 3.66% 4.87 6.80% 6.08 6.48% 8.44 8.62% 14.62 38.84%

Deudon et al. [7] 3.84 0.26% 4.80 5.26% 5.81 1.75% 8.85 13.90% 14.99 42.36%

Qiang Ma et al. [21] 3.84 0.26% 4.69 2.85% 5.78 1.23% 8.05 3.60% 13.89 31.91%

Joshi et al. [14] 3.84 0.26% 4.73 3.73% 6.14 7.53% 8.05 3.60% 12.94 22.89%

Sultana et al. [25] 3.87 1.04% 4.72 3.51% 5.85 2.45% 8.31 6.95% 13.93 32.29%

semi-local(ours) 3.84 0.26% 4.68 2.63% 5.77 1.05% 7.93 2.06% 12.84 21.94%

5.1 Results and Analysis

For each problem, we report performance on 100 test instances. At inference time
we use greedy decoding where we select the best action at each step, or sampling
decoding where we sample 100 solutions and report the best. More sampling
improves solution quality at the cost of increased computational complexity. In
Table 2 we use the solutions of various solvers as the baselines for comparison
of other methods, and compare greedy decoding against baselines which also
construct a single solution, and compare sampling against baselines that also
consider multiple solutions with sampling, beam search or local search. For each
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problem, we also report the “best possible solution”: either optimal via Concorde,
Gurobi, LKH3, OR-tools or a problem specific state-of-the-art algorithm.

The comparison of the vanilla global attention mechanism, the vanilla local
attention mechanism [20] and the semi-local attention mechanism we proposed
is shown in Table 1, which demonstrates the performance differences of various
attention mechanisms on the TSP, and we use the average travel length of 100
random test cases [32]. As shown in Table 1, when the task is TSP20, in Optimal
Gap Ratio, except when the training sample is 128000 our semi-local attention
mechanis is not the best, the test results of the other three training samples, the
Optimal Gap Ratios of our semi-local attention mechanis solution are 1.30%,
2.60%, and 3.13%, respectively, which are lower than the corresponding global
attention and local attention 4.95%, 2.60%, 10.97%, 1.30%, 2.86%, and 6.27%.
Our semi-local attention mechanis solution is closer to the optimal solution than
others. In TSP100, when the training examples are 128000, the Optimal Gap
Ratio of our semi-local attention mechanis solution is 0.77%, but global attention
is 2.32% and local attention is 5.66%.

In Table 2, the performance of our semi-local attention mechanism compared
with a variety of baselines: a variety of solvers; open source software for combi-
natorial optimisation, Google OR-Tools [8] which is a mature and widely used
solver for combinatorial optimisation problems based on meta-heuristics; learn-
ing models using supervised techniques; and learning methods using reinforce-
ment learning. We compare against Christofied local search, Cheapest, Near-
est, Random and Farthest Insertion, as well as Nearest Neighbor in Table 2.
We also focus our comparison to the recently proposed deep learning methods
[3,7,13,16,17,21,22] using their publicly released implementations. The descrip-
tion of baseline experimental procedures is as follows:

– Concorde: Concorde [28] is a computer code for the symmetric TSP and some
related network optimisation problems. Concorde’s TSP solver has been used
to obtain the optimal solutions for all random instances.

– LKH3: LKH [10] is an effective implementation of the Lin-Kernighan heuris-
tic for solving the traveling salesman problem. LKH3 is an extension of LKH
for solving constrained traveling salesman problems and vehicle routing prob-
lems.

– OR-Tools: Google Optimisation Tools OR-Tools [8] is an open-source solver
for combinatorial optimisation problems. OR-Tools contains one of the best
available vehicle routing problem solver, which is a generalisation of the TSP
and implemented many heuristics for finding an initial solution and meta-
heuristics, we use it as our baseline.

– Nearest Insertion: The nearest insertion will insert the node into the nearest
set of nodes, because this insertion operation has the lowest cost in the total
stroke length.

– Farthest Insertion: The farthest insertion needs to select two cities and con-
nect them to get the lowest cost tour, and then find the farthest city in this
tour. Repeat this step until each city has to complete the tour.
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In Table 2, we compare the semi-local attention mechanism with various
solvers, several heuristic algorithms, and the similar work of other authors. The
number of city nodes in the TSP graph are 20, 30, 50, 100 and 200. The abbre-
viation “ATL” stands for “Average Travel Length”. The abbreviation “OGR”
stands for “Optimal Gap Ratio”. We chose the most commonly used solvers in
the field of combinatorial optimization: Concode, Gurobi, LKH3, Google OR-
Tools. We report optimal results by Gurobi, and by Concorde which is faster
than Gurobi as it is specialized for the TSP, as well as LKH3 which is a state-
of-the-art heuristic solver that empirically also finds optimal solutions in time
comparable to Gurobi. Compared with other performances, various heuristic
algorithms including Random Insertion, Nearest Insertion, Farthest Insertion,
Nearest Neighbor, Cheapest insertion and Christofides have the longest average
travel length and the worst performance. We compare against Nearest, Cheap-
est, Random and Farthest Insertion as well as Nearest Neighbor which is the
only non-learned baseline algorithm that also constructs a tour directly in order.

We report on 20, 30, 50, 100 and 200 node graphs, respectively. In the
TSP30 instance, compared with similar work of other authors, the performance
of the semi-local attention mechanism is notably improved for both Bello et al.
(2.20%), Dai et al. (0.88%), Kool et al. (0.0%), Nazari et al. (4.17%), Deudon
et al. (2.63%), Qiang Ma et al. (0.22%), Joshi et al. (1.10%) and Sultanan et al.
(0.88%). In other TSP instance, compared with similar work of other authors, the
performance of semi-local attention mechanism significantly outperforms other
baseline models as well.

Selecting TSP20 and TSP100 tasks, we compare the solution of the semi-
local attention mechanism with the solution of the optimal solver Concorde.
In TSP20 task, we test the model with random sampling search, which is the
training model for 1280000 examples and 10 epoches. The average tour length of
a semi-local attention mechanism is 3.84, which is about equal to optimal tour
length 3.83. When the number of the city node is 100, we test the model with
beam search with size 10, which is the training model for 128000 examples and
5 epoches. The average tour length of a semi-local attention mechanism is 7.93,
but its optimal tour length 7.77.

5.2 Greedy Search and Beam Search

In this experiment, we used three different decoders:

– Greedy decoder: In each decoding step, the node with the highest probability
is selected as the next destination node.

– Sampling randomly decoder: We sample 100 solutions and report the best.
More sampling improves solution quality at increased computation time. We
use polynomial distribution to select a city node and compare greedy decoding
against baselines that also construct a single solution.

– Beam search decoder: Beam search (BS) decoder, tracks the most probable
path, and then chooses the one with the minimum tour length. Our results
show that by applying the beam search algorithm, the quality of the solution
can be improved with only a slight increase in calculation time.
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For faster training and generating feasible solutions, we have used a masking
scheme which sets the log-probabilities of infeasible solutions to −108 if a par-
ticular condition is satisfied. In decoder, the predicted probabilities are used to
select the next node at the current step via sampling or greedily selecting the
most probable node. Since decoders directly output probabilities over all nodes
independent of one-another, we can obtain valid TSP tours to traverse the graph
starting from a random node and masking previously visited nodes which is a
semi-local attention.

During inference test, we can increase the capacity of greedy search via lim-
ited width breadth-first beam search. Meanwhile, we can sample b solutions from
the learnt policy and select the shortest tour among them. Naturally, searching
longer or sampling more solutions allows trading off run time for solution qual-
ity. However, it has been noted that using large b for search or sampling or
local search during inference test may overshadow an architecture’s inability to
a semi-local attention. To better understand a semi-local attention, we focus on
using greedy search and beam search or sampling with small b ∈ [5, 100].

6 Conclusion

Solving Combinatorial Optimization is difficult in general. Thanks to decades of
research, solvers for the TSP are highly efficient, able to solve large instances.
With little engineering and no labels, Neural Networks trained with Reinforce-
ment Learning are able to learn clever heuristics for the TSP. This paper proposes
that the semi-local attention mechanism is applied to solve the traveling salesman
problem in typical combinatorial optimization problems, and deep reinforcement
learning is used to construct the network structure. Through comparison with
various solvers, heuristic algorithms, and similar work by other authors, it is
found that the semi-local attention mechanism can achieve the state-of-the-art
results and the optimal gap ratio is the closest to the optimal solution.
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Abstract. In the field of robotics, most perception methods rely on
depth information captured by RGB-D cameras. However, the ability of
depth sensors to capture depth information is hindered by the reflec-
tion and refraction of light on transparent objects. Existing methods of
completing transparent objects’ depth information are usually impracti-
cal due to the need for fixtures or unacceptably slow inference speeds.
To address this challenge, we propose an efficient multi-stage architec-
ture called UDCGN. This method progressively learns completion func-
tions from sparse inputs by dividing the overall recovery process into
more manageable steps. To enhance the interaction between different
branches, Cross-Guided Fusion Block (CGFB) is introduced into each
stage. The CGFB dynamically generates convolution kernel parameters
from guided features and convolutes them with input features. Further-
more, the Adaptive Uncertainty-Driven Loss Function (AUDL) is devel-
oped to handle the uncertainty issue of sparse depth. It optimizes pixels
with high uncertainty by adapting different distributions. Comprehen-
sive experiments on representative datasets demonstrate that UDCGN
significantly outperforms state-of-the-art methods in terms of both per-
formance and efficiency.

Keywords: Transparent object · Depth completion · Neural network

1 Introduction

Depth completion is a vital task in computer vision, involving the conversion of
sparse depth images to dense depth images. This task is critical for numerous
downstream applications, including autonomous driving [1], robot navigation
[2], and robot manipulation [3]. However, transparent objects pose a significant
challenge for RGB-D sensors due to their reflective and refractive qualities, as
demonstrated in Fig. 1. Despite recent advances in depth completion techniques,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14262, pp. 482–495, 2023.
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Fig. 1. UDCGN is proposed to complete the depth information of transparent objects
from an RGB-D image.

accurately reconstructing the geometry of transparent objects remains an ongo-
ing research problem.

Some of previous works on estimating the geometry of transparent objects
have been studied under restricted conditions [4,5], which makes it difficult to
apply to other scenarios. Based on the assumption that the item is rotational
and symmetric, Phillips et al. [4] estimate the geometry of transparent objects
from two calibrated views of a scene. To determine the geometry of reflective
objects, Qian et al. [5] solve an optimizer function that imposes a position-normal
consistency constraint. Nevertheless, it requires a fixed background under the
assumption that the rays refract only twice.

Convolutional Neural Networks (CNNs) have gained popularity because of
their success in learning generalized priors for massive amounts of data. In this
situation, ClearGrasp [3] is the first CNN-based method for the deep comple-
tion of transparent objects and it achieves excellent results. However, it may
be difficult to use in real-time applications due to the expensive nature of its
global optimization. Furthermore, Zhu et al. [6] propose Local Implicit Depth
Function (LIDF), a two-stage framework that makes use of local implicit func-
tions. A local implicit neural representation based on ray-voxel pairs and a self-
correcting refinement model to progressively enhance depth completeness are
the essential components of LIDF. It further improves the precision and speed
of deep completion.

Our study builds a multi-stage architecture to speed up the depth completion
algorithm’s inference process even further. More specifically, the multi-stage aims
to complete depth progressively. There are two branches, the RGB branch and
the depth branch, in our proposed architecture. Using an RGB image as its input,
the RGB branch creates dense depth maps that are somewhat accurate near
object boundaries, but they might be overly sensitive to changes in texture or
color. The depth branch takes sparse depth images as inputs that, while generally
reliable, were hampered by the dense noise present around object boundaries in
the sparse input.

In addition, the Cross-Guided Fusion Block (CGFB) is inserted as a flexible
plugin to help the kernel capture more representative patterns and fuse fea-
tures. The guided features, which are the output of another branch, are used to
generate modulated kernel parameters. After that, modulated kernel convolute
with the input features. To further improve the effectiveness and efficiency of
the optimization, the Adaptive Uncertainty-Driven Loss (AUDL) is suggested
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to model the uncertainty of data by taking into the inherent noise in the data.
Our method produces superior results while using fewer model parameters, and
the inference speed satisfies the real-time needs of the robot.

The main contributions of this work are summarized below:

1. We propose UDCGN, a multi-stage architecture for depth completion of
transparent objects.

2. A Cross-Guided Fusion Block (CGFB) is effective at aggregating RGB fea-
tures and depth features by dynamic convolution.

3. An Adaptive Uncertainty-Driven Loss (AUDL) that models the inherent noise
in the data, i.e., back-propagation is performed by adaptively assigning dif-
ferent weights to each pixel by considering the uncertainty of the data.

4. We compared our UDCGN to current state-of-the-art methods. The results
are encouraging in accuracy and speed. We further provide detailed ablation
studies to demonstrate the effectiveness of the proposed module.

2 Related Work

2.1 Depth Completion

Depth completion is a task that involves taking a sparse depth image obtained
by depth sensors and completing a dense depth image. Depending on whether or
not there is a guide image, it can be separated into RGB guided depth comple-
tion and unguided depth completion. The RGB-guided depth completion takes
a sparse depth image and its corresponding RGB image as input [7–10], whereas
the unguided methods use only a sparse depth image to predict the dense images
[11–13]. RGB-guided approaches usually outperform unguided depth completion
methods due to the abundance of semantic cues offered by RGB images. Whereas,
for transparent objects that are common in daily life, it’s more challenging to
complete the depth image due to their distinctive optical features. To solve the
issue, Sajjan et al. [3] use surface normal and occlusion boundaries as intermediate
stereoscopic information. Zhu et al. [6] introduce a local implicit function built on
ray-voxel pairs to help complete the depth information. As with the above method,
our method belongs to late fusion with RGB images guided. We designed a multi-
stage architecture to complete the depth image progressively. The dual-branch is
designed for handling RGB and depth information separately.

2.2 Feature Fusion

Depending on the fusion methods used, RGB-guided depth completion can be
characterized as early fusion [14–17] or late fusion [18–20]. Early fusion models
directly concatenate the sparse depth image and RGB image before passing
through the model [14,15], or aggregate features after the first convolutional layer
[16,17]. Late fusion techniques, by contrast, usually employ two sub-networks to
handle different modalities [20] or the RGB and depth features are extracted by
using two encoders independently, and then fused and fed to the decoder [18,
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19]. However, some methods fuse features directly by addition or concatenation,
which is far from effective. To this end, dynamic convolution [21] is employed in
UDCGN to fuse features more closely and effectively.

2.3 Uncertainty Estimation

Since the uncertainty-driven method was initially introduced [22], numerous
research have attempted to model uncertainty in order to improve the perfor-
mance and robustness of neural networks in many tasks [23–25]. The uncertainty
can be divided into epistemic uncertainty and aleatoric uncertainty [22]. The
epistemic uncertainty, which expresses how uncertain the model is regarding its
predictions, is related to the model and is caused by incomplete training. This
uncertainty can theoretically be eliminated if it is given more training data to
compensate for the lack of knowledge in the existing model. The observed data’s
inherent noise causes another sort of uncertainty, known as aleatoric uncertainty.
This uncertainty cannot be eliminated. The uncertainty-driven loss is designed to
model the aleatoric uncertainty. Earlier approaches for uncertainty-driven loss,
however, only used one probability distribution. We propose AUDL that can
choose various distributions based on the threshold value.

3 Method
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Fig. 2. Architecture of UDCGN for depth completion of transparent objects. Our
UDCGN consists of a multi-stage design incorporating efficient fusion modules.
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The proposed UDCGN, as shown in Fig. 2, comprises two branches and three
stages which is designed to progressively complete depth images and efficiently
integrate RGB and depth information. To prevent interfering with the comple-
tion, we first utilize a single U-Net to predict the mask of transparent objects
from the color image. The mask is used for remove incorrect depth information.

UDCGN takes a sparse depth image D ∈ R
H×W×1 and its corresponding

RGB image I ∈ R
H×W×3 as input. The uncertainty map S ∈ R

H×W×1 and
dense depth image D̂ ∈ R

H×W×1 is output in each stage, and then passed
to Formula.9 to calculate loss. During test, the sparse depth image, which is
generated in stage3, is used to calculate metrics. Then, we go into depth about
our methodology, which has three main parts: (a) the architecture of UDCGN
(Sect. 3.1); (b) a Cross-Guided Fusion Block (CGFB) (Sect. 3.2); and (c) an
Adaptive Uncertainty-Driven Loss Function (AUDL) (Sect. 3.3).

3.1 Overview
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Fig. 3. Subnetworks of our UDCGN are: (a) An encoder-decoder is used in the earlier
stage to extract multi-scale contextual data, and (b) the scale-invariant subnetwork is
used in the final stage to provide a spatially precise output.

Existing single-stage CNNs for depth completion typically use an encoder-
decoder architecture, which can encode multi-scale information efficiently. How-
ever, due to downsampling operations, it generally sacrifices spatial detail infor-
mation. On the other hand, the single-scale feature network produces images



UDCGN: Uncertainty-Driven Cross-Guided Network 487

with preserved spatial detail, and yet it cannot gather global information. There-
fore, the proposed UDCGN incorporates two various network designs in accor-
dance with a multi-stage architecture.

In addition, As there are two types of input images: RGB and depth images,
the dual-branch is designed to process different modalities. Since all of the
branches have the same network architecture, for the sake of simplicity, we only
illustrate a separate branch. Given an input image, Each branch first applies
two 3 × 3 convolutional layers to extract low-level features and then passes the
features into subnetworks. The first two stages are based on encoder-decoder
subnetworks that learn the global contextual information. By contrast, the fine
texture is preserved in the final stage, which uses a scale-invariant subnetwork
that runs at the same resolution.

Dual-UNet. To acquire information globally, UNet [26] is utilized as the
encoder-decoder subnetworks. Input features are turned into output features
via a four-level symmetric encoder-decoder, as shown in Fig. 3(a). The CGFB
is inserted at each encoder-decoder level to fuse features. The encoder expands
channel capacity while hierarchically reducing spatial size starting with the high-
resolution input. The decoder gradually recovers the high-resolution represen-
tations from the input of low-resolution latent features. We use avgpooling and
bilinear interpolation procedures for feature upsampling and downsampling. By
skipping connections, the encoder features are combined with the decoder fea-
tures to benefit the recovery process.

Dual-SINet. In order to preserve spatial detail, the scale-invariant network
(SINet) is introduced in the last stage. SINet produces spatially-enriched high-
resolution features without using any downsampling operations. In other words,
it performs the convolution operation without modifying the resolution. SINet
is made up of multiple scale-invariant blocks (SIBs), each of which comprises a
CGFB, two 3×3 convolution layers and SE block [27], as illustrated in Fig. 3(b).
The SE block prioritizes more crucial channel-level information by giving channel
weights.

3.2 Cross-Guided Fusion Block

Since RGB and depth images need to be processed in depth completion, feature
fusion is a critical part of this task. he CGFB is proposed as illustrated in Fig. 4,
which will function as a flexible plugin in UDCGN. Instead of simply added or
concatenated features, dynamic convolution [21] is introduced in CGFB, which
takes feature maps as input and generated the mask features M ∈ R

C×O×k1×k2 .
However, directly generating the parameters of mask features by linear layer

is unacceptable. To reduce computational complexity, CGFB decomposes the
mask feature into two vectors M1 ∈ R

C×k1×k2 and M2 ∈ R
O×k1×k2
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Fig. 4. Cross-Guided Fusion Block.

In order to acquire global data and save computing costs, CGFB first reduces
the resolution of a guided feature FG ∈ R

C×H×W to H ′ × W ′ by avgpooling
operation. To encode information from all the spatial positions for each channel,
CGFB extracts a latent representation of the global context as follows:

FC = ReLU (BN (LinearH′×W ′×d (AvgPool (FG)))) (1)

where LinearH′×W ′×d (·) stands for linear layer with weight WC ∈ R
H′×W ′×d;

d means the size of latent vector; FC ∈ R
C×d is the output features with global

context information; BN (·) means batch normalization layers; ReLU (·) means
the ReLU activation function.

Then, to project feature representations FC to the output channel dimension
O, the group linear with weight WO ∈ R

C
g ×O

g is used as follows:

FO = ReLU
(
BN

(
GLinearC

g ×O
g

(FC)
))

(2)

where GLinearC
g ×O

g
(·) stands for the group linear layer with weight WO ∈

R
C
g ×O

g and g represent the number of groups.
With the aforementioned processing, we obtain FC and FO. They are then

used as inputs by two linear layers, which produce the mask features M ∈
R

O×C×k1×k2 . Each element of the gate is produced by:

M = σ(Lineard×k1×k2 (FC) + Lineard×k1×k2 (FO)) (3)

where σ (·) denotes the sigmoid non-linear function. The mask features M are
generated, and the convolutional layer’s weight can be modified via element-wise
multiplication Ŵ = W �M . A standard convolution process is performed on the
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input features with the modulated convolution kernel, where context information
can help the kernel compose more useful features.

3.3 Adaptive Uncertainty-Driven Loss Function

In our network, the AUDL is adopted to enhance the effectiveness of the opti-
mization process. We use D, D̂, D∗ to represent the sparse depth image (input),
the predicted depth image(output) and the matching dense depth picture (GT),
respectively. We next let F (·) represent any depth completion network. This
allows for the formulation of the general completion model as:

D̂ = F (D) = P (D∗|D) (4)

where we expect that the predicted D̂ will be close to D∗. The depth comple-
tion process can be defined as maximizing the posterior probability P (D∗|D).
It is possible to decompose the joint posterior probability into the product of
marginals by incorporating the uncertainty measure Σ as follows:

P (D∗, Σ|D) = P (Σ|D) P (D∗|Σ,D) =
∏

p (σi|di) p (d∗
i |σi, di) (5)

where di, d∗
i and σi represent the D, D∗, and Σ pixels, respectively. It is simple

to express the aleatoric uncertainty, but it is challenging to draw conclusions
from it. This is so that the marginal probability P (Σ|D) can’t be analytically
assessed. We, therefore, propose to impose Jeffrey’s prior p (σi|di) ≈ 1

σi
[28]

based on the intuition that the uncertainty is sparse when seen in the context
of the entire image.

For the likelihood term p (d∗
i |σi, di), our AUDL is modeled using Gaus-

sian distribution and Laplace distribution depending on the threshold value as
follows:

p (d∗
i |σi, di) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2πσi

exp

⎛
⎜⎝−

(
d̂i − d∗

i

)2

2σ2
i

⎞
⎟⎠ ,

∣∣∣d̂i − d∗
i

∣∣∣ ≤ ϑ

1
2σi

exp

⎛
⎝−

∣∣∣d̂i − d∗
i

∣∣∣
σi

⎞
⎠ ,

∣∣∣d̂i − d∗
i

∣∣∣ > ϑ

(6)

where |·| means the absolute value operator; d̂i is a pixel of D̂; ϑ denotes the
threshold value. In other words, for

∣∣∣d̂i − d∗
i

∣∣∣ more than ϑ, a Laplace distribution

is used, and for
∣∣∣d̂i − d∗

i

∣∣∣ smaller than ϑ, a Gaussian distribution is utilized. Tak-
ing the Laplace distribution as an example, the following maximal a posteriori
estimate issue is what we end up with:



490 Y. Hu et al.

max
∑

(ln p (σi|di) + ln p (d∗
i |σi, di)) = arg max

d̂i,σi

∑
⎛

⎝−

∣∣∣d̂i − d∗
i

∣∣∣
σi

− 2 ln σi − ln 2

⎞

⎠

= arg min
d̂i,σi

∑
⎛

⎝

∣∣∣d̂i − d∗
i

∣∣∣
σi

+ 2 ln σi

⎞

⎠ = arg min
d̂i,σi

∑ (
e−si

∣∣∣d̂i − d∗
i

∣∣∣ + 2si

)

(7)
where si = lnσi, σi = esi . We employ a similar technique to depict the Gaussian
distribution for

∣∣∣d̂i − d∗
i

∣∣∣ smaller than ϑ, and this uncertainty modeling formula-
tion can be applied to the creation of a new loss function. AUDL is the ultimate
optimization loss that can be built as follows:

LAUD =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
n

n∑
i=1

1
2
e−si

(
d̂i − d∗

i

)2

+ 2si,
∣∣∣d̂i − d∗

i

∣∣∣ ≤ ϑ

1
n

n∑
i=1

e−siϑ

(∣∣∣d̂i − d∗
i

∣∣∣ − 1
2
ϑ

)
+ 2si,

∣∣∣d̂i − d∗
i

∣∣∣ > ϑ

(8)

The proposed AUDL is able to diminish the effect of outlier points with
big errors and ensure the robustness of the neural network optimization process
by mixing Laplace and Gaussian distributions. As shown in Fig. 2, we use an
uncertainty block to generate the uncertainty value si.

3.4 Loss Function

Our UDCGN is trained using the following loss function:

L = Ls1 + Ls2 + Ls3 (9)

In our AUDL, ϑ is set to 1.5. The subscript indicates the depth image and
uncertainty map generated by which stage is used for the loss.

4 Experiments

The findings generated by our UDCGN are evaluated qualitatively and quanti-
tatively in this section, and they are compared to state-of-the-art methods. We
then discuss the datasets and evaluation metrics.
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Fig. 5. Comparative analysis with state-of-the-art methods. Areas where our method
performs significantly better are shown by red and blue boxes in the groundtruth.
(Color figure online)

4.1 Experiment Setup

Dataset. ClearGrasp dataset [3] and Omniverse Object dataset [6], each of
which has 45,454 and 68,130 samples, are used to train our full pipeline. More-
over, we evaluate UDCGN’s capacity on the ClearGrasp dataset [3].

Metrics. We employ metrics for depth estimation that are common among
prior works [3,6] as follows:

1. Root Mean Squared Error (RMSE):
√

1
|D̂|

∑
d∈D̂ (d − d∗)2

2. Absolute Relative Difference (REL): 1
D̂

∑
d∈D̂ |d − d∗|/d∗

3. Mean Absolute Error (MAE): 1
D̂

∑
d∈D̂ |d − d∗|

4. Threshold: the % of di satisfying max
(

di

d̂∗
i

,
d̂∗
i

di

)
< δ

For the threshold, δ is set to 1.05, 1.10, and 1.25. Specifically, similar to Clear-
Grasp [3] and LIDF [6], we resize the prediction and ground truth to a resolution
of 144 × 256 and then calculate the error only on the transparent object region.

Implementation Details. We trained our pipeline on the training parameters,
common to all experiments, which are the following. The spatial size of the
image is 256 × 256 in all experiments. With a mini-batch size of 16, we trained
on a machine with two NVIDIA GTX 3090 GPUs. The model is trained for
500 epochs using the Adam optimizer, and 1 × 10−4 is the initial learning rate
setting. We use the cosine annealing strategy from the starting value to 1×10−7

during training. To ensure that our method does not rely on the segmentation
of transparent objects, the depth values of all pixels are calculated for training
and testing.
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4.2 Comparison with State-of-the-Arts

Table 1 contrasts the quantitative effectiveness of our comprehensive method
with several state-of-the-art methods on different datasets (denoted by method
name with subscript of dataset name). We exclusively disclose the results on
novel objects in order to conserve article length and concentrate on its capac-
ity for generalization. The results demonstrate that our approach significantly
outperforms competing approaches. Figure 5 shows some predicted dense depth
images by the evaluated approaches.

Table 1. Quantitative comparison to state-of-the-art methods. ↓ means lower is bet-
ter, ↑ means higher is better. The best and second best scores are highlighted and
underlined. λ is the threshold percentage error.

Methods RMSE↓ REL↓ MAE↓ λ1.05 ↑ λ1.10 ↑ λ1.25 ↑
ClearGrasp Syn-novel

ClearGraspCG [3] 0.040 0.071 0.035 42.95 80.04 98.10

ClearGraspomni [3] 0.037 0.062 0.032 50.27 84.00 98.39

LIDFomni [6] 0.028 0.045 0.023 68.62 89.10 99.20

OursCG 0.028 0.044 0.023 69.03 88.93 98.70

Oursomni 0.028 0.046 0.023 67.65 89.97 98.87

ClearGrasp Real-novel

ClearGraspCG [3] 0.028 0.040 0.022 79.18 92.46 98.19

ClearGraspomni [6] 0.027 0.039 0.022 79.50 93.00 99.28

LIDFomni [6] 0.025 0.036 0.020 76.21 94.00 99.35

OursCG 0.021 0.031 0.016 84.13 95.26 97.94

Oursomni 0.023 0.034 0.018 81.33 93.30 98.52

4.3 Ablation Studies

In this section, the effectiveness of each element suggested in our method is val-
idated through a series of experiments, which are trained on Omniverse dataset
with 50 epochs. We exclusively publish quantitative results on the ClearGrasp
Real-novel dataset in order to concentrate on the generalization capability.

Effect of Multi-Stage Model. We conduct experiments to show the effec-
tiveness of the multi-stage backbone. Our model performs better as the number
of stages increases, as seen in Table 2. Moreover, Since each stage of UDCGN
can adopt a different subnetwork design, we test different options. And better
results can be obtained using the encoder-decoder architecture in the first and
second stage, and SINet in the final stage.
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Table 2. Ablation studies for the effect of multi-stage backbone.

Stage1 Stage2 Stage3 RMSE↓ REL↓ MAE↓ λ1.05 ↑ λ1.10 ↑ λ1.25 ↑
UNet ✘ ✘ 0.0320 0.0511 0.0266 59.11 87.51 99.81

SINet ✘ ✘ 0.0363 0.0543 0.0282 58.50 83.74 99.18

UNet UNet ✘ 0.0292 0.0471 0.0245 62.43 90.43 99.81

UNet SINet ✘ 0.0340 0.0505 0.0272 59.17 86.83 99.84

UNet UNet UNet 0.0292 0.0473 0.0246 62.95 90.15 99.86

UNet UNet SINet 0.0281 0.0447 0.0232 66.05 90.91 99.65

Effect of Cross-Guided Fusion Block. To compare with existing approaches
of fusing multi-modality features, we replace all CGFBs with feature addition
or concatenation while leaving the other elements and configurations untouched.
As shown in Table 3, our fusion method yields better results compared to the
add, concatenate, and no fusion approaches.

Table 3. Ablation studies for different fusion choices.

Fusion Method RMSE↓ REL↓ MAE↓ λ1.05 ↑ λ1.10 ↑ λ1.25 ↑
None 0.0312 0.0486 0.0254 60.68 87.55 99.69

Add 0.0314 0.0486 0.0256 62.84 87.80 99.71

Concat 0.0316 0.0488 0.0257 62.21 88.02 99.76

CGFB 0.0294 0.0465 0.0241 64.63 89.91 99.73

Effect of Adaptive Uncertainty-Driven Loss. To further verify the effec-
tiveness of our AUDL, a series of experiments are conducted to compare with L1
Loss, L2 Loss, and Uncertainty Loss [23]. As illustrated in Table 4, our AUDL sig-
nificantly outperforms the other losses. Moreover, adjusting the hyper-parameter
ϑ to 1.5 yields the greatest results.

Table 4. Ablation studies for the effect of AUDL.

Fusion Method RMSE↓ REL↓ MAE↓ λ1.05 ↑ λ1.10 ↑ λ1.25 ↑
L1 Loss 0.0347 0.0571 0.0297 51.94 86.43 99.69

L2 Loss 0.0345 0.0566 0.0294 53.17 85.22 99.62

Uncertainty Loss [23] 0.0322 0.0520 0.0270 57.68 88.24 99.69

AUDL (ϑ = 0.5) 0.0319 0.0522 0.0269 59.12 87.59 99.58

AUDL (ϑ = 1.0) 0.0313 0.0504 0.0261 59.69 88.30 99.78

AUDL (ϑ = 1.5) 0.0304 0.0482 0.0250 63.00 89.56 99.37

AUDL (ϑ = 2.0) 0.0330 0.0543 0.0281 56.32 85.76 99.57
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5 Conclusion

In this paper, we have presented UDCGN, a novel method for completing the
depth of transparent objects from a single RGB-D image. However, there are still
some problems with our proposed method. Future work will focus on enhancing
the model’s robustness to varying lighting conditions and speed of inference due
to the high demands of robot grasping for real-time performance and adaptation
to varied settings.
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Abstract. A remarkable and significant problem is Digit Recognition.
The digit recognizer problem refers to the task of correctly identify-
ing handwritten digits from images. The problem of handwritten digit
recognition must be understood in the context of a variety of challenges
since the manually written digits do not have uniform sizes, thicknesses,
positions, or directions. The individuality and variety of compositional
approaches of different people also have an impact on the example and
presence of the digits. This paper looks at how machine learning (ML)
methods can be used to solve the “digit recognizer problem” in an effec-
tive way and compares the performance of several machine learning algo-
rithms, including support vector machine (SVM), convolutional neural
network (CNN), multilayer perceptron (MLP), random forest (RF), and
logistic regression (LR), on the MNIST dataset of handwritten digits.
The results show that neural networks, specifically CNN, achieve the
highest accuracy for the digit recognizer problem. Furthermore, this
paper discusses the advantages and limitations of each approach and
provides insights on how to improve their performance.

Keywords: Digit Recognition · Machine Learning · Random Forest ·
Support Vector Machine · Logistic Regression · Multilayer Perceptron ·
Convolutional Neural Network · MNIST Dataset · Accuracy Comparison

1 Introduction

Digit recognizer problems, also called optical character recognition (OCR) prob-
lems, have been around since the beginning of computer science. The first OCR
devices were developed in the 1950s to read and process written text. These
early systems couldn’t read handwriting and used basic image processing. OCR
devices that recognized handwritten digits were developed in the 1970s [1]. This
decade saw the release of the MNIST dataset, which is widely used in machine
learning studies. The MNIST dataset, handwritten by the American Census
Bureau and high school students, became a common way to test OCR systems.
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To read handwritten digits, researchers studied neural networks and SVMs in
the 1980s and 1990s. Although promising, these methods failed to obtain high
recognition rates.

Researchers improved OCR systems in 2000s, when deep learning became
famous. Handwritten number recognition is a strength of convolutional neural
networks (CNNs). A deep CNN achieved a 1% error rate on the MNIST dataset
in 2012 [2]. This was a huge improvement and changed the game. OCR systems
are used in many areas, such as the postal service, scanning on mobile devices,
signature verification, mail sorting, processing bank checks, and more. Machine
learning has helped a lot with the digit recognition problem, and research is still
going on to improve recognition rates and cut down on mistakes [3].

2 Related Work

As machines become more humanlike, DL, ML, and AI research have grown.
Machines can now add two numbers and recognize retinas. Handwritten text
recognition detects fraud using DL and ML. Shamim et al. [4], Anuj Dutt et
al. [5], and Norhidayu Binti et al. [6] have extensively compared CNN versions
with core ML algorithms on handwritten text. The most accurate result was
obtained by MLP with an accuracy value of 90.37% [4]. MLP, SVM, Näıve
Bayes, Bayes Net, Random Forest, J48, and Random Tree have been applied
for the recognition of digits using WEKA. Algorithms like SVM, KNN, RFC,
and CNN using Keras with Theano and TensorFlow Dutt et al. were able to
get an accuracy of 98.70% using CNN (Keras+Theano) as compared to 97.91%
using SVM, 96.67% using KNN, and 96.89% using RFC [5]. Handwritten text
categorization models were compared by Norhidayu Binti in their paper [6]. MLP
had trouble categorizing class 9, whereas KNN and SVM predicted all classes
with 99.26% accuracy. For better categorization, integrate CNN and Keras. Mim
et al. [7] applied CNN, MLP, and SVM to the MNIST dataset. A GUI is also
constructed to predict real-time user input of handwritten digits. They found
that CNN worked best. Siddique et al. [8] trained a CNN on the MNIST dataset
to recognize handwritten digits. They obtained a maximum accuracy of 99.2%
utilizing a 7-layered CNN model with 5 hidden layers, gradient descent, and
back-propagation. Pashine et al. [9] performed handwritten digit recognition
with the help of the MNIST dataset using SVM, MLP, and CNN models. To
find the most effective model for digit recognition, they contrasted the models’
accuracy with their execution times.

3 Algorithm Overview

3.1 Random Forest (RF)

Random Forest (RF) is a popular ensemble method for categorization and regres-
sion [10]. The algorithm makes numerous “forest” decision trees and combines
their forecasts to make a final estimate. Each ensemble decision tree’s feature
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selection is random, hence the algorithm’s name. The RF algorithm is less subject
to training data changes than the single decision tree, which can cause a lot of
variance. Thus, one decision tree model may not apply. We use entropy to break
nodes on a decision tree when using RF for categorization. Entropy gauges data
chaos. Entropy determines data impurity at a node in decision trees. Formula
for node entropy [11]:

Entropy(S) =
C∑

n=1

−p(i) ∗ log2(p(i)) (1)

S is the data set at a node, p(i) is the chance of class i, and the sum is over
all classes. If all parts fit into one class, a set’s entropy is zero. When parts
are fairly distributed across groups, entropy is at its maximum. Decision tree
algorithms reduce group entropy by repeatedly dividing data at each node. The
method creates a tree structure with interior nodes depicting features and leaf
nodes representing class labels [10]. A single decision tree begins with a base
node that symbolizes the entire dataset. The method then selects the feature
that maximizes information gain (or entropy decrease) when splitting data. After
each break, the data is partitioned by feature values into groups. A halting limit,
such as a maximum depth or minimal number of data per leaf, stops the process.
RF bootstraps parts of training data to build numerous decision trees. Each tree
also has a random group of traits, enhancing forest variety. After creating the
forest, the program predicts by taking a majority vote from each decision tree.
This is packing. The decision tree mode decides the end forecast. Assume the
RF has n decision trees, and each tree predicts h(x), where x is the input data.
Mathematically, the task predictions for categorization are:

h(x) = argmax(h(x)1, h(x)2, ..., h(x)n) (2)

The most-voted class is argmax. RF can manage lots of data and traits. It
handles noisy data well [12]. The algorithm’s ability to manage classified traits
and absent data is also beneficial. RF can also find key data traits. The method
determines feature relevance by measuring defect decline in decision trees. This
selects traits and removes extraneous information. Though beneficial, RF has
downsides. Working with large files is difficult due to their high processing costs.
The program may overfit the data if the jungle has too many trees. Finally, RF
is a powerful group machine learning method for categorization and regression.
Its ability to manage large data sets, have many features, and find key features
makes it a strong machine learning tool. When using this method, consider its
high processing cost and tendency to overfit.

3.2 Support Vector Machine (SVM)

SVMs can classify or reverse. SVM finds the hyperplane in a high-dimensional
feature space that divides groups [13]. Support vectors—data points closest to
the hyperplane—influence its location the most. SVMs map raw data into a high-
dimensional feature space using kernels. The kernel method lets the computer
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find a linear judgment limit in this high-dimensional space even if the data is not
linearly distinct. The kernel function might be linear, polynomial, or radial in
nature. The method then finds the hyperplane that maximizes the margin [13].
The margin shows class division efficiency. We have L training samples with D-
dimensional feature vectors x and labels y indicating class +1 or −1. We want
a linear judgment border that best splits the two groups’ data. Mathematically,
the training data is [14]:

{xi, yi} where i = 1....L yi ∈ {−1, 1} , x ∈ RD (3)

Fig. 1. Examples of samples of two classes separated by hyperplane in black dotted
line.

The equation of hyperplane is described as

w.x + b = 0

. From Fig. 1, SVM problem can be formulated as:

w.xi + b ≥ 1 for yi = +1 (4)

w.xi + b ≤ −1 for yi = −1 (5)

Combining the above two equations, it can be written as:

yi(w.xi + b) − 1 ≥ 0 for yi = +1,−1 (6)

As depicted in Fig. 1, the support vectors of the +1 and −1 classes are respec-
tively traversed by two hyperplanes, H1 and H2.

w.x + b = −1 : H1 (7)

w.x + b = 1 : H2 (8)

Furthermore, the distance between the H1 hyperplane and the origin is

−1 − b

|w|
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Where as, the distance between the origin and the H2 hyperplane is

1 − b

|w|
. Hence, the margin is described as

M =
1 − b

|w| − −1 − b

|w| (9)

M =
2

|w| (10)

where M is the margin multiplied by two. As a result, the margin may well
be expressed as 1

|w| . Because the ideal hyperplane maximizes the margin, the
SVM aim is reduced to the notion of maximizing the term 1

|w| or we can say
minimizing ‖w‖.

The C and beta hyperparameters determine how to maximize margin while
minimizing misclassifications. C controls regularization. A lower C value has a
wider buffer but may raise categorization errors, while a bigger C value has a
tighter margin but may reduce them. The gamma hyperparameter controls the
RBF (radial basis function) kernel width. A wider RBF kernel and weaker judg-
ment limit come from a lower gamma. A higher gamma value narrows the RBF
kernel, making it more sensitive to individual data points and harder to decide.
SVC from the SkLearn package was used to find the optimum hyperparameters,
C = 10 and gamma = 0.001, with ‘rbf’ as the kernel.

3.3 Logistic Regression (LR)

LR describes the connection between one or more independent factors and a
binary dependent variable [15]. Logistic functions, also called sigmoid functions,
are used to model the chance of a given event. Logistic function:

p(y = yi|x) =
1

1 + e−z
(11)

where i = 0, 1, indicating the classifier’s binary nature, and z is the log-odds, a
linear combination of independent variables and coefficients:

z = b0 + b1x1 + b2x2 + ... + bn ∗ xn (12)

Log-odds are converted to 0–1 possibilities by the logistic function. LR finds
the best coefficients to optimize the probability of the data. The MLE (maximum
likelihood estimate) method finds the coefficients that optimize the likelihood
function. This likelihood function is the product of the chance of y = y0 for
all class 0 observations and y = y1 for all class 1 observations. The best coeffi-
cients can predict future data. The logistic function and coefficients can predict
the chance of y = y0 or y1 for a new observation. Then, a threshold like 0.5
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can classify the new data as either class 0 or class 1. LR models the likelihood
of a binary event given one or more independent factors using a logistic func-
tion [16]. To predict future observations, find the coefficients that optimize the
probability of the observed data. Multi-class classification issues can be solved
using LR. There are several LR extensions for multi-class classification issues.
One-vs.-all (also known as one-vs.-rest) is a popular method that fits a binary
LR model for each class against all others. Each class has good and bad obser-
vations. (not belonging to that class). LR predicts positive class probabilities
based on independent factors. After this process, for each class, the one with
the highest predicted chance is chosen. Softmax regression (multinomial logistic
regression) maps the likelihood of each class for a given observation using the
softmax function. Softmax function:

p(y = k|x) =
ezk

ez1 + ez2 + ... + ezK
(13)

where zk is the k-th class log-odds and K is the number of classes. The softmax
function converts log-odds to probabilities between 0 and 1 for each class and
assures that all probabilities sum to 1. To fit the recorded data, find the best
coefficients.

3.4 Convolutional Neural Network (CNN)

Deep learning models for video and image analysis are CNNs. Convolution oper-
ations are used to extract data elements. CNN architecture includes pooling,
convolutional, and fully connected, which are a few of the many layers that
make up a CNN architecture [17]. CNNs’ neural layers are their foundation. It
applies a number of small, learnable filters to the input data, performing a dot
product between the filter weights and the input at each position. The feature
map from this process is fed into a non-linear activation function like ReLU to
teach the CNN non-linear connections between input and output data. CNN fea-
ture maps are calculated using a convolutional algorithm. The input image (f)
is subjected to a kernel (h). A feature map is created by taking the dot product
of the input pixel values and the kernel at each point. The feature map values
for rows and columns are m and n, respectively, in Eq. 15.

C[m,n] = (f ∗ h)[m,n] =
∑

j

∑

k

h(x, y).f(m − j, n − k) (14)

CNNs use pooling layers to reduce feature map size and improve translation. Max
and average sharing are the most common [18]. These layers subsample feature
maps, reducing spatial resolution while keeping key information. This study used
max-pooling. Fully linked layers predict using extracted features. CNN predicts
using extracted data from the last convolutional or pooling layer. Dropout lay-
ers avoid overfitting. Overfitting occurs when a model becomes too complex and
memorizes the training data, resulting in poor generalizations based on unseen
data [19]. Dropout solves this by randomly turning off some of the network’s
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neurons during training. The network learns numerous redundant input repre-
sentations, preventing overfitting. After the convolutional and pooling layers,
CNNs apply dropout before the fully linked layers. Neurons opt out of train-
ing based on dropout rates. This study used 0.3, which is between 0.2 and 0.5.
During testing, all neurons are used, but during training, some may fade out.
Penalty terms in the loss function reduce overfitting. This is L2 regularization. L2
regularization recommends lower weights to avoid overfitting. L2 regularization
penalizes CNNs with high weights. This term is the weight squared multiplied by
lambda (λ ). Higher lambda values increase regularization power. L2 regularized
loss function:

Loss = OriginalLoss +
λ

2
∗

∑
w2

i (15)

The softmax function is the CNN output layer activation function. Multi-class
classification uses the softmax formula. The softmax function transforms com-
plex computations in the fully connected layer into probabilities against each
class, and then the class with the highest probability is chosen as the final pre-
diction.

3.5 Multilayer Perceptron (MLP)

For supervised learning, MLPs are used. At least three layers of artificial neurons
in an MLP receive data from the layer below, process it using a non-linear acti-
vation function, and send it to the next layer. Last-layer data is the network’s
output. MLPs have input, hidden, and output levels. The input layer sends infor-
mation to hidden levels. Hidden layers execute most calculations, and the output
layer produces the final result [20]. Adjusting network settings like hidden lay-
ers and neuron counts may boost efficiency. MLP activation functions often use
non-linear functions like ReLU and sigmoid. ReLU function f(x) = max(0, x)
returns 0 if the input is less than 0 and the input value otherwise [21]. The
ReLU function in an MLP’s hidden layers can avoid the vanishing gradient
issue caused by big sigmoid function inputs. An MLP’s output layer’s activation
function may vary by task. Softmax is often used to sort more than two groups.
Softmax generalizes sigmoid for multi-class categorization. Applying the softmax
function to the output of the last fully linked layer calculates class probabilities
[22]. Backpropagation trains MLPs. Backpropagation uses gradient descent to
iteratively alter network weights to reduce output error [23]. Errors are calcu-
lated using loss functions like mean squared error or cross entropy. This work
used categorical cross-entropy as a loss function. The optimization function is
used to fine-tune MLP and other machine learning models’ weights and biases
to minimize error. Research used Adam Optimizer. It is an SGD version. Adap-
tive Moment Estimation (Adam) adjusts the model’s learning rate based on a
gradient mean and variance estimate. Dynamic learning rate adjustment during
training can improve model performance and reduce overfitting. Adam optimizes
weights and biases at various speeds. We call the rate at which the weights are
learned the α, and the learning rate for the biases is denoted by β. The gradient
multiplies these learning rates, usually 0.001 or 0.0001, to adjust weights and
biases.
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4 Experiment

4.1 Dataset Analysis

This experiment uses the MNIST dataset (Source Kaggle [24]), a famous ML
and computer vision benchmark. MNIST includes handwritten 0–9 numbers for
training and testing. 28× 28-pixel grayscale images with 0–255 pixel values make
up the dataset. Figure 2 shows MNIST samples. Several ML methods, especially
image classification methods, have been benchmarked against the dataset to see
how well they perform. The distribution of samples belonging to handwritten
digits ranging from 0 to 9 in training and validation datasets are shown in Fig. 3
and Fig. 4, respectively.

Fig. 2. MNIST Dataset. Fig. 3. Training Dataset. Fig. 4. Validation Dataset.

4.2 Evaluation

Random Forest (RF). In this part, RF from the Sklearn package was brought
in with the default parameters and 100 estimators. Figure 5 shows the MNIST
dataset’s RF confusion matrix and Fig. 8 shows learning and validation accuracy.
It’s essential to note that Yellowbrick package was used to draw accuracy curves.
As it is also clear from the graph, the accuracy score of RF for the MNIST dataset
is found to be 96.523, while the F1 score is 96.5.

Fig. 5. RF confusion matrix. Fig. 6. SVM confusion matrix. Fig. 7. LR confusion matrix.



504 U. Shakoor et al.

Support Vector Machine (SVM). For this experiment, we used the default
settings for SVM from Sklearn, which were rbf as the kernel and C = 1. As
a result, we got an accuracy of 96.7. But by varying the hyperparameters, we
found that optimal results are achieved at C = 10 and gamma = 0.001. At these
optimal settings, accuracy was found to be 97.47, as shown in Fig. 9. Figure 6
shows the confusion matrix.

Fig. 8. RF accuracy curve. Fig. 9. SVM accuracy curve. Fig. 10. LR accuracy curve.

Logistic Regression (LR). Using LR from Sklearn with C parameter = 1 and
tolerance for stopping criteria (tol) = 0.0001, an accuracy of 90.785 was achieved
while the F1 score remained at 90.8. Figure 10 shows the accuracy curves and
Fig. 7 shows the confusion matrix.

Multilayer Perceptron (MLP). For this experiment, a sequential model was
chosen. The first layer, the input layer, takes the input of shape 28× 28 × 1 and
applies a max-pooling operation. The next three levels are hidden layers with
256, 128, and 84 neurons, respectively. The network also had a dropout layer
with a 0.3 dropout rate. The last layer is the output layer, with 10 outputs, one
for each class. This setup yielded 97.4% accuracy, as shown in Fig. 13. The graph
shows that validation accuracy is better than training accuracy, which may be
because certain neurons were disabled during training (30% in our case since a
0.3 dropout rate was used). During testing, all neurons are triggered and scaled.
Thus, testing is more precise, and results are more reliable. Figure 11 shows the
confusion matrix. To test this hypothesis, the same architecture but without
a dropout layer was tested. This time, overfitting to features in training data
was observed as there was a greater difference between training and validation
accuracy, as shown in Fig. 14.

Fig. 11. MLP Confusion matrix (v.1). Fig. 12. CNN confusion matrix.
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Convolutional Neural Network (CNN). The input layer takes an input of
28× 28 × 1 pixels. Then two sets of convolutional 2D layers were added. A total
of 32 filters with a 5× 5 kernel size were used in the first convolutional layer to
generate feature maps, while 64 filters with a 3× 3 kernel size were used in the
second layer. After these sets of convolutional layer max-pooling operations were
included in the pipeline, three hidden layers were included, each containing 256,
128, and 84 neurons, respectively. The final layer was the output layer. With the
above-mentioned architecture, 99.58% accuracy was achieved, while the F1 score
was noted to be 99.5. Figure 15 shows the accuracy curves, and Fig. 12 shows
the confusion matrix.

Fig. 13. MLP accuracy curve
(version 1).

Fig. 14. MLP accuracy curve
(version 2).

Fig. 15. CNN Accuracy
curve.

Fig. 16. Accuracy comparison of the algorithms.

4.3 Analysis

When CNN, MLP, SVM, LR, and RF methods for recognizing digits are com-
pared, the pros and cons of each algorithm are made clear. From Fig. 16, CNN
was more accurate than other methods, with a rate of more than 99%. MLP also
did well, with an accuracy rate of more than 97% and less margin for overfit-
ting. SVM and MLP showed similar accuracy results, but it is worth noting that
there was low overfitting in the case of MLP. The LR method showed the lowest
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accuracy, around 90%. In terms of how well they worked with computers, SVM
and LR were the best, followed by the decision tree method. CNNs and MLPs
were the most computationally intensive, requiring significantly more resources
to train.

5 Conclusion

It is important to note that each algorithm has its own advantages and limi-
tations. So the criteria, including the size of the dataset, the complexity of the
characteristics, and the available processing resources, determine which method
is used for digit recognition. The results of this study suggest that CNNs are
the most suitable algorithms for digit recognition, especially when the goal is to
achieve high accuracy and adaptability to real-world scenarios.

In the future, it would be interesting to look into how combining the best
parts of different algorithms can be used to make digit recognition algorithms
work better. It would also be helpful to compare each algorithm to other datasets
and see how different preprocessing methods affect how well each algorithm
works. Overall, this study tells us a lot about how well different ML algorithms
work for recognizing digits. It also shows how important it is to think about the
algorithm when designing ML systems.
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Abstract. Prompt-based learning has recently emerged as a promising
approach for handling the increasing complexity of downstream natural
language processing (NLP) tasks, achieving state-of-the-art performance
without using hundreds of billions of parameters. However, this paper
investigates the general vulnerability of continuous prompt-based learn-
ing in NLP tasks, and uncovers an important problem: the predictions
of continuous prompt-based models can be easily misled by noise pertur-
bations. To address this issue, we propose a learnable attack approach
that generates noise perturbations with the goal of minimizing their L2-
norm in order to attack the primitive, harmless successive prompts in
a way that researchers may not be aware of. Our approach introduces
a new loss function that generates small and impactful perturbations
for each different continuous prompt. Even more, our approach shows
that learnable attack perturbations with an L2-norm close to zero can
severely degrade the performance of continuous prompt-based models on
downstream tasks. We evaluate the performance of our learnable attack
approach against two continuous prompt-based models on three bench-
mark datasets and the results demonstrate that the noise and learnable
attack methods can effectively attack continuous prompts, with some
tasks exhibiting an F1-score close to 0.

Keywords: Prompt-based Learning · Adversarial Attack · Pretrained
Language Models

1 Introduction

In recent years, pre-trained language models (PLMs) have demonstrated remark-
able performance on a wide range of tasks. However, the increasing scale of PLMs
demands more hardware and data resources, and the cost of fine-tuning is also
escalating [13]. To overcome these challenges, researchers have started explor-
ing lighter learning paradigms, such as prompt-based learning, which achieves
good results without requiring hundreds of millions of parameters, unlike the
traditional fine-tuning approach [11]. Recent studies [12] have demonstrated the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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potential of prompt-based learning as a new paradigm after pre-training and
fine-tuning.

Prompt-based learning encompasses human-designed, auto-discrete prompts,
and continuous prompts that guide the prediction of PLMs. For instance, in the
sentiment classification task, we can use the manual prompt “This movie is
[masked].” to predict the label [masked] such as “negative” or “positive” [19]
to improve the performance of models.

Auto-discrete prompts can be automatically searched using methods such as
Likelihood Ratio [18] or gradient-guided search [20]. On the other hand, contin-
uous prompts can be added to the input embedding sequence through methods
such as Prefix-Tuning [11] and P-Tuning [14]. Continuous prompts exhibit better
performance in downstream tasks and relax two constraints: (1) the embeddings
of the template no longer have to be natural language word embeddings and (2)
the template is no longer strictly parameterized by the PLMs parameters [12].

The impressive results achieved by prompt-based learning in NLP and the
widespread use of prompts in security-sensitive applications. Numerous stud-
ies [7,11,12,14,19,20] have shown that the choice of prompts can have a signifi-
cant impact on the models’ performance. Small differences in the prompts
can lead to large differences in the model performance. This poses sig-
nificant security risks, making the vulnerability of models based on continuous
prompts become a new research focus on model attack and defense research.
Therefore, it is necessary for in-depth research to investigate the security risks
of models based on continuous prompts.

As still in the prompts security early stage, many problems remain unex-
plored regarding the attack of continuous prompts. Among these, this paper
aims to explore the vulnerability of models with continuous prompts. We ini-
tially explored the sensitivity of models to various types and magnitudes of
noise attacks to continuous prompts. Subsequently, we have devised a learnable
attack method to generate perturbations that minimize L2 - norm of the noise
and achieve the desired attack performance.

Our contributions can be summarized as follows:

– We validate that continuous prompts are susceptible to attacks by various
types and magnitudes of noise and propose a learnable attack method.

– Our learnable attack method minimizes the L2-norm perturbations to the
continuous prompts, significantly reducing the model’s effectiveness.

– We conduct numerous experiments on different datasets and models to verify
the effectiveness of existing noises and find that learnable perturbations with
minimal L2-norm are also effective.

2 Related Work

2.1 Prompt-Based Learning

Manual prompts in prompt-based learning are typically built based on human
natural language knowledge and are easy to understand [5]. However, several
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methods have been proposed to automate the template design process. Many
studies propose methods for automatically generating prompts [6,8,20] and con-
tinuous prompts [10,11,23]. Here, we focus on methods based on continuous
prompts due to their fewer limitations and better performance.

Li et al. [11] proposed Prefix-Tuning, a continuous prompts creation method
for table-to-text and summary tasks. P-Tuning [15] and P-Tuning v2 [13] are
also typical methods for constructing continuous prompts, transforming template
construction problems into optimization problems with continuous vectors. The
OptiPrompt [23] method usesAutoPrompt [20] to automatically search for discrete
prompts as the initialization of continuous prompts and verifies that the effect of
this method is better than that of random initialization. Qin et al. [17] optimize
the ensemble of prompts, learning more effective prompts and their combinations.
Brian Lester et al. [10] proposed prompt tuning and showed its competitiveness
with the fine-tuning method in the field of large-scale language models.

2.2 Attack Prompt Methods

Several attack methods can be used on prompt language models. Lei et al. [22]
discover that prompt-based learning inherits the vulnerability of the pre-train
stage, and explores the general vulnerability of prompt-based methods. The
work considers two types of attacks: AToP (adversarial triggers on prompt-
based learning) and BToP (backdoor triggers on prompt-based learning). Bad-
Prompt [3] investigates the vulnerability of continuous prompt learning models
to backdoor attacks. It generates candidate triggers that predict the target label
and are distinct from the non-target label samples. And then BadPrompt uses an
adaptive trigger optimization algorithm to select the most efficient trigger. How-
ever, the vulnerability of continuous prompts learning models to perturbation
has not been studied.

3 Methodology

During the development process of continuous prompts, researchers did not
consider the potential security risks of the model. As a result, the continuous
prompts are vulnerable to attacks that cause failure to complete tasks effec-
tively. Intuitively, constructing a malicious continuous prompt can be viewed as
the adversarial sample for images. Therefore, we select the existing noise as the
perturbation to influence continuous prompts to interfere with the model. Addi-
tionally, we propose a learnable attack method for continuous prompt language
models and investigate the vulnerability of these models to such attacks.

3.1 Existing Noise Attack

In this section, we introduce a method for verifying whether adding noise directly
to the continuous prompts can effectively reduce prediction accuracy. We also
describe two types of noise used in our experiments: Gaussian noise and Pois-
son noise. Deliberately introducing noise to the prompt can cause the model
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Fig. 1. Overview of the method of existing noise attack.

to output incorrect answers with high confidence levels. Applying noises from
different distributions to the prompt to generate malicious prompt P̂ through
Eq. 1 can cause a decrease in the model’s accuracy. Here, P represents the orig-
inal prompt, ε is the noise parameter, N(·) is the added noise, and d is the
probability distribution of the used noise. The overall framework of the process
of existing noise attack is shown in Fig. 1. The orange blocks refer to the noise,
the light green blocks are the original continuous prompts, and the brown blocks
represent malicious prompts caused by noise attacks.

P̂ = P + ε ∗ N(d) (1)

Gaussian Noise. Gaussian noise is commonly present in images from natural
sources [2]. It is difficult for the trainer to visually detect its presence when
Gaussian noise is used as an adversarial noise in image classification tasks. Thus
Gaussian noise is a popular choice for testing the sensitivity of the model to
perturbations. In view of this, we opted to use Gaussian noise to investigate the
vulnerability of continuous prompts, hoping that it would also disrupt the fitting
process of text-based models.

Gaussian noise is a type of noise whose probability density function (PDF)
follows a Gaussian distribution. The PDF of Gaussian noise is defined by Eq. 2,
where σ represents the standard deviation and μ represents the mean value.
The mean value in Gaussian noise determines the degree of brightness and is
equivalent to an offset of the mean value of the prompt. The larger the variance,
the more dispersed the data and the more influential the noise.

PGaussian(x) =
e

σ
√

2π

− 1
2 (

x−μ
σ )2

(2)

Poisson Noise. Poisson noise arises due to fluctuations in light intensity. Dis-
cretization causes greater fluctuations in the number of photons received with
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increasing light intensity, resulting in a larger level of Poisson noise. When the
discrete noise is added to a linear model, it can disrupt the model [1].

The PDF of Poisson noise is given by Eq. 3, where P represents the original
prompt and k represents the average density in the Poisson distribution, which
is the number of random events per unit of time or space. According to the PDF
of Poisson noise, we infer that when and only when the prompt is bigger and
more effective, the generated Poisson noise will also be larger, and the impact
on the model will also be greater.

PPoisson(x = k) =
P k ∗ e−P

k!
(3)

3.2 Learnable Perturbation Attack

This part presents a learnable perturbation attack method that aims to gener-
ate specific and effective disturbances for a given task. And we ensure that the
perturbation has a significant attack effect even when minimizing L2-norm. To
achieve this, the method introduces a new loss function L in Eq. 4 that com-
bines the Cross-Entropy loss function and the Euclidean Distance between the
malicious prompt and the original prompt.

L((x, P̂ ), Label) = Lf (P, P̂ ) − LC((x, P̂ ), Label) (4)

= ‖P̂ − P‖k +
n∑

i=0

log(Ci((x, P̂ ), Label))

where Lf represents the Euclidean Distance between the perturbed prompt P̂
and the great prompt P and LC is a kind of class Cross-Entropy loss. If the
classifier correctly predicts the class Label, it will punish the generation network.
Lf is the norm of the difference between P and P̂ , which ensures that the
similarity between the original prompt and the attack prompt is very high, that
is, the added disturbance is very small. The selection of k should ensure that it
does not promote sparsity, otherwise, residual sediments will accumulate in small
areas and will be obvious. We select to use k = 2 because adversarial attacks with
L2-norm are a popular choice. L2-norm attacks can be more stealthy, making
them harder to detect by humans. According to Eq. 4, when the Lf is less and
the LC is larger, the loss function L is minimal. When the Euclidean Distance
between the original prompt and the attack prompt is smaller, the Lf is smaller
which is L2-norm. When the difference between the output result of the model
and the real Label is larger, the misclassification loss LC is larger. Therefore,
when the loss function continues to decrease, the L2-norm will gradually decrease
and the misclassification loss will gradually increase, which is consistent with the
original intention of designing the loss function.

The overall framework for generating learning noise is illustrated in Fig. 2. In
the figure, V is the initialized noise vector, NET represents the neural network,
V ′ denotes the final perturbation that learns from the neural network, P shows
the original continuous prompt, and P̂ refers to the malicious prompt obtained
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Fig. 2. Overview of the method of adding learnable perturbation.

by adding perturbation V ′ to the continuous prompt P . PLM represents the
pre-training language model, Label is the real label, Lf denotes the L2-norm
between P and P̂ , which mainly indicates the degree of similarity. LC represents
the Cross-Entropy loss function between the model prediction label and the real
label, and L denotes the loss function determined by both the L2-norm and the
Cross-Entropy loss function. By optimizing the L loss function, we can guide the
generation of small and offensive perturbations. The whole process is shown in
the Algorithm 1.

In summary, the learnable perturbation attack method can produce specific
and effective perturbation for giving tasks. The attack is efficient even under
small values of L2-norm by minimizing the loss function, the perturbation can
be updated in each iteration and adapted to the specific task.

4 Experiments

To evaluate the effectiveness of the proposed method for adding noise to the
continuous prompt, we conduct experiments on various pre-training models and
natural language understanding tasks.

4.1 Experimental Settings

Tasks and Datasets. We mainly focus on two natural language under-
standing tasks: natural language inference (NLI) and named entity recogni-
tion (NER). We conduct experiments on three datasets based on these tasks.
The datasets used in the experiments are Recognizing Textual Entailment
(RTE), CONLL04 [4], and OntoNotes 5.0 [21], which have been widely used
in continuous prompts. The RTE dataset is used for NLI tasks to judge if two
sentences have an implicative relationship. The CONLL04 dataset is used for
NER tasks and contains four entity types and five relationship categories. The
main entities in the CONLL04 dataset are Person, Organization, and Loca-
tion, as well as relationships between entities such as Work For and ORGBased.
OntoNotes 5.0 is a corpus that includes various text types in three languages:
English, Chinese, and Arabic. It is also used as a dataset for NER tasks.
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Algorithm 1. Learnable perturbation attack
Input: Original prompt: P ; Datasets: D; Iterations: K
Output: Malicious prompt: best P̂
1: best metric = 0 � Initialize best metric
2: for i = 0; i < K; i + + do
3: x = random(D) � Randomly select a sentence x from dataset D
4: V0 = embedding(x) � Initialize each block of perturbation
5: V1 = V0.repeat() � Copy perturbation blocks and generate perturbation for

each layer
6: V = V1.repeat() � Copy each layer of perturbation and generate the overall

perturbation
7: V ′ = Net(V) � Generate final perturbation after learning
8: P̂ = P + V ′ � Get malicious prompt
9: metric = train metric(D, P̂ ) � Evaluate metric

10: cross loss = LC(P̂ , Label)
� Compute loss between model result and real label Label

11: trigger loss = L2(P̂ , P )
� Compute Euclidean Distance between P̂ and P

12: loss = trigger loss − cross loss � Get current loss
� Through Back-propagation

13: if metric < best metric then
14: best metric = metric
15: best P̂ = P̂
16: end if
17: end for
18: return best P̂

Victim Models. The victim models comprise both PLMs and a prompt
model. We use BERT-large [9] and RoBERTa-large [16] as the main victim model
of P-Tuning v2 the continuous prompt method.

Baseline. We have selected the P-Tuning v2 method by Xiao et al. [13] as
the baseline, as our proposed method in this chapter is built upon this approach.
We evaluate the impact of adding noise to the continuous prompt on the models’
accuracy under the same conditions and compare it with the baseline to ascertain
the vulnerability of the continuous prompt.

Metric. For the RLI task, we use accuracy as the evaluation metric. For NER
tasks, we use Micro-F1 as the metric. The Micro-F1 score is calculated based
on precision and recall, which evaluate the accuracy of the model in identifying
these entities.

4.2 Results and Analysis

In this section, experiments are conducted in a fully supervised environment for
NLU tasks. The impact of noise on the performance of the continuous prompt
model is investigated by introducing existing and learnable perturbations to the
prompts.
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Experiment Results of the Existing Noise Attack. This section presents
experimental results on various models and datasets using the method of adding
existing noise, which verifies the vulnerabilities of prompt-based language mod-
els.

Fig. 3. Influence of Gaussian noise and Poisson noise on P-Tuning v2 on RTE dataset.

The experimental results presented in Figs. 3, 4, and 5 demonstrate that P-
Tuning v2 with continuous prompts exhibits a certain level of robustness, but
its sensitivity to different types of noise varies. Specifically, introducing noise to
the continuous prompt can have a significant impact on the model’s performance
when ε is larger.

Fig. 4. Influence of Gaussian noise and Poisson noise on P-Tuning v2 on CoNLL04
dataset.

These results illustrate that the model based on the prompt is more sensitive
to Gaussian noise than Poisson noise. For Gaussian noise, the influence of the
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model accuracy tends to remain stable when the ε is less than 1. On the con-
trary, Poisson noise does not significantly affect the continuous prompts and the
accuracy of the model is close to that of the original model when the ε is 1. This
can be attributed to the fact that Gaussian noise is a continuous distribution,
while Poisson noise follows a discrete distribution. The mean and variance of
Gaussian noise determine the mean and dispersion of the continuous prompt.
Poisson noise is related to each element, and the larger and more effective of
prompt, the more impact of Poisson noise due to its probability distribution
function.

Fig. 5. Influence of Gaussian noise and Poisson noise on P-Tuning v2 on OntoNotes
5.0 dataset.

As seen in Fig. 3, when using the RTE dataset, both Gaussian noise and
Poisson noise can only affect the model accuracy to around 55% and the model
cannot be reduced to a lower level. Notably, noise has a particularly significant
impact on the NER task, causing the F1-score to decrease to below 5%. This is
because P-Tuning v2 is trained in a fully supervised environment, so adding noise
to the continuous prompt can cause significant variations in the characteristics
of each sample during the training process, leading to a considerable effect on
the F1-score.

Through the experiments, we found that only ε reaches a certain threshold,
and the accuracy of the model drops rapidly. It is difficult to determine whether
the fluctuating changes in accuracy are caused by noise or other factors when ε
is small.

Experiment Results of the Learnable Perturbation Attack. From the
experimental results in the previous section, it can be concluded that adding
noise to P-Tuning v2 can reduce the model’s accuracy and successfully attack
the model. This section carries out experiments to verify the experimental results
of adding learnable perturbation. It mainly needs to be proved through experi-
ments that: (1) The learnable perturbation method can successfully attack the
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model and reduce the model evaluation metrics, and the effect is better than
or equivalent to adding noise directly; (2) A smaller amount of perturbation of
learnable perturbation attack method can achieve better performance.

First, the experiment of adding learnable perturbation on three datasets and
two pre-training language models is carried out in this section. The experiment
results are shown in Table 1. The Difference in the table is the attack success
rate where a larger value indicates a stronger attack.

Table 1. Experiment results of adding the learnable perturbation.

Dataset Task PLM P-Tuning v2 Learnable Difference

RTE NLI BERT-large 77.2% 46.6% 30.6%

RoBERTa-large 88.8% 48.7% 40.1%

CoNLL04 NER BERT-large 80.2% 2.3% 77.9%

RoBERTa-large 87% 3.3% 83.7%

OntoNotes 5.0 NER BERT-large 86.5% 0.8% 85.7%

RoBERTa-large 89.4% 1.0% 88.4%

From the data in Table 1, it can be seen that the accuracy of the RTE
dataset can be reduced to 48%. And the F1-score of the CoNLL04 dataset and
OntoNotes dataset can be reduced to a single digit, or even close to 0. These
results demonstrate the effectiveness of the learnable perturbation proposed in
this paper, which can successfully reduce the indicators of the model, and achieve
certain effects on the attack on the model.

Compared with the data of the existing noise attack method that only reduces
the accuracy of the model to about 55% on the RTE dataset, while learnable
perturbation can reduce the accuracy to about 48%. This proves that the learn-
able perturbation attack on the RTE dataset can achieve better results than
the existing noise attack. On the CoNLL04 dataset and OntoNotes dataset,
both learnable perturbation and directly added noise can reduce the F1-score
to a value close to 0, which proves that both attacks can achieve the same good
effect.

To verify that the L2-norm of the learnable perturbation attack is smaller
than that existing noise attack method under the same attack effect. Table 2
shows the difference of the L2-norm between the original prompt and the mali-
cious prompt. When the L2-norm value is smaller, the perturbation is smaller,
indicating that the malicious prompt is more similar to the original prompt.

Table 2. Comparison of disturbance size between existing noise and learnable pertur-
bation

Dataset Task PLM Gaussian Poisson Learnable

RTE NLI BERT-large 0.7639 0.8807 0.0152

RoBERTa-large 2.4730 3.8907 0.0201

CoNLL04 NER BERT-large 1.3784 1.5029 0.0159

RoBERTa-large 3.5471 4.3746 0.0187

OntoNotes 5.0 NER BERT-large 0.6540 0.7047 0.0218

RoBERTa-large 1.9369 2.5749 0.0174
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According to Table 2, it can be observed that regardless of the task or PTM
used, the learnable perturbation results in the smallest perturbation size. The
Euclidean Distance between the original and malicious prompts can be as small
as about 0.02, while the Gaussian noise and Poisson noise are greater than 1.
Therefore, it can be verified that the learnable perturbation attack proposed in
this section can successfully reduce the model performance when the perturba-
tion is small.

To sum up, the learnable perturbation attack can reduce the accuracy of the
model with little interference, and achieve the same or even better effect as the
existing noise attack. Thus, we have achieved the objective of designing learnable
perturbation and verifying the effectiveness and feasibility of the method in this
chapter.

5 Conclusion

In this paper, we investigate the vulnerability of continuous prompts to noise
perturbations from the perspective of attackers. To reveal the general vulnera-
bility of the continuous prompt-based learning paradigm in noise, we verify the
effectiveness of existing noise and propose a smaller magnitude and task-adaptive
learnable attack method. The massive experiments demonstrate the excellence
of the learnable attack method. In future work, we will investigate how to defend
against attacks targeted at continuous prompts. We believe that our work will
pave the way for the future development of prompt-based learning.
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