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Preface

The European Neural Network Society (ENNS) is an association of scientists, engineers
and students, conducting research on the modelling of behavioral and brain processes,
andon the development of neural algorithms.The core of these efforts is the applicationof
neuralmodelling to several diverse domains. According to itsmission statement ENNS is
the European non-profit federation of professionals that aims at achieving a worldwide
professional and socially responsible development and application of artificial neural
technologies.

The flagship event of ENNS is ICANN (the International Conference on Artifi-
cial Neural Networks) at which contributed research papers are presented after passing
through a rigorous review process. ICANN is a dual-track conference, featuring tracks
in brain-inspired computing on the one hand, and machine learning on the other, with
strong crossdisciplinary interactions and applications.

The response of the international scientific community to the ICANN 2023 call for
papers was more than satisfactory. In total, 947 research papers on the aforementioned
research areaswere submitted and 426 (45%) of themwere finally accepted as full papers
after a peer review process. Additionally, 19 extended abstracts were submitted and 9 of
them were selected to be included in the front matter of ICANN 2023 proceedings. Due
to their high academic and scientific importance, 22 short papers were also accepted.

All papers were peer reviewed by at least two independent academic referees.Where
needed, a third or a fourth referee was consulted to resolve any potential conflicts. Three
workshops focusing on specific research areas, namely Advances in Spiking Neural Net-
works (ASNN),Neurorobotics (NRR), and the challenge ofErrors, Stability, Robustness,
and Accuracy in Deep Neural Networks (ESRA in DNN), were organized.

The 10-volume set of LNCS 14254, 14255, 14256, 14257, 14258, 14259, 14260,
14261, 14262 and 14263 constitutes the proceedings of the 32nd International Confer-
ence on Artificial Neural Networks, ICANN 2023, held in Heraklion city, Crete, Greece,
on September 26–29, 2023.

The accepted papers are related to the following topics:

Machine Learning: Deep Learning; Neural Network Theory; Neural Network Models;
Graphical Models; Bayesian Networks; Kernel Methods; Generative Models; Infor-
mation Theoretic Learning; Reinforcement Learning; Relational Learning; Dynamical
Models; Recurrent Networks; and Ethics of AI.

Brain-Inspired Computing: Cognitive Models; Computational Neuroscience; Self-
Organization; Neural Control and Planning; Hybrid Neural-Symbolic Architectures;
Neural Dynamics; Cognitive Neuroscience; Brain Informatics; Perception and Action;
and Spiking Neural Networks.
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Neural applications in Bioinformatics; Biomedicine; Intelligent Robotics; Neuro-
robotics; Language Processing; Speech Processing; Image Processing; Sensor Fusion;
Pattern Recognition; Data Mining; Neural Agents; Brain-Computer Interaction; Neuro-
morphic Computing and Edge AI; and Evolutionary Neural Networks.
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Antonios Papaleonidas

Plamen Angelov
Chrisina Jayne



Organization

General Chairs

Iliadis Lazaros Democritus University of Thrace, Greece
Plamen Angelov Lancaster University, UK

Program Chairs

Antonios Papaleonidas Democritus University of Thrace, Greece
Elias Pimenidis UWE Bristol, UK
Chrisina Jayne Teesside University, UK

Honorary Chairs

Stefan Wermter University of Hamburg, Germany
Vera Kurkova Czech Academy of Sciences, Czech Republic
Nikola Kasabov Auckland University of Technology, New Zealand

Organizing Chairs

Antonios Papaleonidas Democritus University of Thrace, Greece
Anastasios Panagiotis Psathas Democritus University of Thrace, Greece
George Magoulas University of London, Birkbeck College, UK
Haralambos Mouratidis University of Essex, UK

Award Chairs

Stefan Wermter University of Hamburg, Germany
Chukiong Loo University of Malaysia, Malaysia



viii Organization

Communication Chairs

Sebastian Otte University of Tübingen, Germany
Anastasios Panagiotis Psathas Democritus University of Thrace, Greece

Steering Committee

Stefan Wermter University of Hamburg, Germany
Angelo Cangelosi University of Manchester, UK
Igor Farkaš Comenius University in Bratislava, Slovakia
Chrisina Jayne Teesside University, UK
Matthias Kerzel University of Hamburg, Germany
Alessandra Lintas University of Lausanne, Switzerland
Kristína Malinovská (Rebrová) Comenius University in Bratislava, Slovakia
Alessio Micheli University of Pisa, Italy
Jaakko Peltonen Tampere University, Finland
Brigitte Quenet ESPCI Paris, France
Ausra Saudargiene Lithuanian University of Health Sciences,

Lithuania
Roseli Wedemann Rio de Janeiro State University, Brazil

Local Organizing/Hybrid Facilitation Committee

Aggeliki Tsouka Democritus University of Thrace, Greece
Anastasios Panagiotis Psathas Democritus University of Thrace, Greece
Anna Karagianni Democritus University of Thrace, Greece
Christina Gkizioti Democritus University of Thrace, Greece
Ioanna-Maria Erentzi Democritus University of Thrace, Greece
Ioannis Skopelitis Democritus University of Thrace, Greece
Lambros Kazelis Democritus University of Thrace, Greece
Leandros Tsatsaronis Democritus University of Thrace, Greece
Nikiforos Mpotzoris Democritus University of Thrace, Greece
Nikos Zervis Democritus University of Thrace, Greece
Panagiotis Restos Democritus University of Thrace, Greece
Tassos Giannakopoulos Democritus University of Thrace, Greece



Organization ix

Program Committee

Abraham Yosipof CLB, Israel
Adane Tarekegn NTNU, Norway
Aditya Gilra Centrum Wiskunde & Informatica, Netherlands
Adrien Durand-Petiteville Federal University of Pernambuco, Brazil
Adrien Fois LORIA, France
Alaa Marouf Hosei University, Japan
Alessandra Sciutti Istituto Italiano di Tecnologia, Italy
Alessandro Sperduti University of Padua, Italy
Alessio Micheli University of Pisa, Italy
Alex Shenfield Sheffield Hallam University, UK
Alexander Kovalenko Czech Technical University in Prague,

Czech Republic
Alexander Krawczyk Fulda University of Applied Sciences, Germany
Ali Minai University of Cincinnati, USA
Aluizio Araujo Universidade Federal de Pernambuco, Brazil
Amarda Shehu George Mason University, USA
Amit Kumar Kundu University of Maryland, USA
Anand Rangarajan University of Florida, USA
Anastasios Panagiotis Psathas Democritus University of Thrace, Greece
Andre de Carvalho Universidade de São Paulo, Brazil
Andrej Lucny Comenius University, Slovakia
Angel Villar-Corrales University of Bonn, Germany
Angelo Cangelosi University of Manchester, UK
Anna Jenul Norwegian University of Life Sciences, Norway
Antonios Papaleonidas Democritus University of Thrace, Greece
Arnaud Lewandowski LISIC, ULCO, France
Arul Selvam Periyasamy Universität Bonn, Germany
Asma Mekki University of Sfax, Tunisia
Banafsheh Rekabdar Portland State University, USA
Barbara Hammer Universität Bielefeld, Germany
Baris Serhan University of Manchester, UK
Benedikt Bagus University of Applied Sciences Fulda, Germany
Benjamin Paaßen Bielefeld University, Germany
Bernhard Pfahringer University of Waikato, New Zealand
Bharath Sudharsan NUI Galway, Ireland
Binyi Wu Dresden University of Technology, Germany
Binyu Zhao Harbin Institute of Technology, China
Björn Plüster University of Hamburg, Germany
Bo Mei Texas Christian University, USA



x Organization

Brian Moser Deutsches Forschungszentrum für künstliche
Intelligenz, Germany

Carlo Mazzola Istituto Italiano di Tecnologia, Italy
Carlos Moreno-Garcia Robert Gordon University, UK
Chandresh Pravin Reading University, UK
Chao Ma Wuhan University, China
Chathura Wanigasekara German Aerospace Centre, Germany
Cheng Shang Shanghai Jiaotong University, China
Chengqiang Huang Huawei Technologies, China
Chenhan Zhang University of Technology, Sydney, Australia
Chenyang Lyu Dublin City University, Ireland
Chihuang Liu Meta, USA
Chrisina Jayne Teesside University, UK
Christian Balkenius Lund University, Sweden
Chrysoula Kosma Ecole Polytechnique, Greece
Claudio Bellei Elliptic, UK
Claudio Gallicchio University of Pisa, Italy
Claudio Giorgio Giancaterino Intesa SanPaolo Vita, Italy
Constantine Dovrolis Cyprus Institute, USA
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Developmental Robotics for Language Learning, Trust
and Theory of Mind

Angelo Cangelosi

University of Manchester and Alan Turing Institute, UK

Growing theoretical and experimental research on action and language processing and on
number learning and gestures clearly demonstrates the role of embodiment in cognition
and language processing. In psychology and neuroscience, this evidence constitutes the
basis of embodied cognition, also known as grounded cognition (Pezzulo et al. 2012).
In robotics and AI, these studies have important implications for the design of linguistic
capabilities in cognitive agents and robots for human-robot collaboration, and have
led to the new interdisciplinary approach of Developmental Robotics, as part of the
wider Cognitive Robotics field (Cangelosi and Schlesinger 2015; Cangelosi and Asada
2022). During the talk we presented examples of developmental robotics models and
experimental results from iCub experiments on the embodiment biases in early word
acquisition and grammar learning (Morse et al. 2015; Morse and Cangelosi 2017) and
experiments on pointing gestures and finger counting for number learning (De La Cruz
et al. 2014). We then presented a novel developmental robotics model, and experiments,
on Theory of Mind and its use for autonomous trust behavior in robots (Vinanzi et al.
2019, 2021). The implications for the use of such embodied approaches for embodied
cognition in AI and cognitive sciences, and for robot companion applications, was also
discussed.



Challenges of Incremental Learning

Barbara Hammer

CITEC Centre of Excellence, Bielefeld University, Germany

Smart products and AI components are increasingly available in industrial applications
and everyday life. This offers great opportunities for cognitive automation and intelligent
human-machine cooperation; yet it also poses significant challenges since a fundamental
assumption of classical machine learning, an underlying stationary data distribution,
might be easily violated. Unexpected events or outliers, sensor drift, or individual user
behavior might cause changes of an underlying data distribution, typically referred to
as concept drift or covariate shift. Concept drift requires a continuous adaptation of the
underlying model and efficient incremental learning strategies. Within the presentation,
I looked at recent developments in the context of incremental learning schemes for
streaming data, putting a particular focus on the challenge of learning with drift and
detecting and disentangling drift in possibly unsupervised setups and for unknown type
and strength of drift. More precisely, I dealt with the following aspects: learning schemes
for incremental model adaptation from streaming data in the presence of concept drift;
various mathematical formalizations of concept drift and detection/quantification of
drift based thereon; and decomposition and explanation of drift. I presented a couple of
experimental results using benchmarks from the literature, and I offered a glimpse into
mathematical guarantees which can be provided for some of the algorithms.



Reliable AI: From Mathematical Foundations
to Quantum Computing

Gitta Kutyniok1,2

1Bavarian AI Chair for Mathematical Foundations of Artificial Intelligence, LMU
Munich, Germany

2Adjunct Professor for Machine Learning, University of Tromsø, Norway

Artificial intelligence is currently leading to one breakthrough after the other, both in
public life with, for instance, autonomous driving and speech recognition, and in the
sciences in areas such as medical diagnostics or molecular dynamics. However, one
current major drawback is the lack of reliability of such methodologies.

In this lecture we took a mathematical viewpoint towards this problem, showing
the power of such approaches to reliability. We first provided an introduction into this
vibrant research area, focussing specifically on deep neural networks. We then surveyed
recent advances, in particular concerning generalization guarantees and explainability
methods. Finally, we discussed fundamental limitations of deep neural networks and
related approaches in terms of computability, which seriously affects their reliability,
and we revealed a connection with quantum computing.



Intelligent Pervasive Applications for Holistic Health
Management

Ilias Maglogiannis

University of Piraeus, Greece

The advancements in telemonitoring platforms, biosensors, and medical devices have
paved the way for pervasive health management, allowing patients to be monitored
remotely in real-time. The visual domain has become increasingly important for patient
monitoring, with activity recognition and fall detection being key components. Com-
puter vision techniques, such as deep learning, have been used to develop robust activity
recognition and fall detection algorithms. These algorithms can analyze video streams
from cameras, detecting and classifying various activities, and detecting falls in real
time. Furthermore, wearable devices, such as smartwatches and fitness trackers, can
also monitor a patient’s daily activities, providing insights into their overall health and
wellness, allowing for a comprehensive analysis of a patient’s health. In this talk we
discussed the state of the art in pervasive health management and biomedical data ana-
lytics and we presented the work done in the Computational Biomedicine Laboratory
of the University of Piraeus in this domain. The talk also included Future Trends and
Challenges.
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Abstract. Large pre-trained language models have demonstrated supe-
rior performance in natural language processing tasks. However, the
massive number of parameters and slow inference speed make it chal-
lenging to deploy them on resource-constrained devices. Existing knowl-
edge distillation methods use the point-to-point approach to transfer the
knowledge, which restrains the ability to learn the higher-level semantic
knowledge from the teacher network. In this paper, we propose Repre-
sentation and Relation Distillation with Data Augmentation(2RDA), a
novel knowledge distillation framework. Unlike previous methods, 2RDA
introduces an improved contrastive distillation loss function for data aug-
mentation to solve the problem that data augmentation during the fine-
tuning of downstream tasks may lead to the misclassification of positive
and negative sample pairs for contrastive learning. Additionally, we guide
the student model to obtain structural knowledge by distilling the rela-
tional knowledge between samples from a mini-batch through distance
loss. 2RDA achieves excellent results and surpasses the state-of-the-art
model compression methods on the GLUE benchmark, demonstrating
the effectiveness of our approach.

Keywords: knowledge distillation · contrastive learning · data
augmentation

1 Introduction

In the past few years, pre-trained language models like BERT [3] and RoBERTa
[11] have achieved significant progress in natural language processing (NLP)
tasks. However, these bloated models restrict their deployment in limited com-
putational resources. Knowledge distillation (KD) [8] is popular research as a
method for model compression [7]. KD is a Teacher-Student network training
structure, which completes the process of migrating the knowledge from the
complex teacher model to the simple student model at the expense of a slight
performance loss.

A constant question in KD development is: What knowledge should the stu-
dent learn? The common approach [8] requires the student model to learn the

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14261, pp. 1–12, 2023.
https://doi.org/10.1007/978-3-031-44198-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44198-1_1&domain=pdf
https://doi.org/10.1007/978-3-031-44198-1_1
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Fig. 1. Schematic of traditional contrastive distillation. In this case, A+ is a sample
after using data augmentation by sample A. The traditional method assumes that
fS
A and fT

A+ are not similar representations so that contrastive loss pushes fT
A+ away

indiscriminately from the other negative samples. This goes against the way in which
contrastive learning initially determines positive and negative examples.

probability distribution, but this formal knowledge appears insufficient for build-
ing natural language understanding models with such a large number of param-
eters. Existing research [10,15,17] suggests that a wealth of information can be
learned from intermediate representations. However, these distillation strategies
only aim to mimic the output values of the teacher layers in the hidden states,
ignoring the structural information that is essential to improve the performance
of the student model. Recently, some distillation works [5,16] introduced con-
trastive learning to capture the structural characteristics between the student
and teacher. However, when performing contrastive learning with data augmen-
tation, only the same sample is considered to be in the same class, which results
in false negatives. For instance, the original data and augmented data should
also be close to each other rather than pushed away. False negatives may have a
potential inhibition when the student learns semantic representations, as shown
in Fig. 1.

Moreover, is there other useful information waiting to be learned by the
student? We find that maintaining relations between samples is also the key
to preserving deep structure knowledge. Considering only the results of a sin-
gle sample will neglect structural relations between features, thus affecting the
outcome of knowledge distillation.

To bridge the gap, we propose a distillation framework called 2RDA. In KD
process, contrastive learning loss for data augmentation is introduced to train
the student, considering the impact of augmented data samples for the con-
trastive learning object. Specifically, We reformulate the rules for determining
positive and negative sample pairs, which prevents the sample pairs augmented
from the same data from being away from each other. By improved contrastive
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loss, the student can capture the higher-order output dependence between the
intermediate representations of the teacher and student. In addition, we dis-
till the relations from the intermediate representations of the teacher. Student
builds structural relations of the output representations and captures the cor-
relations and higher-order output dependencies of each sample through angular
loss, rather than only learning the representations themselves. To encourage the
student to concentrate on learning a good representation in the early stage with-
out the influence of label signals, we adopt a two-stage training strategy. In the
process of transferring knowledge, we distill the transformer layers at the first
stage, then the prediction layer at the second stage.

Our contributions are summarized as follows.

– We propose a novel KD framework, 2RDA, which combines distilling the
representations through contrastive loss and distilling the relations through
angle distance loss.

– We propose a new contrastive loss to distill the intermediate representations.
Compared to previous contrastive distillation, the judgment of the positive
and negative sample pairs is more fine-grained.

– Our extensive experiments on the GLUE task demonstrate that the 2RDA
approach performs better than the state-of-the-art baseline model.

2 Related Work

2.1 Knowledge Distillation

There have been numerous important works throughout the history of KD
research. The standard form of knowledge distillation [8] employed the softmax
function with a temperature parameter to transfer the probability distribution of
categories from the teacher to the student, referred to as soft targets. DistilBERT
[14] not only proposed cosine loss to compute the cosine similarity between the
hidden state of the teacher and student but also optimized the matrix com-
putation of fully connected layers in the transformer. TinyBERT [10] used a
parameter matrix to linearly transform the hidden states of the student layers
to extract knowledge from the middle and last layers of the teacher. MiniLM [20]
distilled the self-attention module of the final transformer layer of the teacher
and introduced teaching assistants to help distill the model. MobileBERT [17]
assumed the same number of layers for the teacher-student network and intro-
duced a bottleneck module to keep their hidden layers the same size.

Furthermore, some work is exploring how to introduce contrastive learning
into knowledge distillation. The reference [18] first used contrastive learning in
compute vision (CV) distillation tasks and demonstrated that contrastive loss
maximizes the mutual information of student and teacher output distribution.
LRC-BERT [5] introduced contrastive learning at each intermediate layer of
the student. It replaced cosine similarity with angular distance to evaluate the
similarity of two samples. During the distillation of certain downstream tasks,
the training data set was conducted with 20 times data augmentation. However,
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the existing contrastive distillation constitutes the same sample from the student
and the teacher as a positive sample pair, pushing the distance between the
data-enhanced samples in the feature space farther away, which may hinder
representation learning.

2.2 Contrastive Learning

Contrastive learning [4] uses the data itself as supervised information and manu-
ally sets rules to construct positive and negative sample pairs, which is frequently
used to learn the high-quality representation of samples. Common contrastive
loss functions are NCE loss [6] and infoNCE loss [12].

The core of contrastive learning is how to construct positive and negative
example pairs. CLEAR [22] proposed sentence-level feature extraction and tried
multiple sentence-level enhancement strategies to pull in the representations in
the feature space after data augmentation of the same sentence. In common
contrastive knowledge distillation work [5,16,18], the same sample is often used
to form positive sample pairs by entering the student model and the teacher
model separately. In our approach, we use contrastive learning for distillation
in the transformer layer to learn the intermediate representations of the teacher
network and address the interference in the judgment of positive and negative
sample pairs caused by data augmentation.

3 Method

3.1 Framework Overview

2RDA distillation framework is illustrated in Fig. 2. We use BERT-base [3] as
the teacher network, denoted as fT with 12 transformer blocks. The student
network with L transformer blocks is denoted as fS . In 2RDA, L is set to 4
or 6. Since the teacher has 12 transformer layers and the student has only L
transformer layers, we define the mapping function φ(l), which represents the
l-th transformer layer of the student will learn from the φ(l)-th transformer layer
of the teacher. Set a mini-batch with n sentences, X = [x1, x2, ..., xn]. For sample
xi, we choose the [CLS] token as the hidden representation of the student and
teacher, denoted as hS

i and hT
i respectively. The hidden representation from the

l-th layer of the student is denoted as HS
l = [hS

1,l, h
S
2,l, ..., h

S
n,l] (1 ≤ l ≤ L),

and the hidden representation from the l-th layer of the teacher is denoted as
HT

l = [hT
1,l, h

T
2,l, ..., h

T
n,l] (1 ≤ l ≤ 12). The output HS

l of the student is trained
to match the output HT

φ(l) of the teacher.
2RDA transfers the representations and relations in each student transformer

layer, which facilitates the formation of structural knowledge. With the help of
soft and hard labels in the prediction layer, the student strengthens the ability to
predict downstream tasks. The distillation objective of 2RDA consists of three
components: (i) proposed contrastive distillation loss based on data augmen-
tation Lcrda; (ii) relational distillation loss Lrd; (iii) standard distillation loss
from prediction layer Lpred.
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Fig. 2. The main architecture of 2RDA. “Emb”, “Trm”, and “Pred” represent an
embedding layer, a transformer layer, and a prediction layer, respectively. fT and fS

represent the teacher model and student model, respectively.

3.2 Contrastive Distillation

Memory Bank. Existing works [1,2,6,18] suggested that more negative sam-
ples were able to benefit contrastive learning. Thus, for an anchor in contrastive
learning, we need a large number of negative samples. In practice, we cannot
increase the number of negative samples by merely turning up the batchsize
due to the hardware limitations. Thus, we follow the approach of [21] and uti-
lize memory banks {M i}L

i=1 to store the intermediate representations from the
corresponding layer of the teacher. To reduce the cost of storage space, each
memory bank only stores a fixed number of negative samples depending on the
capacity. The memory bank employs the queueing mechanism. If the memory
bank that stores current layer representations is full, the earliest representations
of the current layer will be eliminated, preserving data mobility and training
robustness. Since the parameters of the teacher network are fixed during the
distillation, the teacher representations of the corresponding sample will not be
updated.

Contrastive Loss for Data Augmentation. As a result of introducing the
memory bank in contrastive distillation, the number of negative samples is sig-
nificantly increased. When performing contrastive learning, the current anchor
hS

i is more likely to be compared with the representations after data augmenta-
tion by the same sample. Traditional contrastive distillation methods considered
these sample pairs as negative pairs, inhibiting the student model from learning
better representation information. We propose the improved contrastive loss for
data augmentation to address the problem that the previous distillation con-
trastive method incorrectly the classify categories. For each training sample x,
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we store the index of its corresponding original data in the training data set.
Samples augmented by the same original data have the same index. The index
information is also carried out when the samples generate intermediate repre-
sentations, even in the memory bank. We use index(h) to obtain the index of
the representation h. For the anchor hS

i in a mini-batch during the contrastive
learning, it needs to be compared with K samples, where K is the number of
representations in the current memory bank M .

For every hidden representation hS
i,l for the sample xi on the l-th layer , we

redefine the contrastive representation loss for data augmentation:

Ll
crda = −

n∑

i=1

log

K∑
m=1

g(hS
i,l, h

T
m,φ(l)) · exp(f(hS

i,lW,hT
m,φ(l))/τ)

∑K
j=1 exp(f(hS

i,lW,hT
j,φ(l))/τ)

(1)

where

g(hS
i , hT

j ) =
{

1, index(hS
i ) = index(hT

j )
0, otherwise

(2)

where f(u, v) represents the cosine similarity between u and v, and τ is a tem-
perature hyperparameter. The matrix W ∈ R

d′×d is a linear transformation,
where d and d′ represent the hidden size of the teacher network and the student
network, respectively. It maps the hidden layer output of the student network
to a feature space of the same dimension as the teacher network. The function
is adapted from the well-known InfoNCE loss [9]. We add the function g to the
numerator, which treats all sample pairs with the same index as positive sample
pairs. Our proposed contrastive loss compensates for the gaps caused by the
misclassification of sample pairs in conventional contrastive distillation.

3.3 Relational Distillation

Making the individual intermediate representation of the student being close to
the teacher in the semantic space is insufficient to capture the complex struc-
tural relationships between representations in the high-dimensional space. We
also focus on the internal relations between the representations. We follow the
work of [13] by introducing angular distillation loss in the intermediate layer in
order to transfer the structural relations of the teacher layer. When taking three
samples xi, xj , xk from a mini-batch, the cosine angle of these examples in the
intermediate representation space is formulated as:

θ(hi, hj , hk) =
hi − hj

||hi − hj ||2 · hj − hk

||hj − hk||2 (3)

Since the computational complexity grows cubically with the number of sam-
ples, we do not introduce memory bank in relational distillation. We extract the
feature relations by minimizing the angular distance of the same three samples
of student and teacher in a mini-batch:

Ll
rd =

∑

(xi,xj ,xk)∈X 3

Lδ(θ(hs
i,l, h

s
j,l, h

s
k,l), θ(h

t
i,φ(l), h

t
j,φ(l), h

t
k,φ(l))) (4)
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where X 3 represents the set of all three mutually different samples in a mini-
batch, Lδ is Huber loss:

Lδ(s, t) =
{

1
2 (t − s)2, |t − s| ≤ δ

δ|t − s| − 1
2δ2, otherwise

(5)

where δ denotes the error threshold hyperparameter, which is set to 1.

3.4 Training Process

Transformer Layer Distillation. Contrastive distillation and angle distance
distillation are introduced in every transformer layer of the student. The total
loss for all transformer layers is defined as follows:

Ltransformer = α1

L∑

l=1

Ll
crda + α2

L∑

l=1

Ll
rd (6)

where α1 and α2 are weight coefficient.

Prediction Layer Distillation. To classify specific downstream tasks, the
student learns the soft label of the teacher and their corresponding real label
from the data set, which denotes the hard label at the prediction layer. The
prediction loss Lpred is defined as:

Lpred = α3CE(zS/t, zT /t) + α4CE(zS , y) (7)

where CE represents the soft cross-entropy loss function, zS and zT represent
the predicted logits of the student and the teacher, respectively. y is the real
one-hot label, t means the temperature hyperparametric.

We employ a two-stage training approach. Specifically, in the first stage, we
set α3, α4 to 0, only to calculate the contrastive loss and relational loss of the
transformer layer. In the second stage, we set α1, α2 to 0 only to perform pre-
diction layer distillation, empowering the student ability to predict downstream
tasks.

4 Experiment

4.1 Datasets

We evaluate 2RDA on the General Language Understanding Evaluation (GLUE)
[19] benchmark, which contains 9 sentence-level classification tasks, includ-
ing Microsoft Research Paraphrase Matching (MRPC), Quora Question Pairs
(QQP), Semantic Textual Similarity Benchmark (STS-B), Stanford Sentiment
Treebank (SST-2), Question Natural Language Inference (QNLI), Recognizing
Textual Entailment (RTE), Corpus of Linguistic Acceptability (CoLA), Multi-
Genre Natural Language Inference Matched (MNLI-m) and Multi-Genre Natu-
ral Language Inference Mismatched (MNLI-mm). We evaluate 2RDA using the
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metrics of the GLUE benchmark. Specifically, for QQP and MRPC, the metric
is F1-score, the Spearman correlation is adopted for STS-B, the Matthews cor-
relation coefficient is used as the evaluation metric for CoLA, and accuracy is
adopted for the rest tasks.

4.2 2RDA Settings

Data Augmentation. We focused our experiments on contrastive knowledge
distillation using data augmentation on specific downstream tasks rather than
distilling a pre-trained model because distilling a pre-trained model does not
lack training corpus. We utilize the training data sets corresponding to specific
tasks on GLUE to compress the teacher network. We follow the method and
setup for data augmentation proposed by TinyBERT [10] to expand the data by
20 times in each downstream task.

Implementation Details. We use BERT-base [3] as our teacher model. BERT-
base contains 12 transformer layers with 768 hidden dimensions, 3072 interme-
diate dimensions, 12 attention heads per layer, and about 109M parameters.
To enable a more comprehensive comparison with previous work, two student
model architectures were designed. The first student architecture contains a 4-
layer transformer with 312 hidden layer size, 1200 intermediate dimensions, 12
attention heads and about 14.5M parameters, which is denoted as 2RDA4(L =
4, d′ = 312, di = 1200, lhead = 12). The second student architecture(L = 6, d′

= 768, di = 3072, lhead = 12) with approximately 69M parameters, denoted as
2RDA6. We employ the two-stage distillation training for downstream tasks as
mentioned in Sect. 3. For the first stage, 2RDA4 and 2RDA6 initialize the generic
distillation weights from TinyBERT4 and TinyBERT6

1 , respectively.

Hyperparameters. For each downstream task on GLUE, we fine-tune the
BERT-base as the teacher. In the first distillation stage, we distill the transformer
layer with the augmented dataset. We set the size of each memory bank to 2048.
The training epoch is fixed to 10. For the contrastive learning temperature τ ,
we set it to 0.05. The parameters α1 and α2 in Ltransformer are set to 3 and
1, respectively. As for the second distillation stage, we used the student who
completed the first distillation stage as input. The epoch is fixed to 5. The
temperature t in Lsoft is set to 1.2. We set both α3 and α4 in Lpred to 1. For the
batchsize B and learning rate lr of the two-stage training, we utilize grid search
to set the B from {32, 64} and lr from {1e-5, 3e-5, 5e-5}. The mapping function
for 2RDA4 is φ(l) = 3l while φ(l) = 2l for 2RDA6. In each task, we select the
best model in the dev set to predict the task in the test set. Then we submit the
result to the official GLUE to compare with other baseline models.

1 https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/Tiny
BERT.

https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT
https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT
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Table 1. Experimental results for the GLUE test set. The subscript indicates the
number of transformer layers in each model name. The evaluation findings are obtained
from the GLUE benchmark’s official website, with the best experimental outcomes
highlighted in bold. Results of other baseline models are taken from published papers.

Model #Params Speedup MNLI-(m/mm) QQP SST-2 QNLI MRPC RTE CoLA STS-B Ave.

(393K) (368K) (67K) (108K) (3.7K) (2.5K) (8.5K) (5.7K)

BERT-base 109M ×1 84.6/83.4 71.2 93.5 90.5 88.9 66.4 52.1 85.8 79.6

DistillBERT4 52.2M ×3.0 78.9/78.0 68.5 91.4 85.2 82.4 54.1 32.8 76.1 71.9

BERT4-PKD 52.2M ×3.0 79.9/79.3 70.2 89.4 85.1 82.6 62.3 24.8 79.8 72.6

TinyBERT4 14.5M ×9.4 82.5/81.8 71.3 92.6 87.7 86.4 66.6 44.1 80.4 77.0

2RDA4(ours) 14.5M ×9.4 83.5/82.4 71.5 93.0 89.1 87.3 66.8 46.8 82.0 78.0

DistillBERT6 67.0M ×2.0 82.6/81.3 70.1 92.5 88.9 86.9 58.4 49.0 81.3 76.8

BERT6-PKD 67.0M ×2.0 81.5/81.0 70.7 92.0 89.0 85.0 65.5 - - -

BERT-of-Theseus6 67.0M ×2.0 82.4/82.1 71.6 92.2 89.6 87.6 66.2 47.8 84.1 78.2

TinyBERT6 67.0M ×2.0 84.6/83.2 71.6 93.1 90.4 87.3 70.0 51.1 83.7 79.4

2RDA6(ours) 67.0M ×2.0 84.7/83.9 71.9 93.3 90.5 88.0 70.6 51.4 84.4 79.9

4.3 Experimental Results

The experimental results on the GLUE test set are presented in Table 1. We
compare the distillation results of 2RDA with popular baseline, such as Dis-
tillBERT [14], BERT-PKD [15], TinyBERT [10], BERT-of-Theseus [23]. We do
not compare the results with CoDIR [16], which introduced contrastive distilla-
tion because CoDIR utilized a more powerful RoBERTa-base [11] as the teacher
model, which may lead to unfair comparative results.

By analyzing the experimental results of the 4-layer student model, it can be
concluded that 2RDA4 outperforms the other 4 transformer-layer students on
all GLUE tasks, retaining 98% of the teacher performance. 2RDA4 exceeds the
best competitor, TinyBERT4, by 1% score on Ave. Specifically, 2RDA4 achieves
1.0% higher result for MNLI-m, 0.6% for MNLI-mm, 0.2% for QQP, 0.4% for
SST-2, 1.3% for QNLI, 0.9% for MRPC, 0.2% for RTE, 2.7% for CoLA and 1.6%
for STS-B. Compared to BERT-PKD4 and DistillBERT4, 2RDA4 outperforms
these two student models while only with 30% parameters. Inference time is
also an important metric for measuring a model. We can find that our proposed
2RDA4 runs 9.4 times faster than the original teacher model, BERT-base, and
has 7.5 times smaller parameters.

We observe similar results when we continue to increase the number of layers
to 2RDA6. 2RDA6 still performs the best among the 6-layer student models.
2RDA6 outperforms the experimental results of TinyBERT, rising by 0.5% on
Ave. Furthermore, 2RDA6 even outperforms the 12-layer teacher model on cer-
tain datasets, which is considered to be an excellent result. The above results
demonstrate the effectiveness of the proposed approach for distillation-specific
tasks using data augmentation.

4.4 Ablation Studies

Effect of Loss Function. We evaluate different loss function objectives to
validate the effectiveness of 2RDA. We use the following settings separately: (1)
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Table 2. Ablation study on the different loss functions. The experimental results are
based on GLUE dev set. The results are averaged for 3 runs.

Model MNLI-(m/mm) QQP SST-2 QNLI MRPC RTE CoLA STS-B Ave.

(393K) (368K) (67K) (108K) (3.7K) (2.5K) (8.5K) (5.7K)

2RDA6 84.6/84.2 72.0 92.8 90.9 87.6 71.2 53.9 84.4 80.2

L1 81.9/81.4 70.8 90.9 87.6 85.7 68.2 49.6 81.8 77.5

L2 84.1/83.6 71.8 92.7 90.2 86.4 69.7 52.8 82.5 79.3

L3 84.6/84.0 72.4 92.9 90.6 86.8 69.9 52.2 83.7 79.7

2RDA6: This is our proposed distillation technique based on data augmentation.
(2)L1: Remove the contrastive loss function which is used in the first stage.
(3)L2: Remove the angular distance loss function in the first stage. (4)L3: Use
the conventional infoNCE loss instead of Lcrda when conducting contrastive
learning. The other configurations for settings (2), (3), and (4) are the same as
2RDA6.

The results for the GLUE dev set are shown in Table 2. The results show
that 2RDA6 outperforms all other methods in terms of Ave. Specifically, without
using contrastive loss, angular distance loss results in 2.7% and 0.9% performance
decrease on average. Conventional infoNCE leads to a 0.5% drop on average,
indicating that removing or altering any loss targets would decrease the results.
The performance loss from setting (4) is relatively minor compared to setting
(2) and (3) and still maintains competitive performance on the QQP, MNLI-
m/mm, and SST-2 tasks. We speculate it is due to a large amount of training
data on the QQP, MNLI-m/mm, and SST-2 tasks, which significantly dilutes
the probability of matching augmented samples from the same source data in
contrastive learning.

Fig. 3. Analysis of the size of the memory bank on CoLA, RTE, and STS-B dev set.
The results are averaged for 3 runs.
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Analysis of the Size of Memory Bank. The memory bank size represents the
number of negative samples when performing contrastive learning. We explore
whether the memory bank size affects the result of contrastive distillation. We
set the size of each memory bank to 512, 1024, 2048, and 4096, respectively.
Then we analyze the results by comparing them to CoLA, RTE, and STS-B dev
set. Other settings are the same as 2RDA6.

Figure 3 shows the experimental results. We can observe that using more neg-
ative examples for the training set will help to improve the accuracy. Further-
more, it is evident that when the size of the memory bank is increased from 512
to 2048, the accuracy of the model gets improved significantly. However, when
the memory bank size exceeds 2048, the improvement is slight. Specifically, when
the size is increased from 2048 to 4096, it only contributes 0%, 0.1%, and 0.1%
performance improvement on the CoLA, RTE, and STS-B tasks, respectively.
However, storing 4096 negative samples for each memory bank will consume
a lot of storage space and calculation time. To balance the training time and
effectiveness, we set the memory bank size to 2048 in 2RDA.

5 Conclusion

In this paper, we propose a novel knowledge distillation framework, 2RDA, for
compressing the BERT into a lightweight student model, which is suitable for
data-scarce downstream tasks. 2RDA uses contrastive learning based on data
augmentation in the distillation process to better judge the positive and nega-
tive sample pairs when transferring representations knowledge from the teacher,
which is not considered in existing knowledge distillation methods. In addition,
the angular distance penalty is introduced to capture high-level relationships
between samples. Our experiments demonstrate that 2RDA can achieve more
competitive performance.

Acknowledgement. The research work is supported by National Key R&D Pro-
gram of China (No. 2022YFB3904700), Industrial Internet Innovation and Develop-
ment Project in 2021 (TC210A02M, TC210804D), Opening Project of Beijing Key
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Abstract. Relation extraction (RE) has been a fundamental task in
natural language processing (NLP) as it identifies semantic relations
among entity pairs in texts. Because sentence-level RE can only cap-
ture intra-connections within a sentence rather than inter-connections
between or among sentences, researchers shift their attentions to
document-level RE to obtain richer and complex relations which may
involve logic inference. Prior works on document-level RE suffer from
inflexible pruning rules and lack of sentence-level features, which lead
to the missing of valuable information. In this paper, we propose a
document-level relation extraction framework with both dynamic prun-
ing mechanism and sentence-level attention. Specifically, a weight-based
flexible pruning mechanism is applied on the document-level dependency
tree to remove non-relational edges dynamically and obtain the weight
dependency tree (WDT). Moreover, a graph convolution network (GCN)
then is employed to learn syntactic representations of the WDT. Fur-
thermore, the sentence-level attention and gating selection module are
applied to capture the intrinsic interactions between sentence-level and
document-level features. We evaluate our framework on three benchmark
datasets: DocRED, CDR, and GDA. Experiment results demonstrate
that our approach outperforms the baselines and achieves the state-of-
the-art performance.

Keywords: Document-level Relation Extraction · Dynamic pruning
mechanism · sentence-level attention · gating selection

1 Introduction

Relation extraction (RE), which identifies semantic relations among entity-
pairs in texts, has been a fundamental task in natural language processing
(NLP) [16,20]. Early research [8,24] largely focused on predicting relations
between entities within a sentence. In contrast, document-level relation extrac-
tion requires integrated information within and across sentences, via captur-
ing complex interactions among mentions of entities. For example, as shown
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14261, pp. 13–25, 2023.
https://doi.org/10.1007/978-3-031-44198-1_2
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Fig. 1. An example adapted from the DocRED dataset. The mentions of a same entity
are described with same color.

in Fig. 1, there are two intra-sentence relations (Samsung, parent organization,
Samsung Electronics), (Samsung Electronics, manufacturer, Samsung Galaxy
Note) and an inter-sentence relation (Samsung, manufacturer, Samsung Galaxy
Note). According to an analysis of the Wikipedia corpus, DocRED [18] reveals
that at least 40.7% of relations can only be expressed through multiple sentences.
Therefore, it is essential to extract relations from the document-level rather than
the sentence-level.

To extract document-level relations, most previous research [7,22] mainly
constructed a dependency tree module based on heuristic structures. Those
methods utilize hand-crafted path-centric pruning rules, which cannot balance
the weight of relevant and irrelevant words. This inevitably leads to the miss-
ing of valuable information. In addition, many existing methods in literature
[9,10] fail to consider the features of both sentence-level and document-level at
the same time like human readers. In other words, models usually focus on the
features of the words. The lack of sufficient sentence-level and document-level
features makes the inferior performance of the extraction result. In summary,
there are two research questions in this field: 1) As the method of manually con-
structing pruning rules is not flexible, the mechanism of dependency tree pruning
rules need to be explored. 2) The mechanism of sentence-level attention needs
to be explored. For example, the relation3 in Fig. 1 is difficult to be determined
by a single sentence, because it requires logical inference with sentences No.1
and No.4. That is to say, the extraction of relations may need to assign critical
attention to multiple sentences.

In this paper, we propose a document-level relation extraction framework
with a dynamic pruning mechanism and sentence-level attention. Firstly, a
weight-based flexible pruning mechanism is applied to the document-level
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dependency tree to remove non-relational edges dynamically and obtain the
weight dependency tree (WDT). Specifically, the irrelevant nodes and edges in
the document-level dependency tree are automatically pruned according to the
weight of edges, which is achieved through the bi-affine function. Secondly, a
graph convolution network (GCN) is applied to the WDT. GCN allows nodes to
aggregate features from multi-hop neighbors to enrich syntactic representations.
Thirdly, the sentence-level attention and gating selection module are utilized
to capture the intrinsic interactions among sentence-level and document-level
features. Specifically, sentence-level attention assigns different values to multi-
ple sentences to learn sentence-level attentional features. Meanwhile, the gat-
ing selection module balances the sentence-level and document-level features to
achieve multiple-grained semantic representations. Finally, Experiments on three
benchmark datasets, DocRED [18], CDR [6], and GDA [14], demonstrate that
our approach outperforms the baseline methods and achieves state-of-the-art
performance. Our contributions can be summarized as follows:

– We propose a dynamic pruning mechanism to automatically remove the irrel-
evant information from the dependency tree. The dynamic pruning mecha-
nism reduces noise and preserves the topological structural features with an
improvement of the model’s accuracy.

– To interact with the multiple-grained features, we propose sentence-level
attention and gating selection module. The representation of pairwise entities
with rich semantics can be obtained according to the balance of sentence-level
and document-level features.

– Experiments on three datasets demonstrate that our method achieves state-
of-the-art performance. Additionally, we also conduct an ablation study, and
the pruning methods analysis of our framework to better understand its work-
ing mechanism.

2 Methodology

2.1 Problem Definition

Given an input document D = {Si}Ns
i=1, it is composed of Ns sentences and a

variety of entities {ei}Ne
i=1. Each entity ei = {mj}Nm

j=1 contains Nm mentions,
which means entity ej appears Nm times in the document D. The objective is
to predict the relation rij ∈ R between pairwise entity (ei, ej), where R is a pre-
defined relation typeset. ei and ej represent the subject and object, respectively.
As illustrated in Fig. 2, the overall architecture consists of four tiers: encoder
module (Sect. 2.2), dynamic pruning module (Sect. 2.3), sentence-level attention
module (Sect. 2.4), and classification module (Sect. 2.5).

2.2 Encoder Module

Let D = {wi}ni=1 be an input document, where wi is the ith word in it. The
encoder layer transforms inputs into fixed-dimensional vectors for the semantic
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Fig. 2. Architecture of the proposed framework. It consists of four main components:
encoder module, dynamic pruning module, sentence-level attention module, and clas-
sification module.

features. The special symbol < S > and < CLS > are inserted at the start of
each sentence and the entire document, respectively. The contextual represen-
tation xi for each token wi is obtained from a pre-trained transformer language
model:

{x1, x2, . . . , xn} = Encoder({w1, w2, . . . , wn}) (1)

Moreover, a two opposite directions LSTM [2] is utilized to uncover the hidden
representations:

←
hi = LSTM(

←
hi+1, xi) (2)

→
hi = LSTM(

→
hi−1, xi) (3)

where
←
hi and

→
hi are the hidden representations of the ith token in two opposite

directions. The context-sensitive representations H can be formulated as:

H = {h1, h2, . . . , hn} = {[
←
h1;

→
h1], [

←
h2;

→
h2], . . . , [

←
hn;

→
hn]} (4)

2.3 Dynamic Pruning Module

Firstly, we propose a structural model that consists of entities and words. Specif-
ically, the sentence-level dependency tree for each sentence is generated via syn-
tactic parsing. Furthermore, the mentions that belong to the same entity in dif-
ferent sentences are combined to generate the document-level dependency tree.
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Fig. 3. An example document with its FDT and WDT.

In this way, the entities are gathered around by context. We treat the document-
level dependency tree as non-directional and add self-loop to each node. For an
entity ei with mentions ei = {mj}Nm

j=1, LogSumExp pooling [5] is utilized to
combine the mentions that belong to the same entity in different sentences and
integrate the initial entity embedding h0

ei :

h0
ei =

1
Nm

log
Nm∑

j=1

exp(hmj
) (5)

hmj
denotes the hidden state of mention mj . The structure model captures

the syntactic representations of the dependency tree (document) and its nodes
(entities or words). The graph convolution network (GCN) is adopted to encode
the structure model. Formally, the layer-wise propagation rule is formulated as:

hl+1
vi

= σ(
∑

j

1√
didj

· hl
vj

· W l) (6)

where
√

didj is the degree of node vi and vj . σ represents the activation function.
Although the dependency tree provides rich syntactic information, its depen-

dency edges are not all relational relevant. Literature works proposed several
hand-crafted rules to remove irrelevant information from the full dependency
tree (FDT), such as the shortest dependency path (SDP) [1], or the path-centric
pruning dependency tree (PDT) [22]. However, these hand-crafted rules can-
not balance the weight of relevant and irrelevant information. Motivated by the
situation, a dynamic pruning module is proposed to convert the original FDT
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into a weight dependency tree (WDT) automatically. Figure 3 demonstrates an
example document with its FDT and WDT, the different colors are used to rep-
resent different entities. Specifically, a plug-and-play adaptive fusion function is
introduced to dynamically adjust the voting weights of edges:

gij = σ(hvi
· Wij · hvj

) (7)
E′ = gij ⊗ (hvi

· Wij · hvj
) (8)

eij = σ(E′ + hvi
· Wij · hvj

) · We + be (9)

where σ and ⊗ represent sigmoid function and element-wise multiplication. As
the sigmoid function is utilized, the range of gij is [0,1]. The value of gij mea-
sures the confidence level of the edges connecting nodes hi and hj . Then, the
emphasized feature E′ can be calculated through element-wise multiplication. E′

represents the representation of reliable edges with relevant information. At the
same time, a residual connection is utilized to alleviate the trouble of gradient
back-propagation. Then the sigma function is used again to generate the edge
weight eij . Note that eij = 0 when node vi and vj are not connected. Edges
are softly pruned when their weights are close to 0. To compare with the soft
pruning method, we also try the hard value in experiments. Finally, the GCN is
employed in the WDT:

hl+1
vi

= σ(
∑

j

1√
didj

· eij · hl
vj

· W l) (10)

Different layers of GCN express features of different abstract levels. In order
to cover features of all levels, the hidden states of each layer are concatenated
to form the final representation of entity ei, L represents the number of GCN
layers:

hei = [h0
ei ;h

1
ei ; . . . ;h

L
ei ] (11)

2.4 Sentence-Level Attention Module

Sentence-level attention module is proposed to select the valid sentences in
document-level RE. Moreover, a gating selection module is applied to balance
the significant sentence features and document features automatically.

The representations of the ith sentence and document are obtained via the
special symbols < Si > and < CLS >, respectively. The entities ei and ej are
concatenated as a query to compute the self-attention of sentences, the formulas
are:

SEN = Att(q, k, v) = softmax(
qkT

√
dk

)v (12)

q = σ(Wq · [hei ;hej ]) (13)

where k and v are the key and value of sentences, respectively. SEN is considered
as the entire sentence-level attention feature and is captured from the specific
pairwise entities.
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Some straightforward relations can be inferred with a single or a few sen-
tences, while NA or cross-sentence relations need to be inferred with the entire
document. Therefore, there is a need to utilize a gating selection module to
automatically adjust and combine SEN and CLS:

G = gt ⊗ SEN + (1 − gt) ⊗ CLS (14)
gt = tanh(Wt · [SEN ;CLS] + bt (15)

where G denotes the combined representation with rich semantic information.
gt represents an additional value to balance the features of the document and
sentence-level, with a larger gt indicating that the current relation is intra-
sentential and a smaller gt indicating that the current relation is inter-sentential.

2.5 Classification Module

The pairwise entity with rich structural features is constructed by the bi-affine
function and denoted as Z. Finally, G and Z are concatenated and injected into
a linear layer:

Z = ei · Wz · ej + bz (16)
p(r|ei, ej) = σ(Wr · [Z;G] + br) (17)

the Wr, br are learnable parameters. In this paper, we employ dropout to prevent
over-fitting. The model parameters are estimated by adaptive-thresholding the
loss function proposed by ATLOP [25]. An extra category s0 is proposed by
ATLOP, in which the scores of positive samples is upper than category s0 and the
scores of negative samples is lower than s0. For simplicity, we set the additional
category threshold as zero.

3 Experiments

3.1 Dataset

We conduct experiments on three benchmark datasets, including DocRED [18],
CDR [6], and GDA [14]. DocRED is a large-scale human-annotated dataset for
document-level RE. It is constructed from Wikipedia and Wikidata while it con-
sists of a train set with 3053 documents, a development set with 998 documents
and a test set with 1000 documents. CDR is a widely-used document-level RE
dataset that infers the interactions between chemical and disease concepts and
it contains 1500 PubMed abstracts with 3116 relational facts. GDA is another
biomedical document-level RE dataset that aims to predict the interactions
between disease concepts and genes and consists of 30192 biomedical abstracts
with 46343 relational facts. The dataset statistics are shown in Table 1.
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Table 1. Statistics of the experimental datasets.

Dataset DocRED CDR GDA

# Train 3053 500 23353

# Dev 998 500 5839

# Test 1000 500 1000

# Relations 97 2 2

Avg. # entities per Doc 19.5 7.6 5.4

Avg. # mentions per Ent. 1.4 2.7 3.3

3.2 Experimental Settings

Following previous works [18], F1 and Ign-F1 are adopted as the evaluation met-
rics, where Ign-F1 calculates F1 excluding the common relations in the training
and development/test sets. Our model is implemented on Huggingface’s Trans-
formers1 and DGL [13]. We used cased BERT-base [4] as the pre-trained language
model on DocRED, SciBERT on CDR and GDA. AdamW is utilized as opti-
mizer with learning rates 2e−4. Moreover, we employ mixed-precision training
based on the Apex library2. The number of GCN layers and dropout rate are
set to 3 and 0.5, respectively. We train the model for 30 epochs with a batch size
of 8 and evaluate it with a batch size of 32. The hyper-parameters are tuned on
the development set.

3.3 Main Results

Table 2 shows the experimental results on the DocRED dataset. In order to com-
pare our model with current state-of-the-art models, the following models are
employed as baselines. Some models use different neural architectures to encode
the document, such as BERT-RE, BERT-Two-Step [12], CNN, LSTM, BiLSTM,
context-aware [18], and ATLOP [25]. Some models construct homogeneous or
heterogeneous graphs based on the document, such as DRPRN [7], LSR [9],
SSAN [15], HeterGSAN [17], Coref+BERT [19], and GAIN [21]. Our model
achieves 62.44% F1 and 60.38% Ign-F1 on the test set. Our model surpasses all
baseline models. Specifically, compared with the dependency tree-based model
DRPRN, our model surpasses 0.47% and 0.45% in terms of F1 and Ign-F1. Such
improvements demonstrate the dynamic pruning mechanism is more suitable
for dependent tree than hand-crafted pruning rules. At the same time, com-
pared with the semantic-based model ATLOP, our model outperforms ATLOP
by 1.14% and 1.07% in terms of F1 and Ign-F1. The results show the superiority
of the proposed model in capturing crucial semantic information.

Table 3 shows the experiment results on two biomedical datasets. We com-
pared with many classical baselines, such as EOG [3], DRPRN [7], LSR [9],
1 https://github.com/huggingface/transformers.
2 https://github.com/NVIDIA/apex.

https://github.com/huggingface/transformers
https://github.com/NVIDIA/apex
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Table 2. Main results (%) on the development and test set of DocRED.

Model PLM Dev Test

F1 Ign-F1 F1 Ign-F1

CNN – 43.45 37.99 42.33 36.44

LSTM 50.66 44.41 50.10 43.60

BiLSTM 50.95 45.12 51.06 44.73

context-aware 51.10 44.84 50.64 43.93

BERT-RE bert-based 54.16 – 53.20 –

BERT-Two-Step 54.42 – 53.93 –

coref+BERT 57.51 55.32 56.96 54.54

SSAN 59.19 57.03 58.16 55.84

LSR 59.00 52.43 59.05 56.97

HeterGSAN 60.18 58.13 59.45 57.12

GAIN 61.22 59.14 61.24 59.00

ATLOP 61.09 59.22 61.30 59.31

DRPRN 61.65 59.82 61.97 59.93

Ours 61.9961.9961.99 60.2760.2760.27 62.4462.4462.44 60.3860.3860.38

Table 3. Results (%) on the biomedical datasets CDR and GDA.

Model CDR GDA

BRAN 62.1 –

EOG 63.6 81.5

LSR 64.8 82.2

DHG 64.9 83.1

SSAN 68.7 83.7

ATLOP 69.4 83.9

DRPRN 70.8 84.4

Ours 72.872.872.8 85.185.185.1

BRAN [11], SSAN [15], DHG [23], and ATLOP [25]. According to Table 3, our
model surpasses DRPRN by 2.0% and 0.7% on CDR and GDA, respectively.

4 Analyses

4.1 Ablation Study

In this subsection, an ablation study experiment is conducted to validate the
effectiveness of different components of our model. Table 4 shows the results
of an ablation study on DocRED. From these ablations, we find that: 1) The
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Table 4. Ablation study on DocRED dev dataset. Dyn-Pru: dynamic pruning. Sent-
Att: sentence-level attention. Gating: gating selection.

Model F1 ign-F1

Default 61.9961.9961.99 60.2760.2760.27

- GCN 60.95 58.60

- Dyn-Pru 58.95 57.44

- Sent-Att 60.34 59.20

- Gating 61.68 59.66

- GCN&Dyn-Pru 58.80 56.65

- Sent-Att&Gating 59.98 58.41

- Dyn-Pru&Sent-Att&Gating 57.50 56.32

Table 5. The performance of different pruning methods on DocRED dev set.

Method K(Distance) Parameters F1 ign-F1

WDT-soft – 144M 61.9961.9961.99 60.2760.2760.27

WDT-hard – 136M 61.12 59.44

PDT 0(SDP) 120M120M120M 60.01 59.44

1 150M 61.87 59.95

2 174M 61.20 58.86

3 220M 60.38 58.40

+∞(FDT) 298M 58.95 57.44

decrease in performance caused by the lack of each component clearly indicates
that all components are beneficial. The dynamic pruning mechanism, sentence-
level attention and gating selection module contribute total 4.49% F1 score. 2)
The dynamic pruning mechanism improves the F1 score by 3.04% if compared
with FDT structure, and it is the most important component of the proposed
model. The results demonstrate that dynamic pruning mechanism is beneficial
to remove irrelevant information. 3) The F1 score drops 1.65% and 0.31% when
we remove the sentence-level attention and gating selection module, respectively.
Thus, automatically balancing the sentence-level and document-level features is
essential for document-level RE.

4.2 Pruning Methods Analysis

To show the effect of the dynamic pruning mechanism, we investigated several
pruning methods, including shortest dependency path (SDP), path-centric prun-
ing dependency tree (PDT) with different distances (K = 1,K = 2,K = 3) and
hard pruning method (WDT-hard). Note that K = 0 is equivalent to the SDP,
K = +∞ is equivalent to the full dependency tree (FDT). The hard pruning
method denotes the weight of edges will be assigned with 1 if the probability
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exceeds a threshold λ. We set λ to 0.5. As shown in Table 5, the decrease in
model performance is accompanied by the increase of K. In addition, although
the results of K = 1 in PDT are similar to the result of WDT, the WDT achieves
better performance with fewer parameters. Furthermore, WDT-soft improves the
F1 score by 0.87% if compared with WDT-hard. A flexible pruning method is
greatly beneficial to improving model performance.

5 Conclusion

We propose a framework for the document-level relation extraction task. The
cores of our framework are the dynamic pruning mechanism, sentence-level
attention, and gating selection module. In this paper, we generate a docu-
ment dependency tree and propose a flexible weight-based pruner to remove
non-relational edges. Prior work considered pruning methods as hand-crafted
rules, while did not consider whether the pruning rules are applicable to the
edges outside SDP. Furthermore, we apply sentence-level attention to obtain
the attentional features of sentences. The query representation based on entity
pairs ensures that all entities keep the closest attention to related sentences.
Finally, the gating selection module is utilized to capture the intrinsic interac-
tion between sentence-level and document-level features. Experiments on three
public datasets demonstrate that our framework outperforms existing models
and achieves state-of-the-art performance. We also conduct further experiments
and analyses to discuss the superior performance of our framework components.
In future work, we consider extensively exploring applications of our proposed
framework, such as the construction of a knowledge graph.
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Abstract. Lettuce growth traits are important biological attributes
that directly reflect growth conditions. However, most existing
approaches simply extract coarse features from RGB images and ignore
the significantly varied appearance of different lettuce varieties at diverse
growth phases, which brings about the loss of important information.
To address these issues, we propose a novel lettuce growth-traits detec-
tion model, namely Global Feature Fusion Network (GFFN), based on
dense connection and dilated convolution to fully utilize fine-grained and
multi-level feature representations from RGB-D images. Firstly, RGB
and depth images are combined through channel concatenation to pro-
vide rich, learnable information. Next, a dense extractor is proposed
to perform progressively refined feature extraction, which gathers fine-
grained local context from coarse lettuce representations. Then, a multi-
scale receptor aims to merge multi-level feature representations and learn
scale and location knowledge. Finally, extensive experiments show that
GFFN achieves competitive performance compared to the other main-
stream methods in detecting five primary attributes of lettuce growth
traits.

Keywords: Growth trait detection · Deep learning · Greenhouse
hydroponic lettuce · Computer vision

1 Introduction

Lettuce (Lactuca sativa L.) is a fantastic source of iron, folate, vitamin C, and
fiber. It is one of the most widely produced and consumed crops on the planet
[1,2]. With the development of intelligent agriculture, the demand for high-
yield and high-quality lettuce has increased [3]. In the hydroponic greenhouse,
environmental factors have a significant impact on lettuce quality and yield.
By detecting several important growth traits, including fresh weight (FW), dry
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Fig. 1. Four varieties and seven growth cycles of lettuce.

weight (DW), lettuce height (LH), lettuce diameter (LD), and leaf area (LA),
experts can evaluate the growing condition of lettuce and control the environ-
mental conditions of a hydroponics greenhouse for a high yield and improved
nutritional quality. Hence, a quick and accurate growth trait detection of lettuce
is of immense importance for the timely harvest and precise control of growth,
yield, and quality.

Conventional methods for identifying lettuce growth traits have invariably
relied on destructive sampling [4], which frequently results in large resource-
consuming and cannot fulfill the demand for high-yield and high-quality exports
on a wide scale. In recent years, the development of a computer vision app-
roach has enabled the automatic detection of lettuce growth traits. Yeh et al.
[5] developed an automated vision-based plant growth measurement system to
track plant growth and determine the area, height, and volume. Jung et al. [6]
analyzed the ability of two different image processing methods, i.e., morpholog-
ical and pixel-value analysis methods, to measure the fresh weight of lettuce.
Mortensen et al. [7] segmented the 3D point cloud image, extracted features,
and finally used linear regression and quadratic regression to predict the fresh
weight of lettuce. Reyes-Yanes et al. [8] extracted the features from the pre-
processed mask image using the torque and constructed a regression model to
acquire the correlation between the lettuce size and fresh weight. These meth-
ods achieve automatic detection of lettuce growth traits, but they typically rely
on hand-crafted features designed by experts with related knowledge. Moreover,
hand-crafted features can only reflect the shallow information from the input
images and cannot represent the ever-evolving property of lettuce appearance
in different growth stages. As shown in Fig. 1, different varieties of lettuce vary
significantly in shape and scale in different growth phases. Consequently, using
shallow feature representations may lead to a decline in detecting accuracy when
changing lettuce varieties or growth phases, which has a negative impact on the
model’s robustness.

Nowadays, with the improvement in computing power, deep learning provides
powerful techniques for modeling complex processes and performing effectively
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on a large amount of data. Among these techniques, the convolutional neural
network (CNN) has emerged as the most outstanding method because of its enor-
mous advantages in image processing [9]. Many areas, such as lane detection [10],
face recognition [11], and pest and disease identification [12], have seen exten-
sive usage of CNN. Zhang et al. [13] introduced the convolution neural network
(CNN) in studying three growth traits of lettuce (i.e., fresh weight, dry weight,
and leaf area). This work indicates that deep learning acquires feature infor-
mation of specific datasets through the convolution layer, which can effectively
extract hidden feature representations of lettuce and overcome the disadvantages
of traditional image processing methods in terms of generalization ability and
robustness. However, they studied lettuce growth traits by solely using RGB
images without considering the depth information. Furthermore, they did not
explore leaf color and shape differences in detecting growth traits in different
lettuce species. At the same time, due to the limitation of the receptive field of
convolutional neural networks, existing CNN-based methods fail to learn from
the fast-changing appearances of lettuce at various growth stages.

To address the above-mentioned limitations and further improve the detec-
tion performance, in this paper, we propose a new framework, namely Global
Feature Fusion Network (GFFN), which learns both fine-grained and multi-
level representations for lettuce growth trait detection. To solve the problem
of extracting better feature representations from the ever-evolving appearance
of lettuce in different growth phases, a dense extractor is proposed to gather
fine-grained local context by reusing low-level features. In addition, the multi-
scale receptor is designed to learn multi-level features, which provides plenty
of knowledge of various scales and shapes. The results show that our proposed
method outperforms other mainstream methods in detecting the five primary
attributes of lettuce.

The contributions of this work are summarized as follows:

• A lettuce growth trait detection framework, namely Global Feature Fusion
Network (GFFN), is proposed, which fully utilizes fine-grained and multi-
level representations to improve the detection performance of different lettuce
varieties in diverse growth stages.

• A dense extractor (DE) aims to gather fine-grained local context by reusing
low-level features. Furthermore, a multi-scale receptor (MSR) is introduced
to learn multi-level feature representations to depict information on various
scales.

• Experimental results show that the proposed GFFN can effectively extract
fine-grained and multi-level feature representations of lettuce, improve the
detection performance of lettuce growth traits, and outperform other main-
stream methods in detecting five attributes of lettuce growth traits.

2 Proposed Method

In this paper, we propose a Global Feature Fusion Network (GFFN), an end-to-
end lettuce growth trait detection method, that fuses fine-grained local features



A Global Feature Fusion Network for Lettuce Growth Trait Detection 29

Fig. 2. An overview of our approach. (a) The input fusion module (IFM). (b) The
dense extractor (DE). (c) The multi-scale receptor (MSR). (d) The regression module.

Fig. 3. RGB and depth images.

and multi-level features to address the appearance-various issue at different
growth stages in the lettuce growth trait detection task. Figure 2 illustrates the
overall architecture of our proposed method, which comprises four components:
(1) Input Fusion Module (Sect. 2.1) to fuse the input of RGB and depth images
into RGB-D. (2) Dense Extractor (Sect. 2.2) to learn fine-grained local features
by reusing the coarse-local representations. (3) Multi-Scale Receptor (Sect. 2.3)
to extract multi-level feature representations. (4) Regression Module (Sect. 2.4)
to learn the relation between lettuce growth traits and the hybrid feature repre-
sentations. In the rest of the section, we will introduce each component in detail
and then present the design of our loss function (Sect. 2.5).

2.1 Input Fusion Module

As shown in Fig. 3, RGB images contain lettuce appearance information, such
as color and texture, while depth features can describe 3D geometric informa-
tion. Depth images offer two significant advantages [14]: (1) It can naturally
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disambiguate between objects at different depths, facilitating the processing of
disturbances in complicated environments. (2) Depth images are unaffected by
appearance or changes in lighting. Compared to general RGB image input, which
provides learnable two-dimensional information for typical convolutional neural
networks, GFFN takes both RGB images and depth images as input to offer
extra distance information for each point of the photographed lettuce images.

Specifically, the RGB image can be presented as a sequence of [r, g, b] =
{(rij , gij , bij)} ∈ R3×n×m, where 3, n and m denotes the channel, height, and
width of the input RGB image. Besides, depth images are presented in [d] =
{(dij)} ∈ Dn×m, where n and m denote the image size. For input fusion, we
concatenate [r, g, b] and [d] in channel dimensions, as shown in Fig. 2(a).

2.2 Dense Extractor

Existing learnable convolutional neural networks focus on extracting coarse local
features, leading to the issue of feature loss. To remedy this, we design a dense
extractor (DE) using dense connections, which enhance information exchange
between layers and increase low-level feature representation reuse to provide
additional information regarding local details. The detailed structure of the dense
extractor is shown in Fig. 2(b).

To be specific, the dense extractor consists of three dense extractor blocks
that use shortcut connections to transfer the information flow. Each block is
constructed with two sets of composite operations: batch normalization (BN),
rectified linear unit (ReLU), and convolution (Conv). The input of lth dense
extractor block Xl are the fused feature maps, which come from the feature
maps of all preceding blocks:

Xl = Y0 + Y1 + · · · + Yl−1, (1)

where Y0 and Yl denote the information of the original RGB-D data and the
output of the lth dense extractor block, respectively. The fused feature maps Xl

guide the lth dense extractor block to further mine the fine-grained represen-
tations from the coarse feature presentations. This process can be formulated
as:

Yl1 = Convl1(RELUl1(BNl1(Xl))), (2)
Yl = Convl2(RELUl2(BNl2(Yl1))), (3)

where, RELUli(·), BNli(·), and Convli(·) presents the ith set of composite oper-
ation of RELU, BN, and Conv in lth dense extractor block. In this way, the
dense extractor can perform refinement based on the reuse of low-level feature
representations to extract fine-grained local features of lettuce.
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Fig. 4. The receptive fields of convolutional layers with different dilated rate.

2.3 Multi-scale Receptor

Compared to convolutional layers with a fixed kernel size, which learn feature
maps, the dilated convolution layer expands the receptive field of the convolution
kernel while maintaining the same parameters. Figure 4 illustrates the change in
receptive fields with different dilations. By enlarging the dilated rate from 1 to
3 in a 3 × 3 kernel, the receptive field of convolution is expanded. The receptive
fields of convolutions with different dilations can be defined as:

k̂ = k + (k − 1) × (d − 1), (4)

si =
i∏

j=1

stridej , (5)

RFi+1 = RFi + (k̂ − 1) × si, (6)

where k represents the size of the convolution kernel, k̂ represents the size of the
convolution kernel after dilating, d represents the dilation rate, stridej represents
the step length of the jth layer, and si represents the product of the step lengths
of all layers from the first layer to the ith layer, and RFi represents the receptive
field of the ith layer.

Motivated by this, the Multi-Scale Receptor (MSR) is proposed to produce
multi-level feature representations, and the details of the MSR are shown in
Fig. 2(c). Specifically, the MSR consists of four parallel 3 × 3 convolutions with
different dilation factors. The dilations are set up to 1, 6, 12, and 18. Each
convolution takes feature maps of the dense extractor as input and produces
various scale feature maps as output. The outputs of four convolutional layers
with different dilation rates are concatenated together and fed into the final
regression module. This process can be formulated as:

Yi = BN(Convd=i(Xinput)), (7)
Youput = Conv(Y1 + Y6 + Y12 + Y18), (8)

where Xinput and Youput present the output of DE and the output of MSR.
Convd=i(·) denotes the operation of a convolutional layer with a dilation rate
i. Yi denotes the feature maps of the convolutional layer with dilation rate i.
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The merging of high-level and low-level feature representations with the same
channel numbers can provide plenty of knowledge about various scales, and the
location near the lettuce will be perceived.

2.4 Regression Module

At the final stage, the regression module models the relationship between feature
maps Youtput and lettuce growth traits. To decrease the number of parameters
and alleviate over-fitting, we adopt a global average pooling layer to compute
the average value of all the elements in the feature map and feed it into the full
connection layer, which outputs 5 lettuce growth traits F = {fj}, j ∈ [1, 5].

2.5 Loss Funcation

The loss function calculates the difference between the detection results of each
iteration of the model and ground truth, and is described as:

loss =
r∑

j=1

(1 −
∑n

i=1(yij − fij)2∑n
i=1(yij − ȳi)2

), (9)

where r and n are the numbers of growth traits and images, respectively. fij
and yij represent the ith detection and real growth trait values of the jth image,
respectively. ȳ represents the mean of the real values of the ith growth trait.

3 Experimental Results

3.1 Dataset

To verify the advance and effectiveness of our proposed GFFN, we perform
experiments on a public lettuce dataset [15]. There are 388 images consisting
of four varieties: Salanova, Lugano, Satine, and Aphylion. We divide them into
310, 38, and 40 images for training, validation, and evaluation, respectively.
The training set is expanded from 310 images to 12,400 images through image
rotation, transposition, flipping, and brightness adjustment.

3.2 Implementation Details

In this paper, the proposed method is trained using the adaptive moment estima-
tion (Adam) optimizer [16] in an end-to-end joint manner by backpropagation.
In addition, we set the learning rate at 0.001. Due to memory limitations, we
uniformly set the batch size as 16, and the input image size as 224 × 224. In
order to effectively converge and avoid wasting memory, we adopt a total epoch
number of 50. Moreover, our experiments are implemented using PyTorch with
a Python interface. To accelerate the training process, we use the GeForce GTX
1080Ti GPU and CUDA 11.0.
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Table 1. The R2 and NRMSE of ablation experiments The abbreviations IFM, DE,
and MSR stand for input fusion module, dense extractor, and multi-scale receptor,
respectively.

Metrics IFM DE MSR Average FW DW LH LD LA

R2 ↑ √ √
89.38 90.04 94.68 87.12 81.59 93.49√ √
91.45 94.24 95.31 85.64 87.71 94.35√ √
91.50 94.27 95.01 89.06 85.67 93.50√ √ √
92.67 94.47 96.64 88.16 88.95 95.13

NRMSE ↓ √ √
20.67 31.13 20.65 15.89 13.59 22.07√ √
18.30 23.67 19.40 16.77 11.11 20.56√ √
18.46 23.62 20.02 14.64 12.00 22.05√ √ √
16.90 23.19 16.43 15.23 10.53 19.09

Fig. 5. Illustration of feature maps in dense extractor with and without dense connec-
tions. ‘w/o’ denotes without. ‘w’ denotes with.

For a fair comparison with other methods, the commonly used coefficient
of determination (R2) and normalized root mean squared error (NRMSE) are
adopted to evaluate the model’s performance. R2 describes a goodness-of-fit mea-
sure for the variances between detected and measured data. NRMSE reflects
the relative difference between detected and measured data.

3.3 Ablation Study

To validate the effectiveness of the proposed method, we conducted a series of
ablation experiments on a public lettuce dataset. The R2 and NRMSE compar-
isons and the feature visualization of DE and MSR are shown in Table 1, Fig. 5
and Fig. 6.
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Effectiveness of Input Fusion Module (IFM). From Table 1, the input
fusion module improves the average R2 from 89.38% to 92.67% and the aver-
age NRMSE from 20.67% to 16.90%. This result validates that fusing two-
dimensional and depth images can provide rich and learnable information.i

Effectiveness of Dense Extractor (DE). The dense extractor makes the per-
formance of the network have an obvious improvement, such as a gain of 1.22%
in R2 and 1.40% in NRMSE. Results in FW, DW, LD, and LA are consistently
improved, which indicates that the dense extractor can enhance the relationship
between different convolutional layers and reuse more coarse information suffi-
ciently to obtain richer details and clearer edges. Furthermore, the effectiveness
of the dense extractor can be more thoroughly demonstrated in Fig. 5. For vari-
ous appearances of lettuce in different growth phases, the feature visualizations
of the dense extractor with and without a dense connection illustrate that the
dense extractor could focus on more distinguishable regions of lettuce.

Fig. 6. Illustration of feature maps in multi-scale receptor with and without dilation.
‘w/o’ denotes without. ‘w’ denotes with.

Effectiveness of Multi-Scale Receptor (MSR). As shown in Table 1, the
multi-scale receptor improves the average R2 by 1.13% and the average NRMSE
by 1.56%, which validates that leveraging multi-level feature representations to
detect lettuce growth traits is useful. Figure 6 further illustrated the effectiveness
of MSR. Compared with convolutional layers without dilation, the multi-scale
receptor eliminates background interference and emphasizes the position and
outline of the lettuce.

3.4 Comparison with Mainstream Methods

To demonstrate the validity of our proposed network, we compare the pro-
posed network with other popular detection methods, including Random Forest
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Table 2. The R2 and NRMSE of comparison experiments. The best three results are
highlighted in red, blue, green.

Metrics Models Average FW DW LH LD LA

R2 ↑ SVR 87.62 87.24 88.27 86.83 84.00 91.74

RF 86.58 88.27 89.01 86.36 81.35 87.90

VGG16 89.95 92.73 92.35 88.17 81.65 94.83

Alexnet 89.83 94.50 94.79 86.79 80.99 92.06

CNN 89.65 90.80 93.88 87.64 84.22 91.73

Resnet18 90.91 93.79 95.07 87.16 83.14 95.36

Resnet50 90.65 93.32 96.01 87.03 82.07 94.81

Resnet101 91.28 93.94 95.68 87.79 83.79 95.19

GFFN 92.67 94.47 96.64 88.16 88.95 95.13

NRMSE ↓ SVR 23.61 35.24 30.68 16.06 12.67 24.86

RF 24.72 33.78 29.70 16.34 13.68 30.09

VGG16 19.97 26.59 24.78 15.22 13.57 19.66

Alexnet 19.57 23.14 20.45 16.09 13.81 24.38

CNN 21.02 29.93 22.17 15.56 12.59 24.87

Resnet18 18.39 24.58 19.89 15.86 13.01 18.62

Resnet50 18.49 25.50 17.88 15.94 13.42 19.71

Resnet101 18.02 24.28 18.63 15.47 12.76 18.98

GFFN 16.90 23.19 16.43 15.23 10.53 19.09

(RF) [17], Support Vector Regression (SVR) [18], CNN-based [13], VGG16 [19],
AlexNet [20], Resnet-18, Resnet-50, and Resnet-101 [21]. In order to ensure the
reliability of the comparative experiments, the convolution neural network-based
methods are consistent with the proposed model in the design of hyperparame-
ters. Table 2 shows the comparison of different methods on the R2 and NRMSE.

In Table 2, compared with eight other methods, our method shows impressive
performance, and GFFN is much higher than the second-ranked method in DW,
LD, and Average. Specifically, compared with RF and SVR, GFFN surpasses
them by about 5% and 6% in average R2 and NRMSE, which indicates that
our method better extracts hidden feature representations of lettuce images than
hand-crafted feature extractors. In comparison with other deep learning-based
methods, GFFN further improves the performance of detection, especially in DW
and LD. These demonstrate that GFFN can gather fine-grained local and multi-
level feature representations and has a strong ability to detect lettuce growth
traits. The reason why our method fails to achieve the best score in LA may be
that the compact and curved leaves make it easy to hide the lettuce area inside
the lettuce, while GFFN prefers to focus on the change of contour. Compared
to other popular detection methods, our model is a lot ahead of them on the
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whole, which further demonstrates the necessity of specially designing the model
for appearance-various lettuce at different growth stages.

4 Conclusion

In this paper, we propose a Global Feature Fusion Network (GFFN), which
can fully utilize both fine-grained local features and multi-level features from
RGB-D images for the automatic detection of lettuce growth traits. To obtain
more refined and complete feature representations, we propose a dense extractor
to perform refinement from coarse feature representations. To solve the prob-
lem of extracting better feature representations from the ever-evolving lettuce
appearance, a multi-scale receptor is designed to learn and merge low-level and
high-level feature representations, including plenty of scale and location knowl-
edge. Experimental results show that the proposed GFFN outperforms other
mainstream methods.
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Abstract. Visual recognition methods assume models will be evaluated
on the same class distribution as training data, but real-world data is
often heavily class-imbalanced. To address this, the essential idea is to
provide discriminative fitting abilities for classes with different sample
sizes, i.e., the model achieves better generalization on less frequent classes,
while maintaining high classification ability on the recurring classes. In
this work, we propose to unify representation learning and classification
learning with robust margin adjustment, which enforces a suitable margin
in logit space and regularizes the distribution of embeddings. This pro-
cedure reduces representation bias in the feature space and reduces clas-
sification bias in the logit space at the same time. We further augment
the under-represented tail classes on the feature level via re-balanced sam-
pling from the robust prototype, calibrated with the knowledge from well-
represented head classes and adaptive embedding uncertainty estimation.
We conduct extensive experiments on a common long-tailed benchmark
CIFAR100-LT. Experimental results demonstrate the advantage of the
proposed AMDRG for the long-tailed recognition problem.

Keywords: Long-Tailed Recognition · Contrastive Learning · Robust
Margin Estimation · Data Augmentation

1 Introduction

Deep long-tailed recognition learning unbiased models on imbalanced datasets,
has posed great challenges for deep recognition at scale, since they can be easily
biased towards dominant classes and perform poorly on tail classes. Early meth-
ods for addressing this issue involved resampling [3,18,38], transferring infor-
mation from head to tail classes [5,26,29], loss reweighing by penalizing errors
on rare labels more strongly [32,35,36,39], and enforcing asymmetric logit mar-
gins [1,2,8,9,16,25,30]. The main focus of these techniques is on balancing the
multi-class classifier. However, these methods do not explicitly control the dis-
tribution of the learned embeddings, which can be sub-optimal for tail classes.
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Recently, self-supervised learning has been shown to benefit imbalanced recog-
nition, providing a new direction for long-tailed data classification. To overcome
the limitations of existing methods for long-tailed data classification, we propose
an AMC-DRG approach that combines logit re-margin and embedding re-margin
techniques with a hybrid paradigm for distribution computation and data aug-
mentation. Our approach introduces a combined contrastive loss that efficiently
learns representations and extends the prototype supervised contrastive loss with
an adaptive margin to address errors due to a small number of samples. We
design a hybrid paradigm for distribution computation that includes a linear
classifier and a semantic similarity-based classifier. We also directly re-balance
the long-tail dataset through data augmentation by generating new features
from the distribution of robust prototypes. Empirical results on the CIFAR100-
LT dataset demonstrate the effectiveness of our proposed approach in achieving
state-of-the-art performance. Our contributions can be summarized as follows:

1. Our combined supervised contrastive loss includes a supervised contrastive
loss and a prototype supervised contrastive loss with an adaptive margin,
enabling comprehensive and balanced feature learning.

2. Our aligned distribution paradigm, which combines linear and semantic
similarity-based classifiers with margin adjustment, expands decision bound-
aries for tail classes. Additionally, we propose a robust feature generation
strategy to re-balance long-tail datasets and alleviate classifier bias.

3. Our approach achieves state-of-the-art performance on the CIFAR100-LT
long-tail recognition benchmark.

2 Related Work

The typical methods for solving long-tailed data classification are mainly divided
into three classes: data-based, cost-based, and model-based.

2.1 Data-Based Methods

Data-based methods aim to balance the data distribution by augmenting the tail
classes. Re-sampling is a common approach, but it can lead to information defi-
ciency or overfitting. Mixup generates additional samples by interpolating input
and labels. Knowledge transfer-based methods transfer features learned from head
classes to tail classes, but they lack effective controls over the transferring process.

2.2 Cost-Based Methods

The cost-based methods include re-weighting and re-margining, aiming at
obtaining balanced gradients during the training. Loss re-weighting upweights
the tailed samples and downweights the head samples in the loss function. For
example, [13] sets the weights inversely proportional to the number of sam-
ples, [7] sets the weights based on the real volumes of different classes, [17] sets
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the weights on the instance-level, [7] down-weights examples with either very
small gradients or large gradients. Loss re-margining handles class imbalance by
adjusting the minimal margin between learned features and the model classifier
for different classes. [9] uses the mean classification prediction score to guide
class-level margin adjustment, [8] adjusts the class-wise margin with the ordinal
and variational margins, [30] enforces an additional margin term to enlarge the
feature margin for head classes.

2.3 Module-Based Methods

Apart from the aforementioned re-balance strategies, another line of studies
proposes to mitigate the negative effects of data imbalance by improving net-
work modules in long-tailed learning. These methods can be divided into three
categories: (1) Representation learning [12,19] improves the feature extractor;
(2) Decoupled training [2,15,19,23,33] separates the training process into rep-
resentation learning and classifier learning; (3) Ensemble learning [28,31,34,40]
generates a balanced model by assembling and grouping models.

3 Methods

3.1 Problem Setting and Notations

Given an long-tail dataset X = {(xi, yi)}N
i=1 with N training samples and K

classes, xi is the training image and yi ∈ {1, 2, · · · ,K} is its label. For different
sub-set of X, we denote it as Xk belonging to category k. Defining the number
of samples of Xk to Nk = |Xk|, we have N1 ≥ N2 · · · ≥ NK and N1 � NK

after sorting of Nk. The task of long-tail recognition is to learn a model on the
long-tail training dataset Xtrain that generalizes well on a balanced test split
Xtest. For training, we denote M(xi; θ) = ŷi as the classification model, where xi

is the input, ŷi is the prediction label and θ is the parameter of the model. The
model M(xi; θ) = ŷi contain two components: a feature model f(xi) = zi and a
classifier h(zi) = gi, where zi denotes the feature of input xi and gi denotes the
logit output of classifier. The prediction label is given as ŷi = argmax(gi).

3.2 Overview of Our Approach

Figure 1 provides an overview of the AMC-DRG method, which unifies represen-
tation learning and label distribution learning within a single training framework
with adaptive margin adjustment. Additionally, we propose a robust feature gen-
eration scheme to achieve better class balance optimization. In terms of repre-
sentation learning, our objective is to learn a representation that separates the
distributions of samples from different classes effectively. Regarding label distri-
bution learning, we explore two classification methods with logit adjustment: one
from a linear-oriented angle and the other from a semantic-oriented angle. For
feature augmentation, we optimize the estimated prototype using head-to-tail
knowledge transfer and class-wise uncertain estimates, and then generate new
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Fig. 1. Overview of AMC-DRG. It consists of three components: a representation learn-
ing module, a label distribution learning module, a robust feature generation module.

features from the distribution of the robust prototype. The total objective in our
proposed AMC-DRG framework is:

LTotal = E(x,y)∈X
[LSCL + LPSCL + Lcls

CE + Ldis
CE

]

+λ · E(z̃,ỹ)∈Z̃
[LSCL + LPSCL + Lcls

CE + Ldis
CE

] (1)

where λ is a trade-off between the losses computed from the original data, and
losses computed from the generated feature.

3.3 Combined Supervised Contrastive Loss: Representation
Learning

In representation learning, we explore two effective contrastive learning strategies
and adaptively tailor them with adaptive margin adjustment to learn better
image representations from imbalanced data.

Supervised Contrastive Learning. It is an extension to contrastive learning
by incorporating the label information to compose positive and negative images.
Assuming {z+i } = |yj = yi, i �= j} is the number of positive samples of anchor zi

and verse visa, τ > 0 is a scalar temperature parameter, it can be written as:

LSCL = −
M∑

i=1

LSCL(zi) (2)

LSCL(zi) =
−1

|{z+i }|
∑

zj∈{z+
i }

log
exp(d(zi, zj)/τ)

∑

zk,k �=i

exp(d(zi, zk)/τ)
(3)
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where d(·) is the distance metrics, calculated by combining the Euclidean simi-
larity de and Cosine similarity dc as shown in Eq. (4):

⎧
⎪⎪⎨

⎪⎪⎩

de(zi, zj) = 1
m · ‖zi − zj‖22

dc(zi, zj) =
zi · zj

‖zi‖ · ‖zj‖
d(zi, zj) = de(zi, zj) − dc(zi, zj)

(4)

It optimizes the agreements between such positives by contrasting them against
negative samples. However, the intra-class embedding is not compact enough
merely optimized by Eq. (3). Therefore, we learn a set of balanced prototypes
and force each sample to be pulled towards the prototype of its class and pushed
away from prototypes of all the other classes.

Balanced Prototype Generation and Prototype Supervised Contrastive
Loss. A naive way to create a set of prototypes P = {pk}K

k=1 is to average all the
features over the training samples in the same class k. However, exhaustively com-
puting all the features in class k is both (1) computationally inefficient and (2)
vulnerable to the bias in the head classes. Hence, we build a dictionary of memory
queue Q = {Qk}K

k=1 where each key corresponds to the class label and Qk denotes
a queue for class k with the size |Qk|. The centroid of features in Qk represents the
class prototype pk for class k in the while new labeled features enter Q and some of
the old ones are discarded after Q becomes full at every step: pk = 1

Qk

∑
zi∈Qk

zi.
Following [21], we fix the size of Qk for all classes to the same amount, and adopt
momentum encoder fθ′ where θ′ is updated by exponential moving average (EMA)
of θ. After generating prototypes P = {pi}N

i=1 for class yi, the prototype super-
vised contrastive loss function per-class can be designed as Eq. (5), which pulls
and pushes between sample and prototype.

LPSCL(zi) = − log
exp(d(zi, pi)/τ)

∑

j=1,j �=i

exp(d(zi, pj)/τ)
(5)

Embedding Re-margin. Simply optimizing the feature space using Eq. (5)
assumes that the test distribution is similar to the empirical train distribution.
However, this assumption may not hold true for long-tail recognition due to
severe sample imbalance, which can lead to inaccuracies in the distance between
the samples and the estimated prototype. To remedy this shortcoming, we set a
set of trainable margin parameters M = {mk}K

k=1 for each prototype to adjust
distances calculated in Eq. (6), where mi is a categorical adaptive margin to
re-margin the radius of the neighborhood of class i.

LPSCL(zi) = − log
exp((d(zi, pi) − mi)/τ)

∑

j=1,j �=i

exp(d(zi, pj)/τ)
(6)

Our adaptive embedding re-margin scheme is designed for learning a represen-
tation where its prototype takes into account the estimation error by pushing
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Fig. 2. The scheme of logit adjustment. Fig. 3. Calibration of prototype.

and pulling towards a worst-case possible distribution within an uncertainty area
around the estimated prototype. Uncertainty areas are typically larger for tail
classes, compared with head classes that have many samples.

LPSCL = −
N∑

i=1

ω(c)LPSCL(zi) (7)

As a whole, we define a prototype supervised contrastive loss in Eq. (7) as a
weighted average over per-class losses, where w(c) are class weights. Setting
w(c) = 1

Nc
gives equal weighting to all classes and prevents head classes from

dominating the loss.

3.4 Aligned Distribution: Label Distribution Learning

For balanced-dataset learning, we minimize the cross-entropy loss, while in the
long-tail setting, the label distribution is highly skewed, a popular strategy
involves augmenting the softmax cross-entropy with logit margins. Specifically,
these involve an instantiation of the loss:

LCE = − log
egy

∑K
y′ egy′

= log[1 +
K∑

y′ �=y

eΔyy′+gy′ −gy ] (8)

where Δyy′ is margin between labels y and y′, gy denotes the logit, the prediction
label is given as ŷi = argmax(gi) and the label yi ∈ {1, 2, · · · ,K}. As shown in
Fig. 2, such adjustment encourages a large relative margin between logits of rare
versus dominant labels.

Linear-Oriented Logit Computation. Computing logit with the linear clas-
sifier has been widely adopted by most label distribution training algorithms, we
term this type of logit as linear-oriented logit for abbreviation. As mentioned, we
define feature model as f(xi) = zi and the logit is computed by linear classifier as
gcls

i = h(zi), where zi denotes feature of input xi and gcls
i denotes the logit output
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of classifier. Follow [20,22], we adopt Δyy′ = log P(y′)
P(y) for logit adjustment, Eq. (8)

can be rewritten as:

Lcls
CE = log[1 +

K∑

y′ �=y

elog
P(y′)
P(y) +gcls

y′ −gcls
y ] (9)

Semantic-Oriented Logit Computation. An alternative approach to obtain-
ing logit is to use a similarity-based classifier to measure the similarity of a given
representation to a prototype in feature space, which we refer to as semantics-
oriented logit. To setup a semantic similarity-based classifier, we utilize the afore-
mentioned class prototypes P = {pk}K

k=1 to serve as the reference for computing
logits to the samples in Xtrain. The probability of sample xi belonging to cate-
gory k is inversely proportional to the distance between feature zi and prototype
pk, where a smaller distance between zi and pk leads to assign the sample xi to
label k with a larger probability. As a result, we explore semantic-oriented logit
as:

gdis
i =

exp(−d(zi, pi)/γ)
∑K

j=1 exp(−d(zi, pj)/γ)
(10)

where γ is a hyperparameter that controls the hardness of the distance-
probability conversion. We assign trainable margin parameter M in Eq. (6) as
the margin term Δyy′ . Therefore, for semantic-oriented computation with logit
adjustment, Eq. (8) can be rewritten as:

Ldis
CE = log[1 +

K∑

y′ �=y

emy+gdis
y′ −gdis

y ] (11)

3.5 Robust Feature Generation: Data Augmentation

As described in Fig. 3, to re-balance the training samples, we perform data aug-
mentation by generating new features from the distribution of the robust proto-
type: we transfer knowledge from the adjacent 2–3 prototypes with more training
samples and closer to the given prototype, and further approach the given pro-
totype to the worst-case prototype located at an uncertain boundary.

Head-to-Tail Transfer Learning. We calibrate the distribution for proto-
types through head-to-tail transfer learning similar to [37]. The Difference is
that we only conduct the calibration in prototypes rather than each sample,
which enables more efficient data sampling. For each prototype pi, we compute
the distance between pi and other classes k which have more training samples
as dik = ‖pi −pk‖. Then, we choose K classes(2 or 3) with smallest distance as a
support set S for prototype pi. Given the support set S for each class prototype
pi, we calibrate the distribution of prototype pi as:

p̂i = (1 − α) · pi + α ·
∑

j∈S ωjpj
∑

j∈S ωj
(12)
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where α is an optional hyper-parameter to control the calibration, ωj is a weight
term that is inversely proportional to the size of class j. Because we want to learn
the distribution knowledge more from the classes with more training samples and
closer to the given prototype.

Uncertain Boundary Estimation. To further recover the true distribution of
tail classes, we consider the estimation error. The bigger the embedding margin
parameter, the larger the uncertainty range of the class embedding. Therefore,
the aforementioned trainable margin parameters M in Eq. (6) can be served as
uncertain boundaries. Taking into account the uncertain boundary estimation,
we obtain a worst-case possible prototype. In this case, a robust prototype is a
compromise between an estimated prototype and a worst-case prototype.

p̃i = (1 − β) · p̂i + β · mi (13)

where β is a trade-off between the estimated prototype and the worst-case pro-
totype, mi ∈ M, p̂i is the calibrated prototype obtained from Eq (12), and p̃i is
the corresponding robust prototype.

New Feature Generation for Re-balancing Dataset. For each tail class, we
obtain the robust prototype with Eq. (13) and generate samples within the robust
prototype distribution. The generated dataset is denoted as Z̃ = {(z̃i, ỹi)}N

i=1,
where z̃i is the sampling feature and ỹi is the corresponding label. The sampling
number for each class will depend on the inversely class frequency.

4 Experiments

4.1 Experimental Setups

We train our proposed method on CIFAR100-LT [2] with imbalance ratio
ρ = maxy P(y)/miny P(y) = 100, and evaluating the performance on the uni-
form target label distribution. In our experiments, we use SGD optimizer with
momentum 0.9 and weight decay 0.0005 for training. We use ResNet-32 [11] as
backbone network to extract image representation. The networks are trained for
600 epochs with the learning rate being decayed by a cosine scheduler from 0.02
to 0. Following MoCo [4,10], we also derive two different augmentation views
of an image by using different data augmentations in training phase. The batch
size is set to 128, the λ in Eq. (1) is fixed to be 1.0, the τ in Eq. (3) and Eq. (5)
is set to 0.07, and the γ in Eq. (10) is 1.0.

4.2 Ablation Studies

Both α (the knowledge transfer ratio) in Eq. (12) and β (the trade-off ratio
between the estimated prototype and the worst-case prototype) in Eq. (13) are
important parameters. We carry out two ablation studies on the validation set
to identify how is the model performance affected when two parameters are
changed. According to Table 1 and Table 2, we set α = 0.2, β = 0.5.
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Table 1. Different α with β = 0.

value of α Top-1

0 51.12

0.1 51.64

0.2 51.87

0.4 50.94

Table 2. Different β with α = 0.2.

value of β Top-1

0 51.87

0.1 52.14

0.5 52.23

1.0 51.42

4.3 Effectiveness Studies

We conduct experiments to validate the effectiveness of three strategies in our
methods, i.e., combined supervised contrastive learning, aligned distribution and
robust feature generation.

Effectiveness of Combined Supervised Contrastive Learning. We train
our model under four different settings in contrastive learning: (1) supervised
contrastive loss(SCL), (2) prototype supervised contrastive loss(PSCL), (3) con-
trastive Loss and prototype supervised contrastive loss (SCL+PSCL), (4) super-
vised contrastive loss and prototype supervised contrastive loss with adaptive
margin (SCL+PSCL+AM). We report the results in Table 3. It suggests that
(SCL+PSCL+AM) learns high-quality features for all classes.

Effectiveness of Aligned Distribution. Table 4 lists results under three
variant label distribution learning methods: (1) linear-oriented logit computa-
tion (LLC), (2) semantic-oriented logit computation (SLC), (3) linear-oriented
and semantic-oriented logit computation (LLC+SLC). The highest accuracy in
(LLC+SLC) demonstrates the effectiveness of our aligned distribution strategy.

Effectiveness of Robust Feature Generation. We evaluate the effectiveness
of feature generation and two calibration methods for prototype calibration. We
test our model under four different settings: (1) no feature generation (No FG),
(2) feature generation and prototype calibration of head-to-tail transfer learning
(FG+TL), (3) feature generation and prototype calibration of uncertain bound-
ary estimation (FG+UBE), (4) feature generation and both prototype calibra-
tion methods (FG+TL+UBE). As shown in Table 5, feature generation strategy
further enhances the performance. Moreover, after prototype calibration, the
performance gain would be more significant.
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Table 3. Top-1 Accuracy
with different contrastive
losses.

Contr Loss Top-1

SCL 51.88

PSCL 51.45

SCL+PSCL 52.11

SCL+PSCL+AM 52.23

Table 4. Top-1 Accuracy
with different logit com-
putations.

Logit Computation Top-1

LLC 51.97

SLC 50.63

LLC+SLC 52.23

Table 5. Top-1 Accu-
racy w/o feature genera-
tion and different proto-
type calibrations.

Feature Generation Top-1

No FG 51.74

FG+TL 52.01

FG+UBE 52.03

FG+TL+UBE 52.23

4.4 Comparison to State-of-the-Art Methods

For a fair comparison, we re-implement baselines in the same setting for recent
state-of-the-arts [6,14,24,27,37]. We report the performance of all baseline meth-
ods alxong with AMC-DRG in Table 6. We find that our AMCDRG provides
substantial performance gain over all baseline methods.

Table 6. Top-1 classification accuracy over all classes on CIFAR100-LT with ResNet-
32. All methods trained in 600 epochs for fair comparison.

Method Top-1 Accuracy

Hybrid-SPC [27] 44.97
Hybrid-SC [27] 46.72
PaCo [6] 51.66
DRO-LT [24] 46.92
ELM [14] 45.77
GLAG [37] 51.47
AMC-DRG(Ours) 52.23

5 Conclusion

In this paper, we propose a novel approach, AMC-DRG, to tackle the long-
tail challenge in classification tasks. Our method leverages re-margin schedules
that learn representation and distribution jointly within a one-stage training
scheme. We incorporate contrastive learning and prototype learning to enhance
the embedding training phase, and introduce a hybrid paradigm for distribution
computation that includes a linear classifier and a semantic similarity-based clas-
sifier. By reducing representation and classification bias towards head classes, our
method achieves more balanced performance across all classes. Additionally, we
design a robust feature generation module to facilitate data re-balancing. Overall,
our approach demonstrates promising results in improving long-tail classification
accuracy.
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Abstract. Graph Neural Networks (GNNs) have achieved remarkable success in
many aspects, but they still suffer from certain limitations, such as over-smoothing
with increasing layer depth, sensitivity to topological perturbations, and inability
to be applied to heterophilic graphs. So this paper proposes aMulti-scale Informa-
tion Fusion Adaptive Propagation Network (MAPNET) to overcome these limi-
tations. First, a new graph data augmentation method is designed, which deletes
unimportant edges and introduces KNN graphs to perturb the graph structure, and
adds the graph regularization terms to improve the model’s robustness and gener-
alization; second, amulti-scale information fusion adaptive propagation process is
designed to enhance the diversity of neighborhoods to alleviate the over-smoothing
problem; finally, the edge weights are extended to the negative values to adapt to
the heterophilic graphs. Experimental results show that MAPNET partially solves
the over-smoothing problem in GNNs. The model outperforms recent models in
both semi-supervised and fully supervised node classification tasks on multiple
datasets, and has better generalization performance and robustness.

Keywords: Graph neural network · Over-smoothing · Multi-scale information
fusion · Adaptive · Node classification · Heterophilic graphs

1 Introduction

Complex networks can describe many real-world systems, such as the social networks,
the biological networks, and the internet link networks. In deep learning, the graph neural
networks (GNNs) [1] have been widely studied and applied to various tasks, such as the
node classification [2], the link prediction [3], and the recommendation [4, 5], due to
their excellent ability of graph data processing. Semi-supervised node classification is
one of the hottest and most important problems in graph learning. In recent years, many
effective node classification methods have been proposed by researchers [6–8]. Despite
achieved great success, these algorithms all suffer from the problem of over-smoothing.

APPNP [9], JKNET [10], and GDC [11] are three methods for alleviating the over-
smoothing problem in graph neural networks. They respectively use the fusion of PageR-
ank ideas, the utilization of different neighborhood ranges, and a sparse graph diffusion
generalized form to aggregate neighborhood information. These methods can alleviate
the over-smoothing phenomenon, but they are sensitive to noise attacks and have weak
robustness of the models.
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L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14261, pp. 51–62, 2023.
https://doi.org/10.1007/978-3-031-44198-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44198-1_5&domain=pdf
https://doi.org/10.1007/978-3-031-44198-1_5


52 Q. Ma et al.

Due to the success of data augmentation in computer vision, more and more scholars
have focused the application of data augmentation on graphs. DropEdge [13] increases
the diversity of input data by randomly removing a certain percentage of edges. GRAND
[14] solves the problems of over-smoothing, non-robustness, and weak generalization
through random diffusion and consistency training. NodeAug [15] creates a “parallel
universe” for each node to perform data augmentation. These models are effective for
homophilic graphs, but their performance on the heterophilic graphs is not good, so
using graph neural networks on the heterophilic graphs are increasingly being studied.

In order to address the issues of over-smoothing, weak robustness, and inability to be
applied to the heterophilic graphs in GNNs, this paper proposes anAdaptive Propagation
Network based onmulti-scale information fusion. The novelty of this study lies in several
aspects:

– Firstly, new graph data augmentation methods and a new regularization term are
designed to enhance the model’s robustness and generalization performance.

– Secondly, multiscale neighborhood information fusion is used to alleviate over-
smoothing.

– Finally, adaptive propagation weights are used to extend the edge weights to the
negative values to adapt to the heterophilic graphs.

– Experimental results show that the proposed model can effectively improve the
accuracy of node classification.

2 Related Work

Graph Convolutional Networks (GCN) are the most commonly used type of models in
GNNs. The forward propagation of GCN can be defined as:

H (l+1) = σ
(
ÂH (l)W (l+1)

)
(1)

where H (l) ∈ R
N×F(l)

and H (l+1) ∈ R
N×F(l+1)

are the input and output node rep-
resentation matrices of the model. Â = D̃−1/2ÃD̃−1/2 is the symmetric normalized
adjacency matrix with self-loops, where Ã = A+ I and D̃ is the diagonal degree matrix.
W (l+1) ∈ R

F(l)×F(l+1)
is the trainable weight matrix, and σ is the activation function,

usually ReLU. The above equation can be understood as follows: GCN first propagates
the representations of neighbors, and then performs a nonlinear transformation to obtain
new node representations.

Due to the differences between the graph data and the Euclidean data, it is not
feasible to simply transplant the computer visionmethods into the graph neural networks.
Therefore, the researchers have begun to explore the methods of data augmentation in
graph data, which can be mainly divided into two categories: the manipulating features
[23] and the manipulating graph structures [13, 15, 17, 21]. This paper focuses on
purposefully deleting and adding edges in graph structures to enhance the data, in order
to preserve the correctness of the graph and minimize the impact of noise.

The graph regularization, as an unsupervised term applied to model training, can
provide additional supervision information for the model to learn better representations
of nodes in the graph. Many methods [13, 14, 21] have already improved the model
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performance by adding the regularization terms, with the most common one in previous
graph representation learning being the graph Laplacian regularization:

Llap =
∑

(i,j)∈E
∥∥∥h�

i − h�
j

∥∥∥
2

2
(2)

Equation (2) minimizes the difference between the central node and its neighbors, which
can provide the structural information for model training. However, the ability of GNN
to extract local feature information is similar to that of the graph Laplacian regulariza-
tion term, so adding the graph Laplacian regularization term to GNN cannot provide
additional useful information.

PPNP and its approximationAPPNP [9] balance local and global features by overlay-
ing the features from different neighborhoods and using personalized PageRank weights
(PPR), and achieve good performance in alleviating over-smoothing. Later, a more gen-
eralized information fusion model, graph diffusion convolution (GDC) [11] is proposed:
S = ∑∞

k=0 θkT k , θk and Tk are the weight coefficients and the transition matrices. In
this paper, we do not modify the weight coefficients, but replace the transition matrix
with an adaptive edge weight matrix.

3 Model Introduction

The model consists of three modules: the graph data augmentation module, the adaptive
propagation module, and the regularization module, as shown in Fig. 1 for details. In this
section, a data augmentation method is designed to generate S views with different node
features but the same topology structure between views during each iteration. Then, the
same adaptive propagation network is used to generate S graph embeddings. Finally, the
objective function is composed of the cross-entropy and the regularization terms, and
the model is trained by minimizing the objective function.

3.1 Importance-Based Data Augmentation

In general, the data augmentation for the topology structure can be broadly divided into
the edge deletion and the edge addition. Many previous methods randomly delete edges,
such as DropEdge [13] and NASA [21]. However, random edge deletion may remove
important edges, so it is generally believed that important edges should have a higher
probability of being preserved, while unimportant edges should have a higher probability
of being deleted. Then, how to define the importance of edges? In this paper, it is believed
that the larger the degree of a node is, the more important the edge connected to it is,
because in the propagation process, nodes with a larger degree also propagate more
information [15].

Definition 1. The calculation equation of node importance is we
uv = log(du).The degree

of node vu in edge euv is used as the measure of importance. The probability of euv being
deleted is inversely proportional to we

uv. The equation for calculating the probability of
an edge being deleted using importance is defined as:

peuv = min

(
we
max − we

uv

we
max − μe

s
· pe, pτ

)
(3)
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Fig. 1. The structure of MAPNET model

peuv is the probability that an edge is deleted, we
max and μe

s are the maximum values
and the average values of we

uv, respectively, and pe is a hyperparameter that controls the
overall probability of deleted edges. pτ controls the maximum probability of deleted
edges. Then, the mask εuv ∼ Bernoulli(peuv) is generated for each edge according to the
probability peuv, and the edge is determined to be preserved or not based on the mask.
According to the above equation, important edges will be more likely to be preserved,
while unimportant edges will be more likely to be deleted. Note that peuv and p

e
vu are not

equal, so the undirected graph will become a directed graph after data augmentation,
D̃out is used instead of D̃ in the normalization operation later.

The adding edge process in this paper chooses to add edges to the KNN graph,
because in the KNN graph, the features of related points are similar, which is more
advantageous than the random adding edge, as shown in Fig. 2(a).

Specifically, in the deleting edge process, if the edges in euv are deleted, some infor-
mation will be missing in the node v. In this paper, these missing information is supple-
mented by using the KNN graph. In the KNN graph, a random node u′ adjacent to the
node v is selected to connect it and supplement the missing information, that is, deleting
euv and adding eu′v.
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(0)
wT× (1)

wT× ( )k
wT×( ) ( )

(0) 1 1( , )s sH f X= Θ
( ) ( )

2 2( , )s sZ f H= Θ

( ) ( )
( )

0

K
s s

k
k

H H
=

= ∑

( )
(0)
sH ( )

(1)
sH ( )

(2)
sH ( )

( )
s
KH

Original Graph KNN GraphAug Graph

u
v

u′

u
v

u′

u
v

u′

(a) Data augmentation (b) Adaptive propagation

Fig. 2. (a) The data augmentation of graph structure. (b) The Adaptive propagation of multi-scale
information fusion.
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Definition 2. Assuming N remove
v = {

vε
u ∈ Nv, εu = 1

}
is the set of removed points,

N add
v = {

vu′ ∈ NKNN
v , εu′ = 1

}
is the set of added points, The graph augmentation is

defined as:

N aug
v = (Nv − N remove

v ) ∪ N add
v (4)

where vε
u represents the source node of the removed edge. Nv represents the neighbor-

hood of node vv, and εu represents the relationship between node vv and vu, NKNN
v

represents the neighborhood of node vv in the KNN graph. After the above operations of
removing unimportant nodes and adding similar nodes, the graph structure is perturbed,
but it does not significantly affect the correctness of the graph. Moreover, the additional
noise can also be used as advantageous information for the node classification in the
following process. The KNN graph can be generated outside the training process, so the
computational cost can be ignored.

The augmentation of node features uses the most convenient method of dropout,
which randomly deletes each component of the node feature. After the above data
augmentation method, S views are generated, where the s-th view is denoted as
G(s)(Ãaug,X (s)). The topological structure between views is the same, while the node
features are different. However, the topological structure is augmented in each epoch,
which means that Ãaug is different in each epoch, named as the dynamic training. The
combination of data augmentation and dynamic training makes the model more robust,
and reduces its sensitivity to the neighborhood changes.

3.2 Adaptive Propagation of Multi-scale Information Fusion

Here, the specific meaning of multi-scale information is the different orders of neighbor-
hood information. Both APPNP [9] and GPRGNN [16] use multi-order neighborhood
information aggregation to alleviate the over-smoothing problem, which can also be
regarded as the result of balancing local and global information. The difference is that
APPNP uses fixed edge weights in the propagation process, while GPRGNN uses the
adaptive weights on the weight coefficients. In this paper, we replaced the traditional
fixed edge weights with the adaptive edge weights, and used self-attention mechanism
to reduce the number of parameters, The specific process is shown in Fig. 2(b).

The process of dimension transformation on features is only performed at the begin-
ning and end, in order to decouple the feature transformation process from the propa-
gation process. Previous studies have shown that the entanglement between the feature
transformation and the feature propagation can exacerbate the over-smoothing phe-
nomenon [12]. After the dimension transformation, the initial embeddingH (s)

(0) ∈ R
N×F ′

is obtained. It multiplies by the normalized adaptive edge weight matrix T (0)
w ∈ R

N×N

for the convolution operation to obtain first-order neighborhood information, which is
then multiplied by T (1)

w again to obtain second-order neighborhood information. Repeat
the above operation to obtain K order neighborhood information H (s)

(K), and aggregate
and fuse the multi-scale information, then perform the feature transformation to obtain
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the final embedding Z(s) ∈ R
N×C . The equation is as follows:

H (s)
(0) = f1(X

(s),�1), H (s) =
K∑

k=0

k∏
i=0

T (i)
w H (s)

(0), Z(s) = f2(H
(s),�2) (5)

so the key lies in the computation of the weight matrix T (i)
w .

Definition 3. Let t(i)ij be an element in the matrix T (i)
w . If there is no connection between

nodes vi and vj in Ãaug, set t
(i)
ij to 0; otherwise, set t(i)ij to the normalized self-attention

value of vi and vj. The equation for t(i)ij is defined as follows:

t(i)ij =
⎧⎨
⎩

0 aij = 0
tanh(g(i)T [h(i)

i ||h(i)
j ])√

didj
aij = 1

(6)

g(i) ∈ R
2F ′

is the self-attention vector and also the parameter to be learned, || denotes the
concatenation operation. Here, the tanh activation function is used to constrain the value
of t(i)ij within [−1, 1]. Previous studies have shown that negative values are beneficial for
capturing high-frequency signals, which is advantageous for heterophilic graphs [18].
On the other hand, the noise brought by the data augmentation can also be utilized as the
information for node classification, which has been verified through experiments that
MAPNET achieves good results on the heterophilic graphs. Because the graph structure
becomes a directed graph during the data augmentation phase, here we use D̃out instead
of D̃ for normalization. Although each edge has a weight, the number of parameters
required for learning is only O(KF ′), which is much smaller than O(|E |F ′) without
using self-attention mechanism. K is the order of the neighborhood.

3.3 Objective Function

The objective function of MAPNET consists of a supervised loss and two graph regular-
ization terms, one being the consistency regularization and the other being the propaga-
tion regularization. In the process,multiple views are generated andmultiple embeddings
of these views are obtained. And so as to keep the predicted results of multiple embed-
dings consistent, the consistent regularization training is required. At the same time, in
order to make the model comparable to the deep model at a small cost, a propagation
regularization term is added.

The supervised loss is commonly known as cross-entropy loss. During the data
augmentation phase, the model generates multiple augmented views, so the average
cross-entropy loss for each epoch is given by:

Lsup = − 1

M

S∑
s=1

M∑
i=1

YT
i logP

(s)
i (7)
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where S is the number of views, M is the number of labeled data, P(s)
i = softmax(Z(s)

i )

represents the node prediction, and Z(s)
i is the final output embedding representation of

the model.
The Consistency regularization forces the model to have similar predictions between

the original data and the augmented views, thus making the model robust to the pertur-
bations in node features, while dynamic training techniques make the model robust to
the topological structure. The model first calculates the mean prediction of multiple

views as the label distribution center: Pi = 1
S

S∑
s=1

P(s)
i , and then enhances the consis-

tency by reducing the difference between single view predictions and the distribution
center. Before calculating the difference, it is necessary to sharpen the label distribution
center Pi, and the purpose of sharpening is to reduce the entropy of Pi. The sharpening
equation is as follows:

P
′
ij = P

1
T
ij

/
C−1∑
c=0

P
1
T
ic , (0 ≤ j ≤ C − 1) (8)

where 0 < T ≤ 1 is a parameter controlling the degree of sharpening, with a smaller T
resulting in a higher degree of sharpening. When T approaches 0, P

′
i becomes a one-hot

vector.

Lcon = 1

N

S∑
s=1

N∑
i=1

‖P(s)
i − P

′
i‖22 (9)

MinimizingLcon can make the final prediction of each view consistent with the label
distribution center, which can reduce the sensitivity of the model to data perturbations
and enhance robustness.

Here, we introduce the propagation regularization proposed by Yang [22], which
allows the model to achieve deep learning effects at a low cost. First, the final output
embedding representation Z(s) is convolved again using Âaug :

Z ′(s) = ÂaugZ
(s) = D̃−1

outÃaugZ
(s) (10)

The final propagation regularization term is expressed as:

Lsoft = 1

N

S∑
s=1

N∑
i=1

∣∣∣
∣∣∣Z ′(s)

i − Z(s)
i

∣∣∣
∣∣∣
2

2
(11)

Minimizing the squared error of Z ′(s) and Z(s) and performing the graph convolu-
tion with a simple normalization matrix converge to the same point. Therefore, using
infinite graph convolution and minimizing propagation regularization are equivalent.
The balance between infinite convolution and over-smoothing can be adjusted with the
hyperparameters. The final objective function is:

L = 1

S

(Lsup + λ1Lcon + λ2Lsoft
)

(12)

λ1 and λ2 are the hyperparameters for adjusting the regularization term ratio.
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4 Experiment

To evaluate the performance of the proposed MAPNET model, experiments were con-
ducted on eight common benchmark datasets. And then MAPNET is compared with
mainstream graph neural network algorithms. Section 4.1 introduced the datasets and
mainstream graph neural network algorithms used in the experiments, while Sect. 4.2
performed semi-supervised experiments on each model, Sect. 4.3 performed fully
supervised experiments on each model, Sect. 4.4 analyzed the generalization perfor-
mance of the models, and Sect. 4.5 analyzed experiments regarding over-smoothing and
robustness.

4.1 Datasets and Benchmark Algorithms

This section tested the performance of different models in semi-supervised node clas-
sification tasks and fully supervised tasks. Specifically, experiments were conducted
on six different datasets. Three citation datasets from Kipf [2], namely Cora, Citeseer,
and Pubmed, are the homophilic graphs where connected nodes tend to share the same
labels. As well as Actor, Texas, and Cornell, these three datasets from WebKB [17]
are heterophilic, where connected nodes often have different labels. Following previous
studies [16, 18, 20], we selected 9 different neural networks as the baseline algorithm,
including MLP, GCN [2], GAT [7], JKNET [10], ChebNet [6], APPNP [9], FAGCN
[18], GPRGNN [16], and BrenNet [20].

4.2 Semi-supervised Node Classification

In the semi-supervised experiments, three classic datasets were used. For the semi-
supervised node classification, each dataset will be split into standard partitions where
each class has 20 labeled nodes, 500 validation nodes, and 1000 testing nodes. Table 1
summarized the prediction accuracy for node classification, it can be observed that
the proposed algorithm is generally superior to the compared benchmark algorithms.
Specifically, the MAPNET model improved by 3.08%, 3.57%, and 0.39% over GCN,
and by 0.88%, 2.35%, and 0.18% over APPNPA on the Cora, Citeseer, and Pubmed
datasets, respectively. It can be seen that most models had only a small improvement
on the Pubmed dataset, and the performances of BrenNet and GPRGNN were even
worse than GCN. A preliminary conjecture is that this is the result of the combination
of adaptive mechanisms and multi-scale information fusion. Therefore, FAGCN, which
also uses adaptive mechanisms but without multi-scale information fusion, can achieve
good results. However due to adding the data augmentation and the regularization terms,
MAPNET, which uses both adaptive mechanisms and multi-scale information fusion,
has better stability and generalization performance.
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Table 1. Semi-supervised classification accuracy (%)

Cora CiteSeer PubMed

BrenNet 83.02 ± 0.53 70.79 ± 1.02 70.60 ± 2.42

GPRGNN 83.50 ± 0.33 71.67 ± 0.36 75.87 ± 1.67

FAGCN 84.10 ± 0.50 72.70 ± 0.80 79.40 ± 0.30

APPNP 83.70 ± 0.51 71.52 ± 0.33 79.21 ± 0.50

Chebnet 78.84 ± 0.44 70.99 ± 0.63 76.61 ± 0.61

GAT 83.01 ± 0.69 72.51 ± 0.70 79.02 ± 0.32

GCN 81.5 70.3 79.0

MLP 58.44 ± 0.97 57.25 ± 0.72 70.54 ± 0.57

MAPNET 84.58 ± 0.51 73.87 ± 0.61 79.39 ± 0.77

4.3 Fully-Supervised Node Classification

In the semi-supervised experiments, the entire dataset was used, the ratio of the fully-
supervised experimental dataset is 60%/20%/20%. Table 2 summarized the prediction
accuracy for node classification. Overall, MAPNET significantly outperforms all other
baseline models on the homophilic datasets, with the largest improvement compared to
GPRGNN on the Cora and Citeseer datasets, with increases of 1.6% and 1.5%, respec-
tively. On Cora, Citeseer, and PubMed, it achieves improvements of 1.2%, 1.8%, and
0.7%, respectively, compared toBrenNet. It also achieves good results on the heterophilic
graphs, with increases of 1.2% and 1.9% compared to GPRGNN on Actor and Cornell,
respectively, and increases of 0.9% and 0.2%compared toBrenNet onActor andCornell,
respectively. The adaptive mechanism performs well on PubMed in dense partitioning,
which indicates that it requires a lot of supervision. MAPNET has demonstrated good
performance in semi-supervised experiments with few labels and has a higher upper
bound than FAGCN.

Table 2. Full-supervised classification accuracy (%)

Cora CiteSeer PubMed Actor Texas Cornell

BrenNet 88.3 ± 1.0 79.1 ± 1.2 88.8 ± 0.7 39.8 ± 1.4 92.3 ± 2.7 92.7 ± 3.0

GPRGNN 87.9 ± 1.1 79.4 ± 1.4 89.4 ± 0.8 39.5 ± 1.2 93.3 ± 2.6 91.0 ± 3.8

FAGCN 88.4 ± 1.4 80.8 ± 1.3 84.2 ± 0.7 39.2 ± 1.6 85.7 ± 5.0 81.1 ± 6.4

APPNP 87.1 ± 1.1 79.8 ± 1.2 87.3 ± 0.5 38.9 ± 1.4 91.5 ± 3.7 86.7 ± 4.7

(continued)
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Table 2. (continued)

Cora CiteSeer PubMed Actor Texas Cornell

Chebnet 86.5 ± 1.3 78.2 ± 1.5 88.8 ± 0.5 36.7 ± 1.4 87.6 ± 4.5 85.0 ± 5.8

JKNET 85.7 ± 1.8 77.1 ± 1.9 87.2 ± 0.6 30.3 ± 1.9 77.2 ± 4.3 62.0 ± 6.7

GAT 88.1 ± 1.3 80.6 ± 1.1 87.4 ± 0.6 32.9 ± 3.2 80.5 ± 3.7 78.6 ± 4.7

GCN 87.0 ± 1.3 79.2 ± 1.0 87.0 ± 0.5 32.1 ± 1.4 74.5 ± 5.2 67.5 ± 5.5

MLP 76.4 ± 1.4 75.8 ± 1.1 86.1 ± 0.6 40.2 ± 1.9 91.3 ± 3.2 90.7 ± 3.0

MAPNET 89.5 ± 1.1 80.9 ± 1.2 89.5 ± 0.5 40.7 ± 1.2 92.2 ± 3.3 92.9 ± 2.7

4.4 Generalization Performance Analysis

This section investigated the impact of data augmentation and regularization on model
generalization. The experiments analyzed the cross-entropy loss of the model on the
training sets and the validation sets of the Cora dataset. A smaller difference between
the losses indicates better generalization performance. Figure 3 shows the generalization
performanceof theMAPNETmodel and its twovariants:without data augmentation (w/o
aug) and without regularization (w/o con and soft). The left compares the loss of (w/o
con and soft), which fluctuates significantly and has a large gap. The middle compares
the loss of (w/o aug), which fluctuates less but still has a large gap. The right graph shows
the complete model, which with both regularization and data augmentation improves the
generalization performance. The experimental results demonstrate that the regularization
can enhance model stability, while both data augmentation and regularization can help
improve the generalization ability.

Fig. 3. Generalization performance on Cora, left: (w/o con and soft) and middle: (w/o aug).

4.5 Over-Smoothing and Robustness Study

As the propagation step increases, many GNNs face the problem of over-smoothing.
To verify MAPNET’s ability of alleviating over-smoothing, experiments with different
propagation steps were conducted on the Cora dataset. Figure 4 shows the experimental
results on the Cora dataset, indicating that as the propagation step increases, the metrics
of GCN and GAT significantly decrease, with GCN’s accuracy dropping from 81.5% to
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15%andGAT’s accuracy dropping from83% to 20%.MAPNET,APPNP, andGPRGNN
can all alleviate the problem of over-smoothing, but MAPNET performs better and has a
higher upper limit. For robustness studies, graph structures were perturbed by randomly
adding edges, and different methods’ classification accuracies on the Cora dataset at
different perturbation rates were given in Fig. 4. As shown in the figure, MAPNET is
consistently superior to GCN, GAT, and APPNP at all perturbation rates. When 20%
new random edges are added to Cora, MAPNET’s accuracy only drops by 3.08%, while
the classification accuracies of GCN, GAT, and APPNP drop by 6.9%, 13%, and 7.2%,
respectively. The study indicates that MAPNET has a robustness advantage over other
models.

Fig. 4. Analysis of over-smoothing (left) and analysis of robustness (right). Changes in accuracy
of each model as the propagation depth and the perturbation rate increase.

5 Summary

This paper proposes a novel graph neural network called MAPNET, aiming to address
the issues of over-smoothing, weak robustness, and incapability of handling the het-
erophilic graphs that exist in traditional GNNs. MAPNET employs importance-based
data augmentation to perturb the graph structure, utilizes a multiscale adaptive prop-
agation network to alleviate over-smoothing, and allows negative values to adapt to
the heterophilic graphs. Additionally, MAPNET incorporates the regularization terms
to enhance robustness and generalization. Experimental results demonstrate that MAP-
NET outperforms other methods in both semi-supervised and supervised learning tasks,
as well as on the heterophilic graphs. In summary, the ideas of MAPNET are feasible
and promising for future research.
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Abstract. Scientific claim verification can help the researchers easily
find the target scientific papers with the sentence evidence from a large
corpus for the given claim. Because there are a huge amount of papers in
the corpus, most of the existing scientific claim verification solutions are
always in a two-stage manner that first roughly detects a set of candidate
related papers by some naïve but fast methods such as some similarity
measures, and then utilizes the large but relatively slow deep neural
models for accurate classification. To improve the recall of the overall
system by improving the recall of the rough abstract retrieval stage, we
propose an approach that also utilizes the neural classification model for
the rough retrieval stage. To improve the scalability of the proposal, we
propose a distillation-based method to obtain a lightweight model for the
rough retrieval stage. The experimental results on the benchmark dataset
SciFact show that our approach outperforms the existing works.

Keywords: Scientific Claim Verification · Abstract Retrieval ·
Rationale Selection · Stance Prediction · Distillation

1 Introduction

To investigate a given scientific claim, people want to find the target scientific
papers with sentence evidence from a large scholarly document corpus. Scien-
tific claim verification systems can be used for this purpose. To address this
research topic, Wadden et al. [18] provided a benchmark dataset named Sci-
Fact which consists of three tasks (Fig. 1). For a given claim, a scientific claim
verification system finds the abstracts which are related to the claim from a
corpus (abstract retrieval task); it selects the sentences which are the evidence
in the abstract related to the claim (rationale selection task); it also classifies
whether the abstract/sentences support or refute the claims (stance prediction
task). Scientific claim verification can be an extension of the general claim verifi-
cation [6,11,12]. There are existing works especially proposed for scientific claim
verification with pipeline or joint models [2,9,14,18,19,21,22].
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Fig. 1. An example of the general two-stage solution for scientific claim verification.

Because there are a huge amount of papers in the corpus, for the scalability
issue, most of these existing works are always in a two-stage manner (Fig. 1), i.e.,
a rough retrieval stage that first roughly detects a very small set of candidate
related papers by some naïve but fast methods, e.g., selecting the papers with
top-k similarities to the claim by using some similarity measures; and then an
accurate classification stage utilizes large but relatively slow models based on
deep neural networks for accurate classification on the three tasks. For example,
for the rough (abstract) retrieval stage, Wadden et al. [18] utilized TF-IDF sim-
ilarity between a claim or a scientific paper; Pradeep et al. [14] and Wadden et
al. [19] utilized BM25 scores or a combination of BM25 and T5 embeddings [15];
Li et al. [9] and Zhang et al. [22] utilized similarities of BioSenVec embeddings
[3].

One of the problems of these existing works is that the naïve methods at
the rough retrieval stage may be not good enough; if some related papers are
not selected as the candidates in this stage, the accurate classification cannot
find them even if the deep models are powerful. For the abstract retrieval task
of scientific claim verification systems, Recall (R) is one of the most important
measures because experts can still somewhat check and refine the final results
of accurate classification stage, but cannot notice the papers that are not in
the candidates obtained by the rough retrieval stage. Therefore, to improve the
recall of the overall system by improving the recall of the rough retrieval stage,
we propose an approach that also utilizes the deep neural models which can
detect the set of related papers with higher classification quality, to the rough
retrieval stage. However, the neural based rough retrieval with large model is
much slower than the naïve retrieval methods, to improve the speed of rough
retrieval so that this proposed solution is practical for a huge amount of papers,
we propose a distillation-based method that trains a lightweight student model
from the large teacher model which can be a neural model for scientific claim
verification from existing works. We utilize the lightweight student model for the
rough retrieval stage and the large teacher model for the accurate classification
stage. The main contributions of this paper can be summarised as follows.



Improving the Recall in Scientific Claim Verification 65

– We propose a unified approach based on deep neural networks for both rough
retrieval and accurate classification stages.

– We proposed a distillation-based method to train a lightweight model for the
rough retrieval stage to reach a balance between the recall improvement and
speed drop.

– The experimental results on the benchmark dataset SciFact show that our
approach outperforms the existing works.

2 Related Work

Automated Fact-verification is now widely studied, while Fact-verification
datasets are emerging in various fields. The first Fact-verification dataset was
presented by [17]. A later dataset, EMERGENT, a dataset with 300 claims pro-
posed by [4]. Among these claim verification corpora, the manually constructed
FEVER dataset [16], which includes 185,000 claims extracted from Wikipedia,
is one of the most influential datasets. Recently Wadden et al. [18] proposed a
dataset, SCIFACT, which is a Fact-verification dataset containing specialized
domain knowledge.

Most existing fact-verification systems are pipeline models that contain three
modules: document retrieval, rationale selection and stance prediction. For doc-
ument retrieval, Hanselowski et al. [5] proposed a heuristic document retrieval
module based on TFIDF, Google Search API and named entities, which has
been used several times. Rationale selection and stance prediction usually use
DNNs, such as kernel graph attention network [11] and neural semantic match-
ing networks [13]. On the other hand, there are Some fact-verification systems
use joint optimization strategies. GCAN [12] uses a co-attention mechanism to
generate both the verification result and the rationale that made the determina-
tion. A model that directly connects two modules through a dynamic attention
mechanism was proposed by [9]. In this work, we follow our previous work [22]
and combine the three modules for joint training.

For the scalability issue, most of these existing works are always in a two-
stage manner, i.e., rough retrieval stage and accurate classification stages. The
rough retrieval stage first roughly detects a very small set of candidate related
papers by some naïve but fast methods, e.g., selecting the papers with top-k
similarities to the claim by using some similarity measures. Wadden et al. [18]
utilized TF-IDF similarity between a claim or a scientific paper; Pradeep et al.
[14] and Wadden et al. [19] utilized BM25 scores or a combination of BM25
and T5 embeddings [15]; Li et al. [9] and Zhang et al. [22] utilized similarities
of BioSenVec embeddings [3]. In this work, we propose an approach that also
utilizes the deep neural models for detecting the set of related papers to the
rough retrieval stage; we also propose a distillation-based method that trains a
lightweight student model from the large teacher model for practical issue.
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Fig. 2. Framework of the proposed approach.

3 Proposed Approach

3.1 Notation and Definitions

We denote the query claim as q and an abstract of a scientific paper as a ∈ A. We
denote the set of sentences in abstract a as S = {si}li=1 and the word sequence
of si is [si1, ..., sini

]. The title of the paper t ∈ T is used as auxiliary information,
the word sequence of t is [t1, ..., tnt

]. Here, S, si and t are for a in default and
we omit the subscripts ‘a’ in the notations. The purpose of the abstract retrieval
task is to detect the set of related abstracts to q; it assigns relevance labels
yb ∈ {0, 1} to a candidate abstract a. The rationale selection task is to detect
the decisive rationale sentences Sr ⊆ S of a relevant to the claim q; it assigns
evidence labels yr

i ∈ {0, 1} to each sentence si ∈ S. The stance prediction task
classifies a into stance labels ye which are in {SUPPORTS=0, REFUTES=1,
NOINFO=2}. The sentences in a have the same stance label value.

3.2 Proposed Model

Our method also has rough abstract retrieval and accurate classification stages.
The backbone model of our work is ARSJoint [22] which has good performance
in existing works. Our method can also utilize other backbone models (e.g.,
[9,19]). We utilize ARSJoint as the teacher model for the rough retrieval stage
and in the accurate classification stage. The input sequence of ARSJoint is
defined as seq = [[CLS]q[SEP]t · · · [SEP]si[SEP] · · · ], obtained by concatenating
the claim q, title t and abstract a. The list of word representations Hseq of the
input sequence is computed by a pre-trained language model (e.g., BioBERT [8]).
The word representations of the claim Hq = [hq1 , · · · ,hqnq

], the title Ht =
[ht1 , · · · ,htnt

], each sentence Hsi = [hsi1 , · · · ,hsini
], and the abstract HS =

Ha = [· · · ,Hsi , · · · ] are extracted from Hseq.
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The teacher model in Fig. 2 shows its framework. The attention layers on
the word (sentence) representations are used to compute sentence (document)
representations. Scheduled sampling is used for alleviating the problem of error
propagation from the rationale selection module to the stance prediction mod-
ule. Rationale regularization (RR) is proposed for enhancing the information
exchanges and constraints by bridging the sentence attention scores of the
abstract retrieval module and the predictions of the rationale selection mod-
ule. This method jointly trains the model on all three tasks. The joint loss of
this model is

L = λ1Lret + λ2Lrat + λ3Lsta + γLRR, (1)

where Lret, Lrat, Lsta and LRR are the losses of abstract retrieval, rationale
selection, stance prediction, and rationale regularization respectively, and λ1,
λ2, λ3 and γ are hyperparameters.

In contrast to the existing works that utilize naïve but fast methods (e.g.,
cosine similarity of document embeddings by BioSenVec) at the rough retrieval
stage, we propose a unified approach that also utilizes a deep neural model to
select the set of candidate related papers. The problem with this solution is the
relatively low classification speed at the rough retrieval stage in the test phase
because of the model size. We need a method to make a balance between the
classification quality and the speed of the system. The knowledge distillation
technique (e.g., [7]) is a proper choice for this purpose. It can migrate the knowl-
edge from a large and complex model (teacher model) to a small and simple
model (student model).

Figure 2 shows the framework of our distillation-based model with a teacher
model and a student model. We construct an offline distillation method. We first
train the teacher ARSJoint model in the same way with accurate classification;
then, we fix its parameters and utilize it to train the student model by using the
same training data. Considering that, in the entire teacher model, the module
that accounts for the largest percentage of parameters is the language model in
the large version (e.g., BioBERT-large) that needs fine-tuning, in the student
model, we utilize the base version (e.g., BioBERT-base) that only has one-third
of the number of parameters of the large version. Except for the difference in the
language model, the student model has a consistent structure with the abstract
retrieval module of the teacher model which judges the relevance of an abstract
to the claim.

In details of the student model, we build a document ta = [t, a] and concate-
nate the word representations of t and a into Hu

ta = [Hu
t ,Hu

a ] as the input, here
the superscript u denotes the student model. Following ARSJoint, we also use
a hierarchical attention network (HAN) [20] to compute document representa-
tions hu

ta ∈ R
d, hu

ta = HAN(Hu
ta). We also compute the sentence representation

of claim hu
q ∈ R

d with a word-level attention layer (denoted as g(·)), hu
q = g(Hu

q ).
We use a Hadamard product and a Multi-Layer Perception (MLP, denoted as
f(·)) with Softmax (denoted as σ(·)) to compute the relevance between hu

ta and
hu
q . The outputs are the probabilities that whether the abstract is relevant to
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the claim,

[pbu0 , pbu1 ] = σ(f(hu
q ◦ hu

a)). (2)

A cross entropy loss Lu
ret (Student loss in Fig. 2) is used for training.

In addition, in this distillation model, to make the student mimic the teacher
model, there is a distillation loss which is the KL-divergence between the soft
outputs σ(f(hq ◦ ha)) of the teacher model and the soft outputs σ(f(hu

q ◦ hu
a))

of the student model, i.e.,

Ldist = KL(σ(f(hq ◦ ha))||σ(f(hu
q ◦ hu

a))). (3)

The overall loss of our distillation model is

Lu = λ4Lu
ret + λ5Ldist. (4)

In the test phase, we merge the set Au of candidate papers judged by the student
model and the set Ak with the top-k cosine similarity of document BioSenVec
embeddings to generate the set Ac of candidate papers of our rough retrieval
method, i.e., Ac = Au ∪ Ak. Note that although |Ak| = k is a fixed pre-defined
value, because |Au| are diverse for different claims, the number of candidate
papers |Ac| are also diverse.

4 Experiments

4.1 Dataset

We utilize the benchmark dataset SciFact [18]1. It consists of 5,183 scientific
papers with titles and abstracts and 1,109 claims in the training and development
sets. Table 1 presents the statistics of the dataset.

4.2 Implementations

We implement our approach in PyTorch. Because the length of the input
sequence seq is often greater than the maximum input length of a BERT-based
model, we performs a tail-truncation operation on each sentence of seq that
exceeds the maximum input length. The MLP in our model has two layers.
For the pre-trained language model, we verify our approach by respectively
incorporating diverse variants of ARSJoint which use RoBERTa-large [10] and
BioBERT-large [8] trained on a biomedical corpus. It fine-tunes RoBERTa-large
and BioBERT-large on the SciFact dataset.

4.3 Baselines

The baselines include VeriSci [18], Paragraph-Joint [9] and ARSJoint [22].
We use the publicly available code of them. The “Paragraph-Joint Pre-training”
model is firstly pre-trained on the FEVER dataset [16] and then fine-tune on
the SciFact dataset. The “Paragraph-Joint SciFact-only” is not pre-trained
on other datasets.
1 https://github.com/allenai/scifact.

https://github.com/allenai/scifact
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Table 1. Statistics of SciFact dataset. The numbers are “number of claims/number
of relevant abstracts”.

SUPPORT NOINFO REFUTES ALL

Train 332/370 304/220 173/194 809
Dev 124/138 112/114 64/71 300
ALL 456/508 416/444 237/265 1109

Table 2. Selected Weight hyperparameters Tuned by Optuna.

Model λ1 λ2 λ3 γ

ARSJoint w/o RR (RoBERTa) 2.7 11.7 2.2 –
ARSJoint (RoBERTa) 0.9 11.1 2.6 2.2
ARSJoint w/o RR (BioBERT) 0.1 10.8 4.7 –
ARSJoint (BioBERT) 0.2 12.0 1.1 1.9
Our (For Teacher Model) 9.2 2.3 0.4 10.5

Table 3. Hyperparameter settings following the existing work. ktra and kret are the
number of candidate abstracts for each claim in the training and testing stages. lr1 and
lr2 are the learning rates of the BERT-based model and other modules of the proposed
model.

Name Value Name Value Name Value

ktra 12 lr1 1 × 10−5 Batch size 1
kret 30 lr2 5 × 10−6 Dropout 0

4.4 Hyperparameter Settings

For our model used in the rough retrieval stage, we use Optuna [1] to tune the
weight hyperparameters of the teacher ARSJoint model, i.e., λ1, λ2, λ3 and γ
of the loss L on 20% of the training set and based on the performance on another
20% training set. We choose the optimal hyperparameters by the recall of the
rough retrieval stage. The search ranges of these four hyperparameters are set to
[0.1, 12], and the number of search trials is set to 100. The weight hyperparame-
ters tuned by rough retrieval recall of the teacher model for the rough retrieval
stage and the weight hyperparameters tuned by classification F1-score for the
accurate classification stage are different. Table 2 lists the hyperparameters. In
addition, for our method of neural rough retrieval with distillation, we set general
values of λ4 = λ5 = 1 in Lu. For ARSJoint model used as the teacher model
in our approach, Table 3 lists the hyperparameters. For the hyperparameters of
the baselines, we refer to the ones used in [22] to make a fair comparison.
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Table 4. Main experimental results, sentence-level evaluation. Our (Neural w/ Dist.)
is the abbreviation of Our (Neural Retrieval with Distillation).

(a). Results on development set. The baseline results are from [22].

Rough
Retrieval
Methods

Accurate
Classification

Models

Sentence-level
Selection-Only Selection+Label
F1 P R F1 P R

TF-IDF VeriSci 48.3 54.3 43.4 43.1 48.5 38.8
BioSenVec Paragraph-Joint SciFact-only 58.1 69.3 50.0 50.2 59.8 43.2
BioSenVec Paragraph-Joint Pre-training 64.7 74.2 57.4 55.2 63.3 48.9

BioSenVec

ARSJoint w/o RR (RoBERTa) 62.9 70.9 56.6 50.5 56.8 45.4
ARSJoint (RoBERTa) 62.0 67.9 57.1 50.7 55.5 46.7

ARSJoint w/o RR (BioBERT) 65.3 75.4 57.7 55.1 63.6 48.6
ARSJoint (BioBERT) 66.2 76.2 58.5 57.8 66.5 51.1

Our (Neural
w/ Dist.)

ARSJoint w/o RR (RoBERTa) 64.7 72.3 58.5 51.4 57.4 46.4
ARSJoint (RoBERTa) 64.4 69.7 59.8 52.1 56.4 48.4

ARSJoint w/o RR (BioBERT) 66.9 76.5 59.6 56.8 64.9 50.5
ARSJoint (BioBERT) 68.2 77.9 60.7 58.7 67.0 52.1

(b). Results on test set. The results are generated by the leaderboard.

BioSenVec ARSJoint (BioBERT) 79.0 82.4 76.0 65.5 68.3 63.0
Our (Neural

w/ Dist.)
ARSJoint (BioBERT) 79.0 81.0 77.0 65.4 67.1 63.8

4.5 Evaluation Methods

We evaluate the methods by using the abstract-level and sentence-level evalu-
ation criteria given in SciFact. Abstract-level evaluation evaluates the perfor-
mance of a model on detecting the abstracts which support or refute the claims.
For the “Label-Only” evaluation, given a claim q, the classification result of
an abstract a is correct if the estimated relevance label ŷb is correct and the
estimated stance label ŷe is correct. For the “Label+Rationale” evaluation, the
abstract is correctly rationalized, in addition, if the estimated rationale sentences
contain a gold rationale. Sentence-level evaluation evaluates the performance of
a model on detecting rationale sentences. For the “Selection-Only” evaluation,
an estimated rationale sentence si of an abstract a is correctly selected if the
estimated rationale label ŷr

i is correct and the estimated stance label ŷe is not
“NOINFO”. Especially, if consecutive multiple sentences are gold rationales, then
all these sentences should be estimated as rationales. For the “Selection+Label”,
the estimated rationale sentences are correctly labeled, in addition, if the esti-
mated stance label ŷe of this abstract is correct. We train the model using all
training data. In this work, we mainly focus on the Recall (R), while we also
provide the Precision (P) and F1-score (F1) results as references. On the one
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Table 5. Main experimental results, abstract-level evaluation. Our (Neural w/ Dist.)
is the abbreviation of Our (Neural Retrieval with Distillation).

(a). Results on development set. The baseline results are from [22].

Rough
Retrieval
Methods

Accurate
Classification

Models

Abstract-level
Label-Only Label+Rationale

F1 P R F1 P R

TF-IDF VeriSci 52.1 56.4 48.3 50.0 54.2 46.4
BioSenVec Paragraph-Joint SciFact-only 59.7 69.9 52.1 55.3 64.7 48.3
BioSenVec Paragraph-Joint Pre-training 65.1 71.4 59.8 59.9 65.7 55.0

BioSenVec

ARSJoint w/o RR (RoBERTa) 60.6 66.1 56.0 56.0 61.0 51.7
ARSJoint (RoBERTa) 60.8 64.5 57.4 55.7 59.1 52.6

ARSJoint w/o RR (BioBERT) 64.2 72.7 57.4 59.9 67.9 53.6
ARSJoint (BioBERT) 66.7 75.3 59.8 62.4 70.5 56.0

Our (Neural
w/ Dist.)

ARSJoint w/o RR (RoBERTa) 61.5 66.8 56.9 56.8 61.8 52.6
ARSJoint (RoBERTa) 62.3 65.6 59.3 57.3 60.3 54.5

ARSJoint w/o RR (BioBERT) 65.9 74.3 59.3 61.7 69.5 55.5
ARSJoint (BioBERT) 67.7 75.7 61.2 63.4 71.1 57.4

(b). Results on test set. The results are generated by the leaderboard.

BioSenVec ARSJoint (BioBERT) 71.0 73.2 68.9 68.7 70.8 66.7
Our (Neural

w/ Dist.)
ARSJoint (BioBERT) 71.2 72.2 70.3 69.0 69.9 68.0

hand, we evaluate the approaches on the development set following [9,22]; on the
other hand, we also provide some results on the test set through the leaderboard.

4.6 Experimental Results

Table 4(a) and 5(a) show the results on the development set. The proposed
method with our neural rough retrieval method has better Recall than the exist-
ing works that utilize the naïve rough retrieval methods such as some similarity
measures. Especially, in the results using diverse variants of the backbone model
ARSJoint in this work, for accurate classification, comparing the rows with
BioSenVec embedding similarities and our neural rough retrieval methods, in
the case of the same accurate classification models (ARSJoint model, w/ or
w/o RR, RoBERTa or BioBERT), our method always has better performance.
It shows that using better rough retrieval methods can improve the performance
of the overall system. Table 4(b) and 5(b) show the results on the test set. Our
neural-based method with distillation has better Recall than the baseline with
naïve rough retrieval method when using the same accurate classification model.

We then investigate the performance of different methods on selecting the
candidate papers at the rough retrieval stage. The most important measure for
this stage is the Recall, because if the related papers are not in the set of candi-
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Table 6. Rough retrieval stage: a trade-off between recall and time cost (seconds) of
judging a claim-abstract pair.

Rough Retrieval Method Recall (R) Time

BioSenVec Embedding Similarity 98.10 <0.05 s
Our w/o Distillation (Neural Retrieval) 99.96 ≈0.26 s
Our (Neural w/ Dist.) 99.06 ≈0.11 s

date papers, the model of the accurate classification stage cannot find them and
correctly classify them, no matter how powerful the accurate classification model
performance is. Table 6 shows that our method has better recall than the typical
naïve rough retrieval method of using BioSenVec embedding similarities. It is one
of the reason that our approach has better recall of the overall system in Table 4
and 5. We also show the results when directly using the ARSJoint model to the
rough retrieval stage (i.e., Our w/o Distillation). Because our student model is
a lightweight version of the ARSJoint model, our method has somewhat lower
recall than it. However, our method only consumes about less than half the time
comparing with it. On the other hand, because the document embeddings of the
papers can be pre-computed and indexed, the time cost of BioSenVec embedding
similarity method is mainly decided by the top-k algorithm, which is expected to
be faster than the relevance judgments of neural-based rough retrieval models.
Our method has a balance on the classification quality and speed. Note that,
we focus on proposing a method that is faster and more efficient than a vanilla
neural-based rough retrieval method; it is not necessary to be faster than a naïve
(e.g., similarity-based) retrieval methods.

5 Conclusion

In this paper, for improving the recall of two-stage scientific claim verification
systems by improving the recall of rough abstract retrieval stage, we propose an
approach based on neural networks for both rough retrieval and accurate clas-
sification stages. We propose a distillation-based method to train a lightweight
model for the rough retrieval stage for a balance on the recall improvement and
speed drop.

The limitation of the proposed approach is that it cannot be faster than the
existing solutions using naïve rough retrieval methods such as some similarity
measures. Note that, we focus on proposing a method that is faster and more
efficient than a vanilla neural-based rough abstract retrieval method; it is not
necessary to be faster than the naïve (e.g., similarity-based) retrieval methods.
The system administrators need to decide whether the classification quality is
the preferred factor or the time cost is the preferred factor. On the one hand,
the system administrators need to decide whether the classification quality is
the preferred factor or the time cost is the preferred factor. On the other hand,
in future work, we will investigate smaller student models with satisfied classifi-
cation quality.
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Abstract. As machine learning (ML) algorithms are extensively
adopted in various fields to make decisions of importance to human
beings and our society, the fairness issue in algorithm decision-making
has been widely studied. To mitigate unfairness in ML, many tech-
niques have been proposed, including pre-processing, in-processing, and
post-processing approaches. In this work, we propose an explainable fea-
ture selection (ExFS) method to improve the fairness of ML by recur-
sively eliminating features that contribute to unfairness based on the
feature attribution explanations of the model’s predictions. To validate
the effectiveness of our proposed ExFS method, we compare our approach
with other fairness-aware feature selection methods on several commonly
used datasets. The experimental results show that ExFS can effectively
improve fairness by recursively dropping some features that contribute to
unfairness. The ExFS method generally outperforms the compared filter-
based feature selection methods in terms of fairness and achieves com-
parable results to the compared wrapper-based feature selection meth-
ods. In addition, our method can provide explanations for the rationale
underlying this fairness-aware feature selection mechanism.

Keywords: Fairness in machine learning · Group fairness · Feature
selection · Feature attribution explanation · Ethics of AI

1 Introduction

Machine learning (ML) algorithms are increasingly adopted in more and more
fields and have brought significant impact on our daily lives and society. However,
despite the advantages brought by adopting ML models, there is plenty of evi-
dence of discriminatory behavior in algorithmic decision-making. For instance,
the software product COMPAS used to predict future criminals was found to
be biased against blacks [1]. Many other similar behaviors and findings have
also been exposed in other areas and applications [15]. Thus, fairness in ML has
received considerable attention and discussions in the last decades [9].
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The widespread concerns about algorithmic fairness have led to growing inter-
est in fairness-aware ML. Hence, many different measurements of fairness have
been formalized [5], and different approaches have been proposed to mitigate the
unfairness of ML models. According to the model development stage in which
the mitigation techniques are adopted, the existing approaches are usually cat-
egorized into pre-processing, in-processing, and post-processing methods. Pre-
processing approaches try to adjust or transform the training data for removing
the underlying bias in the data before feeding it to an ML algorithm [15]. In-
processing methods directly account for fairness during the model design stage
usually by modifying ML algorithms to address discrimination during the model
training phase [22]. Post-processing techniques dedicate to calibrating the pre-
dictions of a model after model training to make decisions fairer [17].

Although there are many different fairness-enhancing techniques, each type
of method shows its advantages and limitations and there was no conclusively
dominating method [17]. The existing pre-processing methods usually either do
not consider the fairness measurements explicitly or are limited to the type of
bias they can handle. In-processing mechanisms need to modify the downstream
ML algorithms, which is nontrivial and requires rich knowledge and experience.
Since post-processing approaches are applied to the relatively late stage of the
ML process, these methods typically obtain inferior results [23]. Additionally, the
existing methods lack explainability for their fairness enhancement mechanisms.

This work focuses on fairness-aware feature selection (FS), which is a type of
pre-processing method that aims at mitigating unfairness by selecting a suitable
subset of features to train models. We proposed an explainable feature selec-
tion (ExFS) approach to mitigate the unfairness by dropping or eliminating the
features that contribute most to the unfairness of the model’s prediction in an
iterative manner, based on an explainable artificial intelligence (XAI) approach.
The experiments on several commonly used datasets and ML models show that
our proposed method can enhance the fairness of the used model effectively and
efficiently. The main contributions of this work are: 1) We implement a method
to explain the prediction of the black-box model by constructing an explain-
able boosting machine (EBM) surrogate model; 2) We propose an approach to
explain which features contribute to the unfairness of a model; 3) We design an
explainable feature selection (ExFS) method for mitigating unfairness.

The remainder of this paper is organized as follows. Section 2 introduces the
commonly used fairness measurements and some related approaches for miti-
gating unfairness. The proposed explainable feature selection (ExFS) method
is described in Sect. 3. Section 4 presents the experimental studies. Finally, the
paper is briefly concluded in Sect. 5.

2 Related Work

In this section, we first give the problem setting investigated in this work. Then,
some commonly used group fairness measurements and fairness-aware feature
selection approaches are introduced under this setting.
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2.1 Problem Setting

We consider the most commonly investigated problem in fairness-aware ML liter-
ature [11], that is, the binary classification problem that aims to learn a mapping
function between user feature vectors x ∈ R

d and class labels y ∈ {0, 1}. This
task is often achieved by finding a model or classifier f : Rd �→ R based on the
training set D = {(x(i), y(i))}Ni=1 (where x(i) = [x(i)

1 , · · · , x
(i)
d ] ∈ R

d are feature
vectors and y(i) ∈ {0, 1} are the corresponding labels) such that given a feature
vector x with unknown label y, the classifier can predict its label ŷ = f (x). In the
context of fairness-aware ML, each x also has an associated sensitive attribute
s ∈ S (e.g., sex, race) that indicates the group membership of a user and the
model f also needs to be fair with respect to the sensitive attribute. Actually,
there can be multiple sensitive attributes. Here we consider a single sensitive
attribute case (e.g., the gender of each user s = {male, female}) and use sa and
sb to denote two different groups associated with the sensitive attribute. That
is, each training data instance

(
x(i), y(i)

) ∈ D has an associate sensitive feature
value s(i) ∈ {sa, sb}. The goal of fairness-ware ML is to learn a model f that can
provide accurate predictions while satisfying fairness requirements.

We introduce some additional notations used in work. The subsets of training
dataset D with values s = sa and s = sb are denoted as Da = {(x(i), y(i)) ∈
D|s(i) = sa} and Db = {(x(i), y(i)) ∈ D|s(i) = sb}, respectively. Let Xk =
[x(1)

k , · · · , x
(N)
k ]T (k = 1, · · · , d) be the k-th feature of the training dataset D,

and S = [s(1), · · · , s(N)]T denotes the sensitive attribute associated with D.

2.2 Fairness Measurements

Generally, fairness means the absence of any bias towards individuals or groups
based on their inherent or acquired characteristics [15]. Different types of mea-
sures for fairness have been proposed, including group and individual fair-
ness [15]. Below, we introduce some widely used group fairness measures.

• Demographic Parity (DP) [4] requires the positive prediction rates across
different sensitive groups should be the same, which is evaluated as:

mDP = |P (ŷ = 1 s = sa) − P (ŷ = 1 s = sb)| . (1)

• Equal Opportunity (EOp) [8] requires the true-positive rates across different
groups should be the same, which is computed as:

mEOp = |P (ŷ = 1 s = sa, y = 1) − P (ŷ = 1 s = sb, y = 1)| . (2)

• Equalized Odds (EOd) [8] requires both the false-positive and true-positive
rates across different groups should be the same, which is assessed as:

mEOd = |P (ŷ = 1 s = sa, y = 0) − P (ŷ = 1 s = sb, y = 0)|
+ |P (ŷ = 1 s = sa, y = 1) − P (ŷ = 1 s = sb, y = 1)| . (3)
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2.3 Fairness-Aware Feature Selection (FS)

Feature selection (FS) is an important method to optimize the performance of
ML by selecting a suitable feature subset. FS methods are usually categorized
into filter, wrapper, and embedded approaches [24]. Recently, there is a growing
body of work that uses FS to improve the fairness of ML [6,18], which is referred
to as fairness-aware FS [10]. Both filter and wrapper methods have been adopted
for mitigating unfairness in ML.

Fairness-Aware Filter FS. It is well known that bias caused by proxy features
of the sensitive attribute is one of the main causes of unfairness in ML [17]. Hence,
fairness-aware filter approaches intend to identify features that are highly related
to the sensitive attribute (i.e., the proxy features) and then drop these features
before training a model. Based on this idea, the Pearson correlation coefficient
(PCC) and mutual information (MI) [7] can be used to measure the correlation
between each feature Xk (k = 1, · · · , d) and the sensitive attribute S.

Fairness-Aware Wrapper FS. This category of methods directly incorporates
fairness measures into its objective when evaluating the goodness of the selected
subset features. According to the number of objectives, fairness-aware wrapper
approaches can be divided into single and multiple objective methods. In single-
objective wrapper approaches, the performance (e.g., accuracy, F1-score) and
fairness measures (e.g., DP, EOp) of the model are combined to form a single
objective that guides the FS process [3], or only the fairness measure is taken as
the objective to be optimized [18]. As for multi-objective wrapper methods, both
fairness measures and performance metrics are considered as different objectives
to be optimized during the FS [18] so as to obtain a set of Pareto optimal
solutions. In [18], both single and multi-objective wrapper approaches have been
investigated.

However, the above-described fairness-aware filter and wrapper FS
approaches both suffer from their drawbacks. On the one hand, a filter method
is computationally efficient but its performance may be inferior to a wrapper
method due to not considering the adopted model. On the other hand, wrap-
per methods usually can provide good results but involve high computational
costs. Furthermore, neither filter nor wrapper fairness-aware FS approaches can
offer the rationale or cause why removing some features can lead to fairness
enhancement.

This has motivated us to design the ExFS method which eliminates fea-
tures based on the feature attribution explanations to the fairness measure. Our
proposed method not only utilize the information or knowledge learned by the
model but also provides explanations for the underlying reason why dropping
the identified features can improve the fairness of the model.
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3 Explainable Feature Selection for Mitigating Unfairness

In this section, we propose an explainable feature selection (ExFS) method for
mitigating unfairness. Firstly, the used feature attribution explanation method
is introduced. Then, we describe the procedure of the ExFS method.

3.1 Feature Attribution Explanation Method

Explainable artificial intelligence (XAI) is an attractive and rapidly developing
research area since AI models are increasingly applied in high-stake domains [9].
During the past decades, numerous XAI methods have been proposed to explain
the decisions of ML models [2]. With the goal of explaining which feature(s)
contribute to the unfairness, we focus on a kind of XAI techniques known as
feature attribution explanation (FAE) methods. FAE methods are popular XAI
approaches that compute the attribution of input features to the model’s output
and provide a per-feature attribution score to represent its importance [25].

There are many popular FAE methods, including SHAP [14], LIME [19],
EBM [16], etc. SHAP [14] is a post-hoc approach that can provide both global
and local explanations. SHAP computes feature importances by removing fea-
tures in a game-theoretic framework which leads to expensive computational
costs. LIME [19] is also a post-hoc approach. It provides local explanations
through the perturbation method to identify the importance of each input fea-
ture. While EBM [16] is an intrinsic approach that can provide both global and
local explanations, it requires a cheap computational cost than others. Thus, we
choose EBM as the FAE method used in this work.

EBM belongs to the family of generalized additive models (GAMs) and can
be formulated in the following form [16]:

g(x) = β0 +
∑

fk (xk) , (4)

where fk is the shape function of k-th feature that EBM learns through modern
ML techniques such as bagging and gradient boosting. EBM is highly intelligible
and explainable because the contribution of each feature to a prediction can be
revealed by fk (xk) and the term contribution of each feature can be sorted and
visualized to show which features had the most impact on the prediction [12].

3.2 Explainable Feature Selection (ExFS) Method

Using EBM to Explain Black-Box Model’s Predictions: To leverage the
explainability of EBM, we use an EBM as a surrogate model to explain the pre-
dictions of other black-box models, such as random forest and neural network
models. The goal is to use an EBM g to simulate or mimic the input-output
mapping of the trained model f . The procedure for constructing an EBM surro-
gate model is illustrated in Fig. 1. The only difference between building an EBM
surrogate and training an EBM directly on the training dataset is that the out-
put (the predicted probability) Ŷ of the trained black-box model f are taken as
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Training Data , Model Prediction

EBM Model Explanation

Fig. 1. Illustration of constructing an EBM surrogate model to explain another model.

targets rather than the ground-truth labels Y in the dataset when constructing
the EBM surrogate. Then, the EBM surrogate model g can be used to provide
explanations for the prediction of model f at any input.

Calculating the Feature Attributions for Fairness Measurement: Let
e (x) ∈ R

d denotes the explanation of prediction provided by EBM, which is
a vector of contribution score or importance score of each input feature, at
input vector x. We use Ea = {e

(
x(i)

) | x(i) ∈ Da}, Eb = {e
(
x(j

) | x(j) ∈
Db} represent the explanation sets for the two subsets (or groups) Da and Db

of dataset D associated with the sensitive attribute. Based on the individual
prediction’s explanations, we can attribute DP fairness measurement mDP (in
Eq. 1) back to each of the input features [13,21]. We calculate how each feature
contribute to the mDP by,

FADP = mean (Ea) − mean (Eb) =

∑
x(i)∈Da

e
(
x(i)

)

|Da| −
∑

x(j)∈Db
e
(
x(j)

)

|Db| . (5)

The feature attribution for other group fairness measurements (EOp and EOd)
can be derived in a similar way as that for DP described above.

Eliminating Features Based on Explanations: The achieved FADP is a
vector that includes the contributions of each feature to the DP measure, and
ΣFADP indicates the DP value. The larger value of items in FADP vector indi-
cates the corresponding features contribute more to the fairness measure, i.e.,
causing unfairness. Hence, we can eliminate features that have large contribu-
tion scores to fairness measure for reducing unfairness. In our ExFS method, we
recursively eliminate the feature that contributes mostly to the computed fair-
ness measure. The procedure of the ExFS approach is described in Algorithm 1.

4 Experimental Study

In this section, we first present the setup of our experiments and then demon-
strate the effectiveness of our method by comparing it with four state-of-the-art
methods on three datasets with three different ML models.

4.1 Experimental Setting

Compared Approaches: We compare our approach with four fairness-aware
FS methods, as described in Sect. 2.3, namely FS based on Mutual Informa-
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Algorithm 1. The Procedure of Explainable Feature Selection (ExFS) Method
Input: Training dataset D = {(x(i), y(i))}Ni=1, Classification model f , fairness measure

m (e.g., mDP , mEOp, or mEOd), Unfairness tolerance ε.
Output: Trained model f that satisfying the fairness requirement.
1: Train the initial model f on dataset D with the initial set of features.
2: Evaluate the fairness measure m of the trained model f on dataset D.
3: while m > ε and #Features > 1 do
4: Construct an EBM surrogate model g for explaining the predictions of model f .
5: Calculate the feature attributions FAm for fairness measure m.
6: Eliminate the feature that has largest contribution to m according to FAm.
7: Retrain the model f on the dataset with remaining features.
8: Evaluate the fairness measure m of the retrained model f .
9: end while

10: Return the model f .

tion (FS-MI), FS based on Pearson Correlation Coefficient (FS-PCC), FS using
Genetic Algorithm (FS-GA) [18], and FS using NSGA-II (FS-NSGA-II) [18].

Datasets: We validate the proposed method on three commonly used datasets
of binary classification tasks [11]: Adult, Dutch, and Compas, whose sensitive
attributes are sex, sex, and race, respectively.

Models: Experiments were performed on three models: Logistic Regression (LR)
with maximum number of iterations of 1000, Random Forest (RF) with 10 esti-
mators and max-depth of 20 [21], and Multi-layer Perceptron (MLP) with two
hidden layers of size 64 and 32 and maximum number of iterations of 200 [20].

Evaluation Metrics: We used three widely used group fairness metrics as
evaluation criteria, which have been described in Sect. 2.2. We randomly split
each dataset into training and test sets with a ratio of 7:3. All reported results
are the average results on the test set obtained from 15 different random splits.

4.2 Experimental Results

Firstly, we conduct a comparative analysis between our approach and the other
two filter-based methods, as they all gradually drop features until the fairness
measure reaches the threshold. Due to space limitation, we only present the
comparison results of FS process for improving the DP metric in Fig. 2. To stan-
dardize the comparison, all methods drop the sensitive attribute at the beginning
and we set the unfairness tolerance ε = 0.0. From Fig. 2, we can see that all meth-
ods are effective in reducing the DP value. However, the ExFS method tends to
be the most efficient method for improving the DP metric, especially on the
Adult dataset. In addition, the ExFS method is ultimately capable of achieving
extremely low DP values, which makes it capable of satisfying diverse fairness
requirements, including more stringent ones.

Then, we provide explanations to demonstrate the operational mechanism of
our method and to explain the reason of fairness measure changes during the
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(a) LR - Adult. (b) LR - Dutch. (c) LR - Compas.

(d) RF - Adult. (e) RF - Dutch. (f) RF - Compas.

(g) MLP - Adult. (h) MLP - Dutch. (i) MLP - Compas.

Fig. 2. The comparison results of three filter approaches to enhance DP fairness metric
on different datasets using different models.

(a) 0 removed features. (b) 1 removed features.

(c) 2 removed features. (d) 3 removed features.

Fig. 3. Feature attribution explanations for DP on Compas dataset using MLP model.
(Firstly, the sensitive attribute ‘race’ is eliminated, then ‘priors count’ is removed, and
‘score text’ is eliminated subsequently.)



An Explainable Feature Selection Approach for Fair Machine Learning 83

ExFS procedure. The FAE graphs from the ExFS method for each step of the
recursive deletion of the first 3 features for the case of Fig. 2(i) are presented
in Fig. 3, showcasing part of the attribution process of the ExFS method. As
can be seen in Fig. 3(b), when removing the second feature, we selected the
‘priors count’ feature that contributed the most to the DP based on the attri-
bution scores provided by FADP . However, after removing this feature, we can
see from Fig. 3(c) that there is no significant change in ΣFADP . This is due
to the sudden increase in the contribution score of the feature ‘score text’ (see
Fig. 3(c)) following the removal of ‘priors count’. After eliminating the feature
‘score text’, the DP value decrease significantly. This demonstrates that FAE of
fairness measure can explain why DP value decreases or not during the feature
elimination process. Apparently, the ExFS method not only makes the selection
process transparent and understandable but also helps us to analyze the reasons
for the results generated by this selection. Furthermore, it can be observed from
Fig. 3 that the feature ranking based on FAE is not constant. Hence, depend-
ing on the ML model used and other hyperparameter settings, the ranking of
features that lead to model unfairness may vary. As mentioned in Sect. 2.3, the
existing filter-based methods are limited to analyzing the relationship between
features in the dataset and are unable to observe or adapt to such changes. For-
tunately, the proposed ExFS method can improve the fairness of the model by
gaining insight into the features that cause unfairness in the model through FAE
and removing the corresponding features purposefully.

Lastly, we conduct a comprehensive comparison between the ExFS method
and all the compared methods on DP, EOp, and EOd metrics, respectively, and
the results are listed in Table 1. Specifically, for FS-MI and FS-PCC methods,
we trained the models and gradually removed the feature with the largest score
with sensitive attribute calculated by MI or PCC, and report the corresponding
results of the models with the best DP, EOp and EOd metrics obtained in this
process, respectively. For FS-GA, FS-NSGA-II, and ExFS methods, we optimize
or attribute DP, EOp, and EOd metrics, respectively. Based on the results pre-
sented in Table 1, it can be observed that our ExFS approach generally performs
better (achieves smaller fairness measurement values) than the two filter-based
methods (FS-MI and FS-PCC) on three fairness measurements. At the same
time, ExFS achieves comparable results to the two wrapper-based approaches
(FS-GA and FS-NSGA-II).

In summary, it can be concluded that our ExFS method generally outper-
forms the compared filter-based methods in terms of fairness enhancement, and
achieves comparable results to the wrapper-based methods. But the wrapper-
based methods are somewhat brute-force and black-box approaches. While our
ExFs method is transparent and able to provide explanations for the rationale
behind removing certain features to achieve fairness enhancement. Furthermore,
our method is computationally efficient, which involves a lower computational
cost compared to the wrapper-based methods. Since a wrapper-based approach
usually requires to evaluate a large number of feature subsets by training a model
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Table 1. The comparison results of all investigated fairness-aware feature selection
approaches to enhance different fairness measurements. The number in bold face means
the corresponding method achieves the best fairness result.

Dataset Model Method Fairness Measurement

DP EOp EOd

Adult LR FS-MI 0.010 ± 0.011 0.012 ± 0.011 0.015 ± 0.008

FS-PCC 0.020 ± 0.004 0.015 ± 0.013 0.017 ± 0.014

FS-GA 0.000 ± 0.000 0.000 ± 0.000 0.021 ± 0.012

FS-NSGA-II 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

ExFS 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

RF FS-MI 0.018 ± 0.007 0.019 ± 0.016 0.024 ± 0.019

FS-PCC 0.021 ± 0.003 0.014 ± 0.011 0.019 ± 0.008

FS-GA 0.000 ± 0.000 0.054 ± 0.021 0.022 ± 0.016

FS-NSGA-II 0.000 ± 0.000 0.121 ± 0.027 0.000 ± 0.000

ExFS 0.008 ± 0.003 0.012 ± 0.008 0.017 ± 0.007

MLP FS-MI 0.019 ± 0.008 0.022 ± 0.015 0.021 ± 0.013

FS-PCC 0.020 ± 0.005 0.016 ± 0.009 0.020 ± 0.010

FS-GA 0.000 ± 0.000 0.000 ± 0.000 0.022 ± 0.013

FS-NSGA-II 0.000 ± 0.000 0.111 ± 0.221 0.023 ± 0.011

ExFS 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Dutch LR FS-MI 0.011 ± 0.019 0.001 ± 0.002 0.001 ± 0.003

FS-PCC 0.001 ± 0.001 0.006 ± 0.004 0.009 ± 0.004

FS-GA 0.003 ± 0.001 0.000 ± 0.000 0.000 ± 0.000

FS-NSGA-II 0.000 ± 0.000 0.010 ± 0.014 0.000 ± 0.000

ExFS 0.001 ± 0.002 0.002 ± 0.005 0.011 ± 0.005

RF FS-MI 0.015 ± 0.015 0.023 ± 0.024 0.043 ± 0.032

FS-PCC 0.001 ± 0.001 0.008 ± 0.004 0.009 ± 0..004

FS-GA 0.000 ± 0.000 0.000 ± 0.000 0.001 ± 0.001

FS-NSGA-II 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

ExFS 0.001 ± 0.001 0.002 ± 0.004 0.010 ± 0.004

MLP FS-MI 0.002 ± 0.004 0.018 ± 0.025 0.039 ± 0.028

FS-PCC 0.001 ± 0.001 0.003 ± 0.003 0.004 ± 0.006

FS-GA 0.001 ± 0.002 0.025 ± 0.034 0.046 ± 0.025

FS-NSGA-II 0.001 ± 0.002 0.045 ± 0.017 0.044 ± 0.026

ExFS 0.001 ± 0.001 0.003 ± 0.004 0.005 ± 0.005

Compas LR FS-MI 0.058 ± 0.047 0.044 ± 0.051 0.104 ± 0.075

FS-PCC 0.038 ± 0.049 0.038 ± 0.029 0.063 ± 0.055

FS-GA 0.000 ± 0.000 0.030 ± 0.042 0.000 ± 0.000

FS-NSGA-II 0.000 ± 0.000 0.053 ± 0.033 0.070 ± 0.087

ExFS 0.033 ± 0.047 0.018 ± 0.037 0.018 ± 0.045

RF FS-MI 0.053 ± 0.043 0.053 ± 0.038 0.082 ± 0.085

FS-PCC 0.084 ± 0.014 0.102 ± 0.028 0.153 ± 0.030

FS-GA 0.005 ± 0.013 0.077 ± 0.023 0.023 ± 0.042

FS-NSGA-II 0.014 ± 0.029 0.074 ± 0.037 0.055 ± 0.064

ExFS 0.028 ± 0.036 0.047 ± 0.046 0.074 ± 0.066

MLP FS-MI 0.032 ± 0.044 0.035 ± 0.039 0.090 ± 0.083

FS-PCC 0.098 ± 0.022 0.093 ± 0.017 0.159 ± 0.042

FS-GA 0.005 ± 0.017 0.020 ± 0.035 0.048 ± 0.061

FS-NSGA-II 0.029 ± 0.029 0.056 ± 0.035 0.024 ± 0.040

ExFS 0.036 ± 0.041 0.036 ± 0.044 0.062 ± 0.082
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on each feature subset, while our ExFS method only needs to retrain the model
after each feature elimination.

5 Conclusion

In this paper, we proposed an explainable feature selection (ExFS) approach that
is capable of explaining and mitigating unfairness in ML models. The results of
our experiments demonstrate the effectiveness of our approach in improving the
fairness of ML models. Our proposed ExFS method is transparent and is able
to provide explanations for the rationale of why removing some features can
lead to fairness enhancement. Furthermore, ExFS is computationally efficient,
which requires a lower computational cost compared to wrapper-based methods.
The ExFS method fills the gap of the lack of explainability in the investigated
fairness-aware feature selection approaches. But, it should be noted that there are
still challenges and limitations to the trade-off between fairness and performance
of the ML models. In future work, we will focus on how to achieve a trade-off
between performance and fairness based on the explanations of the predictions
and the fairness measures.
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Abstract. Cross-social network anchor link prediction plays a pivotal
role in downstream tasks, such as comprehensively portraying user char-
acteristics, user friend recommendations, and online public opinion anal-
ysis, which aims to find accounts that belong to the same natural per-
son on different social networks. It is a common method to use manu-
ally marked anchors or anchors inferred through autonomous learning
as supervisory information to guide the prediction of subsequent anchor
links. However, the credibility of the anchor is not discussed. In this
paper, to address this problem, we propose a new framework that can
simultaneously complete the identification of trusted anchors and the
prediction of anchor links across social networks under a unified frame-
work. The proposed method can effectively identify non-trusted anchor
links and improve the accuracy of the anchor link prediction model
through the reconstruction of trusted anchors. Extensive experiments
have been conducted on two large-scale real-life social networks. The
experimental results demonstrate that the proposed method outperforms
the state-of-the-art models with a big margin.

Keywords: Social networks · Anchor link prediction · Anchor noise ·
Network embedding · Feature fusion

1 Introduction

With the development of the online society, people’s demand for social network
services has gradually increased, and a single social network can no longer meet
the needs of users for different network services. In order to enjoy the various
forms of services provided by different social networks, people often register
accounts on multiple social networks at the same time, such as Facebook, Twitter
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and Linkedin. More often than not, users sign up at different social networks for
different purposes, and different social network show different views and aspects
of people. For example, a user makes connections to their friends on Facebook,
but uses Linkedin to connect to his/her colleagues, interested companies and
seek job opportunities. These shared users naturally form anchor links bridging
different social networks.

Anchor Link Prediction (ALP) aims to recognize the accounts of the same
natural person across different networks, and the links between these accounts
are anchor links (the accounts are anchor nodes). Users with accounts on multi-
ple social networks allow us to integrate patterns across online social network-
ing sites and solve some problems that cannot be solved with data from only
one site, such as the cold start problem and data sparsity in many prediction
tasks [1]. Predicting anchor links across different social networks also provides a
great opportunity to learn user’s migration behavior. In a nutshell, ALP helps
us integrate the account information of these natural persons on different social
networks (including their friend relationships, behavioral preferences, geographic
locations, hobbies, etc.). This allows us to have a more comprehensive under-
standing of our users and provide them with more attractive services on different
social networks.

Early studies address this problem either by leveraging self reported user
profiles (e.g., user name, profile, location, gender) and other demographic fea-
tures [2] or by exploiting user generated contents, such as, tweets, posts, blogs,
reviews, and ratings [3]. However, not all networks contain available heteroge-
neous information. In a homogeneous network, the above approach will not work.
User identity data in online social networks has the following unique property:
profile structure inconsistency. Different online social networks may employ dif-
ferent structures and schemes to present user profiles. Also, the same attribute
can be populated with different information depending on the site and the pur-
pose of the user. Additionally, even on a single social network, user profiles can
be deliberately faked, similar to imitating other users [4], which increases the
uncertainty and ambiguity of profile characteristics.

In order to solve the above problems, it has been proposed to achieve cross-
network anchor link prediction by incorporating social network structural infor-
mation [5–8]. The complex network structure contains abundant and avail-
able information. In addition, with the rise of network embedding, utilizing
embedding-based methods for anchor link prediction has become a mainstream
trend. Based on the trend, people tend to classify the core methods of anchor
link prediction into two parts: embedding and alignment. The embedding part
obtains a vectorized representation of network nodes (accounts) according to the
network structure. The alignment part obtains latent anchor links by estimat-
ing pairwise similarity between the embedding representation vectors of nodes
in different networks. According to whether these two parts are processed sep-
arately, existing methods can be divided into two categories: unified framework
methods [8] and two-stage separate processing methods [9]. Obtaining a better
node representation is crucial whether using the unified framework approach or
the two-stage approach.
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In addition, based on whether to use pre-marked anchor link data, ALP is
subdivided into unsupervised, semi-supervised, and supervised methods. Since
the desired effect cannot be obtained by using unsupervised methods, semi-
supervised and supervised learning methods have become the mainstream meth-
ods of anchor link prediction. Whether it is semi-supervised or supervised, man-
ually marked anchor links (or the anchor link inferred by the augmentation
algorithm) will be used as a standard to guide the alignment of the two net-
works. However, due to human factors (mislabeling) or unreasonable design of
the augmentation algorithm, these anchor links may contain noise. The use of
noisy supervisory data will have a negative impact on subsequent anchor link
prediction.

To address the above mentioned challenge, in this paper, we propose a cross-
social network anchor link prediction framework based on trusted anchor re-
identification technology. The contributions of this paper can be summarized as
follows:

– As far as we know, there is no relevant work to study the credibility of anchor
links. For the first time, we divided the supervisory data set used to predict
anchor links into trusted anchors and non-trusted anchors, and gave a specific
definition.

– We propose a trusted anchor re-identification method, which can effectively
identify and remove non-trusted anchors from anchor supervision data. This
method can effectively reduce the impact of noise in anchor monitoring data.

– We propose a new model that can simultaneously complete the identification
of trusted anchors and the prediction of anchor links across social networks
under a unified framework.

– We evaluate the proposed framework on two pairs of real-word social net-
works. The results demonstrate the effectiveness and efficiency of our method
compared with several state-of-the-art methods.

2 Problem Statement

In this section, we first introduce the noise problem of anchor data and give the
cause of anchor noise. Next, we give a formal definition of trusted anchors and
non-trusted anchors. Then the node embedding representation technology and
trusted anchor re-identification technology are introduced. Finally, the defini-
tion of the cross-social network anchor link prediction problem based on trusted
anchor re-identification is given.

2.1 Anchor Noise Problem

In the existing cross-social network anchor link prediction research, the pre-
marked anchors are often set to contain no noise by default. In addition, the
anchors predicted by the data augmentation algorithm are also directly used in
subsequent anchor link prediction. However, whether it is an artificially labeled
anchor or an anchor inferred by an augmentation algorithm, it may contain noise,
which will have a negative impact on the anchor link prediction model.
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2.2 Trusted and Untrusted Anchors

We all know that an anchor is a kind of artificially defined virtual mapping.
Both ends of the anchor point to user nodes in two different social networks
(indicating that the accounts on these two different social platforms belong to
the same person). Therefore, a trusted anchor is defined as a pair of user nodes
that play a forward role in the training process of the anchor link prediction
model. On the contrary, untrusted anchors are defined as a pair of user nodes
that play a negative role.

2.3 Node Embedding Representation and Trusted Anchor
Re-identification

Thanks to representation learning technology, people can easily use the char-
acteristics of the node itself and its structural characteristics in the network to
obtain high-quality embedded representations of nodes. Similar to most of the
existing representation learning methods, we use a d-dimensional embedding rep-
resentation vector to map each node vi ∈ V in the social network via a mapping
function f : V −→ R

d in the embedding representation space. By calculating the
similarity of the two nodes in the embedded representation space, the candidate
anchor can be accurately found. Trusted anchor re-identification uses embedded
representation technology to re-identify trusted anchors. Through this method,
trusted anchors are filtered out and the set of anchor links is reconstructed, and
the prediction accuracy of the model is improved by optimizing the quality of
the supervision data.

2.4 Anchor Link Prediction Based on Trusted Anchor
Re-identification

Given a social network G = {V,E}, where V is a set of nodes, E is a set of
edges. GSand GT represent the source network and the target network respec-
tively. Given a user node ai ∈ GS and aj ∈ GT are a pair of anchor nodes.
A={(ai,aj),...} represents the set of anchors to be verified between the two net-
works. The task of cross-social network anchor link prediction based on trusted
anchor re-identification technology is to use trusted anchor re-identification tech-
nology to filter out the trusted anchors in A and accurately predict the potential
anchor links between the two networks.

3 Proposed Model

In this paper, we propose a unified framework to predict anchor links across
social networks. The representation learning method is used by the framework
to integrate the user’s attribute characteristics and network structure charac-
teristics at the same time. Then, the representations of the nodes at both ends
of the anchor are compared in similarity to determine whether the anchor is
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Fig. 1. Overview of model framework.

credible. On this basis, the reconstructed set of trusted anchors will be entered
into the model as new supervisory data. The model consists of four parts: fea-
ture representation, feature fusion, trusted anchor reconstruction, and anchor
link prediction, as shown in Fig. 1. In the first stage, the main related factors
are analyzed, feature representations are carried out for different features, and
expresses them in a unified form. In the second stage, a CNN-based link pre-
diction model is constructed by combining the feature vectors of user attributes
and the feature vectors of user network structure. In the third stage, the trusted
anchor data is reconstructed. In the final stage, the trained model is used for
anchor link prediction.

3.1 Feature Representation

There are three types of data in social networks: network structure, user text,
and photos or videos posted by users. The data of different forms are different in
structure and are characterized by high-dimensionality and complexity. Tradi-
tional feature representation methods (such as adjacency matrix, one-hot vector,
etc.) are difficult to deal with. Therefore, how to extract multiple features and
uniformly express them have become a pressing problem to be solved. We select
two main features for link prediction: network structure and user attributes.
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Feature Representation of Network Structure. Network embedding is
used to extract the characteristics of the network structure so that we can
reconstruct the network structure. By reconstructing the network, the corre-
lation between users can be captured. Node2vec [10] can learn the homogeneity
and structural equivalence of nodes. Therefore, it can capture the potential rela-
tionship between users and construct the feature vector of the network structure.
In order to obtain a richer and deeper representation of structural features, in
node2vec, we adopted a flexible neighborhood sampling strategy [11]. Different
sampling strategies will result in different feature representations. Similarly, the
goal of node embedding is to maximize the logarithmic probability of sampled
node neighbors, that is, to maximize the probability of the nearest neighbor of
a given node. The formula is:

max
f

∑

n∈V

log Pr(Vs(v)|f(v)) (1)

where V is the set of nodes and f : V −→ R
d denotes a mapping function.

Vs(v) ∈ V is the neighbor set of node v obtained by sampling strategy S.

Feature Representation of User Attributes. The user attributes and net-
work structure of social networks belong to different characteristic spaces. In
order to obtain a unified form of the two features, the user attribute features are
extracted through the skip-gram model and converted into low-dimensional vec-
tors. Traditional text embedding methods include VSM and a heat vector. The
former is prone to dimensional disasters when expressing a large amount of text,
while the latter simply ignores the semantic correlation betweenwords. In contrast,
the skip-gram model can map high-dimensional, sparse words to low-dimensional,
dense word vectors, and can directly calculate the semantic correlation between
words. In this article, the skip-gram model represents user attribute information
as a low-dimensional vector, and then mines user attribute characteristics.

3.2 Feature Fusion

After the feature embedding in Sect. 3.1, the network structure space and user
attribute space, which are in different forms, have been vectorized. Based on the
characteristics of these two aspects, the problem to be solved is how to integrate
these two characteristics into a unified form for subsequent modeling and anchor
link prediction tasks. Associative with attention mechanism can help the model
assign different weights to each attribute, extract more critical information from
the attributes, and make more accurate prediction. Moreover, considering that
CNN has the ability to capture local features, and can also effectively reduce
the computational complexity and the over-fitting problem through the weight
sharing and pooling. We have added an attention layer between the input layer
and the convolution layer, which selectively considers information about the
user’s attributes in the input vector. As shown in Fig. 1, the model consists of
an input layer, an attention layer, a convolution layer, a feature fusion layer, a
pooling layer, a fully connected layer, and an output layer.
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3.3 Trusted Anchor Reconstruction

Mislabeling caused by human factors or the irrationality of the design of the
augmentation algorithm may introduce noise in the anchor data set. Anchor
supervision data containing noise is used to train the model, which will inevitably
lead to poor model training effect. Therefore, in this section, we have determined
the credibility of all anchors and reconstructed the trusted anchor data set.

Algorithm 1: Anchor link prediction algorithm.
Input: Social networks GS and GT ; Anchor links set β; Hyperparameter ξ;

Iteration Γ
Output: Node fusion representation set Ψf ; Candidate set δ

1 for i=1; i ≤ β.lenth; i = i+1 do
2 Sample a pair of anchor nodes (p, q) from β;
3 Learn the fusion vectors Vp and Vq of p and q ;
4 Calculate the similarity Θ of Vp and Vq by Eq.(2);
5 if Θ <ξ then
6 update β
7 end for
8 Randomly initialize parameter
9 Set epoch, batchsize;

10 Choose kernel size of filter, kernel size of pooling;
11 for training data
12 Feed the sample batch of V into CNN for forward propagation;
13 Compute results of Ψf from 3.2;

14 Calculate the candidate set δ ∈ GT for each node ∈ GS ;
15 end for
16 repeat
17 Update parameter by gradient descent algorithm;
18 until convergence;
19 for test data
20 Get future anchor links from 3.4;
21 end for

We use the network structure and user attributes in Sect. 3.1 to obtain the
vector of anchor nodes. The similarity between a pair of anchor nodes is converted
into a calculation of the similarity between these vectors. Generally speaking, the
higher the similarity between the two anchor nodes, the stronger the credibility;
on the contrary, low similarity indicates lower credibility. Given any pair of
anchor nodes ai and aj , whose vectors are v(ai) and v(aj), we use the cosine
of the angle between the two vectors to measure the similarity between the two
nodes.

sim(ai, aj) = cos θ =
ν(ai) × ν(aj)
ν(ai) · ν(aj)

=
∑d

i xi · yi√∑d
i xi ·

√∑d
i yi

(2)
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where d is the dimension of the vector, xi and yi represent the components of
v(ai) and v(aj), respectively. For each pair of anchor links (ai, aj) in A, we first
calculate their similarity by the above formula. Then, the untrusted anchors in
the anchor data set are eliminated by setting a threshold value and the trusted
anchor data set A′ is rebuilt for subsequent model training.

3.4 Anchor Link Prediction

For anchor link prediction, we first map the fusion vector of the nodes in the
source network and the target network obtained in Sect. 3.2 to a common poten-
tial space through the projection function, and then use the trusted anchor
link reconstructed in Sect. 3.3 to align the two networks. Finally, the similarity
between nodes is calculated by Eq. (2). Obviously, it is more likely that there
will be anchor links between more similar nodes in the common potential space.
Therefore, for each user in the network GS , we can find the most relevant user
in the network GT as an anchor candidate. We summarize our algorithm in
Algorithm 1.

4 Experiments and Analysis

In this section, detailed experimental settings will be introduced. First of all,
we will briefly introduce the data used in the experiment. Next, several baseline
methods used for comparison in the experiment are described in detail. Finally,
we give several evaluation indicators to evaluate the performance of the model
and analyze the experimental results.

4.1 Datasets

For performance evaluation, we employ two real-world social network datasets
collected from Foursquare and Twitter [12]. Among them, Twitter contains 5,220
users and 164,916 edges (relationships), Foursquare contains 5,315 users and
76,972 edges (relationships), and there are 1,609 anchor links between the two
networks, as shown in Table 1. The ground truth of anchors are provided in
Foursquare profiles.

Table 1. Statistics of the datasets used for evaluation.

Network #Users #Relations #Anchor

Twitter 5220 164919 1609

Foursquare 5315 76972
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4.2 Evaluation Metrics

To perform the user identity linkage, we utilize standard metrics [13]
Precision@k(P@k) as our evaluation metrics. Precision@k evaluates the link-
ing accuracy, and is defined as:

P@k =
n∑

i

1i{success@k}/n (3)

where 1i{success@k} measures whether the positive matching identity exists in
top − k(k <= n) list, and n is the number of testing anchor nodes.

4.3 Baselines and Settings

To evaluate the performance of our approach for anchor link prediction, we
choose the following baseline models for comparison, including:

• MAG [14]: MAG uses manifold alignment on graph to map users across net-
works. The dataset Twitter-Foursquare used in MAG is the same as that in
our paper. Since the source code of the paper was not published, we tried to
reproduce it, so in our paper, there may be some gaps between the reported
experimental results and the original results.

• IONE [15]: IONE predicts anchor links by learning the follower-ship embed-
ding and followee-ship embedding of a user simultaneously. However, they did
not consider the impact of anchor noise.

• DeepLink [9]: DeepLink is a method used for ALP tasks. The algorithm uses
unbiased random walks to generate embedding, and then uses MLP to map
users. Similar to MAG, we tried to reproduce its source code, so in our paper,
even without considering anchor noise, there may be some gaps between the
reported experimental results and the original text.

• HAN [16]: HAN is a GAT-based network embedding model. HAN uses the
attention of the vertex level and the attention of the semantic level to learn
the importance of the vertex and meta-path respectively, so HAN can cap-
ture the complex structural information and rich semantic information of
heterogeneous graphs.

• PME [17]: PME constructs the embedding of nodes and relationships in
the node space and the relationship space respectively, rather than mapping
the embedding of nodes and relationships into the same space. Moreover, it
projects various types of links into different subspaces, and finally obtains the
overall embedding vector of each node. In this article, we only consider one
type of link.

Note that we all use the optimal parameter settings in the original paper for
experiments, and we conduct ten experiments on all models separately, and then
record their average performance.

To fully demonstrate the effectiveness of our proposed model, we con-
duct the following experiments: i) Noise anchors with different ratios N(N =
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Table 2. The P@30 performance of each model under different anchor noise ratios.

Noise(%) 0 10 20 30 40 50 60 70 80 90 100

MAG 32.18 22.62 20.90 19.33 19.89 18.65 16.92 15.05 13.89 12.64 11.56

IONE 60.44 44.12 41.64 38.01 36.48 35.77 33.78 34.03 32.79 31.54 30.88

DeepLink 70.48 53.77 48.63 44.76 43.18 40.48 38.82 36.85 34.52 33.79 31.24

HAN 78.33 62.92 59.91 57.11 56.00 54.91 52.95 51.14 50.09 48.81 48.24

PME 80.95 66.28 64.88 61.61 58.72 54.35 52.51 51.70 49.83 48.79 47.53

ours 85.17 83.90 81.24 79.28 76.57 75.06 73.73 71.94 70.42 69.75 69.03

0, 0.1, 0.2, ..., 1) are added to the original dataset to compare the changes of
P@30 of each model. The specific method of adding anchor noise is as follows:
randomly extract one user account from each of the social networks Twitter and
Foursquare (these accounts do not belong to the anchor node set) to form a new
pair of “anchor” and add them to the anchor data set. As shown in Table 1,
there are 5220 users in Twitter and 5315 users in Foursquare. On this basis, the
data set is re-divided and the accuracy changes of each model are tested. The
results are shown in Table 2.; ii) P@K(K = 1, 5, 10, 15, 20, 25, 30) were studied
under the conditions of no noisy anchors, 50% noisy anchors, and 100% noisy
anchors, respectively. The results are shown in Fig. 2.

4.4 Analysis of Experimental Results

From the experimental results of the model, it can be seen that with the increase
of the proportion of anchor noise, the accuracy of all models is decreasing, and
when the anchor noise is first added, the degree of impact on the comparative
model is most obvious. This is because anchor noise is directly added to the
supervisory data, and the model does not consider the impact of anchor noise,
and then all anchor data is used as supervisory data to train the model, resulting
in a rapid decline in the predictive power of the model. The reason why the
method proposed in this paper is not significantly affected is that before training
the model, we first verify the credibility of the input anchor data set, and through
the similarity comparison, some of the noise anchors in the data set are removed.
In addition, the accuracy of the model we proposed decreases the slowest, which
shows that the model has the strongest resistance to anchor noise, that is, the
strongest robustness.

Figure 2(a) shows the performance of each model without adding any anchor
noise. It can be seen that even without adding any anchor noise, our method
still achieves the highest prediction accuracy, which shows that some accurately
marked anchors may also have a negative impact on the model. The reason is
that the nodes at both ends of these anchors have large differences in attributes
and structure in different social platforms, resulting in a low degree of similarity
in the representations they learn. Figure 2(b) and Fig. 2(c) show the performance
of each model after adding 50% and 100% random noise anchors to the original
social network data, respectively. It is not difficult to see that our model performs
optimally whether under 50% noisy supervision or 100% noisy supervision.
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Fig. 2. The performance of each model at P@K with different noise ratios.

We found that with the addition of 100% anchor noise, the P@30 accuracy
rate of each model decreased significantly. Among them, the anchor link pre-
diction accuracy of MAG, IONE and DeepLink decreased significantly by 64%,
49% and 56%, respectively, while HAN and PME also decreased by 38% and
41%, respectively, while our method only decreased by 19%. The reason why the
accuracy of our model will decrease as the anchor noise is added may be that
the node attributes and structure similarity of the introduced random anchor
noise are high, which makes our strategy unable to filter it out from the anchor
data set. However, even with the addition of 100% random anchor noise, our
model can still achieve 69% accuracy, once again proving the effectiveness of our
proposed model.

5 Conclusion

In this paper, we propose a new framework that can simultaneously complete the
identification of trusted anchors and the prediction of anchor links across social
networks under a unified framework. As far as we know from our research, there
is no relevant work to conduct in-depth research on the credibility of anchor links.
For the first time, we divided the supervised data set used to infer anchor links
into trusted anchor links and non-trusted anchor links, and gave specific defini-
tions, hoping to bring some inspiration to relevant researchers. Compared with
several state-of-the-art methods, extensive experiments on real social network
data sets have proved the effectiveness and efficiency of the proposed method.
Future work includes expanding it to multiple networks and exploring its appli-
cability to other types of networks.
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Abstract. Recently, with the continuous development of deep learning,
there has been a significant improvement in the performance of named
entity recognition tasks. However, privacy and confidentiality concerns
in specific fields, such as biomedical and military, limit the availabil-
ity of data for training deep neural networks. To address the issues
of data leakage and the disclosure of sensitive data in these domains,
we propose an encryption learning framework. For the first time, we
employ multiple encryption algorithms to encrypt the training data in
the named entity recognition task, training the deep neural network with
the encrypted data. Our experiments, conducted on six Chinese datasets,
including three self-constructed datasets, demonstrate that the encryp-
tion method achieves satisfactory results. In fact, the performance of
some models trained with encrypted data even surpasses that of the
unencrypted method, highlighting the effectiveness of the introduced
encryption method and partially resolving the problem of data leakage.

Keywords: Chinese named entity recognition · Data encryption ·
Privacy protection · Natural language processing · Deep neural
networks

1 Introduction

Named entity recognition (NER) [1] is an important task in natural language
processing (NLP) that identifies useful entities in unstructured text. Deep learn-
ing achieves state-of-the-art performance for many NER tasks. However, many
datasets used for training the deep learning model contain sensitive information.
For example, datasets in the biomedical field usually consist of electronic medical
records, which generally include identification information, disease information
and treatment plans for patients. Many people or groups worry about the leakage
of their private data and are unwilling to disclose it. Therefore, data scarcity is
severe in many fields for model training. Most enterprises face problems such as
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limited data and poor data quality, which hinder the implementation of artificial
intelligence (AI) technology. To address the aforementioned problem, federated
learning [2] emerged.

However, federated learning has some shortcomings. For example, 1) Data
is not centralized. 2) Unstable connections between networks cannot be fore-
seen or avoided. If a network disconnects, the learning process may time out or
exit abnormally. 3) The federated learning system requires multi-party collabo-
ration, leading to issues such as limited model flexibility for users, slow training
speed, and high hardware requirements for model training. 4) While federated
learning has found application in some practical business scenarios, its large-
scale implementation is still distant. To address these challenges, we propose a
deep learning framework for the NER task based on multiple data encryptions.
Our framework overcomes certain limitations of federated learning and provides
improved privacy protection.

Chinese, as an important international language, possesses unique charac-
teristics. The Chinese language, culture, and history are attracting increasing
international attention and study. However, there is a scarcity of datasets related
to Chinese history in the CNER field. The absence of data and applications
presents challenges for scholars who are new to the study of Chinese history and
for constructing knowledge graphs in the field. Building upon the aforementioned
points, we have developed a new dataset for Chinese history.

Furthermore, we conduct experiments employing various encryption meth-
ods on six datasets encompassing biomedicine, news, and history domains. The
experiments demonstrate that the performance of the encrypted data is satisfac-
tory. This provides evidence that our approach ensures the accuracy of the deep
learning models and mitigates data leakage to a certain extent. Our primary
contributions are as follows.

• We introduce hash algorithms and the ciphertext policy attribute-based
encryption (CP-ABE) to CNER for the first time. Experiments on six datasets
show that our proposed multi-encryption strategy can ensure the performance
of the model and protect the data to some degree.

• We have an interesting finding that the performance does not degrade signif-
icantly when encrypting the training data for the CNER task.

• We release a new history dataset for CNER. It provides a foundation for rec-
ognizing identities from historical documents and building knowledge graphs.

2 Related Work

2.1 Named Entity Recognition

NER aims to rapidly extract entity information of specific types from intri-
cate natural language texts, laying the groundwork for information extraction
and structured data generation. The initial approaches to NER encompassed
rule-based methods, lexicon-based methods, and statistical machine learning-
based methods, including the Support Vector Machine Model (SVM) [3], Hidden
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Markov Model (HMM) [4], Conditional Random Field (CRF) [5], among others.
Nevertheless, these methods faced challenges related to feature engineering and
fell short of attaining the desired NER outcomes.

With the advancement of AI, various neural network approaches have
been employed to tackle NER, yielding promising results. During this period,
researchers predominantly utilized LSTM-CRF or CNN-CRF models for feature
encoding and decoding [6,7]. However, these methods encountered certain lim-
itations. Firstly, character-based methods neglect the utilization of dictionary
information. Secondly, word-based methods can suffer from error propagation
resulting from word segmentation errors.

Accordingly, Zhang and Yang [8] introduced a character-word-based hybrid
model, which effectively integrates word information into the character-level
input sequence. This integration leads to enhanced performance in the NER
task. Consequently, many researchers have derived numerous models based on
this approach. For instance, Liu et al. [9] proposed the WC-LSTM model, Gui
et al. [10] proposed the LR-CNN model, and Ma et al. [11] introduced the Soft-
word method. Ding et al. [12] utilized graph neural networks to improve NER
performance. It is widely recognized that NER tasks heavily rely on word embed-
dings, as the quality of these embeddings significantly impacts the model’s per-
formance. The introduction of dynamic word embeddings, such as BERT, has
propelled NER performance to new heights. For example, Li et al. [13] developed
the FLAT model, while Mengge et al. [14] proposed the Porous Lattice Trans-
former Encoder based on Lattice LSTM, leveraging the benefits of dynamic word
embeddings.

2.2 Data Protection

NER introduces data protection [15] to prevent unauthorized access and disclo-
sure of private information in datasets. This paper addresses data leakage by
implementing data desensitization and access control strategies. Data desensiti-
zation involves reducing sensitivity and minimizing the risk of leakage through
techniques like data replacement, randomization, encryption, and hash transfor-
mation. In our study, we utilized hash transformation for data desensitization in
the NER dataset. Access control, on the other hand, establishes security rules
or policies for users to access and decrypt encrypted data based on permissions
or attributes, ensuring authorized access to sensitive information.

3 Method

To prevent unauthorized access and data leakage while enabling users to con-
struct machine learning models according to their specific needs, we propose
an NER framework that utilizes multi-encrypted data to address the aforemen-
tioned issue. As depicted in Fig. 1, the framework comprises three steps. In the
first step, the data provider encrypts the original data using hash algorithms.
The second step involves utilizing Ciphertext Policy Attribute-Based Encryption



102 J. Dong et al.

Fig. 1. The overall architecture of the proposed method.

(CP-ABE) based on hash encryption to achieve double-layered data protection,
thereby resolving the issue of unauthorized access to the data. In the third step,
training and prediction of the model are conducted by legitimate users after
obtaining access to the data.

3.1 Data Encryption

Hash functions are utilized to encrypt the data within our model framework, as
depicted in Fig. 1. To ensure the authenticity and integrity of the encrypted data
during training and to employ multiple encryption methods on the same data,
we additionally introduce the Serial Cipher and Base64 methods, in addition to
hash functions [16].

Serial Cipher is a symmetric cryptographic algorithm that encrypts plaintext
by combining it with a key. Due to its simplicity and fast encryption speed,
we view Serial Cipher as an optional data encryption method. Additionally, the
coefficients can be adjusted to align Caesar Cipher and Affine Cipher with Serial
Cipher, allowing us to categorize these three encryption algorithms together.

Base64 is a widely recognized encoding method for network transmission,
specifically designed for 8-bit byte codes. Although it violates encryption key con-
fidentiality, Base64 encoding transforms text data into an unreadable format, pro-
viding a way to ensure encryption integrity and enabling multiple encryptions.

The MD5 and SHA-256 algorithms are widely used hash functions in com-
puter security. They convert data of different lengths into fixed values, ensuring
dataset security. In our experiment, to demonstrate the feasibility of multiple
encryptions on the same data, we use the Base64 algorithm along with the
SHA-256 algorithm for encryption.
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3.2 CP-ABE

Traditional attribute-based encryption (ABE) [17] systems characterize cipher-
texts using attributes and incorporate the access policy within the user’s key.
Attributes represent characteristics of objects or information files, while the pol-
icy is a logical expression composed of attributes and their relationships. CP-
ABE [18] employs attributes to depict user eligibility. The data provider formu-
lates the policy for acquiring the ciphertext to determine who can decrypt it.
In other words, the attributes are incorporated into the key, while the policy is
embedded within the ciphertext.

In Fig. 1, the data provider initializes a public key (PK) and a master key
(MK). Using the PK, MK, and user’s attribute set (Au), a private key (SK) is
generated. An access control policy (Ac-cp) is then constructed based on the
user’s attributes. Utilizing the PK and the plaintext M (encrypted with the
hash algorithm in the figure), a ciphertext (C) is generated according to the
access control policy. Finally, the user can decrypt the data using the public and
private keys. If the user’s attributes are valid, the ciphertext can be successfully
deciphered; otherwise, decryption is not possible.

3.3 Model Training and Prediction

As illustrated in the lower right corner of Fig. 1, this section outlines the process
by which users train and make predictions using the model on the encrypted
dataset. Firstly, the authorized user adheres to the CP-ABE protocol and
decrypts the data, utilizing the ciphertext, public key, and private key provided
by the data provider, resulting in three data files. Text1 represents the ciphertext
encrypted using the hash algorithm, Text2 represents the corresponding label
text, and Text3 denotes the length of each sequence in the ciphertext. Based
on these three texts, users can obtain the complete training data. If users wish
to evaluate the model’s performance using their own data, they can encrypt
the data using the same hash algorithm mentioned in Text1 prior to making
predictions.

Due to the ongoing exploration by researchers, neural networks have expe-
rienced rapid development. Li et al. [19] made significant improvements in the
performance of biomedical NER through the utilization of recurrent neural net-
works. Furthermore, the application of deep neural networks, including convolu-
tional neural networks, self-attention mechanisms, and transformers [20,21], has
effectively advanced the development of NER. Consequently, users can construct
models based on the aforementioned deep neural networks once they acquire
encrypted data. In this study, we employ the classical BiLSTM-CRF model as
a benchmark. BiLSTM consists of a forget gate, an input gate, and an out-
put gate. These three gate mechanisms interact and update the cell state. The
specific formulas are provided below.

FT = σ (WF
α XT + WF

β HT−1 + BF ) (1)

IT = σ (W I
αXT + W I

β HT−1 + BI) (2)
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OT = σ (WO
α XT + WO

β HT−1 + BO) (3)

C̃T = Tanh (WC
α XT + WC

β HT−1 + BC) (4)

CT = FT � CT−1 + IT � C̃T (5)

HT = OT � Tanh (CT ) (6)

Here, FT represents the information that the cell state will forget. IT and
OT denote the input and output gates, respectively. C̃T denotes the current cell
state and CT denotes the final cell state. Where W is the hyperparameter and
H denotes the output of the hidden state.

We utilize a CRF [22] to impose constraints on tag transitions following the
encoding layer. As depicted in Fig. 2, B-L represents the beginning of a location,
I-L represents the middle of a location, and E-L represents the end of a location.
S-L indicates a single-entity location, while O denotes a non-entity. Based on
the figure, we enforce the following constraints: O cannot transition to I-L and
E-L. B-L cannot transition to B-L, S-L, and O. I-L cannot transition to B-L,
S-L, and O. E-L cannot transition to E-L and I-L.

Fig. 2. Label state transitions of conditional random fields in NER.

4 Datasets

This paper aims to compare the model performance before and after data encryp-
tion. We utilize six Chinese NER datasets, namely CCKS2017, Resume, MSRA,
and History, to validate the authenticity and effectiveness of the experiments.
The Table 1 presents the number of sentences and words in each dataset.

CCKS2017 is a clinical medicine NER dataset released by the China Confer-
ence on Knowledge Graph and Semantic Computing. Due to the relatively large
scale of the CCKS2017 dataset, we partitioned it into a test set, development
set, and training set. Resume and MSRA are sourced from social media and
news, while the History dataset originates from the field of Chinese history.

Currently, Chinese has emerged as a significant international language. To
address the scarcity of historical datasets in the Chinese NER domain, we
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developed a novel dataset (referred to as History in Table 1). As depicted in
Table 2, our dataset encompassed nine label types, which included organization
name (ORG), place name (LOC), time (DAT), person name (PER), salutation
(POS), official position (APP), book name (EVE), army name (ORGARM), and
place of belonging (LOCPER). Additionally, we partitioned the historical dataset
into three categories to distinguish specific entities. The first category, named
History-9types, comprises nine tag types. The second category, History-3types,
includes LOC, APP, and EVE entities. The third category, History-2types, con-
sists solely of PER and POS entities.

Table 1. Statistics of datasets

Datasets Type Train Dev Test

Resume Char 124.4K 13.9K 15.1K

Sent 3.8K 0.46K 0.48K

MSRA Char 2169.9K – 172.6K

Sent 46.4K – 4.4K

CCKS2017 Char 200.0K 31.8K 33.6K

Sent 5.9K 0.82K 1.09K

History Char 289.1K 30.9K 29.9K

Sent 8.9K 0.97K 0.81K

Table 2. The number of nine entities on
the train, dev, and test sets.

– ORGARM LOC DAT ORG PER

Train 1202 4321 1510 3934 8618

Dev 215 578 179 426 829

Test 212 603 311 396 507

– LOCPER EVE POS APP –

Train 231 383 3169 834 –

Dev 34 19 441 111 –

Test 32 64 216 118 –

5 Experiments

5.1 Baseline Methods

In this section, we use four models proposed in recent years to verify the effec-
tiveness of encryption algorithms.

BiLSTM-CRF. BiLSTM-CRF [23] was proposed by Lample et al., which is a
classical model in NER. Compared with the traditional machine learning models,
it shows a dramatic enhancement in performance.

WC-LSTM. WC-LSTM (2019) [9] is a word-character-based model proposed
by Liu et al. for addressing the shortcomings of Lattice LSTM.

Multi-digraph Model. Multi-digraph (2019) [12] is a model proposed by mod-
ifying the gated graph neural network (GGNN), which can effectively integrate
word information into characters.

SoftLexicon. SoftLexicon (2020) [11] is a novel approach to utilizing dictionary
information proposed by Ma et al. Its encoding framework is very flexible and
can enormously improve the performance of entity recognition.
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5.2 Implement Details and Evaluation Metrics

During training, our implement details follow the baseline models. In addition,
we use precision (P), recall (R) and F1 score (F1) to evaluate the performance
of our model.

Table 3. Performance on three public datasets

Model CCKS2017 Resume MSRA

P R F1 P R F1 P R F1

LSTM-CRF 88.45 87.35 87.90 93.73 93.44 93.58 89.52 87.41 88.45

+ Serial Cipher 89.25 87.13 88.18 93.53 93.13 93.33 89.10 87.25 88.16

+Base64 88.66 87.11 87.88 93.68 93.62 93.65 89.74 87.34 88.53

+MD5 89.21 86.96 88.07 93.46 93.80 93.63 89.68 87.18 88.41

+Has256-Base64 87.74 87.48 87.61 93.50 93.56 93.53 88.14 86.19 87.15

WC-LSTM 88.96 87.33 88.14 95.14 94.79 94.96 93.67 92.20 92.93

+ Serial Cipher 90.55 86.14 88.29 95.36 94.66 95.01 93.66 92.02 92.83

+Base64 89.59 87.38 88.47 93.64 93.87 93.75 89.33 87.58 88.45

+MD5 89.43 87.33 88.37 93.65 94.05 93.85 88.81 86.92 87.86

+Has256-Base64 88.96 87.21 88.08 93.57 93.74 93.66 90.23 87.34 88.76

Multi-digraph 89.50 88.40 88.94 94.62 94.97 94.79 90.82 91.20 91.01

+ Serial Cipher 88.43 86.01 87.20 95.04 95.28 95.16 88.21 85.73 86.95

+Base64 89.66 88.86 89.26 94.44 94.91 94.68 91.30 90.68 90.99

+MD5 89.22 88.94 89.08 94.37 94.66 94.52 90.54 87.19 88.83

+Has256-Base64 88.73 89.18 88.95 94.74 95.03 94.89 91.38 90.86 91.12

SoftLexicon 89.67 87.23 88.43 95.30 95.77 95.53 93.72 91.88 92.79

+ Serial Cipher 90.08 88.34 89.20 95.48 94.66 95.07 88.42 84.32 86.32

+Base64 89.74 86.89 88.29 94.25 93.50 93.87 88.44 84.63 86.49

+MD5 90.52 86.98 88.72 95.50 94.97 95.23 88.23 84.52 86.33

+Has256-Base64 90.46 86.42 88.39 95.26 94.97 95.12 87.83 84.68 86.23

5.3 Overall Performances

Table 3 presents the results obtained from three public datasets: CCKS2017,
Resume, and MSRA. Table 3 displays the results of four distinct models. The
initial experiment involves training and prediction using plaintext, while the
subsequent four experiments involve training and prediction using ciphertext.
The ciphertext is encrypted using the following methods: Serical Cipher, Base64,
MD5, and Has256-Base64. For CCKS2017 and Resume, some results obtained
from the ciphertext training methods even outperform those obtained from the
plaintext training method. For the MSRA dataset, when training on Has256-
Base64 encrypted data using Multi-digraph, the P and F1 exhibit improvements
of 0.56% and 0.11% respectively, compared to the plaintext training method.
The performance degradation is almost negligible when training on LSTM-CRF.
However, the experimental performance degradation observed for WC-LSTM
and SoftLexicon models may stem from the under-utilization of lexical knowledge
by the encryption methods and the lack of development sets.

Table 4 presents the results obtained from the History dataset. The table
demonstrates that the performance of the four encryption algorithms, when



Application of Data Encryption in Chinese Named Entity Recognition 107

trained with the LSTM-CRF model, shows minimal degradation compared to the
unencrypted data. Furthermore, certain encryption algorithms even outperform
the unencrypted data. For instance, the Has256-Base64 encryption algorithm
improves the P by 1.19% and 2.60% on the History-9types and History-2types
datasets, respectively, compared to the unencrypted data. The serial encryp-
tion algorithms result in a 0.79% improvement in P, and the MD5 encryp-
tion algorithms yield a 1.78% improvement in R on the History-3types dataset.
Training the WC-LSTM model with Serial Cipher encrypted data results in a
0.89% increase in R compared to the unencrypted dataset on the History-3types
dataset. Furthermore, P, R, and F1 are 2.28%, 0.55%, and 1.20% higher, respec-
tively, than the unencrypted data on the History-2types dataset. Training the
Multi-digraph model with the Base64 algorithm results in a 3.11% increase in P
and a 1.27% increase in F1 compared to the unencrypted data on the History-
9types dataset. However, when trained with the SoftLexicon model, we observe
a significant decrease in the effectiveness of the encryption algorithm. This is
due to the SoftLexicon model deviating from the conventional use of vocabulary
knowledge, resulting in poor performance.

Table 4. Performance on History datasets

Model History-9types History-3types History-2types

P R F1 P R F1 P R F1

LSTM-CRF 76.01 60.68 67.48 76.15 50.45 60.69 72.40 60.58 65.96

+ Serial Cipher 76.04 60.27 67.24 76.94 49.36 60.09 71.32 52.97 60.79

+Base64 76.06 60.59 67.45 73.60 51.85 60.84 72.14 60.17 65.61

+MD5 76.88 59.90 67.34 72.18 52.23 60.61 73.18 58.51 65.03

+Has256-Base64 77.20 59.90 67.46 74.25 50.32 59.98 75.00 57.68 65.21

WC-LSTM 82.43 68.48 74.81 83.19 61.15 70.48 82.45 62.38 71.02

+ Serial Cipher 82.30 68.08 74.52 81.99 62.04 70.63 84.73 62.93 72.22

+Base64 77.84 61.12 68.47 73.02 51.72 60.55 73.47 61.27 66.82

+MD5 76.27 62.10 68.46 72.99 51.94 60.71 74.15 60.30 66.51

+Has256-Base64 76.67 61.61 68.32 75.57 50.45 60.50 72.50 61.27 66.42

Multi-digraph 75.31 71.70 73.46 76.14 59.36 66.71 75.31 76.35 75.82

+ Serial Cipher 77.24 68.73 72.74 69.54 61.66 65.36 71.54 77.18 74.25

+Base64 78.42 71.37 74.73 69.06 62.55 65.64 74.90 75.52 75.21

+MD5 75.79 71.82 73.75 69.79 60.64 64.89 76.23 70.54 73.28

+Has256-Base64 78.66 63.42 70.22 73.87 60.51 66.53 75.46 74.00 74.72

SoftLexicon 82.65 70.11 75.86 82.47 67.13 74.02 85.71 73.03 78.86

+ Serial Cipher 80.31 66.33 72.65 82.23 63.06 71.38 82.30 71.37 76.44

+Base64 73.00 52.99 61.40 73.36 51.85 60.76 71.99 56.15 63.09

+MD5 75.26 58.28 65.69 73.01 54.87 62.59 79.62 63.21 70.47

+Has256-Base64 75.24 57.83 65.39 74.43 53.76 62.43 76.97 64.73 70.32
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5.4 Analysis

Performance Analysis. To fully illustrate the effectiveness of our experiments,
we analyze the performance on the CCKS2017 dataset and the History-9types
dataset.

In Fig. 3, we compare the P, R, and F1 of the LSTM-CRF model with
and without encryption. The first value on the abscissa represents the results
obtained when training the LSTM-CRF model on unencrypted data, while the
last four values represent the results obtained by using four different encryption
algorithms on the LSTM-CRF model. From subfigure (a) in Fig. 3, it is evident
that using Serial Cipher and MD5 encryption on the LSTM-CRF model yields
higher performance compared to no encryption. Additionally, from subfigure (b)
in Fig. 3, it can be observed that the encrypted data has no significant impact
on the accuracy of the model.

(a) (b)

Fig. 3. Comparison of P, R and F1 on the LSTM-CRF model with four encryption
algorithms and without encryption.

Security Analysis. This paper utilizes hash functions and CP-ABE to ensure
data security. The hash functions possess characteristics such as weak collision
resistance, strong collision resistance, and resistance to modification. The most
significant feature of hash functions is their irreversibility, making it difficult for
users to decrypt the plaintext, thereby ensuring data security to a great extent.
Furthermore, additional encryption can be applied on top of hash encryption
to enhance security, such as using Has256-Base64. Lastly, CP-ABE is employed
to ensure the legitimacy of users who obtain the ciphertext generated by other
encryption methods. CP-ABE relies on the computational difficulty of discrete
logarithms, making it challenging for unauthorized users, proxy servers, and
other entities to access the data. Based on the aforementioned analysis, the
feasibility and security of our framework can be ensured.
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弟弟

叔叔

Fig. 4. Diagram of the relationship of partial entities in the History dataset.

5.5 Relations Between Entities

We train a NER model using a dataset of Chinese historical texts to enhance
its performance in downstream tasks, specifically accurate identification of enti-
ties in unstructured text. Figure 4 illustrates a simplified knowledge graph con-
structed by extracting partial entity types from the text using the model.

The red nodes represent Chinese dynasties, including the Qing Dynasty, Ming
Dynasty, and Tang Dynasty. The red edges denote transitions between dynasties,
such as the Qing Dynasty overthrowing the Ming Dynasty and the Tang Dynasty
overthrowing the Sui Dynasty. The yellow nodes represent the capital cities of
each dynasty. Due to capital city migration, a red node may have connections to
multiple yellow nodes. Black nodes describe the leaders of the countries, while
black edges indicate father-son or brother relationships. Green nodes represent
aliases of emperors.

6 Conclusion

This paper introduces the use of hash algorithms and CP-ABE in the NER
task for the first time. This method effectively addresses the issue of data leak-
age in specific domains. In addition, we introduce a novel dataset to address the
scarcity of historical datasets. Our experiments on six datasets validate the effec-
tiveness of our method in achieving satisfactory results. Moreover, future work
can focus on enhancing experimental performance by training BERT models
using encrypted data.
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Abstract. Timing is a critical component of a wide range of sensorimo-
tor tasks that can span from a few milliseconds up to several minutes.
While it is assumed that there exist several distributed systems that are
dedicated for production and perception [1], the neuronal mechanisms
underlying precise timing remain unclear. Here, we are interested in the
neural mechanisms of sub-second timing with millisecond precision. To
this end, we study the control of song timing in male Zebra Finches whose
song production relies on the tight coordination of vocal muscles. There,
the premotor nucleus HVC (proper name) is responsible for the precise
control of timing. Current models of HVC rely on the synfire chain, a
pure feed-forward network. However, synfire chains are fragile regarding
noise and are only functional for a narrow range of feed-forward weights,
requiring fine tuning during learning. In the present work, we propose
that HVC can be modelled using a ring attractor model [2], where recur-
rent connections allow the formation of an activity bump that remains
stable across a wide range of weights and different levels of noise. In
the case of asymmetrical connectivity, the bump of activity can “move”
across the network, hence providing precise timing. We explore the plas-
ticity of syllable duration in this framework using a reward-driven learn-
ing paradigm and a reward-modulated covariance learning rule applied
to the network’s synaptic weights [3]. We show that the change in dura-
tion induced by the learning paradigm is specific to the target syllable,
consistent with experimental data.

Keywords: Timing · Songbirds · Attractor

1 Introduction

Timing is crucial for a wide range of sensorimotor tasks. However, there are
numerous uncertainties regarding the underlying mechanisms. For instance, sen-
sory and motor timing may or may not rely on the same circuitry, there could
be different mechanisms for different scales of timing (subsecond, suprasecond
etc.) and it can be considered as a dedicated or intrinsic system [4,5]. In this
study, we focus on motor timing at the scale of tens to hundreds of milliseconds.
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Addressing this question has led to the design of several computational models
such as ramping models, internal clocks, population clocks, labeled-line mod-
els and multiple-oscillator models [6,7]. Ramping model-like patterns of activity
during timing tasks [8–10] have been observed in multiple brain areas, but it
is unclear whether they are indeed timekeepers or whether they reflect motor
preparation instead. On the other hand, internal clocks provide a linear readout
of time, assuming the presence of a pacemaker-integrator system, the location of
which remains unclear [7]. Lastly, population clock models assume that time is
encoded in the dynamically changing population of neurons, but have the limi-
tation of lacking an intrinsic metric of time. They are, however, well suited for
pattern timing underlying speech and birdsong.

Birdsong relies on the tight coordination of vocal muscles with a precise tim-
ing at the scale of tens to hundreds of milliseconds. In songbirds, a localized
timing area has been identified in the premotor nucleus HVC (proper name).
HVC projects to a downstream motor nucleus controlling syringeal and respi-
ratory muscles. Neurons in HVC projecting to downstream motor nucleus fire
in a time-locked manner during singing, producing a single 10 ms long burst of
3–6 spikes [11]. Manipulating HVC temperature modifies song duration, with a
dilation and song stretching when HVC is cooled [12], supporting the hypothesis
of HVC as a population clock model.

The dynamics of neuronal activity in the nucleus HVC of songbirds have been
previously modelled with networks of excitatory neurons organized in a sequen-
tially connected chain of neuronal populations, referred to as synfire chain [13],
belonging to the class of population clocks. However, the purely feedforwad con-
nectivity pattern of synfire chains does not appear compatible with the connec-
tivity patterns revealed experimentally in cortical networks. More specifically,
unidirectional connectivity between groups of neurons is incompatible with the
high level of reciprocal connectivity typically observed in cortex [14]. Addition-
ally, synfire chain networks are sensitive to noise and not very robust to weight
variability, requiring very precisely tuned synaptic strengths to avoid runaway
excitation or decay.

An alternative hypothesis is that the gradual propagation of an activity bump
is driven in HVC by attractor dynamics. In particular, a linear attractor, also
referred to as ring attractor, can drive a drifting activity bump with robust
and resilient properties thanks to recurrent connections [2]. However, it remains
unclear if the ring attractor can account for the properties of HVC neuronal
dynamics and the behavioral adaptation of song timing. In previous studies
[15,16], timing flexibility in motor timing in adult songbirds has been investi-
gated, through targeting a syllable for modification using a Conditional Auditory
Feedback (CAF) protocol (based on reinforcement learning). The results showed
that birds can change the targeted element of their stereotyped song with speci-
ficity, i.e. with no effect on other syllables. Upon confrontation of these results
with three modelling approaches, only synfire chains and not attractors, could
account for specificity in adaptive learning. Conversely, we propose and provide
evidence that a structured attractor, such as the ring attractor, can simulate
adaptive learning and provide results consistent with behavioral data.
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2 Methods

2.1 Ring Attractor

We first consider a neural population of 1000 units whose mean firing rate is
expressed as m(x, t) with x being the position ([−π/2, π/2[) over a closed one-
dimensional manifold (ring, with period π) and t representing time. The evolu-
tion of m(x, t) is governed by equation:

τ
d

dt
m(x, t) = −m(x, t) + G(Iext(x, t) + Isyn(x, t) − T +

√
τnσnη(x, t)), (1)

where τ is the neuronal membrane time constant. On the right hand side (rhs)
of Eq. (1), Iext is the external constant input, Isyn the synaptic input and T
represents the threshold. The last rhs term is a zero-mean Gaussian white noise.
For the nonlinear gain function G(I), the simple semi-linear form is adopted:

G(I) =

⎧
⎪⎨

⎪⎩

0 I < 0
I 0 < I < 1
1 I > 1

(2)

We use the following expression for the synaptic input:

Isyn(x, t) =
N∑

x′=1

1
N

W (x − x′)m(x′, t), (3)

where
∑N

x′=1 denotes a summation over all neuronal indices. The weight matrix
W is choosen of the following form:

W (x − x′) = W0 + W2
1

σ
√

2π
e
−

(
x−x′+β

2σ

)2
, (4)

where W is defined based on the neurons’ preferred timing (see Fig. 1(A)) and
not on the spatial topology, as HVC microcircuitry does not display spatio-
temporal organization (see Fig. 1(B)). The parameter W0 stands for the global
inhibition, W2 the excitation factor, σ the standard deviation and β is the bias
term which makes the connectivity pattern asymmetric.

2.2 Implementing a Reward-Covariance Reinforcement Learning
Rule

Equations of the learning rule are implemented based on a reward-covariance
learning rule [3], to adaptively change W:

ΔWij = γReij with eij =
∫ t

0

dt′

τe
e−(t−t′)/τeηi(t′)mj(t′), (5)
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Fig. 1. Simplified illustration of the ring connectivity and consequences of
local inhibition. (A) The connectivity is represented using the preferred timing as
a neighbourhood proxy for the placement of neurons. (B) The same connectivity is
represented using the physical location of neurons. (C) Injection of a local inhibition in
nucleus HVC. (D) The same local inhibition shown when neurons are ordered according
to their preferred timing. In this spatial representation, the effect is not local, but rather
distributed, which makes the network more robust.

j and i represent the pre- and postsynaptic neurons, respectively. The learning
rateγ is chosen to match learning rates observed in songbirds experiments, R the
reward value and eij the eligibility trace, τe is the eligibility time constant, ηi the
noise of the postsynaptic and mj the rate of the presynaptic neuron. R takes a
value of 0 or 1, when the syllable is targeted for modification and 0 when it is not.
At the end of each learning trial, a reward of 1 is given if the targeted syllable
duration is lower (higher) than the updated target duration. This paradigm is
based on the one introduced in [16], where I(tar) denotes the current duration
of the syllable, and Ī(tar) represents the running average of the target syllable
duration, which is updated after every trial according to the following:

Ī(tar) ← 0.995Ī(tar) + 0.005I(tar), (6)

across the 1000 learning trials. Additionally, prior to learning, we run 50 trials
with no reinforcement to determine a baseline distribution of syllables. Following
learning, we run 50 more trials without reinforcement and with the updated
weight matrix W (Winitial+ΔW ). Significant change between these two duration
distributions is determined by performing independent t-tests.

2.3 Analysis

The quality of the model is evaluated regarding several objectives.

– The speed of the bump, which acts as a proxy for the accuracy of the timing,
– the mean syllable duration when noise is present, and
– the capacity for the model to shorten or lengthen a syllable duration without

interferring with others.
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Bump Speed. At any time, the position C(t) of the bump of activity can be
measured using the center of mass (COM) of the whole population, based on
equations for COM in systems with periodic boundary conditions. This center
C(t) is further discretized into C̄(t) such as to coincide with the nearest unit
position:

C̄(t) = argmini(C(t) − xi). (7)

The speed of the bump is then computed as the displacement (in the neuronal
feature space) of the center of mass over time.

Syllable Definition and Duration. A syllable corresponds to a fixed segment
of the ring. Mean syllable length in zebra finches has been reported to be 110 ±
56 ms [17]. We choose a syllable duration close to the mean reported value and
for simplification, we chose equal size segments such that for s syllables and n
neurons, syllable i is defined by [ i

sn, i+1
s n]. Syllable duration is then measured

from when the center of the activity bump Ĉ(t) crossed the lower limit of the
segment up to when it crossed the upper limit of the segment.

Simulation. All simulations were performed using Euler integration with a
timestep (dt) of 0.25 ms. Multiple runs were performed to identify an appropriate
(high enough) value for dt that does not alter the outcome. Parameter values
for the simulations are detailed in Table 1.

Table 1. Values of the parameters used in Eqs. (1)–(5).

Parameters Values Parameters Values

N (number of neurons) 1000 T (threshold) 0.9

dt (timestep) 0.25 ms W0 −5

duration 2 s W2 7

τ (membrane time constant) 10 ms β (bias in the weight matrix) 0.05

Iext (external constant input) 1.1 σ (Eq. (4)) 0.067

τnoise (time constant of the noise) 1 ms σnoise 0.01

γ (learning rate) 0.004 τe (eligibility trace time constant) 35ms

3 Results

In the ring attractor model, recurrent connections allow for the formation of
an activity bump that remains stable across a wide range of weights. In the
presence of a fully symmetric connectivity and a constant stimulus, the activity
bump settles in one of the stationary states and remains there until another
input or a high enough perturbation is exerted. However, since the purpose of
this model is to generate a sequential activity, we investigate how propagation
across these states can be achieved.
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Fig. 2. Activity propagation in the ring. The first two panels show the position
of the bump of activity (normalized firing rate) in the network at a particular point in
time. The third panel serves to present the possible spiking pattern this rate network
would be compatible with. They were generated using a homogenous Poisson process.

3.1 Moving Bump

Three ways to ensure bump propagation have been identified. These include an
external drive in the form of a moving stimulus, adaptation and an asymmetric
connectivity profile. In the case of a moving stimulus, the velocity/speed of this
stimulus has a linear relationship with the speed of the bump.

Intrinsic Drive: Adaptation and Bias. Adaptation [2] can make the bump
move by generating a local, strong, delayed negative feedback, and hence sup-
pressing localized activity. This causes higher activity in the nearby unadapted
region. Moreover, making the connectivity pattern asymmetric by adding a bias
also ensures bump propagation. The activity bump’s center of mass encodes
time such that at time t(x), neuron x is maximally activated and as it moves
across the network different neurons will be more active at different points in
time (Fig. 2). The magnitude of the bias also exhibits a quasi-linear relationship
with bump speed, such as the higher the bias, which assures the feedforwardness
of the network, the higher the speed of movement of the bump (Fig. 3). The rest
of the presented results is for the asymmetric connectivity profile.
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Fig. 3. An asymmetric connectivity pattern makes the bump of activity
move across the network. (A) The speed of the bump is driven by the amplitude of
the bias. This is a quasi-linear relationship. (B) Connectivity profile for each presynap-
tic neuron to the postsynaptic neurons with no bias and bias. (Neuron index difference
= presynaptic − postsynaptic) This bias is the one we use for the rest of the results
presented. Self-connections are set to 0 but not illustrated in the figure.

3.2 Robustness

We design a test protocol to evaluate the robustness of the network under possi-
ble biological perturbations. We simulate the local injection of a drug inducing
the inhibition of neuronal activity (e.g. Muscimol) with an effect that spreads
spatially according to a Gaussian spatial distribution into the network, as shown
in Fig. 1(C, D). The formula of diffusion of the inhibitory substance is that of
a Gaussian distribution and it is added to the main equation as an external
inhibitory input:

Ii = α
1

σ
√

2π
e− 1

2 (
x−μ

σ )2 .

We test distributions with different spatial widths (σ) or amplitudes (α). We
show that the perturbation is diminished across time and, if not too high, there
is no disruption in sequence generation and the speed of the bump is conserved.
This allows us to make a prediction for the HVC behavior in presence of such
inhibition. More precisely, this would mimic inhibition with a GABA-A agonist,
Muscimol in HVC and the prediction states that there will only be a delay in the
initiation of the sequence (song), but no further disruption as shown in Fig. 4,
meaning the timing accuracy would be sustained.
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Fig. 4. Influence of a local inhibition. A local inhibition in the model (i.e. an
inhibition that only affects a distributed sub-population) induces a delay in the initial
formation of the bump even though the model can recover after tens of milliseconds.
After this initial delay, the timing is correct.

3.3 Local Plasticity and Comparison with Experimental Data

To validate the model and to address the second question of whether the ring
attractor is able to give account for experimental evidence witnessed in the CAF
protocol [16], we use a reward covariance rule [3] for the conditioning. Consistent
with behavioral data, the duration of a syllable can be modified in response to a
perturbed reward profile (Fig. 5) and this change is specific to the target syllable.
No interference was present in adjacent or non-adjacent syllables, both in the
case of targeting for a duration increase or decrease (Fig. 6).

Fig. 5. Syllable duration distribution before and after reinforcement learning (for
decrease, increase) of the targeted syllable.

The change in synaptic weights (ΔW ), driving the change in syllable dura-
tion, is illustrated in Fig. 7. For instance, when the duration is targeted for
shortening, connections from the presynaptic neurons to the postsynaptic neu-
rons prior (neuron 450 to 500) are weakened and the ones to the postsynaptic
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Fig. 6. Adaptive learning is specific to the targeted syllables. 10 runs (of
1000 trials) of learning, aiming to achieve syllable duration reduction (red)/ increase
(blue) are run. Baseline mean duration is in gray. For each of the 10 runs in the three
conditions, a mean duration is computed from the duration distribution; these are
shown as points in the bar plot. Hence, the bars represent the mean duration across
the 10 runs. * stands for p < 0.001. Only the target syllable is significantly affected
after reinforcement learning. (Color figure online)

Fig. 7. How do the weights change to achieve specific adaptive learning? On
the left: ΔW of a single run (target: decrease syllable duration), zoomed in at the area
of pre and post-synaptic neurons encoding the target syllable. On the right: the change
in synaptic weights across 10 runs of learning with respect to the presynaptic neurons
encoding the target syllable, both when the target is reducing (red) the duration and
increasing (blue) it. The thicker line represents the mean across runs and the filled in
area the SD extracted from the means across the postsynaptic neurons of the ΔW for
each of the 10 runs. (Color figure online)
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ahead (neuron 500 to 550) are strengthened, changing slightly the slope of the
bump and making it move faster in that area (defined by the presynaptic neu-
rons).

4 Discussion and Conclusion

Attractor dynamics have been used to model a wide range of cognitive pro-
cesses including memory representation, sequence generation, decision making,
integration etc. [18]. A group of criteria have been proposed to claim possible
attractor dynamics in different networks in the brain. HVC activity corresponds
to the sequence generation category, and abides at least 4 out of 5 of these cri-
teria, namely: i) Possession of a low-dimensional set of states that correspond to
attractors in the state space (a one dimensional output in HVC) [11]. ii) Robust-
ness to perturbation and return to the low-dimensional state after it. Electrical
stimulation [19] in HVC perturbs song timing, but once removed, it is quickly
restored. iii) Invariance and persistence of the states over time, in particular
across states. In adult zebra finches, even in the absence of HVC main inputs
[20,21], HVC neuronal activity underlying song production persists. Moreover,
HVC singing-related activity can be evoked outside singing, e.g. during sleep
[21]. iv) Isometry [22]. The fifth condition, pertaining to anatomical and struc-
tural correlates, remains to be studied and investigated further. However, there
are three reasons that make us speculate it may be true as well. First, based
on the resulting HVC dynamics, the underlying pattern could include reciprocal
connectivity and relies on stronger connectivity between neurons firing at the
same time in song. Secondly, as a local circuit encoding motor timing, HVC
is expected to rely on regimes with strong internal connections capable of self-
sustained activity [7]. Thirdly, evidence from mammalian visual cortex show that
neurons with similar tuning, exhibit stronger connections.

As an attractor, the resulting model is robust to noise and weight variability.
Moreover, it is compatible with HVC’s sparse coding and exhibits specific learn-
ing, consistent with experimental findings. It is also able to derive an experimen-
tal prediction regarding possible neural dynamics in the HVC, in the presence
of a local GABA-A agonist (Muscimol), which remain to be tested. However,
the duration of the burst of activity observed in HVC in zebra finches (approx
10 ms) can only be reproduced with artificially short neuronal time constants (1
ms) in the rate model exposed here. For a more accurate representation of the
spiking dynamics in the network and a short-duration burst of activity spreading
across the nucleus, it may be necessary to model the network with spiking neu-
rons, e.g. using leaky integrators and relying on adaptation to minimize burst
duration [23].

Some observations in the ring attractor lead to important questions in
the songbird literature. For instance, activity propagation is possible not only
through an asymmetric connectivity, but also adaptation, which is an intrinsic
neuronal property. In this setting, we question whether the timing in birdsong is
intrinsic (i.e. coming from adaptation) or a combination of intrinsic and experi-
ence based factors (bias) [24,25]. Furthermore, the connectivity pattern may be
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learned through sensory (auditory) stimulation of the nucleus during the sensory
period of learning as HVC neurons can respond to auditory stimulation and may
display mirror-like activity pattern during singing and auditory stimulation [26].
However, it still remains an open question.

Finally, songbirds are also known for being a good model for the neural
mechanisms of vocal production in humans [27]. Therefore, similar neural mech-
anisms may underlie speech and song timing control. The dynamics of cortical
neurons driving speech production may thus also be accurately represented by
the present model.
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Abstract. The objective of this study is to overcome the performance
limitations of existing instrument recognition systems in a cost-effective
manner. Identifying predominant instruments accurately is a critical
problem in music information retrieval, and it directly affects the per-
formance of various advanced techniques. To address this, we propose a
novel instrument recognition system that integrates a fast search tech-
nique, named MagiaSearch, to discover reliable SpecAugment parame-
ters applicable to instrument recognition and a deep net classifier, named
MagiaClassifier, which uses Swin Transformer V2 as the backbone model.
Our experiments demonstrate that MagiaSearch effectively searches for
reliable SpecAugment parameters applied to log mel spectrograms of
instrument audio, MagiaClassifier enhances the performance of instru-
ment recognition systems, and combining MagiaSearch and MagiaClas-
sifier, we achieve a significant accuracy of 88.76% for major instrument
recognition tasks in 11 categories in the IRMAS dataset.

Keywords: Musical Instruments Recognition · Deep Learning ·
SpecAugment

1 Introduction

Predominant musical instrument recognition aims to develop intelligent and
automated classification systems that can accurately identify the primary musi-
cal instrument from polyphonic digital audio. This subproblem is critical in
music information retrieval since it forms the foundation for several advanced
techniques such as music source separation and music auto-tagging. To achieve
reliable instrument recognition, it is necessary to develop robust algorithms that
can effectively differentiate between different instruments based on their spectral
characteristics.

In previous studies, numerous studies have explored instrument recognition
from various perspectives. In traditional instrument classification, researchers
typically use handcrafted acoustic features to train conventional machine learn-
ing models, as demonstrated in previous works such as [13]. In recent years,
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however, the growing popularity of deep learning has led to the use of more
complicated audio spectrograms for instrument classification research, as shown
in studies such as [4,6,19], among others.

Despite these advancements, previous studies have been constrained by var-
ious factors, such as the limited representational capability of the backbone
model, suboptimal parameters, and ineffective data augmentation methods.
Improving the representational capacity of the backbone model is crucial to
enhancing the system’s performance. However, finding an optimal parameter
search strategy for augmentation methods can be challenging.

In this study, we mainly analyze the selection of the backbone model, data
augmentation methods and their parameter search strategies to improve the per-
formance ceiling of the classification system. The Swin Transformer V2, based
on a hierarchical self-attention mechanism, has achieved state-of-the-art per-
formance on several image recognition benchmarks, as reported in [12], and is
selected as the backbone model in this study to optimize the instrument clas-
sification system at the model structure level. We named this new instrument
classifier MagiaClassifier.

Furthermore, we utilize SpecAugment, an advanced data augmentation tech-
nique in audio signal processing, and demonstrate its applicability in the instru-
ment classification problem. We propose a novel and efficient method to deter-
mine the optimal parameters for SpecAugment on musical instrument audio
spectrograms. Specifically, we introduced MagiaSearch, a fast search method that
efficiently explores the parameter space in an approximate grid search manner
using a reliable classifier, MagiaClassifier, and a set of reliable scoring methods.
The scoring procedure only requires the forward inference process of deep neu-
ral networks and no backpropagation, making it both fast and economical. To
evaluate the effectiveness of MagiaSearch, we compare its outcomes with those
of other empirical and random parameter settings. Our experimental results
demonstrate the effectiveness of MagiaSearch in determining the near-optimal
parameters for SpecAugment in instrument recognition tasks.

The instrument recognition system we proposed integrates MagiaSearch and
MagiaClassifier, achieving a remarkable classification accuracy of 88.76% on the
prestigious IRMAS [1] dataset. We believe that our approach can lay the foun-
dation for future research and contribute to the development of more accurate
and efficient systems in the field of instrument recognition.

2 Related Work

In this study, we address the instrument recognition problem from three aspects:
feature extraction strategy, classification model, and data augmentation. One of
the most critical aspects of instrument classification is the selection of an appro-
priate feature extraction scheme [2]. Audio spectrograms are widely used for this
purpose, including techniques such as MFCCs, log mel spectrograms and others.
Early researchers, such as Eronen et al. [3], employed MFCC in music genre
and instrument categorization tasks. Later, Deng et al. [2] demonstrated that
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the MFCCs feature scheme is more effective for classification than the MPEG-7
feature set (including harmonic centroid, harmonic deviation, harmonic spread,
harmonic variation, spectral centroid, log-attack-time, and temporal centroid).
More recent studies, such as those conducted by Xu et al. [21] and Wang et al.
[20], have shown that log mel spectrograms offer superior performance for clas-
sification. Consequently, we use log mel spectrograms as the feature extraction
method in this study.

In addition, the ability of the backbone model to represent features plays a
significant role in the performance of musical instrument recognition systems. In
the past, researchers addressed the challenges of instrument classification using
machine learning models such as those developed by Martin et al. [14], Eronen
et al. [15], and Marques et al. [13]. However, with the advent of deep learning,
sequence models were introduced to model audio data by several researchers,
such as Fanelli et al. [4]. In recent years, studies by Solanki et al. [19] and Saeed et
al. [18] have utilized convolutional neural networks as their core models. Several
studies have employed the UNet architecture for instrument recognition, includ-
ing the work of Hung et al. [9]. Additionally, there are studies that have incorpo-
rated uncomplicated attentional mechanisms in instrument recognition, such as
Gururani et al. [7]. With the growing popularity of self-attention mechanisms in
sequence modeling, researchers have attempted to adopt the Transformer model
as the backbone model for instrument classifiers, as demonstrated in the work by
Gong et al. [6]. The Swin Transformer V2 is a visual transformer that differs from
convolutional neural networks in that its basic building block is a self-attentive
layer rather than a convolutional kernel. It has demonstrated exceptional per-
formance on tasks such as image classification, object detection, and semantic
segmentation of images. This study explores the potential of employing the Swin
Transformer V2 as a backbone model for musical instrument categorization sys-
tems and attempts to migrate the Swin Transformer V2 to the field of musical
instrument recognition.

Typically, researchers enhance the accuracy of classification results and the
generalization ability of models by augmenting input features. SpecAugment
[16] is a data augmentation technique specifically designed for spectral graphs.
Studies have demonstrated that SpecAugment can mitigate model overfitting
issues and significantly improve the performance of audio signal processing sys-
tems. Additionally, the computational cost of SpecAugment is relatively low,
and this augmentation technique can be used online during model training. In
their respective experiments, Zeyer et al. [22], Zhou et al. [23], and Gaido et al.
[5] all utilized SpecAugment and achieved positive outcomes.

3 Methodology

Although SpecAugment has demonstrated superior performance in numerous
studies, the instrument recognition field lacks well-defined rules and procedures
for tuning its parameters. In that case this paper proposes MagiaSearch, a
novel and efficient fast search scheme for SpecAugment parameters. Through
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Fig. 1. The architecture of the proposed system, consisting of a Data Processing mod-
ule, MagiaSearch, and MagiaClassifier.

the search results of MagiaSearch and our model MagiaClassifier, we achieve
SOTA accuracy on IRMAS. Our proposed architecture consists of a data pro-
cessing module, MagiaSearch, and MagiaClassifier, as illustrated in Fig. 1.

3.1 Data Processing

The IRMAS-TrainingData packet sourced from the IRMAS dataset is utilized as
the experimental dataset in this paper. The dataset consists of audio recordings
of 11 instruments, including vocals, with each sample possessing a duration of
three seconds and corresponding to a predominant instrument type.

We use the log mel spectrogram as the input feature for the model. First,
the Fourier transform is applied to a 3-second audio sample to determine the
frequency distribution of signals inside the sample. The results of the Fourier
transform are then concatenated along the time axis to produce a spectrogram.
To be compatible with the human ear’s perception of sound, we transform the Hz
scale of the frequency axis of the spectrogram to the mel scale, and the amplitude
indication are converted to decibel scale, resulting in a log mel spectrogram.
Next, we normalize the log mel spectrogram to ensure that its values fall within
the range of floating-point numbers, with a mean of 0 and a variance of 1.

After calculating log mel spectrograms with consistent parameters, we
employed the SpecAugment data augmentation technique to augment the train-
ing set. Examples of a log mel spectrogram and the outcomes of its SpecAugment
application can be found in [16]. Given a log mel spectrogram with a time step of
τ and a number of mel frequency channels of ν, the SpecAugment for it consists
of three parts:
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– Time warping(TW). Given a parameter W such that W ∈ [0, τ ], where W
represents the upper bound of time warp length, we randomly select a time
step w0 from a uniform distribution on (W, τ − W ), and select another time
step w from a uniform distribution on (−W,W ), where w represents the
number of time steps to stretch or compress to the left or right. Then, we
warp the time step w0 to w0 + w.

– Frequency masking(FM). Given a parameter Nf representing the number of
frequency masking operations and a parameter F such that F ∈ [0, ν], where
F represents the upper bound of frequency masking length, we randomly
select a frequency masking length f from a uniform distribution on [0, F ],
and select a starting mel frequency channel f0 from a uniform distribution
on [0, ν − f). We then set the values of continuous mel frequency channels in
the range [f0, f0 + f) to 0.

– Time masking(TM). Given a parameter Nt representing the number of time
masking operations and a parameter T such that T ∈ [0, τ ], where T rep-
resents the upper bound of time masking length, we randomly select a time
masking length t from a uniform distribution on [0, T ], and select a starting
time step t0 from a uniform distribution on [0, τ − t). We then set the values
of continuous time steps in the range [t0, t0 + t) to 0.

3.2 MagiaClassifier

In this study, we use the Base version of Swin Transformer V2 as the backbone
model for our instrument classification system. To match the input features,
the backbone model has a base resolution of 256 × 256 and is composed of
12 basic blocks, with a patch size of 4 × 4 and a self-attention window size of
8×8. The model is pre-trained on the ImageNet-1k dataset. To adapt the model
for the task of Predominant Musical Instrument Recognition, we introduce a
multilayer perceptron (MLP) after the last hidden layer of Swin Transformer
V2. It is worth noting that the final linear layer of the MLP, which consists
of two linear layers, contains the 11 output nodes that correspond to the 11
distinct instrument categories. The first linear layer of the MLP uses rectified
linear unit (ReLU) activation, while the second layer employes softmax activa-
tion. This approach enables accurate categorization of instrument classes dur-
ing model inference process, improving classification performance. Our proposed
model architecture effectively integrates the strengths of Swin Transformer V2
with MLPs to achieve state-of-the-art performance in the task of Predominant
Musical Instrument Recognition.

3.3 MagiaSearch

In recent years, it has become widely recognized that data augmentation plays
a crucial role in enhancing the performance of deep learning models. In the field
of instrument recognition, SpecAugment has demonstrated outstanding perfor-
mance. The parameters of SpecAugment are critical factors that significantly
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influence its performance, however, a comprehensive evaluation of these param-
eters is noticeably lacking. To address this research gap, we propose an experi-
mental scheme that systematically searches for the parameters of SpecAugment
in the context of instrument recognition.

Although previous studies have not extensively explored the search for opti-
mal SpecAugment parameters suitable for instrument recognition, the study by
Hwang et al. [10] provides valuable references for exploring the parameter space
for instrument recognition. Hwang et al. conducted a search experiment for the
mel spectrogram augmentation parameter in speech recognition, utilizing a met-
ric called the Deformation Per Deteriorating Ratio (DPD). DPD is defined as
the ratio of the difference between the spectrogram deformation rate and the
Character Error Rate (CER) of speech recognition.

However, our approach differs from Hwang et al. in terms of metrics. Specif-
ically, we define Accuracy Deformation Per Deteriorating Ratio (ADPD) as the
ratio of the difference between the spectral deformation rate and the decline in
instrument recognition accuracy, along with a small constant to avoid division
by zero in the denominator. The definition ADPD is shown in Eq. 1, where c is
a small positive constant. We aim to find the SpecAugment parameter that is
applicable to instrument identification by using this metric.

ADPDaug =
ADaug

|Eaug − Enone| + c
(1)

In this study, we introduce a notation where the subscript aug represents the
category of the augmentation subtechnique, ADaug defines the spectral graphical
variation rate for the augmentation subtechnique aug, Eaug denotes the expec-
tation of the instrument recognition accuracy after applying the augmentation
technique aug, and Enone denotes the expected instrument recognition accuracy
before applying the augmentation subtechnique.

In sharp contrast to the methodology adopted by Hwang et al. [10], which
employed the Google Speech API to evaluate CER, our objective is to inves-
tigate the recognition accuracy of musical instrument categories. To quantify
the recognition accuracy, we employ Eq. 2, where N denotes the total number
of samples, yi denotes the ground truth label, and ŷi denotes the predicted
label obtained from the classifier. In particular, we utilize the MagiaClassifier
to measure the recognition accuracy, without leveraging any data augmentation
techniques during the training process.

Accuracy =
1
N

N∑

i

1(yi = ŷi) (2)

For parameter search, we use the test set to compute ADPDaug. We inde-
pendently research and evaluate the settings of SpecAugment’s time warping,
frequency masking, and time masking subtechniques, assigning each set of deter-
mined parameters for a subtechnique a score. We compare the recognition results
to the actual labels and calculate the accuracy, referred to as Eaug.
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We compute ADaug differently for each augmentation subtechniques, as
shown in Table 1. Please note that the definitions of the variables W , F , Nf ,
ν, T , Nt, and τ can be found in Sect. 3.1. Our definition of ADaug is similar
but not identical to Daug of Hwang et al. [10]. To alleviate the impact of errors,
we conducted M repetitions of the experiment and obtained the average data.
The optimal set of parameters for each sub-technique that yields the superior
performance of ADPDaug was selected as the output of the search process.

Table 1. ADaug Formula

Time Warping Frequency Masking Time Masking

Parameter W F , Nf T , Nt

ADaug
W
τ

F×Nf

ν
T×Nt

τ

Our proposed parameter search method utilizes a forward propagation app-
roach, which incurs very small computational overhead after fine-tuning the
MagiaClassifier. The overall time complexity of our search methodology is rep-
resented as O(f(n) + b(n) + nmf(n)), where n denotes the sample size used for
scoring and m represents the number of parameter values to be retrieved. Here,
O(f(n)) and O(b(n)) correspond to the time complexity of forward and backward
propagation, respectively; O(f(n)+ b(n)) corresponds to the time complexity of
fine-tuning; and O(nmf(n)) corresponds to the time complexity of searching
for augmentation strategy parameters. Backward propagation has a higher time
complexity than forward propagation since it involves computing and updat-
ing gradients for each parameter in the neural network, while forward propa-
gation processes the input only once. In comparison, the conventional tuning
method requires fine-tuning and scoring for each set of predetermined parame-
ters, resulting in a search time complexity of O(2nmf(n) + nmb(n)). Evidently,
O(2nmf(n) + nmb(n)) is significantly larger than O(f(n) + b(n) + nmf(n)).
Therefore, our proposed strategy is substantially more cost-effective than the
conventional tuning scheme.

4 Experiment

The experiments were divided into three parts. In the first part, we utilized
MagiaSearch to search for the optimal parameters of each sub-technique of
SpecAugment. The second part aimed to find the best combination of SpecAug-
ment sub-techniques. Finally, we compared the results obtained by MagiaSearch
with those obtained using empirical and random parameter values in the third
part.
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4.1 SpecAugment Parameter Search

In this experiment, the MagiaClassifier’s backbone model was initially pre-
trained on the ImageNet-1k dataset. It was then reassembled as MagiaClassifier
and fine-tuned for 100 epochs using the IRMAS dataset. We shuffled the data,
resulting in a different ordering compared to Sect. 4.2. The IRMAS dataset was
split into training, validation, and test sets in the ratio of 7 : 1 : 2, and solely
spectrogram normalization was applied as a pre-processing step. An early stop-
ping mechanism was incorporated to terminate the training if the accuracy on
the validation set failed to improve within 5 epochs. In the context of parameter
search, we selected the model with the highest score on the validation set, while
the score on the test set was denoted as Enone.

This study proposes a parametric search strategy to address the challenge
of instrument recognition. Specifically, we employ Eq. 1 to compute the ADPD
for each parameter set independently and select the optimal value based on the
resulting curve. For time warping, we explore the value domain of W in 2-step
increments within the range of [0, τ/2), as illustrated by the search curve in
Fig. 2(a).

To obtain the optimal value Fbest for frequency masking, we traverse the
value domain of F in 2-step increments within the range of [0, ν] with a fixed Nf

value of 1. The search curve for Fbest is depicted in Fig. 2(b). Then score each
pair of Fi and Nfi values that satisfy the constraint Fi ∗ Nfi = Fbest.

Similarly, we scan the value of T in 2-step increments within the range of [0, τ ]
with a fixed Nt value of 1. The search curve for Tbest is shown in Fig. 2(c). Then
score each pair of Ti and Nti values that satisfy the constraint Ti ∗ Nti = Tbest.

Given the stochastic nature of SpecAugment, we conducted our score cal-
culations M times, commencing from different starting random states, and the
scores were taken as mean values. The optimal parameter values obtained from
our search are summarized in Table 2.

Fig. 2. Curve of SpecAugment Parameter Search
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Table 2. Results of SpecAugment Parameter Search

Parameters W Nf F Nt T

Result 24 1 28 1 74

4.2 SpecAugment Subtechnology Combination Search

In this experiment, we utilize the optimal parameter values from the previous
parameter search as augmentation techniques. We aim to explore the combi-
nation of the three SpecAugment augmentation techniques to determine the
optimal combination for the proposed architecture. The outcomes of this exper-
imentation are showcased in Table 3. In the table, the mode denoted by “None”
signifies the absence of any augmentation technique. Moreover, the scores for
macro precision, macro recall, macro F1, etc., were unavailable in [17]. There-
fore, we denoted them with “Unavailable” in the table.

We fine-tune the MagiaClassifier for each augmentation technique combi-
nation using the IRMAS dataset and a 7 : 1 : 2 split between the training,
validation, and test sets. Before fine-tuning, we pre-trained MagiaClassifier on
the ImageNet-1k dataset, which is consistent with Sect. 4.1. During the training
phase, we apply SpecAugment using AdamW as the optimizer with an initial
learning rate of 2e− 5 and a weight decay factor of 0.05. We trained MagiaClas-
sifier for 100 epochs and applied early stopping if the validation set accuracy did
not improve within 5 epochs. We selected the model with the highest validation
set accuracy and evaluated its performance on the test set, ensuring the robust-
ness and efficacy of our approach. It is critical to emphasize that the model solely
utilizes the optimized SpecAugment parameters and lacks any prior knowledge
of the IRMAS-TrainingData, without sharing weights with Sect. 4.1.

Our results show that time warping provides the greatest performance gain
when used alone, followed by time masking. Combining all three augmentation
techniques leads to the highest model accuracy of 0.8876, which represents a
performance gain of 0.0603 compared to no augmentation technique. Our study
includes a comparative analysis of our findings with those of prior research [17] on
IRMAS. Our results demonstrate that the proposed MagiaClassifier significantly
enhances the instrument recognition accuracy on IRMAS from 0.79 to 0.8248.
Moreover, combining the outcomes of MagiaSearch and MagiaClassifier further
improves the instrument recognition accuracy on IRMAS from 0.79 to 0.8876,
underscoring the significant impact of our proposed methodology in enhancing
the performance of instrument recognition systems. We note that prior research
only focused on six types of instruments, whereas our study covered all eleven
types of instruments in IRMAS, making our work much more challenging and
complex.
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Table 3. Results of SpecAugment Subtechnology Combination Search

Mode Accuracy Macro Precision Macro Recall Macro F1

Baseline 0.79 Unavailable Unavailable Unavailable
None 0.8273 0.8248 0.8196 0.8192
TW 0.8756 0.8801 0.8700 0.8713
FM 0.8499 0.8451 0.8438 0.8431
TM 0.8567 0.8552 0.8524 0.8509
TW+FM 0.8552 0.8559 0.8523 0.8500
TW+TM 0.8484 0.8488 0.8407 0.8404
FM+TM 0.8560 0.8552 0.8503 0.8503
TW+FM+TM 0.8876 0.8853 0.8848 0.8831

4.3 Comparison of SpecAugment Parameters

Our study involved a comparison of the output of MagiaSearch with several
empirical and random parameters of SpecAugment, as illustrated in the Sect. 4.
The empirical parameters were sourced from Li et al. [11], Hidaka et al. [8], Park
et al. [16] and Zhou et al. [23], while Completely Random parameters refer to
the random sampling of W , F , Nf , T , Nt parameters of SpecAugment once for
each sample on which SpecAugment is applied, so that their values are expressed
as the set of sampled values ZW ∈ {n ∈ Z | 0 ≤ n ≤ 127}, ZF ∈ {n ∈ Z | 0 ≤
n ≤ 256}, ZNf

∈ {n ∈ Z | 0 ≤ n ≤ 10}, ZT ∈ {n ∈ Z | 0 ≤ n ≤ 256} and
ZNt

∈ {n ∈ Z | 0 ≤ n ≤ 10}, where Z represents the set of positive integers.
This approach ensured a comprehensive evaluation of MagiaSearch’s ability to
optimize the parameters of SpecAugment.

In this experiment, the experimental configuration and the datasets remained
the same as what we used in Sect. 4.2. In particular, we employed MagiaClassi-
fier as the backbone model for conducting experiments with each parameter set,
rather than using the original models described in the source papers for each
parameter set. Consequently, we anticipate observing similar results across sim-
ilar parameter sets. Table 4 demonstrates that MagiaSearch obtained the best
score, outperforming the other parameter sets, followed by the parameter set
from Park et al. [16], which yielded results very similar to those of MagiaSearch.
In sharp contrast, Completely Random yielded the worst score, highlighting that
the performance of SpecAugment in instrument recognition is highly dependent
on suitable parameter values. Our MagiaSearch algorithm offers a more resource-
efficient approach for obtaining optimal SpecAugment parameter values than
traditional search methods, as outlined in Sect. 3.3.
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Table 4. Comparison of SpecAugment Parameters

Source W F Nf T Nt Accuracy

Li et al. [11] 5 15 1 10 1 0.8491
Hidaka et al. [8] 0 5 2 11 2 0.8658
Park et al. [16] 80 27 2 100 2 0.8816
Zhou et al. [23] 0 18 5 10 3 0.8552
Random ZW ZF ZNf ZT ZNt 0.7421
MagiaSearch 24 28 1 74 1 0.8876

5 Conclusion

This study aims to cost-effectively break the performance ceiling for predominant
instrument recognition tasks. A proposed method involves transforming audio
data into a log mel spectrogram and using MagiaClassifier and MagiaSearch
to improve the instrument recognition system’s performance. The Swin Trans-
former V2 serves as the backbone model for MagiaClassifier, while SpecAugment
is used for data augmentation. The experiments demonstrate the effectiveness
of MagiaSearch and MagiaClassifier, with the proposed architecture achieving a
test set accuracy of 88.76 percent, surpassing the performance ceiling.

Future research opportunities include exploring the parameters of other data
augmentation techniques, such as SpecAugment++, developing specialized mod-
els to address the spectrogram problem, and replacing ImageNet-1k with spectro-
gram data during pre-training. Additionally, model and parameter studies can be
extended to other music information retrieval areas, such as instrument source
separation, to further improve the performance of music information retrieval
systems.
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Abstract. This work presents the roadmap for the development of a research
impact case study as it evolves with research carried out at the University of
the West of England, in the United Kingdom (UK). The focus of the research is
using Machine Learning algorithms in supporting decision making in terms of
appropriate nutrition and other key factors in treating patients in Critical Care
Units (CCUs) of hospitals in the UK. A first stage of the research has sought
to improve the accuracy and timeliness of patient referrals to dietitians, upon
arrival at the CCU. The results have shown that among various machine learning
classifiers using data from various physio-logical measures of CCU patients a
Support Vector Machine (SVC) classifier was the best performing model (AUC:
0.78). An electronic dashboard has been developed to support a decision maker
at the CCU to process referrals efficiently and support enhanced patient care. The
research has been extended to a different area of interest, this time focusing on
paediatric CCU patients. The aim here it to use similar research methodologies
to attempt to estimate energy expenditure for very young patients. This bears the
challenge of having to use limited sized datasets, which the researchers attempt
to address with explainable Artificial Intelligence.

Keywords: Critical Care Units ·Machine Learning · Patient nutrition · Energy
Expenditure

1 Introduction

Critical care units (CCUs) are specialist hospital wards that treat patients who are
seriously ill and need constant monitoring.

Such patients might have problems with one or more vital organs or be unable to
breathe without support. Other reasons that patients might need intensive care will be
because of a serious accident, a serious short-term condition (heart attack or stroke), a
serious infection, or major surgery.

Patients are monitored and treated by specially trained health care professionals.
They are connected to various equipment that are combined with smart beds that all
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together provide measurement of important bodily functions, such as heart rate, blood
pressure and the level of oxygen in the blood. Other equipment supports feeding and
administration of medication while a patient might not be able to receive these in the
usual way [1].

The aim of any health organization is to treat patients appropriately to ensure their
speedy and full recovery. Beyond the obvious benefits to the patients a full and speedy
recovery offers operational benefits to the hospitals, improves their efficiency, and
ensures that they can treat more patients effectively, reduce any backlogs and improve
the wellbeing of the communities they serve.

Such an efficiency can be achieved at the point of entry to the hospital where a sound
estimate can provide nurses and admin staff the ability for the timely discharge of a
patient at the point that they are fit to leave.

The bureaucratic steps of discharging a patient - contacting social services, making
sure patients have a bed in place - often only begin when that patient is fit to leave and can
take several days. By giving an estimated date for discharge from the moment patients
arrive, nurses can look ahead and book social care in advance [2].

Although Artificial Intelligence is being used widely in medicine and in various
procedures at hospitals. An area that has not benefited from the use of AI is that of
nutrition management in Critical Care Units.

Hospitals are currently running at 95 per cent capacity, but about 15 per cent of
beds are taken up by patients who are medically fit to leave. Discharging patients more
quickly would allow the NHS to move from disastrously high capacity to normal levels
of bed occupancy [2].

1.1 Preparing a Patient to be Discharged from CCU

Estimating whether a patient is fit to leave the hospital will vary on their initial condition
at admission. This is more challenging with very sick patients that are admitted at
CCU. The estimate / prediction of being able to leave will be much more complex
in such situations. What could speed up the recovery and offer consistent and reliable
data upon which reasonably accurate estimates can be made, is suitable nutrition. The
involvement of dietitians and timely referrals to them are essential in providing CCU
patients with suitable nutrition [3, 4] Soomro et al. 2022). Patients admitted in CCUs due
to pathological health issues present staff with complex situations due to multiple health
conditions that often become conflicting as to the treatments that they are due to receive
and nutrition that they need to be provided with. There are various methodologies for
patient feeding in CCUs. There are different approaches that primarily focus on adult
patients. One of the main challenges is that of offering each patient a dietitian review
at admission to the CCU. This is often difficult to achieve due to limited resources.
Although hospitals and CCUs use smart beds to capture a plethora of patient data, often
this cannot be utilized to allow formore informeddecisionmaking as to prioritize patients
for referrals to dietitians. In most cases a rule of thumb, based on key physiological data
and some critical medical condition data, is used to determine priority to access to
dietitians.

With the advent of smart beds, many physiological measurements are automatically
collected for all patients under critical care in the CCU. This data is currently available
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to CCU staff, but due to cognitive overload they often miss patients that require attention
and there are no automated mechanisms in place to help them identify such patients.

Many patients are also sedated and need regular monitoring and external feeding.
Furthermore, the data collected from patients is stored in many different places in the
information system and is often distributed across various information systems within
the same hospital. An automated system that can offer automatically monitoring and
analysis of patient data and flag patients that need attention to the staff can significantly
improve quality of patient care. The aim of the first phase of this project was to explore
the feasibility of developing a system that can automatically screen CCU patients that
need to be referred to a dietitian.

This will enable staff at the CCU to improve the quality of a patient’s healthcare, and
at the same time improve the efficiency of utilizing the limited number of beds available
more efficiently. Compared to other nations, the UK has a very low total number of
hospital beds relative to its population. The average number of beds per 1,000 people in
OECDEU nations is 5, but the UK has just 2.4. Germany, by contrast, has 7.8. Combined
with staffing shortages, an insufficient core bed stock means that hospitals are less able
to cope with large influxes of patients, for example during winter or periods of high
demand. This has ultimately impacted hospitals’ ability to provide safe and timely care
and remains a major factor in growing backlogs for the NHS [5].

2 Related Work

CCUs are specific hospital wards where the sickest patients are admitted and where large
amounts of detailed clinical data are collected (usually every hour) for the duration of
the patient’s stay. Many CCUs have moved from paper to clinical information systems
to capture all this data from the patients’ monitor, ventilator, and other equipment such
as drug infusions into a very extensive database, which we have the potential to utilise
much more extensively than the ‘expensive recording system’ that currently exists. Over
the past few years medical professionals are becoming increasingly aware that CCUs
are not using these systems and this data to their advantage, with much of the data being
captured not being analysed or used for maximal benefit. In an era of limited healthcare
systems such as the NHS in the UK, these digital resources have the potential to both
optimize patient outcomes and make systems more efficient and effective [6].

Data analysis and machine learning systems have been explored on several research
cases and have been utilized widely in health care and CCUs. They are usually used
to automate processes where problems are well known and fully defined and there the
deliverables to efficiency and accuracy achieved are well within the expected levels [7,
8]. In this project, the potential of utilizing the data that is produced by the information
system is not fully known. The opportunity of working with problems that the benefits
that might be accrued are not known are frequent in the field of AI; the availability of
such rich data to work with as it is the case here is attractive and challenging at the same
time.

The goal for CCUs is to optimize the patients’ survival, clinical outcomes and to
reduce harm caused by our therapies (iatrogenic harm). All CCUs have several recog-
nized targets to improve outcomes such as maintaining an optimal level of sedation (not
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too high or low), maintain lung volumes delivered by the ventilator within a specific
range to minimize lung injury and trying to deliver a minimum amount of nutrition to
patients whilst they are critically ill. Yet these seemingly simple targets, are often not
achieved. Dietitians translate the science of nutrition into everyday information about
food and advise people on their food and nutrition choices. During critical illness, a
patient’s nutritional needs can change daily, and it is a dietitian’s job to ensure they
receive the correct amount of nutrition to help their recovery. Most of the time, nutrition
for these patients is delivered through a tube into a patient’s stomach or blood supply
[9].

Data that is produced by clinical information systems is not always fit to be processed
by machine learning algorithms. Researchers must determine its quality and suitability
for exposure to advanced analysis techniques. Data will normally need to be filtered and
cleaned to develop a suitable experimental repository which will be compatible with the
problem to be analysed by suitable techniques. Such datawill bemined to reveal potential
associations that will enhance the detail, quality and significance of the information that
could be passed on to the clinicians at CCUs [10].

3 A Digital Dashboard to Support Referrals to Dietitians

A prototype data dashboard was developed to demonstrate how an automated system
could assist staff in screening patients, shown in Fig. 1. The dashboard shows the patient
ID, and any relevant treatments that they are receiving. Feeding is provided according
to guidelines and based on the schedule provided by dietitians. Users can select to view
details of patients that are recommended for referral to dietitians upon arrival at the CCU.
The dashboard provides a quick overview of all patients in the CCU at any one time,
also showing those that require a referral. The background to identifying the need for
referral is based on a simple rule of thumb that can be applied mentally by a nurse at the
CCU. This considers the patient’s Body Mass Index (BMI) and whether the patient is
affected by any of a few critical medical conditions. The wealth of data that the hospital
will have collected on the patient remains largely unutilised in such a decision-making
process and patients are not prioritized in any other way.

3.1 Applying Machine Learning to Our Problem

To overcome the limitation of the simplistic rule of the thump algorithm applied, the
researchers shifted their focus on applyingMachine Learning algorithms to the rich data
that had been supplied by the CCU at the Bristol Royal Infirmary. This involved the
adult CCU initially with a view to exploring data from the paediatric CCU at a later
stage. The challenge of the data is that it does not originate from one source, but from
many databases within the hospital. Some of themwill have data drawn fromCCU smart
beds, while others will have inputs from other sections of the hospital. In addition, data
might have free text notes added by medical staff as observations after examinations or
procedures that a patient might have undergone. Therefore, the data required a lot of
cleaning and filtering.
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Fig. 1. A screenshot of the dashboard based on rule of thumb algorithm

Currently, CCUs are not using these systems and data to their advantage, with much
of the captured data left unanalysed. In an era of limited NHS resources, these digital
resources have the potential to both optimize patient outcomes and make systems more
efficient and effective.

Data analysis and machine learning systems have been used widely in hospitals,
primarily to automate processes where problems are well known and fully defined, and
there the deliverables to efficiency and accuracy achieved are well within the expected
levels.

CCUs aim to optimize the patients’ survival, clinical outcomes and to reduce harm
caused by therapies. All CCUs have recognized targets to improve outcomes, such as
maintaining an optimal sedation level, maintaining lung volumes delivered by the ven-
tilator within a specific range and delivering a minimum amount of nutrition to patients
whilst they are critically ill. Yet, these targets are often not achieved [2, 3, 5].

The authors have conducted researchwithmachine learning algorithms that establish
a better basis for prioritizing referrals to dietitians, when compared with traditional rules
of thumb.

The work has led to the development of an interactive dashboard that would support
decision making by CCU staff in managing those referrals. Figures 2 and 3 below show
screenshots of this more advanced dashboard, whose data analysis and patient referrals
are based on the use of machine learning algorithms.



142 E. Pimenidis et al.

The main challenge to this work is the lack of synchronous access to data as it
is collected from the patients. The collection of data used with the machine learning
algorithms is made up of different sources and online access to them is limited as the
database systems that capture and store them vary in structure and access. Moreover,
the data captured from all the different systems in a hospital is not directly usable for
machine learning due to its status and consistency of format. This inevitably leads to the
use of standalone offline systems that risk the decision-making lagging behind the latest
developments (and health measurements collected) for some patients.

3.2 Developing a More Efficient Dashboard

Figures 2 and 3 below show screenshots of an enhanced dashboard that allows a member
of staff at a CCU to use machine learning based analysis to identify patients requiring
priority to dietitian referral. The output is much more accurate with results on records
of more than 5000 patients’ data processed, revealing patients that were missed with the
previous rule of thumb algorithm. The dashboard itself ismuchmore versatile and allows
the user to zoom in and study patient details, project groups requiring priority referrals
and search the results that the system has produced for groups of patients diagnosed with
specific medical conditions. The dashboard is versatile and allows for easy update on
the algorithms used to process the data to facilitate maintainability and ease of further
development along with the progress of the research.

Our team had the opportunity to present this part of the work by invitation a specialist
interest nutrition group meeting that took place at the 36th annual conference of the
Paediatric Critical Care Society in the UK, in September 2022. Although the data used
in thisworkwas from adult CCU, the audience at the presentationwas receptive, positive,
and impressed.

This presentation has inspired the next phase of our research which is now focused
on paediatric CCU patients, still focusing on the challenges of nutrition, but this time
addressing the more direct problem of estimating energy expenditure for a patient and
therefore allowing a dietitian to prescribe appropriate nutrition accurately, based on the
medical condition of the patient.

3.3 Machine Learning Behind the New Dashboard

The data in the hospital database is stored in a meta-model that is described else-where
[3]. It comprises treatments and interventions by clinical staff at the CCU. The patient’s
medical history at the point of admission in theCCU is also included and their key serious
medical conditions are identified. The first step in the ML process involved extracting
features from this meta-model for further processing. To this end the data was first
anonymised by removing the unique patient ID and replacing it with a pseudonymous
number. The timestamps for the various interventionswere also replaced by pseudo-dates
to further anonymise the data. Relevant attributes for various interventionswere extracted
as separate features [4]. The BMI of the patients was calculated from their height and
weight and outliers as well as missing values were filtered as part of the cleaning process.
Furthermore, if a patient’s record contained a note from a dietitian, indicating that the
patient had been referred to a dietitian, the corresponding target variable was set to
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Fig. 2. Homepage of the enhanced dashboard

Fig. 3. Patients requiring referrals, with full data available.

1, otherwise it was set to 0. This allowed the problem to be formulated as supervised
classification problem. Missing values for included features were replaced with 0.

Various supervised classification models were chosen for this step. Since the target
classes were unbalanced in this case (80% non-referrals vs 20% referrals), the AUC
rather than the overall accuracy was chosen as the performance metric. Based on hyper-
parameter tuning coupled with 10-fold cross validation, the best performing models for
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each algorithm were compared using the AUC. Training vs test sets were also compared
(70/30 split) in order to check whether overfitting had occurred [3, 4].

The models were evaluated using the Area Under the Curve (AUC). Their perfor-
mance was evaluated using the test dataset and validated against the training dataset.
Sensitivity analysis was performed by imputing themissing values using aKNN Imputer
and the results compared against the non-imputed datasets.

Figure 4 shows the feature importance as determined by a Random Forest Classi-
fier. Based on these results, four features were shortlisted: feed_vol, oxygen_flow_rate,
resp_rate and bmi. These are high predictors of the target variable. This finding is at
odds with the established clinical guidelines issued by the NHS Trust and constitutes
new information for clinicians.

Fig. 4. Feature importance as returned by a Random Forest Classifier.

A sensitivity analysis was also performed by filling in the missing values using a
K-Nearest Neighbour algorithm to impute the missing values. Table 1 shows the hyper-
parameters for the best performing classifiers. The four measurements in particular;
feed_vol, oxygen_flow_rate, resp_rate and bmi; are high predictors of the target vari-
able. This finding is at odds with the established clinical guidelines issued by the NHS
Trust and constitutes new information for clinicians.
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Table 1. Parameters giving the best results for the various models.

Classifier Best parameters

random forest max depth: 7

svc kernel: rbf

linear discriminant solver: svd

4 The case of Energy Expenditure in a Paediatric CCU

Only 113 children were admitted to a Paediatric Intensive Care Unit (PICU) per 100
000 (0.11% of all children in England). Most of those children (42.5%) being below one
year of age [11]. Nutritional management of the critically ill child (CIC) is, therefore,
a very specialist and challenging area in paediatric dietetic practice. To be able to feed
such children appropriately, to support their recovery, their energy requirements must
be predicted as accurately as possible. Many predictive equations have been used and
studied in the paediatric critical care setting to calculate energy requirements. Current
guidelines in the UK recommend indirect calorimetry to establish energy requirements.
There is a considerable cost in doing so andmost PICUs do not have a calorific calorime-
ter. Alternatively, there are other methods whose accuracy is established in adults and
older children. These use equipment whose accuracy in small children is questionable.

To address these requirements and challenges we have embarked in collaborating
with dietitians from the paediatric CCU of Southampton Hospital in the UK. The aim of
this work is to explore whether a machine learning model can accurately estimate energy
requirements in critically ill children. We will using pseudo anonymised data sets of
quantitative variables of interest from critically ill children. This is a unique project and
challenge. One of themain challenges International that of the data provided. The sample
size is limited and coming from one hospital it induces further limitations. We have been
given data that comprises tens of thousands of observations, but only for a limited
number of different patients. To be able to overcome this challenge we will attempt to
use explanations, based on the experienced gathered from a resurgence of explainable
AI. Explainable AI has been explored in explaining medical decision-making [12], and
explaining predictions of classifiers, before.

5 Summary – Conclusions

The work presented here is research applied to the support the requirements of Critical
Care Units in improving the accuracy of decision making as to nutrition of very ill
patients.

Whether the patients are adults or children, nutrition is crucial in supporting their
recovery and allowing them to progress into improving their health. Properly recovered
patients will usually leave a CCU earlier and will stand a better opportunity of a full
recovery, thus avoiding a return to the hospital for the same ailment. This will in turn have
a positive impact on bed utilization and reducing the risk healthcare systems reaching
stress levels when seasonal demand is high.



146 E. Pimenidis et al.

The first of the two cases presented here has demonstrated that accuracy and speed
of decision making at the CCU in referring patients to dietitians as a priority, can be
improved by using machine learning algorithms to process patient data at arrival to the
CCU.

The second research endeavour entails different challenges as to the nature of the
data available and the complexity of the case. The research team is cautiously optimistic
that using explainable AI the data challenges will be overcome and possibly suitable
algorithms can help analyze the data and achieve accurate predictions to the energy
expenditure of very young ill children.

Acknowledgement. Elias Pimenidis and Kamran Soomro, would like to acknowledge Dr Luise
Marino for introducing them to the case of Energy Expenditure in PICUs.
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Abstract. The goal of unsupervised domain adaptive semantic segmen-
tation (UDA-SS) is to learn a model using annotated data from the source
domain and generate accurate dense predictions for the unlabeled target
domain. UDA methods based on Transformer utilize self-attention mech-
anism to learn features within source and target domains. However, in
the presence of significant distribution shift between the two domains,
the noisy pseudo-labels could hinder the model’s adaptation to the target
domain. In this work, we proposed to incorporate self-attention and cross-
domain attention to learn domain-invariant features. Specifically, we
design a weight-sharing multi-branch cross-domain Transformer, where
the cross-domain branch is used to align domains at the feature level
with the aid of cross-domain attention. Moreover, we introduce an adap-
tive thresholding strategy for pseudo-label selection, which dynamically
adjusts the proportion of pseudo-labels that are used in training based
on the model’s adaptation status. Our approach guarantees the relia-
bility of the pseudo labels while allowing more target domain samples
to contribute to model training. Extensive experiments show that our
proposed method consistently outperforms the baseline and achieves
competitive results on GTA5→Cityscapes, Synthia→Cityscapes, and
Cityscapes→ACDC benchmark.

Keywords: Domain Adaptation · Semantic Segmentation ·
Transformer · Attention mechanism

1 Introduction

Image semantic segmentation is crucial for scene understanding. However, train-
ing deep segmentation models requires a large amount of pixel-annotated data,
which is expensive to obtain. To alleviate the model’s reliance on fully labeled
data, using synthetic data to expand the training set is a common solution. How-
ever, due to the distribution shift between synthetic and real data (lighting con-
ditions, image styles, etc.), models may struggle to generalize to the real domain.
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Unsupervised domain adaptation (UDA) methods have been proposed to address
this issue by transferring the knowledge learned in the annotated source domain
to the unlabeled target domain. This allows the model to adapt to the target
domain without using target domain labels. Currently, most UDA semantic seg-
mentation methods are based on self-training [4,7,12]. These approaches utilize
the model trained on the source domain to generate pseudo-labels for the target
domain, which are then used as a form of supervision to optimize the model for
target domain adaptation.

Recently, Transformer models have emerged as a preferred choice for various
computer vision tasks due to their superior performance compared to convolu-
tional neural network (CNN) models. A series of works [4,5] have showcased
significant improvements in UDA segmentation tasks by adopting Transformer.

The self-attention mechanism is the key to the Transformer, allowing the
model to expand its receptive field to the entire image and selectively attend to
informative regions of the input sequence. However, in UDA settings where there
are distribution shifts between the training data, relying solely on self-attention
for feature extraction can lead to poor robustness, making the pseudo-labels
noisy that hinder the model’s generalization on the target domain.

We noted that despite variations in image appearance between the source
and target domains, they share similarities in semantic context. Cross-domain
attention [21] has shown to be effective in utilizing such contextual information
for domain alignment. However, in semantic segmentation tasks, cross-domain
attention has yet to be thoroughly explored. Moreover, pixel-level pseudo-labels
are more vulnerable to noise than image-level pseudo-labels. Due to the neglect of
adaptation difficulty variations among different categories, previous UDA meth-
ods that used fixed thresholds [12,23] for pseudo-label filtering could not effec-
tively utilize unlabeled samples in the target domain.

To address these issues, we propose a weight-sharing multi-branch cross-
domain Transformer network that integrates self-attention with cross-domain
attention. Cross-domain attention promotes feature alignment across domains,
while self-attention captures spatial dependencies within the same domain. Addi-
tionally, a category-specific adaptive threshold strategy is proposed to balance
the quality and quantity of pseudo-labels without manual parameter tuning.

To summarize, our main contributions can be listed as follows:

– We designed a multi-branch domain-adaptive Transformer that combines self-
attention and cross-domain attention to facilitate domain alignment at the
feature level and promote the learning of domain-invariant knowledge.

– To address the noisy-pseudo labels during self-training, we proposed an adap-
tive thresholding strategy for adjusting the pseudo-label threshold of each
category based on their individual learning status.

– We conducted comprehensive experiments and ablation studies on different
UDA benchmarks to validate the effectiveness of our proposed methods.
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2 Related Works

2.1 Unsupervised Domain Adaptation Semantic Segmentation

UDA methods for semantic segmentation can be divided into two categories:
domain alignment and self-training. Domain alignment methods [3,13,16] aim
to align the features from the source and target domains by adversarial training,
making them indistinguishable to a domain discriminator. Domain alignment
can be performed at the input, output, or feature level. Currently, self-training
has become the mainstream method for unsupervised domain adaptation tasks.
These methods [4,12,24] use separate teacher segmentation model to generate
pseudo-labels for the unlabeled target domain images, which are then used for
further training. To denoise pseudo-labels, dynamic thresholding methods [1,6]
have been introduced. However, most of these methods require the adjustment of
hyperparameters for different tasks. In contrast, the proposed adaptive method
does not introduce any additional hyperparameters.

2.2 Vision Transformers

Transformer [15], originally developed for NLP, has been successfully applied to
computer vision tasks in the form of Vision Transformers, with representative
examples including ViT [2] and Swin [9]. In the field of semantic segmentation,
Segformer [20] proposed a hierarchical network design for feature extraction and
efficient self-attention. For domain adaptation tasks, CDTrans [21] utilizes cross-
attention for domain alignment within the Transformer framework for image
classification. However, its input is restricted to predefined positive image pairs,
which is not practical for dense prediction tasks like segmentation. In this paper,
we propose to use cross-domain attention to calculate segmentation loss in the
mixed intermediate domain, which allows the model to simultaneously focus on
context dependencies between source and target domains.

3 Method

In this section, we first formalize the UDA setting and then introduce the design
of our cross-domain Transformer and the adaptive thresholding strategy. The
overall framework of our method is shown in Fig. 1.

3.1 Problem Settings

For the unsupervised domain adaptation (UDA) semantic segmentation task, we
have images from labeled source domain DS = {(xS , yS)} and unlabeled target
domain DS = {(xT )}. Both domains share the same label set. The objective of
the task is to learn a student feature extractor f and segmentation head hcls

that can achieve decent results on the target domain.
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Fig. 1. Overview of our proposed Cross-Domain Transformer and Adaptive Thresh-
olding Strategy in self-training framework.

In self-training UDA pipeline [4], the teacher modelfθ′ and the student model
fθ are trained simultaneously. In the source domain, we train the student model
in a fully supervised manner with the segmentation loss denoted by:

LS
ce = CE(hcls(f(xS), ỹT

i ) (1)

where CE stands for the cross-entropy loss. In the target domain, we generate
pseudo-labels based on the prediction result of the teacher model and use it to
calculate the pixel-level loss function. Meanwhile, in order to reduce the domain
gap, we refer to DACS [12] for mixing the image from the source and target
domain to obtain the mixed image xM and the corresponding labels yM . Then
the loss for the target domain is defined as:

LT
ce = w · CE(hcls(f(xM ), ỹM

i ) (2)

where w is the loss weight on the target domain.

3.2 Cross-Domain Transformer

The proposed cross-domain Transformer adopts the architecture of Mix Trans-
former (MiT) network [20], but with the addition of cross-domain attention
to address the specific challenges of domain adaptation. Additionally, a multi-
branch cross-domain network is designed to enable feature-level integration
between samples from the two domains.

Cross-Domain Attention. In the self-training frameworks, the student Trans-
former network uses the Self-Attention module for feature extraction in both
the source and target domains. Self-attention mechanism facilitates the model
to capture global semantic relationships within images by expanding the model’s
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Fig. 2. The architecture of multi-branch cross-domain Transformer network.

receptive field. The self-attention mechanism on the source domain and target
domain can be given as:

Attns(Qs,Ks, Vs) = Softmax(
QsK

T
s√

dhead

)Vs

Attnt(Qt,Kt, Vt) = Softmax(
QtK

T
t√

dhead

)Vt

(3)

where dhead is the dimension of the attention head, Qs,Ks, Vs are the queries,
keys, and values vector from the source domain image xS , and Qt,Kt, Vt are
from the target domain image xt.

However, the effectiveness of self-attention relies on the assumption of con-
sistent data distributions. In the presence of domain shift, self-attention may not
accurately respond to objects in the target domain. To capture the contextual
relationships between different domains and learn domain-invariant features, we
introduce the cross-domain attention mechanism (CDAttn). Unlike the tradi-
tional self-attention mechanism that only considers the context within the same
domain, the cross-domain attention incorporates queries from different domains.
Specifically, the query vector Qs from the source domain image and the key-value
pairs Kt and Vt from the target domain are used to generate attention weights
within the image pairs. The cross-domain attention is given as:

Attns→t(Qt,Ks, Vs) = Softmax(
QsK

T
t√

dhead

)Vt (4)
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Multi-branch Cross-Domain Transformer. To promote the fusion of cross-
domain features during training, we propose a weight-sharing three-branch cross-
domain Transformer based on the MiT [20] architecture.

As shown in Fig. 2, the cross-domain Transformer consists of three weight-
sharing branches: the source branch fS , the source-to-target cross-domain branch
fs→t, and the target branch ft, each with independent dataflow. At the initial
stage, fs→t takes the images pair {xS , xM} as input, while xS and xM are respec-
tively passed into fs and ft. The source and target branches aim to learn rep-
resentative patterns within their respective domains using self-attention. Mean-
while, the cross-domain branch fs→t integrates features from both domains using
cross-domain attention, allowing the model to learn domain-invariant features.

Features extracted from those three branches are denoted as Fs, Ft, and
Fs→t, respectively, where Fs = fs(xS), Ft = ft(xM ) and Fs→t = fs→t(xS , xM ).
To achieve feature-level domain alignment, we utilize the cross-domain features
Fs→t to generate predictions on the mixed domain, which yields the training loss
for the cross-domain branch:

LS→M
ce =

1
H × W

H×W∑

i=1

CE(hcls(fs→t(xS
i , xT

i )), ỹM
i ) (5)

where CE denotes the cross-entropy loss, hcls represents the classification head,
and ỹM is the mixed labels. As the multi-branch network does not introduce
extra trainable modules compared to the MiT backbone, the entire model can
reuse the weights pretrained on ImageNet-1K.

3.3 Hyperparameter-Free Self-adaptive Threshold

In the self-training domain adaptation method, pseudo-labels generated by the
teacher model contain varying degrees of noise due to domain shifts. We note
that the existing pseudo-label selection strategy [6,12] lacks consideration for
inter-class variation and requires manual hyper-parameter tuning. To this end,
we propose a self-adaptive thresholding module that dynamically modifies the
threshold for pseudo-label selection. Inspired by previous research [18], we divide
the pseudo-label confidence threshold into global and local components, both of
which are updated based on the model’s prediction confidence. Furthermore, the
adaptive thresholds are adjusted in a class-specific manner based on their adap-
tation status, which allows the model to learn from potentially correct pseudo-
labels in the early stages and gradually filter out unreliable predictions as the
model gains confidence in its predictions. We visualize the evolution of the cat-
egory threshold during training in Fig. 3.

Global Threshold. The global threshold τt is an indicator of the model’s
overall adaptation status on the target domain. In practice, τt is set as the
Exponential Moving Average (EMA) of the maximum prediction confidence in
the current training batch, which estimates the average prediction confidence for
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Fig. 3. Overview of the adaptive thresholding strategy.

all target domain pixels. To handle the issue of noisy pseudo-labels generated in
the early stages of training, we start with a strict global threshold of τ0 = 1. As
training progresses, τt is gradually increased according to the following rules:

τt =
{

1, t = 0,

λτt−1 + (1 − λ) 1
NT

∑NT

i=1 max(qi), t �= 0,
(6)

where NT denotes the total number of pixels in the target domain, qi represents
the class-wise confidence score of the corresponding pixel, and λ is the weight
for the EMA update.

Local Threshold. It is observed that in the target domain, the extent of dis-
tribution shift varies across different categories. Therefore, we introduce a local
threshold to further modify the global threshold in a class-specific way. Specif-
ically, we compute the expectation of the maximum prediction confidence for
each category in the current training batch and update the local threshold p̃t(c)
in an EMA manner:
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p̃t(c) =

{
1, t = 0
λp̃t−1(c) + (1 − λ) 1

NT,c

∑NT,c

i=1 qi(c), t �= 0,
(7)

where NT,c = |Xc|, and Xc = {xi|xi ∈ XT , c = arg maxc∈C qi(c)} denotes set of
pixels in the current batch whose predicted pseudo label is class c.

After obtaining the local thresholds for each category, we combine the global
threshold with the normalized local thresholds, and the final adaptive threshold
τt(c) corresponding to category c is denoted as:

τt(c) =
p̃t(c)

‖p̃t(c)‖∞
· τt (8)

With the self-adaptive threshold, the target domain loss function and the
cross-domain branching loss function could be modified accordingly:

LT
ce =

1
H × W

H×W∑

i=1

1(max(qt
i) > τt(arg max

c
(qt

i,c))) · CE(qt
i , ỹ

T
i )

LS→T
ce =

1
H × W

H×W∑

i=1

1(max(qs→t
i ) > τt(arg max

c
(qs→t

i,c ))) · CE(qs→t
i , ỹT

i )

(9)

where ỹT (i) is the corresponding pseudo label, Fs→t and Fs→t are the cross-
domain and target domain branches in the student model. qt

i = hcls(Ft(xM
i ))

and qs→t
i = hcls(Fs→t(xS

i , xM
i )) are the class predictions of the two branches.

3.4 Overall Training Objective

We integrate the cross-domain Transformer network with the self-training frame-
work and utilize an adaptive confidence threshold for pseudo-label filtering,
which leads to the combined objective function Ltotal. It consists of three parts:
domain-specific losses LS

ce and LT
ce, as well as cross-domain prediction loss func-

tion LS→T
ce , as given in Eq. (9). The overall training objective can be formulated

as:
Ltotal = LS

ce + LT
ce + LS→T

ce (10)

4 Experiment

4.1 Implantation Details

Datasets and Benchmarks. To demonstrate the superiority of our proposed
method, we conducted experiments in different benchmarks, including the two
sim-to-real benchmark GTA5→ Cityscapes and Synthia→Cityscapes, as well as
the normal-to-adverse benchmark Cityscapes → ACDC.

The GTA and Synthia datasets consist of synthetic urban scene images gener-
ated by graphics engines, while the Cityscapes dataset contains real street scene
images, all annotated with 19 common semantic categories. The ACDC dataset
contains images under four adverse conditions: rain, snow, fog, and night. Except
for Synthia, all datasets share the same 19 categories for semantic segmentation.
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Table 1. Quantitative comparison results on GTA5→Cityscapes.
Method BB Road S.walk Build. Wall Fence Pole Tr.Light Sign Veget. Terrain Sky Person Rider Car Truck Bus Train M.bike Bike mIoU

Source Only C 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6

AdaptSegNet [13] C 86.5 36 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

AdvEnt [16] C 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5

CyCADA [3] C 86.7 35.6 80.1 19.8 17.5 38.0 39.9 41.5 82.7 27.9 73.6 64.9 19.0 65.0 12.0 28.6 4.5 31.1 42.0 42.7

CBST [24] C 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9

PatchAlign [14] C 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 33.4 46.3 2.2 29.5 32.3 46.5

FDA [22] C 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5

DACS [12] C 89.9 39.7 87.9 30.7 39.5 38.5 46.4 52.8 88.0 44.0 88.8 67.2 35.8 84.5 45.7 50.2 0.0 27.3 34.0 52.1

CorDA [17] C 94.7 63.1 87.6 30.7 40.6 40.2 47.8 51.6 87.6 47.0 89.7 66.7 35.9 90.2 48.9 57.5 0.0 39.8 56.0 56.6

ProDA [23] C 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5

Source Only T 71.5 18.0 84.2 34.4 30.9 33.4 44.3 23.5 87.4 41.3 86.6 64.0 22.5 88.3 44.5 39.1 2.3 35.2 31.6 46.5

DAFormer [4] T 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3

Ours T 96.2 73.1 89.6 53.0 52.7 52.6 54.5 65.1 89.2 47.4 90.2 73.9 46.9 93.1 81.8 83.7 68.5 55.9 63.4 70.0

Oracle T 98.0 84.2 92.6 59.4 59.7 61.9 66.7 76.6 92.5 66.4 94.9 79.6 60.7 94.6 84.0 88.6 81.2 63.2 75.0 77.9

Training Details. We used the same experimental settings as DAFormer, with
the MiT-B5 [20] backbone used as the encoder and the decoder also derived
from DAFormer. During training, both source and target domain images were
randomly cropped into patches of 512×512 augmented with techniques including
random flipping and color jittering. These images were then grouped into batches
of size 2 and passed into a multi-branch cross-domain Transformer. We used the
AdamW optimizer with a learning rate of 6×10−5. Additionally, the momentum
update parameter for the pseudo-label threshold, λ, is set to 0.999. During the
inference phase, the batch size is set to 1, and only the target domain branch is
used, while the other branches are dropped to ensure efficiency.

4.2 Comparison with Different UDA Methods

Quantitative Comparison. We evaluated our proposed method against exist-
ing UDA methods on various benchmarks including GTA5→Cityscapes, Synthia
→Cityscapes, and Cityscapes→ACDC, and compared its performance against
existing UDA methods. Results are shown in Tables 1, 2, and 3. Following the
common UDA settings [4,19], all the results on Cityscapes were calculated on
the validation set, and the performance on ACDC datasets is reported on the
test set. C denotes CNN-based model, while T represents Transformers.

The results show that our model surpasses the baseline model
DAFormer [4] in all three benchmarks, achieving an improvement of
1.7% for GTA5→Cityscapes, 0.6% for Synthia→Cityscapes, and 4.9% for
Cityscapes→ACDC. The introduction of cross-domain attention is found to
further improve the model’s adaptability to the target domain, facilitating the
model to focus on more contextual content during prediction and learn domain-
invariant knowledge. The model shows higher segmentation performance for spe-
cific categories such as signal sign, bus, train, and fence in GTA5→Cityscapes,
and significant improvement for categories such as person, truck, and bus in
Cityscapes→ACDC.

Qualitative Results. As shown in Fig. 4, we visualize the segmentation results
on GTA5→Cityscapes and Cityscapes→ACDC benchmarks. The white boxes
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Table 2. Quantitative comparison results on Synthia→Cityscapes.
Method BB Road S.walk Build. Wall∗ Fence∗ Pole∗ Tr.Light Sign Veget. Sky Person Rider Car Bus M.bike Bike mIoU∗ mIoU

Source Only C 64.3 21.3 73.1 2.4 1.1 31.4 7.0 27.7 63.1 67.6 42.2 19.9 73.1 15.3 10.5 38.9 40.3 34.9

PatchAlign [14] C 82.4 38 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 46.5 –

AdaptSegNet [13] C 84.3 42.7 77.5 – – – 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 46.7 –

AdvEnt [16] C 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 48.0 41.2

CBST [24] C 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 48.8 42.6

FDA [22] C 79.3 35 73.2 – – – 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 52.5 –

DACS [12] C 80.6 25.1 81.9 21.5 2.9 37.2 22.7 24.0 83.7 90.8 67.6 38.3 82.9 38.9 28.5 47.6 54.8 48.3

CorDA [17] C 93.3 61.6 85.3 19.6 5.1 37.8 36.6 42.8 84.9 90.4 69.7 41.8 85.6 38.4 32.6 53.9 62.8 55.0

ProDA [23] C 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 84.4 74.2 24.3 88.2 51.1 40.5 45.6 62.0 55.5

Source Only T 51.5 20.3 79.2 19.3 1.8 40.9 29.9 22.7 79.1 82.4 63.0 24.9 75.8 33.7 18.9 24.9 46.6 35.2

DAFormer [4] T 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 89.8 73.2 48.2 87.2 53.2 53.9 61.7 67.4 60.9

Ours T 84.7 44.3 88.2 45.1 7.6 48.7 56.1 54.7 87.3 87.4 74.3 48.6 87.6 53.9 56.8 60.2 68.0 61.6

Oracle T 98.0 84.2 92.6 59.4 59.7 61.9 66.7 76.6 92.5 94.9 79.6 60.7 94.6 88.6 63.2 75.0 78.0 82.1

Table 3. Quantitative comparison results on Cityscapes→ACDC.
Method BB Road S.walk Build. Wall Fence Pole Tr.Light Sign Veget. Terrain Sky Person Rider Car Truck Bus Train M.bike Bike mIoU

AdvEnt [16] C 72.9 14.3 40.5 16.6 21.2 9.3 17.4 21.3 63.8 23.8 18.3 32.6 19.5 69.5 36.2 34.5 46.2 26.9 36.1 32.7

BDL [8] C 56.0 32.5 68.1 20.1 17.4 15.8 30.2 28.7 59.9 25.3 37.7 28.7 25.5 70.2 39.6 40.5 52.7 29.2 38.4 37.7

CLAN [10] C 79.1 29.5 45.9 18.1 21.3 22.1 35.3 40.7 67.4 29.4 32.8 42.7 18.5 73.6 42.0 31.6 55.7 25.4 30.7 39.0

FDA [22] C 74.6 73.2 70.1 63.3 59.0 54.7 52.3 47.0 44.9 44.8 43.3 39.5 34.7 29.5 28.6 28.5 28.3 28.2 24.8 45.7

MGCDA [11] C 73.4 28.7 69.9 19.3 26.3 36.8 53.0 53.3 75.4 32.0 84.6 51.0 26.1 77.6 43.2 45.9 53.9 32.7 41.5 48.7

DANNet [19] C 84.3 54.2 77.6 38.0 30.0 18.9 41.6 35.2 71.3 39.4 86.6 48.7 29.2 76.2 41.6 43.0 58.6 32.6 43.9 50.0

DAFormer [4] T 58.4 51.3 84.0 42.7 35.1 50.7 30.0 57.0 74.8 52.8 51.3 58.3 32.6 82.7 58.3 54.9 82.4 44.1 50.7 55.4

Ours T 81.7 40.4 78.1 37.7 31.9 43.9 57.8 56.0 82.5 54.9 86.6 61.6 39.1 84.2 66.6 73.3 76.5 41.0 52.0 60.3

highlight the areas with significant improvements. It can be observed that our
model demonstrates superior performance to the baseline in segmenting classes
such as road and traffic light in the former benchmarks, which further veri-
fies the results in Table 1. These two classes of objects have similar contextual
relationships in both source and target domains, and the introduction of cross-
domain attention allows the model to focus more on similar contexts, resulting in
more accurate pixel-level predictions. The effectiveness of our approach is further
demonstrated in the Cityscapes→ACDC task under various adverse conditions,
where our method significantly outperforms the baseline in segmenting the sky
class and exhibits improvements in classifying sidewalk and traffic light (Table 4).

Table 4. Ablation study of proposed modules.

Baseline ATS CDAttn mIoU mIoU

� 68.3 –

� � 68.8 +0.5

� � 69.7 +1.4

� � � 70.0 +1.7
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Fig. 4. Qualitative visualization of the experiment results.

4.3 Ablation Study

We showcase the effectiveness of different modules in our model through abla-
tion experiments. As shown in Fig. 4, the Adaptive Thresholding Strategy (ATS)
improves the baseline model by 0.6% compared to the original threshold method.
The Cross-Domain Attention (CDAttn) network alone achieves a performance
boost of 1.2%, indicating that additional attention to cross-domain context can
further facilitate the learning of domain-invariant features. The experiments
show that the two modules narrow the domain gap from different perspectives,
and their combination results in further performance improvement.

To assess the effectiveness of the proposed cross-domain transformer as
shown in Fig. 2, we compared it with two different cross-domain transformer

Fig. 5. Different Cross-Domain Attention Design.

Table 5. Comparison of
designs.

Design mIoU

Baseline 68.3

Design-TS 68.6

Design-SMT 68.4

ours 69.5
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designs that use different forms of cross-attention between the source and target
domains. Design-TS (Fig. 5(a)) uses the target domain’s query Qt instead of Qs

for computing cross-attention, which is opposite to our design. In Design-SMT
(Fig. 5(b)), the input of the cross-domain branch is the original target domain
image xT without domain mix-up, and the cross-attention is conducted between
the source domain and the original target domain.

Table 5 records the performance of different designs on the GTA→Cityscapes
task. Our proposed model outperforms the other designs, highlighting the impor-
tance of cross-attention between source and mixed domain. Compared to design-
TS, we observed that the direction of attention has an impact on cross-domain
feature learning. Specifically, attention directed from the source domain to the
target domain is capable of capturing the domain-invariant features effectively,
resulting in superior performance in comparison to the design that prioritizes
the source domain. Additionally, the results of the Design-SMT indicate that
mixed-domain images are closer to the target domain than the original source
images, thereby facilitating better domain adaptation.

5 Conclusion

In this paper, we propose a weight-sharing multi-branch cross-domain Trans-
former to integrate self-attention with cross-domain attention for domain-
invariant feature learning. Additionally, we introduce a category-specific adap-
tive threshold strategy for balancing the quality and quantity of pseudo-labels.
Experiments on different benchmark tasks verify the effectiveness of the pro-
posed method.
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Abstract. The precise extraction of the contour of prostate on transrectal ultra-
sound (TRUS) is crucial for the diagnosis and treatment of prostate tumor. Due to
the relatively low signal-to-noise ratio (SNR) of TRUS images and the potential of
imaging artifacts, accurate contouring of the prostate from TRUS images has been
a challenging task. This paper proposes four strategies to achieve higher precision
of segmentation on TRUS images. Firstly, a modified principal curve-based algo-
rithm is used to obtain the data sequence, with a small amount of prior point infor-
mation adopted for coarse initialization. Secondly, an evolution neural network
is devised to find an optimal network. Thirdly, a fractional-order-based network
is trained with the data sequence as input, resulting in a decreased model error
and increased precision. Finally, the parameters of a fractional-order-based neural
networkwere utilized to construct an interpretable and smoothmathematical equa-
tion of the organ border. The Dice similarity coefficient (DSC), Jaccard similarity
coefficient (OMG), and accuracy (ACC) of model outputs against ground-truths
were 95.9 ± 2.3%, 94.9 ± 2.4%, and 95.3 ± 2.2%, respectively. The results of
our method outperform several popular state-of-the-art segmentation methods.
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selection polygon tracking · evolution network · fractional-order-based neural
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1 Introduction

The precise segmentation of organs in ultrasound images is vital for a wide range of
modern clinical applications [1]. Numerous ultrasound segmentation techniques have
been proposed, but achieving accurate segmentation remains challenging due to factors
such as poor image quality and significant variations in prostate shapes and intensity
distributions among different patients [2, 3].

Various approaches have been developed to address these challenges. Jaouen et al. [4]
introduced an active surface-based method for prostate segmentation in TRUS images,
utilizing initial points from base and apex images to accurately model and locate the
region of interest (ROI), thus enhancing precision. However, this model necessitated
extensive human intervention for parameter initialization. In recent years, deep learning-
based segmentation methods have gained prominence. For instance, Lu et al. [5] pre-
sented a grading-based approach for segmenting prostate cancer in ultrasound images,
employing a region labeling-based ROI detection module and an attention module.
Nonetheless, the accuracy of this model could be compromised when detecting lesion
regions. Beitone et al. [6] proposed an ensemble learning structure with a fusion net-
work, but this method faced high computational costs and was potentially influenced
by the outcomes of the three CNN-based pre-processing architectures. Sloun et al. [7]
developed a deep learning structure for prostate segmentation, using MRI images to
aid physicians in determining ultrasound image ground truth. However, this model’s
performance could be affected by indistinct ROI contours.

To tackle these challenges and offer a comprehensive solution, we propose an inno-
vative hybrid approach with several advantages. This paper is organized as follows:
Section 2 presents the methodology of our hybrid approach, including (i) the combina-
tion of an Automatic Selection Polygon Trackingmethod (ASPT) with amodified neural
network; (ii) the integration of the Principal Curve (PC)-based projection step into the
Neutrosophic Adaptive Mean Shift Clustering (NAMSC) method based on bandwidth
[8], allowing for the automatic determination of the number of vertices/clusters without
human intervention; (iii) the introduction of a Distributed-based Memory Differential
Evolution (DMDE) method to aid in identifying the optimal neural network, incorpo-
rating multi-mutation operators to enhance population diversity; (iv) the presentation of
a Fractional-order Backpropagation Neural Network with L2 regularization (FBNNL),
which retains the memory and heredity benefits of the fractional gradient descent algo-
rithm, inspired by Chen et al.’s work [11]; and (v) the development of an explicit math-
ematical model for a smooth prostate periphery, realized through FBNNL, to achieve a
refined segmentation result, addressing the issue of non-smooth contours generated by
PC-based variants [12]. Section 3 discusses the experiments and results, demonstrating
the effectiveness of our approach, while Section 4 concludes the paper and highlights
potential future research directions.
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2 Methods

2.1 Background

Existing automatic methods [13] for segmenting ultrasound images face significant dif-
ficulty and typically result in a DSC of approximately 0.9. In response to this issue, our
proposed technique capitalizes on the prior knowledge of Pn reference points, which
guide our model and aid in achieving accurate ROI localization. Traditional PC-based
algorithms are subject to the number of preset vertices,whose operators [14] aremanually
determined, influencing the algorithm’s subsequent outcome. Automatic determination
of vertices represents a significant challenge, as does the smoothing of the outcome
generated by a PC-based algorithm comprised of line segments.

2.2 Contour Extraction Model

Our approach to contour extraction involves a series of four steps. Initially, we leverage
several reference points (Pn) and ASPT methodology to generate a data sequence D
consisting of Pn and their relevant projection parameter t. Subsequently, we utilize an
optimized differential evolution (DE) network to determine the optimal neural network
capable of delivering the best results. Tominimizemodel error and enhance the accuracy,
we integrated FBNNL training, with D serving as the input. Lastly, we utilize FBNNL’s
parameters to develop a coherent mathematical formula that accurately represents the
prostate boundary, lending to smoothness and explainability to the procedure.

(1) Obtaining Data Sequence. Our method combines two renowned techniques
(namely, NAMSC and PC-based projection) to facilitate the generation of the input
sequence through the ASPT approach. The primary advantage of our ASPT algorithm
is that it automatically establishes the amount of vertices of the PC, a feature missing in
conventional PC-based methods [9] (as seen in Fig. 1). By contrast, PC-based methods
require manual intervention, thereby making them prone to inconsistency and errors.
Ultimately, our ASPT algorithm enhances the precision of this process, making it more
efficient in generating an accurate output.

Neutrosophic Mean Shift Clustering (NAMSC) Method: The MSC method, devel-
oped by Cheng et al. [15], has been successfully employed to cluster datasets. Never-
theless, the precision of the segmentation outcome can be compromised by unforeseen
issues like image noise and intensity variations [16]. These indeterminate entities can be
better addressed when employing a neutrosophic approach, which is highly effective at
processing noise [8]. To optimize the cluster amount, we utilize the NAMSC algorithm,
which leverages a neutrosophic filter to enhance the mean shift clustering technique.

Principal Curve (PC)-Based Projection Step: Upon completion of the NAMSC step,
the principal curve f is automatically selected, after determining the vertices/clusters.
This technique was previously established by Hastie et al. [17] and involves construct-
ing a self-consistent and smooth curve, which passes through the center of a multidi-
mensional data set. To obtain a sequence of points, pi, that correspond to appropriate
neighborhood sets, such as the vertex set V or segment set S of f , we employ the pro-
jection step. Furthermore, we utilize the projection index t to refer to the sequence of pi
projecting to f reliably. Figure 2 illustrates the outcomes of the partition.
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Fig. 1. Difference between the current PC-based methods [9] and our ASPT method.

Fig. 2. An example partition output of the principal curve’s vertices and segments. Orange and
blue arrows illustrate the projection direction from pi to vi and si.

(2) Optimal Neural Network Selection. Random selection of neural network (NN)
parameters often leads to local minima while training [20], undermining the NN’s
performance. One solution is to utilize the Differential Evolution network (DE) [21],
renowned for its exceptional global search abilities. Nonetheless, the DE’s performance
can be enhanced by means of various methodologies, including the incorporation of
an optimal storage mechanism to efficiently store parameters, the use of an appropriate
transform scheme, and the population difference strengthen method. To that end, we
present a newmethodology called distributed-based memory DE (DMDE), which lever-
ages distributed- and memory-based structures and employs multi-mutation operators
to improve performance.

Distributed-Based Scheme. This method relies on the principles of the distributed-
related structures [10], which we use to shift the best individual from each parallel
subpopulation to the later sub-dataset within the ring topology structure. Through this
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process, we seek to improve the search potential of our technique, and improve the
accuracy of the results.

Memory-Based Scheme. In this study, a vital feature of thememory-basedDE (MDE)
is its capacity to save and utilize best mean crossover rates (uCR) and mean mutation
factors (uF) from the previous cycle, thereby increasing the likelihood of finding an
optimal individual during the following cycle.

Multi-mutation Operators. To enhance the population difference, multi-mutation
operators are introduced to produce mutual vector individual vciG+1, shown in Eq. (1).

vcG+1
i

=
{
xGi1 + random1 × (xGi2 − xGi3 ), if random[0, 1] < pG
xGi1 + random2 × (xGi2 − xGi3 ) + random3 × (xGi4 − xGi5 ), otherwise

(1)

where randommeans a random number between [0, 1]. Integer ik (k ∈ [1, 5]) is stochasti-
cally chosen between [1,Np] in whichNp means the number of answers. In the mutation
phase, condition probability pG is shown in Eq. (2).

pG = pmin + G × (pmax − pmin)

Gmax
(2)

where pmin and pmax are the minimum- and maximum- conditional probability,
respectively.

(3) Training.To lower expected-outcome bias, state-of-the-art backpropagation neu-
ral networks (BPNN) rely upon the gradient descent algorithm (GDA) [23]. To remedy
GDA’s overfitting tendencies and optimize its heredity, our team incorporates the frac-
tional gradient descent algorithm and L2 regularization into BPNN, thereby creating a
novel algorithm, FBNNL. In this study, we framed FBNNL with a network structure of
three layers, employing Sigmoid [24] and ELU [25] activation functions throughout the
forward training process.

(4) Interpretable Mathematical Formula-Based Expression of Contour. Upon
obtaining the optimal FBNNL, a mathematical equation that interprets the smooth
contour of the prostate is defined as,

z(t) = z(A(t)),B(t)) =
(
2 × C(A(t)) + 1

2 × C(A(t)) + 2
,
2 × C(B(t)) + 1

2 × C(B(t)) + 2

)
(3)

where t indicates the projection parameter. B(t) and A(t) means y- and x-axis coordinates
of vertices of the resulting contour. C(A(t)) and C(B(t)) are the result in the output layer
that are similar to a regression function on t, respectively, expressed by,

(C(A(t)),B(y(t)))

=

⎛
⎜⎜⎜⎝ 1

2×(e

H∑
i=1

1
1+e−(tw1i−ai)

w2i,1−b1
−1)

, 1

2×(e

H∑
i=1

1
1+e−(tw1i−ai)

w2,i,2−b2
+1)

⎞
⎟⎟⎟⎠ (4)

where Eq. (3) and Eq. (4) are expressed by the parameters of FBNNL. a and w1 are
the threshold and weight in a hidden layer, respectively. Moreover, b and w2 are the
threshold and weight in the output layer, respectively.
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2.3 Datasets

Our segmentation plan was evaluated on two separate prostates transrectal ultrasound
(TRUS) datasets, which are elaborated as below:

Data A# [26]: a prostate dataset from Jiangsu ProvinceHospital of ChineseMedicine
in Nanjing, China.

Data B# [27]: a dataset including 266 brachytherapy patients from Tsinghua Chang-
gung Hospital, Beijing, China. This dataset was randomly split into training, validation,
and testing groups, with a 7:1:2 ratio. The partition of each dataset and the combined set
is shown in Table 1.

Data C#, addressing the disequilibrium of training slices in the two datasets, was
generated by randomly rotating Data A#’s training data using rotation methods. Every
slice is rotated twice between [−15°, 15°].

Manual contours from three physicians were used as ground truth. Three universal
metrics [28]: DSC, Accuracy (ACC), and Jaccard similarity coefficient (OMG) were
used to evaluate the performance of our proposed method.

Table 1. The partition of each dataset

Total set Training set (raw +
augmentation)

Validation set Testing set

Data A# 393 215 (raw) + 430
(aug)

70 108

Data B# 945 675 66 204

Data C# (Combined set) - 1320 136 312

3 Results

3.1 Model Robustness Evaluation

We first conducted an analysis to determine the effectiveness of noise reduction of our
algorithmonaudiofiles recorded in noisy environments. The audiofileswere deliberately
corrupted using various levels of background noise to simulate real-world conditions.
The SNR levels ranged from 0.9 to 1.0 [29] to mimic the levels typically found in noisy
environments. The algorithmwas then applied to each audio file to assess its performance
in reducing noise while preserving the integrity of the original sound. The results of the
analysis, depicted in graphs, demonstrate that the noise reduction algorithm was highly
effective at all SNR levels tested.

In this section, we analyzed the impact of varying degrees of background image noise
on the performance of the model. Figure 3 clearly depicts the model’s ability to perform
well as the signal-to-noise ratio (SNR) decreases. The decline is notable on the Data C#
dataset, with themean values of ACC, DSC, and OMGdecreasing by 4.49%, 4.35%, and
4.97%, respectively, as the SNR reduces from 1 to 0.6. At an SNR of 1, our model had a
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Fig. 3. Metric values of different SNRs. We display the evaluation outcomes for ACC, DSC, and
OMG utilizing boxplots with blue, green, and pink hues correspondingly. Within these boxplots,
the mean and median values are denoted by white dots and red lines, respectively. Datasets A, B,
and C serve as distinct data sources. The detailed outcomes are shown. (When SNR = 0.6, for
Data A#, ACC = 90.9 ± 3.7%, DSC = 91.3 ± 3.2%, OMG = 90.2 ± 4.4%; When SNR = 0.6,
for Data B#, ACC = 91.4 ± 3.2%, DSC = 92.4 ± 2.7%, OMG = 90.6 ± 3.7%; When SNR =
0.6, for Data C#, ACC = 91.2 ± 3.4%, DSC = 91.9 ± 3%, OMG = 90.4 ± 4%; When SNR =
0.8, for Data A#, ACC = 93.3 ± 3%, DSC = 93.6 ± 3%, OMG = 93.1 ± 2.8%; When SNR =
0.8, for Data B#, ACC = 93.7 ± 2.9%, DSC = 94 ± 2.5%, OMG = 93.4 ± 2.6%; When SNR
= 0.8, for Data C#, ACC = 93.5 ± 2.9%, DSC = 93.8 ± 2.8%, OMG = 93.3 ± 2.7%; When
SNR = 1(our method), for Data A#, ACC = 95.1 ± 2.3%, DSC = 95.6 ± 2.3%, OMG = 94.7
± 2.7%; When SNR = 1(our method), for Data B#, ACC = 95.5 ± 2.2%, DSC = 96.1 ± 2.3%,
OMG = 95.1 ± 2.4%; When SNR = 1(our method), for Data C#, ACC = 95.3 ± 2.2%, DSC =
95.9 ± 2.3%, OMG = 94.9 ± 2.4%;)

performance of ACC= 95.3± 2.2 (%), DSC= 95.9± 2.3 (%), and OMG= 94.9± 2.4
(%) in Data C#. At an SNR of 0.6, our model attains a performance of ACC= 91.2± 3.4
(%), DSC = 91.9 ± 3 (%), and OMG = 90.4 ± 4 (%). Even with noisy data, the mean
values of all the metrics on the combined Data C# were above 90.4%, indicating the
superior performance of the proposedmethod under noisy conditions. Figure 4 shows the
original ultrasound image and the model-generated prostate contours from a randomly
selected example slice.
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Fig.4. Randomly selected example slice for qualitative visualization under different SNRs.

3.2 Ablation Study (AS)

We utilized the ASPT method to obtain a data sequence that served as the input for the
neural network-basedFBNNLafter determining the optimal FBNNL.Thefinal outcomes
were obtained upon the FBNNL’s training. To evaluate the influence of FBNNL, an
ablation test was performed in this section to assess the contribution of the three key
modules (BPNN, FGDC, and L2 regularization), as illustrated in Fig. 5. Table 2 shows
the architecture of each method.

Figure 5 shows that choosing BPNN (baseline) resulted in the lowest metric val-
ues. Following BPNN, we included other metrics (FGDC or L2 regularization). On the
combined testing dataset (Data C#), ACC, DSC, and OMG increased by 2.07%~3.92%,
2.07%~4.8%, and 2.32%~4.97%, respectively. The proposed technique (BPNN+ FGDC
+L2 regularization) provides the best performance, with ACC, DSC, and OMG of 95.3
± 2.2%, 95.9 ± 2.3%, and 94.9 ± 2.4%, respectively.

Table 2. Components of the AS methods

AS Structures

AS1 BPNN (Baseline)

AS2 BPNN+ FGDC

AS3 BPNN+L2 regularization

AS4 (our method) BPNN+ FGDC +L2 regularization
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Fig. 5. Metrics values of different ASs. The detailed outcomes are shown. (AS1 for Data A#,
ACC = 91.3 ± 3.4%, DSC = 91.1 ± 3.9%, OMG = 90.1 ± 4.3%; AS1 forData B#, ACC = 92.1
± 3.2%, DSC = 91.8 ± 3.2%, OMG = 90.6 ± 4.2%; AS1 for Data C#, ACC = 91.7 ± 3.3%,
DSC = 91.5 ± 3.6%, OMG = 90.4 ± 4.2%; AS2 forData A#, ACC = 93.2 ± 2.5%, DSC = 93.3
± 2.6%, OMG= 92.2± 2.4%; AS2 forData B#, ACC= 94± 2.3%, DSC= 93.5± 2.5%, OMG
= 92.6 ± 2.6%; AS2 for Data C#, ACC = 93.6 ± 2.4%, DSC = 93.4 ± 2.6%, OMG = 92.5 ±
2.5%; AS3 for Data A#, ACC = 93.6 ± 2.2%, DSC = 94.2 ± 2.5%, OMG = 92.8 ± 2.4%; AS3
for Data B#, ACC = 94 ± 2.3%, DSC = 94.6 ± 2.4%, OMG = 93.5 ± 2.4%; AS3 for Data C#,
ACC = 94.4 ± 2.4%, DSC = 94.4 ± 2.4%, OMG = 93.1 ± 2.4%; Our method forData A#, ACC
= 95.1 ± 2.3%, DSC = 95.6 ± 2.3%, OMG = 94.7 ± 2.7%; Our method for Data B#, ACC =
95.3 ± 2.2%, DSC = 96.1 ± 2.3%, OMG = 95.1 ± 2.4%; Our method for Data C#, ACC = 95.5
± 2.2%, DSC = 95.9 ± 2.3%, OMG = 94.9 ± 2.4%;)

3.3 Comparison with SOTA Methods

Figure 6 displays the performance of various cutting-edge methods, such as Transformer
[31], A-LugSeg [32], and H-SegMed [33]. Transformer [31] is a globally attentive archi-
tecture that excels at segmentingROIs inmedical images. A-LugSeg [32] andH-SegMed
[33] are our previousworks,whereA-LugSeg is basedon coarseness-to-refinement struc-
tures, while H-SegMed uses prior points to guide ROI localization. As shown in Fig. 6,
compared to the Transformer and A-LugSeg methods, both our method and H-Segmed
method showed higher mean values of all metrics (ACC, DSC, and OMG) and lower
standard deviation of the corresponding metrics. Our approach demonstrates the highest
overall performance.
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Fig. 6. Boxplots showcase ACC (blue), DSC (green), and OMG (pink) metrics for our method
and SOAT methods. The detailed outcomes are shown. (Transformer for Data A#, ACC = 86.1
± 5.5%, DSC = 86.6 ± 5.8%, OMG = 85.1 ± 5.4%; Transformer for Data B#, ACC = 87.6 ±
5.7%, DSC = 87.6 ± 5.7%, OMG = 86.3 ± 5.7%; Transformer for Data C#, ACC = 86.9 ±
5.6%, DSC = 87.2 ± 5.8%, OMG = 85.7 ± 5.6%; A-LugSeg for Data A#, ACC = 92.5 ± 3.8%,
DSC = 93.1 ± 3.8%, OMG = 91.9 ± 3.4%; A-LugSeg for Data B#, ACC = 93.3 ± 3.3%, DSC
= 993.4 ± 3.9%, OMG = 92.6 ± 3.2%; A-LugSeg for Data C#, ACC = 92.9 ± 3.6%, DSC =
93.2 ± 3.8%, OMG = 92.3 ± 3.3%; H-SegMed for Data A#, ACC = 94.4 ± 2.4%, DSC = 95.1
± 2.3%, OMG = 93.8 ± 2.4%; H-SegMed for Data B#, ACC = 94.7 ± 2.2%, DSC = 95.4 ±
2.1%, OMG = 94 ± 2.4%; H-SegMed for Data C#, ACC = 94.4 ± 2.4%, DSC = 94.4 ± 2.4%,
OMG= 93.1± 2.4%; Our method forData A#, ACC= 95.1± 2.3%, DSC= 95.6± 2.3%, OMG
= 94.7 ± 2.7%; Our method for Data B#, ACC = 95.5 ± 2.2%, DSC = 96.1 ± 2.3%, OMG =
95.1 ± 2.4%; Our method for Data C#, ACC = 95.3 ± 2.2%, DSC = 95.9 ± 2.3%, OMG = 94.9
± 2.4%). (Color figure online)

4 Conclusion

In this paper, we have introduced a hybrid approach for prostate segmentation in tran-
srectal ultrasound (TRUS) images, addressing challenges such as poor image quality and
variations in prostate shapes and intensity distribution among patients. Our methodol-
ogy differs from existing techniques in several aspects. The ASPTmethod incorporates a
PC-based projection step into the NAMSC, allowing for the automatic determination of
vertices without human intervention. Moreover, we have developed a distributed-based
memory differential evolution method to optimize the neural network. We devised a
neural network featuring FBNNL, which inherits the memory and heredity advantages
of the fractional gradient descent algorithm. Lastly, we have addressed the issue of non-
smooth contour by proposing an explainable mathematical model for a smooth prostate
periphery. In future research, we plan to explore the generalizability of our model to
various imaging modalities, assess the model’s robustness and accuracy under diverse
conditions, and transition from a semi-automatic algorithm to a fully automatic model
for real-time clinical applications.
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Abstract. The Euler State Network (EuSNs) model is a recently pro-
posed Reservoir Computing methodology that provides stable and non-
dissipative untrained dynamics by discretizing an appropriately con-
strained ODE. In this paper, we propose alternative formulations of the
reservoirs for EuSNs, aiming at improving the diversity of the result-
ing dynamics. Our empirical analysis points out the effectiveness of the
proposed approaches on a large pool of time-series classification tasks.
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1 Introduction

Reservoir Computing (RC) [17,19,22] is a popular technique for efficiently train-
ing Recurrent Neural Networks (RNNs) by utilizing the stable neural dynamics
of a fixed recurrent reservoir layer and a trainable readout for output computa-
tion. This approach has been successful in various applications, in particular for
implementing distributed learning functionalities in embedded systems [2,3,6]
and as a reference paradigm for neuromorphic hardware implementations of
recurrent neural models [20,21].

The effective operation of RC neural networks depends largely on the stabil-
ity of its dynamics, which can be achieved through a global asymptotic stability
property known as the Echo State Property in the widely used Echo State Net-
work (ESN) model [14,15]. This property ensures that the dynamics of the reser-
voir remain stable, while at the same time it limits its memory and state-space
structure, thus preventing the transmission of input information across multiple
time steps.

Recently, a new approach to overcome the limitations of fading memory
in standard ESNs has been proposed, which involves discretizing an Ordinary
Differential Equation (ODE) while ensuring stability and non-dissipative con-
straints. This approach computes the reservoir dynamics as the forward Euler
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solution of an ODE, hence the resulting model is called the Euler State Net-
work (EuSN) [7,9]. As their dynamics are neither unstable nor lossy, EuSNs are
capable of preserving input information over time, making them better suited
than ESNs for tasks involving long-term memorization. The EuSN approach has
already been shown to exceed the accuracy of ESNs and achieve comparable
performance levels to fully trainable state-of-the-art RNN models on time-series
classification tasks, while still maintaining the efficiency advantage of RC [9]. At
the same time, the study of the architectural organization of the EuSN reservoir
system is still largely unexplored.

In this paper, we deepen the analysis of EuSN architectures and propose
ways to improve the diversification of reservoir dynamics. Our first proposal is
to introduce a variability factor by using different integration rates in different
reservoir neurons. The second variability factor is to consider different diffusion
coefficients, which result in different strengths for the self-feedback connections
in the reservoir neurons. We analyze the effects of these factors, individually and
in synergy, on the resulting dynamical characterization of the reservoir system
and in a wide range of experiments on time-series classification benchmarks.

The rest of this paper is organized as follows. In Sect. 2 we summarize the
fundamental aspects of the RC methodology and of the popular ESN model,
while in Sect. 3 we introduce the crucial concepts behind non-dissipative RC
dynamics and the EuSN model. Then, in Sect. 4, we illustrate the proposed
approach to enhance the diversification of reservoir dynamics in EuSNs. Our
empirical analysis on several time-series classification benchmarks is given in
Sect. 5. Finally, Sect. 6 concludes the paper.

2 Reservoir Computing

Reservoir Computing (RC) [17,22] refers to a category of efficiently trainable
recurrent neural models in which the internal connections pointing to the hidden
recurrent layer, the reservoir, are left untrained after randomization subject to
asymptotic stability constraints. The neural architecture is then completed by
an output layer, the readout, which is the only trained component of the model.
Within such a class, we introduce the popular Echo State Network (ESN) [14,15]
model, which employs the tanh non-linearity and operates in discrete time-steps.

To set our notation, let us consider a reservoir that comprises Nh neurons, and
that is stimulated by a driving (external) Nx-dimensional input signal. Accord-
ingly, we denote the reservoir state and the input at time step t respectively as
h(t) ∈ R

Nh , and x(t) ∈ R
Nx . We refer to the general case of leaky integrator

ESNs [16], and describe the dynamical operation of the reservoir by the following
iterated map:

h(t) = (1 − α)h(t − 1) + α tanh(Wh h(t) + Wx x(t) + b), (1)

where Wh ∈ R
Nh×Nh is the reservoir recurrent weight matrix, Wx ∈ R

Nh×Nx

is the input weight matrix, b ∈ R
Nh is the bias vector, and tanh(·) denotes

the element-wise applied hyperbolic tangent non-linearity. Moreover, α ∈ (0, 1]
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represents the leaking rate hyper-parameter, influencing the relative speed of
reservoir dynamics with respect to the dynamics of the input. Before being driven
by the external input signal x(t), the reservoir state is typically initialized in the
origin, i.e., h(0) = 0.

After their initialization, the weight values of Wh, Wx, and b are kept fixed
in accordance with the Echo State Property (ESP) [23], which ensures global
asymptotic stability of the reservoir dynamical system. In practice, the recurrent
weights in Wh are typically randomly drawn from a uniform distribution over
(−1, 1) and then adjusted to limit the resulting spectral radius1 ρ(Wh) to values
smaller than 1. The value of ρ(Wh) has a direct influence on the dynamical
properties of the resulting reservoir, and in particular on the extent of its fading
memory. As such, it is a crucial hyper-parameter of the ESN model. As the
spectral radius re-scaling of (a potentially large) matrix Wh can represent a
computational bottleneck, in this paper we resort to an efficient initialization
scheme introduced in [10], which leverages results in random matrix theory to
provide a fast initialization of the recurrent weights in Wh. The input weight
matrix Wx and bias vector b are also randomly initialized, and then re-scaled
to control their magnitude. A widely used approach consists in drawing their
values from uniform distributions over (−ωx, ωx) and (−ωb, ωb), respectively,
where ωx and represents the input scaling hyper-parameter, and ωb is the bias
scaling hyper-parameter.

The ESN architecture also includes a trainable dense readout layer which,
in the case of time-series classification tasks, is fed by the last reservoir state
corresponding to each input time series. As the reservoir parameters are kept
fixed, the readout is often trained in closed form [17], e.g., by pseudo-inversion
or ridge regression.

Finally, it is worth remarking that the ESN model relies on the ESP stability
property to regulate the reservoir dynamics. This property ensures that when
the network is fed with a long input time-series, the initial state conditions
eventually fade away, and the state encoding produced by the reservoir becomes
stable. However, this characterization is linked to the fading memory and suffix-
based Markovian organization of the reservoir state space (see, e.g., [8,11,13]).
These properties make it difficult to transfer information across multiple time-
steps, limiting the effectiveness of ESNs for tasks that require long-term memory
retention of the input information.

3 Non-dissipative Reservoir Computing

To overcome the limitations of a fading memory reservoir system, an alternative
approach based on discretizing ODEs subject to stability and non-dissipativity
conditions has recently been proposed [7,9]. The resulting RC model is derived
from the continuous-time dynamics expressed by the following ODE:

h′(t) = tanh(Whh(t) + Wxx(t) + b), (2)
1 The spectral radius of a matrix A is defined as the maximum length of an eigenvalue

of A.
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requiring that the corresponding Jacobian has eigenvalues with ≈ 0 real parts.
In addition to stability, such a critical condition implies non-dissipative system
dynamics, which can be leveraged to effectively propagate the input information
over multiple time-steps [5,12]. Crucially, the requested condition on the eigen-
valus of the Jacobian of Eq. 2, can be easily met architecturally by the use of
an antisymmetric recurrent weight matrix, i.e. requiring that Wh = −WT

h . In
such a case, indeed, the eigenvalues of both Wh and the Jacobian are on the
imaginary axis (see, e.g., [5,9] for further details). Interestingly, this property
does not need to be learned from data, rather it can be enforced in the neural
processing system by design. In other words, provided that the antisymmetric
condition holds, the recurrent weight matrix Wh can be initialized with ran-
dom weights and then left untrained, as in standard RC approaches. Finally, the
resulting constrained ODE system is discretized by Euler forward method, yield-
ing the following state transition equation ruling the behavior of a discrete-time
recurrent neural layer:

h(t) = h(t − 1) + ε tanh
(
(Wh − γI)h(t − 1) + Wxx(t) + b

)
, (3)

where Wh = −WT
h is the antisymmetric recurrent weight matrix, while ε and γ

are two (typically small) positive hyper-parameters that represents respectively
the step size of integration, and the diffusion coefficient used to stabilize the
discretization [12]. As in standard ESNs, the weight values in Wh, Wx and b
are left untrained after initialization, and the resulting RC model is named Euler
State Network (EuSN). In particular, the weight values in Wh in Eq. 3 can be
obtained starting from a random matrix W whose elements are drawn from a
uniform distribution in (−ωr, ωr), with ωr representing a recurrent scaling hyper-
parameter, and then setting Wh = W − WT , which grants the antisymmetric
property. The weight values in Wx and b are initialized as described in Sect. 2
for ESNs. Moreover, as in standard ESNs, the state is initialized in the origin,
i.e., h(0) = 0, and the neural network architecture is completed by a readout
layer that is the only trained component of the model. It has already been shown
in the literature that the EuSN model is extremely efficient at propagating input
information across many time steps, providing an exceptional trade-off between
complexity and accuracy in time-series classification tasks. Overall, EuSNs make
it possible to retain the efficiency typical of untrained RC networks while achiev-
ing - and even exceeding - the accuracy of fully trained recurrent models (see
[7,9] for an extended comparison in this regard). In this paper, starting from
the basic EuSN model, we show how its dynamics can be enriched by simple
architectural modifications that affect the variety of its dynamic behavior.

4 Diversifying Dynamics in Euler State Networks
Reservoirs

We start our analysis by noting that the reservoir system of an EuSN, as
described in Eq. 3 has an effective spectral radius intrinsically close to unity.
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In fact, using standard arguments in RC area, we can observe how the Jacobian
of the system in Eq. 3, analyzed around the origin and for null input, takes the
following form:

J = (1 − ε γ) I + εWh, (4)

whose eigenvalues have a fixed real part, given by 1 − εγ, and imaginary part
given by a small perturbation of one of the eigenvalues of Wh. Using λk(·) to
denote the k-th eigenvalue of its matrix argument, we have that:

λk(J) = 1 − εγ + i εβk, (5)

where βk = Im(λk(Wh)). All eigenvalues are thus concentrated (vertically in
the Gaussian plane) in a neighborhood of 1 − εγ. Given that both ε and γ take
small positive values, we can notice that all the eigenvalues in Eq. 5 are close to
1 by design, and the eigenvalues of Wh have only a minor perturbation impact.
This is illustrated in Fig. 1 (top, left). As analyzed in [9], this characterization
can be interpreted as an architectural bias of the EuSN model towards critical
dynamics. Notice that this bias is fundamentally different from the suffix-based
Markovian nature of reservoir dynamics typical of the conventional ESN [8].

Despite the application success of the EuSN model already in its original
form (as evidenced by the results in [7,9]), the dynamic characterization of the
model seems to be improvable. In particular, while one of the keys to the success
of RC is that it can cover a wide range of dynamic behaviour by randomizing
the reservoir parameters, in the case of EuSNs randomization does not seem to
be fully exploited. This can be seen firstly from the squeezing of the Jacobian
eigenvalues on a line, and secondly from the observation that the reservoir state
transition function in Eq. 3 contains a self-loop term modulated by the same γ
value for all neurons. Accordingly, in the following, we introduce variants of the
basic EuSN model in which different neurons can have different values of the
step size parameter ε and the diffusion parameter γ.

Step Size Variability. We consider EuSN reservoir neurons with different val-
ues of the step size. The resulting state transition function is given by:

h(t) = h(t − 1) + εεε � tanh
(
(Wh − γI)h(t − 1) + Wxx(t) + b

)
, (6)

where εεε ∈ R
Nh is a vector containing the step size of integration of the different

neurons, and � denotes component-wise (Hadamard) multiplication. As an effect
of this modification, the neurons in the EuSN reservoir exhibit dynamics with
variable integration speed, potentially offering greater richness to the encoding
produced by the system. Moreover, the resulting Jacobian is given by:

J = diag(1 − γεεε) + diag(εεε)Wh, (7)

where diag(·) indicates a diagonal matrix with specified diagonal elements, and
1 ∈ R

Nh is a vector of ones. The resulting eigenvalues are no longer characterized
by the same real part, and present a more varied configuration, as illustrated in
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Fig. 1 (top, right). In the following, we use EuSN-ε to refer to an EuSN network
whose reservoir is ruled by Eq. 6.

Diffusion Variability. We consider EuSN reservoir neurons with different val-
ues of the diffusion coefficient. In this case, the state transition function is given
by:

h(t) = h(t − 1) + ε tanh
(
(Wh − diag(γγγ))h(t − 1) + Wxx(t) + b

)
, (8)

where γγγ ∈ R
Nh is a vector containing the diffusion term of the different neurons.

Differently from the previous case of EuSN-ε, all the reservoir neurons operate
at the same integration speed, but the reservoir topology is enriched by different
strengths of the self-loops. The resulting Jacobian is given by:

J = diag(1 − εγγγ) + εWh, (9)

whose eigenvalues variability is illustrated in Fig. 1 (bottom, left). In the follow-
ing, EuSN-γ is used to refer to an EuSN network whose reservoir is described
by Eq. 8.

Full Variability. We finally introduce an EuSN in which each reservoir neuron
presents its own step size of integration and diffusion coefficient. This configura-
tion includes both variability factors introduced by EuSN-γ and EuSN-γ, and is
denoted by EuSN-ε, γ. In this case, the reservoir state transition function reads
as follows:

h(t) = h(t − 1) + εεε � tanh
(
(Wh − diag(γγγ))h(t − 1) + Wxx(t) + b

)
, (10)

and the resulting Jacobian is given by:

J = diag(1 − εεε � γγγ) + diag(εεε)Wh, (11)

The reservoir exhibits both dynamics with multiple scales of integration speed
and diverse self-loops. Moreover, while preserving the architectural bias toward
eigenvalues of the Jacobian near 1, these show wider variability, as illustrated in
Fig. 1 (bottom, right).

5 Experiments

We have experimentally evaluated the performance of the proposed EuSN vari-
ants (introduced in Sect. 4), in comparison to the base EuSN setup (described
in Sect. 3) and the conventional ESN model (described in Sect. 2).

Datasets. The performed analysis involved experiments on a large pool of
diverse time-series classification benchmarks. The first 20 datasets have been
taken from the UEA & UCR time-series classification repository [4], namely:
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Fig. 1. Eigenvalues of the Jacobian for a 500-dimensional reservoir in EuSN (top left),
EuSN-ε (top right), EuSN-γ (bottom left), and EuSN-ε, γ (bottom right). The plots
correspond to a system with ωr = 1, ε = 0.01, γ = 0.01. Variable values of the step
size were randomly sampled from a uniform distribution on [ε, ε+0.1]. Variable values
of the diffusion were randomly sampled from a uniform distribution on [γ, γ + 0.1].

Adiac, Blink, CharacterTrajectories, Computers, Cricket, ECG5000, Epilepsy,
FordA, FordB, HandOutlines, HandMovementDirection, Handwriting, Hearth-
beat, KeplerLightCurves, Libras, Lightning2, Mallat, MotionSenseHAR, Shape-
sAll, Trace, UWaveGestureLibraryAll, Wafer, and Yoga. We have also run exper-
iments on the IMDB movie review sentiment classification dataset [18], and on
the Reuters newswire classification dataset from UCI [1], which were used in the
publicly online available forms2. For these two tasks, we applied a preprocessing
step in order to represent each sentence by a time series of 32-dimensional word
embeddings3. For all datasets, we used the original splits into training and test,

2 IMDB: https://keras.io/api/datasets/imdb/.
Reuters: https://keras.io/api/datasets/reuters/.

3 For each dataset individually, every sentence was represented by a sequence of words
from the 10k most frequent ones in the corresponding database, with a truncation
to a maximum length of 200. To obtain the word embeddings, we trained an MLP
network with a preliminary embedding layer of 32 units, followed by a hidden layer
of 128 units with ReLU activation, and finally by a dense output layer. The MLP
architecture was trained on the training set using the RMSProp optimizer for 100
epochs and early stopping with patience = 10 (on a validation set containing the

https://keras.io/api/datasets/imdb/
https://keras.io/api/datasets/reuters/
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Table 1. Information on the time-series classification benchmarks used in our exper-
iments, including the number of sequences in the training set (# Seq Tr) and in the
test set (# Seq Ts), the maximum length of a sequence in the dataset (Length), the
number of input features (Feat.), and the number of output classes (Classes).

Name # Seq Tr # Seq Ts Length Feat. Classes

Adiac 390 391 176 1 37

Blink 500 450 510 4 2

CharacterTrajectories 1422 1436 182 3 20

Computers 250 250 720 1 2

Cricket 108 72 1197 6 12

ECG5000 500 4500 140 1 5

FordA 3601 1320 500 1 2

FordB 3636 810 500 1 2

HandOutlines 1000 370 2709 1 2

HandMovementDirection 160 74 400 10 4

Handwriting 150 850 152 3 26

Heartbeat 204 205 405 61 2

IMDB 25000 25000 200 32 2

KeplerLightCurves 920 399 4767 1 7

Libras 180 180 45 2 15

Lightning2 60 61 637 1 2

Mallat 55 2345 1024 1 8

MotionSenseHAR 966 265 1000 12 6

Reuters 8982 2246 200 32 46

ShapesAll 600 600 512 1 60

Trace 100 100 275 1 4

UWaveGestureLibraryAll 896 3582 945 1 8

Wafer 1000 6164 152 1 2

Yoga 300 3000 426 1 2

applying a further 67% - 33% stratified splitting of the original training data
into training and validation sets. Relevant information on the used datasets is
reported in Table 1.

Experimental Settings. In our experiments, we considered EuSN with a num-
ber of recurrent units Nh ranging between 10 and 500. We explored values of ωr,
ωx and ωb in {10−3, 10−2, . . . , 10}, ε and γ in {10−5, 10−4, . . . , 1}. For EuSN set-

33% of the original training data). After this, the output of the embedding layer for
each sentence in the dataset was used as input feature in our experiments with the
RC models.
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Table 2. Results on the time-series classification benchmarks. For every task, it is
reported the accuracy on the test set achieved by ESN, EuSN, EuSN with variable step
size (EuSN-ε), EuSN with variable diffusion (EuSN-γ), and EuSN with both variable
step size and diffusion (EuSN-ε, γ). Results are averaged (and std are given) over 10
random guesses. Best results for each task are highlighted in bold.

Task ESN EuSN EuSN-ε EuSN-γ EuSN-ε, γ

Adiac 0.307±0.07 0.690±0.01 0.691±0.01 0.634±0.01 0.649±0.01

Blink 0.620±0.02 0.943±0.01 0.934±0.01 0.946±0.01 0.969±0.01

CharacterTrajectories 0.964±0.00 0.993±0.00 0.989±0.00 0.989±0.00 0.985±0.00

Computers 0.652±0.00 0.638±0.02 0.707±0.01 0.716±0.01 0.607±0.02

Cricket 0.976±0.01 0.933±0.02 0.993±0.01 1.000±0.00 1.000±0.00

ECG5000 0.921±0.00 0.938±0.00 0.932±0.00 0.937±0.00 0.938±0.00

FordA 0.591±0.02 0.691±0.01 0.656±0.01 0.677±0.01 0.700±0.02

FordB 0.519±0.00 0.652±0.01 0.639±0.01 0.555±0.02 0.645±0.01

HandOutlines 0.690±0.02 0.912±0.01 0.908±0.00 0.919±0.00 0.911±0.00

HandMovementDirection 0.551±0.03 0.585±0.03 0.664±0.01 0.612±0.02 0.641±0.04

Handwriting 0.297±0.01 0.312±0.01 0.447±0.01 0.390±0.01 0.365±0.01

Heartbeat 0.660±0.01 0.719±0.01 0.738±0.01 0.738±0.02 0.762±0.01

IMDB 0.874±0.00 0.876±0.00 0.877±0.00 0.873±0.00 0.876±0.00

KeplerLightCurves 0.321±0.07 0.452±0.07 0.489±0.04 0.452±0.02 0.459±0.05

Libras 0.669±0.05 0.845±0.01 0.835±0.01 0.765±0.01 0.781±0.01

Lightning2 0.607±0.00 0.623±0.00 0.720±0.04 0.605±0.02 0.772±0.03

Mallat 0.649±0.01 0.842±0.04 0.883±0.01 0.905±0.01 0.913±0.01

MotionSenseHAR 0.870±0.02 0.864±0.01 0.883±0.03 0.863±0.02 0.956±0.01

Reuters 0.739±0.00 0.777±0.00 0.779±0.00 0.776±0.00 0.780±0.00

ShapesAll 0.592±0.02 0.806±0.01 0.822±0.01 0.804±0.01 0.803±0.01

Trace 0.648±0.07 0.980±0.00 0.991±0.01 0.986±0.01 0.999±0.00

UWaveGestureLibraryAll 0.833±0.01 0.952±0.00 0.962±0.00 0.963±0.00 0.957±0.00

Wafer 0.984±0.00 0.989±0.00 0.994±0.00 0.992±0.00 0.988±0.00

Yoga 0.702±0.03 0.755±0.02 0.834±0.01 0.846±0.01 0.783±0.01

tings with step size variability, we explored values of Δε in {10−5, 10−4, . . . , 1},
and generated values of εεε from a uniform distribution in [ε, ε + Δε]. A similar
setting was used for exploring the case with diffusion variability. For compar-
ison, we ran experiments with standard ESNs, exploring values of ρ(Wh) in
{0.3, 0.6, 0.9, 1.2}, α in {10−5, 10−4, . . . , 1}, ωx and ωb as for the EuSN models.
In all the cases, the readout was trained by ridge regression (with regularization
coefficient equal to 1).

For each model individually, the values of the hyper-parameters were fine-
tuned by model selection, by means of a random search with 1000 iterations.
After the model selection process, for each model the selected configuration was
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Table 3. Average ranking across all the time-series classification benchmarks.

Model Avg Rank

EuSN-ε, γ 2.208

EuSN-ε 2.208

EuSN-γ 2.583

EuSN 2.750

ESN 4.458

instantiated 10 times (generating random reservoir guesses). These 10 instances
were trained on the entire training set and then evaluated on the test set. Our
code was written in Keras4, and was run on a system with 2× 20 Intel(R)
Xeon(R) CPU E5-2698 v4 @ 2.20 GHz.
Results. The achieved results are given in Table 2, which reports the test accu-
racy of each tested model, averaged over the 10 repetitions. The results in the
table show the practical effectiveness of the architectural variants proposed in
this paper, which overall achieve the best result in the vast majority of the
cases examined. In particular, the variant comprising the maximum variability
explored in the paper, i.e., EuSN-ε, γ is the one that is found to be superior
in most cases. Taken individually, the variability on the step size (EuSN-ε) is
slightly less effective than the full variability, while the variability on the diffu-
sion term (EuSN-γ) is the one that individually results in less effectiveness. It
is interesting to note that although in some cases the difference in performance
between the best proposed variance and the baseline EuSN model is minimal,
in many cases (including Blink, Computers, Cricket, HandMovementDirection,
Handwriting, Heartbeat, Lightning2, Mallat, MotionSenseHAR, and Yoga) the
improvement achieved is definitely relevant. Furthermore, the results show clear
confirmation of the accuracy advantage of the EuSN approach over traditional
ESNs. In the few cases where ESNs exceed the accuracy of standard EuSNs
(Computers, Cricket, MotionSenseHAR), the proposed EuSN variants achieve
even higher accuracy.

Our analysis is further supported by the ranking values given in Table 3,
which indicate that on average on the considered datasets, EuSN-ε, γ and EuSN-
ε models perform the best, followed by EuSN-γ and standard EuSN, while ESN
has the worst performance.

6 Conclusions

In this paper we have empirically explored the effects of (architecturally) intro-
ducing dynamical variability in the behavior of Euler State Networks (EuSNs),
a recently introduced Reservoir Computing (RC) methodology featured by non-
dissipative dynamics. Diversity has been enforced by using reservoir neurons with
4 Source code available at https://github.com/gallicch/VariabilityEuSN.

https://github.com/gallicch/VariabilityEuSN
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variable step size of integration (EuSN-ε), and with different diffusion coefficient
(EuSN-γ). Both the approaches impact on the organization of the diversifica-
tion of the dynamical behavior of the model, as pointed out by analyzing the
eigenvalues of the resulting Jacobian. Moreover, results on several time-series
classification benchmarks showed the efficacy of the proposed variants, and of
their synergy, as the EuSN model with both the introduced variability factors
(EuSN-ε, γ) resulted in the highest accuracy in a larger number of cases. Notwith-
standing the clear advantage of basic EuSNs over conventional Echo State Net-
works in the explored tasks, from a practical point of view, the results suggest
the convenience in exploring EuSNs in conjunction with at least the EuSN-ε, γ
variant.

Future work will focus on theoretical analysis of the effects of the dynamic
variability factors introduced in this paper, and their application in pervasive
artificial intelligence contexts.
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Abstract. In reinforcement learning, an agent learns optimal actions
for achieving a task by maximizing rewards in an environment. Dur-
ing learning, the agent decides its action for exploration or exploitation
at each time. In exploration, the agent searches for a new experience
defined by the state, action, reward, and next state. In exploitation,
on the other hand, the agent tries to maximize the rewards based on
the experiences. Exploration-exploitation trade-off is an important issue
in reinforcement learning. In previous work, this trade-off is achieved
based on how uncertain what the agent already learns about the envi-
ronment. While only simple criteria for this uncertainty are explored in
the literature, this paper evaluates more uncertainty criteria for efficient
reinforcement learning. Our novel uncertainty criteria uses agent’s mul-
tiple decisions at the same time. In addition, we also propose to employ
the advantage of the multiple decisions for bridging the gap between
exploration and exploitation by our novel exploitation mode. Extensive
experiments verify the effectiveness of our approaches for efficient learn-
ing. We also show the learning efficiencies of different learning strategies
in order to know which strategy is better for each task.

Keywords: reinforcement learning · exploration-exploitation
trade-off · deep learning

1 Introduction

In reinforcement learning, an agent learns optimal actions for achieving a task
by maximizing rewards in an environment including the agent itself. The basic
cycle of reinforcement learning is as follows. (1) The environment sends the
agent a state representing the environmental situation. (2) The agent sends its
action to the environment. (3) The environment sends a reward representing the
expected appropriateness of the action. The agent memorizes the triplet of the
state, action, and reward to choose better actions in future states based on past
experiences represented by the triplets.

When the agent chooses an action, it has two modes. These modes are called
exploration and exploitation. In exploration, the agent decides its actions to find
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14261, pp. 184–196, 2023.
https://doi.org/10.1007/978-3-031-44198-1_16
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new experiences. In exploitation, the agent decides the actions based on its expe-
riences to maximize future rewards. In reinforcement learning, the exploration-
exploitation trade-off is important for efficient learning.

This exploration-exploitation trade-off is studied in the literature [10,12,14].
For example, the bandit problem is tackled with several approaches such as UCB
in [13]. In the bandit problem, it is easy to determine the trade-off because the
environment is static. In many other practical tasks, however, the environment
is dynamic. Thus, the appropriate trade-off varies from state to state, and the
variation of its states is enormous. To cope with this difficulty, an agent decides
its action to go to less-experienced states in [12,14]. However, the number of
experiences is inappropriate for determining whether or not the experience is
enough. For example, we can learn simpler states with fewer experiences.

If we know whether or not enough experience is accumulated in each state,
the exploration-exploitation trade-off can be achieved. This sufficiency is judged
based on how uncertain the appropriateness of each action is in [10]. With this
state-action uncertainty, an agent selects either exploration or exploitation; if the
uncertainty is higher, exploration is selected. In [10], the uncertainty becomes
higher if the consistency between predicted rewards in continuous times is lower.
This is because, since the reward may not change significantly for a short period,
the experience is considered insufficient if the predicted rewards are inconsistent
between continuous times. At an early learning stage, however, the uncertainty
estimated from continuous rewards is not reliable because important differences
between similar states are not learned yet.

To avoid the aforementioned unreliability of rewards at different times and
explore more uncertainty measures, this paper proposes more uncertainty crite-
ria using rewards estimated at the same time. The multiple rewards at the same
time are estimated by differently-trained policies. In our work, the different poli-
cies are provided by multiple network heads in Bootstrapped DQN (BDQN) [9]
shown in Fig. 1, which is one of the state-of-the-art networks for reinforcement
learning. In Q-learning including BDQN, given the state, the expected cumula-
tive reward is estimated as the Q-value with its corresponding action. BDQN
estimates multiple Q-values, each of which is estimated by each head, for each
action at the same time. While only the highest Q-value is selected for action
decision, our method uses multiple Q-values for uncertainty estimation. In addi-
tion, our methods also use estimated actions for uncertainty estimation.

As with our method, BDQN is employed for uncertainty estimation in [6,11].
In these methods, however, the exploration-exploitation trade-off is not dis-
cussed, while this trade-off is the focus of this paper. Furthermore, we found that
a large gap between exploration and exploitation makes it difficult to smoothly
transit from one to the other for stable learning, as also mentioned in [13]. Based
on this finding, we propose a novel exploitation mode for bridging this gap in
order to achieve a better exploration-exploitation trade-off.

Our contributions proposed in this paper are summarized as follows:

1. State-action uncertainty criteria defined with multiple heads in a Q-learning
network such as BDQN.
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2. Novel learning mode using the advantage of multiple heads for bridging the
gap between exploration and exploitation.

3. New measure to evaluate efficiency and robustness in reinforcement learning.

2 Related Work

One of the easiest ways to solve the exploration-exploitation trade-off is ε-greedy
method [13]. In this method, an agent selects exploration with probability ε and
exploitation with probability 1 − ε. ε decreases gradually to select exploitation
more often as learning progresses. However, it is not easy to manually optimize
the hyper-parameter ε for arbitrary tasks.

To resolve this problem, the state-action uncertainty [10,11,16] is useful,
as mentioned in Sect. 1. In VDBE [16], TD error in Q-learning is used as the
uncertainty so that the probability of selecting exploration depends on the state
unlike pre-defined scheduling using ε. The agent could learn optimal actions
without large effects from ε. While multiple heads are used in [10] as well as in
our method, only a simple uncertainty criterion (i.e., the variance of Q-values
given by the multiple heads) is used with a limited number of networks (i.e., two
heads). In this paper, on the other hand, more complex decisions given by more
heads and uncertainty criteria are explored for efficient learning.

Since our focus in this paper is the trade-off and gap between exploration and
exploitation, other components in reinforcement learning (e.g., exploration algo-
rithm) are simply implemented. There are many methods that try to challenge
the trade-off [8,15]. For example, several exploration algorithms are proposed to
go to less-experienced states [4,5]. While these algorithms can improve explo-
ration efficiency, there is still a gap between exploration and exploitation.

3 Proposed Method

3.1 Exploitation with Multiple Heads

BDQN [9] has one shared network and multiple separated networks called heads,
as shown in Fig. 1 in which the number of the heads is H. Each head predicts Q-
values, each of which corresponds to each action, at each time. These heads are
randomly and independently initialized before learning so that different heads
select different actions based on different policies.

For exploitation in [9], the same head is continuously selected through each
episode, as shown in Fig. 2 (a). This exploitation guarantees that actions decided
by the same head (i.e., the same policy) are temporally consistent (e.g., smoothly
transit). In BDQN [9], however, only exploitation is implemented with no explo-
ration. This learning strategy decreases learning efficiency at an early learning
stage.

In our method, on the other hand, random action selection is employed
as exploration. While exploration enables efficient learning in conjunction with
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exploitation, there is a huge gap between the action selection criteria of explo-
ration and exploitation. That is, random actions selected in exploration vary
significantly, but temporal actions selected by exploitation shown in Fig. 2 (a)
are consistent. While such random actions are efficient at an early learning stage,
the temporally-consistent actions allow us to deeply search for better actions at
a late stage.

For bridging this gap mainly at a middle learning stage, this paper proposes
an intermediate mode in which actions are provided by randomly-selected heads
instead of the same head used in DBQN. This mode is called step exploitation,
which is shown in Fig. 2 (b), while we call exploitation in BDQN episode exploita-
tion. The different heads select different actions, as mentioned before. This step
exploitation allows us to decide the action of an agent based on past experience
while avoiding (possibly inefficiently) repeating similar actions selected by the
same head.

Fig. 1. Structure of BDQN [9], which has multiple heads. Each head predicts the Q
values of all actions. In test time, each head outputs an action, and the agent gathers
all actions and selects the most frequent action as the output action.

Fig. 2. Episode exploitation and step exploitation. In step and episode exploitations,
one head is selected in each step and episode, respectively.

3.2 Uncertainty Estimation Using Multiple Heads

As proposed in Sect. 3.1, exploration, step exploitation, and episode exploitation
are used for different purposes. These three modes should be selected based
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on learning progress. This learning progress is evaluated with the uncertainty
between the decisions of multiple heads in our method. This is because this
uncertainty score is expected to converge to smaller values by training the heads
with a large amount of experience; since all the heads are trained with the same
experience at each time, their policies converge to the same goal. We verify the
effectiveness of the following three criteria for uncertainty estimation.

Uncertainty Estimation Using Q-Values. In accordance with [11], the
uncertainty is estimated from Q-values provided by the different heads. In our
method, the variance of the Q-values of all the heads (enclosed by the red rect-
angle in Fig. 1) is regarded as the uncertainty. Given the state at the current
time t (denoted by st), the variance, σ2(st), is expressed as follows:

σ2(st) =
∑

a∈A var(Q(st, a))
|A| , (1)

where A and |A| denote a set of all possible actions and the number of its ele-
ments, respectively. Q(st, a) is a H-dimensional vector (Q1(st, a), · · · , QH(st, a))
where Qi(st, a) is the Q-value of the i-th head. With Q(st, a), var(Q(st, a)) =
1
H

H∑

i=1

(Qi(st, a) − Q(st, a))2 and Q(st, a) = 1
H

H∑

i=1

Qi(st, a).

Uncertainty Estimation Using Action Entropy. While uncertainty estima-
tion using Q-values is explored in [11], this paper proposes a novel uncertainty
criterion using actions selected by the multiple heads. Unlike Q-values repre-
sented by continuous values, the actions are represented as discrete labels. The
uncertainty of such discrete action labels (enclosed by the orange rectangle in
Fig. 1) is expressed by their entropy as follows:

E(st) = −
∑

a∈A

p(st, a) log2 p(st, a), (2)

where p(st, a) denotes a probability that a-th action is selected by all the heads.
In our method, p(st, a) = Ha

H where Ha is the number of heads each of whose
best action is a.

While Eq. (1) uses raw Q-values, Eq. (2) is computed from the best actions
selected by the argmax of the Q-values. Since the selected best actions are
simple representations so that the probability values of all actions are omit-
ted, this representation is robust to noise in the probability values. However,
the probability values may be advisable for uncertainty estimation. For exam-
ple, assume that H = 3, A = {a1, a2}, Q(st, a1) = (0.51, 0.49, 0.51), and
Q(st, a2) = (0.49, 0.51, 0.49). In this toy example, the policies of all three heads
seem almost equal. As with this interpretation, the variance in Eq. (1) is small.
However, the entropy in Eq. (2) is not small because both a1 and a2 are probable
(i.e., p(st, a1) = 2

3 and p(st, a2) = 1
3 ). As discussed above, uncertainty criteria

in Eq. (1) and Eq. (2) have advantages and disadvantages.
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Uncertainty Estimation Using Action Frequencies

Deterministic Model Selection. In addition to the entropy-based action uncer-
tainty described in Sect. 3.2, we also propose uncertainty estimation using the
frequencies of actions selected by multiple heads. In the entropy based on Eq. (2),
only the best actions selected by the multiple heads are used. In frequency-based
uncertainty, on the other hand, the frequencies of other actions are also used.

Remember that H and Ha denote the numbers of all heads and those each
of whose best action is a where a ∈ A. ma denotes the largest Ha. At an early
learning stage, ma is small, and exploration is required. ma becomes larger as
the learning progresses, and then exploitation is beneficial.

In addition to the largest Ha (i.e., ma), the frequency-based criterion also
evaluates the variety of Ha. This variety score denoted by ka is defined so that
the number of different actions is selected by the multiple heads. For example,
given H = 5, if the actions selected by the heads are {a1, a1, a2, a1, a5}, ka =
|{a1, a2, a5}| = 3. Contrary to ma, ka is smaller and larger when the learning
progresses sufficiently and insufficiently, respectively.

With a combination of ma and ka, the learning mode is chosen as shown in
Table 1. The learning mode is chosen by thresholding the uncertainty criteria,
ma and ka, as well as σ2(st) and E(st). How to determine the thresholds is
described in Sect. 3.3.

Table 1. Learning strategies.

ma is small ma is large

ka is large exploration step exploitation
ka is small step exploration episode exploitation

Probabilistic Model Selection. While the learning mode is chosen deterministi-
cally with the thresholds in Table 1, we also propose a probabilistic selection
method for choosing the learning mode. The “max and min values” of ma and ka
are “H and 1” and “ |A| and 1,” respectively. Larger and smaller ma correspond to
lower and higher uncertainties, respectively. Contrary to ma, larger and smaller
ka correspond to higher and lower uncertainties, respectively.

Based on these properties, our probabilistic method considers ma to be large
with (ma−1

H−1 × 100)%. With this probabilistic selection, for example, if ma is just
in the middle between the min and max values, ma is considered small and large
with 50% and 50%, respectively. Similarly, ka is considered to be large with
( ka−1

|A|−1 × 100)%.

3.3 Uncertainty Thresholds for Choosing Learning Modes

For choosing a learning mode (i.e., exploration, step exploitation, or episode
exploitation) at each step by using the uncertainty score (i.e., Eq. (1), Eq. (2),
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Fig. 3. Learning efficiency. The blue line is the learning curve. The red and brown lines
indicate the results of human subjects and a random agent, respectively. The orange
area is between the red and brown lines. (Color figure online)

ma, and ka), appropriate thresholds of the uncertainty score are required for
deterministic mode selection. However, it is not easy to manually determine
the thresholds that are appropriate to any task. This difficulty comes from the
variable range of the uncertainty scores because the uncertainty scores derive
from rewards that are defined depending on the task. The variable range of the
task-dependent reward function leads to the variable ranges of Q-values and
uncertainty scores based on Eq. (1).

To automatically determine the thresholds independently of the reward func-
tion, the uncertainty score computed in the first learning step is regarded as the
initial uncertainty score. This initial score is decreased by being multiplied by
constant decay rates in order to determine two thresholds dividing the score
range into three intervals. In the first, second, and third intervals, exploration,
step exploitation, and episode exploitation are used, respectively. In our exper-
iments, the two decay rates are 1

2 and 1
4 . With these two decay rates, the first,

second, and third intervals of σ2(st) are 1
2σ2

i ≤ σ2(st), 1
4σ2

i ≤ σ2(st) < 1
2σ2

i , and
σ2(st) < 1

4σ2
i , respectively, where σ2

i denotes the initial score.
Unlike the uncertainty score in Eq. (1), the range in Eq. (2) is known in accor-

dance with the number of heads so that the uncertainty is maximum when all
heads output different actions. This max score is decreased by being multiplied
by constant decay rates in order to determine the thresholds. In our experiments,
the two decay rates for the entropy are 2

3 and 1
3 .

As mentioned in Sect. 3.2, the ranges of ma and ka are also known: 1 ≤ ma ≤
H and 1 ≤ ka ≤ |A|. To split these ranges into large and small values in Table 1,
half of each max value is regarded as the threshold in our experiments.

3.4 Evaluation Measure of Learning Efficiency

While the learning performance is evaluated only with the reward in the last
step in the literature [2,7], this measure cannot evaluate how efficiently/fast
learning is done. For evaluating the learning efficiency, we propose to use the
learning curve in which the vertical and horizontal axes are the learning steps
and cumulative rewards, respectively. The more efficient the learning is, the
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larger the area under the learning curve indicated by blue. Note that, as with
the uncertainty score (1), this area also depends on the range of the reward
function. For normalization, Al

An
is used as our proposed evaluation score, where

Al and An denote the areas of the blue and orange regions in Fig. 3, respectively.

Fig. 4. Sample images of Breakout, Pong, Ms. Pacman, Boxing, and Star Gunner.

Table 2. Learning efficiency scores, Al
An

, defined in Sect. 3.4.

Breakout Pong Ms. Pacman Boxing Star Gunner

Step exploitation 5.312 0.731 0.167 5.523 0.499
Episode exploitation 1.275 0.744 0.184 5.036 0.438

4 Experimental Results

4.1 Tasks

We used Atari 2600 Games Environment [3], which is a common benchmark of
reinforcement learning [1,2,7]. This benchmark has a variety of tasks, so it is
enough to check the ability to adapt to several kinds of tasks. In our experiments,
five tasks, including Breakout, Pong, Ms. Pacman, Boxing, and Star Gunner are
used (Fig. 4). All experiments are evaluated with three seeds per task for seed-
independent evaluation. In all learning procedures, the number of learning steps
was 4e+6. For evaluation purposes, the scores that the agent can get in tasks
were computed every 25,000 steps.

4.2 Efficiency of Step Exploitation

The effect of our proposed step exploitation is validated by comparing it with the
standard episode exploitation. The results are shown in Table 2. For pure evalua-
tion of the difference between step and episode exploitations, in each experiment,
only a single learning mode (i.e., either step exploitation or episode exploitation)
is used without exploration.



192 T. Aizu et al.

In Pong and Ms. Pacman, episode exploitation learns more efficiently than
step exploitation. On the other hand, in Boxing, Star Gunner, and Breakout,
step exploitation can learn more efficiently. In particular, our step exploitation
outperforms episode exploitation significantly in those tasks. This difference may
depend on the agents’ action space except in Breakout. The agent has only six
and nine actions in Pong and Star Gunner, respectively, while 18 actions in
Boxing and Ms. Pacman. Our interpretation is that, if the number of possible
actions is small, even episode exploitation works well because it is not difficult
to explore the possible actions without random action selection. That is why
episode exploitation is better in Pong and Ms. Pacman.

Table 3. Efficiency of uncertainty scores for reinforcement learning. In Episode [10], the
modes are changed in every episode. In ε-greedy and time uncertainty [10], exploration
and episode exploitation are used. In our methods, exploration, step exploitation, and
episode exploitation are used. The best and second-best values are colored by red and
blue, respectively.

Breakout Pong Ms. Pacman Boxing Star Gunner

ε-greedy [13] 6.649 0.735 0.184 4.557 0.487
Episode [10] 2.677 0.781 0.161 4.027 0.488
Temporal uncertainty [10] 1.117 0.601 0.082 1.489 0.221
Q-values variance (Ours) 2.496 0.830 0.147 4.823 0.519
Actions entropy (Ours) 4.118 0.698 0.185 4.665 0.392
Deterministic action (Ours) 4.352 0.739 0.170 5.405 0.433
Probabilistic action (Ours) 6.777 0.615 0.178 4.524 0.445

4.3 Efficiency of Uncertainty

The effects of uncertainty scores for efficient learning are evaluated, as shown
in Table 3. In our proposed methods, exploration, step exploitation, and episode
exploitation are selected as proposed in Sect. 3.

Our methods are the best in all tasks. Especially, our methods outperform
others with a large margin in Pong and Boxing.

For detailed evaluation, the temporal histories of the uncertainty scores dur-
ing learning are shown in Fig. 5. The variance of Q-values, Eq. (1), decreases in
Pong, while it increases in Boxing despite our expectation. This difference leads
to a difference in learning efficiency; when the variance of Q-values is used, the
best score is obtained in Pong but not in Boxing.

The above difference comes from the difficulty of the task. In Pong, possi-
ble actions are only moving upward and moving downward. Furthermore, the
variation of scene states is also limited. In Boxing, on the other hand, various
actions are possible. In such a difficult task, the best action is not determinis-
tically determined, but there are multiple appropriate actions, each of which is
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modeled by each head. This varied learning in the multiple heads results in the
increases of Q-values in Boxing.

On the other hand, the entropy of action frequencies, Eq. (2), is not decreased
both in Pong and Boxing, as shown in Fig. 6. This may be caused due to excessive
information reduction by argmax for action selection.

4.4 Learning Strategies

Naturally, as mentioned before, our three learning modes are sorted in order of
randomness (i.e., random exploration, step exploitation, and episode exploita-
tion) so that exploration is done at an early learning stage, then step exploitation
is selected, and finally episode exploitation optimizes the policy. However, it is
also reported that the best order of the learning modes depends on the task
in [10]. This report motivates us to verify the learning efficiencies in different
orders of the learning modes.

Fig. 5. Variances of Q-values in Pong and Boxing.

Fig. 6. Entropies of selected actions in Pong and Boxing.



194 T. Aizu et al.

Table 4. Learning efficiencies obtained by different orders of the learning modes
selected based on the variance of Q-values.

Breakout Pong Ms. Pacman Boxing Star Gunner

random-step-episode 2.496 0.830 0.147 4.823 0.519
random-episode-step 6.291 0.683 0.177 5.024 0.460
step-random-episode 1.870 0.722 0.178 4.526 0.508
step-episode-random 0.771 0.395 0.115 1.215 0.146
episode-random-step 5.480 0.707 0.141 3.808 0.370
episode-step-random 0.873 0.365 0.135 1.665 0.157

Table 5. Learning efficiencies obtained by different orders of the learning modes
selected based on the entropy of action frequencies.

Breakout Pong Ms. Pacman Boxing Star Gunner

random-step-episode 4.118 0.757 0.185 5.179 0.392
random-episode-step 4.897 0.710 0.177 4.785 0.358
step-random-episode 5.027 0.738 0.140 4.114 0.277
step-episode-random 0.682 0.376 0.141 3.269 0.433
episode-random-step 6.888 0.704 0.134 4.071 0.269
episode-step-random 0.827 0.401 0.140 3.499 0.295

Table 6. Learning efficiencies obtained by different orders of the learning modes
selected based on the deterministic model selection.

Breakout Pong Ms. Pacman Boxing Star Gunner

random-step-episode 4.352 0.739 0.170 5.405 0.433
random-episode-step 5.504 0.755 0.191 5.247 0.393
step-random-episode 4.961 0.692 0.189 5.318 0.453
step-episode-random 0.792 0.350 0.083 1.093 0.188
episode-random-step 6.238 0.719 0.151 5.068 0.417
episode-step-random 0.821 0.319 0.085 0.830 0.240

Table 7. Learning efficiencies obtained by different orders of the learning modes
selected based on the probabilistic model selection.

Breakout Pong Ms. Pacman Boxing Star Gunner

random-step-episode 6.777 0.615 0.178 4.524 0.445
random-episode-step 6.517 0.709 0.154 4.924 0.475
step-random-episode 6.843 0.676 0.164 4.599 0.387
step-episode-random 1.047 0.326 0.139 2.615 0.329
episode-random-step 6.800 0.632 0.157 4.488 0.381
episode-step-random 0.943 0.477 0.123 2.855 0.296
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The results are shown in Tables 4, 5, 6, and 7. The order of the learning modes
is shown in the leftmost column of all the Tables. For example, “random-step-
episode” denotes that random exploration and episode exploitation are selected
with the highest and lowest uncertainties, respectively.

We can see that the learning efficiency is bad if the exploration is selected with
lower uncertainty. While the distributions of the learning efficiency scores are
complex in these Tables, overall, the best orders are r-s-e, r-e-s, and s-r-e. Among
these three orders, the best result depends on the task. Further experiments (e.g.,
experiments with other tasks) will be important future work.

By using our proposed efficiency measure method, we can compare the agent
learning efficiency with other agent learning methods. Since the order of the
best learning modes is reasonable, the efficiency measure method is good for
measuring efficiency. On the other hand, to use this method, we have to prepare
the result that the agent only selects random actions and human manipulation.
Other methods will be needed to measure learning efficiency.

5 Conclusion

We proposed a novel exploitation mode, mode selection criteria using uncer-
tainties from Q-values and actions, and a new measure for evaluating learning
efficiency. The novel exploitation mode was effective for learning optimal actions
in some tasks. The calculating uncertainty methods worked well. For future work,
we need to search for more effective methods for learning with other networks.
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Abstract. In event-based vision, visual information is encoded by
sequential events in space and time, similar to the human visual sys-
tem, where the retina emits spikes. Thus, spiking neural networks are
to be preferred for processing event-based input streams. As for classical
deep learning networks, spiking neural networks must be robust against
different corruption or perturbations in the input data. However, corrup-
tion in event-based data has received little attention so far. According
to previous studies, biologically motivated neural networks, consisting
of lateral inhibition to implement a competition mechanism between the
neurons, show an increase in the robustness against loss of information of
input data. We here analyze the influence of inhibitory feedback on the
robustness against four different types of corruption on an event-based
data set. We demonstrate how a 1 : 1 ratio between feed-forward exci-
tation and feedback inhibition increases the robustness against the loss
of events, as well as against additional noisy events. Interestingly, our
results show that strong feedback inhibition is a disadvantage if events
in the input stream are shifted in space or in time.

Keywords: STDP · unsupervised learning · event-based data

1 Introduction

How visual information is processed by the biological visual system is a long-
standing research area, investigating the functionality in different brain areas
along the visual pathway: from the retina via the primary visual cortex (V1),
up to higher cortical areas. This research also lead to the development of a
new type of camera generating a stream of events in space and time. These
so-called event-based cameras are inspired by the functionality of the retina
[17] and have become increasingly popular in recent years (see [4], and [17] for
a review). Due to the encoding of visual information in single events, spiking
neural networks (SNN) are suitable to process the camera output, also visible
by the increase of SNNs, trained and evaluated on different event-based datasets
[4]. One of the most used event-based datasets is the neuromorphic version of the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14261, pp. 197–208, 2023.
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MNIST dataset, the so-called N-MNIST dataset [18]. Therefore, different SNNs
were published, which train directly on the N-MNIST data set in a supervised
manner via a surrogate learning rule [12,19] or unsupervised with a spike-timing
dependent plasticity (STDP) learning rule [7].

As with the biological visual system, SNNs have to be robust against adver-
sarial perturbations [2] or against a certain level of input corruptions [6]. In
event-based datasets, the visual information of an object is not only encoded in
the spatial dimension but also in time, adding an additional dimension where
information can be altered. While adversarial perturbations on neural networks
for static images and their defenses are well studied (see [1] for an extensive
review), adversarial perturbations for event-based processing have received only
a little attention [2]. Moreover, improving the robustness of SNNs against cor-
ruptions in event-based datasets has not been sufficiently addressed.

Neural networks, trained with Hebbian-like plasticity, showed, that compe-
tition between neurons during training (as implemented by feedback inhibition)
lead to a more diverse input representation in the network [11]. Further, feed-
back inhibition leads to a more robust behavior against corruptions on static
images, such as the loss of input information [8,10]. This indicates a possible
role for feedback inhibition to improve the robustness against corruptions on an
event-based dataset as well.

To evaluate if inhibition is a suitable mechanism to improve the robustness,
we use a V1-like SNN, which we published previously [11], trained it on the N-
MNIST dataset, and test it on five different types of corruptions on the N-MNIST
dataset. To verify if the feature representation of the network is independent of
the strength of inhibition, as presented in previous work [11], we trained our
SNN with two different excitation-to-inhibition ratios during the training phase.
After that, we deactivated (or blocked) the inhibitory feedback synapses for both
SNNs. We observe that with active inhibition, the model with stronger inhibition
shows higher accuracy than the model with weaker inhibition, whereas blocked
inhibition leads to a similar accuracy for both models. We applied the following
corruptions: By deleting single events, either randomly out of the input stream
or in a specific area, we test the robustness against the loss of information,
similar to previous works [8,10]. We expand our analyzes by adding randomly
new events to the input event stream, adding noisy information, and shifting
single events randomly in space and time to distort the contextual information
between the single events, without changing the total number of events.

We observe higher robustness against the loss of information, as well as
against additional noisy events if strong inhibitory feedback occurs in the net-
work. In contrast to that, if the input information is distorted by shifting events
in space or time, strong inhibitory feedback decreases the robustness. To the best
of our knowledge, we present the first study of a biologically grounded spiking
neural network to evaluate the role of feedback inhibition for robustness against
different types of corruptions on an event-based dataset.
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2 Methods

2.1 Spiking Neural Network

The implemented spiking neural network (SNN) follows our previous publication,
where we combined two phenomenological spiking learning rules to train a model
of simple cells in Layer 4 of the primary visual cortex [11].

Fig. 1. The architecture of the spiking neural network. The ON-events (indicated
green) and OFF-events (indicated red) arrive separately on the LGN ON- and OFF-
populations. The excitatory population (orange triangles) and the inhibitory popula-
tion (blue circles) receive input from both LGN populations. Orange arrows indicate
excitatory synapses and blue arrows inhibitory synapses. (Color figure online)

The SNN consists of a population of LGN ON and OFF- neurons, which
process separately the ON and OFF events from the input data set and send
them to the excitatory and inhibitory populations (see Fig. 1). With an input
size of 12 × 12 pixels, where each pixel corresponds to one LGN neuron in the
ON or OFF path, our network consists of 288 LGN cells in total. The excitatory
population consists of 144 neurons and the inhibitory population of 36 neurons,
to match the 4 : 1 ratio between excitatory and inhibitory neurons as reported for
the neocortex [14]. Outgoing synapses from populations transmit excitatory or
inhibitory signals, depending on the transmitting neuron type, following Dale’s
principle.

We use an adaptive integrate and fire (AdEx) neuron model, following the
one of Clopath et al. (2010) [3] for the excitatory and inhibitory neurons. The
membrane potential (u) follows Eq. 1, with C as the membrane capacity, gL a
leak conductance, EL as the resting potential, VT the spiking threshold, ΔT as
a slope factor and I as the input current.

C
du

dt
= −gL(u − EL) + gLΔT e

u−VT
ΔT − wad + z + I (1)

Additionally, wad describes the hyperpolarization adaption current with τwad

as a time constant and a as an additional parameter. It changes over time fol-
lowing: τwad

dwad

dt = a(u − EL)− wad. The after-spike depolarization is modelled
by the dynamics of variable z as τz

dz
dt = −z.
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If the membrane potential u exceeds the spiking threshold VT and the neuron
releases a spike, u is reset to the resting potential EL, wad is increased by the
parameter b and z is set to Isp.

Further, the AdEx model can be parameterized to recreate different spiking
patterns [16]. Thus, the AdEx model can be considered a good compromise
between computational efficiency and biological plausibility.

The SNN is trained in a fully unsupervised fashion with a voltage-based
STDP learning rule [3] and a symmetric inhibitory STDP learning rule [24]. The
voltage-based STDP rule is used on all excitatory synapses (LGN to E, LGN to
I, E to I) and follows Eq. 2, describing the change of the weight (wij) from the
presynaptic neuron i to the postsynaptic neuron j.

dwij

dt
= ALTPxi(uj − θ+)+(u+ − θ−)+ − ALTD

uj

uref
Xi(u− − θ−)+ (2)

The weight increase and weight decrease depend on the presynaptic spike
trace (xi), the presynaptic spike event (Xi) as well as on postsynaptic mem-
brane potential (uj), and two temporal averages of it (u+ and u−). Additionally,
the parameters θ+ and θ− are thresholds, that the membrane potential or its
temporal averages must exceed to enable a change. Both parameters, ALTP and
ALTD, are the learning rates for long-term potentiation and long-term depres-
sion, respectively.

The symmetric STDP rule from Vogels et al. (2011) [24] is used for all
inhibitory synapses (I to E and I to I). Therefore, the inhibitory weight wij

between a presynaptic neuron i and a postsynaptic neuron j changes as follows

dwij

dt
=

{
η(xj − ρ) , for presynaptic spike
η(xi) , for postsynaptic spike

(3)

where xi and xj are spike traces of the presynaptic and postsynaptic neuron,
respectively, η the learning rule, and ρ a homeostatic parameter to control the
strength of inhibition. For each spike of the corresponding neuron, the spike trace
increases by one and decays by τ dx

dt = −x.
The SNN has been implemented in Python 3.8, using the ANNarchy simula-

tor (v.4.7.2) [23], with a simulation time step of dt = 1ms. The implementation
of the SNN, the training, and the evaluation of the corruptions are available on
GitHub1

2.2 Dataset

Our network has been trained on the event-based version of the MNIST dataset,
called N-MNIST [18]. To load the dataset we used the Tonic python package [13].
Each sample in the N-MNIST dataset has a spatial resolution of 34×34 pixel but
differs in length of time from 300 ms up to 350 ms. Using a neuromorphic vision
1 https://github.com/hamkerlab/Larisch2023_EventBasedSNN.git.

https://github.com/hamkerlab/Larisch2023_EventBasedSNN.git
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sensor, the MNIST dataset was shown on a monitor, performing three movement
saccades to record the movement with the camera. Due to this, an event-based
version of each sample in the MNIST training and test set was created. Similar
to the original MNIST dataset, the samples of the N-MNIST dataset contain
a border with no relevant information, meaning no events during the complete
presentation time. Due to this, we removed a border of 5 pixels, leading to a
spatial resolution of 24 × 24 pixels.

2.3 Training

As it has been shown in our previous work, stable receptive fields emerge at
around 400.000 [11] stimulus presentations. Thus, we trained the SNN on the
same number of randomly chosen samples from the N-MNIST training set. Due
to the input size of the network, after selecting a sample, a spatial window of
12 × 12 pixels were randomly selected. This leads to the emergence of localized
receptive fields for each neuron. So a neuron encodes a local feature instead
of a complete number. We separated ON and OFF events into separate event
streams to determine the spike times of each LGN neuron in the ON-population
and OFF-population.

Recording with the neuromorphic sensor leads to a high temporal sampling
rate and recording events on a microsecond time scale. Due to a simulation time
step of 1ms in our network, we accumulate all events appearing in one 1ms in
that way, that all events appearing at the same position in a 1ms window are
represented by one event. Due to this 0.35% from the ON events and 0.1%
of the OFF events are accumulated. Accumulating was performed separately
for ON and OFF events. The resulting event stream in the spatial window and
350ms presentation time is given to the network.

2.4 Different Strengths of Inhibition

It has been shown in previous work, that the quality of the input representation is
independent of the excitatory to inhibitory ratio during the network training [11].
However, the accuracy and robustness against corruption decreases if inhibition
is set off, after learning [8,10]. To evaluate if either the inhibitory strength or
the resulted encoded features (due to the emerged receptive fields) is important
for the robustness, we trained the SNN with two different strengths of feedback
inhibition. To do that, we changed the ρ parameter in the inhibitory learning
rule for the feedback connections. With a ρ = 12, we achieved a nearly 1 : 1
excitation to inhibition ratio (called EI1/1 model), whereas a ρ = 20 leads to a
three-time stronger excitation than inhibition ratio (called EI3/1 model). Each
of both model variants is trained and evaluated on the corruptions ten times.
Additionally, we deactivated (or blocked) the feedback inhibitory synapses in
both model configurations and evaluated them on the corruptions again (called
EI1/1 blockInh and EI3/1 blockInh, respectively).
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2.5 Measuring Accuracy

To measure the quality of the input encoding in our network, we used a linear
support vector machine (SVM), fitted on the spike rate (the number of spikes)
of the excitatory population on each training sample, and evaluated the SVM
on the spike rate on the test set to measure the prediction accuracy. To record
the spike rate on the training set, we presented the complete N-MNIST training
set again, after the training of the SNN was finished and froze the weights in the
SNN. Due to the small input size of the SNN, we split each sample along the
spatial dimension of 24× 24 pixels into four non-overlapping windows. For each
window, we record the spike rate for each neuron over the complete presentation
time of 350 ms. By concatenating the recorded spike rates of the four windows,
we created the sample vector for each sample, which is used to fit the SVM.
The same procedure was done on the N-MNIST test set as well to obtain the
sample vectors for evaluation. A similar procedure was done in previous works
[10,22]. The previous paper has shown, that the input encoding quality of the
inhibitory population is lower than that of the excitatory population [22], due
to this we only used the spike rates of the excitatory neurons. We report here
the average over the ten repetitions with the corresponding standard deviation
of the mean value. Additionally, we measured the Precision and Recall value for
each of the ten classes to investigate, which class is better represented in the
SNN. We report here only the mean values.

2.6 Evaluate Robustness Against Corruptions

To evaluate the robustness of our SNNs against corruptions on the event-based
dataset, we used the Tonic python package [13], which provides different possi-
bilities to manipulate the event stream. We applied five different corruptions on
the event input stream (see Fig. 2), where each of the corruptions was applied on

Fig. 2. Samples of the five perturbations used in this study for five different levels
of the corresponding perturbation, where level 0 means no perturbation and level 10
maximum perturbation. Each sample shows the accumulated events in the corrupted
input stream for a 15 ms time frame. White pixels indicate ON-events and black pixels
indicate OFF-events.
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ten different levels of corruption strength. The first corruption drops all events in
a randomly chosen spatial area of the input stream (called DropArea), whereby
the size of the area increases in ten percent steps, in relation to the spatial size
of the input. In the second corruption, a randomly chosen number of events of
the complete event stream is dropped randomly (called DropEvent). We change
the number of events in steps of ten percent from 10% to 100%. The third
corruption adds events randomly in the event stream, following a multivariate
uniform distribution (called UniformNoise). Due to the fact, that the original
Tonic implementation did not check if a new event is created for a position in
space and time where an event already exists, we created for this corruption
our own implementation to ensure, that only new events will be created, which
are not existing already in the event stream. We increased the number of added
events from 1.000 to 10.000.

Whereas the other corruptions changed the number of events in the input
stream, the last two corruptions shift the position of each event along the two
spatial dimensions and the time dimension. The shift of the spatial position
follows a multivariate Gaussian distribution, in which the standard deviation
determines the shift (called JitterSpace). We increased the standard deviation for
both spatial dimensions equally from one up to ten pixels. To shift an event along
the time dimension, the shift follows a one-dimensional Gaussian distribution.
Therefore, we increased the standard deviation from one to 100 ms. Events that
shifted before time point zero or after time point 350 (what is the presentation
length of one sample), are no longer part of the event stream.

We recorded the spiking activity of each excitatory neuron for each of the
ten levels of corruption strength as described above. To evaluate how strongly
the response vector is influenced by each corruption, we first fitted a linear SVM
with the sample vectors, recorded on the normal, not corrupted N-MNIST train-
ing set. Then, we used the sample vectors recorded on each corruption level as
an input to the SVM to predict the sample class. A stronger corruption of the
input stream should lead to a stronger corruption in the sample vector and to a
wrong classification by the SVM.

3 Results

After training, we visualized the receptive fields of the excitatory and inhibitory
populations by rearranging the input weights from the ON and OFF LGN pop-
ulations (see Fig. 3). Due to the small input size, the receptive fields resemble
simpler features instead of complete numbers and partial 2D-Gabor functions,
as expected by a simple cell model. Despite that, also curved receptive fields are
visible.

On the normal, non-corrupted, N-MNIST dataset, the EI1/1 model achieved
an accuracy of 95.12%±0.83, achieving better accuracy values than the unsuper-
vised STDP network proposed by [7] or the liquid state machine (LSM), whose
connection to the readout layer is trained with Spatio-Temporal Backpropaga-
tion (STBP), proposed in [20] (see Table 1). In contrast to that, the SNN with
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Fig. 3. Left, receptive fields of 18 randomly chosen excitatory cells. Right, receptive
fields of 18 randomly chosen inhibitory cells.

Table 1. Accuracy values on the N-MNIST dataset

Model Learning type Learning rule Accuracy in %

LSM [20] Supervised STBP 94.43
SNN [7] Unsupervised STDP 76.01
EI1/1 model Unsupervised STDP 95.12 ± 0.83
EI3/1 model Unsupervised STDP 91.02 ± 2.79

weaker inhibition achieves only an accuracy value of 91.02% ± 2.79. If inhibi-
tion is blocked, the accuracy of both network types drops to 91.42% ± 2.2 and
90.65%±1.66, respectively. We also measured the Precision and Recall score for
each of the ten classes to investigate, how well the single classes are recognized
(see Table 2). The EI1/1 model and the EI3/1 model achieve the highest scores
by detecting samples of class 2 and the low scores by detecting class 9. The
EI3/1 model shows for class 4 and class 6 high differences between the Recall
and Precision scores from 9 − 10, while the scores for Recall and Precision for
the EI1/1 model show only a difference of ≈ 1. This shows that stronger inhi-
bition improves the discriminability between class representations and improves
the accuracy.

By applying the first corruption type, the SNN with strong inhibition shows
the highest robustness, whereas both models without inhibition and the model
with weak inhibition show similar robustness (see Fig. 4). However, at an area
size of 30%, the accuracy of all models drops strongly and is nearly linear with
increasing area size.

Table 2. Precision and Recall for the ten different classes. Top row: EI1/1 model.
Bottom row: EI3/1 model.

Model Metric 1 2 3 4 5 6 7 8 9 10

EI1/1 model Precision 95.87 97.9 96.03 94.26 97.23 94.19 96.19 95.84 92.49 91.57
Recall 97.98 98.71 92.04 93.14 95.6 94.44 97.08 94.49 91.55 93.73

EI3/1 model Precision 92.23 97.39 90.87 84.57 94.44 91.45 95.97 93.72 86.1 89.68
Recall 96.63 98.39 87.67 93.38 91.91 79.98 94.13 92.21 83.14 87.97
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If events are randomly deleted out of the event stream, again the EI1/1
model shows to be most robust, having an accuracy around 90%, if 50% of the
events drop. In contrast to the first corruption, the EI3/1 model is more robust
than both models without inhibition.

Whereas the first two corruptions deleted events, the third corruption adds
additional events randomly into the input stream. Similar to the first two cor-
ruptions, strong feedback inhibition leads to a more robust encoding, whereas
weak inhibition improves the robustness only just a little in comparison to both
models without inhibition.

By shifting the events in space, a strong decrease in performance is observable
for all models, regardless of the strength of feedback inhibition or the existence
of inhibition. Additionally, at higher pixel drifts, stronger inhibition leads to a
stronger drop in the accuracy values, whereas weak or no inhibition shows similar
robustness.

However, stronger inhibition leads to higher robustness, if the events only
shifted by 20ms in time. This effect reverses for larger shifts around 40ms or
higher. Both models with shutdown inhibition show similar robustness against
the shift in time. By shifts around 80 ms, the accuracy for some models increases
again. Due to the fact, that events that are shifted before the original starting
time point or behind the last time point of 350ms are deleted, we assume that
with larger shifts more and more events are deleted from the event stream rather
than distort the stimulus information in time.

Fig. 4. Accuracy for five different corruptions and levels. EI1/1 model indicated by
the blue solid line, EI3/1 model indicated by the solid red line, EI1/1 blockInh model
is indicated by the dotted gray line and the EI3/1 blockInh model is indicated by the
dotted dark red line. (Color figure online)

4 Discussion

We evaluated how inhibition influences the robustness of a spiking neural net-
work against corruptions on an event-based dataset. To do so, we trained a spik-
ing neural network, which was built to resemble layer-4 of the primary visual
cortex [11], on the event-based N-MNIST dataset [18].
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Our results show that models with shutdown inhibition have similar robust-
ness against all five corruptions. This indicates that the resulting receptive fields
in these networks showing a similar quality in terms of input encoding, regardless
of the strength of inhibition during the training phase [11]. With a 1 : 1 excita-
tion to inhibition ratio, the robustness against changes in the number of input
events, by dropping events or adding new events, improves. Dropping events
leads to a loss of information and a reduced amount of input current to the
network. Due to this, the network activity should decrease with further dropped
events. It has been shown previously, that feedback inhibition is damping the
neuronal gain function [11]. Due to this, we assume that dropping events leads
only to a weak drift away from the activity occurring upon the original stimuli,
resulting in a robust neuronal representation. Adding new events randomly in
space and time, occluding the stimuli and increasing the amount of input current
shall increase the input current leading to a higher activity of the inhibitory neu-
rons to increase the amount of feedback inhibition, received by the postsynaptic
excitatory neuron.

In contrast to those corruptions, shifting events in space and time leads to
a distortion of stimulus information, but does not change the total input cur-
rent (except for long shifts in time). Our results show, that strong inhibition
did not provide better robustness against this type of perturbation, on the con-
trary, it weakens the robustness. We assume that strong inhibition leads to an
attractor-like dynamic in our network [15]. The distorted input information,
through shifted events, did not match with the connectivity structure of inhibi-
tion inside of the network. Due to this, inhibitory interneurons induce another
attractor state, forcing the network to another internal representation. It has
been shown in previous studies, that lateral excitatory connections as well as
top-down feedback signals can increase robustness on distorted stimuli [21], two
connectivity structures our network did not include. Lateral excitation between
the excitatory cells may stabilize the neural representation and lead to more
robust attractor states, while top-down feedback may provide more stabilizing
contextual information [5].

Previous studies about robustness improvements, especially against adver-
sarial attacks, propose methods that increase the number of training samples,
like adversarial training [2]. Despite their success to increase robustness, adding
adversarial samples to the training set increases training time and could lead
to a bias toward the used perturbations for adversarial training, making it less
robust against new attacks [25]. In contrast to that, feedback inhibition as a
network motif can improve the robustness independently of the training data.
While we only investigated the robustness against input corruptions, it has been
discussed in previous works that inhibitory feedback also can improve the robust-
ness against adversarial attacks [9].

In summary, our work supports the potential of feedback inhibition to
increase the robustness against corruptions on an event-based dataset. The pre-
sented weakness against shifting events shows, that further research on the effect
of more complex network motifs for robustness is warranted.
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Abstract. Human-human interaction includes synchronizing behaviors,
such as nodding and turn-taking. Extracting and implementing these
synchronization behaviors is crucial for the communication robot which
can do “feeling good” conversations. In this research, we propose a frame-
work for extracting the synchronization behavior from a dyadic conver-
sation based on self-supervised learning. “Lag operation” which is the
time-shifting operation for the features of a subject is applied to the
conversation data, and a neural network model is trained based on the
operating data and label of the amount of operation. The representation
space is obtained after the training, and the timing-dependent behaviors
are expected to isolate in the space. The proposed method is applied
to about four hours of conversation data, and the representation of the
test data is calculated. Data with social behaviors such as “eye contact”,
“turn-taking”, and “smile” are extracted from the isolated region of the
representation. Designing the behavior rules of the communication robot
and investigating the proposed framework characteristics are our future
projects.

Keywords: Human-human communication · Synchronizing
behaviors · Deep learning · Unannotated data

1 Introduction

The development of communication robots that can mutually interact with a
human has gained immense attention lately [2,9]. For human-human commu-
nication, a bi-directional interaction, i.e., a “full-duplex” interaction is always
happening among people. Although this synchronization is fundamental to a
social robot, sufficient bi-directional communication is not generally developed
for the actual interaction scene. To realize a communication agent with a syn-
chronizing motion, it is necessary to generate a real-time reaction by observing
an interaction scene among people.
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The timing of the expression of social behavior must be considered for an ade-
quate real-time reaction. Certain behaviors including nodding [14] and smiling
[15] are synchronized at an appropriate timing during human-human commu-
nication. Implementing the timing of synchronization behaviors in the agent is
necessary for natural interaction. Surveying when the human behaviors are in
synchronization is crucial to extract the behavioral rules.

To investigate the behavior synchronization, methods calculating the corre-
lation between the temporal data from a sensor [6], e.g., microphone and video,
and evaluation of video clips by subjects [3] are considered. Since a correlation
is calculated from two temporal behaviors such as voice and neck angle, it is not
easy to extract the relationship between several variables. In addition to many
video clips, evaluating “Are they synchronized?” is difficult if subjects anno-
tate videos with some labels. It is crucial to automatically extract synchronized
behavior in a database that contains interaction data.

In this research, we propose an data extraction framework of the synchro-
nization behavior of human-human interaction based on self-supervised learning
[5,12,13,16]. The aim of the method is to construct the distinctive feature space
and to extract data including the synchronization behavior from the specific
region in the space. The proposed framework handles dyadic conversation, i.e.,
involving two subjects in a conversation scene. To generate augmented data for
learning a neural network model, features from one subject are combined with
the time-shifted features from the other one, and this operation is called a “lag
operation”. Certain behaviors, such as nodding, can affect the impression [17],
and the timing of such synchronizing behavior is mutated due to the lag opera-
tion. The amount of time-shift is learned and estimated by using a deep neural
network approach, and the representation space is obtained by projecting data
with the learned network.

We apply the proposed framework to the gathered dyadic conversation data,
and the neural network model is trained on the data. After learning the model,
the representation space of input features is obtained. There are separated and
un-separated features in the space, i.e., there is the structure. The density ratio
(score) on the learned representation space is calculated based on a kernel density
estimation [4] and used as the criterion of data extraction. The data is extracted
from the separated and un-separated regions. Synchronizing behaviors (e.g., nod-
ding, smiling, etc.) are included in the separated region. Conversely, unsynchro-
nized features (e.g., thinking, out of sight, etc.) are in the un-separated area.
Inspired by these, data including synchronization behavior can be extracted by
using the proposed framework. For future work, rules of behavior for communi-
cation agents are designed from the extracted data.
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2 Related Works

Interpersonal synchronization during the conversation is investigated in some
research. As for the nodding synchronization during the face-to-face dyadic con-
versation, the phase of head movement of subjects is analyzed [14]. The analysis
method of a facial expression using an EMG signal [18] is also proposed, and the
research shows the synchronization of smiles is quite rapid. In many research,
the synchronization of two subjects is analyzed using the calculation of correla-
tion and modeling signals as the temporal data [6]. The sequentially occurring
events which are related to some variables (e.g., raising the face, nodding, and
then smiling at each other) are not considered in these approaches.

The technique of self-supervised learning has been developed to obtain the
representation from un-annotated information. Self-supervised learning is mainly
used for a small number of labeled data, and the network model weights are
obtained by pre-training with un-annotated data and automatically generated
labels. For self-supervised learning approaches, a transformation φ, e.g., a tradi-
tional image process (e.g., rotating and flipping) [5,8,13] and by breaking down an
image like a puzzle [11,16], is applied to input image. A neural network is trained
on the converted data and the automatically generated label, i.e., which image
processes are applied, and where is the correct position of broken image patches.

3 Problem Settings

Thanks to the recent development of devices (e.g., camera and microphone), mas-
sive interaction data can be collected. Data is gathered from dyadic conversations,
wherein the features of two subjects at time t are xL(t), xR(t). Since the interac-
tion data include the social information, past information must be considered for
its context. T time-step features of the two are defined as XT

L (t) = [xL(t − i)|i =
0, ..., T ],XT

R(t) = [xR(t − i)|i = 0, ..., T ]. Figure 1 shows the relationship between
x(t) and X(t) at time t. Note that the time indices of the features of subjects ·L, ·R
remain consistent. After obtaining data, the annotation labels are added gener-
ally, and a function for the task is learned under the label. Since the procedure of
annotation is expensive, the number of annotated data is small.

In this research, we aim to develop data processing for the interaction data
φ(XT

R(t),XT
L (t)) and a framework for extracting the synchronizing behavior.

φ(XT
R(t),XT

L (t)) is an input feature for self-supervised model, and φ is designed
for which the characteristics of interaction data must be considered.

4 Methods

In this section, the proposed learning framework trained with the amount of
time-shift label is described. A part of the behavior of two subjects is assumed
to be synchronized, and the conversion for interaction data φTL is designed as
the lag operation. The purpose of self-supervised learning is to extract features
from the converted data.
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Fig. 1. Relationship between x(t) and X(t).

Fig. 2. Input and output variables for self-supervised learning.

4.1 Lag Operation

Corresponding to the time indices of both features XT
L (t),XT

R(t), time-shifted
feature is defined as XT

L (t),XT
R(t + τ). Thus, the lag operator φTL becomes

φTL(XT
L (t),XT

R(t), τ) = {XT
L (t),XT

R(t + τ)}, (1)

where τ is the amount of lag operation, i.e., time-shift. τ is sampled from the set
of time-shift T . Without the loss of generality, conversion target XR is swapped
with XL due to the symmetry of temporal data.

Figure 2 shows the input features, output variables, and estimation model.
φTL(XT

R(t),XT
L (t), τ) is input to the model, and the model output the represen-

tation z. z is input into lag estimator f to estimate the shift τ̂ indicating the
amount of time-shift.

4.2 Loss Function

τ ∈ T is used as the label of self-supervised learning. To classify the amount of
lag operation, the following loss function,

L(zp, τB , τ̂B) = αLc(τB , τ̂B) + βLd(zp, τB), (2)

is calculated. zp, B, τB and τ̂B are the representation, batch size, amount of lag
operation for each data, and estimated amount of time-shift, respectively. α and
β are the constant weights for each term. Lc and Ld are the classification loss to
estimate τ and distance-based loss to determine placements of representations,
respectively.
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Lc is defined as the cross-entropy loss

Lc(τ, τ̂) =
1
b

B∑

b=1

∑

i∈T
p(τ = i) log(p(τ̂ = i)) (3)

to estimate the discrete label τ . To learn the distance of each feature, Ld is
defined as the soft-nearest neighbor loss [10]

Ld(zp, τB) = −1
b

B∑

b=1

log

⎛

⎜⎜⎜⎜⎜⎜⎝

∑
j∈1···B

j �=b

τB
j =τB

b

exp− d(z
p
b

,z
p
j
)

T

∑
k∈1···B

k �=b
exp− d(z

p
b

,z
p
k
)

T

⎞
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, (4)

where T and d(·) are the temperature variable and distance function, respec-
tively. In this paper, the L2-norm d(xb, xj) = ||xb − xj ||2 is used. Representa-
tions with the same τ are placed to close area in representation space by Ld.
By employing both Lc and Ld, problems of classification and placement are
handled simultaneously. Developing the loss function for self-supervised learning
with interaction data is the future work.

4.3 Score of Synchronization Behaviors

Probability density is estimated based on the learned representation space
regarding the amount of lag operation in each case, and the density ratio of
the representation with τ = 0 is calculated, and the ratio is estimated via the
kernel density estimation [4]. The density ratio is used as the score, and the
synchronization behavior is expected to be extracted based on the score.

The set of data with τ is defined as xτ = {φTL(XT
L (t),XT

R(t), τ)|τ ∈ T , t =
1, ..., N}. The representation zτ is extracted from xτ , and the probability density
is calculated as K(zτ , h) = 1

Nh

∑N
i=1 k

(
zτ −zτ

i

h

)
, where k(·) is the kernel density

function. In this research, the Gaussian kernel function is used. h and N are the
bandwidths of the kernel function and sample size of the dataset, respectively.
The density ratio for z0, i.e., the representation with τ = 0, is calculated as

R(z0, zτ , h) =
K(z0; z0, h)

1/(|T | − 1)
∑

i�=0 K(z0; zi, h)
. (5)

This ratio is used as the “score” of representations.
z0 is isolated in the space if R is large, and z0 and zi are closely placed if R

is close to 1. When two subjects interact with each other, R is expected to be
large.
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Fig. 3. Network Architecture of self-supervised learning.

5 Experiment of the Synchronizing Behavior Extraction

In this experiment, self-supervised learning is applied to the collected conversa-
tion data for learning the representation. Face and voice features are extracted
from videos during dyadic conversations. After the learning, isolated data is
extracted from the representation space to verify if data with synchronizing
behavior such as nodding can be extracted.

5.1 Data Processing

In this experiment, fifteen sessions are collected. The total time length of the
sessions is about four hours as one session lasts for about 10 − 20 minutes. A
video with face information is recorded with an omnidirectional camera (Xacti
CX-MT100). A dynamic microphone is placed near the mouth to observe the
voice of each subject.

Input features for the model are generated from the data obtained. From the
video and audio data, three-dimensional face rotation (roll, pitch, and yaw) and
the corresponding velocities, two-dimensional gaze rotation (x- and y- axes of an
image) and the corresponding velocities, fourteen-dimensional facial action unit
(FAU), and voice activity detection (VAD) results are extracted. The video and
audio sampling rates are set to 30 fps and 48KHz, respectively.

Face Feature Extraction. By applying OpenFace [1] to the video, face position
and features can be estimated. From the results of OpenFace, face and gaze
rotation as well as FAU can be obtained.

Voice Activity Detection. Voice activity is detected by distinguishing the voice
and noise, including breath and microphone-touching. For detecting the voice
activity of each subject, inaSpeechSegmenter [7] is applied to the gathered voice.
inaSpeechSegmenter is a detection method based on the deep learning model,
and its output is classified into the labels of “noise”, “no energy”, “music”, and
“speech”. Appropriate sections of “speech” are selected and labeled as a result
of VAD, and the power of “speech” is recorded.
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Fig. 4. Compressed representation space with t-sne. Blue, orange, green, red, and pur-
ple dots represent the amount of lag operation τ = −1.0,−0.5, 0, 0.5, 1.0. (Color figure
online)

Combining Features. By combining the face motion, gaze motion, FAU, and
VAD, the input feature of the self-supervised learning model is generated. To
obtain the face-related features, each feature is down sampled from 30 fps to
10 fps for smoothing signals. The power of voice is down sampled to 10Hz to
calculate the maximum power for the past 48, 000/10 = 4, 800 samples. These
features are combined for each subject, and the input features [xL(t), xR(t)] for
the learning model are generated. As a result, twenty-five-dimensional explana-
tory variables are obtained for each subject.

5.2 Experimental Settings

Thirteen sessions are used as the training dataset, and the remaining two are
the test dataset. Test data is input into the learned model, and representations
are output.

The length of past information T is empirically set to T = 50, i.e., a five-
second context is used. To prevent the duplication of information, features are
sampled for every five frames. Therefore, data in training and test dataset is
defined as [X50

L (t),X50
R (t)|t = 50, 55, 60, ...]. The number of samples for the train-

ing and test datasets is 30, 176 and 2, 467, respectively.
Figure 3 shows the network architecture employed in this experiment. The

architecture is a five-layer convolutional neural network, and the features of each
subject are handled as a two-channel image. The set containing the amount of
lag operation for self-supervised learning is T = [−1s,−0.5s, 0s, 0.5s, 1s] with
the maximum time-shift of one second. The constant variables in Eq. 2 is set to
α = 1.0, β = 0.2. Adam optimizer is used to learn the network, and the learning
rate is set to 5 × 10−4.
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Fig. 5. Examples of the features of extracted samples. The horizontal axes represent
the frames of input data. Red, blue, and green lines are three positives and three
flats. Solid and dotted lines reflect features of “upper subject” and “lower subject”,
respectively. (Color figure online)

5.3 Results of the Behavior Extraction Experiment

The representation space is obtained by learning with the training dataset. Fea-
tures after conversion φTL(·, ·, τ) are expected to have time-dependent charac-
teristics if isolated in the representation space. In contrast, converted features
with small behaviors are not separated, i.e., each representation with τ is mixed.
Note that, since the tendency of extracted data of two test sessions is similar,
the following results are discussed in the one test session.

Representation Space. Fig. 4 shows the representation space compressed by t-
SNE [19]. For τ , parts of training and test data are separated. There are many
unseparated data in the space, and these representations are placed at “similar”
positions even if different τ are applied.

Test data is not “clearly” separated when compared with the training data.
Since human behaviors are different for each subject, separating the test data
is more difficult the separating the training data. More conversation data is
necessary to obtain a generalization ability.

Results of Feature Extraction. Score R(z0test, z
τ
train, h) in Eq. 5 is calculated based

on the representation space. ztrain and ztest are the representations of training
and test data.

The representation with highly isolated (positive) data in the space and
unseparated mixed (flat) data are extracted. The detailed criteria for feature
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Fig. 6. Example of extracted data. (a) shows the top-1 positive of test session 1, (b)
shows the top-1 flat of test session 1, (c) shows the top-1 positive of test session 2, and
(d) shows the top-1 flat of test session 2.

extraction in this experiment are described in the next section. Figure 5 shows
the neck and gaze motions and VAD of the top three extracted positives and
flats, respectively. The motions in the figure are rotation around the x-axis, i.e.,
pitch motion. As for the neck motion, flats are small change, and angular values
are larger than positives. Since subjects do not look ahead of this point, these
extracted data do not form the interaction scenes.

Regarding the eye motion, solid and dotted lines of positives demonstrate an
intersection for the subjects, i.e., making the eye contact. In the case of flats,
an eye contact does not happen since the lines are parallel. Eye contact is a
synchronizing behavior since the datapoints are isolated in space.

In VAD, turn-taking happens in positives since solid and dotted lines are
activated alternatively. Only one subject continues to talk in flats. The red solid
line is activated at around 25 frames in flat, while the dotted line is not activated
until 40 frames. In comparison with the results of gaze and neck motions, no
synchronizing behaviors are observed in flats.
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Figure 6 shows an example of the extracted video clips in the test sessions.
As seen in the top-1 positive (Fig. 6(a) and (c)), a subject reacts to speaking of
another subject. For Fig. 6(a), the eye contact and smiling happen after the half
of the clip duration, and large neck motion and smiling happen after the half
of the clip for the Fig. 6(c). Conversely, there is no synchronizing behavior since
the movement is small the entire time in top-1 flat (both Fig. 6(b) and (d)) even
if the session is different.

6 Conclusions

In this research, we proposed the automatic extraction framework of the synchro-
nizing behavior of human-human interaction based on self-supervised learning.
In the framework, the lag operation, wherein the time index of one subject is
shifted, is applied to a dyadic conversation data. Synchronizing behavior is sep-
arated in the representation space by learning about the label of the amount of
time-shift. The score is added to the data based on the kernel density estimation.

The proposed method is applied to the conversation dataset and validated
to extract the behaviors from the test data. After learning with the lag-operated
data, synchronizing behavior is selected based on the score criterion. Extracted
data includes social behaviors, such as “eye contact”, “turn-taking”, and “smile”.
Our framework decides whether synchronization occurs or not based on the
relationship of certain variables.

Extracting the rules of crucial behaviors for an interaction are important to
evaluate the next one. The rules are applied to the behavior of communication
robots to develop the robot that can “smoothly” communicate with a human.
In addition to rule extraction, the details of the proposed framework must be
inspected. It is necessary to investigate whether the tendency of extraction is
consistent on increasing the number of conversation sessions or using a certain
conversation pair.
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KAKENHI Grant Numbers 19H05693 and 23K169770.

References

1. Baltrusaitis, T., Zadeh, A., Chong Lim, Y., Morency, L.-P.: OpenFace 2.0: facial
behavior analysis toolkit. In: 2018 13th IEEE International Conference on Auto-
matic face & Gesture Recognition (FG 2018), pp. 59–66. IEEE (2018)

2. Bartneck, C., Forlizzi, J.: A design-centred framework for social human-robot inter-
action. In: 13th IEEE International Workshop on Robot and Human Interactive
Communication, pp. 591–594 (2004)

3. Ben-Youssef, A., Clavel, C., Essid, S., Bilac, M., Chamoux, M., Lim, A.: UE-
HRI: a new dataset for the study of user engagement in spontaneous human-
robot interactions. In: Proceedings of the 19th ACM International Conference on
Multimodal Interaction, pp. 464–472 (2017)



Extracting Feature Space for Synchronizing Behavior 219

4. Bishop, C.M., Nasrabadi, N.M.: Pattern Recognition and Machine Learning, vol.
4. Springer, New York (2006)

5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. In: International Conference on Machine
Learning, pp. 1597–1607. PMLR (2020)

6. Delaherche, E., Chetouani, M., Mahdhaoui, A., Saint-Georges, C., Viaux, S.,
Cohen, D.: Interpersonal synchrony: a survey of evaluation methods across dis-
ciplines. IEEE Trans. Affect. Comput. 3(3), 349–365 (2012)

7. Doukhan, D., Carrive, J., Vallet, F., Larcher, A., Meignier, S.: An open-source
speaker gender detection framework for monitoring gender equality. In: Acoustics
Speech and Signal Processing (ICASSP), 2018 IEEE International Conference on.
IEEE (2018)

8. Feng, Z., Xu, C., Tao, D.: Self-supervised representation learning by rotation fea-
ture decoupling. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 10364–10374 (2019)

9. Forlizzi, J.: How robotic products become social products: an ethnographic study of
cleaning in the home. In: Proceedings of the ACM/IEEE International Conference
on Human-Robot Interaction, HRI 07, pp. 129–136, New York, NY, USA (2007).
Association for Computing Machinery

10. Frosst, N., Papernot, N., Hinton, G.: Analyzing and improving representations with
the soft nearest neighbor loss. In: International Conference on Machine Learning,
pp. 2012–2020. PMLR (2019)

11. Goyal, P., Mahajan, D., Gupta, A., Misra, I.: Scaling and benchmarking self-
supervised visual representation learning. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pp. 6391–6400 (2019)

12. Grill, J.-B., et al.: Bootstrap your own latent: a new approach to self-supervised
learning. arXiv preprint arXiv:2006.07733 (2020)

13. Jaiswal, A., Ramesh Babu, A., Zaki Zadeh, M., Banerjee, D., Makedon, F.: A
survey on contrastive self-supervised learning. Technol. 9(1), 2 (2021)

14. Kwon, J., Ogawa, K.-I., Ono, E., Miyake, Y.: Detection of nonverbal synchroniza-
tion through phase difference in human communication. PLoS ONE 10(7), 1–15
(2015)

15. Li, R., Curhan, J., Hoque, M.E.: Predicting video-conferencing conversation out-
comes based on modeling facial expression synchronization. In: 2015 11th IEEE
International Conference and Workshops on Automatic Face and Gesture Recog-
nition (FG), vol. 1, pp. 1–6. IEEE (2015)

16. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving
jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016.
LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-46466-4 5

17. Osugi, T., Kawahara, J.I.: Effects of head nodding and shaking motions on per-
ceptions of likeability and approachability. Perception 47(1), 16–29 (2018). PMID:
28945151

18. Riehle, M., Kempkensteffen, J., Lincoln, T.M.: Quantifying facial expression syn-
chrony in face-to-face dyadic interactions: temporal dynamics of simultaneously
recorded facial EMG signals. J. Nonverbal Behav. 41(2), 85–102 (2017)

19. Van der Maaten, L., Hinton, G.: Visualizing data using T-SNE. J. Mach. Learn.
res. 9(11) (2008)

http://arxiv.org/abs/2006.07733
https://doi.org/10.1007/978-3-319-46466-4_5
https://doi.org/10.1007/978-3-319-46466-4_5


F-E Fusion: A Fast Detection Method
of Moving UAV Based on Frame

and Event Flow

Xun Xiao1, Zhong Wan2, Yuan Li1, Shasha Guo3, Junbo Tie1,
and Lei Wang2(B)

1 College of Computer, National University of Defense Technology,
Changsha 410071, Hunan, China

{xiaoxun520,liyuan22,tiejunbo11}@nudt.edu.cn
2 Defense Innovation Institute, Academy of Military Sciences, Beijing, China

leiwang@nudt.edu.cn
3 College of Electronic Engineering, National University of Defense Technology,

Hefei, China
guoshasha13@nudt.edu.cn

Abstract. In recent years, the widespread application of UAVs has
caused threats to public security and personal privacy. This paper
presents a fast and low-cost method for UAV detection and tracking
from fixed-position cameras. In our method, we capture event data and
video frames through Dynamic Vision Sensor (DVS) and conventional
camera respectively. We use the combination of Dynamic Neural Field
(DNF) and clustering algorithm to locate the moving objects in the scene
from the event data collected by DVS. Then we obtain high-resolution
images from the corresponding regions of the video frame according to
the calculated positions for classification. Compared with YOLO or R-
CNN, our proposed method reduces the computational overhead by cal-
culating the location of moving objects through event flow. Experimental
results show that our method has more than 40 times faster recognition
speed on the same platform than YOLO v3. The data and the code of
the proposed method will be publicly available at https://github.com/
Xiaoxun-NUDT/F-E-fusion.

Keywords: Spiking Neuron Network · Dynamic Vision Sensor ·
Dynamic Neural Field

1 Introduction

In recent years, with the rapid development of UAV technology, UAVs have
become smaller, cheaper, easier to operate and more versatile. Based on these
advantages, UAVs have been widely used in many fields, such as transporta-
tion, aerial photography, agriculture [2019] and energy [2020]. However, the
widespread use of UAVs has also caused a series of problems, the most seri-
ous of which is to threaten public security and personal privacy. Although UAV
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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https://doi.org/10.1007/978-3-031-44198-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44198-1_19&domain=pdf
https://github.com/Xiaoxun-NUDT/F-E-fusion.
https://github.com/Xiaoxun-NUDT/F-E-fusion.
https://doi.org/10.1007/978-3-031-44198-1_19


F-E Fusion: A Fast Detection Method of Moving UAV 221

manufacturers have set up no-fly zones near airports, commercial centers and
other important places. However, some UAVs have bypassed this limitation.
[2019] analyzed more than 100 serious UAV incidents in the vicinity of world-
wide airports. On the other hand, UAVs with video recording capability also
pose a threat to personal privacy. [2020] introduced the privacy issues caused by
UAV photography.

How to effectively counter the invading UAV has become an urgent problem.
Anti-UAV mainly includes two steps: detection and radio interference. Detecting
invading UAVs is the first step. The existing methods based on radar [2021], radio
frequency [2020], or sound [2018] have the limitations of high equipment cost,
easy to be disturbed and low accuracy.

With the development of deep learning and computer vision, object detec-
tion has become an important research direction in computer vision. The rapid
development of computer vision makes it possible for UAV detection systems
based on vision. Now we can use many mature object detection models, such as
YOLO [2016], SSD [2016] and R-CNN [2017].

However, there are some problems in the existing models. They all have
large model parameters, which bring high storage and computational overhead.
In addition, large model parameters make the calculation time longer, which
is easy to cause delays when detecting the position of high-speed flying UAVs.
These limits the use scenario and detection accuracy of the model. Therefore,
it is very necessary to reduce the computational overhead for edge scenes and
high-speed UAV detection.

Inspired by the two-stage object detection algorithm, this paper presents a
two-stage UAV detection method for fixed-position cameras. In the first stage,
we use the characteristic of the DVS camera that is only sensitive to brightness
changes to find all the changed areas in the scene. For a fixed-position DVS
camera, The change in brightness is most likely caused by the movement of the
object. In the second stage, to distinguish whether the brightness changes in
the first stage are caused by UAVs or other objects such as birds. We need to
use the classifier to classify the moving objects found in the first stage. Due to
the limited resolution and color channel of existing DVS [2017; 2017; 2020], the
classification accuracy of small objects cannot satisfy the requirements. So we
need to supplement it with high-resolution pictures captured with conventional
cameras.

In this way, we only focus on moving objects in the scene, not the whole
background area, which reduces the computational redundancy. Experimental
results show that our method can effectively detect and track intruding UAVs.
The main contributions of this paper can be summarized as:

• We proposed a new two-stage UAV detection method, which combines the
advantages of DVS camera and conventional camera. We utilize the feature
that the DVS camera is only sensitive to moving objects to locate moving
objects in the scene, which reduces the computational overhead of traditional
algorithms in the object positioning stage.

• We implemented an SNN-based moving object extractor and noise event filter,
which can directly process the event sequence recorded by DVS.
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• We propose an event-based multi-object tracking method based on a clus-
tering algorithm, which can realize dynamic continuous tracking of multiple
moving objects.

2 Background

2.1 Dynamic Vision Sensor

Dynamic Vision Sensor is a neuromorphic sensor. It uses an event-driven app-
roach to record changing brightness in the scene. When the objects in the scene
cause a relative movement to the DVS camera, DVS will generate a series of
pixel-level event outputs, with each event in the form of (x, y, t, p). Specifically,
the x and y are the coordinate positions of the pixel. The t is the timestamp
of the event, which indicates the time when the event is triggered. Moreover,
the p is the polarity of the event, which represents the illumination changes of
the pixel. Compared with conventional cameras, DVS cameras only record event
data generated by moving objects in the scene.

2.2 Dynamic Neuron Field

Dynamic Neuron Field is a mathematical model, which can be used to describe
the homogenization behavior among population neurons. In essence, it is a group
of spiking neurons with winner-take-all connections. Neurons with similar char-
acteristics have excitatory synaptic connections, while neurons with different
characteristics have inhibitory synaptic connections. In this connection mode,
due to the existence of activation threshold and global inhibition connection,
noise events are difficult to cause neuron activation and be filtered out. But
for a specific spike sequence, it will be selectively amplified. In extreme cases,
such amplification can even realize the self activation between neurons, that is,
neurons still keep activation after stopping input. The population connection
mode of this neuron is shown in Fig. 3. Here we use one-dimensional DNF as a
demonstration.

3 Related Work

3.1 Vision-Based UAV Detection

For vision-based UAV detection, YOLO is the most widely used deep learning
model. [2019] introduced YOLO V3 for UAV detection. Aiming at the problem
that UAV is too small in the scene, it advocates the last four scales of feature
maps instead of the last three scales of feature maps to predict bounding boxes of
objects, which can obtain more texture and information to detect small objects.
Benefiting from the improvement of YOLO v4 to YOLO v3, [2020] achieved
better results on the YOLO v4 model. In addition, [2021] constructed a multi-
modal dataset named Anti-UAV using the information in the visible and infrared
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Fig. 1. Schematic representation of a 1-dimensional Dynamic Neural Field. The lateral
connections are all-to-all and the synaptic weights are defined by the kernel function
that depends on the distance between the pre and post-synaptic neurons.

bands. [2022] propose an anti-UAV dataset called DUT Anti-UAV that contains
detection and tracking subsets. They evaluate state-of-the-art methods on their
dataset, including 14 detectors and 8 trackers. However, the image taken by
conventional cameras contains a large number of redundant background data,
resulting in additional computational overhead and longer processing time.

3.2 Event-Based Object Tracking

The event-based object tracking algorithm is still in the research and develop-
ment stage, which is different from the maturity of the vision algorithm. [2017]
introduce a novel soft data association modeled with probabilities. They apply an
expectation-maximization (EM) scheme, where given optical flow they compute
probabilities (weights) for data association and then they take the expectation
over these probabilities in order to compute the optical flow. [2020] represent
asynchronous events as Time-Surface with Linear Time Decay. Then feed the
sequence of TSLTD frames to a novel Retinal Motion Regression Network (RMR-
Net) to perform an end-to-end 5-DoF object motion regression. [2019] realized
an attention mechanism by recurrent Spiking Neural Network that implements
attractor-dynamics of Dynamic Neural Fields.

4 Method

Figure 2 shows the overall workflow of our UAV detection and tracking method,
which is mainly divided into two parts: event data processing and frame sequence
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processing. The event data is mainly used for the detection and location of
moving objects, and the frame sequence is mainly used for the classification of
objects.

Input

DNF
Filter Tracking Bounding Box

Calculation

Event Sequence

Cut and
Resize

Frame Sequence

Classifier Result

Fig. 2. The overall workflow of UAV detection and tracking methods.

The processing of event data is mainly divided into three stages. The first
stage is denoising and moving object detection. The event data collected by DVS
will contain a lot of noise. We use the DNF network to filter the noise events
contained in it and enhance the event flow generated by moving objects. Then,
we use the improved clustering algorithm to cluster the event flow generated by
the same moving object and tracking it. Finally, we calculate the position and
size of the moving object according to the clustering results and generate the
corresponding bounding box. In the video sequence processing part, we cut the
image of the moving object region in the corresponding video frame according to
the calculated bounding box. Finally, the cuted image is classified and recognized
by a classifier to get the category of the moving object.

4.1 SNN-Based Detection and Denoising

We have implemented a DNF structure for UAV detection and background noise
filtering based on Spiking Neuron Network. Specific connection structure and
synaptic weight enable DNF to enhance the event flow generated by moving
objects while filtering noise events.

Figure 3 shows our DNF structure, the network consists of two-dimension
layers, the input layer and the DNF layer, with 135 × 240 neurons in each layer.
The first input layer can transmit the input spikes to the DNF layer. The DNF
layer in the second layer is the core of the whole network. It has excitatory con-
nections (The red arrow) with surrounding neurons and weak global inhibitory
connections (The blue arrow).

When an object moves in the field of vision, it will generate spike input
on the DNF network at the corresponding location. Because of local excitatory
connections, it will generate neuron activation in the corresponding area. The
weak global inhibitory can effectively suppress the interference of noise events
without affecting the activation of neurons generated by normal motion.

Due to the lack of support for subsequent event input, noise events will be
rapidly suppressed by the global inhibition generated by other DNF neurons
before reaching the DNF layer neuron activation threshold. For the events gen-
erated by moving objects, due to the continuous input of the subsequent event
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Fig. 3. The structure of DNF. (Color figure online)

stream, the weak global inhibition will not be completely suppressed, so multiple
active regions can appear at the same time corresponding to multiple moving
objects in the scene.

4.2 Event-Based Multi-objects Tracking

We use the clustering algorithm to achieve the merging of event flows and the
tracking of objects. The output of DNF is the activation of a series of neurons.
The activated neurons in each area correspond to a moving object in the scene.
Therefore, we need to combine the activation of neurons generated by the same
moving object.

Algorithm 1. Event-based Multi-objective clustering and tracking
Input: event stream ε
Output: clusters C
1: for e in event stream do
2: for c in clusters do
3: if distance(e,c) < threshold then
4: append e to c
5: update c
6: end if
7: end for
8: if No clusters to add e then
9: create a new cluster add e

10: end if
11: end for
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Inspired by Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [1996], this paper implements a continuous clustering and cluster
tracking algorithm based on AER format data. It does not require a given num-
ber of clusters, but only a threshold value. The algorithm can be briefly described
as Algorithm 1.

For the set ε of all events in a given time window, traverse each event in the
order of time stamps. If this is the first event, or the distance from this event
to all clusters is greater than the threshold, it will be added to a new cluster. If
the distance from this event to some clusters is less than the threshold, it will be
added to the nearest cluster. When an event is added to an existing cluster, the
data of the cluster is updated. At the same time, with the sliding of the event
window, new events are added to the window and the oldest events are removed,
so that the real-time update of the event flow is achieved and the continuous
tracking of the cluster is also realized.

4.3 Bounding Box Calculation

The bounding box calculation is to calculate the size of UAV in the scene accord-
ing to the size of the event cluster after clustering. During the flight of UAV,
different UAV images size will be generated due to different distances from the
camera. If we use a fixed size bounding box, the bounding box will be too large
or too small. In order to make the bounding box automatically adapt to the size
of moving objects, we propose a object size estimation.

,

,

,

Event cluster

,

H

L

UAV bounding box

Fig. 4. Bounding Box Estimation.

Figure 4 is the schematic of generating UAV bounding box based on cluster.
The event flow output by DNF will be divided into event clusters according to
the proposed clustering algorithm. Each event cluster represents a moving object
in the scene, And the size of the cluster reflects the size of the moving objects in
the scene. We estimate the size of the bounding box by calculating the size of the
event cluster. Where (XT , YT ),(XB , YB),(XL, YL),(XR, YR) are the coordinates
of the top, bottom, left and right endpoints in the same cluster.

4.4 UAV Classification

So far, we have successfully marked all moving objects in the scene. However,
these objects may also be flying birds or moving cars (except UAVs). We need a
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classifier to distinguish UAVs from other objects. Our classification task is just a
two-classification task. We only need to distinguish whether moving objects are
UAVs. We use SVM as our UAV classifier to distinguish UAVs from all moving
objects.

Support Vector Machine (SVM) is a supervised classifier, which can be widely
used in statistical classification and regression analysis. In the trained SVM
classifier, there is a hyperplane as the decision boundary to divide the object
into positive and negative categories. The new sample only needs to be compared
with the decision boundary to get the classification results, which is very suitable
for the two-classification task and there is almost no computational overhead.

For each object detected in the previous step, we will give a bounding box.
This area is slightly larger than the size of the moving objects, ensuring that the
entire object is within this area. Then, we cut these regions containing moving
objects into new images. We will cut the pictures into two categories, one is UAV,
the other is other objects. They are used to train the SVM to realize moving
object classification. In this way we can distinguish between UAVs and other
objects.

5 Experiment and Result

5.1 Experiment Setup

Dataset. In our method, we need to combine the data of video channel and
event channel at the same time. However, the existing multi-mode UAV detection
dataset does not contain event data and video data at the same time. We convert
video data into DVS event stream through simulation and add event channel for
it. Our video data conversion is based on Esim [2018]. Esim is an event camera
simulator. It can simulate the working process of the DVS camera, and convert
the video pictures taken by the traditional camera into the event stream form
taken by the DVS camera.

The data set we use is a 100 s UAV flight video recorded at a fixed-position.
The video frame rate is 30 fps, so there are a total of 3000 video frames. In this
video the UAV appears in the scene for about 33 s, that is, there are 1000 video
frames containing the UAV.

Table 1. Evaluation results of F-E Fusion and other methods.

Method Parameters mAP Inference time Total FLOPs

faster R-CNN 60 M 0.72 1250 ms 156 G

YOLO v3 61.53 M 0.66 520 ms 199 G

YOLO v4 52.5 M 0.68 400 ms 119 G

YOLO-fastest V2 0.25 M 0.23 27 ms 212 M

F-E Fusion 0.02 M 0.61 12 ms 8.2 M
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Fig. 5. Result on eight continuous video frames. (a) Shows the convert event flow
imaging. (b) Shows the results after DNF filtering. (c) Shows the corresponding rgb
image. (d) shows the UAV detected by our method.

5.2 Experiment Result

Performance and Precision. Figure 5 shows the detection and tracking
results of our proposed method on eight continuous video frames. Figure 5(a)
is the result of the event stream imaging of the original video converted by the
Esim simulator, and Fig. 5(b) shows the activation of the DNF layer. It can be
seen that there are many noise events in the original event stream, and the noise
events are removed after the filtering of the DNF. At the same time, neurons
in the corresponding area of DNF are intensively activated by moving objects.
Figure 5(c) is the picture taken by the RGB camera corresponding to the event
flow imaging. Figure 5(d) is the picture of the moving area containing the UAV
obtained by our method.

Our method can effectively detect moving objects in the scene, and recognize
the category of the object through the classifier. We compared our method with
faster R-CNN [2015], YOLO V3 [2018], YOLO V4 [2020], YOLO-fastest V2
[2021], etc. Compared with the currently widely used YOLO V3 model, our
method improves the recognition speed by 40 times and the recognition accuracy
remains unchanged. Compared with the current fastest YOLO algorithm YOLO-
fastest V2, our method still maintains a high accuracy with a detection speedup
by two times. Table 1 shows the evaluation results of our method and other
methods.

In our method, we only need to train the final UAV classifier. We use 700
UAV images and 700 random background images to train the SVM classifier.
The remaining pictures are used for testing. We use grid search to find the
best parameters set for SVM. The final trained UAV classifier has a classifica-
tion accuracy of 98% between UAV and other backgrounds under the optimal
parameter combination (‘C’: 1000, ‘gamma’: 0.001, ‘kernel’: ‘rbf’).



F-E Fusion: A Fast Detection Method of Moving UAV 229

Fig. 6. The filter ability of DNF. (a) Input with different frequency noise, 1 Hz, 2 Hz
and 5 Hz respectively. Add in the blank area of input. (b) Filter result without global
Inhibitory. (c) Filter result with global Inhibitory.

The Filter Ability of DNF. We evaluated the ability of the DNF model in
background activity denoising and detection. We generate Poisson distribution
events with different frequencies to simulate DVS background activity noise with
different intensities. At the same time, we also compared whether the DNF layer
added global suppression to the denoising ability. We simulate and generate
noise events at frequencies of 1 Hz, 2 Hz and 5 Hz respectively. As shown in the
figure, the filtering results of adding global suppression and not adding global
suppression are respectively. We add different noise events in different areas of
the picture.

As shown in Fig. 6, the experimental results show that DNF can effectively
filter the background noise events. DNF filter without global inhibitory can bet-
ter fill the outline of moving objects, but it can not completely filter the noise
signal with high frequency. DNF filter with global inhibitory has a better noise
inhibitory effect, but it will bring high computational overhead. In the actual
scene, there are fewer high-frequency noise signals, so we prefer to use DNF filter
without global inhibitory.

6 Conclusion

In this paper, we proposed an object detection and tracking method based on
the combination of a DVS camera and a conventional camera. We use the feature
that the fixed-position DVS only generates event flow for moving objects. On
this basis, we can quickly locate the moving objects in the scene. At the same
time, we implemented an SNN-based denoising and object extractor. And a
clustering algorithm for multi-object tracking. Combining the calculated object
position with the high-resolution video frame, we can realize the classification of
moving objects. Our proposed method reduces the computational overhead of the
traditional detection algorithm in the object location stage. The experimental
results show that our method can effectively detect the moving objects in the
scene and achieve accurate classification. Compared with YOLO V3, our method
improves recognition speed by 40 times. At the same time, our method only needs
to train a simple classifier, and the model is greatly simplified. For further work,
with the development of DVS, the resolution will be higher and higher. We hope
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to achieve the classification of moving objects based on event flow completely,
without resorting to high-resolution images.
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Abstract. Relational Triple Extraction refers to extracting entities and
classifying relation between different entities from text, which is a non-
trivial step in the construction of knowledge graph. However, Traditional
relational triple extraction methods require a large amount of labeled
data, which is often not available due to the long-tail distribution of
entity pairs and relations between entities, thus yielding limited perfor-
mance of relational triple extraction. In order to address these problems,
few-shot relational triple extraction aims at extracting relational triple
from text using only few labeled samples. Previous works lack attention
on the similarity of token-level information between the query set and
support set. Therefore, we propose an evaluation method of Token-Level
Similarity of entity tags (TLSM), which exploits the semantic similarity
information between tokens in the few annotated samples and unseen
samples to improve the accuracy of entity extraction, thereby improving
the overall performance of relational triple extraction. In addition, in
order to balance the optimization process of two subtasks, entity recog-
nition and relation classification, which have different levels of difficulty,
we utilize dynamically weighted balanced loss to enable the model to
automatically learn the weight coefficients of the losses of two subtasks.
Finally, extensive experiments are conducted on the FewRel dataset to
demonstrate the effectiveness of our method.

Keywords: Relational Triple Extraction · Few-shot Learning ·
Information Extraction

1 Introduction

The construction of knowledge graph is a basic and critical work in the field of
knowledge graph. Relational triple extraction is a key technology for building
knowledge graphs, which involves relational classification and entity recognition,
aiming at classifying the relation described by the sentence and extracting the
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entity pair corresponding to the relation. For example, in the sentence “Beijing is
the capital of China”, we extract the relation “capital”, the head entity “Beijing”
and the tail entity “China”, and finally obtain the relational triple (“Beijing”,
“capital”, “China”).

In the previous work, a large number of algorithms based on deep neural
network have been applied to relational triple extraction, such as TPLinker
[9], CasRel [10], NovelTagging [15], DirectRel [7], etc., and have achieved quite
remarkable performance. In particular, the emergence of large-scale pre-trained
language models (BERT [3], Roberta [5], etc.) has significantly improved per-
formance. However, most of the models heavily rely on large-scale annotated
datasets and struggle to perform well in the few-shot setting. Additionally, these
algorithms can only recognize learned entities and relations, resulting in poor
performance when facing unseen relations or entities. Therefore, it is non-trivial
to study the task of few-shot relational triple extraction.

To address the challenges of few-shot relational triple extraction, MPE [13]
has proposed a multi-prototype embedding model based on few-shot learning,
and extracts relational triples in an entity-then-relation way. However, it ignores
the dependency between relation and entity, thus constraining the performance
of relational triple extraction by the prior performance of entity extraction. To
solve this problem, the algorithm RelATE [2] has been proposed to extract rela-
tional triple in a relation-then-entity way, which means entities corresponding to
different relations are extracted independently. In addition, it marks the begin-
ning and the end of entities with the prototypes of “START” and “END” and
finally improves the performance of relational triple extraction. However, it does
not take into account the token-level semantic similarity between support set
and query set, nor does it consider the dependence between the entity sequence
labeling, so there still is potential for further improvement in the task of rela-
tional triple extraction.

To address the limitations of existing approaches, we propose an evalua-
tion method that assesses the token-level semantic similarity of entity tags. Our
method is based on the idea of STRUCTSHOT [11] algorithm and utilizes near-
est neighbor classifier, which helps to recognize entities in text. Specifically, we
evaluate the semantic similarity between each token in the query sample and
each token in the support sample, both of which share the same relation. We
then sum the maximum value and the average value of the similarity scores to
obtain the prediction score, which improves the accuracy of entity recognition.
In addition, as the difficulty levels of two subtasks, relation classification and
entity recognition, differ, achieving optimal performance on both tasks simulta-
neously can be challenging. To address this, we propose a multi-task dynamically
weighted balanced loss that enables the model to self-learn the weight coefficients
of the losses of two subtasks, so that both subtasks can simultaneously achieve
the best performance.

In summary, the main contribution of our work is two-fold as follows:

• An evaluation method of token-level similarity of entity tags is proposed to
improve the accuracy of entity recognition;
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• A multi-task dynamically weighted balanced loss is proposed to optimize the
two subtasks, relation classification and entity recognition, to the optimum
at the same time.

2 Related Work

2.1 Traditional Relational Triple Extraction

Traditional relational triple extraction methods can be categorized into two main
types: extractive methods and generative methods. The extractive methods can
be further classified into two types: the pipeline and the joint extraction meth-
ods. The pipeline extraction methods extract entities first and then classify the
relation between entities, which suffers from the issue of error propagation. The
joint extraction extracts both entities and relation simultaneously, and represen-
tative algorithms include TPLinker [9], CasRel [10], etc., which mainly focus on
addressing the overlapping problem of relational triples. The generative methods,
such as CopyRE [14], and CGT [12], generate all relational triples in the sentence
in a sequence-to-sequence (seq2seq) manner. Although these algorithms have
achieved acceptable performance, they require large-scale annotated datasets,
and cannot handle few-shot scenarios, necessitating re-training the model when
encountering unseen relations.

2.2 Few-Shot Relational Triple Extraction

With further research on the task of relational triple extraction, the problem of
long-tail distribution of relations and entity pairs is becoming increasingly promi-
nent. More and more researchers have begun to focus on the task of few-shot
relational triple extraction. Current research methods can be divided into two
types: methods based on transfer learning and methods based on meta-learning.
Transfer learning has been a popular approach in addressing the challenges of
few-shot relation classification and entity extraction. For example, SDAsh [1]
utilizes transfer learning and fine-tuning to achieve few-shot relation classifica-
tion, TransInit [6] employs transfer learning for few-shot entity recognition, and
DAT-Net [16] introduces adversarial training into transfer learning to strengthen
the transfer ability of the model.

In recent years, meta-learning has enabled the model to have the ability of
“learning to learn”, and it has demonstrated effectiveness in solving the few-shot
problems in various fields, including images and natural language processing. To
tackle the task of joint few-shot relational triple extraction, the MPE [13] algo-
rithm proposes a multi-prototype embedding network based on meta-learning
and prototype algorithms. Specifically, the algorithm first extracts entities using
a traditional sequence labeling method, and then utilizes multi-prototype embed-
ding to learn the relation prototypes, which improves the accuracy of relation
classification. However, the performance of relational triple extraction is con-
strained due to the prior performance of entity extraction. The RelATE [2]
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Fig. 1. The overall architecture of our method. Left subfigure is the Relation Classifi-
cation module. The gray box refers to [CLS] embedding, and the boxes of other colors
refer to embeddings of all tokens. In this module, we only use [CLS] embedding to
classify the relation of the query sentence. Right Subfigure is the Entity Recognition
module. In this module, we only use K support sentences having the same relation as
the query sentence to calculate token-level similarity and then identify entities. (Color
figure online)

algorithm adopts a relation-then-entity method, which leverages the predicted
relation to guide the process of entity recognition, improving the accuracy of
entity recognition and then achieving better performance. However, the algo-
rithm does not fully exploit the local contextual information of entities during
the instance-level matching and ignores the dependency between entity tags in
the entity recognition process.

3 Method

3.1 Problem Definition

Following the classic few-shot task setting, we define the few-shot relational triple
extraction problem as an N-way K-shot problem, where N represents the num-
ber of different relations in each task, and K represents the number of support
samples for each relation (i.e., the number of few annotated samples). Given an
unseen sentence belonging to one of the N categories, referred to as the query
sample, the objective is to classify the query sentence into the correct relation
category according to the meaning it expresses, denoted as r, and simultane-
ously extract the head entity and tail entity, denoted as h and t, respectively.
This results in the formation of a relational triple (h, r, t).

To recognize the entities in text, we use the traditional “BIO” sequence
labeling method to label the samples, which means that “BH, IH, BT, IT, O”
are used to mark the first token of the head entity, other tokens of the head entity,
the first token of the tail entity, other tokens of the tail entity, and non-entity
tokens, respectively.
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3.2 Instance Encoder

We adopt BERT as the language model to encode contextual information into
the embedding vectors. Through BERT, we can obtain the hidden embedding
representations H ∈ R

(n+1)×d of all tokens and [CLS] token of any sentence
input in the support set S ∈ R

N×K×Ts×d and query set Q ∈ R
Tq×d as follows:

H = {hcls;h1,h2, . . . ,hn} = BERT (input) (1)

where n denotes the number of the tokens in the sentence, Ts and Tq denote the
number of tokens in the query sentence and the support sentence, respectively.

3.3 Relation Classification

Our proposed method first classifies the relation of the query sentence, and
then guides the subsequent entity extraction according to the predicted relation.
Considering that [CLS] embedding implies rich semantics of sentence instance,
we use the mean value of [CLS] embeddings of K support sentences which share
the same relation to get the relation prototype R = {Ri; i = 1, . . . , N} :

Ri =
1
K

K∑

k

Sclsi,k
(2)

where Ri ∈ R
d denotes i-th relation prototype, Scls denotes the [CLS] embed-

dings of the support sentences.
Afterwards, we feed the [CLS] embedding of the query sentence and each

relation prototype into the Matcher network in Sect. 3.5 to calculate the semantic
similarity between them, so as to obtain score mrel

i = Matcher (Qcls,Ri) of
the query sentence belonging to each relation by measuring the similarity, the
largest score of which is selected as the predicted category of relation for the
query sentence. In this work, cross-entropy loss Lrel is adopted to calculate the
discrepancy between the relation score and the ground-truth:

Lrel = −
N∑

j=1

yj log (ŷj) (3)

where ŷj = mrel
i denotes i-th similarity score, yj = 1 if the relation of the query

sentence belongs to class Nj and 0, otherwise.

3.4 Entity Recognition

Since the relation implies semantics of the sentence, we decide to extract entity
based on the predicted relation. First, we extract all support sentences Sr ∈
R

K×Ts×d which share the same relation with the query sentence from the support
set S ∈ R

N×K×Ts×d. Afterwards, we feed the embeddings of the selected support
sentences and query sentence into the Matcher Network to obtain the semantic
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similarity score mtoken
i,j between each token in the query sentence and each token

in the selected support sentences:

mtoken
i,j = Matcher (Qj ,Sr,k,i) (4)

where Qj ∈ Q, j = 1, . . . , Tq,Sr,k,i ∈ Sr, k = 1, . . . , K and i = 1, . . . , Ts.
After computing the similarity scores mtoken ∈ R

Tq×K×Ts , along with the
corresponding entity tags in the selected support sentences, we group the scores
based on the entity tags, and sum the maximum and average values of the
similarity scores belonging to the same entity tag. The result is regarded as the
probability for each token in the query sentence to tag the entity labels:

xj,l = mtoken
j · 1 {Ye = l} (5)

pj,l = tag score = avg (xj,l) + max (xj,l) (6)

where Ye means the entity tags for each token in the selected support sentence,
and 1 is an indicator function, j = 1, . . . , Tq, l = 1, . . . , 5.

Additionally, we adopt Conditional Random Field (CRF), consisting of the
emission score and transition score, to constrain the sequence of entities. The
emission score captures the compatibility between each token and its assigned
entity label, and the transition score captures the likelihood of a particular entity
label being followed or preceded by another entity label, enabling the modeling
of patterns and constraints in the sequence of labeled entities. By leveraging the
CRF, the model can globally optimize the assignment of entity labels, taking into
account both local and contextual information. Ultimately, this helps improve
the accuracy and coherence of the predicted entity labels.

Therefore, the entity loss can be formulated as:

Lentity =
e(p+fT (y))

∑Y ′
y′ e(p+fT (y′))

(7)

where the emission score p ∈ R
Tq×|E|, |E| = 5, and the transition score fT (y) =∑Tq

j p (yj , yj+1)

3.5 Matcher

In order to calculate the semantic similarity between embeddings of the query
sentence and the prototype, we employ a Matcher network to achieve it and
obtain the probability by measuring the similarity. Given two inputs a and b, we
calculate the semantic similarity M as follows:

M = [|a − b|; a ⊗ b] (8)

where ⊗ denotes element-wise product, [.; .] denotes concatenation operation.
Afterwards, we feed similarity M into a MLP to get the similarity score m:

m = (W1M + b1) W2 + b2 (9)

where W1,W2, b1, b2 are all learnable parameters.
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3.6 Objective Function

The objective of relation classification is to classify the relation category of the
query sentence based on its meaning. If the relation is correctly predicted, the
difficulty of the entity recognition task could be largely reduced. To account for
the different levels of difficulty in the subtasks of entity recognition and relation
classification, we introduce learnable weight coefficients to the losses. By doing
so, the model can self-learn to optimize the overall loss. The overall loss can be
formulated as:

Loss = eλ1Lrel + eλ2Lentity (10)

where λ1 and λ2 are all learnable parameters, the initial values of which both
are 0.

4 Experiments

4.1 Experimental Setup

Dataset. Same as previous work MPE [13] and RelATE [2], we conduct exper-
iments on the FewRel [4] dataset. The FewRel dataset contains 100 relation
types, each relation contains 700 triple instances, and each instance has a pair
of entity corresponding to its relation. Since FewRel only discloses the data of
80 categories of relation, we randomly select the instances of 50 relations as the
training set, the instances of 15 relations as the validation set, and the rest 15
relations as the test set. The training set, validation set, and test set don’t have
any overlapping relations.

Evaluation Metrics. Like MPE [13] and RelATE [2], we use Precision, Recall
and F1-score to evaluate the performance of the model in the settings of 5-
way 5-shot and 10-way 10-shot. During testing, we randomly sample 1000 tasks,
with each task containing 5 query samples, and calculate Precision, Recall, and
F1-score, which are then averaged to obtain the final result. A relational triple
is considered positive if and only if the categories and spans of the head and
tail entities are identified correctly and the corresponding relation are predicted
correctly.

Hyperparameter. We use Adam optimizer to train our model with the learning
rate of 1e-5 for BERT, 1e-3 for other parameters. The maximum sentence length
is set as 90. The batch size is set as 1.

4.2 Main Experimental Results

We evaluate the performance of our proposed method against several baselines,
including fine-tuning methods and few-shot meta-learning methods: (1) Fine-
tune is a method using the BERT language model as the instance encoder, and
two MLPs as the entity decoder and the relational decoder respectively. It per-
forms supervised pre-training on the train set, and then fine-tunes the relation
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Table 1. Experimental results of relational triple extraction in the setting of 5-way-5-
shot and 10-way-10-shot.

Methods 5-way-5-shot 10-way-10-shot

Precision Recall F1 Precision Recall F1

Finetune 15.47 13.00 14.08 12.01 10.40 11.13

Proto 18.29 11.90 14.24 17.08 11.07 13.36

MPE – – 23.34 – – 12.08

RelATE 42.47 44.23 43.29 40.47 42.25 41.32

TLSM 54.34 44.12 48.23 50.07 41.96 45.49

classification module on validation set and test set, which can be regarded as
the representative model of the classic “Pretrain + Finetune” architecture; (2)
Proto [8] is a method using the BERT language model as the instance encoder,
the prototype network as the relation classification module, and “MLP+CRF
Decoder” as the entity extraction decoder. The Proto network is typically used as
a baseline model for few-shot relation classification and few-shot relational triple
extraction. (3) MPE [13] is a representative algorithm for few-shot relational
triple extraction that follows an entity-then-relation approach, the entity extrac-
tion module of which utilizes traditional supervised sequence labeling method.
(Instead of reproducing the algorithm in the original paper, we directly copy the
results from the original paper. Some indicators which are not provided in the
original paper are represented as “-”); (4) RelATE [2] is a representative algo-
rithm for few-shot relational triple extraction that follows a relation-then-entity
approach, using “START” and “END” to mark the start and end of the entity.
And TLSM is our proposed method.

The results of the few-shot relational triple extraction are shown in Table 1.
It can be seen that:

• Compared with the traditional fine-tuning method, the meta-learning method
performs better in few-shot relational triple extraction;

• Compared with MPE using the entity-then-relation method, our proposed
method and RelATE adopt the relation-then-entity method, which exploits
relation to guide entity extraction and thus obtain better performance;

• Compared with RelATE, our proposed method exploits token-level seman-
tic similarity and captures the dependencies between entity tags by CRF,
thereby achieving the state-of-the-art performance and demonstrating the
effectiveness of our method.

4.3 Ablation Experiments

In order to evaluate the effectiveness of each module, we conduct the following
ablation experiments: (1) -weight: we remove the dynamical weight coefficients
of the losses of the two subtasks, resulting in equal weights for the losses of
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Table 2. Results of ablation experiment in the setting of 5-way-5-shot and 10-way-10-
shot.

Methods 5-way-5-shot 10-way-10-shot

Precision Recall F1 Precision Recall F1

TLSM 54.34 44.12 48.23 50.07 41.96 45.49

-weight 55.83 41.80 47.30 52.07 39.56 44.78

-crf 37.87 40.50 38.83 34.90 38.82 36.63

-relation 53.02 44.50 47.95 48.19 41.34 44.34

-entity 40.31 41.48 40.50 37.86 39.96 38.76

-matcher 38.40 40.74 39.12 34.56 36.39 35.31

the two subtasks; (2) -crf: we replace the CRF loss with a simple cross-entropy
loss; (3) -relation: we replace the relation classification matcher metric with the
Euclidean distance metric; (4) -entity: we replace the entity recognition matcher
metric with the Euclidean distance metric; (5) -matcher: we replace both matcher
metrics with the Euclidean distance metric.

The results of the ablation experiment on few-shot relational triple extraction
are shown in Table 2. It can be seen that:

• Dynamic weight coefficients effectively balance losses and optimization pro-
cess of entity recognition and relation classification tasks, thus improving the
performance;

• CRF captures the dependencies between entity tags, outperforming the simple
cross-entropy loss in the sequence prediction;

• The similarity evaluation module (Matcher) evaluates the similarity between
features more effectively than the Euclidean distance metric.

5 Conclusion

In this paper, we propose a token-level similarity evaluation method of entity
tags for few-shot relational triple extraction, which enhances the accuracy of
entity extraction and thus improves the overall performance of relational triple
extraction. In addition, to balance the loss optimization process of two subtasks,
relation classification and entity recognition, dynamically weighted balanced loss
is proposed to enable the model to dynamically self-learn the weight coefficients
of two losses, thus improving overall performance. We also conduct extensive
experiments on the FewRel dataset, which demonstrate the effectiveness of our
proposed TLSM method for few-shot relational triple extraction.
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Abstract. In this paper, we consider the problem of Novel Class Dis-
covery (NCD) in Open Set Recognition (OSR). Given a labeled and an
unlabeled set for training, NCD aims to discover the novel categories
in the unlabeled set with prior knowledge learned from the labeled set.
Existing approaches tackle the NCD problems under a close-set setting,
where only the existing categories from the labeled set and the novel cat-
egories from the unlabeled set will occur during the inference. This paper
considers a more realistic open-set scenario. In the open-set setting, in
addition to the existing and novel categories, some unknown categories
absent from the training could be present during inference. To address
NCD in the open-set scenario, we propose the General Inter-Intra (GII)
loss, a unified approach for learning representations from both labeled
and unlabeled samples. The proposed approach discovers novel categories
in the training set (NCD) meanwhile recognizes the unknown categories
(OSR). We evaluate GII with image and graph datasets, and the results
indicate that our proposed approach is more effective than other NCD
and OSR approaches.

Keywords: Novel Category Discovery · Open Set Recognition ·
Representation Learning

1 Introduction

Machine learning models have achieved significant advances in various tasks in
recent years. Most of these models are developed under a closed-world assump-
tion and rely on a huge amount of data with human annotations. The real
world is an open set, and humans can determine whether images belong to
the same category. However, such an open-set setting brings new challenges for
machine learning models. First, it is cost-inhibitive to keep manually annotating
the emerging new categories. Second, it is unlikely to collect samples exhausting
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all the classes. In the open-set setting, an ideal machine learning model should
automatically discover new categories in the training set without having access
to their labels, called novel category discovery (NCD) [Han et al.(2019)]. Mean-
while, the model should recognize the unknown classes absent from the training
set, which is referred as Open Set Recognition (OSR) [Bendale and Boult(2016)].

In this paper, we focus on automatically discovering novel categories in a
realistic open-set scenario. In the open-set setting, we have labeled and unlabeled
samples available for training. Meanwhile, we have unknown samples that are not
available in the training process. Our proposed approach has three objectives:
classifying the existing categories from the labeled samples, clustering the novel
categories from the unlabeled samples, and recognizing the unknown classes
absent from the training set. Specifically, we introduce a one-step solution for
NCD under the open-set scenario and name this solution general inter-intra (GII)
loss. [Hassen and Chan(2020a)] propose inter-intra (ii) loss for OSR with labeled
training samples. Ii loss maximizes the inter-class distances and minimizes the
intra-class distances in the representation space to achieve inter-class separation
and intra-class compactness. We generalize this idea to unlabeled samples in our
work. GII consists of three components: intra-class loss for existing categories,
intra-cluster loss for novel categories, and inter-category loss for all categories.
We calculate their class centroids in representation space for existing categories
and minimize the intra-class distance. For novel categories, we first estimate the
centroids of the novel categories and cluster assignments via k-means, then we
minimize the intra-cluster distance in the representation space. The assumption
is that novel categories are disjointed with existing ones, so intra-category loss
is designed to maximize the distance between any two categories.

Our contribution includes: first, we propose a unified approach for learn-
ing representations from both labeled and unlabeled samples for NCD under
an open-set scenario. Second, to the best of our knowledge, we are the first to
extend NCD to an open-set setting. Third, we experiment with the proposed
approach with image and graph datasets, and the results indicate that our pro-
posed approach is more effective than other approaches for NCD and OSR.

2 Related Work

An Open Set Recognition (OSR) task has two objectives: classify the known
classes and recognize the unknown class absent from training. We can divide OSR
techniques into three categories based on the training set compositions. The first
category includes the techniques that borrow additional data in the training set.
Dhamija et al. [Dhamija et al.(2018)] utilize the differences in feature magni-
tudes between known and borrowed unknown samples as part of the objective
function. Shu et al. [Shu et al.(2018)] indicate that several manual annotations
for unknown classes are required in their workflow. The second category of OSR
approaches includes the research works that generate additional data in train-
ing data. Most data generation methods are based on GANs. Ge et al. [Ge et
al.(2017)] introduce a conditional GAN to generate some unknown samples fol-
lowed by OpenMax open set classifier. Neal et al. [Neal et al.(2018)] add another
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encoder network to traditional GANs to map from images to a latent space. The
third category of OSR approaches does not require additional data. Instead, it
requires outlier detection for the unknown class. Hassen and Chan [Hassen and
Chan(2020b)] propose ii loss for open set recognition. It first finds the represen-
tations for the known classes during training and then recognizes an instance
as unknown if it does not belong to any known classes. Jia and Chan [Jia and
Chan(2021)] propose MMF as a loss extension to further separate the known
and unknown representations for OSR.

One group of existing approaches solves the Novel Category Discov-
ery (NCD) problem by pairing samples and converting the NCD problem to
pairwise similarity prediction problem. [Gupta et al.(2020)] utilize the Informa-
tion Maximization (IM) loss in an ensemble of models to predict the similarity
between two data points. [Chang et al.(2017)] propose DAC architecture, which
uses the learned label features for clustering tasks. The sample pairs used for
training are alternately selected and labeled by the learned features in each iter-
ation. Another group of existing approaches solves the NCD problem using prior
knowledge learned from labeled samples. For example, [Han et al.(2019)] use such
prior knowledge to reduce the ambiguity of clustering by reducing its KL diver-
gence to a sharper target distribution. [Zhao and Han(2021)] propose to apply
dual ranking statistics to transfer the knowledge learned from labeled samples
to unlabelled samples for pseudo-labeling. [Liu and Tuytelaars(2022)] propose
ResTune to estimate a new residual feature from the pre-trained network and
add it with a previous basic feature to compute the clustering objective. [Zhong
et al.(2021)] introduce OpenMix to mix the unlabeled examples from an open
set and the labeled examples from known classes. They follow a two-stage learn-
ing stage for the NCD problem. The model initialization stage is trained on the
labeled samples in a supervised way. In the unsupervised clustering stage, they
generate mixed training samples by incorporating labeled samples with unla-
beled samples. The pseudo-labels of mixed samples will be more reliable than
their unlabeled counterparts. In addition to pseudo-pair learning and pseudo-
label learning, the loss of OpenMix is applied to the mixed samples.

3 Approach

3.1 Learning Representations of Existing and Novel Categories

Consider we have a labeled collection of instances Dl = {(xl
i, y

l
i)}N

l

i=1, where
yl
i ∈ {1, . . . , Cl} is the ground-truth class labels for the labeled samples, and N l

is the number of labeled samples. In addition, we have an unlabelled collection
of instances Du = {xu

i }Nu

i=1, where Nu is the number of unlabelled samples.
Following a common assumption in other works [Han et al.(2019)], we assume
that the novel categories are disjoint with the existing ones, i.e., Dl ∩ Du = ∅,
also the number of novel categories Cu is known.
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Fig. 1. Illustration of GII architecture for NCD.

Our goal is to model a representation space that separates the existing cate-
gories in Dl and the novel categories in Du. Through such representation space,
we can identify if a test instance belongs to one of the existing categories, one of
the novel categories, or the unknown class. We propose an end-to-end framework
to learn the representations, which provides a one-step solution for NCD under
the open-set scenario. The training of the framework consists of three compo-
nents: intra-class loss for the existing categories, intra-cluster loss for the novel
categories, and inter-category loss for all categories. The existing categories are
the classes of the labeled samples. The novel categories are the clusters of the
unlabeled samples and all categories include these classes and clusters.

Intra-class Loss for Existing Categories. The intra-class component deals
with the intra-spread for the labeled samples. One can expect the network to
capture some informative knowledge for the existing categories through the train-
ing process, which not only helps classify labeled samples but also is beneficial
to transfer the basic feature for clustering unlabeled samples. Given a labeled
sample xl

i, we use a network-based trainable encoder f(·) to extract its repre-
sentation vector zli. Thus, for existing category (or class) j, we find its centroid
in the representation space as:

μl
j =

1
N l

j

N l
j∑

i=1

zli, (1)

where N l
j denotes the number of samples in the existing category j. Then, we

measure the intra-class spread as the average distance of labeled instances from
their class means:

intra-classj =
1

N l
j

N l
j∑

i=1

‖μl
j − zli‖22. (2)

To improve the intra-class compactness, we minimize the largest intra-class
spread among the existing categories.
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Lintra-class = max
1≤j≤Cl

intra-classj (3)

Intra-cluster Loss for Novel Categories. There are several differences com-
paring intra-cluster spread with intra-class spread. First, intra-class spread relies
on labels to find class centroids. In the intra-cluster spread, we only have unla-
beled samples. Thus, we use k-means to estimate the representation of cluster
centroids as the centers of novel categories μ̃u. Second, we are uncertain which
specific centroid is for an unlabeled sample. Thus, we calculate the soft assign-
ment of sample xu

i based on the distance of its representation zui to the estimated
centroids. Since unlabeled samples do not belong to known classes, these samples
do not have a soft assignment to known classes. To calculate the soft assignment
(probability), we use the softmax of the negative distance of zui from all the esti-
mated centroids. Hence, the probability of sample xu

i belongs to novel category
(or cluster) k is given by:

pik = P (yu
i = k|xu

i ) =
e−‖µ̃u

k−zu
i ‖2

2

∑Cu

t=1 e−‖µ̃u
t −zu

i ‖2
2
, (4)

where μ̃u
k is the estimated centroid for novel category k. Similar to the intra-class

spread, we measure the intra-cluster spread as the weighted average distance of
unlabeled instances from their soft assignments. Suppose we have Nu unlabeled
samples, the intra-cluster spread of novel category k is calculated as:

intra-clusterk =
∑Nu

i=1 pik‖μ̃u
k − zui ‖22∑Nu

i=1 pik
. (5)

Then, we minimize the largest intra-cluster spread among the novel categories
to achieve intra-cluster compactness. The differences between the intra-cluster
spread in Eq. 5 with the intra-class spread in Eq. 2 are the estimated cluster
centroid μ̃u

k and the soft assignment pik.

Lintra-cluster = max
1≤k≤Cu

intra-clusterk (6)

The cluster centroids are initialized and updated by k-means. To reduce the
training time, we use a scheduling function for the k-means. Intuitively, we want
to update the centroids more frequently at the beginning of the training. Close
to the end of the training, when the network has learned informative knowl-
edge from the labeled samples, and the clusters of the unlabeled samples have
been formed for the novel categories, we perform k-means less frequently for the
centroids updates.

Finally, to avoid a trivial solution of assigning all unlabeled samples to
the same class, we regularize the model with maximum entropy regularization
(MER). Specifically, we use the probability pik calculated from Eq. 4 as the
probability of an unlabeled sample xu

i being assigned to novel category k. MER
maximizes the entropy of the output probability distribution:
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R = −H(p) =
1

Nu

Nu∑

i=1

Cu∑

k=1

pik log pik. (7)

Inter-category Loss for All Categories. The above two components shorten
the distance between representations of the same categories to ensure intra-class
and intra-cluster compactness. To distribute the representations of different cat-
egories to different subspaces, we further measure the inter-category separation
as the distance between the two closest category centroids. Let μc be the centroid
of category c, where c ∈ {1, ..., Cl}⋃{1, ..., Cu}. The inter-category separation
for category m is defined as:

inter-categorym = min
1≤i≤(Cl+Cu),k �=i

‖μm − μi‖22. (8)

To improve the intra-category separability, we maximize the inter-category
separation in the inter-category loss:

Linter-category = − min
1≤m≤(Cl+Cu)

inter-categorym. (9)

GII Loss Function. The objective function in GII combines three components,
and the overall training loss of our unified framework can then be written as:

L = Lintra-class + λ1Lintra-cluster + λ2Linter-category + λ3R, (10)

where λ1, λ2, and λ3 are regularization parameters set to 1 in all our experiments.
The representation z is learned by three components together. Specifically,

Lintra-cluster is applied to unlabelled data but indirectly uses information from
labeled data via z and Lintra-class. The features learned from the labeled data help
cluster the unlabeled data. Meanwhile, Lintra-cluster further reduces intra-cluster
spread, which also influences representation z. The influence on representation
z from unlabeled samples can benefit not only the representation of unlabeled
samples but also the representation of labeled samples. More details are in the
analysis in Sect. 4.4. In addition, since Linter-category increases separation among
classes (existing categories) and clusters (novel categories), it uses information
from the labeled data to help separate classes from clusters. GII is a unified
approach for learning representations from both labeled and unlabeled samples.

4 Experimental Evaluation

In this section, our proposed GII is evaluated on image and graph datasets.
MNIST [Ronen et al.(2018)] contains 70,000 handwritten digits from 0 to 9.
Each example in the MNIST dataset is a 28× 28 grayscale image.
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Fashion-MNIST [Ronen et al.(2018)] is associated with 10 classes of clothing
images. It contains 60,000 training and 10,000 testing examples. In the Fashion-
MNIST dataset, each example is a 28 × 28 grayscale image.
Microsoft Challenge (MS) [Ronen et al.(2018)] contains disassembled mal-
ware samples from 9 families. We use 10260 samples that can be correctly parsed
and then extracted their FCGs for the experiment as in [Hassen and Chan(2017)].
Android Genome (AG) consists of 1,113 benign android apps and 1,200 mali-
cious android apps. Our colleague provides the benign samples, and the malicious
samples are from [Zhou and Jiang(2015)]. We select nine families with a rela-
tively larger size for the experiment to be fairly split into the training set and
the test set. The nine families contain 986 samples in total. We first use [Gascon
et al.(2013)] to extract the function instructions and then generate the FCGs as
in [Hassen and Chan(2017)].

4.1 Implementation Details

To simulate an open-set scenario, we randomly select six classes from the datasets
as existing categories. Moreover, we randomly select another two classes from
the datasets as novel categories by removing their labels. These eight classes
participate in the training, while the rest are considered unknowns that only
exist in the test set.

As shown in Fig. 1, labeled and unlabeled data share the same encoder. For
the MNIST and Fashion-MNIST datasets, the padded input layer of the encoder
is of size (32, 32), followed by two non-linear convolutional layers with 32 and 64
nodes. We also use the max-polling layers with kernel size (3, 3) and strides (2,
2) after each convolutional layer. We use two fully connected non-linear layers
with 256 and 128 hidden units after the convolutional component. Then we have
an eight-dimensional representation layer after the encoder. We use the Relu
activation function for all the non-linear layers and set the Dropout rate as 0.2
for the fully connected layers. We use Adam optimizer with a learning rate of
0.001. We use a contamination ratio of 0.001 for the unknown class threshold
selection. We sort the output probability of training data in ascending order
and pick the 0.1 percentile of the probability as the threshold. For the FCG
datasets (MS and Android), the padded input layer is in the size of (67, 67).
The padded input layer is then flowed by two non-linear convolutional layers
with 32 and 64 nodes. We apply the max-polling layers with kernel size (3, 3)
and strides (2, 2). We also add batch normalization after each convolutional layer
to complete the convolutional block. After the convolutional block, we only use
one fully connected non-linear layer with 256 hidden units for the graph dataset.
Next, we add an eight-dimensional representation layer after the encoder. We
use the Relu activation function and set the Dropout rate as 0.2. We use Adam
as the optimizer with a learning rate of 0.001. Finally, we use a contamination
ratio of 0.01 for the unknown class threshold selection. Moreover, as mentioned
in Sect. 3.1, we use a scheduling function for the k-means updates in the NCD
process. In the experiments, we apply k-means every ten iterations in the first
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5000 iterations, then reduce the frequency to every 100 iterations in the rest of
the training process.

4.2 Comparison Methods

We compare the proposed with ii loss without sharpening on the unlabeled sam-
ples (No sharpening), cluster loss, and supervised OSR. For a fair comparison
with “No sharpening”, we first pre-train the encoder with labeled samples using
ii loss [Hassen and Chan(2020b)]. After obtaining the representations of the unla-
beled samples, we find the novel cluster centroids and assignments via k-means
directly in the representation space without further sharpening. Finally, we apply
the same OSR process. Cluster loss is proposed to sharpen the distribution of
unlabeled samples through the clustering process [Liu and Tuytelaars(2022)].
We compare our proposed intra-cluster loss with cluster loss by substituting the
inter-cluster loss term with cluster loss in our overall loss function in Eq. 10.
Moreover, as the cluster loss measures the KL-divergence between two distri-
butions, which is on a different scale with other terms (intra-class and inter-
category), we set λ1 differently for different datasets. That is, all three terms
in our GII are based on distances in the same representation space Z. Hence,
GII provides a unified approach to representation learning for both labeled and
unlabeled samples.

In addition, we experiment on fully supervised OSR and use the results as
the upper bounds of NCD and OSR performances. In the supervised OSR exper-
iments, we apply ii loss on eight labeled categories in the training process. The
remaining categories are considered as the unknown class.

4.3 Evaluation Criteria

As mentioned above, we simulate an open-set scenario for all the datasets. More-
over, we randomly select two classes in the training set as novel categories and
remove their class labels. We simulate three open-set groups for each dataset
and then repeat each group 10 runs, so each dataset has results for 30 runs. We
calculate the average results of the 30 runs for performance evaluation.

We calculate the accuracy (ACC) scores under different types of categories:
existing categories (ACCE), novel categories (ACCN) and the unknown cate-
gory (ACCU). Specifically, we evaluate the classification accuracy of existing
categories and the recognition accuracy of the unknown category. Moreover, we
evaluate the model performance on novel categories with clustering accuracy.
Clustering accuracy is widely used in NCD problems. To find the optimal match
between the class labels and the cluster labels, the ACC of novel categories is
defined as ACCN = maxperm∈P

1
N

∑N
i=1 δ(perm(ŷi) = yi), where N is the total

number of unlabeled samples; δ is the Kronecker delta response; ŷi denotes the
predicted cluster label; perm(·) is the permutation operation and P is the set
of all permutations of the class assignments in the test set. The score ranges
between 0 and 1, and a higher value means better performance. The Hungarian
algorithm is used to optimize the permutations for faster computation.
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Table 1. The average ACC scores of 30 runs. The upper bounds results are trained with
fully supervised learning, and the values in boldface are the highest in each column.

Image Dataset MNIST Fashion-MNIST

ACCE ACCN ACCE+N ACCU ACCE+N+U ACCE ACCN ACCE+N ACCU ACCE+N+U

No sharpening 0.733±0.078 0.800±0.091 0.697±0.078 0.767±0.015 0.615±0.060 0.598±0.068 0.668±0.089 0.539±0.098 0.786±0.008 0.468±0.079

Cluster loss 0.752±0.161 0.625±0.125 0.687±0.166 0.751±0.031 0.624±0.127 0.820±0.062 0.608±0.104 0.757±0.052 0.698±0.049 0.628±0.042

GII (ours) 0.936±0.08 0.854±0.088 0.909±0.089 0.817±0.070 0.810±0.069 0.875±0.047 0.808±0.084 0.847±0.051 0.797±0.003 0.687±0.034

Upper bound (supervised) 0.983±0.001 0.977±0.004 0.981±0.001 0.937±0.012 0.935±0.012 0.896±0.018 0.967±0.005 0.914±0.014 0.822±0.011 0.770±0.016

Malware Dataset MS AG

ACCE ACCN ACCE+N ACCU ACCE+N+U ACCE ACCN ACCE+N ACCU ACCE+N+U

No sharpening 0.732±0.131 0.625±0.180 0.717±0.132 0.763±0.112 0.653±0.166 0.680±0.167 0.708±0.140 0.602±0.176 0.798±0.027 0.564±0.193

Cluster loss 0.880±0.117 0.602±0.183 0.818±0.106 0.758±0.096 0.742±0.094 0.779±0.146 0.601±0.177 0.734±0.120 0.773±0.063 0.684±0.118

GII (ours) 0.942±0.026 0.630±0.143 0.895±0.054 0.834±0.071 0.811±0.078 0.944±0.013 0.714±0.080 0.906±0.020 0.831±0.048 0.820±0.034

Upper bound (supervised) 0.960±0.016 0.916±0.035 0.950±0.020 0.903±0.035 0.899±0.035 0.922±0.012 0.712±0.080 0.898±0.021 0.908±0.013 0.904±0.012

Table 2. The average ROC AUC scores of 30 runs at 100% and 10% FPR. The upper
bounds results are trained with fully supervised learning, and the values in boldface
are the highest in each column.

MNIST Fashion-MNIST MS AG

FPR 100% 10% 100% 10% 100% 10% 100% 10%

No sharpening 0.439±0.127 0.004±0.003 0.418±0.073 0.003±0.001 0.528±0.122 0.007±0.004 0.293±0.214 0.000±0.000

Cluster loss 0.413±0.231 0.007±0.009 0.620±0.084 0.008±0.003 0.651±0.271 0.018±0.015 0.507±0.283 0.007±0.015

GII (ours) 0.829±0.104 0.047±0.016 0.674±0.040 0.012±0.004 0.858±0.086 0.028±0.015 0.885±0.090 0.016±0.020

Upper bound (supervised) 0.966±0.010 0.078±0.003 0.676±0.062 0.015±0.002 0.945±0.045 0.062±0.017 0.963±0.013 0.052±0.015

To further evaluate our approach on OSR, we measure the AUC scores under
100% and 10% False Positive Rate (FPR). While the AUC score under 100%
FPR is commonly used in model performance measurements, the AUC score
under 10% FPR is more meaningful for malware detection applications.

4.4 Experimental Results and Analysis

We test our proposed method on image and malware datasets for 30 runs. Table 1
shows the average accuracy scores of different methods. Notably, we measure the
average clustering/classification accuracy on the existing/novel set and the com-
bined set (ACCE+N). Moreover, considering an open-set scenario, we measure
the average accuracy of the unknown set, and the set contains all the existing,
novel, and unknown categories (ACCE+N+U). Comparing the ACC under exist-
ing categories (ACCE) and novel categories (ACCN), we observe that our pro-
posed GII outperforms both ii loss without sharpening and cluster loss in NCD.
Also, comparing the ACC under the unknown category (ACCU), we observe
that GII achieves the best performance in OSR. The upper bound performances
are generated from supervised ii loss, where we utilize the labels of novel cat-
egories in the training set. We can see that GII has comparable performances
with the supervised training in some datasets. In particular, GII obtains higher
accuracy than supervised learning in the combined novel and existing categories
(ACCE+N) in the AG dataset.
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Fig. 2. The t-SNE plots of the representations of MNIST test samples.

In addition to the ACC scores, we measure the AUC ROC scores under dif-
ferent FPR values: 100% and 10% in Table 2. The AUC ROC measures OSR
at various threshold settings. Similar to the ACC scores, our proposed GII out-
performs ii loss without sharpening and cluster loss in the AUC ROC scores.
Furthermore, comparing GII with supervised learning, we observe that GII can
achieve comparable OSR performance in the Fashion-MNIST dataset.

Our experiment results indicate that GII outperforms ii loss without sharp-
ening and cluster loss in terms of performances in NCD and OSR. Specifically,
ii loss without sharpening can be considered as an ablation study to investigate
our approach without intra-cluster loss. We plot the t-SNE plots of the repre-
sentations of samples from different categories in the MNIST test set, as shown
in Fig. 2. The left subplots are the representations of the samples from existing
categories (“0”, “2”. “3”, “4”, “6” and “9”) and novel categories (“cluster 1”
and “cluster 2”). The right subplots show the representations of samples from
unknown categories, which only exist in the test set. Comparing Fig. 2a with
Figs. 2b and 2c, we can see that samples from the two clusters result in more
compact intra-cluster spread with cluster loss and GII. The reason is that cluster
and GII sharpen the distributions of the unlabeled samples while “No sharpen-
ing” does not change the distributions of the unlabeled samples. Furthermore, it
can be seen that GII forms better clusters compared with cluster loss. GII gen-
erates a more discriminative boundary for the samples in cluster 2 (grey) and
the samples in class “9” (brown). The reason is that GII forms a tighter cluster
for cluster 2. Thus a more accurate cluster centroid is estimated and used in the
inter-category loss. Also, comparing the representations in the right subplots,
we find that the representations of unknown samples learned by ii loss without
sharpening and GII are more concentrated around the origin. In contrast, those
learned by GII are more widespread.
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Fig. 3. Intra-inter ratio (IIR) of the representations in different categories

Besides visually evaluating representations via t-SNE plots, we also evalu-
ate intra-inter ratio (IIR) [Jia and Chan(2022)] with test samples to measure
the representation quality learned by different approaches. IIR measures the
representation quality by calculating the ratio between intra-category spread
and inter-category separation, and a lower value means better representations.
Figure 3 shows the IIR values of different datasets. From Fig. 3, within the novel
categories across four datasets, cluster loss or GII has (large) improvements in
IIR over no sharpening, which indicates the benefit of representation learning
with unlabeled samples via cluster loss or GII. However, GII yields a larger ben-
efit than cluster loss. More interestingly, within the existing categories across
datasets, we observe improvements in IIR with GII over no sharpening. That is,
the unlabeled samples via GII help improve the representations of samples from
labeled classes. Hence, not only the representations of unlabeled samples benefit
from representation learning from unlabeled samples via GII, the representations
of labeled samples also benefit.

5 Conclusion

We have presented a generic one-step representation learning approach to tackle
the challenging problem of novel category discovery under an open-set scenario.
Our proposed approach consists of three components. First, we achieve intra-
class spread for labeled samples by minimizing the intra-class distance. Second,
we estimate the novel category centroids and propose intra-cluster loss for the
unlabeled samples to discover novel categories. Third, we separate different cat-
egories by maximizing the intra-category distance such that all the categories
inhabit the same representation space. Last, we evaluated our approach on image
and graph datasets, and the results indicate that the proposed approach obtained
superior results in NCD and OSR compared with other approaches.
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Abstract. Bilingual parallel sentences, combined with visual annota-
tions, created an innovative machine translation scenario within the
encoder-decoder framework, known as multimodal machine translation.
In generally, it was encoded as an additional visual representation to
enhance the dependent-time context vector when generating the tar-
get translation word by word. However, this approach only simulated
the consistency between the visual annotation and the source language
and did not sufficiently consider the consistency among the source lan-
guage, the target language, and the visual context. To address this prob-
lem, we proposed a novel method that adds visual features to both the
encoder and decoder. In the encoder, we designed a cross-modal corre-
lation mechanism to effectively integrate textual and visual information.
In the decoder, we designed a multimodal graph to enhance the related
information of vision and text. Experimental results showed that the
proposed approach significantly improved translation performance com-
pared to strong baselines for the English-German/French language pairs.
The ablation study further confirmed the effectiveness of the proposed
approach in improving translation quality.

Keywords: Multimodal · Consistency · Machine Translation

1 Introduction

Multimodal machine translation (MMT) typically involves the integration of
information from multiple modalities, such as visual or speech data. The underly-
ing assumption is that the additional modalities (specifically the visual modality
in this paper) contain useful alternative information of the textual input. Com-
pared to text-only neural machine translation (NMT), MMT can improve the
translation quality by determining the meaning of the text or providing visual
contextual information [8]. However, the effectiveness of visual information, and
in particular how to incorporate visual information into machine translation, has
been seen as a major challenge.
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EN: a boy is playing checkers with an adult shown off-screen 
while a girl looks on 

Ref: ein junge spielt mit einem erwachsenen außerhalb des bildes 
dame während ein mädchen zusieht . 
DE: ein junge spielt dame mit einem erwachsenen auf einem foto. 

translate

Fig. 1. An example of English (EN)-to-German (DE) MMT, “a girl” in the source
sentence should be translated in target sentence.

Previous works [1,18,19] have focused primarily on the source language,
largely neglecting the guidance of visual information in the target language.
However, it is essential to further strengthen the relation among the source lan-
guage, target language, and visual information. As shown in Fig. 1, we used
parallel sentence pairs from Multi30K1 to construct a text-only NMT based on
the Transformer model [15]. Then, we used the trained NMT to translate a
source (English) sentence to a target (German) sentence. It becomes clear that
the text-only NMT system cannot translate “a girl,” which has strong visual
features in the picture. We believe that the visual modality can provide explicit
target context that cannot be extracted directly from the text, thereby enhanc-
ing the performance of MMT. Therefore, the main motivation of this paper
is to exploit the source-visual-target consistency to improve the decoder’s text
generation.

In this paper, we propose a novel method to improve machine translation
generation by exploiting the source-visual-target consistency mechanism. We
simultaneously incorporate visual information into the encoder and decoder to
maintain consistency among the source, visual information, and target. In the
encoder, we introduce a cross-modality relevance framework that considers the
relevance of entities between the two modalities and aligns the representation
spaces. In the decoder, we compute the semantic similarity between the gener-
ated target words and the image label to determine whether relevant target words
have been translated or not. To ensure that the most relevant visual objects are
used for translation, we introduce a multimodal graph and set a threshold to
control the inflow of visual information. We have achieved good results with
the Multi30k dataset. The main contributions and novelties of this work are as
follows:

– We propose an effective multimodal translation model that exploits source-
target-vision consistency to improve translation quality.

1 A widely-used multi-modal dataset [5] to train MMT.
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– We provide a cross-modal fusion method that aligns the representation space
of visual entities and textual entities.

– We introduce a multimodal graph that uses visual context to guide the gen-
eration of target words.

2 Related Work

Multimodal machine translation (MMT) is a cross-modal task within the field of
machine translation. Parallel sentences are crucial data for constructing neural
machine translation [14], but additional modalities can effectively supplement
the context information of pure text machine translation. Early attempts at
MMT focused on improving models by incorporating visual features [3]. Current
MMT typically uses other modalities (such as visual or voice) to extract use-
ful information to improve text translation. For example, in the case of visual
modality, global [19] or local [17] visual information is often added to the model.
However, direct encoding of the entire image can introduce additional noise [19].
Huang [7] suggested adding visual features to the encoder in the seq2seq net-
work to enable the decoder to better take into account visual information and the
semantic relevance model. Zhou [21] created a visual text attention mechanism
to capture words with strong semantic relevance to images. In his work, two mul-
timodal context vectors (global and regional) were computed and then fused to
predict the current target word. Previous methods only ensured the combination
of visual information and the source language, with no link between the target
language and the visual information. While the above methods can implicitly
convey information to the decoder, they cannot explicitly establish the seman-
tic relationship between the image and the text. There is a connection in the
embedding space between two languages [22], and image information can explic-
itly strengthen this connection. It is also important to identify the most useful
visual information. As shown in [4], irrelevant images have little effect on the
translation quality. The experiment in [2] shows that the visual modality is still
useful in the absence of linguistic context, but is less sensitive when presented
with complete sentences.

Our proposed method not only integrates visual information into the encoder
but also uses a graph attention network [16] at the decoder to guide translation
with multimodal graphs. The graph attention network can capture node interac-
tions by considering the relationships among each node in the graph. It is widely
used in relation extraction and classification tasks. To select the most appropri-
ate text-related information, we use the MBERT model [12]. MBERT is a model
that has been pre-trained in language representation. The language representa-
tion ability learned through pre-training has achieved excellent performance in
various NLP tasks.

3 Proposed Method

As a Seq2Seq model, it contains of an encoder and a decoder. Visual fusion aims
to establish a framework of relevance between textual and visual information.
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Fig. 2. Diagram of the proposed translation model. Visual fusion visual information
and text information are aligned by using cross mode. Multimodal graph: word
vector is generated with the help of MBERT, and the relationship matrix between
vision and text is constructed through cosine similarity algorithm

The decoder uses a multimodal graph to strengthen the link with the encoder.
Figure 2 shows the architecture we proposed.

3.1 Encoder

The encoder is divided into two parts, feature alignment and fusion. In the
feature alignment part, we first obtain data from two modalities. For the visual
modality, we use Faster-RCNN to extract visual features from regions of interest.
We denote the visual features in an image as O = {o1 · · · oNo} ∈ Rd×No

, where
No is the number of visual objects. We fix Nv by selecting the 10 features with
the highest probability in each Faster-RCNN prediction. Each visual feature is
a 2048-dimensional vector. To incorporate visual information into contextual
representations, we use feedforward layers to project vectors.

For the textual modality, we use positional embeddings. We denote entities
in the textual modality with word representation e. To align the visual modality
and textual modality in the same vector space, we introduce a visual fusion
module. All entities are processed uniformly in this module. We define textual
entities as E = {e1 · · · eNe} ∈ Rd×Ne

, where Ne is the number of textual
entities.

Cross-modality representation Ecross and Ocross are obtained through cross-
attention calculation as follows:

Ecross = softmax(
OTE√

d
O) (1)
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Ocross = softmax(
ETO√

d
E) (2)

The cross fusion module consists of a cross-attention representation, followed
by a residual connection with normalization from the input representation, a
feed-forward layer, and another residual connection normalization. After the
cross fusion module, we further apply a self-attention operation to the visual
and textual entities, respectively, as follows:

Se = softmax(
ET
crossEcross√

d
Ecross) (3)

So = softmax(
OT

crossOcross√
d

Ocross) (4)

We stack multiple module layers to get a consistent view across all modalities.
We call these unified representations entity representations and denote the final
expression of all entities as S = cat([Se,So]). Although the representations are
separate, they carry information from interactions with the other modality and
are aligned in a unified representation space.

In the feature fusion part, we use Transformer encoder modules to fuse the
data from different modalities in S. Each layer consists of two sub-layers. The
first sub-layer is a multi-headed self-attention:

H(l) = Attention(S(l-1),S(l-1),S(l-1)) (5)

where H(l) is the temporary encoder hidden states, and Attention(∗) is a multi-
head self-attention function. S(l-1) represents the source sentence’s representation
at the (l-1) − th layer. Particularly, S(0) is the uniformed representations S
obtained from the visual fusion module.

The second sub-layer is a position-wise fully connected feed-forward net-
work(FFN). The representation of the source sentence at the current layer S(l)

is obtained as:
S(l) = FFN(H(l)) (6)

where FFN(∗) is a position-wise feed-forward function.

3.2 Multimodal Graph

To establish a relationship between the target language and visual information,
we developed a method to fuse the target language and visual information using
an undirected graph G = (Node,Edge) which represents connections between
multiple modalities. Node represents a text node or an image node, and Edge
represents the edge between nodes. First, we use Faster-RCNN to extract a bag of
image objects and their corresponding text labels as candidates for nodes in the
graph. We then use MBERT to calculate the similarity between the visual label
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and the textual representations. If their similarity is greater than the threshold
α, the text node and visual node are connected by an Edge. Figure 2 shows an
example where the phrase “a girl” matches an object in the image, resulting in a
pair of nodes in the visual-textual graph. The advantage of this multimodal graph
is that it can more accurately capture matching information between images and
text while reducing noise.

The construction of a multimodal graph is divided into two steps. We use
Ex = {ex0 . . . exn

} to denote the target language text nodes. The first step uses
self-attention to collect messages between nodes within the text modality.

Cx = Attention(Ex,Ex,Ex) (7)

The image nodes are then integrated with the text nodes as follows

Mxi
=

∑

j∈A(Uxi
)

γi,j � Oj (8)

γi,j = Sigmoid(W1(cat[Cx,Oj ])) (9)

where � is the Hadamard (element-wise) product. M is a relational matrix.
A(Uxi

) is the set of visual nodes related to the current text node. Cx is concate-
nated with the visual entities Oj . W1 is a learnable parameter matrix.

3.3 Decoder

The decoder is similar to the encoder. Instead of using text-only information,
we incorporate the multimodal graph M into the decoder’s input as:

Eemb+img = Eemb + M (10)

where Eemb is the decoder’s input. Please note that the complete M only
exists during training. The calculation process is shown below:

C(l-1)
d = Attention(N(l-1),N(l-1),N(l-1)) (11)

D(l-1) = Attention(C(l-1)
d ,S,S) (12)

N(l) = FFN(D(l-1)) (13)

where N(0) is Eemb+img.
Finally, we use the hidden state of the last layer as input and apply softmax

to generate the probability distribution of the target sentence and the training
goals:

P(Y|X,N) =
∏

t

softmax(WN(last)) (14)

Lf = −log(P(Y|X,N)) (15)

where W is a learnable parameter.
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4 Experimental Results and Analysis

4.1 Datasets

We train our model on Multi30K, which a widely used dataset in multimodal
machine translation, which includes image dataset, English text, and their trans-
lations(English to French, English to German). We used 29,000 samples for
training and 1,014 samples for validation. For testing, we used the WMT2016,
WMT2017, and MSCOCO [6] shared tasks. The MSCOCO test set contains 461
more challenging out-of-domain instances with ambiguous verbs. All sentences
were preprocessed using BPE (Byte Pair Encoder). We used MOSES scripts
to preprocess the dataset and learned a joint BPE code with 10,000 merging
operations for both the source and target languages.

Table 1. Experimental results in English-German (En-De) translation tasks.

models En-De
Test2016 Test2017 MSCOCO
BLEU METEOR BLEU METEOR BLEU METEOR

Text-Only NMT Models
Transformer 41.02 68.22 33.36 62.05 29.88 56.64
Existing MMT Models
VAG-NMT - - 31.6 52.2 28.3 48
UVR-NMT 40.79 - 32.16 - 29.02 -
Imagination 41.31 68.06 32.89 61.29 29.9 56.57
DCCN 39.7 56.8 31 49.9 26.7 45.7
Ours Proposed Models
Ours+Faster-RCNN 41.7 69.5 34.5 62.1 29.97 56.5
Ours+DETR 41.9 68.7 34.7 62.5 30.01 56.7
Ours+QueryInst 42.1 68.9 34.6 63.5 29.4 56.9

4.2 Parameter Settings

We followed the configuration described in [10] and experimented with the Trans-
former Tiny configuration, which is more suitable for small datasets such as
Multi30K. We used a 4-layer encoder, 4-layer decoder, and 4 heads. The dimen-
sion of the hidden features in the feed-forward layer was 256, and the size of
the word embeddings was 128 dimensions. The batch size was set to 64, and the
learning rate was set to 0.005. We used Adam as the optimizer, with β1 set to
0.9, β2 set to 0.98, and eps set to 1e-9. Each batch contains approximately 4,096
source and target tokens. The beam size has been set to 5. Our implementation
was based on Fairseq2 In the training phase, the dropout was set to 0.1. We set
2 https://github.com/facebookresearch/fairseq.

https://github.com/facebookresearch/fairseq
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the maximum number of updates to 8000 steps, and training was stopped if the
loss did not improve for ten consecutive iterations on the validation set. For eval-
uation metrics, we perform parameter averaging over the last 10 checkpoints to
provide more reliable results. We use BLEU [11] and METEOR [13] to evaluate
the quality of our translations.

Table 2. Experimental results in English-French (En-Fr) translation tasks.

models En-Fr
Test2016 Test2017 MSCOCO
BLEU METEOR BLEU METEOR BLEU METEOR

Text-Only NMT Models
Transformer 61.8 81.02 53.46 75.62 44.52 69.43
Existing MMT Models
VAG-NMT - - 53.8 70.3 45 31.7
UVR-NMT 61 - 53.2 - 43.71 -
Imagination 61.9 81.2 54.07 76.03 44.81 70.35
DCCN 61.2 76.4 54.3 70.3 45.4 65
Ours Proposed Models
Ours+Faster-RCNN 62.3 81.9 54 76.4 45.2 70.1
Ours+DETR 62.34 81.44 54.2 76.3 45.7 70.5
Ours+QueryInst 62.33 81.5 54.4 76.9 45.9 69.7

4.3 Main Results

We primarily compare our method with several representative and competitive
frameworks, including DCCN [9], VAG [21], UVR-NMT [20], Imagination [6].
The main results of the comparison are shown in Table 1 and Table 2. All models
were evaluated on the three test sets for the En-De and En-Fr tasks.

The experimental results showed that, when we used Faster R-CNN to extract
visual features, our model achieved an improvement of 0.68 in terms of BLEU
score compared to the Transformer model on the WMT2016 En-De task. For
the WMT2017 En-De task, this gap was reduced to 1.14. All BLEU scores were
higher than in previous work. Compared to our model, the improvements of
previous work were very limited in terms of baseline, suggesting that visual
features were not fully exploited in their methods. The results are shown in
Table 1.

We also investigated the impact of the detection model on translation quality.
Here, we report the results of DETR and QueryInst in Table 1. Intuitively, the
better performing DETR and QueryInst models provide more complementary
knowledge to complete the inadequate text representation. The results show
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that stronger detection models can capture visual information more accurately,
providing richer complementary information to the text. On the WMT2016 En-
DE task, DETR improved the BLEU score to 41.9, and QueryInst improved it to
42.1. However, on the MSCOCO dataset, however, performance is comparable
to the baseline. This result may be due to the fact that the Multi30K dataset is
too small to include enough out-of-domain data. In Table 2, the results for the
English to French translation task did not show higher improvements compared
to the English to German task. This could be because English and French are
more similar in nature, so the role of visual information is limited in this case.

Table 3. Ablation experiments on English-German and English-French translation
tasks.

model En-De WMT2017 En-Fr WMT2017
BLEU METEOR BLEU METEOR

Ours 34.5 53.9 54.0 71.5
Ours-Gs 34.0 53.29 53.7 71.0
Ours-Gt 33.8 53.6 53.8 70.7
Ours-Gs-Gt 33.9 52.1 53.46 70.5

4.4 Ablation Study

Ablation experiments were carried out to determine the effect of each module
on performance. The results are shown in Table 3.

(1)-Gt. In this variant, we removed the multimodal graph between the tar-
get and the visual information, while leaving the other parts unchanged. The
experimental results show that removing the consistency between the target and
visual objects leads to ineffective matching between the image and text objects,
resulting in a decrease in translation quality.

Table 4. The impact of incongruent decoding. Here Cong/Icong denotes congruent
and incongruent decoding, respectively. The results (BLEU) are measured on En-De
Test2017.

System Mask
Cong Icong

Transformer 33.9 -
Ours_source 34.5 31.3
Ours_target 34.5 30.5
Ours 34.5 30.1
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(2)-Gs. In this variant, we removed the information fusion between the source
information and the visual information, while leaving the other parts unchanged.
This results in the encoder being unable to ensure the consistency between the
source language and visual information, leading to a significant decrease in the
BLEU and METEOR scores. The experimental results indicate that visual fusion
has a greater impact on translation quality.

The results of the ablation experiments suggest that maintaining source-
target visual consistency is crucial for improving machine translation perfor-
mance. However, relying solely on the visual consistency of either the source or
the target will only lead to limited improvements in translation results.

4.5 Incongruent Decoding

To understand the sensitivity of the multimodal system to visual patterns, we
used inconsistent decoding [2]. Specifically, we reversed the order of visual fea-
tures, causing misalignment between visual features and text. The integration of
visual modalities may worsen the metrics. Table 4 shows that inconsistent decod-
ing leads to significant performance degradation, indicating that our model is
highly sensitive to visual features. This is reasonable, as inconsistent visual infor-
mation is more like noise to the model.

We also investigated the impact of inconsistent decoding on different mod-
ules. We found that visual features perform the best when decoding is con-
sistent. When different modules perform inconsistent decoding separately, the
performance degrades. Performance is at its lowest when decoding is completely
inconsistent. These results suggest that visual information can improve transla-
tion performance.

Fig. 3. The effect of the values of threshold α on the test set of WMT 2017 En-De and
En-Fr task.

4.6 How the Degree of Visual Introduction Affect the Quality
of Translation

We compute the similarity between visual labels and text representations using
MBERT. In addition, a threshold is set to control the generation of G. We



Glancing Text and Vision Regularized Training 265

controlled the flow of visual information by changing the threshold value. As
shown in Fig. 3.

We observe that, when the threshold is small, the impact of visual information
on translation quality is very limited and may even lead to negative results. In
addition, if the threshold is too high, performance also decreases.

This phenomenon indicates that an excessive amount of visual information
makes it difficult to correctly select the appropriate information match between
the recognition model and MBERT. The presence of inconsistent visual features
can introduce noise into the translation process, thereby reducing the quality
of the output. It is only by introducing appropriate visual information that
translation quality can be improved.

5 Conclusion

In this paper, we propose a novel and effective multimodal translation model
that exploits visual consistency between source and target. We used a visual
fusion module to better integrate visual information into the encoder, and used
noiseless visual object information to better infer context. We introduced a mul-
timodal graph to effectively convey the consistency between visual and textual
information to the decoder, thereby utilizing the guidance of visual informa-
tion to obtain more accurate translation results. Our experiments on the multi-
modal benchmark dataset show that our model achieved fine results compared
to related works. The research results confirm that developing multimodal mod-
els for assisting machine translation is a very promising research direction. In
future work, we will investigate whether it is possible to effectively use complex
background information to further improve the quality of MMT.
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Abstract. The continuous sign language recognition task is challenging
which needs to identify unsegmented gloss from long videos in a weakly
supervised manner. Some previous methods hope to extract informa-
tion of different modalities to enhance the representation of features,
which often complicates the network and focuses too much on visual fea-
tures. Sign language data is a long video, as the time span increases, the
model may forget the information of early time steps. The long-distance
temporal modeling ability directly affects the recognition performance.
Therefore, a Global-Temporal Enhancement (GTE) module is proposed
to enhance temporal learning ability. Most of the current continuous sign
language recognition networks have a three-step architecture, i.e., visual,
sequence and alignment module. However, such architecture is difficult
to get enough training under current Connectionist Temporal Classifica-
tion (CTC) losses. So two auxiliary supervision methods are proposed,
namely Temporal-Consistency Self-Distillation (TCSD) and GTE loss.
TCSD uses two global temporal outputs from different depths to super-
vise local temporal information. GTE loss can provide a moderate super-
vision to balance the features extracted by deep and shallow layers. The
proposed model achieves state-of-the-art or competitive performance on
PHOENIX14, PHOENIX14-T datasets.

Keywords: Sign language recognition · Temporal enhancement ·
Auxiliary supervision · Self distillation

1 Introduction

Deaf-mute people have serious communication problems in reality. Sign language
has become an alternative option for their communication. Sign language is a
visual language and users need to transmit information through a series of hand,
head and body movements, which makes it difficult for normal people to master.
Sign language recognition is beneficial to solve communication problems between
two groups.

Sign language recognition can be divided into two categories. Isolated sign
language recognition (ISLR) [10] converts a video clip into an independent gloss,
and continuous sign language recognition (CSLR) converts a sign language video

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14261, pp. 268–280, 2023.
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into a series of glosses, which is more challenging. From the perspective of infor-
mation distribution, sign language videos are considerably more complex than
spoken language. In order to enrich the representation of sign language, some
works try to enrich RGB features with different modalities, e.g., C2SLR [16]
uses the pre-extracted keypoint heatmaps to constrain the visual module, forc-
ing visual module to learn the features of the keypoint positions.

Although these methods have some positive contributions, multimodal data
increases training complexity and relies on additional function components, such
as pose estimation model, depths measurement model, etc. In order to reduce
model complexity, some works [8,12] try to extract features from single RGB
data. SEN [8] emphasizes some space regions in a self-motivated way, Pseudo-
labels [12] uses random fine-grained labels to improve alignment. Remarkably,
few of them deal with temporal information from a global perspective. Since the
sign language data is a long video, too much attention to local temporal informa-
tion or spatial information will limit the representation ability of global temporal
information. The attention mechanism [1,6,13] has an excellent ability to cap-
ture long-distance information. To this end, a Global-Temporal Enhancement
(GTE) module is proposed to model global dependency in temporal dimension.
Each frame of sign language video contributes differently to the final recognition.
GTE can enhance those frames with key information and suppress redundant
frames.

Some works [2,7,11] point out that only enhancing the feature extraction
module may not be able to fully utilize the capabilities of the three-step architec-
ture. The reason is the current supervision methods are not sufficient to supervise
all three steps, therefore, two auxiliary supervision methods are proposed. First,
GTE loss is introduced to force the network to learn global temporal informa-
tion directly. Second, considering that the temporal extraction network consists
of multiple modules, different modules output different levels of features, inde-
pendent calculation of Connectionist Temporal Classification (CTC) [5] loss may
cause the network to focus on biased information, so a Temporal-Consistency
Self-Distillation (TCSD) method is proposed to make multiple temporal modules
more consistent. In summary, the contributions of this paper are as follows:

1. A Global-Temporal Enhancement (GTE) module is proposed, which utilizes
attention mechanism to enhance global temporal representation and improve
the learning ability of the model.

2. A Temporal-Consistent Self-Distillation (TCSD) method is proposed, which
uses two global temporal outputs from different depths to supervise local tem-
poral information. In addition, the GTE loss is also introduced and multiple
losses can improve the stability of the network.

3. The GTE module and the auxiliary supervision methods belong to a holistic
idea, and depend on each other. The proposed network can achieve high
performance on the challenging Phoenix14 and Phoenix14-T datasets.
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2 Related Works

The attention mechanism [1] computes an output by learning a set of weights
associated with each position of the input sequence. Its excellent sequence mod-
eling ability has inspired many following works. Transformer [13] has shown
competitive performance only by attention, which can solve the problem that
RNNs cannot be trained in parallel. External attention [6] is a lightweight struc-
ture that was originally proposed for image classification, semantic segmenta-
tion, etc. It can mine potential relationships across different channels. Attention
mechanism has global modeling ability, leading to huge potential in CSLR task
where long-distance dependencies are involved.

Auxiliary supervision aims to select an appropriate auxiliary loss to assist the
generalization of the main task. Cheng et al. [2] proposed a gloss feature enhance-
ment module and corresponding auxiliary loss provide high quality supervision.
Knowledge distillation can also be regarded as a kind of auxiliary supervision
method. Zhang et al. [14] proposed the idea of self-distillation, which extracts
knowledge from the model itself to realize knowledge transfer between different
layers. Hao et al. [7] introduced knowledge distillation method to the CSLR task
and achieved good performance. Current main stream three-step architecture
of CSLR network has multiple hierarchy parts, making auxiliary supervision a
suitable mechanism to improve model performance.

3 Methods

3.1 Network Overview

Fig. 1. Overview of our proposed network.

As shown in Fig. 1, the network follows the three-step architecture which consists
a visual module, a sequence module and an alignment module. Given an input
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of T frames RGB sign language video X = {xi}T
t=1 ∈ R

T×3×H×W , the output
Y = {yi}N

i=1 is a sentence composed of glosses, where N represents the length
of the sentence. After the sign language video is extracted by the visual mod-
ule (2DCNN), the feature becomes F = {ft}T

t=1 ∈ R
T×d. The sequence module

further extracts temporal information, which consists of a local temporal extrac-
tion module (1DCNN), a GTE module and a Bi-directional Long Short-Term
Memory (BiLSTM). Finally, the alignment module uses CTC to calculate the
probability p = (y | x) of the predicted gloss sequences.

3.2 Global-Temporal Enhancement

Figure 2 gives the details of GTE module. GTE has a two-branch structure. The
first branch is composed of four stacks of Transformer Encoder, which can model
global temporal dependencies. The second is an External Attention branch,
which can enhance the power of Transformer Encoder by injecting positional
information to GTE module.

Fig. 2. The structure of Global-Temporal Enhancement.

Transformer Encoder. Compared to original Transformer Encoder, the input
embedding and positional encoding are removed in GTE module, reducing the
amount of computation and helping the model converge faster. Self-attention
plays most of the learning role in GTE. The formula of self-attention is as follows:

Attention(Q,K, V ) = softmax
(

QKT

√
dk

)
V (1)

Q, K, V are linear projections of input with different weights respectively.
Q and K perform dot product attention operation, then divided by the square
root of their second dimension dk. After softmax, then multiply V to get the
attention matrix.

Multi-head attention projects queries, keys, and values h times with differ-
ent linear projections, executes the attention functions separately, and finally
concatenates them and executes an additional projection:

headi = Attention
(
QWQ

i ,KWK
i , V WV

i

)
(2)
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MultiHeadAttention (Q,K, V ) = Concat (head1, . . . ,headh)WO (3)

where parameter matrices WQ
i ∈ R

d×dk , WK
i ∈ R

d×dk , WV
i ∈ R

d×dv and WO ∈
R

hdv×d. Multi-head attention allows the model to focus on different temporal
step, which is effective in suppressing redundant and transitional frames. If the
input is F1d = {ft}T ′

t=1 ∈ R
T ′×d, after residuals and feedforward, the output of a

Transformer Encoder can be calculated as follows:

F̃GTE = LayerNorm (F1d +MutilHeadAttention (F1d)) (4)

FeedForward(x) = max (0, xW1 + b1)W2 + b2 (5)

FENC = LayerNorm
(
F̃ENC + FeedForward

(
F̃ENC

))
(6)

In this paper, the dimension d = 1024 to avoid the loss of spatial information,
which is consistent with the frame-wise feature dimension of the visual module.

External Attention. To construct the GTE module, the idea of External
Attention [6] is borrowed. External Attention uses two linear layers of the same
size M instead of K and V , with an input of F ∈ R

C×S , processing channel
dimension C. External Attention was originally proposed to deal with images,
not videos. Therefore, this paper processes dimension S instead of C by linear
layers M . The idea is to first project the spatial information in each frame,
then normalize the temporal and feature dimension, finally project the spatial
information again.

In CSLR, the output of 1DCNN can be represented as F1d = {ft}T ′

t=1 ∈
R

T ′×d, while two distinct linear layers can be represented as Mk,Mv ∈ R
S×d.

Unlike the self-attention calculation of the similarity between elements and ele-
ments, (α)i,j calculates the similarity between the ith element of the linear layer
and the jth line in F1d, Mk and Mv use the same initialization parameters:

A = (α)i,j = Norm
(
F1dM

T
k

)
(7)

FEA = AMv (8)

Since attention is sensitive to data scale, double normalization is used to
normalize columns and rows independently. The double normalization formula
is as follows:

α̃i,j = F1dM
T
k (9)

α̂i,j = exp (α̃i,j) /
∑

k

exp (α̃k,j) (10)

αi,j = α̂i,j/
∑

k

α̂i,k (11)

When designing neural network models, many works often add residuals to
prevent model learning failures, but GTE module does not follow this case. The
input of the GTE module contains local temporal information. Niu et al. [12]
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shows that the average length of input video corresponding to one gloss is 12.2
frames. Fixed convolution kernel of 5 in 1DCNN means that the features learned
involve frames corresponding to different glosses. Therefore, features may con-
tains some wrong information. Adding residuals at this time will keep error
information and interfere with subsequent learning.

After the calculation of the two branches, without using the residual struc-
ture, the final output of the GTE is:

FGTE = FENC + 0.5FEA (12)

where coefficient 0.5 is chosen by experiment results.
Since Encoder does not add positional encoding, temporal information may

be lost during training. Moreover, due to the inherent requirement of distilla-
tion learning, the layer number of GTE cannot be too small. But deepening
the number of layers may make the subsequent layers gradually forget the orig-
inal temporal information. To this end, three measures are adopted. The first
and most powerful measure is External Attention. External Attention shares the
same input as the Encoder and its outputs are fused at the output stage of GTE.
External Attention keeps the most positional information and reduces the influ-
ence of fixed convolution kernel size in 1DCNN. Second, due to the existence of
TCSD, 1DCNN is taught by GTE and BiLSTM, so that useful temporal infor-
mation is preserved as much as possible. Third, GTE loss also can be corrected
by other CTC losses which might contain more temporal information.

3.3 Temporal-Consistency Self-distillation

Knowledge distillation induces the training of a small model (student) by using
a soft target associated with the large model (teacher) as part of the total loss.

For CSLR task, a single loss function often cannot fully capture all aspects
of the model that need to be optimized. Each module of feature extraction is
responsible for extracting different levels of information, and there are differ-
ences between them. At the same time, there is a gradual dependency between
them, serving the same purpose of abstracting sign language features. In order
to promote the information interaction and consistency between modules, TCSD
is proposed.

GTE and BiLSTM with global temporal information are regarded as the
teachers, and 1DCNN is regarded as the student. This paper jointly trains the
teachers and student networks, and adds auxiliary classifiers after GTE and
1DCNN to obtain auxiliary logits. Generally speaking, shallow features tend
to focus on texture details, while deep features pay more attention to abstract
semantics. Teachers at different depths can provide their specific knowledge to
the student network, thus keeping local and global temporal consistent. The
distillation formula is as follows:

LTC1 = KL
(
softmax

(
T1

τ

)
, softmax

(
S

τ

))
(13)
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LTC2 = KL
(
softmax

(
T2

τ

)
, softmax

(
S

τ

))
(14)

Among them, S = (s1, . . . , sT ), T1 = (t1, . . . , tT ), and T2 = (t′1, . . . , t
′
T ) are

obtained by 1DCNN, GTE and BiLSTM respectively. Using a higher temper-
ature τ can soften the peak probability and smooth the distribution of labels,
and reduce the phenomenon of overfitting.

TCSD utilizes all three temporal modules and regulates the local temporal
module through two deep global temporal information, so that the local and
global can reach some certain consensus. On the basis of GTE, TCSD is able
to further strengthen the global temporal information. Finally, TCSD can also
assist CTC losses (see Sect. 3.4 for details) to achieve the desired alignment
performance.

3.4 Global-Temporal Enhancement Loss

CTC loss is a loss function for sequence-to-sequence (seq2seq) learning. CTC
generates a label for each time step, which can be repeated labels or “blank”
labels. “blank” label is a special label for silent time steps and separate contin-
uous repetitions of gloss. “blank” and the gloss vocabulary G together generate
a recognized path πi ∈ G ∪ {blank}, πi denoting the alignment between the
input time step t and the corresponding gloss in the target sentence. Under
the assumption of conditional independence, given an input sequence X, the
conditional probability of path sequence set π = {πi}T

i=1 can be formulated as:

p(π | X) =
T∏

i=1

p (πi | X) (15)

If the label sequence is y, and the probability of finally predicting the correct
sequence is the sum of all possible permutations:

p(y | X) =
∑

φ∈B−1(y)

p(π | X) (16)

Among them, B is a mapping function that removes consecutive repeated words
and “blank” symbols in the path. Then the CTC loss can be defined as:

LCTC = − log p(y | X) (17)

Min et al. [11] believes that the BiLSTM layer may overfit with partial visual
information, for which they introduce 1DCNN loss to enhance visual feature
extraction. However, 1DCNN loss alone will limit the attention to the temporal
neighborhoods of frame-wise features. Adding supervision to local temporal fea-
tures will inevitably weaken the model ability to pay adequate attention to the
relationship between long-distance frames.

Therefore, a global temporal augmentation loss LGTE is introduced on top
of GTE, forcing the network to make predictions based on GTE feature which
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has rich global temporal information. The direct supervision of intermediate
feature can drive the model to alleviate the information missing due to network
deepening. LGTE belongs to CTC loss, which can be naturally integrated into
the final CTC loss during training.

This paper sets a total of three CTC losses in the network, LSEQ and LCONV

are obtained by BiLSTM and 1DCNN respectively. Combining losses at different
levels can force the model to learn more general features, so that temporal infor-
mation at different depths can be paid enough attention. The final loss function
of the overall network is expressed as follows:

L = LSEQ + LGTE + LCONV + α (LTC1 + LTC2) (18)

4 Experiments

4.1 Experimental Setup

Datasets. RWTH-PHOENIX-Weather-2014 and RWTH-PHOENIX-Weather-
2014-T are derived from the German weather forecast sign language records.
All videos are recorded in a clean background with a frame number of 25 and
a frame size of 210 * 260, including a total of 9 signers. The two datasets each
contain 6841/8247 sentences and 1295/1085 sign language vocabulary, divided
into 5672/7096 training samples, 540/519 development samples and 629/642 test
samples.

Evaluation Metric. Word Error Rate(WER) is used to express the difference
between predicted sentences and labels, which is the minimum sum of replace-
ment, insertion and deletion operations required to turn the predicted sentence
into a label sentence. The lower WER, the better recognition performance.

WER =
# sub +# ins +# del

# reference
(19)

Implementation Details. Resnet18 pre-trained on ImageNet is used as the
visual module, and the sequence module consists of three parts: 1DCNN, GTE,
and BiLSTM. 1DCNN uses two layers of one-dimensional convolution (kernel
size is 5), and each convolution layer is followed by a layer of maximum pooling
(pooling size is 2). External Attention linear layer is set to 64. The model loss
consists of three CTC losses and two distillation losses. The weight ratios of
three CTC losses are the same. The coefficient for both distillation losses is set
to 10, and their temperature is set to 8. 40/50 epochs are trained in PHOENIX14
and PHOENIX14-T datasets respectively. The initial learning rate of the Adam
optimizer is 0.001, and it decays to one-fifth of the current learning rate at epoch
25 and 35. After the original data is preprocessed, all video frames are adjusted
to 256 * 256.
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4.2 Ablation Experiment

Ablations on Positional Encoding. The network works better when posi-
tional encoding is not used. The reason is that CSLR is a weakly supervised task
with only sentence-level annotations. That is, different gloss corresponds to dif-
ferent number of frames, an independent positional encoding for each frame-wise
feature will cause disorder. As shown in Table 1, the positional encoding causes
ambiguity in model learning.

Table 1. Effects on positional
encodering in GTE.

Configurations Dev(%) Test(%)

Exist 20.4 21.3

None 19.8 20.9

Table 2. Ablations of whether GTE and
BiLSTM can replace each other(no auxil-
iary loss).

Methods Dev(%) Test(%)

1DCNN + BiLSTM 21.2 22.3

1DCNN + GTE 21.4 22.1

1DCNN + GTE + BiLSTM 20.2 21.3

Ablations on GTE and BiLSTM. Both GTE and BiLSTM are able to pro-
cess global temporal information, but they cannot replace each other. As shown
in Table 2, when GTE is used to completely replace BiLSTM, the performance of
the model decreases slightly. This is because there is no position encoding within
GTE, and temporal information may be partially lost. After adding BiLTSM, the
temporal information is reorganized and the performance is greatly improved.

Table 3. Ablations on GTE inter-
nal structure.

Configurations Dev(%) Test(%)

EA 26.9 27.0

ENC 20.3 21.1

EA+ENC 21.9 22.6

Parallelled(res) 20.2 21.1

Parallelled 19.8 20.9

Table 4. Ablations on ENC layers & heads
and distillation coefficient.

layers heads LTC1 LTC2 Dev(%) Test(%)

2 4 10 10 20.2 21.0

2 8 10 10 20.1 20.8

4 8 10 10 19.8 20.9

4 8 10 20 20.3 21.3

4 8 20 10 20.2 21.1

Ablations on GTE Structure. The parameter amount of External Attention
(EA) is very small and inappropriate use may cause model training failure.
As shown in Table 3, using EA alone gets much worse results than when only
Transformer Encoder (ENC) is used. When the EA and ENC are used in series,
the effect is not ideal, and even does not converge in the case of ENC+EA. As
the 1st and 2nd of Table 3 shown, inserting EA into the main path of CSLR
network will disturb the feature transmission, that is because EA is such a small
module that it is not able to handle the abundant information through the main
path. But EA has the unique role of preserving local temporal information, and
the best results are achieved when connecting them in parallel. The introduction
of residuals will disturb the model, as described in Sect. 3.2.
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Ablations on ENC Layers & Heads and Distillation Coefficient. As
shown in Table 4, the performance will get better when the number of layers
and heads increase, however, too much layers and heads will lead to high model
complexity, this paper uses 4 layers and 8 heads in ENC. ENC with too few lay-
ers and heads will cause insufficient differences between teachers and students
in TCSD, which may limit its distillation ability. In addition, when the coeffi-
cients of two distillation losses [4] are set the same to 10, model gets the best
performance.

Table 5. Ablations on the proposed modules.

Methods GTE TCSD LGTE Dev(%) Test(%)

GTE � 20.2 21.3
GTE + TCSD � � 20.1 21.0
GTE + LGTE � � 20.6 20.8
GTE + TCSD + LGTE � � � 19.8 20.9

Ablations on the Proposed Modules. As shown in Table 5, when GTE alone
is added to the three-step CSLR structure, the model is able to achieve good
performance. However, when LGTE or TCSD alone is further added on the basis
of GTE, model performance cannot be further improved obviously. The reason
might be LGTE or TCSD alone cannot achieve good balance between local and

Table 6. Comparison with state-of-the-art methods.

Methods PHOENIX14 PHOENIX14-T
Dev(%) Test(%) Dev(%) Test(%)

del/ins WER del/ins WER

SFL [12] 7.9/6.5 26.2 7.5/6.3 26.8 25.1 26.1
FCN [2] - 23.7 - 23.9 23.3 25.1
STMC [15] - 25.0 - - - -
VAC [11] 7.9/2.5 21.2 8.4/2.6 22.3 - -
SMKD [7] 6.8/2.5 20.8 6.3/2.3 21.0 20.8 22.4
SEN [8] 5.8/2.6 19.5 7.3/4.0 21.0 19.3 20.7
TLP [9] 6.3/2.8 19.7 6.1/2.9 20.8 19.4 21.2
DNF* [3] 7.3/3.3 23.1 6.7/3.3 22.9 - -
STMC* [15] 7.7/3.4 21.1 7.4/2.6 20.7 19.6 21.0
C2SLR* [16] - 20.5 - 20.4 20.2 20.4
Ours 5.5/2.9 19.8 5.6/3.5 20.9 18.8 20.8
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global information. When GTE and two auxiliary supervisions are used together,
model achieves the best performance.

4.3 Comparison with State-of-the-Art Results

Table 6 shows the comparison between other state-of-the-art (SOTA) methods
and our method, where * indicates using extra clues such as face or hand fea-
tures. For the PHOENIX14 dataset, our method achieves superior or comparable
performance without additional information (pose, hand or face cropping infor-
mation, etc.). For the PHOENIX14-T dataset, our method achieves the best
performance. The method proposed in this paper focus on the processing of
temporal information, Fig. 3 gives a visual example of self similarity matrices
between baseline [11] and our method, which demonstrates the long-distance
modeling ability of the proposed method.

Fig. 3. Self similarity matrices of output between baseline [11] and our method.

5 Conclusion

This paper first proposes a Global-Temporal Enhancement module, which can
enhance model representation ability on global temporal information and alle-
viate the alignment difficulties caused by weakly supervised characteristic of
CSLR task. Secondly, two auxiliary supervision methods are proposed to achieve
good balance between local and global temporal information. Extensive abla-
tion experiments verify the effectiveness of the proposed methods. The proposed
model can achieve SOTA or competitive performance on the PHOENIX14 and
PHOENIX14-T datasets.
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Abstract. The primary requisites of fine-grained vision-language align-
ment focus on learning effective features to discriminate fine-grained sub-
categories and aligning heterogeneous data. This paper proposes a global-
to-contextual shared semantic learning for fine-grained vision-language
alignment method to address the above challenges. Precisely, to enhance
the discrimination of features inside intra-modality, this method extracts
the global and contextual vision and language features and carries out
features joint learning. Further, this method constructs a shared seman-
tic space, which bridges the semantic correlation of heterogeneous data.
Extensive experiments demonstrate the effectiveness of our approach.

Keywords: Fine-grained vision-language alignment · Shared semantic
learning · Global-to-contextual feature representation

1 Introduction

Vision-language alignment is one of the most fundamental topics with a wide
range of multimedia areas, including image-text retrieval, zero-shot learning,
and so forth. Various relevant approaches have been proposed over the past
several decades [5,7,9–11,15,18]. Most of them focus on extracting the global
features of images and texts, and then devise a metric to measure the similarity of
image-text pairs. Particularly, some alignment methods [5,7] propose to lever-
age generative adversarial networks for more robust representations of vision-
language alignment. Nevertheless, this issue still faces the challenge of highly
similar global geometry and appearance among fine-grained classes. On the other
hand, the alignment methods above can not deal with real-world further fine-
grained scenarios, e.g., automatic biodiversity monitoring, intelligent retail, intel-
ligent transportation, etc. Therefore, fine-grained vision-language alignment has
received attention in recent years. Fine-grained data have the characteristics of
slight divergence between different subclasses but large variance within the same
subclass. It is essential to learn subtle discriminative detail features that make
the subordinate classes different from each other.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14261, pp. 281–293, 2023.
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Besides, alignment space construction is still a challenging problem that
remains unresolved in fine-grained vision-language alignment. This problem
largely depends on capturing and correlating heterogeneous features from differ-
ent modalities. He et al. [17] presented an FGCrossNet, which considers three
constraints for representation learning. Zheng et al. [19] proposed a discrimina-
tive latent space learning that addresses the alignment of heterogeneous data.
However, the discriminativeness and relevance of the considered image-text data
can be further strengthened by enforcing a shared semantic alignment.

Fig. 1. Overview of the proposed global-to-contextual shared semantic learning for
fine-grained vision-language alignment.

This paper proposes global-to-contextual shared semantic learning for fine-
grained vision-language alignment, as shown in Fig. 1. Concretely, this method
firstly extracts the global and contextual vision features by VggNet deep feature
extractor [13] and Transformer model [3], and meanwhile extracts the global and
contextual language features by Bag-of-words (BOW) model [4] and Bert model
[2]. Then global-to-contextual features joint learning is carried out to enhance
the discrimination. Further, to improve the semantic correlation of heteroge-
neous data and bridge the semantic gap among the modalities, this method
presents shared semantic learning, which achieves the relevance of image-text
pairs through matrix transformation. Finally, the method returns the candi-
dates by measuring the relevance between image-text pairs. The main contri-
butions of our work can be summarized as follows. (1) We construct the fine-
grained contextual vision transformer, which effectively captures the contextual
detail dependency of fine-grained image patches. (2) We propose the global-
to-contextual shared semantic learning for fine-grained vision-language align-
ment, which learns discriminative features to distinguish the fine-grained sub-
categories and aligns vision-language semantically. (3) Extensive experiments on
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subcategory-specific and instance-specific tasks demonstrate the effectiveness of
our approach. Remarkably, this method achieves a 15% accuracy improvement
over the state-of-the-art baselines on the instance-specific task.

2 Related Works

Vision-language alignment establishes relationships between images and texts.
Current approaches can be divided into two types: coarse-grained vision-
language alignment and fine-grained vision-language alignment. Details are
below.

Coarse-Grained Vision-Language Alignment. MHTN [7] proposed to
realize knowledge transfer from a single-modal domain to a cross-modal domain
and learn cross-modal representation. ACMR [15] aimed to seek an effective
common subspace based on adversarial learning. JRL [18] explored the corre-
lation and semantic information in a unified optimization framework jointly.
GSPH [10] preserved the semantic distance between the data points, which can
be applied to all the scenarios. CMDN [11] exploited the complex cross-modal
correlation by hierarchical learning. SCA [9] presented to discover the full latent
alignment using image regions and words in sentences as context and infer the
image-text similarity. GXN [5] incorporated two generative models into the con-
ventional textual-visual feature embedding, which can learn concrete grounded
representations that capture the detailed similarity between the two modalities.

Fine-Grained Vision-Language Alignment. FGCrossNet [17] consid-
ered three constraints for better alignment. DLSL [19] proposed a simple yet
effective method to directly learn a common latent space by couple dictionary
learning to align heterogeneous data. HGR [1] decomposed video-text match-
ing into global-to-local levels and generated hierarchical textual embeddings via
attention-based graph reasoning. HANet [16] proposed to make full use of com-
plementary information of different semantic levels of representations for video-
text retrieval.

3 Proposed Method

3.1 Problem Formulation

Formally, let Ṽ = {ṽi}ni=1 be a set of global vision features, where ṽi denotes the
global feature of the i-th image. Let V̂ = {v̂i}ni=1 be a set of contextual vision fea-
tures, where v̂i denotes the contextual feature of the i-th image. Correspondingly,
let T̃ = {t̃i}ni=1 be a set of global language features, where t̃i indicates the global
feature of the i-th text. Let T̂ = {t̂i}ni=1 be a set of contextual language features,
where t̂i denotes the contextual feature of the i-th text. This method uses pre-
trained models to encode images and texts. More precisely, for images, VggNet
and Transformer are employed to learn the global and contextual vision features.
For texts, BOW (manual feature, not extracted by pre-trained model) and Bert
are utilized to learn the global and contextual language features. Details are
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shown in Table 1. The goal is to construct a global-to-contextual shared seman-
tic space Z = {zi}ni=1 for Ṽ , V̂ , T̃ and T̂ , where zi represents the semantic feature
of the i-th sample. In this space, we can perform the vision-language alignment
by measuring the similarity among image-text pairs.

Table 1. Key information and notations of initial features.

Type of feature Notation Encoder Dimension

Global vision feature Ṽ VggNet 1024
Contextual vision feature V̂ Transformer 768
Global language feature T̃ BOW 1000
Contextual language feature T̂ Bert 768

3.2 Fine-Grained Contextual Vision Transformer

The main difficulty of contextual vision feature learning derives from the slight
inter-class distinction and the large intra-class variance of fine-grained subclasses.
This paper remedies the problem by constructing the fine-grained contextual
vision transformer, which can effectively capture the correction of local details
and is conducive to extracting robust fine-grained features. The architecture
is shown in Fig. 2. More specifically, given a fine-grained image, we divide it
into several non-overlapping patches. These patches are then projected to patch
embeddings using a linear layer, and position embeddings are attached ahead
to encode location information. Additionally, a class token is defined to capture
the feature information of patches. Then the class token, patch embeddings,

Linear Projec�on of Fla�ened Patches

0 1 2 3 4 5 6 7 8 9
Patch+Posi�on

Embedding

Fine-Grained Contextual Vision Transformer

Transformer Encoder

Transformer Encoder

Embedded
Patches

MLP

Mul�-Head
A�en�on

Norm

Norm

Fig. 2. Architecture of fine-grained contextual vision transformer.
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and position embeddings of patches are fed into the transformer encoder. In the
transformer encoder, the correlation among patches is established through self-
attention, and the feature transformation is realized through the multi-layer full-
connected network. Finally, the output representation corresponding to the class
token is used as the global feature for the image classification task. In general,
the fine-grained contextual vision transformer not only encodes the feature for
each patch, but also considers the adjacency among patches.

3.3 Global-to-Contextual Shared Semantic Learning

This method first extracts global and contextual features inside intra-modality
samples, and carries out joint learning. Further, this method constructs a shared
semantic space, where the relevance among inter-modalities is associated.

Global-to-Contextual Vision Features Learning. The global feature
can automatically localize the salient object, learning more refined object-level
features, while the contextual feature selects discriminative parts of the object
and captures the spatial correlation constraint among parts. The proposed
method projects global-contextual features into a shared space to enhance their
mutual promotion. Mathematically, the objective function can be formulated as
follows:

min
B̃v,B̂v,Z

α1

∥
∥
∥Ṽ − B̃vZ

∥
∥
∥

2

F
+ α2

∥
∥
∥V̂ − B̂vZ

∥
∥
∥

2

F
,

s.t. ||b̃vi ||2 ≤ 1, ||b̂vi ||2 ≤ 1,∀i,

(1)

where Ṽ ∈ R
j×n and V̂ ∈ R

p×n are the sets of global and contextual vision
features, j, p are the dimensions of global and contextual vision features and n is
the number of samples. B̃v ∈ R

j×k and B̂v ∈ R
p×k are the bases in global and

contextual feature spaces, where k is the dimension of the shared semantic space.
Z ∈ R

k×n is the common representations of Ṽ and V̂ in the shared space. b̃vi is the
i-th column of B̃v and b̂vi is the i-th column of B̂v. By forcing the shared semantic
features of corresponding Ṽ and V̂ to be same as Z, the joint learning of global-
to-contextual features are achieved. α1 and α2 are the parameters controlling
the relative importance of the global and contextual features.

Global-to-Contextual Language Features Learning. Similarly, this
method projects the global and contextual features into a shared space:

min
B̃t,B̂t,Z

β1

∥
∥
∥T̃ − B̃tZ

∥
∥
∥

2

F
+ β2

∥
∥
∥T̂ − B̂tZ

∥
∥
∥

2

F
,

s.t. ||b̃ti||2 ≤ 1, ||b̂ti||2 ≤ 1,∀i,

(2)

where T̃ ∈ R
j×n and T̂ ∈ R

p×n are the sets of global and contextual language
features, j, p are the dimensions of global and contextual language features and
n is the number of samples. B̃t ∈ R

j×k and B̂t ∈ R
p×k are the bases in global

and contextual feature spaces, where k is the dimension of the shared semantic
space. Z ∈ R

k×n is the common representations of T̃ and T̂ in the shared space.
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b̃ti is the i-th column of B̃t and b̂ti is the i-th column of B̂t. By forcing the shared
semantic features of corresponding T̃ and T̂ to be same as Z, the joint learning
of global and contextual features are achieved. β1 and β2 are the parameters
controlling the relative importance of the global and contextual features.

Shared Semantic Learning. Due to images and texts being heteroge-
neous, shared semantic learning is vital to realizing vision-language alignment.
This method constructs a common semantic space, where the cross-modal associ-
ation can be established. In particular, this method introduces the discriminative
property to make the semantic space comparable to the fine-grained setting:

min
B̃v,B̂v,B̃t,B̂t,Z,U

α1

∥
∥
∥Ṽ − B̃vZ

∥
∥
∥

2

F
+ α2

∥
∥
∥V̂ − B̂vZ

∥
∥
∥

2

F

+ β1

∥
∥
∥T̃ − B̃tZ

∥
∥
∥

2

F
+ β2

∥
∥
∥T̂ − B̂tZ

∥
∥
∥

2

F
+ ‖H − UZ‖2F ,

s.t. ||b̃vi ||2 ≤ 1, ||b̂vi ||2 ≤ 1, ||b̃ti||2 ≤ 1, ||b̂ti||2 ≤ 1,

||ui||2 ≤ 1,∀i,

(3)

where H = [h1, h2, ..., hns
] ∈ Rcs×n are the class labels of samples and cs is

the class numbers. hi = [0 0...1...0 0] is a one-hot label vector corresponding to
sample xi, where the non-zero entry indicates the class of xi. U can be viewed
as classifiers in the semantic space. With such formulation, the fifth term in
Eq. (3) aims to make the semantic space discriminative enough to classify differ-
ent classes. It implicitly pulls samples from the same class together and pushes
those from different classes away from each other.

Optimization. This method adopts the alternating optimization [6] to
solve the closed solution, which initializes all variables to be solved and opti-
mizes them as follows:

(1) Fix B̃v, B̂v, B̃t, B̂t, U and update Z by Eq. (3). Forcing the derivative of
Eq. (3) to be 0 and the closed-form solution for Z is

Z = (BTB)−1BTX , (4)

where

X =

⎡

⎢
⎢
⎢
⎢
⎣

α1Ṽ

α2V̂

β1T̃

β2T̂
H

⎤

⎥
⎥
⎥
⎥
⎦

,B =

⎡

⎢
⎢
⎢
⎢
⎣

α1B̃
v

α2B̂
v

β1B̃
t

β2B̂
t

U

⎤

⎥
⎥
⎥
⎥
⎦

.

(2) Fix Z and update B̃v. The subproblem is formulated:

min
B̃v

∥
∥
∥Ṽ − B̃vZ

∥
∥
∥

2

F
s.t. ||b̃vi ||2 ≤ 1,∀i. (5)
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This problem can be optimized by the Lagrange dual [8]. Thus the analytical
solution for Eq. (5) is

B̃v = (Ṽ ZT )(ZZT + Λ)−1, (6)

where Λ is a diagonal matrix constructed by all the Lagrange dual variables.
(3) Fix Z and update B̂v. The subproblem is formulated:

min
B̂v

∥
∥
∥V̂ − B̂vZ

∥
∥
∥

2

F
s.t. ||b̂vi ||2 ≤ 1,∀i. (7)

Similarly,
B̂v = (V̂ ZT )(ZZT + Λ)−1. (8)

(4) Fix Z and update B̃t. The subproblem is formulated:

min
B̃t

∥
∥
∥T̃ − B̃tZ

∥
∥
∥

2

F
s.t. ||b̃ti||2 ≤ 1,∀i. (9)

Similarly,
B̃t = (T̃ZT )(ZZT + Λ)−1. (10)

(5) Fix Z and update B̂v. The subproblem is formulated:

min
B̂t

∥
∥
∥T̂ − B̂tZ

∥
∥
∥

2

F
s.t. ||b̂ti||2 ≤ 1,∀i. (11)

Similarly,
B̂t = (T̂ZT )(ZZT + Λ)−1. (12)

(6) Fix Z and update U . The subproblem is formulated:

min
U

‖H − UZ‖2F s.t. ||ui||2 ≤ 1,∀i. (13)

Similarly,
U = (HZT )(ZZT + Λ)−1. (14)

The complete process is summarized in Algorithm 1.
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Algorithm 1. Shared semantic learning
Input: Global vision features(Ṽ ), Contextual vision features(V̂ ), Global language

features(T̃ ), Contextual language features(T̂ ), Label matrix(H).
Output: Global vision feature space base(B̃v), Contextual vision feature space

base(B̂v), Global language feature space base(B̃t), Contextual language feature
space base(B̂t), and Shared semantic space features(Z).

1: Initialize B̃v, B̂v, B̃t, B̂t, U randomly.
2: while not converge do
3: Update Z by Eq. 4.
4: Update B̃v by Eq. 6.
5: Update B̂v by Eq. 8.
6: Update B̃t by Eq. 10.
7: Update B̂t by Eq. 12.
8: Update U by Eq. 14.
9: end while

3.4 Cross-Modal Retrieval

In the retrieval phase (images query versus texts gallery), this method uses
VggNet and Transformer to learn global and contextual features, and maps them
into the semantic space:

Z∗
q = arg min

Zq

α1

∥
∥
∥Ṽq − B̃vZq

∥
∥
∥

2

F
+ α2

∥
∥
∥V̂q − B̂vZq

∥
∥
∥

2

F
+ ‖Zq‖2F , (15)

where Ṽq and V̂q represent the global and contextual features of query images,
respectively, and Zq is the corresponding features in the semantic space. Nextly,
we project the gallery texts into the latent feature space by Eq. (16)

Z∗
g = arg min

Zg

β1

∥
∥
∥T̃g − B̃tZg

∥
∥
∥

2

F
+ β2

∥
∥
∥T̂g − B̂tZg

∥
∥
∥

2

F
+ ‖Zg‖2F , (16)

where T̃g and T̂g represent the global and contextual features of gallery texts,
and Zg is the corresponding features in the semantic space. Then this method
employs cosine distance to measure the similarities between Z∗

q and Z∗
g , and

returns the candidates based on the maximum similarity. A similar way can be
conducted for texts query versus images gallery.

4 Experiment

4.1 Experimental Settings

Data Sources. The proposed method is experimented into two tasks:
subcategory-specific and instance-specific. The data sources are summarized as
follows:

– Data source 1: [14] contains 11,788 images of 200 subcategories, 5,994 for
training and 5,794 for testing.
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– Data source 2: [17] contains 8,000 texts of 200 subcategories, 4,000 for training
and 4,000 for testing, which describe the subcategory information, such as
habitat, eating habit, and background.

– Data source 3: [12] expands the [14] by collecting descriptions. It follows the
division settings of [14], containing 11,788 texts of 200 subcategories, 5,994
for training and 5,794 for testing. In each text, 10 single sentence visual
descriptions are collected, which depict the appearance information of each
instance, such as color and shape.

Task Description. Based on the granularity of descriptions, we divide
fine-grained image-text retrieval into two tasks, that is, subcategory-specific and
instance-specific. To the best of our knowledge, the instance-specific task is the
first proposed in this method. In the former, [14] + [17] are used. In the latter, [14]
+ [12] are employed. Compared with the subcategory-specific task, the instance-
specific task contains more variations and details. Thus the instance-specific task
is more suitable for fine-grained cross-domain retrieval.

Evaluation Metrics and Implementation Details. We adopt the mean
Average Precision (mAP) as the evaluation metrics. Specifically, we firstly calcu-
late average precision (AP) score for each query, and then calculate their mean
value as mAP score. Moreover, all experiments are conducted on a 64-bit Ubuntu
16.04 with 2 Intel 2.40GHz CPUs, 256GB memory, and 6 NVIDIA Tesla GPUs.

4.2 Comparisons with State-of-the-Art Methods

In order to better validate and evaluate the proposed method, we conducted
comparative experiments on subcategory-specific and instance-specific tasks.

Comparison on the Subcategory-Specific Task. We compare with
state-of-the-art methods, including seven coarse-grained methods [5,7,9–11,15,
18] and two fine-grained methods [17,19], as shown in Table 2. The experimental
performance of the proposed method exceeds that of all the above methods. This
is because the subcategory-specific task focuses on capturing the characteristics
of the object itself and the relationship between the object and the environment.
While coarse-grained methods are suitable for localizing the saliency object, but
ignore the capture of contextual details in fine-grained scenes. In addition, fine-
grained methods focus on capturing detailed information and ignore the differ-
ences between objects, which draw further apart the inherent characteristic of
the slight inter-class distinction and the large intra-class variance of fine-grained
subclasses. The proposed global-contextual method can effectively compensate
for the shortcomings of both above methods.

Comparison on the Instance-Specific Task. We compare our method
with two fine-grained methods [17,19]. Tracing back to the source, FGCrossNet
[17] simply and roughly utilizes the full-connected layer to force dimensional
alignment of features from different modalities, neglecting to make the align-
ment space more semantically relevant. In comparison, DLSL [19] proposes an
idea of discriminative hidden space alignment, and enhances its discrimination
and recognition by adding the discriminative attribute to the hidden space. It
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Table 2. The mAP scores comparison on the subcategory-specific task.

Method Img-to-Txt Txt-to-Img Avg

MHTN [7] 0.116 0.124 0.120
ACMR [15] 0.162 0.075 0.119
JRL [18] 0.160 0.190 0.175
GSPH [10] 0.140 0.179 0.160
CMDN [11] 0.099 0.123 0.111
SCA [9] 0.050 0.050 0.050
GXN [5] 0.023 0.035 0.029
FGCrossNet [17] 0.210 0.255 0.233
DLSL [19] 0.318 0.319 0.319
The proposed method 0.395 0.367 0.381

Table 3. The mAP scores comparison on the instance-specific task.

Method Img-to-Txt Txt-to-Img Avg

FGCrossNet [17] 0.328 0.346 0.337
DLSL [19] 0.341 0.349 0.345
The proposed method 0.412 0.376 0.394

Table 4. Ablation studies of features effectiveness on the subcategory-specific task
(mAP scores).

Feature Img-to-Txt Txt-to-Img Avg

VggNet+BOW 0.310 0.322 0.316
VggNet+Bert 0.316 0.324 0.320
Transformer+BOW 0.321 0.319 0.320
Transformer+Bert 0.324 0.325 0.325
VggNet+Bert+BOW 0.323 0.324 0.324
Transformer+Bert+BOW 0.382 0.337 0.360
Transformer+VggNet+BOW 0.380 0.336 0.358
Transformer+VggNet+Bert 0.391 0.352 0.372
Ours(Transformer+VggNet+Bert+BOW) 0.395 0.367 0.381

can accurately capture subtle differences between different subclasses. The com-
parisons of our method against the others are shown in Table 3. On the one hand,
our method learns global-contextual features containing multi-view and multi-
scale representation. Besides, a shared semantic space is constructed through
multiple bases, enhancing the semantic correlation and discriminability between
heterogeneous data.
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Table 5. Ablation studies of features effectiveness on the instance-specific task (mAP
scores).

Feature Img-to-Txt Txt-to-Img Avg

VggNet+BOW 0.329 0.338 0.334
VggNet+Bert 0.332 0.357 0.345
Transformer+BOW 0.345 0.354 0.350
Transformer+Bert 0.352 0.361 0.357
VggNet+Bert+BOW 0.349 0.355 0.352
Transformer+Bert+BOW 0.373 0.368 0.371
Transformer+VggNet+BOW 0.362 0.362 0.362
Transformer+VggNet+Bert 0.407 0.364 0.386
Ours(Transformer+VggNet+Bert+BOW) 0.412 0.376 0.394

Table 6. Ablation studies of the shared semantic learning on the subcategory-specific
task (mAP scores).

Alignment Img-to-Txt Txt-to-Img Avg

Features Concentrate 0.310 0.324 0.317
Ours(Shared Semantic Learning) 0.395 0.367 0.381

Table 7. Ablation studies of the shared semantic learning on the instance-specific
task (mAP scores).

Alignment Img-to-Txt Txt-to-Img Avg

Features Concentrate 0.346 0.352 0.349
Ours(Shared Semantic Learning) 0.412 0.376 0.394

4.3 Ablation Studies

To comprehensively analyze our method, Table 4, Table 5, Table 6 and Table 7
provide a detailed ablation analysis of the key components of our method. It high-
lights the importance of global-to-contextual features effectiveness and shared
semantic learning block. Experiments demonstrate the proposed method pro-
vides progressive improvements over the baseline.

4.4 Hyper-parameter Analysis

Figure 3 shows the hyper-parameter analysis on two tasks. α1, α2, β1 and β2

are the parameters controlling the relative importance of the global-contextual
vision and language features. The best values for α1, α2, β1 and β2 are chosen
by five-fold cross-validation, and the scope of them are set in [0.001, 0.01, 0.1,
1, 10]. In experiments, we set α1 as 0.1, α2 as 1, β1 as 0.1 and β2 as 1.
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Fig. 3. Hyper-parameters on subcategory-specific and instance-specific tasks.

5 Conclusion

This paper proposes global-to-contextual shared semantic learning for fine-
grained vision-language alignment. Specifically, this method extracts global and
contextual features of images and texts, respectively, and carries out joint learn-
ing to enhance the discrimination of features. Further, this method constructs a
shared semantic space to enhance the heterogeneous semantic correlation. Com-
prehensive experiments demonstrate the effectiveness of this method.
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Abstract. The inference of regular grammars from recurrent neural net-
works has usually been a process that is performed after the network has
been trained. In this work, we propose two implementations of a recur-
rent neural network that model the behavior of weighted finite automata.
These models are trained through automatic differentiation in order to
learn the Tomita grammars, and regularization techniques are explored
to ensure determinism. The learned automata are interpretable from the
model weights, requiring little to no transformation to be obtained. This
brings closer the training and inference phases, thus optimizing the learn-
ing process.

Keywords: Weighted Finite Automata · Recurrent Neural Network ·
Grammatical Inference

1 Introduction

The relationship between recurrent neural networks (RNNs) and finite automata
has been a matter of research over quite some time. The oldest reference may
be from the original work of McCulloch & Pitts [1], where it was stated that
threshold-activated neurons could resemble finite automata. Some years passed
before Pollack argued that his Neuring machine was Turing universal [2]. The
model was a recurrent net, conformed by a finite number of neurons, with thresh-
old and identity activation functions. It was later proved by Kilian & Siegel-
mann that sigmoidal neurons may also simulate finite automata and Turing
machines [3].

But the specific relationship regarding RNNs began after Elman introduced
the Simple Recurrent Network (SRN) [4]. Cleeremans et al. studied the rela-
tion between this SRN and finite automata [5]. They showed that it could learn
to process an infinite number of strings based on a finite set of training exam-
ples. It was not long before higher order RNNs were also studied in relation
to automata. It was proved that if the neural net was sufficiently trained, the
extracted automaton could become a true finite state automaton, by reducing
it to the minimal machine of the inferred grammar [6,7]. The approach in [8]
suggested that the RNN could be seen as a state machine, its state units and
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https://doi.org/10.1007/978-3-031-44198-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44198-1_25&domain=pdf
http://orcid.org/0009-0002-6130-8984
http://orcid.org/0000-0001-8639-8731
https://doi.org/10.1007/978-3-031-44198-1_25


Gradient-Based Learning of Finite Automata 295

weight activations representing the generating automaton. Once the RNN was
trained, the automaton could be constructed by determining arcs in its transition
diagram, eliminating non-determinism and minimizing states.

Many works have also used external memory modules within a recurrent
network, such as stacks, lists or matrices [9]. In the last years, a differentiable
Neural Turing Machine was developed by coupling an external memory to a
neural network [10].

Another relevant field is Grammatical Inference, a branch of machine learn-
ing closely related to Inductive Inference, that aims to represent language, trees,
graphs and other structured objects formally. The field was initially dedicated
to learning finite state machines, but the interest has extended to context-free
grammars and other formalisms over the last decades. Some important algo-
rithms that where originally used to train deterministic finite automata (DFA)
were GOLD [11] and RPNI [12]. However, for the sake of this work, we will only
review learning techniques related to probabilistic finite automata (PFA), which
have a close definition to weighted finite automata (WFA).

In this context, many authors have studied the extraction of a PFA by state
merging [13–16] in RNNs. The states may first be obtained by artificially quan-
tizing the RNN activations into a discrete, more interpretable set of states.
The first algorithms that did this were ALERGIA [17] and DSAI [18]. Each
of them applied different criteria regarding the equivalence of two states in an
automaton. Nonetheless, one thing that they had in common was the use of state
merging (Stochastic Merge) and folding (Stochastic Fold). Other state merging
algorithms considered approaches such as computing distances between two dis-
tributions, or applying some sort of heuristic like Minimum Divergence Inference
(MDI) [19].

Besides state merging, we can find automata extraction techniques like
Angluin’s L* algorithm [20] or the KV algorithm by Kearns & Vazirani [21],
where the trained RNN is queried to obtain the automaton. A modern variant
of the L* algorithm can be found in spectral learning [22,23]. Finally, some more
recent approaches have achieved great RNN interpretability, thus simplifying the
automaton extraction after the network has been trained. It has been proved that
the RNN can directly learn an automaton by applying state regularization [24],
or introducing stochastic noise in the activation function [25].

In this work, we propose to involve these previous topics and learn an automa-
ton, more precisely a deterministic WFA, with gradient-based learning. The main
and novel idea, is to set the automaton as a RNN, and explore automatic differ-
entiation tools to learn the transition probabilities, which act as network weights.
WFA learning through automatic differentiation brings closer the training and
inference stages. If we implicitly force the RNN to implement an automaton, the
model extraction phase is minimized, if not even omitted. This optimizes the
learning process and simplifies the software involved, allowing for easier experi-
mentation. We test our model with the well-known Tomita grammars [26], and
show that the inferred WFA are in all cases correct and generalize well to new
strings. Moreover, regularizing the transition probabilities leads to determinism
and interpretability, with the learned automata being always equivalent to the
grammars used for generating the training data.



296 J. Fdez. del Pozo Romero and L. F. Lago-Fernández

In the following sections we first review the concept of WFA, and describe
our model designs. After that, we explain the methodology and typology of the
experiments, followed by the obtained results and a final discussion.

2 Weighted Finite Automata

The notion of a WFA can be explained by first stating what a DFA is. A DFA is
a mathematical model that performs a deterministic set of actions as a response
to processing some input sequence or string. More formally, a basic DFA can be
described by the tuple

A = (Q,Σ, I, F,E), (1)

where Q is a finite set of states, Σ is the input alphabet, I ∈ Q is the initial state,
F ⊆ Q is the set of final states, and E ⊆ Q × Σ × Q is a finite set of transitions
between states. The automaton will perform certain transitions as it goes over
a sequence of symbols belonging to the input alphabet, and this process will
determine whether or not that sequence belongs to the automaton’s language.
We will say that a string is accepted if processing it defines an accepting path,
which is a sequence of arcs between states that starts at the initial state and ends
at any final state. Otherwise we say the string is rejected. The set of all strings
accepted by a DFA is called the automaton’s language. Thus, these automata
are also called acceptors.

WFA are a generalization of DFA that incorporate weights in their tran-
sitions [27]. The weights may be probabilities, costs, durations, or any other
quantity that may be accumulated when processing an input sequence. This
allows the WFA not only to decide whether a string is accepted or not, but also
to quantify this decision by means of resources, time, cost, or probability. WFA
are closely related to PFA, as mentioned previously, and one can find them in
speech processing, natural language processing and optical character recognition
[28,29].

3 Model

We design two equivalent models that implement the WFA as a RNN. The first
one considers the weights as probabilities, and the second one as logarithms of
probabilities (logprobs).

3.1 Basic Model

Consider the WFA given by

A = (Q,Σ, I, F,W), (2)

where W is a |Σ|×|Q|×|Q| weight tensor that fully determines the automaton’s
transitions and their associated weights. Let wk

ij represent the components of
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W, with k ∈ {1, 2, ..., |Σ|} and i, j ∈ {1, 2, ..., |Q|}. Then the transition between
automaton states qi and qj (qi, qj ∈ Q) in response to input symbol ak (ak ∈ Σ)
is mediated by the probability pk

ij , which is obtained by applying a softmax
operation across the third dimension of W:

pk
ij =

ewk
ij

∑|Q|
j=1 ewk

ij

. (3)

Hence, assuming that at a given time t the automaton lies in the mixture of states
s = (s1, s2, ..., s|Q|), where

∑|Q|
i=1 si = 1, then the next state, after processing the

input symbol ak, will be given by

s′ = sPk, (4)

where Pk is a matrix whose elements are the transition probabilities associated
to symbol ak, (Pk)ij = pk

ij . We model this behavior as a RNN module. The

input at time t is the one-hot encoded vector x(t) = (x(t)
1 , x

(t)
2 , ..., x

(t)
|Σ|). This

vector determines the state transition probabilities by

P(t) =
|Σ|∑

k=1

x
(t)
k σ(Wk), (5)

where σ is the softmax function in Eq. 3 and Wk is a matrix whose components
are (Wk)ij = wk

ij . Given the state probabilities at time t, s(t), the next state
probabilities are then:

s(t+1) =
|Σ|∑

k=1

x
(t)
k s(t)σ(Wk). (6)

Finally, the model output for time t is the sum of the state probabilities for all
the final states:

y(t) =
|Q|∑

i=1

fis
(t)
i , (7)

where fi is a binary variable indicating whether or not the state qi is final. This
output represents the acceptance probability that the model assigns to the input
string, and can be used to define a cross-entropy loss when taking into account
the expected output. Since all the operations in Eqs. 6 and 7 are differentiable,
the model weights can be trained using standard gradient descent techniques in
order to minimize this cross-entropy loss.

3.2 LSE Model

In a second version of the model we use log-probabilities in order to avoid
repeated multiplications by the probability matrices P(t). Let L(t) be the loga-
rithm of the transition probability matrix at time t:
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L(t) = log P(t). (8)

The matrix L(t) can be directly obtained from the weight matrices as:

L(t) =
|Σ|∑

k=1

x
(t)
k log σ(Wk). (9)

Note that the components of L(t) can also be expressed as:

(L(t))ij =
|Σ|∑

k=1

x
(t)
k (wk

ij − log
|Q|∑

j=1

ewk
ij ), (10)

where the last operation is known as log-sum-exp (LSE):

LSE(Wk)i = log
|Q|∑

j=1

ewk
ij . (11)

We also consider log-probabilities for the vector representing the mixture of
states:

l = (l1, l2, ..., l|Q|) = (log s1, log s2, ..., log s|Q|). (12)

Now, the equation that relates the current and the next state vectors, given the
transition matrix L(t), is:

l
(t+1)
j = log

|Q|∑

i=1

eL
(t)
ij +l

(t)
i . (13)

Finally, the model output is computed, as before, as the sum of probabilities
over all the final states:

y(t) =
|Q|∑

i=1

fie
l
(t)
i . (14)

The two models are equivalent, but the LSE version has the advantage of avoid-
ing repeated multiplications by the probability matrices, which may avoid sta-
bility problems when calculating the gradients.

4 Experiments

4.1 Tomita Grammars

Being WFA a generalization of unweighted automata, they have equal or greater
representational power. We will develop our experiments with Type 3 grammars,
according to Noam Chomsky’s Hierarchy. These are known as regular grammars,
and one specific set denoted as Tomita grammars [26] has been widely accepted
in the grammatical inference field [15].
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The set is composed of seven regular languages on a binary alphabet of
symbols {a, b}, whose descriptions can be found in Table 1. The datasets used in
the training and test phases have been generated as described in [30], where the
symbol $ represents the start of a string. Therefore, the input alphabet is not
exactly binary, but rather {a, b, $}. The output data is also a sequence of binary
labels that indicate, at each time step, whether the string belongs or not to the
language.

Table 1. Definition of the seven Tomita grammars

Name Description

Tomita 1 Strings with only a’s

Tomita 2 Strings with only sequences of ab’s

Tomita 3 Strings with no odd number of consecutive b’s after an odd number of consecutive a’s

Tomita 4 Strings with fewer than 3 consecutive b’s

Tomita 5 Strings with even length with an even number of a’s

Tomita 6 Strings where the difference between the number of a’s and b’s is a multiple of 3

Tomita 7 Strings generated by the regular expression b∗a∗b∗a∗

4.2 Model Training and Evaluation

The training and test phases used these Tomita datasets, splitting them in
batches of 32 sequences and length 25. The models were trained with a number
of states in the range [2, 64]. The final states of each model were generated ran-
domly, with a probability of 0.6, ensuring that at least one final state was defined
for each configuration. We consider that both model implementations start with
all of the probability on a single initial state q0. Regarding the model weights
initialization, a random uniform distribution was used. Once built, the model
was trained by minimizing a binary cross-entropy loss using a Nadam optimizer,
for a maximum of 500 epochs. The model accuracy was binarized with the prob-
ability threshold set at 0.5. Finally, the test set was also used during training as
a validation set, so that early stopping could be applied.

5 Results

In Fig. 1 we show the results of extensive training with the Tomita grammars. It
displays barplots of the average model accuracy over 10 executions, for different
number of states, obtained with each of the two WFA implementations. The
number of states in the automata was increased for each of the implementations,
up to a sufficiently large number of 64.

Let us first observe Fig. 1a for the basic WFA model. The results are not
consistent on average, even for very simple grammars like Tomita 1. However, for
some executions the model is able to achieve perfect accuracy on every grammar
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but Tomita 5, for which it scores a global maximum of 0.86. We can also observe
that the model hardly scores when the number of states grows very big: some of
the trained models accuracies stack on a single value.

This does not happen with the LSE implementation, shown in Fig. 1b. At
first glance we can notice that simpler grammars like Tomita 1 or Tomita 2, train
well with fewer number of states. This is because the minimal automaton needs
less states for them (around 2 or 3), and the randomly generated final states are
always sufficient, allowing the automata to discriminate those not needed. For
higher number of states, we can notice a decrease in the error bar range, meaning
that the results are more consistent on average. The model always manages to
learn a suitable configuration of states and weights for every grammar, even
the hardest ones like Tomita 7. Specifically, with 32 states all grammars are
successfully learned.

The LSE implementation is able to achieve better results, and we will execute
the remaining experiments with it, leaving the first model behind. Also, a state
size of 32 will be used, since it allows for convergence regardless of the grammar.

5.1 Generalizing Over Different Test Sets

The test set used during training in the previous section was the ’big’ one, as
described in [30]. A trained model was also evaluated on different test sets such
as the ’long’ (with fewer but longer sequences), or the ’all a’ and ’all b’ sets
(with a high density for only one symbol, a or b, respectively).

The results showed that the model was able to generalize over these new
datasets, averaging at a perfect accuracy on all of them for every grammar.

5.2 Determinization by Regularization

The trained models already obtain a consistent accuracy of 1, seemingly high,
but only because we had set the binary accuracy threshold to 0.5 instead of
more restrictive levels. This does not imply that the training has reached a point
in which the model can be directly interpreted as a deterministic WFA. Even
though most of the probability has drifted towards the desired arcs, some of the
weights still remain as unwanted small probability transitions (see first row of
Fig. 2 as an example for Tomita 3). This uncertainty could be desirable on higher
order problems, but regular grammars are well bounded and can be translated
as an automaton with deterministic transitions (unique and non-lambda for the
Tomita grammars).

We have explored an entropic regularization mechanism on the transition
probabilities, that makes the transitions more deterministic by adding the fol-
lowing entropy penalization term to the loss function:

R = −λ

|Σ|∑

k=1

|Q|∑

i,j=1

pk
ij log pk

ij , (15)
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Fig. 1. Extensive training with the Tomita grammars. Each barplot corresponds to the
accuracy on the test set (Y axis), averaged over 10 executions. The error bars indicate
the maximum and minimum accuracy obtained for every configuration (X axis). The
yellow star indicates that all the executions achieved perfect accuracy. (Color figure
online)

where λ is a parameter that controls the regularization strength. If we recall
Eq. 3, the transition probabilities are obtained by applying a softmax transfor-
mation to the weights. This operation is sensitive to addition when the input
values are small, and adding a constant to every value will output a smoother
probability distribution. These blurred probabilities are not beneficial as they
accumulate error in unwanted states of the automaton. Thus, the network is
forced to minimize the overall entropy so that the transition probabilities are
more skewed.

The results of applying this regularizer on the weights can be seen in the
second row of Fig. 2. On Epoch 1 we can observe the starting probabilities,
initialized as mentioned in Sect. 4.2. At Epoch 80, both models already score an
accuracy of 1, both on the training and test sets. We can see how the weight
matrices have structured themselves according to the grammar, but some smaller
weights still remain. At Epoch 200, the upper matrix has reached a configuration
from which it will barely change, whereas the lower matrix keeps on regularizing
and lowering the entropy. Finally, if we stretch the training as far as Epoch 410
(in this case), the desired effect is reached. All the weights have condensed as one
per state (row), meaning each input symbol will only be assigned a transition at
any state.
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Fig. 2. Entropy Regularization Mechanism. The LSE model was trained with (bottom
row) and without (top row) the regularizer. Each panel represents a colorplot of the
probability matrix, for input symbol b, at a different training epoch. The model was
trained with Tomita 3 and 32 states, for a maximum of 1000 epochs.

5.3 Learned Automata

Once the model had been trained as a deterministic WFA, we extracted the
automaton from the model weights. All trained models did not directly corre-
spond to the minimal Tomita automaton, so we performed minimization on each
of them. In order to do this, several steps were followed:

– First, we obtained the probabilities by applying a Softmax Transformation
to the weight matrices. After that, we rounded the probabilities, which were
already quite close to 0 or 1.

– We also discarded $ transitions, since they just indicate the start or end of
the string. Therefore, the starting state was no longer q0 but the one reached
after applying the first $ transition from it.

– We obtained the set of unreachable states with a Breadth First Search
approach. Those states were later removed from the final automaton.

– Finally, we computed the equivalent states by applying Hopcroft’s Equiva-
lence Theorem [31]. Those states were then merged together.

The resulting automata were, in all cases, the minimal ones for the Tomita
grammars (see Fig. 3).
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Fig. 3. Learned automata for the Tomita grammars. In each of the plots, a double
circle indicates a final state. The transitions are represented as symbol/probability,
and the lines for the sink states have been merged together (indicated with a comma:
symbol1, symbol2).

6 Discussion

Extracting finite automata from RNNs has customarily been a separate process
from the training phase. In this work we have shown that by making the RNN
work as an automaton, it is forced to train as one. Moreover, by applying weight
regularization techniques the model can learn a deterministic WFA that correctly
represents a regular grammar. Determinism allows for a great generalization
capability, and the ability to process long input sequences while accumulating
little error. The resulting automaton is robust and fully interpretable from the
model weights, and can be extracted without turning to complex methods. This
effectively brings closer the training and inference phases, and optimizes the
learning process.
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Abstract. Fingerprint localization based on Channel State Information
(CSI) plays a crucial role in indoor location-based services. Due to the
natural compatibility between offline training and online localization of
CSI-based fingerprint localization and deep learning, recent studies have
shown that introducing the latest deep learning techniques can provide
higher localization accuracy. Most current research efforts in localiza-
tion have focused on leveraging deep learning advancements to enhance
performance. However, these approaches typically rely on complex tech-
niques and large model sizes, prioritizing model-driven methods over
practicality and real-world deployment capabilities. In this paper, we aim
to improve the localization performance of simple, general-purpose mod-
els (e.g., ResNet) through data-driven training paradigms, which align
with the value proposition of real-world applications. Specifically, by con-
structing positive examples with different signal-to-noise ratios (SNRs)
for contrastive learning, ResNet can learn SNR-robust representations.
Furthermore, we focus on antenna instances (physical components of
CSI) at a smaller granularity to learn scale-invariant representations
through hierarchical loss. In the final location regression fine-tuning pro-
cess, only a pooling layer and a fully connected layer need to be added to
perform position mapping. Experiments on real-world indoor and urban
canyon datasets demonstrate that our method achieves positioning accu-
racies of 0.16 m and 0.54 m, respectively, significantly outperforms state-
of-the-art baseline models.

1 Introduction

With the rapid growth of cities, indoor positioning technology is playing an
increasingly important role in real life and has many practical applications,
such as emergency evacuation [9,13] and indoor navigation [7,12]. Due to the
widespread presence of multi-frequency signal sources and reinforced concrete
structures indoors, it is difficult for GPS to provide accurate positioning services
in indoor environments. As a result, mainstream indoor positioning technologies
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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currently focus on the use of Bluetooth, WiFi, sound/ultrasonic, pseudolites and
geomagnetism to obtain location information. The dominant positioning meth-
ods can be divided into geomagnetic positioning and fingerprint positioning.

Geomagnetic positioning is based on the principle of geomagnetism to mea-
sure and locate indoor locations. Indoor geomagnetic positioning is more chal-
lenging than outdoor geomagnetic positioning (e.g., GPS) because indoor envi-
ronments often have multiple obstacles and multipath propagation, which can
affect the propagation and reception of signals and thus the positioning accu-
racy. Although researchers have tried various methods to improve accuracy, the
results are still unsatisfactory. For example, Chen et al. [1] estimated TOA from
the downlink synchronization signal block (SSB) of real 5G NR signals and pro-
posed carrier phase ranging for indoor positioning, but its accuracy was only
0.8m. In contrast to geomagnetic positioning, the idea behind fingerprint posi-
tioning is to use special physical measurements, such as CSI, to construct a
location dataset, train it offline and match the location online. Since fingerprint
positioning requires fewer base stations, it is relatively easy to deploy. A grow-
ing number of scholars have attempted to use fingerprint positioning to achieve
high-precision indoor positioning. For example, Gao et al. [4] utilised an modified
convolutional neural network that initially focused on extracting features from
multiple channels and later interacted between different channel features, which
was consistent with the physical characteristics of CSI, achieving a positioning
performance with an error of 0.28m. Ruan et al. [10] improved performance by
combining the unique features of LSTM and CNN through a composite approach,
achieving the best performance with an error of 0.65m in indoor environments.

It is clear that current fingerprint positioning technology mainly follows the
mainstream thinking of the deep learning community, including improving mod-
els and stacking various technologies to improve positioning accuracy. However,
this approach is at odds with the practical value-focused nature of fingerprint
localisation techniques. The complex techniques and large number of parameters
make the technique difficult to apply in practical situations, which is undesirable
in a field where practicality is valued.

In this paper, we aim to “arm” mainstream models with advanced training
concepts to achieve high-precision indoor positioning. We focus on a “evergreen
tree” model, ResNet [5], and propose a training paradigm based on contrastive
learning to enhance positioning accuracy. Specifically, we first construct two pos-
itive inputs for contrastive learning, which are the same CSI samples at different
signal-to-noise ratios. The purpose of this step is to allow the model to learn
noise robustness. We then focus the loss function for learning the SNRs invari-
ant representation at a finer granularity (the antenna instance, which is also
a physical component of the CSI), and augment the scale-invariant representa-
tion by hierarchical loss aggregation. Finally, we use standard regression training
to fine-tune the location prediction model (by simply adding a fully connected
layer with pooling). Tests on real datasets show that our method can train sim-
ple ResNet18 or ResNet34 with high-precision positioning, which significantly
outperforms cleverly designed baseline and conventional localization methods.
In summary, our contribution is as follows:
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1. We propose a training paradigm based on contrastive learning, which enables
a simple and generic ResNet network to achieve significantly better localiza-
tion performance than the state-of-the-art baseline.

2. We improve the model’s ability to handle CSI at different signal-to-noise
ratios by incrementally adding noise to construct positive sample pairs for
CSI at different signal-to-noise ratios.

3. We introduce a hierarchical contrastive loss and use antenna-instance loss as
a finer-grained loss, enabling the model to learn finer feature representations
that are invariant to scale.

4. Experiments on real-world datasets show that our approach achieves signifi-
cantly better localization performance than all baseline methods.

2 Methodology

The whole architecture of our method is shown in Fig. 1. For each input CSI
sample, we encourage a consistent representation at different SNRs. During the
contrastive learning phase, the encoder receives the raw input and optimizes
it using the hierarchical antenna instance loss. During the fine-tune phase, the
encoder receives CSI samples and is fine-tuned using MSE loss.

2.1 Physical Meaning of CSI

The CSI for each antenna and each Orthogonal Frequency Division Multiplexing
(OFDM) symbol can be expressed as a column vector in a k-dimensional space:

Hraw = (rxGrid)k×1/(refGrid)k×1 (1)

where k is the number of subcarriers and refGrid denotes the known pilot.
See [4] for more data descriptions.

From the Eq. 1, it can be seen that the columns of the CSI are relatively
independent, as they come from different antennas.

2.2 Encoder

Our design philosophy is to create a simple and generalizable model rather than
a scenario-specific model. Our encoder is a simple ResNet network designed for
feature representation extraction. Specifically, in the case of ResNet18, it consists
of three main components: a stem layer for input processing, a set of basic blocks
for feature extraction and a position regression layer for position estimation. The
stem layer includes a convolutional layer with kernel size 7, stride 2, padding 3
and 2D batch normalization, followed by a non-linear activation layer and a
pooling layer with size 3, stride 2, padding 1, and dilation 1. We use four basic
blocks, each consisting of three 2D convolutions with kernel sizes [3, 3, 1], strides
[2, 1, 2] and padding [1, 1, 0]. Each convolution layer has 64 output channels
and is followed by 2D batch normalization, with non-linear activation added
to the first two convolution layers. The position regression layer includes an
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Fig. 1. An overview of the proposed approach, where CSI is extracted from the base
station and sent to the Encoder (e.g., a simple ResNet18) along with the noisy input
and the original input. Consistency between the two different representations obtained
from the encoder is encouraged. The hierarchical comparison on the right is designed
to obtain scale-invariant representations by using different levels of instance loss for
the antenna instances.

average pooling layer and a fully connected layer for position mapping. The
average pooling layer reduces the spatial dimensionality of the feature maps to a
fixed size, while the fully connected layer maps the features to position estimates.
This description is consistent with the public version of ResNet18 and prioritizes
generalizability over model-specific techniques.

2.3 Positive Pairs Construction

Our goal is to construct positive examples by adding noise to the original CSI
input, thereby reducing the SNR of CSI and obtaining a consistent representation
under different SNR conditions. By enforcing the model to learn a consistent
representation between the positive examples and the original CSI samples, the
robustness of the model in different noisy environments is enhanced, allowing
it to better adapt to CSI data under various SNR conditions and improving its
performance in real-world applications. The probability of xpos being generated
from x is defined as q(·), then:

q(xpos|x) := N (xpos;αx, βI) (2)

where xpos denotes the positive example, which is compared with x to form a
positive pair, and α and β denote the constant scheme, respectively.
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Due to the addition of noise, the SNR of the obtained xpos is reduced com-
pared to x. The SNR is calculated as follows:

Ndb = 10 lg
Ps

Pn
(3)

where Ps and Pn denote the original signal and noise, respectively.

2.4 Hierarchical Antenna-Wise Contrastive Loss

Inspired by recent advances in contrastive learning [14,15]. We propose a hier-
archical antenna instance contrastive loss to force the encoder to learn feature
representations at different scales. The detailed steps are shown in Algorithm 1.
To be precise, for the CSI representation of the encoder output, we iteratively
compute the loss shown in the Eq. 4 along the dimension of the antenna instances
and sum the output before dividing it by the total number of losses. This allows
the encoder to gain a more fine-grained understanding of the potential distribu-
tion of CSI from the antenna instances. Hierarchical features can lead to different
levels of semantics that have been widely used in various fields of the deep learn-
ing community. To our knowledge, we are the first to introduce hierarchical
semantics contrastive to CSI deep learning representations.

Algorithm 1: Calculating the hierarchical antenna instance contrastive
loss.
1 HiLoss ← AiLoss(X,X′);
2 d ← 1;
3 while antenna_feature_length > 1 do
4 // The maxpool1d operates along the antenna axis;
5 X ← maxpool1d(X, kernelsize = 2);
6 X′ ← maxpool1d(X′, kernelsize = 2);
7 HiLoss ← HiLoss+AiLoss(X,X′);
8 d ← d+ 1;

9 HiLoss ← HiLoss/d;
10 return HiLoss;

AiLoss(i,s) = − log
exp

(
rai,s · rbi,s

)

∑B
j=1

(
exp(ri,s · r′

j,s) + 1[i �= j] exp(ri,s · rj,s)
) (4)

where B represents the batch size, i and j denote the index of the input CSI sam-
ples, s represents the index of antenna feature representations, and 1 represents
the indicator function. As can be seen from the composition of the denominator,
we utilize feature representations of other CSI samples with the same antenna
index within the same batch as negative samples.
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2.5 Fine-Tune in Position Regression

The purpose of contrastive learning is to enable the encoder to learn a CSI
feature representation that is invariant to different SNRs, which is “universal”
and can be used for other downstream tasks besides location estimation, such
as SNR ratio estimation or other practical tasks (requiring only modifications
to the fully connected layer). In this paper, we focus on positioning, so in this
section, we describe the fine-tuning process of position regression. Defining the
model trained by contrastive learning as modelc, the loss of position regression
is as follows:

Loss = MSE(modelc(X), Y ) (5)

where Y represents the actual position and MSE represents the mean square error
loss function.

3 Experiments

3.1 Datasets and Evaluation Metrics

We validate our approach using datasets that were measured in real-world posi-
tioning scenarios. These datasets have been extensively experimented with and
validated, and have up-to-date baselines [4]. Additionally, we present the mea-
sured scenarios for these datasets, as shown in Fig. 2a depicts a typical indoor
scenario. Figure 2b represents an urban canyon scenario where neighboring tall
buildings may cause difficulties in utilizing GPS signals due to signal obstruction
and interference. The dataset is publicly available and can be found at: https://
dx.doi.org/10.21227/jsat-pb50.

The mean error (MeanErr) and root mean square error (RMSE), which are
commonly used to assess positioning performance, are defined as follows:

MeanErr =
1

NUE

NUE∑

i=1

(∥
∥
∥Si − Ŝi

∥
∥
∥
2

)

RMSE =

√√
√
√ 1

NUE

NUE∑

i=1

(
Si − Ŝi

)2

(6)

where Si denotes the actual position of the i-th UE, Ŝi denotes the estimated
position of the i-th UE, NUE denotes the number of UEs and ‖·‖2 denotes the
Euclidean distance.

https://dx.doi.org/10.21227/jsat-pb50.
https://dx.doi.org/10.21227/jsat-pb50.
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(a) Indoor scenario (b) Urban canyon scenario

Fig. 2. Scenario display: The real data collection site is from a building in Beijing,
China, affiliated with the Chinese Academy of Sciences.

3.2 Implementation Details

In this study, we use a server equipped with an AMD EPYC 7543 32-Core CPU
and an RTX A5000 GPU for simulations. We set the initial learning rate to 1e−3

and reduce the learning rate by half every 25 epochs when the number of training
epochs exceeds 100. We use the Adam optimizer [8] to optimize the model. To
ensure a fair comparison, we train our model for 300 epochs, consistent with
state-of-the-art work [4]. The default batch size is set to 64. We use datasets
consisting of 14,448 and 11,628 CSI matrices for indoor and urban scenarios,
respectively. The experimental results of this study show that in both cases, the
use of our method significantly improves the positioning performance.

3.3 Quantitative Comparison

We evaluate five different types of positioning methods, including trilatera-
tion method (e.g., TDOA), triangulation method (e.g., AOA), hybrid method
(e.g., TDoA-AoA), machine learning-based fingerprint method (e.g., KNN), and
deep learning-based fingerprint method (e.g., MPRI). In addition, to enrich
the baselines, four widely used deep learning models were selected to evaluate
their localization accuracy, including ResNet [5], DenseNet [6], EfficientNet [11],
MobileFormer [2] and RepLKNet [3]. To thoroughly test the models, we cover all
publicly available versions. We test all models in indoor scenarios and select the
best-performing models for further testing in the urban canyon scenario.

As shown in Table 1 and 2, our model achieves the best results using the
two versions of the encoders (i.e., ResNet18 and ResNet34), which not only out-
perform their original versions, but significantly exceed all baselines. It’s worth
noting that the two versions of the encoder chosen also have a low parameter
count, with the ResNet18 version having only 5M parameters. This means that
our method is highly deployable in practice, as it has a low requirement for com-
putational resources. Furthermore, we visualize the positioning results as shown
in Fig. 3, 4 and 5.
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Table 1. Mean Error and Root Mean Square Error (m) statistics in indoor scenarios.

Models MeanErr RMSE

MPRI 0.28 –
TDoA 0.52 –
AoA 4.43 –
KNN 0.77 –
TDoA-AoA 0.54 –
ResNet18/34/50/101 [5] 0.35/0.27/0.28/0.28 0.62/0.49/0.49/0.50
DenseNet121/161/169/201 [6] 0.47/0.32/0.44/0.41 0.71/0.53/0.65/0.63
EfficientNetb0/1/2/3 [11] 1.13/3.20/6.08/14.23 1.36/3.79/6.95/17.07
EfficientNetb4/5/6/7 [11] 13.92/13.91/13.97/13.94 18.09/18.55/17.25/18.50
RepLKNet31B/L/XL [3] 0.44/0.27/0.31 0.66/0.57/0.55
Mobileformer96/151/214/294 [2] 12.11/11.25/13.24/10.59 14.89/13.11/15.10/13.02
Ours(ResNet18)/(ResNet34) 0.26/0.16 0.48/0.31

Table 2. Mean Error and Root Mean Square Error (m) statistics in urban canyon
scenarios.

Models Year MeanErr RMSE

ResNet18/34/50/101 2016 1.19/0.79/1.02/0.81 1.83/1.04/1.57/1.24
DenseNet121/161/169/201 2017 1.36/1.15/1.40/1.22 2.05/1.51/1.84/1.61
EfficientNetb0/1/2/3 2019 4.81/4.59/5.02/4.99 5.77/5.59/5.97/5.43
EfficientNetb4/5/6/7 2019 6.75/7.58/8.02/8.86 8.16/8.23/9.34/9.57
RepLKNet31B/L/XL 2022 2.97/2.85/3.01 3.97/3.74/4.21
Mobileformer96/151/214/294 2022 13.97/12.58/13.19/10.12 18.30/18.41/17.86/12.09
Ours(ResNet18)/(ResNet34) – 0.62/0.54 0.81/0.69
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Fig. 3. The visualization of indoor positioning results from left to right are as follows:
Ours (with ResNet34 Encoder), ResNet101, DenseNet121, DenseNet161.

Fig. 4. The visualization of urban canyon positioning results from left to right are as
follows: Ours (with ResNet18 Encoder), ResNet18.
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Fig. 5. The visualization of urban canyon positioning results from left to right are as
follows: ResNet34, ResNet50.

3.4 Ablation Study

To demonstrate the effectiveness of the whole contrastive learning paradigm,
we conduct ablation experiments to explore the specific impact of each design.
Without-progressive means that noise is not added in a progressive manner, i.e.,
in Eq. 2, α is set to 1 and β is set to 1e−5. In the progressive approach, β is pro-
gressively increased by 1e−5 in each training epoch to allow the model to adapt
to different levels of noise proportion. As shown in Table 3, in indoor scenes, the
positioning accuracy error increases by 0.06m when using the ResNet18 Encoder
and by 0.1m when using the ResNet34 Encoder as without-progressive is used. In
urban canyon scenes, when without-progressive is used, the positioning accuracy
error increases by 0.30m using the ResNet18 Encoder and by 0.09m using the
ResNet34 Encoder.

Without-pooling [14] means to using only the contrastive loss without hierarchi-
cal pooling to obtain different scales of loss. As shown in Table 3, in the indoor sce-
narios, the positioning accuracy error increases by 0.11m when using the ResNet18
Encoder and by 0.16m when using the ResNet34 Encoder when without-pooling is
used. In the urban canyon scenario, when without-pooling is used, the positioning
accuracy error increases by 0.60mwhenusing theResNet18Encoder and by 0.33m
using the ResNet34 Encoder. This implies that learning antenna feature semantics
at different scales can provide more knowledge capacity.

Table 3. Ablation study on hierarchical loss and progressively decreasing SNR.

Indoor Urban Canyon

without-progressive 0.32(+0.06)/0.26(+0.10) 0.92(+0.30)/0.63(+0.09)
without-pooling 0.37(+0.11)/0.32(+0.16) 1.22(+0.60)/0.87(+0.33)
All 0.26(ResNet18)/0.16(ResNet34) 0.62(ResNet18)/0.54(ResNet34)
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3.5 Efficiency Study

In this part, we examine various model-based efficiency metrics in detail. As
shown in Table 4, the two Encoders we chose (i.e., ResNet18 and ResNet34)
have high efficiency metrics. ResNet18 has only 5M parameters and is the fastest
in terms of training and inference time. Although EfficientNetb0 has the least
number of parameters at 4M, its network structure is designed to make inference
and training slower than ResNet18.

By considering both efficiency and accuracy, we can see that some classic
models can be active in various domains because of their broad generality. High
practical application value can be obtained by designing for specific scenarios.

Table 4. Measures of model efficiency, including the number of parameters (Param),
memory usage (Memory (MB)), floating point of operations (FLOPs (M)), training
time per one epoch (Training Time (s)) and inference time per one epoch (Inference
Time (s)).

Name Param Memory FLOPs Training Time Inference Time

ResNet18(Our encoder) 5,283,011 1.58 105.48 3.77 0.49
ResNet34(Our encoder) 21,292,483 2.52 292.40 6.21 0.68
ResNet50 23,520,451 7.39 326.03 7.79 0.62
ResNet101 42,512,579 10.84 573.15 11.75 0.93
ResNet152 58,156,227 15.05 818.24 17.39 1.31
DenseNet121 6,963,203 34.86 698.66 15.49 1.09
DenseNet161 26,488,035 63.98 1910.00 26.51 2.15
DenseNet169 12,495,747 41.48 829.71 22.20 1.39
DenseNet201 18,104,963 52.61 1060.00 27.06 1.99
EfficientNetb0 4,011,967 5.46 36.72 9.22 0.67
EfficientNetb1 6,517,603 7.70 56.02 12.04 0.96
EfficientNetb2 7,705,797 8.12 65.13 13.18 1.01
EfficientNetb3 10,701,563 10.70 92.67 13.35 0.99
EfficientNetb4 17,554,859 14.26 146.40 14.76 0.99
EfficientNetb5 28,347,795 19.69 232.23 18.83 1.60
EfficientNetb6 40,743,627 25.26 331.04 23.08 1.73
EfficientNetb7 63,795,795 34.03 511.32 28.33 2.12
RepLKNet31B 78,844,547 27.51 1100.00 46.26 2.29
RepLKNet31L 171,142,083 41.26 2340.00 70.90 4.01
RepLKNetXL 333,397,507 56.62 4510.00 122.63 6.61

4 Conclusion

In this paper, we abandon the idea of using special model techniques to obtain
sceneario-specific tailored positioning models and instead focus on using simple
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and general off-the-shelf networks to achieve high-precision fingerprint position-
ing. To achieve this, we introduce the paradigm of contrastive learning. We
construct different signal-to-noise ratio representations of the same CSI sample
by manually adding noise and feeding them into the Encoder as a pair of posi-
tive samples, thus encouraging consistency in the feature representation between
them. This allows the model to adapt to different signal-to-noise ratios. In addi-
tion, to obtain scale-invariant standards, we compute losses at different semantic
scales and finer granularity of antenna instances. Experiments show that with
simple ResNet18 or ResNet34 for hierarchical contrastive learning training can
yield excellent performance in terms of efficiency and accuracy.

Acknowledgements. This research was sponsored by National Natural Science Foun-
dation of China, 62272126, and the Fundamental Research Funds for the Central Uni-
versities, 3072022TS0605.
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Abstract. Students’ challenges in introductory programming courses
have long been subject to research. In fact, learners are faced with cog-
nitively complex tasks, such as modeling and writing programs. At the
same time, educators are known to experience challenges with the classifi-
cation of a competency’s cognitive complexity. In this paper, we present
a text dataset with competency goals expected in basic programming
courses. We then apply a deep learning approach to the dataset to clas-
sify the competency-based learning objectives as a use case. A manually
annotated dataset of 35 German universities and their learning objectives
in 129 introductory programming courses was processed into a machine-
readable format to achieve these goals. It contains 1015 competency goals
(both in German and English) and their classification into dimensions
of complexity. Different state-of-the-art machine learning (ML) models,
e.g., BERT, along with Natural Language Processing techniques, i.e.,
parts-of-speech-tagging, were combined to train a deep learning model
in a supervised manner for the classification of competencies. The proof-
of-concept shows that knowledge can be derived from the dataset. In the
presented use case, the ML classification achieved a maximum accuracy
of 81.4%. This work has several implications for educators, as it is the
foundation for an application that classifies competency goals according
to their cognitive complexity. The dataset can further be used to test
language models as a baseline performance task. Moreover, the dataset
can be extended, e.g., with data from other countries and languages. The
dataset is available online under a Creative Commons license (https://
github.com/nkiesler-cs/HEPComp-Dataset).

Keywords: dataset · classification · Learning objectives ·
Programming education · machine learning · natural language
processing

1 Introduction

Developing educational standards and striving for competency has become the
focus of many recent curricula recommendations. In the context of computing,
the IT2017 [26] and CC2020 report [6] promote that dispositions, together with
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skills and knowledge, form the three components of competency to accomplish
a certain task. Despite its definition and increasing recognition in computing
education [24,25], competency has not yet been fully incorporated into study
programs, modules or course descriptions. In addition, educators do not nec-
essarily receive the training required for the development of competency-based
learning objectives, and how to address them step by step with increasing com-
plexity. Research shows that computing educators experience difficulties when
classifying competency-based learning objectives with regard to their cognitive
complexity [9,19,33]. This is critical, as educators should be aware of a com-
petency’s complexity, and thus what they expect from students. Especially in
introductory programming, students do not seem to be able to accomplish cer-
tain tasks [3,23], which may be due to unrealistic expectations towards them,
i.e., too cognitively complex competency goals.

Therefore, it is the goal of the present work to provide a ground-truth dataset
as a classification task for the community. The contribution of this work is further
due to its potential for educators and secondary researchers, as we:

– provide a manually annotated, mature and provenant empirical dataset with
1015 competency goals from programming education and a methodology for
replication studies, e.g., in other countries, languages and other computing
areas, and

– propose a use case with a Machine Learning (ML) model to classify program-
ming competencies into categories of cognitive complexity [2] with the help of
Natural Language Processing (NLP).

The structure of the paper is as follows: In Sect. 2, competency and learning
objectives are briefly defined. The problem is described in Sect. 3, before the data
collection and analysis process, and the novel dataset is introduced in Sect. 4 and
5. Then the implementation of ML and NLP approaches and their performance
as a first use case is presented in Sect. 6. The paper ends with a discussion of
results, conclusions, and perspectives for future work.

2 Competency and Learning Objectives

Weinert [32] defines competency as a set of cognitive abilities and skills that can
be learned by individuals to solve problems. In addition, competency comprises
the motivational, volitional, and social readiness and capacity to successfully
and responsibly perform in various situations. Weinert’s definition is reflected
well in both the IT2017 [26] and CC2020 [6] definition of competency, which
summarize knowledge, skills, and dispositions taken in context of a task. A 2021
ITiCSE working group report adds the integrative nature [24] of competency to
this definition, thereby supporting Fink’s significant learning model [8] and the
human dimension of learning.

Learning outcomes form a common language construct for the representation
of competency-based qualifications in formal educational settings. One sentence
usually contains exactly one observable learning outcome which is described
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by an action verb, the learning content object, and, if necessary, the context
object [2]. Competency-based learning outcomes can be classified according to
the taxonomy developed by Anderson and Krathwohl (AKT) [2]. For example,
CS students are able to decode bit strings as characters or numbers. The cogni-
tive process dimension “apply” [2] can be derived from the verb “decode”. The
procedural knowledge dimension [2] how to do something is implied via the “bit
strings” and the resulting “characters or numbers”. It is thus crucial to trans-
form deviating expressions into the target format, which is especially true for
machine readability and further digital processing steps.

3 Problem Description

The data was originally gathered to address a challenge observed in German
higher education related to competency-based teaching, learning, and assessing
in introductory programming education. Learning to program is still perceived
as hard, difficult, and full of unrealistic expectations towards novices. Time and
time again, studies have reported that students do not acquire the programming
competencies expected from them [3,23]. Thus, there seems to be a gap between
what educators expect from novices, and how well students perform in their
first programming courses. The dataset was originally collected to (1) model
programming competency, (2) analyze the expected competencies with regard
to their cognitive complexity, and (3) to reflect on the current state of the art of
competency-based learning in German CS higher education programs [11–14].

In the present work, we built upon this primary research, while particularly
addressing educators’ challenges with the classification of competencies via tax-
onomies (e.g., AKT). Several studies reveal that cognitive complexity is hard to
judge, and that educators tend to downgrade certain tasks and the competencies
required to master them [9,19,33]. This underestimation may lead to educators’
design of too complex tasks and assessments, students’ poor performance, and
finally their dropout. Therefore, we start to enable and investigate the classifica-
tion of competency-based, cognitive learning objectives with the help of ML and
NLP approaches. To achieve this, we first have to construct a novel, machine-
readable and actionable dataset.

4 Dataset Collection

This section briefly introduces the sampling method of the curricula documents
gathered for the primary research [14]. Human subjects were not involved. First
of all, a common content area and context were determined. Then types of uni-
versities and study programs were selected, before curricula data were collected,
and analyzed into categories. For details, we refer to the primary work in which
all of the data used herein was gathered and thoroughly described [14].

Determining a Common Content Area: Programming competency is the
combination of knowledge, skills, and dispositions related to a programming lan-
guage, basic algorithms, and data structures, as well as their successful imple-
mentation in the context of a specific task. An initial step for the definition
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of a common content area was the review of the ACM’s curricular recommen-
dations including core tiers of CS degree programs [1] to obtain transferable
results, independent of specific study profiles or the present case study of Ger-
many. Accordingly, a content area was summarized that resembles the basic
components of introductory programming education.

Types of Universities and Study Programs: The search for data was con-
ducted via the “University Compass” [10], which is a database of all German
study programs. For the primary research, publicly funded types of universities
were considered, meaning full universities and universities of applied sciences.
As it was the goal of the primary research to find comparable courses, similar
modules across study programs and universities had to be selected that cover
the defined content area. Therefore, only full-time Bachelor of Science degree
programs in “Computer Science” were considered.

Searching for Modules and Courses: As a next step, introductory program-
ming courses from the first three semesters were selected based on the available
study plans and module handbooks of each degree program. Both the study
plans and modules were reviewed according to the defined content area. Courses
were included in the sample if the mapping had been successful.

Language Transformations: During the data collection process, it became
apparent early on that the learning objectives were often not available in the
expected format (see Sect. 2). This implied the need to linguistically smooth the
data. The goal of the language transformation was to ease the analysis of the
data by resulting in a one-to-one correspondence of a learning objective and
sentence. In addition, the goal was to obtain syntactically complete sentences
without reference elements (so-called “deixis”) and thus to ease comprehension
prior to the analysis.

Analysis Method and Categories: The 1015 gathered statements on learning
objectives were analyzed using the qualitative content analysis method according
to P. Mayring [20]. Cognitive objectives were coded by using deductive categories
resembling the four knowledge dimensions and six cognitive process dimensions
coined within the Anderson Krathwohl Taxonomy (AKT) [2]. Inductive cate-
gories representing the competency itself were developed based on the mate-
rial [22] for cognitive and non-cognitive competency goals, whereas additional
subcategories were developed for non-cognitive competencies. Learning objec-
tives lacking the notion of competency were classified as non operationalized.
The corresponding statements are still part of the dataset. The overall structure
of deductive and inductive categories is as follows:

– Cognitive Competencies
• Knowledge dimensions (deductive [2])
• Cognitive process dimensions (deductive [2])
• Inductive categories

– Non-cognitive competencies
• Inductive categories and inductive subcategories

– Non operationalized
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5 Dataset Transformation

The novel dataset of higher education programming competencies is presented
next. It is described in terms of the actual data collected from universities
and courses, further cleaning and preprocessing steps, as well as the resulting
machine-readable structure of the data, and the distribution of categories.

Represented Universities and Courses in the Dataset: The sample com-
prises a selection of one random full university and one random university of
applied sciences per German state. Three additional institutions from the state
of Hesse were included due to the primary research’s mixed methods approach
on the data level [14,21]. In sum, the CS Bachelor of Science study programs of
35 higher education institutions are part of the sample. 129 courses related to
programming are included [14].

Cleaning and Preprocessing: After the primary research had classified com-
petencies into cognitive, non-cognitive, and the non operationalized category, yet
another cleaning cycle was conducted to once again verify the classification. The
aggregation of data revealed a few examples that required attention and cor-
rections. As part of the data aggregation into a single JSON file, the following
additional transformations were applied:

– Replacing German special characters,
– Resolve abbreviations
– Remove hyphenation marks,
– Remove brackets (round and square)

To increase the use cases of the presented dataset, an English translation of
each syntactically valid learning objectives was produced with the help of the
automated translator DeepL. After a human review cycle and improvements,
English translations were added to the dataset. Moreover, we provide Python
code for the easy-to-use extraction of competencies and (category) labels, the
raw or linguistically transformed text for future research.

Structure of the Data: In sum, 1015 valid statements related to teaching and
learning objectives in introductory programming were identified in the sample.
The data is available as one JSON file which contains the expected competencies
of all 35 institutions, along with their linguistically transformed versions and all
of the assigned categories (deductive and inductive). Its structure is illustrated
by the following template of a paragraph from a module description containing
sentences with multiple learning objectives (see Listing 1.1). By presenting the
original text paragraphs and their step-by-step decomposition into full, syntac-
tically valid sentences, every single learning goal can eventually be categorized.
Due to the fact that a single sentence of the raw text may contain more than
one objective, more than one ID may be contained on the sentence level (line 6,
Listing 1.1). The available English translation of each linguistically transformed,
valid sentence is added in line 10 (Listing 1.1). In addition to the data, a lookup
table is available at the very end of the provided JSON file.
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1 { "<file id >": {
2 "university": "<university >",
3 "timestamp" : "<timestamp >",
4 "<sentence ids in paragraph >": {
5 "raw_text" :"<raw paragraph text >",
6 "<sentences ’ id[s] >": {
7 "text_before" : "<original sentence >",
8 "<competency id >": { // precisely one
9 "text_transformed": "<transformed text >",

10 "text_en": "<English translation >",
11 "label": [ // one or more labels
12 {<"label type">: {
13 "label_name": "<label name >",
14 "label_id" : <label identifier >}},
15 ]}}, // more competencies
16 }, // more paragraphs with sentences
17 }, // more files
18 "label_lookup": {
19 "<name >": id,
20 id: "<name >",}}

Listing 1.1. Dataset structure (JSON)

Distribution of Categories: The dataset’s distribution of competencies within
the cognitive domain [2] is illustrated in Fig. 1. 717 of the 1015 syntactically well-
formed sentences were classified as cognitive learning objectives and therefore
coded along both the knowledge and cognitive process dimensions of the AKT [2].
It is apparent that most of the learning objectives in introductory programming
are found within the cognitive process dimension creating and the procedural
knowledge dimension. In 250 cases, the expected competency goal was not oper-
ationalized. In addition, 48 sentences were categorized as non-cognitive learning
objectives.

Fig. 1. Distribution of Categories

6 Use Case: Classifying Programming Competencies

To classify programming competencies expressed in natural language we trained
and evaluated different machine learning models (i.e., deep learning models) in
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a supervised manner with the machine-readable dataset described in Sect. 5. As
the first and most interesting use case, a classification along the six cognitive
process dimensions (remembering, understanding, applying, analyzing, evaluat-
ing, creating) of the AKT [2] and the non operationalized category is performed
(see Fig. 1). It is noted that the continuum of cognitive complexity gradually
increases, with remembering being the least complex cognitive process dimen-
sion. The goal of each tested ML model is to assign the correct label of the
corresponding cognitive process dimension for a given competency goal.

6.1 Embedding

Embedding functions constitute a common technique to feed text to deep learn-
ing models. Text embedding functions transform words or text into a vector
space, whereby similar meanings of samples are closer to each other. We evalu-
ated several pre-trained embedding functions/layers E with different dimensions
(50 and 128), with and without normalization, and trained on different datasets
(English Google News 7B corpus, German Google News 30B corpus).

6.2 Models

As a baseline, we trained standard feed-forward Deep Neural Networks (DNNs)
to show the superiority of more specialized models. So in addition to standard
DNNs, a number of models for special NLP domains were evaluated. The “Bidi-
rectional Encoder Representations from Transformers” (BERT) model [7] is one
of the most commonly used models for NLP tasks. The underlying idea of BERT
is to mask tokens, and then predict them within the training process. Several
different pre-trained and adapted BERT models are available for different appli-
cation scenarios.

We used the original BERT-Base model, and further evaluated the more sim-
ple BERT model versions, e.g., the model defined by Turc et al. [30]. Down-scaled
BERT models usually have fewer parameters compared to the standard BERT-
Base, saving computational resources. Eleven BERT variants ranging from small
(2 transformer layers and a 128 hidden embedding size) to large ones were evalu-
ated (12 transformer layers and a 768 hidden embedding size, see [30]). Similarly,
the BERT variant “A Lite BERT” (ALBERT) proposed by Lan et al. [17] aims
at the reduction of training parameters. Clark et al. [5] introduced a further
BERT variant referred to as “Efficiently Learning an Encoder that Classifies
Token Replacements Accurately” (ELECTRA). Another BERT variant is pre-
trained on Wikipedia and BooksCorpus. The last variant is also based on BERT
and known as “Talking-Heads Attention” [28].

6.3 Part-of-Speech Tagging

To improve the classification accuracy of the German learning objectives, a part-
of-speech (PoS) information was added to the learning process [4]. We applied



326 N. Kiesler and B. Pfülb

two different PoS tokenizers: The common “Natural Language Toolkit” (NLTK)
for English, and the “Hanover Tagger” (HanTa) [31] for the German version of
the dataset. Each model was thus trained once with and once without the PoS
information to measure the impact of the data enrichment.

6.4 Experiments

Fig. 2. Model Architecture

Each model was trained for 1000 training
iterations with a fixed batch size of 64. This
configuration corresponds to approximately
64 training epochs on the entire dataset.
To bypass the problem of over-fitting [29],
we applied dropout after each layer to all
of our models with three different dropout
rates D = {0.0,0.1,0.2} (0% (off), 10% and
20%). In order to reduce the influence of
selecting a suitable learning rate, we vary the
learning rate lr = {0.001, 0.0001, 0.00001} for
AdamW optimizer [18] (an optimization of
Adam [16] with additional weight decay). To assure that random initialization
states do not influence the results, we executed each experiment with the same
parameters three times with different seeds in each execution. The same proce-
dure was applied to the pre-trained BERT models. To finally achieve the desired
classification, standard fully connected feed-forward layers of different quantity
L={1,3} and different numbers of artificial neurons N ={500,1000} were eval-
uated. All evaluated models comply with the architecture illustrated in Fig. 2.
We optimized all models with a weighted variant of the sparse categorical cross-
entropy loss, which minimized the effects of differently populated classes (see
Fig. 1).

To evaluate all deep learning models, we extracted a random subset of 10
samples of each class. Based on these test results, we can draw careful conclusions
on the quality of the training process with accuracy as a metric (instead of
precision, recall, or F1-scores). More than 4 000 experiments were evaluated.

6.5 Experimental Results

As a result of the experiments, we visualize the evaluation of the training process
for the best parameter configurations. In the left graph of Fig. 3, the test accuracy
of experiments for the German and English version of the dataset is visualized.
For each, the German and English data, the test accuracy with PoS tagging
(solid lines) and without (dashed lines) is indicated. The maximum accuracy
for the English version of the dataset is 81.4% (with PoS), while the German
version achieved a slightly lower accuracy of 75.7% (also with PoS). It is clearly
visible that the learning process for the English data (red lines) increases faster
and earlier. This is likely due to the pre-training of the applied BERT models in
English. Another outcome is that the data enrichment via PoS tokenizers seems
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to support the training process, as the accuracy improved. For the English data,
the maximum accuracy without PoS was 78.6%. The German data only achieved
an accuracy of 70.0% without the PoS tokenizers.

On the right of Fig. 3, the confusion matrix depicts the classification results
for the English data (with PoS) at i = 250. It shows that the prediction was
flawless for the dimension “evaluating”. 9 out of 10 correct predictions were
achieved for “non operationalized” learning objectives, and the cognitive process
dimension “remembering”. Most of the classification errors (4 out of 10) occur
in the dimension “applying”.

Fig. 3. Prediction trends (left) and confusion matrix (right) (Color figure online)

7 Discussion of Use Cases

In this section, we briefly discuss the dataset’s potential, the experiments’ results
and their implications for various communities. We further outline limitations
of this work.

The dataset presented in this work is the first of its kind to represent textual
data representing competencies from the context of introductory programming
education. It further contains ground-truth categories reflecting programming
competencies and their complexity both in German and English language. The
proof-of-concept use case of classifying programming competencies via machine
learning models revealed that in both the German and the English data, the clas-
sification accuracy improved when applying the PoS tokenizers in addition to the
pre-trained NLP models. The measured improvements correspond to the num-
ber reported by other authors [4]. Predictions for the cognitive process dimen-
sion “applying” seem to be most challenging for the ML model with 4 of 10
incorrectly predicted labels. Interestingly, this is also a well-known challenge for
human educators who tend to confuse this dimension with “creating” [9,27].

It should further be noted that the pre-trained models have not been devel-
oped for this type of classification task. Therefore, the present classification
of competency-based learning objectives via ML approaches constitutes the
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groundwork for improvements and future applications. By providing the data
source of our work, we further aim to engage other (computing education)
researchers to adapt the methodology and help us extend the dataset with more
valid and classified competency goals from other countries, and languages.

Moreover, the dataset can be utilized by a wider audience, such as the
machine learning and artificial intelligence community, as it can serve as a vali-
dation dataset for applied text classification or transformation tasks.

Limitations: The dataset was collected from German study programs and mod-
ules in 2018, which results in its limitation in terms of the German educational
context and time. Moreover, the examples depicted in this dataset reflect only
the competencies expected in introductory programming education and not com-
plete CS study programs. This is due to the intense effort that is required for
the gathering, transformation, and analysis of such natural language data.

8 Conclusions and Future Work

The presented text dataset reflects on the competency-based learning objectives
at German universities, particularly introductory programming education as a
common core of CS study programs. It was manually gathered, annotated, and
translated with human intelligence. Due to its transformation into a machine
readable and actionable format, it can be used by a broad audience, and for var-
ious text classification or transformation tasks. The availability of the annotated
data along with their classification and an English translation further enables
replication studies and other secondary research.

The novel dataset allowed for the analysis of cognitive complexity in the
context of introductory programming to make the high level of expectations
towards novices explicit. Due to the application of ML and NLP techniques,
the automated prediction of a competency goal’s cognitive complexity in terms
of the AKT dimensions was achieved with an accuracy of up to 81.4%. This
benchmark is the first of its kind for this dataset, and thus the starting point
for more research and improvements [15]. Generally speaking, the experiments
showed that knowledge can be derived from the dataset. To our knowledge, no
comparable dataset is currently available.

The text dataset is also considered valuable for future work, such as the
transformation of learning objectives into observable, competency-based goals.
It can further be utilized by (other) NLP or ML techniques.
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Abstract. Non-autoregressive translation (NAT) has received a surge of
interest due to its success in inference speed by predicting all tokens inde-
pendently and simultaneously. However, it is difficult for this paradigm
to model the conditional information between words in the target
side, which means its translation accuracy is sacrificed and damaged.
Although many advanced studies are proposed to improve its gener-
ation quality, they come at the cost of decoding speed compared to
its counterpart. In this paper, we propose to introduce an evaluation
module to evaluate the NAT generations during training to guide model
parameter update, and as a fine-tuning module during inference to gen-
erate plentiful fluency and faithfulness predictions. This recipe can sig-
nificantly improve the model performance on the basis of ensuring the
decoding efficiency of NAT. Furthermore, to mitigate the large pre-
diction error of low-frequency words caused by knowledge distillation
(KD) in non-autoregressive generation, we supply an enhanced KD to
train NAT students, which exploits the complementarity of bilingual
and monolingual, and transfer both knowledge to the NAT model. We
not only verify our ideas on widely-used WMT14 English-German and
WMT16 Romanian-English tasks, but also make more amelioration on
the low-resource national languages CCMT2019 Mongolian-Chinese and
CWMT2017 Uyghur-Chinese.

Keywords: Non-autoregressive Translation · Evaluation Module ·
Knowledge Distillation · Low-Resource language

1 Introduction

Auto-regressive translation (AT) [1,17] generates target tokens one-by-one with
a sequential manner, which has serious exposure bias and high decoding latency.
To alleviate this problem and accelerate decoding, non-autoregressive translation
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(NAT) [7] is proposed on the premise of the conditional independence assump-
tion, it parallel decodes all target sentence words. However, this paradigm dis-
cards the context dependency of the target tokens [9], which reduces the rele-
vance between the generated tokens and resulting translation accuracy hugely
decrease.

Stern et al. [16] propose an Insertion Transformer (InsT), which generates
target tokens like a balanced binary tree. Besides, Gu et al. [8] further present
a deletion operation (Levenshtein Transformer, LevT). It can divide the itera-
tive process into three steps: deletion, placeholder prediction and token predic-
tion, which is more flexible for the adjustment of the translation. Inspired by
BERT [2], conditional masked language model (CMLM) is introduced into the
NAT model [6], a fraction of target tokens with low prediction probability will be
masked and re-predicted in the next iteration and better results are achieved by
gradually obtaining more target sentence context dependencies during multiple
iterative decoding. However, multiple decoding increases the inference speed and
even degrades to the level of auto-regressive Transformer, losing the fast decod-
ing advantage of non-autoregressive models. Therefore, enhancing the context
correlation of the single decoding model can improve the translation quality on
the premise of maintaining high-speed decoding.

In this paper, we propose to integrate the evaluation module on the basis
of the NAT model, which can be evaluated between the relevance of generated
words (fluency) and the semantic retention degree of the source language (faith-
fulness), and adjust the model parameters timely according to the evaluation
result. During training, the evaluation module can keep the semantic relations
and feature distribution of the target language to continuously enrich the seman-
tic knowledge, which are retained as the model’s parameters and used to modify
the translation during inference. The quality of the translation generated after
one round of decoding can reach a result comparable to that of the multi-round
iterative decoding model, and the decoding speed is still more than 6 times
higher than that of the auto-regressive model. Furthermore, as the preliminary
step for training NAT model, knowledge distillation (KD) [10] has become a
necessary paradigm to trade-off between decoding speed and translation qual-
ity, which is widely used to construct new training data for model. However, it
mainly focuses on the performance of high-frequency words and damages the
density estimation of real data, seriously decreasing low-frequency word trans-
lation accuracy [3,12]. To this end, this paper makes full use of raw, distill and
reverse-distill data according to [4] to rejuvenating low-frequency words. We
highlight our contributions as follows:

– We propose integrate the evaluation model to NAT has enable it to improve
the context dependency between target tokens while ensuring the decoding
speed.

– NAT student uses synthetic distillation data for training to relieve the poor
prediction of low-frequency words.

– To firmly reveal our approach, we conduct extensive experiments on two widely
used language pairs and two low-resource languages translation tasks.
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2 Background

2.1 Non-autoregressive Translation

Given a source sentence x, an AT model predict each target word yt conditioned
on the prefix words y<t, which suffer from quite time-consuming when generating
target sentences, especially for long sentences. In contrast, NAT models use
the conditional independent factorization for predicting target words in parallel.
Accordingly, the probability of generating yt is computed as:

P (y|x) = P (Ty|x)
Ty∏

t=1

P (yt|x, z) (1)

where Ty is the length of the target sentence and each word yt are generated
independently. Different with AT model, the NAT model has inability to dynam-
ically define the sentence length implicitly through special symbols. Therefore,
predicting sentence length is the preliminary step for non-autoregressive trans-
lation, and exploiting latent variable z to model the correlation of the target
sequence and predicting the target word without the participation of the prefix
words y<t, so as to achieve parallel decoding.

2.2 Knowledge Distillation

Conditional independence assumption prevents the NAT model capturing the
target side dependency sufficiently, which leads to serious semantic multi-
modality. Therefore, sequence-level knowledge distillation [7] is proposed to
tackle the above problems. Utilizing bilingual corpus to train a powerful AT
teacher model is the initial step and then replace the original target side samples
with AT teacher-generated sentences to reduce the modes of training data, which
makes NAT easily acquire more realistic probability distribution and achieve sig-
nificant improvements [15,18]. Accordingly, the process of knowledge distillation
can be defined as follows:

Raw = {(Xi,Yi)}Ni=1 , KD = {(Xi, ATs→t (Xi)) |Xi ∈ Raw}Ni=1 (2)

where Raw represents the original parallel corpus data and KD represents
the sequence-level knowledge distillation data obtained through the AT teacher
model. N is the total number of parallel sentence pairs in the training corpus.

3 Methodology

Our work aims to train the NAT student with the authentic and synthetic distil-
lation data to diminish the error prediction of low-frequency words and introduce
an evaluation module into the model to further improve the translation quality
under the condition of ensuring fast decoding of NAT. The whole architecture
is shown in Fig. 1.
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Fig. 1. Illustration of proposed model structure.

3.1 Enhanced Knowledge Distillation

Although standard KD effectively eases the multi-modal of NAT, it may lose
important information in the original data during the distillation process, result-
ing in more errors on predicting low-frequency words. As a data-driven task, the
performance of the NAT model heavily relies on the volume and quality of the
parallel data. For high-resource translation tasks, external monolingual data as a
complement to the original bilingual data have the potential to further improve
translation performance. For several low-resource tasks, monolingual data is eas-
ier to obtain with several orders of magnitude larger than that of bilingual data,
which can effectively alleviate the dependence on bilingual corpus. Therefore, as
shown in the left part of Fig. 1, we leverage bidirectional monolingual knowledge
distillation to rejuvenate low-frequency words. Specifically, we generate two sets
of distillation data based on external monolingual with AT teachers trained on
the original bilingual data, and then combined with bilingual KD to obtain the
final enhanced KD expressed as (3) and (4):

Bili. = {(Xi,Yi)}Ni=1 , Mono. =
{
(xq)

Q
q=1 ∪ (yp)Pp=1

}
(3)

KDEnhanced = (Xi, ATs→t (Xi))
N
i=1 ∪ (xq, ATs→t (xq))

Q
q=1 ∪ (yp, ATt→s (yp))

P
p=1

(4)
where Bili. and Mono. represent bilingual data and monolingual data (source
and target) respectively. N , Q and P indicate the number of bilingual sentence
pairs and two monolingual sentences.

3.2 NAT with Evaluation Module

The evaluation module assess the target sentence generated by the NAT from
the perspectives of fluency and faithfulness. Both metrics are integrated together
to obtain a final score to make a compromise between them. Thus the evaluation
module can be logically divided into three layers, which are self-attention layer,
cross-attention layer and fusion layer. The definite architecture is shown in Fig. 2.
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Fig. 2. Structural view of the eval-
uation model. Here we omit layer-
norm and residual connections for
simplicity.

Different with the self-attention mecha-
nism in the Transformer decoder, the parallel
decoding of NAT model non-existent infor-
mation leakage. Therefore, the self-attention
layer in the evaluation module doesn’t con-
tain the mask part and thus retains all the
information of the entire sentence, which
can more comprehensively learn the semantic
knowledge and language features of the tar-
get language. The self-attention layer calcu-
late the contextual correlation between words
to ensure the fluency of the whole translation:

Cfluent = MultiHead(Hde,Hde,Hde) (5)

where Hde is the last hidden layer state of
the decoder and Cfluent is the generated self-
attention. Apart from fluency, the generated
sentences should also reflect faithfulness so
that the entire translation can express the source sentence adequately and accu-
rately in meaning. We regard the evaluation for faithfulness as a translation task,
that is to evaluate the probability of converting relevant source information into
target words. Specifically, we perform the cross-attention over the source hid-
den state Hen generated by the encoder with the context information of the
target sentence in the self-attention layer Cfluent to ensure that the generated
translation can faithfully express the source sentence:

Cfaithful = MultiHead(Cfluent,Hen,Hen) (6)

where Cfaithful is the generated cross-attention. The two metrics of fluency
and faithfulness are traded off against each other to evaluate the generated
translation, and the semantic knowledge and other information learned by the
two parts are fused by adding a fusion layer. Finally, the evaluation score is
obtained through the softmax layer:

S = SoftMax(C), C = WfluentCfluent + WfaithfulCfaithful (7)

where Wfluent and Wfaithful are linear transformation matrices. S = [s1; ...; sI ]T

is the last hidden layer state after the softmax layer and si is the hidden state
for the target word yt.

3.3 Training and Inference

Training Strategy. The distillation data in this paper can be divided into
two parts: KDBili and KDMono. The former is generated from original bilin-
gual data and the latter is generated from bidirectional monolingual data with
twice the amount of the former. Since the AT teacher model is trained on the
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original bilingual corpus, the resulting distilled data with higher quality, while
the distillation data generated through external monolingual has larger noise,
and simply joint training may cause negative effects on the model. Therefore, as
shown in Fig. 1, this paper uses the iterative knowledge refinement mechanism
to progressively train the model. Specifically, we fist perform BLEU to evaluate
monolingual distillation data. The initial epoch utilizes all synthetic distillation
corpus KDMono, and each subsequent epoch increase 5% authentic distilla-
tion corpus KDBili, in the meanwhile, decrease 10% KDMono with the lowest
BLEU score. The training strategy enables the model to learn more semantic
knowledge from large-scale monolingual data while retaining the advantages of
original bilingual data.

(b) (c)(a)

Decoder

Softmax

Decoder EM

Softmax

Softmax

EM

Decoder

Fig. 3. Different roles of evaluation module
during inference.

Loss Function. During training, our
method jointly optimizes the transla-
tion module and the evaluation mod-
ule. Specifically, for the translation
module, since all tokens in NAT are
generated in parallel, it is necessary to
predict the length T of the target sen-
tence in advance:

Llen = −logP (T |x; θ) (8)

For generated translation yt, a cross-entropy loss is employed as

Lt = −
T∑

t=1

logP (yt|x; θ) (9)

where y is the translation obtained by the non-autoregressive translation model.
The evaluation module is also optimized via a cross-entropy loss as

Lem = −
T∑

t=1

logP (y∗
t |x;yt; θ) (10)

where y∗ denotes the translation generated by the evaluation model. Accordingly,
the final loss is

L = Llen + λLt + (1 − λ)Lem (11)

where λ represents the fusion parameter of translation module and evaluation
module.

Inference. The evaluation module retains a large amount of semantic knowl-
edge of the target language during training. Therefore, we can regard the eval-
uation module as a fine-tuning module for test set inference and the process is
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shown in Fig. 3(c). Namely, the decoder output is input into the evaluation mod-
ule for fine-tuning and obtaining the final hidden layer state to parallel decoding
generates the final translation:

Cem = SoftMax(EM(Cen, Cde)) (12)

where Cen and Cde represent the state of the last hidden layer of the encoder and
decoder respectively and EM(·) denotes the fine-tuning process of the evaluation
module.

4 Experimental Setups

4.1 Dataset

We not only conducted experiments on two widely-used NAT benchmarks:
WMT14 English-German (En-De) and WMT16 Romanian-English (Ro-En)
tasks, but also two low-resource tasks: CCMT19 Mongolian-Chinese (Mo-Zh)
and CWMT17 Uyghur-Chinese (Uy-Zh), which consist of 4.5M, 0.6M, 0.25M,
and 0.35M sentence pairs, respectively. The validation set contains 3000, 1999,
1001 and 1001 sentence pairs, respectively, with the same number of test sets for
each task as its validation set.

The monolingual data is generally the same size as the corresponding bilin-
gual data for fair comparison. We follow [4] to randomly sample English and
German monolingual data from News Crawl1 2007–2020 and sample Romanian
monolingual data from News Crawl 2015. We randomly sample Mongolian and
Chinese from CCMT2022 (remove CCMT19) as the monolingual data. As for
Uyghur monolingual data, we crawl from publicly available China National Radio
(Uyghur)2. We preprocess all data via byte pair encoding (BPE) and we use
BLEU [13] to measure the translation quality (except for Mo-Zh and Uy-Zh, we
use sacre-BLEU [14]).

4.2 Baselines and Implementations

We exploit Transformer-Base (Beam Size = 4) as the autoregressive model
strong baseline and validate our approach on the initial NAT model (Noise
Parallel Decoding = 5) and two state-of-the-art NAT models: MaskPredict
(Iteration Number = 10, Length Beam = 5) and Levenshtein Transformer,
all baselines (except Transformer) are trained with standard KD. We adopt
Adam optimizer [11], α = 0.9, β = 0.98. We set 4000 warm-up steps and the
initial learning rate is 0.0004. All the above baselines and our method are based
on fairseq3 implementation.

1 http://data.statmt.org/news-crawl.
2 http://www.uycnr.com.
3 https://github.com/pytorch/fairseq.

http://data.statmt.org/news-crawl
http://www.uycnr.com
https://github.com/pytorch/fairseq
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Table 1. Results on different translation tasks benchmarks. Latency is measured in
milliseconds (ms). KD� and IR represent our enhanced knowledge distillation and
Iterative Knowledge Refinement respectively. • indicates the same result as the previous
row.

ID Models WMT14 WMT16 CCMT19 CWMT17 Latency Speedup
En-De Ro-En Mo-Zh Zh-Mo Uy-Zh

1 Transformer 27.36 35.19 36.91 35.24 38.07 504.7 ×1.00
2 NAT 19.74 28.57 29.38 28.63 30.76 64.4 ×7.84
3 +EM 21.49 30.15 31.12 29.74 32.73 82.9 ×6.08
4 +KD� 22.58 31.06 31.59 30.82 33.44 • •
5 +IR 23.21 31.85 32.05 31.39 34.23 • •
6 NATndecoder=7 20.08 28.91 29.64 29.01 31.02 72.9 ×6.92
7 Mask-Predict 27.19 34.35 31.48 30.72 33.92 307.7 ×1.64
8 +EM 29.02 35.79 32.74 31.69 35.27 318.2 ×1.58
9 +KD� 30.05 36.09 33.59 32.98 / • •
10 +IR 31.12 36.62 35.24 34.09 / • •
11 Lev-Transformer 27.32 34.31 32.54 30.68 33.75 192.8 ×2.59
12 +EM 28.91 35.82 34.31 31.79 34.97 207.4 ×2.43
13 +KD� / 36.14 35.06 / 36.22 • •
14 +IR / 36.78 35.98 / 37.19 • •

5 Results and Analyzes

5.1 Main Results

Table 1 lists the results and decoding latency of our method on different baselines
and tasks. Encouragingly, we tested the performance of the evaluation module
on different baselines and language pairs, our approach improves previous state-
of-the-art BLEU on the NAT benchmarks (Line 3, Line 8 and Line 12), reaching
a maximum improvement of 1.97 BLEU points (Uy-Zh in Line 3) and fully
demonstrating the effectiveness and universality of our approach. It can be seen
that the latencies for decoding with Noise Parallel Decoding (NPD) of ordinary
NAT is increased since generate multiple sentences, but a speedup of still more
than a factor of 7 over autoregressive decoding, sufficiently revealing the advan-
tages of NAT fast decoding (Line 2). By virtue of the evaluation module for
fine-tuning during inference, we make a considerable quality improvement with
slightly decrease of decoding speed. The improvement on ordinary NAT can
reach the same level as that of Lev-Transformer and Mask-Predict, but compar-
ing latencies on the NAT+EM (Line 3) shows a speedup of 3 to 4 times over
the above two baselines (Line 7 and Line 11). Since the evaluation module is
similar in structure to the Transformer decoder, our model has one more layer
of parameters compared with the NAT baseline. To determine whether the per-
formance improvement results from the integration of evaluation module, we
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add a decoder layer to the NAT baseline and conduct experiments on five tasks.
As can be seen from the comparison experiments in Line 2, Line 3 and Line
6, adding one decoder layer also bring improvement but it has extremely weak
effects compared to the evaluation module.
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Fig. 4. Performance under different hyperpa-
rameters on Ro-En and Mo-Zh.

Notably, the enhanced knowl-
edge distillation also plays a criti-
cal role, which is applicable to dif-
ferent language pairs and models,
especially for low-resource trans-
lation tasks (Line 4, Line 9 and
Line 13). Even though this app-
roach increases the training time,
it neither modify model architec-
ture nor add extra training loss,
thus doesn’t product any external
latency, maintaining the intrinsic
advantages of NAT models. Fur-
thermore, different training strate-
gies are also shown to be benefit
for improving performance. Itera-
tive knowledge refinement has better results (Line 5, Line 10 and Line 14) com-
pared with the original joint training because we first uses synthetic distillation
data (generated by external monolingual data) for training to learn all semantic
knowledge in monolingual data. In each subsequent stage, decrease the synthetic
data with lower BLEU scores and increase the authentic distillation data pro-
portionally, which continuously iterated to refine the model’s performance. This
recipe makes the model has enable to learn more language features and reduce
the noise caused by poor quality data.

5.2 Effect of Hyperparameter λ

In this paper, we combine the loss functions of the translation module and the
evaluation module as they are trained jointly. We choose linear interpolation for
fusion as in (11), to explore the most suitable fusion parameters, we conducted
multiple rounds of experiments with different hyperparameters λ (0.1, 0.3, 0.5,
0.7, 0.9) under the same conditions. The experimental results are shown in Fig. 4.
It can be seen from the figure that the best effect can be achieved when the
value of λ is 0.5. When the weight of the translation module is lower than
evaluation module, the model’s performance is slightly improved compared with
the baseline model. The reason is evaluation module can be regarded as a layer
of the translation module, so It have little impact with lower λ. As the weight
of the evaluation module gradually decreases, the under-utilization of the it
leads to a serious decline in model performance. Therefore, it can be proved
that the evaluation module plays a positive and significant role in improving the
performance of the model.
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5.3 Effect of Evaluation Module During Inference

Table 2. BLEU values of different struc-
tures on CCMT19 Mo-Zh and CWMT17
Uy-Zh in the inference phase. (a)(b)(c) cor-
responds to the three structures in Fig. 3

Models Mo-Zh Uy-Zh
NAT 29.38 30.76
NAT+EM(a) 28.92 29.84
NAT+EM(b) 29.75 31.02
NAT+EM(c) 31.12 32.73

The evaluation module is reused for
fine-tuning translation during infer-
ence. Therefore, this paper carries out
experiments on the different integra-
tion methods of evaluation module
and translation module. Figure 3(a)
displays that directly use the state
of the decoder last hidden layer to
generate translation without adding
evaluation module. Figure 3(b) inte-
grates decoder hidden layer states and
evaluation module states to inference.
Figure 3(b) takes the decoder’s hidden
layer state as input and utilizes the
evaluation module to fine-tune and generate translation. The experimental
results are shown in Table 2, the performance reaches the best when the evalua-
tion module is used to fine-tune (Fig. 3(c)). Since the model trains the translation
module and the evaluation module jointly, there is a certain coupling between
them. The translation inference leads to a slight damage of model performance
if Fig. 3(a) is used alone and it has improved compared with the NAT baseline
when the evaluation model is added for inference. However, compared with the
fusion recipe, using evaluation model for fine-tuning translations have the great-
est achievements. The reason is that the evaluation model has already learned the
linguistic features of the target language and other knowledge during training,
so it can fine-tune the translations generated by the translation model according
to the reserved knowledge, so as to achieve better results.

5.4 The Fluency and Faithfulness of the Translation

The original intention of introducing the evaluation module in this paper is
to expect translations with higher fluency and faithfulness, we assess whether
this brings the improvement on the two metrics. According to [5], we test the
word repetition rate and n-gram accuracy for fluency. As for faithfulness, the
cosine similarity between translation and reference is calculated using the aver-
age embeddings of all words. Table 3 reveals the results, the NAT model after
fine-tuning the evaluation module can generate translation with higher n-gram
accuracy for order 1 to order 4 and the greater accuracy on n-gram indicates
higher fluency, especially on 3-gram and 4-gram. Meanwhile, it has the lower
word repetition rate implies that the repeated translation issues in NAT parallel
decoding is slightly relieved. Besides, our method has a bigger cosine similar-
ity to the reference and this means the generate translation is more faithful
in meaning to the source sentence. In conclusion, it proves the effectiveness of
our method after fusing the evaluation module, which generate translation with
better fluency and faithfulness.
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Table 3. N-gram accuracy, repetition rate and cosine similarity on Mo-Zh translation.
n-gram accuracy is the ratio of the number of matched n-gram between translation
and reference against the total number of n-gram in the translation.

Model 1-gram 2-gram 3-gram 4-gram Repetition Cosine similarity

NAT 45.68 37.63 29.32 21.20 10.18 0.749
NAT+EM 46.69 38.31 30.08 22.37 9.71 0.763

5.5 Low-Frequency Word Analysis
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Fig. 5. Accuracy of word translation on Mongolian-
Chinese.

To verify the translation effect
of low-frequency words during
inference, we analyze the lexi-
cal accuracy with different fre-
quencies in the test set by tak-
ing Mongolian-Chinese trans-
lation tasks with low resources
as an example. Specifically,
we first employ fast-align4 on
the reference translation of
the test set to obtain word
alignment information, and
then perform statistics on the
results generated on the test
set to calculate the accuracy of word translation. The experimental results are
shown in Fig. 5. It can be seen that the model trained by standard knowledge dis-
tillation has a high translation accuracy in high-frequency words but poor effect
on low-frequency words. Adding our enhanced knowledge distillation improve
the translation of low-frequency words without reducing the translation effect
of high-frequency and medium-frequency words. The reason is that monolin-
gual data and bilingual data complement each other, and low-frequency words
in bilingual data may appear more frequently in monolingual data, effectively
alleviating the low-frequency word problem. Moreover, monolingual data has
better accessibility and scalability, and more monolingual data can be added to
improve the model translation quality. Simultaneously, the iterative knowledge
refining training strategy alleviates the noise problem of unlabeled data and
further improves the translation effect on all word frequencies.

5.6 Case Study

To intuitively reveal the superiority of our method, we list Ro-En and Mo-Zh
translation cases generated by different models in Fig. 6. It can be seen that the
addition of the evaluation module significantly improves translation fluency and

4 https://github.com/clab/fast_align.

https://github.com/clab/fast_align
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Fig. 6. Translation effects of different models on Ro-En and Mo-Zh.

faithfulness compared with the translation generated by the original NAT model.
For Ro-En and Mo-Zh cases, NAT+EM has the ability to translate eradicate
and 建建建设设设情情情况况况 accurately, meanwhile, reduce the repeated prediction of words,
this means that integrate evaluation module mitigates the mistranslation and
missing translation of NAT caused by the parallel decoding and discarding the
context dependency of the target token, it makes the model pay more attention
to semantic coherence in the context generation process and sentence meaning
more faithful to the source.

On the basis of adding the evaluation module, further use the synthetic dis-
tillation data and the decrease training strategy to make our model have the
ability to recognize and translate named entities, such as Timor Leste in Ro-
En, 海海海西西西州州州 and 和和和林林林格格格尔尔尔 in Mo-Zh, which means that more knowledge can
be transferred to NAT by employing the distillation data generated by exter-
nal monolinguals, which lightens the low-frequency word prediction errors, at
the same time, our method benefits from the Decrease training and reduces
the adverse impact of poor quality data on the model, making the translation
results more respectful of references.

6 Conclusion

This paper propose to integrate the evaluation module into the NAT model,
which can infuse more context dependencies during training and inference,
and maintain the advantages of non-autoregressive high-speed decoding while
improving the model performance. Experiments have proved that our method
can produce translation with better fluency and faithfulness. Furthermore, we
also use the distillation data generated by external monolingual to train NAT to
soften low-frequency word prediction errors in standard knowledge distillation,
which product external latency not at all and maintain the intrinsic advantages
of NAT models. We will explore other methods that can further improve the
model performance on the basis of one iterative decoding in future work.
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Abstract. Spoken language understanding (SLU) typically includes two
subtasks: intent detection and slot filling. Currently, it has achieved
great success in high-resource languages, but it still remains challeng-
ing in low-resource languages due to the scarcity of labeled training
data. Hence, there is a growing interest in zero-shot cross-lingual SLU.
Despite of the success of existing zero-shot cross-lingual SLU models,
most of them neglect to achieve the mutual guidance between intent
and slots. To address this issue, we propose an Intra-Inter Knowledge
Distillation framework for zero-shot cross-lingual Spoken Language
Understanding (I2KD-SLU) to model the mutual guidance. Specifically,
we not only apply intra knowledge distillation between intent predic-
tions or slot predictions of the same utterance in different languages, but
also apply inter knowledge distillation between intent predictions and
slot predictions of the same utterance. Our experimental results demon-
strate that our proposed framework significantly improves the perfor-
mance compared with the strong baselines and achieves the new state-
of-the-art performance on the MultiATIS++ dataset, obtaining a signif-
icant improvement over the previous best model in overall accuracy.

Keywords: Spoken language understanding · Knowledge distillation ·
zero-shot

1 Introduction

Spoken language understanding (SLU) aims to extract the semantic components
from user queries [1–7], which is an important component in the task-oriented
dialogue systems. SLU typically involves two subtasks: intent detection and slot
filling. Intent detection obtains the user’s intent from the input utterance and slot
filling recognizes entities carrying detailed information of the intent. Deep neural
network techniques have achieved remarkable results in SLU, but they require

The original version of the chapter has been revised. A correction to this chapter can
be found at
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extensive labeled training data, which limits their scalability to languages with
little or no training data. To address this limitation, zero-shot cross-lingual SLU
generalization has received attention, which uses labeled data from high-resource
languages to transfer trained models to low-resource target languages.

As deep learning applied to various tasks [8–13], machine translation tech-
nique is first introduced in data-based transfer methods to convert source utter-
ances into targets [14–16]. Nevertheless, for some exceptionally low-resource
languages, machine translation might be undependable or inaccessible [14]. To
tackle this issue, some studies [17] aligned source languages with multiple target
languages using bilingual dictionaries to randomly replace some words in the
utterance with translation words in other languages, while others [18,19] have
applied contrastive learning to achieve explicit alignment and improve perfor-
mance. However, previous works have neglected the mutual guidance between
intent and slots. Normally, intents and slots are related. So it is beneficial to
model the mutual guidance between intents and slots in zero-shot cross-lingual
spoken language understanding.

In this paper, we propose an intra-inter knowledge distillation framework for
zero-shot cross-lingual spoken language understanding termed I2KD-SLU based
on multilingual BERT (mBERT) [20]. mBERT is a pre-trained contextual model
trained on a large corpus of multiple languages, and it has shown significant
progress in achieving zero-shot cross-lingual SLU. Specifically, for intra knowl-
edge distillation, we apply knowledge distillation between intent predictions or
slot predictions of the same utterance in different languages. For inter knowledge
distillation, we apply knowledge distillation between intent predictions and slot
predictions of the same utterance. Intra knowledge distillation helps to trans-
fer knowledge from different languages and inter knowledge distillation helps
to achieve the mutual guidance between intents and slots. Experiment results
on the public benchmark dataset MultiATIS++ [16] demonstrate that I2KD-
SLU significantly outperforms the previous best cross-lingual SLU models and
analysis further verifies the advantages of our method.

In summary, the contributions of this work can be concluded as follows:

– To the best of our knowledge, we are the first to achieve mutual guidance
between intent and slots for zero-shot cross-lingual SLU.

– We propose an intra-inter knowledge distillation framework, where intra
knowledge distillation promotes the knowledge transfer and inter knowledge
distillation models the mutual guidance.

– Experiments show that our method achieves a new state-of-the-art perfor-
mance, obtaining an improvement of 3.0% over the previous best model in
terms of average overall accuracy of 9 languages.

2 Related Work

2.1 Spoken Language Understanding

Intent detection and slot filling tasks are two typical sub-tasks of SLU [21–23].
While slot filling can be challenging as decisions must be made for each word or
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token, it is applied in interesting use cases, as noted by [24]. In the past, these two
tasks are performed independently, but recent research has shown that jointly
optimizing them can improve accuracy [25–29]. Contextual language models have
also improved language encoding capabilities for joint NLU models compared to
traditional static word embedding approaches. Despite there are lots of remark-
able results in SLU, they all require extensive labeled training data, which limits
their scalability to languages with little or no training data. As a result, the
concept of zero-shot cross-lingual SLU generalization has gained traction, where
models are trained using labeled data from high-resource languages and then
transferred to low-resource target languages without additional training data.
Lately, there have been encouraging results achieved by cross-lingual contextu-
alized embeddings such as mBERT [20]. Several studies have concentrated on
enhancing mBERT [16–19,30,31]. However, they both neglect to achieve the
mutual guidance between intent and slots. In our work, we tackle this issue by
applying intra and inter knowledge distillation.

2.2 Knowledge Distillation

Knowledge Distillation is a technique first proposed by [32]. The goal of knowl-
edge distillation is to transfer the knowledge from a large, complex model which
is known as the teacher to a smaller, simpler model which is known as the stu-
dent. This is achieved by training the student model to mimic the behavior of
the teacher model, using either the predicted outputs or intermediate representa-
tions of the teacher model. Existing knowledge distillation methods generally fall
into two categories. The first category focuses on using dark knowledge [33,34]
and the second category focuses on sharing information about the relationships
between the layers of the teacher model [35,36]. In our method, we apply knowl-
edge distillation to facilitate knowledge transfer between different languages and
achieve the mutual guidance between intent and slots.

3 Method

In this section, we first describe the background (Sect. 3.1) of zero-shot cross-
lingual SLU. Then we introduce the main architecture of our framework I2KD-
SLU. Finally we introduce the final training objective (Sect. 3.3). The overview
of our framework is illustrated in Fig. 1.

3.1 Background

Intent detection and slot filling are two subtasks of SLU. Given an input utter-
ance x = (x1, x2, . . . , xn), where n is the length of x. Intent detection is a
classification task which predicts the intent oI . Slot filling is a sequence labeling
task which maps each utterance x into a slot sequence oS =

(
oS1 , oS2 , . . . , oSn

)
.

Training a single model that can handle both tasks of intent detection and slot
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Fig. 1. The overview of our I2KD-SLU. Two models with the same architecture are
trained on the original utterance and code-switched utterance, respectively. Intra
knowledge distillation helps to transfer knowledge between different languages. Inter
knowledge distillation helps to achieve mutual guidance between intent and slots.

filling is a common practice as they are closely interconnected. Following previ-
ous work [37], the formalism is formulated as follows:

(oI ,oS) = f(x) (1)

where f is the trained model.
The zero-shot cross-lingual SLU task involves training an SLU model in a

source language and then adapting it directly to target languages without addi-
tional training. Specifically, given each instance xtgt in the target language, the
predicted intent and slot can be directly obtained by the SLU model f which is
trained on the source language:

(
oI
tgt,o

S
tgt

)
= f (xtgt) (2)

where tgt denotes the target language.

3.2 Main Architecture

Inspired by the success of pre-trained models [38–44], we use mBERT [20]
obtain the representation H of the utterance x by using mBERT [20] model:

H = (hCLS,h1, . . . ,hn,hSEP) (3)

where [CLS] denotes the special symbol for representing the whole sequence,
and [SEP] can be used for separating non-consecutive token sequences.
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For intent detection, we input the utterance representation hCLS to a classi-
fication layer to obtain the predicted intent:

oI = softmax
(
W IhCLS + bI

)
(4)

where W I and bI denote the trainable matrices.
For slot filling, we follow [45] to utilize the representation of the first sub-

token as the whole word representation and utilize the hidden state to predict
each slot in the utterance:

oS
t = softmax (W sht + bs) (5)

where ht denotes the representation of the first sub-token of word xt, W s and
bs denote the trainable matrices.

We employ the code-switching approach [17] to leverage bilingual dictionar-
ies [46] in generating multi-lingual code-switched utterance x′. We denote the
intent prediction and slot prediction of the original utterance x as oIo and oSo,
respectively. Similarly, we denote the intent prediction and slot prediction of the
code-switched utterance x′ as oIc and oSc, respectively. Note that oSo and oSc

both consist of all slot predictions in the corresponding utterance.
We apply intra knowledge distillation to promote knowledge transfer between

different languages, which includes two components. One is the Jensen-Shannon
Divergence (JSD) between the intent prediction of the original utterance and the
intent prediction of the code-switched utterance. The other is the JSD between
the slot prediction of the original utterance and the slot prediction of the code-
switched utterance. The final intra knowledge distillation loss Lintra is computed
as follows:

Lintra = JSD(oIo,oIc) + JSD(oSo,oSc) (6)
We also apply inter knowledge distillation to achieve mutual guidance

between intent and slots, which also includes two components. One is the JSD
between the intent prediction of the original utterance and the slot prediction of
the original utterance. The other is the JSD between the intent prediction of the
code-switched utterance and the slot prediction of the code-switched utterance.
The final inter knowledge distillation loss Linter is computed as follows:

Linter = JSD(oIo,Avg(oSo)) + JSD(oIc,Avg(oSc)) (7)

where Avg denotes averaging all slots prediction in the utterance.

3.3 Training Objective

Following previous work [37], the intent detection objective LI and the slot filling
objective LS are formulated as follows:

LI � −
nI∑

i=1

ŷI
i log

(
oI
i

)
(8)

LS � −
n∑

j=1

nS∑

i=1

ŷi,S
j log

(
oi,S
j

)
(9)
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where ŷI
i is the gold intent label, ŷi,S

j is the gold slot label for jth token, nI is
the number of intent labels, and nS is the number of slot labels.

The final training objective is as follow:

L = αLI + βLS + λLintra + γLinter (10)

where α, β, λ, γ are the hyper-parameters.

4 Experiments

4.1 Datasets and Metrics

All the experiments are conducted on MultiATIS++1 [16], which contains 18
intents and 84 slots. Human-translated data for six languages including Spanish
(es), German (de), Chinese (zh), Japanese (ja), Portuguese (pt), French (fr) are
added to Multilingual ATIS which has Hindi (hi) and Turkish (tr). The statistics
of MultiATIS++ dataset are shown in Table 1.

Table 1. Statistics of MultiATIS++

Language Utterances Intent types Slot types

train valid test

hi 1440 160 893 17 75

tr 578 60 715 17 71

others 4488 490 893 18 84

Following the previous works [18,19,37], we utilize accuracy to evaluate the
intent prediction performance, F1 score to evaluate the slot filling performance,
and overall accuracy to get evaluation of the overall performance of the model.
Overall accuracy represents whether all metrics including intent and slots in the
utterance are correctly predicted.

4.2 Implementation Details

In order to help the framework perform well, the model we utilized has
N = 12 attention heads and M = 12 transformer blocks. Following previ-
ous work [18], we select the best hyperparameters by searching a combina-
tion of batch size, learning rate with the following candidate set: learning rate
{2 × 10−7, 5 × 10−7, 1 × 10−6, 2 × 10−6, 5 × 10−6, 6 × 10−6, 5 × 10−5, 5 × 10−4}
and batch size {4, 8, 16, 32}. α, β, λ, γ are set to 0.9, 0.2, 0.7 and 0.3 in Eq. 10,
respectively. We use Adam optimizer [49] with β1 = 0.9, β2 = 0.98 to optimize
the parameters in our model. The learning rate will decrease according to the
1 https://github.com/amazon-science/multiatis.

https://github.com/amazon-science/multiatis
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Table 2. Experiment results on the MultiATIS++ dataset. The results with “♦”
denotes that they are taken from the corresponding published paper, results with † are
cited from [18], and results with ‡ are cited from [19]. ‘–’ denotes missing results from
the published work.

Intent (Acc) en de es fr hi ja pt tr zh AVG

mBERT† [20] 98.54 95.40 96.30 94.31 82.41 76.18 94.95 75.10 82.53 88.42

ZSJoint‡ [30] 98.54 90.48 93.28 94.51 77.15 76.59 94.62 73.29 84.55 87.00

Ensemble-Net♦ [31] 90.26 92.50 96.64 95.18 77.88 77.04 95.30 75.04 84.99 87.20

CoSDA† [17] 95.74 94.06 92.29 77.04 82.75 73.25 93.05 80.42 78.95 87.32

GL-CLEF♦ [18] 98.77 97.53 97.05 97.72 86.00 82.84 96.08 83.92 87.68 91.95

LAJ-MCL♦ [19] 98.77 98.10 98.10 98.77 84.54 81.86 97.09 85.45 89.03 92.41

I2KD-SLU 98.87 98.18 98.22 98.94 86.67 82.66 97.22 85.99 89.47 92.91

Slot (F1) en de es fr hi ja pt tr zh AVG

Ensemble-Net♦ [31] 85.05 82.75 77.56 76.19 14.14 9.44 74.00 45.63 37.29 55.78

mBERT† [20] 95.11 80.11 78.22 82.25 26.71 25.40 72.37 41.49 53.22 61.66

ZSJoint‡ [30] 95.20 74.79 76.52 74.25 52.73 70.10 72.56 29.66 66.91 68.08

CoSDA† [17] 92.29 81.37 76.94 79.36 64.06 66.62 75.05 48.77 77.32 73.47

GL-CLEF♦ [18] 95.39 86.30 85.22 84.31 70.34 73.12 81.83 65.85 77.61 80.00

LAJ-MCL♦ [19] 96.02 86.59 83.03 82.11 61.04 68.52 81.49 65.20 82.00 78.23

I2KD-SLU 96.18 86.74 85.50 84.28 73.06 74.14 82.54 68.16 83.14 81.53

Overall (Acc) en de es fr hi ja pt tr zh AVG

AR-S2S-PTR♦ [47] 86.83 34.00 40.72 17.22 7.45 10.04 33.38 – 23.74 –

IT-S2S-PTR♦ [48] 87.23 39.46 50.06 46.78 11.42 12.60 39.30 – 28.72 –

mBERT† [20] 87.12 52.69 52.02 37.29 4.92 7.11 43.49 4.33 18.58 36.29

ZSJoint‡ [30] 87.23 41.43 44.46 43.67 16.01 33.59 43.90 1.12 30.80 38.02

CoSDA† [17] 77.04 57.06 46.62 50.06 26.20 28.89 48.77 15.24 46.36 44.03

GL-CLEF♦ [18] 88.02 66.03 59.53 57.02 34.83 41.42 60.43 28.95 50.62 54.09

LAJ-MCL♦ [19] 89.81 67.75 59.13 57.56 23.29 29.34 61.93 28.95 54.76 52.50

I2KD-SLU 90.04 68.01 59.76 58.03 35.08 43.02 63.02 29.31 55.06 55.70

step number. For all the experiments, we select the model that performs the
best on the dev set in terms of overall accuracy and evaluate it on the test set.
All experiments are conducted at an environment older than Nvidia Tesla-A100.
The training process lasts several hours.

4.3 Baselines

We compare our model to the following baselines:

– mBERT: mBERT2 follows the same model architecture and training procedure
as BERT [20], but instead of training only on monolingual English data, it
is trained on the Wikipedia pages of 104 languages with a shared word piece
vocabulary, allowing the model to share embeddings across languages;

2 https://github.com/google-research/bert/blob/master/multilingual.md.

https://github.com/google-research/bert/blob/master/multilingual.md
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– AR-S2S-PTR: [47] proposes a unified sequence-to-sequence models with the
pointer generator network for cross-lingual SLU;

– IT-S2S-PTR: [48] proposes a non-autoregressive parser based on the insertion
transformer, which speeds up the decoding progress of cross-lingual SLU;

– Ensemble-Net: [31] proposes an effective zero-shot cross-lingual SLU model,
whose predictions are the majority voting results of 8 independent models,
each separately trained on a single source language, which achieves promising
performance on zero-shot cross-lingual SLU;

– ZSJoint: [30] proposes a zero-shot SLU model, which is trained on the en
training set and directly applied to the test sets of target languages.

– CoSDA: [17] proposes a data augmentation framework to generate multi-lingual
code-switching data to fine-tune mBERT, which encourages the model to align
representations from the source and multiple target languages. For a fair com-
parison, we use both the en training data and the code-switching data for
fine-tuning.

– GL-CLEF: [18] introduces a contrastive learning framework to explicitly align
representations across languages for zero-shot cross-lingual SLU.

– LAJ-MCL: [19] proposes a multi-level contrastive learning framework for zero-
shot cross-lingual SLU.

4.4 Main Results

The performance comparison of I2KD-SLU and baselines are shown in Table 2,
from which we have the following observations: (1) The models which applies
code-switching method including CoSDA, GL-CLEF, LAJ-MCL and I2KD-SLU
outperform the models which do not use this method. A possible reason is that
code-switching produces an implicit alignment, thereby aligning the representa-
tions to some degree. (2) Moreover, I2KD-SLU further improves the performance
and obtains a relative improvement of 3.0% over the previous best model in terms
of average overall accuracy. The reason is that our method enhance the mutual
guidance between intent and slots by intra and inter knowledge distillation, which
is helpful to further improve the performance of the model.

4.5 Model Analysis

Effect of Intra Knowledge Distillation Module. To demonstrate the effec-
tiveness of intra knowledge distillation module, we remove it and refer it to w/o
intra KD in Table 3. We can observe that after we remove the intra knowledge
distillation module, the intent accuracy of MixATIS++ dataset drops by 1.45%
and the slot F1 of MixATIS++ dataset drops by 3.39%. Moreover, the overall
accuracy also drops by 4.68%. These results demonstrate the importance of the
intra knowledge distillation in our model, which promotes knowledge transfer
between different languages.



I2KD-SLU 353

Table 3. Ablation results on the MultiATIS++ dataset.

Models Intent Slot Overall

I2KD-SLU 92.91 81.53 55.70

w/o intra KD 91.46(↓1.45) 78.14(↓3.39) 51.02(↓4.68)

w/o inter KD 91.53(↓0.38) 78.26(↓3.27) 51.72(↓3.98)

More Parameters 88.34(↓4.57) 74.84(↓6.69) 46.15(↓9.55)

Effect of Inter Knowledge Distillation Module. To demonstrate the effec-
tiveness of inter knowledge distillation, we remove it and refer it to w/o inter
KD and the results are shown in Table 3. After we remove the inter knowledge
distillation module, the intent accuracy of MixATIS++ dataset drops by 0.38%
and the slot F1 of MixATIS++ dataset drops by 3.27%. Moreover, the overall
accuracy also drops by 3.98%. We can clearly observe that inter knowledge dis-
tillation is beneficial in improving the performance of the model. By applying
inter knowledge distillation, the model can predict the intent and slots more
accurately, which achieves the mutual guidance between intent and slots.

Effect of More Parameters. Following previous works [27,50], to verify
whether the increased parameters of I2KD-SLU lead to the higher performance,
we add an additional LSTM layer after the last layer of mBERT and refer it
to More Parameters. The results in Table 3 show that our method outperforms
mBERT with more parameters in intent accuracy, slot F1 and overall accuracy by
4.57%, 6.69%, 9.55%, respectively. These results demonstrate that the improve-
ment of our method comes from the intra and inter knowledge distillation rather
than the involved parameters.

5 Case Study

To further demonstrate the superiority of our framework, we present one case in
Fig. 2. We can clearly observe that both GL-CLEF and I2KD-SLU predict the

Fig. 2. A case study of our framework and previous best model GL-CLEF. Intents and
slots in red are those that are predicted incorrectly. (Color figure online)
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slots and intent correctly in English. However, GL-CLEF predicts the slots and
intent incorrectly in German, while our model still predicts them correctly. The
reason for this is that our model achieve the mutual guidance between intent
and slots and promotes knowledge transfer at the same time.

6 Conclusions

In this paper, we propose a novel intra-inter knowledge distillation framework
I2KD-SLU for zero-shot cross-lingual spoken language understanding (SLU),
which achieves the mutual guidance between intent and slots and promotes the
knowledge transfer between different languages. Experiments on MultiATIS++
dataset show that I2KD-SLU achieve a new state-of-the-art performance. Model
analysis demonstrates the superiority of I2KD-SLU. In the future, we will explore
the effectiveness of our method in other zero-shot cross-lingual tasks to further
improve the performance.
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Abstract. Few-shot learning is a challenging task that aims to learn to
adapt to new tasks with only a few labeled samples. Meta-learning is
a promising approach to address this challenge, but the learned meta-
knowledge on training sets may not always be useful due to class imbal-
ance, task imbalance, and distribution imbalance. In this paper, we pro-
pose a novel few-shot learning method based on meta-transfer learn-
ing, which is called Meta-Transfer Task-Adaptive Meta-Learning (MT-
TAML). Meta-transfer learning is used to transfer the weight parameters
of a pre-trained deep neural network, which makes up for the deficiency of
using shallow networks as the feature extractor. To address the imbalance
problem in realistic few-shot learning scenarios, we introduce a learnable
parameter balance meta-knowledge for each task. Additionally, we pro-
pose a novel task training strategy that selects the difficult class in each
task and re-samples from it to form the difficult task, thereby improving
the model’s accuracy. Our experimental results show that MT-TAML
outperforms existing few-shot learning methods by 2–4%. Furthermore,
our ablation experiments confirm the effectiveness of the combination of
meta-transfer learning and learnable equilibrium parameters.

Keywords: meta-learning · few-shot learning · meta-transfer learning

1 Introduction

Few-shot learning has witnessed significant progress in recent years, with exist-
ing methods relying on meta-learning techniques [1–4]. During the meta-learning
stage, these methods form multiple tasks by sampling from base classes and
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learn meta-knowledge from source data in the form of good initial conditions,
embeddings, and optimization strategies. The resulting model is fine-tuned by
learning optimization strategies or feed-forward calculations to solve the target
few-shot learning problem without updating the network weights. One represen-
tative approach is model-agnostic meta-learning (MAML) [5], which finds the
optimal initialization state by learning to make the base learner adapt to new
tasks quickly. However, MAML often requires many similar meta-training tasks,
making it computationally expensive. Moreover, it models each task using a
low-complexity base learner, such as a shallow neural network, thus limiting the
ability to train models with more deep and powerful architectures.

Existing few-shot learning methods are based on ideal task settings, such
as n-way k-shot learning [6–8]. However, these settings assume consistent cat-
egories and instances in each learning task, and the same meta-knowledge can
be obtained from each task. In reality, the number of samples and categories
in different tasks varies greatly, resulting in task imbalance, unbalanced classi-
fication, and distribution imbalance. To address these challenges, we propose a
task-adaptive few-shot learning method based on meta-transfer learning, MT-
MAML, which combines the strengths of both meta-learning and transfer learn-
ing. MT-MAML leverages transfer learning by applying the weights of a pre-
trained deep neural network to other networks using shift and scaling trainable
operations. Meanwhile, meta-learning is employed to learn how to transfer the
weight parameters adaptively during few-shot learning, thereby reducing the
number of training parameters, mitigating overfitting, and accelerating model
convergence.

In summary, our paper presents three contributions:

• We incorporate three balance parameters into MAML to facilitate the proper
utilization of meta-knowledge acquired from the training sets.

• We adopt meta-transfer learning to enable the transfer of pre-trained deep
neural networks (DNNs). This involves lightweight operations of DNN neu-
rons, reducing the number of parameters and the risk of over-fitting. Fur-
thermore, the weights of the trained DNN remain constant during migration,
avoiding the problem of catastrophic forgetting.

• We conduct extensive experiments to validate the effectiveness of combining
meta-transfer learning with the newly introduced balance parameters.

2 Related Work

Meta-learning is a task-level learning method that differs from data augmen-
tation [9]. Ma et al. presented a decomposed meta-learning approach that
addressed the problem of few-shot NER by sequentially tackling few-shot span
detection and few-shot entity typing using meta-learning [10]. Nilesh et al. pro-
posed a method to learn a common set of features from multiple and related tasks
and transfer this knowledge to new and unseen tasks [11]. Iwata et al. shared
knowledge across supervised learning tasks using feature descriptions written in
natural language and improves the predictive performance on unseen tasks with
a limited number of labeled data by meta-learning from various tasks [12].
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Transfer learning involves the critical tasks of determining what to transfer
and how to transfer, as transfer methods vary depending on the source-target
domains and the transfer knowledge. In the context of deep models, one effective
approach involves the use of a pre-trained model for a new task, commonly known
as fine-tuning [13]. It has been demonstrated that models pre-trained on large
datasets generally produce superior generalization results compared with models
initialized randomly [14]. Another prevalent method is to employ a pre-trained
network as the backbone and augment it with advanced functions such as target
detection, recognition, and image segmentation.

MAML extracts features and quickly learns new knowledge from tasks while
avoiding overfitting enabling direct application to any learning problem and
model by training a model with initial parameters to achieve maximum per-
formance on a new task. However, the training of the MAML model does not
consider the distribution difference between unseen and training tasks, leading
to unbalanced classification, task imbalance, and imbalance of distribution.

3 Methodology

3.1 Model Training Phases

We propose a Meta-Transfer Task-Adaptive Meta-Learning model, which
addresses the problem of insufficient feature extraction caused by shallow net-
works in the MAML model. MT-TAML combines meta-transfer learning with
two lightweight parameters to transfer pre-trained deep network weights, while
maintaining the network’s weight during the transfer process to reduce training
parameters. To balance the use of meta-knowledge in tasks, the model adds learn-
able balance parameters to solve the imbalance problem of few-shot learning. The
overall training process is divided into the pre-training, meta-transfer learning,
and meta-test phases, as shown in Fig. 1. The pre-training set is Mini-Imagenet,
with the low-level network weights fixed as feature extractors. The MT-TAML
algorithm then learns Scaling and Shifting (SS) parameters and three balance
parameters of feature extractor neurons in the meta-transfer learning phase to
adapt quickly to various tasks in unbalanced few-shot environments. The model
improves its overall effectiveness by collecting samples with the lowest classifica-
tion accuracy as the difficult class, creating difficult tasks for training. Finally,
the model’s classification accuracy is evaluated by meta-testing.

Fig. 1. The whole phases of model training.
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DNN Training on Large-Scale Data. In this initial stage, similar to classical
pre-training, a meta-training dataset including 64 classes and 600 samples for
each class is used. Taking Mini-Imagenet as an example, a 64-class classifier
is trained on this dataset. The model training involves randomly initializing a
feature extractor Θ and a classifier θ, followed by optimization using gradient
descent as shown below.

[Θ; θ] = [Θ; θ] − α1∇LD([Θ; θ]) (1)

where LD is loss function, D is the dataSet, LD is as follows:

LD([Θ; θ]) =
1

|D|
∑ (

l
(
f[Θ;θ]

)
(x), y

)
(2)

At this stage, the feature extractor is learned, which will be frozen for the
next meta-training and meta-testing phases. The learned classifier is discarded
because the following small sample task contains different classification targets.

Meta-transfer Learning. Following the pre-training phase, the next stage is
meta-transfer learning, where a multitude of tasks are employed to learn the opti-
mal scaling and shifting (SS) parameters for the pre-trained DNN parameters.
The gradient optimization equation for the basic learner is given as follows.

θi = θ − α2∇LT (support)
(
[Θ; θ], ΦS{1,2}

)
i = 1, . . . n (3)

where n represents the number of tasks. The test loss is as follows.

ΦSi
= ΦSi − μ∇φSi

LT (query)
(
[Θ, θi] , ΦS(1,2)

)
i = 1, 2 (4)

where S1 is the scaling parameter and is generally initialized to 1, S2 is the
translation parameter and is generally initialized to 0.

The SS operation can be defined as follows.

SS
(
X;W, b;ΦS{1,2}

)
= (W ◦ ΦS1) + (b + ΦS2) (5)

where X is the input, W is weight and b is bias.

3.2 Meta-Transfer Task-Adaptive Meta-Learning

To address class imbalance, we introduce a parameter ωτ to adjust the learning
rate of the base learner based on the size of different classes. Specifically, we
utilize a non-negative activation function g(·) = softplus(·) and a set of scalar
g (ωτ

1 ) , g (ωτ
2 ) , . . . g (ωτ

N ) to adjust the gradient descent loss coefficient for each
task step, with the goal of improving the training effect of tail classes.

To address task imbalance, we employ a clipping function f(·), which is
max(0,min(·, 1)) and a learning rate coefficient f (γτ ) to adjust the learning
rate. The idea is to use a higher learning rate when learning a large task and a
lower learning rate when learning a small task.
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Finally, to address the imbalance of distribution, we introduce a task-
dependent variable zτ and use g (zτ ) as the coefficient of initialization θ. We aim
to use less meta-knowledge when there is a significant difference between the dis-
tribution of the training and test set. Conversely, we use more meta-knowledge
when the distribution is similar.

Combined with the meta-transfer learning model, the training process can
be defined as follows:

(Θ, θ0) = g (zτ ) (Θ, θ) (6)

(Θ, θi) = (Θ, θ0) − f (γτ )α ◦
N∑

n=1

g (ωτ
n)∇(Θ,θ0)L

([
Θ, θ(Θ,θ0);ΦS[1,2]

])
(7)

(Θ, θ) = (Θ, θi) − μ
∑

Ti∼p(T )

LTi

(
f(Θ,θ)

)
(8)

3.3 Inference Network

We leverage a framework to model zτ since it needs to prevent the posterior of
zτ from utilizing the meta-knowledge θ when managing distribution imbalance.
Moreover, we allow three balance variables to share the same inference network
to minimize the computational cost.

Firstly, we define Xτ is {xτ
n}Nτ

n=1, Y τ is {yτ
n}Nτ

n=1 for training, X̃τ is {x̃τ
n}Nτ

n=1,
Ỹ τ is {ỹτ

n}Nτ

n=1 for testing. For the sake of convenience, φτ represent the Integra-
tion variables of ωτ , γτ , zτ .

p(Y τ , Ỹ τ , φτ | Xτ , X̃τ ;Φ, θ) = p(φτ )
Nτ∏

n=1

p (yτ
n | xτ

n, φτ ;Φ, θ)
Mτ∏

m=1

p
(
ỹτ

m | x̃τ
m, φτ ;Φ, θ

) (9)

However, there is a limitation when using summation pooled DeepSets to
describe distributions. If we have a set containing multiple copies of a single
instance, its pooled representation will change with the number of copies, even
though all sets should be the same from their distribution point of view. Averag-
ing pooling can solve this problem, but does not recognize the quantities in each
set. That is important for the imbalance problem. To overcome this, higher-order
statistics such as inter-sample variance, bias, and kurtosis are used in addition
to the sample mean. Based on the idea that sample variance can capture unbal-
anced information about tasks and bias can capture unbalanced information
about categories, the proposed encoder concatenates these statistics.

sn = StatisticsPooling
(
{NN1(x)}x∈Xτ

n

)
, (10)

vτ = StatisticsPooling
(
NN2 (sn)

N
n=1

)
(11)
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Where n = 1, ...N is the number of categories in the task, and NN1 and
NN2 are parameterized neural networks. Vectors are the final encoded vectors
of each task in the data set, and the equilibrium variables are generated through
additional affine transformation.

The deep neural network is used to replace the original 4-layer 3 × 3 con-
volution layer, and the complex deep neural network is used to make up for
the deficiency of feature extraction by the shallow network. In the process of
meta-transfer, the parameters of the deep neural network are frozen, and the
network parameters that need training are greatly reduced by learning only SS
parameters. It effectively prevents over-fitting and speeds up model training.

3.4 Difficult Task-Mining

Online collection and classification of poor samples present challenging tasks that
can facilitate faster and more effective learning. Traditional meta-batch process-
ing involves randomly sampled tasks, which results in random difficulty levels. In
Algorithm 1, samples with low accuracy in each task are intentionally selected,
and their data is recombined to make the task more challenging. The objective is
to improve the accuracy of the meta-learner as it learns more challenging tasks.

Each task T consists of two components, namely T(Support) and T(Query),
which correspond to support and query sets, respectively. These sets are utilized
to update the basic learner’s parameters and conduct tests. The basic learner
is optimized by using the loss function LT (support), while the SS parameters are
optimized by using the last loss function LT (Query). The recognition accuracy
of each class can be obtained using LT (Query) of each task, and the class of the
sample with the lowest classification accuracy is considered the difficulty class
for the current task. After obtaining all the failed classes from the k tasks of
the current meta-batch processing, the model training is strengthened by re-
sampling from the set of difficult classes to form difficult tasks.

Algorithm 1. MT-TAML

Require: Task distribution p(T ) and based on the dataset D, learning rate α1,
α2, β, μ

Ensure: Feature extractor Θ, classifier θ, SS parameters ΦS(1,2] , balance param-
eters ω, γ, z

1: Randomly initialize Θ and θ
2: for samples in D do
3: Evaluate LD([Θ; θ]) by Eq. (2)
4: Optimize Θ and θ by Eq. (1)
5: end for
6: Initialize ΦS1 by ones, ΦS2 by zeros
7: Freeze Θ and reset θ for few-shot tasks
8: Initialize (Θ, θ0) by Eq. (6)
9: for meta datasets do

10: Random sample tasksT from p(T)
11: while not done do
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12: Sample task Ti ∈ {T};
13: Optimize ΦS(1,2] , (Θ, θi) and ω, γ, z;
14: get the return class-hard then add it to {hard}
15: end while
16: Sample hard tasks

{
T hard

}
from ⊆ p(T | {hard})

17: while not done do
18: Sample task T hard

j ∈
{
T hard

}

19: Optimize ΦS(1,2] ,(Θ, θi) and ω, γ, z;
20: end while
21: empty {hard}
22: end for

4 Experiments

4.1 Dataset and Network Selection

The following datasets are used in the experiments: Omniglot [15], Mnist [16],
Mini-Imagenet [17] and Tiered-Imagenet. Meta-DataSet [18] is a collection of
datasets, including Omniglot, Describable Textures [19], Quick Draw [20], Fungi
[21], and MSCOCO [22], chosen for their accessibility and variety of visual con-
cepts.

RESNET-12 is used as the feature extractor to address the issue of using
a shallow network for feature extraction in MAML. This approach enables the
pre-training of a parameter on a large dataset. The output feature map is then
compressed into feature embedding using an average pooling layer after the four
residual blocks.

4.2 Results and Analysis

Two sets of comparative experiments are conducted to verify the different dis-
tribution of training and test sets.

Unbalanced Omniglot: We generate unbalanced few-shot tasks based on the
Omniglot dataset. Table 1 shows that the prototype network has the best exper-
imental performance under the same distribution of the meta-training set and
meta-test set. This is because the Omniglot data set is relatively small, and
the performance of advanced algorithms has reached its optimal level. However,
MT-TAML has shown improvement compared with the other four baseline algo-
rithms, and its performance difference with the prototype network is negligible.
In cases where the meta-training set and the meta-test set do not follow the same
distribution, MT-TAML performs the best, which improves the performance by
2% compared with the prototype network of the baseline algorithm.

Tiered-ImageNet: In a similar way, the experiment is conducted using the
Tiered-ImageNet dataset. After meta-training, the model’s performance is eval-
uated on Tiered-ImageNet and Mini-ImageNet datasets as test sets. The Mini-
ImageNet dataset is also used to simulate an uneven distribution scenario. We
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Table 1. Training over Unbalanced Omniglot

Meta Test sets Omniglot Mnist
Prototypical-Net(2017) 98.37±0.05 82.16± 0.19
MAML(2017) 93.38± 0.28 79.63± 0.33
Meta-SGD(2017) 94.27± 0.24 81.00± 0.31
MT-Net(2018) 95.41± 0.36 81.89± 0.54
Meta-baseline(2020) 95.72± 0.20 81.90± 0.44
Ours(MT-TAML) 97.29± 0.31 84.39±0.48

conduct experiments on Tiered-ImageNet and Mini-Imagenet, two more complex
datasets. As shown in Table 2, due to the larger size of the datasets, the training
and testing are divided into more detailed subsets, including both distributed
and unbalanced distribution scenarios. The results show that while all algorithms
experience a decline in accuracy in these more complex scenarios, MT-TAML
outperforms the baseline algorithms, especially in the unbalanced distribution
scenario. Compared with the most accurate baseline algorithm, meta-baseline,
MT-TAML achieves 3% improvement.

Table 2. Training over Unbalanced Tiered-ImageNet.

Meta Test sets Tiered-ImageNet Mini-ImageNet
Prototypical-Net(2017) 65.25± 0.74 52.67± 0.38
MAML(2017) 66.70± 0.40 51.61± 0.36
Meta-SGD(2017) 68.16± 0.92 56.57± 0.37
MT-Net(2018) 69.84± 0.79 55.36± 0.38
Meta-baseline(2020) 68.32± 0.34 57.32± 0.46
Ours(MT-TAML) 71.42±0.78 60.67±0.49

Furthermore, we also test the model on the Meta-DataSet, a new few-shot
dataset closer to real-world scenarios and used as a new few-shot learning bench-
mark dataset. During the testing process, the model is trained on 10-way clas-
sification problems with several samples. The first eight datasets of the Meta-
DataSet are used in the meta-training stage, and the last two datasets, Traffic
Signs and MSCOCO, are used as datasets in the meta-test stage to simulate
distribution imbalance.

The experimental results presented in Table 3 demonstrate the effectiveness
of MT-TAML in handling imbalance in few-shot learning scenarios. MT-TAML
outperforms the baseline algorithms in both the balanced and unbalanced dis-
tribution scenarios, with significant improvements observed in the latter. Specif-



Imbalanced Few-Shot Learning Based on Meta-transfer Learning 365

ically, in the Unbalanced Omniglot and Tiered-ImageNet datasets, MT-TAML
shows superior classification performance. Furthermore, in the Meta-DataSet
evaluation, the algorithm’s performance is better when the meta-training set
and meta-test set are balanced, with an improvement of 1.5% and 4% respec-
tively. This suggests that MT-TAML’s consideration of the real situations of
task imbalance and its adjustment of balance tasks can effectively improve the
performance of few-shot learning.

Table 3. Comparison over Meta-DataSet.

Meta Test sets Meta-DataSet Traffic-Signs MSCOCO
MAML 69.35± 0.29 48.69± 0.42 41.35± 0.56
Prototypical-Net 71.78± 0.35 52.35± 0.38 48.26± 0.60
Meta-SGD 70.26± 0.45 53.26± 0.55 50.31± 0.49
Meta-baseline 71.36± 0.65 54.37± 0.46 52.26± 0.64
Ours 73.25±0.58 58.78±0.52 56.32±0.68

4.3 Ablation Experiments

The effectiveness of integrating meta-transfer learning with the inclusion of learn-
able equilibrium parameters is confirmed through ablation experiments. In the
case of Mini-Imagenet, a 5-way task is employed to carry out the ablation exper-
iment in conjunction with meta-transfer learning. For the Omniglot dataset, a
10-way task is utilized to perform the ablation experiment involving three equi-
librium variables.

Effectiveness of Combining Meta-Transfer Learning and Hard-Task
Mining. Meta-transfer learning is used to make up for the disadvantage of
MAML using 4Conv to extract features and reduce the parameters of a model
update to improve the model convergence speed. The results in Table 4 show that
learning a pretrained deep network through meta-transfer can effectively improve
the experimental accuracy. Hard task mining positively improves experimental
accuracy and can be applied to other models as a general strategy.

g(ωτ ) Used to Handle Class Imbalance. g(ωτ ) adjusts the proportion of
each kind of gradient descent, as shown in Table 5. The traditional MAML model
works well when each class contains only one sample with the equilibrium param-
eter added. After the sample size of each class increases to 5 and 15, it can be
found that the MT-TAML model is superior to the baseline algorithms. Figure 2
further demonstrates the effectiveness of the g(ωτ ) equilibrium variable. When
there are more samples in a certain class, the value of g(ωτ ) is reduced to suppress
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Table 4. Meta transfer learning Ablation Experiment (pre refers to pre-training).

Model Feature abstraction 5-shot
MAML 4Conv 63.12
MAML+hard 4Conv 65.26
MAML ResNet12(Pre) 68.21
MT-TAML(Ours) ResNet12(Pre) 71.32
MT-TAML+hard ResNet12(Pre) 73.34

Table 5. Ablation experiment.

Model Unbalanced classes task imbalance
1-shot 5-shot 15-shot 1-shot 5-shot 15-shot

MAML 97.87 95.24 85.21 92.73 96.20 95.62
Meta+SGD 97.35 95.61 89.25 92.52 96.76 98.24
Meta-baseline 97.76 95.88 91.02 93.51 97.35 98.38
Ours 97.56 96.79 91.35 94.52 97.86 98.74

the empirical loss of that class, in order to balance learning for each category
and effectively solve the long-tail problem.

f(γτ ) Used to Handle Task Imbalance. f(γτ ) is the decay factor of each
task’s internal gradient descent learning rate. It can be seen from Table 5 that
the experimental results after adding parameters are better than the baseline
method. In addition, the accuracy of 1-shot is higher than 5-shot and 15-shot,
indicating that relying more on meta clearance in small tasks is useful.

Figure 3 shows that it increases with the increase of the task, which ensures
that the distance to the initial parameter is as close as possible for small tasks,
and more meta-knowledge can be used.

Fig. 2. g(wτ ) varies with different sam-
ples under each class

Fig. 3. f(γτ ) varies with the size of the
task
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g(zτ ) Used to Handle Distribution Imbalance. g(zτ ) balance parameter
plays a role in the initialization of model parameters and determines how much
meta-knowledge can be used. It can be seen from Table 6 that the problem
of imbalance of distribution can be effectively solved by adding the balance
parameter.

Table 6. Alation experiment on imbalanced distribution.

Model(k = 5) Ominglot Mnist
MAML 98.24 89.05
Meta+SGD 98.29 90.32
Meta-baseline 98.52 90.96
Ours 98.94 92.07

5 Conclusion

In this paper, we introduced a task-adaptive meta-learning approach, named
MT-TAML, which addresses the challenge of using shallow networks for feature
extraction in few-shot learning, by combining the strengths of meta-learning and
transfer learning. We significantly reduced the training parameters and acceler-
ate network convergence, while also accounting for real-life imbalance scenarios
where there may exist tasks with unbalanced class distributions. MT-TAML
encodes the data of each task into a vector, which is then used as the initial
parameter. We use vector task attenuation and vector base classes generated
weighting mask to balance the model’s variables and infer the posterior distri-
bution of the variables using the Bayesian framework. In addition, we introduced
a training strategy for difficult tasks by identifying the least accurate samples of
each class under the query set and using them to strengthen the training of the
model. This strategy enables the model to “grow in difficulty” and better handle
challenging few-shot learning scenarios. Our experimental results demonstrate
that MT-TAML outperforms existing models in unbalanced few-shot learning
tasks. We also perform an ablation study to validate the effectiveness.
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Abstract. Flood is one of the prominent climate-induced disasters
(CIDs), which causes enormous damage, financial losses, and casualties
every year across theworld.The intensities anddamages of floods are prone
to change due to future climate scenarios. In order to analyze the impact
of climate change on flood patterns in the Maharashtra state of India, this
research employs machine learning models to analyze historical data and
project future floods. In this work, we have defined and used 20 weather
parameters based on temperature and precipitation records collected from
the India Meteorological Department (IMD) and then to simulate and pre-
dict the floods inMaharashtra state. Thenweuse these parameters to build
the machine learning models such as Artificial Neural Network (ANN),
Light Gradient-Boosting Machines (LightGBM), and Least Squares Sup-
port Vector Machines (LSSVM) for estimating the approximate number of
occurrences of floods till 2100 on different shared socioeconomic pathways
(SSPs) scenarios. Based on our simulation experiments for data analytics,
we found that LightGBM performed the best in the validation phase giv-
ing an F1-score of 0.895 and an AUC-ROC score of 0.863. Furthermore,
we also used LightGBM for simulations of future scenarios in Maharashtra
state. This work introduces a novel approach to predict climate-induced
disasters (CIDs), floods in this case, by utilizing data from past disasters,
global climate models, and climate change measurements. We believe that
the proposedmodel canbeutilized to analyse the impacts of climate change
on floods in Maharashtra state and subsequently help the local government
bodies and disaster management authorities to plan and prepare accord-
ingly.

Keywords: artificial neural network · climate change · data
analytics · disaster risk · flood · machine learning

1 Introduction

Climate change-related disasters including droughts, floods and other extreme
events, significantly impact the communities and ecosystems. These impacts can
range from property damage and economic losses to adverse effects on natural
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ecosystems and human health, affecting the vulnerable and developed communi-
ties. Factors such as rising sea levels, higher temperatures and changing precipi-
tation patterns contribute to the increased frequency and severity of these disas-
ters. According to the Sixth Assessment Report by the Working Group II of the
Intergovernmental Panel on Climate Change (IPCC) [10] have been highlighted
human-induced impacts of climate change that has led to the emergence of new
extreme events in nature. The IPCC’s Synthesis Report [11] warns that in the next
few years, the Maharashtra state in India, which is our area of study, will likely face
severe droughts and massive flooding due to the predicted temperature increase.

The main contributions of this work are as follows:

◦ A dataset is proposed that would serve as a repository for all the previous
flood locations in Maharashtra with dates from 2001 to 2021.
◦ The parameters are defined and used that would work for daily data based
on parameters outlined by the Expert Team on Climate Change Detection
and Indices (ETCCDI) climate indices [5].
◦ Conditional Tabular Generative Adversarial Network (CTGAN) is applied
to remove the data imbalance between flooding and non-flooding records.
◦ The performances of ANN, LSSVM, and LightGBM classifying models are
compared and analyzed to see which models give the best results when trained
on the proposed data.
◦ The proposed model is simulated on all four SSPs scenarios using the Cou-
pled Model Intercomparison Project Phase 6 (CMIP6) dataset to assess the
impact of floods in Maharashtra from 2022 to 2100.

The remainder of the paper is organised as follows. In Sect. 2, a review of recent
related work is discussed. Section 3 presents the motivation and problem statement
and Sect. 4 provides the details about the datasets used. The architecture of the
proposed model is discussed in Sect. 5 and the analysis of the simulation results is
presented in Sect. 6. Finally, the paper is concluded in Sect. 7.

2 Literature Survey

Various machine learning models have been applied in recent years to predict
and analyze flooding areas and damage. Haggag et al. [9] applied deep neural
networks with parameters taken from ETCCDI [5] to create a general model to
predict CIDs and then applied for Canada to identify future floods. They got
good results with very less miss-classification error value. Islam et al. [12] applied
ANN, Random Forests (RF) and Support Vector Machine (SVM) to generate
the flood susceptibility maps at the Teesta River basin of Bangladesh. In that
case, the Area Under the Curve (AUC) of the Receiver Operating Character-
istic (ROC) value was above 0.80 for all the tested models. In their analysis,
RF performed the best, closely followed by ANN. Aydin et al. [2] performed
a comparative study of gradient boosting techniques like LightGBM and Cat-
Boost along with the other techniques, which includes Gradient Boost (GB),
eXtreme Gradient Boosting (XGBoost), RF and Adaptive Boosting (AdaBoost).
In their analysis, LightGBM and AdaBoost provides the best results for flood
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prediction. Anaraki et al. [1] used the Least Squares Support Vector Machine
(LSSVM), ANN, k-Nearest Neighbour (kNN) for predicting the rainfall discharge
in the future till 2100 using the Coupled Model Intercomparison Project Phase
5 (CMIP5) simulation dataset. They found LSSVM and ANN performing fairly
well. Ganguly et al. [8] used Linear Regression (LR), ANN, and RF for the pre-
diction and analysis of flood-affected households. Models which are mostly used
are gradient boosting techniques [13,16,17], SVMs [14,24], ANNs [3,7,19,22].
Park et al. [21] used under-sampling to balance out the non-flood and flood
datasets as they worked on monthly datasets. However, these are not useful for
our work due to extreme imbalance between non-flooding and flooding records.

3 Motivation and Problem Statement

3.1 Motivation

Maharashtra in India is a major agricultural state, and such climate changes
could have massive implications for food security and crops. According to the
National Disaster Management Authority (NDMA) report, the floods of 2005 in
Maharashtra affected more than 3 million people and caused an estimated loss of
INR 5000 crore. Moreover, recent floods in July 2021 affected over 200,000 people
and caused an estimated loss of Indian Rupees 1000 crore. It can be observed
from Fig. 1(a) and Fig. 1(b) that the districts lying in the Konkan region of
Maharashtra face many flood events. Although the districts in the rain shadow
region of Maharashtra state face droughts regularly, they are also prone to floods
in case of untimely rains. Big cities like Pune, Nagpur, Solapur, Mumbai, and
other main cities also face flooding due to urbanization. This motivates us to
develop a model that can be used to analyse the impacts of climate change on
floods in Maharashtra. This will be helpful for disaster managers to make plans
for mitigation and prevention measures accordingly.

3.2 Problem Statement

In this paper, we study the impact of climate change on flood frequency in the
Maharashtra state of India. Our goal is to determine whether a flood will occur

(a) (b)

Fig. 1. Map of Maharashtra (a) with all districts. (b) flood frequency in last 20 years.
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or not under different CMIP6 SSP scenarios from the years 2022 to 2100. We
have formulated this as a binary classification problem in which the climate
change variables are used as inputs and 0 or 1 as output; where, 0 indicates a
non-flood event and 1 indicates a flood event.

4 Description of Datasets

In this section, we discuss the three datasets used for this work.

4.1 Historical Precipitation and Temperature Dataset

A historical dataset of daily precipitation, minimum temperature, and maxi-
mum temperature for the years 2001 to 2021 is created for all 35 districts of
Maharashtra using the India Meteorological Department (IMD) binary gridded
data [20]. The data is collected based on the latitude and longitude of district
centers, representing urbanized areas prone to flooding.

4.2 Flood Inventory

As per our knowledge, no previous work has documented floods started exactly
on which date and their duration for the district of Maharashtra. A flood reposi-
tory proposed by Saharia et al. [23] provides the rough estimates of flood events
in India from 2001 to 2021 but it lacks proper location details. Therefore, we
create a custom flood dataset using the dataset of the work [23] along with vari-
ous internationally and nationally acknowledged media outlets like FloodList [4].
This dataset comprises of all flood events with their location, date, and duration
from 2001 to 2021 for each district of Maharashtra.

4.3 CMIP6 Dataset

The World Climate Research Programme’s (WCRP) phase six CMIP6 [6] dataset
is used for the analyses of future flood occurrences. CMIP6 has simulations
from the latest state-of-the-art climate models. We used bias-corrected climate
projections from CMIP6 for South Asia [18], which has better performances.
There are 13 models for every country in South Asia, each with five scenarios
(SSP126, SSP245, SSP370, SSP585, and historical), having daily precipitation
and minimum temperature and maximum temperature from 2015 to 2100. We
choose the Beijing Climate Center Climate System Model Version 2 medium
resolution (BCC-CSM2-MR) model as it is one of the best-performing models
for India, validated by Konda et al. [15] having normalized root mean square
error (NRMSE) less than 0.7 and Taylor skill score greater than 0.75.

5 Methodology

This section presents a detailed description of the proposed approach to predict
the impact of climate change on floods in Maharashtra. Figure 2 provides the
overview of the proposed work.
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Fig. 2. Overview of the Proposed Methodology.

5.1 Parameter Formulation

ETCCDI [5] has defined 27 core indices developed from temperature and precip-
itation data. Indices barring RRi, TNi, TXi, CDD and CWD are formulated on
aggregation over months and years. As Maharashtra faces heavy rainfall, using
monthly values of precipitation and temperature may lead to missing a prob-
able flood event during model training due to their aggregation over a month.
Therefore, after trying and testing with them, these indices are converted into
a suitable format for our usage keeping their true meaning intact as much as
possible. In this work, we have defined and used 20 parameters out of those 27
core indices after finding their correlation with days when flooding occurred. All
the parameters with their definitions are shown in Table 1.

5.2 Training Dataset Details

Datasets discussed in Sect. 4 are used to create the final dataset comprising 7670
records for each of the 35 districts in Maharashtra, covering over the years 2001
to 2021. We excluded date column as we are converting the time-series data into
stationary form by building these parameters as mentioned in Sect. 5.1. Further,
the dataset is split into two subsets with 70% of the data used as the training
set and the remaining 30% used as the testing set.

5.3 Data Preprocessing

The main issue with the training dataset is that the output is imbalanced
between 0 s and 1 s. For example, in the Mumbai district of Maharashtra, which
is prone to severe flooding, out of 7670, there are only 46 records marked as 1s.
These imbalances can be observed in Fig. 3(a). To tackle this problem, we use
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Table 1. List of parameters used for training of our model.

(a) (b) (c) (d)

Fig. 3. Training dataset before and after application of CTGAN.

Conditional Tabular Generative Adversarial Networks (CTGAN) proposed by
Xu et al. [25]. This algorithm consists of a generator neural network that learns
to create synthetic data similar to real data and a discriminator neural network
that learns to distinguish between real and synthetic data. We use this synthetic
data and fuse it with real data to create a mixed synthetic dataset.
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Three types of mixed synthetic datasets are created as follows: with a 50–50
split having 50% of 0 s and 50% of 1 s (Fig. 3(b)), with a 65–35% split which has
65% of 0 s and 35% of 1 (Fig. 3(c)) and with 80–20 split with 80% of 0 s and 20%
of 1 s (Fig. 3(d)). ANN, LightGBM, and LSSVM models are trained on these
three splits after performing hyper-parameter optimization to check which split
works best for all the districts.

5.4 Hyperparameter Optimization

◦ ANN: After testing several hidden layers, the best-performing neural
network for binary classification has five layers: one input, three hidden, and
one output layers. The input layer has 512 neurons and the hidden layers has
128, 64 and 8 neurons, respectively. The activation function for the input and
hidden layers is “relu”, and for the output layer it is “sigmoid.”
◦ LightGBM: In LightGBM, different permutations and combinations
are tried for the “learning rate”, which affects on normalization weights of
dropped trees and the “max depth” of each trained tree. For all the districts,
the best learning parameter lie between 0.01 to 0.3 with “max depth” of at
most 6.
◦ LSSVM: The LSSVM model has two hyperparameters: C and epsilon. The
regularisation parameter C balances training and testing errors, while epsilon
determines the generalization capacity of the model for unknown data. The
best C value that showed top results for all districts is between1 to 2 and the
epsilon value always lie between around 0.2 to 0.4.

5.5 Evaluation Metrics

◦ F1-score: It is the harmonic mean of precision and recall, and it can be

expressed as F1-score = 2 · precision-recall
precision+recall

, where precision is the fraction

of true positive predictions out of all positive predictions and recall is the
fraction of true positive predictions out of all actual positive instances.
◦ Area Under the Curve- Receiver Operating Characteristic (AUC-
ROC): AUC-ROC curve is a plot of the True Positive Rate (TPR) against
the False Positive Rate (FPR) at various threshold settings. The AUC-ROC
score represents the area under this curve that ranges from 0 to 1, with higher
values indicating better classification performance.

6 Results

6.1 Test Results

The testing phase involved reserving 30% of the data and each model is evaluated
across all districts in Maharashtra.
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Table 2. Performance of the models over Precision and Recall values.

S. No. District Precision Recall

ANN LSSVM LightGBM ANN LSSVM LightGBM

1 Ahmednagar 1.00 0.90 1.00 0.75 1.00 0.75

2 Akola 1.00 1.00 1.00 0.67 1.00 0.83

3 Amravati 0.64 0.75 1.00 0.75 0.75 0.75

4 Aurangabad 0.67 0.83 1.00 0.99 1.00 1.00

5 Beed 0.62 0.83 0.75 0.75 1.00 0.75

6 Bhandara 1.00 0.75 1.00 0.75 0.75 0.75

7 Buldhana 0.70 1.00 0.98 0.75 0.75 0.77

8 Chandrapur 0.70 0.92 1.00 0.65 0.81 0.88

9 Dhule 0.62 1.00 1.00 0.98 1.00 1.00

10 Gadchiroli 0.69 0.67 0.92 0.75 0.75 0.92

11 Gondia 0.83 0.70 1.00 0.75 0.90 0.70

12 Hingoli 0.69 0.81 1.00 0.80 0.77 0.80

13 Jalgaon 0.83 0.83 0.87 0.75 0.75 0.87

14 Jalna 0.83 1.00 1.00 0.83 0.83 1.00

15 Kolhapur 0.70 0.83 0.87 0.75 0.75 0.88

16 Latur 0.60 1.00 1.00 0.74 0.75 0.75

17 Mumbai 0.66 0.93 0.94 0.74 0.67 0.69

18 Nagpur 0.75 1.00 1.00 1.00 0.75 1.00

19 Nanded 0.98 0.87 0.90 1.00 0.87 0.88

20 Nandurbar 0.75 0.83 1.00 0.67 0.92 0.83

21 Nashik 0.83 0.92 1.00 0.79 0.86 0.86

22 Osmanabad 0.67 0.83 1.00 0.75 1.00 1.00

23 Palghar 0.82 0.82 0.93 0.90 0.72 0.87

24 Parbhani 1.00 0.88 1.00 0.83 0.99 1.00

25 Pune 0.71 0.86 0.81 0.73 0.78 0.85

26 Raigad 0.81 0.87 0.84 0.74 0.64 0.80

27 Ratnagiri 0.71 0.77 0.78 0.71 0.98 0.86

28 Sangli 0.62 0.67 1.00 0.75 0.75 1.00

29 Satara 0.75 0.80 1.00 0.83 0.98 1.00

30 Sindhudurg 0.71 0.87 0.70 0.80 0.83 0.70

31 Solapur 1.00 0.83 1.00 0.99 1.00 1.00

32 Thane 0.82 0.83 0.93 0.90 0.72 0.87

33 Wardha 0.75 1.00 1.00 0.75 1.00 1.00

34 Washim 0.65 0.64 0.99 0.87 0.75 0.76

35 Yavatmal 0.70 0.71 1.00 0.69 0.80 1.00

Mean 0.766 0.850 0.949 0.796 0.845 0.868
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Table 3. Performance of models over evaluation metrics F1-score and AUC-ROC score.

S. No. District F1-score AUC-ROC score

ANN LSSVM LightGBM ANN LSSVM LightGBM

1 Ahmednagar 0.83 0.94 0.833 0.750 0.999 0.750

2 Akola 0.75 1.00 0.9 0.666 1.000 0.833

3 Amravati 0.68 0.75 0.83 0.625 0.795 0.750

4 Aurangabad 0.75 0.95 0.75 0.999 0.999 1.000

5 Beed 0.67 0.90 1.00 0.749 0.999 0.749

6 Bhandara 0.82 0.75 0.83 0.749 0.750 0.750

7 Buldhana 0.68 0.83 0.83 0.749 0.750 0.750

8 Chandrapur 0.72 0.86 0.88 0.625 0.812 0.813

9 Dhule 0.67 1.00 1.00 1.000 1.000 1.000

10 Gadchiroli 0.71 0.70 0.95 0.748 0.749 0.916

11 Gondia 0.75 0.75 0.79 0.699 0.699 0.700

12 Hingoli 0.73 0.77 0.87 0.799 0.899 0.800

13 Jalgaon 0.79 0.79 0.87 0.749 0.749 0.874

14 Jalna 0.83 0.90 1.00 0.666 0.833 1.000

15 Kolhapur 0.72 0.79 0.87 0.747 0.749 0.875

16 Latur 0.67 0.8 0.83 0.499 0.750 0.750

17 Mumbai 0.70 0.74 0.77 0.610 0.666 0.694

18 Nagpur 0.83 0.83 1.00 0.750 0.750 1.000

19 Nanded 0.93 0.87 0.93 0.875 0.874 0.875

20 Nandurbar 0.70 0.88 0.90 0.665 0.853 0.833

21 Nashik 0.81 0.83 0.92 0.714 0.857 0.857

22 Osmanabad 0.83 0.90 1.00 0.749 0.999 1.000

23 Palghar 0.86 0.77 0.90 0.721 0.721 0.888

24 Parbhani 0.90 0.93 1.00 0.833 0.999 1.000

25 Pune 0.72 0.81 0.83 0.721 0.777 0.778

26 Raigad 0.77 0.70 0.82 0.906 0.636 0.772

27 Ratnagiri 0.71 0.85 0.81 0.784 0.998 0.856

28 Sangli 0.67 0.70 1.00 0.749 0.749 1.000

29 Satara 0.79 0.87 1.00 0.833 0.999 1.000

30 Sindhudurg 0.75 0.83 0.70 0.799 0.799 0.699

31 Solapur 1.00 0.90 1.00 0.998 0.997 1.000

32 Thane 0.86 0.77 0.90 0.721 0.721 0.888

33 Wardha 0.75 1.00 1.00 0.750 1.000 1.000

34 Washim 0.71 0.68 0.83 0.624 0.748 0.750

35 Yavatmal 0.70 0.75 1.00 0.699 0.799 1.000

Mean 0.765 0.831 0.896 0.752 0.841 0.863
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◦ F1-score: Across various districts of Maharashtra, we evaluated different
models for flood prediction. Among them, LightGBM outperformed achieving
the highest F1-score of 1.0 for nine districts and a mean F1-score of 0.895.
In comparison, ANN and LSSVM achieved lower mean F1-scores of 0.76 and
0.832, respectively. Table 2 and Table 3 provide a comprehensive overview of
precision, recall and F1-scores for each model across all 35 the districts. The
results underscore the superiority of the proposed LightGBM method, making
it a compelling choice for accurate flood prediction in Maharashtra.
◦ AUC-ROC Score: Applying LightGBM on all the districts, we recorded
AUC-ROC score as 0.863. A total of ten districts recorded AUC-ROC scores
greater than 0.9, and the lowest being 0.699. This result is closely followed
by LSSVM, in which we obtain a AUC-ROC accuracy of 0.8447. The lowest
score is 0.6361 for Raigad district, with nine districts scoring above 0.9, where
ANN shows AUC-ROC score of 0.75. Detailed results are given in Table 3.

(a) ROC density curve (b) ROC characteristic curve

Fig. 4. Comparison of the ROC curves for different models.

In Fig. 4(a) and Fig 4(b), LightGBM achieved the highest AUC, indicating
its ability to maintain high TPR while keeping FPR low. Considering all means,
LightGBM recorded the highest F1-score and AUC-ROC score of 0.895 and
0.8620, respectively. Hence, we use LightGBM to simulate future floods as it
performed best in both ROC density and characteristic curves as shown in Fig. 4.

6.2 Simulation Results

For the future simulations we use the bias-corrected BCC-CSM2-MR model of
CMIP6 dataset. It has four SSP scenarios and the proposed model is applied
to each. The same parameters are then formulated for the future SSP scenarios
and LightGBM predicts whether there would be a flood or not on the given date
during the years 2022 to 2100.
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(a) SSP126 (b) SSP245

(c) SSP370 (d) SSP585

Fig. 5. Simulation of the frequency of floods on the CMIP6 dataset.

◦ SSP126: Figure 5(a) shows the SSP126 scenario. In this scenario, the pat-
tern followed in the previous 20 years seems to be repeated, apart from the
Aurangabad district, where floods have substantially increased. The Akola
district also faces a higher frequency of floods than previously observed. The
districts to the west of the Sahyadri range, i.e., Thane, Palghar, Mumbai,
Raigad, Ratnagiri, and Sindhudurg, except Sindhudurg, all are bound to face
the same frequency of floods over the next 80 years. Ahmednagar, Jalna,
Osmanabad, Parbhani, Hingoli, Buldhana, Washim, Nanded, Latur, and Jal-
gaon districts lying in the rain-shadow areas of Maharashtra will face drought
situations and this can be clearly seen in the map, where these districts have
very low frequency of floods compared other districts. The far east districts of
Maharashtra would face a considerable amount of rains, with Nagpur being
one of the biggest cities in India about to face many flooding according to
simulations of SSP126 scenario.
◦ SSP245: Figure 5(b) is for the SSP245 scenario, where the flood frequency
of all districts of Maharashtra will either remain the same or decreases grad-
ually in the next 80 years. Compared to SSP126, Aurangabad district flood
frequency decreased considerably. In this scenario, the district which faced
floods in the previous like Mumbai, Palghar, Thane, Raigad, and Pune will
face the same flood frequency as in the SSP126 scenario.
◦ SSP370: Figure 5(c) shows the SSP370 scenario. According to this, the
rain-shadow districts of Maharashtra would face significantly less amount of
floods. However, on the flip side, as these districts usually do not see high
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precipitation, this situation could also indicate a scarcity of rainfall in the
next 80 years, leading to drought-like conditions. Pune district which is con-
sidered as one of the important industry hubs of India, is impending a high
frequency of floods in the SSP370 scenario. Apart from this, the urbanized
Mumbai, Thane, Palghar, and Raigad districts are about to combat the very
frequency of flooding scenarios. Moreover, in this scenario, the Gondia and
Gadchiroli districts will also face an increase in the frequency of floods.

SSP585: In case of SSP585 scenario shown in Fig. 5(d), the Pune district is
about to face a very stark increase in the frequency of floods. Along with all
the other districts lying in the west except the Sindhudurg district, we can
see a high flood frequency similar to the SSP245 scenario, but comparatively
lesser than the SSP370 scenario. All other districts are less prone to floods in
this scenario. This could also point to decreasing precipitations in the future.

7 Conclusions

This paper presents a study of the impact analysis of climate change on floods in
Maharashtra state of India using a historical dataset of flooding events and daily
weather patterns. Three machine learning models namely ANN, LightGBM,
and LSSVM are applied using 20 different ETCCDI parameters. The simulation
results confirm that LightGBM performs the best with a mean AUC-ROC score
of 0.862 and an F1 score of 0.895. Moreover, LightGBM is used to predict future
flood events in Maharashtra state under different CMIP6 SSP scenarios. SSP126
and SSP370 scenarios are leading to a much increase in flood events in western
and far eastern districts of Maharashtra state, whereas Aurangabad and Pune
districts will be having high flood risk in respective scenarios. SSP585 scenario
shows a decrease in flood events, but this could also lead to less precipitation,
leading to water scarcity in the rain-shadow region of Maharashtra. As a future
work, the impact analysis of tidal waves and sea levels can be considered along
with climate change data to understand the future flood risks in the districts
close to the sea. Moreover, factors like changes in land cover and grasslands in
the future will also impact flood events, which may also be considered for further
study along with the impacts of climate change in the future.
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Abstract. In limited resource speech recognition scenarios, the limited
data may result in overfitting and decreased recognition rates when the
traditional acoustic features are employed. To enhance speech recogni-
tion performance, it is essential to extract representative and robust
features from speech signals. This paper explores the latent regression
Bayesian network (LRBN) to derive more efficient speech representation
from traditional acoustic features to train end-to-end speech recognition
models. The LRBN is an effective generative model that captures the
inherent dependencies from the original data. To evaluate the effective-
ness of LRBN for speech representation, we compare traditional acoustic
features and bottleneck features with the hidden features extracted by
LRBN. Our experimental results demonstrate that LRBN improves the
accuracy of speech recognition on five speech datasets.

Keywords: speech representation · latent regression bayesian
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1 Introduction

The effectiveness of traditional acoustic features, including Mel-scale Frequency
Cepstral Coefficients (MFCCs) and Filter Banks (FBank), in capturing rele-
vant acoustic information has made them widely used for speech recognition
tasks. The extraction process of MFCCs features involves the transformation
of the speech signal from the time domain into the frequency domain via the
fast Fourier transform and mapping to the nonlinear Mel spectrum using audi-
tory Mel filters [14]. After applying logarithmic and discrete cosine transform
(DCT), MFCCs are obtained. DCT can eliminate harmonics that are irrelevant
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to phoneme discrimination and preserve envelope information, which is neces-
sary in past probability-based speech recognition. However, it can lead to the
loss of some nonlinear information in the speech signal. FBank, on the other
hand, differs from MFCCs in that it does not utilize DCT transformation, so
it is more correlated and informative. For deep learning models and large-scale
datasets, FBank is a more effective acoustic feature [1]. However, traditional
acoustic features typically contain only a 20–30 ms speech signal per frame and
are susceptible to interference from environmental noise and speaker differences.

Overfitting occurs when a model becomes too specialized in learning noise
or randomness present in the training data, instead of learning the underlying
patterns that generalize well to new data. In limited resource speech recognition
tasks, where the amount of labeled data is limited, models trained on traditional
acoustic features may overfit to the training data and perform poorly on new
data. These features are highly dependent on the distribution of the training data
and may not capture the underlying patterns in speech signals that are useful
for generalization to new data. Therefore, it is necessary to extract robust and
representative features to improve the recognition accuracy of limited resource
speech recognition tasks. To address the issue, researchers have proposed Bot-
tleneck Features (BNF). BNF was originally introduced by Grézl [4] and has
been applied to continuous speech recognition. It is an approach that utilizes a
pre-trained neural network to extract high-level feature representations of the
input data. Existing research [5,11] has established the effectiveness of integrat-
ing BNF to enhance the performance of speech recognition systems in limited
resource conditions. However, the BNF extracted from pre-trained deep neural
networks is typically trained on large annotated speech datasets, which may not
capture all the relevant acoustic and linguistic information required for speech
recognition tasks with limited resources, particularly when there is a significant
difference between the target task and the pre-training dataset. In addition, fine-
tuning pre-trained neural networks for BNF extraction is also a challenge, as it
requires a large amount of labeled data, which may be scarce.

We propose a method for speech representation using LRBN. Unlike Gener-
ative Adversarial Networks (GANs) that employ a simple standardized random
vector to model data uncertainty, LRBN is a generative model that effectively
captures uncertainty in data. Additionally, classical probabilistic deep genera-
tive models, such as Restricted Boltzmann Machines (RBM) and Deep Belief
Networks (DBN), ignore the correlation between hidden variables, which weak-
ens their representational power. In contrast, LRBN preserves the dependen-
cies between hidden variables by approximating the true posterior distribution
using conditional pseudo-likelihood [9]. Previous studies have demonstrated the
superior performance of LRBN in tasks such as image restoration and object
recognition, with its strong data representation capabilities [10].

We use LRBN to extract more effective speech representations from tra-
ditional acoustic features to improve the performance of speech recognition.
By reconstructing speech data and extracting LRBN hidden layer features
(LRBN-HF), features dependencies between speech frames can be captured
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while removing irrelevant information. To evaluate the effectiveness of LRBN
for speech representation, two experiments for speech recognition were designed.
The first experiment constructed a phoneme recognition model using CNN
with MFCCs as the speech feature compared with LRBN-HF, while the second
experiment employed the popular Transformer [3] as an end-to-end continuous
speech recognition model with FBank and BNF features as speech features com-
pared with LRBN-HF. Two experimental results demonstrate that the proposed
LRBN-HF features outperform traditional acoustic features and BNF in speech
recognition tasks, thus proving the effectiveness of LRBN in improving speech
recognition performance.

The organization of the rest of this paper is as follows: Sect. 2 provides a
detailed introduction of the LRBN method and the process of speech feature
extraction. Section 3 outlines the experimental setting and discusses the experi-
mental results. Finally, Sect. 4 concludes this paper.

2 Method

We introduce LRBN to extract more effective speech representation from tradi-
tional acoustic features. This section begins by presenting the basic principles of
LRBN and then applies the LRBN-HF features extracted from LRBN for speech
recognition.

2.1 Latent Regression Bayesian Network

LRBN is a generative model composed of visible and hidden layers, where the
visible layer X is nd dimensional and the hidden layer H is nh dimensional, as
illustrated in Fig. 1. The model incorporates directed edges that link each latent
variable to visible variables.

LRBN fulfills the chain rule, whereby it represents the visible variables as
x = (x1, . . . , xnd

) and the hidden variables as h = (h1, . . . , hnh
). The joint

probability distribution of all visible and hidden variables can be formulated as
the product of the prior probability distribution of any hidden variable and the
conditional probability distribution of any visible variable given the values of the
hidden variables [16]. The joint probability of x and h is computed in Equation
(1),

hj

xi

wij

Fig. 1. LRBN structure
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P (x,h) =
nh∏

j=1

P (hj)
nd∏

i=1

P (xi | h) (1)

where nh and nv refer to the number of hidden and visible nodes, respectively.
The joint probability of the visible and hidden variables is represented by p (x,h),
whereas the prior probability of the hidden variable hj is denoted as P (hj). Fur-
thermore, P (xi | h) represents the conditional probability of the visible variable
xi given all hidden variables h [17]. Both P (hj) and P (xi | h) follow Bernoulli
distribution and can be expressed as Eqs. (2) and (3), respectively,

P (hj) = σ (dj)
hj (1 − σ (dj))

1−hj (2)

where σ (z) = 1/ (1 + exp(−z))and dj is the deviation of the variable hj .

P (xi | h) = σ
(
wT

i h + bi

)xi
(
1 − σ

(
wT

i h + bi

))1−xi (3)

where wi represents the weight linking the hidden node h with the visible node
xi, while bi denotes the bias value of the visible node xi. By integrating Eqs. (2)
and (3), Eq. (1) can be derived as Eq. (4).

PΘLRBN
(x,h)

=
∏

j

exp (djhj)
1 + exp (dj)

∏

i

exp
((

wT
i h + bi

)
xi

)

1 + exp
(
wT

i h + b
)

=
exp (−ΓΘLRBN

(x,h))∏
j (1 + exp (dj))

(4)

where ΘLRBN = W , b,d, and

ΓΘLRBN
(x,h) = −

∑

i

(
wT

i h + bi

)
xi −

∑

j

djhj

+
∑

i

log
(
1 + exp

(
wT

i h + bi

))
.

(5)

Equation (5) displays a resemblance to RBM’s energy function, with an addi-
tional term

∑
i log

(
1 + exp

(
wT

i h + bi

))
. This supplementary term offers the

capability to capture intricate relationships between hidden variables. In con-
trast to the RBM, the LRBN model adopts directed connections between hidden
and visible nodes, leading to more extensive dependencies between hidden layers
[20]. Consequently, the LRBN model can better interpret intrinsic patterns in
input data compared to the RBM.

2.2 LRBN for Speech Representation

We applied the speech representation extracted by LRBN for speech recognition.
Firstly, we extract the traditional acoustic features and then extract the LRBN-
HF feature of each speech with LRBN. The LRBN was trained with unsupervised
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Fig. 2. CNN with LRBN-HF feature for phoneme recognition.

learning, where the mean squared error between the reconstructed and original
acoustic features is utilized as the loss function for network training. After the
network converged, the values of the hidden nodes are extracted from the hidden
layer as the LRBN-HF feature.

Figure 2 shows a CNN that uses the LRBN-HF feature for phoneme recog-
nition. The LRBN-HF feature is inputted into the first layer of the CNN, which
generates a set of convolution features using multiple convolutional kernels. The
output of the convolution layer is then passed to a pooling layer, which reduces
the dimensionality of the feature sequence. The pooling layer’s output is utilized
as input to a fully connected layer, which maps the input feature sequence to
different phoneme labels. Finally, a softmax classifier is applied to the output of
the fully connected layer to predict the probability of each phoneme label, and
output the most likely phoneme label.

Figure 3 shows a Transformer with LRBN-HF feature for continuous speech
recognition. The LRBN-HF feature is subjected to two-dimensional convolution
for downsampling before being fed into the encoder section of the model, which
consists of multiple layers of blocks. Each block comprises of multi-head self-
attention mechanism and a feedforward neural network. The encoder converts
the input sequence into a series of high-level abstract feature representations.
The output of the encoder is used as the input to the decoder. The decoder also
consists of multiple blocks, but each block includes a multi-head encoder-decoder
attention mechanism to associate the generated word with the input sequence.
The output of the decoder is fed into a fully connected layer for classification, to
predict the most likely output label for each time step in the sequence. Finally,
the model output is decoded using beam search algorithm to find the most likely
output sequence.
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Fig. 3. Transformer with LRBN-HF feature for continuous speech recognition.

3 Experiment

3.1 Datasets

In this work, we evaluated the proposed method using five small-scale speech
datasets. The datasets included the TIBMD Tibetan speech dataset [19], the
Cantonese dataset [8] from Common Voice, the Zeroth-Korean Korean dataset
[18], the Thchs30 Mandarin dataset [15], and the TIMIT English dataset. The
TIBMD Tibetan dataset comprises three dialects (Amdo, Kham, and Ü-Tsang)
and was recorded by native Tibetan-speaking students. For the experiments, we
selected 31.8 h of data from the Ü-Tsang dialect. The Cantonese dataset from
Common Voice is a free and open-source speech dataset contributed by vol-
unteers globally, and we used 21.5 h of Cantonese data for experiments. We
randomly selected 26.4 h of data from the Zeroth-Korean dataset, an open-
source dataset for the Korean language. The TIMIT dataset includes 6300 sen-
tences spoken by 630 individuals from eight major dialect regions in the United
States. The Thchs30 dataset, an open-source Mandarin speech dataset compris-
ing approximately 30 h of speech data recorded in a quiet office environment, was
used in this work. All speech signals were sampled at 16kHz with 16-bit quan-
tization. Table 1 provides the details of each dataset for the continuous speech
recognition experiments.

We randomly selected speech data from TIBMD,Cantonese, Zeroth-Korean,
Thchs30, and Librispeech for the phoneme recognition experiment. We used the
Montreal Forced Aligner (MFA), which is based on Kaldi, for phoneme segmen-
tation. The speech data for each language were sliced into small phoneme-level
segments. Table 2 provides detailed information about the data used for phoneme
recognition.
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Table 1. Data statistics for the continuous speech recognition experiments

Language Training data(h) Training utterances Testing data(h) Testing utterances

Tibetan 28.7 25704 3.1 2847

Cantonese 19.4 16884 2.1 1877

Korean 23.8 10224 2.6 1136

Mandarin 27.3 10710 6.8 2678

English 4.7 5544 0.6 756

Table 2. Data statistics for phoneme recognition experiments

Language Phoneme category Training data Testing data

Tibetan 41 457881 40688

Cantonese 71 421865 37461

Korean 46 586958 52166

Mandarin 56 302400 26880

English 69 457257 40630

In addition, we conducted multi-dialect speech recognition experiments on
the Ü-Tsang dialect, Amdo dialect, and Kham dialect of the Tibetan language.
The data used for these experiments were sourced from the TIBMD dataset.
Table 3 provides a detailed overview of the data statistics.

Table 3. Data statistics for multi-dialect speech recognition experiments

Language Dialect Train data(h) Train utterances Test data(h) Test utterances

Tibetan Ü-Tsang 28.7 25704 3.1 2847

Amdo 11.5 11130 1.3 1237

Kham 2.5 2302 0.3 256

3.2 Experimental Setup

Experimental Setup of Phoneme Recognition. We used 39-dimensional
MFCCs with a window length of 25 ms and a frame shift of 10ms as input to train the
LRBN network. The LRBN comprised a hidden layer with 120 nodes, and unsupervised
learning was utilized to train the network. After the network converged, LRBN-HF fea-
tures were extracted from the hidden layer. A phoneme recognition model based on
convolutional neural networks (CNN) was built in this work, with hyperparameters
including a learning rate of 0.0008, a batch size of 64, and 100 epochs. The model
included 5 convolutional layers, 2 linear layers, and the Rectified Linear Unit (Relu)
activation function. A dropout layer was also added between each convolutional layer.
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The output layer is a softmax layer, with the number of nodes corresponding to the
number of phoneme categories. The Adam [7] algorithm with an initial hyperparam-
eter epsilon of 10e−8 was used for optimization. To evaluate the phoneme recognition
model, recognition accuracy (ACC) was used as the performance metric.

Experimental Setup of Speech Recognition. We conducted an end-to-end
speech recognition experiment based on the Transformer model. The speech data were
preprocessed by extracting 40-dimensional FBank features with a window length of
25ms and a frame shift of 10ms, and then normalized. We trained the LRBN network
using unsupervised learning until convergence and extracted the LRBN-HF features
from the hidden layers. We compared the Transformer models using LRBN-HF fea-
tures, FBank features, and BNF features as inputs. BNF features were extracted using
the Shennong library [2], which provides a Python interface for general feature extrac-
tion programs. We used the BUT/Phonexia feature extractor [12], which outputs 80
activation values from the bottleneck layer. The hyperparameters of the Transformer
model were set as shown in Table 4.

The convolutional layer of the Transformer model consists of two CNN layers with
a stride of 2 and a kernel size of 3. The dropout rate is set to 0.1. The channel number is
set to 1, with 64 channels in the middle layer and 128 channels in the output layer. The
encoder is stacked with 6 layers, each containing 4 attention heads, with each attention
head being a 64-dimensional self-attention. These attention heads are concatenated and
weighted during the training process, which includes BN (Batch Normalization) [6] to
prevent overfitting. We trained the transformer for a certain number of epochs, so no
validation set is used in this study. We use words as the basic modeling unit. For testing,
we did not use a language model to decode the sentences. The word error rate (WER)
is used as the performance evaluation metric for the model, as shown in Eq. (6).

WER =
S + D + I

N
(6)

where S represents the number of substituted words, D represents the number of
deleted words, I represents the number of inserted words, and N is the total number
of words in the reference sequence. The Levenshtein distance algorithm was used to
calculate the edit distance.

Table 4. The hyperparameter settings of the Transformer model

hyperparameter setting

Epoch 100

Learning rate 0.001

Batch size 12

Optimizer Adam

Dropout 0.1

Warmup steps 12000

Activation Glu

Label smoothing [13] 0.1
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3.3 Experimental Results and Analysis

We trained a CNN phoneme recognition model with MFCCs and LRBN-HF features
and evaluated the accuracy of phoneme recognition, as shown in Table 5. Our exper-
imental results indicate that LRBN-HF features improve the accuracy of phoneme
recognition. Specifically, when the model was trained with LRBN-HF features, the
accuracy on Tibetan, Cantonese, Korean, Mandarin, and English datasets was 94.66,
64.82, 87.36, 92.04, and 90.53, respectively. Compared to the MFCCs, the accuracy was
improved by 37.39, 21.06, 30.93, 18.77, and 27.86, respectively. These results demon-
strate that LRBN-HF features, obtained through LRBN, are more robust and better
represent speech units, resulting in improved phoneme recognition accuracy.

The end-to-end speech recognition models have been developed using FBank, BNF,
and LRBN-HF features, implemented in the Transformer architecture. To evaluate the
performance of these models, we conducted speech recognition experiments on five
small-scale datasets. The WER was used as the performance metric, and the experi-
mental results are presented in Table 6.

In all five datasets, LRBN-HF features outperformed FBank, with WER reductions
of 9.7%, 1.05%, 17.09%, 1.74%, and 7.62%, respectively. This indicates that LRBN
is an effective speech representation that can extract representative and stable fea-
tures. Moreover, compared to FBank features, BNF features achieved better recogni-
tion results on the Korean and English datasets, while there was a slight improvement
on the Tibetan dataset. However, on the Cantonese and Mandarin datasets, the WER
increased. This phenomenon suggests that when the language used for BNF pre-training
differs significantly from the target language, it is difficult to effectively capture the
target language’s feature information, which can deteriorate the model’s performance.
On the Tibetan, Cantonese, Korean, and Mandarin datasets, the LRBN-HF model
outperformed the model using BNF features, indicating that LRBN is superior to the
BNF in speech representation. Interestingly, on the English dataset, the WER of the
BNF features was 1.74% lower than that of the LRBN-HF features. We analyzed that
may be because the BNF pre-training network used a large-scale English corpus, which

Table 5. Comparison of LRBN-HF features and MFCCs features on phoneme recog-
nition accuracy

Feature ACC(%)

Tibetan Cantonese Korean Mandarin English

MFCCs 57.27 43.76 56.43 73.27 62.67

LRBN-HF 94.66 64.82 87.36 92.04 90.53

Table 6. Comparison of LRBN-HF features, BNF, and FBank features on WER

Feature WER(%)

Tibetan Cantonese Korean Mandarin English

FBank 36.86 13.58 41.18 15.43 41.73

BNF 36.77 23.93 29.91 17.44 32.37

LRBN-HF 27.16 12.53 24.09 13.69 34.11
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Table 7. Comparison of LRBN-HF features, BNF, and FBank features on Tibetan
multi-dialect

Model Feature WER(%)

Ü-Tsang dialect Amdo dialect Kham dialect

Single-dialect Transformer FBank 36.86 29.58 86.95

BNF 36.77 28.92 89.81

LRBN-HF 27.16 26.33 90.71

Multi-dialect Transformer FBank 24.06 12.49 39.60

BNF 22.56 13.45 35.66

LRBN-HF 19.74 10.57 32.91

kept the source language consistent with the target language, resulting in a significant
improvement in recognition performance. However, in practical applications, limited
resource languages often lack such large-scale corpus for pre-training networks. There-
fore, LRBN has been demonstrated to be an effective speech representation method,
providing more useful information for downstream tasks.

In the Tibetan multi-dialect speech recognition experiments, we conducted a com-
parison of three different features to evaluate their WER in both single-dialect and
multi-dialect recognition models. The experimental results are presented in Table 7.
From the results of the single-dialect model experiments, it can be observed that LRBN-
HF achieved the best performance on the Ü-Tsang and Amdo dialects, reducing the
WER by 9.61% and 2.59% respectively compared to BNF. However, the WER on the
Kham dialect was higher than the baseline, which we attribute to the relatively smaller
size of the Kham dialect data. From the results of the multi-dialect model experiments,
the WER for all features were lower than those of the single-dialect model. This is
because the multi-dialect model possesses stronger generalization capability, enabling
more accurate recognition of differences among different dialects. In the multi-dialect
speech recognition model, LRBN-HF exhibited superior performance with the low-
est WER. Compared to BNF, LRBN-HF reduced the WER by 2.82%, 2.88%, and
2.75% respectively. This indicates that the LRBN-HF feature can better capture com-
mon characteristics among multi-dialect, thereby enhancing the overall performance of
multi-dialect speech recognition.

4 Conclusion

This paper investigates the effectiveness of LRBN network for learning more effective
speech representation. LRBN-HF is compared with FBank and bottleneck features
on limited-resource data for continuous speech recognition. Experimental results show
that LRBN-HF features achieve lower word error rates than FBank and BNF fea-
tures. Additionally, the LRBN-HF features are compared with the MFCCs features
for phoneme recognition. The experimental results reveal that LRBN-HF has better
phoneme recognition rate, indicating its ability to represent and distinguish speech
phonemes. Overall, the experiments on continuous speech recognition and phoneme
recognition demonstrate that LRBN networks can effectively capture the dependency
relationships between speech frames, making it a more effective method for speech
representation.
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Abstract. Binary Neural Networks (BNNs) use 1-bit weights and acti-
vations to efficiently execute deep convolutional neural networks on edge
devices. Nevertheless, the binarization of the first layer is conventionally
excluded, as it leads to a large accuracy loss. The few works address-
ing the first layer binarization, typically increase the number of input
channels to enhance data representation; such data expansion raises the
amount of operations needed and it is feasible only on systems with
enough computational resources. In this work, we present a new method
to binarize the first layer using directly the 8-bit representation of input
data; we exploit the standard bit-planes encoding to extract features
bit-wise (using depth-wise convolutions); after a re-weighting stage, fea-
tures are fused again. The resulting model is fully binarized and our first
layer binarization approach is model independent. The concept is evalu-
ated on three classification datasets (CIFAR10, SVHN and CIFAR100)
for different model architectures (VGG and ResNet) and, the proposed
technique outperforms state of the art methods both in accuracy and
BMACs reduction.

Keywords: Binary Neural Networks · Input Layer Binarization ·
Deep Learning

1 Introduction

Deep Neural Networks showed in the last years impressive results, sometimes
reaching accuracy better than human level, with applications in a wide variety
of domains. These improvements have been achieved by increasing the depth and
complexity of the network; such huge models can run smoothly on expensive GPU-
based machines but cannot be easily deployed to edge devices (i.e., small mobile or
IoT systems), which are typically resource-constrained. Various techniques have
been introduced to mitigate this problem, including network quantization [1–5],
network pruning [6,7] and efficient architecture design [8–12].

In 2016, Courbariaux and Bengio [13] first showed the potential of the
extreme quantization level that uses only 1-bit to represent both weights and
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activations. By representing +1 with an unset bit and −1 with a set bit, the mul-
tiplications of weights and activations can be executed with xnor gates, saving
hardware resources and greatly reducing power consumption. Such BNN model
was able to achieve comparable accuracy results on small datasets like CIFAR10
[14] and SVHN [15] but on wider dataset like Imagenet [16] a relevant accuracy
drop was reported. Recent works [4,17–25] on BNNs have significantly improved
the accuracy on large datasets like Imagenet filling the gap with real-valued
networks.

Most of the BNNs do not fully exploit the benefits of 1-bit quantization,
since they exclude from binarization the first and last layers that normally work
with fixed-point numbers. In general, the number of parameters and the com-
putational effort of the first layer are relatively low compared to intermediate
deep convolutional layers employed in VGG [26] or ResNet [27] models, since
input data has typically fewer channels (e.g. color images have three channels).
This usually leads to deploy the first layer of BNN models using floating-point
or quantizing it using 8-bit; the consequence is that two different type of multi-
pliers (8-bit for first layer, binary for the remaining), with different bit widths,
are needed to execute the computations leading to a solution which increases the
power consumption (8-bit multiplier requires more power than xnor) and con-
sumes more hardware resources (e.g. an FPGA design) than xnor gates. Con-
versely, the challenge of binarizing both weights and activations in the input
layer is due to the small number of input channels [28]. Therefore, almost all the
works addressing the binarization of the first layer tried to increase the number
of input channels to enrich data representation.

FBNA [28] proposes a two-step optimization scheme that consists of bina-
rization and pruning; during binarization phase the number of input channels is
increased by a factor 256× and then, during pruning, lowest bits of input data
are dropped away. The constraint of FBNA is that the encoded vector must
be a power of two. BIL [29] attempts to directly unpack the 8-bit fixed-point
input data, called DBID, and adding an additional binary pointwise convolu-
tional layer between the unpacked input data and the first layer to increase the
number of channels, dubbed as BIL. The authors of FracBNN [30] propose to use
thermometer encoding to transform a pixel to a thermometer vector (expand-
ing each input channel to 32 binary channels) that then is transformed to the
{−1,+1} bipolar representation.

In contrast with previous works where the number of input channels has been
increased, our method directly uses the fixed-point representation of a pixel. The
results show that the proposed technique is competitive both in term of efficiency
and accuracy. Our contributions can be summarized as follows:

– we propose a general approach to binarize the first layer of a CNN using the
native 8-bit fixed-point inputs. We rearrange the 8-bit input data into 8 bit
planes, each bit plane is consumed by a binary depth-wise convolutional layer
which gives more importance (using a multiplier, actually a shift operation)
to the most significant bit planes. Finally, all feature maps are fused together
through an addition operator. The entire process, depicted in Fig. 3, does not
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Fig. 1. (a) Standard scenario of BNNs where the first convolutional layer is not bina-
rized; weights and inputs are used in 8-bit/floating-point representation. (b) Typical
approach of the works that binarized the first layer F1 incrementing the number of
input channels; in this case the input expansion is actually an additional layer. (c)
Our approach, where depth-wise convolutions are applied to input bit-planes and the
resulting maps can replace the F1 layer, producing a more compact model.

rely on floating-point computation, resulting more suitable to be deployed on
ASIC or FPGA systems.

– we show that the feature maps resulting from our bit-plane manipulations
allow to skip the original1 F1 first network layer (see Fig. 1c) with a minimal
accuracy loss, leading to a model which uses less BMACs.

– we evaluate our concept on three classification datasets (SVHN, CIFAR10 and
CIFAR100 [14]) showing that our solution outperforms all previous methods
introduced to binarize the input layer.

2 Method

A common CNN model employed for computer vision problems works with RGB
input images; it takes an input volume with three channels (H ×W ×C, where C
is the number of channels) and extracts the features using convolutional blocks.
To increase the receptive field of the network, a sequence of pooling operations
is used. Each input pixel p is usually a fixed-point integer with 8 bit precision,
namely p =

∑7
m=0 xm · 2m.

In BNNs, typically the first layer (usually a convolutional one) is not bina-
rized, all the input pixels are processed using 8-bit weights, producing F1 output
8-bit feature maps (Fig. 1a). The previous works in literature that addressed
the problem to generate F1 binary feature maps, adopted different techniques
to increase the number of input channels C (generating a more sparse represen-
tation) in order to use binary weights and inputs for layer F1; usually a good
1 Before the addition of our depth-wise convolutions.
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Fig. 2. (a) Example of bit plane representation for a 3 × 3 8-bit image. (b) Image
representation in bit planes. Each column refers to a bit index extracted from image;
for representation purposes, bit 1 is converted to 255 while bit 0 remains 0. In this
example all bit planes refer to channel G of RGB images.

tradeoff between accuracy and increment of first layer MACs is to wide the num-
ber of channels C by 32× [29,30]. This process is depicted in Fig. 1b, where the
increment of input channels leads to a bigger model footprint; in fact, a linear
increment of the number of input channels, linearly increases also the kernel
parameters of a 2D convolutional layer.

The intuition behind our approach is that, extracting a different bit plane for
each bit position, the semantic spatial information is preserved for most of the
high index bits (4 to 7), as shown in Fig. 2b. Lower bit indexes (0 − 3) contain
less correlated spatial information of image pixels and, depending on the dataset,
they can be selectively omitted to further reduce the computational effort. The
overall diagram of our method is reported in Fig. 3 and it is composed by the
following steps:

1. Bit Rearrangement: An input image I (W,H,C, where C is the number
of channels), having M bits for each pixel (usually 8), is rearranged into bit
planes (as shown in Fig. 3a); each 8-bit input channel is decomposed into eight
1-bit planes. A bit plane x is a 1-bit map containing only the bit of index x
for all pixels (see Fig. 2a). The bit-plane image bp corresponding to channel
c can be indicated as I (c, bp).

2. Feature Extraction: Each binary bit-plane is consumed by a binary depth-
wise convolution layer that generates N feature maps for each bit plane, as
reported in Fig. 3b. The output of feature extraction (FE) step can be for-
mulated as:

FE (c, bp) = γ (c, bp)
(I (c, bp) ∗ W (c, bp) + b (c, bp)) − μ (c, bp)

σ (c, bp)
+ β (c, bp)

(1)
where ∗ is the convolution operator, W (c, bp) and b (c, bp) represent the
weights of the depth-wise convolution while γ, μ, σ and β are the Batch



Input Layer Binarization with Bit-Plane Encoding 399

Normalization (BN) [31] parameters; Eq. 1 refers to a single feature map of
depth-wise convolution, which is dependent on channel c and bit plane bp. In
Eq. 1 the non-linear activation function can be omitted because binarization
of activation and weights already introduce non-linearity. The use of Batch
Normalization after each binary layer plays a key role in BNNs because it
promotes a smoother optimization process allowing a stable behavior of the
gradients. BN layer is usually executed in floating-point precision when mixed
with binary layers, but the authors of [32] proved that it can be executed with
8-bit fixed point without accuracy loss.

3. Features Re-Weight: Following the intuition based on Fig. 2b, where high
index bit planes preserve the spatial information of the image, this stage re-
weights the feature maps based on the bit plane index. Higher bit planes
are multiplied by higher scalar values. In order to simplify this stage, the
multiplication can be replaced by a shift operation. The N feature maps of
each bit plane are shifted by the same quantity (namely a power of two).

4. Features Fusion: The re-weighted feature maps, corresponding to a different
8-bit input channel, are summed to combine the information encoded by
different bit indexes and can be expressed as:

FWF (c, bp) =
M∑

i=0

FE (c, bp) · 2i (2)

In Eq. 2 the multiplication by 2i represents the re-weight of feature maps
that can be implemented with a shift operation. The sum instead can be
implemented accumulating features over 32-bit register; if the subsequent
layer extracts sign from inputs, then the 32-bit output maps can be reduced
to 1-bit saving memory overhead. The N feature maps corresponding to a
different channel are concatenated to create a volume of N × 3 maps that is
used to feed the network, Fig. 1c. Such volume of N maps can replace the first
layer of the CNN with almost no accuracy loss, as showed in Sec. 4 and, thus
reducing the complexity of the overall model. F1 requires a topology change
of the first network layer when its weights and inputs are binarized and the
expansion of depth-wise convolutions (Fig. 3b) can be set up in order to keep
a number of feature maps equivalent to the layer F1.

Table 1 reports the MACs of different approaches used to binarize input layer
of a CNN, reporting the theoretical speedup of the methods; our solution is
clearly competitive, in terms of MACs, with respect to the baseline (input not
binarized) and other existing approaches.
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Fig. 3. Binarization process of input layer. (a) shows the rearrangement phase that
extracts, for each bit position of the encoded pixel a bit plane. (b) shows the binary
depth-convolution block applied to each bit plane; the depth multiplier (N ) is an hyper-
parameter and it is dataset and model dependent. (c) shows how to weight differently
feature maps extracted from different bit planes; maps related to most significant bits
receive a higher multiplication factor. In (d), the feature maps related to the same 8-bit
input channel are fused together through an addition.

3 Datasets and Implementation Details

We evaluate our method on three classification datasets: CIFAR10, CIFAR100
and SVHN with different BNN architectures. For each model architecture we
tested different state-of-the-art binarization techniques of input layer; input bina-
rization does not modify the other layers of the network, which remain unaltered.
For each dataset, we conducted our experiments with the same training proce-
dure (same number of epochs, optimizer, learning rate scheduling, loss function)
for all topologies without adding distillation losses or special regularization to
the overall loss function. The binarization of weights and activations always
happens at training time using an approximation of the gradient (STE [34] or
derived solution that are model dependent) for sign function. The augmentation
procedure for all datasets is performed with floating-point arithmetic but, before
feeding data to the network, input image is quantized using 8-bit fixed precision.
We adopted the following datasets:
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Table 1. Comparison of the first layer MACs required by our method with respect
to the state of the art solutions. Input data has a shape H × W × C (32 × 32 × 3)
and a precision of M bits; in this example the first convolutional layer has F1 = (128)
filters with size F ×F (3). The expansion channels is K = 32 for methods [29,30]. The
depthwise multiplier of our method can be chosen as N1 =

⌊
F1
C

⌋
= 42. We conducted

our experiments using also a lower value, N2 = 32 instead of N1 and only 4 bits of
input pixels. P represents the number of bit planes extracted by step 3a.

Method Type # MACs # weights MACs method
MACs Baseline

a Speedupb

Baseline 8-bit HWCF 2F1 CF 2F1 1× 1×
DBID [29] 1-bit HWCMF 2F1 CMK + F 2F1K 8× 1.12×
BIL [29] 1-bit HWK

(
CM + F 2F1

)
CKF 2F1 10.8× 0.81×

Thermometer [30] 1-bit HWCKF 2F1 CF 2N1M 32× 0.27×
ours (P = 8, N1) 1-bit HWCPF 2N1 CPF 2N1 2.6× 3.42×
ours (P = 4, N1) 1-bit HWCPF 2N1 CMF 2N1 1.3× 6.84×
ours (P = 4, N2) 1-bit HWCPF 2N2 CPF 2N2 1× 9×
aA lower ratio means a higher reduction of MACs.
bAccording to [33] (Fig. 2), the worst case speedup of binary convolution compared to
8-bit is 9×.

CIFAR10 and CIFAR100 The RGB images are scaled to the interval
[−1.0 ;+1.0] and the following data augmentation was used: zero padding
of 4 pixels for each size, a random 32 × 32 crop and a random horizontal flip.
No augmentation is used at test time. The models have been trained for 140
epochs.

SVHN The RGB input images are scaled to the interval [−1.0 ;+1.0] and the
following data augmentation procedure is used: random rotation (±8 degrees),
zoom ([0.95, 1.05]), random shift ([0; 10]) and random shear ([0; 0.15]). The
models have been trained for 70 epochs.

We evaluated the following networks:

VGG-Small [35] Network structure is the following: 2×(128 − C3)+MP2+2×
(256 − C3)+MP2+2×(512 − C3)+MP2+FC1024+FC1024+Softmax2.
The VGG-Small model adopted uses the straight-through-estimator (STE) to
approximate the gradient on non-differentiable layers [2,34].

VGG-11 [19] Network structure is the following: 64 − C3 + MP2 + 128 − C3 +
MP2 + 2 × (256 − C3) + MP2 + 2 × (512 − C3) + MP2 + 2 × (512 − C3) +
MP2 + Softmax (see footnote 2). Even VGG-11 uses the STE estimator for
binarization operation during back-propagation.

BiRealNet [17] It is a modified version of classical ResNet that proposes to
preserve the real activations before the sign function to increase the represen-
tational capability of the 1-bit CNN, through a simple shortcut. Bi-RealNet

2 m×(n− CK) stands for m consecutive convolutional layers, each one with n output
channels and K kernel size. MP2 is the max pooling layer with subsample 2 while
FCx is a fully-connected layer having x neurons. Softmax represents the last dense
classification layer using softmax as activation.
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adopts a tight approximation to the derivative of the non-differentiable sign
function with respect to activation and a magnitude-aware gradient to update
weight parameters. We used two instances of the network, an 18-layer and a
34-layer Bi-Real net3.

ReactNet [24] To further compress compact networks, this model constructs
a baseline based on MobileNetV1 [8] and add shortcut to bypass every 1-bit
convolutional layer that has the same number of input and output chan-
nels. The 3 × 3 depth-wise and the 1 × 1 point-wise convolutional blocks of
MobileNet are replaced by the 3× 3 and 1× 1 vanilla convolutions in parallel
with shortcuts in React Net4. As for Bi-Real Net, we tested two different
versions of React Net: a 18-layer and a 34-layer.

4 Results and Conclusions

Table 2. Top1 accuracy (%) results of test set on CIFAR10. In first part we report the
result of first test scenario (standard conditions); in second half, the results achieved
in the second scenario (reducing the MACs of binarization of input layer).

VGG-Small VGG-11 BiReal-18 BiReal-34 React-18 React-34

DBID [29](P = 8) 84.5 77.6 81.8 85.0 86.0 86.7 ⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

1st

BIL [29](P = 8) 82.0 78.9 81.3 82.2 84.0 83.5

Therm [30](K = 32) 84.2 80.1 85.2 85.3 86.6 86.6

ours (P = 8, N1) 85.9 79.1 87.7 88.5 89.9 90.2

baseline 89.2 84.7 89.1 89.3 90.6 90.6

DBID(P = 4) 83.6 76.8 74.9 83.7 83.7 85.3 ⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

2nd

BIL(P = 4) 80.9 82.4 80.8 82.3 82.7 83.4

Therm(K = 16) 83.8 79.6 84.7 85.9 86.5 86.8

ours(P = 4, N2) 85.0 78.3 86.9 87.7 88.5 89.0

baseline 88.3 83.7 87.4 88.3 88.8 89.1

The validation of our solution has been accomplished through two different
test scenarios; in the first one, we compared the accuracy (measured on test set)
of our binarization method w.r.t. the state-of-the-arts input layer binarization
approaches, keeping unaltered the structure of the network except for the input
data binarization layer (first half of Tables 2, 3 and 4). In this first scenario all
the 8-bits planes are exploited, layer F1 (Fig. 1) is executed and our proposed
solution is able to reach a better accuracy compared to other input binarization
methods, closing the accuracy gap with the baseline.

3 Refer to the following https://github.com/liuzechun/Bi-Real-net repository for all
the details.

4 Refer to the following https://github.com/liuzechun/ReActNet repository for all the
details.

https://github.com/liuzechun/Bi-Real-net
https://github.com/liuzechun/ReActNet
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Table 3. Top1 accuracy (%) results of test set on SVHN.

VGG-Small VGG-11 BiReal-18 BiReal-34 React-18 React-34

DBID [29](P = 8) 94.5 92.2 94.3 95.1 94.9 95.1 ⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

1st

BIL [29](P = 8) 93.5 92.1 94.3 93.4 94.1 94.7

Therm [30](K = 32) 89.7 88.9 89.2 89.8 89.8 90.2

ours(P = 8, N1) 94.8 93.4 94.3 95.0 95.1 95.7

baseline 95.7 95.5 94.3 95.1 95.5 95.9

DBID(P = 4) 94.3 92.1 94.3 94.7 94.8 95.0 ⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

2nd

BIL(P = 4) 93.4 92.1 94.4 93.5 93.8 94.5

Therm(K = 16) 89.5 88.6 89.8 89.7 89.8 90.1

ours(P = 4, N2) 94.8 93.3 94.3 95.0 95.1 95.7

baseline 95.6 95.0 94.4 95.1 95.5 96.0

Table 4. Top1 accuracy (%) results of test set on CIFAR100.

VGG-Small VGG-11 BiReal-18 BiReal-34 React-18 React-34

DBID [29](P = 8) 53.6 43.1 51.8 58.5 56.3 58.0 ⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

1st

BIL [29](P = 8) 50.0 42.9 52.7 56.0 55.4 55.5

Therm [30](K = 32) 53.0 43.5 57.2 57.1 57.4 57.9

ours(P = 8, N1) 56.5 46.0 58.7 60.6 61.7 62.9

baseline 60.6 52.3 63.4 65.0 64.9 65.3

DBID(P = 4) 52.3 41.8 50.5 56.5 55.2 56.7 ⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

1st

BIL(P = 4) 49.5 42.0 52.1 54.5 52.1 53.6

Therm(K = 16) 52.1 42.6 56.7 54.5 56.8 58.6

ours(P = 4, N2) 54.8 44.5 57.7 59.6 60.2 62.0

baseline 60.3 50.3 60.0 61.7 62.0 63.4

In the second scenario, to further reduce the MACs of our solution, we pro-
pose an optimization of our method that uses only the 4 most significant bits
and reduces the depth-wise multiplier from N1 to N2 (the reduction to 4 bits
is based on Fig. 2b, that shows how the bit planes corresponding to less sig-
nificant bits convey less information). In the second half of Tables 2, 3 and 4,
we report the results of the optimized version compared with other solutions
properly modified in order to compute an equivalent number of channels5. As
reported, our solution is able to preserve the baseline accuracy using less input
bits while the other methods get a consistent accuracy drop when reducing input
bits and binary channels.

5 For DBID, thermometer and baseline methods, we reduced to 32 the number of
output channels of layer F1; for BIL and ours, we skipped the layer F1 because
the convolution operation is already exploited within the input layer binarization
process. For DBID, BIL and ours we used only the 4 most significant bits of input
data. For thermometer we applied also a reduced expansion factor of K = 16.
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Differently from other works, our solution re-weights the feature extracted by
bit-planes giving more importance to the features corresponding to the most sig-
nificant bit-planes; this stage contributes to scale down the footprint of our bina-
rization approach simplifying the deployment on resource constrained devices
(low-power embedded CPUs). Furthermore, the accuracy of our method is higher
than thermometer encoding [30], which preserves the feature similarity after
binarizing the input layer, as pointed out by Anderson et al. [28].

In conclusion, this paper introduced a novel input layer binarization method
that reaches higher accuracy when compared to state-of-the-art solutions reduc-
ing the gap to the baseline on average by 2.2% points. Our solution was able to
preserve model accuracy when only 4 bits of input pixels are used in the input
binarization layer, proving to be more resource-constrained device friendly than
existing ones. In the future, we intend to further investigate the latency speedup
of our method on real hardware devices like Raspberry Pi Model 3B/4B exploit-
ing the computation capabilities of NEON ARM6 SIMD engine.
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Abstract. Recent advances in non-invasive brain function measurement
technologies, such as functional magnetic resonance imaging (fMRI)
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learning techniques, including deep learning, have led to increased
research on the elucidation and quantitative understanding of informa-
tion processing processes in the human brain. Since the emergence of
word2vec, which represents the meaning of natural language words as
vectors, features of language stimuli given to the human brain have been
represented using large language models in natural language processing
and used to estimate brain states. In this study, we used GPT-2, which
is known to perform well as a feature for predicting brain states, and
investigated the information processing processes in the human brain
when reading Japanese short poems, i.e., tanka poetry. In particular,
we investigated the hubness of the regions of interest in the brain by
applying the PageRank algorithm. As a result, we have found that the
cingulate cortex and the insula, which are said to be related to emotion,
have hubness in brain regions, while occipital lobe, which are not said to
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1 Introduction

In recent years, there has been a growing interest in exploring the relationship
between deep learning models (DLMs) and the human brain. DLMs have been
developed and inspired by the structure and behavior of the human brain, and
have been trained on massive amounts of data, which has allowed them to achieve
impressive result in various fields such as computer vision [1–3], natural language
processing [4–8], speech recognition [9,10], and many others.

DLMs are also used to facilitate our comprehension of human cognitive pro-
cesses and cerebral functions. While many studies have been investigated the
language processing mechanism using everyday spoken language stimuli, our
main objective is to elucidate how humans find the value in verbal arts, which
are novels, poems, lyrics and the like. The emotion evoked by varbal arts, unlike
that evoked in daily life, cannot be analyzed only through texts. In this study, we
employ tanka as our verbal art stimuli, which is a form of Japanese traditional
poetry, and will investigate the information processing about “poetic” emotion
induced by the stimulus when reading tanka poetry.

2 Related Work

Recent studies suggest that the hidden representations of various DLMs have
shown to linearly predict human brain activity [11–13]. Since the introduction of
word2vec [7], large language models have been utilized in neuroimaging research
to investigate how the human brain processes language [14–20]. By presenting
human participants with language stimuli, such as sentences or individual words,
and measuring their brain activity, researchers can build models that predict
the neural activity patterns in response to these stimuli and decode words and
sentences from brain states [20].

Those DLMs have a hierarchical structure, and researchers have been inves-
tigating whether the hierarchical structure of DLMs corresponds to the hierar-
chical organization of the human brain. Convolutional neural networks (CNNs)
have been suggested to correspond to the concept of hierarchical processing in
human visual processing [21]. Kawasaki et al [22] used a deep learning model to
predict brain states under visual and verbal stimuli, and investigated the process-
ing transitions through analysis of these states using representation similarity
analysis (RSA) [23]. However, there has been limited research on the relation-
ship between the hierarchy of DLMs and the hierarchy in the human brain under
language stimuli.

In this study, we chose GPT-2 as a model for estimating brain activity because
it has been shown that the prediction of brain states by using GPT-2 as language
features significantly correlates with semantic comprehension [16,18,24]. We will
construct an encoding model that predicts brain activity from the feature of each
layer of GPT-2 and examine hierarchical processing in the brain when reading a
text.

By using a deep learning model that processes natural language as a working
model, we investigate emotional activities in the human brain that are similar
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Fig. 1. Overall process: the features of tanka are represented by GPT-2. representation
similarity analysis (RSA) is applied to the brain activity data predicted by the encoding
model based on the features. The representation dissimilarity matrix (RDM) obtained
by RSA is regarded as an adjacency matrix, and the PageRank algorithm is applied to
determine the hubness of the regions of interest (ROI) of brain activity stimulated by
poetic and unpoetic sentences.

to the sensitivity and sensation induced by tanka, a verbal art form, instead of
dealing with emotions expressed as direct responses in the human brain under
various stimuli.

3 Analysis of Brain Activity Under Language Stimuli

Figure 1 shows an overview of the method in this study.
To compare brain activities evoked by tanka poetry, and unpoetic sentences,

we 1) extract features using tanka poetry that presented in the experiment as
input; 2) construct an encoding model to predict brain activity from the fea-
tures; 3) separate the predicted brain activity under stimuli labeled as poetic or
unpoetic; 4) apply RSA to the brain activity and create a RDM that shows the
connectivity of ROIs in the brain; and 5) apply PageRank algorithm [25] to the
matrix and find the hubness in ROIs.

3.1 Brain Activity Data and Experimental Tasks

Brain activity data were collected from 15 male subjects and 17 female subjects.
All subjects are right-handed and native Japanese speakers, aged from 18 to
34 years. Functional scans were collected using a 3.0 T scanner at the National
Institute for Physiological Sciences (NIPS) with repetition time (TR) = 750 ms,
and voxel size = 2.0 mm × 2.0 mm × 2.0 mm.

As experimental tasks, subjects read and evaluate 300 sentences from the
Balanced Corpus of Contemporary Written Japanese (BCCWJ) [26]. The sen-
tence dataset consists of 150 tanka, 31-syllable poems originated in Japan, and
150 prose that have approximately 31 characters. Each tanka/prose was divided
into three lines, where only the first line was displayed for the first three sec-
onds, up to the second line for the next three seconds, and all three lines for the
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following three seconds. In the next three seconds, a slide with the question “Do
you feel that this is poetic?” written on it is displayed, and the subjects answers
“Yes” or “No” by pressing a button. One trial is conducted in 12 s. These data
were collected during six scanning sessions with breaks in between, and each
session had 50 trials (25 tanka and 25 prose). The sentences were presented in a
different random order for each subject.

The study was approved by the Ethical Committee of the National Institute
for Japanese Language and Linguistics, the National Institute for Physiological
Sciences of Japan and the Institute of Statistical Mathematics.

3.2 Encoding Model

The method employed in this study to construct an encoding model is the one
by Naselaris et al [27].

As a method for constructing the encoding model, linear regression is per-
formed between the features extracted from the data that stimulate the human
brain and the brain activity state under stimulation, and weights are learned
so that the measured brain activity pattern and the predicted brain activity
pattern are close to each other. In general, ridge regression is applied to linear
regression, and by observing the regression coefficients, it is possible to observe
the behavior of the voxels.

3.3 Representational Similarity Analysis

Representational Similarity Analysis (RSA) uses correlation matrices to measure
the degree of similarity or dissimilarity between representational patterns, pro-
posed by Kriegeskorte et al [23,28]. RSA measures the distance between the rep-
resentational geometries of different brain regions or conditions and calculates
the dissimilarity between different neural activation patterns to create Repre-
sentational Dissimilarity Matrix (RDM) which refers to the matrix of pairwise
distance between representational patterns.

In this study, correlation distance (1 − Pearson’s correlation coefficient) is
used as a measure of similarity. We measure the functional dissimilarity at each
time point for each ROI, and then calculate the dissimilarity between the cre-
ated time × time RDMs to create a ROI × ROI RDM, which represents the
connectivity among ROIs (see, Fig. 2). The brain region division atlas used in
the experiments was Destrieux Atlas [29] provided by FreeSurfer1.

3.4 PageRank Algorithm

We used PageRank algorithm to identify regions in the brain that serve as hubs
in the linkage among regions of interest (ROIs). The PageRank algorithm [25]
is a widely used algorithm for ranking web pages, and outputs a PageRank
score which indicates a ranking of importance. The application of the PageRank
1 https://surfer.nmr.mgh.harvard.edu/.

https://surfer.nmr.mgh.harvard.edu/
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Fig. 2. Creation of a ROI × ROI RDM matrix by RSA

algorithm is not limited to Web networks but can also be extended to social and
brain networks [30–32]. The PageRank score of rk+1(Pi) is obtained by a power
method as follows.

rk+1(Pi) =
∑

Pj∈BPi

rk(Pj)
|Pj |

The PageRank score for page Pi is dependent on the PageRank scores for each
page Pj contained in BPi

, the set of all pages linking to page Pj , dividing by
|Pi|, the number of outbound links page Pj .

4 Experiments

4.1 Encoding Models for the Experiments

Encoding models are constructed to estimate the brain state from the features
of linguistic stimuli given to the human brain. Specifically, we performed ridge
regression from the features extracted from each layer of GPT-2 to brain activity.
When a tanka/prose slide was displayed, the language stimulus of ti is the pre-
sented sentence, and when a question slide was shown, the language stimulus is
the sentence which is added the question sentence to the preceding tanka/prose.

The features of language stimuli extracted from each layer of GPT-2 are
1024 dimensions, but we reduced them to 300 dimensions using principal com-
ponent analysis (PCA) to mitigate the risk of overfitting the model. In order
to account for the hemodynamic delay when observing blood oxygenation level
dependent (BOLD) signal by fMRI, we concatenated seven features from ti−9 to
ti−3 to predict brain activity at time ti. Of the six sessions, one session was test
data and the remaining five sessions were training data for building an encoding
model, and then predicted brain activities for all sessions were collected. This
regularization coefficient is chosen amongst ten values log-spaced between 101

and 106 by 5-fold Cross-Validation. For each layer and for each subject, the reg-
ularization coefficient is found as the value that led to the best performance with
a Pearson correlation between the predicted and measured brain activities.
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4.2 Experimental Settings

The features of tanka and prose are represented by GPT-2 in this study. We
used a pretrained Japanese GPT-2 model with 24 layers2, provided by Hugging
Face. We fine-tuned GPT-2 on 3571 tanka in BCCWJ that were not used in
the experiment. We further fine-tuned GPT-2 for binary text classification for
each subject, whether a subject felt it was poetic or not in the experiment.
In the second fine-tuning, the training data consisting of 250 sentences, which
were displayed during five scanning sessions used for encoding model training.
To investigate how information can be changed across each layer of GPT-2, we
extracted text features from each layer.

4.3 Results

We analyzed brain activity data from 19 subjects of 32 subjects who participated
in the experiment, selected with a statistical threshold of p < 0.01. The p-values
were calculated as the fraction of 200 random sequences in which the correlation
with the measured data was greater than or equal to the correlation between the
predicted and measured data. Furthermore, the voxels that were corrected with
FDR at q < 0.05 and had positive correlation with the measured brain activity
were extracted and used for analysis.

In Fig. 3, we show the accuracy predicted by an encoding model. Pearson
correlation coefficient was used for evaluating the accuracy. Figure 3a visualizes
the prediction accuracy on the cortical surface for one subject. The correla-
tion coefficient between the predicted and mesured brain activity patterns was
computed for each voxel and for each scanning session. The average correlation

Fig. 3. Performance of the encoding model: (a) Brain map of prediction accuracy for
each voxel at the 24th layer. Each correlation coefficient was averaged across the six
sessions. (b) Prediction accuracy for each layer. Each correlation coefficient was aver-
aged across the voxels that were FDR-corrected and have positive correlation between
the predicted and measured brain activity.

2 https://huggingface.co/rinna/japanese-gpt2-medium.

https://huggingface.co/rinna/japanese-gpt2-medium
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coefficient across all sessions is then calculated. The map shows only voxels that
were multiple-corrected with a false discovery rate (FDR) correction at q < 0.05.
Fig. 3b shows that the prediction accuracy of each layer of GPT-2. The correla-
tion coefficients for each layer were averaged across subjects, and across those
voxels that are FDR-corrected and have positive correlation between the pre-
dicted and measured brain activity. The layer with the highest correlation coef-
ficients, which was the 10th layer, is highlighted in red. Prior studies have also
reported better prediction accuracy in the middle layer of DLMs [33–35].

We created RDMs for each layer representing the behavior of the ROI in each
of the predicted brain activities labeled “poetic” and “unpoetic” based on our
experiments. The dissimilarity between 48 RDMs of 2 (poetic/unpopetic) × 24
(the number of hierarchies), each averaged across subjects, was calculated (see,
Fig. 4a). Figure 4b shows the results of dimensional compression of the above
RDM into three dimensions using UMAP [36].

Next, we applied the PageRank algorithm to a similarity matrix of a ROI
× ROI RDM to obtain PageRank scores for each ROI and detect hub regions
for each poetic and unpoetic state. PageRank scores were calculated for each
state and averaged across subjects. The result of subtracting the PageRank
score of the unpoetic state from the PageRank score of the poetic state are
visualized in Fig. 5a; the 1st layer as the lowest layer, the 13th layer as middle
layer and the 24th layer as the highest layer. The regions colored red have higher
PageRank score when the brain feels poetic, indicating that the regions have
higher “hubness”, while the regions colored blue have higher hubness when the
brain did not feel poetic. Figure 5b shows the subtracted PageRank scores after
averaged in each regions. We selected four regions where there were significant
differences: the cingulate cortex (green), the occipital lobe (orange), the parietal
lobe (red) and the frontal lobe (blue). Layers in which significant differences were
found were marked with a star (p < 0.01, a two-sample t-test).

Fig. 4. (a) RDM of hidden layer for each state. (b) The results of dimensional com-
pression of a layer × layer RDM
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Fig. 5. PageRank scores of poetic state vs. unpoetic state: (a) Brain map of the sub-
tracted PageRank scores at 1st, 13th and 24th layer as low, middle and high layer
respectively. (b) The subtracted PageRank scores after averaged in each region(*p <
0.01). (Color figure online)

4.4 Discussion

The information is gradually transitioning in Fig. 4b, indicating that the brain
activity that represented by each layer of GPT-2 changes as the hierarchy shifts.

The cingulate cortex that had a high PageRank score in Fig. 5a is involved
in a wide range of cognitive and emotional processes. It is said to be the one
which plays a key role in attention, decision making, memory, and emotion reg-
ulation [37,38]. In a previous study of brain activity during reading of poetry
and prose [39], a part of the cingulate gyrus was cited as a brain region that was
activated as the emotionality of the text increases. The insula, which also had
the same high PageRank score is also said to be an area involved in emotions
and experiences [40,41]. In the region around the cingulate cortex and the left
insula, the subtracted values were consistently positive through almost all layers.

The occipital lobe’s PageRank score was also elevated when participants
felt poetic. However, this region is primarily responsible for processing visual
information and is typically activated while reading a text, and those well-known
functions do not explain why the PageRank score was high when feeling poetic.
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In the parietal and frontal lobes, PageRank scores were high in all layers
when not feeling poetic (see, Fig. 5b). Further investigation is needed to fully
understand these results.

5 Conclusion

In this study, using brain activity data measured by fMRI while reading Japanese
tanka poetry and prose, we constructed an encoding model to predict brain state
from the features extracted from the hidden layers of a DLM. We especially used
GPT-2 to represent the feature of those tanka poetry and prose.

We investigated the ROIs that work as hubs of information connectivity in
the brain when feeling poetic by applying the PageRank algorithm to a matrix
of connectivity between ROIs. By this, we found a significant importance of the
cingulate cortex and the left insula, which has been previously reported to be
activated when a person feeling more poetic. On the other hand, we also found
results that could not be explained by previous studies, such as the finding
of hubness in the occipital lobe at higher layers of GPT-2 and hubness in the
parietal and frontal lobes when not feeling poetic. As future work, we will further
investigate the results obtained in this study.
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Abstract. Image demosaicing and denoising play important roles in
modern digital camera image processing and have been studied in recent
decades. Due to the interference of independent demosaicing and denois-
ing causes color errors and the loss of image details, therefore, the
joint demosaicing and denoising problem has been extensively studied.
Although the simple combination of existing demosaicing and denoising
methods can obtain recovery images, there are still considerable room for
improvement. In this paper, we propose an end-to-end frequency domain
features network (FFNet) to solve the ill-posed joint problem. Differ-
ent from previous methods based on spatial domain features, FFNet
uses frequency domain information to learn global and local image fea-
tures, and it is based on the vision Transformer architecture. Our model
contains mainly two frequency domain feature blocks: a global Fourier
block (GFB) that learns a global frequency domain parameter weight to
achieve global attention and a local Fourier block (LFB) based on multi-
layer perceptron to enhance local feature learning. These two modules
and channel attention are combined into the frequency domain attention
block (FAB), which constitutes the core module of FFNet. Extensive
experiments demonstrate that FFNet outperforms previous approaches
and achieves state-of-the-art performance.

Keywords: Image demosaicing and denoising · joint problem ·
frequency domain network

1 Introduction

Modern digital cameras are producing increasingly better pictures. To obtain
high-quality images from raw sensor data, modern digital cameras need to per-
form a series of different image reconstruction steps. The sequence of indispens-
able reconstruction steps is known as the image processing pipelines, where image
demosaicing and denoising are very important steps. Therefore, image demosaic-
ing and denoising are classical image restoration problems. Demosaicing aims at
reconstructing full-resolution color images from color filter array (CFA) samples
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such as the Bayer pattern [2]. The Bayer pattern samples the green pixels on a
quincunx grid (half of the image resolution) and the red and blue pixels on rect-
angular grids (a quarter of the image resolution). Meanwhile, in the real world,
digital cameras are usually polluted by different kinds of unknown noise that can
interfere with the quality of image reconstruction. Most previous demosaicing
and denoising methods were usually designed independently and implemented
sequentially in image signal processing (ISP). However, the demosaicing color
distortion will complicate the denoising process, or the denoising artifacts can
be amplified in the demosaicing process. Therefore, joint demosaicing and denois-
ing (JDD) is a very practical problem and has attracted increasing attention in
the research community and commercial industry [20,24,29,34].

Recently, JDD based on the deep convolutional neural network (CNN) has
exceeded traditional approaches [6,20,24,34]. Considering the difference between
different frequencies of images and abundant green channel information, SGNet
[24] introduces two self-guidance methods, density-map and green channel guid-
ance to reconstruct image details. Xing and Egiazarian [34] comprehensively
studied various solutions for the mixture problem, they used the residual channel
connection block (RCAB) [42] as the basic block to extract features and demon-
strate the performance improvement between different loss functions. The above
methods mainly are based on spatial domain features to restore images.

Attention mechanisms have been widely studied and used, including self-
attention and depthwise convolution [3,5,25]. In particular, global attention has
had significant effects on visual tasks. However, with the expansion of image
resolution in the spatial domain, many global attention methods increase the
computational complexity of the model and inevitably incur the loss of local
information. Inspired by this review paper [22] and GFNet [30], we use the
frequency domain features to reconstruct images. Compared with the image
spatial domain, frequency domain learning can also achieve the effect of global
attention and is more efficient [4,8,21,28,30,37]. In this paper, we use the fast
Fourier transform (FFT) algorithm to achieve frequency domain feature learning.
Our contributions are as follows:

1) We propose a novel frequency domain feature network (FFNet) for joint image
demosaicing and denoising, which is based on an end-to-end vision Trans-
former backbone and does not require extra noise estimation inputs.

2) We design a frequency domain attention block (FAB) that consists of global
Fourier and local Fourier blocks, it can enjoy a global receptive field and
local feature learning. Meanwhile, we introduce channel attention to FAB to
strengthen various feature domain learning.

3) Extensive experiments show that FFNet achieves state-of-the-art (SOTA)
results on three JDD datasets and can also process noise-free image demo-
saicing.
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2 Related Work

2.1 Joint Demosaicing and Denoising

Image demosaicing is used to recover full color resolution images from color fil-
ter array (CFA) pattern images and is usually performed at the beginning of
ISP, where the most popular CFA pattern is Bayer CFA. Therefore, most demo-
saicing methods have been specifically designed for the Bayer CFA. Existing
algorithms can also be classified into two categories: model-based methods and
learning-based methods. Model-based methods [11,27,36] focus on the corre-
lations between the spatial and spectral domains to reconstruct images. Early
learning-based models are simple and have poor generalization ability lead to
cannot effectively restore images [16,32]. Recently, the deep learning methods
for image demosaicing have attained SOTA performance [33,35,38,40]. In prac-
tical applications, image noise is inevitable during imaging, and this kind of noise
seriously disturbs the final visual quality. Gu et al. [7] use a denoiser to remove
noise. Zhang et al. [39] built a residual learning CNN (DnCNN) for Gaussian
denoising and attained amazing results.

Some studies have shown that the combined solutions of the mixture prob-
lem are better than the traditional sequential solutions [15,29,34]. These end-
to-end combined methods can avoid interference between different artifacts in
sequence processing. Existing algorithms can also be classified into two cate-
gories: model-based methods that use mathematical models and image priors
to recover images [9,17,19]. The learning-based methods learned from abundant
training data, Gharbi et al. [6] trained a deep CNN on millions of datasets and
Kokkinos and Lefkimmiatis [20] proposed a majorization-minimization algorithm
and a cascade of residual denoising network. Liu et al. [24] built a self-guidance
network (SGNet) with density-map guidance and green-channel guidance for
JDD. Xing and Egiazarian [34] comprehensively studied various solutions. They
explored the performance differences between different feature extraction blocks,
loss functions and training methods. Janjušević et al. [13] proposed CDLNet
from convolutional dictionary learning. Although these end-to-end methods can
obtain good results, there are still a certain gap for ground truth images.

2.2 Frequency Domain Feature Learning

Discrete Fourier transform (DFT) is widely used in digital image processing.
Jiang et al. [14] compared the frequency domain difference between real and
fake images to recover images through DFT. FNet [21] and GFNet [30] are both
efficient FFT models. The former was used for the natural language process-
ing, and the latter was used for image classification. FDA [37] used Fourier
domain adaptation for semantic segmentation. Li et al. [23] successfully applied
the Fourier neural operator (FNO) to zero-shot super-resolution and Guibas et
al. [8] designed an AFNO for multiple vision tasks by combining GFNet and
FNO. Chi et al. [4] and Mao et al. [28] used a convolutional operator in the FFT
to extract features.
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3 Methodology

We first introduce our model architecture in Sect. 3.1. Then, we introduce the
Fourier filter block (FFB) in Sect. 3.2. Finally, we present our loss functions in
Sect. 3.3.

3.1 Model Architecture

Our FFNet uses the vision Transformer architecture as shown in Fig. 1. It con-
sists of three parts: shallow feature extraction, deep feature extraction and color
reconstruction. Given a Bayer CFA input image, we first subsample the CFA
image into a half-resolution four channels image ICFA ∈ R

H
2 ×W

2 ×4, then apply
one 3×3 convolutional layer to extract the shallow feature FS ∈ R

H
2 ×W

2 ×C ,
where H and W are the height and width of the full resolution, respectively, and
C denotes the channel number of the feature. We then use multiple residual fre-
quency domain attention groups (RFAGs) to further obtain the deep feature FDF

from FS . As shown in Fig. 1, each RFAG contains multiple frequency domain
attention blocks (FABs) and one 3× 3 convolutional layer. The FAB mainly con-
tains a FFB and a channel attention block (CAB) from RCAN [42], which are
shown in Fig. 2a and Fig. 1, respectively. Meanwhile, we use a long skip connec-
tion to transfer the shallow feature directly to the color reconstruction module
of the model, which can help HRFAG to focus on deep feature learning and sta-
bilize the overall network training. Lastly, we use pixel-shuffle upsampling [31]
to reconstruct three-channel full-resolution images IHR.
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Fig. 1. The top row represents overall architecture of FFNet, and the bottom three
modules represent CAB, RFAG and FAB, respectively. In CAB, the s© and ×© represent
the sigmoid function and element-wise product, respectively.

3.2 Fourier Filter Block (FFB)

The FFB module mainly contains the global Fourier block (GFB) and local
Fourier block (LFB), which is shown on the Fig. 2a. The input image features first
pass through a 1×1 convolutional layer and a GELU activation function [10] and
then enter the GFB and LFB, respectively. Finally, we use a 1×1 convolutional
layer to aggregate the features of the GFB and LFB.
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Fig. 2. (a) the structure of FFB, where X represents the frequency domain features,
K denotes the learnable filters and c© is the Concatenation. Re and Im represent the
real and imaginary parts of FFT, respectively. (b) the frequency domain visualization
of GFB stage 5 in FFNet, under 10 noise levels. (c) the frequency domain feature maps
of the corresponding stage LFB.

Global Fourier Block (GFB). In DFT, multiplication in the frequency
domain is equivalent to circular convolution in the time domain. Therefore, this
paper [30] shows that multiplying a frequency domain filter K is equivalent to
learning global features. Given the images x ∈ R

H×W×C , where H × W denotes
the spatial dimension and C is the number of feature map channels, we first
perform a 2D FFT to convert the spatial domain to the frequency domain as
follows:

X = F(x), (1)

where F(·) represents the 2D FFT and X is a complex tensor (with the real
part and the imaginary part, X ∈ R

H×(�W/2�+1)×C). In the GFB, the com-
putational complexity of FFT and inverse fast Fourier transform (IFFT) are
O(HWlog(HW )), and the element-wise multiplication is O(H(�W/2� + 1)).
Therefore, the computational complexity of the GFB is O(HWlog(HW )), and
the parameters of learnable filter K is H(�W/2� + 1)C. Here, it should be noted
that since the feature map size of filter K has been fixed during the training
stage, interpolation is required so that the feature map size of K corresponds to
the resolution of the images in the inference stage.

Local Fourier Block (LFB). In [4,28], they utilize convolutional kernels to
learn frequency domain features. Corresponding to the GFB, we characterize
LFB as extracting local features in the frequency domain, which is based on the
local property of small convolution kernels. Therefore, the LFB consists of two
1×1 convolutional layers as follows:

Z0 = Concat(F(x)real,F(x)imaginary), (2)

Z1 = Convmlp(Z0), (3)

where Convmlp consists of a 1×1 convolutional layer, a GELU activation function
and a 1×1 convolutional layer sequentially.
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3.3 Loss Function

For the mixture problem of image demosaicing and denoising, we calculate the
L1 loss on the final result images IHR and ground truth images Igt as follows:

Lpixel = ‖IHR − Igt‖1, (4)

We add a frequency reconstruction loss function to strengthen the high-frequency
extraction as follows:

LF = ‖F(IHR) − F(Igt)‖1, (5)

where F(·) represents the 2D FFT. The final loss function in training phase is
as follows:

Ltotal = Lpixel + λLF , (6)

where we set λ = 0.05 in all experiments.

4 Experiments

In this section, we describe the datasets, evaluation metrics and training details.
We then compare the effects of GFB and LFB, as well as the effects of different
kernel sizes on LFB. Lastly, we demonstrate the performance of the different
approaches for JDD and noise-free demosaicing (DM), respectively.

4.1 Datasets and Implementation Details

Datasets and Evaluation Metrics. We use the DIV2K [1] dataset consisting
of 900 2K resolution images (800 for training, 100 for validation). For data pre-
processing of denoising, noisy input images are generated by adding Gaussian
noise. The noise level is randomly sampled from [0, 20] out of 255. For data pre-
processing of demosaicing, we use the Bayer CFA pattern (RGGB) to mosaic the
color image. We test the performance of different models on three public datasets:
McMaster (McM) [41], Kodak and Urban100 [12]. For the evaluation metrics,
the peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM) are
used in all experiments. Our code and pretrained models are available at https://
github.com/FeiyuLi-cs/FFNet.

Training Details. For data augmentation, the sampled images are randomly
cropped to 128×128, and each image patch is horizontally and vertically flipped
with a probability of 0.5. The model is trained by the Adam optimizer [18] (β1 =
0.9, β2 = 0.999) and runs on one NVIDIA RTX 3090 GPU in all experiments.
For JDD problems, we trained the FFNet model for 200 epochs with a batch
size of 32. The initial learning rate is set to 5e−4, which gradually decays to 1e−6

with cosine annealing [26]. And the DM uses the same training configuration. In
all experiments, we set the basic feature dimension to 64.

https://github.com/FeiyuLi-cs/FFNet
https://github.com/FeiyuLi-cs/FFNet
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4.2 Ablation Study

We conducted extensive ablation studies to validate the performance difference
between the GFB and LFB and verified the recovery effects between different
convolution kernel sizes in the LFB.

Effects of the GFB and LFB. We conducted experiments to demonstrate the
effects of the proposed GFB and LFB. The blocks are tested on three datasets
at 10 noise levels, which is shown in Table 1. Compared with the LFB, the
GFB improves the performance of the model. Although the GFB increases the
number of model parameters, the PSNR value on the three datasets increased
by 0.03 dB on average, and the training time was shortened by 6 h. Benefiting
from the two modules, FFNet obtains a further performance improvement of
0.1 dB on the Urban100 dataset. We show the frequency domain images of the
learnable weight from GFB stage 5 in Fig. 2b, and the frequency domain feature
maps of the corresponding a McMaster image in Fig. 2c.

Table 1. Ablation study of the GFB and LFB in terms of PSNR.

GFB LFB Params (M) Train Time (H) McMaster Kodak Urban100

� 13.46 29 33.92 34.13 33.03

� 4.92 35 33.88 34.10 33.01

� � 14.65 40.6 33.95 34.16 33.13

Table 2. Ablation study of different kernel sizes of the LFB in terms of PSNR.

Kernel Size Params (M) Train Time (H) McMaster Kodak Urban100

3×3 kernel 24.09 45 33.89 34.11 32.99

1×1 kernel 14.65 40.6 33.95 34.16 33.13

Effects of Different Convolutional Kernel Sizes for the LFB. Because
the LFB is designed to extract the frequency domain local features of images,
we compared the different convolutional kernel sizes using 1×1 and 3×3 kernels.
Table 2 shows the performance difference between the 1×1 and 3×3 kernels on
three datasets with 10 noise levels. Using the 1×1 kernel is better than the
3×3 kernel, which improves the PSNR by 0.14 dB on the Urban100 dataset.
Meanwhile, the training time of the 1×1 kernel is faster than the 3×3 kernel and
stores fewer parameters.
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4.3 Main Results

In this section, we first compare the results of DM and JDD. Then, we combine
image denoising (DN) with our DM model to compare the performance of JDD
and independent processing pipelines. To provide a fair comparison, the evalua-
tion results and indicators for all officially publicly provided pretrained models
were tested on our computer, and the values of other unavailable models are
from the corresponding paper.

Urban100:img26

IRCNN

FFNet-DM-S

RSTCANet-B

RSTCANet-S

DPIR

FFNet-DM-B

Fig. 3. Comparisons with the other noise-free demosaicing methods.

Table 3. Performance comparison of noise-free demosaicing methods on different
datasets. Our FFNet outperforms other models on the Kodak dataset. The top three
results are marked in red, blue and green.

Model McMaster Kodak Urban100

PSNR SSIM PSNR SSIM PSNR SSIM

IRCNN [40] 37.83 0.9643 40.64 0.9819 37.10 0.9760

RSTCANet-B [35] 38.89 0.9689 42.10 0.9892 38.58 0.9821

DPIR [38] 39.39 0.9723 42.30 0.9881 39.31 0.9829

FFNet-DM-S 39.48 0.9718 42.86 0.9900 39.55 0.9839

RSTCANet-S [35] 39.54 0.9711 42.47 0.9897 39.61 0.9846

FFNet-DM-B 39.61 0.9721 42.96 0.9902 39.94 0.9842

Noise-Free Demosaicing. To test the performance of our model for noise-free
image demosaicing, we use the same training configuration to retrain the JDD
version of FFNet on the noise-free DIV2k dataset, called FFNet-DM-B. Then, we
introduce FFNet-DM-S by reducing the number of RFAGs, which only contains
three RFAGs and the parameters of the model are halved. In this section, we
compare other DM methods, including IRCNN [40], DPIR [38], and RSTCANet
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[35], where RSTCANet-B is the basic model of RSTCANet and RSTCANet-
S has 3x the model size and computational complexity of RSTCANet-B. The
quantitative performance is shown in Table 3. FFNet-DM-B achieves the best
results on three datasets, RSTCANet-S achieves the second best results on the
McMaster and Urban100 datasets, and the lightweight FFNet-DM-S still attains

Table 4. Performance comparison of JDD methods on different datasets, our FFNet
outperforms other models. The top results are marked in Bold.

Model Noise McMaster Kodak Urban100

PSNR SSIM PSNR SSIM PSNR SSIM

SGNet [24] 5 – – – – 34.54 0.9533

CDLNet [13] 35.27 0.9324 37.03 0.9517 34.59 0.9540

JDNDM [34] 36.03 0.9407 36.86 0.9515 35.10 0.9571

FFNet 36.33 0.9438 37.20 0.9529 35.50 0.9582

SGNet [24] 10 – – – – 32.14 0.9229

CDLNet [13] 33.28 0.9048 33.98 0.9136 32.41 0.9294

JDNDM [34] 33.72 0.9108 33.88 0.9124 32.84 0.9327

FFNet 33.95 0.9153 34.16 0.9160 33.13 0.9352

SGNet [24] 15 – – – – 30.37 0.8923

CDLNet [13] 31.81 0.8790 32.14 0.8794 30.88 0.9071

JDNDM [34] 32.09 0.8837 32.04 0.8766 31.26 0.9103

FFNet 32.32 0.8893 32.34 0.8829 31.55 0.9147

Kodim15 CDLNet JDNDM FFNet (ours)

Urban100:img26 CDLNet JDNDM FFNet (ours)

Fig. 4. Comparisons with the other JDD methods at 15 noise levels.
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significant performance on the Kodak dataset. Compared with DPIR, FFNet-
DM-S improves the performance by 0.24 dB on the Urban100 dataset and 0.09
dB on the McMaster dataset. Especially, FFNet-DM-S surpasses RSTCANet-S
by 0.39 dB on the Kodak dataset. Figure 3 shows that FFNet-DM-B effectively
restore colors and textures in dense grid regions.

Joint Demosaicing and Denoising. For the JDD task, we compare three
deep learning models (SGNet [24], CDLNet [13], JDNDM [34]) at three noise
levels [5, 10, 15], where SGNet does not provide the official model. As shown in
Table 4, our model outperforms previous methods on all datasets. It achieves a
0.3 dB gain in PSNR over the previous best model JDNDM , and SGNet and
JDNDM require extra noise estimation inputs. Our method effectively removes
noise while maintaining fine details, and the visual results under 15 noise levels
are shown in Fig. 4. In Row 1, FFNet effectively restores the texture details of
the clothing, and the visual effect is more refined and closer to the original image.
However, other methods cause a certain degree of mixed distortion. In Row 2,
compared to other approaches, FFNet avoids color errors of dense grid regions
and restores dense crossbeams in buildings.

In addition, we combine DnCNN [39] (an efficient image denoising model)
with our FFNet-DM-B to test the performance of sequential demosaicing and
denoising pipelines. The results are compared with our JDD version of FFNet on
the McMaster and Kodak datasets, as shown in Table 5. At 10 noise levels, we
can observe that the order of DM→DN is better than DN→DM. Although they
cannot effectively remove noise, DM→DN avoid color errors. On the contrary,
FFNet surpasses two sequential processing modes. We show their visual results
in Fig. 5. The reconstruction qualities of the JDD method are significantly better
than pipeline modes.

Table 5. Performance comparison of different demosaicing and denoising processes at
10 noise levels.

Pipeline Method McMaster Kodak

PSNR SSIM PSNR SSIM

DN→DM DnCNN→FFNet-DM-B 26.97 0.6608 28.11 0.6732

DM→DN FFNet-DM-B→DnCNN 28.42 0.6736 28.30 0.6711

JDD FFNet 33.95 0.9153 34.16 0.9160

McM:img1 DnCNN FFNet-DM-B FFNet-DM-B DnCNN FFNet (ours)

Fig. 5. Comparisons with the different processing pipelines at 10 noise levels.
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5 Conclusion

We demonstrated a frequency domain features network (FFNet) that can signif-
icantly improve the quality of joint demosaicing and denoising without requiring
extra noise estimation inputs. Our model can not only learn global features with-
out losing local information but also be simpler and more effective. Compared
with the previous approaches, FFNet uses the vision Transformer architecture
and combines frequency domain features and the channel attention mechanism,
achieving efficient reconstruction performance. Extensive experiments show that
our FFNet outperforms state-of-the-art solutions in terms of both visual qual-
ities and details. In addition, the FFNet-DM-B and lightweight FFNet-DM-S
can also restore noise-free mosaiced images. In the future, we will explore more
joint problems.
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Abstract. Knowledge distillation transfers knowledge from the teacher
model to the student model, aiming to improve the student’s perfor-
mance. Previous methods mainly focus on effective feature transforma-
tions and alignments to improve distillation efficiency and reduce infor-
mation loss. However, these approaches ignore the differences between
different pixels and layers, which contribute differently during distilla-
tion. To this end, we propose the novel knowledge distillation with fea-
ture enhancement mask (FEM). The FEM consists of two components:
pixel-level feature enhancement mask and layer-level dynamic impor-
tance. The pixel-level feature enhancement mask treats target object and
non-target object differently during distillation to help the student cap-
ture the teacher’s crucial features. The layer-level dynamic importance
dynamically regulates the effect of each layer in distillation. Extensive
experiments on CIFAR-100 indicate that FEM can help the student cap-
ture the teacher’s crucial features and outperforms previous One-to-One
distillation methods even One-to-Many distillation methods.

Keywords: Knowledge distillation · Feature enhancement mask ·
Crucial feature · Dynamic importance

1 Introduction

Deep learning has gained widespread attention and rapid development in recent
years due to its good robustness to the diversity of targets. However, the better
performance of deep learning models, the more resources they typically require,
which limits their application on resource-constrained equipment such as Inter-
net of Things (IoT) and mobile devices. Therefore, researchers have begun to
focus on developing efficient deep learning models that can meet the low power
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consumption and real-time requirements of low-resource devices, while mini-
mizing the reduction of model performance. Knowledge distillation [8] was first
proposed by Hinton as the mainstream neural network lightweight technique. Its
core idea is to use a complex and highly accurate model, known as the teacher
model, to guide a simpler and less parameterized student model, allowing the
student model to approach the performance of the teacher model.

Fig. 1. An overview of the proposed knowledge distillation with feature enhancement
mask.

Subsequent research has further developed the concept of knowledge distil-
lation, utilizing intermediate features of the teacher model to guide the student
model, rather than just logits. Methods [1,7,13,14,19,22,24] adopt a One-to-
One distillation manner, calculating the distance between teacher and student
same-level features. Their differences primarily lie in the method of feature trans-
formation and the choice of the distance function. Methods [2,4] indicate that
this manual alignment will result in loss of valuable information, hence adopting
a One-to-Many distillation manner.

However, these methods focus more on the transformation and alignment
between teacher and student features, ignoring differences between different pix-
els and layers. In computer vision, image content is typically divided into fore-
ground and background, and separating foreground and background is a crucial
step in various tasks. A variety of methods have attempted to emphasize the
importance of foreground features in object detection distillation field. Chen [3]
assigned weights of 1.5 and 1 to the foreground and background respectively dur-
ing the distillation to increase the importance of the foreground. Li [11] chose to
only distill the proposal features generated by the teacher model and the student
model. Sun [18] introduced a Gaussian mask to highlight the central region of
the labeled object and reduce the background noise around the target region.

Based on these inspirations, we propose a distillation method with feature
enhancement mask (FEM). For clarity, it is shown in Fig. 1. FEM employs the
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last layer of the teacher to generate a feature enhancement mask. Specifically, a
positive value will produce a weight of 1.0 while a negative value will produce
a weight of 0.5, and all the weights together constitute the mask. For consis-
tency, the masks utilized in previous layers are upsampled and generated from
the final layer. In this way, the crucial features will be placed greater empha-
sis during distillation. Moreover, features from different levels exhibit distinct
semantic information and contribute differently to the final prediction. There-
fore, dynamic importance is introduced to regulate the effect of different layers
during distillation.

Overall, the contributions of this paper are summarized as follows:

1. The feature enhancement mask is proposed to emphasize the teacher’s crucial
features.

2. Dynamic importance is introduced to regulate the effect of different layers.
3. Extensive experiments are conducted on CIFAR-100 dataset to verify the

effectiveness of FEM. They demonstrate that FEM can help the student cap-
ture the teacher’s crucial features.

2 Related Work

Knowledge distillation (KD) was first proposed by Hinton [8]. It is a technique
using both the teacher logits and the ground truth labels to supervise the stu-
dent’s training, which can be formalized as:

LCE = −
N∑

i=1

yi log (qi (x, 1)), (1)

LKL = DKL (pi (x, t) ||qi (x, t)) =
N∑

i=1

pi (x, t) log
pi (x, t)
qi (x, t)

, (2)

LKD = (1 − α) LCE + αt2LKL, (3)

where t is the distillation temperature to soften predictions. yi is the one-hot
label. qi (x, t) is the softened student’s prediction while pi (x, t) is the softened
teacher’s prediction.

To further improve KD, recent methods focus on the knowledge contained
in intermediate layers. FitNet [14] uses the N -th layer of the teacher to guide
the M -th layer of the student. The convolutions are introduced to transform the
student’s features. AT [24] performs the channel-wise pooling on both student’s
and teacher’s features to produce spacial attention maps. SP [19] calculates
the similarity matrices of student and teacher, which models the distribution
of the processed data. PKT [13] models the student’s and teacher’s features
as probability distributions and uses KL divergence to measure the similarity
between them. VID [1] maximizes the mutual information through variational
inference. MGD [22] reduces the channels of the teacher to match the student
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via the Hungarian algorithm, a parameter-free operation. OFD [7] only distills
the helpful information between the teacher and student with proposed Margin-
ReLU. The above methods can be formalized as:

LFD =
l∑

i=1

D
(
Ts (F s

i ) , Tt

(
F t
i

))
, (4)

where T is the transformation function to transform the features to the target
representations. D is the distance function to measure the distance between the
teacher and student. FitNet, PKT and SP only select one teacher-student pair,
i.e., l = 1. While AT, VID, MGD and OFD discard the redundant layers, i.e.,
l = min(Lt, Ls).

Recent works point out that the above One-to-One distillation methods
can not learn the teacher’s information adequately. ReviewKD [4] proposes the
knowledge review mechanism, utilizing multi-level information of the teacher to
guide one-level learning of the student. SemCKD [2] introduces the attention
mechanism into knowledge distillation, using all teacher layers to guide a certain
student layer. The attention mechanism is used to measure the importance of
different teacher layers to the current student layer, which can be formalized as:

LFD =
Ls∑

i=1

Lt∑

j=1

α(si, tj)D
(
T (F s

i ) , T
(
F t
j

))
. (5)

All previous methods do not discuss the crucial information contained in
the teacher, which is found effective to improve the student’s performance.
This paper focuses on the One-to-One distillation method with crucial fea-
ture enhancement mask, which outperforms the above One-to-Many distillation
methods.

3 Method

3.1 Feature Enhancement Mask

As demonstrated in Sect. 1, foreground contributes more to object detection than
background and is hence treated differently during knowledge distillation. We
visualized the intermediate layers of the CNN with channel attention maps [24]
(Fig. 2) and found that this conclusion also applies to the image classification.
It can be observed that the final layer focuses only on the area near the mouse,
while the leaves in the background are abandoned. The student will be unable to
capture the teacher’s crucial information if all pixels are treated equally during
distillation.

However, methods based on anchors and proposals are unavailable in image
classification. A different approach needs to be explored to treat target and
non-target objects differently. OFD [7] pointed out that the teacher’s positive
values contain valuable information while the negative values do not. Therefore,
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Fig. 2. Visualization of intermediate layers.

it proposed Margin-ReLU (Fig. 3(b)) and partial L2 to skip the distillation of
unnecessary information, similar to the method in [11]. Nevertheless, the research
indicates that this distillation manner, i.e., discarding background, is adverse to
learning the relation between pixels for the student [20].

Fig. 3. (a) ReLU. (b) Margin-ReLU. (c) FEM.

The feature enhancement mask (FEM) is proposed to distinguish between
foreground and background at the pixel level, with the idea of Gaussian mask
[18]. In particular, the teacher’s positive feature will produce the weight of 1.0
while the negative feature will produce the weight of 0.5. It is shown in Fig. 3(c)
and formalized as:

FEM(x) =
{

1 x > 0,
0.5 x ≤ 0.

(6)

Yosinski [21] found that AlexNet’s feature maps from different levels are
significantly different. The convolution kernels in shallow layers mainly capture
simple features such as edges, textures and colors. The kernels in the middle
layers learn deeper semantic information and gradually discard features that are
not related to the category. The feature map of the final layer mainly focuses
on the target object while discarding the rest information. It is inappropriate
to generate masks using shallow layers, since almost all the objects will produce
the weight of 1.0.

Therefore, all masks are generated from the final layer, which can be formal-
ized as:

M [i] = FEM
(
Ti(F t

Lt
)
)

i = 1, 2, . . . , Lt − 1, (7)

where F t
Lt

represents the feature of the teacher’s Lt-th layer. Assume that
F t
Lt

∈ Rb×c×h×w and F t
i ∈ Rb×ci×hi×wi , where b, c, h and w represent the
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batch size, channels, height and width of the feature. Ti() is the transformation
function:F t

Lt
∈ Rb×c×h×w → Rb×ci×hi×wi . Specifically, it consists of a convolu-

tion layer to transform c and a linear upsampling to transform h and w. The
final layer can directly generate the mask based on FEM without transformation,
i.e., M [Lt] = FEM(F t

Lt
). Note that the position of feature extraction should

be in front of ReLU activation function. Otherwise, the negative features will be
filtered out by ReLU, which is similar to OFD.

3.2 Dynamic Importance

CNN typically consists of several convolutional layers, such as Bottlenecks in
ResNet [5,6] and Shuffle Units in ShuffleNet [12,25], and the number of pixels
contained in features varies significantly with the increasing of the layer. Specif-
ically, features will decrease in width and height to 1

2 as they flow into the next
layer while doubling the number of channels, i.e., shallow layers contain more
pixels while deep layers contain less.

As demonstrated in Sect. 3.1, features from different layers exhibit distinct
semantic information. Features of the final layer contain category information
used for classification and should be emphasized during distillation. However,
previous works distilled each layer equally without distinction. The final layer
will contribute less during distillation since it has fewer pixels. Therefore, we
propose dynamic importance to dynamically regulate the effect of each layer in
distillation, which can be formalized as:

LFD =
l∑

i=1

E(i)D
(
Ts (F s

i ) , Tt

(
F t
i

))
(8)

=
l∑

i=1

D (Ts (F s
i ) , Tt (F t

i ))
n(l−i)

, (9)

where n is the parameter to adjust the importance of each layer. Notably, pixels
of each layer have the same importance when n = 2 in most cases.

3.3 Loss Function

The loss function of this paper is defined as Eq. (10). For simplicity, the redun-
dant layers are discarded following previous One-to-One distillation methods.
The difference is that we discard the shallow layers rather than the deep layers
since they contain more valuable information. M [i] is the feature enhancement
mask proposed in Sect. 3.1. n is the hyperparameter introduced in Sect. 3.2.

LFEM =
l∑

i=1

M(i)D (Ts (F s
i ) , Tt (F t

i ))
n(l−i)

. (10)

The total loss function is defined as follows:

Ltotal = LKD + αLFEM . (11)

LKD refers to the original loss defined as Eq. (3) and α is the hyperparameter
to balance the proposed loss.
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4 Experiments

In this section, we evaluate the effectiveness of the proposed method through
extensive experiments for image classification. We experiment with different net-
work architectures and compare our approach with various distillation methods.
Exploratory experiments and visualization experiments are conducted to further
analyze the proposed method.

4.1 Experiments on CIFAR-100

Datasets. The CIFAR-100 [10] dataset contains 50,000 images for training and
10,000 images for testing, which are drawn from 100 different classes. Each class
has 500 training images and 100 testing images. Each sample is of 32 × 32 size
and RGB color image.

Network Architectures. A variety of representative networks are used for
evaluation on CIFAR-100, including VGG [17], ResNet [5,6], WideResNet [23],
MobileNet [9,16] and ShuffleNet [12,25]. These networks compose 11 pairs
of student-teacher combinations, of which 6 pairs have architectures of the
same style, such as: ResNet110/ResNet32, VGG13/VGG8, etc.; 5 pairs have
completely different architectures, such as: VGG13/MobileNetV2, WRN-40-
2/ShuffleNetV1, etc.

Compared Approaches

– Logits distillation includes KD [8] and DKD [26].
– One-to-One distillation includes FitNet [14], AT [24], PKT [13], VID [1] and

OFD [7].
– One-to-Many distillation includes SemCKD [2] and ReviewKD [4].

Training Details. All models are trained for 240 epochs and the learning rate
decayed by 0.1 at the 150-th, 180-th and 210-th epoch. The learning rate is
initialized as 0.05, while 0.01 for MobileNet and ShullfeNet. The batch size is set
as 64 and the weight decay is set as 0.0005. Stochastic gradient descent (SGD
[15]) with momentum is used in all experiments, while the momentum is set as
0.9. α in the loss function Eq. (11) is set as 0.1. For fairness, results of previous
methods are all reported in previous papers and combinations that have not
been experimented on in papers are denoted by “–”.

Experimental Results on CIFAR-100. Extensive experiments are con-
ducted on CIFAR-100 to examine the proposed FEM. The experimental results
are reported in Table 1 and Table 2. Table 1 contains the results where teachers
and students have the same network architectures. Table 2 contains the results
where teachers and students have different network architectures.
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According to the distillation manner, previous methods are divided into Log-
its, One-to-One and One-to-Many. Notably, FEM achieves consistent improve-
ments in all teacher-student pairs, compared with the other One-to-One dis-
tillation methods. Our method achieves 1–3% improvements on teacher-student
pairs of the same architectures and 1–5% improvements on teacher-student pairs
of the different architectures. It strongly supports the effectiveness of FEM. Fur-
thermore, FEM outperforms One-to-Many distillation methods on almost all
teacher-student pairs (except for ResNet32×4/ShuffleNetV1), which indicates
that emphasizing crucial features in the distillation is more efficient than learn-
ing knowledge from other layers.

Table 1. Results on CIFAR-100. Teachers and students have the same architectures.

Distillation Manner Teacher ResNet56 ResNet110 ResNet32×4 WRN-40-2 WRN-40-2 VGG13

72.34 74.31 79.42 75.61 75.61 74.64

Student ResNet20 ResNet32 ResNet8×4 WRN-16-2 WRN-40-1 VGG8

69.06 71.14 72.50 73.26 71.98 70.36

Logits KD 70.66 73.08 73.33 74.92 73.54 72.98

DKD 71.97 74.11 76.32 76.24 74.81 74.68

One-to-One FitNet 69.21 71.06 73.50 73.58 72.24 71.02

PKT 70.34 72.61 73.64 74.54 73.54 72.88

AT 70.55 72.31 73.44 74.08 72.77 71.43

VID 70.38 72.61 73.09 74.11 73.30 71.23

OFD 70.98 73.23 74.95 75.24 74.33 73.95

FEM 72.03 74.43 76.39 76.47 75.35 75.03

One-to-Many ReviewKD 71.89 73.89 75.63 76.12 75.09 74.84

SemCKD 71.29 73.82 76.23 75.86 73.53 74.43

4.2 More Analysis

Distillation Position. As demonstrated in Sect. 3.1, discarding unimportant
features is adverse to the student learning the relation between pixels, which will
be caused by extracting features after ReLU activation function. In this section,
we extract features and generate feature enhancement masks at two positions,
before and after the ReLU activation function. The experimental results are
shown in Table 3. The results indicate that assigning a lower weight to unim-
portant features to reduce their impact in distillation is more effective than
discarding these features directly.

Hyperparameter Analysis. Dynamic importance is proposed in Sect. 3.2 to
regulate the effect of each layer in distillation, where hyperparameter n is intro-
duced. In this section, we set the search space as [1,16] to explore the impact
of different values of hyperparameter n on distillation results. The experimental
results are shown in Table 4. As demonstrated in Sect. 3.2, each layer has the
same effect in distillation when n = 2. While the results indicate that students
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Table 2. Results on CIFAR-100. Teachers and students have the different architec-
tures.

Distillation Manner Teacher ResNet32×4 WRN-40-2 VGG-13 ResNet32×4 ResNet32×4

79.42 75.61 74.64 79.42 79.42

Student ShuffleNetV1 ShuffleNetV1 MobileNetV2 ShuffleNetV2 MobileNetV2

70.50 70.50 64.60 71.82 64.60

Logits KD 74.07 74.83 67.37 74.45 68.39

DKD 76.45 76.70 69.71 77.07 –

One-to-One FitNet 73.59 73.73 64.14 73.54 68.28

PKT 74.10 73.89 67.13 74.69 68.88

AT 71.73 73.32 59.40 72.73 67.15

VID 73.38 73.61 65.56 73.40 67.94

OFD 75.98 75.85 69.48 76.82 –

FEM 77.39 77.41 70.85 77.85 69.98

One-to-Many ReviewKD 77.45 77.14 70.37 77.78 –

SemCKD 76.31 76.83 70.09 77.62 69.00

Table 3. Impact of the distillation positions.

Teacher ResNet32×4 VGG-13 WRN-40-2 WRN-40-2 VGG-13 ResNet32×4

79.42 74.64 75.61 75.61 74.64 79.42

Student ResNet8×4 VGG-8 WRN-16-2 ShuffleNetV1 MobileNetV2 ShuffleNetV1

72.50 70.36 73.26 70.50 64.60 70.50

Before 76.39 75.03 76.47 77.41 70.85 77.39

After 76.05 74.36 75.83 76.58 70.56 76.97

Table 4. Impact of the hyperparamter n.

Teacher ResNet110 VGG13 WRN-40-2 WRN-40-2 VGG13 ResNet32×4

74.31 74.64 75.61 75.61 74.64 79.42

Student ResNet32 VGG8 WRN-16-2 ShuffleNetV1 MobileNetV2 ShuffleNetV1

71.14 70.36 73.26 70.50 64.60 70.50

n = 1 74.10 74.37 76.12 77.23 70.62 76.35

n = 2 74.10 74.49 76.05 77.33 70.76 76.87

n = 4 74.43 75.03 76.47 77.41 70.85 77.39

n = 8 74.16 74.33 76.24 77.42 70.36 77.04

n = 16 73.97 75.02 75.89 77.23 70.33 76.28

achieve better performance when n = 4 in most cases. It proves that assign-
ing a higher weight to deep layers during distillation will improve the student’s
performance.
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Label Input Teacher Student FEM

Bear

Beaver

Cattle

Clock

Seal

Squirrel

Fig. 4. Channel attention of the last layer(ResNet32 × 4/ResNet8 × 4).

4.3 Visualization

To provide further visual explanation, this section randomly samples several
images from the CIFAR-100 dataset and visualizes the final layer using channel
attention [24]. The depth of pixel color indicates the importance of that pixel for
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a model to predict the corresponding label, where darker colors indicate greater
importance and lighter colors indicate less importance.

As is apparent from Fig. 4, it is intuitive that the student distilled by FEM
focuses more on the crucial features of the teacher while not being affected by
other non-crucial features. For input “Bear”, FEM focuses more on the head
and less on the body. For input “Cattle”, compared to the student which only
focuses on the right cattle’s head, FEM pays attention to both cattle’s head. For
input “Beaver”, “Clock”, “Seal” and “Squirrel”, the student concentrates on the
incorrect regions while FEM focuses on the correct regions.

All the samples demonstrate that the student can capture crucial features of
the teacher with feature enhancement mask (FEM).

5 Conclusion

In this paper, we propose a novel Feature Enhancement Mask (FEM) method for
knowledge distillation. It consists of the pixel-level feature enhancement mask
and layer-level dynamic importance. Different from recent One-to-Many distil-
lation methods utilizing information from multiple teacher layers, we improve
the One-to-One distillation method by emphasizing the crucial features during
distillation. Extensive experiments on CIFAR-100 indicate the superiority of our
method compared to previous One-to-One methods even One-to-Many methods.
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Abstract. As one of the essential tasks in the context of natural lan-
guage understanding, Few-shot Named Entity Recognition (NER) aims
to identify and classify entities against limited samples. Recently, many
works have attempted to enhance semantic representations by construct-
ing prompt templates with text and label names. These methods, how-
ever, not only distract attention from the text, but also cause unneces-
sary enumerations. Furthermore, ambiguous label names always fail in
delivering the intended meaning. To address the above issues, we present
a Label-Description Enhanced Network (LaDEN) for few-shot named
entity recognition, under which we propose a BERT-based Siamese net-
work to incorporate fine-grained label descriptions as knowledge aug-
mentation. The designed semantic attention mechanism captures label-
specific textual representations, and the distance function matches sim-
ilar token and label representations based on the nearest-neighbor cri-
terion. Experimental results demonstrate that our model outperforms
previous works in both few-shot and resource-rich settings, achieving
state-of-the-art performance on five benchmarks. Our method is par-
ticularly efficient in low-resource scenarios, especially for cross-domain
applications.

Keywords: Named Entity Recognition · Few-shot Setting · Domain
Adaptation

1 Introduction

Typically viewed as a sequence labeling problem [18], Named Entity Recognition
(NER) seeks to tag each label [14] with a specific token. Traditional NER models
suffer from being costly [6,7] and time-consuming with few available annotations,
which yields the concept of few-shot setting.

Metric-based methods have recently shown promising prospects in few-shot
learning. Snell et al. [22] proposed a prototypical network for few-shot NER,
which adopts the nearest-neighbor criterion to match similar features from the
support set. Prior approaches mainly adopted the N -way K-shot method to split
few-shot examples, where N denotes the N classes of the target domain, and K

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14261, pp. 444–455, 2023.
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Fig. 1. An example from the CoNLL 2003 dataset. Given a sentence, we use the nearest-
neighbor criterion to match similar representations of tokens and label descriptions.
(https://www.cnts.ua.ac.be/conll2003/ner/annotation.txt.)

denotes each class has K samples. For the few-shot NER task, it first trains a
model with label-set Cs

(i) in a source domain, and then tests on a data-scarce
target domain with label-set Cd

(j). When the domain labels are not necessar-
ily similar, the neural representations can not be improved by updating model
parameters and tend to introduce noise. Generalisation of the model remains a
challenge in cross-domains with few labeled samples.

Recently, Aly el al. [1] explored the next sentence prediction (NSP) objective
of the BERT [5] encoder by incorporating label information to the sentence
templates. Nevertheless, every combination inherits unnecessary enumerations.
Meanwhile, preparing another encoder is also challenging since the size of label
descriptions is considerably smaller than that of the input tokens. Ma et al. [19]
introduced label names as prior label knowledge, which contain a wide range of
subcategories and fail to convey the intended meaning. For instance, “MISC” in
CoNLL 2003 [21] includes religions, events, nationalities and products, etc. As
a consequence, they add manual modifications to the definition of label names,
leading to a labor-intensive process.

In contrast, using label descriptions is more efficient. First, many data sets
post available annotation guidelines with precise label definitions. Second, our
experimental results show that the label descriptions hold more semantics than
the label names and are more efficient in cross-domain scenarios. As illustrated
in Fig. 1, each class is accompanied by a description. The entity “Cofinec” is
more approximate to the “Organization” in the common semantic space.1 Some
entities without specific meanings are classified as the negative class “O”. In
general, the more similar a token is to a label, the more likely it is to be tagged.
To conclude, our contributions are as follows:

• We propose a simple but efficient model, LaDEN, which is particularly effi-
cient in low-resource and cross-domain scenarios.

1 We count at the entity level. For instance, both words in “Stephen Frater” are tagged
as “I-PERSON”. We consider “I-PERSON” to occur once.

https://www.cnts.ua.ac.be/conll2003/ner/annotation.txt


446 X. Zhang and H. Gao

• Label description as a knowledge augmentation explicitly enhances the few-
shot NER performance without requiring much annotation information.

• Experimental results show that our model achieves state-of-the-art perfor-
mance on five benchmarks, outperforming previous work by an average of 1.22
to 9.98 F1 points on CoNLL 2003, WNUT 2017, I2B2 2014, NCBI-Disease
and JNLPBA dataset in various sample settings.

2 Related Work

2.1 Few-Shot NER

Meta-learning first emerged in computer vision through Matching Networks [25].
Fritzler et al. [9] were the first to apply the prototype-based methods to the task
of few-shot NER. Hou et al. [11] delivered label semantics in L-TapNet by a
projection function. More recently, prompt-based learning has been successfully
adapted to token-level tasks, such as the few-shot NER. By enumerating n-gram
spans, Cui et al. [3] employed the prompt-based BART [15] in the NER system.
Liu et al. [17] converted the input template into a Question Answering (QA)
form and extracted entity spans by fine-tuning the model on SQuAD 2.0. The
prompt-based methods, however, are labor-intensive and template-sensitive, and
the implicitly injected label knowledge [24] is distracted by the text and cannot
be fully exploited.

2.2 Label-Enhanced Knowledge

Some studies have shown that the introduction of explicit label knowledge is cru-
cial for the few-shot performance. Yin et al. [28] and Halder et al. [10] converted
label semantics in text classification to a textual entailment problem, predicting
the binary probabilities entailed within label descriptions. Ma et al. [19] intro-
duced label names as sentence features and trained two separate BERT [5] to
develop knowledge. Li et al. [16] framed the NER task as a Question Answer-
ing (QA) problem, utilizing label descriptions as queries to extract entity spans.
However, the QA formulation is inefficient since every text has to be encoded
with |C| pairs of queries, where |C| denotes the size of the label set.

3 Model

As shown in Fig. 2, It first encodes the input tokens and label descriptions
through a shared BERT-based encoder. Next, we devise a semantic attention
mechanism and a distance function to capture the semantic associations between
similar token and label representations. Finally, we take the maximum value
through the linear layer as prediction result.
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3.1 Encoding Module

As the size of label descriptions are much smaller than that of the input tokens,
training another BERT [5] is inefficient. Inspired by the Siamese network [2], we
propose to use the shared BERT encoder to learn text and label representations
simultaneously. This structure does not introduce additional parameters and can
effectively enhance label semantics.

Fig. 2. The architecture of the proposed LaDEN.

Given input tokens X and label descriptions Y , each description is described
as a sequence of tokens. For category C, Y C =

{
yC1 , y

C
2 , ..., y

C
k

}
. The shared

BERT-based encoder extracts fine-grained text and label embeddings f (X) ∈
Rb×n×d and f (Y ) ∈ Rm×k×d, respectively, where b is the batch size, n is the
size of the input tokens, m is the size of the label set, k is the maximum length
of the label descriptions, and d is the dimension of the encoder.

3.2 Semantic Attention Module

The semantic attention module aims to enhance semantic relevance of tokens
and label representations. To this end, we introduce an attention mechanism to
learn label-specific textual features. Firstly, we add a linear transformation to
project two representation vectors into a common vector space:

g (X) = wT
1 · f (X) (1)

g (Y ) = wT
2 · f (Y ) (2)

where w1,w2 ∈ Rd×d are trainable weights of the linear classifier. We treat the
token embedding g (X) ∈ Rb×n×d as query vector Q, and the label embedding
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g (Y ) ∈ Rm×k×d as key vector K as well as value vector V. The attention weight
assigned to each value is calculated by the cosine similarity. We also experimented
with the dot product operation, but we did not see any performance gain. The
reason is that the norm of embeddings dominates the similarity score, while the
cosine similarity can be seen as a normalized dot product by L2-normalization:

axiyc
j

=
g (xi) · g (

ycj
)

‖g (xi)‖‖g (
ycj

)‖ (3)

where xi is the ith token of the text X, ycj refers to the jth token of the label
description c, and g

(
ycj

)
is an embedding from g (Y ). We perform an attention

masking operation on text and label embeddings to remove effects of the padding
redundancy. We then incorporate the attention weight into the value vector:

g′ (Y ) =
m∑

c=1

n∑

i=1

k∑

j=1

softmax
(
axiyc

j

)
· g (

ycj
)

(4)

where m is the size of label set, n is the sequence length of input tokens, and
g′ (Y ) refers to fine-grained representation vectors containing label-specific tex-
tual semantic features.

3.3 Distance Function

According to the nearest-neighbor criterion, tokens are more likely to be tagged
by semantically similar labels. To reduce the dimensionality and promote compu-
tational efficiency, the label embeddings is summed over K slots of the attention-
based label vectors:

h (Y ) =
K∑

i=1

g′ (yi) (5)

where K is the maximum length of the label descriptions, yi is the ith token
of each label description, We then define the distance metric to compute the
semantic distance between tokens and label vectors:

s (X,Y ) = wT (g (X) − h (Y ))2 + b (6)

where s (X,Y ) is a weighted squared Euclidean distance with trainable weight
w and bias b. A higher score of s (X,Y ) indicates a higher semantic similarity
between the representations of token X and label description Y . If the two
embeddings are dissimilar and the original squared distance is large, w would
turn negative to make this reasonable. Finally, we apply the softmax function to
the prediction matrix M ∈ Rb×n×m, and take the maximum probability output:

z = argmax (softmax (s (X,Y ))) (7)
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3.4 Training

Our experimental setup is in domain adaptation. We first train our model Ms

on source domains, and then initiate a new model Mt by the weights of Ms.
We further fine-tune Mt on a data-scarce target domain with only a few unseen
samples. The token and the label encoder share parameters and update at each
iteration, which helps them align the embedding space. Meanwhile, the shared
label encoder only requires to generate label representations once and reuses
them during inference time, which can significantly reduce memory and improve
the inference speed.

Our model is optimized by minimizing the cross-entropy loss. yi denotes the
real probability distribution and zi denotes the predicted probability distribu-
tion. To alleviate the problem of data imbalance caused by excessive negative
class (“O”), we set the number of negative class as u, non-negative classes as v
and use the weight ai to adjust the class proportion:

L = −
m∑

i=1

ai · p (yi) · log (p (zi)) (8)

au =
v

u + v
(9)

av =
u

u + v
(10)

4 Experiments

4.1 Datasets

Table 1 summarizes six benchmark datasets for our experiments. (a) OntoNotes
[26] contains 18 general domain entities. (b) CoNLL 2003 [21] is gathered from
the news domain with 4 classes. (c) WNUT 2017 [4] includes 6 classes from the
social media domain. (d) I2B2 [23] is in the medical domain including 23 classes.
(e) NCBI-Disease [8] contains a broad disease class for the biology domain. (f)
JNLPBA [12] is also in the biology domain with 5 classes.

4.2 Hyperparameters

We use BERT-base-cased2 as the backbone of all baselines and LaDEN to
learn contextual representations. All experiments are implemented with PyTorch
and Hugging-Face on a single NVIDIA RTX 3090 GPU. We set the maximum
sequence length to 256 and adopt the IO tagging scheme for simplicity. We
apply the Adam optimizer [13] with a linear decay schedule and a warm-up
at 0.01. We set the batch size to 8 and 4 in low-resource settings. The learn-
ing rate of the BERT [5] encoder is 1e−5, and 2e−4 in subsequent layers. We

2 The BERT-base-cased is available in Hugging-Face: https://huggingface.co/bert-
base-cased.

https://huggingface.co/bert-base-cased
https://huggingface.co/bert-base-cased
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first train our model on OntoNotes (the source domain) for 3 epochs, and then
fine-tune it on the target domain for 200 epochs. We conduct experiments with
K ∈ {1, 5, 10, 20, 50} and use the F1-score as metric. We sample 3 support sets
and repeat 5 times with different random seeds.

Table 1. Data summary

Data Domain #Classes #Train #Test

OntoNotes General 18 60K 8.3K

CoNLL 2003 News 4 14K 3.5K

WNUT 2017 Social Media 6 3.4K 1.3K

I2B2 2014 Medical 23 56.2K 51.7K

NCBI-Disease Biology 1 5.4K 0.9K

JNLPBA Biology 5 18K 4.2K

4.3 Baselines

TransBERT [5] is a BERT model followed by a linear layer. We transfer the
bottleneck to fine-tune on the target domain.
NNShot [27] is a metric-learning method based on the nearest-neighbor crite-
rion. It calculates the similarity between the predicted token and all tokens in
the support set, and takes the label of the most similar token as prediction.
StructShot [27] is an extension of the NNShot, which captures label dependen-
cies by an abstract transition matrix and a viterbi algorithm during decoding.
TTBERT [19] is a two-tower model, which introduces label names and exploits
semantic information via a simple multiply operation. We adopt the IO tagging
scheme to keep the consistency of our experimental setting.

4.4 Results

As shown in Table 2, our LaDEN consistently yields the best performance on
five benchmarks, i.e., +1.22%, +9.91%, +3.75%, +9.98%, +7.78%, respectively
on CoNLL 2003, WNUT 2017, I2B2 2014, NCBI-Disease and JNLPBA.

In low-resource settings, LaDEN performs significantly better than the previ-
ous best work, with an average improvement of 9.00 and 6.21 F1 points in 1-shot
and 5-shot settings. For the 1-shot setting, similar target labels to OntoNotes
such as CoNLL 2003, WNUT 2017 and I2B2 2014 reach the 90.15%, 85.58%
and 70.39% performance of the 50-shot setting, respectively. While for datasets
without overlaping labels, NCBI-disease and JNLPBA only achieve 50.35% and
66.95% 50-shot performance. This indicates that datasets with similar target
labels deliver more knowledge from the source domain, and our label-description
based method is particularly efficient by introducing prior label knowledge, even
more than half of the resource-rich performance for cross-domains.
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In high-resource settings, such as the 50-shot setting, we stay ahead of other
models, which validates the effectiveness of our algorithm in both low- and high-
resource settings. We also perceive that the growth of our results decreases as
more data becomes available, suggesting that LaDEN relies less on prior label
knowledge with the amount of data.

TTBERT only performs well on datasets with similar target labels, while the
generalization ability becomes poor on the cross-domain datasets NCBI-Disease
and JNLPBA, even 1.09 and 4.37 F1 points lower than TransBERT in the 1-shot
setting. In contrast, our LaDEN not only performs best in similar datasets, but
also proves its superior generalization capability in cross-domain scenarios.

Table 2. Main results of compared models in different settings (k = 1, 5, 10, 20, 50)

Datasets Methods 1-shot 5-shot 10-shot 20-shot 50-shot

CoNLL 2003 TransBERT 40.92(6.09) 63.38(8.07) 75.68(2.02) 76.95(2.55) 80.24(0.67)

NNShot 68.22(4.89) 69.15(1.20) 71.55(1.00) 71.68(0.42) 74.47(0.89)

StructShot 69.54(4.43) 69.94(0.95) 72.34(0.24) 72.62(0.46) 76.08(0.62)

TTBERT 65.75(2.16) 74.33(4.14) 76.64(1.69) 78.10(1.96) 79.76(1.71)

LaDEN 73.10(3.57) 75.46(2.15) 76.94(1.32) 78.34(1.37) 81.09(1.03)

WNUT 2017 TransBERT 19.60(7.88) 21.20(6.72) 25.51(0.97) 33.29(4.58) 36.32(0.24)

NNShot 22.32(4.62) 24.55(4.28) 27.29(3.34) 25.08(1.47) 25.97(1.32)

StructShot 24.30(4.49) 26.38(6.04) 30.40(6.41) 28.40(0.48) 29.05(0.83)

TTBERT 23.09(5.04) 34.61(0.25) 35.01(0.80) 44.19(2.23) 45.86(0.40)

LaDEN 42.61(1.94) 44.95(2.36) 47.24(1.44) 48.93(1.39) 49.79(2.23)

I2B2 2014 TransBERT 29.59(2.61) 30.72(1.55) 41.00(5.84) 44.72(4.00) 47.08(3.38)

NNShot 18.25(0.51) 19.07(1.22) 24.44(0.74) 26.56(4.06) 29.75(2.24)

StructShot 22.87(1.53) 23.56(1.06) 30.69(1.26) 34.05(4.08) 36.87(3.12)

TTBERT 37.85(3.40) 42.34(1.62) 49.95(6.28) 53.20(3.31) 55.94(1.81)

LaDEN 42.43(0.84) 44.46(4.23) 53.51(5.12) 57.35(4.61) 60.28(2.24)

NCBI-Disease TransBERT 19.47(1.84) 23.65(5.32) 30.44(9.06) 37.48(5.73) 45.39(0.78)

NNShot 16.02(2.54) 23.16(7.66) 24.34(4.20) 26.99(3.14) 28.43(4.62)

StructShot 17.14(3.13) 26.34(6.27) 28.22(2.79) 31.04(3.02) 32.75(2.03)

TTBERT 18.38(3.41) 16.21(5.15) 28.82(7.44) 39.25(3.96) 49.23(6.28)

LaDEN 27.70(4.26) 34.42(2.85) 47.04(7.30) 50.46(2.88) 55.01(1.54)

JNLPBA TransBERT 27.97(5.36) 29.60(5.10) 37.81(0.72) 41.93(1.55) 48.09(1.49)

NNShot 12.70(5.43) 14.78(2.95) 16.60(3.60) 17.00(1.92) 18.31(3.20)

StructShot 14.02(5.78) 17.23(2.22) 19.08(4.30) 19.26(1.85) 22.19(4.48)

TTBERT 23.60(9.63) 39.06(5.82) 41.06(2.33) 45.49(1.45) 53.71(2.12)

LaDEN 38.29(6.35) 48.43(1.87) 49.10(4.74) 53.19(3.96) 57.19(1.84)
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5 Analysis

5.1 Variable Analysis in Low-Resource Scenarios

We keep the parameters fixed and set variables to verify the robustness of each
module. The results in Table 3 show that these variables lead to a 2.2-5.7 decrease
in F1-score:

Sentence-level Features (SLF): It uses sentence-level [CLS] embedding to
replace the fine-grained label features. The sentence-level features contain less
semantic information than the token-level features, and that fine-grained label
knowledge is more essential for subsequent semantic interactions.

Average Pooling (AP): Instead of going through the semantic attention mod-
ule, it directly averages the fine-grained label features, which performs well in
the low-resource setting of NCBI-Disease and inferiorly to LaDEN on the other
four datasets. We then conduct supplementary experiment on the 10-shot setting
of NCBI-Disease, with performance 5.4 F1 points lower than our LaDEN. One
possible reason is that the NCBI-Disease dataset contains only a broad class of
diseases, and is thus more sensitive in low-resource settings, making it difficult
to distinguish other classes.

Table 3. Model variants in 1-shot and 5-shot settings

Datasets SLF GloVe AP MF LADEN

1-shot CoNLL 2003 71.38(2.75) 67.87(2.88) 72.11(2.53) 72.46(4.42) 73.10(3.57)

WNUT 2017 40.18(3.39) 33.69(0.95) 38.20(3.81) 41.42(2.88) 42.61(1.94)

I2B2 2014 34.32(2.32) 40.61(4.35) 29.65(1.13) 41.11(1.05) 42.43(0.84)

NCBI-Disease 24.70(3.83) 28.96(3.40) 29.71(4.62) 27.09(4.84) 27.70(4.26)

JNLPBA 33.14(4.24) 24.54(5.01) 27.55(7.19) 30.06(5.52) 38.29(6.35)

5-shot CoNLL 2003 74.26(3.05) 74.40(2.66) 74.47(2.34) 74.56(3.16) 75.20(1.37)

WNUT 2017 44.65(1.35) 40.18(3.52) 41.97(3.94) 44.39(2.74) 44.95(2.36)

I2B2 2014 38.42(5.85) 43.56(6.88) 33.48(3.56) 40.48(5.81) 44.46(4.23)

NCBI-Disease 30.24(2.72) 35.76(2.05) 37.53(2.81) 34.98(1.83) 34.42(2.85)

JNLPBA 42.95(6.00) 41.50(4.13) 39.47(4.64) 43.34(2.90) 48.43(1.87)

Multiplicative Fusion (MF): It uses a simple multiplication operation to
fuse tokens. From the results, the distance function can effectively align similar
representations of tokens and label descriptions.

GloVe Embedding (GloVe): It replaces the shared label encoder with a static
GloVe [20] embedding layer.3 The sharp drop indicates that the contextualized
shared BERT encoder can better understand the fine-grained label descriptions.
3 We use the pre-trained 200-dimensional word vectors from Stanford University:

https://nlp.stanford.edu/projects/glove/.

https://nlp.stanford.edu/projects/glove/
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All variables are imposed negatively, demonstrating the robustness of our
LaDEN. Fine-grained input features allow the shared BERT [5] encoder to bet-
ter understand the semantics. The subsequent semantic attention module and
the distance function capture the semantic associations between similar tokens
and label representations. In general, each module complements each other and
jointly boost the few-shot NER performance.

5.2 Performance on Label Semantics

To verify the effectiveness of using label descriptions as prior semantics, we set
different semantic variables as input to the shared BERT [5] encoder:

Label Names. We replace label descriptions with label names as prior knowl-
edge, and the label name is set to be the same as [19].

Meaningless Labels. We omit specific interpretations of labels and use mean-
ingless labels (e.g., “label descriptions 1”, “label descriptions 2”) to represent
different classes.

TransBERT. We use a single BERT model followed by a linear softmax layer
without introducing any label semantics.

Fig. 3. Label semantics on CoNLL 2003 and JNLPBA in various sample settings

Based on the domain adaptation scenario, we experiment on CoNLL 2003
and JNLPBA, which are similar to and completely different from ontonotes
labels, respectively. The experimental results are shown in Fig. 3. In CoNLL
2003, our label-description based method just has a slight advantage over “Label
Names” by 0.54%, while for the JNLPBA dataset, our method enables more
fine-grained learning, with an average of 1.08% higher than “Label Names”.
The “Meaningless Labels” without specific semantics are ineffective, making it
difficult to interact semantically with the corresponding labels. This illustrates
that label descriptions carry more semantics, and the rich semantic knowledge
is beneficial for the few-shot setting.
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We also observe that similar target domains deliver more knowledge from the
source domain, e.g., all labels in CoNLL 2003 are included in OntoNotes except
for “MISC”. As the amount of data increases, label semantics is no longer deci-
sive and TransBERT exhibits comparable performance to others, even exceeding
the performance of “Meaningless Labels” in the 50-shot setting. Furthermore,
TransBERT lags far behind other results in JNLPBA, suggesting that prior label
knowledge is of vital significance for cross-domains. In contrast, label descrip-
tions deliver the richest semantic information in both few-shot and resource-rich
settings, and are particularly efficient in the extreme data-scarce scenarios.

6 Conclusion

In this paper, we propose LaDEN, a label-description enhanced model for few-
shot NER. We deliver label descriptions explicitly to fully exploit the label
semantics. We propose to use the BERT-based siamese network to encode input
tokens and label descriptions individually. The semantic attention mechanism
incorporates label-specific textual representations, and the distance function goes
further to align similar representations. Label description serves as a knowledge
enhancement in the NER system and thus does not require much annotated
information, resulting in efficient performance in low-resource scenarios. Our
model achieves state-of-the-art performance in various sample settings, and we
will continue to explore how to simply and efficiently leverage label descriptions
to boost NER tasks in zero-shot scenarios.
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Program (No.2023YFG0021, No.2022YFG0038 and No.2021YFG0018), and by Xin-
jiang Science and Technology Program (No. 2022D01B185).
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Abstract. Landslide is a natural disaster that can easily threaten local
ecology, people’s lives and property. In this paper, we conduct modelling
research on real unidirectional surface displacement data of recent land-
slides in the research area and propose a time series prediction framework
named VMD-SegSigmoid-XGBoost-ClusterLSTM (VSXC-LSTM) based
on variational mode decomposition, which can predict the landslide sur-
face displacement more accurately. The model performs well on the test
set. Except for the random item subsequence that is hard to fit, the
root mean square error (RMSE) and the mean absolute percentage error
(MAPE) of the trend item subsequence and the periodic item subse-
quence are both less than 0.1, and the RMSE is as low as 0.006 for the
periodic item prediction module based on XGBoost.

Keywords: Landslide warning · Deep learning · Mode
decomposition · Time series

1 Introduction

Landslide is a serious natural disasters [1], and large-scale landslides threaten
the local ecology and property. An important part of landslide prevention and
control is predicting its displacement. Landslide surface displacement data itself
is a kind of time series data, which has distinct characteristics, such as being
time-sensitive, structural, and almost no update operation [2]. Time series fore-
casting modelling is mainly aimed at its timeliness and structure, trying to give
a reasonable description of its change trend, period and other characteristics, to
achieve effective forecasting [3]. Traditional landslide early warning model mostly
relies only on the knowledge background of land disasters, due to the scarcity
and variability of landslide surface displacement evolution parameters and the
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complexity of the external environment, the physical model [4] can reveal its
evolution mechanism, but it is difficult to obtain accurate prediction effect.

In recent years, variational modal decomposition (VMD) [5] has been widely
used in time series data decomposition and prediction because of its ability to
divide series data into different sub-series with a clear physical meaning based
on frequency. Zhang et al. [6] combined VMD with the optimal combination
model for the carbon price prediction tasks and used VMD to complete the
decomposition of surface displacement data. Due to its data-driven scalability
and powerful ability to fit independent and identically distributed data, the
use of machine learning(ML)-based and deep learning(DL)-based methods to
predict time series data has become a relatively mature idea, and the methods
that have performed better in previous tasks include XGBoost [7], LSTM [8],
Prophet [9], support vector regression (SVR) [10], etc. Due to the particularity of
geological geomorphology, it is often not feasible to use the same mathematical
modelling methods in different regions. In addition, the data used to train the
model is likely to not satisfy the hidden assumptions in the model resulting in
inconsistency and ultimately unsatisfactory prediction performance.

The key direction of landslide surface displacement prediction is to improve
the existing models according to the unique characteristics of each region, and
then form a new model that adapts to the characteristics of the data. In this
paper, we propose a new prediction framework combining traditional statis-
tical ideas with ML/DL-based time series prediction models, named VMD-
SegSigmoid-XGBoost-ClusterLSTM (VSXC-LSTM) for landslide surface dis-
placement time series prediction. The main contributions of this paper are as
follows:

• In this paper, we propose a SegSigmoid-XGBoost-ClusterLSTM (VSXC-
LSTM) landslide surface displacement time series data prediction framework
based on variational modal decomposition(VMD), which is suitable for the
characteristics of obvious change trend and abnormal fluctuation of landslide
body surface displacement data.

• Different from existing methods, we perform nonparametric tests on each
decomposed subsequence during model training to verify its property, which
ensures the consistency of the training data and model assumptions.

• We propose a sub-model for modelling irregular subsequences obtained after
the modal decomposition of time series data which is named ClusterLSTM.

• Extensive experiments on real-world datasets show our method has good
precision and generalization ability. Our VSXC-LSTM framework can provide
reliable research materials for experts in the field to study the changes and
development of landslides, to achieve effective warning of landslide disasters.

2 Related Work

Due to the variability of landslide surface displacement evolution parameters and
the complexity of the external environment, the physical model [4] can reveal its
evolution mechanism, but it is difficult to obtain an accurate prediction effect.
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Holt [3] applied the double exponential smoothing (DES) method to trend dis-
placement prediction. This method is simple in operation, and has good pre-
diction performance for some specific trend sequences. Cao et al. [11] proposed
an extreme learning machine (ELM) method, which takes control factors into
account in the landslide surface displacement prediction model. Based on the
dynamic characteristics of landslides, Xu et al. [12] used the dynamic model
long and short-term memory neural network (LSTM) to predict the cumulative
displacement, and the prediction result was more accurate than that of the static
model support vector regression (SVR). Huang et al. [13] used a novel recursive
neural network to predict the dynamic response of slope, this model is suitable
for the case of a large amount of data, and the prediction error is small. In addi-
tion, Li et al. [14] proposed a LSTM algorithm based on clustering ideas applied
to temporal series anomaly detection, which also has application value in the
prediction direction of introducing clustering ideas into LSTM modelling. Krish-
nan et al. [15] uses deep Kalman filtering for counterfactual reasoning, showing
the excellent filtering ability of the Kalman filter algorithm. Cong et al. [16]
applies Kalman filtering to monitoring data anomaly detection tasks. Its excel-
lent experimental results prove the feasibility of applying the Kalman filter to
anomaly detection in landslide monitoring data. In terms of parameter optimiza-
tion, Cui et al. [17] proposed that based on spline curve and nested least square
support vector regression (LS-SVR) functional parameter optimization, and the
stable control of parameter optimization value can be achieved under actual con-
ditions. Traditional ML and DL algorithms need to meet certain conditions to
get good prediction results, but in reality, there are often cases where the data
do not satisfy the implicit model assumptions, resulting in poor robustness of
the model prediction results. However, compared with the existing single-model
ML/DL methods, our framework has good robustness while achieving higher
precision.

3 Framework

Our goal is to achieve better predictions by integrating models with excellent per-
formance. This paper we propose a SegSigmoid-XGBoost-ClusterLSTM frame-
work, as shown in Fig. 1, which mainly applies modal decomposition and ensem-
ble learning ideas. Firstly, VMD [5] is used to decompose the time series data
into three subseries, namely T (trend term), S (period term), R (residual term).
Secondly, three subsequence curves are fitted using suitable models (SegSigmoid,
XGBoost, ClusterLSTM), respectively. Finally, the three subseries are combined
into a prediction sequence and the final prediction result is output.

3.1 VMD Decomposition Based on Genetic Algorithm Parameter

The decomposition of the processed displacement data using the VMD algo-
rithm can obtain more physically meaningful time series components. However,
the hyperparameter penalty factor α and ascending step τ in the VMD algo-
rithm will have a greater impact on the decomposition effect, to avoid the mod-
elling bias introduced by artificially determining the hyperparameters, we use
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Fig. 1. SegSigmoid-XGBoost-ClusterLSTM model based on VMD

the genetic algorithm (GA) to determine a set of hyperparameter α that make
the decomposition effect optimal by iteratively optimizing the fitness function τ .
It provides a general framework for solving complex system problems, which does
not depend on the specific domain of the problem and has strong robustness.

Completely non-recursive VMD was proposed by Konstantin et al. [5]. In this
paper, this method is mainly used to perform modal decomposition of the original
surface displacement sequence. Considering interpretability and enforceability,
we prescribe the number of decompositions K = 3 without losing a large amount
of information, which are trend term, period term and residual term, respectively.
The detailed steps of VMD are shown in Algorithm 1, where uk is the centre
frequency of the single-component amplitude modulation signal; ωk is the centre
frequency of the single-component FM signal, λk is the Lagrangian multiplier,
n is the number of iterations, k is the number of subsequences, and ε is the
tolerance of the convergence criterion.

Algorithm 1. Variational Modal Decomposition
Require: Raw surface displacement data y
Ensure: Trend term subseries T, S, R
1: Initialize {u1

k},{ω1
k},λ1

k,n=0,k=1,ε=10−7

2: while k<3 do
3: n = 1
4: update un+1

k , ωn+1
k

5: update λk

6: if
∑

k

||un+1
k

−un
k ||2

||un
k
||22

< ε then

7: k = k + 1
8: else
9: break

10: end if
11: end while
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3.2 SegSigmoid

The SegSigmoid model is an extension of the traditional logistic regression model,
which will be applied to the curve fitting and forecasting tasks of the logistic
regression model used for classification tasks, and optimize the prediction effect
with appropriate parameters according to different characteristics of time periods
of the time series. The essence of logistic regression lies in the Sigmoid function,
which is defined as follows:

g(z) =
1

1 + e−z
(1)

The characteristic of this function is that the value on the real axis domain is
in the interval (0,1] and is not sensitive to maximum and minimum values. The
expression of the piecewise logistic regression model is such as the formula (2):

g(t) =
C(t)

1 + exp(−(k + α(t)t
δ)(t − (m + α(t)T

γ))
(2)

Inspired by the Prophet algorithm, we propose the SegSigmoid algorithm and
introduce anomaly detection ideas of student-based residuals [18] to obtain
change point location information.

The student residual can be used to detect outliers, and calculating the resid-
uals such as Equ. (3) and (4), where yi, ŷi is the true value of the sequence and
the predicted value of the series, respectively. Then, the studentized residual
elimination dimensional differences are proposed and the Hat matrix for adjust-
ing the sum of squares of the series residuals in (5) is introduced such as Equ.
(6), where n is the sample size, X is the sequence dataset matrix, and hii is the
diagonal element of the Hat matrix. The formula is defined as follows:

ŷi =
N∑

p=0

apx
p
i (3)

ri = yi − ŷi (4)

ti = (n − p − 1)
ri

SSE(1 − hii) − r2i
(5)

H = X(XT X)−1XT (6)

We define the Bonferroni (BC) critical value to establish a suitable confidence
interval in Equ. (7) and (8), where α is the significance level, often set to 0.05,
the Bonferroni critical value can be scaled equimetrically using the correction
factor β (β = 1/6). The formula is defined as follows:

BC = t(1 − α

2n
;n − p − 1) (7)

− BC(α = 0.05)<x<BC(α = 0.05) (8)



Landslide Surface Displacement Prediction 461

3.3 ClusterLSTM

LSTM [8] is a long-short-term memory artificial neural network, which is devel-
oped from recurrent neural networks. The proposed ClusterLSTM introduces
the idea of clustering on the basis of LSTM, aiming to solve the problem that
it is difficult to use a single LSTM fitting with large differences in the scale of
different window series. In addition, K-means algorithm is used to realize the
clustering of residual term time series data, and shallow LSTMs are established
separately for each class to improve the prediction performance.

Specifically, the residual term series obtained from the VMD is first dealt
with a white noise test. Then, K-LSTM models with the same structures are
initialized, and the residual items of all decomposed training samples within
a batch are clustered during the training process, with the number of cluster
centers being K, to obtain the partitioned sub-dataset {Cres

1 , · · · , Cres
K }. Then

the parameters θk of the k-th LSTM model are updated as follows:

θt+1
k ← θt

k − α

⎡

⎣
|Cres

k |∑

i=1

∇θk
Loss

(
Ri,k, R̂i,k

)
⎤

⎦ (9)

where θk is the parameters of the k-th LSTM model, |Cres
k | is the size of the k-th

sub-dataset, α is learning rate, Ri,k ∈ Cres
k is the groundtruth residual term in

the k-th sub-dataset, R̂i,k is the output of the k-th LSTM model. The principle
of ClusterLSTM technology is shown in Fig. 2.

Fig. 2. The framework of our ClusterLSTM
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4 Modeling and Results

4.1 Dataset Introduction and Data Preprocessing

The dataset used in this paper is from the relative displacement data recorded
by sensors from December 12, 2020, to March 21, 2021, from the N 27◦13′57′′

and E 109◦42′05′′ monitoring points in the landslide area of the Niutang Pass
Formation in Dashajie Village, Heliao Township, Zhijiang County. Specifically,
a total of 2426 pieces of time series data recorded in hours were divided by a
threshold of 0.9, the first 2184 pieces of data were used for the training of each
machine learning model, and the last 242 pieces of data were used as a test set
to verify the accuracy of the model and performed 10-fold cross-validation.

The sensor has measurement errors and process noise when recording land-
slide motion, so the original displacement data contains many invalid informa-
tion and interference factors. Before building the model, we first used Kalman-
Filter [19] to smooth the noise filtering of the raw data. So we set the variance of
the process noise w ∼ N(0, Q) to 1, due to the degradation of the measurement
accuracy due to sensor ageing, so the variance of the measurement error v ∼
N(0, R) is set to 16, and the original data and the filtered data curve are shown
in Fig. 3. From Fig. 3-a, we find the Kalman filter retains the characteristics of
the original curve to the greatest extent, and does not change the period and
trend of the original curve. Observing Fig. 3-b, it can be concluded that the dis-
placement data processed by the Kalman filter has a smoother change trend in
the data and shows a more obvious change regularity than the original data.

(a) Raw data vs. filtered data (b) Filter effect local thumbnails

Fig. 3. Sensor raw data and Kalman filtered processed data

4.2 Evaluation Indicators

In order to accurately evaluate the predictive performance of our designed model,
the evaluation index is Root Mean Square Error (RMSE) and Mean Absolute
Percentage Error (MAPE) as shown in Eq. (10) and (11). Where N is the total
sample size of the prediction, and di and d̂i are the true and predicted values of
samplei, respectively. The formula is defined as follows:
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RMSE =

√√√√ 1
N

N∑

i=1

(d̂i − di)2; (10)

MAPE =
1
N

N∑

i=1

∣∣∣∣∣
d̂i − di

di

∣∣∣∣∣ ; (11)

4.3 VMD Decomposition

Before we use genetic algorithm (GA), we first use VMD to obtain the hyperpa-
rameter α. Specifically, we specify the number of components after decomposition
K = 3, with the reconfiguration mean squared error (ỹ − y)2/n of the decom-
position sequence ỹ = imf1 + imf2 + imf3 as the fitness function of the GA:
the number of individuals in the population m = 50, the number of iterations
niter = 100, the cross probability is 0.7, and the variation probability is 0.1.
Finally, we get the optimal hyperparameter α = 13.625, τ = 0.99877.

The components decomposed by VMD are shown in Fig. 4. The first eigen-
mode function imf1 after decomposition is shown in Fig. 4-a, which is smoother
than the original sequence y that named trend term T; the second subsequence
is shown in Fig. 4-b, exhibits a strong periodicity that named periodic term S;
the last subsequence is shown in Fig. 4-c, and it is difficult to observe a more
obvious law from the figure, and it is named residual term R.

We use the VMD algorithm to decompose the original sequence into three
subsequences, namely: yt = T +S +R + e, where e is the error caused by VMD,
this error has been minimized by optimizing the VMD algorithm parameters,
and is ignored here. By establishing a time series forecasting model for three
subseries, T̂ , Ŝ, R̂ are obtained, and then the final predicted value ŷ is obtained.

(a) Trend term subse-
quence T

(b) Periodic term subse-
quence S

(c) Residuals term subse-
quence R

Fig. 4. Three subsequences after VMD decomposition

4.4 Trend Term, Periodic Term, Residual Term Test and Model
Establishment

(a) Trend Term Testing and Model Building. For the trend term subseries,
we first perform the Mann-Kendall test on the sequence. Based on the actual
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prediction effect, we decided to use SegSigmoid as the trend term prediction
model. The trend item modelling process is shown in Fig. 5.

First, the Mann-Kendall tendency test in the nonparametric test is used to
determine the trendiness of the target series, and the specific results are shown
in Table 1. So we have sufficient evidence to reject the null hypothesis, that the
series has a trend, and can be modelled and predicted on this basis. It is observed
that the change of the trend term T approximately follows the change law of the
cubic polynomial curve yt = at3 + bt2 + ct + d, as shown in Fig. 6.

We fit the SegSigmoid function on the training set and calculate the studen-
tized residuals at each moment after cubic polynomial fitting to mark outlier

Fig. 5. Trend term testing and predictive modelling process

Table 1. Results of the Mann-Kendall test

Mann-Kendall original hypothesis Z statistic p-value conclusion

Results no trend of T 22.059 0.000 Rejection hypothesis

Fig. 6. Cubic polynomial fits the basic shape of a trend term
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points and set the set of outliers to the mutation points of the SegSigmoid func-
tion. After calculation, the number of mutation points on the training set is
1146, and the growth rate changes δj at the mutation point sj obeys Laplace
Laplace(0, τ), where τ is 0.5, and the distribution range of mutation points on
the training set is 0.95, only change points on the first 95% of the training set.

(b) Periodic Term Inspection and Model Establishment. Periodic term
modelling is different from trend term, we first perform an autocorrelation test
on periodic term, and then perform the Granger causality test for the proposed
hypothesis. Finally, we determine the final prediction model of the periodic term
as XGBoost according to the performance of the prediction set. The process of
checking and predicting periodic terms is shown in Fig. 7-a. To determine the
lagged dependence of terms in the periodic term S, the autocorrelation function
(ACF) of the periodic term S is first calculated. From Fig. 7-b, the ACF curve
disappears at the lag 48 period, which indicates that the autocorrelation function
is truncated at the lag 48 periods, which means that relative displacement at a
certain moment is most affected by the displacement data 48 h ago. We assume
that the period term S is simultaneously affected by the trend term T , the
period term S, the residual term R, and the relative displacement y with lags
from periods 1 to 48, so there is a prediction function f that maps the time
series component of the lag to the period term St of the current period:

St = f(Tt−1, · · · Tt−48, St−1, · · · St−48, Rt−1, · · · Rt−48, yt−1, · · · yt−48) (12)

To verify the correctness of this hypothesis, we use the Granger causality test
to determine whether the causal relationship between the period term S, T , R;
and the results of the Granger causal test with a lag of 48 periods are shown in
Table 2. We can see the period term prediction model is statistically significant.

(a) Periodic term testing and predic-
tion process

(b) Periodic term autocorrelation test

Fig. 7. Periodic term
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Table 2. Results of Granger causal test under 48-order hysteresis

Test object Original hypothesis F statistic P-value Conclusion

Relative displacementy Y is not S’s Granger reason 180825.2560 p = 0.0000 Reject

Trend item T T is not S’s Granger reason 26297.4066 p = 0.0000 Reject

Residuals item R S is not S’s Granger reason 548946.1211 p = 0.0000 Reject

After completing the Granger causal test, we use the XGBoost model with
excellent performance in a number of similar prediction tasks as the prediction
model of the periodic term S and select the same common support vector regres-
sion (SVR) model as a comparison.

(c) Residual Term Test and Model Establishment. In view of the prob-
lems such as the difficulty of capturing the residual term law, and the suspected
white noise, the white noise test is carried out on the residual term subsequence,
and the prediction analysis is carried out after confirming that it is a non-white
noise sequence. Experiments show that the prediction performance of LSTM
directly is poor, so the ClusterLSTM model is introduced and then established
separately. The process of testing and predicting residual terms is shown in Fig. 8
and the Ljung-Box test results are shown in Table 3. After testing, it is concluded
that there is still a sequence dependence in the residual term R that has not been
completely extracted, so the residual term R is a non-white noise sequence.

Fig. 8. Residual term inspection and prediction process

Table 3. First-order hysteresis white noise test results

original hypothesis Ljung-Box statistic p-value conclusion

R is the white noise sequence 1817.319 0.00 Rejection hypothesis
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Since the data show the characteristics of large-scale differences in different
window sequences, we consider ClusterLSTM which first use K-means cluster-
ing [20] to aggregate subsequences of similar scales into K different clusters, and
then train K-LSTM models with simpler structures on the data in each cluster
to enhance the model’s perception of data scale changes.

In the experiment, we use 24 as a window length to divide the entire time
series into subsequences, and each subsequence as a sample. Then, the t-SNE [21]
algorithm is used to convert the 24-dimensional time series samples into the
2-dimensional feature space for visual display, and the visualization effect is
shown in Fig. 9. From Fig. 9, time series samples can be roughly divided into
four categories, so we set the cluster K = 4 in the K-means clustering algorithm.
A shallow LSTM with a hidden layer number of 2 and a hidden layer neuron
number of 6 is trained for the samples in each cluster.

Fig. 9. Distribution of residual term time series samples in two-dimensional feature
space

4.5 Series Summary Prediction and Model Validation

According to the principle of time series, the displacements of the trend, period,
and residual terms are added together to obtain the displacement prediction
value ŷ, and prediction results are shown in Fig. 10. It can be seen that the pre-
dicted values obtained by different forecasting methods have high similarity with
the actual values, and the predictions of the overall trend are basically consistent
with the actual values, but the predictions of local fluctuations by different meth-
ods have great differences, among which the prediction curve obtained by the
VSXC-LSTM framework is the closest to the actual value. As shown in Table 4,
it show that we propose has achieved the highest prediction accuracy on the two
evaluation indicators, which verifies the effectiveness of the method.

In order to further verify the effectiveness and generalization performance of
our method, we use the recent relative displacements recorded by sensors from
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Table 4. The performance of different total displacement prediction models on the
test set

Predictive models RMSE MAPE

SegSigmoid-XGBoost-ClusterLSTM 0.0744 0.0177

SegSigmoid-SVR-ClusterLSTM 0.0924 0.0242

SegSigmoid-XGBoost-LSTM 0.0787 0.0183

SegSigmoid-SVR-LSTM 0.0958 0.0242

Fig. 10. The performance of different total displacement prediction models on the test
set

March 20, 2022, to May 28, 2022, at different monitoring points in the same
region as the validation dataset, the results are shown in Fig. 11, similarly, we
give a pair of different method combinations on the validation set as shown in
Table 5. It can be seen that the prediction framework we proposed still performs
well on the new dataset, especially the VSXC-LSTM framework achieves the best
on both evaluation indicators. This shows that our method has high prediction
accuracy and has robustness for different data sets.

Fig. 11. The performance of different total displacement prediction models on valida-
tion sets
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Table 5. The performance of different total displacement prediction models on vali-
dation sets

Predictive models RMSE MAPE

SegSigmoid-XGBoost-ClusterLSTM 0.0701 0.0121

SegSigmoid-SVR-ClusterLSTM 0.1081 0.0189

SegSigmoid-XGBoost-LSTM 0.0709 0.0122

SegSigmoid-SVR-LSTM 0.1091 0.0189

5 Conclusion and Outlook

We present a framework for predicting the surface displacement of landslides.
Our approach uses the Kalman filter to smooth the original sequence, VMD to
divide the time series into three subseries, and GA to optimize hyperparame-
ters. We propose the SegSigmoid model for high fitting of the trend term and
XGBoost to predict the periodic term. To address the insensitivity of LSTM to
the data scale, we introduce ClusterLSTM. Our proposed framework achieves
high prediction accuracy and outperforms other models. However, there is still
room for improvement, such as reducing the number of independent prediction
models and developing an end-to-end training-prediction framework based on
neural networks. Additionally, expanding the proposed univariate model to a
multivariate prediction model is an essential future task, as soil characteristics,
structure, rainfall, and other factors significantly impact landslide displacement.
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Abstract. Lane detection is a challenging task that requires predict-
ing complex lane topology shapes in autonomous driving tasks. Some
methods use instance segmentation to classify all pixels into lanes and
backgrounds; There are also methods that predict each anchor into dif-
ferent lane categories based on the idea of anchor detection. However,
these models are less robust and poorly detected. In order to solve these
problems, we propose a robust lane attention detection network based on
the mutual perception of keypoints (LaneMP), which uses the idea of
keypoint detection to predict the keypoints on the lane and then clusters
these keypoints into lane instances. Since the clustering process depends
on the start points, a loss function is designed to guide the network to
learn the correct start points. In addition, aiming at some special sce-
narios, we propose a horizontal stripe attention mechanism, which can
adaptively capture the connection among keypoints through local sym-
metry of lanes, and improve the robustness of the network. Numerous
experiments show that the network has an F1 value of 77.11% on CULane
and 96.73% on the TuSimple dataset.

Keywords: Autonomous driving · Lane detection · Self-attention

1 Introduction

In the past decade, autonomous driving technology has emerged as signifi-
cant research in the field of computer vision. In order to ensure the safety of
autonomous vehicles, it is crucial for autonomous driving systems(ADS) to accu-
rately understand the spatial information of lanes. Therefore, quickly calculating
the shape and position information of lanes from the images acquired by the front
camera is a vital step in the ADS, and lane detection requires highly accurate
and real-time.

In recent years, most research has approached lane detection as an instance
segmentation or object detection problem. SCNN [13] uses multi-class classi-
fication to segment pixels into either lanes or background and predicts pixels
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
L. Iliadis et al. (Eds.): ICANN 2023, LNCS 14261, pp. 471–483, 2023.
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unrelated to lanes. PointLaneNet [2] predicts lanes based on anchor points,
while LaneATT [18] uses anchor lines to expand the feature range of anchors
and predict lane instances. However, when facing extreme situations such as
road occlusion, these methods tend to perform poorly. In such cases, extracting
hidden lane information from images becomes significant.

To address the shortcomings of previous works, we propose a robust lane
attention detection network based on mutual perception of keypoints(LaneMP).
First, the network employs keypoint detection to predict keypoints on lanes,
reducing the computational cost of irrelevant pixels. The keypoints are then
clustered into lane instances by their offsets from start points. The start point
is defined as the point with the largest y-coordinate among all keypoints on
the lane. Additionally, because keypoint clustering depends on start points, we
design a loss function to increase the importance of predicting start points.
Besides, we propose horizontal stripe attention(HSA) to facilitate local informa-
tion propagation, so as to handle some special scenarios such as occlusion.

The contributions of this paper are summarized as follows:

1) We propose horizontal stripe attention (HSA) mechanism to enhance the
robustness of the model, where the attention range of each keypoint is focused
on a rectangular area in the horizontal direction.

2) We design a loss function, named lane focal loss, to increase the importance
of predicting start points, and improve the prediction accuracy of the model
indirectly, where the range of the start points is assumed in an area within
several pixels from the image boundary.

3) The experimental results conducted on TuSimple and CULane datasets
demonstrate that our proposed model outperforms most existing models and
achieves comparable accuracy and robustness.

2 Related Work

2.1 Lane Detection

Some curve-based methods, such as [4,12,19], regard lane as a continuous curve,
using CNN or transformer to encode the image, and then decode out the param-
eters of the corresponding curve. Additionally, Deeplab-ERFC [3] adopts the
multi-class classification to predict the category of each pixel in the feature
map. Fast-HBnet [14] combines the input image and the corresponding flipped
image to locate the lanes. Due to the small proportion of lane pixels on the fea-
ture map, these segmentation-based methods make a lot of invalid calculations.
PointLaneNet [2] takes advantage of the anchor concept in [17], and uses each
pixel in the feature map as an anchor point to predict the lane. Because the
anchor point contains too few lane features due to the linear prior structure of
lanes, LaneATT [18] exploits the anchor line instead of the anchor point and
extracts the corresponding lane features. However, the long-tail effect of these
detection-based methods is obvious, and post-processing methods are required
to remove redundant lanes.
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Inspired by human pose estimation, some methods regard lane detection as
a keypoint detection and clustering problem. PINet [9] utilizes an hourglass net-
work to predict the location information of keypoints on the lane, and predicts
an embedding feature for each keypoint by an output branch, then clusters the
keypoints with similarity of the embedding features more than the threshold
in the same lane instance. Unlike [9] requires additional embedding features,
FOLOLane [16] predicts the offset between each keypoint and its neighboring
keypoints, and then clusters by gradually extending the adjacent keypoints. How-
ever, with the dense dependence between keypoints, FOLOLane [16] may deviate
from expectations with some keypoint prediction errors. To avoid this, GANet
[20] indirectly clusters keypoints by predicting the offset between keypoints and
their corresponding start points.

2.2 Visual Self-attention Mechanisms

The self-attention mechanism focuses limited attention on key information and
learns the weight distribution of key information from the input features by
weighted summation, and then it applies these weights to the input features to
extract more meaningful information from them.

In visual self-attention, spatial feature or channel feature, or a mixture of
both, is often used to construct relationships between pixels. SENet [6] uses
a scale to control information for all channels. The scale is spread over the
spatial extent of the feature map to extract more useful features. Non-local
neural network [21] establishes relationships between pixels at different locations
by correlations in the spatial distribution of feature maps. But in [21] each pixel
focuses on the global scope, resulting in a very intensive computation. To solve
this problem, CCNet [7] constructs the contextual information of all pixels in
the same horizontal and vertical direction. Each pixel can finally capture the
full-image dependencies through its criss-cross path. DANet [5] fuses channel
and spatial features to compute the importance of each channel and each spatial
location by learning channel weights and spatial weights.

Many lane detection methods, such as ESAnet [10], also use self-attention
mechanisms but usually consider local connections within a lane. Inspired by
[7,10], we construct associations of keypoints among different lanes in the same
horizontal area to better capture useful information among different lanes.

3 Methods

3.1 Overview

The structure of LaneMP is shown in Fig. 1. The point head predicts keypoints in
lanes, and in which the keypoints that exceed the threshold are used as candidate
keypoints. The offset head regresses the offset between each keypoints and the
start points of the lanes. Finally, all the predictions are constructed into lanes by
clustering. In addition, we design a loss function to increase the importance of
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predicting start points. This indirectly improves the performance of the model.
We also propose the horizontal stripe attention (HSA) to improve the robustness
of the model.

Fig. 1. the structure of LaneMP

3.2 HSA Mechanisms

When driving a car, clear lane markings can be used to assist in identifying
partially obscured lanes in extreme situations, such as occlusion. This is because
the distribution of keypoints on lanes is sparse, and there is a correlation between
keypoints on different lanes in the same horizontal area.

In order to realize the mutual auxiliary detection of lanes in the same hor-
izontal area, the horizontal stripe attention(HSA) is designed. In Fig. 2, HSA
can construct the relationship of all lanes in the same horizontal area, and col-
lect horizontal context information to enhance the subpixel-level representation
ability of the network.

HSA process is following:

1. In order to improve the computational efficiency, the input feature map f(f ∈
RC×H′×W ′

) is downsampled into fds(fds ∈ RC×P×W ′
). where H ′ and W ′

represent the height and width of the input feature map, respectively; In
addition, considering the number of points on the lane, the height of each
horizontal strip area is set to 4, so P = H′

4 . The P indicates the number
of horizontal stripes in which the feature map is divided into. Among these
stripes, two downsampling operations are used to achieve the preprocessing
process of attention. Whereas, the two downsampling operations use two same
convolution operations, in which convolution kernel size is (3, 1), the stride is
(2, 1), and padding is (1,0).

2. The downsampled feature map fds first uses two convolutional layers with
1 × 1 filters to obtain Q,K, where Q ∈ RP×W ′×C′

, K ∈ RP×C′×W ′
, C ′ is

the number of channels. Q,K generate attention map A(A ∈ RP×W ′×W ′
) by

affine transformation operation, which means the correlation among any point
p and the total W ′ points in the same horizontal direction of the point p.
In addition, the feature map fds generates V (V ∈ RP×C×W ′

) from a con-
volutional layer with a 1 × 1 filter. Finally, the attention-weighted feature
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fo(fo ∈ RC×P×W ′
) is obtained by matrix multiplication operation between

attention map A and V , achieving aggregation in the spatial domain.
3. After constructing attention, the weighted feature fo upsampled 4x to achieve

alignment with the original input feature map f in horizontal direction.

Fig. 2. HSA module. ①-②: 1
4

downsampling in the horizontal direction; ②-③: the asso-
ciation under the same horizontal area between the unoccluded lanes (blue rectangular
area) and the occluded lane (red rectangular area); ③-④: expanding downsampled fea-
ture map to input feature map in the horizontal direction.

3.3 Loss Functions

Lane Focal Loss to Predict Keypoints. Due to the design of offset loss, all
keypoints are clustered through their corresponding start points to form lanes.
This process demands the accuracy of the start points. So, we design a lane focal
loss to increase the importance of predicting start points. As shown in Eq. 1, the
lane focal loss consists of the weight parameter ζyx and the general loss function
Lf , where H ′ and W ′ are the size of the feature map, and (x, y) is the coordinate
of the pixels on the feature map. ζyx is used to increase the start point priority.
Lf uses focal loss [11] to solve the imbalance between keypoints and other points.

Lpoint =
−1

H ′ × W ′
∑

yx

ζyxLf (1)

ζyx =
{

a , x ∈ [W ′
l ,W

′ − W ′
r] and y ∈ [H ′ − H ′

b,H
′]

b , otherwise (2)

Based on the distribution of the start points in Fig. 3(a), we assume that the
start points in feature maps are concentrated in a small area, which is abbrevi-
ated as start points regions, as shown in Fig. 3(b). Inspired by [18] setting the
image boundary pixels as start points of the anchor line, ζyx is used to increase
the importance of predicting start points.

In Eq. 2, W ′
l , W ′

r and H ′
b represent the left, right and bottom widths of

the start points regions respectively; b represents the weight of the start points
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regions, a represents the weight of other regions. In Fig. 3(b), a corresponds to
the white area, while b corresponds to the cyan area. In this article, a and b are
set to 1 and 1.5, respectively. Besides, both W ′

l and W ′
r are set to 5 due to the

horizontal symmetry of lanes and H ′
b is set to 4, which ensures that more than

99% of the start points is included in start points regions.

(a) the distribution of start points. (b) start points regions.

Fig. 3. The real and hypothetical distribution of start points.

Lf =

⎧
⎨

⎩

(
1 − P̂yx

)α

log
(
P̂yx

)
Pyx = 1,

(1 − Pyx)β
P̂α

yx log
(
1 − P̂yx

)
otherwise

(3)

In Eq. 3, α and β are both hyperparameters of focal loss, Pyx = 1 represents
(x, y) is the ground truth point, Pyx = 0 represents (x, y) is the other points,
and P̂yx represents the probability that (x, y) is predicted as a keypoint.

Offset Loss to Regress Offsets. The offset loss function takes the start point
to represent lane instance and regresses the offset between each keypoint and
its start point. The reason why the start point represents the lane instance is
that the lane usually extends upwards from the bottom of the image, so the
start point tends to be farther apart and less disturbed by other keypoints. In
Eq. 4, the meaning of H ′, W ′ is the same as in Eq. 1. Ôyx(Ôyx ∈ RH′×W ′×2)
represents offsets between predicted points and start points in the x-direction
and y-direction, and Oyx(Oyx ∈ RH′×W ′×2) represents offsets between ground
truth points and start points in the x-direction and y-direction.

Loffset =
1

H ′ × W ′
∑

yx

∣∣∣Ôyx − Oyx

∣∣∣ (4)

The overall loss is shown in Eq. 5, where λpoint and λoffset are the weight of
the keypoint and offset loss. By adjusting the weights, we achieve comprehensive
consideration of keypoints and offset prediction:

Ltotal = λpoint Lpoint + λoffset Loffset (5)
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3.4 Lane Reconstruction

In the inference stage, the lane construction process needs use the keypoint
coordinates and corresponding offset. The entire process is shown in Fig. 4.

First, if the offset between a keypoint and its corresponding start point is
less than 1, that point can be preset as a candidate start point Pc. Then, All
remaining keypoints are calculated as their theoretical start points Pt based on
their offsets. Those points whose distance from the corresponding theoretical
start points Pt to the Pc is less than 1 are retained, and the other points are
treated as error points. In this way, all preserved start points, including Pc and
Pt, are hypothetically concentrated in a area, with the center point of that area
considered the actual start points for that lane.

(a) cluster lane keypoints. (b) reconstruct lanes

Fig. 4. Triangles and circles represent points on different lanes; The hollow point is
the predicted keypoint; The solid blue point is the Pc; The solid black point is the
Pt; The solid red triangle is the theoretical start point of the discarded, there is no
corresponding lane, and the keypoint corresponding to the prediction is discarded; The
solid yellow point is the center of all start points. (Color figure online)

4 Experiments Setting

4.1 Datasets

To evaluate the model, we conduct experiments on two benchmarks, including
TuSimple [1] and CULane [13]. TuSimple is a real highway dataset comprising
3,626 images for training and 2,782 for testing. CULane contains 88,880 training
images and 34,680 testing images, of which test images have 9 different scenarios.

4.2 Evaluation Metrics

CULane. The evaluation involves creating a continuous lane from predicted
discrete points and calculating the IoU with ground truth. A predicted lane
with an IoU >0.5 is true positive(TP), otherwise, it is false positive(FP) or false
negative(FN). We use the F1 score to evaluate model performance in the CULane
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dataset. As demonstrated in Eq. 6, the F1 score is defined as the harmonic mean
of precision and recall.

F1 = 2 · precision · recall
precision + recall

(6)

where precision = TP
TP+FP , recall = TP

TP+FN .

TuSimple. Cclip represents the number of correctly predicted points, while Sclip

is the total number of ground truth points. A predicted point is accurate if it’s
within 20 pixels to the ground truth point. Besides, in order to be consistent with
the CULane standard, we also calculate the F1 score in the TuSimple dataset.
So, the predicted lane is classified as a true positive(TP) if the keypoint accuracy
rate exceeds 85%. Otherwise, it is false positive(FP) or false negative(FN).

accuracy =

∑
clip Cclip∑
clip Sclip

(7)

4.3 Implementation Details

ResNet-18 and ResNet-32 serve as the backbone of the LaneMP, with two ver-
sions named LaneMP-S and LaneMP-M, respectively.

The input image is cropped to 800 × 320. In Eq. 5, λpoint = 1.0 and
λoffset = 0.5. The hyperparameters a and b in Eq. 2 are set to 1 and 1.5, respec-
tively. The hyperparameters α and β in Eq. 3 are set to 2 and 4. The Adam
optimizer [8] and poly learning rate decay are used with an initial learning rate
of 0.001. Our method trains for 300 and 80 epochs on the TuSimple and CULane
datasets, respectively, with a batch size of 32. In testing, the keypoint threshold
is set to 0.4 and Tdis is set to 4. Both training and testing are conducted on
Tesla-A100 GPUs.

5 Experimental Results

5.1 Results on TuSimple

Table 1 validates the effectiveness of our method on the TuSimple dataset, with
an F1 value of 96.73 and FPS(Frames Per Second) of 102, implying the per-
formance of the model as accurate as other methods while also achieving a
higher speed. Additionally, the performance of LaneMP-S and LaneMP-M on
the TuSimple test set is almost identical, we speculate that this may be due to
LaneMP-M being too redundant.
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Table 1. The results on TuSimple

Methods F1 Acc FP FN FPS

SCNN [13] 95.97 96.53 6.17 1.80 7.5

UFLDv2 [15] 96.16 95.65 3.06 4.61 312

LaneATT [18] 96.71 95.57 3.56 3.01 250

Fast-HBNet [14] – 97.42 2.26 2.61 39

Bézier curve [4] – 95.65 5.10 3.90 150

PINet [9] – 96.75 3.10 2.50 25

PointLaneNet [2] – 95.27 4.94 4.88 111

ESAnet [10] - 96.12 3.31 4.50 123

LaneMP-S(Ours) 96.73 95.77 3.65 2.88 102

LaneMP-M(Ours) 96.71 95.82 3.82 2.75 89

5.2 Results on CULane

Table 2 compares the experimental results of the LaneMP model with oth-
ers, confirming the superior performance in CULane dataset [13]. Besides, the
“Cross” scene lacks lane marks, so the results for this scene only display the FP
value.

Some special scenarios in the CULane dataset, especially “Crowded” and
“Shadow” scene, the performance of the model is more obvious with other meth-
ods, which is mainly attributed to that HSA can assist in predicting some blurred
and even invisible lanes in special scenes and lane focal loss can improve the
importance of predicting the start points.

Table 2. the results on CULane

Methods Total Normal Crowded Dazzle Shadow No line Arrow Curve Cross* Night FPS

SCNN [13] 71.60 90.60 69.70 58.50 66.90 43.40 84.10 64.40 1990 66.10 7.5

UFLDv2 [15] 75.90 92.50 74.90 65.70 75.30 49.00 88.50 70.20 1864 70.60 312

LaneATT [18] 75.11 91.17 73.32 65.69 69.58 47.48 86.62 63.07 1059 68.80 250

Fast-HBNet [14] 73.10 91.90 71.60 64.70 66.70 46.80 85.30 65.10 2306 66.70 39

Bézier curve [4] 75.57 91.59 73.20 69.20 76.74 48.05 87.16 62.45 888 69.90 150

PINet [9] 74.40 90.30 72.30 66.30 68.40 49.80 83.70 65.60 1427 67.70 25

ESAnet [10] 74.20 92.00 73.10 63.10 75.10 45.80 88.10 68.80 2001 69.50 123

LaneMP-S(Ours) 76.79 91.77 75.74 69.79 77.80 50.67 88.54 72.98 2572 71.20 102

LaneMP-M(Ours) 77.11 91.92 76.40 68.45 78.24 51.42 88.10 72.88 2678 71.53 89

Nevertheless, the FP value of the model surpasses other methods in the cross
scene. This is because both the lane focal loss and HSA module require lanes
to function effectively. Thus, the model’s detection performance in the “Cross”
scene is compromised due to the absence of lane marking.
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5.3 Qualitative Results

Fig. 5 reveals the qualitative results of our model and other lane detection mod-
els. The first row of pictures in the figure are from the TuSimple dataset, and
the others are from the CULane dataset.

(a) GT lanes (b) PINet [9] (c) LaneATT [18] (d) ESAnet [10] (e) LaneMP-S

Fig. 5. LaneMP and others’ qualitative results in TuSimple and CULane

It can be seen that in the face of the shadow and occlusion scenes in the third
row and fourth row, the performance of LaneMP is better than other methods.
In addition, the model can predict the existing but unmarked lanes in the third
row, while there will be misjudgment in the penultimate row. This may be due to
some interference with the lane by the rightmost sidewalk. Besides, from the last
row of all pictures, the method predicts inexistent lanes in the “Cross” scene.
We speculate that it is because the dense white stripes in the zebra crossing
interfere with the detection of lanes.

5.4 Ablation Study

We use the CULane dataset for ablation experiments, and all experiments are
based on the minimal version of LaneMP-S.

Effectiveness of HSA. Table 3 verifies that HSA improves model performance
in three ways: without using attention, using non-local attention, and using HSA.

From the experimental results, it can be seen that when non-local attention
is used, the prediction result is better than the method without attention, but
because non-local attention is focused on the global scope, it cannot make good
use of the characteristics of the lane itself, so compared with HSA, there are still
some gaps in the experimental results. Based on the linear shape of lanes, the
results in Table 3 show that HSA can effectively utilize the correlation between
lanes to adapt to some difficult detection scenarios.
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Hyperparameters of Lane Focal Loss. Change the values of a and b in
Eq. 2, and verify the different weights of start points in Table 4. In the first row,
the values of a and b are the same as 1, which is equivalent to not increasing the
importance of predicting start points, and the lane focal loss degenerates into
focal loss [11].

Table 3. effectiveness of HSA

Baseline non-local HSA F1

✔ 75.50

✔ ✔ 76.23

✔ ✔ 76.79

Table 4. weights of lane focal loss

a b F1

1 1 76.23

1 1.5 76.79

1 2 76.63

1 3 76.46

Observing the whole table, lane focal loss can enhance the accuracy of the
model. This shows that increasing the importance of predicting start points can
enhance the performance of the model to a certain extent. When comparing
the results of the last three rows, we can observe that as the importance of
predicting start points increases, the experimental results become worse and
worse, indicating that increasing the importance of predicting start points does
not always improve the performance of the model. This may be because over-
enhancing the importance of predicting start points will destroy the balance
between keypoints and other points in the lane focal loss.

6 Conclusion

We propose a LaneMP model for lane detection. According to the local symmetry
characteristics of lanes, an HSA mechanism is designed to make the model have
the ability to deal with extreme scenes such as occlusion. In addition, since the
keypoints clustering of lanes is highly dependent on the start points, this paper
designs a lane focal loss function, which increases the importance of predicting
start points in the loss function, improves the accuracy of predicting start points,
and improves the performance of the model indirectly. The experimental results
show that the model in this paper can effectively deal with lane detection sce-
narios that lack sufficient information, such as lane occlusion. The performance
is better than many current methods in terms of accuracy and robustness.

Acknowledgements. This work was partially supported by Priority Academic Pro-
gram Development of Jiangsu Higher Education Institutions (PAPD), Collaborative
Innovation Center of Novel Software Technology and Industrialization.
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Abstract. Multi-view Stereo(MVS) has been studied for decades as a
critical algorithm for 3D reconstruction. Lately, many learning-based
methods have improved the reconstruction performance of traditional
algorithms, but they pay limited attention to memory consumption and
runtime. To address this issue, we propose a novel and effective learning-
based MVS framework(LE-MVSNet), based on our exploration of the
depth hypothesis and cost volume in this work. Firstly, to decrease
the number of depth hypotheses, we establish a more reasonable depth
hypothesis space based on its sparse point cloud corresponding to the
image set, replacing the previous method of randomly depth hypothesis
in evenly divided depth layers within a predefined depth range. Secondly,
to reduce memory consumption, we design a lightweight group-wise cor-
relation by compressing the channel of the aggregated cost volumes to
one. In addition, for acceleration, we propose SE-UNet, which executes
U-Net regularization in the width and height direction, and SE-Net
for self-attention in the depth direction. Finally, our method achieves
competitive performance on DTU and BlendedMVS dataset with sig-
nificantly higher efficiency. Compared to MVSNet, our method reduces
memory consumption by 52.78% and runtime by 88.57%.

Keywords: 3D Reconstruction · Multi-view Stereo · Depth Map
Estimation · Deep Learning

1 Introduction

Multi-view Stereo (MVS) is a procedure of image-based 3D reconstruction: given
a series of images and corresponding camera poses, multi-view stereo (MVS) aims
to reconstruct a high-precision 3D geometric model by estimating depth maps.
Multi-view stereo(MVS) is a critical task in 3D vision, with applications ranging
from cultural relics protection [14] to virtual reality. Despite decades of research,
MVS remains challenging because of costly runtime and memory consumption.
Our paper focuses on the speed improvement and memory reduction of MVS
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to extend it to edge devices and time-critical tasks such as autonomous driving,
robotic navigation and simultaneous localization and mapping (SLAM).

The success of Convolutional Neural Networks(CNN) in almost all areas
of computer vision has given MVS problems a whole new way forward. Many
learning-based methods [15,26,27] have performed better than some traditional
methods [10,20] on MVS benchmarks while paying relatively little attention to
memory consumption and runtime. Most current learning-based MVS methods
warp source images into the reference camera frustum to form 3D cost vol-
umes, using 3D CNNs to regularize it. 3D CNNs are straightforward for cost
volume regularization, but the overhead is significant for devices. Some scholars
tried to break through this bottleneck. They propose multi-stage frameworks
[12,26] from coarse to fine. While the coarse-to-fine strategy reduces memory
consumption, coarse-stage depth prediction may be wrong at large depth inter-
vals, affecting high-resolution depth map prediction after multiple stages.

Our observation is that the unreasonable depth Hypothesis sampling strat-
egy makes the depth plane of the plane sweep algorithm not fit the target
object. Most methods uniformly sample depth assumptions within the depth
interval given by the dataset, which probably produces many unnecessary depth
assumptions. Sparse point clouds can help us determine the approximate loca-
tion of objects and divide reasonable depth intervals and fewer depth hypotheses.
Therefore, some methods [6,11] calculate probability distributions to derive the
specific approximate range of depth sampling for each pixel, concentrating as
much depth plane as possible on the target object. Camera poses can be gained
through cameras, radar, and industrial robotic arms. Due to the cheap cost of
cameras, the visual method SFM to calculate the pose of the image set has
become the mainstream choice. The traditional MVS algorithm OpenMVS [4]
projects sparse points to the reference image to obtain a sparse depth map and
then performs triangulation to obtain the initial depth map. In this work, we pro-
pose LE-MVSNet, a novel and effective learning-based MVS framework, based
on our exploration of more reasonable depth hypothetical sampling strategies to
focus on reducing runtime and memory consumption.

The main contributions of this work are listed below:

– To decrease the number of depth hypotheses, we establish a more reasonable
depth hypothesis space based on its sparse point cloud corresponding to the
image set, replacing the previous method of randomly depth hypothesis in
evenly divided depth layers within a predefined depth range.

– To reduce memory consumption, we design a lightweight group-wise correla-
tion by compressing the channel of the aggregated cost volumes to one.

– For acceleration, we propose SE-UNet, which executes U-Net regularization
in the width and height direction, and SE-Net for self-attention in the depth
direction.

– Our method achieves competitive performance on DTU and BlendedMVS
dataset with significantly higher efficiency. Compared to MVSNet, our
method reduces memory consumption by 52.78% and runtime by 88.57%.
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2 Related Work

2.1 Learning-Based MVS

With the recent rapid development of deep learning, MVS tasks have introduced
CNNs and transformers to achieve better reconstruction results. Learning-based
MVS approaches warp source images’ feature into the camera frustum of the
reference image to build 3D cost volumes fused through variance operation [8,
15,27]. This practice transforms MVS into a new task, predicting its depth map
for each image.

In this approach, 3D CNNs are a general regularization due to their ability to
aggregate features, while the overhead is significant for devices. Some recurrent
methods [24,25,28] propose using RNN-CNN hybrid networks to sequentially
regularize cost volumes along the depth dimension to mitigate this limitation. R-
MVSNet [28] adopts Convolutional GRUs for cost volume regularization. D2HC-
RMVSNet [25] proposes a hybrid module that absorbs the advantages of LSTM
and U-Net to regularize cost volumes. AA-RMVSNet [24] proposes an intra-view
feature aggregation module and an inter-view cost volume aggregation module,
which effectively improves the effect of dense point cloud reconstruction. They
can predict depth maps in an extensive depth range with limited memory but
sacrifice time.

Multi-stage approaches [5,8,11,12,26] take into account both memory con-
sumption and run time. They foremost estimate low-size depth maps with large
depth ranges and then establish a narrow depth range on this depth map to
iteratively sample and refine it to generate a high-resolution depth map. CVP-
MVSNet [26] form image pyramids and construct cascade cost volume based
on the above process. Some methods [8,23,24] introduce attention modules to
extract features in the global context and learn the association between 2D fea-
tures and 3D cost volumes. However, this method may generate mistakes in
the coarse stage depth prediction in the large depth range, which affects the
high-resolution depth map prediction after multiple stages.

2.2 Depth Hypothetical Sampling Strategy

The plane sweep algorithm [7] divides a continuous depth range into discrete
depth planes. CNNs are considered appropriate for classification. For example,
softmax predicts the likelihood of each pixel falling on each depth plane to cal-
culate its depth value. Our point is that the essence of the plane sweep algo-
rithm is to test the depth hypothesis. Therefore, establishing a reasonable depth
hypothesis is of great significance for the performance improvement of MVS.
Some researchers [6,11] have investigated improvements in depth hypothetical
sampling for MVS.

Cheng et al. in [6] proposes constructing adaptive volumes using variance-
based uncertainty estimates. The adaptive volumes gradually refines the depth
interval from a small number of planes in multiple stages, selecting new depth
samples based on the confidence of the pixels in the currently estimated depth.
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Gao et al. in [11] selects different sampling strategies at different stages: uni-
form sampling or probability distribution sampling. These methods often take
much time to execute the sampling strategy. In contrast, our method can sam-
ple fewer and more accurate depth assumptions more efficiently and adaptively
select depth division based on image texture information.

3 Method

We intend to design an efficient end-to-end MVS architecture(LE-MVSNet).
We chose a flexible and expressive depth map as a scene representation. Given
the reference image I0 and its adjacent graph source image {Ii}N−1

0 , as well
as their camera intrinsic and extrinsic parameter matrices, our learning-based
MVS framework quickly predicted an accurate I0’s depth map. Fusing all depth
maps of the image set can reconstruct a dense point cloud. The architecture
of LE-MVSNet is described in Fig. 1. The first step is to extract multi-scale
2D features with CNN and DCN in Sect. 3.1. Then, DSRE adopts sparse point
cloud initialization depth hypothetical space in Sect. 3.2. In addition, we adopt
group-wise correlation to aggregate cost volumes and SE-UNet to regularize cost
volumes in Sect. 3.3. Finally, the winner-take-all strategy regresses to the final
pixel-wise depth. Sec3.4 gives our loss function.

Sparse point 
clouds

w

Depth Map

ref

src

Feature Extraction

Winner-take-all
Depth Regression

Differentiable Warping

H
ash T

ab

DSRE

Lightweight Group-wise 
Aggregation

w

D

D

Cost Volume 
Regularization

Image

Fig. 1. LE-MVSNet architecture. LE-MVSNet extracts basic features by eight layers
CNN and rich features by DCN. The DSRE module establishes depth hypothesis sam-
pling of Gaussian distributions based on sparse point clouds. The lightweight group-
wise aggregation module adopts the group-wise correlation to aggregate cost volumes.
Finally, SE-UNet regularizes cost volumes.

3.1 Image Features

The essence of MVS is dense matching in multiple perspectives. Therefore,
extracting multi-scale features of images is the first step of MVS. We use the
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CNN-DCN module to accomplish this task. In detail, we employ the same 8-layer
2D CNN as [27,30] to extract image features.

Untextured and weakly textured areas are well-known challenges in 3D recon-
struction. We expect larger receptive fields of convolutions for those regions.
In comparison, smaller receptive fields are more needed for regions with rich
textures. It is a generic practice [8,22,24] to adjust the receptive field adap-
tively with DCNv2 [32]. DCN operates deformable convolution to enrich features,
which learns extra offsets for sampling position. The deformable convolution is
defined as:

f ′(p) =
∑

k

wk · f(p + pk + Δpk)Δmk (1)

In Eq. 1, f is the feature of pixel p, and wk and pk are the convolution
kernel parameters and fixed offset, respectively. Δpk and Δmk are the offsets and
weights resulting from learning deformable convolutions. We only use DCNv2
[32] once after CNN. DCN only once enables adaptive adjustment of accepted
domains based on local context at a limited cost.

3.2 Depth Sampling Range Estimation

Most learning-based MVS frameworks [27] typically employ soft-argmax opera-
tions to regress probability bodies to obtain depth maps based on plane sweep
stereo [7]. In other words, the soft-argmax operation calculates expectations in
the direction of depth:

D =
dmax∑

d=dmin

d · P (d) (2)

where, dmax, dmin, and the division of depth planes are what we focus on opti-
mizing. A sparse point cloud {pw,i}n

0 is generated while the SFM algorithm
calculates the camera pose in the visual method. Depth sampling range esti-
mation(DSRE) module guides establishing these three elements by sparse point
clouds. Firstly, we convert the sparse points of the world coordinate system to
the camera coordinate system:

P =

⎡

⎢⎢⎣

x
y
z
1

⎤

⎥⎥⎦

T

=
[
R t

]
Pw (3)

In Eq. 3, P and Pw are homogeneous coordinates in the camera frame and world
coordinates, respectively. R and t are rotation and translation matrices in the
exterior parameter matrix, respectively. We only record the depth of the sparse
point{Pd,i|Pd,i = z, z > 0}n

i=0 in the reference image viewing angle. Although the
points are sparse, this step can be run in parallel. Because in Colmap [20], SFM
algorithms usually store sparse point clouds in Sqlist. In addition, we modified
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Fig. 2. Distribution of scan1’s sparse point cloud over the depth range in DTU dataset
[1]. The DSER module uses the Gaussian distribution to fit this probability distribu-
tion. Finally, sampling on the Gaussian distribution obtains the depth hypothesis.

the SFM algorithm to use hash tables to record sparse point clouds for parallel
computation. Consequently, the depth hypothesis range[dmin, dmax] is inferred:

{
dmin = α · min{Pd,i}
dmax = β · max{Pd,i}

(4)

In Eq. 4, α and β are relaxation coefficients used to expand the depth range
acceptance domain to a limited extent. For the division of the depth hypothesis,
we assume that it follows the Gaussian distribution G ∼ N(μ = dmax+dmin

2 , σ2)
according to its uncertainty [16]. It is very appropriate to use the Bayesian neu-
ral network BNN to predict the depth interval distribution from {pd,i}n

i=0. In
Fig. 2, we designed BNN with only one hidden layer: the input size is the num-
ber of depth points in the reference image, and the output size is the number of
depth intervals D = 96. The probability distribution of the output also follows
the Gaussian distribution. DSRE module is self-contained. In Fig. 1, it can com-
pute in parallel with feature extraction and warp operations. Therefore, DSRE
modules only introduce limited memory consumption without affecting runtime
time. This module establishes fewer and more accurate assumptions, which can
reduce the runtime and memory consumption of later cost establishment and
regularization.

3.3 Cost Volume

Most current learning-based MVS methods [24,26,27,30] construct front-to-
parallel planes (3D cost volumes) for sampled depth hypotheses and feature
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maps based on plane sweep stereo [7]. MVSNet [27] is the first to introduce 3D
cost volumes from the field of binocular stereo matching to MVS. It is a prereq-
uisite for accelerating one-to-many feature matching tasks with GPUs. Similarly,
we apply differentiable warping to convert source images to the reference per-
spective.

pi,j = K(RK−1
0 · psrc · d + t) (5)

Equation 5 describes the pixel psrc of source images converted to the corre-
sponding pixel pi,j in the reference perspective via differentiable warping. K0 and
Ki are references and source intrinsic matrices. R and t are rotation and trans-
lation matrices between reference and source view. With differentiable bilinear
interpolation, we acquire the i − th warped source feature maps and the j−th
depth hypothesis Fi(pi,j).

Cost Aggregation. This step aggregates multiple source images to form a
single cost per pixel p and depth hypothesis Dj . Previous practices [26,27,30]
used variance to calculate feature volumes based on the assumption that all
views should be equally important. Taking into account factors such as occlusion,
literature [31] points out that the higher similarity between views should have
more weight in the aggregation. We use group-wise correlation [22,23,31] to
measure visual similarity between reference features and source volumes in an
efficient way:

Si(p, j)g =
G

C
〈F0(p)g, Fi(pi,j)g〉 (6)

where g = 0, 1, 2, ..., G−1. Si(p, j)g ∈ R
G represents the inner product of F0 and

Fi in the depth direction in the i-th group. This is a straightforward approach
because the local maximum similarity can represent the relationship between
the views.

∑
Si(p, j)g is the sum of the similarities of the i-th group. Then, the

weighted average of all the Fi yields the corresponding 3D cost volume C:

C =
1

N − 1

N−1∑

k=1

max{
∑

Si(p, j)g}Fk (7)

In this way, those critical views receive more significant weight. Compared
with the original group-wise correlation method, we reduce the channel of the
aggregated cost volumes to 1. Compared to calculating variance, lightwight
group-wise correlation does not incur much memory consumption.

Cost Volume Regularization. Our observation is that there is less noise in
the height and width directions and more noise in the depth direction. Therefore,
depth D and height H ,width W should not be regularized simultaneously. 3D
CNNs [3,8,27] are usually adopted to cost volume C ∈ R

B×C×D×H×W regular-
ization to smooth out the final depth map. We propose SE-UNet, which executes
U-Net regularization in the width and height direction, and SE-Net [13] for self-
attention in the depth direction. SENet was the winner of the last ImageNet
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competition. It is ideal for focusing on correlations between depth planes in a
cost volume. The importance of each depth is automatically obtained by learn-
ing to increase the valuable depth and suppress the less helpful depth. In Fig. 1,
we bridge SENet three times on 3D U-Net. Our introduction of SENet only
brings a limited amount of parameter improvement, which significantly affects
the performance improvement of the model.

3.4 Loss

Like most existing learning-based MVS [22,26,27], we use the L1 norm to cal-
culate ground truth and estimated depth. We also introduced focal loss [17] to
strengthen oversight of unconfident areas. [8,11]demonstrated the effectiveness
of focal loss [17] in MVS. Our loss is defined below:

Loss = λ · Lfl +
∑

p∈Ω

‖DGT (p)−D(p)‖1 (8)

In Eq. 8, Lfl is focal loss, and λ balances Lfl and L1 norm. GT is ground
truth measurements. Ω is the valid set of pixels with GT . The loss Lfl is defined
as:

Lfl = −(1 − P (p))2log(P (p)) (9)

In Eq. 9, P (p) stands for confidence in predicting pix p’s depth and is the
probability sum of the four depth hypotheses closest to D(p).

4 Experiments

4.1 Datasets

The DTU dataset [1] is a large indoor dataset for MVS. Hence, it is possible to
obtain the internal and external parameters of the camera at different viewing
angles of each object. The dataset consists of 124 scenes, each shot from 49 or
64 locations, including a wide variety of objects, corresponding to the number
of RGB images in the scene or scan, to solve MVS problems, each with an
image resolution of 1600 × 1200 pixels. We use official evaluation metrics to
evaluate our proposed method in the DTU dataset [1] with other learning-based
methods. Acc. and Comp. are the accuracy and completeness scores of the
model reconstruction, respectively. Overall is the average of the two indicators.

BlendedMVS [29] is a new large-scale dataset for MVS. The dataset contains
113 different scenes with a variety of different camera tracks, each consisting of
20 to 1000 input images. The BlendedMVS dataset does not give ground truth
point clouds for quantitative evaluation. To prove the scalability of the network,
we test the model on the BlendedMVS dataset, which train on the DTU dataset.
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4.2 Implementation Details

We implement LE-MVSNet with Pytorch [18] and train it on the DTU dataset
[1]. We apply COLMAP-SFM [19] to acquire sparse point clouds We set the
number of input images N = 5, and the image resolution is 640 × 512. We
choose α = 0.98 and β = 1.02 in DSER and λ = 0.5 in Loss. The model is
trained with Adam for 40 epochs with an initial learning rate of 0.001, which
decays by a factor of 0.5, respectively, after 10, 16, 22, and 28 epochs. The batch
size is 4 on 1 NVIDIA RTX 3090Ti GPU.

4.3 3D Reconstruction Performance

Table 1. Quantitative results of different methods on the DTU evaluation set [1]. The
runtime is measured by the input image resolution of 1600 × 1200.

Methods Acc. (mm) Comp. (mm) Overall (mm) Runtime

Traditional Camp [2] 0.835 0.554 0.695 –

Furu [9] 0.613 0.941 0.777 –

Tola [21] 0.342 1.190 0.766 -

Gipuma [10] 0.283 0.873 0.578 –

Colmap [20] 0.400 0.664 0.532 –

Learning-based MVSNet [27] 0.396 0.527 0.462 1.93 s

R-MVSNet [28] 0.383 0.452 0.417 3.65 s

Point-MVSNet [5] 0.342 0.411 0.376 3.35 s

Fast-MVSNet [30] 0.336 0.403 0.370 0.6 s

CVP-MVSNet [26] 0.296 0.406 0.351 1.29 s

Vis-MVSnet [31] 0.369 0.361 0.365 5.23 s

D2HC-RMVSNet [25] 0.395 0.378 0.357 8.0 s

AA-RMVSNet [24] 0.376 0.339 0.357 26.3 s

Ours 0.438 0.394 0.416 0.24 s

We compare LE-MVSNet with traditional methods [2,9,10,20,21] and recent
learning-based methods [5,24–28,30,31]. The results of the quantification are
shown in Table 1. Our approach achieves a competitive effect in completeness.
On the DTU dataset [1], we visualize 3D dense point clouds by Fast-MVSNet
and LE-MVSNet. In addition, we qualitatively compared CVP-MVSNet on the
Blendmvs dataset [29]. Our solution results in more prosperous and complete
point clouds. In Fig. 3 and Fig. 4, our method retains more detail at the boundary
with other efficient MVS method [26,30]. As an efficient MVS framework, the
3D reconstruction performance of LE-MVSNet is acceptable.
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Fig. 3. Qualitative comparisons with Fast-MVSNet of Scan13 and Scan 33 in the DTU
dataset [1].

Image

Image

CVP-MVSNet

CVP-MVSNet

Ours

Ours

Fig. 4. Qualitative comparisons with CVP-MVSNet in the BlendedMVS dataset [29].

4.4 GPU Memory and Runtime

The input image resolution in Table 1 is 1600 × 1200. Notably, the inference
time of our method is 0.24 s, which is faster than previous methods. We compare
memory consumption and runtime with several learning-based MVS methods:
MVSNet [27], Fast-MVSNet [30]and CVP-MVSNet [26]. As shown in Fig. 5,
memory consumption and runtime increase linearly with image resolution. At
a resolution size of 1152 × 864 (51.8%), memory consumption and runtime are
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Fig. 5. Relates GPU memory and runtime to input resolution. The maximum image
resolution is 1600 × 1200(100%).

reduced by 52.78% and 88.57% compared to MVSNet, by 5.26% and 53.85%
compared to Fast-MVSNet, by 68.80% and 63.08% compared to CVP-MVSNet.
In summary, our method is more efficient regarding memory consumption and
runtime than the previous method.

4.5 Ablation Study

We perform ablation experiments to verify the effectiveness of each component in
LE-MVSNet. The implemented baseline is basically based on MVSNet [27], mea-
sured by our experimental environment. The input image resolution is 1152×864.
As shown in Table 2, DCN enriches features, resulting in a 15.2% improvement
in completeness with a small amount of time and memory consumption. Memory
consumption and runtime are significantly reduced after applying DSRE. It is
mainly due to the simplification of the depth assumption. Lightweight group-
wise correlation(LG) considers the inconsistency of view weights, which effec-
tively improves the completeness and accuracy of the model. In addition, LG
replaces variance aggregation cost volume, which can effectively reduce memory
consumption. SE-UNet dramatically reduces the runtime of 3D CNNs at the
cost of adding only a few parameters.
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Table 2. Ablation study on DTU dataset. The input image resolution is 1152 × 864.

Model Settings DTU Benchmark

DCN DSRE LG SE-UNet Acc. (mm) Comp. (mm) Overall (mm) Mem. (Mb) Time(s)

0.467 0.497 0.482 10847 1.05

� 0.452 0.422 0.437 10924 1.08

� � 0.446 0.418 0.432 6768 0.71

� � � 0.441 0.405 0.423 5047 0.33

� � � � 0.438 0.394 0.416 5121 0.12

5 Conclusions

In this paper, we have proposed LE-MVSNet, a novel and efficient learning-based
MVS architecture. Inherited from the traditional 3D reconstruction pipeline, LE-
MVSNet applies sparse point clouds to accelerate MVS for the first time. The
DSRE module uses BNN to learn the probability distribution of sparse point
clouds to optimize deep hypothesis sampling. Besides, We apply SE-UNet to
regularize 3D cost volumes aggregated by lightweight group-wise correlation.
Extensive experiments have been conducted on DTU and BlendedMVS datasets
and demonstrate that our model dramatically improves the reconstruction speed
of MVS and is more suitable for memory-limited devices. Our attempt will pro-
vide some insights and inspire researchers to reconsider the role of sparse point
clouds in MVS frameworks. Our results in a resolution of 1600×1200 reach 0.24 s,
but real-time high-resolution reconstruction still requires effort.
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Abstract. One of the main problems with automatic text summariza-
tion is the lack of a “gold standard" for summary quality evaluation.
ROUGE [9] is the most widely used evaluation metric for summary
quality. However, its evaluation merely concentrates on reference sum-
mary and overlap features of sentences rather than focusing on more
critical semantic features. Some other exiting methods have issues with
improper noise handling and high cost. To solve these problems, we pro-
pose a lightweight reference-less summary quality evaluation method
(SE-tiny), which evaluates the summary from two aspects: the sum-
mary’s self-quality and the degree of matching the features of the sum-
mary with the key features of the source text. Then, we optimize compu-
tational efficiency and space cost. Compared with existing methods, SE-
tiny improves the quality of evaluation and reduces the cost. Besides,
our method does not rely on reference summaries and can be generalized
to evaluation on summarization datasets. For the goal of reproducibility,
we make the SE-tiny project’s code and models available.

Keywords: Automatic Text Summarization · Reference-Less
Summarization Quality Evaluation · Summarization Datasets

1 Introduction

In text summarization tasks, evaluating summary quality is a challenging chal-
lenge that severely limits model performance development. Three questions need
to be clarified before we can evaluate summary quality. (1) What is a summary?
The summary is not the same length as the source text and contains a limited
amount of information. The summary is a collection of key information in the
source text, rather than an abstraction of all the information. (2) How do humans
evaluate a summary quality? Humans evaluate the quality of a summary in two
steps, first evaluating the summary’s self-quality, and then judging how well the
summary matches the key information in the source text. (3) What kind of sum-
mary evaluation method is good? A good summary evaluation method should
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. SE-tiny architecture

minimize the cost while evaluating the summary quality comprehensively and
accurately.

The two primary types of summary evaluation methods are reference-based
and reference-less. The former completely depends on the quality of the refer-
ence summary, which is costly and labor-intensive. The latter uses the source text
information to match the summary, saving the cost of the reference summary.
However, current reference-less methods share common drawbacks. Firstly, the
noise information in the source text is not handled well, which affects the eval-
uation results. Second, the amount of information in the summary differs from
that in the source text. Using all the semantic information of the source text to
match the summary not only violates human logic but also fails to generate cor-
rect matching results. Furthermore, most of the well-performing reference-less
methods are based on complex models, which incurs a large cost.

In response to the above problems, we propose SE-tiny . Taking inspiration
from human evaluation, the method is divided into three steps. (1) Evaluate the
summary’s self-quality in terms of compression ratio, fluency, and readability.
(2) To acquire the representations of the summaries and source texts, we first
map them to the feature space. Then, we extract key features from the features
of the source text (simulate the extraction of key information from the source
text during the human evaluation) and use these key features to perform sim-
ilarity calculations with the features of the summary. This not only increases
evaluation accuracy, but also aligns with the logic when humans evaluate sum-
maries. Moreover, compared to existing methods that directly match summary
and entire source text information, this method greatly simplifies computation.
(3) We adopt a linear method to fuse the results of step1 and step2. Besides,
we use two lightweight language models, n-gram and BERT-base [3] to reduce
the cost of model loading. Experimental results show that SE-tiny not only
guarantees the quality of the evaluation but also reduces the cost.

Contributions. (1) We propose a lightweight reference-less summary quality
evaluation method (SE-tiny), which fully utilizes the source text information,
removes noise, and conforms to the logic of human evaluation. (2) We optimize
SE-tiny from two aspects: the computational complexity and the cost of the
model. (3) We construct a high-quality dataset (SE-tiny-db) for evaluation of
reference-less summarization and a reference-less summary evaluation system
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(SE-tiny-S) that can be easily invoked. (4) Since SE-tiny does not rely on
reference summaries, we generalize it to evaluation on summarization datasets.

2 Background and Motivation

2.1 Reference-Based Evaluation Metric

Model-Free Metrics: ROUGE [9] is a widely used metric, which evaluates
summary using the co-occurrence of n-grams between machine summary and
reference summary.

Model-Based Metrics: ROUGE-WE [13] uses the Word2Vec, and cosine dis-
tance to calculate the similarity of the two words, and then obtains the similarity
between the machine summary and the reference summary. ROUGE-G [17] is a
summary evaluation metric based on graph semantic matching. BERTScore [22]
uses the contextual embeddings in the BERT [3] to represent the words and then
calculates the similarity between the machine summary and the reference sum-
mary by the cosine similarity. MoverScore [23] calculates the similarity between
the machine summary and the reference summary by the Word Mover distance.
Based on MoverScore [23], Clark et al [2] use SMS and S+WMS to divide the
text into multiple sentence vectors or a mixture of sentence vectors and word
vectors to perform similarity detection on longer continuous text content. Clark
et al [21] have proposed a content-based weighted generative summary evaluation
metric.

These metrics can partly solve the quality evaluation problem of summary,
but they have the following drawbacks. (1) These methods rely on reference
summaries which are costly and labor-intensive, and the evaluation results com-
pletely depend on the quality of the reference summary. (2) The information in
the source text is greatly wasted. (3) Model-based evaluation methods have a
large cost, which is not conducive to practical use. Therefore, the researchers
proposed the reference-less evaluation metrics.

2.2 Reference-Less Evaluation Metrics

Model-Free Metrics: Louis et al. [12] first introduce a reference-less summary
evaluation method that uses JS divergence to determine whether the word distri-
bution in the machine summary is similar to the word distribution in the source
text.

Model-Based Metrics: Chen et al. [1] have proposed a summary evaluation
method based on a question answering system. SummaQA [16] uses generated
summaries to answer cloze-style questions, and evaluates summary quality by
reporting F1 overlap scores and QA model confidence. SUM-QE [20] uses the
BERT [3] to evaluate the quality of summary in five dimensions: grammar, redun-
dancy, clarity of reference, content relevance, and article organization. Kryscinski
et al. [7] present a method based on the factual content of the source text, using
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machine summary to match multiple text fragments extracted from the source
text. SUPERT [4] is an evaluation method for reference-less multi-document
summaries. LS_Score [19] is an unsupervised evaluation method based on con-
trastive learning, which combines semantic and linguistic dimensions to evaluate
the summary, and uses contrastive learning to optimize the model. QuestEval
[15] uses a question answering(QA) system to assess the semantic match between
the source text and the summary. Finally, the F1-score between the predicted
answer and the real answer is used as the semantic matching degree between the
summary and the source text.

Motivation: Although these metrics no longer rely on reference summaries and
utilize source text information, they also suffer from the following drawbacks.
(1) The noise information in the source text is not well handled, which affects
the evaluation results. (2) Using all the semantic information of the source text
to match the summary is not only inaccurate but also fails to generate correct
matching results. (3) Model-based evaluation methods have a large cost, which
is not conducive to practical use. In order to overcome the above problems, we
propose a lightweight reference-less method SE-tiny for summarization quality
evaluation.

3 Method

In order to overcome the shortcomings in the above analysis, we propose SE-
tiny . We divide the summary evaluation into the following two dimensions:
(1) Summary’s self-quality dimension. (2) The matching dimension of the sum-
mary and the source text. Based on the evaluation dimensions proposed above,
SE-tiny is divided into the following three steps: (1) Summary’s self-quality
evaluation. (2) Calculate the similarity between the summary features and the
key features extracted from the source text. (3) Integrate the scores of step1 and
step2. The details are as follows.

3.1 Summary Self-quality

The summary’s self-quality is mainly divided into compression ratio, readabil-
ity, and fluency. The compression ratio is a static metric and can be directly
calculated. In order to reduce the model cost while maintaining the evaluation
quality, we use the summary sequence S as input, and obtain the probability
value of the sequence S through a trained n-gram language model (CNN/DM)
to represent the readability and fluency scores. Furthermore, considering that
the n-gram model is unfriendly to long summaries, we add a penalty factor.

step1: For summary sequence S, the compression ratio is denoted as “Com-
press(S)". If “Compress(S)" within [0.75-0.98], continue to the next step, other-
wise the quality score of the summary is 0.

step2: We fuse the probability values of the unigram (Sg1) and bigram (Sg2)
outputs of the sequence S as readability and fluency scores (Ps). Adding a
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penalty factor for text length reduces the unfriendly of n-grams for long sum-
maries.

Ps = Min_max(α lgSg1 + β lgSg2 + η|S|) (1)

Where |S| is the text length, α, η is tuning parameters, α + β = 1 here.
Min_max(*) is a normalization function.

In the current summarization evaluation, only human scoring can be regarded
as the “gold standard". We use the Spearman correlation between our method
and human scoring (SE-tiny-DB) to analyze the value of α, η. The specific
analysis results are shown in Fig. 2. We can find that the Spearman correlation
is the highest when α = 0.401, η = 0.429 here.

Fig. 2. The effect of parameter α and η on SE-tiny . The abscissa is the α and η value,
the ordinate is the Spearman correlation between our method scores and human scores
(SE-tiny-DB).

3.2 Matching Degree

We use the BERT [3] contextual embedding to represent the summaries and the
source texts. In order to conform to the logic when humans evaluate summary,
we extract key features from the features of the source text to perform similarity
calculations with the features of the summary. This eliminates noise, improves
evaluation quality, and reduces computational cost. The specific method is as
follows:

Text Preprocessing: The preprocessing part removes stop words, prepositions,
and some content-independent words.

Feature Extraction: For the bridge between text and features, we choose a
lightweight language model BERT-base [3]. S and D represent summary and
source text, respectively. BERT (S) and BERT (D) represent the feature rep-
resentations of S and D. BERT (∗) is obtained through the token-level feature
representation by using the BERT-base [3].

Extraction of Key Features: The feature vectors of the source text are T =
[t1, ..., tn], and the key feature vectors of the source text are Ki = (k1, ..., kw).
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Stack the m key features as a key content matrix K = [K1, ...,Km]. We define the
approximative token vector ˜ti for the token ti as the optimal linear approximation
given by key feature matrix: ˜ti = α̃iK, where α̃i = argmin||ti − α̃iK||22, || ∗ || is
the Frobenius norm of a matrix. We use the key feature matrix to approximate
the features of the source text and minimize the approximate representation
error (E).

E =
n

∑

i=1

||ti − ˜ti||22 (2)

K = argminE(K) (3)

Without loss of generality, we make the key feature vectors [Ki]mi=1 to be
orthonormal. Then this optimization problem can be solved by Singular Value
Decomposition (SVD). T = UWV T , WV T is an approximate representation of
T. We denote key feature vectors ([Ki]mi=1) of the source text by the first m
vectors of V T . The W as the weight matrix of V T . This ensures approximate
representation error is minimized.

Calculate Spatial Distance: We calculate the cosine distance between the
key feature vectors of the source text and the feature vectors of the summary to
indicate the matching degree. Map the distance into [0, 1] to get the Matchscore.

We use the Spearman correlation between our method and human scoring
(SE-tiny-DB) to analyze the value of m, and the specific analysis results are
shown in Fig. 3. We can find that the spearman correlation is the highest when
m = 4.

Fig. 3. The effect of parameter m and θ on SE-tiny . The abscissa is the m and θ
value, the ordinate is the Spearman correlation between our method scores and human
scores (SE-tiny-DB).

3.3 SE-Tiny Score

We adopt a linear approach to fuse the scores obtained from the above two
dimensions.

SEtiny = θPs + (1 − θ)Matchscore (4)
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Where θ is a tuning parameter. We use the Spearman correlation between
our method and human scoring (SE-tiny-DB) to analyze the value of θ, and
the specific analysis results are shown in Fig. 3. We can find that the spearman
correlation is the highest when θ = 0.13.

4 Experiment

We verified SE-tiny from four aspects: correlation, actual effect, cost and cross-
datasets transferability. Select the commonly used evaluation metrics ROUGE
[9], MoverScore [23], BERTScore [22], LS_Score [19] and the current best per-
forming metric QuestEval [14] as the baselines for evaluating metrics. Select
Transformer [18], Presumm [10], Bart [8] and SimCLS [11] as baselines for
generating machine summaries. For specific model parameters, please refer to
Appendix A.

4.1 Evaluation Dataset

Since there is currently no high-quality dataset for reference-less summary eval-
uation methods, we constructed a dataset (SE-tiny-DB) dedicated to evalu-
ating reference-less summary and invited 6 linguists to score the <summary-
document> pairs. The specific scoring standard are as follows.

(1) Summary Self-quality Evaluation:
step1: If the compression ratio of the summary is in the range of [0.75-0.98],

the next scoring is performed, otherwise it is directly scored as 0.
step2: We count the frequency of occurrence of disfluency in the summary

as f . f ≥ 5: 0 points; f = 4: 1 points; f = 3: 2 points; f = 2: 3 points; f = 1:
4 points; f = 0: 5 points. We got the fluency score (Scorefluency) based on the
above standard.

step3: We count the frequency of incomprehensible occurrences in the sum-
mary as r. r = 5: 0 points; r = 4: 1 points; r = 3: 2 points; r = 2: 3 points;
r = 1: 4 points; r = 0: 5 points. We got the readability score (Scorereadability)
based on the above standard.

(2) Evaluation of Matching Degree: The percentage of the summary covering
the key content of the source text is denoted as k. k < 1/5: 0 points; 1/5 ≤ k <
2/5: 1 point; 2/5 ≤ k < 3/5: 2 points; 3/5 ≤ k < 4/5: 3 points; 4/5 ≤ k < 1: 4
points; k = 1: 5 points. We got the matching degree score (Scorematch) based
on the above standard.

(3) Dataset Construction Process: Our data source comes from the existing
datasets CNN/DM [6] and Newsroom [5]. Specific steps are as follows:

step1: We divided linguistic experts into two groups. The first group of
experts scored the data in SE-tiny-DB according to the scoring standard. The
second group of experts checked the scoring results of the first group.

step2: The two groups of experts exchanged and repeated step1.
According to the established scoring standard, the summary data scores in

CNN/DM [6] and Newsroom [5] are concentrated in the range of [2, 5] points,
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which is not conducive to our use. In response to this situation, we have processed
the summarization data in SE-tiny-DB . The processing methods include: delet-
ing some key points in the summary, rewriting the summary to make it difficult
to understand, rewriting the summary to make it less fluent, etc. After these pro-
cesses and repeating the scoring steps, we get the final dataset, and the statistical
results of the dataset are shown in Table 1.

Table 1. Statistics of the distribution of data in SE-tiny-DB on each score.

0 points 1 point 2 points 3 points 4 points 5 points

Fluency 178 417 472 500 408 43
Readability 127 305 582 532 402 70
Matching degree 122 308 526 476 486 100

4.2 Correlation

Correlation with Human Metrics. Human metrics are the current “gold stan-
dard" for summary quality evaluation. We selected fluency, readability, matching
degree and composite score for correlation calculation (Spearman) on SE-tiny-
DB . The specific results are shown in Table 2. Compared with other methods,
SE-tiny has the highest correlation with human metrics, which fully reflects
the superiority of our method.

Table 2. Correlation (Spearman) evaluation of SE-tiny and some baseline methods
with human scoring. Total represents the composite score of human metrics

Fluency Readability Match Total

ROUGE-L(F) 0.37 0.34 -0.10 0.28
MoverScore 0.35 0.31 0.28 0.27
BERTScore(F) 0.18 0.23 0.31 0.25
LS_Score 0.42 0.46 0.64 0.53
QuestEval 0.49 0.51 0.70 0.68
SE-tiny 0.66 0.55 0.78 0.71

4.3 Scoring Effect

In order to verify the actual scoring effect of SE-tiny , we use our method and
some baseline methods to score the machine summaries generated by the text
summarization models. The specific scoring results are shown in Table 3. We can
find that the evaluation results of SE-tiny are consistent with the quality of
the models.
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Table 3. The actual scoring effect of ROUGE, BERTScore (F), and SE-tiny on the
machine summaries generated by the text summarization models.

ROUGE-1 ROUGE-2 ROUGE-L BERT(F) SE-tiny

Lead3 40.42 17.62 36.67 75.16 61.42
TextRank 35.23 13.90 31.48 65.71 56.89
Pointer 39.34 17.21 35.23 76.54 63.76
Transformer 39.66 17.19 36.66 87.68 68.47
BertSumAbs 41.72 19.39 38.76 88.26 69.18
BertSumExtAbs 43.23 20.24 39.63 88.22 70.91
Bart 44.39 21.21 41.28 88.33 69.16
SimCLS 46.67 22.15 43.54 89.24 71.85

4.4 Model Cost

A good evaluation model needs to have less cost, we calculate the cost of various
methods to complete the evaluation of 10K <summary-document> pairs. The
specific results are shown in Table 4. Compared with model-based evaluation
methods, SE-tiny saves time and has less space cost.

Table 4. Model cost comparison

ROUGE BERTScore LS_Score SE-tiny

Time (s) <300 8,418 9,761 4,181
Space (MB) <10 4,280 3,525 716

4.5 Cross-Datasets Transferability

A good evaluation method should also have good transferability. In order to
verify this feature, we train SE-tinyon two datasets CNN/DM [6] and NEWS-
ROOM [5], and then evaluate the data quality of SE-tiny-DB and calculate the
correlation (Spearman) with human scoring. SE-tiny-DB in 4.1 above contains
part of the data in CNN/DM [6] and NEWSROOM [5] after scoring. The specific
experimental results are shown in Table 4. Both SE-tiny-CNN/DM and SE-tiny-
CNN/DM* are the correlation score between CNN/DM [6] scoring results and
human scoring, SE-tiny-CNN/DM is trained using CNN/DM [6] data, and SE-
tiny-CNN/DM* is trained using NEWSROOM [5]. Both SE-tiny-NEWSROOM
and SE-tiny-NEWSROOM* are the correlation score between NEWSROOM
[5] scoring results and human scoring, SE-tiny-NEWSROOM is trained using
NEWSROOM [5] data, and SE-tiny-NEWSROOM* is trained using CNN/DM
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[6]. We can find that the scoring results in other datasets are similar to the scor-
ing results trained in this dataset. This fully demonstrates the transferability of
our method.

Table 5. Cross-datasets transferability

Fluency Readability Match Total

SE-tiny-CNN/DM* 0.63 0.64 0.75 0.74
SE-tiny-CNN/DM 0.67 0.58 0.78 0.76
SE-tiny-NEWSROOM* 0.53 0.54 0.61 0.56
SE-tiny-NEWSROOM 0.57 0.60 0.68 0.62

5 Conclusion

SE-tiny is a lightweight reference-less summary quality evaluation method
based on key feature extraction. By matching the summary features with the
key features of the source text, this evaluation method conforms to human eval-
uation logic, eliminates noise, improves evaluation quality, and reduces the cost.
Experimental results show that our method outperforms existing model-based
summarization evaluation methods in both performance and cost. At the same
time, our method does not rely on reference summaries and can be generalized
to evaluation on summary datasets.

6 Limitation and Future Work

Our method is a general approach, effective for commonly used summarization
data, but lacks specificity for domain-specific summarization data evaluation. In
order to overcome this shortcoming, more algorithms for specific domains need
to be proposed in the future.

With the improvement of computing power, more and more large models
have been proposed (Chat-gpt, GPT-3 etc.), but when the model develops to a
certain scale, how to reduce the cost of the model while ensuring the quality of
summarization evaluation is also an area for future development. In addition to
the pruning algorithm, reducing overhead directly from the model architecture
is also a future trend. In the future, we hope to propose more lightweight and
efficient summarization evaluation algorithms.
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Abstract. The goal of opponent modeling is to model the opponent
policy to maximize the reward of the main agent. Most prior works
fail to effectively handle scenarios where opponent information is lim-
ited. To this end, we propose a Limited Information Opponent Mod-
eling (LIOM) approach that extracts opponent policy representations
across episodes using only self-observations. LIOM introduces a novel
policy-based data augmentation method that extracts opponent policy
representations offline via contrastive learning and incorporates them as
additional inputs for training a general response policy. During online
testing, LIOM dynamically responds to opponent policies by extracting
opponent policy representations from recent historical trajectory data
and combining them with the general policy. Moreover, LIOM ensures
a lower bound on expected rewards through a balance between conser-
vative and exploitation. Experimental results demonstrate that LIOM
is able to accurately extract opponent policy representations even when
the opponent’s information is limited, and has a certain degree of gener-
alization ability for unknown policies, outperforming existing opponent
modeling algorithms.

Keywords: opponent modeling · contrastive learning · general policy

1 Introduction

Opponent Modeling [2,4,7,12] is an important branch of Multi-Agent Reinforce-
ment Learning aimed at utilizing opponent information to model the opponent
in order to maximize self (i.e., the main agent’s) reward, particularly when
the opponent policy is non-stationary. However, existing opponent modeling
approaches heavily rely on the completeness of opponent information, render-
ing them limited in accuracy and effectiveness when opponent observations and
actions are unknown. To address this issue, we propose the Limited Information
Opponent Modeling (LIOM) algorithm, which models the opponent policy solely
based on the main agent’s historical observations. We divide the problem into
two stages: offline training and online testing.
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During the offline training stage, we aim to learn a powerful general policy
on a given set of opponent policies, which can approximate the optimal response
policy of any known or unknown opponent as closely as possible. This requires
an accurate and generalizable representation of opponent policies as support.
To this end, we propose a novel policy-based data augmentation approach that
interacts with opponent policies with various augmentation policies to gener-
ate trajectories for constructing positive and negative samples. We then extract
cross-episode trajectory representations self-supervisedly via contrastive learning
as opponent policy representations. Then, the opponent policy representations
are further inputted into the reinforcement learning algorithm for learning the
general policy. The advantage of the general policy lies in its ability to general-
ize to an infinite number of opponent policies, implying no need for relearning
against new individual opponent policies during online testing.

During the online testing stage, we encode the recent historical trajectories
into opponent policy representations and use them as additional inputs to the
general policy. This dynamic response allows us to handle non-stationary oppo-
nent policies. Furthermore, to deal with difficult-to-generalize opponent policies,
we dynamically update a weight based on the reward, which selects between a
conservative Nash equilibrium policy and an exploitative general policy. This
ensures the lower bound of expected returns.

This paper presents two innovative contributions: (1) opponent modeling is
performed only based on self-observation, which renders our approach adapt-
able to almost any environment. (2) a novel policy-based data augmentation
technique is proposed, which allows for independent extraction of policy repre-
sentations without being influenced by policies it interacts with. Moreover, we
introduce a classic algorithm EXP3 to address the trade-off between conservative
and exploitation during online testing.

We compared the performance of LIOM with multiple algorithms in two
classic reinforcement learning benchmarks, Kuhn Poker and Soccer. Our results
demonstrate that LIOM outperforms existing opponent modeling algorithms in
terms of performance against both “seen” and “unseen” opponents.

2 Related Work

2.1 Opponent Modeling

Early opponent modeling research primarily focused on simple environments
with fixed opponent policies. With the introduction of non-stationary environ-
ments, existing opponent modeling can be categorized into two approaches:
implicit modeling and explicit modeling.

Implicit opponent modeling refers to extracting opponent information for rep-
resentation learning during training. He et al. [4] proposed an end-to-end training
approach by merging the opponent’s observation with the agent’s observation
using a deep neural network. Hong et al. [7] further incorporated opponent action
information and fitted the opponent policy through a neural network. Consid-
ering that the opponent may also have learning behaviors, Foerster et al. [2]
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leveraged recurrent reasoning to estimate the parameters of the opponent policy
network and maximize the agent’s reward. Raileanu et al. [9] took a different
perspective, considering the opponent policy network parameters of the agent’s
own policy and using opponent observations to make decisions.

Explicit opponent modeling refers to the explicit modeling of opponent poli-
cies, dividing opponent types, and online detection and response during the
interaction process. Rosman et al. [10] first proposed bayesian policy reuse for
multi-task learning, while Hernandez-Leal et al. [6] extended this to multi-agent
systems by using MDPs to model opponents and adding a detection mechanism
for unknown opponent policies. In more complex environments, Zheng et al. [12]
used neural networks to model opponents and introduced a rectified belief model
to improve opponent detection accuracy and speed. Building on this work, Yang
et al. [11] introduced the Theory of Mind approach to defeat opponents using
higher-level decision-making methods in cases where the opponent is also using
an opponent modeling method.

2.2 Contrastive Learning

As the most prevalent self-supervised learning algorithm in recent years, con-
trastive learning aims to learn common features among similar instances while
distinguishing dissimilar instances. Oord et al. [8] initially proposed InfoNCE
loss, which encodes time-series data. By segregating positive and negative sam-
ples, it can extract data-specific representations. Following this approach, He et
al. [5] achieved high performance in image classification by enhancing the simi-
larity between the query vector and its corresponding key vector, while reducing
similarity with the key vectors of other images. From the perspective of data
augmentation, Chen et al. [1] applied various transformations such as random
cropping, inversion, grayscale, etc., on images, and extracted invariant repre-
sentations through contrastive learning. Subsequent works have made further
improvements, achieving performance levels comparable to supervised learning
algorithms on certain tasks.

3 Methodology

We introduce our main algorithm LIOM, the offline training in Sect. 3.1 and the
online testing in Sect. 3.2.

3.1 Offline Training

This section first introduces a novel policy data augmentation method. Then, we
introduce the encoder training based on contrastive learning, where the opponent
policy representation can be obtained from historical trajectory data. The policy
representation will assist in training the general response policy and solving
online execution policies.
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Fig. 1. LIOM consists of two stages: (a) Offline training and (b) Online testing.

Data augmentation is widely used for representation extraction, where it can
extract important features while disregarding irrelevant information. In con-
trastive learning, data augmentation is mainly used to create positive and neg-
ative samples. However, the opponent’s policy representation cannot be learned
independently, it can only be extracted from interaction trajectories. We thus
define a policy that interacts with an opponent’s policy as an augmentation
policy. We use some pure policies as augmentation policies since they take deter-
ministic actions and have a minor effect on the trajectory representations’ dis-
tribution.

By treating the interaction with an augmentation policy as a form of data
augmentation, we can define a policy-based contrastive loss. For a given N oppo-
nent policy set, we randomly choose two augmentation policies to interact with
the opponent policies. Then, the obtained trajectories are encoded to form the
set of trajectory representations {μ1, μ2, ..., μ2N}, where μ2k−1 and μ2k are gen-
erated by the same opponent policy. The loss function can be defined as:

L =
1

2N

N∑

k=1

[l(2k − 1, 2k) + l(2k, 2k − 1)], (1)

where:
l(i, j) = − log

exp (si,j/τ)
∑2 N

k=1 1[k �=i] exp (si,k/τ)
. (2)

Here si,j represents the cosine similarity between trajectory representation μi

and μj , and τ is the temperature coefficient.
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Due to the unknown observation information of the opponent, inferring the
current opponent policy from a single-episode trajectory is challenging. There-
fore, it is necessary to extract cross-episode opponent policy representations.
The specific procedure is illustrated in Fig. 1(a). Let h denote the number of
game episodes required to learn the policy representations. For a N opponent
policy set {π−1

1 , π−1
2 , ..., π−1

N }, we randomly select two augmented policies π1
1 and

π2
1 . Let opponent policy π−1

i interact with augmented policy π1
1 , and randomly

sample a trajectory set Dh = {τ1, . . . , τh}. For each trajectory, we use GRU to
extract the features:

zt = fGRU(τt). (3)

It is necessary to further encode and aggregate the representations zt obtained
from trajectories. In this paper, we employ the mean operation for aggregation
due to simplify the expression:

μ2i−1 =
1
h

h∑

t=1

fMLP(zt). (4)

Similarly, opponent policies interact with the augmented policy π2
1 to construct

a set of trajectory representations {μ1, . . . , μ2N}, based on extracted features.
By minimizing contrast loss (Eq. 1), we can obtain the opponent policy encoder
fφ(·) in offline stage:

μD = fφ(D). (5)

After that, the opponent policy representation μ is regarded as labeled infor-
mation, which assists the agent to make optimal responsive decisions against
different opponent policies. This is particularly important in scenarios where the
opponent’s observations are unknown.

The core idea is to select an opponent policy π−1
k and interact with it, stor-

ing the trajectory information τ in the historical trajectory set Dk. Before each
episode of the game starts, the historical trajectory Dh

i for the current episode
is selected from Dk. The opponent policy representation μ is generated based
on Dh

i and a pre-trained opponent policy encoder fφ(·), and then it is com-
bined with the observation o1

t of the main agent as a new observation to the
critic and policy networks for training, and the network parameters are updated
using the SAC algorithm. The main advantage of training a general policy lies
in enabling the opponent policy encoder to obtain relatively accurate represen-
tations of unknown opponent policies, improving generalization.

3.2 Online Testing

This section first introduces the representation extraction method for online
opponent policies. Then, we discuss the choice between conservative and
exploitative policies and present a dynamic response policy that maximizes
expected rewards.

Using the opponent policy encoder fφ obtained in the offline training phase
and the general policy πμ, LIOM can respond to the opponent policy in online
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Algorithm 1: LIOM(testing)
Require: Nash equilibrium policy πNE , general policy πμ, opponent policy encoder fφ(·),

opponent policy set Πtest, number of testing episodes T , trajectory length H, number of
steps behind h, EXP3 parameters p = [0.5, 0.5], s = [0, 0], ρ = 1, η = 0.1.

1: for testing episode i = 0 · · · T − 1 do
2: Initialize history trajectory set D = ∅
3: if i < h then
4: Choose to interact with opponent using πNE , generating trajectory τi.
5: D ← D ∪ τi.
6: else
7: Cut out historical trajectory Dh

i for current episode from D.
8: Generate opponent policy representation μ = fφ(Dh

i ).
9: Update probability distribution p according to Eq. (6).
10: Choose policy πi for this episode based on probability distribution p, generating

trajectory τi.
11: Update score s based on chosen policy and Eq. (7).
12: if πi = πμ then
13: D ← D ∪ τi.
14: end if
15: end if
16: end for

testing. For opponents with continuously changing policies, the agent fits the
opponent policy representation μ using the recent h episodes of historical tra-
jectory Dh. The real-time calculated μ is then used as the input of the general
policy πμ to continuously adjust the currently used policy, achieving the opti-
mal response to the current opponent. However, for unknown opponent policies,
although the general policy and policy representation theoretically have certain
generalization capabilities, the agent still cannot guarantee to respond to any
unknown opponent policy. A conservative and stable policy is, therefore, neces-
sary to handle this situation.

To maximize expected return during online testing, the algorithm needs to
balance between the conservative policy πNE and the exploitative policy πμ.
This scenario can be modeled as a classic Multi-Armed Bandit (MAB) problem,
that is, how to quickly converge to the higher expected return policy when the
return distribution for choosing policies πNE and πμ is uncertain. We choose to
use the EXP3 algorithm to solve the problem. The EXP3 algorithm dynamically
maintains an action probability distribution p, and the probability of choosing
action a in the ith selection is given by:

pi(a) = (1 − η)
(1 + ρ)si(a)

∑K
j=1(1 + ρ)sj(a)

+
η

K
, (6)

where K is the number of actions, and ρ and η are hyperparameters, s represents
the score of each action, which is also dynamically maintained:

si+1(a) = si(a) +
ηr

Kpi(a)
. (7)
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Here, a is selected based on the distribution p, and r is the reward obtained in
this selection. In theory, the EXP3 algorithm’s regret R∗

n has a lower bound:

R∗
n ≥ c

√
nK, (8)

where n is the total number of selections, and c is a constant.
Combined with the policy representation estimation and policy selection algo-

rithm EXP3, we can obtain the online part of the LIOM algorithm. As shown in
Algorithm 1, at the beginning of testing, LIOM uses the Nash equilibrium policy
for a period of interaction. On the one hand, the algorithm needs enough data
to construct the historical trajectory set D. On the other hand, using the Nash
equilibrium policy for exploration is a more stable approach when there is less
information about the opponent. When there is enough data, only the trajectory
data of interactions between πμ and the opponent will be kept in D to avoid the
influence of trajectory data with different distributions on the performance of
πμ. It is worth noting that the exploration factor η should not be set too large or
too small. Due to the possible changes in the opponent’s policy, the exploration
of policy selection should be ensured as much as possible.

4 Experiments

The purpose of our experimental research is to compare the performance of
various methods when facing online adversarial scenarios with known, unknown,
and non-stationary opponent policies. Additionally, we analyze the effectiveness
of policy representation and the balance between conservative and exploitation.

4.1 Experimental Setup

Environments. We employed two classic multi-agent adversarial environments,
Kuhn Poker [3] and Soccer [12]. Kuhn Poker is a simplified version of Texas
Hold’em environment where each player chooses one card from J, Q, and K, and
subsequently selects pass or bet in a turn-based manner. The rules is presented
in Table 1, where ±1 represents +1 for the player with a higher card value,
and −1 otherwise. Soccer is a partially observable environment, as illustrated
in Fig. 2, where the attacker (red) moves towards the goal along any path while
the defender (blue) tries to stop them, and can only observe the position of
the opponent when they are nearby. The winner receives a reward of 1, while
the loser receives −1. We selected player 1 in Kuhn Poker and the defender
in Soccer as our main agents to control. Due to the unknown hand cards or
positions of the opponent, this presents a multi-agent competition problem with
limited opponent information.
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Table 1. Kuhn Poker rules

Player 1 Player 2 Player1 Reward

pass pass ±1

pass bet pass (−1, 1)

pass bet bet ±2

bet bet ±2

bet pass (1,−1)

Fig. 2. Soccer configuration

Opponent Policies. For each environment, we have designed six opponent
policies with distinct styles denoted by {π0, π1, · · · , π5}. Among them, policies
{π0, π1, π2} constitute the visible policies and are used to form the training
set Πtrain, while policies {π3, π4, π5} serve as invisible policies. During online
testing, we evaluate the effectiveness of various algorithms on three categories of
opponent policy sets: “seen”, “unseen”, and “mix”.

Comparing Methods. The following policies will be compared in LIOM:

– NE: Nash equilibrium policy, a conservative policy that can be solved through
self-play and other methods.

– ORACLE: Oracle policy refers to a policy that is aware of the opponent policy
type and trains separate policy networks for each type of opponent policy. It
can be considered as the best response policy.

– DRON: An implicit opponent modeling algorithm that uses opponent infor-
mation as an additional input to the network during offline training.

– Deep BPR+: An explicit opponent modeling algorithm that selects the best
response from the offline-trained policy library using a Bayesian belief model.
It can learn new response policies and update the policy library by detecting
unknown opponents online.

– LIOM w/o EXP3: Only use the general policy πμ to combat the opponent,
where μ is jointly calculated based on historical trajectories within several
episodes.

4.2 Online Testing with Fixed Opponents

In this experiment, we demonstrate the average rewards of different methods in
online testing against three categories of opponent policy sets (“seen”, “unseen”
and “mix”).

Based on the average rewards on Kuhn Poker presented in Fig. 3, LIOM
exhibits performance inferior only to the best response policy across all types of
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Fig. 3. The average rewards of different methods when facing three categories of oppo-
nent policy sets in online testing.

opponent policy sets. In the “seen” setting, LIOM performs similarly to LIOM
w/o EXP3, indicating that when facing known opponent policies, LIOM tends
to select strategies with stronger exploitation to achieve best responses. More-
over, LIOM outperforms DRON significantly, demonstrating the effectiveness of
offline opponent policy representation extraction across episodes. In the “unseen”
setting, LIOM w/o EXP3 outperforms DRON, suggesting that the general policy
πμ possesses better generalization capability, while LIOM surpasses LIOM w/o
EXP3, owing to the lower bound on LIOM’s performance guaranteed by EXP3,
which can handle difficult-to-generalize opponent policies. In the “mix” setting,
LIOM approaches the ORACLE policy for the known opponent type, indicating
that the opponent policy representation μ inferred from limited opponent infor-
mation by contrastive learning can effectively describe both known and unknown
opponents, thereby assisting the general policy πμ in making decisions.

Based on the average rewards on Soccer shown in Fig. 3, we arrive at con-
clusions similar to those on Kuhn Poker. The only difference is that in the
“unseen” setting, Deep BPR+ performs slightly better than LIOM due to its
capability of online learning against unknown opponent policies. However, the
existing opponent modeling methods heavily rely on the completeness of oppo-
nent information, leading to a significant degradation in modeling accuracy when
the opponent information is limited. Therefore, considering all settings, LIOM
demonstrates superior performance.

4.3 Analysis of Opponent Policy Representations

In this experiment, we further analyse the effectiveness and generalization of
offline-extracted opponent policy representations on Kuhn Poker, as it offers
a straightforward parameterized approach to define opponent policies. Figure 4
shows the true distribution of six opponent policies, as well as their represen-
tation distribution in the representation space extracted by offline contrastive
learning. Note that, the training of the opponent policy encoder only use
Πtrain = {π0, π1, π2}.
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Fig. 4. The true coordinates (left) and representation distributions (right) of different
opponent policies in Kuhn Poker.

Figure 4 shows that the distribution of opponent policy representations, as
depicted, closely aligns with the true distribution. This indicates the accuracy
and generalization of opponent policy representations extracted through con-
trastive learning. As policies cannot be directly represented, Fig. 4 displays the
distribution of trajectory representations obtained from interacting with a ran-
domly augmentation policy. In fact, opponent policy representations computed
by different augmentation policies exhibit similar distributions, and the distri-
bution of opponent policy representations is almost independent of the choice
of augmentation policies. This is because, through contrastive learning, we only
extract the portions of the trajectory representation that are relevant to oppo-
nent policies.

Table 2. Average rewards in the interaction with independent opponent policies.
π0 π1 π2

NE −0.046± 1.308 −0.042± 1.274 −0.058± 1.143

ORACLE 0.068± 1.498 0.065± 1.673 0.031± 1.295

DRON 0.069± 1.509 0.025± 1.466 −0.122± 1.301

Deep BPR+ −0.106± 1.507 −0.063± 1.43 −0.035± 1.307

LIOM w/o EXP3 0.057± 1.505 0.031± 1.49 0.02± 1.297

LIOM 0.055± 1.457 0.04± 1.456 0.018± 1.282

π3 π4 π5

NE −0.061± 1.11 −0.051± 1.175 −0.043± 1.206

ORACLE 0.026± 1.335 −0.039± 1.113 −0.01± 1.42

DRON −0.156± 1.258 −0.093± 1.337 −0.058± 1.377

Deep BPR+ −0.039± 1.31 −0.098± 1.427 −0.097± 1.379

LIOM w/o EXP3 0.0± 1.326 −0.137± 1.349 −0.153± 1.364

LIOM 0.008± 1.291 −0.065± 1.163 −0.049± 1.197



Limited Information Opponent Modeling 521

Fig. 5. The reward curve of online testing with non-stationary opponent policies in
Kuhn Poker.

To further illustrate, we show in Table 2 the average returns of various algo-
rithms interacting with specific opponent policies. Compared to DRON, LIOM
w/o EXP3 performs better when facing unknown opponent policy π3, indicating
that the learned opponent policy representation has certain generalization abil-
ity. However, LIOM w/o EXP3 performs worse on opponent policies π4 and π5

than LIOM, which is consistent with the proximity relationships between differ-
ent opponent policies as depicted in Fig. 4. This also indicates the necessity of
introducing the EXP3 to balance conservative and exploitative policies.

4.4 Online Testing with Non-stationary Opponents

In this experiment, we present the reward curve against non-stationary oppo-
nents. As shown in Fig. 5, LIOM is capable of inferring the current opponent’s
policy representation μ based on the recent historical trajectory data D, which
serves as an additional input to the general policy πμ. Thus, it can dynami-
cally respond to non-stationary opponent policies, and its average performance
is comparable to the best response policy ORACLE. Additionally, LIOM selects
between conservative Nash equilibrium policies and exploitative general policies
using EXP3, so that the expected reward falls between the two, but guaranteeing
a lower bound on the reward when facing unknown opponents.

5 Conclusion and Future Work

In this paper, we propose a policy-based data augmentation method that
achieves offline cross-episode opponent policy representation extraction through
contrastive learning. Our approach does not rely on the completeness of opponent
information and can infer the current opponent’s policy representation through
limited information. By introducing additional policy representations, a general
exploitative policy is trained offline. We also use EXP3 to balance between con-
servative and exploitation. Results from online testing demonstrate that LIOM
exhibits high expected returns and strong generalization ability.
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Future work may involve exploring the relationship between constructing
offline policy sets and the generalization ability of general policies, as well as
developing methods for constructing augmentation policies in complex environ-
ments. We aim to build a diverse and complete policy set for both opponent and
augmentation policies. As problem scales increase, it may require us to further
decomposition of complex policies.
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