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Abstract. Small object detection is widely used in industries, military,
autonomous driving and other fields. However, the accuracy of existing
detection models in small object detection needs to be improved. This
paper proposes the SC-AttentionloU loss function to stress the issue.
Due to the less features of small objects, SC-AttentionloU introduces
attention within the true bounding box, allowing the existing detection
models to focus on the critical features of small objects. Besides, con-
sidering attention perhaps ignore non-critical features, SC-AttentionloU
proposes an adjustment factor to balance the critical and non-critical fea-
ture areas. Using the YOLOv5s model as a baseline, compared with the
widely used CloU, SC-AttentionloU achieved an average improvement
of 1% in mAP@.5 on the SSDD dataset and an average improvement of
1.47% in mAP@.5 on the PCB dataset in this experiment.

Keywords: Object detection - Small objects - Loss function -
Attention

1 Introduction

The object detection has been developed significantly with the emergence of a
large number of models such as Swin-Transformer [8] and DAMO-YOLO [12].
Small object detection is important in many fields such as industry, military,
and autonomous driving. However, small objects themselves have few features
while detection scenes often require high accuracy and real-time performance.
Therefore how to balance them is a challenge to researchers [4].
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There are some models such as Next-ViT [7], PPYOLOE [11] and PP-
PicoDet [14], have been proposed with high detection accuracy and lightweight
weights. The existing improvement of loss functions has focused on more accu-
rate calculation of the deviation between predicted and ground-truth bounding
boxes. There is few work on improving loss functions based on the characteristics
of detection targets. Existing loss functions include IoU [15], GIoU [10], DIoU
[19], CIoU [19], EIoU [17], and Alpha-ToU [5]. Researchers have explored factors
such as intersection over union, center point distance, aspect ratio, and orien-
tation, to make the loss function more accurate. By providing more accurate
guidance during training, the detection model can improve its performance.

In this paper, the novel attention-based loss function called SC-AttentionloU
is presented which guides the network to pay more attention to the key regions of
the detection target. This loss function identifies the spatial region with signifi-
cant features of the detection target and incorporates this prior knowledge. Loss
function attention determines the weight of the internal ground-truth bounding
box. High weight is assigned to the key feature regions of small targets, while
low weight is assigned to irrelevant or defective regions. In summary, this paper
presents the following innovations:

1. The attention-based loss function SC-AttentionloU is proposed. It incorpo-
rates attention into the loss calculation and guides the model to focus on the
key features of small objects to improve detection accuracy.

2. A novel weight generation strategy is proposed in SC-AttentionloU. Different
weight regions are generated within the predicted box based on the distri-
bution characteristics of small objects, which calculates the loss value of the
SC-AttentionloU more accurately.

3. The factor is proposed to address the potential problems caused by introduc-
ing attention into the loss function. This factor allows the model to not only
focus on key features but also consider other regions during training, resulting
in more accurate prediction box locations.

This paper is organized as follows. Section 2 provides a brief review of related
methods for loss functions. Section 3 describes the proposed methods. Section 4
presents experimental results, and Sect. 5 provides conclusions.

2 Related Work

2.1 Small Object Detection

Small object detection has always been a challenging problem. The definition
of small objects usually refers to objects with a size in the image that is very
small, even less than 10 pixels. In this case, small objects are often affected by
various factors such as image blur, noise, and scale variation, making it diffi-
cult to accurately detect and recognize them. To address the problem of small
object detection, Facebook Al proposed a Transformer-based small object detec-
tion method called DETR [2], which uses deformable convolution and feature
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pyramid techniques to effectively solve the problem of object size and scale varia-
tion in small object detection. Many researchers have also attempted to improve
small object detection by improving network structures and feature extraction
methods. Yang et al. combined spatial attention, channel attention, and self
attention to improve the detection effect of small objects in intelligent trans-
portation [13]. The model has faster convergence speed and higher accuracy.
Zhao et al. proposed a detection model [18] based on feature fusion and anchor
point improvement, which reduces the missed detection rate of small targets in
complex backgrounds and has considerable detection speed.

2.2 Loss Funcation

The most important in the loss function for object detection is the bounding
box regression which is used to calculate the offset from the detection box to
the ground-truth box. IoU [15] was first proposed to calculate the intersection-
over-union ratio between the detection box and the ground-truth box. GloU
[10] used the minimum enclosing rectangle to calculate the offset between the
predicted box and the ground-truth box based on IoU. DIoU [19] replaced the
minimum enclosing rectangle with the Euclidean distance between the center
points, which more accurately calculates the distance between the predicted box
and the ground-truth box. CIloU [19] adds an aspect ratio penalty to DIoU to
solve the problem of IoU being insensitive to shape. EIoU [17] further improved
the aspect ratio by using the ratio of the lengths of the width and height sides,
resulting in more accurate results. SIoU discovered the influence of the direction
between the detection box and the ground-truth box.

3 Method

The SC-AttentionloU proposed in this paper is focused on the coarseness of
object detection annotation and the lack of features in small objects. It is well
known that in annotated images, the detected object does not always occupy the
entire area of the bounding box [9]. There are often other unrelated regions such
as other objects or backgrounds within the bounding box, as shown in Fig. 1.
These unrelated regions interfere with the model training. Since small objects
contain fewer features, it is feasible to improve detection accuracy by focusing on
the key features of small objects. To reduce the impact of unrelated regions, this
paper introduces attention within the bounding box to assign different regions
within the bounding box with different weights. This allows the model to focus
more on regions with higher weights during bounding box regression, and reduces
the interference of unrelated regions on the model. However, if the model focuses
too much on the key features, it may generate predicted boxes that are closer
to the distribution of key features but do not match the ground truth boxes.
To avoid this issue, this paper further improves AttentionloU and proposes SC-
AttentionloU.
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Fig. 1. PCB data set and SSDD data set small object data set picture.

3.1 AttentionloU

In ToU calculations, the weights of the internal regions of the predicted and
detected boxes were averaged. When the overlap area remains constant and the
sizes of the detection box and true box are consistent, predicted boxes of varying
shapes have an identical intersection over union ratio to the true box. This result
is insensitive to shape variations. In the initial training stage, the averaging of
the weights of the internal regions of the true box leads to equal attention being
given by the model to both irrelevant regions and critical features within the
true box, which is disadvantageous for model training.

When the target itself contains a large number of features, it is difficult
to select the key features, as the importance of the detection target’s features
for model training cannot be determined based on prior knowledge. Conversely,
small targets with fewer features can be more easily identified with key features,
thus allowing the model to focus on critical features and improve detection accu-
racy. As shown in Fig. 1, it is evident that the key features are located at the
center position of the true box.

When applying weights to the key features of detection targets, the attention-
based network [3,6] is used to add pixel-level weight annotations to the object
within the true box. However, the approaches greatly increases the annotation
cost. Therefore, this paper combines the distribution of the key feature regions to
adjust the true box and generate a novel weight box. The weight box is located
inside the true box and is closer to the distribution of key feature regions. The
weight box annotates the critical features of small targets to match high-weight
areas. The region between the weight box and the true box is referred to as the
low-weight area, primarily comprising irrelevant regions, as depicted in Fig. 2.
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Fig. 2. The red box is the annotation box, and the yellow box is the weight box. (Color
figure online)

The formula of AttentionloU is

(0np)+e(ENp)

Attentionl =
entionloU (9+p+5*3)—(90<,0)

(1)

where p denotes a prediction box, 6 denotes a real box, 3 denotes a weight box,
and ¢ denotes the weight factor of the weight box that ¢ in [1,5]

The weight box is located inside the true box, and the intersection between
the weight box and the predicted box is contained within the intersection between
the true box and the predicted box. When calculating IoU, the intersection of
the internal regions of the weight box is increased by a factor 1+¢. This increases
the weight of the weight box region. The formula to generate the coordinates of
the weight box is

w9t

Toi = 2" + (=) - (2)
, ot
Jyi = yft + (1)« " (3)

where 7 is the generation factor for the x-coordinate of the weight box. p is
the generation factor for the y-coordinate of the weight box. Both generation
factors are based on prior knowledge of the detection targets. J,; denotes the
x-coordinates of the top-left and bottom-right corners of the weight box, 3,
denotes the y-coordinates of the top-left and bottom-right corners of the weight
box, (z1,y1) and (z2,y2) are the top-left and bottom-right coordinates of the
true box, respectively, w9t is the width of the true box, and h9! is the height
of the true box. xft denotes the x-coordinate of the true box. The variable yft
represents the y-coordinate of the true box, where i lies within the range of
[1, 2].
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3.2 SC-AttentionloU

Adding a weight box inside the real box allows the model to focus on the key
features of the small object as much as possible. However, this will also make
the detection box more closely related to the size and shape of the weight box.
If the difference between the weight box and the real box is large, it will affect
the detection accuracy. To solve this problem, this paper uses aspect ratio as
the weight of AttentionloU and proposes SC-AttentionloU. The formula for SC-
AttentionloU is

P2 (b, b%)
SC — AttentionloU =1 — 0 * AttentionloU + ——5—= (4)
c

where 0 is the weight calculated based on aspect ratio. After using AttentionloU,
the IOU value becomes sensitive to the shape of the predicted box. In exploring
the aspect ratio of the predicted box, CloU and EloU respectively explored two
ways of calculating the aspect ratio penalty term. However, since AttentionloU
itself is sensitive to shape, the previous approach of separating the IOU from the
aspect ratio factor is no longer feasible. This paper proposes to use aspect ratio
as the weight for IoU value, and combine it with AttentionloU for calculation.
The formula for 0 is

2ww) | p*(hh?"))
(2 ( & ) 4 2 f )
0 =1-— (5)

where 9 cannot be 0. T>2 is a regulation factor for the value range of 0. In this
paper, the value range of 9 is set to [(T—2)/T,1]. w9 denotes the width of the
annotated box, h9¢ denotes the height of the annotated box. w® is the width of
the bounding rectangle between the real box and the predicted box. h¢ is the
height of the bounding rectangle between the real box and the predicted box.

SC-AttentionloU already takes into account the effect of aspect ratio, so no
aspect ratio penalty is added in SC-AttentionloU. In CIoU when IoU is 0, the loss
is guided by Euclidean distance instead of the aspect ratio. The proposal in loss
function can speed up the convergence of the model training. The comparison of
different loss functions and the proposed loss function on the PCB dataset are
shown in Fig. 3. The results show that SC-AttentionloU converges faster and
has a lower loss convergence value.

4 Experiment

4.1 Experiment Setting

In this paper, the YOLOv5 was used as the baseline and compared with existing
loss functions on two datasets: ship remote sensing dataset [16] released by the
Department of Electronic and Information Engineering of the Naval Aeronautical
and Astronautical University, and printed circuit board defect dataset (PCB
dateset) released by the Intelligent Robot Open Laboratory of Peking University.
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Fig. 3. Boundary box regression Loss function image.

The former dateset consists mostly of small targets. The latter dateset contains
1,386 images with six types of small defect targets.

In training, the image size is adjusted to 640 x 640, and data augmentation
techniques such as mosaic [1], translation, and flipping are used. The optimizer
used is SGD, and the learning rate follows a cosine annealing scheme with an
initial value of 0.01. Results were obtained after running 300 epochs on a Tesla
A100-SXM4 GPU.

4.2 Experimental Indicators

According to the needs of small target detection scenarios, this article selects
precision, recall, and mAP as detection indicators. Precision mainly measures the
accuracy of the model in identifying targets. The recall rate mainly measures the
model’s ability to identify all true targets. mAP reflects the comprehensive level
of accuracy and recall rate. mAP@Q.5 primarily focuses on the average precision
of the model at relatively lenient thresholds, while mAP@0.5-0.95 specifically
focuses on the average precision of the model at stricter thresholds.

4.3 Comparative and Ablation Experiments

Table 1 shows the experimental results of SC-AttentionloU and other loss func-
tions on the SSDD [16] dataset. This loss function is designed based on the
characteristics of small objects. The SSDD dataset has a simple background,
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Table 1. SSDD dataset loss function comparative test

Method | Precision | Recall mAP@.5 | mAP@.5-.95
DIoU 95.4% 90% | 94.6% 59.4%
CIoU 96% 90% | 94.1% 58.5%
EloU 96% 90% | 94% 59.4%
SIoU 93.6% 90.4% | 94.8% 59.3%
Our 95.5% 92% |95.3% 61.8%

Label CloU EloU SloU OUR

ship0o9  * iplos " shipos
\ R - A 3

ship 0.8

ship 0.9

A

Fig. 4. Comparison of partial detection results with different loss functions.

few categories, and contains a small number of relatively large objects. The
experiment results show that the mAP@.5 score of this loss function exceeds
DIoU by 0.7%, CIoU by 1.2%, EIoU by 1.3%, and SIoU by 0.5%. It demonstrate
that this loss function can maintain effectiveness in the presence of relatively
large objects interference. The test results are shown in Fig. 4.

Table 2 shows the experiments of SC-AttentionloU and other loss functions
on the PCB defect dataset in this paper. The PCB defect dataset has more
types of defects and various defect shapes compared to SSDD, which verifies the
improvement effect of the proposed loss function in complex backgrounds. The
experimental results show that the proposed loss function outperforms DIoU by
6.6%, CIoU by 4.5%, EIoU by 6.2%, and SIoU by 3.6% in terms of recall rate.
This demonstrates that the proposed loss function can improve the detection
ability of small targets in complex backgrounds. In terms of mAP@.5-.95, the
proposed loss function is 1.85% higher than the average level of other loss func-
tions. Therefore, the proposed loss function can effectively improve the detec-
tion ability of the model on small target datasets. The test results are shown in
Fig. 5.

Table 3 shows the experiments of SC-AttentionloU and other detection mod-
els on the PCB defect dataset in this paper. We compare the advanced models
such as PPYOLOE, YOLOv6, PP-PicoDet, combined with SC-AttentionloU



Transforming Limitations into Advantages 229

Table 2. PCB dataset loss function comparative test

Method | Precision |Recall mAP@.5 | mAP@.5-.95
DIoU 97.2% 83.4%  92% 49.4%

CloU 88.1% 85.5% | 90% 49.1%

EloU 96.5% 83.8% | 91.4% 49.5%

SIoU 93.1% 86.4% | 89.9% 49.4%

Our 91% 90% |92.3% 51.1%

Fig. 5. PCB Dataset Detection Results.

proposed in this paper with the widely used CloU to verify the robustness of
SC-AttentionIoU in different detection models. * indicates the use of the pro-
posed loss function in this paper. The experimental results show that after being
combined with SC-AttentionloU, the YOLOv6 model improves the mAP@.5-.95
score by 1.4%, the PPYOLOE-s model improves by 4.3%, and the PP-PicoDet
model improves by 2.6%. Therefore, the proposed loss function has strong robust-
ness on different detection models.

Table 4 shows the experiments of AttentionloU and other Loss Funcation on
the SSDD ship dataset in this paper. We combine the widely used CloU, EloU,
SIoU, and attentionloU and replace the IoU in the loss function with attentio-
nloU to validate the effectiveness and robustness of the proposed attentionloU
idea. * denotes the use of attentionloU proposed in this paper. Experimental
results show that when combined with attentionloU, CIoU* improves MAPQ.5-
.95 by 2% compared to CloU, EIoU* improves MAP@.5-.95 by 2% compared to
EloU, and SIoU* improves MAP@.5-.95 by 2% compared to SIoU. Therefore,
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Table 3. Ablation experiments of SC-AttentionloU on different detection models

Method Precision |Recall |mAPQ@.5 #mAP@.5-.95
YOLOv6 95.4% 83.6% | 86.4% 45.4%
YOLOv6* 90.7% 85.9% | 86.9% 46.8%

PPYOLOE 92.9% 76.2% | 83.5% 37.5%
PPYOLOE* |91.7% 80.2% |84.1% 41.8%
PP-PicoDet 67.6% 64% 67.1% 29%
PP-PicoDet* | 67% 65% 67.2% 31.6%

Table 4. Ablation Experiments of Attention IoU on Different Loss Functions

Method | Precision | Recall |mAPQ@.5 mAP@.5-.95

CloU 96% 90% 94.1% 58.5%
CIoU* | 94.5% 90.7% |94.2% 59.8%
EIoU 96% 90% 94% 59.4%

EIoU* |93.2% 91.6% |94.7% 60.2%
SIoU 93.6% 90.4% | 94.8% 59.3%
SIoU* | 92.9% 91.1% |94.8% 60.5%

the proposed attentionloU demonstrates strong robustness and effectiveness. The
formula for CIoU*, EIoU*, and siou™® is shown below.

(b, b9t
CIoU* = 1 — AttentionloU + /)(7’2) + av (6)
c
2 b bgt 2 gt 2 h hgt
EloU* =1 — AttentionloU + P ’2 ) + p* (w, W) + p° (h, h#") (7)
C C2 CQ
w h
2(b, b9t A+ 2
SIoU* = 1 — AttentionloU + 2 ( 5 ) + ;— (8)
c

« is a trade-off parameter, and v is a parameter used to measure the consistency
plow ) (b

cz T
the prediction frame and the real frame. A represents distance loss. {2 represents
shape loss. The above variables are not discussed due to the limited length of
the article.

In summary, SC-AttentionloU has shown a certain improvement in small
object detection datasets. This paper also points out the potential problems
caused by changing the weights of the internal regions of the ground truth boxes
and proposes corresponding solutions. This proves that exploring the weights of
the internal regions of ground truth boxes is beneficial. Our work provides a new
direction for exploring loss functions in small object detection and is beneficial
for the development of future object detection technologies.

of the aspect ratio. represents the width and height losses of
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Conclusion

This paper proposed the AttentionloU loss which extends the IoU loss in the
bounding box regression to stress small object detection accuracy. Moreover,
to address the issue that changing the internal weights of the predicted boxes
affects the aspect ratio loss in AttentionloU, the SC-AttentionloU loss func-
tion is presented. Finally, the proposed loss function is validated on two small
object datasets and compared with other existing loss functions, demonstrating
its effectiveness in small object detection.
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