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Abstract. Text semantic matching is a fundamental task in natural lan-
guage understanding, and has a wide range of applications in informa-
tion retrieval, question and answer systems, reading comprehension, and
machine translation. Currently, a better way to do text semantic match-
ing tasks is to extract word vectors or sentence vectors with BERT and
then fine-tuning them, but the commonly used fine-tuning methods suffer
from the overfitting problem. We propose a bi-directional long short-term
memory-parallel dropoutmodel (BiLSTM-PD), which combines word vec-
tors and sentence vectors to improve feature vectors quality and uses paral-
lel dropout to reduce overfitting. First, word vectors and sentence vectors
are generated using the pre-trained model, BiLSTM converts the word vec-
tors into sentence vectors, and the sentence vectors generated by BiLSTM
are combined with the sentence vectors generated by the pre-trained model
to form the final sentence vectors representation; then, four dropout func-
tions are used to randomly discard a portion of the neurons of the sentence
vectors to obtain four subsets, and then a linear layer is used to transform
the four subsets of dimensionality and calculate the average value, and then
use the Softmax and Argmax functions to calculate the predicted value of
each batch to know whether the two sentences are similar. Experiments on
two text semantic matching datasets and detailed analyses demonstrate
the effectiveness of our model.

Keywords: Text semantic matching · BERT · BiLSTM · Parallel
dropout

1 Introduction

Text semantic matching refers to comparing the semantic similarity between
two pieces of text to determine whether they have the same meaning or express
similar meanings. In recent years, significant progress has been made in the
application of pre-trained models for the semantic matching of text pre-trained
models can learn linguistic representations by training on large-scale data to
provide higher-quality semantic features for downstream tasks. Among them,
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feature-based matching [21] and interaction-based matching [18] are the two
main applications of pre-trained models for text semantic matching.

The feature-based matching method refers to encoding two sentences sepa-
rately to obtain their sentence vectors representations and then processing these
sentence vectors by simple fusion to obtain the final matching result. The feature-
based matching approach can effectively avoid the problem of information over-
load and has good computational efficiency at the same time. However, the inde-
pendent encoding of two sentences in a sentence pair may lead to the neglect
of the interaction information between sentences, which affects the matching
accuracy. We usually use interactive matching methods to better use the inter-
action information between sentences. The interactive matching method refers
to splicing two texts together as a single text for classification. This method can
obtain richer semantic information and thus improve the matching accuracy. For
example, in question-answer systems, the correlation between the question and
the text can be better captured by stitching the question and the text together.

In this study, we propose the BiLSTM-PD model. The model combines word
vectors and sentence vectors to improve the quality of feature vectors, uses
parallel dropout to reduce overfitting, and uses interactive matching methods
to obtain richer semantic information. Experiments on two semantic matching
datasets show that the present model achieves excellent performance. The con-
tribution of this paper includes three parts:

1. Combining word vectors and sentence vectors to ensure a higher quality rep-
resentation of feature vectors.

2. Parallel dropout is proposed to reduce overfitting by parallel operations.
3. The results show that the BiLSTM-PD model can improve the performance

of semantic matching and can also be easily integrated into other interaction-
based text semantic matching models to improve accuracy.

2 Related Work

2.1 Text Semantic Matching

Text semantic matching aims to determine the semantic relationship between two
text sequences. In earlier work, researchers mainly used keyword-based matching
methods such as TF-IDF [12] and BM25 [11]. These methods rely on manually
defined features and often fail to assess the semantic relevance of the text. With
the development of deep learning techniques, researchers have started to propose
various neural models to solve the text semantic matching problem. These models
use deep learning techniques such as recurrent neural networks (RNN) [9] and
convolutional neural networks (CNN) [10] to encode text sequences and then
compare the encoded text sequences to determine the similarity between them.
Their recurrent neural networks are mainly used for sequence modeling and can
handle variable-length input sequences adaptively. They are widely used in the
field of text semantic matching. There are also some improved models based
on RNNs, such as Siamese [17], which classifies two text sequences by encoding
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them separately through the same RNN and then stitching them together for
the task of text semantic matching. With the emergence of pre-trained models,
the field of text semantic matching has also started to apply this technique. Pre-
trained models can automatically learn rich semantic information by performing
unsupervised learning on a large-scale text corpus to improve the performance
of text semantic matching. BERT [5] is a representative model among them,
which achieves extremely high performance by learning bidirectional contextual
representations through a joint training task. Subsequent researchers have also
proposed various improved models based on BERT, such as RoBERTa [15] and
ALBERT [13].

2.2 Dropout

Dropout is a regularization technique commonly used in deep learning to reduce
the complexity of the network by dropping some random neurons during train-
ing, thus reducing the risk of overfitting. Dropout was first proposed by Hinton
et al. [8], one of the reasons for model overfitting is that the relationship between
neurons is too complex, and dropout can prevent the relationship between neu-
rons from being too complex by randomly dropping some neurons. Dropout is
implemented in a simple way, i.e., some neurons are randomly dropped with a
certain probability p in each training so that they are not involved in forward
and backward propagation. This allows the network to be more robust during
training and improves generalization. In addition to the original dropout tech-
nique, there are some improved methods. For example, DropConnect [19], which
replaces random dropout with random disconnections, can increase the capac-
ity of the network while reducing overfitting, and DropBlock [6], which replaces
random dropout with random block dropout, can further reduce the risk of
overfitting. However, these methods generally use only one dropout, while the
parallel dropout we use works better by using multiple dropouts to randomly
discard a portion of the neurons in the sentence vectors.

3 Method

Text semantic matching can be viewed as a classification task to find labels
y ∈ Y = {similar, dissimilar} for a given sentence pair (Sa, Sb). Figure 1 shows
our model BiLSTM-PD for this task, and the model structure includes an input
layer, a feature extraction layer, a dropout layer, and an output layer. In the
following, we describe the components of the model.

3.1 Input Layer

Given two text sequences Sa = {wa
1 , ..., w

a
l } and Sb =

{
wb

1, ..., w
b
l

}
, we need

to add an [cls] at the beginning of the sentence and [sep] in the middle and
at the end of the two sentences, Sa,b = [[cls]Sa [sep]Sb [sep]]. Here, wa

i and wb
j

represent the i-th and j-th word in the sequences; [cls] denotes the beginning
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Fig. 1. General framework of the model

of the sequence and is used for the classification task; [sep] is used to separate
two sentences or paragraphs in the input sequence so that BERT can distinguish
them. We use Sa,b as the input of BERT.

3.2 Feature Extraction Layer

The feature extraction layer consists of two parts, BERT and BiLSTM. The
main work of this layer is that BERT generates word vectors and sentence vec-
tors, BiLSTM converts the word vectors into sentence vectors, and the sentence
vectors generated by BiLSTM are combined with the sentence vectors generated
by the pre-trained model to form the final sentence vectors representation the
structure of BiLSTM is shown in Fig. 2.

BERT: BERT is a pre-trained natural language processing model with a
Transformer-based neural network at its core, whose goal is to map text
data into vector representations by learning large amounts of unlabeled text
data. We input Sa,b to the BERT layer to obtain a vector representation
S of the entire sentence pair and a vector representation xt of each word,
xt = [T1, ..., TN ;T1, ..., TM ], and we use xt as input to the BiLSTM.

BiLSTM: The BiLSTM [7] consists of a combination of a forward LSTM [23]
and a backward LSTM, using the forward LSTM and the backward LSTM to



552 Z. Li et al.

Fig. 2. BiLSTM structure

traverse the end and the beginning of the sequence, respectively, with the aim of
efficiently capturing the global information of the input sequence. In this paper,
we use BiLSTM to transform word vectors into sentence vectors. The BILSTM
is calculated as follows:

−→
ht = LSTM

(−−→
ht−1, xt

)
(1)

←−
ht = LSTM

(←−−
ht−1, xt

)
(2)

H =
[−→
ht ,

←−
ht

]
(3)

where xt is the input data at moment t,
−→
ht and

←−
ht is the output of the forward

LSTM hidden layer and the output of the reverse LSTM hidden layer, respec-
tively, and H is the output after the two are connected. The sentence vectors
H is obtained by BILSTM processing, and the sentence vectors H is combined
with the sentence vectors S generated by BERT to obtain the sentence vectors
C, C = [S,H].

3.3 Dropout Layer

The dropout layer consists of four dropout functions and four linear layers. Since
the four dropout functions randomly discard a part of the neurons of the sentence
vectors, the sentence vectors produce four subsets after the dropout layer. The
dropout layer is computed as follows:

vi = di (C) , i ∈ [1, 2, 3, 4] (4)

ui = li (vi) , i ∈ [1, 2, 3, 4] (5)

z = mean (u1, u2, u3, u4) (6)

C represents the sentence vectors, di represents the four dropout functions; vi
represents the four subsets of the sentence vectors; li represents the four linear
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layers; ui represents the four probability vectors mapped to the predicted label
space. ui is averaged to obtain z, and the probability vectors z goes to the output
layer for the next processing step.

3.4 Output Layer

The output layer consists of a Softmax function and an Argmax function.

f = argmax (softmax (z)) (7)

Softmax is the function that generates the vectors of probability distribution
and Argmax is the function that determines the location of the maximum value.
Z obtains the probability distribution vectors by Softmax function, and then
obtains the predicted label vectors f for each Batch by Argmax function, with
the value of f being 0 or 1. The accuracy of this Batch is obtained by comparing
the predicted labels with the true labels.

Table 1. Datasets Statistics.

Datasets Type Train Dev Test

BQ Positive 50.0k 5.0k 5.0k

Negative 50.0k 5.0k 5.0k

LCQMC Positive 138.5k 4,4k 6.2k

Negative 100.1k 4,4k 6.2k

Table 2. Parameter Setting.

Hyperparameter Value

Batch size 32

Epoch number 10

Optimizer ADAMW

Learning rate 2e-05

Lr decay rate 0.01

Max char len 50

BiLSTM output size 384

Word embedding size 768

4 Experimental Setup

4.1 Datasets

The model was evaluated on two semantic matching datasets, including BQ [1],
and LCQMC [14]. BQ is a question matching dataset for the banking and finance
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domain with data from question pairs in the customer service logs of online
banking, while LCQMC is a large-scale open-domain Chinese question matching
dataset constructed from Baidu Know. All datasets are divided into training,
validation, and test data. Datasets statistics of BQ and LCQMC are shown in
Table 1.

4.2 Parameter Setting

The parameters are set as shown in Table 2. The batch size of the dataset is fixed
at 32. The initial learning rate is 2e-05, which decreases at a rate of 0.01 during
the training period. Also, we adjust the output dimension of the BiLSTM hidden
layer to 384. Finally, we use the ADAMW optimizer to modify all trainable
parameters.

4.3 Evaluation Metrics

To evaluate the effectiveness of the model, the evaluation metrics for text seman-
tic matching include accuracy (ACC) rate and F1 score (F1).

4.4 Contrast Model

We compare our model with recent work, including state-of-the-art neural net-
work models and BERT-based approaches. DIIN [16] extracts relevant informa-
tion from input sequences by a self-attention mechanism in the absence of RNNs
or CNNs. ESIM [2] extracts information from text sequences using a bidirectional
LSTM and models the relationship between sequences by a self-focusing mecha-
nism. BiMPM [20] uses multi-angle matching and fusion. RE2 [22] employs richer
features for the alignment process to improve performance. For the pre-trained
approach, we consider BERT, RoBERTa, PERT [4], and MacBERT [3].

5 Experimental Results

5.1 Comparison Results and Discussion

Table 3 shows the results of the BQ dataset. All baselines are divided into two
groups, the first group is four neural network-based methods and the second
group is four pre-trained model-based methods. The pre-trained model-based
methods show superior performance compared to the traditional neural match-
ing models. For example, BERT outperformed ESIM by 1.95% and 0.95% in
terms of accuracy and F1, respectively. MacBERT outperformed RE2 by 4.47%
and 3.53% in terms of accuracy and F1, respectively. And the BiLSTM-PD model
using MacBERT as the base model outperformed all eight models. For example,
BiLSTM-PD is 1.82% and 2.30% higher than RoBERTa in terms of accuracy
and F1, respectively. The possible reasons are that our model uses BiLSTM,
which can better integrate the contextual information of the input sequences,
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Table 3. Experimental results of accuracy on the BQ datasets.

Model Acc(%) F1(%)

DIIN [16] 82.45 83.19

ESIM [2] 81.74 82.25

BiMPM [20] 80.47 81.82

RE2 [22] 80.23 80.74

BERT [5] 83.69 83.20

RoBERTa [15] 83.48 83.00

PERT [4] 84.08 83.63

MacBERT [3] 84.70 84.27

BiLSTM-PD(MacBERT) 85.30 85.30

combining word vectors and sentence vectors can extract richer semantic fea-
tures.

Table 4 shows the results of the LCQMC dataset. The method based on
pre-trained models showed superior performance compared to the traditional
neural matching models. For example, RoBERTa outperforms DIIN in terms of
accuracy and F1 by 1.83% and 0.60%, respectively. PERT outperforms BiMPM
in terms of accuracy and F1 by 2.71% and 1.35%, respectively. And the BiLSTM-
PD model using MacBERT as the base model outperformed all eight models.
For example, BiLSTM-PD outperforms MacBERT in terms of accuracy and F1
by 0.63% and 0.68%, respectively. Overall, our models achieved the best results
on the LCQMC dataset.

Table 4. Experimental results of accuracy on the LCQMC dataset.

Model Acc(%) F1(%)

DIIN [16] 83.57 84.23

ESIM [2] 84.34 85.48

BiMPM [20] 83.72 84.63

RE2 [22] 84.23 84.97

BERT [5] 86.23 85.72

RoBERTa [15] 85.40 84.83

PERT [4] 86.43 85.98

MacBERT [3] 86.69 86.22

BiLSTM-PD(MacBERT) 87.32 86.90

To explore the effectiveness of our models, we combined BiLSTM-PD with
the four pre-trained models to compare the results with the original pre-trained
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models and calculated the improvement in accuracy and F1, with bolded num-
bers indicating significant changes. As can be seen in Table 5 and Table 6, the
accuracy and F1 of all pretrained models steadily improved on both datasets,
and the improvement was particularly significant on the two pretrained models,
RoBERTa and MacBERT. The results show that converting word vectors into
sentence vectors by BiLSTM and combining the sentence vectors generated by
BiLSTM with those generated by BERT and using four dropout functions to
randomly discard a portion of the neurons of the sentence vectors can effectively
improve the model and can be well integrated with the pre-trained model.

Table 5. Experimental results of accuracy on the BQ and LCQMC datasets.

Model BQ LCQMC

Ori.→BiLSTM-PD(change) Ori.→BiLSTM-PD(change)

BERT 83.69 →84.14 (0.45) 86.23 →86.25 (0.02)

RoBERTa 83.48 →83.96 (0.48) 85.40 →86.87 (1.47)

PERT 84.08 →84.11 (0.03) 86.43 →86.46 (0.03)

MacBERT 84.70 →85.30 (0.60) 86.69 →87.32 (0.63)

Table 6. Experimental results of F1 on the BQ and LCQMC datasets.

Model BQ LCQMC

Ori.→BiLSTM-PD(change) Ori.→BiLSTM-PD(change)

BERT 83.20 →83.41 (0.21) 85.72 →86.01 (0.29)

RoBERTa 83.00 →83.56 (0.56) 84.83 →85.52 (0.69)

PERT 83.63 →83.87 (0.24) 85.98 →86.24 (0.26)

MacBERT 84.27 →85.30 (1.03) 86.22 →86.90 (0.68)

5.2 Ablation Experiments

The main modules of the BiLSTM-PD model are the BiLSTM and the dropout
layer, and the dropout layer has two important parameters, so we designed two
ablation experiments.

Number of Dropout Samples: We choose 6 quantities of 0, 1, 2, 4, 8, and
16 respectively. We can see from Fig. 3 that the error rate tends to decrease and
then increase as the number of dropout samples increases, which indicates that
too many or too few dropout samples will make the model less effective. When
the number of dropout samples is 4, the error rate of both data sets is the lowest,
so it is better to choose 4 as the number of dropout samples in the experiment.
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Fig. 3. Error rate of different dropout sample numbers

Dropout Ratio: We choose five probabilities, 10%, 30%, 50%, 70%, and 90%.
Here we show how the multiple samples loss of BQ and LCQMC datasets works
with different loss rates:{10%, 10%, 10%, 10%}, {10%, 10%, 30%, 30% }, {30%,
30%, 30%, 30%}, {10%, 30%, 50%, 70%}, {10%, 30%, 70%, 90% }, {30%, 50%,
70%, 90% }, {70%, 70%, 70%, 70% }, {70%, 70%, 90%, 90% }, {90%, 90%, 90%,
90% }, with mean values of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and
90%, respectively. Figure 4 shows the test set error rates for different dropout
ratios. Regardless of the dropout ratio setting, parallel dropout outperforms no
dropout. Dropout ratio from 10% to 90%, the Test error rate shows a wave-like

Fig. 4. Error rate of different dropout ratio
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growth followed by a decline, and the test set error rate reached its lowest at an
average dropout ratio of 30%. The overall change in the test error rate is not
significant, which indicates that the parameter of dropout ratio has little effect
on the model.

6 Conclusion

In this study, we propose a text semantic matching model that combine word
vectors and sentence vectors to improve feature vectors quality and uses paral-
lel dropout to reduce overfitting. The method is simple and effective, and easy
to combines with pre-trained models. Experiments on two semantic matching
datasets show that the proposed method outperforms the previously proposed
model. However, the pre-trained models and datasets used in our work are all
in Chinese, and since different languages have different characteristics and pro-
cessing methods, future work may focus on modifying the models appropriately
according to language characteristics to apply to other language datasets.
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