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Abstract. The automation of visual quality inspection is becoming
increasingly important in manufacturing industries. The objective is to
ensure that manufactured products meet specific quality characteristics.
Manual inspection by trained personnel is the preferred method in most
industries due to the difficulty of identifying defects of various types and
sizes. Sensor placement for 3D automatic visual inspection is a growing
computer vision and robotics area. Although some methods have been
proposed, they struggle to provide high-speed inspection and complete
coverage. A fundamental requirement is to inspect the product with a
certain specific resolution to detect all defects of a particular size, which
is still an open problem. Therefore, we propose a novel model-based app-
roach to automatically generate optimal viewpoints guaranteeing maxi-
mal coverage of the object’s surface at a specific spatial resolution that
depends on the requirements of the problem. This is done by ray trac-
ing information from the sensor to the object to be inspected once the
sensor model and the 3D mesh of the object are known. In contrast
to existing algorithms for optimal viewpoints generation, our approach
includes the spatial resolution within the viewpoint planning process. We
demonstrate that our approach yields optimal viewpoints that achieve
complete coverage and a desired spatial resolution at the same time,
while the number of optimal viewpoints is kept small, limiting the time
required for inspection.

Keywords: Ray tracing · Sampling density matrix · Set coverage
problem · Spatial resolution · Viewpoint planning · Visibility matrix

1 Introduction

In the last decades, the automation of industrial production has emerged to play
a pivotal role in the manufacturing industries. Companies have made substan-
tial investments toward realizing fully automated processes, driven by optimiz-
ing production efficiency. An important process to maximize production perfor-
mance is visual quality inspection. Automated visual inspection planning can be
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conceptualized as a Coverage Path Planning Problem, see [1,18], which can be
divided into two sub-problems, namely the Viewpoint Planning Problem (VPP)
and the Path Planning Problem (PPP). The VPP involves generating a set of
viewpoint candidates (VPCs) and selecting the minimum number of viewpoints
by solving the Set Coverage Problem (SCP). The optimal solution consists of
the smallest number of viewpoints necessary to achieve full coverage. The PPP
involves finding a collision-free and time-optimal trajectory for a given mechani-
cal stage or robotic manipulator that connects the optimal viewpoints generated
by solving the VPP. In this work, we introduce a novel metric for selecting opti-
mal viewpoints that ensures comprehensive object coverage at a desired spatial
resolution. In industrial inspection, it is important to cover an object at a spe-
cific spatial resolution for identifying all defects with a minimal size that the
user defines. The state of the art in literature for solving the VPP does not
take into account any information about how each surface element is covered.
Moreover, the object to be inspected is often provided as a non-homogeneous 3D
mesh, and all surface elements are treated similarly, regardless of their actual
size. To overcome these issues, we define a new matrix to provide maximum
coverage and minimum spatial resolution. This is done by considering the area
of each surface element and the number of ray intersections. We emphasize that
the primary focus of this work is not on generating viewpoint candidates since
many methods are already available and offer good performance. Instead, our
focus is on selecting optimal viewpoints to achieve complete coverage and pro-
vide the desired spatial resolution, given a predefined set of candidates and
specific requirements for the inspection task. This paper is organized as follows:
In Sect. 2, we introduce the mathematical formulation of the VPP. The state of
the art is presented in Sect. 3. Then, in Sect. 4, we describe our novel formulation
for viewpoints evaluation and optimal viewpoints selection. In Sect. 5, we show
the results obtained when applying our new formulation of the VPP compared
to the standard definition. Finally, conclusions are drawn in Sect. 6.

2 Viewpoint Planning Problem Formulation

The VPP consists of a generation and a selection step. We consider a meshed
object with si ∈ S, i = 1, 2, . . . ,M surface elements and a set of VPCs defined
as V = {v1,v2, ...,vN}, with cardinality N = |V|. Each viewpoint is formulated
as vT

j =
[
cTj gT

j

] ∈ R6 for j = 1, . . . , N in world coordinates W given by the
camera position cj and the gaze direction gj . Typically, M � N holds. In the
context of VPP, see [14], V ∈ RM×N is the so-called visibility matrix with
matrix elements

Vij = V[i, j] =

{
0 if element si is not visible from vj ,

1 if element si is visible from vj .
(1)
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Note that the row V[i,V] of the visibility matrix corresponds to the surface
element si of the mesh, and the column V[S, j] to the viewpoint vj . This is the
input of the SCP together with V that reads as

min
y

N∑

j=1

wjyj (2a)

s.t.
N∑

j=1

Vijyj ≥ 1, i = 1, . . . , M (2b)

yj ∈ {0, 1}, j = 1, . . . , N. (2c)

The SCP (2) constitutes a linear integer programming problem that aims to
minimize (2a) subject to the constraints of (2b) and (2c). Its optimal solu-
tion is the smallest set of viewpoints necessary to fully cover the surface of
the object, i.e., V∗ = {vk, . . . ,vl, . . . ,vm}, with cardinality K ≤ N and
J ∗ = {k, . . . , l, . . . ,m} ⊆ {1, 2, ..., N}. The binary variable yj is the j-th ele-
ment of the vector y and is weighted by the coefficient wj . Without loss of
generality, we assume wj = 1, which means that all viewpoints are of equal cost.
Following [13], the coverage of a single viewpoint vj is defined as

Cj(vj) =
1
M

M∑

i=1

Vij , (3)

and the coverage due to all the optimal viewpoints computes as

C(vj ∈ V∗) =
1
K

∑

j∈J ∗
Cj(vj). (4)

This is the maximum achievable coverage considering all the viewpoint candi-
dates.

3 State of the Art of the VPP

Over more than three decades, extensive research has been conducted on gen-
erating optimal viewpoints. Numerous algorithms have been developed for this
purpose. Despite these efforts, the problem of generating optimal viewpoints
still needs to be solved. No existing method can simultaneously achieve com-
plete coverage of an object, utilize a small set of viewpoints, maintain low
computational costs, and provide a high spatial resolution [6,10,15,19]. A com-
prehensive overview of viewpoint generation methods can be found in [4]. The
optimal viewpoint generation methods can be broadly classified into three main
groups: space sampling [6,12,19], vertex sampling [3,5,13], and patch sampling
[10,11,16]. Space sampling methods are often combined with Next Best View
(NBV) approaches, initially introduced in [2]. NBV approaches do not require a
detailed model of the object under inspection, but certain information, such as
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its size, can be beneficial. Various variants of NBV algorithms are documented in
[7]. NBV algorithms involve determining a candidate viewpoint as the starting
point of the inspection and selecting subsequent viewpoints based on the per-
centage of the unseen surface area of the object they offer. When the model of the
object to be inspected is available, it is advantageous to leverage this knowledge
and adopt an alternative approach to NBV. This alternative approach revolves
around solving the SCP. The core component of this formulation is the visibility
matrix, which we introduced in Sect. 2. The visibility matrix is generated by
performing sight ray tracing using the sensor model, viewpoint information, and
the 3D model of the object.

In the literature, a surface element is typically considered visible if it satis-
fies four conditions: (i) it falls within the field of view of the sensor, (ii) it is
within the sensor’s depth of field, (iii) there are no occlusions along the line of
sight between the viewpoint and the surface element, and (iv) the incident angle
between the line of sight and the surface’s normal is below a certain threshold.
This approximation helps to determine if a surface element is intersected by at
least one ray originating from a given viewpoint. However, it does not provide
information about the surface element’s spatial resolution or level of coverage.
For an overview of criteria commonly used to evaluate view planning outcomes,
we refer to [13]. The author of the aforementioned paper proposes a suitable
approach for line-scan range cameras, which considers the precision and sam-
pling density provided by the viewpoints. In this approach, a surface element is
deemed visible if it falls within the sensor’s frustum, has no occlusions along the
line of sight, and the estimated precision and sampling density for that specific
surface element and viewpoint meet the problem’s requirements. However, one
drawback of this approach is that the sampling density is evaluated per surface
element from a specific viewpoint. As a result, it may identify optimal view-
points with excessively high sampling density, leading to an unnecessarily dense
representation of surface elements that does not provide significant additional
information or contribute to the analysis. Moreover, this high density incurs
substantial computational costs. To address these issues, we propose to define a
new matrix to replace the visibility matrix to consider the spatial resolution of
each surface element in relation to the entire set of VPCs.

4 Sampling Density Matrix

This paper presents a novel formulation to determine optimal viewpoints. We
propose a new metric that measures not only visibility but also spatial resolution.
In what follows, we will often use the term (spatial) density, which is closely
related to spatial resolution. We propose a new formulation that aims to achieve
high spatial resolution in the sense of a small distance between the rays striking a
face and thus a high spatial density. To this end, we introduce a new matrix called
the ”sampling density” matrix, which serves a similar role as the visibility matrix
in the SCP but incorporates additional measurement features. This enables us
to resolve the VPP to select optimal viewpoints that maximize coverage while
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Fig. 1. The visual inspection of an object involves two main components. On the left
side, we have the generation of rays in the case of a perspective projection. Each ray
originates from a viewpoint vj and its direction is determined by the line connecting
the viewpoint and the location of a pixel on the image plane denoted as Δimage. The
image plane consists of nx × ny pixels, with each pixel separated from one another by
distances rsx and rsy along the two directions of the image plane. On the right side,
we have the representation of the object to be inspected in the form of a 3D mesh with
non-homogeneous surface elements si, each having an area Δsi .

ensuring a minimum spatial resolution r̄s, tailored to the problem’s requirements.
This is particularly important in visual inspections, where the objective is to
detect defects of varying sizes based on the specific use case.

To accurately capture the object’s geometry and detect defects, it is neces-
sary to consider the number of rays intersecting each surface element. However,
this information is not captured by the visibility matrix. It only distinguishes
between visible and non-visible surface elements based on whether at least one
ray intersects with a given surface element. One drawback of relying on the
visibility matrix is that in the case of a 3D model represented by non-uniform
triangular faces (or surface elements), a single ray intersect may be sufficient
to identify small faces, especially if they are smaller than the defect of inter-
est. However, this may not hold for larger surface elements since more rays are
required to cover larger areas. Moreover if a defect is smaller than the distance
between two rays (spatial resolution), it may go undetected. One potential solu-
tion to overcome this issue would be to re-mesh the object to have uniform faces,
all with a size comparable to the desired spatial resolution. However, this app-
roach introduces geometric changes to the meshed object, negatively impacting
viewpoint planning for defect detection.

The objective of this paper is to address the mentioned challenges while
avoiding the need for object re-meshing. Additionally, we aim to overcome the
lack of information about the achieved spatial resolution, which is influenced by
both the surface element’s area and the number of rays intersecting it. In order
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to integrate spatial resolution in the VPP, we consider four crucial factors: (i)
the image place with area Δimage, (ii) the surface area Δsi of the surface element
si, (iii) the number of rays Rij associated with vj intersecting with si, and (iv)
the spatial resolution rsx and rsy in both directions.

As shown in Fig. 1, we consider an image with nx×ny pixels. This is fitted into
a rectangle of size (r−l)×(t−b) that corresponds to the image plane area Δimage

at a reference distance dr equal to the effective focal length from the viewpoint
vj . Mathematically, this relationship can be expressed as Δimage = (r−l)×(t−b).
Furthermore, the spatial resolution of the sensor at the reference distance can
be represented as rsx = (r − l)/nx and rsy = (t − b)/ny, as detailed in [8].
For notation purpose, we define the inverse of the spatial resolution at reference
distance d as

δs|d =
1
rs

∣
∣
∣
∣
d

=

√
nx × ny

Δimage

dr
d

, (5)

which we refer to as the (spatial) sampling density. To determine if a surface
element. In the following, we assume the reference distance d to be equal to the
working distance of the sensor. To determine if a surface element si is intersected
by rays originating from viewpoint vj and to track the number of rays hitting it,
we draw inspiration from Eq. (5). We introduce the ray matrix R. Each matrix
element Rij represents the number of rays originating from the viewpoint vj that
intersect the surface element si. In addition, we introduce the surface element
density as δsij , where the index i pertains to the surface element si, and the index
j pertains to the viewpoint vj . This variable relates the number of rays Rij that
intersect with a surface element si to its surface area Δsi . Mathematically, the
surface element sampling density due to a single viewpoint vj can be expressed as

δsij =

√
Rij

Δsi

. (6)

Furthermore, we introduce the surface element sampling density δsi , which is
the cumulative sum of δsij over all viewpoints vj , with i = 1, . . . , N , i.e.

δsi =
N∑

j=1

δsij . (7)

In the problem at hand, we aim not only at full coverage but at a specific minimal
sampling density per surface element si, i.e. δsi ≥ δ̄s, with target surface element
sampling density δ̄s. At this point, we make use of the relations (6) and (7) as
well as of the definition of the visibility matrix (1) to introduce the so-called
sampling density matrix S ∈ RM×N . This reads as

Sij = S[i, j] =

{
δsij/δ̄s if δsi ≥ δ̄s,

Vij otherwise.
(8)
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where Vij = {0, 1} are the elements of the visibility matrix V introduced in
Sect. 2 and δ̄s is the target surface element sampling density. In particular, Sij =
0 if there is no ray originating from vj intersecting with the surface element si
and Sij = 1 if the viewpoint vj can provide the required spatial density of si or
if there is no combination of the VPCs that can guarantee δ̄s. The reason for this
is that we want to determine a set of optimal viewpoints which are able to cover
all the visible surface elements, even when they cannot be covered with target
spatial density. In this case, we use the definition of visible as it is commonly
used in the literature and as described in Sect. 3.

In the subsequent steps, we aim to utilize the sampling density matrix to
identify the optimal set of viewpoints V∗. These viewpoints should not only
maximize coverage but also provide a sampling density that exceeds the target
sampling density, i.e., δsi ≥ δ̄s and therefore offer the required spatial resolution.
To achieve this, we replace the visibility matrix with the sampling density matrix
in the SCP (2). Additionally, the sampling density per surface element is consid-
ered as the sum of the spatial density offered by each viewpoint. This approach
helps to avoid excessively high sampling densities that could be computationally
expensive.

5 Results and Discussions

The simulation results were conducted using a sensor model with dimensions
of 1200 × 1920 pixels. The sensor has a field of view of 38.7◦ × 24.75◦, a depth
of field ranging from 300 to 700 mm, and a maximum incidence angle of 75◦.
Our evaluation metric considered two objects1 with distinct geometric charac-
teristics, namely a hirth and a crankshaft. These objects are depicted in Fig. 2.
Without loss of generality, in the following we assume a target spatial resolution
r̄s = 0.18 mm and a set of 500 viewpoint candidates (VPCs). These were gen-
erated with the method proposed in [17] because it achieves a higher coverage
than the one achieved with the other methods for VPCs generation. Firstly, our
objective is to demonstrate that using our metric allows us to generate candi-
dates starting from a decimated mesh, resulting in higher coverage compared
to when the visibility matrix is adopted. In Fig. 3, the coverage is evaluated on

Fig. 2. Meshed objects used in simulation: (left) Hirth, (right) crankshaft.

1 https://owncloud.fraunhofer.de/index.php/s/H8jV9rwGN84knzP (Accessed August
19, 2023).

https://owncloud.fraunhofer.de/index.php/s/H8jV9rwGN84knzP
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Fig. 3. Evaluation of the sampling density matrix S: (left) Achieved coverage with
respect to the number of surface elements of the mesh used to generate the view-
points candidates (VPCs). Coverage is evaluated adopting the visibility matrix V
(dashed lines) and the novel sampling density matrix (solid lines) as introduced in
this work. (right) Relationship between spatial resolution and number of optimal view-
points (#OVP) when the sampling density matrix is adopted. We indicate with a star
the values that have been achieved when the visibility matrix was used.

the original 3D mesh of the target objects, while the VPCs are generated using
different decimated meshes. Typically, when decimated mesh models are used for
generating VPCs, there are losses in the coverage of the original target object due
to geometric differences between the meshes. However, this effect is mitigated
when our metric is utilized, as demonstrated in the left subfigure of Fig. 3. The
achieved coverage, shown by the solid lines representing the sampling matrix,
consistently surpasses the coverage obtained with the visibility matrix (indicated
by the dashed lines). Notably, the solid lines are always positioned to the right
of their corresponding dashed lines, highlighting the superior coverage achieved
when our metric is applied. The difference between the coverage obtained using
the two metrics is more pronounced when the VPCs are generated from highly
decimated meshes. The number of optimal viewpoints (#OVP) obtained using
our metric is relatively small, ranging from 4 to 12 for a higher spatial resolution
(smaller values) depending on the mesh model used for generating the view-
point candidates. The number of viewpoints decreases as the spatial resolution
decreases (larger values), eventually reaching a value equivalent to the number
of OVPs required when the visibility matrix is employed (indicated by a star
in the plots of Fig. 3), as shown in the right subfigure of the same figure. It is
important to emphasize that the primary objective of our formulation for the
VPP is to provide optimal viewpoints for generating a dense point cloud that
satisfies the spatial resolution constraint. This is evident in Fig. 4, where a scalar
field representing the number of neighbours within a sphere of radius equal to
the target resolution is presented. For both objects, the hirth and crankshaft, the
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(a) (left) Scalar field of the point cloud
generated using the visibility matrixV.
(right) Scalar field generated using the
sampling density matrix S.

(b) (above) Scalar field of the point
cloud generated using the visibility ma-
trix V. (below) Scalar field generated
using the sampling density matrix S.

Fig. 4. Number of neighbours inside a sphere of radius R = r̄s = 0.18 mm. The
number of neighbours is larger (red) when our novel sampling density matrix is used.
This means that the achieved spatial resolution is larger and therefore smaller defects
can be identified.
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Fig. 5. Histograms showing the resolution per surface element in the case of the
crankshaft (left) and hirt (right) when the optimal viewpoints are determined using the
visibility matrix V and the novel sampling density matrix S. The vertical line indicates
the target spatial resolution r̄s = 0.18 mm. (Color figure online)

number of neighbours is higher when our formulation is adopted. This indicates
that a higher spatial resolution is obtained, enabling the detection of smaller
defects. In addition, two histograms are shown in Fig. 5 to compare the spatial
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resolution achieved with the visibility matrix (blue) and the novel sampling den-
sity matrix (red) per surface element. The spatial resolution is larger when our
VPP formulation is employed, as shown by the concentration of red bins on the
left side of the plots. On the other hand, when the visibility matrix is used, only
a few surface elements meet the required spatial resolution (indicated by blue
bins between 0 and r̄s), while the majority of surface elements do not meet the
requirement (blue bins to the right of r̄s in Fig. 5).

6 Conclusions and Outlook

In this paper, we introduce a novel metric for evaluating viewpoint candidates
by utilizing a new matrix called the sampling density matrix. This replaces the
state of the art visibility matrix in the set coverage problem. Our approach
takes into account both the surface area of each element of the mesh and the
number of rays intersecting it, allowing it to be adapted to homogeneous and
non-homogeneous 3D meshes of the target object. The new formulation of the
viewpoint planning problem presented in this paper can be integrated into var-
ious model-based pipelines that employ sight ray tracing to evaluate viewpoint
candidates and solve the SCP. Our method generates optimal viewpoints that
ensure desired spatial resolution on a per-surface element basis. The method is
versatile and well-suited for different types of visual inspection tasks, including
surface and dimensional inspection [9]. The simulation experiments conducted
in this study demonstrate that decimated meshes can be used to compute view-
points for models with a high number of faces, thereby accelerating the compu-
tation of optimal viewpoints without sacrificing the achievable coverage. This is
in contrast to the standard VPP formulation, where decimated meshes worsen
the performance in terms of coverage. Considering that the appearance of the
target object can impact visibility during inspection tasks, we propose further
research to incorporate photometric information into the viewpoint evaluation
process. This would require extending the ray tracing capabilities of our method
to account for the reflectivity of the object and to consider the relative posi-
tions of the camera and of the illumination points with respect to the position
of the object being inspected. By incorporating photometric considerations, a
more comprehensive evaluation of viewpoints can be achieved.
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10. Mosbach, D., Gospodnetić, P., Rauhut, M., Hamann, B., Hagen, H.: Feature-driven
viewpoint placement for model-based surface inspection. Mach. Vis. Appl. 32(1),
1–21 (2021)

11. Prieto, F., Lepage, R., Boulanger, P., Redarce, T.: A CAD-based 3D data acquisi-
tion strategy for inspection. Mach. Vis. Appl. 15(2), 76–91 (2003)

12. Sakane, S., Sato, T.: Automatic planning of light source and camera placement
for an active photometric stereo system. In: IEEE International Conference on
Robotics and Automation, pp. 1080–1081 (1991)

13. Scott, W.R.: Model-based view planning. Mach. Vis. Appl. 20(1), 47–69 (2009)
14. Scott, W.R., Roth, G., Rivest, J.F.: Performance-oriented view planning for model

acquisition. In: International Symposium on Robotics, pp. 212–219 (2000)
15. Scott, W.R., Roth, G., Rivest, J.F.: View planning for automated three-

dimensional object reconstruction and inspection. ACM Comput. Surv. (CSUR)
35(1), 64–96 (2003)

16. Sheng, W., Xi, N., Tan, J., Song, M., Chen, Y.: Viewpoint reduction in vision
sensor planning for dimensional inspection. In: IEEE International Conference on
Robotics, Intelligent Systems and Signal Processing, vol. 1, pp. 249–254 (2003)

17. Staderini, V., Glück, T., Schneider, P., Mecca, R., Kugi, A.: Surface sampling for
optimal viewpoint generation. In: 2023 IEEE 13th International Conference on
Pattern Recognition Systems (ICPRS), pp. 1–7 (2023)

18. Tan, C.S., Mohd-Mokhtar, R., Arshad, M.R.: A comprehensive review of coverage
path planning in robotics using classical and heuristic algorithms. IEEE Access 9,
119310–119342 (2021)

19. Tarbox, G.H., Gottschlich, S.N.: Planning for complete sensor coverage in inspec-
tion. Comput. Vis. Image Underst. 61(1), 84–111 (1995)


	Spatial Resolution Metric for Optimal Viewpoints Generation in Visual Inspection Planning
	1 Introduction
	2 Viewpoint Planning Problem Formulation
	3 State of the Art of the VPP
	4 Sampling Density Matrix
	5 Results and Discussions
	6 Conclusions and Outlook
	References


