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Abstract. Rooftop photovoltaics have been acknowledged as a criti-
cal component in cities’ efforts to reduce their reliance on fossil fuels and
move towards energy sustainability. Identifying rooftop areas suitable for
installing rooftop photovoltaics-referred to as utilizable areas-is essential
for effective energy planning and developing policies related to renew-
able energies. Utilizable areas are greatly affected by the size, shape,
superstructures of rooftops, and shadow effects. This study estimates
utilizable areas and solar energy potential of rooftops by considering the
mentioned factors. First, rooftops are extracted from LiDAR data by
training PointNet++, a neural network architecture for processing 3D
point clouds. The second step involves extracting planar segments of
rooftops using a combination of clustering and region growing. Finally,
utilizable areas of planar segments are identified by removing areas that
do not have a suitable size and do not receive sufficient solar irradiation.
Additionally, in this step, areas reserved for accessibility to photovoltaics
are removed. According to the experimental results, the methods have a
high success rate in rooftop extraction, plane segmentation, and, conse-
quently, estimating utilizable areas for photovoltaics.

Keywords: Rooftop solar energy · Spatial analyses · Plane
segmentation · Rooftop extraction · Deep learning

1 Introduction

Rooftop photovoltaics have emerged as a promising solution for satisfying a
portion of the energy demand in urban areas owing to their great potential
for scalability and lower greenhouse gas emissions. Rooftop photovoltaics allow
buildings to become active power producers, reducing their reliance on external
energy sources [8]. However, not all rooftop areas are utilizable for photovoltaic
deployment. Utilizable rooftop areas are limited by various factors, the most
important of which are the shape, orientation, and superstructures of roofs, as
well as occlusion [36]. A rooftop with proper orientation and no superstruc-
tures or surrounding objects offers high solar energy potential. In contrast, a
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north-facing rooftop with many superstructures surrounded by tall buildings (in
the northern hemisphere) may not offer high solar energy potential. Moreover,
local climate conditions and geographical location may affect the solar energy
potential of rooftops.

Manual identification of utilizable rooftop areas based on the mentioned fac-
tors can be time-consuming and even unfeasible, especially for large regions.
Hence, more efficient and automated approaches are necessary to expedite the
process of identifying utilizable areas. In this context, analyzing LiDAR datasets
has been recognized as a potential way to automate this process [15]. LiDAR
datasets provide 3D spatial profiles of the area and allow for automatic compu-
tation of characteristics of rooftops and their surrounding objects, such as area,
height, tilt, and azimuth. The issue of identifying utilizable rooftop areas for
photovoltaics installation has been addressed through developing spatially-based
methods utilizing geoinformatics. These methods start by outlining the borders
of rooftops, modeling their shapes, and identifying areas that are utilizable for
rooftop photovoltaics [2,5]. These methods typically take into account the tilt,
orientation, and superstructures of rooftops when identifying utilizable areas. In
this study, utilizable areas of rooftops are identified using a new spatially-based
method.

2 Related Work

2.1 Extraction of Rooftops and Modeling Their Form

Identifying utilizable rooftop areas entails several steps, the first of which is deter-
mining the extent of rooftops. This step is crucial as it provides information on
the overall surface area of rooftops, which can then be used in further analyses to
pinpoint utilizable areas. With the fast advancement of remote sensing technolo-
gies, point clouds of varying resolutions have become more and more accessible.
Consequently, research within the field of automatic building extraction from
point clouds has received widespread attention, and many methods have been
developed. In these methods, points belonging to rooftops are extracted based on
their geometric and morphological features that are different from other objects,
such as trees and roads. In this context, a variety of machine-learning approaches
have been applied.

In [21], the AdaBoost algorithm was used to classify LiDAR data into four
categories: roads, grass, buildings, and trees. Different features, such as height,
height variation, and normal vector variation, were used for the classification.
Their method was tested on ten regions, and the evaluation results indicated
an accuracy of 92%. In [3], support vector machines (SVMs) were employed to
identify rooftops. They proposed a new method named data reduction based
on locality-sensitive hashing (DRLSH) to automatically select training samples
for SVMs. The method was evaluated on a test site in Gothenburg, Sweden,
and the results showed its suitable performance. In another study [4], a different
instance selection method for SVMs was developed. The method-named border
point extraction based on locality-sensitive hashing (BPLSH)- was tested on
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several datasets, and the results showed its superiority over other methods. In
[33], PointNet++ was used to identify rooftops from LiDAR datasets. It is a
deep neural network architecture for 3D point cloud analysis [27]. The authors
could accurately identify rooftops in point clouds, showing the potential of this
deep learning architecture for 3D data analysis.

Rooftop extraction is required for different spatial applications, but reliable
spatial analyses of rooftops require modeling their shape. This is particularly
important in identifying utilizable areas as the solar suitability of rooftops and
the efficiency of photovoltaics rely on rooftops’ form. The angle at which a
rooftop faces the sun affects the amount of sunlight that photovoltaics receives
[40]. Model-driven and data-driven are two commonly used approaches for roof
shape modeling.

In the model-driven approach, the rooftop shape is determined based on a
predefined library of roof shapes [41]. Indeed, the approach defines a library of
roof shapes and chooses a shape that best matches the point cloud or surface
model. In [20], this approach was used to model the shape of rooftops in Uppsala.
It ensures regularized planar patches and low sensitivity to noise as it incorpo-
rates prior knowledge about roof shapes into the modeling process. However,
the performance of this approach depends on the defined library’s completeness.
If the library is not comprehensive enough, it may not accurately represent the
rooftop shapes. Moreover, this approach may overlook rooftop superstructures
(e.g., chimneys), which play an important role in identifying utilizable areas.

In the data-driven approach, planar segments are derived independently of
the overall roof shape [10]. This can be quite beneficial in adhering planar seg-
ments to their underlying surface. Furthermore, this approach is not limited to
a set of predetermined shapes, and thus it is capable of extracting all planar
segments of any arbitrary polyhedral rooftops-including rooftop superstructures
[7,16]. Various techniques are commonly utilized in the data-driven approach,
such as region growing, random sample consensus (RANSAC), and clustering
[38,39].

Region growing is a method to group close pixels with similar characteristics
into larger regions or objects. Region growing begins with selecting a number
of points (seed points) known to belong to a plane. Then, it iteratively adds
neighboring points that meet coplanarity criteria until no more points can be
added to the plane. Coplanarity criteria are typically based on measures such as
point distance, normal vector difference, and curvature and are used to ensure
that the added points are coplanar with the initial seed points. In [18], planar
patches of rooftops were segmented using region growing to estimate rooftop
solar potential. In [12], a method that replaces points with volumetric elements
called voxels was presented to enhance the computational efficiency of region
growing. The performance of region growing is greatly affected by how the seeds
are arranged and the accuracy of the estimations of surface properties such as
normal direction and curvature at various points.

In RANSAC-based methods for plane segmentation, a subset of samples is
chosen each time, plane models fit each subset, and the model with the most
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inliers is chosen. Inliers are points that lie close to the fitted plane model, while
outliers lie far away from the fitted plane model. In [10], RANSAC was used
for plane segmentation. Despite the simplicity of classical RANSAC, applying
it to plane segmentation in point clouds may result in the detection of spurious
planes. Several variations and adaptations of RANSAC have been developed to
overcome this issue [38].

Clustering-based methods form planar segments by grouping points with sim-
ilar features, where the definition of features should enable clear differentiation
of planar segments. In a well-defined feature space, points on the same planar
segment should be mapped close together. In [31], a clustering-based plane seg-
mentation method based on normal vectors was proposed. The segmentation
process uses fuzzy k-means clustering, and a validity index-the degree of com-
pactness and separation of the resulting clusters-is used to obtain the optimal
number of clusters. Moreover, a planarity test that distinguishes planar from
non-planar points is incorporated to enhance clustering. In [22], density-based
spatial clustering of applications with noise (DBSCAN) [13] was used to extract
planar segments of rooftops. The feature space for clustering was defined using
position, slope, azimuth, and shadow. The choice of clustering algorithm is cru-
cial in this class of methods, and clustering algorithms with high time complexity
might be impractical for handling high-resolution point clouds.

2.2 Identification of Rooftop Utilizable Areas

Different factors limit utilizable areas of rooftops for installing photovoltaics
[32]. Rooftop superstructures (e.g., chimneys), shadow effects caused by adjacent
buildings or trees, and regulations governing the installation of photovoltaics
are among the factors that impose limitations [6]. Identifying utilizable areas
is critical to avoid overestimating the potential of rooftop solar energy, which
could lead to unrealistic expectations and inaccurate planning for integrating
solar energy into existing power infrastructures. By considering utilizable areas,
developing more informed and realistic strategies for deploying photovoltaics is
possible, which can contribute to the transition towards more sustainable energy
systems [15,25].

The challenge of identifying utilizable areas has been the subject of numerous
studies [9]. A commonly used method for identifying these areas is to use a set
of loss coefficients, which indicate the average reduction in available rooftops
[29]. These coefficients are determined based on simplified assumptions about
rooftops, such as a proportion of rooftops mainly in shadow or used for non-
photovoltaic purposes (e.g., air conditioning and accessibility). Although this
approach is computationally fast, adapting coefficients to new areas is not trivial,
and unsuitable loss coefficients may result in overlooking rooftop variations [35].

To address this issue, a few spatially-based methods have been recently pro-
posed. However, most of the proposed spatially-based methods are limited to
manual digitization [11] or simplified roof shape modeling [20], or they may not
consider shadow effects [23]. This study identifies utilizable areas with more spa-
tial details by analyzing roof shapes, roof superstructures, and shadow effects. It
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aims to automatically (a) extract rooftops using a deep learning-based method,
(b) segment planar rooftop patches using a clustering-based method, and (c)
identify utilizable areas using morphological operations.

3 Methods

In this section, the procedure for identifying utilizable areas and estimating the
solar energy potential of rooftops is detailed. It relies on using LiDAR datasets,
which can provide detailed 3D information about an area. It assumes that the
LiDAR data has enough density to accurately capture the shape of the rooftops
and superstructures that may affect solar energy potential estimates. The major
steps of the procedure are explained in the following sections.

3.1 Extraction of Rooftops

The task of rooftop identification falls within the domain of semantic segmen-
tation, in which the objective is to detect points that constitute rooftops. Deep
learning methods have made significant progress in recent years and demon-
strated impressive results in various semantic segmentation tasks, making them
suitable for this purpose. Our study employs PointNet++, a state-of-the-art
deep learning architecture designed to handle point cloud data such as LiDAR
[27]. PointNet++ is a hierarchical neural network for semantic segmentation of
unorganized point data, and it enables multiscale point feature learning. It has
the potential to be trained without requiring parameters that are specific to
objects in LiDAR. A PointNet++ network consists of sampling, grouping, and
mini-PointNet layers. The sampling layer chooses points that form the centroids
of local regions. The grouping layer constructs local region sets around the cen-
troids. The mini-PointNet layer abstracts the sets of local features into higher-
level representations using a series of convolution, normalization, relu, and max-
pooling layers. Please refer to [27] for more details. To effectively train Point-
Net++ for rooftop extraction, we utilize labeled point cloud datasets encompass-
ing various rooftop features. These labeled datasets provide crucial information
on the structure, geometry, and spatial distribution of rooftop points, enabling
the network to learn and recognize the distinguishing characteristics of rooftops.

3.2 Rooftop Plane Segmentation

This step involves dividing rooftops into planar or flat regions. It is necessary
to identify utilizable areas as planar segments unobstructed by superstructures
(e.g., chimneys) provide stable and consistent surfaces for mounting photo-
voltaics. Plane segmentation is performed on digital surface models (DSMs);
thus, the recognized rooftop LiDAR point clouds are converted into DSMs. Pla-
nar segments are extracted by clustering, and the feature space for clustering is
defined by normal vectors of pixels obtained by fitting a plane to the pixel and its
neighbors. Pixels on the same planar segment have similar normal vectors; thus,
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planar patches can be identified by grouping them together. Some pixels in each
planar segment may, however, have normal vectors that are inconsistent with
those of other pixels in the same segment. These pixels are known as non-planar
pixels, as they are placed in the vicinity of more than one plane. Including these
pixels in clustering may disturb the creation of planar segments since they shat-
ter the boundaries of clusters of normal vectors. As a result, non-planar pixels
must be identified and excluded from clustering. Principle component analysis
(PCA) is used to evaluate the planarity of each pixel.

To cluster normal vectors, a minimum density divisive clustering (MDDC)
algorithm is used [26]. MDDC is a density-based hierarchical clustering algo-
rithm, which assumes continuous regions of low probability density separate
clusters. Clusters are formed by hyperplanes that pass through regions with
low probability density. The adaptability (i.e., it requires no input parameters)
and high computational efficiency of MDDC make it suitable for handling large
datasets. Since segmentation using MDDC does not consider the spatial con-
nectivity of pixels, each resulting patch may comprise multiple parallel planar
segments that are spatially separated. To split multi-part patches, Euclidean
clustering based on pixel coordinates is applied [30]. Finally, the non-planar pix-
els, initially excluded, are assigned to the best segment using region growing. In
this manner, the issue of over-segmentation that could potentially occur during
clustering is also addressed.

3.3 Rooftop Utilizable Areas

This stage entails calculating the solar energy potential of rooftops. Since it is not
feasible to install photovoltaic panels across the entire rooftop surface, determin-
ing the utilizable areas for photovoltaics is crucial to prevent the overestimation
of energy generation. Utilizable areas refer to specific rooftop sections where
photovoltaic installation is practical. Therefore, every planar segment undergoes
a thorough spatial analysis to pinpoint these utilizable areas.

Portions of planar segments need to remain clear of photovoltaics to maintain
accessibility, which is an essential requirement for panel installation. Frequently,
a gap between the photovoltaic edge and the segment, known as the service area,
must be preserved. To exclude these areas, we utilize a morphological erosion
operation with a circular structuring element whose radius is equal to the width
of the service areas [34]. The erosion operation shrinks the roof face by the width
of the service area. In addition to service areas, there might be some areas of
planar segments that are too small for a photovoltaic to fit, and these areas
should be excluded. To accomplish this, we use morphological opening opera-
tions in accordance with Algorithm 1. The inputs to the algorithm include a
segment RFT obtained from the previous step, a structuring element represent-
ing a solar panel SP, and a set of angles Δ for rotating the structuring element.
The algorithm applies a series of opening operations with varying directions of
the structuring element, as solar panels can be installed in different directions in
practice. Each iteration identifies regions in the segment that can accommodate
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a rotated solar panel through the opening operation. The output RFTG is the
merging of all suitable regions obtained over the iterations.

Algorithm 1. Pseudo-code for removing areas that cannot accommodate a solar panel.

Input: A shrunken segment RFT

A solar panel SP with a size of RPVsize

A set of rotation angles Δ = {0◦, 10◦, 20◦, · · · , 170◦}
Output: A segment without geometrically unsuitable parts RFTG

1: RFTG ← a zero matrix with a size of RFT

2: for each θ ∈ Δ do
3: SPθ ← rotate SP with an angle of θ
4: Iθ ← OSPθ [RFT ] %OSPθ is an opening operation with structuring element SPθ

5: RFTG ← union(RFTG, Iθ)
6: end for
7: RF c

TG ← connected component labeling(RFTG)
8: for each RF r

TG ∈ RF c
TG do

9: if area(RF r
TG) > area(SP ) then

10: Preserve RF r
TG

11: end if
12: end for

Once geometrically incompatible areas have been eliminated; the residual pla-
nar segments undergo assessment for solar irradiation. Segments with average
solar irradiation falling below a designated threshold SI are excluded, as photo-
voltaic installations typically avoid rooftop areas with insufficient sunlight. This
process helps discard segments predominantly in the shade or those with unfa-
vorable tilts (e.g., excessively steep) or azimuths (e.g., facing north), resulting
in the identification of utilizable areas for photovoltaic installation.

By having utilizable areas, the energy potential of rooftops is determined. A
rooftop’s total solar electricity yield is calculated according to Eq. 1. E is the
total solar electricity yield of a rooftop in kWh. Si and ψi are the total solar
irradiance (in kWh/m2) and the tilt angle of the i-th utilizable segment. α and
β are the efficiency and performance ratio of the photovoltaics, d is the area of
each pixel of the DSM (in m2), and N is the number of utilizable segments of a
rooftop.

E = α · β · d ·
N∑

i=1

Si

cos ψi
(1)

4 Datasets, Results and Discussion

Two datasets are employed in this study to evaluate the performance of the
methods. Dayton Annotated LiDAR Earth Scan (DALES) is the first dataset
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[37] used to train and evaluate PointNet++ for rooftop extraction. As a pub-
licly accessible resource, DALES offers a comprehensive assortment of LiDAR
data from various environments, making it well-suited for deep network train-
ing. The dataset encompasses 40 manually labeled scenes. The second dataset
encompasses an area within Uppsala city, Sweden, and its LiDAR point cloud
was created by the Uppsala municipality. This dataset serves the purpose of
plane segmentation and solar energy calculation. To facilitate plane segmenta-
tion assessment, we manually identified and labeled planar segments of rooftops
and used them as ground truth data. Some scenes from the datasets are shown
in Fig. 1.

Fig. 1. Some sample scenes from the LiDAR datasets.

The results obtained by applying the procedure to the datasets are presented
and discussed. The first step of the procedure is to extract rooftops, which is
done by utilizing PointNet++. Of the 40 scenes in the DALES dataset, 29 are
designated for training, while the rest serve as test samples. Individual scenes are
subdivided into non-overlapping 50-by-50-meter tiles to maximize the dataset’s
utility. Each tile is then downsampled to contain only 9000 points, speeding up
the training process. To train the deep network, the Adam optimizer with a
gradient decay rate of 0.9 is used [19]. The maximum number of training epochs
is set to 20, with each epoch consisting of 485 iterations. At the beginning of the
training, the learning rate is set to 0.0005 and is reduced by a factor of 0.1 in
epoch 10. Regularization is used to minimize overfitting, and the regularization
factor is set to 0.1 [24].

The performance of the trained deep network for rooftop extraction is
assessed by applying it to the test scenes and comparing its predictions with the
ground truth labels. To quantitatively evaluate the similarity between predicted
and actual labels, accuracy and intersection over union (IOU) are employed as
measurement metrics. These metrics are calculated according to Eqs. 2 and 3,
where TP , FP , and FN are the numbers of true positives, false positives, and
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false negatives, respectively.

Accuracy =
TP

TP + FN
(2)

IOU =
TP

TP + FP + FN
(3)

The results show that the trained deep network has an accuracy of 92.60%
and an IOU of 87.38% on average in the test scenes of the DALES dataset, show-
ing its satisfactory performance in rooftop extraction. Thus, the trained deep
network can be applied to any area. We employ it in the extraction of rooftops
from the second dataset. Figure 2 shows some examples of rooftop extraction
from the second dataset. The boundaries of rooftops have been extracted and
regularized using α-shape [1] and polyline compression [17] algorithms, respec-
tively. The figure shows that rooftops have been effectively distinguished from
other objects.

Fig. 2. Some identified rooftops. The underlying orthophoto serves solely for visual-
ization purposes.

Subsequently, planar patches of rooftops are segmented using clustering, fol-
lowed by region growing. The MDDC algorithm used for clustering normal vec-
tors does not require prior knowledge regarding the dataset as input parameters,
and it adaptively determines the shape and number of clusters in the data. The
angle and height thresholds used in region growing were set to 7◦ and 10 cm.
These values were obtained using trial and error in a small part of the dataset.
Figure 3 shows plane segmentation results of some rooftops. It illustrates the
effectiveness of the plane segmentation method in detecting roof faces. Small
superstructures, such as vents and small chimneys, that are not identifiable as
distinct planar segments appear as openings within the segments. In this way,
the impact of superstructures can be considered in the identification of utilizable
areas. By comparing the plane segmentation results with the ground truth data,
the performance of plane segmentation is quantified in terms of accuracy and
IOU. The assessment results show that the plane segmentation method has an
accuracy of 98.69% and an IOU of 98.22%, suggesting that most planar segments
have been accurately detected.
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Fig. 3. The outcome of plane segmentation for some rooftops.

To effectively locate areas utilizable for photovoltaic deployment, a rooftop
solar irradiation map is necessary, in conjunction with planar segments. This is
attributed to the need for cost-efficiency, which discourages the installation of
photovoltaic systems in regions with low solar irradiation. The solar irradiation of
each segment is estimated using the solar model of ArcGIS Desktop [14,28]. The
solar model incorporates viewshed analysis to account for shadowing effects. The
viewshed analysis generates a Boolean image indicating the extent to which the
sky is occluded by surrounding objects as seen from a certain place in the DSM.
In addition to occlusion, the solar model takes into account site orientation,
atmospheric effects, and variations in the sun’s position, making it a reliable tool
for estimating global solar irradiation. Figure 4 illustrates the annual global solar
irradiation distribution across some rooftops, computed with ArcGIS Desktop.
The impact of shadows cast by surrounding objects is evident in this figure.

Fig. 4. Annual global solar irradiation of some rooftops.

Rooftop areas utilizable for solar panels are determined by excluding ser-
vice areas, geometrically unsuitable areas, and areas with low solar irradiation.
An erosion operation whose structuring element has a radius of 30 cm is used
to remove service areas. Next, a series of opening operations are performed to
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discard areas incapable of accommodating photovoltaic panels. The size of the
structuring elements of opening operations is set to 1.7 m × 1.0 m, which is
the common size of a commercial rooftop photovoltaic panel. Moreover, the
solar irradiation threshold SI used to remove low-irradiated areas is set to 1000
kWh/m2/year. Figure 5 shows the resulting utilizable areas of some rooftops
in the dataset. The figure clearly illustrates how the methodology takes into
account minor superstructures, indicated by white circles, when identifying uti-
lizable areas. It also shows that buffers equivalent to the width of service areas
have been removed from planar segments. Furthermore, some large planar seg-
ments have been removed due to insufficient solar irradiation. The approach
successfully considers factors such as rooftop shape, orientation, superstructures,
and occlusions when determining suitable areas for placing photovoltaics.

The study area encompasses a total rooftop area of 4224 m m2, with 700 m2

deemed utilizable. Annually, the entire rooftop area generates 403505 kWh of
electricity, while the utilizable portions contribute 90105 kWh of electricity. The
electricity yield has been estimated using Eq. 1, where the efficiency and per-
formance ratio of the photovoltaics were set to 0.16 and 0.75, respectively. The
utilizable areas account for only a small percentage of the total rooftops (16.6%);
as a result, evaluating the solar energy potential of buildings based on their entire
rooftop areas could result in overestimation.

Fig. 5. Utilizable areas of some rooftops. The impact of superstructures is highlighted
by white circles.

5 Conclusion and Future Work

Rooftop photovoltaics have acquired a prominent place in cities due to their
potential to contribute to energy sustainability. They a have high capacity to
reduce carbon emissions and environmental impacts of energy generation. Reli-
able assessments of rooftop solar potential require finding areas of rooftops where
photovoltaics may be installed efficiently. In this study, a procedure was devel-
oped to estimate the solar energy potential of rooftops. First, rooftops were
extracted from LiDAR point clouds using PointNet++, and their boundaries
were regularized. Then, planar segments were extracted based on clustering
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and region growing integration. The clustering step requires no prior knowl-
edge regarding the dataset and has an optimized computational speed. In this
step, planarity analysis was also incorporated to enhance clustering. Afterward,
utilizable areas were determined by considering service areas, solar irradiation,
roof shape, and occlusions. The results showed that rooftops and their planar
segments were successfully extracted with 93% accuracy and 88% IOU and 99%
accuracy and 98% IOU, respectively. In addition, it was observed that the shape,
orientation, and superstructures of rooftops and shadow effects were satisfacto-
rily considered in identifying utilizable areas. As a result, the procedure can be
regarded as a reliable way to estimate the solar energy potential of rooftops in
practice.

Although the methods have shown remarkable performance, there is still
room for improvement. The economic feasibility of installing photovoltaics was
not assessed in this study. The economic feasibility assessment involves estimat-
ing the costs and benefits of installation, such as the initial installation cost,
maintenance expenses, and potential revenue from surplus power supplied to
the grid. This assessment can aid in identifying the most economically viable
rooftop areas for photovoltaics, considering both the potential for power pro-
duction and the associated costs and benefits. Another potential direction is to
extend the methods to include the façades of buildings. Our procedure focused
only on rooftops and considered rooftops to be the only areas with the potential
for installing photovoltaics. But façades of buildings can also have the suitable
potential for generating energy. Thus, future work can extend our procedure to
include façades in addition to rooftops.
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