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Abstract. Phenological information can shed more light on the spatiotemporal
biological processes that occur in vegetation communities. It facilitates ecosystem
and resourcesmanagement, conservation, restoration, policy and decision-making
on local, national, and global scales. Vegetation phenology relates, among others,
to the seasonal growth stages of flowering and leaf fall of specific species on
the ground and is different from Land Surface Phenology (LSP), which looks
at the spatiotemporal vegetation development of the land surface as measured
by satellite sensors. There is a wide range of Earth Observation datasets and
methods to estimate LSP. This paper reviews current progress in LSP estimation
with multispectral sensing for natural and semi natural environments. It includes
the satellite sensors’ capacity to capture LSP, data fusion techniques, synergies,
and cloud computing, machine learning, and data cube processing. One section
is dedicated to the validation of LSP products and its challenges. Lastly, a short
review on existing ground phenology networks, open-source software tools, and
global LSP products is provided.

Keywords: Land surface phenology ·Multi-source data fusion · Time series
analysis · Phenology metrics · Phenology validation · Phenology networks ·
Global phenology products

1 Introduction

Plant and animal growth cycles are changing continuously in response to their environ-
ment. Quantitative evidence about the pulsing of the vegetation cover over terrestrial
biomes provides an insight about climate change, desertification, or land use changes.
Vegetation phenology refers to the changes in seasonal patterns of natural phenomena
on the land, e.g. leaf out, flowering, leaf browning and fall, influenced by annual and
seasonal fluctuations of biotic and abiotic (e.g. temperature, day length, precipitation)
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drivers [1, 2]. Plant phenology is controlling net primary productivity, as well as seasonal
fluxes of water, energy, and CO2 between land and atmosphere [3].

On a regional level, agencies and organizations need phenology information to eval-
uate their conservation goals, and to conduct assessments related to the vulnerability
and the potential adaptation of the region. On a national scale, phenology dates are help-
ful to the environmental protection agencies, as indicators of seasonal weather change
impacts. Lastly, if the trend related to the impact of seasonal weather changes on specific
phenology cycle metrics is significant on a global level, atmospheric scientists and the
Intergovernmental Panel on Climate Change could consider season length or seasonal
photosynthesis as contributing information in understanding atmospheric circulation
patterns [4].

The main drivers of vegetation phenology are related to climate and vary across
ecoregions [5]. In temperate regions like Central Europe, temperature is the main driver
[6, 7]. In dry and semi-dry climates, water availability, soil moisture and precipitation
[8] are of major importance [7, 10, 11]. This paper reviews phenology monitoring in
natural and semi-natural vegetation. By semi-natural vegetation, one means vegetation
that includes “extensively managed grasslands, agro-forestry areas and all vegetated
features that are not used for crop production” [11]. Specifically, this paper looks at the
study of Land Surface Phenology (LSP), which is the study of the spatiotemporal vege-
tation development of the land surface as measured by satellite sensors, and is different
from species-specific phenology observed on the ground [12, 13]. LSP represents the
aggregated dynamics of multiple individual organisms in every remote sensing pixel,
mixed with other land covers; therefore, it is considered essentially distinct to in situ
measurements of single organisms [14, 15].

LSP science has developed immensely in the last two decades. Past reviews tackle
LSP methods and their limitations [32, 33], LSP products [34, 35], phenology networks
[35, 36], and challenges that arise in LSP of optical remote sensing [35–38] separately.
This review reports the recent advances and future trends for LSP retrieval of natural
and semi-natural vegetation with multispectral sensors. A shorter version was published
in the proceedings of the 7th International Conference on Geographical Information
Systems Theory, Applications and Management [38]. This version provides more detail
on the state of the art of LSP estimation, including multispectral sensors, data fusion,
synergies, software tools, products, and networks. It also adds an important section
related to the validation of LSP products.

2 Current Sensor Advances

Phenology cycles can be approximated from spaceborne time series of vegetation indices
(VIs) [9]. Remote sensing, “the acquisition of information about the state and condition
of an object through sensors that do not touch it” [16], is used for that goal. Over the
years, global spaceborne phenology products based onLSPhave been developed [18–21]
through remote sensors that can approximate LSP. LiDAR [21], SAR [22, 23], passive
microwave remote sensing [24, 25], and fluorescence remote sensing systems [26] have
been used for LSP estimation. However, the use of multispectral remote sensing is more
commonbecausedifferent phenological stages canbedetectedwithmultispectral sensors
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from changes in vegetation pigments. Here, we focus on current and future multispectral
remote sensing missions for LSP estimation (Table 1).

AVHRR has been used to study vegetation fluxes [10] and LSP trends [15]. Improve-
ments to its coarse spatial resolution (1.1 to 8 km) camewithMODIS, which is still being
used to assess spatio-temporal LSP patterns [39, 40]. TheVIIRSLSP product follows-up
the MODIS product, and is being used for global LSP estimation [41, 42].

LSP can also be estimated from geostationary satellites, such as the SEVIRI sensor,
which has been used to assess LSP in the studies of [54] and [55]. Recent studies used
AHI on the geostationary Himawari-8 satellite to estimate LSP over the Asian-Pacific
region [57, 59], and to study the sun-angle effects on LSP [58].

When looking at moderate resolution multispectral sensors, Landsat facilitates the
identification of regional alterations caused by the abundance of various plant species
[61] and the registration of LSP variations set by micro-climatic and topographic effects.
The heterogeneity in land cover classes within each pixel is low, allowing for better field
matching. Landsat’s 40-year continuity currently gives room for large opportunities
in LSP time series development when combined with cloud-computing and machine
learning in image processing (see Sect. 5.1). The recent launch of Landsat 9 on 27
September of 2021 and initial thoughts on Landsat 10 including new imaging technolo-
gies, international collaborations, and inclusion of the commercial sector, will preserve
data continuity [82].

The spatio-temporal resolution of Landsat is in many cases still too coarse for fine
scale LSP estimation. Therefore, new approaches of satellite constellations are employed
to increase these resolutions. The Sentinel-2 MultiSpectral Instrument (MSI) improves
the temporal and spatial coverage of Landsat and is used for LSP extraction [67, 68].
Sentinel-2 and Landsat data complement each other, enabling integration [83]. They
generate an average temporal overpass of 2.9 days [84], maximizing the chances of
cloud-free surface data for LSP estimation.

Very high spatial (<10 m) and temporal resolution data from commercial satellite
sensors can improve LSP estimation even more. PlanetScope was used for phenology
estimation in semi-arid rangelands and showed promising results [71]. Most of its appli-
cations for phenology monitoring are related to agriculture [73, 74]. VENµS has also
been used for LSP studies related to crop phenology, such as the optimization of crop
emergence estimation [78], or the simulation of its bands for maize yield estimation
through phenology [79]. Transformation functions between Sentinel-2 and VENµS sur-
face reflectance allow for their combination into one dense time-series for vegetation
monitoring [80]. Nevertheless, VENµS only covers selected sites on the globe [85].

New satellite sensors scheduled to launch will support LSP monitoring. The JPSS
mission, that carries the VIIRS instrument, will launch three spacecrafts between 2021
and 2031 [86]. Meanwhile, the Planetscope nanosatellite constellation is launching con-
tinuously every three to six months. In the end, this will result in daily images of the
entire globe at very high spatial resolution (3m approximately) [87].
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Table 1. Satellite sensor characteristics for LSP (Land Surface Phenology) studies and example
applications. Source: [38].

Satellite
sensor

Orbit-type Operation
timespan

Spatial
resolution

Temporal
resolution

Example LSP
applications

Relevant studies Data
Source

AVHRR Sun-synchronous 1978-Present 1.1 km at
nadir

Daily global LSP
trends;

[11, 16, 44] [44]

MODIS Sun-synchronous 1999-Present 250 m,
500 m,
1 km

Daily global LSP
trends;

[3, 15, 35, 40, 41, 46–50] [50]

VIIRS Sun-synchronous 2011-Present 375 m,
250m,
750 m

Daily global LSP
trends,
comparison of
global products,
comparison with
ground
phenology;

[42, 43, 52, 53] [53]

SEVIRI Geostationary 2002-Present 1 km, 3 km 15 min regional LSP
trends;

[54, 55] [56]

AHI Geostationary 2014-Present 500 m,
1 km, 2 km

10 min regional LSP
trends;

[58–60] [60]

Landsat Sun-synchronous 1972-Present 30 m, 80 m 16-days,
18-days

LSP trends,
comparison with
ground
phenology, land
cover
characterization;

[62–65] [65]

Sentinel-2 Sun-synchronous 2015-Present 10 m,
20 m, 60 m

5-days,
10-days

LSP trends,
comparison with
ground
phenology;

[67–70] [70]

PlanetScope Sun-synchronous 2009-Present 3.7 m at
nadir

Daily LSP trends in
agriculture;

[72–75] [76–78]

VENµS Sun-synchronous 2017-Present 3 m, 5.3 m 2-days LSP trends in
agriculture;

[79–81] [81]

3 LSP Estimation Using Multi-Source Earth Observation

A composite cloud-free image utilizes cloud-free parts of images of close dates [89].
These type of images are produced from AVHRR, MODIS, and SPOT data to account
for cloud cover. One drawback of this method is that the temporal frequency of the data,
required for LSP, is lower.On the other hand, data fusion or blending of satellite data from
different sensors can generate synthetic information of high spatiotemporal resolution
[90]. Also, synergies between satellite products, such as Sentinel-2 and Landsat-8 can be
used to densify time series. In this case, each product of the synergy remains unchanged.
Data fusion and synergies facilitate LSP estimations with their high temporal and spatial
resolution, allowing for detailed phenology cycles. Examples of recent data integration
methods are included in Table 2.

Efforts have been made to extract medium resolution (MR) (10–100 m) LSP metrics
through various data fusion methods. FORCE ImproPhe allows for the prediction of
MR LSP based on corresponding coarse resolution (0.1–2 km) LSP [91]. Information
from the local pixel neighborhood from both sources is obtained, and spectral distance
and multiscale heterogeneity metrics are used as predictor variables. Another approach
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Table 2. Examples of satellite data integration methods (i.e. data fusion and synergies). Adapted
from [38].

Data integration method Satellite sensor
combinations

Details Source

FORCE ImproPhe MODIS, Landsat,
Sentinel

Uses local pixel
neighborhood, denoises LSP,
preserves sharp edges

[92–94]

Multi-year high resolution
data composition

Landsat Accounts for higher spatial
heterogeneity

[94]

Automatic co-registration Landsat, Sentinel Co-registration of Landsat-8
to Sentinel-2A &
Sentinel-2A to Sentinel-2B

[95]

Assisted downscaling Landsat, Sentinel Downscales Landsat-8 to
Sentinel-2 resolution

[84]

Super-resolution
enhancement

Landsat, Sentinel Uses convolution neural
networks trained with
Sentinel-2 data

[29]

HLS Landsat, Sentinel A combined
Landsat/Sentinel product

[96, 97]

synthesizes multiple years of medium resolution data into a single LSP curve. This
method was used with a 32-year Landsat time series to define the growing season in
the forests of the Northern Hemisphere [94]. Nijland et al. [98] used the same approach
to extract average yearly LSP curves in mixed stands and conifer forests of Rocky
Mountains (CA) from 1984 to 2014.

Other studies that address vegetation seasonality evaluate the juxtaposition of
Sentinel-2 and Landsat-8 products [99, 100]. Due to differences between the two sen-
sors, cross-calibration is needed for their integration, such as automatic co-registration
[95], assisted downscaling [28], and super-resolution enhancement [29]. In these stud-
ies, the replacement of the NIR band with the first red-edge Sentinel-2 band has shown
to provide better comparisons with Landsat data, since its range is more similar to the
Landsat NIR band [101, 102].

Lastly, a synergy betweenLandsat 8 andSentinel-2was developed through theMulti-
source Land Imaging (MuSLI) program of NASA [101]. This product is the Harmonized
Landsat Sentinel-2 (HLS) dataset. It is a global product that provides land surface obser-
vations every 2 to 3 days at 30m spatial resolution [103], and has been used for the devel-
opment of an operational LSP product [104]. The combination of these satellite sensors
generates time series with unprecedented frequency. However, one should be aware of
the various theoretical and technical hurdles when using different sensor constellations.
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4 Validation of LSP Products

Multiple satellite missions and new image processing technologies arose in recent years,
allowing for higher spatial and temporal resolution of data individually, or through
fusions and synergies [28–30]. Moving to a finer scale helps unfold local structures
associated with microclimate, species distribution and composition, disturbance factors,
and land utilization. Nevertheless, phenological ground observations are required to
validate the results obtained from spaceborne products’ estimations [30]. Validation of
LSP results encompasses many challenges and still remains an active research topic [31,
32].

Plot scale phenology usually measures individual species. LSP observations are
maximum value composites with a regular observation interval derived from a specific
observationperiod, generated from irregular observation intervals collected fromsatellite
remote sensing. In several studies the LSP changes that were observed through remote
sensingwere greater than the ones in ground phenology data [3, 32, 41, 47]. The seasonal
patterns detected from Earth observation data cannot be linked 1:1 to actual differences
in vegetation phenology [32], and their accuracy could vary between ecosystems [105].
To link LSP estimations with ground phenology observations one should understand the
species composition in the study area [48]. Simultaneous field-based and RS data are
needed along different stages of multiple growing seasons [14]. After this, up-scaling
can be done by combining field observations with a high-resolution satellite image, to
produce a higher resolution map of the field parameter that was observed. This map can
then be compared to the medium resolution satellite data [106]. Overall, it is important
for users to be aware of the data product limitations, so as not to be led to inaccurate and
misleading phenology monitoring.

4.1 Ground Phenology Monitoring

Detailed ground phenology information is most commonly acquired as point measure-
ments in random spatial patterns, and phenological stages are registered in standardized
numeric codes [107]. The main downside of plot scale phenological data is that it is
time- and resource-consuming, localized, and observes a small sample of species [48].
Therefore, several countries use crowd-sourcing to obtain such information. Current
methods used for the retrieval of ground phenology data include:

• phenology diary reports of ground observation sites; for example, the USA National
Phenology Network (USA-NPN) created the National Phenology Database (NPDb)
that contains data collected from scientists and trained volunteers; it is comprised
of field-based observations of plants and animals [4]); also the BBCH (Biologische
Bundesanstalt, Bundessortenamt und CHemische Industrie) scale is a uniform coding
system (from 0 to 10) of phenologically similar growth stages among plants that is
being used for ground phenology monitoring [108, 109];

• optical phenology towers to generate vegetation greenness indices close to the surface
with high temporal resolution [31, 105]; these towers have inmost cases ground-based
visible spectrum digital cameras to monitor vegetation development with repeating
photography during the growing season [64, 98];
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• ground radiometricmeasurementswith a handheld radiometer of crop canopies during
the growing season to define a semi-empirical model for the time profile of the
vegetation index for each crop at the regional scale [47, 110];

• gross primary production (GPP) retrieved from a flux tower observation network [3,
110];

• air temperature records [105].

Recently, improved alternative ground-based LSP validation methods are being
used at ground networks around the globe. Examples include ground-based pheno-
logical cameras, in situ forest canopy greenness indices from phenology towers, and
flux-measured GPP. The Society of Biometeorology Phenology Commission (ISB-PC)
and the World Meteorological Organization Commission for Agricultural Meteorol-
ogy (WMO-CAgM) built a Global Alliance of Phenological Observation Networks
(GAPON) [2]. The phenology networks in this community are up to date 53 in number,
and include –among others- nationwide approaches. Examples of large phenological
networks are provided in Table 3.

4.2 Ground Reference vs. Ground Truth Data

Ground phenological observations differ from estimations of biophysical parameters,
such as ground spectral measurements or LSP, and are mostly related to the subjective
decision of the data collector. Different individuals can give different phenology dates
for the same sampling site and, as a result, ground data collection relies heavily on the
collector’s experience and knowledge. However, precise instructions, such as the use of
the BBCH scales [108] with photo examples could help the observer. Nevertheless, it is
not so straightforward to select a derived LSP method, which will match precisely with
ground phenology (GP) data. In reality, collecting extensive in situmeasurements at the
same frequency of LSP data is problematic for common small research teams consisting
of a few scientists and students [14].

Moreover, according to Rankine et al. [31], simultaneous multi-annual observations
of vegetation greenness from satellite and near-surface observations are not so common
due to the challenges that exist in relation to implementing and maintaining sensitive
radiometric instrumentation. They believe that another factor that limits direct compar-
isons betweenGP and LSP is the spectral bands adopted to construct the VI. Narrowband
and broadband vegetation indices have different sensitivity to alterations in leaf area and
chlorophyll content.

Another issue is the way in which the Start of Season (SOS) is defined. This can
be different, depending on the method used for LSP extraction [34]. The results of
Wu et al. [46] showed that the modelled SOS outputs tend to appear on earlier dates
than the ground observations, irrespective of the method used to model the metric. This
is also consistent with the scaling study of Zhang et al. [115], where the earlier SOS
pixels define the SOS detection at coarse resolution more than the later SOS pixels of
an area. Interestingly, it has been found that SOS at coarser resolution (i.e. 500 m),
corresponds to vegetation green up of 30% of the total pixel area, despite the variation in
SOS dates within [115]. One reason could be that different LSP-SOS metrics represent
different ground phenology-SOS observations [48]. Similar difficulties arisewhen trying



Progress on Land Surface Phenology Estimation 23

Table 3. Major existing phenology networks. Information retrieved from GLOBE [20], Nasa-
hara & Nagai [111], NEON [18], PEN [112], PEP725 [19], Templ et al. [113], USA-NPN [17],
PHENOCAM [114]. Source [38].

Phenology
Networks

Purpose Users Collaborations Extra information

USA-NPN Collect, store,
distribute phenology
data

Researchers,
natural resource
managers,
policy-makers,
educators,
citizen scientists,
NGO’s

-NEON;
-Nature’s
Notebook

Standardized plant
& animal
observation
protocols

NEON Collect ecological
data: in situ
measurements/
observations &
airborne remote
sensing surveys

Researchers -81 field sites in
US

175 open access
products

PEP725 Open access database
to facilitate
phenological research,
education,
environmental
monitoring

Researchers,
educators

-7 phenology
network
partners;
-32 European
meteorological
services

-Volunteer data
collected from
1868 to present;
-12 million records

GLOBE International science
and education
program to promote
teaching and learning
of science

Students,
educators

-NASA, NSF,
NOAA;
-121 countries

Over 150 million
ground biophysical
measurements

PEN Validate terrestrial RS
products of ecology,
phenology changes

Ecologists,
remote sensing
specialists,
scientists,
citizens

-FluxNet,
ILTER,
AsiaFlux
-38 sites
worldwide,
most in Japan

Some sites measure
environmental
ecophysiological
properties

PhenoCam For phenological
model validation,
evaluation of satellite
RS products, studies
of climate change
impacts on terrestial
ecosystems

Researchers,
remote sensing
specialists

-750 sites
across North
America

Data derived from
visible-wavelength
digital camera
imagery
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to define the End of Season (EOS). This is because plant canopy greenness changes
gradually in autumn. EOS estimation becomes even harder for evergreen species, for
which the greenness changes only slightly [131]. Therefore, small differences of EOS
between years are evenmore difficult to detect accurately using remote sensing data [46].
Therefore, it is important to implement standardized protocols for ground phenology
monitoring [116], as well as for LSPmetrics extraction. An effort towards that direction,
as far as ground phenology monitoring is concerned, has resulted in the plant phenology
monitoring design of NEON [117]. Unfortunately this has not yet been implemented
with consistency around the globe [117], which is why studies that integrate field-based
validation vary [31, 98].

4.3 Spatial Cross-Scale Issues

While being very valuable, field measurements often represent a small area and are in
most cases subjective, because of the approach being used [98]. Up until now it has not
been an easy task to match field and satellite-based observations because of the difficulty
to transpose thesemeasurements to the same scale and because of the use of phenological
metrics that are approximations of the phenophases [106]. The spatial mismatch between
the field-based point measurements of plots and the resolution of satellite pixels at local
scales, particularly medium resolution data, further complicates the process [61]. This
happens because most field data are usually species-specific and observed at scales that
are incompatible with medium resolution remote sensing observations.

More specifically, this relates to the issue of scale mismatch due to vegetation het-
erogeneity [118]. It is rare for vegetation to be uniform in the Landsat or Sentinel-2
resolution, whereas in field observations, budburst or flowering stages are identified
for a small amount of plants in each sampling plot. Thus, relating in situ phenological
events with the mean LSP of a Landsat or Sentinel-2 pixel is difficult, as these pixels are
spectrally mixed [31]. Furthermore, in cases of mixed pixels containing vegetated and
non-vegetated areas, the interpretation of the LSP metrics’ biophysical meaning could
be misleading. In these cases, the LSP metrics could indicate phenology change in the
LSP curve, even if in reality it is indicating a change in the ratio of vegetation/ non-
vegetation in the monitored area [119]. Wrong assumptions about the homogeneity of a
region can also be made. For example, a forest can still have heterogeneous LSP due to
species distribution and microclimatic conditions [115]. As a result, even homogeneous
plots of the same species can reveal phenology variability caused by differences in site
conditions or ecotope.

Moreover, the timing of green-up that is extracted from satellite time-series is often
more related to understory canopy than to overstory [120]. For instance, during early and
in-between growing stages in a tropical dry forest the understory vegetation develops
its leaves as a response to the first rains in the beginning of the growing season [31].
These misinterpretations can be circumvented by visually inspecting vegetation struc-
tures and categories in the study area with the use of very high resolution images (e.g.
Google Earth images) or in situ data [106]. Nevertheless, alternative approaches have
proposed to scale-up species-specific field-based measurements to the landscape scale
with the introduction of the Landscape Phenology Index, allowing for comparability
with 250 m to 1 km LSP products [121]. This index utilizes the phenocluster concept,
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by aggregating community phenologies (individual phenologies of the same species that
cover a representative population phenology area), and is an area-weighted average of
all community phenologies over the area of study [121].

4.4 Temporal Scale Issues

Most of the disagreement between ground phenology and LSP is connected to the lower
temporal resolution of the remote sensing product. Large data gaps in a time series
could result in lower accuracy during interpolation. Particularly, when canopy growth
or senescence is rapid, low temporal resolution products cannot accurately detect the
transition dates [31]. Additionally, when field-observed phenological stages correspond
to very subtle differences, these might not be detectable in satellite-measured LSP due
to spectral and temporal deficiencies of satellite data. For instance, as pointed out in the
study of Misra et al. [48], bud break is measured in ground phenology, but is reported
as undetectable in LSP because this phenomenon is spatially too small to sufficiently
influence the signal in the NIR band of a satellite sensor. In addition, bud burst signals
intermixed with pre-existing understory could also contribute to the poor detection of
early phenophases [48]. This is why LSP mainly focuses on phenophases that can be
detected and allow for scaling up. Since ground phenology and land surface phenology
have different definitions, it is almost impossible to get perfect temporal alignment in
terms of specific day of the year. However, the general patterns at the start of the season
as observed by field and satellite measurements are assumed to have a moderate relation,
because they both look at the starting points in the cycle of vegetation development [48].
Nevertheless, one must acknowledge that in these type of comparisons, one is trying
to compare a spatial integral with observations of individual plants of single species or
even only traits thereof.

5 Recent LSP Advances, Tools and Products

5.1 New Trends and Advances

Cloud computing (CC) andmachine learning allow for faster processing in LSP retrieval.
This is especially advantageous when dealing with big data of satellite imagery, which
demand for high-performance processes that are not available froma single computer.CC
transfers the image processing from a scientist’s personal computer to an online server.
Time series from all available satellite image scenes can be easily generated through
CC. For instance, the Google Earth Engine (GEE) server has been used to retrieve LSP
over the North Hemisphere fromVEGETATION and PROBA-V time series [122]. Other
studies that estimated LSP through GEE include those of Li et al. [123], Venkatappa
et al. [124], andWorkie and Debella [125]. Freely accessible cloud computing platforms
apart from GEE include Amazon Web Services (AWS) Open Data, TerraScope Virtual
Machine, and the ‘PhenologyMetrics’ algorithm (see Sect. 5.2).

In addition, data cube technologies have become popular for processing remote
sensing data. Image data cubes are “large collections of temporal, multivariate datasets
typically consisting of analysis ready multispectral Earth observation data” [126]. The
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Committee of Earth Observation Satellites (CEOS) created Open Data Cube to accom-
modate this concept. Data cubes can be used for LSP estimation. Li et al. [127] used
this technology to study changes in vegetation green-up dates. Data cubes allow for the
inclusion of all available imagery over very large extents. This can generate temporally
detailed and geographically expansive LSP estimations.

Similarly, machine-learning techniques allow for the incorporation of very large
data inputs. There is potential for machine learning to be used with data cubes and
multi-source earth observation data. Until now, machine learning has been applied to
predict ground-based phenophases or LSP from daily pheno-tower data. In detail, it has
been used to learn and detect phenological patterns in numerous ground digital images
[128, 129], and to fill spatiotemporal ground-based phenology to help forecast LSP
with remote sensing and meteorological data [130]. The last study showed moderate-to-
high potential for LSP estimation with RS through machine learning. The advantages of
machine learning for LSP estimationwere included in theDATimeS software (developed
in 2019), with twelve machine learning fitting algorithms for time series analysis of
phenology data (see Sect. 5.2). Machine learning techniques that enhance LSP are just
starting to gain more ground.

Lastly, as seen previously, one of the long-standing difficulties inLSP estimationwas,
until recently, the accurate determination of EOS phenology metrics. One solution is to
take an ensemble approach, such as taking the average of two methods. Yuan et al. [132]
applied this technique by averaging the result of the midpoint and double logistical
fitting to determine EOS. Moreover, it was recently discovered that for an accurate
estimation of autumn phenology one needs to combine sensors and satellite data. Lu et al.
[133] found that autumn phenology derived from fluorescence satellite data had higher
correspondence with gross primary production (GPP) autumn phenology than autumn
phenology derived from vegetation indices. Wang et al. [134] found similar results,
where the EOS was estimated earlier with fluorescence satellite data data, followed by
NDVI and vegetation optical depth estimations. This means that photosynthetic activity
decreases before any changes in leaf color can be detected, and that the decrease in
vegetation water content is the last stage of senescence. These results were consistent
globally and shed light on the underlying structural and functional processes of autumn
senescence.

5.2 Open-Source LSP Software

There are a number of open-source LSP estimation software. TIMESAT is a software
package that enables the extraction of seasonality parameters. Its most recent version
includes “Seasonal and Trend decomposition using Loess” (Version 3.3, 2017) [135],
and plans the incorporation of Landsat and Sentinel-2 data [9]. PhenoSat produces LSP
information from vegetation index time series. It has seven different smoothing algo-
rithms, it recognizes more than one growth season in each year, and can focus on periods
within a season [136, 137]. Verbesselt et al. [138] developed the “Breaks For Additive
Seasonal Trend”method to extract seasonal and trend elements from time series to detect
vegetation greenness. Examples include its use to determine grassland trends and phe-
nology of the Flint Hills ecoregion [139], or to examine seasonal trends of vegetation on
military training grounds [140]. Further, Frantz et al. [91] created the “Spline analysis
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of Time Series” algorithm to derive LSP by fitting spline models to remotely sensed
time series. Twenty metrics per pixel are generated and relate to specific dates, and the
length and amplitude of seasons. The Joint Research Centre provides “Software for the
Processing and Interpretation of Remotely Sensed Image Time Series”, through which
LSP SOS and EOS are calculated from 10-day composite images for both single and
double growing seasons with the threshold technique [142–146]. Forkel et al. [146, 147]
created functions to analyse seasonal trends and trend changes in Earth Observation
time series with the ‘greenbrown’ package in R [148]. Also, the ‘phenex’ package in
R has functions for analysis of LSP data [149]. Lastly, the Ecopotential Virtual Library
packaged the ‘phenex’ algorithm in an online workflow (“Estimation of phenology met-
rics – PhenologyMetrics”) created by the Centre for Research and Technology Hellas
[150]. It can derive three LSP metrics from NDVI time series during vegetation growth.
The advantages include the estimation of multiple vegetation cycles in a growing period
[151] and online processing without the need for high processing capabilities.

5.3 Global LSP Products

Some of the global LSP products are the MODIS Land Cover Dynamics product
(MCD12Q2), the VIIRSGlobal Land Surface Phenology (GLSP) product, and the Vege-
tation Index andPhenology (VIP) Phenology (VIPPHEN) global product,which produce
yearly LSP metrics (see Table 4).

Table 4. Global LSP products: MODIS Land Cover Dynamics product (MCD12Q2), VIIRS
Global Land Surface Phenology product (GLSP), Making Earth System Data Records for Use
in Research Environments (MEaSUREs) Vegetation Index and Phenology (VIP) global dataset.
Information retrieved from Gray et al. [152], USGS [153], and X. Zhang, Liu, et al. [42]. Source
[38].

Global LSP products Timespan Source Spatial Resolution

MCD12Q2 2001 to end 2017 EVI2 from MODIS BRDF
Adjusted Reflectance (NBAR)

500 m

VIIRS GLSP 2012 to Present EVI2 from daily VIIRS BRDF
NBAR

500 m

MEaSUREs VIP 1981 to end 2014 NDVI and EVI2 from AVHRR
N07, N09, N11, N14 datasets
from 1981–1999; MODIS Terra
MOD09 Surface Reflectance
from 2000–2014

5600 m

HLS 2013 to Present Surface Reflectance and Top of
Atmophere brightness data
from Landsat 8 and Sentinel-2A
and Sentinel-2B

30 m

The MCD12Q2 product is an LSP product that provides global LSP metrics derived
from satellite image time series. If values are missing in an area due to cloud cover
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or other causes, the gaps are filled with good quality values from the year before or
the following [152]. This product can be used in areas with two growing seasons [34].
The VIIRS LSP product can also estimate phenology for various vegetation types and
climate systems [42]. The MEaSUREs VIP product is defined with a moving average
window of three years in order to eliminate noise, and is accompanied with a reliability
value to help determine data quality [153]. Lastly, the HLS surface reflectance dataset
[154] currently has global coverage and can be used to derive LSP time series with
observations available every 2 to 3 days [103].

6 Conclusions

This review pointed out that the use of multi-source Earth observation data, such as
the HLS product, can reduce limitations that are connected to the spatial and temporal
resolution of LSP. Medium spatial resolution LSP products will be more accurate at a
temporal resolution of less than 16 days. Moreover, the EOS is harder to estimate from
remote sensing data because canopy greenness diminishes gradually during autumn,
making the transitions not very apparent. However, combined use of optical, microwave,
and fluorescence RS could provide better insight to this phenomenon.

This review also showed that validation efforts should ideally include sites at least
equal to the pixel size of the sensor in order to reduce the observers’ subjectivity and the
uncertainties of the measurements. However, the sensor’s pixel size can cover a large
area on the ground, making frequent site visits particularly unfeasible. Drone-mounted
cameras could potentially provide a solution to this issue. Generally, studies should use
phenology towers or mounted digital cameras to reduce the validation workload; mainly,
because traditional field work for the collection of phenology data is often very hard to
conduct for small science teams. In addition, researchers should be aware of the plant
species composition in a mixed pixel, to better understand the VI response.

Lastly, Earth observation time series of higher spatial and temporal resolution bring
a multitude of opportunities. Monitoring vegetation at individual stands could become
possible. Large amounts of Earth observation data ask for high-performance processing
methods; however cloud solutions for data storage and processing as well as machine
learning workflows are freely accessible, facilitating big data processing.Moreover, data
cubes allow for a new viewpoint on data analysis. This makes the previous technologies
suitable for LSP estimation. Overall, the recent progress and future prospects of LSP
estimation with multispectral remote sensing reviewed in this article will be able to
support several of the United Nations Sustainable Development Goals and the Aichi
BiodiversityTargets through developingEssential BiodiversityVariables that correspond
to the Group on Earth Observation initiatives.
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