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Preface

The present book includes extended and revised versions of a set of selected papers from
the 7th and 8th International Conferences on Geographical Information Systems Theory,
Applications and Management (GISTAM 2021 and GISTAM 2022), exceptionally held
as web-based events, due to the COVID-19 pandemic, from 23–25April 2021 and 27–29
April 2022, respectively.

GISTAM 2021 received 44 paper submissions from 24 countries, of which 9% were
included in this book. GISTAM 2022 received 27 paper submissions from 20 countries,
of which 11% were included in this book.

The papers were selected by the event chairs and their selection was based on a
number of criteria that include classifications and comments provided by program com-
mittee members, session chairs’ assessment and also the program chairs’ global view
of all the papers included in the technical program. The authors of selected papers were
then invited to submit revised and extended versions of their papers having at least 30%
innovative material.

The International Conference on Geographical Information Systems Theory, Appli-
cations and Management aims to create a meeting point of researchers and practitioners
that address new challenges in geo-spatial data sensing, observation, representation,
processing, visualization, sharing and managing, in all aspects concerning both infor-
mation communication and technologies (ICT) as well as management information sys-
tems and knowledge-based systems. The conference welcomes original papers of either
practical or theoretical nature, presenting research or applications, of specialized or
interdisciplinary nature, addressing any aspect of geographic information systems and
technologies.

The papers selected to be included in this book contribute to the understanding of
relevant trends of current research on Geographical Information Systems Theory, Appli-
cations andManagement, including:DisasterManagement andDeepLearning forUrban
and Environment Planning, Earth Observation and Satellite Data and Decision Support
Systems, Ecological and Environmental Management, Energy Information Systems,
Geospatial Information and Technologies, GPS and LocationDetection,Machine Learn-
ing for Spatial Data, Natural Resource Management, Performance Evaluation, RADAR
and LiDAR, Remote Sensing of Agriculture, Spatial Analysis and Integration, Spatial
Information and Society, Spectroscopy and Spectroradiometry, Topological Modeling
and Analysis, Urban and Regional Planning, and Urban Remote Sensing.

We would like to thank all the authors for their contributions and also the reviewers
who have helped to ensure the quality of this publication.

April 2022 Cédric Grueau
Robert Laurini
Lemonia Ragia
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Mapping Prosopis Juliflora Invasion Using
Remote Sensing Data and GIS Geostatistics

Techniques

Alya Almaazmi(B), Rami Al-Ruzouq, and Abdallah Shanableh

University of Sharjah, Sharjah, UAE
U20104130@sharjah.ac.ae

Abstract. Prosopis Juliflora is a highly invasive tree that has a severe impact
on native species and ecosystems. The most difficult part of controlling Prosopis
Juliflora invasion is preciselymapping its presence and distribution pattern. Recent
developments in remote sensing and geographic information system (GIS) tech-
nologies have enabled to map different types of vegetation. In this study, remote
sensing data were combined with supervised classification using a Support Vec-
tor Machine (SVM) to map the total cover of Prosopis Juliflora, which was then
analyzed using a GIS geo-statistical system. In Sharjah, the UAE’s third largest
city, images from Landsat 7 and 8 were used over the years 2000, 2010, and 2020.
The overall cover of Prosopis Juliflora increased by 1.17% during 20 years, from
11.99 km2 in 2000 to 14.13 km2 in 2020, according to Prosopis Juliflora maps.
Geo-statistics showed that Prosopis Juliflora exhibits a spatial clustering pattern
and that the majority of Prosopis Juliflora is still under controllable secondary
scheme in the eastern and southern parts of the city, with the exception of some
areas in the eastern and western parts of the city that require thinning.

Keywords: Remote sensing · GIS · Prosopis Juliflora · Vegetation · Statistics

1 Introduction

Invasive species (also known as alien, exotic, or non-native species) are any taxa species
that colonize biogeographic barriers of their natural range with or without human inter-
face [1, 2].They are also characterized as species that have adverse impacts on native
biodiversity, such as alternating an entire ecosystem processes [3]. Because of their eco-
nomic, environmental, or aesthetic benefits, alien plant species have been introduced all
over the world. However, introducing new species is not always likely to succeed. One of
the complications associated is the risk of the species becoming invasive. For example, It
is believed that 1% to 2%of exotic become invasiveweeds [4]. Invasive impacts are often
classified as environmental, economic, or social costs. Environmental impacts are related
to ecosystem structure and function, and are frequently associated with biodiversity loss
or the loss of distinctive native habitats. Moreover, human health, safety, and quality of
life are the primary concerns of social repercussions. On the other hand, economically,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Grueau et al. (Eds.): GISTAM 2021/2022, CCIS 1908, pp. 1–15, 2023.
https://doi.org/10.1007/978-3-031-44112-7_1
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the impacts are directly related to monetary losses [5]. Due to their irrevocable impact,
invasive species became a contemporary focus of concern for ecologists, biological con-
servationists, and natural managers [6]. Several international organizations have made
the issue of invasive plants a priority in their work and developed management and
education recommendations [7–9].

Prosopis Juliflora is without a doubt one of the most persistent and resistant invasive
plant species that are growing at an alarming rate in the arid and sub-arid regions of the
planet. The Tree is originally native to Central America, the Caribbean, and Northern
South America [10]. The tree can thrive in arid climates and marginal soils condi-
tions where few other plants could survive. Every portion of the tree might be used for
a variety of things, including fuel, food, medicine, and cosmetics [11, 12]. It was later
introduced into North-East Brazil, Bolivia, Colombia, El Salvador, Nicaragua, Uruguay,
Venezuela, the West Indies, and the Bahamas as a result of its popularity. It can now be
found throughout Asia, Africa, and arid and semi-arid regions of the Americas [13].

Prosopis Juliflora is a deciduous leguminous tree that can reach a height of 10–15 m.
With anopen canopy, the crown is considered large. The leaves are light green, deciduous,
geminate-pinnate, and have 12 to 20 leaflets. Florets are 5–10 cm long cylindrical spikes
that appear in clusters of 2–5 at the terminals of branches and are characterized as
greenish-white turning pale yellow [14]. The pods are 20 to 30 cm long and contain 10
to 30 seeds each pod. A mature plant can yield hundreds of thousands of seeds. Seeds
have a ten-year shelf life. Only seeds, not vegetative reproduction, are used to propagate
the tree. Seeds are distributed by cattle and other animals by chewing seed pods and
distributing seeds in their droppings [15]. Prosopis Juliflora also known as Mesquite
have a deep taproot and woody growth beneath the ground It has been shown to be
capable of extracting water from the water table down to a depth of 35 m [16].

Prosopis Juliflora is commonly introduced for the intention of forestation, landscape
greening, and desertification control, however, there are several potential disadvantages
towards introducing Prosopis Juliflora. Environmentally, Prosopis Juliflora unleached
and leachedAcacia or (litter) in soil, is known to haveAllelopathy impact to inhabit other
plant species’ seeds fromgerminating in its vicinity [17]. The studies showed that the leaf
may contain water-soluble allelochemicals that are drained to the ground as water table
drops [18]. Prosopis Juliflora also exhibits autotoxicity, as its leachates prevent its own
seeds from germinating. This is presumably one of Prosopis Juliflora survival strategy
for preventing its sister trees from growing too close to it and threatening each other’s
nutrient and water availability [19, 20]. Furthermore, Prosopis Juliflora is responsible
for significant biodiversity loss. As the invasion of Prosopis Juliflora progresses, the
diversity of native woody species varies inversely [21]. For example, grazing and other
forms of anthropogenic disturbances, had a major detrimental impact on the ridge’s
vegetation diversity in a research on the plant community composition on Delhi ridge
[22]. One of the serious environmental issues associated with Prosopis Juliflora is related
to water resources. The aggressively growing downward tap roots expansion on water
bodies obstructs drainage and aggravate flooding, resulting a deep splits in the ground
[23]. Prosopis Juliflora showed unfavorable social influence, particularly in terms of
human health. Pollens from Prosopis Juliflora, for example, have been linked to allergic
asthma, rhinitis, and skin allergies [24], complicated with climate conditions such as
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high temperature and dry seasons [25]. Furthermore, the thorns of the Prosopis tree
have been implicated in a number of studies as a cause of flesh-related injuries that have
resulted in human deaths. Prosopis thorns are exceptionally strong and lengthy, andwhen
punctured, they pierce the skin and enter deep into the flesh. Deep pricks from Prosopis
thorns are said to induce itching, and wounds can lead to lameness and amputation due
to significant infection [26]. Economically, The most frequently reported detrimental
consequences include the loss of agricultural land and the resulting loss of crops that
were previously planted in the area, as well as the loss of grazing land and livestock
production, in addition to restrictions on human mobility and transportation [27, 28].
Studies also showed another economical dementias in terms of householding. Clearing
the fields covered by Prosopis Juliflora and converting some of the invaded grazing lands
into agricultural land has resulted in better harvest for households in the invaded area
[29].

Major efforts have been indeed put into establishing strategies for studying Prosopis
Juliflora ecological and social indicators through direct field sampling and questionnaire-
based surveys [30], to evaluate the impact of Prosopis Juliflora and its extension.
Although surveys would provide the most complete information, however, invasive
species surveys tend to require more person hours to complete, over longer duration
time [31]. Furthermore, manual quantifying does not reflect real cases as it considers
ecological and social characteristics as a sole unit, without considering the interaction
and relationshipwith the environmental behavior or the spatial and temporal information.

Prosopis Juliflora’s aggressive behavior has inspired researchers to establish a scien-
tific effort based on remote sensing data and the Geographic Information System (GIS).
Data from remote sensing can cover larger areas than single plot investigations. [32],
furthermore, remote sensing provides a valuable opportunity for timely information on
non-native species invasions into native environments.. Previous efforts s in mapping
Prosopis Juliflora using remote sensing data using spectral indices and classification is
acknowledged and summarized in table 6.

The key problem with invasive species is identifying new potential risk places that
may be affected similarly [33]. For this purposes, spatial autocorrelation reflects an inva-
sion concern if it is relatively high at certain locations [34]. The spatial dependency of
invasive and non-invasive distributions, for example, might be examined usingMoran’s I
spatial autocorrelation test. [35], In addition to Moran’s I eigenvector mapping, general-
ized additivemodels, and Bayesian intrinsic conditional autoregressivemodels, there are
Bayesian intrinsic conditional autoregressive models. These strategies have been suc-
cessful in analyzing invasions such as the red swamp crayfish invasion [36]. Moran I, as
a measure of spatial autocorrelation at scales of 2–30 m and plotted against lag distance
in each transect, might also be used to estimate the spatial scale of habitat clustering of
invasive plant species of highways [37] (Table 1).

Although spatial autocorrelation based on feature locations, for each individual fea-
ture, only the neighboring values are included in the analysis. Alternatively, The Gi*
hot spot analysis provides assessment on local areas with high concentration of a phe-
nomenon within the landscape statistically significant spatial clusters [47]. The value
of each feature is included in its own analysis where the local mean for Getis-Ord Gi*
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Table 1. Detection and mapping P. Juliflora from remote sensing data.

Study Area Year Remote Sensing Data Methodology Reference

Pakistan 2021 EO-I Hyperion Derivative Vegetation Index
and Spectral Angle Mapper

[38]

Kenya 2019 Landsat TM 5
Landsat 8

random forest supervised
classification

[39]

India 2017 IRS-P6 NDVI and support vector
machine supervised
classification

[40]

Somaliland 2017 Landsat 8 NDVI and random forest
supervised classification

[41]

Somaliland 2015 Landsat 8
Worldview 2

NDVI and maximum
likelihood supervised
classification

[42]

India 2015 Landsat ETM + 7 NDII [43]

UAE 2015 Aerial photograph Manual digitizing [44]

Ethiopia 2014 MODIS NDVI and maximum
entropy supervised
classification

[45]

Sudan 2011 Landsat TM 5
ALOS/PALSAR

NDII and backscattering
model

[46]

includes all features. Hot spot has been used widely indeed in analyzing species inva-
sion. In Austria, invasion hotspots where studied under current and future climate [48].
Similarly, in the United States, hotspot analysis along with records of occurrence used
to evaluate 70 terrestrial invasive plants [49].

2 Study Area

The study focused on Sharjah city, the third largest emirate in the UAE with an area
of 2590 km2. The city is located at 25.3463° N, 55.4209° E, and shares boarder with
major cities in UAE such as Ajman and Dubai from the north and south, in addition,
it is boarded with Arabian Gulf from the west. The UAE is situated in an arid tropical
region, the climate of the region is characterized as hot and dry [50], with an average
annual precipitation of 80–140 mm [51]. The wet season occurs between November
and March, and an intense dry season extends between the months of June and August.
Sharjah averages about 107 mm of rain each year. Deserts, thick soil produced by eolian
sands, and some agricultural areas, as well as marshes and acacia woods, cover much of
the emirate. The Batinah Coast, which stretches between themountains and the sea in the
southern portion of Sharjah, is a continuous, well-watered fertile coastal strip (Fig. 1).
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Fig. 1. Study area: Sharjah city map.

3 Methodology

The methodological framework employed in this study to construct the approach in the
study area Sharjah city – UAE [52], is illustrated in Fig. 2. First, the data were col-
lected from Landsat 7 and Landsat 8 satellite images. The data were used to construct
thematic layers represented as surface reflectance of each multispectral band. There are
two primary phases to the methods used: Prosopis Juliflora mapping, and geostatistics
and modelling. In the first phase, mapping Prosopis Juliflora is carries through super-
vised classification. The second phase, Prosopis Juliflora maps were used to perform
geostatistical modelling.

3.1 Data Source

Multi-spectral Landsat satellite images were used. The data were collected from Landsat
7 over year 2000 and 2010, while and Landsat 8 used to acquire data over year 2020.
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Fig. 2. Methodology process block diagram.

Two scenes of Landsat imagery footprint were required to cover full Sharjah city. The
satellite images were collected during the dry season in UAE (August).

3.2 Thematic Layers Preparation

The Scan Line Corrector (SLC) of Landsat 7 failed On May 31, 2003. The sensor has
acquired and delivered data with lined gap strips on each band [53]. For images obtained
in 2010, nearest neighbor (NN) resampling was employed to fill the lined gap in each
band. The closest input detector sample must be recognized and chosen as the output
picture value for each output point. Figure 3 compares the image of Landsat 7 before
and after Scan Line correction [52]. Both Landsat 7 and Landsat 8 were processed in the
sameway, using the same stages such as band stacking, scenemosaicking, and extracting
the study region. For time series analysis, these steps are required. Figure 4 illustrates
the main pre-processing steps common for all three satellite imagery.

3.3 Prosopis Juliflora Mapping

Using the spectral information from surface reflectance thematic layers, Prosopis
Juliflora mapped using supervised classification. For classification, the Support Vec-
tor Machine Classifier was used. Using qualitative data of Prosopis Juliflora, two classes
were defined based on the existence of Prosopis Juliflora as seen from satellite imagery,
as well as information about probable additional land covers existing at each selected.
One class represented by pure Prosopis Juliflora. Since Prosopis Juliflora invades agri-
cultural regions, a new class for all other vegetation agriculture was created. In terms
of spectral separability, both classes provide certain challenges. Prosopis Juliflora is
polymorphic, and while it can be dominant or pure in some cases, it usually invades
the habitat of other plants and so mixes with them in numerous forms, ranging from a
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shrub to a fully formed tree. As a result, this categorization only provides a very wide
classification. As training samples, over 1000 pixel samples were gathered from each
year. Training samples of Prosopis Juliflora was taken from the region below Sharjah
Airport. With a total land area of roughly 21.19 km2 and a latitude and longitude of (25°
20.614’N, 55° 31.639’E), the area is mostly vegetated with Prosopis Juliflora, which has
medium canopy sizes (5–10 m diameters) and a variety of densities.

Fig. 3. Landsat 7 SLC correction Using Nearest Neighbor (NN) Resampling [52].

3.4 Geo-Statistics Modelling

Prosopis Julifloramapswere used to geographic statisticalmodelling first the geographic
mean central and direction were found. After that, the recent Prosopis Juliflora map at
year 2020 was used for further inductive analytics. This Moran I Spatial Autocorrelation
were used to determine the spatial clustering patterns. Moreover, Nearest Neighbour
Index and Kernel Density Estimation (KDE) were used to compute the observed and
expected mean distances within the clusters, and the density of Prosopis Juliflora popu-
lation over the observed area. Finally, statistical significance of high Prosopis Juliflora
population values (hot spots) and low population values (cold spots) were identified by
executing Getis-Ord Gi* hot spot analysis.

Measuring Spatial Clustering Using Moran I Spatial Autocorrelation
Moran’s I is a measure to evaluate whether the spatial pattern is random, dispersed or
clustered. The Moran’s I Index creates a cross product between the Prosopis Juliflora
count values and their spatial lag by measuring the mean and variance for each feature
value, the deviation values for all neighbouring features are themmultiplied together. The
Moran’s I Index is calculated in Eq. (1).Where zi is the deviation of the Prosopis Juliflora
feature I from it mean, and So is the aggregate of all the spatial weights. The statistical
significance is calculated by z-score and its associated p-value based on hypothesis test.



8 A. Almaazmi et al.

The possible scenarios are null hypothesis stating that Prosopis Juliflora are randomly
disbursed, or alternate hypothesis that Prosopis Juliflora is more spatially clustered or
dispersed

I = n

S0

∑n
i=1

∑n
j=1 wizizj

∑n
i=1 zi

2 (1)

Measuring Distances Between Clusters Using Nearest Neighbour’
Thedistances between eachProsopis Juliflora feature centroid and its nearest neighbour’s
centroid location is calculated by Average Nearest Neighbourhood Index by measuring
the observed and expected mean distances within the clusters as Eq. 2. Where Do is the
observed mean distance and De is expected mean distance

ANN = Do

De
(2)

Hot Spot Analysis Using Getis-Ord Gi*
Hot Spot analysis was utilized to pinpoint the regions with statistically significant high
Prosopis Juliflora clustering or low Prosopis Juliflora. Getis-Ord Gi* Index was com-
puted for each feature as Eq. 3 to determine the statistical significance z-scores and
p-values.

Gi∗ =
∑n

j=1 wi, jxj − X
∑n

j=1 wi, j

s

√
n

∑n
j=1 w

2i,j−(
∑n

i=1 wi,j)
2

n−q

(3)

4 Results and Discussion

The SVM supervised classification results showed an overall accuracy of 88% compared
to visual ground samples collected manually from Google Earth Maps. The support
Vector Machine’s multi-temporal analysis of the vegetated areas of Prosopis Juliflora
trees in Sharjah for the years 2000, 2010, and 2020 revealed that the maximum density
appeared in 2020 with 14.13 km2, followed by year 2000 with a total area of 11.99 km2.
Finally, with 9.26km2 of total vegetated land in 2010, 2010 was the year with the least
total vegetated area. Figure 4 maps Prosopis Juliflora areas in Sharjah city in year 2000,
2010 and 2020 [52] (Table 2).

Table 2. Accuracy Assessment of SVM classification.

Kappa TP Rate TN Rate Precision Recall OA Accuracy

0.7303 0.723 0.031 0.922 0.723 88.57%
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Fig. 4. Total Prosopis Juliflora in Sharjah City in (a) 2000, (b) 2010, (c) 2020 [52].

The geographical mean and directional distribution of Prosopis Juliflora distribu-
tion over 2000, 2010 and 2020 showed that in 2000, the mean canter was located at
25.19991°N, 55.69553°E, in 2010 the mean canter was shifted 8 km to the north at
25.25823°N, 55.64063°E. in 2020, the mean centre was shifted from 2010 to the east by
8.9 Km2 at 25.33809°N, 55.64692°E. The directional trendwithin the total displacement
from 2000 to 2020 was around 16 Km2 in the direction of north-east toward the eastern
boarders of the city. Quantitively, the total area of Prosopis Juliflora vegetation cover
increased from 12 Km2 in 2020 to 14.13 Km2. Figure 5 shows the geographical mean
and directional distribution of Prosopis Juliflora distribution.

The null hypothesis is rejected after Moran I statistical significance test revealed that
the p-value is statistically significant and the z-score is positive. The probability of this
clustered pattern being the result of random chance is less than 5%. As a result, Prosopis
Juliflora’s spatial distribution is more spatially clustered than would be predicted if the
underlying spatial processes were random. Table 3 and Fig. 6 shows Moran I statistics
significance test.

The Nearest Neighbour Index measured for Prosopis Juliflora and valued 0.111030,
suggests that the observed mean distance between the clusters is 30.9 m. Figure 7 illus-
trate the statistical significance of Prosopis Juliflora Nearest Neighbour Index. Further
analysis of Prosopis Juliflora invasion pattern is carried by Kernel Density Estimation.
The average density was measured at around 300 trees/Km2 located at 25.32358°N,
55.5601924°E. it is also observed that most of the trees are dense in the eastern boarders
of the city.
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Fig. 5. Geographical mean and directional distribution of Prosopis Juliflora distribution over
2000, 2010 and 2020.

Table 3. Moran I statistics significance test.

Moran’s Index Variance Z-score P-value

0.102455 0.003618 2.239572 0.025119

Finally, Hot spots were found emerging the eastern side of the city, indicating high
tree density of Prosopis Juliflora communities with more than 50 trees per community.
The highest hotspot were foundwith around 3000 tree per community spatially clustered
together. On the other hand, cold spots were found more the southern portion of the city
with less than 50 trees per community. Figure 8 shows hot and cold spots of Prosopis
Juliflora.

With a stand density of 500–1000 trees/ha, a secondary selective thinning is required
to achieve the ideal final density of 100–625 trees/ha or less, spaced 5–10 m apart. The
ANN Index, KDE and hotspot analysis, suggest that most Prosopis Juliflora is still under
controllable secondary scheme in the eastern and southern part of the city, except of some
areas in the eastern and western part of the city requires thinning.
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Fig. 6. Moran I statistical significance test.

Fig. 7. Nearest Neighbourhood statistical significance test.
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Fig. 8. Hotspot analysis of Prosopis juliflora.

5 Conclusion

Identifying Prosopis Juliflora sites is a vital environmental and ecological endeavour
for any country in the arid zone. An algorithm using remote sensing data and GIS was
created in this work to find areas of Prosopis Juliflora and its statistics distribution in
Sharjah, UAE. The algorithm stated over two stages covering year 2000, 2010, and 2020.
The first stage is to use supervised support vector machine classification to process multi
spectral surface reflectance from Landsat 7 and 8 to map areas of Prosopis Juliflora. The
second stage is to use Geo-statistical tools to analyse the tree’s spatial distributions.

Prosopis Juliflora maps showed that there is an significant increase of the total cover
by 1.17% over 20 years from 11.99 km2 in year 2000 to 14.13 km2 in year 2020.
Furthermore, the spatial statistics showed that Prosopis Juliflora is spatial clustered with
observed mean distance of 30.9 m between the clusters. Most clusters where emerging
the eastern side of the city, indicating high tree density of Prosopis Juliflora communities
with more than 50 trees per community. The highest hotspot were found with around
3000 tree per community spatially clustered together. Less clustering were found more
in the southern portion of the city with less than 50 trees per community. Figure 8
shows hot and cold spots of Prosopis Juliflora. This conclude that a secondary selective
thinning is required in Sharjah city to stop to invasion pf Prosopis Juliflora to achieve the
ideal final density of 100–625 trees/ha or less, spaced 5–10 m apart. The ANN Index,
KDE and hotspot analysis, suggest that most Prosopis Juliflora is still under controllable
secondary scheme in the eastern and southern part of the city, except of some areas in
the eastern and western part of the city requires thinning.
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Abstract. Phenological information can shed more light on the spatiotemporal
biological processes that occur in vegetation communities. It facilitates ecosystem
and resourcesmanagement, conservation, restoration, policy and decision-making
on local, national, and global scales. Vegetation phenology relates, among others,
to the seasonal growth stages of flowering and leaf fall of specific species on
the ground and is different from Land Surface Phenology (LSP), which looks
at the spatiotemporal vegetation development of the land surface as measured
by satellite sensors. There is a wide range of Earth Observation datasets and
methods to estimate LSP. This paper reviews current progress in LSP estimation
with multispectral sensing for natural and semi natural environments. It includes
the satellite sensors’ capacity to capture LSP, data fusion techniques, synergies,
and cloud computing, machine learning, and data cube processing. One section
is dedicated to the validation of LSP products and its challenges. Lastly, a short
review on existing ground phenology networks, open-source software tools, and
global LSP products is provided.

Keywords: Land surface phenology ·Multi-source data fusion · Time series
analysis · Phenology metrics · Phenology validation · Phenology networks ·
Global phenology products

1 Introduction

Plant and animal growth cycles are changing continuously in response to their environ-
ment. Quantitative evidence about the pulsing of the vegetation cover over terrestrial
biomes provides an insight about climate change, desertification, or land use changes.
Vegetation phenology refers to the changes in seasonal patterns of natural phenomena
on the land, e.g. leaf out, flowering, leaf browning and fall, influenced by annual and
seasonal fluctuations of biotic and abiotic (e.g. temperature, day length, precipitation)
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drivers [1, 2]. Plant phenology is controlling net primary productivity, as well as seasonal
fluxes of water, energy, and CO2 between land and atmosphere [3].

On a regional level, agencies and organizations need phenology information to eval-
uate their conservation goals, and to conduct assessments related to the vulnerability
and the potential adaptation of the region. On a national scale, phenology dates are help-
ful to the environmental protection agencies, as indicators of seasonal weather change
impacts. Lastly, if the trend related to the impact of seasonal weather changes on specific
phenology cycle metrics is significant on a global level, atmospheric scientists and the
Intergovernmental Panel on Climate Change could consider season length or seasonal
photosynthesis as contributing information in understanding atmospheric circulation
patterns [4].

The main drivers of vegetation phenology are related to climate and vary across
ecoregions [5]. In temperate regions like Central Europe, temperature is the main driver
[6, 7]. In dry and semi-dry climates, water availability, soil moisture and precipitation
[8] are of major importance [7, 10, 11]. This paper reviews phenology monitoring in
natural and semi-natural vegetation. By semi-natural vegetation, one means vegetation
that includes “extensively managed grasslands, agro-forestry areas and all vegetated
features that are not used for crop production” [11]. Specifically, this paper looks at the
study of Land Surface Phenology (LSP), which is the study of the spatiotemporal vege-
tation development of the land surface as measured by satellite sensors, and is different
from species-specific phenology observed on the ground [12, 13]. LSP represents the
aggregated dynamics of multiple individual organisms in every remote sensing pixel,
mixed with other land covers; therefore, it is considered essentially distinct to in situ
measurements of single organisms [14, 15].

LSP science has developed immensely in the last two decades. Past reviews tackle
LSP methods and their limitations [32, 33], LSP products [34, 35], phenology networks
[35, 36], and challenges that arise in LSP of optical remote sensing [35–38] separately.
This review reports the recent advances and future trends for LSP retrieval of natural
and semi-natural vegetation with multispectral sensors. A shorter version was published
in the proceedings of the 7th International Conference on Geographical Information
Systems Theory, Applications and Management [38]. This version provides more detail
on the state of the art of LSP estimation, including multispectral sensors, data fusion,
synergies, software tools, products, and networks. It also adds an important section
related to the validation of LSP products.

2 Current Sensor Advances

Phenology cycles can be approximated from spaceborne time series of vegetation indices
(VIs) [9]. Remote sensing, “the acquisition of information about the state and condition
of an object through sensors that do not touch it” [16], is used for that goal. Over the
years, global spaceborne phenology products based onLSPhave been developed [18–21]
through remote sensors that can approximate LSP. LiDAR [21], SAR [22, 23], passive
microwave remote sensing [24, 25], and fluorescence remote sensing systems [26] have
been used for LSP estimation. However, the use of multispectral remote sensing is more
commonbecausedifferent phenological stages canbedetectedwithmultispectral sensors
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from changes in vegetation pigments. Here, we focus on current and future multispectral
remote sensing missions for LSP estimation (Table 1).

AVHRR has been used to study vegetation fluxes [10] and LSP trends [15]. Improve-
ments to its coarse spatial resolution (1.1 to 8 km) camewithMODIS, which is still being
used to assess spatio-temporal LSP patterns [39, 40]. TheVIIRSLSP product follows-up
the MODIS product, and is being used for global LSP estimation [41, 42].

LSP can also be estimated from geostationary satellites, such as the SEVIRI sensor,
which has been used to assess LSP in the studies of [54] and [55]. Recent studies used
AHI on the geostationary Himawari-8 satellite to estimate LSP over the Asian-Pacific
region [57, 59], and to study the sun-angle effects on LSP [58].

When looking at moderate resolution multispectral sensors, Landsat facilitates the
identification of regional alterations caused by the abundance of various plant species
[61] and the registration of LSP variations set by micro-climatic and topographic effects.
The heterogeneity in land cover classes within each pixel is low, allowing for better field
matching. Landsat’s 40-year continuity currently gives room for large opportunities
in LSP time series development when combined with cloud-computing and machine
learning in image processing (see Sect. 5.1). The recent launch of Landsat 9 on 27
September of 2021 and initial thoughts on Landsat 10 including new imaging technolo-
gies, international collaborations, and inclusion of the commercial sector, will preserve
data continuity [82].

The spatio-temporal resolution of Landsat is in many cases still too coarse for fine
scale LSP estimation. Therefore, new approaches of satellite constellations are employed
to increase these resolutions. The Sentinel-2 MultiSpectral Instrument (MSI) improves
the temporal and spatial coverage of Landsat and is used for LSP extraction [67, 68].
Sentinel-2 and Landsat data complement each other, enabling integration [83]. They
generate an average temporal overpass of 2.9 days [84], maximizing the chances of
cloud-free surface data for LSP estimation.

Very high spatial (<10 m) and temporal resolution data from commercial satellite
sensors can improve LSP estimation even more. PlanetScope was used for phenology
estimation in semi-arid rangelands and showed promising results [71]. Most of its appli-
cations for phenology monitoring are related to agriculture [73, 74]. VENµS has also
been used for LSP studies related to crop phenology, such as the optimization of crop
emergence estimation [78], or the simulation of its bands for maize yield estimation
through phenology [79]. Transformation functions between Sentinel-2 and VENµS sur-
face reflectance allow for their combination into one dense time-series for vegetation
monitoring [80]. Nevertheless, VENµS only covers selected sites on the globe [85].

New satellite sensors scheduled to launch will support LSP monitoring. The JPSS
mission, that carries the VIIRS instrument, will launch three spacecrafts between 2021
and 2031 [86]. Meanwhile, the Planetscope nanosatellite constellation is launching con-
tinuously every three to six months. In the end, this will result in daily images of the
entire globe at very high spatial resolution (3m approximately) [87].
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Table 1. Satellite sensor characteristics for LSP (Land Surface Phenology) studies and example
applications. Source: [38].

Satellite
sensor

Orbit-type Operation
timespan

Spatial
resolution

Temporal
resolution

Example LSP
applications

Relevant studies Data
Source

AVHRR Sun-synchronous 1978-Present 1.1 km at
nadir

Daily global LSP
trends;

[11, 16, 44] [44]

MODIS Sun-synchronous 1999-Present 250 m,
500 m,
1 km

Daily global LSP
trends;

[3, 15, 35, 40, 41, 46–50] [50]

VIIRS Sun-synchronous 2011-Present 375 m,
250m,
750 m

Daily global LSP
trends,
comparison of
global products,
comparison with
ground
phenology;

[42, 43, 52, 53] [53]

SEVIRI Geostationary 2002-Present 1 km, 3 km 15 min regional LSP
trends;

[54, 55] [56]

AHI Geostationary 2014-Present 500 m,
1 km, 2 km

10 min regional LSP
trends;

[58–60] [60]

Landsat Sun-synchronous 1972-Present 30 m, 80 m 16-days,
18-days

LSP trends,
comparison with
ground
phenology, land
cover
characterization;

[62–65] [65]

Sentinel-2 Sun-synchronous 2015-Present 10 m,
20 m, 60 m

5-days,
10-days

LSP trends,
comparison with
ground
phenology;

[67–70] [70]

PlanetScope Sun-synchronous 2009-Present 3.7 m at
nadir

Daily LSP trends in
agriculture;

[72–75] [76–78]

VENµS Sun-synchronous 2017-Present 3 m, 5.3 m 2-days LSP trends in
agriculture;

[79–81] [81]

3 LSP Estimation Using Multi-Source Earth Observation

A composite cloud-free image utilizes cloud-free parts of images of close dates [89].
These type of images are produced from AVHRR, MODIS, and SPOT data to account
for cloud cover. One drawback of this method is that the temporal frequency of the data,
required for LSP, is lower.On the other hand, data fusion or blending of satellite data from
different sensors can generate synthetic information of high spatiotemporal resolution
[90]. Also, synergies between satellite products, such as Sentinel-2 and Landsat-8 can be
used to densify time series. In this case, each product of the synergy remains unchanged.
Data fusion and synergies facilitate LSP estimations with their high temporal and spatial
resolution, allowing for detailed phenology cycles. Examples of recent data integration
methods are included in Table 2.

Efforts have been made to extract medium resolution (MR) (10–100 m) LSP metrics
through various data fusion methods. FORCE ImproPhe allows for the prediction of
MR LSP based on corresponding coarse resolution (0.1–2 km) LSP [91]. Information
from the local pixel neighborhood from both sources is obtained, and spectral distance
and multiscale heterogeneity metrics are used as predictor variables. Another approach



20 I. Soubry et al.

Table 2. Examples of satellite data integration methods (i.e. data fusion and synergies). Adapted
from [38].

Data integration method Satellite sensor
combinations

Details Source

FORCE ImproPhe MODIS, Landsat,
Sentinel

Uses local pixel
neighborhood, denoises LSP,
preserves sharp edges

[92–94]

Multi-year high resolution
data composition

Landsat Accounts for higher spatial
heterogeneity

[94]

Automatic co-registration Landsat, Sentinel Co-registration of Landsat-8
to Sentinel-2A &
Sentinel-2A to Sentinel-2B

[95]

Assisted downscaling Landsat, Sentinel Downscales Landsat-8 to
Sentinel-2 resolution

[84]

Super-resolution
enhancement

Landsat, Sentinel Uses convolution neural
networks trained with
Sentinel-2 data

[29]

HLS Landsat, Sentinel A combined
Landsat/Sentinel product

[96, 97]

synthesizes multiple years of medium resolution data into a single LSP curve. This
method was used with a 32-year Landsat time series to define the growing season in
the forests of the Northern Hemisphere [94]. Nijland et al. [98] used the same approach
to extract average yearly LSP curves in mixed stands and conifer forests of Rocky
Mountains (CA) from 1984 to 2014.

Other studies that address vegetation seasonality evaluate the juxtaposition of
Sentinel-2 and Landsat-8 products [99, 100]. Due to differences between the two sen-
sors, cross-calibration is needed for their integration, such as automatic co-registration
[95], assisted downscaling [28], and super-resolution enhancement [29]. In these stud-
ies, the replacement of the NIR band with the first red-edge Sentinel-2 band has shown
to provide better comparisons with Landsat data, since its range is more similar to the
Landsat NIR band [101, 102].

Lastly, a synergy betweenLandsat 8 andSentinel-2was developed through theMulti-
source Land Imaging (MuSLI) program of NASA [101]. This product is the Harmonized
Landsat Sentinel-2 (HLS) dataset. It is a global product that provides land surface obser-
vations every 2 to 3 days at 30m spatial resolution [103], and has been used for the devel-
opment of an operational LSP product [104]. The combination of these satellite sensors
generates time series with unprecedented frequency. However, one should be aware of
the various theoretical and technical hurdles when using different sensor constellations.
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4 Validation of LSP Products

Multiple satellite missions and new image processing technologies arose in recent years,
allowing for higher spatial and temporal resolution of data individually, or through
fusions and synergies [28–30]. Moving to a finer scale helps unfold local structures
associated with microclimate, species distribution and composition, disturbance factors,
and land utilization. Nevertheless, phenological ground observations are required to
validate the results obtained from spaceborne products’ estimations [30]. Validation of
LSP results encompasses many challenges and still remains an active research topic [31,
32].

Plot scale phenology usually measures individual species. LSP observations are
maximum value composites with a regular observation interval derived from a specific
observationperiod, generated from irregular observation intervals collected fromsatellite
remote sensing. In several studies the LSP changes that were observed through remote
sensingwere greater than the ones in ground phenology data [3, 32, 41, 47]. The seasonal
patterns detected from Earth observation data cannot be linked 1:1 to actual differences
in vegetation phenology [32], and their accuracy could vary between ecosystems [105].
To link LSP estimations with ground phenology observations one should understand the
species composition in the study area [48]. Simultaneous field-based and RS data are
needed along different stages of multiple growing seasons [14]. After this, up-scaling
can be done by combining field observations with a high-resolution satellite image, to
produce a higher resolution map of the field parameter that was observed. This map can
then be compared to the medium resolution satellite data [106]. Overall, it is important
for users to be aware of the data product limitations, so as not to be led to inaccurate and
misleading phenology monitoring.

4.1 Ground Phenology Monitoring

Detailed ground phenology information is most commonly acquired as point measure-
ments in random spatial patterns, and phenological stages are registered in standardized
numeric codes [107]. The main downside of plot scale phenological data is that it is
time- and resource-consuming, localized, and observes a small sample of species [48].
Therefore, several countries use crowd-sourcing to obtain such information. Current
methods used for the retrieval of ground phenology data include:

• phenology diary reports of ground observation sites; for example, the USA National
Phenology Network (USA-NPN) created the National Phenology Database (NPDb)
that contains data collected from scientists and trained volunteers; it is comprised
of field-based observations of plants and animals [4]); also the BBCH (Biologische
Bundesanstalt, Bundessortenamt und CHemische Industrie) scale is a uniform coding
system (from 0 to 10) of phenologically similar growth stages among plants that is
being used for ground phenology monitoring [108, 109];

• optical phenology towers to generate vegetation greenness indices close to the surface
with high temporal resolution [31, 105]; these towers have inmost cases ground-based
visible spectrum digital cameras to monitor vegetation development with repeating
photography during the growing season [64, 98];
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• ground radiometricmeasurementswith a handheld radiometer of crop canopies during
the growing season to define a semi-empirical model for the time profile of the
vegetation index for each crop at the regional scale [47, 110];

• gross primary production (GPP) retrieved from a flux tower observation network [3,
110];

• air temperature records [105].

Recently, improved alternative ground-based LSP validation methods are being
used at ground networks around the globe. Examples include ground-based pheno-
logical cameras, in situ forest canopy greenness indices from phenology towers, and
flux-measured GPP. The Society of Biometeorology Phenology Commission (ISB-PC)
and the World Meteorological Organization Commission for Agricultural Meteorol-
ogy (WMO-CAgM) built a Global Alliance of Phenological Observation Networks
(GAPON) [2]. The phenology networks in this community are up to date 53 in number,
and include –among others- nationwide approaches. Examples of large phenological
networks are provided in Table 3.

4.2 Ground Reference vs. Ground Truth Data

Ground phenological observations differ from estimations of biophysical parameters,
such as ground spectral measurements or LSP, and are mostly related to the subjective
decision of the data collector. Different individuals can give different phenology dates
for the same sampling site and, as a result, ground data collection relies heavily on the
collector’s experience and knowledge. However, precise instructions, such as the use of
the BBCH scales [108] with photo examples could help the observer. Nevertheless, it is
not so straightforward to select a derived LSP method, which will match precisely with
ground phenology (GP) data. In reality, collecting extensive in situmeasurements at the
same frequency of LSP data is problematic for common small research teams consisting
of a few scientists and students [14].

Moreover, according to Rankine et al. [31], simultaneous multi-annual observations
of vegetation greenness from satellite and near-surface observations are not so common
due to the challenges that exist in relation to implementing and maintaining sensitive
radiometric instrumentation. They believe that another factor that limits direct compar-
isons betweenGP and LSP is the spectral bands adopted to construct the VI. Narrowband
and broadband vegetation indices have different sensitivity to alterations in leaf area and
chlorophyll content.

Another issue is the way in which the Start of Season (SOS) is defined. This can
be different, depending on the method used for LSP extraction [34]. The results of
Wu et al. [46] showed that the modelled SOS outputs tend to appear on earlier dates
than the ground observations, irrespective of the method used to model the metric. This
is also consistent with the scaling study of Zhang et al. [115], where the earlier SOS
pixels define the SOS detection at coarse resolution more than the later SOS pixels of
an area. Interestingly, it has been found that SOS at coarser resolution (i.e. 500 m),
corresponds to vegetation green up of 30% of the total pixel area, despite the variation in
SOS dates within [115]. One reason could be that different LSP-SOS metrics represent
different ground phenology-SOS observations [48]. Similar difficulties arisewhen trying
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Table 3. Major existing phenology networks. Information retrieved from GLOBE [20], Nasa-
hara & Nagai [111], NEON [18], PEN [112], PEP725 [19], Templ et al. [113], USA-NPN [17],
PHENOCAM [114]. Source [38].

Phenology
Networks

Purpose Users Collaborations Extra information

USA-NPN Collect, store,
distribute phenology
data

Researchers,
natural resource
managers,
policy-makers,
educators,
citizen scientists,
NGO’s

-NEON;
-Nature’s
Notebook

Standardized plant
& animal
observation
protocols

NEON Collect ecological
data: in situ
measurements/
observations &
airborne remote
sensing surveys

Researchers -81 field sites in
US

175 open access
products

PEP725 Open access database
to facilitate
phenological research,
education,
environmental
monitoring

Researchers,
educators

-7 phenology
network
partners;
-32 European
meteorological
services

-Volunteer data
collected from
1868 to present;
-12 million records

GLOBE International science
and education
program to promote
teaching and learning
of science

Students,
educators

-NASA, NSF,
NOAA;
-121 countries

Over 150 million
ground biophysical
measurements

PEN Validate terrestrial RS
products of ecology,
phenology changes

Ecologists,
remote sensing
specialists,
scientists,
citizens

-FluxNet,
ILTER,
AsiaFlux
-38 sites
worldwide,
most in Japan

Some sites measure
environmental
ecophysiological
properties

PhenoCam For phenological
model validation,
evaluation of satellite
RS products, studies
of climate change
impacts on terrestial
ecosystems

Researchers,
remote sensing
specialists

-750 sites
across North
America

Data derived from
visible-wavelength
digital camera
imagery
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to define the End of Season (EOS). This is because plant canopy greenness changes
gradually in autumn. EOS estimation becomes even harder for evergreen species, for
which the greenness changes only slightly [131]. Therefore, small differences of EOS
between years are evenmore difficult to detect accurately using remote sensing data [46].
Therefore, it is important to implement standardized protocols for ground phenology
monitoring [116], as well as for LSPmetrics extraction. An effort towards that direction,
as far as ground phenology monitoring is concerned, has resulted in the plant phenology
monitoring design of NEON [117]. Unfortunately this has not yet been implemented
with consistency around the globe [117], which is why studies that integrate field-based
validation vary [31, 98].

4.3 Spatial Cross-Scale Issues

While being very valuable, field measurements often represent a small area and are in
most cases subjective, because of the approach being used [98]. Up until now it has not
been an easy task to match field and satellite-based observations because of the difficulty
to transpose thesemeasurements to the same scale and because of the use of phenological
metrics that are approximations of the phenophases [106]. The spatial mismatch between
the field-based point measurements of plots and the resolution of satellite pixels at local
scales, particularly medium resolution data, further complicates the process [61]. This
happens because most field data are usually species-specific and observed at scales that
are incompatible with medium resolution remote sensing observations.

More specifically, this relates to the issue of scale mismatch due to vegetation het-
erogeneity [118]. It is rare for vegetation to be uniform in the Landsat or Sentinel-2
resolution, whereas in field observations, budburst or flowering stages are identified
for a small amount of plants in each sampling plot. Thus, relating in situ phenological
events with the mean LSP of a Landsat or Sentinel-2 pixel is difficult, as these pixels are
spectrally mixed [31]. Furthermore, in cases of mixed pixels containing vegetated and
non-vegetated areas, the interpretation of the LSP metrics’ biophysical meaning could
be misleading. In these cases, the LSP metrics could indicate phenology change in the
LSP curve, even if in reality it is indicating a change in the ratio of vegetation/ non-
vegetation in the monitored area [119]. Wrong assumptions about the homogeneity of a
region can also be made. For example, a forest can still have heterogeneous LSP due to
species distribution and microclimatic conditions [115]. As a result, even homogeneous
plots of the same species can reveal phenology variability caused by differences in site
conditions or ecotope.

Moreover, the timing of green-up that is extracted from satellite time-series is often
more related to understory canopy than to overstory [120]. For instance, during early and
in-between growing stages in a tropical dry forest the understory vegetation develops
its leaves as a response to the first rains in the beginning of the growing season [31].
These misinterpretations can be circumvented by visually inspecting vegetation struc-
tures and categories in the study area with the use of very high resolution images (e.g.
Google Earth images) or in situ data [106]. Nevertheless, alternative approaches have
proposed to scale-up species-specific field-based measurements to the landscape scale
with the introduction of the Landscape Phenology Index, allowing for comparability
with 250 m to 1 km LSP products [121]. This index utilizes the phenocluster concept,
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by aggregating community phenologies (individual phenologies of the same species that
cover a representative population phenology area), and is an area-weighted average of
all community phenologies over the area of study [121].

4.4 Temporal Scale Issues

Most of the disagreement between ground phenology and LSP is connected to the lower
temporal resolution of the remote sensing product. Large data gaps in a time series
could result in lower accuracy during interpolation. Particularly, when canopy growth
or senescence is rapid, low temporal resolution products cannot accurately detect the
transition dates [31]. Additionally, when field-observed phenological stages correspond
to very subtle differences, these might not be detectable in satellite-measured LSP due
to spectral and temporal deficiencies of satellite data. For instance, as pointed out in the
study of Misra et al. [48], bud break is measured in ground phenology, but is reported
as undetectable in LSP because this phenomenon is spatially too small to sufficiently
influence the signal in the NIR band of a satellite sensor. In addition, bud burst signals
intermixed with pre-existing understory could also contribute to the poor detection of
early phenophases [48]. This is why LSP mainly focuses on phenophases that can be
detected and allow for scaling up. Since ground phenology and land surface phenology
have different definitions, it is almost impossible to get perfect temporal alignment in
terms of specific day of the year. However, the general patterns at the start of the season
as observed by field and satellite measurements are assumed to have a moderate relation,
because they both look at the starting points in the cycle of vegetation development [48].
Nevertheless, one must acknowledge that in these type of comparisons, one is trying
to compare a spatial integral with observations of individual plants of single species or
even only traits thereof.

5 Recent LSP Advances, Tools and Products

5.1 New Trends and Advances

Cloud computing (CC) andmachine learning allow for faster processing in LSP retrieval.
This is especially advantageous when dealing with big data of satellite imagery, which
demand for high-performance processes that are not available froma single computer.CC
transfers the image processing from a scientist’s personal computer to an online server.
Time series from all available satellite image scenes can be easily generated through
CC. For instance, the Google Earth Engine (GEE) server has been used to retrieve LSP
over the North Hemisphere fromVEGETATION and PROBA-V time series [122]. Other
studies that estimated LSP through GEE include those of Li et al. [123], Venkatappa
et al. [124], andWorkie and Debella [125]. Freely accessible cloud computing platforms
apart from GEE include Amazon Web Services (AWS) Open Data, TerraScope Virtual
Machine, and the ‘PhenologyMetrics’ algorithm (see Sect. 5.2).

In addition, data cube technologies have become popular for processing remote
sensing data. Image data cubes are “large collections of temporal, multivariate datasets
typically consisting of analysis ready multispectral Earth observation data” [126]. The
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Committee of Earth Observation Satellites (CEOS) created Open Data Cube to accom-
modate this concept. Data cubes can be used for LSP estimation. Li et al. [127] used
this technology to study changes in vegetation green-up dates. Data cubes allow for the
inclusion of all available imagery over very large extents. This can generate temporally
detailed and geographically expansive LSP estimations.

Similarly, machine-learning techniques allow for the incorporation of very large
data inputs. There is potential for machine learning to be used with data cubes and
multi-source earth observation data. Until now, machine learning has been applied to
predict ground-based phenophases or LSP from daily pheno-tower data. In detail, it has
been used to learn and detect phenological patterns in numerous ground digital images
[128, 129], and to fill spatiotemporal ground-based phenology to help forecast LSP
with remote sensing and meteorological data [130]. The last study showed moderate-to-
high potential for LSP estimation with RS through machine learning. The advantages of
machine learning for LSP estimationwere included in theDATimeS software (developed
in 2019), with twelve machine learning fitting algorithms for time series analysis of
phenology data (see Sect. 5.2). Machine learning techniques that enhance LSP are just
starting to gain more ground.

Lastly, as seen previously, one of the long-standing difficulties inLSP estimationwas,
until recently, the accurate determination of EOS phenology metrics. One solution is to
take an ensemble approach, such as taking the average of two methods. Yuan et al. [132]
applied this technique by averaging the result of the midpoint and double logistical
fitting to determine EOS. Moreover, it was recently discovered that for an accurate
estimation of autumn phenology one needs to combine sensors and satellite data. Lu et al.
[133] found that autumn phenology derived from fluorescence satellite data had higher
correspondence with gross primary production (GPP) autumn phenology than autumn
phenology derived from vegetation indices. Wang et al. [134] found similar results,
where the EOS was estimated earlier with fluorescence satellite data data, followed by
NDVI and vegetation optical depth estimations. This means that photosynthetic activity
decreases before any changes in leaf color can be detected, and that the decrease in
vegetation water content is the last stage of senescence. These results were consistent
globally and shed light on the underlying structural and functional processes of autumn
senescence.

5.2 Open-Source LSP Software

There are a number of open-source LSP estimation software. TIMESAT is a software
package that enables the extraction of seasonality parameters. Its most recent version
includes “Seasonal and Trend decomposition using Loess” (Version 3.3, 2017) [135],
and plans the incorporation of Landsat and Sentinel-2 data [9]. PhenoSat produces LSP
information from vegetation index time series. It has seven different smoothing algo-
rithms, it recognizes more than one growth season in each year, and can focus on periods
within a season [136, 137]. Verbesselt et al. [138] developed the “Breaks For Additive
Seasonal Trend”method to extract seasonal and trend elements from time series to detect
vegetation greenness. Examples include its use to determine grassland trends and phe-
nology of the Flint Hills ecoregion [139], or to examine seasonal trends of vegetation on
military training grounds [140]. Further, Frantz et al. [91] created the “Spline analysis
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of Time Series” algorithm to derive LSP by fitting spline models to remotely sensed
time series. Twenty metrics per pixel are generated and relate to specific dates, and the
length and amplitude of seasons. The Joint Research Centre provides “Software for the
Processing and Interpretation of Remotely Sensed Image Time Series”, through which
LSP SOS and EOS are calculated from 10-day composite images for both single and
double growing seasons with the threshold technique [142–146]. Forkel et al. [146, 147]
created functions to analyse seasonal trends and trend changes in Earth Observation
time series with the ‘greenbrown’ package in R [148]. Also, the ‘phenex’ package in
R has functions for analysis of LSP data [149]. Lastly, the Ecopotential Virtual Library
packaged the ‘phenex’ algorithm in an online workflow (“Estimation of phenology met-
rics – PhenologyMetrics”) created by the Centre for Research and Technology Hellas
[150]. It can derive three LSP metrics from NDVI time series during vegetation growth.
The advantages include the estimation of multiple vegetation cycles in a growing period
[151] and online processing without the need for high processing capabilities.

5.3 Global LSP Products

Some of the global LSP products are the MODIS Land Cover Dynamics product
(MCD12Q2), the VIIRSGlobal Land Surface Phenology (GLSP) product, and the Vege-
tation Index andPhenology (VIP) Phenology (VIPPHEN) global product,which produce
yearly LSP metrics (see Table 4).

Table 4. Global LSP products: MODIS Land Cover Dynamics product (MCD12Q2), VIIRS
Global Land Surface Phenology product (GLSP), Making Earth System Data Records for Use
in Research Environments (MEaSUREs) Vegetation Index and Phenology (VIP) global dataset.
Information retrieved from Gray et al. [152], USGS [153], and X. Zhang, Liu, et al. [42]. Source
[38].

Global LSP products Timespan Source Spatial Resolution

MCD12Q2 2001 to end 2017 EVI2 from MODIS BRDF
Adjusted Reflectance (NBAR)

500 m

VIIRS GLSP 2012 to Present EVI2 from daily VIIRS BRDF
NBAR

500 m

MEaSUREs VIP 1981 to end 2014 NDVI and EVI2 from AVHRR
N07, N09, N11, N14 datasets
from 1981–1999; MODIS Terra
MOD09 Surface Reflectance
from 2000–2014

5600 m

HLS 2013 to Present Surface Reflectance and Top of
Atmophere brightness data
from Landsat 8 and Sentinel-2A
and Sentinel-2B

30 m

The MCD12Q2 product is an LSP product that provides global LSP metrics derived
from satellite image time series. If values are missing in an area due to cloud cover
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or other causes, the gaps are filled with good quality values from the year before or
the following [152]. This product can be used in areas with two growing seasons [34].
The VIIRS LSP product can also estimate phenology for various vegetation types and
climate systems [42]. The MEaSUREs VIP product is defined with a moving average
window of three years in order to eliminate noise, and is accompanied with a reliability
value to help determine data quality [153]. Lastly, the HLS surface reflectance dataset
[154] currently has global coverage and can be used to derive LSP time series with
observations available every 2 to 3 days [103].

6 Conclusions

This review pointed out that the use of multi-source Earth observation data, such as
the HLS product, can reduce limitations that are connected to the spatial and temporal
resolution of LSP. Medium spatial resolution LSP products will be more accurate at a
temporal resolution of less than 16 days. Moreover, the EOS is harder to estimate from
remote sensing data because canopy greenness diminishes gradually during autumn,
making the transitions not very apparent. However, combined use of optical, microwave,
and fluorescence RS could provide better insight to this phenomenon.

This review also showed that validation efforts should ideally include sites at least
equal to the pixel size of the sensor in order to reduce the observers’ subjectivity and the
uncertainties of the measurements. However, the sensor’s pixel size can cover a large
area on the ground, making frequent site visits particularly unfeasible. Drone-mounted
cameras could potentially provide a solution to this issue. Generally, studies should use
phenology towers or mounted digital cameras to reduce the validation workload; mainly,
because traditional field work for the collection of phenology data is often very hard to
conduct for small science teams. In addition, researchers should be aware of the plant
species composition in a mixed pixel, to better understand the VI response.

Lastly, Earth observation time series of higher spatial and temporal resolution bring
a multitude of opportunities. Monitoring vegetation at individual stands could become
possible. Large amounts of Earth observation data ask for high-performance processing
methods; however cloud solutions for data storage and processing as well as machine
learning workflows are freely accessible, facilitating big data processing.Moreover, data
cubes allow for a new viewpoint on data analysis. This makes the previous technologies
suitable for LSP estimation. Overall, the recent progress and future prospects of LSP
estimation with multispectral remote sensing reviewed in this article will be able to
support several of the United Nations Sustainable Development Goals and the Aichi
BiodiversityTargets through developingEssential BiodiversityVariables that correspond
to the Group on Earth Observation initiatives.
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Abstract. Scarcity of water has impacted the Gulf countries and one of them is
the United Arab Emirates (UAE). Among the many possibilities, a viable app-
roach for water preservation in arid regions is Artificial Groundwater Recharging
(AGR). Fresh water frommultiple sources are fetched and reserved in aquifers and
pumped out during lean phases. This research endeavors to delineate AGR zones
in Northern part of UAE taking into account of precipitation, drainage density,
geomorphology, geology, groundwater level, total dissolved solids, elevation, lin-
eament density, and distance from residences with the aid of Remote Sensing (RS)
and Geographic Information System (GIS). Parameters were measured to criteria
weightings by Analytical Hierarchical Process (AHP), and then overlay analysis
was performed to deduce the potential AGR map. The map was categorized in
a scale ranging from very high suitability to low suitability. More than 20% of
the total area was highly suitable for AGR. Geology and geomorphology were
identified to be the significant factors for determination of the potential zones.

Keywords: Artificial groundwater recharge · Geographic information system ·
Remote sensing · United Arab Emirates · Analytical hierarchical process

1 Introduction

Urban sprawls and densely populated cities have created an immense urge on higher
water consumption to fulfill several needs. The primary hurdle faced by any developing
nation is inadvertent urbanization, deficient water resources and unproductive man-
agement of water supply and distribution. Developing nations specifically in arid and
semi-arid climatic regions are still gathering reforms and resources to combat such issues
[1]. Countries closer to sea or ocean focus on desalination and reservoir storage as water
preservation practices. Since the 1990s, another technique that has gained attention is
artificial groundwater recharge (AGR)[2]. It has paved the way for arid and semi-arid
nations as one of the most sustainable approaches to water conservation due to higher
evaporation rates [3].

The United Arab Emirates (UAE) is one of the most brisk developing nations. Its
population leaped sharply from 531,265 in 1975 to 10 million in 2022 [4]. The niche

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Grueau et al. (Eds.): GISTAM 2021/2022, CCIS 1908, pp. 38–51, 2023.
https://doi.org/10.1007/978-3-031-44112-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44112-7_3&domain=pdf
http://orcid.org/0000-0001-7111-0061
http://orcid.org/0000-0002-9808-4120
http://orcid.org/0000-0002-6813-836X
http://orcid.org/0000-0001-8846-9273
http://orcid.org/0000-0002-3338-0092
https://doi.org/10.1007/978-3-031-44112-7_3


Analytical Hierarchical Processing to Delineate Artificial Groundwater Recharge Zones 39

lifestyle of the UAE population demands water consumption of about 550 L per capita
per day in 2020 compared to the global average of 170–300 L per capita per day which
is 82% higher than any countries [5]. Note that the UAE is located in an arid climate
region with limited freshwater resources and scarce rainfall [6]. Approximately, 51% of
the UAE’s water supply comes from freshwater resources [7]. Thus the UAE depends on
alternativewater preservation practices such as desalination,water storage units, artificial
groundwater recharge tomeet demands during lean periods.As the country’s temperature
rises approximately 50 degrees Celsius in summers, any surface water storage takes
a heavy toll on the economy due to high evaporation rates. Therefore the country is
indulging into more sustainable practices of water conservation by adopting AGR. AGR
is a scientific water storage technique of available water into aquifers and use it in
dry periods for agriculture, industrial and potable purposes [8]. Many studies [8–14]
have been implemented through Remote Sensing (RS) and Geographic Information
System (GIS) for AGR demarcation and implementation. Primary step is to identify
potential zones where RS & GIS comes to a rescue. Humble decision making approach
is adapted for AGR demarcation and then tools of machine learning like artificial neural
network, support vector machine, random forest and so on are further integrated to
validate the data if we analyse previous researches for AGR across the globe [10, 11,
14–18]. Less AGR studies have been carried out in UAE and specially central northern
UAE covering Emirates of Sharjah, Umm al Quwain, Ras al Khaimah, Fujairah and
Ajman [19]. Therefore this research made an attempt to demarcate potential AGR sites
for the previously mentioned emirates.

The research utilized multicriteria decision analysis by Saaty 1990 paired with
weighted overlay analysis to identify potential zones for AGR. The study was car-
ried out at the Central northern Emirates including emirates of Sharjah, Fujairah, ras
al Khaimah, Umm al Quwain, Ajman, and portions of Oman. This study utlized more
previous studies for analysing ranking and weighting of Analytical Hierarchical Process
(AHP) compared to previous research [19] and also calculated the percentage of the area
suitable and not suitable for AGR. Nine thematic layers were prepared: precipitation,
drainage stream density (DSD), geomorphology, geology, groundwater level, Total Dis-
solved Solids (TDS), elevation, lineament density (LD), distance from residential areas.
The research aims to delineate suitable locations for implementing AGR by employing
RS, GIS, AHP, and the weighted overlay technique. The main objectives of this study is
summarized within the following:

• Investigating suitable zones for AGR in Sharjah by utilizing RS and GIS.
• Identifying and mapping spatial thematic layers for AGR zonation: precipitation,

drainage stream density (DSD), geomorphology, geology, groundwater level, Total
Dissolved Solids (TDS), elevation, lineament density (LD), Euclidean distance from
residential areas.

• Employing AHP and weighted overlay techniques to obtain AGR map.
• Calculating percentage of area suitable for AGR and the primary factors governing

it.
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2 Study Area

The United Arab Emirates is a Mediterranean country located in the western part of
Asia and is surrounded by the Arabian Gulf in the west and north, Gulf of Oman in
the northeast, Oman in the east, and Saudi Arabia in the south (Fig. 1) [6, 20–22].
The country’s water demands are met by 43% of its available groundwater resources.
However, due to its arid climatic condition, the country has reserves of only 640 billion
cubic meters (BCM) of groundwater, and 20 BCM is fresh [21, 23]. The country receives
approximately 102 mm of mean annual rainfall within cities and 130 mm in mountains
with temperatures rising to 48 degrees during summer months in desert [21, 23, 24].
Majority of the land is covered with sand and so forth, the sand dune aquifer system
dominates the geographic region. Other classifications of the aquifer system are northern
limestone, ophiolite, eastern gravel, western gravel, and coastal marshes [25]. Fivemajor
cities of northern UAE have been covered in this study which includes Sharjah, Umm al
Quwain, Ras al Khaimah, Ajman, and Fujairah. This region comprises equal proportions
of all the aquifers classes.

Fig. 1. Study Area.

3 Methodology and Data Processing

Figure 2 demonstrates the methodology developed for identifying potential zones for
AGR. Suitable remote sensing imageries such as digital elevation model (DEM), Land-
sat 8, enhanced thematic mapper plus, historical data of precipitation, and salinity were
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used to prepare desired thematic layers contributing to AGR potential zones. The pre-
viously discussed factors pprecipitation, DSD, geomorphology, geology, groundwater
level, TDS, elevation, lineament density, euclidean distance from residential areas were
developed as spatial thematic layers in ArcGIS Pro. Five classes ranging from 1 to 9
derived from Natural Breaks technique, have been assigned to each layer, with 1 rep-
resenting least suitability and 9 as most suitable. AHP technique helped to identify
weights of each criteria. To obtain the final potential map, weighted overlay analysis
was performed.

Fig. 2. Methodology Framework.

3.1 Thematic Layers Preparation

This section demonstrates the data collection, image processing aspects and its correla-
tion to the potentiality of AGR, of each parameter primarily considered for the objec-
tive of the study. Delineating suitable AGR zones were achieved through nine spatial
parameters: Precipitation, DSD, geomorphology, geology, groundwater level, TDS, ele-
vation, lineament density, euclidean distance from residential areas [26–28]. The detailed
discussion about the layers are mentioned in the following paragraphs.

Precipitation. National Centre for Meteorology, UAE, was referred to deduce annual
total rainfall historical data from 2003–2017 refer, Fig. 3(a). Data was collected from
the rain gauge stations and coordinates of each station were utilized to develop the point
map. Inverse distance weighting interpolation technique further obtained the spatial
layer of precipitation. The data helped to understand that the least average of annual
total rainfall was recorded as 75mm for the study and ranged maximum up to 103mm.
From multiple research articles it is profound that the regions receiving more rainfall is
directly proportional to AGR potential zones [21, 23, 24].
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DrainageStreamDensity. DSDof the study area ranged from0 to .58per km2 Fig. 3(b).
The parameter is defined as the capacity of the total water drained through stream chan-
nels within a watershed represented as the ratio of total stream length of all orders by
the total area of the drainage basin. Permeability of water decreases if DSD is higher
[17, 26]. It is one of the fundamental parameters for AGR demarcation. SRTM (Shuttle
Radar Topography Mission) DEM spatial data were used to develop the thematic layer
[23]. Increased regional DSD can be noticed in the eastern part of the Sharjah Emirate,
north and northeastern part of Ras-al-Khaimah and Umm-al-Quwain, respectively [21,
23].

Geomorphology. Figure 3(c) represents the geomorphology map of the study area: fan
deposits, high and low dunes, mountain, sand, urban areas, and vegetation [21, 23].
Geomorphological patterns allow us to understand the water flow and movement below
the ground level and explains thewater storage capacities depending on permeability and
porous landforms [17, 29]. Spatial data from Landsat8 ETM+ of 30 m spatial resolution
was collected and processed to develop the thematic layer [23]. This study showed that
fan deposits are most favorable for AGR in the UAE and accordingly the highest rank
has been assigned to this criteria. As the majority of the country is covered with desert
sand, high dunes also come in a higher ranking with respect to AGR determination, refer.

Geology. Landsat 8 was downloaded and shortwave infrared band were geo-processed
to develop the geology thematic layer. The geologyof the study area comprises: alluvium,
limestone, gabbro,metamorphic, sand and ophiolite [21, 23]. Sand coversmore than 45%
of the study area. Recharging volume can be determined by understanding the porosity
and assigning spaces for water holding [17, 29]. Alluvium holds more water compared
to other classes. This study marked the alluvium class with the highest rank followed by
sand.

Total Dissolved Solids. Historical data from the Ministry of Environment and Water,
UAE (2015) were considered to prepare the spatial thematic layer of TDS. TDS has
a great impact on the quality as it exceeds the turbidity of water which eventually
determines the fit and unfit for potable use. Permeability of water with high TDS can
clog pores stopping the flow through the aquifer and risks of pathogen activities increases
leading tomanydiseases to humankind.Regionswith lower values ofTDSare considered
to be fit for AGR zonation [30, 31]. Generally, TDS values are enormously high near
to the coastal shorelines. TDS map of this study conductively portrayed that regions
closer to Gulf of Oman have values of 38000 mg/l whereas the west of the study area
which is covered by Arabian Gulf have TDS values of 50000 mg/l. This demonstrates
the outcome that Arabian Gulf is more saline compared to Gulf of Oman.

Groundwater Level. In-situ data from bore-wells were collected within the study area
and combined together making interoperability in the GIS platform to deduce the the-
matic layer, refer Fig. 3(d). Inverse distance weighted interpolation technique was used
in ArcGIS Pro to develop the layer. The units are meters above sea level (masl). This
factor helps in analyzing the hydraulic gradient of the region which eventually depends
on pore pressure and atmospheric pressure at the surface level [17, 27, 32]. Higher levels
of groundwater is less likely suitable for AGR [17, 32]. The thematic layers shows that
the southeast Sharjah and west of Ras al-Khaimah have higher values of groundwater
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levels. One of the primary explanation behind this is that the region is in close proximity
to the foothills and receives more rainfall which up levels the groundwater. The IDW
equation is as follows [13, 21, 33]:

Z0 =
∑N

i=1zixd
−n
i

∑N
i=1d

−n
i

(1)

Where Z = calculated value of Z at o;
zi = observed value at sample point I; di is the distance between sample point i and

o; N is the number of sample points used to estimate the value at o; n is a distance decay
parameter [34, 35].

Elevation. SRTMDEMof 30m spatial resolution were downloaded and used for devel-
oping the thematic layer. The elevation is as low as zero meters above sea level (masl)
near shore lines and as high as 1112 masl in the mountains for the study area, Fig. 3(e).
Elevation is inversely proportional to AGR zonation which demonstrates that inferior
elevation values are more appropriate for AGR [9, 27, 35–37]. It analyses the accumu-
lation capacity of water and its flow direction through the aquifers. Few regions within
Fujairah and Ras-al Khaimah have elevation above 1000 masl.

Lineament Density. Linear features such as fractures and folds were extracted from
satellite images and then spatial maps were processed. It has direct proportionality to
AGR suitability. Availability of groundwater and potential available aquifers can be
determined from his parameter. It also determines the secondary porosity. Higher values
of LD can be witnessed in Fujairah. Generally, from previous research it has been
concluded that a zone of around 300m closer to any folds and fractures of the earth
composition can be considered suitable for AGR [29].

Distance from Residences. To develop this layer, shapefiles of residential areas were
mapped and then Euclidean distance was calculated to prepare the thematic layer, refer
Fig. 3(f). For sustainable AGR sites the distance from residences factor needs to be
considered. AGR needs to be designed at optimum distance from the densely located
city considering water pumping factors to required places as well as closer proximity to
pipelines [8, 35]. Higher the distance from residences more suitability for AGR.

3.2 Analytical Hierarchical Process

AHP is a structured multi-criteria decision making (MCDM) procedure. It utilizes
experts’ opinions to determine the weights and rank of each parameter. AHP has been
used by researchers in various groundwater studies and site selection studies [8, 21, 23,
33, 38–41]. This study employs AHP for selecting potential zones for the AGR. An
important step in AHP is prioritizing the parameters and assigning them weights, as
discussed below.

Weighting the Parameters. The influencing factors were arranged as a structured hier-
archy and the pairwise comparison matrix were formed to confirm the consistency of
the weights. The weights of the all 9 selected parameters were placed in a square matrix
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(a) (b)

(c) (d)

Fig. 3. Thematic Layers [19].
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(e) (f)

Fig. 3. (continued)

keeping all the diagonal values as 1. The diagonal of the pairwisematrix was kept 1 when
both the parameters have equal importance over the other. The relative importance of the
parameters were analyzed using the principal eigenvalue along with the normalized right
eigenvector of the matrix [21, 23, 42, 43]. On a scale of 1–9 of relative importance by
Saaty [44] all the parameters were ranked. Highest rank 9 was assigned to criteria with
highest influence on the decision. Measurements of consistency were done by checking
the randomized and consistency index as well as the consistency ratio.

Consistency Ratio. CR allows the glance for the subjectivity of determined weights
through a pairwisematrix. In order to confirm the consistency of the pairwise comparison
matrix, consistency index (CI), consistency ratio (CR) and randomized index (RI) were
obtained. CR is defined as the degree of consistency of the comparison matrix prepared
with respect to parameters and its weights. The value of CR must be less than 0.01 for
the consistency of the matrix to be maintained [21, 23, 43]. The CR can be derived using
the following equations [44]:

CI = λmax − n

n− 1
(2)

RI = 1.98× (n− 1)

n
(3)

CR = CI

RI
(4)
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CI is a consistency index, RI is a randomized index (average of CI values of the
comparison matrix), CR is a consistency ratio, λmax is the maximum eigenvalue of a
comparison matrix and n is the order of the comparison matrix. The calculated CR
equals.007 < .01, which supports the weighting model and the AHP technique [21, 45].
Fig. 4 Demonstrates the weights of the utilized thematic layer associated with AGR in
percentage.

0%

5%

10%

15%

20%

25%

WEIGHTS OF UTILIZED THEMATIC LAYERS 

Fig. 4. Weights of utilized thematic layers for AGR zonation in percentage [19].

4 Results and Discussion

The potential AGR was estimated and mapped using AHP approach, refer Fig. 5. The
map was categorized on the basis of ordinal scale into 6 classes: “very high”, “high”,
“moderate high”, “moderate low”, “low”, and “very low”.

Following points were concluded from the AGR map:

(i) The very high zone is located in the central part of Ras al Khaimah. The properties
of the input parameters have geology- alluvium, geomorphology -fan deposits,
precipitation of 91mm, groundwater level 102masl, drainage density at .38 per km2,
TDS 1862 mg/l, distance from residences .14 m, elevation of 87 m and lineament
density of .05 per km2.
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Fig. 5. Potential zones of AGR.

(ii) The “high” zone is located in the north-eastern and central-eastern part of Sharjah.
This region also comprises geomorphology- fan deposits, geology-alluvium. This
region is near the foothills of the Al-hajjar Mountains and thus comprises many
suitable qualities of geology and geomorphological characteristics for AGR. TDS
of 1300 mg/l were noted in this region.

(iii) Table 1 demonstrates the area in percentage for each class of AGR.
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Table 1. Percentage of area for AGR classes.

AGR Classes Percentage of Area

Very High 1%

High 21%

Moderate - High 30%

Moderate - Low 34%

Low 12%

Very Low 1%

5 Conclusion

The main objective of this paper was to determine locations which are suitable for AGR,
delineate them using AHP and be able to get an estimate of the proportion of study area
which can benefit from AGR techniques. To go about this approach, 9 main parameters
were found to be governing AGR site suitability. A weighted AHP process was utilized
to rank these parameters and then a weighted overlay analysis was done to obtain the
final AGR suitability map. The map was clustered in 6 areas ranging from very high
suitability to very low suitability. Several inferences were then drawn from the resulting
map. The north-central part of Ras Al Khaimah was observed to be lying in the most
highly suitable zone while another major portion of Ras Al Khaimah and Sharjah were
seen to be lying in the zone characterized as high suitability forAGR.Another reasonwas
the high elevation and mountainous region which received high amounts of precipitation
and this in turn caused high amounts of fan and alluvial deposits in these regions. On the
other hand, both the shorelines were found not suitable for AGR due to the presence of
high salinity. Similarly, dense populations in the urban locations of the eastern parts also
made these areas unsuitable for AGR. Out of the total study area, 20% was estimated
to be a highly suitable category, 30% as moderate-high, and 12% as low. This was done
using ArcGIS Pro and utilizing pixel sizes as the deciding factor. Semi-arid and arid
countries such as those in the gulf can highly benefit from this research methodology
to demarcate and locate potential locations and zones suitable for AGR techniques.
As the world moves into a stage where water becomes more and more a scarcity, the
methodology described in this paper can serve as a guiding tool at the least to help find
suitable locations for AGR and reduce the stress caused by water scarcity.
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Abstract. Inmost urban environments, loss of natural vegetation, the reduction of
open spaces, and the rapid invasive transformation of the natural environment into
impervious have happened. These changes can lead to a decline in life quality and
in an increase in various economic, social, ecological, and infrastructural problems
and risks. The complexity of the urban environment at various scales requires the
application of high spatial and temporal resolution data in the process of urban
planning. The main goal of this paper was to derive specific landscape metrics
characteristic for urban areas based on WV-3 very-high-resolution imagery and
the GEOBIA method. A supervised machine learning technique support vector
machine (SVM) was used as a classification algorithm. The derived land-cover
model is evaluated using the confusion matrix and related accuracy metrics: user
accuracy (UA), producer’s accuracy (PA), overall accuracy (OA), and Kappa
coefficient. Land-cover classification accuracy assessment resulted in moderate
overall accuracy while aggregation of classes depending on the physical char-
acteristics of the material increased OA. For landscape diversity and area metric
analysis, aggregated classeswere used in combinationwith user-defined polygons.
In the city of Split, there is no absolute homogeneity (SHDI= 0) within any of the
hexagons. Inner parts of the city have a higher SHDI than the outskirts but imper-
vious surfaces are the dominant material. Urban planning indicators (UPIs), have
been derived for statistical circles (SC) of Split settlement in Croatia. Vegetation
indicators (TCR - tree cover ratio, LCR - lawn cover ratio, GCR - green cover
ratio) and indicators of urbanization (SCR - street cover ratio, BCR - building
cover ratio, IMR - impervious surface ratio) were derived from the derived land
cover model. TheUPIs values at the studied level are the reflection of the historical
spatial-functional development of the Split settlement. These types of UPIs can be
used at the neighborhood level of urban planning and analysis of different issues
in an urban environment.
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1 Introduction

Urbanization has led to the replacement of natural vegetation-dominated surfaces by
various impervious materials. This had a significant impact on the environment. Some
of the observed consequences are reduction of the open spaces [1]., increased risk of
pluvial floods [2]., endangerment of the drinkingwater quality [3]., the appearance of the
urban heat islands (UHI) [4]., various environmental pollution problems and ultimately
a decline in life quality [6]. Therefore, efficient urban planning has become a central
tool of governance, through which these major issues of urban development will have
to be addressed [7]. This challenge requires new analytic approaches and new sources
of data and information in urban planning [8].

There are numerous definitions of urban planning [9, 10]. It is regarded as a com-
plex, technical, and political process that includes land use control, urban environment
design, and environmental protection. Its primary purpose is to improve the decision-
making process [11]. In the context of urban planning, there is a notion of the urban
environment [12, 13]. Which is defined as a physical place that includes different land
use patterns, built infrastructure, and transportation systems [14, 15]. The increasing
availability of geospatial data in combination with traditional data sources could facili-
tate the development of new tools for understanding urban environment complexity [13].
Urban environment planning requires a multidisciplinary approach and the application
of modern research methods [16, 17] through the application of various geospatial tech-
nologies (GST) [13, 18]. GST is defined as a set of methods, techniques, and procedures
used in modeling of complex processes and features in different levels of detail (LoD)
depending on the research purpose [19]. GST includes GIS, elements of remote sensing
(RS), a global positioning system (GPS), and other related geospatial technologies [20,
21].

The application ofGST enables computing of the various landscapemetrics typically
used to characterize and understand different types of the environment structure using
the measures of the size, shape, and spatial proximity of specific land types.

In the literature, the landscape metrics mostly refer to indices developed for cate-
gorical map patterns [22]. And topographic measures [23]. Although the usage of these
metrics is very broad, the most common usage is for the biodiversity [24, 25] and habitat
analysis and for the evaluation of the current landscape pattern or its change through
time [25]. Landscape metrics are based on the analysis of landscape pattern which is
influenced by physical, social, landscape, and environment, reflecting different ecolog-
ical processes and structural functions [26]. Some common metrics include landscape
composition (proportion, richness, evenness, diversity) and spatial configuration (patch
size and shape, connectivity, dispersed or clumped patches, neighborhood) [27].
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The spatial distributions of the metrics provide new insight into landscape structure,
which can be exploited in land use planning and in the construction of empirical spatial
planning heuristics for sustainable urban development. Despite numerous advantages of
landscape metrics, it is important to emphasize their sensitivity to image scale and extent
of the study area so comparisons across time and space must be done considering the
resolution [27]. Depending on the research purpose and type of the landscape there are
various indicators that can be used. For the urban areas typically are used urban planning
indicators (UPI) in combined with the composition and configuration. In urban pattern
analysis crucial is impervious surface as an indicator of urban ecological environmental
change. Accurately estimating impervious areas is essential to monitoring the urban
dynamics of change andhuman activities and their effects on urban environmental quality
[28].

UPIs serve decision-makers, withmeasuring performance role, in the planning of the
urban environment [29]. The UPIs are usually determined at the very beginning of plan-
ning and serve as a basis for the entire planning and process design. UPIs are crucial in
the monitoring of urban morphology and urban development intensity. They are derived
for different purposes, among which stands out research about urban thermal islands
[29, 30]. The building of sustainable cities, and sustainable urban development [31–33],
and achieving sustainable urban governance [33]. The LoD and spatial resolution of data
used to derive specific UPIs depend on the level (eg. local, neighborhood, metropolitan,
regions) [34] or scale (macro-micro) [35] at which the urban planning process is per-
formed. In this research, we use high-resolutionWorldView-3 imagery to derive specific
landscape metrics for the city of Split, Croatia. The research was performed within the
INTERREG Italy- Croatia PEPSEA (Protecting the Enclosed Parts of the Sea in Adri-
atic from pollution) project. UPIs were calculated from a land cover model which was
derived using geographic object-based image analysis (GEOBIA) [36].

2 Study Area

Split is the administrative center of Split-Dalmatia County. It is the largest city in the
Dalmatia region and the second-largest city in the Republic of Croatia (HR) (Fig. 1B). At
the latest census (2021), the total population of Split was 161.312. Split is located on the
peninsula and surrounded by hills. Mosor hill is located on the northeast side of the city
(Fig. 1C). Kozjak hill is located on the northwest side. Split is surrounded by the islands
of Brač, Hvar, Šolta, and Čiovo (Fig. 1B) [54]. The city of Split consists of 92 statistical
circles (SC) (Fig. 1C). A statistical circle is one of the smallest statistical spatial units
in the HR. They were established in 1959 and revised in each previous census. They
represent a permanent network of spatial units, covering the entire mainland of the HR
[37, 54].
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ID of the statistical circle: 
1-SK0049298, 2-SK0049301, 3-SK0049310, 4-SK0109819, 5-SK0109827, 6- 

SK0109835, 7-SK0109843, 8-SK0109851, 9-SK0109860, 10-SK0109878, 11- 
SK0109886, 12-SK0109894, 13-SK0109908, 14-SK0109916, 15-SK0109924, 16-
SK0109932, 17-SK0109959, 18-SK0109967, 19-SK0109975, 20-SK0109983, 21-
SK0109991, 22-SK0110019, 23-SK0110027, 24-SK0110035, 25-SK0110043, 26-
SK0110051, 27-SK0110060, 28-SK0110078, 29-SK0110086, 30-SK0110094, 31-
SK0110108, 32-SK0110116, 33-SK0110124, 34-SK0110132, 35-SK0110159, 36-
SK0110167, 37-SK0110175, 38-SK0110183, 39-SK0110191, 40-SK0110205, 41-
SK0110213, 42-SK0110221, 43-SK0110230, 44-SK0110248, 45-SK0110256, 46-
SK0110264, 47-SK0110272, 48-SK0110299, 49-SK0110302, 50-SK0110329, 51-
SK0110337, 52-SK0110345, 53-SK0110353, 54-SK0110361, 55-SK0110370, 56-
SK0110388, 57-SK0110396, 58-SK0110400, 59-SK0110418, 60-SK0110426, 61-
SK0110434, 62-SK0110442, 63-SK0110469, 64-SK0110477, 65-SK0110485, 66-
SK0110493, 67-SK0110507, 68-SK0110515, 69-SK0110523, 70-SK0110531, 71-
SK0110540, 72-SK0110558, 73-SK0110566, 74-SK0110574, 75-SK0110582, 76-
SK0110604, 77-SK0110612, 78-SK0110639, 79-SK0110647, 80-SK0110655, 81-
SK0110663, 82-SK0110671, 83-SK0110680, 84-SK0110698, 85-SK0110701, 86-
SK0110710, 87-SK0113034, 88-SK0113069, 89-SK0113107, 90-SK0113115, 91-
SK0113123, 92-SK0148652 

Fig. 1. A) Split settlement in the HR; B) location of the Split peninsula in Split-Dalmatia Country
and B) statistical circles (IDs of Split settlement [54].
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3 Materials and Methods

3.1 GEOBIA Extraction of Land UseModel UsingWorldView-3 (WV-3) Imagery

The land cover model of the Split settlement was derived from WorldView-3 (WV-3)
satellite imagery. WV-3 was launched on 13 August 2014 by Digital Globe [38]. WV-3
is one of the most advanced commercial satellites. It provides one of the highest spatial
resolutions for multispectral data (0.31 m for panchromatic data and up to 1.24 m for
multispectral bands) [39]. The derivation of land cover was done through several steps
(Fig. 2).

Fig. 2. Scheme of WV-3 image processing using GEOBIA method.

Thefirst step involved the creation of amultispectral image (MS) using theComposite
bands tool. Then spatial resolution of theMSwas enhanced using a panchromatic image)
[51]. This was performed in the Geomatica Banff 2018 Trial with the PANSHARP tool.
The product of this process was pan-sharpened MS. The next step was the segmentation
process. The Segment Mean Shift tool in ArcGIS software was used. The quality of the
land cover is highly determined by the selection of user-defined parameters: Spectral
Detail, Spatial Detail, Min_Segment_Size, and Band Indexes [54].

The Spectral Detail sets the level of importance given to the spectral differences of
features in the imagery (ESRI, 2020). The Spatial Detail sets the level of importance
given to the proximity between features. In both cases, values range from 1 to 20.

The Min_Segment_Size parameter identifies blocks of pixels that are too small (in
relation to defined value) to be considered as a fragment (ESRI, 2020). All segments
that are smaller than the specified value will be merged with their best-fitting neighbor
segment.



WorldView-3 Imagery and GEOBIA Method for the Urban Land Use Pattern Analysis 57

Band_Indexes parameters refer to the selection of the bands used in multispectral
image segmentation. It is necessary to choose bands that offer the most noticeable dif-
ferences between features. However, there is no clearly defined rule about the optimal
segmentation parameters values) [50]. To define the best combination for UPIs extrac-
tion, we have tested different parameter values using (Fig. 3) the visual interpretation
method (trial-and-error)) [50].

Fig. 3. Tested segmentation parameter values [54].

Three segmented images were generated using different parameter values (Fig. 3).
The visual interpretation showed that the third segmented model gave the best result
(Fig. 3). In it, the values of spectral and spatial detail are high enough to separate
features of similar spectral characteristics and to create not too spatially smooth classes.
In this model, training samples are taken for the identification of the land cover classes.
About fifty training samples were marked for each defined class (n= 8). In the next step,
the train Esri classifier definition (.ecd) file using the Support Vector Machine (SVM)
was created. Some researchers have shown that SVM in urban environments) [47] is
achieving higher classification accuracy than traditional methods) [48, 54]. In the final
step, the land cover model for the Split settlement was generated (Fig. 2). In future
research, the accuracy assessment of land cover (overall accuracy and class by class)
will be performed using the very high-resolution multispectral model generated with
Mica Sense RedEdge-MX mounted on Matrix 600 Pro.

3.2 Accuracy Assessment of the Land-Cover Model

Land cover classifications derived fromGIS imagery require validation against a ground
truth [49]. The accuracy was determined against the digital-orthophoto (DOF) as the
ground truth layer, from the portal of the State Geodetic Administration (DGU). The
process of assessment was performed in ArcMap using the confusion matrix to sum-
marize results from the classification method and manually interpreted land cover from
the ground truth layer. To provide an assessment database, random points of specified
sample size (n = 175) are randomly scattered across the research area using the Create
Accuracy Assessment Point tool. The matrix was created by the Compute Confusion
matrix tool. Accuracy was expressed with related metrics: user accuracy (UA: type error
1 or false positive), producer’s accuracy (PA: type error 2 or false negative), overall
accuracy (OA), and Kappa coefficient. A Python toolbox (ZonalMetrics) in ArcGIS was
used to analyze the urban structure. The calculation of landscape metrics was performed
within the user-defined zones (in this case hexagons). The first step was creating the
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zones using the Create hexagons tools. The height parameter of each hexagon was set
to 200 m which resulted in the area of 54 126 m2, Based on the user-defined parameters
total Split settlement area was divided into the 546 hexagons.

Therefore, at the zonal level in this paper the next diversity and area metrics were
applied:

1) Shannon’s Diversity Index (SHDI) which represents the amount of information
per patch, and it is calculated by the formula [22]:

SHDI = −
∑

(pi ∗ ln pi)m i = 1

where is:
pi = the proportion of the statistical zone area occupied by patch type.
m = the total number of patch types.
This index, ranging in theory from 0 to infinity, estimates the average uncertainty

in predicting which land cover type a randomly selected sub-unit of the landscape will
belong to [53]. The minimum value of 0 means that there is no diversity within the
user-defined zone.

2) Largest Patch Index (LPI) secludes the patch of a specific class that dominates
within a predefined zone, and it is calculated by the formula [22].

LPI = (ni A) ∗ 100 (6)

where is:
ni = area of specific LC class; A = total area of the statistical zone.

3.3 Derivation of Urban Planning Indicators (UPIs)

The UPIs for each statistical circle were derived from the generated land cover. UPIs
used in this study were:

1. Lawn Cover Ratio (LCR): percentage of the study area that is covered by low
vegetation (%);

2. Tree Cover Ratio (TCR): percentage of the study area that is covered by trees (%);
3. Green Cover Ratio (GCR): percentage of the study area that is covered by any kind

of vegetation (%) (GCR = LCR + TCR);
4. Street Cover Ratio (SCR): percentage of the study area that is covered by concrete

surfaces (%);
5. Building Cover Ratio (BCR): percentage of the study area that is covered by buildings

(%)

Impervious Surfaces Ratio (ISR): percentage of the study area that is covered by
impervious surfaces (buildings + concrete surfaces, houses) (%).

4 Results and Discussion

4.1 Land Cover Model

A total of eight land use classes have been identified and extracted; tree cover, lawn
cover, street cover, buildings, houses, macadam, shadows, and other objects (Fig. 4). In
addition to the functionality, the urban land use classes also differ in the type of material
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(physical characteristics) and can be impervious or permeable. Landscape permeability
depends on an interplaybetween the spatial arrangement of the different land-cover types,
such as houses, buildings, streets, and natural areas [40]. Based on these characteristics
derived eight land-use classes were merged into three categories for which diversity and
area metrics were calculated.: impervious surfaces (houses, street cover, buildings, other
objects), permeable surfaces (macadam, lawn cover, tree cover), and shadows.

Shadows are observed as a deficiency in thisMS imagery. This has become especially
notable in the urban environment modeling where they are potentially the main source of
misclassification This problem is particularly pronounced when using advanced sensors
with very high resolution [41]. Therefore, in this research shadows are detected and
classified as a separate category [42]. In this case study, most of them are detected on
the northern side of the objects due to the Sun’s position during the satellite recording
and are caused by a pronounced height of specific objects. The percentage of shadow
class in the total area of SK varies significantly the highest percentages (around 15%) are
found in smaller statistical circles (SK0110485, SK0110361) in which tall, residential
buildings predominate.

Fig. 4. Land cover model of Split settlement [54].
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4.2 Land-Cover Validation

The accuracy of the eight classes of land cover was evaluated by the visual validation
of points for each class (n = 25). For the overall accuracy, Landis and Kosch’s Scale
was used (0 -poor, 1-almost perfect) which is often used in the land-cover accuracy
interpretation [43, 44]. A Kappa coefficient equal to 1 means perfect agreement whereas
a value close to zero means that the agreement is no better than would be expected by
chance [52]. In this study land cover is moderately accurate (0.54). The confusionmatrix
is presented in Tab. 1. The columns of the matrix show ground truth (referent values) and
the rows show classes derived using the SVM. The diagonal shows correctly classified
pixels. Misclassified pixels do not occur in the diagonal and give an indication of the
confusion between the different land-cover classes in the class assignment. The highest
UA is related to the tree cover (0.92) and lawn (0.8). Other objects have the lowest UA
(0.24)which is expected because this class is derived by grouping the objects (transitional
forms)which resulted in the highest variability in spectral characteristicswithin the class.
Houses and buildings have the same value of UA (0.48). PA is the highest for the houses
(0.8). The greatest confusion is noticed in the distinction between the buildings and roads
and as well between houses and roads. Confusion was also observed between macadam
surfaces that were mostly falsely classified as buildings. These misclassifications were
expected because the urban areas are the most complex and challenging to model despite
significant advances in GST. One of the major limitations in urban mapping is that many
different urban land coversmay share the same or similar spectral responses (e.g., cement
roads, parking lots, cement rooftops, and other bright surface features) [45] (Table 1).

Table 1. Confusion matrix generated for eight classes of Land-cover model.

Class Houses Build. Tree Lawn Roads Mac. Other Total UA Kappa
Houses 12 2 1 2 7 0 1 25 0.48
Buildings 2 12 1 0 9 1 0 25 0.48
Tree cover 0 0 23 2 0 0 0 25 0.92
Lawn 0 0 3 20 0 2 0 25 0.8
Roads 1 4 0 0 18 2 0 25 0.72
Macadam 0 6 0 0 1 15 3 25 0.6
Other 0 0 1 7 1 10 6 25 0.24
Total 15 24 29 31 36 30 10 175 0
PA 0.80 0.50 0.79 0.65 0.50 0.50 0.60 0 0.61
Kappa 0.54

For comparison purposes, we also carried out the land cover classification by aggre-
gation of the land classes according tomaterial characteristics (impervious or permeable)
(Table 2). The overall accuracy is significantly improved compared to classification per
functionality.However, two scenarios related to shadowsweremade. In the first, shadows
were excluded from the accuracy assessment because they are considered a deficiency of
multispectral imagery. Kappa coefficient for the classification of the impervious and per-
meable surfaces has increased to 0.76 and UA and PA for each class were higher than 0.8
(Table 2). Still, including the shadows in the assessment, the overall accuracy decreased
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to 0.67 (Table 3), but PA and UA of impervious and permeable surfaces remained high
(>0.79). Detected shadows mostly (85%) obscure impermeable surfaces which results
in false-negative results.

Table 2. Confusion matrix generated for aggregated classes (physical characteristics) excluding
shadows.

Class Impervious Permeable Total UA Kappa
Impervious 88 10 98 0.90
Permeable 12 77 89 0.87
Total 100 87 187 0
PA 0.88 0.89 0 0.88
Kappa 0.76

Table 3. Confusion matrix generated for aggregated classes including shadows.

.Class Impervious Permeable Shadows Total UA Kappa
Impervious 88 10 0 98 0.90
Permeable 12 77 0 89 0.87
Shadows 11 2 0 13 0
Total 111 89 0 200 0
PA 0.8 0 0 0.83
Kappa 0.67

4.3 Urban Landscape Metrics for Urban Land Use Pattern

SHDI was used to estimate the diversity of urban surfaces within user-defined polygons
according to their physical characteristics (permeability). Based on the obtained SHDI
values, the polygons are classified into five classes: 1) <0.2 (poor diversity), 2) 0.2–
0.4 (slight), 3) 0.4–0.6 (moderate) 4) 0.6–0.8 (high) 5) 0.8–1.53 (very high) (Fig. 5).
A high value of SHDI indicates that the types of land cover have approximately equal
proportions. In contrast, a low value indicates that the landscape is dominated by one
type of land cover) [22]. The absolute homogeneity (0) is not present within any of the
polygons.

Of the total number of polygons 38.08% have a diversity greater than 0.8, and 27%
poor, less than 0.2. Although there is no significant predominance of any class in the
total area, their grouping in specific parts of the city is observed. At the edges of the city,
polygons with permeable surfaces predominate, while impervious surfaces predominate
in the inner-city parts. Polygonswith a diversity higher than 0.8 coincidewith the old city
center and the wider area, which includes the residential zone (houses and buildings),
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and industrial and commercial zone (Fig. 5.). The largest patch is impervious surfaces
with a slight (13–25) or moderate LPI (25–40). It was noticed that the polygons with the
lowest SHDI (> 0 < 0.2) were mostly located in the recreational zone, Marjan Forest
Park. In this area, the predominant urban pattern is tree cover, and the LPI is higher than
65%. To better understand these patterns, we derived specific UPIs.

Fig. 5. Landscape metrics for city of Split (SHDI, LPI, LP).
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4.4 Urban Planning Indicators (UPIs)

The derived UPIs (Fig. 6) showed that vegetation indicators have a higher percentage in
the outskirts of the city, with the exception of the SK0109932 located in the western part
of the city, dominated by the Marjan Forest Park which has the highest GCR among all
circles (92.38%). Forest-Park is one of eleven nature protection categories in Croatia.
Tree cover is making 85.72% of the SK0109932 [54]. The high GCR is also noticed
in adjacent units south (SK0109959, SK0109908) of Marjan and in the eastern part
(SK0110701) where GCR mostly consists of lawn cover (Fig. 6). This SK includes the
Mejaši, a relatively young neighborhood that was merged with the city in the 2000s. In
recent times new residential buildings have been constructed in this area. As expected,
these statistical circles have the lowest ratio of impervious surfaces [54].

Fig. 6. Derived UPIs for Split [54].

The old city center along with the wider city center area stands out as the most built-
up part. These units (SK0109827, SK0109860, SK0109843, SK0110205, SK0109894,
etc.) are characterized by a prevalence of impervious surfaces (67–82%) and a lack of
green areas. The most dominant type of impervious surfaces in this area are streets and
buildings. These are older residential neighborhoods) [46]. The northern outskirts (SK
0110582, SK0110655) of the city are also characterized by a high presence of impervious
surfaces (Fig. 6). However, this part of the city is highly industrialized. Statistical circles
characterized by the highest values of SCR (SK 0110205, SK 0110582, SK 0110060,
SK 0110574, SK 0110655, SK 0110647) are located nearby the industrial zone, central
bus station, and passenger port [54].
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A large percentage of the IMP (buildings, roads, houses) in statistical circles is not
surprising given the history of spatial-functional development of the Split settlement.
Namely, in the period from the Second World War to the 1990s, housing construction
in Split was marked by socially-oriented collective construction with the objective to
build as many residential buildings as possible in the smallest area possible. After the
intensified industrialization a process on the outskirts of the city, due to cheaper land,
the construction of individual, mostly illegal housing units is taking place, which in the
1990s became the dominant form of housing construction) [46].

5 Conclusion

Themain results of this study are performedurban-landscapemetrics to analyze the urban
land-use pattern. The whole process of derivation of these indices is presented. The base
of analysis is the land covermodelwhich is generated from the very-high-resolutionWV-
3 satellite imagery using the GEOBIA method. Although remote sensing technologies
provide up-to-date information on the urban landscape in a relatively shorter amount of
time it is necessary to emphasize that the generated final model is highly determined by
the quality and resolution of MI input and by the depicted classification method. The
deficiency of MS are shadows that affect the occurrence of false-negative results.

The Split land-cover model is overall moderately accurate but an aggregation of
classes according to the physical characteristics increased the accuracy of classification.
Therefore, for SHDI observation, we recommend classification according to the physical
characteristics of the land cover rather than functionality. Although houses, buildings,
roads, and other facilities have different functionalities they are made of materials with
similar spectral signatures thatmay give a false picture of the heterogeneity of a particular
area which can mislead urban planners and therefore lead to environmental imbalance.

The predominance of impervious surfaces canmake certain parts of the citymore vul-
nerable to various dangers. Urban areas with dominant impervious surfaces are prone
to pluvial floods and the formation of thermal islands, so their identification is very
important in urban planning. This is emphasized in cities with limited expansion areas.
For example, the urban expansion of Split is limited by its geographical location and
orographic features so further development is envisaged within the existing bound-
aries which will potentially affect the increase of imperviousness. Diversity analysis of
hexagons showed that Split settlement is generally heterogeneous, and there are no poly-
gons with only one type of LC. Still, domination of the impervious surfaces is noticeable
in the city center and wider area. In that contest, metrics provided in this study can form
a basis for future planning and spatial organization of the Split settlement. The UPIs val-
ues at the studied level are the reflection of the historical spatial-functional development
and can be used for the analysis of different issues in an urban environment.
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47. Klempić, S.: Razvoj stambenih naselja Splita nakon Drugog svjetskog rata. Hrvatski
geografski glasnik 66(2), 95–119 (2004)
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Abstract. In the last years, the diffusion of the Precise Point Positioning (PPP)
technique has constantly increased thanks to the more precise and accurate results
that it can reach.Until some years ago, this techniquewas limited by longmeasure-
ment sessions to obtain good precisions (centimetre-level), using only one GNSS
dual frequency receiver. Online PPP free services that permit broad access to PPP
technique have spread. In this contribution, two PPP online services (Canadian
Spatial Reference System Precise Point Positioning tool; Automatic Precise Posi-
tioning Service) are analysed as potential solutions for realising GNSS surveys
in disadvantaged areas for the lack of geodetic infrastructures. The PPP online
services are compared with a relative positioning online tool (AUSPOS). Their
elaboration power was tested for different stationing times (three scenarios of 3 h,
1 h and 30 min, respectively). The data PPP-treated were collected in southwest
Niger, along the Sirba river. The results reveal precisions and relative accuracies
lower than 5 cm for three hours sessions. The short observation sessions (i.e. one
hour and half hour) emerged that APPS provide the most confident solutions. The
less performant service is AUSPOS, which provides 0,612 cm precision for one
hour. CSRS-PPP has precision values between the ones of AUSPOS and APPS.

Keywords: Point Positioning · High-Precision GNSS · NRTK · Free and Open
Services · Sub-Saharan Africa · Niger · Sirba River · Sahel · Topographic
Survey · Geodetic Disadvantaged Areas

1 Introduction

In recent years, the Global Navigation Satellite System (GNSS) has overcome traditional
survey methods, becoming a standard tool in many surveying sectors. Nowadays, GNSS
systems play a lead role in data acquisition thanks to the increasing number of satellites,
the low cost, the efficiency, and the variety of available products. From 2002 forward [1],
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Real-Time Kinematic networks (NRTK) have spread. These networks are composed of
GNSS stations of known coordinates, called Continuously Operating Reference Stations
(CORS), andmanaged by network software installed in a control centre. The introduction
of the CORSs has allowed users to collect data using oneGNSSmulti-frequency receiver
(instead of two). This is possible thanks to the direct connection between the CORS and
the dual-frequency receiver through the control centre. Today, a dense world network of
permanent stations to process GNSS data exists [2], revolutionising the data acquisition
modalities [3, 4].

Although CORSs cover most of the world’s countries today, some areas are still not
included in the network, such as some sub-Saharan countries (Fig. 1). Considering the
real-time positioning and the NRTK method, the rover receiver must be within a short
distance (less than 60 km) from the reference stations [5, 6].

A short baseline is fundamental to minimise the distance-dependent errors induced
by the troposphere, the ionosphere, and the orbital errors [7]. This specific requirement
can be an obstacle to realising NRTK surveys where there are no CORSwithin hundreds
of kilometres [8]. A possibility to overcome the lack of CORS is resorting to two GNSS
dual-frequency receivers in the rover-basemodality. This data collectionmethod requires
two GNSS receivers to communicate with each other (usually via radio): one works as
“base” or “master” (substituting the permanent station) and the other as “rover” that
collects the coordinates of the points of interest for the survey. The coordinates of the
base station must be known.

When a known-coordinates point is unavailable, post-processing operations are com-
pulsory to obtain the base’s correct position. One of the most common post-processing
methods is the PPP (Precise Point Positioning). To perform it, data regarding satellites’
orbits and the ionosphere are needed to process the pseudo-range and carrier phase mea-
sures of GNSS multi-frequency receivers [9–11]. These data are collected by permanent
stations that can also be located very far from the surveyed area [10]. In terms of East,
North, and Up components, the PPP can provide centimetre-level precisions in static
mode [12, 13] if the phase ambiguities are correctly fixed as integer values [14, 15]. The
precision of PPP corrections depends on the measurement session’s duration [16, 17].
Its effectiveness for the estimation of the positions has been demonstrated by several
authors, e.g. [10, 11, 18, 19], using precise orbits and satellite clocks from IGS [20, 21]
and many other providers [17, 22, 23]. RTK is a relative positioning technique based on
carrier-phase. Aminimum of four shared satellites between the two receivers is required.
Tracking more than four satellites improves the GPS position solution’s precision and
allows it to obtain a sub-centimetre accuracy level. The excellent accuracy results are
also because errors and bias from the same satellite should be equal. Thus, shorter is
the baseline, and more similar are the errors. Several error sources affecting positioning
accuracy in GNSS surveys exist [24]. Today relative technique provides better solutions
than the PPP technique in terms of accuracy [25]. The primary reason is the lower effects
of satellite orbit errors over relative techniques than the PPP technique.

Moreover, relative techniques can eliminate clock errors using double differencing
phase measurements [26]. The primary error sources of PPP (such as ionospheric and
tropospheric delay and clock bias) are usually mitigated by: i) employing the combi-
nations of dual-frequency GNSS measurements to eliminate the first-order ionospheric
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delay [10, 25]; ii) applying external error correction data (including satellite orbit and
clock corrections); and iii) modelling the tropospheric delay to correct it. Since a part
of tropospheric delay cannot be efficiently modelled because of its high variability, it
is estimated (wet component of tropospheric delay). Precise satellite orbit and clock
information are used to calculate the tropospheric residuals and associated gradients
with proper stochastic models, which means that the estimates are constrained by the
prior variance and its propagation value. Thus, PPP depends on the accuracy level of
this information [25].

Fig. 1. CORS in north Africa. The blue dots indicate the stations that provide observations to the
InternationalGNSSService (IGS),while the red square is the study area.DataSource: International
GNSS Service (IGS), (https://www.igs.org/). (Color figure online)

ThoughRTKandPPP techniques provide similar precision and accuracy, they require
different setups. On the one hand, RTK needs a complex configuration and (generally)
expensive equipment, but it rapidly provides higher accuracy. It is worth remembering
that the base station must be placed precisely on a known-coordinate point to achieve
high accuracy. On the other hand, the PPP technique needs a more straightforward setup,
but it has lower accuracy and a longer initial convergence time [25, 26]. Also, since PPP
does not use a base station, it is not affected by baseline length bias and can provide full
accuracy anywhere in the world.

Until some years ago, the satellites’ data, the ionosphere information, and the specific
software necessary to perform PPP were not easily obtainable. The PPP was limited to
a few expert users, such as academia and research institutes. Today, some commercial
and scientific solutions to perform PPP exist (e.g., Bernese, GIPSY, and GAMIT). Such
software can efficiently perform PPP as long as infrastructures with adequate computa-
tional power and skilled users are available. The PPP technique has raised the attention
of academia, industry, and governments [9]. In particular, the last ones have dedicated
specific attention to PPP, and some shared the socio-economic benefits of PPP with the
public, providing ad hoc coordinates online estimation services [9]. Some governmental
research centres provide PPP online free services. It is sufficient to upload the GNSS
raw data to obtain the correct position data from the services. These free web solutions
for PPP do not require high computational power or exceptionally skilled users, but each
service uses its estimation algorithms. Thus, the results provided can be very different.

https://www.igs.org/
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The scientific literature offers some interesting analysis of PPP online services, where
known coordinates points are processed with various PPP online services [27–29], and
the estimated coordinates are compared with known ones. Nevertheless, as far as the
authors know, fewof these studies analyse data collected in geodetic disadvantaged areas.
Indeed, the lack of CORS and known coordinates points is quite a frequent condition in
sub-Saharan rural regions, strongly affecting topographic surveys.

This work compares two PPP online free services to correct RTK data collected
through rover-base modality (i.e., static mode) in low-density CORS areas. The PPP
services considered are theCanadian Spatial Reference SystemPrecise Point Positioning
tool (CSRS-PPP) and theAutomatic Precise PositioningService (APPS).ACORS-based
post-processing free service is considered in the analysis as a non-PPP post-processing
online tool: the AUSPOS Online GPS processing service (AUSPOS). The precision,
the convergence time (meant as the length of time required to reach centimetre-level
positional solutions), and the structure and condition of the services’ use are analysed in
this paper. The data used for the comparison were collected in February 2018 along the
Sirba River (southwest Niger) in the framework of the ANADIA 2.0 project1 and this
work is premised on the outcomes of the tests that have been presented in [30].

2 The Case Study

ANADIA 2.0 project was born in 2017 to develop an early warning system against floods
and strengthen the local technicians’ competencies in monitoring and forecasting river
floods [31]. Indeed, Sahelian floods have become a relevant issue in the last decades due
to the ongoing climatic and land use changes [32, 33]. In this framework, high-precision
surface and hydraulic numerical models are necessary as inputs for the development
of forecast flood models [34–36]. Hence, to meet the project’s data requirements, a
topographic survey was carried out on the Middle Niger River Basin’s main tributary,
the Sirba River. More than 100 cross-sections were measured along a reach of 108 km
(one section per km), and flood-risked-exposed infrastructures were measured during
the dry period (February) to take advantage of the intermittent flow [37, 38]. 10 cm
accuracy for the Up component was required [31].

Although the closest CORS to the study area are in Nigeria and Ivory Coast, they
are more than 900 km away from the study region.

As discussed in the previous section, 900 km is a too-long baseline to guarantee
centimetre accuracy. Besides, the closest known-coordinates points are around 200 km
from the surveyed area. Considering these conditions, the only feasible way to collect
data was an RTK survey in master-rover modality with a radio-modem connection.
The PPP technique was used to post-process the data and estimate the base stations’
coordinates. The data were collected with two STONEX S10 dual-frequency receivers.

1 ANADIA 2.0 (Adaptation to climate change, disaster prevention and agricultural development
for food security) is a project funded by the Italian Agency for Development Cooperation
(AICS) and executed by Institute of BioEconomy of the National Research Council of Italy
(IBE-CNR) in partnership with the Department of Regional and Urban Studies and Planning
of the Politecnico di Torino (DIST) and the National Directorate for Meteorology of Niger
(DMN).
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The master receiver was placed in 17 stations along the Sirba River (Fig. 2), and 3,150
points were measured with the rover receiver. Each master station acquired data for at
least two hours, considering a session length of 3 h and 22 min as maximum. GPS,
GLONASS, BEIDOU and SBAS constellations were tracked.

Fig. 2. Surveyed area of SirbaRiver basin. The yellow squares identify the locations of the stations
along the river.

Some instruments malfunctioning, attributed to the high temperature, slowed down
the data collection. In the hottest hours of the day, the temperature reached 40 °C,
and the master receiver often overheated and stopped communication with the rover
receiver. The communication happened via radio using RTCM communication protocol
at 410–470 MHz frequency. The overheating prevented acquisition longer than 3 h for
most of the stations. The receivers’ communication was even more limited by the local
topography (Fig. 3) and the abundant vegetation along the river. Regularly, if the receivers
were more than 3 km away from each other, the communication stopped. In 9 days, 103
cross-sections along a river reach of 108 km were measured. The raw measurements
were saved in the Receiver Independent Exchange Format (RINEX) 3.01 version with
a sampling rate of 1 s.

3 Methodologies

As previously discussed, two possible techniques are available for post-processing: the
phase-based relative solution (base-rover) or thePPP [6]. This paperwill focus on thePPP
approach [39]. Todaymany possibilities for obtaining PPP solutions fromonline services
exist [40, 41]: some of them consider only the GPS constellation (e.g., APPS), and others
ones also GLONASS satellites (CSRS-PPP). The data collected by the master receiver
were stored in RINEX 3.01 version. Then, they were post-processed using two online
PPP free services: i) The Canadian Spatial Reference System (CSRS-PPP) and ii) the
Automatic Precise Positioning Service of the Global Differential GPS System (APPS).
Additionally, data were processed using a relative positioning online service, iii) Online
GPS Processing Service (AUSPOS), as a comparison against PPP technique geodetic
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disadvantaged areas. A summed table was created (Table 1) to recap the functioning of
the three services.

Fig. 3. Environmental conditions during the survey activities in the field. The master receiver (on
the tripod) is in the foreground, while the rover receiver is in the background.

3.1 Canadian Spatial Reference System Precise Point Positioning Tool
(CSRS-PPP)

Operative since 2003, the CSRS-PPP is an online free tool provided by the Canadian
Government [42]. It calculates the positions of the information collected by GNSS
receivers with high accuracy based on the RINEX files [43].

The CSRS-PPP uses GNSS ephemerides to produce absolute accuracy coordinates,
meaning using accuracy values independent of the collection’s location. The estimated
coordinates are as much accurate as long in the acquisition session. The CSRS-PPP uses
IGS ephemerides of three types, Final, Rapid, and Ultra Rapid that have the following
accuracy values [44]:

• FINAL (±2 cm), available after 13–15 days from the acquisition day, from the end
of the data collection week.

• RAPID (±5 cm), available from the day after the data collection.
• ULTRA RAPID (±15 cm), available every 90 min.

The service can process data in Kinematic and Static modes. Data can be post-
processed inNAD83 (inserting the referring epoch) or ITRF (International Terrestrial
Reference Frame) reference systems. It is possible to automatically convert ellipsoid
height into orthometric height by choosing between CGDV28 (Canadian Geodetic Ver-
tical Datum of 1928) or CGDV2013 (Canadian Geodetic Vertical Datum of 2013), both
valid only for surveys realised in Canada. It is possible to upload anOcean Tidal Loading
(OTL) file. The results are sent by email.



74 E. Belcore et al.

3.2 Automatic Precise Positioning Service (APPS)

TheAPPS is an online free service provided by the Jet PropulsionLaboratory (JPL) of the
California Institute of Technology of USA National Aeronautics and Space Administra-
tion (NASA). Its elaboration is based on the Global Differential GPS System (GDGPS)
products of JPL and the softwareGIPSY-OASIS developed by JPL. It applies a broad and
spread geodetic structure (more than 200 stations distributed worldwide). The GDGPS
operates since 2000 and declares a 99.999% reliability and precision under 10 cm [45].
The APPS uses the Jet Propulsion Laboratory’s final products of three types: Final,
Rapid, and Ultra Rapid Real-time [45]. The declared accuracy values are:

• FINAL (±3cm), called FlinnR, are available after ten days from the acquisition day.
• RAPID (±5 cm), called QuickLookR), are available the day after the data collection.
• ULTRA RAPID (±8 cm), 1 min after data is collected.

Registration is compulsory to have full access to the service. The available options
for the PPP are the processing mode (static or kinematic); the L1 code (C/A or P), if
an atmospheric pressure model is requested (it can be helpful in the calculation of the
hydrostatic delay for the troposphere modelling), the type of weight to assign to the
elevation datum (flat, sin or sqrt). The advanced options allow the user to set the value
of the cut-off angle and the output rate in seconds (clearly available only for kinematic
surveys). 10 Mb is the maximum file size allowed, and the files must be in RINEX
version 2.x. The results are provided directly in the upload window.

3.3 AUSPOS Online GPS Processing Service

It is an online free service provided by the Australian Government. It uses the relative
positioning technique to estimate the coordinate of an unknown-positioned mark when
it is over a reference station of known coordinates [23]. The Bernese Software System,
used to correct the coordinates, is very rigorous in the definition of orbital parameters,
and everything concerns the modelling of the geodetic aspects [46]. IGS provides the
information and the parameters regarding the orbit and the Earth’s orientation. Like the
CSRS-PPP and APPS, it uses the best available ephemerides. It is fundamental to under-
line that AUSPOS does not provide a PPP service since the applied data correction uses
data of the nearest IGS andAsia Pacific Reference Frame (APREF) stations. Consequen-
tially, the data confidence and the time dependency are influenced by the distance of the
reference stations used for the coordinates estimation. It was included in this analysis
as representative of the relative positioning of online free tools. The service does not
require any registration. The only information needed for the elaboration is the model,
the antenna height, and an email address. The files must be in RINEX version 2.11. The
upload limit is 20 files at once, but data must be referred for seven days. AUSPOS sends
the results via email.
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Table 1. Summary of the main characteristics of the three services at the processing time, calcu-
lated on a 10 Mb file. *If users submit RINEX V3 file, C2S (code measurement) and L2S (phase
measurement) from L2 frequency will NOT be accepted as presented in [30].

CSRS-PPP APPS AUSPOS

RINEX version 3.x 2.x 2.11*

Maximum file size 300 Mb 10 Mb Not specified

Multi-file upload Yes Yes Only via FTP

FTP No Yes Yes

Height of the antenna Automatically detected Automatically detected Manually set

User-defined
elevation-dependent data
weighted

No Yes No

User-defined cut-off
angle

No (default 7.5) Yes No

L1 code Yes Yes No

Upload of pressure model No Yes No

Direct results No Yes No

Compulsory registration
to the website

Yes No No

Processing time
(minutes)*

20 3 20

Reference system(s) of
the results

ITRF 2014, NAD83 ITRF 2014 ITRF 2014

Orthometric heights Yes No Yes

Elaboration report Yes No Yes

Graphic restitution of the
elaboration statistics

Yes No Yes

Ambiguity resolution No Yes Yes

GNSS constellations
processed

GPS+GLONASS GPS GPS

4 Results and Discussion

Before the PPP processing, the RINEX data were pre-processed. The RINEX files ver-
sion 3 were converted into RINEX version 2.11 with the RTKCONV tool that is part
of the open source software RTKLIB (http://www.rtklib.com/) [47]. Furthermore, the
frequency rate of acquisition was reduced to one observation every 5 s to have files of
less than 10 Mb, which is the file size limit of APPS service. The analysis considers
the precisions of the estimation of each service and the relative accuracy (measured as
the difference between coordinates) of 17 stations (one station of ANADIA 2.0 was

http://www.rtklib.com/
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excluded from this analysis because it is located outside the Sirba River basin). The final
coordinates have been converted into WGS84/UTM31N coordinates system. The APPS
service provides the σ values with 68% confidence, while CSRS-PPP and AUSPOS cal-
culate 95% uncertainties. Therefore, the uncertainty values of APPS were related to 2σ
confidence. Table 2 shows the session length and the date of acquisition for each station.

Table 2. Characteristics of the positions of the master receivers (Stations) analyzed in [30] and
resumed in this work. Gr = group, *dd/mm/yyyy.

Station ID Date of acquisition* Starting time Ending time Session length Gr

12S2 12/02/2018 12:58 14:49 01:51 1

10S4 10/02/2018 15:08 17:07 01:59

14M6 14/02/2018 09:28 11:43 02:15

10M4 10/02/2018 10:28 12:54 02:26

15S1 15/02/2018 13:46 16:30 02:44 2

19S14 19/01/2018 14:02 16:49 02:47

20S9 20/01/2018 14:24 17:12 02:48

15M3 15/01/2018 08:17 11:08 02:51

18S16 18/01/2018 14:09 17:02 02:53

21M8 21/01/2018 08:53 11:46 02:53

14S6 14/01/2018 13:38 16:35 02:57

11M5 11/01/2018 09:05 12:05 03:00

11S7 11/01/2018 13:43 16:52 03:09 3

12M2 12/01/2018 08:50 12:05 03:15

18M18 18/01/2018 08:05 11:28 03:23

20M12 20/01/2018 08:45 12:09 03:24

19M14 19/01/2018 08:25 11:52 03:27

12S2 12/02/2018 12:58 14:49 01:51

For the analysis, the stations were distributed in three groups of uniform acquisition
length: group 1 less than 2,5 h acquisition length; group 2 between 2,5 and 3 h; and group
3more than 3 h. The CSRS-PPP values had been taken as a reference for comparing the
services, as shown in Eqs. 1 and 2.

ΔCSRS-APPS = EC_CSRS-EC_APPS (1)

ΔCSRS-AUSPOS = EC_CSRS-EC_AUSPOS (2)

Where EC_ CSRS are the North, East and Ellipsoidal height coordinates of each
sample point estimated by CSRS; EC_ APPS are the North, East and Ellipsoidal height
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coordinates of each sample point estimated by APPS; EC_ AUSPOS are the North,
East and Ellipsoidal height coordinates of each sample point estimated by AUSPOS.
According to [48], a minimum of one hour is required for the horizontal solution from a
standard PPP static processing to converge to 5 cm. Approximately 20 min are needed
for 95% of solutions to reach a horizontal accuracy of 20 cm [49]. Thus, three different
scenarios of time acquisition were created using RTKLIBCONV [47] to investigate the
effectiveness of the services on short acquisition time: full acquisition length, one hour,
and a half-hour session.

Table 3 presents the minimum, maximum and average values of � CSRS-APPS and
�CSRS-AUSPOS, calculated as illustrated in Eqs. 1 and 2.

Table 3. Minimum,Maximum, andAverage of the differences between the coordinates estimated
by CSRS, APPS, and AUSPOS for each station as reported by [30].

Gr Min Max Av

1 �

CSRS-APPS
East 0.007 0.019 0.014

North 0.008 0.014 0.011

Up 0.005 0.046 0.024

�

CSRS-AUSPOS
East 0.005 0.067 0.023

North 0.001 0.014 0.007

Up 0.018 0.046 0.032

2 �

CSRS-APPS
East 0.001 0.026 0.01

North 0.002 0.011 0.006

Up 0.006 0.037 0.016

�

CSRS-AUSPOS
East 0.001 0.013 0.008

North 0.002 0.005 0.003

Up 0.006 0.069 0.029

3 �

CSRS-APPS
East 0.003 0.029 0.016

North 0.001 0.008 0.003

Up 0.001 0.024 0.011

�

CSRS-AUSPOS
East 0.000 0.04 0.021

North 0.002 0.004 0.003

Up 0.006 0.031 0.017

The difference between CSRS and AUSPOS of the East component ranges between
0 cm and 6.7 cm, which is a clue of high data dispersion. This is particularly evident
from distances between the average values of Groups 1 and 2, and it clearly indicates the
importance of stationing time longer than 1 h for improved precision. On the contrary,
the North component of the � CSRS-AUSPOS (and the � CSRS-APPS, too) is more
stable.
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Fig. 4. Graphical analysis of the uncertainties values of East, North, and Up coordinates of the
three services, obtained considering the full acquisition time and 1-h acquisition time [30].

Regarding the coordinates’ precision, the calculated uncertainty values range from
0.2 cm (East and North of APPS) to 65 cm (Up component of AUSPOS). The latter is not
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representative of the analysis and was interpreted as an exceptional event; thus, it was
excluded from the average computation. For AUSPOS, the distance from the reference
CORS is crucial in estimating the coordinate. The baseline ranges from 500 km to
1500 km on 14 reference stations in these analyses. From the reference literature, we
aspect Root Mean Square (RMS) values of position errors for baseline around 500 km
less than 4 cm, and less than 6 cm on each component (E, N, U) for baseline more than
1000 km. Such values are calculated over 24 h of acquisitions [50]. For shorter stationing
time, the precisions fall.

According to the report by Novatel [51], we can expect around 10 cm RMS values of
the position errors for baseline lengths between 700 km and 1000 km in 3-h stationing.
These values reflect our measures: AUSPOS is closed 8 cm on the Up component. For
groups 1 and 2, the uncertainties on the East component estimated by APPS are slightly
lower than those of other services (Fig. 3). Figure 3 shows the graphical analysis of
the uncertainty values of the East, North, and Up components and considers the full
and 1-h acquisition time. Similarly to Table 3, what stands out in Fig. 3 is the decrease
in uncertainties from Full-time acquisition (Group 3) and one-hour sessions (Group 1)
(Fig. 5).
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Fig. 5. Average (square), Minimum and Maximum values of the difference between the coordi-
nates estimated by online post-processing services and the real coordinates. Average, minimum,
and maximum are calculated for AUSPOS (a), CSRS (b), and APPS (c) in [30].

CSRS-PPP and APPS provide the lowest uncertainty values. With a shorter acqui-
sition time, the confidence levels of CSRS-PPP and APPS get closer (Fig. 3), while
AUSPOS shows similar trends for some stations (i.e., 19M14 and 18M18) and very
different for others (station 12S2). Table 4 lists the difference values between the coor-
dinates elaborated with the services on the 1-h session. Even if these trends are similar
to full acquisitions, a significant distance between the Up components can be observed:
the �CSRS-APPS peaks at 40 cm. For 30 min-acquisition time, AUSPOS did not pro-
vide any results because one hour is the minimum acquisition time required to perform
the coordinates estimations. CSRS-PPP and APPS’s performances peak in the East
component of 20 cm and reach 50 cm on the Up component.
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Table 4. Minimum, Maximum, and Average of the difference between the coordinates estimated
by CSRS, APPS, and AUSPOS for each sample station (1 h session), [30].

Service ITRF One-hour session � (m)

Min Max Av

� CSRS-APPS East 0.001 0.140 0.030

North 0.000 0.374 0.032

Up 0.005 0.108 0.044

� CSRS-AUSPOS East 0.006 0.432 0.099

North 0.002 0.403 0.037

Up 0.033 0.286 0.165

5 Data Validation

The lack of CORS in Niger makes it challenging to test the accuracy of PPP services.
Since there are no known-coordinates points to be used as a reference for accuracy anal-
ysis, only the precision values can be evaluated. To overcome this major constraint, we
analysed accuracies of post-processing services solutions in sub-Saharan areas consider-
ing the data of CORS settled in countries close to Niger. CORS at the same latitude of the
study area was sought to guarantee both the mean atmospheric conditions (ionospheric
and tropospheric delays) and satellite geometry distribution. Another possible approach
could be to collect 24 h of data to obtain results independent of the satellite geometry
distribution and guarantee the solution’s convergence, as described in the literature [52,
53]. However, it was impossible to realise long-session sessions due to weather con-
ditions. Hence, to check the estimations’ accuracy, raw observations of a CORS close
to the surveyed area were analysed with online services. The selected CORS was the
YKRO station (Yamoussoukro Tracking Station) in Cote d’Ivoire (1000 km away from
the study area) and part of the IGS network (Table 5).

Table 5. Main characteristics of YKRO. Source: IGS website, [30].

YKRO Site Information

City Yamoussoukro

Country Cote d’Ivoire

Tectonic Plate African Plate

Approximate Position, DMS (ITRF) LAT: +06°52′ 14.0170′′
LON: −05°14′ 24.3347′′

Elevation ellipsoid (m) 270.263

Date Installed 18-07-1999
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This station was chosen because it is the closest station (considering latitude) to the
investigated area, and it was operative at the time of the survey, February 2018. Besides,
it is away from the sea. This may ensure atmosphere conditions as similar as possible to
the ones in the study area. YKRO data of the survey days and the daily observations (12th

of each month of 2018) were downloaded from the IGS website. The YKRO dataset was
reduced to 3 h-lasting RINEX from 14.00 to 17.00, as the average lasting and repre-
sentative time for Sirba River acquisitions. Data were processed with the online free
services and estimated coordinated compared to the reference ones of the YKRO CORS
(Table 5). The results show relatively constant performances for the North component
and more dispersed results for the East and Up components. Figure 4 compares sum-
mary statistics (average, minimum and maximum values) for the differences calculated
between real and estimated coordinates. The highest dispersion of the East component
stands out in the graphs. CSRS and APPS have similar trends on the components, while
AUSPOS, even if it has average values close to one of the PPP, provided varying results
for theUp and East components. The results are never below 10 cm on the East andNorth
components while reaching 1 cm on the Up component. According to the literature, we
should obtain precision under 20 cm on horizontal components in 20 min. In our case,
CSRS-PPP did not provide results under 20 cm in a half-hour on the East component.
For example, in 30 min of session length, we reach the average precision of 0.247 cm
on the East component. The results expected for one-hour sessions are approximately
5 cm on the horizontal component. APPS fits well these general rules on East and North
components, while CSRS only focuses on the North component.

The coefficients of determination (R2, listed in Table 6) confirm these observations.
They verify that the estimated East component is the closest to the three services’ ref-
erence values, reaching 0.737 for the CSRS-PPP service. AUSPOS records the most
dispersed results in the Up component. In parallel, the Root Mean Square Error (RMSE)
calculated over each service’s estimations’ position errors provides a view of the accu-
racy. The East component presents the highest values, followed by the North component.
The lowest-RMSE service is the APPS for the Up component.

Table 6. R2 and RMSE values for the 2018monthly dataset of solutions provided by the analysed
services, [30].

R2

Online Service East North Up

CSRS 0.235 0.737 0.273

AUSPOS 0.070 0.292 0.017

APPS 0.253 0.391 0.104

RMSE (m)

CSRS 0.220 0.193 0.016

AUSPOS 0.221 0.192 0.040

APPS 0.223 0.193 0.015
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Regarding YKRO analysis, even if remarkable differences between the coefficients
of determination are present, the RMSE values differ for no more than 0.2 cm in the
North and East components. The estimated height above the ellipsoid by APPS is the
closest to the YKRO reference, only 1mmon average values fromCSRS-PPP. It is worth
mentioning that AUSPOS does not use YKRO for ambiguity resolution, but it relies on
stations located approximately 500–2000 km from YKRO.

CSRS-PPP and APPS use different ephemerids. This may affect the estimated coor-
dinates because they strongly affect PPP results; thus, we might have different effects
in the case of every other product. Besides this, the ephemerids seem not to interfere in
the estimations. Additional considerations regarding the efficiency of PPP online free
services can be addressed. APPS is the most rapid service in the data processing. It
permits the analysis of a large quantity of data (industrial application) by uploading the
RINEX files on an FTP provided by JPL (not tested in this contribution). APPS results
are delivered directly from the website after a few seconds (depending on the data size),
while AUSPOS and CSRS send the results via email. Nevertheless, APPS has an inter-
face that may look complicated for non-GIPSY-expert users and does not provide the
results in a report. CSRS-PPP is functional because the upload process is intuitive, and
the results report is easily interpretable.

6 Conclusions

This manuscript tests and describes PPP online free services to correct RTK data col-
lected through rover-base modality (i.e., static mode) in geodetic disadvantaged areas.
Three GNSS post-processing services are analysed, the Canadian Spatial Reference
System Precise Point Positioning tool (CSRS-PPP) and the Automatic Precise Posi-
tioning Service (APPS), and the AUSPOS Online GPS processing service (AUSPOS,
CORS-based post-processing free service). The services are adequate and effective for
the post-processing corrections of the master-rover RTK survey.

According to our analysis of Niger data, APPS reveals to be the most precise PPP
free online service among the ones investigated in this paper, followed by CSRS-PPP,
which guarantees satisfying performances in an easily interpretable report, and, finally,
AUSPOS presents the less precise results, but it is highly intuitive.

The Canadian CSRS-PPP was used in the ANADIA 2.0 project. The obtained results
have ± 4 cm precision, a value that satisfies the needs of the ANADIA II project in
Niger. Nigerien technicians of the ministerial office in charge of meteorology and water
resources have actively participated in the field surveys, appreciating the potential of the
RTK master-rover survey.
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Abstract. Volunteered Geographic Information is a form of user-generated con-
tent, organized in applications and online platforms which compile information
about recreational uses. These data are mostly freely available and seen as alter-
natives to trail inventories and visitor surveys. VGI is useful in studies on informal
trail networks to assess visitor-related impacts which may disturb natural and cul-
tural conditions, affecting local resources and causing landscape fragmentation
through large scale processes. The present research explores the use of georefer-
enced tracks from an outdoor sportswebsite, as an alternative resource to assess the
distribution of informal trails, their spatial and temporal use, and related impacts
in the Arrábida Nature Park, Portugal. A total of 2495 individual tracks, of the
3923 tracks initially downloaded (28911,254 km) were passing through the study
area, with 2100 using the official roads andmarked trails, while 395were using the
informal trail network. Hiking and biking are the activities that most use informal
trails and the places with the highest intensity of use are located between Vale da
Rasca and Aldeia Grande. As for landscape fragmentation, there is a decrease in
all management zones, with more than 90% of the change in higher protection
areas. The proposed method allowed the provision of important insights regarding
how the territory is being used, making it also a valuable and alternative resource
to assess the spatial distribution of informal trail networks in protected areas and
assess the related fragmentation effects.

Keywords: Informal trails · Volunteered geographic information · Outdoor
activities · Protected areas

1 Introduction

In 2017, the United Nations declared the International Year of Sustainable Tourism for
Development, partially to address the growth of “overtourism” and its negative conse-
quences, as predictions stated a steady growth of visitors through the coming decade [1,
2]. The world protected areas did not escape the general concerns, as they represent an
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important destination for nature-based tourism, outdoor recreation, and leisure activi-
ties, with over eight billion visits to terrestrial designated sites every year [3]. Recent
changes in the global society, such as the democratization of global traveling, technolog-
ical advances, and social media, and new trends regarding healthier lifestyles, including
the practice of regular physical exercise are pointed out as the reasons for this upward
trend [4].

Recently, the COVID-19 pandemic has disrupted general visitation trends due to
travel restrictions, and many consequences reached far beyond the health implications,
challenging protected areas worldwide [5]. Despite that, in the urban context, the out-
break demonstrated the importance of nature for city residents, when relaxation oppor-
tunities are limited, with urban natural and protected areas experiencing considerable
levels of visitation [6, 7]. In some cases, parks and particularly paths and trails had to be
closed to prevent virus transmission due to overcrowding, but also to avoid visitor-related
impacts due to non-compliance with site rules [8].

The uptick in visitation has the potential to create a two-sided negative impact - a
decline in the quality of recreational opportunities the sites are expected to provide; and
related impacts on the ecosystem components, local communities, and infrastructure of
these places [9]. Thus, in order to achieve the necessary balance between conserving
biodiversity andproviding compatible visitor experiences, parkmanagersmust recognize
that both sides must be managed equally to properly protect these areas [10, 11]. This
is the case of recreational trails, an important infrastructure present in many protected
areas, that is used as a common strategy to minimize impacts by concentrating visitor
flow on appropriate trail surfaces [12, 13].

When formal trail networks fail to provide the desired access, and movement within
natural areas, users often tend to widen paths or venture off-trail, leading to the appear-
ance of new informal trails, created casually or deliberately by foot trampling or bike
traffic [14, 15]. Both networks of formal and informal trails can create a range of direct
and indirect impacts on vegetation, wildlife, hydrology, and soils [16–19], although as
informal trails are generally poorly located, lacking proper design, construction, and
maintenance, there are greater impacts reported on these networks [12, 13]. Trail use
can damage sensitive vegetation, due to trampling, leading to a decline in plant com-
munities extension, height, and composition [16, 20–23]. Trampling can also result in
soil erosion and compaction, with further effects on soil loss, nutrient leaching, and
soil microbiology [16, 24–31]. Impacts can also include the introduction and spread of
invasive species and pathogens, and as well displacement of wildlife [32–37]. At the
landscape scale, trail networks may also exacerbate ecological fragmentation effects in
relatively undisturbed habitats, by reducing plant communities, altering environmental
conditions of vegetation patches, and restraining the movement of species [38–41].

Landscape fragmentation effects of formal infrastructures, such as roads and trails,
have long been a concern among landmanagers and researchers [32, 33, 44, 45], contrast-
ing with limited studies on landscape level impacts related to informal trail networks [19,
46]. As informal trails are composed of several short segments with complex patterns,
assessing their extended impacts is considering the main challenge when implementing
extensive monitoring campaigns in protected areas [47–49]. This is particularly impor-
tant for many protected areas, in particular, those with limited resources, as common
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informal trail inventories, are time and resources demanding, as they are performed using
hand-held GPS units and walking through the entire network system [12].

There has been a considerable increase in the number of people consuming, creating,
and sharing their recreational and leisure experiences on social media platforms, which
presents an endless opportunity to acquire information over large areas in a time and
cost-free way [50, 51]. As such, a growing focus on newmethods and sources of data for
assessing spatial and temporal patterns of visitors’ use is now rising, including interest in
user-generated content fromsocialmedia andgeographic content providedvoluntarily by
people (VGI) [52, 53]. Suchdata hadbeenused to estimate global nature-based recreation
[54], identify spatial patterns in park popularity [55], assess spatial patterns, estimate
the attractiveness of outdoor and adventure offers [56], identify popular locations, and
estimate the volume of visitor flows [57], and to measure use intensity and places of
potential conflict of uses [58]. Beyond the physical aspect, recreational activities have
become also a motive for social networking, with dedicated fitness and travel websites
and mobile phone applications compiling VGI data in a variety of formats. Among
them, georeferenced tracks of users’ routes are a common component of VGI, that are
recorded with GPS-enabled devices or created with specific software, together with
secondary specific information (e.g., user data, type of activity, level of difficulty, points
of interest, etc.), representing recreational activities that are usually developed along
roads and trail networks. As they are composed of multiple points with geotag data (i.e.,
lat/long coordinates), and information on the altitude and distance, they can provide
useful information regarding the type of user and activity, and related spatial and temporal
behavior of people in recreational and protected area trails.

AsmoreVGIof recreational activities are freely available to the public on the internet,
without apparent control overwhat is uploaded, users aremotivated to explore new routes
and destinations, regardless of the rules and regulations in place. Therefore, GPS tracks
will naturally reflect the spatial distribution of use in informal trails, by comparing it
with the existent formal infrastructures, making it possible to make an approximation of
the extent of the informal trail network within a recreational area in an effective, cheap,
and accurate way [59].

This research extends the study by Monteiro and Cabral [60], by also exploring the
use of GPS tracks from an outdoor sports platform for mapping and assessing informal
trail networks in protected areas. Nevertheless, the present study intended to go deeper
by showing the potential of VGI to assess the temporal patterns of recreational use along
the PNAr infrastructures; the intensity of use along informal trail networks; and the
amount of change in the PNAr management zones, as a result of fragmentation effects
from informal trails.

2 Study Site

TheArrábidaNature Park (PNAr), is a protected areawith approximately 17500 ha, from
which 5200 are marine reserve, located in the municipalities of Sesimbra, Palmela, and
Setúbal, 35 km south of Lisbon (Fig. 1). The PNAr is an important natural area located
within the Lisbon Metropolitan Area (near 2,8 million inhabitants), which attracts many
tourists and local visitors from the region, due to its high-quality landscapes and privilege
location in the Metropolitan Area.



The Use of Volunteered Geographic Information 89

The rich ecosystems of the PNAr, which are created by a combination of its geology,
vegetation, and location, are home to numerous rare, threatened and endangered species
of fauna and flora that are included in the Natura 2000 Network. For the park manage-
ment, it established four main management zones: Urban, Complementary Protection,
Partial Protection, and Total Protection.

Most of the PNAr activities are performed using the local trail system network,
but although there is a high demand for outdoor recreation within the park, there is a
limited offer regarding formal recreational infrastructures for activities such as hiking
and cycling. The formal trail system network’s total length is 82,9 km and includes
eleven designated trails.

The PNAr is facing growing pressure from being densely populated, and increasing
demand for outdoor activities, primarily onweekends, notorious effects of park visitation
can be observed along trails, with impacts such as root exposure, soil erosion, and an
extensive informal trail network. As a result, informal trail development leads to an
unregulated influx of tourists and visitors to more sensitive areas within the park, making
their assessment and related impacts a challenging task for park managers.

Fig. 1. Location of Arrábida Nature Park.

3 Material and Methods

This study assessed the informal trail-related fragmentation impacts from recreational
activities within the PNAr using recreational volunteer data collected from a crowd-
sourced online platform, as a way to describe the spatial patterns of 30 recreational
activities developed along trails. Cycling, hiking, and running were treated individu-
ally in further analysis, and the remaining activities were aggregated in two big groups,
motorized, and others, following the mobility typology proposed by [61]. A reason for
this is also, as, in other studies, these three activities are the most common activities
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developed on trails in the Portuguese context [56, 62]. The following section introduces
the data source andmethod used in the study, beginningwith the collection of the dataset,
the data processing and spatial analysis of GPS tracks using a GIS, and the assessment
of trail-based fragmentation using predefined landscape metrics.

3.1 VGI Data Collection and Processing

The main dataset used in the research was collected from the Wikiloc website [63], a
popular crowdsourced online platform, that operates since 2006, for storing and sharing
GPS tracks of recreational activities.Wikiloc has one of the best data coverage in Europe,
and it proved to be a suitable data source for assessing off-trail use in protected areas
[59, 62]. By August 2022, more than 35 M tracks (850000 for Portugal) existed on the
platform, shared by approximately 10 M users around the world.

GPS tracks were downloaded from Wikiloc using Setúbal, Sesimbra, and Palmela
municipalities as the main search criteria, and considering all activities that are suitable
to be developed in trails. AsWikiloc queries impose a download limit to a fewGPS tracks
per user/day, web scraping techniques were used to download the final VGI dataset. In
addition to the GPS track file, information related to the tracks was also collected, such
as route name/number, date posted, date recorded, type of activity, route length, route
type (linear or circular), and downloads received.

Additional spatial datasets used in the studywere provided by the PNArmanagement
staff, including a layer with the official road network, a layer with all formal trails within
the park, and a layer with all management zones.

All layers, together with GPS tracks downloaded in.gpx format were later imported
into a Geographical Information System (GIS) for preprocessing and analysis. Dupli-
cated tracks, routes drawn by users, and those with evident spatial errors were eliminated
unless the error could be corrected. The debugging process allowed for the creation of a
clean shapefile of the final dataset, which was later overlaid to the PNAr limits to select
all routes that crossed or were within the park boundaries.

3.2 Informal Trail Network Mapping

For extracting the informal trail network, a compliance analyses was used to assess
the GPS tracks that used the official PNAr infrastructure, composed of the park roads
and formal trail network. Due to the nature of GPS data, a 30 m width buffer of the
formal infrastructurewas created, tominimize all positional errors due to deficientGNSS
reception under inadequate atmospheric conditions and canopy cover [64]. This process
allowed extracting all tracks that intersected the buffer’s polygons, activities complying
with the park’s formal infrastructure, and those that did not (selection, dissolve, and
erase functions), activities that used informal trails.

The resulting trail networks datasets were used in conjunction with PNAr data to
conduct 3 analyses:

1. Comparison of formal and informal trail network extent, by summarizing and compar-
ing the lineal extent of both infrastructures within the park limits, and across different
management zones;
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2. Assessment of relative use intensity along the informal trail network, using a square
grid of 25 m to generate a raster map with the number of times a GPS track, that
uses the informal trail network, crosses each cell. The resulting raster’s cells store
the different intensities of use, that were further reclassified in 6 quantiles, following
Campelo and Nogueira Mendes [62];

3. Evaluation of informal trail-related fragmentation at the landscape level, adopting a
method similar to Wimpey and Marion [12], were different landscape metrics (Num-
ber of Patches; Mean Patch Size; Largest Patch Index; Mean Perimeter: Area Ratio)
were calculated for both networks (Table 1). The PNAr management zone layer was
used to summarize and compare related fragmentation effects across different zones.
This comparison emphasizes the effects of both networks and gives insight into the
degree to which they have already contributed to the fragmentation of that landscape.

Table 1. Landscape fragmentation metrics.

Metric name Description

Number of Patches Number of patches of the corresponding patch type

Mean Patch Size (MPS) Average patch size in a total class area (m2)

Largest Patch Index (LPI) Area of the largest patch of the corresponding patch type divided
by total landscape area (m2)

Perimeter-Area Ratio (PAR) Ratio of the patch perimeter (m) to area (m2)

4 Results

The final dataset downloaded from Wikiloc consisted of 3923 individual tracks, repre-
senting a total accumulated of 28911,254 km, with 63,6% of the tracks (2495 tracks)
crossing the limits of PNAr (Fig. 2). This subdataset was uploaded into the platform
between March 2006 and October 2021, by 189 users, which contributed with 2421
tracks (97% of the total). The remaining 74 tracks were submitted by anonymous users.

Considering the temporal track upload into the Wikiloc platform, as a possible indi-
cator of use seasonality for different activities, over the years, most categories were
uploaded during the spring months of March and April, and autumn months of October
and November (Fig. 3).

According to the considered search criteria, tracks of the hiking category were the
most commonly uploaded than any other type of activity, with 1016 tracks submitted
by 91 different users, and “others” activities were the less uploaded category within the
dataset (Table 3).

4.1 Comparison of Formal and Informal Trail Network Extent

As for the lineal extent of use on each network, a total of 3839,414 km of tracks were
considered using the PNAr formal infrastructure, and the remaining 669,586 km used
the informal trail network (Table 2).
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Fig. 2. Study area and GPS tracks’ dataset.
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Fig. 3. Seasonality of GPS tracks present in the dataset.

Table 2. Linear extent of GPS tracks using the PNAr formal infrastructure and informal trail
network.

Track type Number of tracks Km Km/track

Formal infrastructure 2100 3839,945 1,829

Informal trail network 395 669,603 1,695
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When considering the linear extent of formal and informal networks through the
PNAr management zones, 66% of the informal trail network appears in the complemen-
tary protection zone, 27% in partial protection, and the remaining 7% in full protection.
These results represent potential management conflicts between current uses and each
management zone.

Table 3. Number of GPS tracks and related lineal extent of each activity along the PNAr formal
infrastructure and informal trail network.

Activity On formal infrastrcture On informal trails

N tracks Km N tracks Km

Cycling 528 (21,2%) 96547,189 107 (4,3%) 181,385

Hiking 877 (35,2%) 160363,417 159 (6,4%) 269,535

Running 345 (13,8%) 63084,811 86 (3,4%) 145,786

Motorized 261 (10,5%) 47725,031 32 (1,3%) 54,246

Others 89 (3,6%) 16274,053 11 (0,4%) 18,647

4.2 Assessment of Relative Use Intensity Along the Informal Trail Network

When using a map algebra approach to analyse the use intensity on the formal infras-
tructure of the Park and informal trail network, results from the raster calculator show
that 31,19% of the cells were present along the formal infrastructure, and 40420 were
cells with use just on informal trails (Table 4).

Table 4. Summary of use intensity assessment along the PNAr formal infrastructure and informal
trail network.

Track type Number of cells %

Formal infrastructure 62573 31,19

Informal trail network 40420 20,15

As for the intensity of use on informal trails, considering the reclassification of the
dataset in a 6 quantile, over 26% of cells are present between Q1, with low levels of use,
and on the other side 6648 of cells are in Q6, corresponding to high levels of use. These
high levels of use are mainly located between the villages of Vale da Rasca and Aldeia
Grande, but also close to Cabo Espichel and along the Serra do Louro (Fig. 4).
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Fig. 4. Use intensity along the informal trail network.

4.3 Assessment of Informal Trail-Related Fragmentation at the Landscape Level

Fragmentation metrics results were generated for formal infrastructure and informal
trails, and comparisons were done plotting them against the PNArmanagement zonation
plan. The results of the fragmentation analysis applied at each management zone are
shown in Table 5.

Every management zone experienced a substantial increase in the number of patches
when including the informal trail network in the metric analysis, with the Partial P. Zone
presenting the biggest increase in the number of patches (+427,6%). As for the Mean
Patch Size, on the other hand, there was a decrease in all management zones for this
metric between both networks. The Total P. Zone was particularly affected, presenting
the biggest numeric decrease inMPS (84006,13m2). In part because infrastructural, such
as roads and trails, development in this management zone is relatively absent, making
informal trails the main drivers of fragmentation.

A comparison of results of the Largest Patch metric for the formal infrastructure and
the analysis including the informal trail network showed an increase for the Partial P. and
Total P. Zones, while for the other management zones the Index decreased. The Mean
Perimeter Ratio comprised an increase for all zones, but the Urban Zone has experienced
the biggest proportional effect, increasing 126,7%

Regarding the percentage of change between the fragmentation with formal infras-
tructure and informal trail network, all management zones experienced a major overall
decline in their area, with the Total Protection zones, suffering a decline of more than
90% with the effects of informal trails (Fig. 5).



The Use of Volunteered Geographic Information 95

Table 5. Landscape fragmentation indices across the PNAr management zones, and percentage
of change.

Fig. 5. Formal infrastructure and informal trail network throughout the PNArmanagement zones.

5 Discussion

In protected areas, commonly, informal trail studies are performed using direct methods,
where extensive fieldwork is carried out, with the help of hand-held GPS units and by
walking the entire network system [9]. For the present study, an alternative method is
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presented for mapping and assessing the impact of informal trails in the PNAr, using
VGI data of recreational activities from a sport and travel dedicated platform.

The approach goes in line with recent developments in the field of visitor monitoring,
where researchers and local managers are looking at VGI components as alternative
sources of information to understand the spatial and temporal patterns of recreational
use [65]. Approaches based on VGI are believed to produce valid preliminary results,
with fewer resources needed, that can further sustain and validate management decisions
in protected areas [66].

Through the years, several authors have used Wikiloc datasets to evaluate different
aspects of visitor use within recreational and protected areas, such as use intensity, social
conflicts, and visit and visitor characteristics [58, 61]. On the other hand, research on
off-trail use using VGI data is mainly limited to sub-goals of main visitor monitoring
studies. Nevertheless, the selection of Wikiloc proved to answer the main study goals,
by producing a significant amount of information regarding the recreational use within
the PNAr, and more specifically on informal trails and related impacts.

The number of GPS tracks existent in the final dataset (3635 tracks), could provide
indications regarding the popularity of the PNAr within the Lisbon Metropolitan Area
for nature-based tourism and outdoor sports could be inferred, as in other studies [56].
Although to support this conclusion, future analysis of the attractiveness of these pro-
tected areas would be required, considering visitor characteristics, such as origin, and
visit preferences.

As for the seasonality of track uploads into the Wikiloc platform as an indicator of
visitor use, other studies also have proved that outdoor activities in Portuguese recre-
ational and protected areas are mainly performed during the spring and autumn seasons
[56, 66]. These yearly patterns might be due to weather conditions of the temperate
regions, with favorable mild temperatures happening during these seasons.

The use of the PNAr networks shows that despite visitors mostly using the official
roads and trails, off-trail use is still happening, leading to the creation and proliferation of
visitor-created informal trails. Informal use was most observed close to local cities, such
as Azeitão, Palmela, and Setúbal, and also around the promontory of Cabo Espichel. The
proliferation of informal trails around cities is many times a consequence of recreational
activities generally occurring around users’ residence areas or regions [40]. In the Cabo
Espichel area, informal use can lead to environmental impacts, by damaging existing
plant communities with limited tolerance to trampling, and soil erosion impacts [19].

Considering the extent of informal trails in each management zone to understand
their relative impact, results show that informal trail use and development are not always
evenly distributed.The complementary protection zone compiles the highest linear extent
of informal trails, a likely fact, considering that the baseline values for this management
zone already accounted for human development other than roads and trails. The presence
of informal trails in the full protection zone, also shown by [67], represents management
conflict as these are areas where use is forbidden due to it’s high ecological value.

When comparing fragmentation at the landscape scale, it shows that fragmentation
results are similar to those presented in several studies [21, 40]. In every fragmentation
index, the management zones experienced substantial declines caused by the inclusion
of informal trails. These are important findings, as fragmentation metrics can be used
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as comparative measures for the relative impacts related to the development of informal
trails. Additional analysis should examine the correlation between the degrees of habitat
fragmentation and the health of ecosystems, as fragmentation can cause edge effects,
producing impacts on the functional and structural components of the vegetation [68,
69].

6 Conclusion

During the COVID-19 pandemic, people in Metropolitan Areas have actively sought
time outside for restorative and wellness benefits. Given the extraordinary numbers of
people turning to outdoor recreation in these times, potential impacts can appear in local
recreational and protected areas, leading to a decrease in the quality of the visitors’
experience.

The development and proliferation of informal trails is one of these impacts, that can
compromise the conservation value objectives of many urban and peri-urban protected
areas. As such, this research is the first to apply a VGI-based approach to assess the
extent of informal trails and related impact effects at a landscape scale. It develops on
the limited research field of informal trail impacts in protected areas, by developing an
objective methodology, based on VGI georeferenced tracks, stored in online platforms,
as an alternative solution to common extensive fieldwork.

The present study provides a snapshot of the current state of recreational use and
related fragmentation impacts. Most importantly, the proposed method will allow others
to update the analysis as new datasets and information are available over time. The app-
roach intends also to stimulate further investigation and complement other monitoring
techniques, such as on-site trail counters, visitor surveys, and trail conditions assess-
ments. This will allow recreational and protected area managers to produce sustained
planning decisions, by providing them with the necessary knowledge on the use of for-
mal and informal infrastructure and allowing them to balance the needs of conservation
and recreation as best as possible.
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Abstract. Rooftop photovoltaics have been acknowledged as a criti-
cal component in cities’ efforts to reduce their reliance on fossil fuels and
move towards energy sustainability. Identifying rooftop areas suitable for
installing rooftop photovoltaics-referred to as utilizable areas-is essential
for effective energy planning and developing policies related to renew-
able energies. Utilizable areas are greatly affected by the size, shape,
superstructures of rooftops, and shadow effects. This study estimates
utilizable areas and solar energy potential of rooftops by considering the
mentioned factors. First, rooftops are extracted from LiDAR data by
training PointNet++, a neural network architecture for processing 3D
point clouds. The second step involves extracting planar segments of
rooftops using a combination of clustering and region growing. Finally,
utilizable areas of planar segments are identified by removing areas that
do not have a suitable size and do not receive sufficient solar irradiation.
Additionally, in this step, areas reserved for accessibility to photovoltaics
are removed. According to the experimental results, the methods have a
high success rate in rooftop extraction, plane segmentation, and, conse-
quently, estimating utilizable areas for photovoltaics.

Keywords: Rooftop solar energy · Spatial analyses · Plane
segmentation · Rooftop extraction · Deep learning

1 Introduction

Rooftop photovoltaics have emerged as a promising solution for satisfying a
portion of the energy demand in urban areas owing to their great potential
for scalability and lower greenhouse gas emissions. Rooftop photovoltaics allow
buildings to become active power producers, reducing their reliance on external
energy sources [8]. However, not all rooftop areas are utilizable for photovoltaic
deployment. Utilizable rooftop areas are limited by various factors, the most
important of which are the shape, orientation, and superstructures of roofs, as
well as occlusion [36]. A rooftop with proper orientation and no superstruc-
tures or surrounding objects offers high solar energy potential. In contrast, a
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north-facing rooftop with many superstructures surrounded by tall buildings (in
the northern hemisphere) may not offer high solar energy potential. Moreover,
local climate conditions and geographical location may affect the solar energy
potential of rooftops.

Manual identification of utilizable rooftop areas based on the mentioned fac-
tors can be time-consuming and even unfeasible, especially for large regions.
Hence, more efficient and automated approaches are necessary to expedite the
process of identifying utilizable areas. In this context, analyzing LiDAR datasets
has been recognized as a potential way to automate this process [15]. LiDAR
datasets provide 3D spatial profiles of the area and allow for automatic compu-
tation of characteristics of rooftops and their surrounding objects, such as area,
height, tilt, and azimuth. The issue of identifying utilizable rooftop areas for
photovoltaics installation has been addressed through developing spatially-based
methods utilizing geoinformatics. These methods start by outlining the borders
of rooftops, modeling their shapes, and identifying areas that are utilizable for
rooftop photovoltaics [2,5]. These methods typically take into account the tilt,
orientation, and superstructures of rooftops when identifying utilizable areas. In
this study, utilizable areas of rooftops are identified using a new spatially-based
method.

2 Related Work

2.1 Extraction of Rooftops and Modeling Their Form

Identifying utilizable rooftop areas entails several steps, the first of which is deter-
mining the extent of rooftops. This step is crucial as it provides information on
the overall surface area of rooftops, which can then be used in further analyses to
pinpoint utilizable areas. With the fast advancement of remote sensing technolo-
gies, point clouds of varying resolutions have become more and more accessible.
Consequently, research within the field of automatic building extraction from
point clouds has received widespread attention, and many methods have been
developed. In these methods, points belonging to rooftops are extracted based on
their geometric and morphological features that are different from other objects,
such as trees and roads. In this context, a variety of machine-learning approaches
have been applied.

In [21], the AdaBoost algorithm was used to classify LiDAR data into four
categories: roads, grass, buildings, and trees. Different features, such as height,
height variation, and normal vector variation, were used for the classification.
Their method was tested on ten regions, and the evaluation results indicated
an accuracy of 92%. In [3], support vector machines (SVMs) were employed to
identify rooftops. They proposed a new method named data reduction based
on locality-sensitive hashing (DRLSH) to automatically select training samples
for SVMs. The method was evaluated on a test site in Gothenburg, Sweden,
and the results showed its suitable performance. In another study [4], a different
instance selection method for SVMs was developed. The method-named border
point extraction based on locality-sensitive hashing (BPLSH)- was tested on
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several datasets, and the results showed its superiority over other methods. In
[33], PointNet++ was used to identify rooftops from LiDAR datasets. It is a
deep neural network architecture for 3D point cloud analysis [27]. The authors
could accurately identify rooftops in point clouds, showing the potential of this
deep learning architecture for 3D data analysis.

Rooftop extraction is required for different spatial applications, but reliable
spatial analyses of rooftops require modeling their shape. This is particularly
important in identifying utilizable areas as the solar suitability of rooftops and
the efficiency of photovoltaics rely on rooftops’ form. The angle at which a
rooftop faces the sun affects the amount of sunlight that photovoltaics receives
[40]. Model-driven and data-driven are two commonly used approaches for roof
shape modeling.

In the model-driven approach, the rooftop shape is determined based on a
predefined library of roof shapes [41]. Indeed, the approach defines a library of
roof shapes and chooses a shape that best matches the point cloud or surface
model. In [20], this approach was used to model the shape of rooftops in Uppsala.
It ensures regularized planar patches and low sensitivity to noise as it incorpo-
rates prior knowledge about roof shapes into the modeling process. However,
the performance of this approach depends on the defined library’s completeness.
If the library is not comprehensive enough, it may not accurately represent the
rooftop shapes. Moreover, this approach may overlook rooftop superstructures
(e.g., chimneys), which play an important role in identifying utilizable areas.

In the data-driven approach, planar segments are derived independently of
the overall roof shape [10]. This can be quite beneficial in adhering planar seg-
ments to their underlying surface. Furthermore, this approach is not limited to
a set of predetermined shapes, and thus it is capable of extracting all planar
segments of any arbitrary polyhedral rooftops-including rooftop superstructures
[7,16]. Various techniques are commonly utilized in the data-driven approach,
such as region growing, random sample consensus (RANSAC), and clustering
[38,39].

Region growing is a method to group close pixels with similar characteristics
into larger regions or objects. Region growing begins with selecting a number
of points (seed points) known to belong to a plane. Then, it iteratively adds
neighboring points that meet coplanarity criteria until no more points can be
added to the plane. Coplanarity criteria are typically based on measures such as
point distance, normal vector difference, and curvature and are used to ensure
that the added points are coplanar with the initial seed points. In [18], planar
patches of rooftops were segmented using region growing to estimate rooftop
solar potential. In [12], a method that replaces points with volumetric elements
called voxels was presented to enhance the computational efficiency of region
growing. The performance of region growing is greatly affected by how the seeds
are arranged and the accuracy of the estimations of surface properties such as
normal direction and curvature at various points.

In RANSAC-based methods for plane segmentation, a subset of samples is
chosen each time, plane models fit each subset, and the model with the most
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inliers is chosen. Inliers are points that lie close to the fitted plane model, while
outliers lie far away from the fitted plane model. In [10], RANSAC was used
for plane segmentation. Despite the simplicity of classical RANSAC, applying
it to plane segmentation in point clouds may result in the detection of spurious
planes. Several variations and adaptations of RANSAC have been developed to
overcome this issue [38].

Clustering-based methods form planar segments by grouping points with sim-
ilar features, where the definition of features should enable clear differentiation
of planar segments. In a well-defined feature space, points on the same planar
segment should be mapped close together. In [31], a clustering-based plane seg-
mentation method based on normal vectors was proposed. The segmentation
process uses fuzzy k-means clustering, and a validity index-the degree of com-
pactness and separation of the resulting clusters-is used to obtain the optimal
number of clusters. Moreover, a planarity test that distinguishes planar from
non-planar points is incorporated to enhance clustering. In [22], density-based
spatial clustering of applications with noise (DBSCAN) [13] was used to extract
planar segments of rooftops. The feature space for clustering was defined using
position, slope, azimuth, and shadow. The choice of clustering algorithm is cru-
cial in this class of methods, and clustering algorithms with high time complexity
might be impractical for handling high-resolution point clouds.

2.2 Identification of Rooftop Utilizable Areas

Different factors limit utilizable areas of rooftops for installing photovoltaics
[32]. Rooftop superstructures (e.g., chimneys), shadow effects caused by adjacent
buildings or trees, and regulations governing the installation of photovoltaics
are among the factors that impose limitations [6]. Identifying utilizable areas
is critical to avoid overestimating the potential of rooftop solar energy, which
could lead to unrealistic expectations and inaccurate planning for integrating
solar energy into existing power infrastructures. By considering utilizable areas,
developing more informed and realistic strategies for deploying photovoltaics is
possible, which can contribute to the transition towards more sustainable energy
systems [15,25].

The challenge of identifying utilizable areas has been the subject of numerous
studies [9]. A commonly used method for identifying these areas is to use a set
of loss coefficients, which indicate the average reduction in available rooftops
[29]. These coefficients are determined based on simplified assumptions about
rooftops, such as a proportion of rooftops mainly in shadow or used for non-
photovoltaic purposes (e.g., air conditioning and accessibility). Although this
approach is computationally fast, adapting coefficients to new areas is not trivial,
and unsuitable loss coefficients may result in overlooking rooftop variations [35].

To address this issue, a few spatially-based methods have been recently pro-
posed. However, most of the proposed spatially-based methods are limited to
manual digitization [11] or simplified roof shape modeling [20], or they may not
consider shadow effects [23]. This study identifies utilizable areas with more spa-
tial details by analyzing roof shapes, roof superstructures, and shadow effects. It
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aims to automatically (a) extract rooftops using a deep learning-based method,
(b) segment planar rooftop patches using a clustering-based method, and (c)
identify utilizable areas using morphological operations.

3 Methods

In this section, the procedure for identifying utilizable areas and estimating the
solar energy potential of rooftops is detailed. It relies on using LiDAR datasets,
which can provide detailed 3D information about an area. It assumes that the
LiDAR data has enough density to accurately capture the shape of the rooftops
and superstructures that may affect solar energy potential estimates. The major
steps of the procedure are explained in the following sections.

3.1 Extraction of Rooftops

The task of rooftop identification falls within the domain of semantic segmen-
tation, in which the objective is to detect points that constitute rooftops. Deep
learning methods have made significant progress in recent years and demon-
strated impressive results in various semantic segmentation tasks, making them
suitable for this purpose. Our study employs PointNet++, a state-of-the-art
deep learning architecture designed to handle point cloud data such as LiDAR
[27]. PointNet++ is a hierarchical neural network for semantic segmentation of
unorganized point data, and it enables multiscale point feature learning. It has
the potential to be trained without requiring parameters that are specific to
objects in LiDAR. A PointNet++ network consists of sampling, grouping, and
mini-PointNet layers. The sampling layer chooses points that form the centroids
of local regions. The grouping layer constructs local region sets around the cen-
troids. The mini-PointNet layer abstracts the sets of local features into higher-
level representations using a series of convolution, normalization, relu, and max-
pooling layers. Please refer to [27] for more details. To effectively train Point-
Net++ for rooftop extraction, we utilize labeled point cloud datasets encompass-
ing various rooftop features. These labeled datasets provide crucial information
on the structure, geometry, and spatial distribution of rooftop points, enabling
the network to learn and recognize the distinguishing characteristics of rooftops.

3.2 Rooftop Plane Segmentation

This step involves dividing rooftops into planar or flat regions. It is necessary
to identify utilizable areas as planar segments unobstructed by superstructures
(e.g., chimneys) provide stable and consistent surfaces for mounting photo-
voltaics. Plane segmentation is performed on digital surface models (DSMs);
thus, the recognized rooftop LiDAR point clouds are converted into DSMs. Pla-
nar segments are extracted by clustering, and the feature space for clustering is
defined by normal vectors of pixels obtained by fitting a plane to the pixel and its
neighbors. Pixels on the same planar segment have similar normal vectors; thus,
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planar patches can be identified by grouping them together. Some pixels in each
planar segment may, however, have normal vectors that are inconsistent with
those of other pixels in the same segment. These pixels are known as non-planar
pixels, as they are placed in the vicinity of more than one plane. Including these
pixels in clustering may disturb the creation of planar segments since they shat-
ter the boundaries of clusters of normal vectors. As a result, non-planar pixels
must be identified and excluded from clustering. Principle component analysis
(PCA) is used to evaluate the planarity of each pixel.

To cluster normal vectors, a minimum density divisive clustering (MDDC)
algorithm is used [26]. MDDC is a density-based hierarchical clustering algo-
rithm, which assumes continuous regions of low probability density separate
clusters. Clusters are formed by hyperplanes that pass through regions with
low probability density. The adaptability (i.e., it requires no input parameters)
and high computational efficiency of MDDC make it suitable for handling large
datasets. Since segmentation using MDDC does not consider the spatial con-
nectivity of pixels, each resulting patch may comprise multiple parallel planar
segments that are spatially separated. To split multi-part patches, Euclidean
clustering based on pixel coordinates is applied [30]. Finally, the non-planar pix-
els, initially excluded, are assigned to the best segment using region growing. In
this manner, the issue of over-segmentation that could potentially occur during
clustering is also addressed.

3.3 Rooftop Utilizable Areas

This stage entails calculating the solar energy potential of rooftops. Since it is not
feasible to install photovoltaic panels across the entire rooftop surface, determin-
ing the utilizable areas for photovoltaics is crucial to prevent the overestimation
of energy generation. Utilizable areas refer to specific rooftop sections where
photovoltaic installation is practical. Therefore, every planar segment undergoes
a thorough spatial analysis to pinpoint these utilizable areas.

Portions of planar segments need to remain clear of photovoltaics to maintain
accessibility, which is an essential requirement for panel installation. Frequently,
a gap between the photovoltaic edge and the segment, known as the service area,
must be preserved. To exclude these areas, we utilize a morphological erosion
operation with a circular structuring element whose radius is equal to the width
of the service areas [34]. The erosion operation shrinks the roof face by the width
of the service area. In addition to service areas, there might be some areas of
planar segments that are too small for a photovoltaic to fit, and these areas
should be excluded. To accomplish this, we use morphological opening opera-
tions in accordance with Algorithm 1. The inputs to the algorithm include a
segment RFT obtained from the previous step, a structuring element represent-
ing a solar panel SP, and a set of angles Δ for rotating the structuring element.
The algorithm applies a series of opening operations with varying directions of
the structuring element, as solar panels can be installed in different directions in
practice. Each iteration identifies regions in the segment that can accommodate
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a rotated solar panel through the opening operation. The output RFTG is the
merging of all suitable regions obtained over the iterations.

Algorithm 1. Pseudo-code for removing areas that cannot accommodate a solar panel.

Input: A shrunken segment RFT

A solar panel SP with a size of RPVsize

A set of rotation angles Δ = {0◦, 10◦, 20◦, · · · , 170◦}
Output: A segment without geometrically unsuitable parts RFTG

1: RFTG ← a zero matrix with a size of RFT

2: for each θ ∈ Δ do
3: SPθ ← rotate SP with an angle of θ
4: Iθ ← OSPθ [RFT ] %OSPθ is an opening operation with structuring element SPθ

5: RFTG ← union(RFTG, Iθ)
6: end for
7: RF c

TG ← connected component labeling(RFTG)
8: for each RF r

TG ∈ RF c
TG do

9: if area(RF r
TG) > area(SP ) then

10: Preserve RF r
TG

11: end if
12: end for

Once geometrically incompatible areas have been eliminated; the residual pla-
nar segments undergo assessment for solar irradiation. Segments with average
solar irradiation falling below a designated threshold SI are excluded, as photo-
voltaic installations typically avoid rooftop areas with insufficient sunlight. This
process helps discard segments predominantly in the shade or those with unfa-
vorable tilts (e.g., excessively steep) or azimuths (e.g., facing north), resulting
in the identification of utilizable areas for photovoltaic installation.

By having utilizable areas, the energy potential of rooftops is determined. A
rooftop’s total solar electricity yield is calculated according to Eq. 1. E is the
total solar electricity yield of a rooftop in kWh. Si and ψi are the total solar
irradiance (in kWh/m2) and the tilt angle of the i-th utilizable segment. α and
β are the efficiency and performance ratio of the photovoltaics, d is the area of
each pixel of the DSM (in m2), and N is the number of utilizable segments of a
rooftop.

E = α · β · d ·
N∑

i=1

Si

cos ψi
(1)

4 Datasets, Results and Discussion

Two datasets are employed in this study to evaluate the performance of the
methods. Dayton Annotated LiDAR Earth Scan (DALES) is the first dataset
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[37] used to train and evaluate PointNet++ for rooftop extraction. As a pub-
licly accessible resource, DALES offers a comprehensive assortment of LiDAR
data from various environments, making it well-suited for deep network train-
ing. The dataset encompasses 40 manually labeled scenes. The second dataset
encompasses an area within Uppsala city, Sweden, and its LiDAR point cloud
was created by the Uppsala municipality. This dataset serves the purpose of
plane segmentation and solar energy calculation. To facilitate plane segmenta-
tion assessment, we manually identified and labeled planar segments of rooftops
and used them as ground truth data. Some scenes from the datasets are shown
in Fig. 1.

Fig. 1. Some sample scenes from the LiDAR datasets.

The results obtained by applying the procedure to the datasets are presented
and discussed. The first step of the procedure is to extract rooftops, which is
done by utilizing PointNet++. Of the 40 scenes in the DALES dataset, 29 are
designated for training, while the rest serve as test samples. Individual scenes are
subdivided into non-overlapping 50-by-50-meter tiles to maximize the dataset’s
utility. Each tile is then downsampled to contain only 9000 points, speeding up
the training process. To train the deep network, the Adam optimizer with a
gradient decay rate of 0.9 is used [19]. The maximum number of training epochs
is set to 20, with each epoch consisting of 485 iterations. At the beginning of the
training, the learning rate is set to 0.0005 and is reduced by a factor of 0.1 in
epoch 10. Regularization is used to minimize overfitting, and the regularization
factor is set to 0.1 [24].

The performance of the trained deep network for rooftop extraction is
assessed by applying it to the test scenes and comparing its predictions with the
ground truth labels. To quantitatively evaluate the similarity between predicted
and actual labels, accuracy and intersection over union (IOU) are employed as
measurement metrics. These metrics are calculated according to Eqs. 2 and 3,
where TP , FP , and FN are the numbers of true positives, false positives, and
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false negatives, respectively.

Accuracy =
TP

TP + FN
(2)

IOU =
TP

TP + FP + FN
(3)

The results show that the trained deep network has an accuracy of 92.60%
and an IOU of 87.38% on average in the test scenes of the DALES dataset, show-
ing its satisfactory performance in rooftop extraction. Thus, the trained deep
network can be applied to any area. We employ it in the extraction of rooftops
from the second dataset. Figure 2 shows some examples of rooftop extraction
from the second dataset. The boundaries of rooftops have been extracted and
regularized using α-shape [1] and polyline compression [17] algorithms, respec-
tively. The figure shows that rooftops have been effectively distinguished from
other objects.

Fig. 2. Some identified rooftops. The underlying orthophoto serves solely for visual-
ization purposes.

Subsequently, planar patches of rooftops are segmented using clustering, fol-
lowed by region growing. The MDDC algorithm used for clustering normal vec-
tors does not require prior knowledge regarding the dataset as input parameters,
and it adaptively determines the shape and number of clusters in the data. The
angle and height thresholds used in region growing were set to 7◦ and 10 cm.
These values were obtained using trial and error in a small part of the dataset.
Figure 3 shows plane segmentation results of some rooftops. It illustrates the
effectiveness of the plane segmentation method in detecting roof faces. Small
superstructures, such as vents and small chimneys, that are not identifiable as
distinct planar segments appear as openings within the segments. In this way,
the impact of superstructures can be considered in the identification of utilizable
areas. By comparing the plane segmentation results with the ground truth data,
the performance of plane segmentation is quantified in terms of accuracy and
IOU. The assessment results show that the plane segmentation method has an
accuracy of 98.69% and an IOU of 98.22%, suggesting that most planar segments
have been accurately detected.
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Fig. 3. The outcome of plane segmentation for some rooftops.

To effectively locate areas utilizable for photovoltaic deployment, a rooftop
solar irradiation map is necessary, in conjunction with planar segments. This is
attributed to the need for cost-efficiency, which discourages the installation of
photovoltaic systems in regions with low solar irradiation. The solar irradiation of
each segment is estimated using the solar model of ArcGIS Desktop [14,28]. The
solar model incorporates viewshed analysis to account for shadowing effects. The
viewshed analysis generates a Boolean image indicating the extent to which the
sky is occluded by surrounding objects as seen from a certain place in the DSM.
In addition to occlusion, the solar model takes into account site orientation,
atmospheric effects, and variations in the sun’s position, making it a reliable tool
for estimating global solar irradiation. Figure 4 illustrates the annual global solar
irradiation distribution across some rooftops, computed with ArcGIS Desktop.
The impact of shadows cast by surrounding objects is evident in this figure.

Fig. 4. Annual global solar irradiation of some rooftops.

Rooftop areas utilizable for solar panels are determined by excluding ser-
vice areas, geometrically unsuitable areas, and areas with low solar irradiation.
An erosion operation whose structuring element has a radius of 30 cm is used
to remove service areas. Next, a series of opening operations are performed to
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discard areas incapable of accommodating photovoltaic panels. The size of the
structuring elements of opening operations is set to 1.7 m × 1.0 m, which is
the common size of a commercial rooftop photovoltaic panel. Moreover, the
solar irradiation threshold SI used to remove low-irradiated areas is set to 1000
kWh/m2/year. Figure 5 shows the resulting utilizable areas of some rooftops
in the dataset. The figure clearly illustrates how the methodology takes into
account minor superstructures, indicated by white circles, when identifying uti-
lizable areas. It also shows that buffers equivalent to the width of service areas
have been removed from planar segments. Furthermore, some large planar seg-
ments have been removed due to insufficient solar irradiation. The approach
successfully considers factors such as rooftop shape, orientation, superstructures,
and occlusions when determining suitable areas for placing photovoltaics.

The study area encompasses a total rooftop area of 4224 m m2, with 700 m2

deemed utilizable. Annually, the entire rooftop area generates 403505 kWh of
electricity, while the utilizable portions contribute 90105 kWh of electricity. The
electricity yield has been estimated using Eq. 1, where the efficiency and per-
formance ratio of the photovoltaics were set to 0.16 and 0.75, respectively. The
utilizable areas account for only a small percentage of the total rooftops (16.6%);
as a result, evaluating the solar energy potential of buildings based on their entire
rooftop areas could result in overestimation.

Fig. 5. Utilizable areas of some rooftops. The impact of superstructures is highlighted
by white circles.

5 Conclusion and Future Work

Rooftop photovoltaics have acquired a prominent place in cities due to their
potential to contribute to energy sustainability. They a have high capacity to
reduce carbon emissions and environmental impacts of energy generation. Reli-
able assessments of rooftop solar potential require finding areas of rooftops where
photovoltaics may be installed efficiently. In this study, a procedure was devel-
oped to estimate the solar energy potential of rooftops. First, rooftops were
extracted from LiDAR point clouds using PointNet++, and their boundaries
were regularized. Then, planar segments were extracted based on clustering
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and region growing integration. The clustering step requires no prior knowl-
edge regarding the dataset and has an optimized computational speed. In this
step, planarity analysis was also incorporated to enhance clustering. Afterward,
utilizable areas were determined by considering service areas, solar irradiation,
roof shape, and occlusions. The results showed that rooftops and their planar
segments were successfully extracted with 93% accuracy and 88% IOU and 99%
accuracy and 98% IOU, respectively. In addition, it was observed that the shape,
orientation, and superstructures of rooftops and shadow effects were satisfacto-
rily considered in identifying utilizable areas. As a result, the procedure can be
regarded as a reliable way to estimate the solar energy potential of rooftops in
practice.

Although the methods have shown remarkable performance, there is still
room for improvement. The economic feasibility of installing photovoltaics was
not assessed in this study. The economic feasibility assessment involves estimat-
ing the costs and benefits of installation, such as the initial installation cost,
maintenance expenses, and potential revenue from surplus power supplied to
the grid. This assessment can aid in identifying the most economically viable
rooftop areas for photovoltaics, considering both the potential for power pro-
duction and the associated costs and benefits. Another potential direction is to
extend the methods to include the façades of buildings. Our procedure focused
only on rooftops and considered rooftops to be the only areas with the potential
for installing photovoltaics. But façades of buildings can also have the suitable
potential for generating energy. Thus, future work can extend our procedure to
include façades in addition to rooftops.
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