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Abstract. Deep Learning has shown great potential in developing applications
capable of automatically generating captions or descriptions for images and video
frames. The critical components of this process are image processing and natural
language processing, which play a crucial role in captioning images and videos.
These applications can be used in several areas, including robotic vision sys-
tems, assisting people with visual impairments, generating metadata for search
engines, answering visual questions, visual grounding, and more. This paper dis-
cusses various working algorithms such as a combination of CNN-RNN, encoder-
decoder, attention mechanisms, and transformation models with evaluation matri-
ces, datasets, and limitations of existing models. Xception-LSTM shows great
potential compared to the traditional encoding-decoding model using BLEU and
METEOR evaluation matrics.

Keywords: Image captioning · Xception · Long-short term memory (LSTM) ·
CNN (convolution neural networks) · RNN (Recurrent neural networks)

1 Introduction

Image processing is an essential aspect of computer science and has substantial relevance
across various fields, including object detection, scene interpretation, and visual recog-
nition. Dedicated hardware was used by researchers for executing imaging techniques to
get appropriate results, especially for rigid objects before the emergence of deep learn-
ing. However, CNN and RNN driven by deep learning have important influences on
visual-to-text generation, demonstrating remarkable progress recently.

The task of describing a scenario depicted in an image or video clip comes naturally
to humans, but it poses significant challenges formachines. To tackle this issue, computer
scientists are exploring methods to integrate the ability to comprehend human language
with the capability to automatically extract and analyze visual data, thereby enabling
machines to perform similar tasks. Although, extracting objects with their actions from
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the image and producing crisp as well as relevant sentences needs much substantial work
in comparison to a simple image recognition task.

Image and video caption generation primarily involve analyzing an image’s features
and generating a corresponding textual description. As this field demands visual and
textual mastery proficiency, it utilizes a blend of CV and NLP techniques to translate
image comprehension from feature vectors into words arranged in the proper sequence.
The captioning method must capture the objects in the given scenario as well as their
traits, actions, and interrelationships.

Therefore, the most common method for image captions is the encoder-decoder
architecture, which combines a Convolutional Neural Network (CNN) to encode image
features and a Recurrent Neural Network (RNN) to generate a caption.

It has a clear separation of tasks – The CNN is responsible for encoding the image
features, while the RNN is responsible for generating the caption. This separation of
tasks makes it easier to debug and analyze the model.

Overall, the Encoder-Decoder architecture is a popular choice for image captioning
due to its effectiveness, flexibility, simplicity, and clear separation of tasks.

This paper mentions the following details in upcoming sections, which are related
work of image captioning, the Proposed Methodology, Results, and Discussion, and at
the end conclusion and future work.

2 Related Work

Our research has involved an in-depth exploration of numerous studies about image
captioning, encompassing a range of techniques, datasets, and evaluationmethodologies.
CNN is often used to extract features from an image. These features are then used as
input to a language model that creates the image caption. CNNs are trained on large
image datasets and can learn to recognize patterns and features in images [1, 3–5, 7,
8, 12, 15, 17]. RNN takes as input the output of the previous step (which is a word
embedding) and the visual features that the CNN extracted from the image. And then
generates the next word in the caption [3, 8].

Encoder-decoder models are a type of neural network architecture that leverages an
encoder component to extract features froman input and adecoder component to generate
an output. In the context of image captioning, the encoder is typically implemented using
a convolutional neural network (CNN), which extracts salient features from the input
image. On the other hand, the decoder is usually implemented using a recurrent neural
network (RNN), which generates the caption based on the features extracted by the
encoder. [2, 17]. This innovative approach has served as a starting point for subsequent
research in the area of image captioning in 2015 [18].

Subsequently, the author of [19] introduced a novel approach to simultaneously train
a CNN and an RNN for generating captions by aligning image regions with their corre-
sponding linguistic units. To facilitate their experimentation, the authors employed the
COCO dataset, which has since emerged as a widely accepted benchmark for assessing
the effectiveness of image captioning models. Of significance, this paper also introduced
the CIDEr score, a widely used evaluation metric for image captioning models [19].
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After that, an attention-based approach to image captioning was introduced [20],
where the model learns to selectively attend to different image regions when generating
captions. The authors showed that attention mechanisms improve caption quality and
reduce ambiguity, and proposed a novel “hard” attention mechanism that can be trained
using backpropagation [20]. Attention mechanisms play a vital role in enabling image
captioning models to focus on the most pertinent aspects of an image during caption
generation. Rather than solely depending on the global image features, attention mech-
anisms allow these models to selectively concentrate on specific regions of the image
that are most relevant to the current context of the caption being generated [2, 5, 13].

Thereafter bottom-up and top-down attention mechanism combines object-level fea-
tures with region-level features to generate captions introduced [21]. This paper intro-
duced a new dataset called Visual Genome, which contains more detailed object and
attribute annotations than other datasets used for image captioning. This paper also
introduced a new evaluation metric called SPICE, designed to measure the semantic
similarity between generated and human captions [21].

Afterward, a new pre-training approach for image captioning that combines vision
and language tasks to learn joint representations of images and captions was introduced
[22]. The authors of this paper use a Transformer-based architecture that is pre-trained
on a large corpus of image-caption pairs and shows that their method achieves state-of-
the-art performance on several benchmark datasets.

Following that, a new Transformer-based architecture for image captioning that uses
a meshed-memory mechanism to selectively attend to different regions of the image
and the caption was introduced [23]. The authors show that their method outperforms
other Transformer-basedmodels and achieves state-of-the-art performance on theCOCO
dataset. Transformer Models Transformers are a relatively new development in the field
of natural language processing and have proven to be highly successful in tasks such
as text generation and machine translation. This is mainly because they use a self-
attentionmechanism that allows them toprocess input sequences simultaneously,making
them well-suited for processing long input sequences such as captions. When creating
captions, Transformer models are usually equipped with an encoder for extracting image
features and a decoder for generating captions [11].

Visual Question answering is one of the major applications of image captioning
that is mentioned in [24]. This paper proposes a new pre-training approach for image
captioning using a single encoder to encode images and captions jointly.

Anewapproachwas brought up in [25] for generating image captions by parallelizing
the decoding process to improve efficiency. The authors propose a hierarchical structure
for the caption that allows the model to generate the words in a parallel and efficient
manner. The authors show that their method achieves state-of-the-art performance on
the COCO dataset and is significantly faster than other models.

Throughout the years, numerous encoder-decoder techniques have emerged, employ-
ing different variations of Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN).
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3 Methodology

A combination of CNN-LSTM is a commonly used Neural network in image captioning
[3, 5–9, 12, 13, 15, 17]. In the proposed model Xception model is used for feature
extraction. The Xception takes an input image and outputs a vector of visual features as
the following equation.

V = Xception(I) (1)

In the given context, before utilizing the Xception model, a series of image prepro-
cessing techniques were employed to adequately prepare the image. Consequently, the
Xception model was applied to extract the feature vector associated with the image. In
the current context, In Eq. (1) the variable “I” represents the input image, while “V”
refers to the vector of visual features extracted from it.

The Xception model’s utilization of depthwise separable convolutions, in contrast
to traditional CNN models, delivers notable improvements in computational efficiency
and speed. This architectural choice enables the model to analyze spatial relationships
and feature interactions more effectively while minimizing redundant computations.
Therefore, the Xception model is used for encoding features from the image compared
to the traditional one.

Fig. 1. Proposed Model

In the case of the decoding side, LSTM is a type of RNN that is frequently used for
image captioning tasks because it is better suited for capturing long-term dependencies
in sequential data such as natural language [3, 5–9, 12–13, 15, 17]. Figure 1 depicts the
flow of the proposed model with training and testing bifurcations.

In image captioning, a critical task involves the model’s ability to comprehend
the context of the image and produce a fitting caption accordingly. To this end, the
LSTM network is employed to process the image features extracted by an Xception.
The LSTM network generates a sequential set of words, which are then combined to
form a grammatically sound and semantically coherent sentence.

Compared to conventional RNNs, LSTM networks possess an added memory cell
capable of preserving and retrieving information over extended periods. This feature
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enables LSTMs to more effectively manage long-term dependencies, a challenge for
traditional RNNs. Additionally; LSTMs overcome the issue of vanishing gradients that
are commonly encountered in traditional RNNs, thereby increasing the effectiveness
and efficiency of the network [5, 6, 9].

Moreover, LSTM networks can also selectively forget or remember information
from the previous time step, making them well-suited for tasks where the model needs
to maintain a context for a long period.

Therefore,we have usedLSTMnetworks over traditionalRNNs for image captioning
tasks because of their ability to better capture the complex dependencies and long-term
context of natural language data.

The LSTM takes the vector of visual features from the Xception and generates a
sequence of words that form the image caption. The LSTM does this by processing each
word in the sequence one at a time and updating its internal state based on the previous
words in the sequence. This can be represented in Eq. (2)

ht = LSTM
(
V , h{t−1}

)
(2)

yt = Softmax
(
W{hy}ht + by

)
(3)

where V is the visual features at time t, ht is the internal state of the LSTM at time t,
yt is the output probability distribution over the vocabulary at time t, and W{hy} is the
weight matrix connecting the LSTM output to the vocabulary, and by is the bias term.

The Softmax function is used to convert the output of the LSTM to a probability
distribution over the vocabulary so that the network can predict the next word in the
sequence based on the probability of each possible word as per Eq. (3).

In this paper, we have used the Flickr8k dataset. It contains 8000 images [26], each
with five different captions provided by human annotators. The dataset is divided into
the train, validation, and test sets, and is often used for evaluating image-captioning
models.

Figure 2 depicts the outcome of our proposed model where we have used the start
and end keywords to indicate the starting and ending of the captions.

4 Results and Discussion

Several evaluation methods are used for image captioning, including:

1. BLEU:
It is an evaluation metric used in natural language processing to measure the

quality of machine-generated translations. It compares the n-gram overlap between
the sentences. BLEU scores range from 0 to 1, with higher scores indicating a better-
quality translation. [2, 4, 5, 8, 11–17].

2. ROUGE:
The ROUGE evaluation matrix consists of several metrics, including ROUGE-

1, ROUGE-2, and ROUGE-L. ROUGE-1 calculates the overlap of unigrams (single
words) between the generated and reference summaries. ROUGE-2 calculates the
overlap of bigrams (pairs of adjacent words), while ROUGE-L measures the longest
common subsequence between the generated and reference summaries [8, 10, 12, 15,
16].
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Fig. 2. Results of Xception-LSTM model on Flicker30K dataset

3. METEOR:
It uses a combination of unigram precision, recall, and alignment-basedmetrics to

evaluate the similarity between the sentences.METEORis designed to handle nuances
of natural language such as synonyms, paraphrases, and word order variations, [5, 6,
8, 10, 12, 13, 15–17].

It should be emphasized that a holistic assessment of image captioning systems
cannot rely solely on a singlemetric. Instead, a blend ofmultiple evaluation techniques
is usually employed to achieve amore comprehensive and precise evaluation of image
captioning system performance.

The Xception-LSTM model evaluates the quality of the captions generated using
BLEU and METEOR matrices shown in Fig. 3. BLEU evaluation works on n-gram
overlapping words where the n value changes from 1 to 4. Based on the value of n
results decrease. With that METEOR works on the ordering of the generated caption
compare to the labeled caption.

5 Limitation

Despite significant advancements in the field of image captioning in recent years, there
remain several challenges and issues that require attention and resolution. Here are a
few examples:

• Context – It can be challenging to generate an accurate caption that conveys the
intended message of an image. A single image can be perceived in different ways,
leading to ambiguity in generating a descriptive caption. For example, a picture of
a person riding a bicycle might be captioned differently depending on the specific
details in the picture. The caption could vary from “aman riding a bicycle”, “a woman
riding a bicycle” or “men riding a vehicle” depending on the contextual information
in the image.
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Evaluation 
matrices Results 

BLEU-1 85.4 

BLEU-2 67.6 

BLEU-3 51.0 

BLEU-4 38.8 

METEOR 50.8 
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Fig. 3. Evaluation matrices on Flicker30k dataset using Xception-LSTM

• Ambiguity – Creating a precise and descriptive caption for an image can be a difficult
task due to the ambiguity and subjectivity of visual content. Images can be inter-
preted in various ways, making it difficult to generate a single caption that accurately
represents the content. Additionally, there may be more than one valid caption for a
single image due to the different interpretations that people may have.

• Rare or Unseen Words – In some cases, image captioning models may generate
captions that contain infrequent or unfamiliar words, making them difficult for people
to comprehend. This issue can be particularly troublesome for individuals who do
not have expertise in the language utilized in the caption.

• Data Bias – The process of training image captioningmodels involves using extensive
datasets of image-caption pairs. However, these datasets may occasionally exhibit a
bias towards particular types of images or captions. Consequently, the trained model
may generate less accurate or less descriptive captions for certain types of images
due to this bias.

• Evaluation – Assessing the quality of image captions lacks a single standard metric,
and the suitability of various metrics varies based on the specific application. For
instance, certain metrics may prioritize accuracy, whereas others may prioritize the
diversity or originality of the generated captions.

6 Conclusion and Future Work

Compared to other models like VGG-LSTM and ResNet-LSTM, the Xception-LSTM
model offers several advantages. For one, it boasts greater computational and memory
efficiency, which makes it more suitable for training on larger datasets. Additionally,
the LSTM-based language decoder employed by the Xception-LSTM model is capable
of modeling long-term dependencies during the caption generation process. This is a
crucial factor in generating coherent and semantically meaningful captions. Moreover,
the Xception-LSTM model can be fine-tuned on other tasks such as visual question
answering and image retrieval, which demonstrates its versatility and effectiveness in
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various applications. However, the Xception-LSTM model still faces some challenges
such as handling rare words and dealing with the ambiguity and diversity in the cap-
tion generation process. Future research can focus on addressing these challenges and
improving the performance of the Xception-LSTM model on image captioning.
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