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Abstract. The relevance of automated recognition of human behaviors or actions
stems from the breadth of its potential uses, which includes, but is not lim-
ited to, surveillance, robots, and personal health monitoring. Several computer
vision-based approaches for identifying human activity in RGB and depth camera
footage have emerged in recent years. Techniques including space-time trajec-
tories, motion indoctrination, key pose extraction, tenancy patterns in 3D space,
motion maps in depth, and skeleton joints are all part of the mix. These camera-
based methods can only be used inside a constrained area and are vulnerable to
changes in lighting and clutter in the backdrop. Althoughwearable inertial sensors
offer a potential answer to these issues, they are not without drawbacks, includ-
ing a reliance on the user’s knowledge of their precise location and orientation.
Several sensing modalities are being used for reliable human action detection due
to the complimentary nature of the data acquired from the sensors. This research
therefore introduces a two-tiered hierarchical approach to activity recognition by
employing a variety of wearable sensors. Dwarf mongoose optimization process
is used to extract the handmade features and pick the best features (DMOA). It
predicts the composite’s behavior by emulating how DMO searches for food. The
DMO hive is divided into an alpha group, scouts, and babysitters. Every commu-
nity has a different strategy to corner the food supply. In this study, we tested out
a number of different methods for video categorization and action identification,
including ConvLSTM, LRCN and C3D. The projected human action recognition
(HAR) framework is evaluated using the UTD-MHAD dataset, which is a mul-
timodal collection of 27 different human activities that is available to the public.
The suggested feature selection model for HAR is trained and tested using a vari-
ety of classifiers. It has been shown experimentally that the suggested technique
outperforms in terms of recognition accuracy.

Keywords: Human action recognition · Dwarf mongoose optimization
algorithm · Camera-based approaches · Key poses extraction · Convolutional
Neural Network
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1 Introduction

Ubiquitous sensing, which uses data collected by sensors placed strategically about a
building, has become increasingly popular in recent years [1]. Wearable sensor research
for (HAR) has exploded in recent years, thanks in large part to its widespread potential
use in fields as diverse as sports, interactive gaming, healthcare, and other monitoring
schemes. Multimodal HAR is best understood as a variation on the long-honoured series
classification problem [2], wherein a sliding time window is used to partition incom-
ing sensor data into discrete time intervals from which discriminative features may be
extracted. Techniques, such as may be used to further distinguish each time frame [3].
In addition, it can be challenging for shallow learning to capture the essential elements
of complicated actions, and feature selection is often a laborious process [5]. Studies
into automatic feature extraction with little human effort are of paramount importance
as a means of addressing the aforementioned issues. The field of multimodal HAR is
shifting its focus from surface learning to deep learning at the moment [6].

To improve system performance and do away with the requirement for hand-crafted
features, recent research in sensor-based HAR has focused heavily on deep learning,
in which many layers are layered to build (DNNs) [7, 8]. In particular, the rich repre-
sentation power of (CNNs) has substantially advanced the performance of HAR. DNNs
will improve in performance as their model capacities for rich representation grow, but
this will unavoidably increase the need for highly labelled data. Annotated or “ground
truth labelled” training data is a source of difficulty for deep HAR identification [9, 10].
Annotating the ground truth requires the annotator to sift through raw sensor data and
physically identify all activity instances. This is a time-consuming and costly process.
As compared to data captured by other sensor modalities, such cameras, the time series
data recorded by multimodal embedded sensors like accelerometers and gyroscopes is
far more challenging to comprehend [11]. To effectively segment and classify a spe-
cific activity from a lengthy needs significant human work. Thus, while these DNN
models can automatically extract relevant features for categorization, they still need pre-
cise truth, which would necessitate significantly more human work to provide an ideal
training dataset for HAR in a supervised learning situation [12].

Due to its independence on the kind, distance, and arithmetical scale of distinct
features derived from numerous sensory modalities [13], decision-level fusion has been
the primary focus of existing research for multimodal HAR. Furthermore, the final for
classification has fewer dimensions after decision-level fusion, and no post-processing
of the retrieved features is required. Independent and stand-alone categorization choices
pertaining to each sense modality, which are subsequently fused using some soft rule to
generate the final conclusion, is the main shortcoming of the decision-level fusion [14].
On the other hand, feature-level fusion is useful for gathering features simultaneously
from several sensors and integrating them to produce enough information for a sound
judgement [15].
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2 Related Works

Using machine and deep learning (DL) models, Pradhan and Srivastava [16] categorized
multi-modal physiological inputs. Dahou et al. [17] provide a methodology to increase
the performance of several applications using a wide variety of data kinds by addressing
the large dimensionality of data transported via the SIoT system.

Islam et al. [18] recommend a fusion procedure for activity recognition using amulti-
head (CNN) equipped with a Convolution Block Attention Module (CBAM) to process
the visual data and a (ConvLSTM) to handle the time-sensitive multi-source sensor
information. In order to evaluate and recover channel and spatial dimension attributes,
the three CNN sub-architectures and CBAM for visual data are implemented.

Novel system architecture presented by Zhang et al. [19] consists of three parts:
feature selection using an oppositional and chaos particle swarm optimization (OCPSO)
algorithm, amulti-input (MI-1D-CNN) that takes advantage of signals, and deep decision
fusion (DDF) that combines D-S evidence theory and entropy. Using the UCI HAR and
WIDSM datasets, the suggested architecture is tested.

Using the combination of EEG and face video clips,Muhammad et al. [20] describe a
multimodal emotion identification approach based ondeep canonical correlation analysis
(DCCA). We use a two-stage framework in which the first stage uses features extracted
from a single modality to recognize emotions, and the second stage combines the highly
correlated features from the two modalities and classifies the data. After fusing highly
correlated data using a DCCA-based method, the SoftMax classifier was then used
to categorize faces into one of three fundamental human emotion categories: joyful,
neutral, or sad. The suggested method was explored using the MAHNOB-HCI and
DEAP public datasets. The average accuracy of the experimental findings was 93.86%
on the MAHNOB-HCI dataset and 91.54% on the DEAP dataset. By contrasting the
proposed framework with other efforts, we were able to assess its competitiveness and
provide justification for its exclusivity in the pursuit of this level of precision.

Human gait identification was the focus of Jahangir et al. [21].’s novel two-stream
deep learning approach. In the first stage, we discussed a method for improving contrast
by combining data from local and global filters. In the second stage, data augmentation
is carried out to expand the dimensionality of the raw dataset (CASIA-B). Third, we use
deep transfer learning using the supplemented dataset. Fourth, a serial-based method
is utilized to combine the extracted features of the two streams; and fifth, an enhanced
method is employed to further optimize the fusion. Eight different angles from the
CASIA-B dataset were used in the experimentation procedure, with results of 97.3, 98.6,
97.7, 96.5, 92.9, 93.7, 94.7, and91.2%accuracy.The results of head-to-head comparisons
with SOTA methods revealed increased precision and decreased processing time.

3 Proposed System

We begin with a brief description of the experimental dataset, followed by a discussion
of the methodology and metrics utilized in the experiments. We then detail how our
suggested framework may be put into action. We conclude with a discussion of the
qualitative results, which should give you some good ideas about the recommended
approach.
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3.1 Dataset and Implementation Details

The suggested technique was tested using the UTD-MHAD dataset, which is a publicly
available multimodal HAR dataset consisting of 27 human activities performed by 8
people. Figure 1 shows a list of these activities along with several visual representations.

Fig. 1. Sample Images of the dataset [22]

Each participant performed each task four times. As a result, we have 8 participants
× 4 trials per action × 27 actions totalling 864 trimmed data sequences. Three data
sequences were corrupted during data recording, therefore after cleaning up the dataset,
only 861 sequences remained. Both a Microsoft Kinect sensor (30 frames and a wear-
able inertial sensor (50 samples per second) were used to acquire the information in a
controlled indoor environment. In order to record triaxial acceleration triaxial angular
velocity, a Bluetooth-enabled hardware module was employed as a wearable inertial
sensor (using a gyroscope). During activities 1–21, the participant wore the sensor on
their right wrist; for actions 22–27, the sensor was attached to their right thigh. Each
segmented action trial in the dataset is represented by four files, one for each of the four
sensory modalities included in the dataset.

3.2 Feature Extraction

In particular, we made use of handmade features; the following sections outline each
method in depth.

3.2.1 Handcrafted Features

Techniques for extracting features by hand are easy to implement and need less comput-
ing power. Simple statistical proceduresmore intricate frequency domain-based features,
can be used to compute them on time series data. Table 1 summarizes the calculated
characteristics and is followed by a detailed explanation of each. Each dimension of
features received its own set of statistical calculations.

a) Extreme: Let X is the feature course. The Max(X ) function finds and revenues the
largest feature value xi ∈ X .
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Table 1. List of Handcrafted Topographies

Skewness Extreme

Norm of SOM Percentile 50

Spectral energy Percentile 80

Kurtosis Minimum

Auto-correlation Average

First-Order Mean (FOM) Standard-deviation

Norm of FOM Zero crossing

Second-order mean (SOM) Percentile 20

Spectral entropy Interquartile

b) Least: With X as input, the Min(X) function will locate the minimum story value (xi
X) and return it.

c) Average: When there are N possible tale values, the average earnings are equal to
the value in the middle of feature vector X. As in,

Average(X ) = μ =
∑n

i=1 xi
N

(1)

d) Standard Deviation: It defines the amount of difference in feature vector X =
{x1, x2 . . . xN } and can be calculated using the following preparation:

Stdev(X ) = σ =
√

1

N

∑N

i=1
(xi − μ)2 (2)

e) The frequency with which the signal value passes zero in either direction is an
indicator of how quickly or slowly the activity is changing.

f) The term “percentile” is used to describe a score where a specified fraction of all
possible responses fall below that value. The pth percentile is defined as the number
at which no more than (100 p) % of the capacities are lower than this value and no
more than 100(1 p) % are higher than this value. The 25th percentile, for instance,
indicates that the value is larger than 25 other values but lower than 75 other feature
values.

g) To calculate the interquartile range, use the difference among the first and third
quartiles.

h) The skewness of a distribution is a measure of how far off centre the data of relative
to the mean:

Sk = 1

Nσ 3

∑n

i=1
(xi − μ)3 (3)

i) Kurtosis: Towhat extent the distribution’s tails deviate from the normal distribution’s
tails is measured by the statistic. A larger kurtosis number indicates that there are
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more extreme deviations, or outliers, in the data. It may be calculatedmathematically
as:

Kr = 1

Nσ 4

∑n

i=1
(xi − μ)4 (4)

j) Auto-correlation: It is a statistical method for determining how closely one set of the
time series data is related to its own lagged version across a range of time periods
and it may be calculated as:

rk =
∑N−k

i=1 (xi − μ)(xi+k − μ)
∑N

i=1(xi − μ)2
(5)

k) Order Mean Values: They are derived from the sorted list of numbers (in ascending
order). That is, in an ordered collection of features X, the first ordered mean is just
the smallest sample value X1, the second ordered mean is the value X2, and so on.

l) Norm Values: They help determine how far away from zero a feature vector actually
is. There were two metrics we used: L1-norm.

m) Spectral Energy: We remember that in the recorded data numerous sensors are uti-
lized to access the human actions; these sensors may be thought of as a function
whose amplitude varies with time. The signal was changed from a time series to a
frequency range using the Fourier transform, and the Spectral energy formulation
was used to determine the energy levels at each frequency. The z value is the total
amplitude squared of the frequencies present (n). As in,

SE =
∑N

i=1
F(n)2 (6)

n) It is also calculable using normalized frequency spectra. As in,

F̂(n) = F(n)
∑N

i=1 F(n)
(7)

o) The normalized form of Eq. (6) is as follows:

NSE =
∑N

i=1
F̂(n)2 (8)

p) Spectral Entropy: It is a way to quantify the spectral distribution of a signal in terms
of frequency, and it is entropy. One possible mathematical description of spectral
entropy is as follows:

SEN = −
∑N

i=1
F̂(n) × logF̂(n) (9)

These 18 features are the product of computations performed on each column in the
features set for a single action and are joined together in a single row. Given that the
input data is 61-dimensional, the resulting handmade feature will have a dimension of
1 (18 61) (or 1 1098). We tested the recognition accuracy of these generated features
using a DL model.
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3.3 Classification Using DL Models

3.3.1 Long-term Recurrent Convolutional Network (LRCN)

The goal of LRCN [23, 24] is to use convolution neural networks to extract spatial
data from each frame. In order to categorise the data, the results from the convolutional
networks are fed into a Bi-LSTM network, which combines the retrieved spatial char-
acteristics with the temporal features. These models require an input size of 90 by 90
pixels. Convolutional filters are modelled as a matrix (in our example, 3 × 3 in size)
with a random set of values that convolve across the picture and calculate the dot oper-
ation, and the output is then sent on to the next layer in the custom CNN model. Using
convolution over k channels, the following Eqs. (10)–(13) summarise an input frame
and provide a matrix as a result.

A(m)
o = gm(w(m)

ok ∗ A(m−1)
k + b(m)

o ) (10)

W − ok ∗ Ak [s, t] = ap,q ∗ b (11)

a = Ak
[
s + p, t + q

]
(12)

b = wok [P − 1 − p,Q − 1 − q] (13)

As per the above equations, max pooling is used to minimise the number of parame-
ters after each convolutional layer in the network that lightens the convolutional burden.
The rate of output is stable at this point. Our model used Rectified Linear Unit (ReLU),
as seen in Eq. (16), and SoftMax, which converts a system’s output into a probability dis-
tribution across projected classes. We imported an ImageNet-trained VGG-16 network
and deleted the top layer to use its features in the VGG-LSTM model. Time-distributed
layering was followed by a 256-filter bidirectional lstm, 256-filter ReLU-activated dense
layering, and a final 2-neuron output layer.

y = A.x + b (14)

yi =
∑i

j=1

(
Aij, xj

) + bi (15)

y = max(0, x) (16)

y = A.x + b (17)

yi =
∑i

j=1

(
Aijxj

) + bi (18)
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3.3.2 Convolutional Long Short-Term Memory (CLSTM) [25, 26]

While LSTM is limited to the temporal domain, we have also utilised ConvLSTM,which
can be applied to the spatial domain. To do this, we employ ConvLSTM with spatially-
oriented tensor inputs, cell outputs, hidden states, and gates.While both ConvLSTM and
LSTM have a similar architecture, the twomodels diverge in how they handle transitions
from input to state and from state to state. The activation function, convolution operator,
and Hadamard product are respectively denoted by the symbols ““, “,” and “0” in the
following Eqs. (19)–(24).

it = σ
(
wxixt + whiht−1 + wci

◦ct−1 + bi
)

(19)

ft = σ
(
wxf xt + whfht − 1 + wcf

◦ct−1 + bf
)

(20)

c̃t = tanh(wxcxt + whcht−1 + bc) (21)

ct = ft
◦ct−1 + it

◦ct (22)

ot = σ(wxoxt + wh0ht−1 + wcoσct + bo) (23)

ht = ot tanh(ct) (24)

The aforementioned formulas allow us to translate between the input valueXt and the
output value Ht1 of the last neuron, where Ct1 is the current location. The convolution
filter has a kernel size of k by k, where k is the dimension of kernel. In order to extract
features from a movie, ConvLSTM reads in frames as input and performs a multidimen-
sional convolution operation on each frame. To extract features more efficiently than the
CNNmodel, ConvLSTMmay transport and process input in both the inter-layer and the
intro-layer.

3.3.3 3D Convolutional Neural Networks (C3D)

In contrast to 2D-CNNs, C3D [27–29] can extract both temporal and spatial data from
videos. This is due to the fact that 2D convolution applied to a video section compresses
the temporal features after convolving, leading to an overall feature map that fails to
accurately reflect any motion. A 3D filter kernel is created by stacking many frames
together to create the 3D cube needed for the 3D convolution. Frames × Height ×
Width × Channels in the following format: 25 × 90 × 90 × 3. A ReLU activation
function follows the 64 filters in the first 3D convolutional layer. The next step is a
max pooling, which takes the most notable features from each feature map patch and
calculates their maximum value.
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4 Results and Discussion

Evaluation metrics including false positive rate (FPR), error rate (ER), accuracy (AUC),
true positive rate (TPR), and precision (P) are used to make predictions about HAR
detection (see Tables 2 and 3).

TPR = True Positive

False Negative + True Positive
(25)

FPR = False Positive

True Negative + False Positive
(26)

Precision = True Positive

True Positive + False Positive
(27)

ErrorRate = False Positive + False Negative

False Negative
(28)

Table 2. Analysis of Various DL Classifiers without DMOA

Algorithms TPR
(%)

FPR
(%)

Accuracy
(%)

Error
Rate

MLP 83.0 9.6 89.2 0.30

DBN 89.7 8.1 90.5 0.23

C3D 93.8 5.3 92.6 0.15

CLSTM 95.6 4.5 94.3 0.18

LRCN 96.8 2.5 96.4 0.16

In the analysis of TPR, the three proposed models achieved nearly 93% to 96%,
DBN achieved 89.7% and MLP achieved 83%. When the models are tested with FPR,
DBN and MLP achieved 9.6% and 8.1%, where the three models of proposed approach
achieved 2.5% to 5.3%. The error rate is very low in C3D, CLSTM and LRCN, where
DBN and MLP has high error rate. i.e., 0.30 and 0.23 (see Figs. 2 and 3).
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Table 3. Analysis of Various DL Classifiers with DMOA

Algorithms TPR
(%)

FPR
(%)

Accuracy
(%)

Error
Rate

MLP 89.7 8.9 91.2 0.28

DBN 91.8 7.2 92.1 0.20

C3D 94.4 4.6 95.2 0.13

CLSTM 96.1 3.5 96.4 0.15

LRCN 98.6 1.4 98.4 0.14

Fig. 2. Accuracy Validation

Fig. 3. Error_Rate Presentation
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5 Conclusion

Dwarf Mongoose Optimization is a suggested optimization-based Feature selection
method in this study for human action recognition. In order to detect an action, the
proposed system combines the data derived from several sense modalities utilising a
supervised trifecta of deep learning methods. The extensive experimental findings vali-
date the validity of our proposed strategy for human action classification in comparison
to standalone sensor modalities. Furthermore, as compared to state-of-the-art deep CNN
approaches, the system’s recognition accuracy is enhanced while computational cost is
decreased by fusing time domain information calculated from inertial sensors with those
from depth/RGB movies. In addition, it does not utilize Multi-view HAR, and the sub-
ject whose actions are being identified maintains their current orientation with relation
to the camera. Further work will involve expanding the suggested HAR technique to
compensate for these deficiencies. Moreover, we hope to explore the many uses for
the suggested fusion architecture by utilizing an RGB-D camera and a set of wearable
inertial sensors.
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