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Abstract. Explainable Artificial Intelligence (XAI) has gained signifi-
cant attention recently as the demand for transparency and interpretabil-
ity of machine learning models has increased. In particular, XAI for time
series data has become increasingly important in finance, healthcare, and
climate science. However, evaluating the quality of explanations, such
as attributions provided by XAI techniques, remains challenging. This
paper provides an in-depth analysis of using perturbations to evaluate
attributions extracted from time series models. A perturbation analy-
sis involves systematically modifying the input data and evaluating the
impact on the attributions generated by the XAI method. We apply
this approach to several state-of-the-art XAI techniques and evaluate
their performance on three time series classification datasets. Our results
demonstrate that the perturbation analysis approach can effectively eval-
uate the quality of attributions and provide insights into the strengths
and limitations of XAI techniques. Such an approach can guide the selec-
tion of XAI methods for time series data, e.g., focusing on return time
rather than precision, and facilitate the development of more reliable and
interpretable machine learning models for time series analysis.

Keywords: Explainable AI · XAI Evaluation · XAI for Time Series

1 Introduction

Artificial intelligence (AI) has become an integral part of our daily lives, from
the personalized advertisement we receive on social media to conversational AI
(chatbots) answering questions of users and customers using deep neural net-
works. However, as the complexity of deep neural network models increases,
so does the difficulty in understanding how they get to their decisions [7]. A
lack of interpretability can lead to severe consequences in critical domains such
as finance, healthcare, and transportation, including financial losses, medical
errors, and even loss of life by providing wrong decisions if complex models
are deployed [16]. One promising approach to addressing such issues is through
the usage of explainable artificial intelligence (XAI), which seeks to provide
insights into the inner workings of complex models and the factors that drive
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their decision-making [7]. One particular area of interest is time series data,
which is characterized by the sequential nature of its observations and the inter-
dependencies between them, as more sensors generate a massive amount of data
and more tasks are tackled by complex models [25].

In recent years, a growing body of research has focused on developing XAI
techniques tailored explicitly for time series data [25]. These techniques often rely
on the concept of attributions, which aim to identify the contributions of indi-
vidual features and time points to the overall prediction made by a model [25].
By providing insights into which parts of the input data are most relevant to the
output, attributions can help users understand the reasoning behind the model’s
decision-making process [18]. However, the evaluation of such attributions is not
trivial [19]. To address the challenge of evaluating the quality of explanations for
time series data, perturbation analysis has emerged as a promising evaluation
technique [17,22]. Perturbation analysis involves systematically modifying the
input data and assessing the impact on the attributions generated by XAI meth-
ods [19]. By perturbing the input data, it is possible to evaluate the robustness
of the explanations provided by XAI methods [25]. However, the effectiveness
of perturbation analysis for evaluating the quality of attributions for time series
data has not been extensively studied [19].

In this paper, we apply attribution techniques from various fields to a convo-
lution neural network trained on time series classification data to evaluate and
inspect the generated attributions in detail using perturbations, which involves
systematically altering the input data and observing the effect on the model’s
output. We investigate the performance of attribution techniques compared to
each other based on the perturbation analysis result and explore the perturbation
changes based on these attributions to gain insights into the model. Through such
an analysis, we can identify spurious correlations and shortcuts in the complex
models and thus enable developers to potentially improve models by debugging
datasets. We show that our convolution neural network trained on time series
classification learned certain shortcuts to achieve state-of-the-art performances.
Based on these experiments and results, we provide guidelines for the application
of attribution techniques for time series classification and release our evaluation
framework to investigate other attribution techniques.

Thus, we contribute: (1) an in-depth analysis of attribution techniques on
time series classification for deep learning models using a perturbation analysis,
(2) insights into convolution neural networks trained on time series based on the
generated attributions, (3) guidelines and a framework for applying attribution
techniques for time series models with a perturbation analysis card for reporting.
We first look into related work, and then we introduce the perturbation analysis
methodology and the experiment setup we use for our deep dive. Here we also
propose perturbation analysis cards as a guideline to report the results of an
evaluation. Next, we present our results and discuss the impact of our conclu-
sions for attribution techniques applied to time series. Lastly, in future work, we
motivate new measures for the evaluation of attributions on time series data.

Results and source code of the experiments is online available at: https://gi
thub.com/visual-xai-for-time-series/time-series-xai-perturbation-analysis.

https://github.com/visual-xai-for-time-series/time-series-xai-perturbation-analysis
https://github.com/visual-xai-for-time-series/time-series-xai-perturbation-analysis
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2 Related Work

Explainable AI (XAI) accelerated through several surveys [1,7] and techniques,
e.g., LIME [15] and SHAP [12] in the last few years. Especially, attributions
are prevalent in the image domain as heatmap explanations are easy to under-
stand for users [10]. Some theoretical works dig into the backgrounds of why
models learn certain shortcuts to solve tasks [6] and thus enable further expla-
nations for decisions. However, evaluating explanations is still a slowly growing
area with limited work toward benchmarking different techniques against each
other [8]. Further, shortcuts or spurious correlations are not trivial to detect in
explanations and need an in-depth analysis to be able to identify these [29].

Some works started to collect possible evaluation techniques [14] and cate-
gorized these into five measurements: mental model, explanation usefulness and
satisfaction, user trust and reliance, human-AI task performance, and compu-
tational measures. The first few measures focus on evaluating with or in coop-
eration with humans and are thus heavily influenced by human factors. The
computational measures exclude human factors and focus on purely automatic
evaluation of explanations. In this work, we inspect the computational measures
and, more precisely, the explainer fidelity of the attribution technique on the
model to show how the attributions fit the model.

XAI for time series classification (TSC), on the one hand, incorporates pre-
viously proposed explanation techniques from other fields and introduces the
time dependence into some of the techniques [25]. Theissler et al. [25] catego-
rize possible explanations for TSC into time point, subsequence, and instance
explanations. All these operate on a different level of the time series and are
thus unique in their explanation and evaluation. In this work, we tackle time
point explanations and, to be more precise, attributions to highlight and explore
shortcuts and spurious correlations. As Schlegel et al. [17] and others [13,22,25]
demonstrated, attributions techniques such as LIME [15], SHAP [12], LRP [4],
GradCAM [21], Integrated Gradients [24], and more [20], produce working attri-
butions on time series to extract explanations from a model. However, in most
cases, only purely computational measures are applied to the attributions, which
are not further inspected, e.g., Mercier et al. [13] to gain deeper insights.

Schlegel et al. [17] started by using a perturbation analysis on attribution
techniques applied to TSC using various perturbation functions to highlight that
techniques for images and text are also working on time series. Based on such
preliminary experiments, they enhanced their approach with additional pertur-
bation functions to showcase deeper insights into the fidelity evaluation [19].
Mercier et al. [13] enhanced these perturbations with further measures from the
image domain, such as (in)fidelity and sensitivity [27]. Simic et al. [22] extended
the proposed methods by Schlegel et al. [19] with out-of-distribution detecting
functions and gave guidelines for the selection of attribution techniques and
the size of the window for the perturbation. Turbe et al. [26] enhance previous
approaches with another metric to improve the comparison of the attribution
techniques and the ability to demonstrate their fidelity towards the model. How-
ever, all of these approaches do not look into the attributions and the produced
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values to investigate further into the techniques behind the attributions and
the models. Thus, an in-depth analysis is needed to investigate the attributions
generated for time series classification models.

3 Perturbation Analysis

We use the perturbation analysis approach by Schlegel et al. [19] to generate
attributions, verify, and compare them using the proposed perturbation function
strategies [17,22]. We extend the comparison by calculating the Euclidean and
cosine distance between the original and the perturbed time series instance and
the Euclidean and cosine distance between the original attributions of the dataset
and the attributions of the perturbed instances of the dataset. Collecting these
results can help us have a more in-depth analysis of the attribution techniques
and reveal relations between attributions and models. However, we first need to
establish the general perturbation analysis.

Let D = (X,Y ) be a time series classification dataset with X as the time
series samples and Y as the time series labels. X = {ts1, ts2, ..., tsn} con-
tains n time series samples with m time points for each sample represented
as ts = {tp1, tp2, ..., tpm}, where tp1 is the value for the ith time point of
ts. Y = {l1, l2, ..., ln} contains n labels one label for each time series sam-
ple. Let M(ts, θ) = y′ be a time series classification model which predicts
a label y′ based on a time series input ts and has the parameters θ. Let
A(X,M, θ) be an XAI technique for generating attributions for the time series
data. The original attributions for X generated by A can be represented as
A(X,M, θ) = {a1, a2, ..., am}, where ai is the attribution score for the ith time
point of X, M the time series classification model for which the attributions are
calculated, and θ the parameters of the attribution technique.

To perform perturbation analysis, we introduce a perturbation function g
that modifies X in a controlled manner. Specifically, we define a perturbed time
series dataset X ′ as:

X ′ = g(X,A, ξ) (1)

Our perturbation function g modifies the dataset X based on the attributions A
and a threshold ξ. The value for the modification can be changed and depends
on the selected function g, e.g., exchange to zero. The threshold ξ can be set
to a value by hand or some other function, e.g., using the 90-percentile of the
attributions so that the attributions, e.g., ai the ith element, above the threshold,
will be modified to the previously set value, e.g., zero. Figure 1 demonstrates the
approach with zero perturbations on attributions with high values.

The original X and the perturbed dataset X ′ get predicted with the model
M to get M(X) = Y ′ and M(X ′) = Y ′′. Based on Schlegel et al. [19], we
incorporate a quality metric qm, e.g., accuracy, to compare the performance of
the model M with the original X and the perturbed dataset X ′. For the time
series classification, we assume that the qm decreases after the original data
changes, and thus the labels are not fitting anymore [17]. We further assume
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Fig. 1. Starting from a time series ts, we use a selected attribution technique A to get
attributions. Based on the attributions, we use a selected perturbation function g to
set highly relevant time points, e.g., to zero. Further information in Schlegel et al. [19].

a suiting attribution technique decreases the performance more heavily as the
most relevant parts of the input data get perturbed [8]. Thus, we assume:

qm(Y ′, Y ) ≤ qm(Y ′′, Y ) (2)

However, in some cases, the scores are very similar [13,17], and a deeper inves-
tigation into the attributions is necessary to find similarities or dissimilarities in
the relevances of the techniques. Thus, we do not only compare the quality met-
rics but also focus on the distances between the original X and the perturbed X ′

datasets. We apply the Euclidean and cosine distances to the datasets as these
are common distance functions for time series [2] to collect the changes of the
perturbation function g. We define the Euclidean distance as:

Euc(X,X ′) =

√
√
√
√

n∑

i=1

(tsi − ts′
i)2 (3)

where X = ts1, ts2, ..., tsn and X ′ = ts′
1, ts

′
2, ..., ts

′
n are the two time series being

compared. And we define the cosine distance as:

Cos(X,X ′) = 1 −
∑n

i=1 tsi × ts′
i

√∑n
i=1 ts2i × √∑n

i=1 ts′2
i

(4)

where X = ts1, ts2, ..., tsn and X ′ = ts′
1, ts

′
2, ..., ts

′
n are the two time series being

compared. These changes enable us to compare the attributions not only on a
performance level but on a raw level directly on the data.

4 Experiments with Perturbation Analysis

For our analysis, we look into the time series that changed and those that did not
change during the perturbation analysis. We especially want to understand the
attribution distributions to investigate the attribution techniques responsible for
fitting explanations, with high fidelity [14], on the models. Fitting explanations
in our assumptions are techniques that change the prediction of more samples in
a perturbation analysis [13,17,19]. However, a general measure and metric for
evaluating explanations are essential, but another factor is the attributions, as
these can also hide information or present spurious correlations [29]. E.g., the
question of how attributions are distributed over the techniques arises.
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To answer such questions and others, we use the changes from Y (old pre-
diction) to Y ′ (new prediction) to look into the samples that changed their
prediction and those that do not change. We especially want to know when
a change in the prediction happened, e.g., after how many removals based on
the attributions and the perturbation strategy. Thus, we look at the prediction
changes from one class to the other. E.g., in a binary classification with the
assumption from above, the predictions change from one to the other class to
demonstrate that the attributions highlight relevant time points for the model.
Thus, we slowly perturb more and more values from the time series until there is
a change in prediction. We use the percentile values (99, 98, ..., 25) as a threshold
for the perturbation and record when the change happens. Further, we collect
the skewness of the attributions of the changed and unchanged predictions. With
such an exploration of the distributions of the attributions, we enable to inspect
patterns inside of the attributions generated by different techniques. Also, the
distributions of the skewness enable to have another factor for the comparison of
the attribution techniques. Lastly, we do not only collect the skewness but also
the Euclidean and the cosine distances of the original sample to the perturbed
instance with regard to the changed and unchanged predictions. All these dif-
ferent collected statistics and properties can help us to identify various findings,
insights, and correlations in the attribution techniques as we collect as much
data from our perturbation analysis as possible.

Summary – Overall, we have the following dimensions we want to experiment
on: a) attribution techniques, b) perturbation strategy. We collect and analyze
the following properties: a) mean of the raw data samples of the changed and
unchanged predictions; b) skewness of attributions based on the changed and
unchanged predictions after the perturbation; c) new class distributions of the
changed and unchanged predictions after the perturbation; d) amount of relevant
attributions needed to perturb an instance to another class prediction. Figure 2
presents the collected properties using a perturbation analysis card with var-
ious statistics aggregated and visualized for easier analysis. We created these
perturbation cards for all the experiments.

Hypotheses – After we established our experiment setup, we generated
hypotheses around the results of the experiment on the basis of other work.
Based on the preliminary experiments by Schlegel et al. [17], we generated the
hypothesis that SHAP or SHAP derivatives will lead to the best results for the
TSC task. Based on the results of Simic et al. [22], we will further look into the
other attributions and double-check the results of Schlegel et al. [17] and the
SHAP results even if SHAP results are less consistent [22]. Based on Simic et
al. [22], we further look into the different perturbation strategies as we hypothe-
size that using one strategy is not enough to find a suitable attribution technique.
Based on Geirhos et al. [6], we want also to check if there are patterns in the
data the attributions show as relevant to find shortcuts the model learned to
classify the data. E.g., using certain maximum or minimum values to separate
one class from the other in a binary classification problem.
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Perturbation Analysis Card – The perturbation analysis card is our pro-
posed approach to reporting the results of our perturbation analysis strategies
and techniques. Figure 2 shows such a perturbation analysis card with meta
information (S), bar charts about the switch from one class to another (C), bar
charts for the distribution of distances (D), statistics about the attributions (A),
and a line plot visualization about the raw time series data (R).

Starting on top, Fig. 2(S), a short introduction presents a description of the
dataset, the attribution technique, and the perturbation strategy. Right under
the description, a stacked vertical bar chart shows a short glimpse of how good
or bad the overall perturbation was. A good perturbation with an attribution
technique presents just a lot of blue in this bar chart, while a bad perturbation
shows a lot of orange in the visualization. Next to it, the exact numbers of the
changed and unchanged samples are shown so that comparable numbers enhance
the fast glance with other cards.

Figure 2(C) gives a detailed view of the perturbation and the changes there.
The bar chart on the left visualizes the classes of the changed and unchanged
predictions. For the changed prediction, the visualization also further presents
the classes before and after the perturbation. Such visualization can help to
identify spurious correlations as a model could, for instance, learn one feature of
one class for the prediction. The bar chart on the right at (C) shows the number
of perturbed values needed to change the prediction. The fewer changes needed,
the better the attribution can identify relevant values.

In Fig. 2(D), the histogram of the distances between the perturbed and the
original instances are shown. On top of (D), the Euclidean distances, and on the
bottom of (D), the cosine distance can help to find clusters of needed changes for
the perturbation of the samples by revealing a trend towards a certain distance
range. Also, the distances can be used to compare the individual attribution
techniques against each other. A smaller distance range, together with a lower
number of perturbed values, presents a more focused technique.

Figure 2(A) visualizes more statistical information about the attributions.
The plot on top of (A) shows the skewness of the attributions of the samples
of the dataset. On the bottom, the means of the attributions are visualized.
Through these, a general trend of the changed and unchanged samples and their
attributions can be seen. Especially, outliers are interesting as a starting point
for deeper analysis with other methods and visualizations.

Lastly, in Fig. 2(R), the time series time point means of the changed and
unchanged samples can be inspected. So, for every time point in the time series,
the mean of it over the subset (changed or unchanged) of the whole dataset is
calculated and visualized. Thus, in the case of, e.g., FordA, with a standard-
ization of the dataset, the samples slowly converge to zero. The visualization
enables to spot large differences between the changed and unchanged samples.
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Fig. 2. Perturbation analysis card for the FordA dataset: the top description (S) con-
tains general statistics for the card, starting with the dataset, the attribution technique,
and the perturbation strategy. Beneath are the statistics for the amount of changed
and unchanged sample predictions encoded as a progress bar and with numbers. The
plots in (C) give a more detailed insight into the class changes after the perturbation.
The left plot presents the amount of changed and unchanged samples for each class
and also visualizes the class change for changed predictions. The right plot shows the
number of perturbed values when a change in prediction happens. In (D), the distances
of the original to the perturbed instance are shown. The top presents the Euclidean
distance between the pairs, and the bottom shows the cosine distance. (A) presents
the skew (top) and mean (bottom) of the attributions for the changed and unchanged
sample predictions. In (R), the mean of every value at a specific time point is visualized
for the changed and unchanged samples. (Color figure online)

5 Results and Discussion

Our current experiment setup evolves around an in-depth analysis of the attribu-
tions of seven attribution techniques (Saliency, IntegratedGradients, DeepLift,
Occlusion, GradientShap, DeepLiftShap, KernelShap) based on the implemen-
tations in Captum1. We incorporate 16 perturbation strategies, two based on
Simic et al. [22], six based on Schlegel et al. [19], and eight extensions we describe
later. We implemented nine single time point perturbations (zero, mean, inverse,
dataset mean, dataset max, dataset min, OOD high, OOD low, random between
min and max) and seven subsequence perturbations (zero, subsequence mean,
dataset mean, inverse, OOD high, OOD low, random between min and max).
The subsequence length is fixed to ten percent of the length of the data.

We focus on the UCR benchmark datasets [5] and take three of the most
extensive datasets (FordA, FordB, ElectricDevices) to investigate data charac-
teristics. However, our approach can be applied to any time series classification

1 Captum is a Pytorch-based XAI module for Python: https://captum.ai/.

https://captum.ai/
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dataset. The FordA and FordB are sensor data with a length of 500 and provide
an anomaly detection binary classification task. FordA has 3601 samples in the
training set and 1320 in the test set. FordB has 3636 samples in the training set
and 810 in the test set. The ElectricDevices dataset is shorter, with only 96 time
points. However, the dataset has 8926 training samples and 7711 test samples.

We investigate two architectures of convolutional neural networks. The first
architecture tackles the FordA and FordB datasets. The model consists of three
1D convolutional layers with a kernel size of three and increases the channels
from one to 10 to 50 to 100. A max-pooling of three after the convolutional
layer decreases the size again. A ReLu activation function activates the neuron.
Afterward, a fully connected layer with 100 neurons and a ReLu function uses
the feature maps from the convolutional layers to process the data further. And
lastly, another fully connected layer with two neurons classifies the data with a
softmax activation on top. We train the model with a batch size of 120 and the
Adam optimizer [11]. The second architecture is trained on the ElectricDevices
data and introduces a residual from the input to the fully connected layers. The
original input gets downsampled using a 1D convolution with kernel size seven
for the residual addition right before the fully connected layers.

We train our models using the cross-entropy loss for multi-label classification
on the datasets for 500 epochs. Our models achieve for FordA an accuracy of
0.99 for the training set and 0.89 for the test set, demonstrating overfitting to the
training data. Our models achieve for FordB an accuracy of 0.99 for the training
set and 0.70 for the test set, demonstrating overfitting to the training data. Our
models achieve for ElectricDevices an accuracy of 0.94 for the training set and
0.64 for the test set, demonstrating overfitting to the training data. As Ismail
Fawaz et al. [9] showed, even our simple models are not too far from the state-of-
the-art with other more sophisticated models. However, as we want to analyze
our model, we look into the attributions of the training data, and thus our
overfitting is a nice bonus to investigate spurious correlations and shortcuts [6].

Results – First, we start with the FordA dataset; next, we will present the FordB
results, and lastly, the ElectricDevices dataset. FordA demonstrates interesting
results regarding the attribution techniques and the perturbation strategies. The
best working strategies are setting the perturbed value to an out-of-distribution
low [26] on a subsequence [19] as you can see in Fig. 6. Especially, the saliency
method [23] achieves the best result regarding the flip of predictions by flip-
ping 2088 of 3601 samples, as also seen in Fig. 2. However, the KernelSHAP
method [12] comes close to the flip with just 39 less with 2049 flips. Also, as seen
in Fig. 2 on the plot on the right, the perturbation strategy out-of-distribution
low changes the class quite late with a lot of perturbed values. Such an effect is
unwanted in many cases as the model is, so to say, attacked by an adversarial
attack outside of the distribution of the original data. In some cases, we can use
such a method to test the model on data shifts, as, for example, the attributions
can shift heavily. However, for our focus on the model itself, such an adversarial
attack is interesting but does not show internal decision makings for the dataset
we are interested in.
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Fig. 3. Skewness distribution of the attribution techniques on the FordA dataset. Clear
differences in the distributions of the attributions are visible. Further, the differences
between changed and unchanged sample predictions and their attributions in the dis-
tributions are observable and show two different patterns in the techniques.

However, we also notice that the perturbation strategy heavily influences the
best working method. If we switch, for example, to a perturbation to zero, we
see Occlusion [28] as the winner in Fig. 6. Such a change in the best working
technique demonstrates that the perturbation analysis just with one strategy is
not enough to compare attribution techniques. We need multiple strategies to
decide on one technique. However, we can also further take a deeper look into
the attributions themselves. Focusing on the different skewness of the attribu-
tions and their distributions as seen in Fig. 3, we can already see some trends
toward techniques enabling an easier inspection of the method and how well the
method performs for the perturbation analysis. Especially, KernelSHAP in Fig. 3
demonstrates a nice pattern with two nearly not overlapping distributions. Such
a nice distribution can help us to decide on one attribution technique.

The model for the FordB dataset is a bit worse than for the FordA dataset,
which leads, in most cases, to worse performance in the perturbation analy-
sis [22]. However, again the KernelSHAP and Saliency generate good working
attributions for the change in the prediction for the perturbation to zero strat-
egy. For this dataset, KernelSHAP achieves to change of 3472 from 3636 samples
as seen in Fig. 7. Especially interesting is the distribution of the skewness of the
attributions. A more in detail analysis of these two peaks could lead to further
insights into the model and the attributions, but such an analysis needs another
visualization, e.g., projecting the attributions in a scatter plot. However, if we
further inspect our corresponding model card in Fig. 4, we can see that on the
plot on the right, the change happens if a lot of values are removed from the orig-
inal sample. Such a result is also observable in the other perturbation cards for
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Fig. 4. Perturbation analysis card for the FordB dataset. The visualizations show a very
distinct pattern. For the means of the raw samples (R), the few unchanged samples
compose quite a diverse pattern, while the changed ones go to zero based on their
standardization. However, the plot on the top (C) with the orange marker presents a
pattern we do not want to have in a perturbation analysis, as it shows that we need to
perturb a lot of data to achieve a change in prediction. (Color figure online)

the other techniques. In our study, we have identified a possible shortcut [6] that
our model has learned from the training data. We speculate that the shortcut
consists of a certain range or specific time points which need to be in a certain
range of values to be classified as one class or the other class, and if we destroy
this property, we change the prediction. So, our model learns a static version
or range for one class and classifies everything else into the other class. Such a
model does have more in common with an outlier detector than with a wanted
classifier. Thus, we identified a shortcut of the model to be able to improve the
classification without using all available features [6].

The ElectricDevices dataset is harder for the model as we do not only have
a binary classification problem but seven classes the model needs to separate.
However, as before, not even the state-of-the-art performance is as accurate as
possible [9], which leads to worse attributions and a more diverse perturba-
tion analysis result. Again, KernelSHAP performs best with a change of 8906
from 8926 samples with the values perturbed to the global max as seen in the
perturbation card of Fig. 5. However, also IntegratedGradients [24] works well,
but only with another perturbation strategy, namely changing the perturbed
value to the global mean of the dataset. The dataset demonstrates quite nicely
that the attribution techniques need different perturbation strategies to reveal
the models’ internal decision-making. Some of the techniques focus on different
features the model learned as the ranking of the best-performing attribution
techniques based on the perturbation analysis changes from strategy to strategy
for this dataset. Additionally, when we delve into the labels of the changed and
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Fig. 5. Perturbation analysis card for the ElectircDevices dataset. The skewness distri-
bution is quite interesting as it nearly presents a Gaussian distribution, with the mean
being more sparse and quite focused on only three large pillars.

unchanged predictions, we notice that various attribution methods alter differ-
ent labels in the perturbation. For example, KernelSHAP seems to modify every
class besides seven, whereas Saliency influences classes other than five and six.
However, unlike the previous FordB dataset, we do not see an unwanted pertur-
bation pattern in the amount of perturbed values visualization. Such an effect
presents that the attribution techniques are more suitable for the dataset and
model than for the FordB model.

Summary – As we have seen in our results (Fig. 6, Fig. 7, Fig. 8), KernelSHAP
performs quite well but takes a lot of time to calculate the attributions. Due
to the sampling-based approach of KernelSHAP, the attributions are not deter-
ministic and can vary from multiple computational runs. Further, in many cases,
Saliency (or Vanilla Gradient multiplied by the Input) works surprisingly well
and is only sometimes improved by additional extensions on top, such as Integrat-
edGradients. Thus, Saliency provides a promising variant for future experiments
and techniques on top of it. So, if the attribution (explanation) is time-critical,
Saliency is a well-suited method. If it is not time-critical, KernelSHAP provides
the best-working attributions based on our experiments. Our collected data has
even more insights and findings using the proposed perturbation analysis cards,
which we look forward to analyzing and publishing with the code. The published
source code can be used as a framework to experiment on more datasets, and
the perturbation analysis cards can be used to report the results. The GitHub
repository can be explored with more perturbation analysis cards and JSON
data for the collected results of our experiments.
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Fig. 6. Changed samples from the perturbation analysis for the FordA dataset. The
higher, the better. Saliency and KernelSHAP as winners, with Occlusion behind.

Fig. 7. Changed samples from the perturbation analysis for the FordB dataset. The
higher, the better. KernelSHAP is the winner, and Saliency is behind.
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Fig. 8. Changed samples from the perturbation analysis for the FordB dataset. The
higher, the better. KernelSHAP is the winner, and DeepLIFT and IntegratedGradients
are behind on different perturbation strategies.

6 Conclusion and Future Work

After reviewing related work, we presented an in-depth analysis of perturba-
tion strategies for attributions on time series. With the analysis, we dug into a
CNN trained on time series classification to investigate attributions, perturba-
tion strategies, and shortcuts the network learned. We presented our results in
perturbation analysis cards to enable users to analyze the results in detail by
inspecting the aggregated data in visualizations and comparing them easily with
other techniques based on the provided cards. We identified SHAP as a suitable
method to generate working attributions in all experimented datasets. Other
gradient-based methods also work quite well but do not perform as well as, e.g.,
KernelSHAP. However, depending on the perturbation strategy, the best work-
ing attribution technique changes quite drastically also for some techniques. We
advise not only focusing on a single strategy but to using multiple strategies and
aggregating the results of these, and looking at the distribution of the skewness
to enhance the comparability. In our experiments, we also found a shortcut or
spurious correlation for the FordB dataset, which our model learned to classify
one class and to classify everything else as the other class.

Future Work – We want to extend the experiment to other attribution tech-
niques and compare the results with the already collected experiment results.
Also, we want to compare the attributions even in more detail by, e.g., aggre-
gating the attributions and comparing them on a higher level to find matching
patterns. Different trends and subsequences are further patterns to analyze to
gain knowledge into the attribution techniques. With such an approach, we also
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want to include the local Lipschitz estimate [3] to rank consistent attributions
higher. Last, we want to extend the Perturbation Effect Size [22] and use our
gained knowledge to combine perturbation strategies, switching predictions, and
distances to generate a measure to evaluate attributions on time series classifi-
cation models more robust and fully automatically to make it easier for users to
decide which attributions to use for explanations. We also want to enhance our
perturbation analysis cards further to be more easily readable and comfortable
for non-experts to be able to gain insights at a single glance.
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